WorldWideScience

Sample records for bacterial phylum verrucomicrobia

  1. Phylum Verrucomicrobia representatives share a compartmentalized cell plan with members of bacterial phylum Planctomycetes

    Directory of Open Access Journals (Sweden)

    Romeo Tony

    2009-01-01

    Full Text Available Abstract Background The phylum Verrucomicrobia is a divergent phylum within domain Bacteria including members of the microbial communities of soil and fresh and marine waters; recently extremely acidophilic members from hot springs have been found to oxidize methane. At least one genus, Prosthecobacter, includes species with genes homologous to those encoding eukaryotic tubulins. A significant superphylum relationship of Verrucomicrobia with members of phylum Planctomycetes possessing a unique compartmentalized cell plan, and members of the phylum Chlamydiae including human pathogens with a complex intracellular life cycle, has been proposed. Based on the postulated superphylum relationship, we hypothesized that members of the two separate phyla Planctomycetes and Verrucomicrobia might share a similar ultrastructure plan differing from classical prokaryote organization. Results The ultrastructure of cells of four members of phylum Verrucomicrobia – Verrucomicrobium spinosum, Prosthecobacter dejongeii, Chthoniobacter flavus, and strain Ellin514 – was examined using electron microscopy incorporating high-pressure freezing and cryosubstitution. These four members of phylum Verrucomicrobia, representing 3 class-level subdivisions within the phylum, were found to possess a compartmentalized cell plan analogous to that found in phylum Planctomycetes. Like all planctomycetes investigated, they possess a major pirellulosome compartment containing a condensed nucleoid and ribosomes surrounded by an intracytoplasmic membrane (ICM, as well as a ribosome-free paryphoplasm compartment between the ICM and cytoplasmic membrane. Conclusion A unique compartmentalized cell plan so far found among Domain Bacteria only within phylum Planctomycetes, and challenging our concept of prokaryote cell plans, has now been found in a second phylum of the Domain Bacteria, in members of phylum Verrucomicrobia. The planctomycete cell plan thus occurs in at least two

  2. Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia

    Directory of Open Access Journals (Sweden)

    Stott Matthew B

    2008-07-01

    Full Text Available Abstract Background The phylum Verrucomicrobia is a widespread but poorly characterized bacterial clade. Although cultivation-independent approaches detect representatives of this phylum in a wide range of environments, including soils, seawater, hot springs and human gastrointestinal tract, only few have been isolated in pure culture. We have recently reported cultivation and initial characterization of an extremely acidophilic methanotrophic member of the Verrucomicrobia, strain V4, isolated from the Hell's Gate geothermal area in New Zealand. Similar organisms were independently isolated from geothermal systems in Italy and Russia. Results We report the complete genome sequence of strain V4, the first one from a representative of the Verrucomicrobia. Isolate V4, initially named "Methylokorus infernorum" (and recently renamed Methylacidiphilum infernorum is an autotrophic bacterium with a streamlined genome of ~2.3 Mbp that encodes simple signal transduction pathways and has a limited potential for regulation of gene expression. Central metabolism of M. infernorum was reconstructed almost completely and revealed highly interconnected pathways of autotrophic central metabolism and modifications of C1-utilization pathways compared to other known methylotrophs. The M. infernorum genome does not encode tubulin, which was previously discovered in bacteria of the genus Prosthecobacter, or close homologs of any other signature eukaryotic proteins. Phylogenetic analysis of ribosomal proteins and RNA polymerase subunits unequivocally supports grouping Planctomycetes, Verrucomicrobia and Chlamydiae into a single clade, the PVC superphylum, despite dramatically different gene content in members of these three groups. Comparative-genomic analysis suggests that evolution of the M. infernorum lineage involved extensive horizontal gene exchange with a variety of bacteria. The genome of M. infernorum shows apparent adaptations for existence under extremely

  3. Forest-to-pasture conversion increases the diversity of the phylum Verrucomicrobia in Amazon rainforest soils.

    Science.gov (United States)

    Ranjan, Kshitij; Paula, Fabiana S; Mueller, Rebecca C; Jesus, Ederson da C; Cenciani, Karina; Bohannan, Brendan J M; Nüsslein, Klaus; Rodrigues, Jorge L M

    2015-01-01

    The Amazon rainforest is well known for its rich plant and animal diversity, but its bacterial diversity is virtually unexplored. Due to ongoing and widespread deforestation followed by conversion to agriculture, there is an urgent need to quantify the soil biological diversity within this tropical ecosystem. Given the abundance of the phylum Verrucomicrobia in soils, we targeted this group to examine its response to forest-to-pasture conversion. Both taxonomic and phylogenetic diversities were higher for pasture in comparison to primary and secondary forests. The community composition of Verrucomicrobia in pasture soils was significantly different from those of forests, with a 11.6% increase in the number of sequences belonging to subphylum 3 and a proportional decrease in sequences belonging to the class Spartobacteria. Based on 99% operational taxonomic unit identity, 40% of the sequences have not been detected in previous studies, underscoring the limited knowledge regarding the diversity of microorganisms in tropical ecosystems. The abundance of Verrucomicrobia, measured with quantitative PCR, was strongly correlated with soil C content (r = 0.80, P = 0.0016), indicating their importance in metabolizing plant-derived carbon compounds in soils.

  4. The Gut Microbiota of Healthy Chilean Subjects Reveals a High Abundance of the Phylum Verrucomicrobia

    Science.gov (United States)

    Fujio-Vejar, Sayaka; Vasquez, Yessenia; Morales, Pamela; Magne, Fabien; Vera-Wolf, Patricia; Ugalde, Juan A.; Navarrete, Paola; Gotteland, Martin

    2017-01-01

    The gut microbiota is currently recognized as an important factor regulating the homeostasis of the gastrointestinal tract and influencing the energetic metabolism of the host as well as its immune and central nervous systems. Determining the gut microbiota composition of healthy subjects is therefore necessary to establish a baseline allowing the detection of microbiota alterations in pathologic conditions. Accordingly, the aim of this study was to characterize the gut microbiota of healthy Chilean subjects using 16S rRNA gene sequencing. Fecal samples were collected from 41 young, asymptomatic, normal weight volunteers (age: 25 ± 4 years; ♀:48.8%; BMI: 22.5 ± 1.6 kg/m2) with low levels of plasma (IL6 and hsCRP) and colonic (fecal calprotectin) inflammatory markers. The V3-V4 region of the 16S rRNA gene of bacterial DNA was amplified and sequenced using MiSeq Illumina system. 109,180 ± 13,148 sequences/sample were obtained, with an α-diversity of 3.86 ± 0.37. The dominant phyla were Firmicutes (43.6 ± 9.2%) and Bacteroidetes (41.6 ± 13.1%), followed by Verrucomicrobia (8.5 ± 10.4%), Proteobacteria (2.8 ± 4.8%), Actinobacteria (1.8 ± 3.9%) and Euryarchaeota (1.4 ± 2.7%). The core microbiota representing the genera present in all the subjects included Bacteroides, Prevotella, Parabacteroides (phylum Bacteroidetes), Phascolarctobacterium, Faecalibacterium, Ruminococcus, Lachnospira, Oscillospira, Blautia, Dorea, Roseburia, Coprococcus, Clostridium, Streptococcus (phylum Firmicutes), Akkermansia (phylum Verrucomicrobia), and Collinsella (phylum Actinobacteria). Butyrate-producing genera including Faecalibacterium, Roseburia, Coprococcus, and Oscillospira were detected. The family Methanobacteriaceae was reported in 83% of the subjects and Desulfovibrio, the most representative sulfate-reducing genus, in 76%. The microbiota of the Chilean individuals significantly differed from those of Papua New Guinea and the Matses ethnic group and was closer to that of

  5. The Gut Microbiota of Healthy Chilean Subjects Reveals a High Abundance of the Phylum Verrucomicrobia

    Directory of Open Access Journals (Sweden)

    Sayaka Fujio-Vejar

    2017-06-01

    Full Text Available The gut microbiota is currently recognized as an important factor regulating the homeostasis of the gastrointestinal tract and influencing the energetic metabolism of the host as well as its immune and central nervous systems. Determining the gut microbiota composition of healthy subjects is therefore necessary to establish a baseline allowing the detection of microbiota alterations in pathologic conditions. Accordingly, the aim of this study was to characterize the gut microbiota of healthy Chilean subjects using 16S rRNA gene sequencing. Fecal samples were collected from 41 young, asymptomatic, normal weight volunteers (age: 25 ± 4 years; ♀:48.8%; BMI: 22.5 ± 1.6 kg/m2 with low levels of plasma (IL6 and hsCRP and colonic (fecal calprotectin inflammatory markers. The V3-V4 region of the 16S rRNA gene of bacterial DNA was amplified and sequenced using MiSeq Illumina system. 109,180 ± 13,148 sequences/sample were obtained, with an α-diversity of 3.86 ± 0.37. The dominant phyla were Firmicutes (43.6 ± 9.2% and Bacteroidetes (41.6 ± 13.1%, followed by Verrucomicrobia (8.5 ± 10.4%, Proteobacteria (2.8 ± 4.8%, Actinobacteria (1.8 ± 3.9% and Euryarchaeota (1.4 ± 2.7%. The core microbiota representing the genera present in all the subjects included Bacteroides, Prevotella, Parabacteroides (phylum Bacteroidetes, Phascolarctobacterium, Faecalibacterium, Ruminococcus, Lachnospira, Oscillospira, Blautia, Dorea, Roseburia, Coprococcus, Clostridium, Streptococcus (phylum Firmicutes, Akkermansia (phylum Verrucomicrobia, and Collinsella (phylum Actinobacteria. Butyrate-producing genera including Faecalibacterium, Roseburia, Coprococcus, and Oscillospira were detected. The family Methanobacteriaceae was reported in 83% of the subjects and Desulfovibrio, the most representative sulfate-reducing genus, in 76%. The microbiota of the Chilean individuals significantly differed from those of Papua New Guinea and the Matses ethnic group and was closer to

  6. Riverine Bacterial Communities Reveal Environmental Disturbance Signatures within the Betaproteobacteria and Verrucomicrobia.

    Science.gov (United States)

    Balmonte, John Paul; Arnosti, Carol; Underwood, Sarah; McKee, Brent A; Teske, Andreas

    2016-01-01

    Riverine bacterial communities play an essential role in the biogeochemical coupling of terrestrial and marine environments, transforming elements and organic matter in their journey from land to sea. However, precisely due to the fact that rivers receive significant terrestrial input, the distinction between resident freshwater taxa vs. land-derived microbes can often become ambiguous. Furthermore, ecosystem perturbations could introduce allochthonous microbial groups and reshape riverine bacterial communities. Using full- and partial-length 16S ribosomal RNA gene sequences, we analyzed the composition of bacterial communities in the Tar River of North Carolina from November 2010 to November 2011, during which a natural perturbation occurred: the inundation of the lower reaches of an otherwise drought-stricken river associated with Hurricane Irene, which passed over eastern North Carolina in late August 2011. This event provided the opportunity to examine the microbiological, hydrological, and geochemical impacts of a disturbance, defined here as the large freshwater influx into the Tar River, superimposed on seasonal changes or other ecosystem variability independent of the hurricane. Our findings demonstrate that downstream communities are more taxonomically diverse and temporally variable than their upstream counterparts. More importantly, pre- vs. post-disturbance taxonomic comparison of the freshwater-dominant Betaproteobacteria class and the phylum Verrucomicrobia reveal a disturbance signature of previously undetected taxa of diverse origins. We use known traits of closely-related taxa to interpret the ecological function of disturbance-associated bacteria, and hypothesize that carbon cycling was enhanced post-disturbance in the Tar River, likely due to the flux of organic carbon into the system associated with the large freshwater pulse. Our analyses demonstrate the importance of geochemical and hydrological alterations in structuring bacterial communities

  7. Riverine bacterial communities reveal environmental disturbance signatures within the Betaproteobacteria and Verrucomicrobia

    Directory of Open Access Journals (Sweden)

    John Paul Balmonte

    2016-09-01

    Full Text Available Riverine bacterial communities play an essential role in the biogeochemical coupling of terrestrial and marine environments, transforming elements and organic matter in their journey from land to sea. However, precisely due to the fact that rivers receive significant terrestrial input, the distinction between resident freshwater taxa versus land-derived microbes can often become ambiguous. Furthermore, ecosystem perturbations could introduce allochthonous microbial groups and reshape riverine bacterial communities. Using full- and partial-length 16S ribosomal RNA gene sequences, we analyzed the composition of bacterial communities in the Tar River of North Carolina from November 2010 to November 2010, during which a natural perturbation occurred: the inundation of the lower reaches of an otherwise drought-stricken river associated with Hurricane Irene, which passed over eastern North Carolina in late August 2011. This event provided the opportunity to examine the microbiological, hydrological and geochemical impacts of a disturbance, defined here as the large freshwater influx into the Tar River, superimposed on seasonal changes or other ecosystem variability independent of the hurricane. Our findings demonstrate that downstream communities are more taxonomically diverse and temporally variable than their upstream counterparts. More importantly, pre- versus post-disturbance taxonomic comparison of the freshwater-dominant Betaproteobacteria class and the phylum Verrucomicrobia reveal a disturbance signature of previously undetected taxa of diverse origins. We use known traits of closely-related taxa to interpret the ecological function of disturbance-associated bacteria, and hypothesize that carbon cycling was enhanced post-disturbance in the Tar River, likely due to the flux of organic carbon into the system associated with the large freshwater pulse. Our analyses demonstrate the importance of geochemical and hydrological alterations in

  8. The Verrucomicrobia LexA-binding Motif: Insights into the Evolutionary Dynamics of the SOS Response

    Directory of Open Access Journals (Sweden)

    Ivan Erill

    2016-07-01

    Full Text Available The SOS response is the primary bacterial mechanism to address DNA damage, coordinating multiple cellular processes that include DNA repair, cell division and translesion synthesis. In contrast to other regulatory systems, the composition of the SOS genetic network and the binding motif of its transcriptional repressor, LexA, have been shown to vary greatly across bacterial clades, making it an ideal system to study the co-evolution of transcription factors and their regulons. Leveraging comparative genomics approaches and prior knowledge on the core SOS regulon, here we define the binding motif of the Verrucomicrobia, a recently described phylum of emerging interest due to its association with eukaryotic hosts. Site directed mutagenesis of the Verrucomicrobium spinosum recA promoter confirms that LexA binds a 14 bp palindromic motif with consensus sequence TGTTC-N4-GAACA. Computational analyses suggest that recognition of this novel motif is determined primarily by changes in base-contacting residues of the third alpha helix of the LexA helix-turn-helix DNA binding motif. In conjunction with comparative genomics analysis of the LexA regulon in the Verrucomicrobia phylum, electrophoretic shift assays reveal that LexA binds to operators in the promoter region of DNA repair genes and a mutagenesis cassette in this organism, and identify previously unreported components of the SOS response. The identification of tandem LexA-binding sites generating instances of other LexA-binding motifs in the lexA gene promoter of Verrucomicrobia species leads us to postulate a novel mechanism for LexA-binding motif evolution. This model, based on gene duplication, successfully addresses outstanding questions in the intricate co-evolution of the LexA protein, its binding motif and the regulatory network it controls.

  9. The Verrucomicrobia LexA-Binding Motif: Insights into the Evolutionary Dynamics of the SOS Response.

    Science.gov (United States)

    Erill, Ivan; Campoy, Susana; Kılıç, Sefa; Barbé, Jordi

    2016-01-01

    The SOS response is the primary bacterial mechanism to address DNA damage, coordinating multiple cellular processes that include DNA repair, cell division, and translesion synthesis. In contrast to other regulatory systems, the composition of the SOS genetic network and the binding motif of its transcriptional repressor, LexA, have been shown to vary greatly across bacterial clades, making it an ideal system to study the co-evolution of transcription factors and their regulons. Leveraging comparative genomics approaches and prior knowledge on the core SOS regulon, here we define the binding motif of the Verrucomicrobia, a recently described phylum of emerging interest due to its association with eukaryotic hosts. Site directed mutagenesis of the Verrucomicrobium spinosum recA promoter confirms that LexA binds a 14 bp palindromic motif with consensus sequence TGTTC-N4-GAACA. Computational analyses suggest that recognition of this novel motif is determined primarily by changes in base-contacting residues of the third alpha helix of the LexA helix-turn-helix DNA binding motif. In conjunction with comparative genomics analysis of the LexA regulon in the Verrucomicrobia phylum, electrophoretic shift assays reveal that LexA binds to operators in the promoter region of DNA repair genes and a mutagenesis cassette in this organism, and identify previously unreported components of the SOS response. The identification of tandem LexA-binding sites generating instances of other LexA-binding motifs in the lexA gene promoter of Verrucomicrobia species leads us to postulate a novel mechanism for LexA-binding motif evolution. This model, based on gene duplication, successfully addresses outstanding questions in the intricate co-evolution of the LexA protein, its binding motif and the regulatory network it controls.

  10. A phylogenomic analysis of the bacterial phylum Fibrobacteres

    Directory of Open Access Journals (Sweden)

    Nurdyana eAbdul Rahman

    2016-01-01

    Full Text Available The Fibrobacteres has been recognized as a bacterial phylum for over a decade, but little is known about the group beyond its environmental distribution, and characterization of its sole cultured representative genus, Fibrobacter, after which the phylum was named. Based on these incomplete data, it is thought that cellulose hydrolysis, anaerobic metabolism, and lack of motility are unifying features of the phylum. There are also contradicting views as to whether an uncultured sister lineage, candidate phylum TG3, should be included in the Fibrobacteres. Recently, chitin-degrading cultured representatives of TG3 were obtained isolated from a hypersaline soda lake, and the genome of one species, Chitinivibrio alkaliphilus, sequenced and described in detail. Here, we performed a comparative analysis of Fibrobacter succinogenes, C. alkaliphilus and eight near or substantially complete Fibrobacteres/TG3 genomes of environmental populations recovered from termite gut, anaerobic digester, and sheep rumen metagenomes. We propose that TG3 should be amalgamated with the Fibrobacteres phylum based on robust monophyly of the two lineages and shared character traits. Polymer hydrolysis, using a distinctive set of glycoside hydrolases and binding domains, appears to be a prominent feature of members of the Fibrobacteres. Not all members of this phylum are strictly anaerobic as some termite gut Fibrobacteres have respiratory chains adapted to the microaerophilic conditions found in this habitat. Contrary to expectations, motility is is predicted to be an ancestral and common trait in this phylum and has only recently been lost in F. succinogenes and its relatives based on phylogenetic distribution of flagellar genes. Our findings extend current understanding of the Fibrobacteres and provide an improved basis for further investigation of this phylum.

  11. Genomic analysis indicates the presence of an asymmetric bilayer outer membrane in Planctomycetes and Verrucomicrobia

    Directory of Open Access Journals (Sweden)

    Daan R Speth

    2012-08-01

    Full Text Available Bacteria of the phylum Planctomycetes are of special interest for the study of compartmental cellular organization. Members of this phylum share a very unusual prokaryotic cell plan, featuring several membrane-bound compartments. Recently, it was shown that this cellular organization might extend to certain members of the phylum Verrucomicrobia. The Planctomycete cell plan has been defined as featuring a proteinaceous cell wall, a cytoplasmic membrane surrounding the paryphoplasm and an intracytoplasmic membrane defining the riboplasm. So far it was presumed that Planctomycetes did not have an asymmetric bilayer outer membrane as observed in Gram-negative bacteria. However, recent work on outer membrane biogenesis has provided several marker genes in the outer membrane protein (OMP assembly and the lipopolysaccharide (LPS insertion complexes. Additionally, advances in computational prediction of OMPs provided new tools to perform more accurate genomic screening for such proteins.Here we searched all 22 Planctomycetes and Verrucomicrobia genomes available in Genbank, plus the recently published genome of ‘Candidatus Scalindua profunda’, for markers of outer membrane biogenesis and OMPs. We were able to identify the key components of LPS insertion, OMP assembly and at least eight OMPs in all genomes tested. Additionally, we have analyzed the transcriptome and proteome data of the Planctomycetes ‘Candidatus Kuenenia stuttgartiensis’ and ‘Ca. S. profunda’ and could confirm high expression of several predicted OMPs, including the biomarkers of outer membrane biogenesis.

  12. Bacterial communities associated with an occurrence of colored water in an urban drinking water distribution system.

    Science.gov (United States)

    Wu, Hui Ting; Mi, Zi Long; Zhang, Jing Xu; Chen, Chao; Xie, Shu Guang

    2014-08-01

    This study aimed to investigate bacterial community in an urban drinking water distribution system (DWDS) during an occurrence of colored water. Variation in the bacterial community diversity and structure was observed among the different waters, with the predominance of Proteobacteria. While Verrucomicrobia was also a major phylum group in colored water. Limnobacter was the major genus group in colored water, but Undibacterium predominated in normal tap water. The coexistence of Limnobacter as well as Sediminibacterium and Aquabacterium might contribute to the formation of colored water. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  13. The candidate phylum Poribacteria by single-cell genomics: new insights into phylogeny, cell-compartmentation, eukaryote-like repeat proteins, and other genomic features.

    Directory of Open Access Journals (Sweden)

    Janine Kamke

    Full Text Available The candidate phylum Poribacteria is one of the most dominant and widespread members of the microbial communities residing within marine sponges. Cell compartmentalization had been postulated along with their discovery about a decade ago and their phylogenetic association to the Planctomycetes, Verrucomicrobia, Chlamydiae superphylum was proposed soon thereafter. In the present study we revised these features based on genomic data obtained from six poribacterial single cells. We propose that Poribacteria form a distinct monophyletic phylum contiguous to the PVC superphylum together with other candidate phyla. Our genomic analyses supported the possibility of cell compartmentalization in form of bacterial microcompartments. Further analyses of eukaryote-like protein domains stressed the importance of such proteins with features including tetratricopeptide repeats, leucin rich repeats as well as low density lipoproteins receptor repeats, the latter of which are reported here for the first time from a sponge symbiont. Finally, examining the most abundant protein domain family on poribacterial genomes revealed diverse phyH family proteins, some of which may be related to dissolved organic posphorus uptake.

  14. The 1st EMBO workshop on PVC bacteria-Planctomycetes-Verrucomicrobia-Chlamydiae superphylum: exceptions to the bacterial definition?

    Science.gov (United States)

    Devos, Damien P; Jogler, Christian; Fuerst, John A

    2013-10-01

    The PVC superphylum is a phylogenetically supported collection of various related bacterial phyla that comprise unusual characteristics and traits. The 'PVC' abbreviation derives from Planctomycetes, Verrucomicrobia and Chlamydiae as members of this superphylum, while additional bacterial phyla are related. There has recently been increasing and exciting interest in the cell biology, physiology and ecology of members of this superphylum, including evolutionary implications of the complex cell organization of some species. It is timely that international researchers in the PVC superphylum field met to discuss these developments. The first meeting entirely dedicated to those bacteria, the EMBO workshop "PVC superphylum: Exceptions to the bacterial definition" was held at the Heidelberg University to catalyze the formation of a vital scientific community supporting PVC-bacterial research. More than 45 investigators from more than 20 countries (PIs, senior scientists and students) attended the meeting and produced a great starting point for future collaborative research. This Special Issue will focus on the EMBO-PVC meeting. This Perspective briefly summarizes the history of PVC-research, focusing on the key findings and provides a brief summary of the meeting with a focus on the major questions that arose during discussion and that might influence the research in the years to come.

  15. Bacterial diversity and community structure in lettuce soil are shifted by cultivation time

    Science.gov (United States)

    Liu, Yiqian; Chang, Qing; Guo, Xu; Yi, Xinxin

    2017-08-01

    Compared with cereal production, vegetable production usually requires a greater degree of management and larger input of nutrients and irrigation, but these systems are not sustainable in the long term. This study aimed to what extent lettuce determine the bacterial community composition in the soil, during lettuce cultivation, pesticides and fertilizers were not apply to soil. Soil samples were collected from depths of 0-20cm and 20-40cm. A highthroughput sequencing approach was employed to investigate bacterial communities in lettuce-cultivated soil samples in a time-dependent manner. The dominant bacteria in the lettuce soil samples were mainly Proteobacteria, Actinobacteria, Chloroflexi, Nitrospirae, Firmicutes, Acidobacteria, Bacteroidetes, Verrucomicrobia, Planctomycetes, Gemmatimo nadetes, Cyanobacteria. Proteobacteria was the most abundant phylum in the 6 soil samples. The relative abundance of Acidobacteria, Firmicutes, Bacteroidetes, Verrucomicrobia and Cyanobacteria decreased through time of lettuce cultivation, but the relative abundance of Proteobacteria, Actinobacteria, Gemmatimonadetes, Chloroflexi, Planctomycetes and Nitrospirae increased over time. In the 0-20cm depth group and the 20-40cm depth soil, a similar pattern was observed that the percentage number of only shared OTUs between the early and late stage was lower than that between the early and middle stage soil, the result showed that lettuce growth can affect structure of soil bacterial communities.

  16. Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes

    OpenAIRE

    Zeng, Yonghui; Feng, Fuying; Medová, Hana; Dean, Jason; Koblížek, Michal

    2014-01-01

    Photosynthesis is one of the most fundamental biological processes on Earth. To date, species capable of performing (bacterio)chlorophyll-based phototrophy have been reported in six bacterial phyla. Here we report a phototrophic bacterium belonging to the rare and understudied phylum Gemmatimonadetes. This strain, isolated from a freshwater lake in the Gobi Desert, contains fully functional photosynthetic reaction centers. Its photosynthesis genes appear to originate from an ancient horizonta...

  17. Genomic Analysis of Caldithrix abyssi, the Thermophilic Anaerobic Bacterium of the Novel Bacterial Phylum Calditrichaeota

    OpenAIRE

    Kublanov, Ilya V.; Sigalova, Olga M.; Gavrilov, Sergey N.; Lebedinsky, Alexander V.; Rinke, Christian; Kovaleva, Olga; Chernyh, Nikolai A.; Ivanova, Natalia; Daum, Chris; Reddy, T.B.K.; Klenk, Hans-Peter; Spring, Stefan; G?ker, Markus; Reva, Oleg N.; Miroshnichenko, Margarita L.

    2017-01-01

    © 2017 Kublanov, Sigalova, Gavrilov, Lebedinsky, Rinke, Kovaleva, Chernyh, Ivanova, Daum, Reddy, Klenk, Spring, Göker, Reva, Miroshnichenko, Kyrpides, Woyke, Gelfand, Bonch-Osmolovskaya. The genome of Caldithrix abyssi, the first cultivated representative of a phylum-level bacterial lineage, was sequenced within the framework of Genomic Encyclopedia of Bacteria and Archaea (GEBA) project. The genomic analysis revealed mechanisms allowing this anaerobic bacterium to ferment peptides or to impl...

  18. Molecular Signatures for the PVC Clade (Planctomycetes, Verrucomicrobia, Chlamydiae and Lentisphaerae of Bacteria Provide Insights into their Evolutionary Relationships

    Directory of Open Access Journals (Sweden)

    Radhey S. Gupta

    2012-09-01

    Full Text Available The PVC superphylum is an amalgamation of species from the phyla Planctomycetes, Verrucomicrobia and Chlamydiae, along with the Lentisphaerae, Poribacteria and two other candidate divisions. The diverse species of this superphylum lack any significant marker that differentiates them from other bacteria. Recently, genome sequences for 37 species covering all of the main PVC groups of bacteria have become available. We have used these sequences to construct a phylogenetic tree based upon concatenated sequences for 16 proteins and identify molecular signatures in protein sequences that are specific for the species from these phyla or those providing molecular links among them. Of the useful molecular markers identified in the present work, 6 conserved signature indels (CSIs in the proteins Cyt c oxidase, UvrD helicase, urease and a helicase-domain containing protein are specific for the species from the Verrucomicrobia phylum; three other CSIs in an ABC transporter protein, cobyrinic acid ac-diamide synthase and SpoVG protein are specific for the Planctomycetes species. Additionally, a 3 aa insert in the RpoB protein is uniquely present in all sequenced Chlamydiae, Verrucomicrobia and Lentisphaerae species, providing evidence for the shared ancestry of the species from these three phyla. Lastly, we have also identified a conserved protein of unknown function that is exclusively found in all sequenced species from the phyla Chlamydiae, Verrucomicrobia, Lentisphaerae and Planctomycetes suggesting a specific linkage among them. The absence of this protein in Poribacteria, which branches separately from other members of the PVC clade, indicates that it is not specifically related to the PVC clade of bacteria. The molecular markers described here in addition to clarifying the evolutionary relationships among the PVC clade of bacteria also provide novel tools for their identification and for genetic and biochemical studies on these organisms.

  19. Characterization of bovine ruminal epithelial bacterial communities using 16S rRNA sequencing, PCR-DGGE, and qRT-PCR analysis.

    Science.gov (United States)

    Li, Meiju; Zhou, Mi; Adamowicz, Elizabeth; Basarab, John A; Guan, Le Luo

    2012-02-24

    Currently, knowledge regarding the ecology and function of bacteria attached to the epithelial tissue of the rumen wall is limited. In this study, the diversity of the bacterial community attached to the rumen epithelial tissue was compared to the rumen content bacterial community using 16S rRNA gene sequencing, PCR-DGGE, and qRT-PCR analysis. Sequence analysis of 2785 randomly selected clones from six 16S rDNA (∼1.4kb) libraries showed that the community structures of three rumen content libraries clustered together and were separated from the rumen tissue libraries. The diversity index of each library revealed that ruminal content bacterial communities (4.12/4.42/4.88) were higher than ruminal tissue communities (2.90/2.73/3.23), based on 97% similarity. The phylum Firmicutes was predominant in the ruminal tissue communities, while the phylum Bacteroidetes was predominant in the ruminal content communities. The phyla Fibrobacteres, Planctomycetes, and Verrucomicrobia were only detected in the ruminal content communities. PCR-DGGE analysis of the bacterial profiles of the rumen content and ruminal epithelial tissue samples from 22 steers further confirmed that there is a distinct bacterial community that inhibits the rumen epithelium. The distinctive epimural bacterial communities suggest that Firmicutes, together with other epithelial-specific species, may have additional functions other than food digestion. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Analysis of five complete genome sequences for members of the class Peribacteria in the recently recognized Peregrinibacteria bacterial phylum

    Directory of Open Access Journals (Sweden)

    Karthik Anantharaman

    2016-01-01

    Full Text Available Five closely related populations of bacteria from the Candidate Phylum (CP Peregrinibacteria, part of the bacterial Candidate Phyla Radiation (CPR, were sampled from filtered groundwater obtained from an aquifer adjacent to the Colorado River near the town of Rifle, CO, USA. Here, we present the first complete genome sequences for organisms from this phylum. These bacteria have small genomes and, unlike most organisms from other lineages in the CPR, have the capacity for nucleotide synthesis. They invest significantly in biosynthesis of cell wall and cell envelope components, including peptidoglycan, isoprenoids via the mevalonate pathway, and a variety of amino sugars including perosamine and rhamnose. The genomes encode an intriguing set of large extracellular proteins, some of which are very cysteine-rich and may function in attachment, possibly to other cells. Strain variation in these proteins is an important source of genotypic variety. Overall, the cell envelope features, combined with the lack of biosynthesis capacities for many required cofactors, fatty acids, and most amino acids point to a symbiotic lifestyle. Phylogenetic analyses indicate that these bacteria likely represent a new class within the Peregrinibacteria phylum, although they ultimately may be recognized as members of a separate phylum. We propose the provisional taxonomic assignment as ‘Candidatus Peribacter riflensis’, Genus Peribacter, Family Peribacteraceae, Order Peribacterales, Class Peribacteria in the phylum Peregrinibacteria.

  1. Bacterial Diversity in Bentonites, Engineered Barrier for Deep Geological Disposal of Radioactive Wastes.

    Science.gov (United States)

    Lopez-Fernandez, Margarita; Cherkouk, Andrea; Vilchez-Vargas, Ramiro; Jauregui, Ruy; Pieper, Dietmar; Boon, Nico; Sanchez-Castro, Ivan; Merroun, Mohamed L

    2015-11-01

    The long-term disposal of radioactive wastes in a deep geological repository is the accepted international solution for the treatment and management of these special residues. The microbial community of the selected host rocks and engineered barriers for the deep geological repository may affect the performance and the safety of the radioactive waste disposal. In this work, the bacterial population of bentonite formations of Almeria (Spain), selected as a reference material for bentonite-engineered barriers in the disposal of radioactive wastes, was studied. 16S ribosomal RNA (rRNA) gene-based approaches were used to study the bacterial community of the bentonite samples by traditional clone libraries and Illumina sequencing. Using both techniques, the bacterial diversity analysis revealed similar results, with phylotypes belonging to 14 different bacterial phyla: Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Chloroflexi, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Gemmatimonadetes, Planctomycetes, Proteobacteria, Nitrospirae, Verrucomicrobia and an unknown phylum. The dominant groups of the community were represented by Proteobacteria and Bacteroidetes. A high diversity was found in three of the studied samples. However, two samples were less diverse and dominated by Betaproteobacteria.

  2. Bacterial communities in the rhizosphere of amilaceous maize (Zea mays L. as assessed by pyrosequencing

    Directory of Open Access Journals (Sweden)

    David Correa-Galeote

    2016-07-01

    Full Text Available Maize (Zea mays L. is the staple diet of the native peasants in the Quechua region of the Peruvian Andes who continue growing it in small plots called chacras following ancestral traditions. The abundance and structure of bacterial communities associated with the roots of amilaceous maize has not been studied in Andean chacras. Accordingly, the main objective of this study was to describe the rhizospheric bacterial diversity of amilaceous maize grown either in the presence or the absence of bur clover cultivated in soils from the Quechua maize belt. Three 16S rRNA gene libraries, one corresponding to sequences of bacteria from bulk soil of a chacra maintained under fallow conditions, the second from the rhizosphere of maize-cultivated soils, and the third prepared from rhizospheric soil of maize cultivated in intercropping with bur clover were examined using pyrosequencing tags spanning the V4 and V5 hypervariable regions of the gene. A total of 26031 sequences were found that grouped into 5955 distinct operational taxonomic units which distributed in 309 genera. The numbers of OTUs in the libraries from the maize-cultivated soils were significantly higher than those found in the libraries from bulk soil. One hundred ninety seven genera were found in the bulk soil library and 234 and 203 were in those from the maize and maize/bur clover-cultivated soils. Sixteen out of the 309 genera had a relative abundance higher than 0.5% and the were (in decreasing order of abundance Gp4, Gp6, Flavobacterium, Subdivision3 genera incertae sedis of the Verrucomicrobia phylum, Gemmatimonas, Dechloromonas, Ohtaekwangia, Rhodoferax, Gaiella, Opitutus, Gp7, Spartobacteria genera incertae sedis, Terrimonas, Gp5, Steroidobacter and Parcubacteria genera incertae sedis. Genera Gp4 and Gp6 of the Acidobacteria, Gemmatimonas and Rhodoferax were the most abundant in bulk soil, whereas Flavobacterium, Dechloromonas and Ohtaekwangia were the main genera in the rhizosphere

  3. Proteins Related to the Type I Secretion System Are Associated with Secondary SecA_DEAD Domain Proteins in Some Species of Planctomycetes, Verrucomicrobia, Proteobacteria, Nitrospirae and Chlorobi.

    Directory of Open Access Journals (Sweden)

    Olga K Kamneva

    Full Text Available A number of bacteria belonging to the PVC (Planctomycetes-Verrucomicrobia-Chlamydiae super-phylum contain unusual ribosome-bearing intracellular membranes. The evolutionary origins and functions of these membranes are unknown. Some proteins putatively associated with the presence of intracellular membranes in PVC bacteria contain signal peptides. Signal peptides mark proteins for translocation across the cytoplasmic membrane in prokaryotes, and the membrane of the endoplasmic reticulum in eukaryotes, by highly conserved Sec machinery. This suggests that proteins might be targeted to intracellular membranes in PVC bacteria via the Sec pathway. Here, we show that canonical signal peptides are significantly over-represented in proteins preferentially present in PVC bacteria possessing intracellular membranes, indicating involvement of Sec translocase in their cellular targeting. We also characterized Sec proteins using comparative genomics approaches, focusing on the PVC super-phylum. While we were unable to detect unique changes in Sec proteins conserved among membrane-bearing PVC species, we identified (1 SecA ATPase domain re-arrangements in some Planctomycetes, and (2 secondary SecA_DEAD domain proteins in the genomes of some Planctomycetes, Verrucomicrobia, Proteobacteria, Nitrospirae and Chlorobi. This is the first report of potentially duplicated SecA in Gram-negative bacteria. The phylogenetic distribution of secondary SecA_DEAD domain proteins suggests that the presence of these proteins is not related to the occurrence of PVC endomembranes. Further genomic analysis showed that secondary SecA_DEAD domain proteins are located within genomic neighborhoods that also encode three proteins possessing domains specific for the Type I secretion system.

  4. Korean indigenous bacterial species with valid names belonging to the phylum Actinobacteria.

    Science.gov (United States)

    Bae, Kyung Sook; Kim, Mi Sun; Lee, Ji Hee; Kang, Joo Won; Kim, Dae In; Lee, Ji Hee; Seong, Chi Nam

    2016-12-01

    To understand the isolation and classification state of actinobacterial species with valid names for Korean indigenous isolates, isolation source, regional origin, and taxonomic affiliation of the isolates were studied. At the time of this writing, the phylum Actinobacteria consisted of only one class, Actinobacteria, including five subclasses, 10 orders, 56 families, and 330 genera. Moreover, new taxa of this phylum continue to be discovered. Korean actinobacterial species with a valid name has been reported from 1995 as Tsukamurella inchonensis isolated from a clinical specimen. In 1997, Streptomyces seoulensis was validated with the isolate from the natural Korean environment. Until Feb. 2016, 256 actinobacterial species with valid names originated from Korean territory were listed on LPSN. The species were affiliated with three subclasses (Acidimicrobidae, Actinobacteridae, and Rubrobacteridae), four orders (Acidimicrobiales, Actinomycetales, Bifidobacteriales, and Solirubrobacterales), 12 suborders, 36 families, and 93 genera. Most of the species belonged to the subclass Actinobacteridae, and almost of the members of this subclass were affiliated with the order Actinomycetales. A number of novel isolates belonged to the families Nocardioidaceae, Microbacteriaceae, Intrasporangiaceae, and Streptomycetaceae as well as the genera Nocardioides, Streptomyces, and Microbacterium. Twenty-six novel genera and one novel family, Motilibacteraceae, were created first with Korean indigenous isolates. Most of the Korean indigenous actionobacterial species were isolated from natural environments such as soil, seawater, tidal flat sediment, and fresh-water. A considerable number of species were isolated from artificial resources such as fermented foods, wastewater, compost, biofilm, and water-cooling systems or clinical specimens. Korean indigenous actinobacterial species were isolated from whole territory of Korea, and especially a large number of species were from Jeju

  5. Pyrosequencing reveals changes in soil bacterial communities after conversion of Yungas forests to agriculture.

    Directory of Open Access Journals (Sweden)

    Marcela S Montecchia

    Full Text Available The Southern Andean Yungas in Northwest Argentina constitute one of the main biodiversity hotspots in the world. Considerable changes in land use have taken place in this ecoregion, predominantly related to forest conversion to croplands, inducing losses in above-ground biodiversity and with potential impact on soil microbial communities. In this study, we used high-throughput pyrosequencing of the 16S ribosomal RNA gene to assess whether land-use change and time under agriculture affect the composition and diversity of soil bacterial communities. We selected two areas dedicated to sugarcane and soybean production, comprising both short- and long-term agricultural sites, and used the adjacent native forest soils as a reference. Land-use change altered the composition of bacterial communities, with differences between productive areas despite the similarities between both forests. At the phylum level, only Verrucomicrobia and Firmicutes changed in abundance after deforestation for sugarcane and soybean cropping, respectively. In cultivated soils, Verrucomicrobia decreased sharply (~80%, while Firmicutes were more abundant. Despite the fact that local diversity was increased in sugarcane systems and was not altered by soybean cropping, phylogenetic beta diversity declined along both chronosequences, evidencing a homogenization of soil bacterial communities over time. In spite of the detected alteration in composition and diversity, we found a core microbiome resistant to the disturbances caused by the conversion of forests to cultivated lands and few or none exclusive OTUs for each land-use type. The overall changes in the relative abundance of copiotrophic and oligotrophic taxa may have an impact in soil ecosystem functionality. However, communities with many taxa in common may also share many functional attributes, allowing to maintain at least some soil ecosystem services after forest conversion to croplands.

  6. Exploring the dynamics of bacterial community composition in soil: the pan-bacteriome approach.

    Science.gov (United States)

    Bacci, Giovanni; Ceccherini, Maria Teresa; Bani, Alessia; Bazzicalupo, Marco; Castaldini, Maurizio; Galardini, Marco; Giovannetti, Luciana; Mocali, Stefano; Pastorelli, Roberta; Pantani, Ottorino Luca; Arfaioli, Paola; Pietramellara, Giacomo; Viti, Carlo; Nannipieri, Paolo; Mengoni, Alessio

    2015-03-01

    We performed a longitudinal study (repeated observations of the same sample over time) to investigate both the composition and structure of temporal changes of bacterial community composition in soil mesocosms, subjected to three different treatments (water and 5 or 25 mg kg(-1) of dried soil Cd(2+)). By analogy with the pan genome concept, we identified a core bacteriome and an accessory bacteriome. Resident taxa were assigned to the core bacteriome, while occasional taxa were assigned to the accessory bacteriome. Core and accessory bacteriome represented roughly 35 and 50 % of the taxa detected, respectively, and were characterized by different taxonomic signatures from phylum to genus level while 15 % of the taxa were found to be unique to a particular sample. In particular, the core bacteriome was characterized by higher abundance of members of Planctomycetes, Actinobacteria, Verrucomicrobia and Acidobacteria, while the accessory bacteriome included more members of Firmicutes, Clamydiae and Proteobacteria, suggesting potentially different responses to environmental changes of members from these phyla. We conclude that the pan-bacteriome model may be a useful approach to gain insight for modeling bacterial community structure and inferring different abilities of bacteria taxa.

  7. Quorum sensing: an under-explored phenomenon in the phylum Actinobacteria

    Directory of Open Access Journals (Sweden)

    Ashish Vasant Polkade

    2016-02-01

    Full Text Available Quorum sensing is known to play a major role in the regulation of secondary metabolite production, especially antibiotics, and morphogenesis in the phylum Actinobacteria. Although it is one of the largest bacterial phylum, only 25 of the 342 genera have been reported to use quorum sensing. Of these, only nine have accompanying experimental evidence; the rest are only known through bioinformatic analysis of gene/genome sequences. It is evident that this important communication mechanism is not extensively explored in Actinobacteria. In this review, we summarize the different quorum sensing systems while identifying the limitations of the existing screening strategies and addressing the improvements that have taken place in this field in recent years. The γ-butyrolactone system turned out to be almost exclusively limited to this phylum. In addition, methylenomycin furans, AI-2 and other putative AHL-like signaling molecules are also reported in Actinobacteria. The lack of existing screening systems in detecting minute quantities and of a wider range of signaling molecules was a major reason behind the limited information available on quorum sensing in this phylum. However, recent improvements in screening strategies hold a promising future and are likely to increase the discovery of new signaling molecules. Further, the quorum quenching ability in many Actinobacteria has a great potential in controlling the spread of plant and animal pathogens. A systematic and coordinated effort is required to screen and exploit the enormous potential that quorum sensing in the phylum Actinobacteria has to offer for human benefit.

  8. Responses of bacterial community structure and denitrifying bacteria in biofilm to submerged macrophytes and nitrate

    Science.gov (United States)

    Zhang, Songhe; Pang, Si; Wang, Peifang; Wang, Chao; Guo, Chuan; Addo, Felix Gyawu; Li, Yi

    2016-10-01

    Submerged macrophytes play important roles in constructed wetlands and natural water bodies, as these organisms remove nutrients and provide large surfaces for biofilms, which are beneficial for nitrogen removal, particularly from submerged macrophyte-dominated water columns. However, information on the responses of biofilms to submerged macrophytes and nitrogen molecules is limited. In the present study, bacterial community structure and denitrifiers were investigated in biofilms on the leaves of four submerged macrophytes and artificial plants exposed to two nitrate concentrations. The biofilm cells were evenly distributed on artificial plants but appeared in microcolonies on the surfaces of submerged macrophytes. Proteobacteria was the most abundant phylum in all samples, accounting for 27.3-64.8% of the high-quality bacterial reads, followed by Chloroflexi (3.7-25.4%), Firmicutes (3.0-20.1%), Acidobacteria (2.7-15.7%), Actinobacteria (2.2-8.7%), Bacteroidetes (0.5-9.7%), and Verrucomicrobia (2.4-5.2%). Cluster analysis showed that bacterial community structure can be significantly different on macrophytes versus from those on artificial plants. Redundancy analysis showed that electrical conductivity and nitrate concentration were positively correlated with Shannon index and operational taxonomic unit (OTU) richness (log10 transformed) but somewhat negatively correlated with microbial density. The relative abundances of five denitrifying genes were positively correlated with nitrate concentration and electrical conductivity but negatively correlated with dissolved oxygen.

  9. Bacterial communities associated with culex mosquito larvae and two emergent aquatic plants of bioremediation importance.

    Directory of Open Access Journals (Sweden)

    Dagne Duguma

    Full Text Available Microbes are important for mosquito nutrition, growth, reproduction and control. In this study, we examined bacterial communities associated with larval mosquitoes and their habitats. Specifically, we characterized bacterial communities associated with late larval instars of the western encephalitis mosquito (Culextarsalis, the submerged portions of two emergent macrophytes (California bulrush, Schoenoplectuscalifornicus and alkali bulrush, Schoenoplectusmaritimus, and the associated water columns to investigate potential differential use of resources by mosquitoes in different wetland habitats. Using next-generation sequence data from 16S rRNA gene hypervariable regions, the alpha diversity of mosquito gut microbial communities did not differ between pond mesocosms containing distinct monotypic plants. Proteobacteria, dominated by the genus Thorsellia (Enterobacteriaceae, was the most abundant phylum recovered from C. tarsalis larvae. Approximately 49% of bacterial OTUs found in larval mosquitoes were identical to OTUs recovered from the water column and submerged portions of the two bulrushes. Plant and water samples were similar to one another, both being dominated by Actinobacteria, Bacteroidetes, Cyanobacteria, Proteobacteria and Verrucomicrobia phyla. Overall, the bacterial communities within C. tarsalis larvae were conserved and did not change across sampling dates and between two distinct plant habitats. Although Thorsellia spp. dominated mosquito gut communities, overlap of mosquito gut, plant and water-column OTUs likely reveal the effects of larval feeding. Future research will investigate the role of the key indicator groups of bacteria across the different developmental stages of this mosquito species.

  10. First genomic insights into members of a candidate bacterial phylum responsible for wastewater bulking

    Directory of Open Access Journals (Sweden)

    Yuji Sekiguchi

    2015-01-01

    Full Text Available Filamentous cells belonging to the candidate bacterial phylum KSB3 were previously identified as the causative agent of fatal filament overgrowth (bulking in a high-rate industrial anaerobic wastewater treatment bioreactor. Here, we obtained near complete genomes from two KSB3 populations in the bioreactor, including the dominant bulking filament, using differential coverage binning of metagenomic data. Fluorescence in situ hybridization with 16S rRNA-targeted probes specific for the two populations confirmed that both are filamentous organisms. Genome-based metabolic reconstruction and microscopic observation of the KSB3 filaments in the presence of sugar gradients indicate that both filament types are Gram-negative, strictly anaerobic fermenters capable of non-flagellar based gliding motility, and have a strikingly large number of sensory and response regulator genes. We propose that the KSB3 filaments are highly sensitive to their surroundings and that cellular processes, including those causing bulking, are controlled by external stimuli. The obtained genomes lay the foundation for a more detailed understanding of environmental cues used by KSB3 filaments, which may lead to more robust treatment options to prevent bulking.

  11. Genomic Analysis of Caldithrix abyssi, the Thermophilic Anaerobic Bacterium of the Novel Bacterial Phylum Calditrichaeota.

    Science.gov (United States)

    Kublanov, Ilya V; Sigalova, Olga M; Gavrilov, Sergey N; Lebedinsky, Alexander V; Rinke, Christian; Kovaleva, Olga; Chernyh, Nikolai A; Ivanova, Natalia; Daum, Chris; Reddy, T B K; Klenk, Hans-Peter; Spring, Stefan; Göker, Markus; Reva, Oleg N; Miroshnichenko, Margarita L; Kyrpides, Nikos C; Woyke, Tanja; Gelfand, Mikhail S; Bonch-Osmolovskaya, Elizaveta A

    2017-01-01

    The genome of Caldithrix abyssi , the first cultivated representative of a phylum-level bacterial lineage, was sequenced within the framework of Genomic Encyclopedia of Bacteria and Archaea (GEBA) project. The genomic analysis revealed mechanisms allowing this anaerobic bacterium to ferment peptides or to implement nitrate reduction with acetate or molecular hydrogen as electron donors. The genome encoded five different [NiFe]- and [FeFe]-hydrogenases, one of which, group 1 [NiFe]-hydrogenase, is presumably involved in lithoheterotrophic growth, three other produce H 2 during fermentation, and one is apparently bidirectional. The ability to reduce nitrate is determined by a nitrate reductase of the Nap family, while nitrite reduction to ammonia is presumably catalyzed by an octaheme cytochrome c nitrite reductase εHao. The genome contained genes of respiratory polysulfide/thiosulfate reductase, however, elemental sulfur and thiosulfate were not used as the electron acceptors for anaerobic respiration with acetate or H 2 , probably due to the lack of the gene of the maturation protein. Nevertheless, elemental sulfur and thiosulfate stimulated growth on fermentable substrates (peptides), being reduced to sulfide, most probably through the action of the cytoplasmic sulfide dehydrogenase and/or NAD(P)-dependent [NiFe]-hydrogenase (sulfhydrogenase) encoded by the genome. Surprisingly, the genome of this anaerobic microorganism encoded all genes for cytochrome c oxidase, however, its maturation machinery seems to be non-operational due to genomic rearrangements of supplementary genes. Despite the fact that sugars were not among the substrates reported when C. abyssi was first described, our genomic analysis revealed multiple genes of glycoside hydrolases, and some of them were predicted to be secreted. This finding aided in bringing out four carbohydrates that supported the growth of C. abyssi : starch, cellobiose, glucomannan and xyloglucan. The genomic analysis

  12. A review of applied aspects of dealing with gut microbiota impact on rodent models

    DEFF Research Database (Denmark)

    Hansen, Axel Kornerup; Krych, Lukasz; Nielsen, Dennis Sandris

    2015-01-01

    -negative phylum Bacteroidetes. Other important phyla are the gram-negative phyla Proteobacteria and Verrucomicrobia, and the gram-positive phylum Actinobacteria. GM members influence models for diseases, such as inflammatory bowel diseases, allergies, autoimmunity, cancer, and neuropsychiatric diseases. GM...

  13. In-depth diversity analysis of the bacterial community resident in the camel rumen.

    Science.gov (United States)

    Gharechahi, Javad; Zahiri, Hossein Shahbani; Noghabi, Kambiz Akbari; Salekdeh, Ghasem Hosseini

    2015-02-01

    The rumen compartment of the ruminant digestive tract is an enlarged fermentation chamber which houses a diverse collection of symbiotic microorganisms that provide the host animal with a remarkable ability to digest plant lignocellulosic materials. Characterization of the ruminal microbial community provides opportunities to improve animal food digestion efficiency, mitigate methane emission, and develop efficient fermentation systems to convert plant biomasses into biofuels. In this study, 16S rRNA gene amplicon pyrosequencing was applied in order to explore the structure of the bacterial community inhabiting the camel rumen. Using 76,333 quality-checked, chimera- and singleton-filtered reads, 4954 operational taxonomic units (OTUs) were identified at a 97% species level sequence identity. At the phylum level, more than 96% of the reads were affiliated to OTUs belonging to Bacteroidetes (51%), Firmicutes (31%), Proteobacteria (4.8%), Spirochaetes (3.5%), Fibrobacteres (3.1%), Verrucomicrobia (2.7%), and Tenericutes (0.95%). A total of 15% of the OTUs (746) that contained representative sequences from all major taxa were shared by all animals and they were considered as candidate members of the core camel rumen microbiome. Analysis of microbial composition through the solid and liquid fractions of rumen digesta revealed differential enrichment of members of Fibrobacter, Clostridium, Ruminococcus, and Treponema in the solid fraction, as well as members of Prevotella, Verrucomicrobia, Cyanobacteria, and Succinivibrio in the liquid fraction. The results clearly showed that the camel rumen microbiome was structurally similar but compositionally distinct from that of other ruminants, such as the cow. The unique characteristic of the camel rumen microbiome that differentiated it from those of other ruminants was the significant enrichment for cellulolytic bacteria. Copyright © 2014. Published by Elsevier GmbH.

  14. Complete genome of Ignavibacterium album, a metabolically versatile, flagellated, facultative anaerobe from the phylum Chlorobi

    Directory of Open Access Journals (Sweden)

    Zhenfeng eLiu

    2012-05-01

    Full Text Available Prior to the recent discovery of Ignavibacterium album (I. album, anaerobic photoautotrophic green sulfur bacteria (GSB were the only cultivated members of the bacterial phylum Chlorobi. In contrast to GSB, sequence analysis of the 3.7-Mbp genome of I. album shows that this recently described member of the phylum Chlorobi is a chemoheterotroph with a versatile metabolism. I. album lacks genes for photosynthesis and sulfur oxidation but has a full set of genes for flagella and chemotaxis. The occurrence of genes for multiple electron transfer complexes suggests that I. album is capable of organoheterotrophy under both oxic and anoxic conditions. The occurrence of genes encoding enzymes for CO2 fixation as well as other enzymes of the reductive TCA cycle suggests that mixotrophy may be possible under certain growth conditions. However, known biosynthetic pathways for several amino acids are incomplete; this suggests that I. album is dependent upon on exogenous sources of these metabolites or employs novel biosynthetic pathways. Comparisons of I. album and other members of the phylum Chlorobi suggest that the physiology of the ancestors of this phylum might have been quite different from that of modern GSB.

  15. Analysis of potential risks from the bacterial communities associated with air-contact surfaces from tilapia (Oreochromis niloticus) fish farming.

    Science.gov (United States)

    Grande Burgos, Maria Jose; Romero, Jose Luis; Pérez Pulido, Rubén; Cobo Molinos, Antonio; Gálvez, Antonio; Lucas, Rosario

    2018-01-01

    Tilapia farming is a promising growing sector in aquaculture. Yet, there are limited studies on microbiological risks associated to tilapia farms. The aim of the present study was to analyse the bacterial communities from solid surfaces in contact with air in a tilapia farm in order to evaluate the presence of bacteria potentially toxinogenic or pathogenic to humans or animals. Samples from a local tilapia farm (tank wall, aerator, water outlets, sink and floor) were analyzed by high throughput sequencing technology. Sequences were assigned to operational taxonomic units (OTUs). Proteobacteria was the main phylum represented in most samples (except for one). Cyanobacteria were a relevant phylum in the inner wall from the fattening tank and the wet floor by the pre-fattening tank. Bacteroidetes were the second phylum in relative abundance for samples from the larval rearing tank and the pre-fattening tank and one sample from the fattening tank. Fusobacteria showed highest relative abundances in samples from the larval rearing tank and pre-fattening tank. Other phyla (Verrucomicrobia, Actinobacteria, Firmicutes, Planktomycetes, Acidobacteria, Chloroflexi, Chlorobi, Gemmatiomonadetes or Fibrobacters) had lower relative abundances. A large fraction of the reads (ranging from 43.67% to 72.25%) were assigned to uncultured bacteria. Genus Acinetobacter (mainly A. calcoaceticus/baumanni) was the predominant OTU in the aerator of the fattening tank and also in the nearby sink on the floor. The genera Cetobacterium and Bacteroides showed highest relative abundances in the samples from the larval rearing tank and the pre-fattening tank. Genera including fish pathogens (Fusobacterium, Aeromonas) were only detected at low relative abundances. Potential human pathogens other than Acinetobacter were either not detected or had very low relative abundances (Acinetobacter and potential cyanotoxin-producing cyanobacteria. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of Verrucomicrobia.

    Directory of Open Access Journals (Sweden)

    Manuel Martinez-Garcia

    Full Text Available Microbial hydrolysis of polysaccharides is critical to ecosystem functioning and is of great interest in diverse biotechnological applications, such as biofuel production and bioremediation. Here we demonstrate the use of a new, efficient approach to recover genomes of active polysaccharide degraders from natural, complex microbial assemblages, using a combination of fluorescently labeled substrates, fluorescence-activated cell sorting, and single cell genomics. We employed this approach to analyze freshwater and coastal bacterioplankton for degraders of laminarin and xylan, two of the most abundant storage and structural polysaccharides in nature. Our results suggest that a few phylotypes of Verrucomicrobia make a considerable contribution to polysaccharide degradation, although they constituted only a minor fraction of the total microbial community. Genomic sequencing of five cells, representing the most predominant, polysaccharide-active Verrucomicrobia phylotype, revealed significant enrichment in genes encoding a wide spectrum of glycoside hydrolases, sulfatases, peptidases, carbohydrate lyases and esterases, confirming that these organisms were well equipped for the hydrolysis of diverse polysaccharides. Remarkably, this enrichment was on average higher than in the sequenced representatives of Bacteroidetes, which are frequently regarded as highly efficient biopolymer degraders. These findings shed light on the ecological roles of uncultured Verrucomicrobia and suggest specific taxa as promising bioprospecting targets. The employed method offers a powerful tool to rapidly identify and recover discrete genomes of active players in polysaccharide degradation, without the need for cultivation.

  17. Metagenomic analysis of bacterial diversity of Siloam hot water ...

    African Journals Online (AJOL)

    The bacterial diversity of Siloam hot water spring was determined using 454 pyrosequencing of two 16S rRNA variable regions V1-3 and V4-7. Analysis of the community DNA revealed that the phyla Proteobacteria, Cyanobacteria, Bacteriodetes, Planctomycetes, Firmicutes, Chloroflexi and Verrucomicrobia were the most ...

  18. Identification and partial characterization of a novel UDP-N-acetylenolpyruvoylglucosamine reductase/UDP-N-acetylmuramate:L-alanine ligase fusion enzyme from Verrucomicrobium spinosum DSM 4136T

    Directory of Open Access Journals (Sweden)

    Kubra F Naqvi

    2016-03-01

    Full Text Available The enzymes involved in synthesizing the bacterial cell wall are attractive targets for the design of antibacterial compounds, since this pathway is essential for bacteria and is absent in animals, particularly humans. A survey of the genome of a bacterium that belongs to the phylum Verrucomicrobia, the closest free-living relative to bacteria from the Chlamydiales phylum, shows genetic evidence that Verrucomicrobium spinosum possesses a novel fusion open reading frame (ORF annotated by the locus tag (VspiD_010100018130. The ORF, which is predicted to encode the enzymes UDP-N-acetylenolpyruvoylglucosamine reductase (MurB and UDP-N-acetylmuramate:L-alanine ligase (MurC that are involved in the cytoplasmic steps of peptidoglycan biosynthesis, was cloned. In vivo analyses using functional complementation showed that the fusion gene was able to complement E. coli murB and murC temperature sensitive mutants. The purified recombinant fusion enzyme (MurB/CVs was shown to be endowed with UDP-N-acetylmuramate:L-alanine ligase activity. In vitro analyses demonstrated that the latter enzyme had a pH optimum of 9.0, a magnesium optimum of 10 mM and a temperature optimum of 44-46 oC. Its apparent Km values for ATP, UDP-MurNAc and L-alanine were 470, 90 and 25 µM, respectively. However, all attempts to demonstrate an in vitro UDP-N-acetylenolpyruvoylglucosamine reductase (MurB activity were unsuccessful. Lastly, Hidden Markov Model-based similarity search and phylogenetic analysis revealed that this fusion enzyme could only be identified in specific lineages within the Verrucomicrobia phylum.

  19. Identification and Partial Characterization of a Novel UDP-N-Acetylenolpyruvoylglucosamine Reductase/UDP-N-Acetylmuramate:l-Alanine Ligase Fusion Enzyme from Verrucomicrobium spinosum DSM 4136(T).

    Science.gov (United States)

    Naqvi, Kubra F; Patin, Delphine; Wheatley, Matthew S; Savka, Michael A; Dobson, Renwick C J; Gan, Han Ming; Barreteau, Hélène; Blanot, Didier; Mengin-Lecreulx, Dominique; Hudson, André O

    2016-01-01

    The enzymes involved in synthesizing the bacterial cell wall are attractive targets for the design of antibacterial compounds, since this pathway is essential for bacteria and is absent in animals, particularly humans. A survey of the genome of a bacterium that belongs to the phylum Verrucomicrobia, the closest free-living relative to bacteria from the Chlamydiales phylum, shows genetic evidence that Verrucomicrobium spinosum possesses a novel fusion open reading frame (ORF) annotated by the locus tag (VspiD_010100018130). The ORF, which is predicted to encode the enzymes UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) and UDP-N-acetylmuramate:l-alanine ligase (MurC) that are involved in the cytoplasmic steps of peptidoglycan biosynthesis, was cloned. In vivo analyses using functional complementation showed that the fusion gene was able to complement Escherichia coli murB and murC temperature sensitive mutants. The purified recombinant fusion enzyme (MurB/C Vs ) was shown to be endowed with UDP-N-acetylmuramate:l-alanine ligase activity. In vitro analyses demonstrated that the latter enzyme had a pH optimum of 9.0, a magnesium optimum of 10 mM and a temperature optimum of 44-46°C. Its apparent K m values for ATP, UDP-MurNAc, and l-alanine were 470, 90, and 25 μM, respectively. However, all attempts to demonstrate an in vitro UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) activity were unsuccessful. Lastly, Hidden Markov Model-based similarity search and phylogenetic analysis revealed that this fusion enzyme could only be identified in specific lineages within the Verrucomicrobia phylum.

  20. Identification and Partial Characterization of a Novel UDP-N-Acetylenolpyruvoylglucosamine Reductase/UDP-N-Acetylmuramate:l-Alanine Ligase Fusion Enzyme from Verrucomicrobium spinosum DSM 4136T

    Science.gov (United States)

    Naqvi, Kubra F.; Patin, Delphine; Wheatley, Matthew S.; Savka, Michael A.; Dobson, Renwick C. J.; Gan, Han Ming; Barreteau, Hélène; Blanot, Didier; Mengin-Lecreulx, Dominique; Hudson, André O.

    2016-01-01

    The enzymes involved in synthesizing the bacterial cell wall are attractive targets for the design of antibacterial compounds, since this pathway is essential for bacteria and is absent in animals, particularly humans. A survey of the genome of a bacterium that belongs to the phylum Verrucomicrobia, the closest free-living relative to bacteria from the Chlamydiales phylum, shows genetic evidence that Verrucomicrobium spinosum possesses a novel fusion open reading frame (ORF) annotated by the locus tag (VspiD_010100018130). The ORF, which is predicted to encode the enzymes UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) and UDP-N-acetylmuramate:l-alanine ligase (MurC) that are involved in the cytoplasmic steps of peptidoglycan biosynthesis, was cloned. In vivo analyses using functional complementation showed that the fusion gene was able to complement Escherichia coli murB and murC temperature sensitive mutants. The purified recombinant fusion enzyme (MurB/CVs) was shown to be endowed with UDP-N-acetylmuramate:l-alanine ligase activity. In vitro analyses demonstrated that the latter enzyme had a pH optimum of 9.0, a magnesium optimum of 10 mM and a temperature optimum of 44–46°C. Its apparent Km values for ATP, UDP-MurNAc, and l-alanine were 470, 90, and 25 μM, respectively. However, all attempts to demonstrate an in vitro UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) activity were unsuccessful. Lastly, Hidden Markov Model-based similarity search and phylogenetic analysis revealed that this fusion enzyme could only be identified in specific lineages within the Verrucomicrobia phylum. PMID:27047475

  1. Habitat conditions drive phylogenetic structure of dominant bacterial phyla of microbialite communities from different locations in Mexico.

    Science.gov (United States)

    Centeno, Carla M; Mejía, Omar; Falcón, Luisa I

    2016-09-01

    Community structure and composition are dictated by evolutionary and ecological assembly processes which are manifested in signals of, species diversity, species abundance and species relatedness. Analysis of species coexisting relatedness, has received attention as a tool to identify the processes that influence the composition of a community within a particular habitat. In this study, we tested if microbialite genetic composition is dependent on random events versus biological/abiotical factors. This study was based on a large genetic data set of two hypervariable regions (V5 and V6) from previously generated barcoded 16S rRNA amplicons from nine microbialite communities distributed in Northeastern, Central and Southeastern Mexico collected in May and June of 2009. Genetic data of the most abundant phyla (Proteobacteria, Planctomycetes, Verrucomicrobia, Bacteroidetes, and Cyanobacteria) were investigated in order to state the phylogenetic structure of the complete communities as well as each phylum. For the complete dataset, Webb NTI index showed positive and significant values in the nine communities analysed, where values ranged from 31.5 in Pozas Azules I to 57.2 in Bacalar Pirate Channel; meanwhile, NRI index were positive and significant in six of the nine communities analysed with values ranging from 18.1 in Pozas Azules I to 45.1 in Río Mesquites. On the other hand, when comparing each individual phylum, NTI index were positive and significant in all groups, except in Cyanobacteria for which positive and significant values were only found in three localities; finally, NRI index was significant in only a few of the comparisons performed. The results suggest that habitat filtering is the main process that drives phylogenetic structure in bacterial communities associated to microbialites with the exception of Cyanobacteria where different lineages can contribute to microbialite formation and growth.

  2. The Arbuscular Mycorrhizal Fungus Funneliformis mosseae Alters Bacterial Communities in Subtropical Forest Soils during Litter Decomposition

    Directory of Open Access Journals (Sweden)

    Heng Gui

    2017-06-01

    Full Text Available Bacterial communities and arbuscular mycorrhizal fungi (AMF co-occur in the soil, however, the interaction between these two groups during litter decomposition remains largely unexplored. In order to investigate the effect of AMF on soil bacterial communities, we designed dual compartment microcosms, where AMF (Funneliformis mosseae was allowed access (AM to, or excluded (NM from, a compartment containing forest soil and litterbags. Soil samples from this compartment were analyzed at 0, 90, 120, 150, and 180 days. For each sample, Illumina sequencing was used to assess any changes in the soil bacterial communities. We found that most of the obtained operational taxonomic units (OTUs from both treatments belonged to the phylum of Proteobacteria, Acidobacteria, and Actinobacteria. The community composition of bacteria at phylum and class levels was slightly influenced by both time and AMF. In addition, time and AMF significantly affected bacterial genera (e.g., Candidatus Solibacter, Dyella, Phenylobacterium involved in litter decomposition. Opposite to the bacterial community composition, we found that overall soil bacterial OTU richness and diversity are relatively stable and were not significantly influenced by either time or AMF inoculation. OTU richness at phylum and class levels also showed consistent results with overall bacterial OTU richness. Our study provides new insight into the influence of AMF on soil bacterial communities at the genus level.

  3. Genome Sequence of “Pedosphaera parvula” Ellin514, an Aerobic Verrucomicrobial Isolate from Pasture Soil▿

    Science.gov (United States)

    Kant, Ravi; van Passel, Mark W. J.; Sangwan, Parveen; Palva, Airi; Lucas, Susan; Copeland, Alex; Lapidus, Alla; Glavina del Rio, Tijana; Dalin, Eileen; Tice, Hope; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Chertkov, Olga; Larimer, Frank W.; Land, Miriam L.; Hauser, Loren; Brettin, Thomas S.; Detter, John C.; Han, Shunsheng; de Vos, Willem M.; Janssen, Peter H.; Smidt, Hauke

    2011-01-01

    “Pedosphaera parvula” Ellin514 is an aerobically grown verrucomicrobial isolate from pasture soil. It is one of the few cultured representatives of subdivision 3 of the phylum Verrucomicrobia. Members of this group are widespread in terrestrial environments. PMID:21460084

  4. Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica.

    Science.gov (United States)

    Teixeira, Lia C R S; Peixoto, Raquel S; Cury, Juliano C; Sul, Woo Jun; Pellizari, Vivian H; Tiedje, James; Rosado, Alexandre S

    2010-08-01

    The Antarctic is a pristine environment that contributes to the maintenance of the global climate equilibrium. The harsh conditions of this habitat are fundamental to selecting those organisms able to survive in such an extreme habitat and able to support the relatively simple ecosystems. The DNA of the microbial community associated with the rhizospheres of Deschampsia antarctica Desv (Poaceae) and Colobanthus quitensis (Kunth) BartI (Caryophyllaceae), the only two native vascular plants that are found in Antarctic ecosystems, was evaluated using a 16S rRNA multiplex 454 pyrosequencing approach. This analysis revealed similar patterns of bacterial diversity between the two plant species from different locations, arguing against the hypothesis that there would be differences between the rhizosphere communities of different plants. Furthermore, the phylum distribution presented a peculiar pattern, with a bacterial community structure different from those reported of many other soils. Firmicutes was the most abundant phylum in almost all the analyzed samples, and there were high levels of anaerobic representatives. Also, some phyla that are dominant in most temperate and tropical soils, such as Acidobacteria, were rarely found in the analyzed samples. Analyzing all the sample libraries together, the predominant genera found were Bifidobacterium (phylum Actinobacteria), Arcobacter (phylum Proteobacteria) and Faecalibacterium (phylum Firmicutes). To the best of our knowledge, this is the first major bacterial sequencing effort of this kind of soil, and it revealed more than expected diversity within these rhizospheres of both maritime Antarctica vascular plants in Admiralty Bay, King George Island, which is part of the South Shetlands archipelago.

  5. [A novel archaeal phylum: thaumarchaeota--a review].

    Science.gov (United States)

    Zhang, Limei; He, Jizheng

    2012-04-04

    Based on the archaeal 16S rRNA gene phylogenetic tree, the archaeal domain is divided into two major phyla, Euryarchaeota and Crenarchaeota. During the past 20 years, diverse groups of archaea have been found to be widely distributed in moderate environments with the rapid development and application of molecular techniques in microbial ecology. Increasing evidence demonstrated that these archaea, especially ammonia-oxidizing archaea, play a major role in biogeochemical cycles of nitrogen and carbon elements. These mesophilic archaea were placed initially as a sister group of the Crenarchaeota and named as "non-thermophilic Crenarchaeota". More recently, phylogenetic analyses based on more SSU and SLU rDNA sequences suggested that the non-thermophilic Crenarchaeota constituted a separate phylum of the Archaea that branched off before the separation of Crenarchaeota and Euryarchaeota. The Thaumarchaeota (the Greek "Thaumas", meaning wonder) was therefore proposed for a novel phylum, as the third archaeal phylum. More studies based on r-proteins and comparative genomics confirm that the Thaumarchaeota are distinct from Crenarchaeota. In this paper, we gave a translated Chinese name for Thaumarchaeota and reviewed the recent progress on the phylogeny position, genetics, ecology and physiology of the Thaumarchaeota.

  6. Characterization of bacterial diversity associated with deep sea ferromanganese nodules from the South China Sea.

    Science.gov (United States)

    Zhang, De-Chao; Liu, Yan-Xia; Li, Xin-Zheng

    2015-09-01

    Deep sea ferromanganese (FeMn) nodules contain metallic mineral resources and have great economic potential. In this study, a combination of culture-dependent and culture-independent (16S rRNA genes clone library and pyrosequencing) methods was used to investigate the bacterial diversity in FeMn nodules from Jiaolong Seamount, the South China Sea. Eleven bacterial strains including some moderate thermophiles were isolated. The majority of strains belonged to the phylum Proteobacteria; one isolate belonged to the phylum Firmicutes. A total of 259 near full-length bacterial 16S rRNA gene sequences in a clone library and 67,079 valid reads obtained using pyrosequencing indicated that members of the Gammaproteobacteria dominated, with the most abundant bacterial genera being Pseudomonas and Alteromonas. Sequence analysis indicated the presence of many organisms whose closest relatives are known manganese oxidizers, iron reducers, hydrogen-oxidizing bacteria and methylotrophs. This is the first reported investigation of bacterial diversity associated with deep sea FeMn nodules from the South China Sea.

  7. Genome analysis of Elusimicrobium minutum, the first cultivated representative of the Elusimicrobia phylum (formerly Termite Group 1)

    Energy Technology Data Exchange (ETDEWEB)

    Herlemann, D. P. R.; Geissinger, O.; Ikeda-Ohtsubo, W.; Kunin, V.; Sun, H.; Lapidus, A.; Hugenholtz, P.; Brune, A.

    2009-02-01

    The candidate phylum Termite group 1 (TG1), is regularly 1 encountered in termite hindguts but is present also in many other habitats. Here we report the complete genome sequence (1.64 Mbp) of Elusimicrobium minutum strain Pei191{sup T}, the first cultured representative of the TG1 phylum. We reconstructed the metabolism of this strictly anaerobic bacterium isolated from a beetle larva gut and discuss the findings in light of physiological data. E. minutum has all genes required for uptake and fermentation of sugars via the Embden-Meyerhof pathway, including several hydrogenases, and an unusual peptide degradation pathway comprising transamination reactions and leading to the formation of alanine, which is excreted in substantial amounts. The presence of genes encoding lipopolysaccharide biosynthesis and the presence of a pathway for peptidoglycan formation are consistent with ultrastructural evidence of a Gram-negative cell envelope. Even though electron micrographs showed no cell appendages, the genome encodes many genes putatively involved in pilus assembly. We assigned some to a type II secretion system, but the function of 60 pilE-like genes remains unknown. Numerous genes with hypothetical functions, e.g., polyketide synthesis, non-ribosomal peptide synthesis, antibiotic transport, and oxygen stress protection, indicate the presence of hitherto undiscovered physiological traits. Comparative analysis of 22 concatenated single-copy marker genes corroborated the status of Elusimicrobia (formerly TG1) as a separate phylum in the bacterial domain, which was so far based only on 16S rRNA sequence analysis.

  8. [Phylogenetic diversity of microorganisms associated with the deep-water sponge Baikalospongia intermedia].

    Science.gov (United States)

    Kalyzhnaya, O V; Itskovich, V B

    2014-07-01

    The diversity of bacteria associated with deep-water sponge Baikalospongia intermedia was evaluated by sequence analysis of 16S rRNA genes from two sponge samples collected in Lake Baikal from depths of 550 and 1204 m. A total of 64 operational taxonomic units, belonging to nine bacterial phyla, Proteobacteria (classes Alphaproteobacteria,. Betaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria), Actinobacteria, Planctomycetes, Cloroflexi, Verrucomicrobia, Acidobacteria, Chlorobi, and Nitrospirae, including candidate phylum WS5, were identified. Phylogenetic analysis showed that the examined communities contained phylotypes exhibiting homology to uncultured bacteria from different lake ecosystems, freshwater sediments, soil and geological formations. Moreover, a number of phylotypes were relative to psychrophilic, methane-oxidizing, sulfate-reducing bacteria, and to microorganisms resistant to the influence of heavy metals. It seems likely that the unusual habitation conditions of deep-water sponges contribute to the taxonomic diversity of associated bacteria and have an influence on the presence of functionally important microorganisms in bacterial communities.

  9. Pyrosequencing revealed shifts of prokaryotic communities between healthy and disease-like tissues of the Red Sea sponge Crella cyathophora

    KAUST Repository

    Gao, Zhao-Ming

    2015-06-11

    Sponge diseases have been widely reported, yet the causal factors and major pathogenic microbes remain elusive. In this study, two individuals of the sponge Crella cyathophora in total that showed similar disease-like characteristics were collected from two different locations along the Red Sea coast separated by more than 30 kilometers. The disease-like parts of the two individuals were both covered by green surfaces, and the body size was much smaller compared with adjacent healthy regions. Here, using high-throughput pyrosequencing technology, we investigated the prokaryotic communities in healthy and disease-like sponge tissues as well as adjacent seawater. Microbes in healthy tissues belonged mainly to the Proteobacteria, Cyanobacteria and Bacteroidetes, and were much more diverse at the phylum level than reported previously. Interestingly, the disease-like tissues from the two sponge individuals underwent shifts of prokaryotic communities and were both enriched with a novel clade affiliated with the phylum Verrucomicrobia, implying its intimate connection with the disease-like Red Sea sponge C. cyathophora. Enrichment of the phylum Verrucomicrobia was also considered to be correlated with the presence of algae assemblages forming the green surface of the disease-like sponge tissues. This finding represents an interesting case of sponge disease and is valuable for further study.

  10. Mucus sugar content shapes the bacterial community structure in thermally stressed Acropora muricata

    Directory of Open Access Journals (Sweden)

    Sonny T.M. Lee

    2016-03-01

    Full Text Available It has been proposed that the chemical composition of a coral’s mucus can influence the associated bacterial community. However, information on this topic is rare, and non-existent for corals that are under thermal stress. This study therefore compared the carbohydrate composition of mucus in the coral Acropora muricata when subjected to increasing thermal stress from 26°C to 31°C, and determined whether this composition correlated with any changes in the bacterial community. Results showed that, at lower temperatures, the main components of mucus were N-acetyl glucosamine and C6 sugars, but these constituted a significantly lower proportion of the mucus in thermally-stressed corals. The change in the mucus composition coincided with a shift from a γ-Proteobacteria- to a Verrucomicrobiae- and α-Proteobacteria-dominated community in the coral mucus. Bacteria in the class Cyanobacteria also started to become prominent in the mucus when the coral was thermally stressed. The increase in the relative abundance of the Verrucomicrobiae at higher temperature was strongly associated with a change in the proportion of fucose, glucose and mannose in the mucus. Increase in the relative abundance of α-Proteobacteria were associated with GalNAc and glucose, while the drop in relative abundance of γ-Proteobacteria at high temperature coincided with changes in fucose and mannose. Cyanobacteria were highly associated with arabinose and xylose. Changes in mucus composition and the bacterial community in the mucus layer occurred at 29°C, which were prior to visual signs of coral bleaching at 31°C. A compositional change in the coral mucus, induced by thermal stress could therefore be a key factor leading to a shift in the associated bacterial community. This, in turn, has the potential to impact the physiological function of the coral holobiont.

  11. Soil bacterial community and functional shifts in response to altered snowpack in moist acidic tundra of northern Alaska

    Science.gov (United States)

    Ricketts, Michael P.; Poretsky, Rachel S.; Welker, Jeffrey M.; Gonzalez-Meler, Miquel A.

    2016-09-01

    Soil microbial communities play a central role in the cycling of carbon (C) in Arctic tundra ecosystems, which contain a large portion of the global C pool. Climate change predictions for Arctic regions include increased temperature and precipitation (i.e. more snow), resulting in increased winter soil insulation, increased soil temperature and moisture, and shifting plant community composition. We utilized an 18-year snow fence study site designed to examine the effects of increased winter precipitation on Arctic tundra soil bacterial communities within the context of expected ecosystem response to climate change. Soil was collected from three pre-established treatment zones representing varying degrees of snow accumulation, where deep snow ˜ 100 % and intermediate snow ˜ 50 % increased snowpack relative to the control, and low snow ˜ 25 % decreased snowpack relative to the control. Soil physical properties (temperature, moisture, active layer thaw depth) were measured, and samples were analysed for C concentration, nitrogen (N) concentration, and pH. Soil microbial community DNA was extracted and the 16S rRNA gene was sequenced to reveal phylogenetic community differences between samples and determine how soil bacterial communities might respond (structurally and functionally) to changes in winter precipitation and soil chemistry. We analysed relative abundance changes of the six most abundant phyla (ranging from 82 to 96 % of total detected phyla per sample) and found four (Acidobacteria, Actinobacteria, Verrucomicrobia, and Chloroflexi) responded to deepened snow. All six phyla correlated with at least one of the soil chemical properties (% C, % N, C : N, pH); however, a single predictor was not identified, suggesting that each bacterial phylum responds differently to soil characteristics. Overall, bacterial community structure (beta diversity) was found to be associated with snow accumulation treatment and all soil chemical properties. Bacterial

  12. Metagenomic analysis of two important, but difficult to culture soil borne bacterial phyla, the Acidobacteria and the Verrucomicrobia

    NARCIS (Netherlands)

    Kielak, A.M.

    2010-01-01

    Based on phylogenetic marker genes, such as 16S rRNA genes, it is clear that numerous bacterial lineages exist that appear to be quite common in the environment, yet poorly characterized and underrepresented in culture. Two of the most common bacterial phyla in soils that fall into this category are

  13. Molecular analysis of bacterial populations in water samples from two Uranium mill tailings by using RISA retrieval

    International Nuclear Information System (INIS)

    Selenska-Pobell, S.; Radeva, G.

    2004-01-01

    Ribosomal intergenic spacer amplification (RISA) retrieval was applied to analyse the natural bacterial communities in drain waters of two uranium mill tailings - Gittersee/Coschuetz in Germany and Shiprock in the USA. About 35% of the clones from RISA library constructed for the samples of the German tailings represented a microdiverse population of Planctomycetales. The rest of the clones were affiliated with rather diverse bacterial groups including γ- and δ-Proteobacteria, Cytophaga/Flavobacterium/Bacteroides (CFB), Nitrospira, Verrucomicrobia and Actinobacteria. 8% of the cloned sequences represented a novel bacterial lineage from the recently described division NC3. Bacterial diversity in the Shiprock mill tailings was found to be significantly lower. RISA library constructed for those samples contained only two larger groups of clones representing β-proteobacterial species and one small group which was affiliated with δ-Proteobacteria. (authors)

  14. Molecular analysis of bacterial populations in water samples from two Uranium mill tailings by using RISA retrieval

    Energy Technology Data Exchange (ETDEWEB)

    Selenska-Pobell, S [Forschungszentrum Rossendorf, Institute of Radiochemistry, Dresden (Germany); Radeva, G [Bulgarian Academy of Sciences, Institute of Molecular Biology, Sofia (Bulgaria)

    2004-07-01

    Ribosomal intergenic spacer amplification (RISA) retrieval was applied to analyse the natural bacterial communities in drain waters of two uranium mill tailings - Gittersee/Coschuetz in Germany and Shiprock in the USA. About 35% of the clones from RISA library constructed for the samples of the German tailings represented a microdiverse population of Planctomycetales. The rest of the clones were affiliated with rather diverse bacterial groups including {gamma}- and {delta}-Proteobacteria, Cytophaga/Flavobacterium/Bacteroides (CFB), Nitrospira, Verrucomicrobia and Actinobacteria. 8% of the cloned sequences represented a novel bacterial lineage from the recently described division NC3. Bacterial diversity in the Shiprock mill tailings was found to be significantly lower. RISA library constructed for those samples contained only two larger groups of clones representing {beta}-proteobacterial species and one small group which was affiliated with {delta}-Proteobacteria. (authors)

  15. Bio-Prospecting Laccases in the Bacterial Diversity of Activated Sludge From Pulp and Paper Industry.

    Science.gov (United States)

    Gupta, Vijaya; Capalash, Neena; Gupta, Naveen; Sharma, Prince

    2017-03-01

    Activated sludge is an artificial ecosystem known to harbor complex microbial communities. Bacterial diversity in activated sludge from pulp and paper industry was studied to bioprospect for laccase, the multicopper oxidase applicable in a large number of industries due to its ability to utilize a wide range of substrates. Bacterial diversity using 454 pyrosequencing and laccase diversity using degenerate primers specific to conserved copper binding domain of laccase like multicopper oxidase (LMCO) genes were investigated. 1231 OTUs out of 11,425 sequence reads for bacterial diversity and 11 OTUs out of 15 reads for LMCO diversity were formed. Phylum Proteobacteria (64.95 %) with genus Thauera (13.65 %) was most abundant followed by phylum Bacteriodetes (11.46 %) that included the dominant genera Paludibacter (1.93 %) and Lacibacter (1.32 %). In case of LMCOs, 40 % sequences showed affiliation with Proteobacteria and 46.6 % with unculturable bacteria, indicating considerable novelty, and 13.3 % with Bacteroidetes. LMCOs belonged to H and J families.

  16. Characterization of bacterial community structure in a hydrocarbon-contaminated tropical African soil.

    Science.gov (United States)

    Salam, Lateef B; Ilori, Mathew O; Amund, Olukayode O; LiiMien, Yee; Nojiri, Hideaki

    2018-04-01

    The bacterial community structure in a hydrocarbon-contaminated Mechanical Engineering Workshop (MWO) soil was deciphered using 16S rRNA gene clone library analysis. Four hundred and thirty-seven clones cutting across 13 bacterial phyla were recovered from the soil. The representative bacterial phyla identified from MWO soil are Proteobacteria, Bacteroidetes, Chloroflexi, Acidobacteria, Firmicutes, Actinobacteria, Verrucomicrobia, Planctomycetes, Ignavibacteriae, Spirochaetes, Chlamydiae, Candidatus Saccharibacteria and Parcubacteria. Proteobacteria is preponderant in the contaminated soil (51.2%) with all classes except Epsilonproteobacteria duly represented. Rarefaction analysis indicates 42%, 52% and 77% of the clone library is covered at the species, genus and family/class delineations with Shannon diversity (H') and Chao1 richness indices of 5.59 and 1126, respectively. A sizeable number of bacterial phylotypes in the clone library shared high similarities with strains previously described to be involved in hydrocarbon biodegradation. Novel uncultured genera were identified that have not been previously reported from tropical African soil to be associated with natural attenuation of hydrocarbon pollutants. This study establishes the involvement of a wide array of physiologically diverse bacterial groups in natural attenuation of hydrocarbon pollutants in soil.

  17. Comparison of the rhizosphere bacterial communities of Zigongdongdou soybean and a high-methionine transgenic line of this cultivar.

    Directory of Open Access Journals (Sweden)

    Jingang Liang

    Full Text Available Previous studies have shown that methionine from root exudates affects the rhizosphere bacterial population involved in soil nitrogen fixation. A transgenic line of Zigongdongdou soybean cultivar (ZD91 that expresses Arabidopsis cystathionine γ-synthase resulting in an increased methionine production was examined for its influence to the rhizosphere bacterial population. Using 16S rRNA gene-based pyrosequencing analysis of the V4 region and DNA extracted from bacterial consortia collected from the rhizosphere of soybean plants grown in an agricultural field at the pod-setting stage, we characterized the populational structure of the bacterial community involved. In total, 87,267 sequences (approximately 10,908 per sample were analyzed. We found that Acidobacteria, Proteobacteria, Bacteroidetes, Actinobacteria, Chloroflexi, Planctomycetes, Gemmatimonadetes, Firmicutes, and Verrucomicrobia constitute the dominant taxonomic groups in either the ZD91 transgenic line or parental cultivar ZD, and that there was no statistically significant difference in the rhizosphere bacterial community structure between the two cultivars.

  18. Analysis of bacterial and fungal communities in Marcha and Thiat, traditionally prepared amylolytic starters of India.

    Science.gov (United States)

    Sha, Shankar Prasad; Jani, Kunal; Sharma, Avinash; Anupma, Anu; Pradhan, Pooja; Shouche, Yogesh; Tamang, Jyoti Prakash

    2017-09-08

    Marcha and thiat are traditionally prepared amylolytic starters use for production of various ethnic alcoholic beverages in Sikkim and Meghalaya states in India. In the present study we have tried to investigate the bacterial and fungal community composition of marcha and thiat by using high throughput sequencing. Characterization of bacterial community depicts phylum Proteobacteria is the most dominant in both marcha (91.4%) and thiat (53.8%), followed by Firmicutes, and Actinobacteria. Estimates of fungal community composition showed Ascomycota as the dominant phylum. Presence of Zygomycota in marcha distinguishes it from the thiat. The results of NGS analysis revealed dominance of yeasts in marcha whereas molds out numbers in case of thiat. This is the first report on microbial communities of traditionally prepared amylolytic starters of India using high throughput sequencing.

  19. Gut bacterial community structure of two Australian tropical fruit fly species (Diptera: Tephritidae

    Directory of Open Access Journals (Sweden)

    Narit Thaochan

    2015-12-01

    Full Text Available The community structure of the alimentary tract bacteria of two Australian fruit fly species, Bactrocera cacuminata (Hering and Bactrocera tryoni (Froggatt, was studied using a molecular cloning method based on the 16S rRNA gene. Differences in the bacterial community structure were shown between the crops and midguts of the two species and sexes of each species. Proteobacteria was the dominant bacterial phylum in the flies, especially bacteria in the order Gammaproteobacteria which was prominent in all clones. The total bacterial community consisted of Proteobacteria (more than 75% of clones, except in the crop of B. cacuminata where more than 50% of clones belonged to Firmicutes. Firmicutes gave the number of the secondary community structure in the fly’s gut. Four orders, Alpha-, Beta-, Delta- and Gammaproteobacteria and the phyla Firmicutes and Actinobacteria were found in both fruit fly species, while the order Epsilonproteobacteria and the phylum Bacteroidetes were found only in B. tryoni. Two phyla, Actinobacteria and Bacteroidetes, were rare and less frequent in the flies. There was a greater diversity of bacteria in the crop of the two fruit fly species than in the midgut. The midgut of B. tryoni females and the midgut of B. cacuminata males had the lowest bacterial diversity.

  20. Phylogeny and molecular signatures for the phylum Thermotogae and its subgroups.

    Science.gov (United States)

    Gupta, Radhey S; Bhandari, Vaibhav

    2011-06-01

    Thermotogae species are currently identified mainly on the basis of their unique toga and distinct branching in the rRNA and other phylogenetic trees. No biochemical or molecular markers are known that clearly distinguish the species from this phylum from all other bacteria. The taxonomic/evolutionary relationships within this phylum, which consists of a single family, are also unclear. We report detailed phylogenetic analyses on Thermotogae species based on concatenated sequences for many ribosomal as well as other conserved proteins that identify a number of distinct clades within this phylum. Additionally, comprehensive analyses of protein sequences from Thermotogae genomes have identified >60 Conserved Signature Indels (CSI) that are specific for the Thermotogae phylum or its different subgroups. Eighteen CSIs in important proteins such as PolI, RecA, TrpRS and ribosomal proteins L4, L7/L12, S8, S9, etc. are uniquely present in various Thermotogae species and provide molecular markers for the phylum. Many CSIs were specific for a number of Thermotogae subgroups. Twelve of these CSIs were specific for a clade consisting of various Thermotoga species except Tt. lettingae, which was separated from other Thermotoga species by a long branch in phylogenetic trees; Fourteen CSIs were specific for a clade consisting of the Fervidobacterium and Thermosipho genera and eight additional CSIs were specific for the genus Thermosipho. In addition, the existence of a clade consisting of the deep branching species Petrotoga mobilis, Kosmotoga olearia and Thermotogales bacterium mesG1 was supported by seven CSIs. The deep branching of this clade was also supported by a number of CSIs that were present in various Thermotogae species, but absent in this clade and all other bacteria. Most of these clades were strongly supported by phylogenetic analyses based on two datasets of protein sequences and they identify potential higher taxonomic grouping (viz. families) within this phylum

  1. The Arctic soil bacterial communities in the vicinity of a little auk colony

    Directory of Open Access Journals (Sweden)

    Sylwia Zielinska

    2016-09-01

    Full Text Available Due to deposition of birds’ guano, eggshells or feathers, the vicinity of a large seabirds’ breeding colony is expected to have a substantial impact on the soil’s physicochemical features as well as on diversity of vegetation and the soil invertebrates. Consequently, due to changing physicochemical features the structure of bacterial communities might fluctuate in different soil environments. The aim of this study was to investigate the bacterial assemblages in the Arctic soil within the area of a birds’ colony and in a control sample from a topographically similar location but situated away from the colony’s impact area. A high number of OTUs found in both areas indicates a highly complex microbial populations structure. The most abundant phyla in both of the tested samples were: Proteobacteria, Acidobacteria, Actinobacteria and Chloroflexi, with different proportions in the total share. Despite differences in the physicochemical soil characteristics, the soil microbial community structures at the phylum level were similar to some extent in the two samples. The only share that was significantly higher in the control area when compared to the sample obtained within the birds’ colony, belonged to the Actinobacteria phylum. Moreover, when analyzing the class level for each phylum, several differences between the samples were observed. Furthermore, lower proportions of Proteobacteria and Acidobacteria were observed in the soil sample under the influence of the bird’s colony, which most probably could be linked to higher nitrogen concentrations in that sample.

  2. Substrate Type and Free Ammonia Determine Bacterial Community Structure in Full-Scale Mesophilic Anaerobic Digesters Treating Cattle or Swine Manure.

    Science.gov (United States)

    Li, Jiabao; Rui, Junpeng; Yao, Minjie; Zhang, Shiheng; Yan, Xuefeng; Wang, Yuanpeng; Yan, Zhiying; Li, Xiangzhen

    2015-01-01

    The microbial-mediated anaerobic digestion (AD) process represents an efficient biological process for the treatment of organic waste along with biogas harvest. Currently, the key factors structuring bacterial communities and the potential core and unique bacterial populations in manure anaerobic digesters are not completely elucidated yet. In this study, we collected sludge samples from 20 full-scale anaerobic digesters treating cattle or swine manure, and investigated the variations of bacterial community compositions using high-throughput 16S rRNA amplicon sequencing. Clustering and correlation analysis suggested that substrate type and free ammonia (FA) play key roles in determining the bacterial community structure. The COD: [Formula: see text] (C:N) ratio of substrate and FA were the most important available operational parameters correlating to the bacterial communities in cattle and swine manure digesters, respectively. The bacterial populations in all of the digesters were dominated by phylum Firmicutes, followed by Bacteroidetes, Proteobacteria and Chloroflexi. Increased FA content selected Firmicutes, suggesting that they probably play more important roles under high FA content. Syntrophic metabolism by Proteobacteria, Chloroflexi, Synergistetes and Planctomycetes are likely inhibited when FA content is high. Despite the different manure substrates, operational conditions and geographical locations of digesters, core bacterial communities were identified. The core communities were best characterized by phylum Firmicutes, wherein Clostridium predominated overwhelmingly. Substrate-unique and abundant communities may reflect the properties of manure substrate and operational conditions. These findings extend our current understanding of the bacterial assembly in full-scale manure anaerobic digesters.

  3. Sphagnum mosses harbour highly specific bacterial diversity during their whole lifecycle.

    Science.gov (United States)

    Bragina, Anastasia; Berg, Christian; Cardinale, Massimiliano; Shcherbakov, Andrey; Chebotar, Vladimir; Berg, Gabriele

    2012-04-01

    Knowledge about Sphagnum-associated microbial communities, their structure and their origin is important to understand and maintain climate-relevant Sphagnum-dominated bog ecosystems. We studied bacterial communities of two cosmopolitan Sphagnum species, which are well adapted to different abiotic parameters (Sphagnum magellanicum, which are strongly acidic and ombrotrophic, and Sphagnum fallax, which are weakly acidic and mesotrophic), in three Alpine bogs in Austria by a multifaceted approach. Great differences between bacterial fingerprints of both Sphagna were found independently from the site. This remarkable specificity was confirmed by a cloning and a deep sequencing approach. Besides the common Alphaproteobacteria, we found a discriminative spectrum of bacteria; although Gammaproteobacteria dominated S. magellanicum, S. fallax was mainly colonised by Verrucomicrobia and Planctomycetes. Using this information for fluorescent in situ hybridisation analyses, corresponding colonisation patterns for Alphaproteobacteria and Planctomycetes were detected. Bacterial colonies were found in high abundances inside the dead big hyalocytes, but they were always connected with the living chlorocytes. Using multivariate statistical analysis, the abiotic factors nutrient richness and pH were identified to modulate the composition of Sphagnum-specific bacterial communities. Interestingly, we found that the immense bacterial diversity was transferred via the sporophyte to the gametophyte, which can explain the high specificity of Sphagnum-associated bacteria over long distances. In contrast to higher plants, which acquire their bacteria mainly from the environment, mosses as the phylogenetically oldest land plants maintain their bacterial diversity within the whole lifecycle.

  4. Limisphaera ngatamarikiensis gen. nov., sp. nov., a thermophilic, pink-pigmented coccus isolated from subaqueous mud of a geothermal hotspring.

    Science.gov (United States)

    Anders, Heike; Power, Jean F; MacKenzie, Andrew D; Lagutin, Kirill; Vyssotski, Mikhail; Hanssen, Eric; Moreau, John W; Stott, Matthew B

    2015-04-01

    A novel bacterial strain, NGM72.4(T), was isolated from a hot spring in the Ngatamariki geothermal field, New Zealand. Phylogenetic analysis based on 16S rRNA gene sequences grouped it into the phylum Verrucomicrobia and class level group 3 (also known as OPB35 soil group). NGM72.4(T) stained Gram-negative, and was catalase- and oxidase-positive. Cells were small cocci, 0.5-0.8 µm in diameter, which were motile by means of single flagella. Transmission electron micrograph (TEM) imaging showed an unusual pirellulosome-like intracytoplasmic membrane. The peptidoglycan content was very small with only trace levels of diaminopimelic acid detected. No peptidoglycan structure was visible in TEM imaging. The predominant isoprenoid quinone was MK-7 (92%). The major fatty acids (>15%) were C(16 : 0), anteiso-C(15 : 0), iso-C(16 : 0) and anteiso-C(17 : 0). Major phospholipids were phosphatidylethanolamine (PE), phosphatidylmonomethylethanolamine (PMME) and cardiolipin (CL), and a novel analogous series of phospholipids where diacylglycerol was replaced with diacylserinol (sPE, sPMME, sCL). The DNA G+C content was 65.6 mol%. Cells displayed an oxidative chemoheterotrophic metabolism. NGM72.4(T) is a strictly aerobic thermophile (growth optimum 60-65 °C), has a slightly alkaliphilic pH growth optimum (optimum pH 8.1-8.4) and has a NaCl tolerance of up to 8 g l(-1). Colonies were small, circular and pigmented pale pink. The distinct phylogenetic position and phenotypic traits of strain NGM72.4(T) distinguish it from all other described species of the phylum Verrucomicrobia and, therefore, it is considered to represent a novel species in a new genus for which we propose the name Limisphaera ngatamarikiensis gen. nov., sp. nov. The type strain is NGM72.4(T) ( = ICMP 20182(T) = DSM 27329(T)). © 2015 IUMS.

  5. Reconstruction of Diverse Verrucomicrobial Genomes from Metagenome Datasets of Freshwater Reservoirs

    Directory of Open Access Journals (Sweden)

    Pedro J. Cabello-Yeves

    2017-11-01

    Full Text Available The phylum Verrucomicrobia contains freshwater representatives which remain poorly studied at the genomic, taxonomic, and ecological levels. In this work we present eighteen new reconstructed verrucomicrobial genomes from two freshwater reservoirs located close to each other (Tous and Amadorio, Spain. These metagenome-assembled genomes (MAGs display a remarkable taxonomic diversity inside the phylum and comprise wide ranges of estimated genome sizes (from 1.8 to 6 Mb. Among all Verrucomicrobia studied we found some of the smallest genomes of the Spartobacteria and Opitutae classes described so far. Some of the Opitutae family MAGs were small, cosmopolitan, with a general heterotrophic metabolism with preference for carbohydrates, and capable of xylan, chitin, or cellulose degradation. Besides, we assembled large copiotroph genomes, which contain a higher number of transporters, polysaccharide degrading pathways and in general more strategies for the uptake of nutrients and carbohydrate-based metabolic pathways in comparison with the representatives with the smaller genomes. The diverse genomes revealed interesting features like green-light absorbing rhodopsins and a complete set of genes involved in nitrogen fixation. The large diversity in genome sizes and physiological properties emphasize the diversity of this clade in freshwaters enlarging even further the already broad eco-physiological range of these microbes.

  6. Comparative analyses of the bacterial microbiota of the human nostril and oropharynx.

    Science.gov (United States)

    Lemon, Katherine P; Klepac-Ceraj, Vanja; Schiffer, Hilary K; Brodie, Eoin L; Lynch, Susan V; Kolter, Roberto

    2010-06-22

    The nose and throat are important sites of pathogen colonization, yet the microbiota of both is relatively unexplored by culture-independent approaches. We examined the bacterial microbiota of the nostril and posterior wall of the oropharynx from seven healthy adults using two culture-independent methods, a 16S rRNA gene microarray (PhyloChip) and 16S rRNA gene clone libraries. While the bacterial microbiota of the oropharynx was richer than that of the nostril, the oropharyngeal microbiota varied less among participants than did nostril microbiota. A few phyla accounted for the majority of the bacteria detected at each site: Firmicutes and Actinobacteria in the nostril and Firmicutes, Proteobacteria, and Bacteroidetes in the oropharynx. Compared to culture-independent surveys of microbiota from other body sites, the microbiota of the nostril and oropharynx show distinct phylum-level distribution patterns, supporting niche-specific colonization at discrete anatomical sites. In the nostril, the distribution of Actinobacteria and Firmicutes was reminiscent of that of skin, though Proteobacteria were much less prevalent. The distribution of Firmicutes, Proteobacteria, and Bacteroidetes in the oropharynx was most similar to that in saliva, with more Proteobacteria than in the distal esophagus or mouth. While Firmicutes were prevalent at both sites, distinct families within this phylum dominated numerically in each. At both sites there was an inverse correlation between the prevalences of Firmicutes and another phylum: in the oropharynx, Firmicutes and Proteobacteria, and in the nostril, Firmicutes and Actinobacteria. In the nostril, this inverse correlation existed between the Firmicutes family Staphylococcaceae and Actinobacteria families, suggesting potential antagonism between these groups.

  7. Comparative Analysis of 35 Basidiomycete Genomes Reveals Diversity and Uniqueness of the Phylum

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Robert; Salamov, Asaf; Otillar, Robert; Fagnan, Kirsten; Boussau, Bastien; Brown, Daren; Henrissat, Bernard; Levasseur, Anthony; Held, Benjamin; Nagy, Laszlo; Floudas, Dimitris; Morin, Emmanuelle; Manning, Gerard; Baker, Scott; Martin, Francis; Blanchette, Robert; Hibbett, David; Grigoriev, Igor V.

    2013-03-11

    Fungi of the phylum Basidiomycota (basidiomycetes), make up some 37percent of the described fungi, and are important in forestry, agriculture, medicine, and bioenergy. This diverse phylum includes symbionts, pathogens, and saprobes including wood decaying fungi. To better understand the diversity of this phylum we compared the genomes of 35 basidiomycete fungi including 6 newly sequenced genomes. The genomes of basidiomycetes span extremes of genome size, gene number, and repeat content. A phylogenetic tree of Basidiomycota was generated using the Phyldog software, which uses all available protein sequence data to simultaneously infer gene and species trees. Analysis of core genes reveals that some 48percent of basidiomycete proteins are unique to the phylum with nearly half of those (22percent) comprising proteins found in only one organism. Phylogenetic patterns of plant biomass-degrading genes suggest a continuum rather than a sharp dichotomy between the white rot and brown rot modes of wood decay among the members of Agaricomycotina subphylum. There is a correlation of the profile of certain gene families to nutritional mode in Agaricomycotina. Based on phylogenetically-informed PCA analysis of such profiles, we predict that that Botryobasidium botryosum and Jaapia argillacea have properties similar to white rot species, although neither has liginolytic class II fungal peroxidases. Furthermore, we find that both fungi exhibit wood decay with white rot-like characteristics in growth assays. Analysis of the rate of discovery of proteins with no or few homologs suggests the high value of continued sequencing of basidiomycete fungi.

  8. Phylogenetic Framework and Molecular Signatures for the Main Clades of the Phylum Actinobacteria

    Science.gov (United States)

    Gao, Beile

    2012-01-01

    Summary: The phylum Actinobacteria harbors many important human pathogens and also provides one of the richest sources of natural products, including numerous antibiotics and other compounds of biotechnological interest. Thus, a reliable phylogeny of this large phylum and the means to accurately identify its different constituent groups are of much interest. Detailed phylogenetic and comparative analyses of >150 actinobacterial genomes reported here form the basis for achieving these objectives. In phylogenetic trees based upon 35 conserved proteins, most of the main groups of Actinobacteria as well as a number of their superageneric clades are resolved. We also describe large numbers of molecular markers consisting of conserved signature indels in protein sequences and whole proteins that are specific for either all Actinobacteria or their different clades (viz., orders, families, genera, and subgenera) at various taxonomic levels. These signatures independently support the existence of different phylogenetic clades, and based upon them, it is now possible to delimit the phylum Actinobacteria (excluding Coriobacteriia) and most of its major groups in clear molecular terms. The species distribution patterns of these markers also provide important information regarding the interrelationships among different main orders of Actinobacteria. The identified molecular markers, in addition to enabling the development of a stable and reliable phylogenetic framework for this phylum, also provide novel and powerful means for the identification of different groups of Actinobacteria in diverse environments. Genetic and biochemical studies on these Actinobacteria-specific markers should lead to the discovery of novel biochemical and/or other properties that are unique to different groups of Actinobacteria. PMID:22390973

  9. Changes in the equine fecal microbiota associated with the use of systemic antimicrobial drugs.

    Science.gov (United States)

    Costa, Marcio C; Stämpfli, Henry R; Arroyo, Luis G; Allen-Vercoe, Emma; Gomes, Roberta G; Weese, J Scott

    2015-02-03

    The intestinal tract is a rich and complex environment and its microbiota has been shown to have an important role in health and disease in the host. Several factors can cause disruption of the normal intestinal microbiota, including antimicrobial therapy, which is an important cause of diarrhea in horses. This study aimed to characterize changes in the fecal bacterial populations of healthy horses associated with the administration of frequently used antimicrobial drugs. Twenty-four adult mares were assigned to receive procaine penicillin intramuscularly (IM), ceftiofur sodium IM, trimethoprim sulfadiazine (TMS) orally or to a control group. Treatment was given for 5 consecutive days and fecal samples were collected before drug administration (Day 1), at the end of treatment (Days 5), and on Days 14 and 30 of the trial. High throughput sequencing of the V4 region of the 16S rRNA gene was performed using an Illumina MiSeq sequencer. Significant changes of population structure and community membership were observed after the use of all drugs. TMS caused the most marked changes on fecal microbiota even at higher taxonomic levels including a significant decrease of richness and diversity. Those changes were mainly due to a drastic decrease of Verrucomicrobia, specifically the "5 genus incertae sedis". Changes in structure and membership caused by antimicrobial administration were specific for each drug and may be predictable. Twenty-five days after the end of treatment, bacterial profiles were more similar to pre-treatment patterns indicating a recovery from changes caused by antimicrobial administration, but differences were still evident, especially regarding community membership. The use of systemic antimicrobials leads to changes in the intestinal microbiota, with different and specific responses to different antimicrobials. All antimicrobials tested here had some impact on the microbiota, but TMS significantly reduced bacterial species richness and diversity and

  10. Cytosine methylation is a conserved epigenetic feature found throughout the phylum Platyhelminthes

    Science.gov (United States)

    2013-01-01

    Background The phylum Platyhelminthes (flatworms) contains an important group of bilaterian organisms responsible for many debilitating and chronic infectious diseases of human and animal populations inhabiting the planet today. In addition to their biomedical and veterinary relevance, some platyhelminths are also frequently used models for understanding tissue regeneration and stem cell biology. Therefore, the molecular (genetic and epigenetic) characteristics that underlie trophic specialism, pathogenicity or developmental maturation are likely to be pivotal in our continued studies of this important metazoan group. Indeed, in contrast to earlier studies that failed to detect evidence of cytosine or adenine methylation in parasitic flatworm taxa, our laboratory has recently defined a critical role for cytosine methylation in Schistosoma mansoni oviposition, egg maturation and ovarian development. Thus, in order to identify whether this epigenetic modification features in other platyhelminth species or is a novelty of S. mansoni, we conducted a study simultaneously surveying for DNA methylation machinery components and DNA methylation marks throughout the phylum using both parasitic and non-parasitic representatives. Results Firstly, using both S. mansoni DNA methyltransferase 2 (SmDNMT2) and methyl-CpG binding domain protein (SmMBD) as query sequences, we illustrate that essential DNA methylation machinery components are well conserved throughout the phylum. Secondly, using both molecular (methylation specific amplification polymorphism, MSAP) and immunological (enzyme-linked immunoabsorbent assay, ELISA) methodologies, we demonstrate that representative species (Echinococcus multilocularis, Protopolystoma xenopodis, Schistosoma haematobium, Schistosoma japonicum, Fasciola hepatica and Polycelis nigra) within all four platyhelminth classes (Cestoda, Monogenea, Trematoda and ‘Turbellaria’) contain methylated cytosines within their genome compartments

  11. Substrate type and free ammonia determine bacterial community structure in full-scale mesophilic anaerobic digesters treating cattle or swine manure

    Directory of Open Access Journals (Sweden)

    Jiabao eLi

    2015-11-01

    Full Text Available The microbial-mediated anaerobic digestion (AD process represents an efficient biological process for the treatment of organic waste along with biogas harvest. Currently, the key factors structuring bacterial communities and the potential core and unique bacterial populations in manure anaerobic digesters are not completely elucidated yet. In this study, we collected sludge samples from 20 full-scale anaerobic digesters treating cattle or swine manure, and investigated the variations of bacterial community compositions using high-throughput 16S rRNA amplicon sequencing. Clustering and correlation analysis suggested that substrate type and free ammonia (FA play key roles in determining the bacterial community structure. The COD: NH4+-N (C:N ratio of substrate and FA were the most important available operational parameters correlating to the bacterial communities in cattle and swine manure digesters, respectively. The bacterial populations in all of the digesters were dominated by phylum Firmicutes, followed by Bacteroidetes, Proteobacteria and Chloroflexi. Increased FA content selected Firmicutes, suggesting that they probably play more important roles under high FA content. Syntrophic metabolism by Proteobacteria, Chloroflexi, Synergistetes and Planctomycetes are likely inhibited when FA content is high. Despite the different manure substrates, operational conditions and geographical locations of digesters, core bacterial communities were identified. The core communities were best characterized by phylum Firmicutes, wherein Clostridium predominated overwhelmingly. Substrate-unique and abundant communities may reflect the properties of manure substrate and operational conditions. These findings extend our current understanding of the bacterial assembly in full-scale manure anaerobic digesters.

  12. AcEST: DK948274 [AcEST

    Lifescience Database Archive (English)

    Full Text Available 39 tr|B5JF10|B5JF10_9BACT Lipase family OS=Verrucomicrobiae bacteri... 36 1.8 tr|B6LB31|B6LB31_BRAFL Putativ...10|B5JF10_9BACT Lipase family OS=Verrucomicrobiae bacterium DG1235 GN=VDG1235_4260 PE=4 SV=1 Length = 338 Sc

  13. Characterizing the bacterial microbiota in different gastrointestinal tract segments of the Bactrian camel.

    Science.gov (United States)

    He, Jing; Yi, Li; Hai, Le; Ming, Liang; Gao, Wanting; Ji, Rimutu

    2018-01-12

    The bacterial community plays important roles in the gastrointestinal tracts (GITs) of animals. However, our understanding of the microbial communities in the GIT of Bactrian camels remains limited. Here, we describe the bacterial communities from eight different GIT segments (rumen, reticulum, abomasum, duodenum, ileum, jejunum, caecum, colon) and faeces determined from 11 Bactrian camels using 16S rRNA gene amplicon sequencing. Twenty-seven bacterial phyla were found in the GIT, with Firmicutes, Verrucomicrobia and Bacteroidetes predominating. However, there were significant differences in microbial community composition between segments of the GIT. In particular, a greater proportion of Akkermansia and Unclassified Ruminococcaceae were found in the large intestine and faecal samples, while more Unclassified Clostridiales and Unclassified Bacteroidales were present in the in forestomach and small intestine. Comparative analysis of the microbiota from different GIT segments revealed that the microbial profile in the large intestine was like that in faeces. We also predicted the metagenomic profiles for the different GIT regions. In forestomach, there was enrichment associated with replication and repair and amino acid metabolism, while carbohydrate metabolism was enriched in the large intestine and faeces. These results provide profound insights into the GIT microbiota of Bactrian camels.

  14. Urban-development-induced Changes in the Diversity and Composition of the Soil Bacterial Community in Beijing

    Science.gov (United States)

    Yan, Bing; Li, Junsheng; Xiao, Nengwen; Qi, Yue; Fu, Gang; Liu, Gaohui; Qiao, Mengping

    2016-12-01

    Numerous studies have implicated urbanization as a major cause of loss of biodiversity. Most of them have focused on plants and animals, even though soil microorganisms make up a large proportion of that biodiversity. However, it is unclear how the soil bacterial community is affected by urban development. Here, paired-end Illumina sequencing of the 16 S rRNA gene at V4 region was performed to study the soil microbial community across Beijing’s built-up area. Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Gemmatimonadetes, Verrucomicrobia, Planctomycetes, and Chloroflexi were the dominant phyla in all samples, but the relative abundance of these phyla differed significantly across these concentric zones. The diversity and composition of the soil bacterial community were found to be closely correlated with soil pH. Variance partitioning analysis suggested that urban ring roads contributed 5.95% of the bacterial community variation, and soil environmental factors explained 17.65% of the variation. The results of the current work indicate that urban development can alter the composition and diversity of the soil microbial community, and showed pH to be a key factor in the shaping of the composition of the soil bacterial community. Urban development did have a strong impact on the bacterial community of urban soil in Beijing.

  15. The rhizosphere and PAH amendment mediate impacts on functional and structural bacterial diversity in sandy peat soil

    International Nuclear Information System (INIS)

    Yrjaelae, Kim; Keskinen, Anna-Kaisa; Akerman, Marja-Leena; Fortelius, Carola; Sipilae, Timo P.

    2010-01-01

    To reveal the degradation capacity of bacteria in PAH polluted soil and rhizosphere we combined bacterial extradiol ring-cleavage dioxygenase and 16S rRNA analysis in Betula pubescens rhizoremediation. Characterisation of the functional bacterial community by RFLP revealed novel environmental dioxygenases, and their putative hosts were studied by 16S rRNA amplification. Plant rhizosphere and PAH amendment effects were detected by the RFLP/T-RFLP analysis. Functional species richness increased in the birch rhizosphere and PAH amendment impacted the compositional diversity of the dioxygenases and the structural 16S rRNA community. A shift from an Acidobacteria and Verrucomicrobia dominated to an Alpha- and Betaproteobacteria dominated community structure was detected in polluted soil. Clone sequence analysis indicated catabolic significance of Burkholderia in PAH polluted soil. These results advance our understanding of rhizoremediation and unveil the extent of uncharacterized functional bacteria to benefit bioremediation by facilitating the development of the molecular tool box to monitor bacterial populations in biodegradation. - The bacterial community analysis using 16S rRNA and extradiol dioxygenase marker genes in rhizoremediation revealed both a rhizosphere and a PAH-pollution effect.

  16. Bacterial microbiota profiling in gastritis without Helicobacter pylori infection or non-steroidal anti-inflammatory drug use.

    Directory of Open Access Journals (Sweden)

    Xiao-Xing Li

    Full Text Available Recent 16S ribosomal RNA gene (rRNA molecular profiling of the stomach mucosa revealed a surprising complexity of microbiota. Helicobacter pylori infection and non-steroidal anti-inflammatory drug (NSAID use are two main contributors to gastritis and peptic ulcer. However, little is known about the association between other members of the stomach microbiota and gastric diseases. In this study, cloning and sequencing of the 16S rRNA was used to profile the stomach microbiota from normal and gastritis patients. One hundred and thirty three phylotypes from eight bacterial phyla were identified. The stomach microbiota was found to be closely adhered to the mucosa. Eleven Streptococcus phylotypes were successfully cultivated from the biopsies. One to two genera represented a majority of clones within any of the identified phyla. We further developed two real-time quantitative PCR assays to quantify the relative abundance of the Firmicutes phylum and the Streptococcus genus. Significantly higher abundance of the Firmicutes phylum and the Streptococcus genus within the Firmicutes phylum was observed in patients with antral gastritis, compared with normal controls. This study suggests that the genus taxon level can largely represent much higher taxa such as the phylum. The clinical relevance and the mechanism underlying the altered microbiota composition in gastritis require further functional studies.

  17. Bacterial reduction of mercury in the high arctic

    DEFF Research Database (Denmark)

    Møller, Annette Klæstrup

    than the rare phyla, suggesting that the ecological success of a bacterial phylum depends on the diversity rather than the dominance of a few genera. The most dominant phyla included Proteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria and Firmicutes in the snow and Proteobacteria......, Bacteroidetes, Actinobacteria and Planctomycetes in freshwater. The bacteria identified in this study both included phylotypes commonly found in cold environments as well as rare phylotypes. During the time of sampling atmospheric ozone measurements and total Hg measurements in the snow indicated......, Firmicutes, Actinobacteria, and Bacteriodetes. It was found that 25% of the isolates resistant to Hg also reduced HgII to Hg0, although there was no correlation between level of resistance, ability to reduce HgII, and taxonomic group. An estimation of the potential bacterial reduction of HgII in snow...

  18. Fecal bacterial communities of wild-captured and stranded green turtles (Chelonia mydas) on the Great Barrier Reef.

    Science.gov (United States)

    Ahasan, Md Shamim; Waltzek, Thomas B; Huerlimann, Roger; Ariel, Ellen

    2017-12-01

    Green turtles (Chelonia mydas) are endangered marine herbivores that break down food particles, primarily sea grasses, through microbial fermentation. However, the microbial community and its role in health and disease is still largely unexplored. In this study, we investigated and compared the fecal bacterial communities of eight wild-captured green turtles to four stranded turtles in the central Great Barrier Reef regions that include Bowen and Townsville. We used high-throughput sequencing analysis targeting the hypervariable V1-V3 regions of the bacterial 16S rRNA gene. At the phylum level, Firmicutes predominated among wild-captured green turtles, followed by Bacteroidetes and Proteobacteria. In contrast, Proteobacteria (Gammaproteobacteria) was the most significantly dominant phylum among all stranded turtles, followed by Bacteroidetes and Firmicutes. In addition, Fusobacteria was also significantly abundant in stranded turtles. No significant differences were found between the wild-captured turtles in Bowen and Townsville. At the family level, the core bacterial community consisted of 25 families that were identified in both the wild-captured and stranded green turtles, while two unique sets of 14 families each were only found in stranded or wild-captured turtles. The predominance of Bacteroides in all groups indicates the importance of these bacteria in turtle gut health. In terms of bacterial diversity and richness, wild-captured green turtles showed a higher bacterial diversity and richness compared with stranded turtles. The marked differences in the bacterial communities between wild-captured and stranded turtles suggest the possible dysbiosis in stranded turtles in addition to potential causal agents. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Molecular Analysis of Bacterial Communities in Biofilms of a Drinking Water Clearwell

    Science.gov (United States)

    Zhang, Minglu; Liu, Wenjun; Nie, Xuebiao; Li, Cuiping; Gu, Junnong; Zhang, Can

    2012-01-01

    Microbial community structures in biofilms of a clearwell in a drinking water supply system in Beijing, China were examined by clone library, terminal restriction fragment length polymorphism (T-RFLP) and 454 pyrosequencing of the amplified 16S rRNA gene. Six biofilm samples (designated R1–R6) collected from six locations (upper and lower sites of the inlet, middle and outlet) of the clearwell revealed similar bacterial patterns by T-RFLP analysis. With respect to the dominant groups, the phylotypes detected by clone library and T-RFLP generally matched each other. A total of 9,543 reads were obtained from samples located at the lower inlet and the lower outlet sites by pyrosequencing. The bacterial diversity of the two samples was compared at phylum and genus levels. Alphaproteobacteria dominated the communities in both samples and the genus of Sphingomonas constituted 75.1%–99.6% of this phylum. A high level of Sphingomonas sp. was first observed in the drinking water biofilms with 0.6–1.0 mg L−1 of chlorine residual. Disinfectant-resistant microorganisms deserve special attention in drinking water management. This study provides novel insights into the microbial populations in drinking water systems and highlights the important role of Sphingomonas species in biofilm formation. PMID:23059725

  20. Molecular diversity of bacterial endosymbionts associated with dagger nematodes of the genus Xiphinema (Nematoda: Longidoridae) reveals a high degree of phylogenetic congruence with their host.

    Science.gov (United States)

    Palomares-Rius, Juan E; Archidona-Yuste, Antonio; Cantalapiedra-Navarrete, Carolina; Prieto, Pilar; Castillo, Pablo

    2016-12-01

    Bacterial endosymbionts have been detected in some groups of plant-parasitic nematodes, but few cases have been reported compared to other groups in the phylum Nematoda, such as animal-parasitic or free-living nematodes. This study was performed on a wide variety of plant-parasitic nematode families and species from different host plants and nematode populations. A total of 124 nematode populations (previously identified morphologically and molecularly) were screened for the presence of potential bacterial endosymbionts using the partial 16S rRNA gene and fluorescence in situ hybridization (FISH) and confocal microscopy. Potential bacterial endosymbionts were only detected in nematode species belonging to the genus Xiphinema and specifically in the X. americanum group. Fifty-seven partial 16S rRNA sequences were obtained from bacterial endosymbionts in this study. One group of sequences was closely related to the genus 'Candidatus Xiphinematobacter' (19 bacterial endosymbiont sequences were associated with seven nematode host species, including two that have already been described and three unknown bacterial endosymbionts). The second bacterial endosymbiont group (38 bacterial endosymbiont sequences associated with six nematode species) was related to the family Burkholderiaceae, which includes fungal and soil-plant bacterial endosymbionts. These endosymbionts were reported for the first time in the phylum Nematoda. Our findings suggest that there is a highly specific symbiotic relationship between nematode host and bacterial endosymbionts. Overall, these results were corroborated by a phylogeny of nematode host and bacterial endosymbionts that suggested that there was a high degree of phylogenetic congruence and long-term evolutionary persistence between hosts and endosymbionts. © 2016 John Wiley & Sons Ltd.

  1. Bacterial community profiles in low microbial abundance sponges

    KAUST Repository

    Giles, Emily

    2012-09-04

    It has long been recognized that sponges differ in the abundance of associated microorganisms, and they are therefore termed either \\'low microbial abundance\\' (LMA) or \\'high microbial abundance\\' (HMA) sponges. Many previous studies concentrated on the dense microbial communities in HMA sponges, whereas little is known about microorganisms in LMA sponges. Here, two LMA sponges from the Red Sea, two from the Caribbean and one from the South Pacific were investigated. With up to only five bacterial phyla per sponge, all LMA sponges showed lower phylum-level diversity than typical HMA sponges. Interestingly, each LMA sponge was dominated by a large clade within either Cyanobacteria or different classes of Proteobacteria. The overall similarity of bacterial communities among LMA sponges determined by operational taxonomic unit and UniFrac analysis was low. Also the number of sponge-specific clusters, which indicate bacteria specifically associated with sponges and which are numerous in HMA sponges, was low. A biogeographical or host-dependent distribution pattern was not observed. In conclusion, bacterial community profiles of LMA sponges are clearly different from profiles of HMA sponges and, remarkably, each LMA sponge seems to harbour its own unique bacterial community. © 2012 Federation of European Microbiological Societies.

  2. Microbial mat of the thermal springs Kuchiger Republic of Buryatia: species composition, biochemical properties and electrogenic activity in biofuel cell

    Science.gov (United States)

    Aleksandrovich Yuriev, Denis; Viktorovna Zaitseva, Svetlana; Olegovna Zhdanova, Galina; Yurievich Tolstoy, Mikhail; Dondokovna Barkhutova, Darima; Feodorovna Vyatchina, Olga; Yuryevna Konovalova, Elena; Iosifovich Stom, Devard

    2018-02-01

    Electrogenic, molecular and some other properties of a microbial mat isolated from the Kuchiger hot spring (Kurumkansky District, Republic of Buryatia) were studied. Molecular analysis showed that representatives of Proteobacteria (85.5 % of the number of classified bacterial sequences) prevailed in the microbial mat of the Kuchiger springs, among which sulfur bacteria of the genus Thiothrix were the most numerous. In the microbial mat there were bacteria from the families Rhodocyclaceae, Comamonadaceae and Flavobacteriaceae. Phylum Bacteroidetes, Cyanobacteria/Chloroplast, Fusobacteria, Fibrobacteres, Acidobacteria, Chlorobi, Spirochaetes, Verrucomicrobia, Firmicutes, Deinococcus-Thermus, Chloroflexi and Actinobacteria are also noted in the composition of the microbial mat. Under the experimental conditions using Kuchiger-mat 16 as bioagents, glucose and peptone as substrates, the power of BFC was 240 and 221 mW / m2, respectively. When replacing the substrate with sodium acetate, the efficiency of the BFC was reduced by a factor of 10 (20 mW / m2). The prospects of using a microbial mat “Kuchiger-16” as an electrogen in BFC when utilizing alkaline waste water components to generate electricity are discussed.

  3. Characteristics of Bacterial Communities in Cyanobacteria-Blooming Aquaculture Wastewater Influenced by the Phytoremediation with Water Hyacinth

    Directory of Open Access Journals (Sweden)

    Qing Zhou

    2017-12-01

    Full Text Available Cyanobacterial blooms often occur in aquaculture wastewater in China. A floating plant, water hyacinth has been widely used to treat this wastewater. Little is known, however, about bacterial community characteristics and the risk of potential pathogens in cyanobacteria-blooming aquaculture wastewater remediated by water hyacinth. In wastewater treated with water hyacinth, we used culture enumeration and high-throughput sequencing to explore the characteristics of bacterial communities, the status of coliform bacteria, and pathogenic bacteria potentially conducive to human disease. Our results indicated that the relative abundance of Acidobacteria, Planctomycetes, Actinobacteria, Chlorobi, Cyanobacteria, Proteobacteria, and phylum OD1 in cyanobacteria-blooming aquaculture wastewater were significantly influenced by water hyacinth. After 30 days, the relative abundance of Proteobacteria and phylum OD1 in the water hyacinth treatments increased remarkably, while the relative abundance of the other 5 phyla in treatment was significantly reduced compared with the controls. In 21 major families, the relative abundance of Comamonadaceae, Oxalobacteraceae, Rhodocylclaceae, and an unnamed group from phylum OD1 increased significantly in the water hyacinth treatments compared with the controls. The number of total coliforms in wastewater treated by water hyacinth was significantly elevated and higher than controls during the first 6–18 days, with the maximum reaching 23,800 MPN/L. The level of potential pathogenic bacteria in wastewater treated by water hyacinth significantly reduced compared with the controls after 18 days, but it significantly increased from the initial level. It appears that water hyacinth by itself is not an effective treatment for reducing potential pathogens in aquaculture water.

  4. The soil microbiome at the Gi-FACE experiment responds to a moisture gradient but not to CO2 enrichment.

    Science.gov (United States)

    de Menezes, Alexandre B; Müller, Christoph; Clipson, Nicholas; Doyle, Evelyn

    2016-09-01

    The soil bacterial community at the Giessen free-air CO2 enrichment (Gi-FACE) experiment was analysed by tag sequencing of the 16S rRNA gene. No substantial effects of CO2 levels on bacterial community composition were detected. However, the soil moisture gradient at Gi-FACE had a significant effect on bacterial community composition. Different groups within the Acidobacteria and Verrucomicrobia phyla were affected differently by soil moisture content. These results suggest that modest increases in atmospheric CO2 may cause only minor changes in soil bacterial community composition and indicate that the functional responses of the soil community to CO2 enrichment previously reported at Gi-FACE are due to factors other than changes in bacterial community composition. The effects of the moisture gradient revealed new information about the relationships between poorly known Acidobacteria and Verrucomicrobia and soil moisture content. This study contrasts with the relatively small number of other temperate grassland free-air CO2 enrichment microbiome studies in the use of moderate CO2 enrichment and the resulting minor changes in the soil microbiome. Thus, it will facilitate the development of further climate change mitigation studies. In addition, the moisture gradient found at Gi-FACE contributes new knowledge in soil microbial ecology, particularly regarding the abundance and moisture relationships of the soil Verrucomicrobia.

  5. Bacterial community diversity of the deep-sea octocoral Paramuricea placomus

    Directory of Open Access Journals (Sweden)

    Christina A. Kellogg

    2016-09-01

    Full Text Available Compared to tropical corals, much less is known about deep-sea coral biology and ecology. Although the microbial communities of some deep-sea corals have been described, this is the first study to characterize the bacterial community associated with the deep-sea octocoral, Paramuricea placomus. Samples from five colonies of P. placomus were collected from Baltimore Canyon (379–382 m depth in the Atlantic Ocean off the east coast of the United States of America. DNA was extracted from the coral samples and 16S rRNA gene amplicons were pyrosequenced using V4-V5 primers. Three samples sequenced deeply (>4,000 sequences each and were further analyzed. The dominant microbial phylum was Proteobacteria, but other major phyla included Firmicutes and Planctomycetes. A conserved community of bacterial taxa held in common across the three P. placomus colonies was identified, comprising 68–90% of the total bacterial community depending on the coral individual. The bacterial community of P. placomus does not appear to include the genus Endozoicomonas, which has been found previously to be the dominant bacterial associate in several temperate and tropical gorgonians. Inferred functionality suggests the possibility of nitrogen cycling by the core bacterial community.

  6. [Characterizing Beijing's Airborne Bacterial Communities in PM2.5 and PM1 Samples During Haze Pollution Episodes Using 16S rRNA Gene Analysis Method].

    Science.gov (United States)

    Wang, Bu-ying; Lang, Ji-dong; Zhang, Li-na; Fang, Jian-huo; Cao, Chen; Hao, Ji-ming; Zhu, Ting; Tian, Geng; Jiang, Jing-kun

    2015-08-01

    During 8th-14th Jan., 2013, severe particulate matter (PM) pollution episodes happened in Beijing. These air pollution events lead to high risks for public health. In addition to various PM chemical compositions, biological components in the air may also impose threaten. Little is known about airborne microbial community in such severe air pollution conditions. PM2.5 and PM10 samples were collected during that 7-day pollution period. The 16S rRNA gene V3 amplification and the MiSeq sequencing were performed for analyzing these samples. It is found that there is no significant difference at phylum level for PM2.5 bacterial communities during that 7-day pollution period both at phylum and at genus level. At genus level, Arthrobacter and Frankia are the major airborne microbes presented in Beijing winter.samples. At genus level, there are 39 common genera (combined by first 50 genera bacterial of the two analysis) between the 16S rRNA gene analysis and those are found by Metagenomic analysis on the same PM samples. Frankia and Paracoccus are relatively more abundant in 16S rRNA gene data, while Kocuria and Geodermatophilus are relatively more abundant in Meta-data. PM10 bacterial communities are similar to those of PM2.5 with some noticeable differences, i.e., at phylum level, more Firmicutes and less Actinobacteria present in PM10 samples than in PM2.5 samples, while at genus level, more Clostridium presents in PM10 samples. The findings in Beijing were compared with three 16S rRNA gene studies in other countries. Although the sampling locations and times are different from each other, compositions of bacterial community are similar for those sampled at the ground atmosphere. Airborne microbial communities near the ground surface are different from those sampled in the upper troposphere.

  7. Bacterial community involved in the nitrogen cycle in a down-flow sponge-based trickling filter treating UASB effluent.

    Science.gov (United States)

    Mac Conell, E F A; Almeida, P G S; Martins, K E L; Araújo, J C; Chernicharo, C A L

    2015-01-01

    The bacterial community composition of a down-flow sponge-based trickling filter treating upflow anaerobic sludge blanket (UASB) effluent was investigated by pyrosequencing. Bacterial community composition considerably changed along the reactor and over the operational period. The dominant phyla detected were Proteobacteria, Verrucomicrobia, and Planctomycetes. The abundance of denitrifiers decreased from the top to the bottom and it was consistent with the organic matter concentration gradients. At lower loadings (organic and nitrogen loading rates), the abundance of anammox bacteria was higher than that of the ammonium-oxidizing bacteria in the upper portion of the reactor, suggesting that aerobic and anaerobic ammonium oxidation occurred. Nitrification occurred in all the compartments, while anammox bacteria prominently appeared even in the presence of high organic carbon to ammonia ratios (around 1.0-2.0 gCOD gN(-1)). The results suggest that denitrifiers, nitrifiers, and anammox bacteria coexisted in the reactor; thus, different metabolic pathways were involved in ammonium removal in the post-UASB reactor sponge-based.

  8. Bacterial community composition of a wastewater treatment system reliant on N{sub 2} fixation

    Energy Technology Data Exchange (ETDEWEB)

    Reid, N.M.; Bowers, T.H.; Lloyd-Jones, G. [Scion, Rotorua (New Zealand)

    2008-05-15

    The temporal stability and change of the dominant phylogenetic groups of the domain bacteria were studied in a model plant-based industrial wastewater treatment system showing high levels of organic carbon removal supported by high levels of N{sub 2} fixation. Community profiles were obtained through terminal restriction fragment length polymorphism analysis and cloning of 16S rRNA amplicons followed by sequencing. Bacterial community profiles showed that ten common terminal restriction fragments made up approximately 50% of the measured bacterial community. As much as 42% of the measured bacterial community could be monitored by using quantitative PCR and primers that targeted three dominant operational taxonomic units. Despite changes in wastewater composition and dissolved oxygen levels, the bacterial community composition appeared stable and was dominated by {alpha}-Proteobacteria and {beta}-Proteobacteria, with a lesser amount of the highly diverse bacterial phylum Bacteroidetes. A short period of considerable change in the bacterial community composition did not appear to affect treatment performance indicating functional redundancy in this treatment system. (orig.)

  9. Dynamic succession of soil bacterial community during continuous cropping of peanut (Arachis hypogaea L..

    Directory of Open Access Journals (Sweden)

    Mingna Chen

    Full Text Available Plant health and soil fertility are affected by plant-microbial interactions in soils. Peanut is an important oil crop worldwide and shows considerable adaptability, but growth and yield are negatively affected by continuous cropping. In this study, 16S rRNA gene clone library analyses were used to study the succession of soil bacterial communities under continuous peanut cultivation. Six libraries were constructed for peanut over three continuous cropping cycles and during its seedling and pod-maturing growth stages. Cluster analyses indicated that soil bacterial assemblages obtained from the same peanut cropping cycle were similar, regardless of growth period. The diversity of bacterial sequences identified in each growth stage library of the three peanut cropping cycles was high and these sequences were affiliated with 21 bacterial groups. Eight phyla: Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Gemmatimonadetes, Planctomycetes, Proteobacteria and Verrucomicrobia were dominant. The related bacterial phylotypes dynamic changed during continuous cropping progress of peanut. This study demonstrated that the bacterial populations especially the beneficial populations were positively selected. The simplification of the beneficial microbial communities such as the phylotypes of Alteromonadales, Burkholderiales, Flavobacteriales, Pseudomonadales, Rhizobiales and Rhodospirillales could be important factors contributing to the decline in peanut yield under continuous cropping. The microbial phylotypes that did not successively changed with continuous cropping, such as populations related to Rhizobiales and Rhodospirillales, could potentially resist stress due to continuous cropping and deserve attention. In addition, some phylotypes, such as Acidobacteriales, Chromatiales and Gemmatimonadales, showed a contrary tendency, their abundance or diversity increased with continuous peanut cropping progress. Some bacterial phylotypes including

  10. Diversity rankings among bacterial lineages in soil.

    Science.gov (United States)

    Youssef, Noha H; Elshahed, Mostafa S

    2009-03-01

    We used rarefaction curve analysis and diversity ordering-based approaches to rank the 11 most frequently encountered bacterial lineages in soil according to diversity in 5 previously reported 16S rRNA gene clone libraries derived from agricultural, undisturbed tall grass prairie and forest soils (n=26,140, 28 328, 31 818, 13 001 and 53 533). The Planctomycetes, Firmicutes and the delta-Proteobacteria were consistently ranked among the most diverse lineages in all data sets, whereas the Verrucomicrobia, Gemmatimonadetes and beta-Proteobacteria were consistently ranked among the least diverse. On the other hand, the rankings of alpha-Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes and Chloroflexi varied widely in different soil clone libraries. In general, lineages exhibiting largest differences in diversity rankings also exhibited the largest difference in relative abundance in the data sets examined. Within these lineages, a positive correlation between relative abundance and diversity was observed within the Acidobacteria, Actinobacteria and Chloroflexi, and a negative diversity-abundance correlation was observed within the Bacteroidetes. The ecological and evolutionary implications of these results are discussed.

  11. The presence of embedded bacterial pure cultures in agar plates stimulate the culturability of soil bacteria

    DEFF Research Database (Denmark)

    Burmølle, Mette; Johnsen, Kaare; Abu Al-Soud, Waleed Mohamad Abdel F

    2009-01-01

    Traditional methods for bacterial cultivation recover only a small fraction of bacteria from all sorts of natural environments, and attempts have been made to improve the bacterial culturability. Here we describe the development of a cultivation method, based on the embedment of pure bacterial...... cultures in between two layers of agar. Plates containing either embedded Pseudomonas putida or Arthrobacter globiformis resulted in higher numbers of CFUs of soil bacteria (21% and 38%, respectively) after 833 h of incubation, compared to plates with no embedded strain. This indicates a stimulatory effect...... of the bacterial pure cultures on the cultivation of soil bacteria. Analysis of partial 16S rRNA gene sequences revealed a phylogenetical distribution of the soil isolates into 7 classes in 4 phyla. No difference was observed at the phylum or class level when comparing isolates grouped according to embedded strain...

  12. Diversity and structure of soil bacterial communities in the Fildes Region (maritime Antarctica as revealed by 454 pyrosequencing

    Directory of Open Access Journals (Sweden)

    Neng Fei eWang

    2015-10-01

    Full Text Available This study assessed the diversity and composition of bacterial communities in four different soils (human-, penguin-, seal-colony impacted soils and pristine soil in the Fildes Region (King George Island, Antarctica using 454 pyrosequencing with bacterial-specific primers targeting the 16S rRNA gene. Proteobacteria, Actinobacteria, Acidobacteria, and Verrucomicrobia were abundant phyla in almost all the soil samples. The four types of soils were significantly different in geochemical properties and bacterial community structure. Thermotogae, Cyanobacteria, Fibrobacteres, Deinococcus-Thermus, and Chlorobi obviously varied in their abundance among the 4 soil types. Considering all the samples together, members of the genera Gaiella, Chloracidobacterium, Nitrospira, Polaromonas, Gemmatimonas, Sphingomonas and Chthoniobacter were found to predominate, whereas members of the genera Chamaesiphon, Herbaspirillum, Hirschia, Nevskia, Nitrosococcus, Rhodococcus, Rhodomicrobium, and Xanthomonas varied obviously in their abundance among the four soil types. Distance-based redundancy analysis revealed that pH (p < 0.01, phosphate phosphorus (p < 0.01, organic carbon (p < 0.05, and organic nitrogen (p < 0.05 were the most significant factors that correlated with the community distribution of soil bacteria. To our knowledge, this is the first study to explore the soil bacterial communities in human-, penguin-, and seal- colony impacted soils from ice-free areas in maritime Antarctica using high-throughput pyrosequencing.

  13. Shedding light on cell compartmentation in the candidate phylum Poribacteria by high resolution visualisation and transcriptional profiling

    KAUST Repository

    Jahn, Martin T.

    2016-10-31

    Assigning functions to uncultivated environmental microorganisms continues to be a challenging endeavour. Here, we present a new microscopy protocol for fluorescence in situ hybridisation-correlative light and electron microscopy (FISH-CLEM) that enabled, to our knowledge for the first time, the identification of single cells within their complex microenvironment at electron microscopy resolution. Members of the candidate phylum Poribacteria, common and uncultivated symbionts of marine sponges, were used towards this goal. Cellular 3D reconstructions revealed bipolar, spherical granules of low electron density, which likely represent carbon reserves. Poribacterial activity profiles were retrieved from prokaryotic enriched sponge metatranscriptomes using simulation-based optimised mapping. We observed high transcriptional activity for proteins related to bacterial microcompartments (BMC) and we resolved their subcellular localisation by combining FISH-CLEM with immunohistochemistry (IHC) on ultra-thin sponge tissue sections. In terms of functional relevance, we propose that the BMC-A region may be involved in 1,2-propanediol degradation. The FISH-IHC-CLEM approach was proven an effective toolkit to combine -omics approaches with functional studies and it should be widely applicable in environmental microbiology.

  14. Multi-Analytical Approach Reveals Potential Microbial Indicators in Soil for Sugarcane Model Systems.

    Directory of Open Access Journals (Sweden)

    Acacio Aparecido Navarrete

    Full Text Available This study focused on the effects of organic and inorganic amendments and straw retention on the microbial biomass (MB and taxonomic groups of bacteria in sugarcane-cultivated soils in a greenhouse mesocosm experiment monitored for gas emissions and chemical factors. The experiment consisted of combinations of synthetic nitrogen (N, vinasse (V; a liquid waste from ethanol production, and sugarcane-straw blankets. Increases in CO2-C and N2O-N emissions were identified shortly after the addition of both N and V to the soils, thus increasing MB nitrogen (MB-N and decreasing MB carbon (MB-C in the N+V-amended soils and altering soil chemical factors that were correlated with the MB. Across 57 soil metagenomic datasets, Actinobacteria (31.5%, Planctomycetes (12.3%, Deltaproteobacteria (12.3%, Alphaproteobacteria (12.0% and Betaproteobacteria (11.1% were the most dominant bacterial groups during the experiment. Differences in relative abundance of metagenomic sequences were mainly revealed for Acidobacteria, Actinobacteria, Gammaproteobacteria and Verrucomicrobia with regard to N+V fertilization and straw retention. Differential abundances in bacterial groups were confirmed using 16S rRNA gene-targeted phylum-specific primers for real-time PCR analysis in all soil samples, whose results were in accordance with sequence data, except for Gammaproteobacteria. Actinobacteria were more responsive to straw retention with Rubrobacterales, Bifidobacteriales and Actinomycetales related to the chemical factors of N+V-amended soils. Acidobacteria subgroup 7 and Opitutae, a verrucomicrobial class, were related to the chemical factors of soils without straw retention as a surface blanket. Taken together, the results showed that MB-C and MB-N responded to changes in soil chemical factors and CO2-C and N2O-N emissions, especially for N+V-amended soils. The results also indicated that several taxonomic groups of bacteria, such as Acidobacteria, Actinobacteria and

  15. Multi-Analytical Approach Reveals Potential Microbial Indicators in Soil for Sugarcane Model Systems

    Science.gov (United States)

    Navarrete, Acacio Aparecido; Diniz, Tatiana Rosa; Braga, Lucas Palma Perez; Silva, Genivaldo Gueiros Zacarias; Franchini, Julio Cezar; Rossetto, Raffaella; Edwards, Robert Alan; Tsai, Siu Mui

    2015-01-01

    This study focused on the effects of organic and inorganic amendments and straw retention on the microbial biomass (MB) and taxonomic groups of bacteria in sugarcane-cultivated soils in a greenhouse mesocosm experiment monitored for gas emissions and chemical factors. The experiment consisted of combinations of synthetic nitrogen (N), vinasse (V; a liquid waste from ethanol production), and sugarcane-straw blankets. Increases in CO2-C and N2O-N emissions were identified shortly after the addition of both N and V to the soils, thus increasing MB nitrogen (MB-N) and decreasing MB carbon (MB-C) in the N+V-amended soils and altering soil chemical factors that were correlated with the MB. Across 57 soil metagenomic datasets, Actinobacteria (31.5%), Planctomycetes (12.3%), Deltaproteobacteria (12.3%), Alphaproteobacteria (12.0%) and Betaproteobacteria (11.1%) were the most dominant bacterial groups during the experiment. Differences in relative abundance of metagenomic sequences were mainly revealed for Acidobacteria, Actinobacteria, Gammaproteobacteria and Verrucomicrobia with regard to N+V fertilization and straw retention. Differential abundances in bacterial groups were confirmed using 16S rRNA gene-targeted phylum-specific primers for real-time PCR analysis in all soil samples, whose results were in accordance with sequence data, except for Gammaproteobacteria. Actinobacteria were more responsive to straw retention with Rubrobacterales, Bifidobacteriales and Actinomycetales related to the chemical factors of N+V-amended soils. Acidobacteria subgroup 7 and Opitutae, a verrucomicrobial class, were related to the chemical factors of soils without straw retention as a surface blanket. Taken together, the results showed that MB-C and MB-N responded to changes in soil chemical factors and CO2-C and N2O-N emissions, especially for N+V-amended soils. The results also indicated that several taxonomic groups of bacteria, such as Acidobacteria, Actinobacteria and

  16. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data

    Science.gov (United States)

    Zygomycete fungi were classified as a single phylum, Zygomycota, based on sexual reproduction by zygospores, frequent asexual reproduction by sporangia, absence of multicellular sporocarps, and production of coenocytic hyphae, all with some exceptions. Molecular phylogenies based on one or a few gen...

  17. Highly Heterogeneous Soil Bacterial Communities around Terra Nova Bay of Northern Victoria Land, Antarctica

    Science.gov (United States)

    Lim, Hyoun Soo; Hong, Soon Gyu; Kim, Ji Hee; Lee, Joohan; Choi, Taejin; Ahn, Tae Seok; Kim, Ok-Sun

    2015-01-01

    Given the diminished role of biotic interactions in soils of continental Antarctica, abiotic factors are believed to play a dominant role in structuring of microbial communities. However, many ice-free regions remain unexplored, and it is unclear which environmental gradients are primarily responsible for the variations among bacterial communities. In this study, we investigated the soil bacterial community around Terra Nova Bay of Victoria Land by pyrosequencing and determined which environmental variables govern the bacterial community structure at the local scale. Six bacterial phyla, Actinobacteria, Proteobacteria, Acidobacteria, Chloroflexi, Cyanobacteria, and Bacteroidetes, were dominant, but their relative abundance varied greatly across locations. Bacterial community structures were affected little by spatial distance, but structured more strongly by site, which was in accordance with the soil physicochemical compositions. At both the phylum and species levels, bacterial community structure was explained primarily by pH and water content, while certain earth elements and trace metals also played important roles in shaping community variation. The higher heterogeneity of the bacterial community structure found at this site indicates how soil bacterial communities have adapted to different compositions of edaphic variables under extreme environmental conditions. Taken together, these findings greatly advance our understanding of the adaption of soil bacterial populations to this harsh environment. PMID:25799273

  18. Geoarchaeota: a new candidate phylum in the Archaea from high-temperature acidic iron mats in Yellowstone National Park.

    Science.gov (United States)

    Kozubal, Mark A; Romine, Margaret; Jennings, Ryan deM; Jay, Zack J; Tringe, Susannah G; Rusch, Doug B; Beam, Jacob P; McCue, Lee Ann; Inskeep, William P

    2013-03-01

    Geothermal systems in Yellowstone National Park (YNP) provide an outstanding opportunity to understand the origin and evolution of metabolic processes necessary for life in extreme environments including low pH, high temperature, low oxygen and elevated concentrations of reduced iron. Previous phylogenetic studies of acidic ferric iron mats from YNP have revealed considerable diversity of uncultivated and undescribed archaea. The goal of this study was to obtain replicate de novo genome assemblies for a dominant archaeal population inhabiting acidic iron-oxide mats in YNP. Detailed analysis of conserved ribosomal and informational processing genes indicates that the replicate assemblies represent a new candidate phylum within the domain Archaea referred to here as 'Geoarchaeota' or 'novel archaeal group 1 (NAG1)'. The NAG1 organisms contain pathways necessary for the catabolism of peptides and complex carbohydrates as well as a bacterial-like Form I carbon monoxide dehydrogenase complex likely used for energy conservation. Moreover, this novel population contains genes involved in the metabolism of oxygen including a Type A heme copper oxidase, a bd-type terminal oxidase and a putative oxygen-sensing protoglobin. NAG1 has a variety of unique bacterial-like cofactor biosynthesis and transport genes and a Type3-like CRISPR system. Discovery of NAG1 is critical to our understanding of microbial community structure and function in extant thermophilic iron-oxide mats of YNP, and will provide insight regarding the evolution of Archaea in early Earth environments that may have important analogs active in YNP today.

  19. Geoarchaeota: a new candidate phylum in the Archaea from high-temperature acidic iron mats in Yellowstone National Park

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, Mark; Romine, Margaret F.; Jennings, Ryan; Jay, Z.; Tringe, Susannah G.; Rusch, Douglas B.; Beam, Jake; McCue, Lee Ann; Inskeep, William P.

    2013-03-01

    Geothermal systems in Yellowstone National Park (YNP) provide an outstanding opportunity to understand the origin and evolution of metabolic processes necessary for life in extreme environments including low pH, high temperature, low oxygen and elevated concentrations of reduced iron. Previous phylogenetic studies of acidic ferric iron mats from YNP have revealed considerable diversity of uncultivated and undescribed archaea. The goal of this study was to obtain replicate de novo genome assemblies for a dominant archaeal population inhabiting acidic iron oxide mats in YNP. Detailed analysis of conserved ribosomal and informational processing genes indicate that the replicate assemblies represent a new phylum-level lineage referred to here as 'novel archaeal group 1 (NAG1)'. The NAG1 organisms contain pathways necessary for the catabolism of peptides and complex carbohydrates as well as a bacterial-like Form I CO dehydrogenase complex likely used for energy conservation. Moreover, this novel population contains genes involved in metabolism of oxygen including a Type A heme copper oxidase, a bd-type terminal oxidase and a putative oxygen sensing protoglobin. NAG1 has a variety of unique bacterial-like cofactor biosynthesis and transport genes and a Type3-like CRISPR system. Discovery of NAG1 is critical to our understanding of microbial community structure and function in extant thermophilic iron mats of YNP, and will provide insight regarding the evolution of Archaea in early Earth environments that may have important analogues active in YNP today.

  20. Gut bacterial microbiota and obesity.

    Science.gov (United States)

    Million, M; Lagier, J-C; Yahav, D; Paul, M

    2013-04-01

    Although probiotics and antibiotics have been used for decades as growth promoters in animals, attention has only recently been drawn to the association between the gut microbiota composition, its manipulation, and obesity. Studies in mice have associated the phylum Firmicutes with obesity and the phylum Bacteroidetes with weight loss. Proposed mechanisms linking the microbiota to fat content and weight include differential effects of bacteria on the efficiency of energy extraction from the diet, and changes in host metabolism of absorbed calories. The independent effect of the microbiota on fat accumulation has been demonstrated in mice, where transplantation of microbiota from obese mice or mice fed western diets to lean or germ-free mice produced fat accumulation among recipients. The microbiota can be manipulated by prebiotics, probiotics, and antibiotics. Probiotics affect the microbiota directly by modulating its bacterial content, and indirectly through bacteriocins produced by the probiotic bacteria. Interestingly, certain probiotics are associated with weight gain both in animals and in humans. The effects are dependent on the probiotic strain, the host, and specific host characteristics, such as age and baseline nutritional status. Attention has recently been drawn to the association between antibiotic use and weight gain in children and adults. We herein review the studies describing the associations between the microbiota composition, its manipulation, and obesity. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  1. Bacterial community diversity and variation in spray water sources and the tomato fruit surface.

    Science.gov (United States)

    Telias, Adriana; White, James R; Pahl, Donna M; Ottesen, Andrea R; Walsh, Christopher S

    2011-04-21

    Tomato (Solanum lycopersicum) consumption has been one of the most common causes of produce-associated salmonellosis in the United States. Contamination may originate from animal waste, insects, soil or water. Current guidelines for fresh tomato production recommend the use of potable water for applications coming in direct contact with the fruit, but due to high demand, water from other sources is frequently used. We sought to describe the overall bacterial diversity on the surface of tomato fruit and the effect of two different water sources (ground and surface water) when used for direct crop applications by generating a 454-pyrosequencing 16S rRNA dataset of these different environments. This study represents the first in depth characterization of bacterial communities in the tomato fruit surface and the water sources commonly used in commercial vegetable production. The two water sources tested had a significantly different bacterial composition. Proteobacteria was predominant in groundwater samples, whereas in the significantly more diverse surface water, abundant phyla also included Firmicutes, Actinobacteria and Verrucomicrobia. The fruit surface bacterial communities on tomatoes sprayed with both water sources could not be differentiated using various statistical methods. Both fruit surface environments had a high representation of Gammaproteobacteria, and within this class the genera Pantoea and Enterobacter were the most abundant. Despite the major differences observed in the bacterial composition of ground and surface water, the season long use of these very different water sources did not have a significant impact on the bacterial composition of the tomato fruit surface. This study has provided the first next-generation sequencing database describing the bacterial communities living in the fruit surface of a tomato crop under two different spray water regimes, and therefore represents an important step forward towards the development of science

  2. Bacterial community diversity and variation in spray water sources and the tomato fruit surface

    Directory of Open Access Journals (Sweden)

    Ottesen Andrea R

    2011-04-01

    Full Text Available Abstract Background Tomato (Solanum lycopersicum consumption has been one of the most common causes of produce-associated salmonellosis in the United States. Contamination may originate from animal waste, insects, soil or water. Current guidelines for fresh tomato production recommend the use of potable water for applications coming in direct contact with the fruit, but due to high demand, water from other sources is frequently used. We sought to describe the overall bacterial diversity on the surface of tomato fruit and the effect of two different water sources (ground and surface water when used for direct crop applications by generating a 454-pyrosequencing 16S rRNA dataset of these different environments. This study represents the first in depth characterization of bacterial communities in the tomato fruit surface and the water sources commonly used in commercial vegetable production. Results The two water sources tested had a significantly different bacterial composition. Proteobacteria was predominant in groundwater samples, whereas in the significantly more diverse surface water, abundant phyla also included Firmicutes, Actinobacteria and Verrucomicrobia. The fruit surface bacterial communities on tomatoes sprayed with both water sources could not be differentiated using various statistical methods. Both fruit surface environments had a high representation of Gammaproteobacteria, and within this class the genera Pantoea and Enterobacter were the most abundant. Conclusions Despite the major differences observed in the bacterial composition of ground and surface water, the season long use of these very different water sources did not have a significant impact on the bacterial composition of the tomato fruit surface. This study has provided the first next-generation sequencing database describing the bacterial communities living in the fruit surface of a tomato crop under two different spray water regimes, and therefore represents an

  3. Bacterial community structure in response to environmental impacts in the intertidal sediments along the Yangtze Estuary, China.

    Science.gov (United States)

    Guo, Xing-Pan; Lu, Da-Pei; Niu, Zuo-Shun; Feng, Jing-Nan; Chen, Yu-Ru; Tou, Fei-Yun; Liu, Min; Yang, Yi

    2018-01-01

    This study was designed to investigate the characteristics of bacterial communities in intertidal sediments along the Yangtze Estuary and their responses to environmental factors. The results showed that bacterial abundance was significantly correlated with salinity, SO 4 2- and total organic carbon, while bacterial diversity was significantly correlated with SO 4 2- and total nitrogen. At different taxonomic levels, both the dominant taxa and their abundances varied among the eight samples, with Proteobacteria being the most dominant phylum in general. Cluster analysis revealed that the bacterial community structure was influenced by river runoff and sewerage discharge. Moreover, SO 4 2- , salinity and total phosphorus were the vital environmental factors that influenced the bacterial community structure. Quantitative PCR and sequencing of sulphate-reducing bacteria indicated that the sulphate reduction process occurs frequently in intertidal sediments. These findings are important to understand the microbial ecology and biogeochemical cycles in estuarine environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Bacterioplankton communities of Crater Lake, OR: Dynamic changes with euphotic zone food web structure and stable deep water populations

    Science.gov (United States)

    Urbach, E.; Vergin, K.L.; Larson, G.L.; Giovannoni, S.J.

    2007-01-01

    The distribution of bacterial and archaeal species in Crater Lake plankton varies dramatically over depth and with time, as assessed by hybridization of group-specific oligonucleotides to RNA extracted from lakewater. Nonmetric, multidimensional scaling (MDS) analysis of relative bacterial phylotype densities revealed complex relationships among assemblages sampled from depth profiles in July, August and September of 1997 through 1999. CL500-11 green nonsulfur bacteria (Phylum Chloroflexi) and marine Group I crenarchaeota are consistently dominant groups in the oxygenated deep waters at 300 and 500 m. Other phylotypes found in the deep waters are similar to surface and mid-depth populations and vary with time. Euphotic zone assemblages are dominated either by ??-proteobacteria or CL120-10 verrucomicrobia, and ACK4 actinomycetes. MDS analyses of euphotic zone populations in relation to environmental variables and phytoplankton and zooplankton population structures reveal apparent links between Daphnia pulicaria zooplankton population densities and microbial community structure. These patterns may reflect food web interactions that link kokanee salmon population densities to community structure of the bacterioplankton, via fish predation on Daphnia with cascading consequences to Daphnia bacterivory and predation on bacterivorous protists. These results demonstrate a stable bottom-water microbial community. They also extend previous observations of food web-driven changes in euphotic zone bacterioplankton community structure to an oligotrophic setting. ?? 2007 Springer Science+Business Media B.V.

  5. Biogeography of Deep-sea benthic bacteria at regional scale (LTER HAUSGARTEN, Fram Strait, Arctic.

    Directory of Open Access Journals (Sweden)

    Marianne Jacob

    Full Text Available Knowledge on spatial scales of the distribution of deep-sea life is still sparse, but highly relevant to the understanding of dispersal, habitat ranges and ecological processes. We examined regional spatial distribution patterns of the benthic bacterial community and covarying environmental parameters such as water depth, biomass and energy availability at the Arctic Long-Term Ecological Research (LTER site HAUSGARTEN (Eastern Fram Strait. Samples from 13 stations were retrieved from a bathymetric (1,284-3,535 m water depth, 54 km in length and a latitudinal transect (∼ 2,500 m water depth; 123 km in length. 454 massively parallel tag sequencing (MPTS and automated ribosomal intergenic spacer analysis (ARISA were combined to describe both abundant and rare types shaping the bacterial community. This spatial sampling scheme allowed detection of up to 99% of the estimated richness on phylum and class levels. At the resolution of operational taxonomic units (97% sequence identity; OTU3% only 36% of the Chao1 estimated richness was recovered, indicating a high diversity, mostly due to rare types (62% of all OTU3%. Accordingly, a high turnover of the bacterial community was also observed between any two sampling stations (average replacement of 79% of OTU3%, yet no direct correlation with spatial distance was observed within the region. Bacterial community composition and structure differed significantly with increasing water depth along the bathymetric transect. The relative sequence abundance of Verrucomicrobia and Planctomycetes decreased significantly with water depth, and that of Deferribacteres increased. Energy availability, estimated from phytodetrital pigment concentrations in the sediments, partly explained the variation in community structure. Overall, this study indicates a high proportion of unique bacterial types on relatively small spatial scales (tens of kilometers, and supports the sampling design of the LTER site HAUSGARTEN to

  6. Magnetotactic Bacteria from Extreme Environments

    Directory of Open Access Journals (Sweden)

    Christopher T. Lefèvre

    2013-03-01

    Full Text Available Magnetotactic bacteria (MTB represent a diverse collection of motile prokaryotes that biomineralize intracellular, membrane-bounded, tens-of-nanometer-sized crystals of a magnetic mineral called magnetosomes. Magnetosome minerals consist of either magnetite (Fe3O4 or greigite (Fe3S4 and cause cells to align along the Earth’s geomagnetic field lines as they swim, a trait called magnetotaxis. MTB are known to mainly inhabit the oxic–anoxic interface (OAI in water columns or sediments of aquatic habitats and it is currently thought that magnetosomes function as a means of making chemotaxis more efficient in locating and maintaining an optimal position for growth and survival at the OAI. Known cultured and uncultured MTB are phylogenetically associated with the Alpha-, Gamma- and Deltaproteobacteria classes of the phylum Proteobacteria, the Nitrospirae phylum and the candidate division OP3, part of the Planctomycetes-Verrucomicrobia-Chlamydiae (PVC bacterial superphylum. MTB are generally thought to be ubiquitous in aquatic environments as they are cosmopolitan in distribution and have been found in every continent although for years MTB were thought to be restricted to habitats with pH values near neutral and at ambient temperature. Recently, however, moderate thermophilic and alkaliphilic MTB have been described including: an uncultured, moderately thermophilic magnetotactic bacterium present in hot springs in northern Nevada with a probable upper growth limit of about 63 °C; and several strains of obligately alkaliphilic MTB isolated in pure culture from different aquatic habitats in California, including the hypersaline, extremely alkaline Mono Lake, with an optimal growth pH of >9.0.

  7. Changes in the bacterial community of soybean rhizospheres during growth in the field.

    Science.gov (United States)

    Sugiyama, Akifumi; Ueda, Yoshikatsu; Zushi, Takahiro; Takase, Hisabumi; Yazaki, Kazufumi

    2014-01-01

    Highly diverse communities of bacteria inhabiting soybean rhizospheres play pivotal roles in plant growth and crop production; however, little is known about the changes that occur in these communities during growth. We used both culture-dependent physiological profiling and culture independent DNA-based approaches to characterize the bacterial communities of the soybean rhizosphere during growth in the field. The physiological properties of the bacterial communities were analyzed by a community-level substrate utilization assay with BioLog Eco plates, and the composition of the communities was assessed by gene pyrosequencing. Higher metabolic capabilities were found in rhizosphere soil than in bulk soil during all stages of the BioLog assay. Pyrosequencing analysis revealed that differences between the bacterial communities of rhizosphere and bulk soils at the phylum level; i.e., Proteobacteria were increased, while Acidobacteria and Firmicutes were decreased in rhizosphere soil during growth. Analysis of operational taxonomic units showed that the bacterial communities of the rhizosphere changed significantly during growth, with a higher abundance of potential plant growth promoting rhizobacteria, including Bacillus, Bradyrhizobium, and Rhizobium, in a stage-specific manner. These findings demonstrated that rhizosphere bacterial communities were changed during soybean growth in the field.

  8. Computational Analysis of Uncharacterized Proteins of Environmental Bacterial Genome

    Science.gov (United States)

    Coxe, K. J.; Kumar, M.

    2017-12-01

    Betaproteobacteria strain CB is a gram-negative bacterium in the phylum Proteobacteria and are found naturally in soil and water. In this complex environment, bacteria play a key role in efficiently eliminating the organic material and other pollutants from wastewater. To investigate the process of pollutant removal from wastewater using bacteria, it is important to characterize the proteins encoded by the bacterial genome. Our study combines a number of bioinformatics tools to predict the function of unassigned proteins in the bacterial genome. The genome of Betaproteobacteria strain CB contains 2,112 proteins in which function of 508 proteins are unknown, termed as uncharacterized proteins (UPs). The localization of the UPs with in the cell was determined and the structure of 38 UPs was accurately predicted. These UPs were predicted to belong to various classes of proteins such as enzymes, transporters, binding proteins, signal peptides, transmembrane proteins and other proteins. The outcome of this work will help better understand wastewater treatment mechanism.

  9. Biliary Microbiota, Gallstone Disease and Infection with Opisthorchis felineus.

    Directory of Open Access Journals (Sweden)

    Irina V Saltykova

    2016-07-01

    Full Text Available There is increasing interest in the microbiome of the hepatobiliary system. This study investigated the influence of infection with the fish-borne liver fluke, Opisthorchis felineus on the biliary microbiome of residents of the Tomsk region of western Siberia.Samples of bile were provided by 56 study participants, half of who were infected with O. felineus, and all of who were diagnosed with gallstone disease. The microbiota of the bile was investigated using high throughput, Illumina-based sequencing targeting the prokaryotic 16S rRNA gene. About 2,797, discrete phylotypes of prokaryotes were detected. At the level of phylum, bile from participants with opisthorchiasis showed greater numbers of Synergistetes, Spirochaetes, Planctomycetes, TM7 and Verrucomicrobia. Numbers of > 20 phylotypes differed in bile of the O. felineus-infected compared to non-infected participants, including presence of species of the genera Mycoplana, Cellulosimicrobium, Microlunatus and Phycicoccus, and the Archaeans genus, Halogeometricum, and increased numbers of Selenomonas, Bacteroides, Rothia, Leptotrichia, Lactobacillus, Treponema and Klebsiella.Overall, infection with the liver fluke O. felineus modified the biliary microbiome, increasing abundance of bacterial and archaeal phylotypes.

  10. Exploration of microbial diversity and community structure of Lonar Lake: the only hypersaline meteorite crater lake within basalt rock

    Directory of Open Access Journals (Sweden)

    Dhiraj ePaul

    2016-01-01

    Full Text Available Lonar Lake is a hypersaline and hyperalkaline soda lake and the only meteorite impact crater in the world created in the basalt rocks. Although culture-dependent studies have been reported, the comprehensive understanding of microbial community composition and structure of Lonar Lake remain obscure. In the present study, microbial community structure associated with Lonar Lake sediment and water samples was investigated using high throughput sequencing. Microbial diversity analysis revealed the existence of diverse, yet near consistent community composition. The predominance of bacterial phyla Proteobacteria (30% followed by Actinobacteria (24%, Firmicutes (11% and Cyanobacteria (5% was observed. Bacterial phylum Bacteroidetes (1.12%, BD1-5 (0.5%, Nitrospirae (0.41% and Verrucomicrobia (0.28% were detected as relatively minor populations in Lonar Lake ecosystem. Within Proteobacteria, Gammaproteobacteria represented the most abundant population (21-47% among all the sediments and as a minor population in water samples. Bacterial members Proteobacteria and Firmicutes were present significantly higher (p≥0.05 in sediment samples, whereas members of Actinobacteria, Candidate_division_TM7 and Cyanobacteria (p≥0.05 were significantly abundant in water samples. It was noted that compared to other hypersaline soda lakes, Lonar Lake samples formed one distinct cluster, suggesting a different microbial community composition and structure. The present study reports for the first time the different composition of indigenous microbial communities between the sediment and water samples of Lonar Lake. Having better insight of community structure of this Lake ecosystem could be useful in understanding the microbial role in the geochemical cycle for future functional exploration of the unique hypersaline Lonar Lake.

  11. RNA preservation agents and nucleic acid extraction method bias perceived bacterial community composition.

    Directory of Open Access Journals (Sweden)

    Ann McCarthy

    Full Text Available Bias is a pervasive problem when characterizing microbial communities. An important source is the difference in lysis efficiencies of different populations, which vary depending on the extraction protocol used. To avoid such biases impacting comparisons between gene and transcript abundances in the environment, the use of one protocol that simultaneously extracts both types of nucleic acids from microbial community samples has gained popularity. However, knowledge regarding tradeoffs to combined nucleic acid extraction protocols is limited, particularly regarding yield and biases in the observed community composition. Here, we evaluated a commercially available protocol for simultaneous extraction of DNA and RNA, which we adapted for freshwater microbial community samples that were collected on filters. DNA and RNA yields were comparable to other commonly used, but independent DNA and RNA extraction protocols. RNA protection agents benefited RNA quality, but decreased DNA yields significantly. Choice of extraction protocol influenced the perceived bacterial community composition, with strong method-dependent biases observed for specific phyla such as the Verrucomicrobia. The combined DNA/RNA extraction protocol detected significantly higher levels of Verrucomicrobia than the other protocols, and those higher numbers were confirmed by microscopic analysis. Use of RNA protection agents as well as independent sequencing runs caused a significant shift in community composition as well, albeit smaller than the shift caused by using different extraction protocols. Despite methodological biases, sample origin was the strongest determinant of community composition. However, when the abundance of specific phylogenetic groups is of interest, researchers need to be aware of the biases their methods introduce. This is particularly relevant if different methods are used for DNA and RNA extraction, in addition to using RNA protection agents only for RNA

  12. First molecular data on the phylum Loricifera: an investigation into the phylogeny of ecdysozoa with emphasis on the positions of Loricifera and Priapulida.

    Science.gov (United States)

    Park, Joong-Ki; Rho, Hyun Soo; Kristensen, Reinhardt Møbjerg; Kim, Won; Giribet, Gonzalo

    2006-11-01

    Recent progress in molecular techniques has generated a wealth of information for phylogenetic analysis. Among metazoans all but a single phylum have been incorporated into some sort of molecular analysis. However, the minute and rare species of the phylum Loricifera have remained elusive to molecular systematists. Here we report the first molecular sequence data (nearly complete 18S rRNA) for a member of the phylum Loricifera, Pliciloricus sp. from Korea. The new sequence data were analyzed together with 52 other ecdysozoan sequences, with all other phyla represented by three or more sequences. The data set was analyzed using parsimony as an optimality criterion under direct optimization as well as using a Bayesian approach. The parsimony analysis was also accompanied by a sensitivity analysis. The results of both analyses are largely congruent, finding monophyly of each ecdysozoan phylum, except for Priapulida, in which the coelomate Meiopriapulus is separate from a clade of pseudocoelomate priapulids. The data also suggest a relationship of the pseudocoelomate priapulids to kinorhynchs, and a relationship of nematodes to tardigrades. The Bayesian analysis placed the arthropods as the sister group to a clade that includes tardigrades and nematodes. However, these results were shown to be parameter dependent in the sensitivity analysis. The position of Loricifera was extremely unstable to parameter variation, and support for a relationship of loriciferans to any particular ecdysozoan phylum was not found in the data.

  13. Variation of Soil Bacterial Communities in a Chronosequence of Rubber Tree (Hevea brasiliensis Plantations

    Directory of Open Access Journals (Sweden)

    Yu-Jie Zhou

    2017-05-01

    Full Text Available Regarding rubber tree plantations, researchers lack a basic understanding of soil microbial communities; specifically, little is known about whether or not soil microbial variation is correlated with succession in these plantations. In this paper, we used high-throughput sequencing of the 16S rRNA gene to investigate the diversity and composition of the soil bacterial communities in a chronosequence of rubber tree plantations that were 5, 10, 13, 18, 25, and 30 years old. We determined that: (1 Soil bacterial diversity and composition show changes over the succession stages of rubber tree plantations. The diversity of soil bacteria were highest in 10, 13, and 18 year-old rubber tree plantations, followed by 30 year-old rubber tree plantations, whereas 5 and 25 year-old rubber tree plantations had the lowest values for diversity. A total of 438,870 16S rDNA sequences were detected in 18 soil samples from six rubber tree plantations, found in 28 phyla, 66 classes, 139 orders, 245 families, 355 genera, and 645 species, with 1.01% sequences from unclassified bacteria. The dominant phyla were Acidobacteria, Proteobacteria, Chloroflexi, Actinobacteria, and Verrucomicrobia (relative abundance large than 3%. There were differences in soil bacterial communities among different succession stages of rubber tree plantation. (2 Soil bacteria diversity and composition in the different stages was closely related to pH, vegetation, soil nutrient, and altitude, of which pH, and vegetation were the main drivers.

  14. Molecular analysis of bacterial communities and detection of potential pathogens in a recirculating aquaculture system for Scophthalmus maximus and Solea senegalensis.

    Science.gov (United States)

    Martins, Patrícia; Cleary, Daniel F R; Pires, Ana C C; Rodrigues, Ana Maria; Quintino, Victor; Calado, Ricardo; Gomes, Newton C M

    2013-01-01

    The present study combined a DGGE and barcoded 16S rRNA pyrosequencing approach to assess bacterial composition in the water of a recirculating aquaculture system (RAS) with a shallow raceway system (SRS) for turbot (Scophthalmus maximus) and sole (Solea senegalensis). Barcoded pyrosequencing results were also used to determine the potential pathogen load in the RAS studied. Samples were collected from the water supply pipeline (Sup), fish production tanks (Pro), sedimentation filter (Sed), biofilter tank (Bio), and protein skimmer (Ozo; also used as an ozone reaction chamber) of twin RAS operating in parallel (one for each fish species). Our results revealed pronounced differences in bacterial community composition between turbot and sole RAS, suggesting that in the systems studied there is a strong species-specific effect on water bacterial communities. Proteobacteria was the most abundant phylum in the water supply and all RAS compartments. Other important taxonomic groups included the phylum Bacteriodetes. The saltwater supplied displayed a markedly lower richness and appeared to have very little influence on bacterial composition. The following potentially pathogenic species were detected: Photobacterium damselae in turbot (all compartments), Tenacibaculum discolor in turbot and sole (all compartments), Tenacibaculum soleae in turbot (all compartments) and sole (Pro, Sed and Bio), and Serratia marcescens in turbot (Sup, Sed, Bio and Ozo) and sole (only Sed) RAS. Despite the presence of these pathogens, no symptomatic fish were observed. Although we were able to identify potential pathogens, this approach should be employed with caution when monitoring aquaculture systems, as the required phylogenetic resolution for reliable identification of pathogens may not always be possible to achieve when employing 16S rRNA gene fragments.

  15. Molecular analysis of bacterial communities and detection of potential pathogens in a recirculating aquaculture system for Scophthalmus maximus and Solea senegalensis.

    Directory of Open Access Journals (Sweden)

    Patrícia Martins

    Full Text Available The present study combined a DGGE and barcoded 16S rRNA pyrosequencing approach to assess bacterial composition in the water of a recirculating aquaculture system (RAS with a shallow raceway system (SRS for turbot (Scophthalmus maximus and sole (Solea senegalensis. Barcoded pyrosequencing results were also used to determine the potential pathogen load in the RAS studied. Samples were collected from the water supply pipeline (Sup, fish production tanks (Pro, sedimentation filter (Sed, biofilter tank (Bio, and protein skimmer (Ozo; also used as an ozone reaction chamber of twin RAS operating in parallel (one for each fish species. Our results revealed pronounced differences in bacterial community composition between turbot and sole RAS, suggesting that in the systems studied there is a strong species-specific effect on water bacterial communities. Proteobacteria was the most abundant phylum in the water supply and all RAS compartments. Other important taxonomic groups included the phylum Bacteriodetes. The saltwater supplied displayed a markedly lower richness and appeared to have very little influence on bacterial composition. The following potentially pathogenic species were detected: Photobacterium damselae in turbot (all compartments, Tenacibaculum discolor in turbot and sole (all compartments, Tenacibaculum soleae in turbot (all compartments and sole (Pro, Sed and Bio, and Serratia marcescens in turbot (Sup, Sed, Bio and Ozo and sole (only Sed RAS. Despite the presence of these pathogens, no symptomatic fish were observed. Although we were able to identify potential pathogens, this approach should be employed with caution when monitoring aquaculture systems, as the required phylogenetic resolution for reliable identification of pathogens may not always be possible to achieve when employing 16S rRNA gene fragments.

  16. Description of a Riboflavin Biosynthetic Gene Variant Prevalent in the Phylum Proteobacteria

    Science.gov (United States)

    Brutinel, Evan D.; Dean, Antony M.

    2013-01-01

    Riboflavin (vitamin B2) is the precursor of flavin mononucleotide and flavin adenine dinucleotide, which are cofactors essential for a host of intracellular redox reactions. Microorganisms synthesize flavins de novo to fulfill nutritional requirements, but it is becoming increasingly clear that flavins play a wider role in cellular physiology than was previously appreciated. Flavins mediate diverse processes beyond the cytoplasmic membrane, including iron acquisition, extracellular respiration, and interspecies interactions. While investigating the regulation of flavin electron shuttle biosynthesis in the Gram-negative gammaproteobacterium Shewanella oneidensis, we discovered that a riboflavin biosynthetic gene (ribBA) annotated as encoding a bifunctional 3,4-dihydroxy-2-butanone 4-phosphate (DHBP) synthase/GTP cyclohydrolase II does not possess both functions. The novel gene, renamed ribBX here, encodes an amino-terminal DHBP synthase domain. The carboxy-terminal end of RibBX not only lacks GTP cyclohydrolase II activity but also has evolved a different function altogether in S. oneidensis, regulating the activity of the DHBP synthase domain. Phylogenetic analysis revealed that the misannotation of ribBX as ribBA is rampant throughout the phylum Proteobacteria (40% of 2,173 annotated ribBA genes) and that ribBX emerged early in the evolution of this group of microorganisms. We examined the functionality of representative ribBX genes from Beta-, Gamma-, and Epsilonproteobacteria and found that, consistent with sequence-based predictions, the encoded GTP cyclohydrolase II domains lack catalytic activity. The persistence of ribBX in the genomes of so many phylogenetically divergent bacterial species lends weight to the argument that ribBX has evolved a function which lends a selective advantage to the host. PMID:24097946

  17. Long-term nitrogen amendment alters the diversity and assemblage of soil bacterial communities in tallgrass prairie.

    Directory of Open Access Journals (Sweden)

    Joseph D Coolon

    Full Text Available Anthropogenic changes are altering the environmental conditions and the biota of ecosystems worldwide. In many temperate grasslands, such as North American tallgrass prairie, these changes include alteration in historically important disturbance regimes (e.g., frequency of fires and enhanced availability of potentially limiting nutrients, particularly nitrogen. Such anthropogenically-driven changes in the environment are known to elicit substantial changes in plant and consumer communities aboveground, but much less is known about their effects on soil microbial communities. Due to the high diversity of soil microbes and methodological challenges associated with assessing microbial community composition, relatively few studies have addressed specific taxonomic changes underlying microbial community-level responses to different fire regimes or nutrient amendments in tallgrass prairie. We used deep sequencing of the V3 region of the 16S rRNA gene to explore the effects of contrasting fire regimes and nutrient enrichment on soil bacterial communities in a long-term (20 yrs experiment in native tallgrass prairie in the eastern Central Plains. We focused on responses to nutrient amendments coupled with two extreme fire regimes (annual prescribed spring burning and complete fire exclusion. The dominant bacterial phyla identified were Proteobacteria, Verrucomicrobia, Bacteriodetes, Acidobacteria, Firmicutes, and Actinobacteria and made up 80% of all taxa quantified. Chronic nitrogen enrichment significantly impacted bacterial community diversity and community structure varied according to nitrogen treatment, but not phosphorus enrichment or fire regime. We also found significant responses of individual bacterial groups including Nitrospira and Gammaproteobacteria to long-term nitrogen enrichment. Our results show that soil nitrogen enrichment can significantly alter bacterial community diversity, structure, and individual taxa abundance, which have

  18. Bacterial Community Structure in a Mollisol Under Long-Term Natural Restoration, Cropping, and Bare Fallow History Estimated by PCR-DGGE

    Institute of Scientific and Technical Information of China (English)

    WANG Guang-Hua; JIN Jian; LIU Jun-Jie; CHEN Xue-Li; LIU Ju-Dong; LIU Xiao-Bing

    2009-01-01

    Soil microbial biomass and community structures are commonly used as indicators for soil quality and fertility.A investigation was performed to study the effects of long-term natural restoration,cropping,and bare fallow managements on the soil microbial biomass and bacterial community structures in depths of 0-10,20-30,and 40-50 cm in a black soil (Mollisol).Microbial biomass was estimated from chloroform fumigation-extraction,and bacterial community structures were determined by analysis of 16S rDNA using polymerase chain reaction-denaturing gradient gel electrophoresis (PCRDGGE).Experimental results showed that microbial biomass significantly declined with soil depth in the managements of restoration and cropping,but not in the bare fallow.DGGE profiles indicated that the band number in top 0-10 cm soils was less than that in depth of 20-30 or 40-50 cm.These suggested that the microbial population was high but the bacterial community structure was simple in the topsoil.Cluster and principle component analysis based on DGGE banding patterns showed that the bacterial community structure was affected by soil depth more primarily than by managements,and the succession of bacterial community as increase of soil depth has a similar tendency in the three managements.Fourteen predominating DGGE bands were excised and sequenced,in which 6 bands were identified as the taxa of Verrucomicrobia,2 bands as Actinobacteria,2 bands as α-Proteobacteria,and the other 4 bands as δ-Proteobacteria,Acidobacteria,Nitrospira,and unclassified bacteria.In addition,the sequences of 11 DGGE bands were closely related to uncultured bacteria.Thus,the bacterial community structure in black soil was stable,and the predominating bacterial groups were uncultured.

  19. Bacterial community shift in the coastal Gulf of Mexico salt-marsh sediment microcosm in vitro following exposure to the Mississippi Canyon Block 252 oil (MC252)

    KAUST Repository

    Koo, Hyunmin; Mojib, Nazia; Huang, Jonathan P.; Donahoe, Rona J.; Bej, Asim K.

    2014-01-01

    In this study, we examined the responses by the indigenous bacterial communities in salt-marsh sediment microcosms in vitro following treatment with Mississippi Canyon Block 252 oil (MC252). Microcosms were constructed of sediment and seawater collected from Bayou La Batre located in coastal Alabama on the Gulf of Mexico. We used an amplicon pyrosequencing approach on microcosm sediment metagenome targeting the V3–V5 region of the 16S rRNA gene. Overall, we identified a shift in the bacterial community in three distinct groups. The first group was the early responders (orders Pseudomonadales and Oceanospirillales within class Gammaproteobacteria), which increased their relative abundance within 2 weeks and were maintained 3 weeks after oil treatment. The second group was identified as early, but transient responders (order Rhodobacterales within class Alphaproteobacteria; class Epsilonproteobacteria), which increased their population by 2 weeks, but returned to the basal level 3 weeks after oil treatment. The third group was the late responders (order Clostridiales within phylum Firmicutes; order Methylococcales within class Gammaproteobacteria; and phylum Tenericutes), which only increased 3 weeks after oil treatment. Furthermore, we identified oil-sensitive bacterial taxa (order Chromatiales within class Gammaproteobacteria; order Syntrophobacterales within class Deltaproteobacteria), which decreased in their population after 2 weeks of oil treatment. Detection of alkane (alkB), catechol (C2,3DO) and biphenyl (bph) biodegradation genes by PCR, particularly in oil-treated sediment metacommunity DNA, delineates proliferation of the hydrocarbon degrading bacterial community. Overall, the indigenous bacterial communities in our salt-marsh sediment in vitro microcosm study responded rapidly and shifted towards members of the taxonomic groups that are capable of surviving in an MC252 oil-contaminated environment.

  20. Bacterial community shift in the coastal Gulf of Mexico salt-marsh sediment microcosm in vitro following exposure to the Mississippi Canyon Block 252 oil (MC252)

    KAUST Repository

    Koo, Hyunmin

    2014-07-10

    In this study, we examined the responses by the indigenous bacterial communities in salt-marsh sediment microcosms in vitro following treatment with Mississippi Canyon Block 252 oil (MC252). Microcosms were constructed of sediment and seawater collected from Bayou La Batre located in coastal Alabama on the Gulf of Mexico. We used an amplicon pyrosequencing approach on microcosm sediment metagenome targeting the V3–V5 region of the 16S rRNA gene. Overall, we identified a shift in the bacterial community in three distinct groups. The first group was the early responders (orders Pseudomonadales and Oceanospirillales within class Gammaproteobacteria), which increased their relative abundance within 2 weeks and were maintained 3 weeks after oil treatment. The second group was identified as early, but transient responders (order Rhodobacterales within class Alphaproteobacteria; class Epsilonproteobacteria), which increased their population by 2 weeks, but returned to the basal level 3 weeks after oil treatment. The third group was the late responders (order Clostridiales within phylum Firmicutes; order Methylococcales within class Gammaproteobacteria; and phylum Tenericutes), which only increased 3 weeks after oil treatment. Furthermore, we identified oil-sensitive bacterial taxa (order Chromatiales within class Gammaproteobacteria; order Syntrophobacterales within class Deltaproteobacteria), which decreased in their population after 2 weeks of oil treatment. Detection of alkane (alkB), catechol (C2,3DO) and biphenyl (bph) biodegradation genes by PCR, particularly in oil-treated sediment metacommunity DNA, delineates proliferation of the hydrocarbon degrading bacterial community. Overall, the indigenous bacterial communities in our salt-marsh sediment in vitro microcosm study responded rapidly and shifted towards members of the taxonomic groups that are capable of surviving in an MC252 oil-contaminated environment.

  1. Bacterial community profile of contaminated soils in a typical antimony mining site.

    Science.gov (United States)

    Wang, Ningning; Zhang, Suhuan; He, Mengchang

    2018-01-01

    The soils around the world's largest antimony mine have been contaminated by high concentrations of Sb and As, which might influence microbial diversity in the surrounding soils. The ecological effects of bioavailable Sb and As on the composition and diversity of microbial community in soils remain unknown. In this study, the relative abundance, taxonomic diversity and composition of bacterial community in soils from a typical Sb mine area, and the relationship between the bacterial community and bioavailable concentrations as well as environmental factors have been investigated comprehensively using high-throughput sequencing (HTS) and diffusive gradients in thin films (DGT). The results indicated that Proteobacteria, Acidobacteria, Chloroflexi, Bacteroidetes, Actinobacteria, Gemmatimonadetes, and Cyanobacteria were the dominant bacterial populations at phylum level in all soil samples, accounting for more than 80% of the bacteria sequenced. The abundance and diversity of bacterial community vary along a metal contamination gradient. Redundancy discriminate analysis (RDA) revealed that 74.74% of bacterial community variation in the contaminated soils was explained by six environmental factors (pH, Sb DGT , As DGT , potential ecological risk index (RI), TC, TN), among which pH, Sb DGT , and As DGT were dominant factors influencing the composition and diversity of bacteria. This study contributes to our understanding of microbial diversity in a local ecosystem and introduces the option of studying bioavailable Sb and As using DGT.

  2. Differences in bacterial composition between men's and women's restrooms and other common areas within a public building.

    Science.gov (United States)

    Dobbler, Priscila Caroline Thiago; Laureano, Álvaro Macedo; Sarzi, Deise Schroder; Cañón, Ehidy Rocio Peña; Metz, Geferson Fernando; de Freitas, Anderson Santos; Takagaki, Beatriz Midori; D Oliveira, Cristiane Barbosa; Pylro, Victor Satler; Copetti, André Carlos; Victoria, Filipe; Redmile-Gordon, Marc; Morais, Daniel Kumazawa; Roesch, Luiz Fernando Wurdig

    2018-04-01

    Humans distribute a wide range of microorganisms around building interiors, and some of these are potentially pathogenic. Recent research established that humans are the main drivers of the indoor microbiome and up to now significant literature has been produced about this topic. Here we analyzed differences in bacterial composition between men's and women's restrooms and other common areas within the same public building. Bacterial DNA samples were collected from restrooms and halls of a three-floor building from the Federal University of Pampa, RS, Brazil. The bacterial community was characterized by amplification of the V4 region of the 16S rRNA gene and sequencing. Throughout all samples, the most abundant phylum was Proteobacteria, followed by Actinobacteria, Bacteroidetes and Firmicutes. Beta diversity metrics showed that the structure of the bacterial communities were different among the areas and floors tested, however, only 6-9% of the variation in bacterial communities was explained by the area and floors sampled. A few microorganisms showed significantly differential abundance between men's and women's restrooms, but in general, the bacterial communities from both places were very similar. Finally, significant differences among the microbial community profile from different floors were reported, suggesting that the type of use and occupant demographic within the building may directly influence bacterial dispersion and establishment.

  3. Changes in the composition and diversity of the bacterial microbiota associated with oysters (Crassostrea corteziensis, Crassostrea gigas and Crassostrea sikamea) during commercial production.

    Science.gov (United States)

    Trabal Fernández, Natalia; Mazón-Suástegui, José M; Vázquez-Juárez, Ricardo; Ascencio-Valle, Felipe; Romero, Jaime

    2014-04-01

    The resident microbiota of three oyster species (Crassostrea corteziensis, Crassostrea gigas and Crassostrea sikamea) was characterised using a high-throughput sequencing approach (pyrosequencing) that was based on the V3-V5 regions of the 16S rRNA gene. We analysed the changes in the bacterial community beginning with the postlarvae produced in a hatchery, which were later planted at two grow-out cultivation sites until they reached the adult stage. DNA samples from the oysters were amplified, and 31 008 sequences belonging to 13 phyla (including Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes) and 243 genera were generated. Considering all life stages, Proteobacteria was the most abundant phylum, but it showed variations at the genus level between the postlarvae and the adult oysters. Bacteroidetes was the second most common phylum, but it was found in higher abundance in the postlarvae than in adults. The relative abundance showed that the microbiota that was associated with the postlarvae and adults differed substantially, and higher diversity and richness were evident in the postlarvae in comparison with adults of the same species. The site of rearing influenced the bacterial community composition of C. corteziensis and C. sikamea adults. The bacterial groups that were found in these oysters were complex and metabolically versatile, making it difficult to understand the host-bacteria symbiotic relationships; therefore, the physiological and ecological significances of the resident microbiota remain uncertain. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  4. Coping with copper

    DEFF Research Database (Denmark)

    Nunes, Ines; Jacquiod, Samuel; Brejnrod, Asker

    2016-01-01

    concentration increased, bacterial richness and evenness were negatively impacted, while distinct communities with an enhanced relative abundance of Nitrospira and Acidobacteria members and a lower representation of Verrucomicrobia, Proteobacteria and Actinobacteria were selected. Our analysis showed...

  5. Temporal and Spatial Impact of Human Cadaver Decomposition on Soil Bacterial and Arthropod Community Structure and Function

    Science.gov (United States)

    Singh, Baneshwar; Minick, Kevan J.; Strickland, Michael S.; Wickings, Kyle G.; Crippen, Tawni L.; Tarone, Aaron M.; Benbow, M. Eric; Sufrin, Ness; Tomberlin, Jeffery K.; Pechal, Jennifer L.

    2018-01-01

    As vertebrate carrion decomposes, there is a release of nutrient-rich fluids into the underlying soil, which can impact associated biological community structure and function. How these changes alter soil biogeochemical cycles is relatively unknown and may prove useful in the identification of carrion decomposition islands that have long lasting, focal ecological effects. This study investigated the spatial (0, 1, and 5 m) and temporal (3–732 days) dynamics of human cadaver decomposition on soil bacterial and arthropod community structure and microbial function. We observed strong evidence of a predictable response to cadaver decomposition that varies over space for soil bacterial and arthropod community structure, carbon (C) mineralization and microbial substrate utilization patterns. In the presence of a cadaver (i.e., 0 m samples), the relative abundance of Bacteroidetes and Firmicutes was greater, while the relative abundance of Acidobacteria, Chloroflexi, Gemmatimonadetes, and Verrucomicrobia was lower when compared to samples at 1 and 5 m. Micro-arthropods were more abundant (15 to 17-fold) in soils collected at 0 m compared to either 1 or 5 m, but overall, micro-arthropod community composition was unrelated to either bacterial community composition or function. Bacterial community structure and microbial function also exhibited temporal relationships, whereas arthropod community structure did not. Cumulative precipitation was more effective in predicting temporal variations in bacterial abundance and microbial activity than accumulated degree days. In the presence of the cadaver (i.e., 0 m samples), the relative abundance of Actinobacteria increased significantly with cumulative precipitation. Furthermore, soil bacterial communities and C mineralization were sensitive to the introduction of human cadavers as they diverged from baseline levels and did not recover completely in approximately 2 years. These data are valuable for understanding ecosystem

  6. Temporal and Spatial Impact of Human Cadaver Decomposition on Soil Bacterial and Arthropod Community Structure and Function

    Directory of Open Access Journals (Sweden)

    Baneshwar Singh

    2018-01-01

    Full Text Available As vertebrate carrion decomposes, there is a release of nutrient-rich fluids into the underlying soil, which can impact associated biological community structure and function. How these changes alter soil biogeochemical cycles is relatively unknown and may prove useful in the identification of carrion decomposition islands that have long lasting, focal ecological effects. This study investigated the spatial (0, 1, and 5 m and temporal (3–732 days dynamics of human cadaver decomposition on soil bacterial and arthropod community structure and microbial function. We observed strong evidence of a predictable response to cadaver decomposition that varies over space for soil bacterial and arthropod community structure, carbon (C mineralization and microbial substrate utilization patterns. In the presence of a cadaver (i.e., 0 m samples, the relative abundance of Bacteroidetes and Firmicutes was greater, while the relative abundance of Acidobacteria, Chloroflexi, Gemmatimonadetes, and Verrucomicrobia was lower when compared to samples at 1 and 5 m. Micro-arthropods were more abundant (15 to 17-fold in soils collected at 0 m compared to either 1 or 5 m, but overall, micro-arthropod community composition was unrelated to either bacterial community composition or function. Bacterial community structure and microbial function also exhibited temporal relationships, whereas arthropod community structure did not. Cumulative precipitation was more effective in predicting temporal variations in bacterial abundance and microbial activity than accumulated degree days. In the presence of the cadaver (i.e., 0 m samples, the relative abundance of Actinobacteria increased significantly with cumulative precipitation. Furthermore, soil bacterial communities and C mineralization were sensitive to the introduction of human cadavers as they diverged from baseline levels and did not recover completely in approximately 2 years. These data are valuable for understanding

  7. Native arbuscular mycorrhizal symbiosis alters foliar bacterial community composition.

    Science.gov (United States)

    Poosakkannu, Anbu; Nissinen, Riitta; Kytöviita, Minna-Maarit

    2017-11-01

    The effects of arbuscular mycorrhizal (AM) fungi on plant-associated microbes are poorly known. We tested the hypothesis that colonization by an AM fungus affects microbial species richness and microbial community composition of host plant tissues. We grew the grass, Deschampsia flexuosa in a greenhouse with or without the native AM fungus, Claroideoglomus etunicatum. We divided clonally produced tillers into two parts: one inoculated with AM fungus spores and one without AM fungus inoculation (non-mycorrhizal, NM). We characterized bacterial (16S rRNA gene) and fungal communities (internal transcribed spacer region) in surface-sterilized leaf and root plant compartments. AM fungus inoculation did not affect microbial species richness or diversity indices in leaves or roots, but the AM fungus inoculation significantly affected bacterial community composition in leaves. A total of three OTUs in leaves belonging to the phylum Firmicutes positively responded to the presence of the AM fungus in roots. Another six OTUs belonging to the Proteobacteria (Alpha, Beta, and Gamma) and Bacteroidetes were significantly more abundant in NM plants when compared to AM fungus-inoculated plants. Further, there was a significant correlation between plant dry weight and leaf microbial community compositional shift. Also, there was a significant correlation between leaf bacterial community compositional shift and foliar nitrogen content changes due to AM fungus inoculation. The results suggest that AM fungus colonization in roots has a profound effect on plant physiology that is reflected in leaf bacterial community composition.

  8. Bacterial diversity in different regions of gastrointestinal tract of Giant African snail (Achatina fulica).

    Science.gov (United States)

    Pawar, Kiran D; Banskar, Sunil; Rane, Shailendra D; Charan, Shakti S; Kulkarni, Girish J; Sawant, Shailesh S; Ghate, Hemant V; Patole, Milind S; Shouche, Yogesh S

    2012-12-01

    The gastrointestinal (GI) tract of invasive land snail Achatina fulica is known to harbor metabolically active bacterial communities. In this study, we assessed the bacterial diversity in the different regions of GI tract of Giant African snail, A. fulica by culture-independent and culture-dependent methods. Five 16S rRNA gene libraries from different regions of GI tract of active snails indicated that sequences affiliated to phylum γ-Proteobacteria dominated the esophagus, crop, intestine, and rectum libraries, whereas sequences affiliated to Tenericutes dominated the stomach library. On phylogenetic analysis, 30, 27, 9, 27, and 25 operational taxonomic units (OTUs) from esophagus, crop, stomach, intestine, and rectum libraries were identified, respectively. Estimations of the total bacterial diversity covered along with environmental cluster analysis showed highest bacterial diversity in the esophagus and lowest in the stomach. Thirty-three distinct bacterial isolates were obtained, which belonged to 12 genera of two major bacterial phyla namely γ-Proteobacteria and Firmicutes. Among these, Lactococcus lactis and Kurthia gibsonii were the dominant bacteria present in all GI tract regions. Quantitative real-time polymerase chain reaction (qPCR) analysis indicated significant differences in bacterial load in different GI tract regions of active and estivating snails. The difference in the bacterial load between the intestines of active and estivating snail was maximum. Principal component analysis (PCA) of terminal restriction fragment length polymorphism suggested that bacterial community structure changes only in intestine when snail enters estivation state. © 2012 The Authors. Published by Blackwell Publishing Ltd.

  9. High bacterial diversity in epilithic biofilms of oligotrophic mountain lakes.

    Science.gov (United States)

    Bartrons, Mireia; Catalan, Jordi; Casamayor, Emilio O

    2012-11-01

    Benthic microbial biofilms attached to rocks (epilithic) are major sites of carbon cycling and can dominate ecosystem primary production in oligotrophic lakes. We studied the bacterial community composition of littoral epilithic biofilms in five connected oligotrophic high mountain lakes located at different altitudes by genetic fingerprinting and clone libraries of the 16S rRNA gene. Different intra-lake samples were analyzed, and consistent changes in community structure (chlorophyll a and organic matter contents, and bacterial community composition) were observed along the altitudinal gradient, particularly related with the location of the lake above or below the treeline. Epilithic biofilm genetic fingerprints were both more diverse among lakes than within lakes and significantly different between montane (below the tree line) and alpine lakes (above the tree line). The genetic richness in the epilithic biofilm was much higher than in the plankton of the same lacustrine area studied in previous works, with significantly idiosyncratic phylogenetic composition (specifically distinct from lake plankton or mountain soils). Data suggest the coexistence of aerobic, anaerobic, phototrophic, and chemotrophic microorganisms in the biofilm, Bacteroidetes and Cyanobacteria being the most important bacterial taxa, followed by Alpha-, Beta-, Gamma-, and Deltaproteobacteria, Chlorobi, Planctomycetes, and Verrucomicrobia. The degree of novelty was especially high for epilithic Bacteroidetes, and up to 50 % of the sequences formed monophyletic clusters distantly related to any previously reported sequence. More than 35 % of the total sequences matched at <95 % identity to any previously reported 16S rRNA gene, indicating that alpine epilithic biofilms are unexplored habitats that contain a substantial degree of novelty within a short geographical distance. Further research is needed to determine whether these communities are involved in more biogeochemical pathways than

  10. Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau

    Science.gov (United States)

    Xiong, Jinbo; Liu, Yongqin; Lin, Xiangui; Zhang, Huayong; Zeng, Jun; Hou, Juzhi; Yang, Yongping; Yao, Tandong; Knight, Rob; Chu, Haiyan

    2012-01-01

    Continent-scale biogeography has been extensively studied in soils and marine systems, but little is known about biogeographical patterns in non-marine sediments. We used barcode pyrosequencing to quantify the effects of local geochemical properties and geographic distance for bacterial community structure and membership, using sediment samples from 15 lakes on the Tibetan Plateau (4–1670 km apart). Bacterial communities were surprisingly diverse, and distinct from soil communities. Four of 26 phyla detected were dominant: Proteobacteria, Bacteroidetes, Firmicutes and Actinobacteria, albeit 20.2% of sequences were unclassified at the phylum level. As previously observed in acidic soil, pH was the dominant factor influencing alkaline sediment community structure, phylotype richness and phylogenetic diversity. In contrast, archaeal communities were less affected by pH. More geographically distant sites had more dissimilar communities (r = 0.443, P = 0.030). Variance partitioning analysis showed that geographic distance (historical contingencies) contributed more to bacterial community variation (12.2%) than any other factor, although the environmental factors explained more variance when combined (28.9%). Together, our results show that pH is the best predictor of bacterial community structure in alkaline sediments, and confirm that both geographic distance and chemical factors govern bacterial biogeography in lake sediments. PMID:22676420

  11. Introducing GUt Low-Density Array (GULDA) - a validated approach for qPCR-based intestinal microbial community analysis

    DEFF Research Database (Denmark)

    Bergström, Anders; Licht, Tine Rask; Wilcks, Andrea

    2012-01-01

    obtained from individuals at various points in time. The target genes represent important phyla, genera, species, or other taxonomic groups within the five predominant bacterial phyla of the gut, Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, and Verrucomicrobia and also Euryarchaeota...

  12. Bacterial diversity in relatively pristine and anthropogenically-influenced mangrove ecosystems (Goa, India

    Directory of Open Access Journals (Sweden)

    Sheryl Oliveira Fernandes

    2014-12-01

    Full Text Available To appreciate differences in benthic bacterial community composition at the relatively pristine Tuvem and the anthropogenically-influenced Divar mangrove ecosystems in Goa, India, parallel tag sequencing of the V6 region of 16S rDNA was carried out. We hypothesize that availability of extraneously-derived anthropogenic substrates could act as a stimulatant but not a deterrent to promote higher bacterial diversity at Divar. Our observations revealed that the phylum Proteobacteria was dominant at both locations comprising 43-46% of total tags. The Tuvem ecosystem was characterized by an abundance of members belonging to the class Deltaproteobacteria (21%, ~ 2100 phylotypes and 1561 operational taxonomic units (OTUs sharing > 97% similarity. At Divar, the Gammaproteobacteria were ~ 2x higher (17% than at Tuvem. A more diverse bacterial community with > 3300 phylotypes and > 2000 OTUs mostly belonging to Gammaproteobacteria and a significantly higher DNT (n = 9, p < 0.001, df = 1 were recorded at Divar. These findings suggest that the quantity and quality of pollutants at Divar are perhaps still at a level to maintain high diversity. Using this technique we could show higher diversity at Divar with the possibility of Gammaproteobacteria contributing to modulating excess nitrate.

  13. Telonemia, a new protist phylum with affinity to chromist lineages

    DEFF Research Database (Denmark)

    Shalchian-Tabrizi, K.; Eikrem, W.; Klaveness, D.

    2006-01-01

    Recent molecular investigations of marine samples taken from different environments, including tropical, temperate and polar areas, as well as deep thermal vents, have revealed an unexpectedly high diversity of protists, some of them forming deep-branching clades within important lineages......, such as the alveolates and heterokonts. Using the same approach on coastal samples, we have identified a novel group of protist small subunit (SSU) rDNA sequences that do not correspond to any phylogenetic group previously identified. Comparison with other sequences obtained from cultures of heterotrophic protists...... eukaryotic phylum, here defined as Telonemia, possibly representing a key clade for the understanding of the early evolution of bikont protist groups, such as the proposed chromalveolate supergroup...

  14. Evolution of plant parasitism in the phylum Nematoda.

    Science.gov (United States)

    Quist, Casper W; Smant, Geert; Helder, Johannes

    2015-01-01

    Within the species-rich and trophically diverse phylum Nematoda, at least four independent major lineages of plant parasites have evolved, and in at least one of these major lineages plant parasitism arose independently multiple times. Ribosomal DNA data, sequence information from nematode-produced, plant cell wall-modifying enzymes, and the morphology and origin of the style(t), a protrusible piercing device used to penetrate the plant cell wall, all suggest that facultative and obligate plant parasites originate from fungivorous ancestors. Data on the nature and diversification of plant cell wall-modifying enzymes point at multiple horizontal gene transfer events from soil bacteria to bacterivorous nematodes resulting in several distinct lineages of fungal or oomycete-feeding nematodes. Ribosomal DNA frameworks with sequence data from more than 2,700 nematode taxa combined with detailed morphological information allow for explicit hypotheses on the origin of agronomically important plant parasites, such as root-knot, cyst, and lesion nematodes.

  15. Long term repeated fire disturbance alters soil bacterial diversity but not the abundance in an Australian wet sclerophyll forest.

    Science.gov (United States)

    Shen, Ju-pei; Chen, C R; Lewis, Tom

    2016-01-20

    Effects of fire on biogeochemical cycling in terrestrial ecosystem are widely acknowledged, while few studies have focused on the bacterial community under the disturbance of long-term frequent prescribed fire. In this study, three treatments (burning every two years (B2), burning every four years (B4) and no burning (B0)) were applied for 38 years in an Australian wet sclerophyll forest. Results showed that bacterial alpha diversity (i.e. bacterial OTU) in the top soil (0-10 cm) was significantly higher in the B2 treatment compared with the B0 and B4 treatments. Non-metric multidimensional analysis (NMDS) of bacterial community showed clear separation of the soil bacterial community structure among different fire frequency regimes and between the depths. Different frequency fire did not have a substantial effect on bacterial composition at phylum level or bacterial 16S rRNA gene abundance. Soil pH and C:N ratio were the major drivers for bacterial community structure in the most frequent fire treatment (B2), while other factors (EC, DOC, DON, MBC, NH4(+), TC and TN) were significant in the less frequent burning and no burning treatments (B4 and B0). This study suggested that burning had a dramatic impact on bacterial diversity but not abundance with more frequent fire.

  16. Taxonomic hierarchy of the phylum Firmicutes and novel Firmicutes species originated from various environments in Korea.

    Science.gov (United States)

    Seong, Chi Nam; Kang, Joo Won; Lee, Ji Hee; Seo, So Yeon; Woo, Jung Jae; Park, Chul; Bae, Kyung Sook; Kim, Mi Sun

    2018-01-01

    This study assessed the taxonomic hierarchy of the phylum Firmicutes as well as elucidated the isolation and classification states of novel Firmicutes species isolated from Korean territory. The hierarchical classification system of the phylum Firmicutes has been developed since 1872 when the genus Bacillus was first reported and has been generally adopted since 2001. However, this taxonomic hierarchy is still being modified. Until Feb. 2017, the phylum Firmicutes consisted of seven classes (Bacilli, Clostridia, Erysipelotrichia, Limnochordia, Negativicutes, Thermolithobacteria, and Tissierellia), 13 orders, 45 families, and 421 genera. Firmicutes species isolated from various environments in Korea have been reported from 2000, and 187 species have been approved as of Feb. 2017. All Firmicutes species were affiliated with three classes (Bacilli, Clostridia, and Erysipelotrichia), four orders (Bacillales, Lactobacillales, Clostridiales, and Erysipelotrichales), 17 families, and 54 genera. A total of 173 species belong to the class Bacilli, of which 151 species were affiliated with the order Bacillales and the remaining 22 species with the order Lactobacillales. Twelve species belonging to the class Clostridia were affiliated within only one order, Clostridiales. The most abundant family was Bacillaceae (67 species), followed by the family Paenibacillaceae (56 species). Thirteen novel genera were created using isolates from the Korean environment. A number of Firmicutes species were isolated from natural environments in Korean territory. In addition, a considerable number of species were isolated from artificial resources such as fermented foods. Most Firmicutes species, belonging to the families Bacillaceae, Planococcaceae, and Staphylococcaceae, isolated from Korean fermented foods and solar salterns were halophilic or halotolerant. Firmicutes species were isolated from the whole territory of Korea, especially large numbers from Provinces Gyeonggi, Chungnam, and

  17. Soil prokaryotic communities in Chernobyl waste disposal trench T22 are modulated by organic matter and radionuclide contamination.

    Science.gov (United States)

    Theodorakopoulos, Nicolas; Février, Laureline; Barakat, Mohamed; Ortet, Philippe; Christen, Richard; Piette, Laurie; Levchuk, Sviatoslav; Beaugelin-Seiller, Karine; Sergeant, Claire; Berthomieu, Catherine; Chapon, Virginie

    2017-08-01

    After the Chernobyl nuclear power plant accident in 1986, contaminated soils, vegetation from the Red Forest and other radioactive debris were buried within trenches. In this area, trench T22 has long been a pilot site for the study of radionuclide migration in soil. Here, we used 454 pyrosequencing of 16S rRNA genes to obtain a comprehensive view of the bacterial and archaeal diversity in soils collected inside and in the vicinity of the trench T22 and to investigate the impact of radioactive waste disposal on prokaryotic communities. A remarkably high abundance of Chloroflexi and AD3 was detected in all soil samples from this area. Our statistical analysis revealed profound changes in community composition at the phylum and OTUs levels and higher diversity in the trench soils as compared to the outside. Our results demonstrate that the total absorbed dose rate by cell and, to a lesser extent the organic matter content of the trench, are the principal variables influencing prokaryotic assemblages. We identified specific phylotypes affiliated to the phyla Crenarchaeota, Acidobacteria, AD3, Chloroflexi, Proteobacteria, Verrucomicrobia and WPS-2, which were unique for the trench soils. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Fertilization Shapes Bacterial Community Structure by Alteration of Soil pH

    Directory of Open Access Journals (Sweden)

    Yuting Zhang

    2017-07-01

    .0%; the least abundant phyla were Verrucomicrobia (0.7%, Armatimonadetes (0.6%, candidate division WS3 (0.4% and Fibrobacteres (0.3%. In addition, Cyanobacteria and candidate division TM7 were more abundant in acidic soil, whereas Gemmatimonadetes, Nitrospirae and candidate division WS3 were more abundant in alkaline soil. We conclude that after 7-years of fertilization, soil bacterial diversity and community structure were shaped more by changes in soil pH rather than the direct effect of nutrient addition.

  19. Fertilization Shapes Bacterial Community Structure by Alteration of Soil pH.

    Science.gov (United States)

    Zhang, Yuting; Shen, Hong; He, Xinhua; Thomas, Ben W; Lupwayi, Newton Z; Hao, Xiying; Thomas, Matthew C; Shi, Xiaojun

    2017-01-01

    .0%); the least abundant phyla were Verrucomicrobia (0.7%), Armatimonadetes (0.6%), candidate division WS3 (0.4%) and Fibrobacteres (0.3%). In addition, Cyanobacteria and candidate division TM7 were more abundant in acidic soil, whereas Gemmatimonadetes, Nitrospirae and candidate division WS3 were more abundant in alkaline soil. We conclude that after 7-years of fertilization, soil bacterial diversity and community structure were shaped more by changes in soil pH rather than the direct effect of nutrient addition.

  20. First description of giant Archaea (Thaumarchaeota) associated with putative bacterial ectosymbionts in a sulfidic marine habitat.

    Science.gov (United States)

    Muller, Félix; Brissac, Terry; Le Bris, Nadine; Felbeck, Horst; Gros, Olivier

    2010-08-01

    Archaea may be involved in global energy cycles, and are known for their ability to interact with eukaryotic species (sponges, corals and ascidians) or as archaeal-bacterial consortia. The recently proposed phylum Thaumarchaeota may represent the deepest branching lineage in the archaeal phylogeny emerging before the divergence between Euryarchaeota and Crenarchaeota. Here we report the first characterization of two marine thaumarchaeal species from shallow waters that consist of multiple giant cells. One species is coated with sulfur-oxidizing γ-Proteobacteria. These new uncultured thaumarchaeal species are able to live in the sulfide-rich environments of a tropical mangrove swamp, either on living tissues such as roots or on various kinds of materials such as stones, sunken woods, etc. These archaea and archaea/bacteria associations have been studied using light microscopy, transmission electron microscopy and scanning electron microscopy. Species identification of archaeons and the putative bacterial symbiont have been assessed by 16S small subunit ribosomal RNA analysis. The sulfur-oxidizing ability of the bacteria has been assessed by genetic investigation on alpha-subunit of the adenosine-5'-phosphosulfate reductase/oxidase's (AprA). Species identifications have been confirmed by fluorescence in situ hybridization using specific probes designed in this study. In this article, we describe two new giant archaeal species that form the biggest archaeal filaments ever observed. One of these species is covered by a specific biofilm of sulfur-oxidizing γ-Proteobacteria. This study highlights an unexpected morphological and genetic diversity of the phylum Thaumarchaeota. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  1. Parental material and cultivation determine soil bacterial community structure and fertility.

    Science.gov (United States)

    Sun, Li; Gao, Jusheng; Huang, Ting; Kendall, Joshua R A; Shen, Qirong; Zhang, Ruifu

    2015-01-01

    Microbes are the key components of the soil environment, playing important roles during soil development. Soil parent material provides the foundation elements that comprise the basic nutritional environment for the development of microbial community. After 30 years artificial maturation of cultivation, the soil developments of three different parental materials were evaluated and bacterial community compositions were investigated using the high-throughput sequencing approach. Thirty years of cultivation increased the soil fertility and soil microbial biomass, richness and diversity, greatly changed the soil bacterial communities, the proportion of phylum Actinobacteria decreased significantly, while the relative abundances of the phyla Acidobacteria, Chloroflexi, Gemmatimonadetes, Armatimonadetes and Nitrospira were significantly increased. Soil bacterial communities of parental materials were separated with the cultivated ones, and comparisons of different soil types, granite soil and quaternary red clay soil were similar and different with purple sandy shale soil in both parental materials and cultivated treatments. Bacterial community variations in the three soil types were affected by different factors, and their alteration patterns in the soil development also varied with soil type. Soil properties (except total potassium) had a significant effect on the soil bacterial communities in all three soil types and a close relationship with abundant bacterial phyla. The amounts of nitrogen-fixing bacteria as well as the abundances of the nifH gene in all cultivated soils were higher than those in the parental materials; Burkholderia and Rhizobacte were enriched significantly with long-term cultivation. The results suggested that crop system would not deplete the nutrients of soil parental materials in early stage of soil maturation, instead it increased soil fertility and changed bacterial community, specially enriched the nitrogen-fixing bacteria to accumulate

  2. Single-Cell-Genomics-Facilitated Read Binning of Candidate Phylum EM19 Genomes from Geothermal Spring Metagenomes.

    Science.gov (United States)

    Becraft, Eric D; Dodsworth, Jeremy A; Murugapiran, Senthil K; Ohlsson, J Ingemar; Briggs, Brandon R; Kanbar, Jad; De Vlaminck, Iwijn; Quake, Stephen R; Dong, Hailiang; Hedlund, Brian P; Swingley, Wesley D

    2016-02-15

    The vast majority of microbial life remains uncatalogued due to the inability to cultivate these organisms in the laboratory. This "microbial dark matter" represents a substantial portion of the tree of life and of the populations that contribute to chemical cycling in many ecosystems. In this work, we leveraged an existing single-cell genomic data set representing the candidate bacterial phylum "Calescamantes" (EM19) to calibrate machine learning algorithms and define metagenomic bins directly from pyrosequencing reads derived from Great Boiling Spring in the U.S. Great Basin. Compared to other assembly-based methods, taxonomic binning with a read-based machine learning approach yielded final assemblies with the highest predicted genome completeness of any method tested. Read-first binning subsequently was used to extract Calescamantes bins from all metagenomes with abundant Calescamantes populations, including metagenomes from Octopus Spring and Bison Pool in Yellowstone National Park and Gongxiaoshe Spring in Yunnan Province, China. Metabolic reconstruction suggests that Calescamantes are heterotrophic, facultative anaerobes, which can utilize oxidized nitrogen sources as terminal electron acceptors for respiration in the absence of oxygen and use proteins as their primary carbon source. Despite their phylogenetic divergence, the geographically separate Calescamantes populations were highly similar in their predicted metabolic capabilities and core gene content, respiring O2, or oxidized nitrogen species for energy conservation in distant but chemically similar hot springs. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. Distribution, diversity and abundance of bacterial laccase-like genes in different particle size fractions of sediments in a subtropical mangrove ecosystem.

    Science.gov (United States)

    Luo, Ling; Zhou, Zhi-Chao; Gu, Ji-Dong

    2015-10-01

    This study investigated the diversity and abundance of bacterial lacasse-like genes in different particle size fractions, namely sand, silt, and clay of sediments in a subtropical mangrove ecosystem. Moreover, the effects of nutrient conditions on bacterial laccase-like communities as well as the correlation between nutrients and, both the abundance and diversity indices of laccase-like bacteria in particle size fractions were also studied. Compared to bulk sediments, Bacteroidetes, Caldithrix, Cyanobacteria and Chloroflexi were dominated in all 3 particle-size fractions of intertidal sediment (IZ), but Actinobacteria and Firmicutes were lost after the fractionation procedures used. The diversity index of IZ fractions decreased in the order of bulk > clay > silt > sand. In fractions of mangrove forest sediment (MG), Verrucomicrobia was found in silt, and both Actinobacteria and Bacteroidetes appeared in clay, but no new species were found in sand. The declining order of diversity index in MG fractions was clay > silt > sand > bulk. Furthermore, the abundance of lacasse-like bacteria varied with different particle-size fractions significantly (p clay > silt in both IZ and MG fractions. Additionally, nutrient availability was found to significantly affect the diversity and community structure of laccase-like bacteria (p fractions (p < 0.05). Therefore, this study further provides evidence that bacterial laccase plays a vital role in turnover of sediment organic matter and cycling of nutrients.

  4. Changes in the bacterial community in the fermentation process of kôso, a Japanese sugar-vegetable fermented beverage.

    Science.gov (United States)

    Chiou, Tai-Ying; Suda, Wataru; Oshima, Kenshiro; Hattori, Masahira; Takahashi, Tomoya

    2017-02-01

    Kôso is a Japanese fermented beverage made with over 20 kinds of vegetables, mushrooms, and sugars. The changes in the bacterial population of kôso during fermentation at 25 °C over a period of 10 days were studied using 454 pyrosequencing of the 16S rRNA gene. The analysis detected 224 operational taxonomic units (OTUs) clustered from 8 DNA samples collected on days 0, 3, 7, and 10 from two fermentation batches. Proteobacteria were the dominant phylum in the starting community, but were replaced by Firmicutes within three days. Seventy-eight genera were identified from the 224 OTUs, in which Bifidobacterium, Leuconostoc, Lactococcus, and Lactobacillus dominated, accounting for over 96% of the total bacterial population after three days' fermentation. UniFrac-Principal Coordinate Analysis of longitudinal fermented samples revealed dramatic changes in the bacterial community in kôso, resulting in significantly low diversity at the end of fermentation as compared with the complex starting community.

  5. Comparative studies of the composition of bacterial microbiota associated with the ruminal content, ruminal epithelium and in the faeces of lactating dairy cows.

    Science.gov (United States)

    Liu, Jun-hua; Zhang, Meng-ling; Zhang, Rui-yang; Zhu, Wei-yun; Mao, Sheng-yong

    2016-03-01

    The objective of this research was to compare the composition of bacterial microbiota associated with the ruminal content (RC), ruminal epithelium (RE) and faeces of Holstein dairy cows. The RC, RE and faecal samples were collected from six Holstein dairy cows when the animals were slaughtered. Community compositions of bacterial 16S rRNA genes from RC, RE and faeces were determined using a MiSeq sequencing platform with bacterial-targeting universal primers 338F and 806R. UniFrac analysis revealed that the bacterial communities of RC, RE and faeces were clearly separated from each other. Statistically significant dissimilarities were observed between RC and faeces (P = 0.002), between RC and RE (P = 0.003), and between RE and faeces (P = 0.001). A assignment of sequences to taxa showed that the abundance of the predominant phyla Bacteroidetes was lower in RE than in RC, while a significant higher (P < 0.01) abundance of Proteobacteria was present in RE than in RC. When compared with the RC, the abundance of Firmicutes and Verrucomicrobia was higher in faeces, and RC contained a greater abundance of Bacteroidetes and Tenericutes. A higher proportions of Butyrivibrio and Campylobacter dominated RE as compared to RC. The faecal microbiota was less diverse than RC and dominated by genera Turicibacter and Clostridium. In general, these findings clearly demonstrated the striking compositional differences among RC, RE and faeces, indicating that bacterial communities are specific and adapted to the harbouring environment. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  6. Phylum-Level Conservation of Regulatory Information in Nematodes despite Extensive Non-coding Sequence Divergence

    Science.gov (United States)

    Gordon, Kacy L.; Arthur, Robert K.; Ruvinsky, Ilya

    2015-01-01

    Gene regulatory information guides development and shapes the course of evolution. To test conservation of gene regulation within the phylum Nematoda, we compared the functions of putative cis-regulatory sequences of four sets of orthologs (unc-47, unc-25, mec-3 and elt-2) from distantly-related nematode species. These species, Caenorhabditis elegans, its congeneric C. briggsae, and three parasitic species Meloidogyne hapla, Brugia malayi, and Trichinella spiralis, represent four of the five major clades in the phylum Nematoda. Despite the great phylogenetic distances sampled and the extensive sequence divergence of nematode genomes, all but one of the regulatory elements we tested are able to drive at least a subset of the expected gene expression patterns. We show that functionally conserved cis-regulatory elements have no more extended sequence similarity to their C. elegans orthologs than would be expected by chance, but they do harbor motifs that are important for proper expression of the C. elegans genes. These motifs are too short to be distinguished from the background level of sequence similarity, and while identical in sequence they are not conserved in orientation or position. Functional tests reveal that some of these motifs contribute to proper expression. Our results suggest that conserved regulatory circuitry can persist despite considerable turnover within cis elements. PMID:26020930

  7. Phylum-Level Conservation of Regulatory Information in Nematodes despite Extensive Non-coding Sequence Divergence.

    Directory of Open Access Journals (Sweden)

    Kacy L Gordon

    2015-05-01

    Full Text Available Gene regulatory information guides development and shapes the course of evolution. To test conservation of gene regulation within the phylum Nematoda, we compared the functions of putative cis-regulatory sequences of four sets of orthologs (unc-47, unc-25, mec-3 and elt-2 from distantly-related nematode species. These species, Caenorhabditis elegans, its congeneric C. briggsae, and three parasitic species Meloidogyne hapla, Brugia malayi, and Trichinella spiralis, represent four of the five major clades in the phylum Nematoda. Despite the great phylogenetic distances sampled and the extensive sequence divergence of nematode genomes, all but one of the regulatory elements we tested are able to drive at least a subset of the expected gene expression patterns. We show that functionally conserved cis-regulatory elements have no more extended sequence similarity to their C. elegans orthologs than would be expected by chance, but they do harbor motifs that are important for proper expression of the C. elegans genes. These motifs are too short to be distinguished from the background level of sequence similarity, and while identical in sequence they are not conserved in orientation or position. Functional tests reveal that some of these motifs contribute to proper expression. Our results suggest that conserved regulatory circuitry can persist despite considerable turnover within cis elements.

  8. Bacterial communities in batch and continuous-flow wetlands treating the herbicide S-metolachlor

    Energy Technology Data Exchange (ETDEWEB)

    Elsayed, O.F. [Laboratory of Hydrology and Geochemistry of Strasbourg (LHyGeS), UMR 7517 University of Strasbourg/ENGEES/CNRS (France); Génétique Moléculaire, Génomique, Microbiologie (GMGM), UMR 7156 University of Strasbourg/CNRS (France); Maillard, E. [Laboratory of Hydrology and Geochemistry of Strasbourg (LHyGeS), UMR 7517 University of Strasbourg/ENGEES/CNRS (France); Vuilleumier, S. [Génétique Moléculaire, Génomique, Microbiologie (GMGM), UMR 7156 University of Strasbourg/CNRS (France); Imfeld, G., E-mail: imfeld@unistra.fr [Laboratory of Hydrology and Geochemistry of Strasbourg (LHyGeS), UMR 7517 University of Strasbourg/ENGEES/CNRS (France)

    2014-11-15

    Knowledge of wetland bacterial communities in the context of pesticide contamination and hydrological regime is scarce. We investigated the bacterial composition in constructed wetlands receiving Mercantor Gold{sup ®} contaminated water (960 g L{sup −1} of the herbicide S-metolachlor, > 80% of the S-enantiomer) operated under continuous-flow or batch modes to evaluate the impact of the hydraulic regime. In the continuous-flow wetland, S-metolachlor mass removal was > 40%, whereas in the batch wetland, almost complete removal of S-metolachlor (93–97%) was observed. Detection of ethanesulfonic and oxanilic acid degradation products further indicated S-metolachlor biodegradation in the two wetlands. The dominant bacterial populations were characterised by terminal restriction fragment length polymorphism (T-RFLP) and 454 pyrosequencing. The bacterial profiles evolved during the first 35 days of the experiment, starting from a composition similar to that of inlet water, with the use of nitrate and to a lesser extent sulphate and manganese as terminal electron acceptors for microbial metabolism. Proteobacteria were the most abundant phylum, with Beta-, Alpha- and Gammaproteobacteria representing 26%, 19% and 17% respectively of total bacterial abundance. Bacterial composition in wetland water changed gradually over time in continuous-flow wetland and more abruptly in the batch wetland. Differences in overall bacterial water structure in the two systems were modest but significant (p = 0.008), and S-metolachlor, nitrate, and total inorganic carbon concentrations correlated with changes in the bacterial profiles. Together, the results highlight that bacterial composition profiles and their dynamics may be used as bioindicators of herbicide exposure and hydraulic disturbances in wetland systems. - Highlights: • We evaluated the bacterial composition in wetlands treating S-metolachlor • Hydraulic regime impacted biogeochemical processes and S-metolachlor removal

  9. Bacterial communities in batch and continuous-flow wetlands treating the herbicide S-metolachlor

    International Nuclear Information System (INIS)

    Elsayed, O.F.; Maillard, E.; Vuilleumier, S.; Imfeld, G.

    2014-01-01

    Knowledge of wetland bacterial communities in the context of pesticide contamination and hydrological regime is scarce. We investigated the bacterial composition in constructed wetlands receiving Mercantor Gold ® contaminated water (960 g L −1 of the herbicide S-metolachlor, > 80% of the S-enantiomer) operated under continuous-flow or batch modes to evaluate the impact of the hydraulic regime. In the continuous-flow wetland, S-metolachlor mass removal was > 40%, whereas in the batch wetland, almost complete removal of S-metolachlor (93–97%) was observed. Detection of ethanesulfonic and oxanilic acid degradation products further indicated S-metolachlor biodegradation in the two wetlands. The dominant bacterial populations were characterised by terminal restriction fragment length polymorphism (T-RFLP) and 454 pyrosequencing. The bacterial profiles evolved during the first 35 days of the experiment, starting from a composition similar to that of inlet water, with the use of nitrate and to a lesser extent sulphate and manganese as terminal electron acceptors for microbial metabolism. Proteobacteria were the most abundant phylum, with Beta-, Alpha- and Gammaproteobacteria representing 26%, 19% and 17% respectively of total bacterial abundance. Bacterial composition in wetland water changed gradually over time in continuous-flow wetland and more abruptly in the batch wetland. Differences in overall bacterial water structure in the two systems were modest but significant (p = 0.008), and S-metolachlor, nitrate, and total inorganic carbon concentrations correlated with changes in the bacterial profiles. Together, the results highlight that bacterial composition profiles and their dynamics may be used as bioindicators of herbicide exposure and hydraulic disturbances in wetland systems. - Highlights: • We evaluated the bacterial composition in wetlands treating S-metolachlor • Hydraulic regime impacted biogeochemical processes and S-metolachlor removal

  10. Archaeal and bacterial diversity in two hot spring microbial mats from a geothermal region in Romania.

    Science.gov (United States)

    Coman, Cristian; Drugă, Bogdan; Hegedus, Adriana; Sicora, Cosmin; Dragoş, Nicolae

    2013-05-01

    The diversity of archaea and bacteria was investigated in two slightly alkaline, mesophilic hot springs from the Western Plain of Romania. Phylogenetic analysis showed a low diversity of Archaea, only three Euryarchaeota taxa being detected: Methanomethylovorans thermophila, Methanomassiliicoccus luminyensis and Methanococcus aeolicus. Twelve major bacterial groups were identified, both springs being dominated by Cyanobacteria, Chloroflexi and Proteobacteria. While at the phylum/class-level the microbial mats share a similar biodiversity; at the species level the geothermal springs investigated seem to be colonized by specific consortia. The dominant taxa were filamentous heterocyst-containing Fischerella, at 45 °C and non-heterocyst Leptolyngbya and Geitlerinema, at 55 °C. Other bacterial taxa (Thauera sp., Methyloversatilis universalis, Pannonibacter phragmitetus, Polymorphum gilvum, Metallibacterium sp. and Spartobacteria) were observed for the first time in association with a geothermal habitat. Based on their bacterial diversity the two mats were clustered together with other similar habitats from Europe and part of Asia, most likely the water temperature playing a major role in the formation of specific microbial communities that colonize the investigated thermal springs.

  11. Anaerobic biodegradation of nonylphenol in river sediment under nitrate- or sulfate-reducing conditions and associated bacterial community

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhao; Yang, Yuyin; Dai, Yu; Xie, Shuguang, E-mail: xiesg@pku.edu.cn

    2015-04-09

    Highlights: • NP biodegradation can occur under both nitrate- and sulfate-reducing conditions. • Anaerobic condition affects sediment bacterial diversity during NP biodegradation. • NP-degrading bacterial community structure varies under different anaerobic conditions. - Abstract: Nonylphenol (NP) is a commonly detected pollutant in aquatic ecosystem and can be harmful to aquatic organisms. Anaerobic degradation is of great importance for the clean-up of NP in sediment. However, information on anaerobic NP biodegradation in the environment is still very limited. The present study investigated the shift in bacterial community structure associated with NP degradation in river sediment microcosms under nitrate- or sulfate-reducing conditions. Nearly 80% of NP (100 mg kg{sup −1}) could be removed under these two anaerobic conditions after 90 or 110 days’ incubation. Illumina MiSeq sequencing analysis indicated that Proteobacteria, Firmicutes, Bacteroidetes and Chloroflexi became the dominant phylum groups with NP biodegradation. The proportion of Gammaproteobacteria, Deltaproteobacteria and Choloroflexi showed a marked increase in nitrate-reducing microcosm, while Gammaproteobacteria and Firmicutes in sulfate-reducing microcosm. Moreover, sediment bacterial diversity changed with NP biodegradation, which was dependent on type of electron acceptor.

  12. Bacterial diversity and reductive dehalogenase redundancy in a 1,2-dichloroethane-degrading bacterial consortium enriched from a contaminated aquifer

    Directory of Open Access Journals (Sweden)

    Wittebolle Lieven

    2010-02-01

    Full Text Available Abstract Background Bacteria possess a reservoir of metabolic functionalities ready to be exploited for multiple purposes. The use of microorganisms to clean up xenobiotics from polluted ecosystems (e.g. soil and water represents an eco-sustainable and powerful alternative to traditional remediation processes. Recent developments in molecular-biology-based techniques have led to rapid and accurate strategies for monitoring and identification of bacteria and catabolic genes involved in the degradation of xenobiotics, key processes to follow up the activities in situ. Results We report the characterization of the response of an enriched bacterial community of a 1,2-dichloroethane (1,2-DCA contaminated aquifer to the spiking with 5 mM lactate as electron donor in microcosm studies. After 15 days of incubation, the microbial community structure was analyzed. The bacterial 16S rRNA gene clone library showed that the most represented phylogenetic group within the consortium was affiliated with the phylum Firmicutes. Among them, known degraders of chlorinated compounds were identified. A reductive dehalogenase genes clone library showed that the community held four phylogenetically-distinct catalytic enzymes, all conserving signature residues previously shown to be linked to 1,2-DCA dehalogenation. Conclusions The overall data indicate that the enriched bacterial consortium shares the metabolic functionality between different members of the microbial community and is characterized by a high functional redundancy. These are fundamental features for the maintenance of the community's functionality, especially under stress conditions and suggest the feasibility of a bioremediation treatment with a potential prompt dehalogenation and a process stability over time.

  13. Tissue-associated bacterial alterations in rectal carcinoma patients revealed by 16S rRNA community profiling

    Directory of Open Access Journals (Sweden)

    Andrew Maltez Thomas

    2016-12-01

    Full Text Available Sporadic and inflammatory forms of colorectal cancer (CRC account for more than 80% of cases. Recent publications have shown mechanistic evidence for the involvement of gut bacteria in the development of both CRC-forms. Whereas colon and rectal cancer have been routinely studied together as CRC, increasing evidence show these to be distinct diseases. Also, the common use of fecal samples to study microbial communities may reflect disease state but possibly not the tumor microenvironment. We performed this study to evaluate differences in bacterial communities found in tissue samples of 18 rectal-cancer subjects when compared to 18 non-cancer controls. Samples were collected during exploratory colonoscopy (non-cancer group or during surgery for tumor excision (rectal-cancer group. High throughput 16S rRNA amplicon sequencing of the V4-V5 region was conducted on the Ion PGM platform, reads were filtered using Qiime and clustered using UPARSE. We observed significant increases in species richness and diversity in rectal cancer samples, evidenced by the total number of OTUs and the Shannon and Simpson indexes. Enterotyping analysis divided our cohort into two groups, with the majority of rectal cancer samples clustering into one enterotype, characterized by a greater abundance of Bacteroides and Dorea. At the phylum level, rectal-cancer samples had increased abundance of candidate phylum OD1 (also known as Parcubacteria whilst non-cancer samples had increased abundance of Planctomycetes. At the genera level, rectal-cancer samples had higher abundances of Bacteroides, Phascolarctobacterium, Parabacteroides, Desulfovibrio and Odoribacter whereas non-cancer samples had higher abundances of Pseudomonas, Escherichia, Acinetobacter, Lactobacillus and Bacillus. Two Bacteroides fragilis OTUs were more abundant among rectal-cancer patients seen through 16S rRNA amplicon sequencing, whose presence was confirmed by immunohistochemistry and enrichment verified

  14. Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance

    Energy Technology Data Exchange (ETDEWEB)

    Goldfarb, K.C.; Karaoz, U.; Hanson, C.A.; Santee, C.A.; Bradford, M.A.; Treseder, K.K.; Wallenstein, M.D.; Brodie, E.L.

    2011-04-18

    Soils are immensely diverse microbial habitats with thousands of co-existing bacterial, archaeal, and fungal species. Across broad spatial scales, factors such as pH and soil moisture appear to determine the diversity and structure of soil bacterial communities. Within any one site however, bacterial taxon diversity is high and factors maintaining this diversity are poorly resolved. Candidate factors include organic substrate availability and chemical recalcitrance, and given that they appear to structure bacterial communities at the phylum level, we examine whether these factors might structure bacterial communities at finer levels of taxonomic resolution. Analyzing 16S rRNA gene composition of nucleotide analog-labeled DNA by PhyloChip microarrays, we compare relative growth rates on organic substrates of increasing chemical recalcitrance of >2,200 bacterial taxa across 43 divisions/phyla. Taxa that increase in relative abundance with labile organic substrates (i.e., glycine, sucrose) are numerous (>500), phylogenetically clustered, and occur predominantly in two phyla (Proteobacteria and Actinobacteria) including orders Actinomycetales, Enterobacteriales, Burkholderiales, Rhodocyclales, Alteromonadales, and Pseudomonadales. Taxa increasing in relative abundance with more chemically recalcitrant substrates (i.e., cellulose, lignin, or tannin-protein) are fewer (168) but more phylogenetically dispersed, occurring across eight phyla and including Clostridiales, Sphingomonadalaes, Desulfovibrionales. Just over 6% of detected taxa, including many Burkholderiales increase in relative abundance with both labile and chemically recalcitrant substrates. Estimates of median rRNA copy number per genome of responding taxa demonstrate that these patterns are broadly consistent with bacterial growth strategies. Taken together, these data suggest that changes in availability of intrinsically labile substrates may result in predictable shifts in soil bacterial composition.

  15. Spatial Distribution of Bacterial Communities Driven by Multiple Environmental Factors in a Beach Wetland of the Largest Freshwater Lake in China

    Directory of Open Access Journals (Sweden)

    Xia eDing

    2015-02-01

    Full Text Available The spatial distributions of bacterial communities may be driven by multiple environmental factors. Thus, understanding the relationships between bacterial distribution and environmental factors is critical for understanding wetland stability and the functioning of freshwater lakes. However, little research on the bacterial communities in deep sediment layers exists. In this study, thirty clone libraries of 16S rRNA were constructed from a beach wetland of the Poyang Lake along both horizontal (distance to the water-land junction and vertical (sediment depth gradients to assess the effects of sediment properties on bacterial community structure and diversity. Our results showed that bacterial diversity increased along the horizontal gradient and decreased along the vertical gradient. The heterogeneous sediment properties along gradients substantially affected the dominant bacterial groups at the phylum and species levels. For example, the NH4+ concentration decreased with increasing depth, which was positively correlated with the relative abundance of Alphaproteobacteria. The changes in bacterial diversity and dominant bacterial groups showed that the top layer had a different bacterial community structure than the deeper layers. Principal component analysis revealed that both gradients, not each gradient independently, contributed to the shift in the bacterial community structure. A multiple linear regression model explained the changes in bacterial diversity and richness along the depth and distance gradients. Overall, our results suggest that spatial gradients associated with sediment properties shaped the bacterial communities in the Poyang Lake beach wetland.

  16. Responses of bacterial communities in arable soils in a rice-wheat cropping system to different fertilizer regimes and sampling times.

    Directory of Open Access Journals (Sweden)

    Jun Zhao

    Full Text Available Soil physicochemical properties, soil microbial biomass and bacterial community structures in a rice-wheat cropping system subjected to different fertilizer regimes were investigated in two seasons (June and October. All fertilizer regimes increased the soil microbial biomass carbon and nitrogen. Both fertilizer regime and time had a significant effect on soil physicochemical properties and bacterial community structure. The combined application of inorganic fertilizer and manure organic-inorganic fertilizer significantly enhanced the bacterial diversity in both seasons. The bacterial communities across all samples were dominated by Proteobacteria, Acidobacteria and Chloroflexi at the phylum level. Permutational multivariate analysis confirmed that both fertilizer treatment and season were significant factors in the variation of the composition of the bacterial community. Hierarchical cluster analysis based on Bray-Curtis distances further revealed that bacterial communities were separated primarily by season. The effect of fertilizer treatment is significant (P = 0.005 and accounts for 7.43% of the total variation in bacterial community. Soil nutrients (e.g., available K, total N, total P and organic matter rather than pH showed significant correlation with the majority of abundant taxa. In conclusion, both fertilizer treatment and seasonal changes affect soil properties, microbial biomass and bacterial community structure. The application of NPK plus manure organic-inorganic fertilizer may be a sound fertilizer practice for sustainable food production.

  17. Spatial variations of bacterial community and its relationship with water chemistry in Sanya Bay, South China Sea as determined by DGGE fingerprinting and multivariate analysis.

    Science.gov (United States)

    Ling, Juan; Zhang, Yan-Ying; Dong, Jun-De; Wang, You-Shao; Feng, Jing-Bing; Zhou, Wei-Hua

    2015-10-01

    Bacteria play important roles in the structure and function of marine food webs by utilizing nutrients and degrading the pollutants, and their distribution are determined by surrounding water chemistry to a certain extent. It is vital to investigate the bacterial community's structure and identifying the significant factors by controlling the bacterial distribution in the paper. Flow cytometry showed that the total bacterial abundance ranged from 5.27 × 10(5) to 3.77 × 10(6) cells/mL. Molecular fingerprinting technique, denaturing gradient gel electrophoresis (DGGE) followed by DNA sequencing has been employed to investigate the bacterial community composition. The results were then interpreted through multivariate statistical analysis and tended to explain its relationship to the environmental factors. A total of 270 bands at 83 different positions were detected in DGGE profiles and 29 distinct DGGE bands were sequenced. The predominant bacteria were related to Phyla Protebacteria species (31 %, nine sequences), Cyanobacteria (37.9 %, eleven sequences) and Actinobacteria (17.2 %, five sequences). Other phylogenetic groups identified including Firmicutes (6.9 %, two sequences), Bacteroidetes (3.5 %, one sequences) and Verrucomicrobia (3.5 %, one sequences). Conical correspondence analysis was used to elucidate the relationships between the bacterial community compositions and environmental factors. The results showed that the spatial variations in the bacterial community composition was significantly related to phosphate (P = 0.002, P < 0.01), dissolved organic carbon (P = 0.004, P < 0.01), chemical oxygen demand (P = 0.010, P < 0.05) and nitrite (P = 0.016, P < 0.05). This study revealed the spatial variations of bacterial community and significant environmental factors driving the bacterial composition shift. These results may be valuable for further investigation on the functional microbial structure and expression quantitatively under the polluted

  18. Bacterial community composition in different sediments from the Eastern Mediterranean Sea: a comparison of four 16S ribosomal DNA clone libraries.

    Science.gov (United States)

    Polymenakou, Paraskevi N; Bertilsson, Stefan; Tselepides, Anastasios; Stephanou, Euripides G

    2005-10-01

    The regional variability of sediment bacterial community composition and diversity was studied by comparative analysis of four large 16S ribosomal DNA (rDNA) clone libraries from sediments in different regions of the Eastern Mediterranean Sea (Thermaikos Gulf, Cretan Sea, and South lonian Sea). Amplified rDNA restriction analysis of 664 clones from the libraries indicate that the rDNA richness and evenness was high: for example, a near-1:1 relationship among screened clones and number of unique restriction patterns when up to 190 clones were screened for each library. Phylogenetic analysis of 207 bacterial 16S rDNA sequences from the sediment libraries demonstrated that Gamma-, Delta-, and Alphaproteobacteria, Holophaga/Acidobacteria, Planctomycetales, Actinobacteria, Bacteroidetes, and Verrucomicrobia were represented in all four libraries. A few clones also grouped with the Betaproteobacteria, Nitrospirae, Spirochaetales, Chlamydiae, Firmicutes, and candidate division OPl 1. The abundance of sequences affiliated with Gammaproteobacteria was higher in libraries from shallow sediments in the Thermaikos Gulf (30 m) and the Cretan Sea (100 m) compared to the deeper South Ionian station (2790 m). Most sequences in the four sediment libraries clustered with uncultured 16S rDNA phylotypes from marine habitats, and many of the closest matches were clones from hydrocarbon seeps, benzene-mineralizing consortia, sulfate reducers, sulk oxidizers, and ammonia oxidizers. LIBSHUFF statistics of 16S rDNA gene sequences from the four libraries revealed major differences, indicating either a very high richness in the sediment bacterial communities or considerable variability in bacterial community composition among regions, or both.

  19. LA COLECCIÓN NACIONAL DEL PHYLUM PORIFERA GERARDO GREEN

    Directory of Open Access Journals (Sweden)

    Patricia Gómez

    2009-01-01

    Full Text Available Se presenta la importancia y el estado actual de la Colección Nacional del Phylum Porifera Gerardo Green, cuyo acervo alberga a los animales más primitivos de los metazoarios. Es la colección más completa y de mayor diversidad del país, al contener ejemplares provenientes de las costas de todos los estados que presentan litorales marinos y salobres y de algunos cuerpos de agua dulce. Las colecciones científicas son una herramienta básica para la investigación, no sólo proveen de la biodiversidad de especies pasadas y presentes, sino que también nos han permitido rehacer el pasado de la vida en la Tierra. Asimismo, brindan el estado ambiental en el que se desarrollaron lo cual permite compararlas con las actuales y resguardar especies de las cuales se ha obtenido un beneficio para el hombre.

  20. Metagenomic analysis of bacterial community structure and diversity of lignocellulolytic bacteria in Vietnamese native goat rumen.

    Science.gov (United States)

    Do, Thi Huyen; Dao, Trong Khoa; Nguyen, Khanh Hoang Viet; Le, Ngoc Giang; Nguyen, Thi Mai Phuong; Le, Tung Lam; Phung, Thu Nguyet; van Straalen, Nico M; Roelofs, Dick; Truong, Nam Hai

    2018-05-01

    In a previous study, analysis of Illumina sequenced metagenomic DNA data of bacteria in Vietnamese goats' rumen showed a high diversity of putative lignocellulolytic genes. In this study, taxonomy speculation of microbial community and lignocellulolytic bacteria population in the rumen was conducted to elucidate a role of bacterial structure for effective degradation of plant materials. The metagenomic data had been subjected into Basic Local Alignment Search Tool (BLASTX) algorithm and the National Center for Biotechnology Information non-redundant sequence database. Here the BLASTX hits were further processed by the Metagenome Analyzer program to statistically analyze the abundance of taxa. Microbial community in the rumen is defined by dominance of Bacteroidetes compared to Firmicutes. The ratio of Firmicutes versus Bacteroidetes was 0.36:1. An abundance of Synergistetes was uniquely identified in the goat microbiome may be formed by host genotype. With regard to bacterial lignocellulose degraders, the ratio of lignocellulolytic genes affiliated with Firmicutes compared to the genes linked to Bacteroidetes was 0.11:1, in which the genes encoding putative hemicellulases, carbohydrate esterases, polysaccharide lyases originated from Bacteroidetes were 14 to 20 times higher than from Firmicutes. Firmicutes seem to possess more cellulose hydrolysis capacity showing a Firmicutes/Bacteroidetes ratio of 0.35:1. Analysis of lignocellulolytic potential degraders shows that four species belonged to Bacteroidetes phylum, while two species belonged to Firmicutes phylum harbouring at least 12 different catalytic domains for all lignocellulose pretreatment, cellulose, as well as hemicellulose saccharification. Based on these findings, we speculate that increasing the members of Bacteroidetes to keep a low ratio of Firmicutes versus Bacteroidetes in goat rumen has resulted most likely in an increased lignocellulose digestion.

  1. The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to Cyanobacteria

    Science.gov (United States)

    Di Rienzi, Sara C; Sharon, Itai; Wrighton, Kelly C; Koren, Omry; Hug, Laura A; Thomas, Brian C; Goodrich, Julia K; Bell, Jordana T; Spector, Timothy D; Banfield, Jillian F; Ley, Ruth E

    2013-01-01

    Cyanobacteria were responsible for the oxygenation of the ancient atmosphere; however, the evolution of this phylum is enigmatic, as relatives have not been characterized. Here we use whole genome reconstruction of human fecal and subsurface aquifer metagenomic samples to obtain complete genomes for members of a new candidate phylum sibling to Cyanobacteria, for which we propose the designation ‘Melainabacteria’. Metabolic analysis suggests that the ancestors to both lineages were non-photosynthetic, anaerobic, motile, and obligately fermentative. Cyanobacterial light sensing may have been facilitated by regulators present in the ancestor of these lineages. The subsurface organism has the capacity for nitrogen fixation using a nitrogenase distinct from that in Cyanobacteria, suggesting nitrogen fixation evolved separately in the two lineages. We hypothesize that Cyanobacteria split from Melainabacteria prior or due to the acquisition of oxygenic photosynthesis. Melainabacteria remained in anoxic zones and differentiated by niche adaptation, including for symbiosis in the mammalian gut. DOI: http://dx.doi.org/10.7554/eLife.01102.001 PMID:24137540

  2. Impact of redox-stratification on the diversity and distribution of bacterial communities in sandy reef sediments in a microcosm

    Institute of Scientific and Technical Information of China (English)

    GAO Zheng; WANG Xin; Angelos K. HANNIDES; Francis J. SANSONE; WANG Guangyi

    2011-01-01

    Relationships between microbial communities and geochemical environments are important in marine microbial ecology and biogeochemistry.Although biogeochemical redox stratification has been well documented in marine sediments,its impact on microbial communities remains largely unknown.In this study,we applied denaturing gradient gel electrophoresis (DGGE) and clone library construction to investigate the diversity and stratification of bacterial communities in redox-stratified sandy reef sediments in a microcosm.A total of 88 Operational Taxonomic Units (OTU) were identified from 16S rRNA clone libraries constructed from sandy reef sediments in a laboratory microcosm.They were members of nine phyla and three candidate divisions,including Proteobacteria (Alpha-,Beta-,Gamma-,Delta-,and Epsilonproteobacteria),Actinobacteria,Acidobacteria,Bacteroidetes,Chloroflexi,Cyanobacteria,Firmicutes,Verrucomicrobia,Spirochaetes,and the candidate divisions WS3,SO31 and AO19.The vast majority of these phylotypes are related to clone sequences from other marine sediments,but OTUs of Epsilonproteobacteria and WS3 are reported for the first time from permeable marine sediments.Several other OTUs are potential new bacterial phylotypes because of their low similarity with reference sequences.Results from the 16S rRNA,gene clone sequence analyses suggested that bacterial communities exhibit clear stratification across large redox gradients in these sediments,with the highest diversity found in the anoxic layer (15-25 mm) and the least diversity in the suboxic layer (3-5 mm).Analysis of the nosZ,and amoA gene libraries also indicated the stratification of denitrifiers and nitrifiers,with their highest diversity being in the anoxic and oxic sediment layers,respectively.These results indicated that redox-stratification can affect the distribution of bacterial communities in sandy reef sediments.

  3. Impact of land-use change and soil organic carbon quality on microbial diversity in soils across Europe.

    Science.gov (United States)

    Szoboszlay, Márton; Dohrmann, Anja B; Poeplau, Christopher; Don, Axel; Tebbe, Christoph C

    2017-12-01

    Land-use and their change have dramatic consequences for above-ground biodiversity, but their impact on soil microbial communities is poorly understood. In this study, soils from 19 European sites representing conversion of croplands to grasslands or forests and of grasslands to croplands or forests were characterized for microbial abundance and bacterial diversity. The abundance of Bacteria and Fungi but not Archaea responded to land-use change. Site was the major determinant of the soil bacterial community structure, explaining 32% of the variation in 16S rRNA gene diversity. While the quantity of soil organic carbon (SOC) only explained 5% of the variation, SOC when differentiated by its quality could explain 22%. This was similar to the impact of soil pH (21%) and higher than that of land-use type (15%). Croplands had the highest bacterial diversity. Converting croplands to grassland caused an increase of Verrucomicrobia; croplands to forest increased Rhizobiales but decreased Bacteroidetes and Nitrospirae; and grasslands to cropland increased Gemmatimonadetes but decreased Verrucomicrobia and Planctomycetes. Network analysis identified associations between particular SOC fractions and specific bacterial taxa. We conclude that land-use-related effects on soil microorganisms can be consistently observed across a continental scale. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Panamanian frog species host unique skin bacterial communities

    Directory of Open Access Journals (Sweden)

    Lisa K. Belden

    2015-10-01

    Full Text Available Vertebrates, including amphibians, host diverse symbiotic microbes that contribute to host disease resistance. Globally, and especially in montane tropical systems, many amphibian species are threatened by a chytrid fungus, Batrachochytrium dendrobatidis (Bd, that causes a lethal skin disease. Bd therefore may be a strong selective agent on the diversity and function of the microbial communities inhabiting amphibian skin. In Panamá, amphibian population declines and the spread of Bd have been tracked. In 2012, we completed a field survey in Panamá to examine frog skin microbiota in the context of Bd infection. We focused on three frog species and collected two skin swabs per frog from a total of 136 frogs across four sites that varied from west to east in the time since Bd arrival. One swab was used to assess bacterial community structure using 16S rRNA amplicon sequencing and to determine Bd infection status, and one was used to assess metabolite diversity, as the bacterial production of anti-fungal metabolites is an important disease resistance function. The skin microbiota of the three Panamanian frog species differed in OTU (operational taxonomic unit, ~bacterial species community composition and metabolite profiles, although the pattern was less strong for the metabolites. Comparisons between frog skin bacterial communities from Panamá and the US suggest broad similarities at the phylum level, but key differences at lower taxonomic levels. In our field survey in Panamá, across all four sites, only 35 individuals (~26% were Bd infected. There was no clustering of OTUs or metabolite profiles based on Bd infection status and no clear pattern of west-east changes in OTUs or metabolite profiles across the four sites. Overall, our field survey data suggest that different bacterial communities might be producing broadly similar sets of metabolites across frog hosts and sites. Community structure and function may not be as tightly coupled in

  5. Structural properties of the linkers connecting the N- and C- terminal domains in the MocR bacterial transcriptional regulators

    Directory of Open Access Journals (Sweden)

    Teresa Milano

    2016-12-01

    Full Text Available Peptide inter-domain linkers are peptide segments covalently linking two adjacent domains within a protein. Linkers play a variety of structural and functional roles in naturally occurring proteins. In this work we analyze the sequence properties of the predicted linker regions of the bacterial transcriptional regulators belonging to the recently discovered MocR subfamily of the GntR regulators. Analyses were carried out on the MocR sequences taken from the phyla Actinobacteria, Firmicutes, Alpha-, Beta- and Gammaproteobacteria. The results suggest that MocR linkers display phylum-specific characteristics and unique features different from those already described for other classes of inter-domain linkers. They show an average length significantly higher: 31.8 ± 14.3 residues reaching a maximum of about 150 residues. Compositional propensities displayed general and phylum-specific trends. Pro is dominating in all linkers. Dyad propensity analysis indicate Pro–Pro as the most frequent amino acid pair in all linkers. Physicochemical properties of the linker regions were assessed using amino acid indices relative to different features: in general, MocR linkers are flexible, hydrophilic and display propensity for β-turn or coil conformations. Linker sequences are hypervariable: only similarities between MocR linkers from organisms related at the level of species or genus could be found with sequence searches. The results shed light on the properties of the linker regions of the new MocR subfamily of bacterial regulators and may provide knowledge-based rules for designing artificial linkers with desired properties.

  6. Impact of Cropping Systems, Soil Inoculum, and Plant Species Identity on Soil Bacterial Community Structure.

    Science.gov (United States)

    Ishaq, Suzanne L; Johnson, Stephen P; Miller, Zach J; Lehnhoff, Erik A; Olivo, Sarah; Yeoman, Carl J; Menalled, Fabian D

    2017-02-01

    Farming practices affect the soil microbial community, which in turn impacts crop growth and crop-weed interactions. This study assessed the modification of soil bacterial community structure by organic or conventional cropping systems, weed species identity [Amaranthus retroflexus L. (redroot pigweed) or Avena fatua L. (wild oat)], and living or sterilized inoculum. Soil from eight paired USDA-certified organic and conventional farms in north-central Montana was used as living or autoclave-sterilized inoculant into steam-pasteurized potting soil, planted with Am. retroflexus or Av. fatua and grown for two consecutive 8-week periods to condition soil nutrients and biota. Subsequently, the V3-V4 regions of the microbial 16S rRNA gene were sequenced by Illumina MiSeq. Treatments clustered significantly, with living or sterilized inoculum being the strongest delineating factor, followed by organic or conventional cropping system, then individual farm. Living inoculum-treated soil had greater species richness and was more diverse than sterile inoculum-treated soil (observed OTUs, Chao, inverse Simpson, Shannon, P soil contained more Chloroflexi and Acidobacteria, while the sterile inoculum soil had more Bacteroidetes, Firmicutes, Gemmatimonadetes, and Verrucomicrobia. Organically farmed inoculum-treated soil had greater species richness, more diversity (observed OTUs, Chao, Shannon, P soil. Cyanobacteria were higher in pots growing Am. retroflexus, regardless of inoculum type, for three of the four organic farms. Results highlight the potential of cropping systems and species identity to modify soil bacterial communities, subsequently modifying plant growth and crop-weed competition.

  7. [Effect of ground mulch managements on soil bacterial community structure and diversity in the non-irrigated apple orchard in Weibei Loess Plateau].

    Science.gov (United States)

    Chen, Yuexing; Wen, Xiaoxia; Sun, Yulin; Zhang, Junli; Lin, Xiaoli; Liao, Yuncheng

    2015-07-04

    We studied the changes in soil bacterial communities induced by ground mulch managements at different apple growth periods. We adopted the denaturing gradient gel electrophoresis (DGGE) with PCR-amplified 16S rRNA fragments to determine soil bacterial community structure and diversity. Soil bacterial community structure with different ground mulch managements were significantly different. Both the mulch management strategies and apple growth periods affected the predominant groups and their abundance in soil bacterial communities. Grass mulch and cornstalk mulch treatments had higher bacterial diversity and richness than the control at young fruit period and fruit expanding period, whereas film mulch treatment had no significant difference compared with the control. During mature period, bacterial diversity in the control reached its maximum, which may be ascribed to the rapid growth and reproduction of the r-selection bacteria. The clustering and detrended correspondence analysis revealed that differences in soil bacterial communities were closely correlated to apple growth periods and ground mulch managements. Soil samples from the grass mulch and cornstalk mulch treatments clustered together while those mulched with plastic film treatment were similar to the control. The most abundant phylum in soil bacterial community was Proteobacteria followed by Bacteroidetes. Some other phyla were also detected, such as Acidobacteria, Firmicutes, Actinobacteria and Chloroflexi. Mulching with plant (Grass/Cornstalk) had great effects on soil bacterial community structure and enhanced the diversity while film mulch management had no significant effects.

  8. Effects of biochar amendment on bacterial and fungal diversity for co-composting of gelatin industry sludge mixed with organic fraction of municipal solid waste.

    Science.gov (United States)

    Awasthi, Mukesh Kumar; Li, Jiao; Kumar, Sunil; Awasthi, Sanjeev Kumar; Wang, Quan; Chen, Hongyu; Wang, Meijing; Ren, Xiuna; Zhang, Zengqiang

    2017-12-01

    The aim of the study was to evaluate the bacterial and fungal diversities of 18contrastivecomposts applied with 17 different sources mad biochars applied treatments using 16S rRNA and 18S rDNA technology, while T-1 used as a control. The results showed that bacterial species of the phyla Actinobacteria, Proteobacteria and Chloroflexi, and fungi of the phylum Ascomycota and Basidiomycota were pre-dominant among the all treatments. The bacterial genus Subgroup_6_norank, Nocardioides, Pseudonocardia, Sphingomonas, Solirubrobacter and RB41_norank are first time identified in composting ecosystem. In addition, the fungal genus Ascomycota_unclassified, Aspergillus, Penicillium, Pleosporales_unclassified and Herpotrichlellacease_unclassified ubiquitous among the all compost. The Shannon and refraction-curve biodiversity indices showed a clear heterogeneity among all the treatments, which could be due to isolation of new genera in this system. Finally, the principal component analysis of the relative number of sequences also confirmed that bacterial and fungal population indiscriminate in different sources mad biochar applied treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Contrasting spatial patterns and ecological attributes of soil bacterial and archaeal taxa across a landscape.

    Science.gov (United States)

    Constancias, Florentin; Saby, Nicolas P A; Terrat, Sébastien; Dequiedt, Samuel; Horrigue, Wallid; Nowak, Virginie; Guillemin, Jean-Philippe; Biju-Duval, Luc; Chemidlin Prévost-Bouré, Nicolas; Ranjard, Lionel

    2015-06-01

    Even though recent studies have clarified the influence and hierarchy of environmental filters on bacterial community structure, those constraining bacterial populations variations remain unclear. In consequence, our ability to understand to ecological attributes of soil bacteria and to predict microbial community response to environmental stress is therefore limited. Here, we characterized the bacterial community composition and the various bacterial taxonomic groups constituting the community across an agricultural landscape of 12 km(2) , by using a 215 × 215 m systematic grid representing 278 sites to precisely decipher their spatial distribution and drivers at this scale. The bacterial and Archaeal community composition was characterized by applying 16S rRNA gene pyrosequencing directly to soil DNA from samples. Geostatistics tools were used to reveal the heterogeneous distribution of bacterial composition at this scale. Soil physical parameters and land management explained a significant amount of variation, suggesting that environmental selection is the major process shaping bacterial composition. All taxa systematically displayed also a heterogeneous and particular distribution patterns. Different relative influences of soil characteristics, land use and space were observed, depending on the taxa, implying that selection and spatial processes might be differentially but not exclusively involved for each bacterial phylum. Soil pH was a major factor determining the distribution of most of the bacterial taxa and especially the most important factor explaining the spatial patterns of α-Proteobacteria and Planctomycetes. Soil texture, organic carbon content and quality were more specific to a few number of taxa (e.g., β-Proteobacteria and Chlorobi). Land management also influenced the distribution of bacterial taxa across the landscape and revealed different type of response to cropping intensity (positive, negative, neutral or hump-backed relationships

  10. Effect of Dietary Protein Levels on Composition of Odorous Compounds and Bacterial Ecology in Pig Manure

    Directory of Open Access Journals (Sweden)

    Sungback Cho

    2015-09-01

    Full Text Available This study was performed to investigate the effect of different levels of dietary crude protein (CP on composition of odorous compounds and bacterial communities in pig manure. A total of 48 male pigs (average initial body weight 45 kg fed diets containing three levels of dietary CP (20%, 17.5%, and 15% and their slurry samples were collected from the pits under the floor every week for one month. Changes in composition of odorous compounds and bacterial communities were analyzed by gas chromatography and 454 FLX titanium pyrosequencing systems, respectively. Levels of phenols, indoles, short chain fatty acid and branched chain fatty acid were lowest (p<0.05 in CP 15% group among three CP levels. Relative abundance of Bacteroidetes phylum and bacterial genera including Leuconostoc, Bacillus, Atopostipes, Peptonphilus, Ruminococcaceae_uc, Bacteroides, and Pseudomonas was lower (p<0.05 in CP 15% than in CP 20% group. There was a positive correlation (p<0.05 between odorous compounds and bacterial genera: phenol, indole, iso-butyric acid, and iso-valeric acid with Atopostipes, p-cresol and skatole with Bacteroides, acetic acid and butyric acid with AM982595_g of Porphyromonadaceae family, and propionic acid with Tissierella. Taken together, administration of 15% CP showed less production of odorous compounds than 20% CP group and this result might be associated with the changes in bacterial communities especially whose roles in protein metabolism.

  11. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    Science.gov (United States)

    Ding, Tao; Melcher, Ulrich

    2016-01-01

    Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  12. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    Directory of Open Access Journals (Sweden)

    Tao Ding

    Full Text Available Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  13. The core faecal bacterial microbiome of Irish Thoroughbred racehorses.

    Science.gov (United States)

    O' Donnell, M M; Harris, H M B; Jeffery, I B; Claesson, M J; Younge, B; O' Toole, P W; Ross, R P

    2013-12-01

    In this study, we characterized the gut microbiota in six healthy Irish thoroughbred racehorses and showed it to be dominated by the phyla Firmicutes, Bacteroidetes, Proteobacteria, Verrucomicrobia, Actinobacteria, Euryarchaeota, Fibrobacteres and Spirochaetes. Moreover, all the horses harboured Clostridium, Fibrobacter, Faecalibacterium, Ruminococcus, Eubacterium, Oscillospira, Blautia Anaerotruncus, Coprococcus, Treponema and Lactobacillus spp. Notwithstanding the sample size, it was noteworthy that the core microbiota species assignments identified Fibrobacter succinogenes, Eubacterium coprostanoligenes, Eubacterium hallii, Eubacterium ruminantium, Oscillospira guillermondii, Sporobacter termiditis, Lactobacillus equicursoris, Treponema parvum and Treponema porcinum in all the horses. This is the first study of the faecal microbiota in the Irish thoroughbred racehorse, a significant competitor in the global bloodstock industry. The information gathered in this pilot study provides a foundation for veterinarians and other equine health-associated professionals to begin to analyse the microbiome of performance of racehorses. This study and subsequent work may lead to alternate dietary approaches aimed at minimizing the risk of microbiota-related dysbiosis in these performance animals. Although Irish thoroughbreds are used nationally and internationally as performance animals, very little is known about the core faecal microbiota of these animals. This is the first study to characterize the bacterial microbiota present in the Irish thoroughbred racehorse faeces and elucidate a core microbiome irrespective of diet, animal management and geographical location. © 2013 The Society for Applied Microbiology.

  14. Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential.

    Science.gov (United States)

    Gruninger, Robert J; Puniya, Anil K; Callaghan, Tony M; Edwards, Joan E; Youssef, Noha; Dagar, Sumit S; Fliegerova, Katerina; Griffith, Gareth W; Forster, Robert; Tsang, Adrian; McAllister, Tim; Elshahed, Mostafa S

    2014-10-01

    Anaerobic fungi (phylum Neocallimastigomycota) inhabit the gastrointestinal tract of mammalian herbivores, where they play an important role in the degradation of plant material. The Neocallimastigomycota represent the earliest diverging lineage of the zoosporic fungi; however, understanding of the relationships of the different taxa (both genera and species) within this phylum is in need of revision. Issues exist with the current approaches used for their identification and classification, and recent evidence suggests the presence of several novel taxa (potential candidate genera) that remain to be characterised. The life cycle and role of anaerobic fungi has been well characterised in the rumen, but not elsewhere in the ruminant alimentary tract. Greater understanding of the 'resistant' phase(s) of their life cycle is needed, as is study of their role and significance in other herbivores. Biotechnological application of anaerobic fungi, and their highly active cellulolytic and hemi-cellulolytic enzymes, has been a rapidly increasing area of research and development in the last decade. The move towards understanding of anaerobic fungi using -omics based (genomic, transcriptomic and proteomic) approaches is starting to yield valuable insights into the unique cellular processes, evolutionary history, metabolic capabilities and adaptations that exist within the Neocallimastigomycota. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  15. Effect of urea-supplemented diets on the ruminal bacterial and archaeal community composition of finishing bulls.

    Science.gov (United States)

    Zhou, Zhenming; Meng, Qingxiang; Li, Shengli; Jiang, Lan; Wu, Hao

    2017-08-01

    In this study, we evaluated the effects of urea-supplemented diets on the ruminal bacterial and archaeal communities of finishing bulls using sequencing technology. Eighteen bulls were fed a total mixed ration based on maize silage and concentrate (40:60) and randomly allocated to one of three experimental diets: a basal diet with no urea (UC, 0%), a basal diet supplemented with low urea levels (UL, 0.8% dry matter (DM) basis), and a basal diet supplemented with high urea levels (UH, 2% DM basis). All treatments were iso-nitrogenous (14% crude protein, DM basis) and iso-metabolic energetic (ME = 11.3 MJ/kg, DM basis). After a 12-week feeding trial, DNA was isolated from ruminal samples and used for 16S rRNA gene amplicon sequencing. For bacteria, the most abundant phyla were Firmicutes (44.47%) and Bacteroidetes (41.83%), and the dominant genera were Prevotella (13.17%), Succiniclasticum (4.24%), Butyrivibrio (2.36%), and Ruminococcus (1.93%). Urea supplementation had no effect on most phyla (P > 0.05), while there was a decreasing tendency in phylum TM7 with increasing urea levels (P = 0.0914). Compared to UC, UH had lower abundance of genera Butyrivibrio and Coprococcus (P = 0.0092 and P = 0.0222, respectively). For archaea, the most abundant phylum was Euryarchaeota (99.81% of the sequence reads), and the most abundant genus was Methanobrevibacter (90.87% of the sequence reads). UH increased the abundance of genus Methanobrevibacter and Methanobacterium (P = 0.0299 and P = 0.0007, respectively) and decreased the abundance of vadinCA11 (P = 0.0151). These findings suggest that urea-supplemented diets were associated with a shift in archaeal biodiversity and changes in the bacterial community in the rumen.

  16. Spatial and Species Variations in Bacterial Communities Associated with Corals from the Red Sea as Revealed by Pyrosequencing

    KAUST Repository

    Lee, O. O.

    2012-08-03

    Microbial associations with corals are common and are most likely symbiotic, although their diversity and relationships with environmental factors and host species remain unclear. In this study, we adopted a 16S rRNA gene tag-pyrosequencing technique to investigate the bacterial communities associated with three stony Scleractinea and two soft Octocorallia corals from three locations in the Red Sea. Our results revealed highly diverse bacterial communities in the Red Sea corals, with more than 600 ribotypes detected and up to 1,000 species estimated from a single coral species. Altogether, 21 bacterial phyla were recovered from the corals, of which Gammaproteobacteria was the most dominant group, and Chloroflexi, Chlamydiae, and the candidate phylum WS3 were reported in corals for the first time. The associated bacterial communities varied greatly with location, where environmental conditions differed significantly. Corals from disturbed areas appeared to share more similar bacterial communities, but larger variations in community structures were observed between different coral species from pristine waters. Ordination methods identified salinity and depth as the most influential parameters affecting the abundance of Vibrio, Pseudoalteromonas, Serratia, Stenotrophomonas, Pseudomonas, and Achromobacter in the corals. On the other hand, bacteria such as Chloracidobacterium and Endozoicomonas were more sensitive to the coral species, suggesting that the host species type may be influential in the associated bacterial community, as well. The combined influences of the coral host and environmental factors on the associated microbial communities are discussed. This study represents the first comparative study using tag-pyrosequencing technology to investigate the bacterial communities in Red Sea corals.

  17. Glycoside hydrolase activities of thermophilic bacterial consortia adapted to switchgrass.

    Science.gov (United States)

    Gladden, John M; Allgaier, Martin; Miller, Christopher S; Hazen, Terry C; VanderGheynst, Jean S; Hugenholtz, Philip; Simmons, Blake A; Singer, Steven W

    2011-08-15

    Industrial-scale biofuel production requires robust enzymatic cocktails to produce fermentable sugars from lignocellulosic biomass. Thermophilic bacterial consortia are a potential source of cellulases and hemicellulases adapted to harsher reaction conditions than commercial fungal enzymes. Compost-derived microbial consortia were adapted to switchgrass at 60°C to develop thermophilic biomass-degrading consortia for detailed studies. Microbial community analysis using small-subunit rRNA gene amplicon pyrosequencing and short-read metagenomic sequencing demonstrated that thermophilic adaptation to switchgrass resulted in low-diversity bacterial consortia with a high abundance of bacteria related to thermophilic paenibacilli, Rhodothermus marinus, and Thermus thermophilus. At lower abundance, thermophilic Chloroflexi and an uncultivated lineage of the Gemmatimonadetes phylum were observed. Supernatants isolated from these consortia had high levels of xylanase and endoglucanase activities. Compared to commercial enzyme preparations, the endoglucanase enzymes had a higher thermotolerance and were more stable in the presence of 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]), an ionic liquid used for biomass pretreatment. The supernatants were used to saccharify [C2mim][OAc]-pretreated switchgrass at elevated temperatures (up to 80°C), demonstrating that these consortia are an excellent source of enzymes for the development of enzymatic cocktails tailored to more extreme reaction conditions.

  18. Metagenomic and near full-length 16S rRNA sequence data in support of the phylogenetic analysis of the rumen bacterial community in steers

    Directory of Open Access Journals (Sweden)

    Phillip R. Myer

    2016-09-01

    Full Text Available Amplicon sequencing utilizing next-generation platforms has significantly transformed how research is conducted, specifically microbial ecology. However, primer and sequencing platform biases can confound or change the way scientists interpret these data. The Pacific Biosciences RSII instrument may also preferentially load smaller fragments, which may also be a function of PCR product exhaustion during sequencing. To further examine theses biases, data is provided from 16S rRNA rumen community analyses. Specifically, data from the relative phylum-level abundances for the ruminal bacterial community are provided to determine between-sample variability. Direct sequencing of metagenomic DNA was conducted to circumvent primer-associated biases in 16S rRNA reads and rarefaction curves were generated to demonstrate adequate coverage of each amplicon. PCR products were also subjected to reduced amplification and pooling to reduce the likelihood of PCR product exhaustion during sequencing on the Pacific Biosciences platform. The taxonomic profiles for the relative phylum-level and genus-level abundance of rumen microbiota as a function of PCR pooling for sequencing on the Pacific Biosciences RSII platform were provided. For more information, see “Evaluation of 16S rRNA amplicon sequencing using two next-generation sequencing technologies for phylogenetic analysis of the rumen bacterial community in steers” P.R. Myer, M. Kim, H.C. Freetly, T.P.L. Smith (2016 [1]. Keywords: 16S rRNA gene, MiSeq, Pacific Biosciences, Rumen microbiome

  19. Cultivable Bacterial Microbiota of Northern Bobwhite (Colinus virginianus): A New Reservoir of Antimicrobial Resistance?

    Science.gov (United States)

    Su, Hongwen; McKelvey, Jessica; Rollins, Dale; Zhang, Michael; Brightsmith, Donald J.; Derr, James; Zhang, Shuping

    2014-01-01

    The northern bobwhite (Colinus virginianus) is an ecologically and economically important avian species. At the present time, little is known about the microbial communities associated with these birds. As the first step to create a quail microbiology knowledge base, the current study conducted an inventory of cultivable quail tracheal, crop, cecal, and cloacal microbiota and associated antimicrobial resistance using a combined bacteriology and DNA sequencing approach. A total of 414 morphologically unique bacterial colonies were selected from nonselective aerobic and anaerobic cultures, as well as selective and enrichment cultures. Analysis of the first 500-bp 16S rRNA gene sequences in conjunction with biochemical identifications revealed 190 non-redundant species-level taxonomic units, representing 160 known bacterial species and 30 novel species. The bacterial species were classified into 4 phyla, 14 orders, 37 families, and 59 or more genera. Firmicutes was the most commonly encountered phylum (57%) followed by Actinobacteria (24%), Proteobacteria (17%) and Bacteroidetes (0.02%). Extensive diversity in the species composition of quail microbiota was observed among individual birds and anatomical locations. Quail microbiota harbored several opportunistic pathogens, such as E. coli and Ps. aeruginosa, as well as human commensal organisms, including Neisseria species. Phenotypic characterization of selected bacterial species demonstrated a high prevalence of resistance to the following classes of antimicrobials: phenicol, macrolide, lincosamide, quinolone, and sulphate. Data from the current investigation warrant further investigation on the source, transmission, pathology, and control of antimicrobial resistance in wild quail populations. PMID:24937705

  20. Cultivable bacterial microbiota of northern bobwhite (Colinus virginianus: a new reservoir of antimicrobial resistance?

    Directory of Open Access Journals (Sweden)

    Hongwen Su

    Full Text Available The northern bobwhite (Colinus virginianus is an ecologically and economically important avian species. At the present time, little is known about the microbial communities associated with these birds. As the first step to create a quail microbiology knowledge base, the current study conducted an inventory of cultivable quail tracheal, crop, cecal, and cloacal microbiota and associated antimicrobial resistance using a combined bacteriology and DNA sequencing approach. A total of 414 morphologically unique bacterial colonies were selected from nonselective aerobic and anaerobic cultures, as well as selective and enrichment cultures. Analysis of the first 500-bp 16S rRNA gene sequences in conjunction with biochemical identifications revealed 190 non-redundant species-level taxonomic units, representing 160 known bacterial species and 30 novel species. The bacterial species were classified into 4 phyla, 14 orders, 37 families, and 59 or more genera. Firmicutes was the most commonly encountered phylum (57% followed by Actinobacteria (24%, Proteobacteria (17% and Bacteroidetes (0.02%. Extensive diversity in the species composition of quail microbiota was observed among individual birds and anatomical locations. Quail microbiota harbored several opportunistic pathogens, such as E. coli and Ps. aeruginosa, as well as human commensal organisms, including Neisseria species. Phenotypic characterization of selected bacterial species demonstrated a high prevalence of resistance to the following classes of antimicrobials: phenicol, macrolide, lincosamide, quinolone, and sulphate. Data from the current investigation warrant further investigation on the source, transmission, pathology, and control of antimicrobial resistance in wild quail populations.

  1. Bacterial Community in the Crop of the Hoatzin, a Neotropical Folivorous Flying Bird▿ †

    Science.gov (United States)

    Godoy-Vitorino, Filipa; Ley, Ruth E.; Gao, Zhan; Pei, Zhiheng; Ortiz-Zuazaga, Humberto; Pericchi, Luis R.; Garcia-Amado, Maria A.; Michelangeli, Fabian; Blaser, Martin J.; Gordon, Jeffrey I.; Domínguez-Bello, Maria G.

    2008-01-01

    The hoatzin is unique among known avian species because of the fermentative function of its enlarged crop. A small-bodied flying foregut fermenter is a paradox, and this bird provides an interesting model to examine how diet selection and the gut microbiota contribute to maximizing digestive efficiency. Therefore, we characterized the bacterial population in the crop of six adult hoatzins captured from the wild. A total of 1,235 16S rRNA gene sequences were grouped into 580 phylotypes (67% of the pooled species richness sampled, based on Good's coverage estimator, with CACE and Chao1 estimates of 1,709 and 1,795 species-level [99% identity] operational taxonomic units, respectively). Members of 9 of the ∼75 known phyla in Bacteria were identified in this gut habitat; the Firmicutes were dominant (67% of sequences, belonging to the classes Clostridia, Mollicutes, and Bacilli), followed by the Bacteroidetes (30%, mostly in the order Bacteroidales), Proteobacteria (1.8%), and Lentisphaerae, Verrucomicrobia, TM7, Spirochaetes, Actinobacteria, and Aminanaerobia (all <0.1%). The novelty in this ecosystem is great; 94% of the phylotypes were unclassified at the “species” level and thus likely include novel cellulolytic lineages. PMID:18689523

  2. Light structures phototroph, bacterial and fungal communities at the soil surface.

    Directory of Open Access Journals (Sweden)

    Lawrence O Davies

    Full Text Available The upper few millimeters of soil harbour photosynthetic microbial communities that are structurally distinct from those of underlying bulk soil due to the presence of light. Previous studies in arid zones have demonstrated functional importance of these communities in reducing soil erosion, and enhancing carbon and nitrogen fixation. Despite being widely distributed, comparative understanding of the biodiversity of the soil surface and underlying soil is lacking, particularly in temperate zones. We investigated the establishment of soil surface communities on pasture soil in microcosms exposed to light or dark conditions, focusing on changes in phototroph, bacterial and fungal communities at the soil surface (0-3 mm and bulk soil (3-12 mm using ribosomal marker gene analyses. Microbial community structure changed with time and structurally similar phototrophic communities were found at the soil surface and in bulk soil in the light exposed microcosms suggesting that light can influence phototroph community structure even in the underlying bulk soil. 454 pyrosequencing showed a significant selection for diazotrophic cyanobacteria such as Nostoc punctiforme and Anabaena spp., in addition to the green alga Scenedesmus obliquus. The soil surface also harboured distinct heterotrophic bacterial and fungal communities in the presence of light, in particular, the selection for the phylum Firmicutes. However, these light driven changes in bacterial community structure did not extend to the underlying soil suggesting a discrete zone of influence, analogous to the rhizosphere.

  3. Bacterial biodiversity analysis of a contaminated soil from the Chernobyl exclusion zone and characterization of the committed interaction of a Microbacterium strain with uranium

    International Nuclear Information System (INIS)

    Theodorakopoulos, Nicolas

    2013-01-01

    The nuclear power plants accidents of Chernobyl and Fukushima demonstrate the importance of the understanding of the transfer of the radioactive contamination in the environment and its ecological consequences. Although certain studies have been realized on superior organisms of the food chain, studies on telluric bacterial communities are scarce. The latter play nevertheless an essential role in the mobility of contaminants in soils by decreasing or improving their transfer towards other compartments (water, vegetables and animals). Moreover radionuclides (RNs) can have toxic effects on bacteria, leading to an inhibition of their participation in such transfer. The objectives of this study were (1) to estimate the impact of the radioactive contamination on bacterial communities belonging to a soil of the Chernobyl exclusion zone (trench T22) and (2) to study the uranium-bacteria interactions of a resistant strain, isolated from this soil. The various techniques used to characterize the bacterial diversity (culture of bacteria, DGGE, 454 pyro-sequencing) all testified of the multiplicity and the abundance of the bacterial communities in spite of the contamination. An impact on the community structure was difficult to assess by DGGE or cultural approach, but was nevertheless highlighted by the use of pyro-sequencing, suggesting the presence of species more adapted to the contaminated soil conditions. A specific molecular tool dedicated to the search of bacteria affiliated to the known radiation resistant Deinococcus-Thermus phylum (for example the Deinococcus radiodurans specie survives after an irradiation of several kGy) was developed. However it did not reveal the presence of bacteria affiliated to such a phylum in the studied soil. In parallel to the study of the bacterial biodiversity, about fifty culturable bacteria were isolated from this site and were used as a support to select a species (Microbacterium) capable to survive strong U(VI) concentrations. The

  4. Spatiotemporal dynamics of the bacterial microbiota on lacustrine Cladophora glomerata (Chlorophyta).

    Science.gov (United States)

    Braus, Michael J; Graham, Linda E; Whitman, Thea L

    2017-12-01

    The branched periphytic green alga Cladophora glomerata, often abundant in nearshore waters of lakes and rivers worldwide, plays important ecosystem roles, some mediated by epibiotic microbiota that benefit from host-provided surface, organic C, and O 2 . Previous microscopy and high-throughput sequencing studies have indicated surprising epibiont taxonomic and functional diversity, but have not included adequate consideration of sample replication or the potential for spatial and temporal variation. Here, we report the results of 16S rRNA amplicon-based phylum-to-genus taxonomic analysis of Cladophora-associated bacterial epibiota sampled in replicate from three microsites and at six times during the open-water season of 2014, from the same lake locale (Picnic Point, Lake Mendota, Dane Co., WI, USA) explored by high-throughput sequencing studies in two previous years. Statistical methods were used to test null hypotheses that the bacterial community: (i) is homogeneous across microsites tested, and (ii) does not change over the course of a growth season or among successive years. Results indicated a dynamic microbial community that is more strongly influenced by sampling day during the growth season than by microsite variation. A surprising diversity of bacterial genera known to be associated with the key function of methane-oxidation (methanotrophy), including relatively high-abundance of Crenothrix, Methylomonas, Methylovulum, and Methylocaldum-showed intraseasonal and interannual variability possibly related to temperature differences, and microsite preferences possibly related to variation in methane abundance. By contrast, a core assemblage of bacterial genera seems to persist over a growth season and from year to year, possibly transmitted by a persistent attached host resting stage. © 2017 Phycological Society of America.

  5. [Changes of bacterial community structure on reusing domestic sewage of Daoxianghujing Hotel to landscape water].

    Science.gov (United States)

    Zhu, Jing-nan; Wang, Xiao-dan; Zhai, Zhen-hua; Ma, Wen-lin; Li, Rong-qi; Wang, Xue-lian; Li, Yan-hong

    2010-05-01

    A 16S rDNA library was used to evaluate the bacterial diversity and identify dominant groups of bacteria in different treatment pools in the domestic sewage system of the Beijing Daoxianghujing Hotel. The results revealed that there were many types of bacteria in the hotel domestic sewage, and the bacterial Shannon-Weaver diversity index was 3.12. In addition, epsilon Proteobacteria was found to be the dominant group with the ratio of 32%. In addition, both the CFB phylum, Fusobacteria, gamma Proteobacteria and Firmicutes were also reached to 9%-15%. After treated with the reclaimed water station, the bacterial Shannon-Weaver diversity index was reduced to 2. 41 and beta Proteobacteria became the dominant group and occupied 73% of the total clones. However, following artificial wetland training, the bacterial Shannon-Weaver diversity index in the sample increased to 3.38, Actinobacteria arrived to 33% and became the most dominant group; Cyanobacteria reached to 26%, and was the second dominant group. But, the control sample comprised 38% Cyanobacteria, and mainly involved in Cyanobium, Synechoccus and Microcystis, with ratios of 47.1%, 17.6% and 8.8%, respectively. Some bacteria of Microcystis aenruginosa were also detected, which probably resulted in the light bloom finally. Therefore, the bacterial diversity and community structures changed in response to treatment of the hotel domestic sewage; there was no cyanobacteria bloom explosion in the treated water. This study will aid in investigation the changes of microbial ecology in different types of water and providing the useful information for enhancing the cyanobacteria blooms control from ecological angle.

  6. Anthropogenic impact on biogenic substance distribution and bacterial community in sediment along the Yarlung Tsangpo River on Tibet Plateau, China

    Science.gov (United States)

    Wang, C.; Peifang, W.; Wang, X.; Hou, J.; Miao, L.

    2017-12-01

    Lotic river system plays an important part in water-vapor transfer and biogenic substances migration and transformation. Anthropogenic activities, including wastewater discharging and river damming, have altered river ecosystem and continuum. However, as the longest alpine river in China and suffered from increasing anthropogenic activities, the Yarlung Tsangpo River has been rarely studied. Recently, more attention has also been paid to the bacteria in river sediment as they make vital contributions to the biogeochemical nutrient cycling. Here, the distribution of biogenic substances, including nitrogen, phosphorus, silicon and carbon, was explored in both water and sediment of the Yarlung Tsangpo River. By using the next generation 16S rRNA sequencing, the bacterial diversity and structure in river sediment were presented. The results indicated that the nutrient concentrations increased in densely populated sites, revealing that biogenic substance distribution corresponded with the intensity of anthropogenic activity along the river. Nitrogen, phosphorus, silicon and carbon in water and sediment were all retained by the Zangmu Dam which is the only dam in the mainstream of the river. Moreover, the river damming decreased the biomass and diversity of bacteria in sediment, but no significant alteration of community structure was observed upstream and downstream of the dam. The most dominant bacteria all along the river was Proteobacteria. Meanwhile, Verrucomicrobia and Firmicutes also dominated the community composition in upstream and downstream of the river, respectively. In addition, total organic carbon (TOC) was proved to be the most important environmental factor shaping the bacterial community in river sediment. Our study offered the preliminary insights into the biogenic substance distribution and bacterial community in sediment along an alpine river which was affected by anthropogenic activities. In the future, more studies are needed to reveal the

  7. High-throughput sequencing for the detection of the bacterial and fungal diversity in Mongolian naturally fermented cow's milk in Russia.

    Science.gov (United States)

    Liu, Wenjun; Zheng, Yi; Kwok, Lai-Yu; Sun, Zhihong; Zhang, Jiachao; Guo, Zhuang; Hou, Qiangchuan; Menhe, Bilige; Zhang, Heping

    2015-02-22

    Traditional fermented dairy products are major components of the typical Mongolian diet since ancient times. However, almost all the previous studies on the microbial composition of traditional Mongolian fermented dairy products analyzed food samples from the Chinese Mongolian region and Mongolia but not the Russian Mongolian region. In this study, the bacterial and fungal community diversity of nineteen naturally fermented cow's milk (NFCM) samples from local Mongolian families residing in Kalmykia and Chita of Russia was investigated with pyrosequencing. Firmicutes and Ascomycota were the predominant phyla respectively for bacteria and fungi. The abundance of the bacterial phylum Acidobacteria was considerably different between the samples from the two regions. At genus level, Lactobacillus and Pichia were the predominating bacterial and fungal genera, respectively, while six bacterial genera significantly differed between the Kalmykia (enrichment of Aeromonas, Bacillus, Clostridium, Streptococcus, Vogesella) and Chita (enrichment of Lactococcus) samples. The results of principal coordinate analysis (PCoA) based on the bacterial or fungal composition of the Kalmykia and Chita samples revealed a different microbiota structure between the samples collected in these two locations. The redundancy analysis (RDA) identified 60 bacterial and 21 fungal OTUs as the key variables responsible for such microbiota structural difference. Our results suggest that structural differences existed in the microbiota of NFCM between Kalmykia and Chita. The difference in geographic environment may be an important factor influencing the microbial diversity of NFCM made by the Mongolians in Russia.

  8. A Unique Pool of Compatible Solutes on Rhodopirellula baltica, Member of the Deep-Branching Phylum Planctomycetes.

    Directory of Open Access Journals (Sweden)

    Ana Filipa d'Avó

    Full Text Available The intracellular accumulation of small organic solutes was described in the marine bacterium Rhodopirellula baltica, which belongs to the globally distributed phylum Planctomycetes whose members exhibit an intriguing lifestyle and cell morphology. Sucrose, α-glutamate, trehalose and mannosylglucosylglycerate (MGG are the main solutes involved in the osmoadaptation of R. baltica. The ratio and total intracellular organic solutes varied significantly in response to an increase in salinity, temperature and nitrogen content. R. baltica displayed an initial response to both osmotic and thermal stresses that includes α-glutamate accumulation. This trend was followed by a rather unique and complex osmoadaptation mechanism characterized by a dual response to sub-optimal and supra-optimal salinities. A reduction in the salinity to sub-optimal conditions led primarily to the accumulation of trehalose. In contrast, R. baltica responded to salt stress mostly by increasing the intracellular levels of sucrose. The switch between the accumulation of trehalose and sucrose was by far the most significant effect caused by increasing the salt levels of the medium. Additionally, MGG accumulation was found to be salt- as well as nitrogen-dependent. MGG accumulation was regulated by nitrogen levels replacing α-glutamate as a K(+ counterion in nitrogen-poor environments. This is the first report of the accumulation of compatible solutes in the phylum Planctomycetes and of the MGG accumulation in a mesophilic organism.

  9. Pyrosequencing Reveals Soil Enzyme Activities and Bacterial Communities Impacted by Graphene and Its Oxides.

    Science.gov (United States)

    Rong, Yan; Wang, Yi; Guan, Yina; Ma, Jiangtao; Cai, Zhiqiang; Yang, Guanghua; Zhao, Xiyue

    2017-10-25

    Graphene (GN) and graphene oxides (GOs) are novel carbon nanomaterial; they have been attracting much attention because of their excellent properties and are widely applied in many areas, including energy, electronics, biomedicine, environmental science, etc. With industrial production and consumption of GN/GO, they will inevitably enter the soil and water environments. GN/GO may directly cause certain harm to microorganisms and lead to ecological and environmental risks. GOs are GN derivatives with abundant oxygen-containing functional groups in their graphitic backbone. The structure and chemistry of GN show obvious differences compared to those of GO, which lead to the different environmental behaviors. In this study, four different types of soil (S1-S4) were employed to investigate the effect of GN and GO on soil enzymatic activity, microbial population, and bacterial community through pyrosequencing of 16S rRNA gene amplicons. The results showed that soil enzyme activity (invertase, protease, catalase, and urease) and microbial population (bacteria, actinomycetes, and fungi) changed after GN/GO release into soils. Soil microbial community species are more rich, and the diversity also increases after GO/GN application. The phylum of Proteobacteria increased at 90 days after treatment (DAT) after GN/GO application. The phylum of Chloroflexi occurred after GN application at 90 DAT in S1 soil and reached 4.6%. Proteobacteria was the most abundant phylum in S2, S3, and S4 soils; it ranged from 43.6 to 71.4% in S2 soil, from 45.6 to 73.7% in S3 soil, and from 38.1 to 56.7% in S4 soil. The most abundant genera were Bacillus (37.5-47.0%) and Lactococcus (28.0-39.0%) in S1 soil, Lysobacter and Flavobacterium in S2 soil, Pedobacter in S3 soil, and Massilia in S4 soil. The effect of GN and GO on the soil microbial community is time-dependent, and there are no significant differences between the samples at 10 and 90 DAT.

  10. Diversity of bacterial communities along a petroleum contamination gradient in desert soils.

    Science.gov (United States)

    Abed, Raeid M M; Al-Kindi, Sumaiya; Al-Kharusi, Samiha

    2015-01-01

    Microbial communities in oil-polluted desert soils have been rarely studied compared to their counterparts from freshwater and marine environments. We investigated bacterial diversity and changes therein in five desert soils exposed to different levels of oil pollution. Automated rRNA intergenic spacer (ARISA) analysis profiles showed that the bacterial communities of the five soils were profoundly different (analysis of similarities (ANOSIM), R = 0.45, P pollution levels. Multivariate analyses of ARISA profiles revealed that the microbial communities in the S soil, which contains the highest level of contamination, were different from the other soils and formed a completely separate cluster. A total of 16,657 ribosomal sequences were obtained, with 42-89 % of these sequences belonging to the phylum Proteobacteria. While sequences belonging to Betaproteobacteria, Gammaproteobacteria, Bacilli, and Actinobacteria were encountered in all soils, sequences belonging to anaerobic bacteria from the classes Deltaproteobacteria, Clostridia, and Anaerolineae were only detected in the S soil. Sequences belonging to the genus Terriglobus of the class Acidobacteria were only detected in the B3 soil with the lowest level of contamination. Redundancy analysis (RDA) showed that oil contamination level was the most determinant factor that explained variations in the microbial communities. We conclude that the exposure to different levels of oil contamination exerts a strong selective pressure on bacterial communities and that desert soils are rich in aerobic and anaerobic bacteria that could potentially contribute to the degradation of hydrocarbons.

  11. Effect of sugarcane burning or green harvest methods on the Brazilian Cerrado soil bacterial community structure.

    Science.gov (United States)

    Rachid, Caio T C C; Santos, Adriana L; Piccolo, Marisa C; Balieiro, Fabiano C; Coutinho, Heitor L C; Peixoto, Raquel S; Tiedje, James M; Rosado, Alexandre S

    2013-01-01

    The Brazilian Cerrado is one of the most important biodiversity reservoirs in the world. The sugarcane cultivation is expanding in this biome and necessitates the study of how it may impact the soil properties of the Cerrado. There is a lack of information especially about the impacts of different sugarcane management on the native bacterial communities of Cerrado soil. Therefore, our objective was to evaluate and compare the soil bacterial community structure of the Cerrado vegetation with two sugarcane systems. We evaluated samples under native vegetation and the impact of the two most commonly used management strategies for sugarcane cultivation (burnt cane and green cane) on this diversity using pyrosequencing and quantitative PCR of the rrs gene (16S rRNA). Nineteen different phyla were identified, with Acidobacteria (≈35%), Proteobacteria (≈24%) and Actinobacteria (≈21%) being the most abundant. Many of the sequences were represented by few operational taxonomic units (OTUs, 3% of dissimilarity), which were found in all treatments. In contrast, there were very strong patterns of local selection, with many OTUs occurring only in one sample. Our results reveal a complex bacterial diversity, with a large fraction of microorganisms not yet described, reinforcing the importance of this biome. As possible sign of threat, the qPCR detected a reduction of the bacterial population in agricultural soils compared with native Cerrado soil communities. We conclude that sugarcane cultivation promoted significant structural changes in the soil bacterial community, with Firmicutes phylum and Acidobacteria classes being the groups most affected.

  12. Bacterial community structure in High-Arctic snow and freshwater as revealed by pyrosequencing of 16S rRNA genes and cultivation

    Directory of Open Access Journals (Sweden)

    Annette K. Møller

    2013-04-01

    Full Text Available The bacterial community structures in High-Arctic snow over sea ice and an ice-covered freshwater lake were examined by pyrosequencing of 16S rRNA genes and 16S rRNA gene sequencing of cultivated isolates. Both the pyrosequence and cultivation data indicated that the phylogenetic composition of the microbial assemblages was different within the snow layers and between snow and freshwater. The highest diversity was seen in snow. In the middle and top snow layers, Proteobacteria, Bacteroidetes and Cyanobacteria dominated, although Actinobacteria and Firmicutes were relatively abundant also. High numbers of chloroplasts were also observed. In the deepest snow layer, large percentages of Firmicutes and Fusobacteria were seen. In freshwater, Bacteroidetes, Actinobacteria and Verrucomicrobia were the most abundant phyla while relatively few Proteobacteria and Cyanobacteria were present. Possibly, light intensity controlled the distribution of the Cyanobacteria and algae in the snow while carbon and nitrogen fixed by these autotrophs in turn fed the heterotrophic bacteria. In the lake, a probable lower light input relative to snow resulted in low numbers of Cyanobacteria and chloroplasts and, hence, limited input of organic carbon and nitrogen to the heterotrophic bacteria. Thus, differences in the physicochemical conditions may play an important role in the processes leading to distinctive bacterial community structures in High-Arctic snow and freshwater.

  13. Bacterial community composition of South China Sea sediments through pyrosequencing-based analysis of 16S rRNA genes.

    Science.gov (United States)

    Zhu, Daochen; Tanabe, Shoko-Hosoi; Yang, Chong; Zhang, Weimin; Sun, Jianzhong

    2013-01-01

    Subseafloor sediments accumulate large amounts of organic and inorganic materials that contain a highly diverse microbial ecosystem. The aim of this study was to survey the bacterial community of subseafloor sediments from the South China Sea. Pyrosequencing of over 265,000 amplicons of the V3 hypervariable region of the 16S ribosomal RNA gene was performed on 16 sediment samples collected from multiple locations in the northern region of the South China Sea from depths ranging from 35 to 4000 m. A total of 9,726 operational taxonomic units (OTUs; between 695 and 2819 unique OTUs per sample) at 97% sequence similarity level were generated. In total, 40 bacterial phyla including 22 formally described phyla and 18 candidate phyla, with Proteobacteria, Firmicutes, Planctomycetes, Actinobacteria and Chloroflexi being most diverse, were identified. The most abundant phylotype, accounting for 42.6% of all sequences, belonged to Gammaproteobacteria, which possessed absolute predominance in the samples analyzed. Among the 18 candidate phyla, 12 were found for the first time in the South China Sea. This study provided a novel insight into the composition of bacterial communities of the South China Sea subseafloor. Furthermore, abundances and community similarity analysis showed that the compositions of the bacterial communities are very similar at phylum level at different depths from 35-4000 m.

  14. Bacterial community composition of South China Sea sediments through pyrosequencing-based analysis of 16S rRNA genes.

    Directory of Open Access Journals (Sweden)

    Daochen Zhu

    Full Text Available BACKGROUND: Subseafloor sediments accumulate large amounts of organic and inorganic materials that contain a highly diverse microbial ecosystem. The aim of this study was to survey the bacterial community of subseafloor sediments from the South China Sea. METHODOLOGY/PRINCIPAL FINDINGS: Pyrosequencing of over 265,000 amplicons of the V3 hypervariable region of the 16S ribosomal RNA gene was performed on 16 sediment samples collected from multiple locations in the northern region of the South China Sea from depths ranging from 35 to 4000 m. A total of 9,726 operational taxonomic units (OTUs; between 695 and 2819 unique OTUs per sample at 97% sequence similarity level were generated. In total, 40 bacterial phyla including 22 formally described phyla and 18 candidate phyla, with Proteobacteria, Firmicutes, Planctomycetes, Actinobacteria and Chloroflexi being most diverse, were identified. The most abundant phylotype, accounting for 42.6% of all sequences, belonged to Gammaproteobacteria, which possessed absolute predominance in the samples analyzed. Among the 18 candidate phyla, 12 were found for the first time in the South China Sea. CONCLUSIONS: This study provided a novel insight into the composition of bacterial communities of the South China Sea subseafloor. Furthermore, abundances and community similarity analysis showed that the compositions of the bacterial communities are very similar at phylum level at different depths from 35-4000 m.

  15. Measuring bacterial activity and community composition at high hydrostatic pressure using a novel experimental approach: a pilot study.

    Science.gov (United States)

    Wannicke, Nicola; Frindte, Katharina; Gust, Giselher; Liskow, Iris; Wacker, Alexander; Meyer, Andreas; Grossart, Hans-Peter

    2015-05-01

    In this pilot study, we describe a high-pressure incubation system allowing multiple subsampling of a pressurized culture without decompression. The system was tested using one piezophilic (Photobacterium profundum), one piezotolerant (Colwellia maris) bacterial strain and a decompressed sample from the Mediterranean deep sea (3044 m) determining bacterial community composition, protein production (BPP) and cell multiplication rates (BCM) up to 27 MPa. The results showed elevation of BPP at high pressure was by a factor of 1.5 ± 1.4 and 3.9 ± 2.3 for P. profundum and C. maris, respectively, compared to ambient-pressure treatments and by a factor of 6.9 ± 3.8 fold in the field samples. In P. profundum and C. maris, BCM at high pressure was elevated (3.1 ± 1.5 and 2.9 ± 1.7 fold, respectively) compared to the ambient-pressure treatments. After 3 days of incubation at 27 MPa, the natural bacterial deep-sea community was dominated by one phylum of the genus Exiguobacterium, indicating the rapid selection of piezotolerant bacteria. In future studies, our novel incubation system could be part of an isopiestic pressure chain, allowing more accurate measurement of bacterial activity rates which is important both for modeling and for predicting the efficiency of the oceanic carbon pump. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Illumina amplicon sequencing of 16S rRNA tag reveals bacterial community development in the rhizosphere of apple nurseries at a replant disease site and a new planting site.

    Directory of Open Access Journals (Sweden)

    Jian Sun

    Full Text Available We used a next-generation, Illumina-based sequencing approach to characterize the bacterial community development of apple rhizosphere soil in a replant site (RePlant and a new planting site (NewPlant in Beijing. Dwarfing apple nurseries of 'Fuji'/SH6/Pingyitiancha trees were planted in the spring of 2013. Before planting, soil from the apple rhizosphere of the replant site (ReSoil and from the new planting site (NewSoil was sampled for analysis on the Illumina MiSeq platform. In late September, the rhizosphere soil from both sites was resampled (RePlant and NewPlant. More than 16,000 valid reads were obtained for each replicate, and the community was composed of five dominant groups (Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes and Actinobacteria. The bacterial diversity decreased after apple planting. Principal component analyses revealed that the rhizosphere samples were significantly different among treatments. Apple nursery planting showed a large impact on the soil bacterial community, and the community development was significantly different between the replanted and newly planted soils. Verrucomicrobia were less abundant in RePlant soil, while Pseudomonas and Lysobacter were increased in RePlant compared with ReSoil and NewPlant. Both RePlant and ReSoil showed relatively higher invertase and cellulase activities than NewPlant and NewSoil, but only NewPlant soil showed higher urease activity, and this soil also had the higher plant growth. Our experimental results suggest that planting apple nurseries has a significant impact on soil bacterial community development at both replant and new planting sites, and planting on new site resulted in significantly higher soil urease activity and a different bacterial community composition.

  17. Robustness of the bacterial community in the cabbage white butterfly larval midgut.

    Science.gov (United States)

    Robinson, Courtney J; Schloss, Patrick; Ramos, Yolied; Raffa, Kenneth; Handelsman, Jo

    2010-02-01

    Microbial communities typically vary in composition and structure over space and time. Little is known about the inherent characteristics of communities that govern various drivers of these changes, such as random variation, changes in response to perturbation, or susceptibility to invasion. In this study, we use 16S ribosomal RNA gene sequences to describe variation among bacterial communities in the midguts of cabbage white butterfly (Pieris rapae) larvae and examine the influence of community structure on susceptibility to invasion. We compared communities in larvae experiencing the same conditions at different times (temporal variation) or fed different diets (perturbation). The most highly represented phylum was Proteobacteria, which was present in all midgut communities. The observed species richness ranged from six to 15, and the most abundant members affiliated with the genera Methylobacteria, Asaia, Acinetobacter, Enterobacter, and Pantoea. Individual larvae subjected to the same conditions at the same time harbored communities that were highly similar in structure and membership, whereas the communities observed within larval populations changed with diet and over time. In addition, structural changes due to perturbation coincided with enhanced susceptibility to invasion by Enterobacter sp. NAB3R and Pantoea stewartii CWB600, suggesting that resistance to invasion is in part governed by community structure. These findings along with the observed conservation of membership at the phylum level, variation in structure and membership at lower taxonomic levels, and its relative simplicity make the cabbage white butterfly larval community an attractive model for studying community dynamics and robustness.

  18. Differences between bacterial communities in the gut of a soil-feeding termite (Cubitermes niokoloensis) and its mounds.

    Science.gov (United States)

    Fall, Saliou; Hamelin, Jérôme; Ndiaye, Farma; Assigbetse, Komi; Aragno, Michel; Chotte, Jean Luc; Brauman, Alain

    2007-08-01

    In tropical ecosystems, termite mound soils constitute an important soil compartment covering around 10% of African soils. Previous studies have shown (S. Fall, S. Nazaret, J. L. Chotte, and A. Brauman, Microb. Ecol. 28:191-199, 2004) that the bacterial genetic structure of the mounds of soil-feeding termites (Cubitermes niokoloensis) is different from that of their surrounding soil. The aim of this study was to characterize the specificity of bacterial communities within mounds with respect to the digestive and soil origins of the mound. We have compared the bacterial community structures of a termite mound, termite gut sections, and surrounding soil using PCR-denaturing gradient gel electrophoresis (DGGE) analysis and cloning and sequencing of PCR-amplified 16S rRNA gene fragments. DGGE analysis revealed a drastic difference between the genetic structures of the bacterial communities of the termite gut and the mound. Analysis of 266 clones, including 54 from excised bands, revealed a high level of diversity in each biota investigated. The soil-feeding termite mound was dominated by the Actinobacteria phylum, whereas the Firmicutes and Proteobacteria phyla dominate the gut sections of termites and the surrounding soil, respectively. Phylogenetic analyses revealed a distinct clustering of Actinobacteria phylotypes between the mound and the surrounding soil. The Actinobacteria clones of the termite mound were diverse, distributed among 10 distinct families, and like those in the termite gut environment lightly dominated by the Nocardioidaceae family. Our findings confirmed that the soil-feeding termite mound (C. niokoloensis) represents a specific bacterial habitat in the tropics.

  19. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota.

    Science.gov (United States)

    Bulgarelli, Davide; Rott, Matthias; Schlaeppi, Klaus; Ver Loren van Themaat, Emiel; Ahmadinejad, Nahal; Assenza, Federica; Rauf, Philipp; Huettel, Bruno; Reinhardt, Richard; Schmelzer, Elmon; Peplies, Joerg; Gloeckner, Frank Oliver; Amann, Rudolf; Eickhorst, Thilo; Schulze-Lefert, Paul

    2012-08-02

    The plant root defines the interface between a multicellular eukaryote and soil, one of the richest microbial ecosystems on Earth. Notably, soil bacteria are able to multiply inside roots as benign endophytes and modulate plant growth and development, with implications ranging from enhanced crop productivity to phytoremediation. Endophytic colonization represents an apparent paradox of plant innate immunity because plant cells can detect an array of microbe-associated molecular patterns (also known as MAMPs) to initiate immune responses to terminate microbial multiplication. Several studies attempted to describe the structure of bacterial root endophytes; however, different sampling protocols and low-resolution profiling methods make it difficult to infer general principles. Here we describe methodology to characterize and compare soil- and root-inhabiting bacterial communities, which reveals not only a function for metabolically active plant cells but also for inert cell-wall features in the selection of soil bacteria for host colonization. We show that the roots of Arabidopsis thaliana, grown in different natural soils under controlled environmental conditions, are preferentially colonized by Proteobacteria, Bacteroidetes and Actinobacteria, and each bacterial phylum is represented by a dominating class or family. Soil type defines the composition of root-inhabiting bacterial communities and host genotype determines their ribotype profiles to a limited extent. The identification of soil-type-specific members within the root-inhabiting assemblies supports our conclusion that these represent soil-derived root endophytes. Surprisingly, plant cell-wall features of other tested plant species seem to provide a sufficient cue for the assembly of approximately 40% of the Arabidopsis bacterial root-inhabiting microbiota, with a bias for Betaproteobacteria. Thus, this root sub-community may not be Arabidopsis-specific but saprophytic bacteria that would naturally be found

  20. Comparison of bacterial culture and 16S rRNA community profiling by clonal analysis and and pyrosequencing for the characterisation of the caries-associated microbiome

    Directory of Open Access Journals (Sweden)

    Kathrin eSchulze-Schweifing

    2014-11-01

    Full Text Available Culture-independent analyses have greatly expanded knowledge regarding the composition of complex bacterial communities including those associated with oral diseases. A consistent finding from such studies, however, has been the under-reporting of members of the phylum Actinobacteria. In this study, five pairs of broad range primers targeting 16S rRNA genes were used in clonal analysis of 6 samples collected from tooth lesions involving dentine in subjects with active caries. Samples were also subjected to cultural analysis and pyrosequencing by means of the 454 platform. A diverse bacterial community of 229 species-level taxa was revealed by culture and clonal analysis, dominated by representatives of the genera Prevotella, Lactobacillus, Selenomonas and Streptococcus. The five most abundant species were: Lactobacillus gasseri, Prevotella denticola, Alloprevotella tannerae, S. mutans and Streptococcus sp. HOT 070, which together made up 31.6 % of the sequences. Two samples were dominated by lactobacilli, while the remaining samples had low numbers of lactobacilli but significantly higher numbers of Prevotella species. The different primer pairs produced broadly similar data but proportions of the phylum Bacteroidetes were significantly higher when primer 1387R was used. All of the primer sets underestimated the proportion of Actinobacteria compared to culture. Pyrosequencing analysis of the samples was performed to a depth of sequencing of 4293 sequences per sample which were identified to 264 species-level taxa, and resulted in significantly higher coverage estimates than the clonal analysis. Pyrosequencing, however, also underestimated the relative abundance of Actinobacteria compared to culture.

  1. The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits

    Science.gov (United States)

    C.L. Schoch; G.-H. Sung; F. Lopez-Giraldez

    2009-01-01

    We present a six-gene, 420-species maximum-likelihood phylogeny of Ascomycota, the largest phylum of fungi. This analysis is the most taxonomically complete to date with species sampled from all 15 currently circumscribed classes. A number of superclass-level nodes that have previously evaded resolution and were unnamed in classifications of the fungi are resolved for...

  2. First survey on ecological host range of aphid pathogenic fungi (Phylum Entomophthoromycota) in Tunisia

    DEFF Research Database (Denmark)

    Ben Fekih, Ibtissem; Boukhris-Bouhachem, Sonia; Allagui, Mohamed Bechir

    2015-01-01

    Summary. The natural occurrence of fungal pathogens of aphids and their ecological host range was investigated in Tunisia from 2009 to 2012. The survey focused on aphid infesting different crops and weeds and included 10 different aphid species. Samples were collected from eight agricultural crops...... (Entomophthorales: Ancylistaceae) and Neozygites fresenii (Neozygitales: Neozygitaceae). The occurrence of entomophthoralean fungi depended on the sampling area, the bioclimatic zone, and aphid species. P. neoaphidis and E. planchoniana were the predominant pathogens infecting a wide range of aphid species whereas...... sites belonging to three different bioclimatic zones. Four pathogens from the phylum Entomophthoromycota were found to occur naturally in Tunisian ecosystems: Pandora neoaphidis (Entomophthorales: Entomophthoraceae), Entomophthora planchoniana (Entomophthorales: Entomophthoraceae), Conidiobolus obscurus...

  3. High bacterial diversity of biological soil crusts in water tracks over permafrost in the high arctic polar desert.

    Science.gov (United States)

    Steven, Blaire; Lionard, Marie; Kuske, Cheryl R; Vincent, Warwick F

    2013-01-01

    In this study we report the bacterial diversity of biological soil crusts (biocrusts) inhabiting polar desert soils at the northern land limit of the Arctic polar region (83° 05 N). Employing pyrosequencing of bacterial 16S rRNA genes this study demonstrated that these biocrusts harbor diverse bacterial communities, often as diverse as temperate latitude communities. The effect of wetting pulses on the composition of communities was also determined by collecting samples from soils outside and inside of permafrost water tracks, hill slope flow paths that drain permafrost-affected soils. The intermittent flow regime in the water tracks was correlated with altered relative abundance of phylum level taxonomic bins in the bacterial communities, but the alterations varied between individual sampling sites. Bacteria related to the Cyanobacteria and Acidobacteria demonstrated shifts in relative abundance based on their location either inside or outside of the water tracks. Among cyanobacterial sequences, the proportion of sequences belonging to the family Oscillatoriales consistently increased in relative abundance in the samples from inside the water tracks compared to those outside. Acidobacteria showed responses to wetting pulses in the water tracks, increasing in abundance at one site and decreasing at the other two sites. Subdivision 4 acidobacterial sequences tended to follow the trends in the total Acidobacteria relative abundance, suggesting these organisms were largely responsible for the changes observed in the Acidobacteria. Taken together, these data suggest that the bacterial communities of these high latitude polar biocrusts are diverse but do not show a consensus response to intermittent flow in water tracks over high Arctic permafrost.

  4. Bacterial proteasome activator bpa (rv3780) is a novel ring-shaped interactor of the mycobacterial proteasome.

    Science.gov (United States)

    Delley, Cyrille L; Laederach, Juerg; Ziemski, Michal; Bolten, Marcel; Boehringer, Daniel; Weber-Ban, Eilika

    2014-01-01

    The occurrence of the proteasome in bacteria is limited to the phylum of actinobacteria, where it is maintained in parallel to the usual bacterial compartmentalizing proteases. The role it plays in these organisms is still not fully understood, but in the human pathogen Mycobacterium tuberculosis (Mtb) the proteasome supports persistence in the host. In complex with the ring-shaped ATPase Mpa (called ARC in other actinobacteria), the proteasome can degrade proteins that have been post-translationally modified with the prokaryotic ubiquitin-like protein Pup. Unlike for the eukaryotic proteasome core particle, no other bacterial proteasome interactors have been identified to date. Here we describe and characterize a novel bacterial proteasome activator of Mycobacterium tuberculosis we termed Bpa (Rv3780), using a combination of biochemical and biophysical methods. Bpa features a canonical C-terminal proteasome interaction motif referred to as the HbYX motif, and its orthologs are only found in those actinobacteria encoding the proteasomal subunits. Bpa can inhibit degradation of Pup-tagged substrates in vitro by competing with Mpa for association with the proteasome. Using negative-stain electron microscopy, we show that Bpa forms a ring-shaped homooligomer that can bind coaxially to the face of the proteasome cylinder. Interestingly, Bpa can stimulate the proteasomal degradation of the model substrate β-casein, which suggests it could play a role in the removal of non-native or damaged proteins.

  5. Crude oil treatment leads to shift of bacterial communities in soils from the deep active layer and upper permafrost along the China-Russia Crude Oil Pipeline route.

    Science.gov (United States)

    Yang, Sizhong; Wen, Xi; Zhao, Liang; Shi, Yulan; Jin, Huijun

    2014-01-01

    The buried China-Russia Crude Oil Pipeline (CRCOP) across the permafrost-associated cold ecosystem in northeastern China carries a risk of contamination to the deep active layers and upper permafrost in case of accidental rupture of the embedded pipeline or migration of oil spills. As many soil microbes are capable of degrading petroleum, knowledge about the intrinsic degraders and the microbial dynamics in the deep subsurface could extend our understanding of the application of in-situ bioremediation. In this study, an experiment was conducted to investigate the bacterial communities in response to simulated contamination to deep soil samples by using 454 pyrosequencing amplicons. The result showed that bacterial diversity was reduced after 8-weeks contamination. A shift in bacterial community composition was apparent in crude oil-amended soils with Proteobacteria (esp. α-subdivision) being the dominant phylum, together with Actinobacteria and Firmicutes. The contamination led to enrichment of indigenous bacterial taxa like Novosphingobium, Sphingobium, Caulobacter, Phenylobacterium, Alicylobacillus and Arthrobacter, which are generally capable of degrading polycyclic aromatic hydrocarbons (PAHs). The community shift highlighted the resilience of PAH degraders and their potential for in-situ degradation of crude oil under favorable conditions in the deep soils.

  6. Crude oil treatment leads to shift of bacterial communities in soils from the deep active layer and upper permafrost along the China-Russia Crude Oil Pipeline route.

    Directory of Open Access Journals (Sweden)

    Sizhong Yang

    Full Text Available The buried China-Russia Crude Oil Pipeline (CRCOP across the permafrost-associated cold ecosystem in northeastern China carries a risk of contamination to the deep active layers and upper permafrost in case of accidental rupture of the embedded pipeline or migration of oil spills. As many soil microbes are capable of degrading petroleum, knowledge about the intrinsic degraders and the microbial dynamics in the deep subsurface could extend our understanding of the application of in-situ bioremediation. In this study, an experiment was conducted to investigate the bacterial communities in response to simulated contamination to deep soil samples by using 454 pyrosequencing amplicons. The result showed that bacterial diversity was reduced after 8-weeks contamination. A shift in bacterial community composition was apparent in crude oil-amended soils with Proteobacteria (esp. α-subdivision being the dominant phylum, together with Actinobacteria and Firmicutes. The contamination led to enrichment of indigenous bacterial taxa like Novosphingobium, Sphingobium, Caulobacter, Phenylobacterium, Alicylobacillus and Arthrobacter, which are generally capable of degrading polycyclic aromatic hydrocarbons (PAHs. The community shift highlighted the resilience of PAH degraders and their potential for in-situ degradation of crude oil under favorable conditions in the deep soils.

  7. Crude Oil Treatment Leads to Shift of Bacterial Communities in Soils from the Deep Active Layer and Upper Permafrost along the China-Russia Crude Oil Pipeline Route

    Science.gov (United States)

    Yang, Sizhong; Wen, Xi; Zhao, Liang; Shi, Yulan; Jin, Huijun

    2014-01-01

    The buried China-Russia Crude Oil Pipeline (CRCOP) across the permafrost-associated cold ecosystem in northeastern China carries a risk of contamination to the deep active layers and upper permafrost in case of accidental rupture of the embedded pipeline or migration of oil spills. As many soil microbes are capable of degrading petroleum, knowledge about the intrinsic degraders and the microbial dynamics in the deep subsurface could extend our understanding of the application of in-situ bioremediation. In this study, an experiment was conducted to investigate the bacterial communities in response to simulated contamination to deep soil samples by using 454 pyrosequencing amplicons. The result showed that bacterial diversity was reduced after 8-weeks contamination. A shift in bacterial community composition was apparent in crude oil-amended soils with Proteobacteria (esp. α-subdivision) being the dominant phylum, together with Actinobacteria and Firmicutes. The contamination led to enrichment of indigenous bacterial taxa like Novosphingobium, Sphingobium, Caulobacter, Phenylobacterium, Alicylobacillus and Arthrobacter, which are generally capable of degrading polycyclic aromatic hydrocarbons (PAHs). The community shift highlighted the resilience of PAH degraders and their potential for in-situ degradation of crude oil under favorable conditions in the deep soils. PMID:24794099

  8. Community dynamics and glycoside hydrolase activities of thermophilic bacterial consortia adapted to switchgrass

    Energy Technology Data Exchange (ETDEWEB)

    Gladden, J.M.; Allgaier, M.; Miller, C.S.; Hazen, T.C.; VanderGheynst, J.S.; Hugenholtz, P.; Simmons, B.A.; Singer, S.W.

    2011-05-01

    Industrial-scale biofuel production requires robust enzymatic cocktails to produce fermentable sugars from lignocellulosic biomass. Thermophilic bacterial consortia are a potential source of cellulases and hemicellulases adapted to harsher reaction conditions than commercial fungal enzymes. Compost-derived microbial consortia were adapted to switchgrass at 60 C to develop thermophilic biomass-degrading consortia for detailed studies. Microbial community analysis using small-subunit rRNA gene amplicon pyrosequencing and short-read metagenomic sequencing demonstrated that thermophilic adaptation to switchgrass resulted in low-diversity bacterial consortia with a high abundance of bacteria related to thermophilic paenibacilli, Rhodothermus marinus, and Thermus thermophilus. At lower abundance, thermophilic Chloroflexi and an uncultivated lineage of the Gemmatimonadetes phylum were observed. Supernatants isolated from these consortia had high levels of xylanase and endoglucanase activities. Compared to commercial enzyme preparations, the endoglucanase enzymes had a higher thermotolerance and were more stable in the presence of 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]), an ionic liquid used for biomass pretreatment. The supernatants were used to saccharify [C2mim][OAc]-pretreated switchgrass at elevated temperatures (up to 80 C), demonstrating that these consortia are an excellent source of enzymes for the development of enzymatic cocktails tailored to more extreme reaction conditions.

  9. Nodulation-dependent communities of culturable bacterial endophytes from stems of field-grown soybeans.

    Science.gov (United States)

    Okubo, Takashi; Ikeda, Seishi; Kaneko, Takakazu; Eda, Shima; Mitsui, Hisayuki; Sato, Shusei; Tabata, Satoshi; Minamisawa, Kiwamu

    2009-01-01

    Endophytic bacteria (247 isolates) were randomly isolated from surface-sterilized stems of non-nodulated (Nod(-)), wild-type nodulated (Nod(+)), and hypernodulated (Nod(++)) soybeans (Glycine max [L.] Merr) on three agar media (R2A, nutrient agar, and potato dextrose agar). Their diversity was compared on the basis of 16S rRNA gene sequences. The phylogenetic composition depended on the soybean nodulation phenotype, although diversity indexes were not correlated with nodulation phenotype. The most abundant phylum throughout soybean lines tested was Proteobacteria (58-79%). Gammaproteobacteria was the dominant class (21-72%) with a group of Pseudomonas sp. significantly abundant in Nod(+) soybeans. A high abundance of Alphaproteobacteria was observed in Nod(-) soybeans, which was explained by the increase in bacterial isolates of the families Rhizobiaceae and Sphingomonadaceae. A far greater abundance of Firmicutes was observed in Nod(-) and Nod(++) mutant soybeans than in Nod(+) soybeans. An impact of culture media on the diversity of isolated endophytic bacteria was also observed: The highest diversity indexes were obtained on the R2A medium, which enabled us to access Alphaproteobacteria and other phyla more frequently. The above results indicated that the extent of nodulation changes the phylogenetic composition of culturable bacterial endophytes in soybean stems.

  10. Diaspore bank of bryophytes in tropical rain forests: the importance of breeding system, phylum and microhabitat.

    Science.gov (United States)

    Maciel-Silva, Adaíses S; Válio, Ivany Ferraz Marques; Rydin, Håkan

    2012-02-01

    Diaspore banks are crucial for the maintenance and resilience of plant communities, but diaspore banks of bryophytes remain poorly known, especially from tropical ecosystems. This is the first study to focus on the role of diaspore banks of bryophytes in tropical rain forests. Our aim was to test whether microhabitat (substrate type) and species traits (breeding system, phylum) are important in explaining the diaspore bank composition. Using samples cultivated in the laboratory, we assessed the number of species and shoots emerging from bark, decaying wood and soil from two sites of the Atlantic rain forest (montane and sea level) in Brazil by comparing the contribution of species by phylum (mosses, liverworts) and breeding system (monoicous, dioicous). More species emerged from bark (68) and decaying wood (55) than from soil (22). Similar numbers of species were found at both sites. Mosses were more numerous in terms of number of species and shoots, and monoicous species dominated over dioicous species. Substrate pH had only weak effects on shoot emergence. Species commonly producing sporophytes and gemmae had a high contribution to the diaspore banks. These superficial diaspore banks represented the extant vegetation rather well, but held more monoicous species (probably short-lived species) compared to dioicous ones. We propose that diaspore bank dynamics are driven by species traits and microhabitat characteristics, and that short-term diaspore banks of bryophytes in tropical rain forests contribute to fast (re)establishment of species after disturbances and during succession, particularly dioicous mosses investing in asexual reproduction and monoicous mosses investing in sexual reproduction.

  11. Inorganic Nitrogen Application Affects Both Taxonomical and Predicted Functional Structure of Wheat Rhizosphere Bacterial Communities

    Directory of Open Access Journals (Sweden)

    Vanessa N. Kavamura

    2018-05-01

    Full Text Available The effects of fertilizer regime on bulk soil microbial communities have been well studied, but this is not the case for the rhizosphere microbiome. The aim of this work was to assess the impact of fertilization regime on wheat rhizosphere microbiome assembly and 16S rRNA gene-predicted functions with soil from the long term Broadbalk experiment at Rothamsted Research. Soil from four N fertilization regimes (organic N, zero N, medium inorganic N and high inorganic N was sown with seeds of Triticum aestivum cv. Cadenza. 16S rRNA gene amplicon sequencing was performed with the Illumina platform on bulk soil and rhizosphere samples of 4-week-old and flowering plants (10 weeks. Phylogenetic and 16S rRNA gene-predicted functional analyses were performed. Fertilization regime affected the structure and composition of wheat rhizosphere bacterial communities. Acidobacteria and Planctomycetes were significantly depleted in treatments receiving inorganic N, whereas the addition of high levels of inorganic N enriched members of the phylum Bacteroidetes, especially after 10 weeks. Bacterial richness and diversity decreased with inorganic nitrogen inputs and was highest after organic treatment (FYM. In general, high levels of inorganic nitrogen fertilizers negatively affect bacterial richness and diversity, leading to a less stable bacterial community structure over time, whereas, more stable bacterial communities are provided by organic amendments. 16S rRNA gene-predicted functional structure was more affected by growth stage than by fertilizer treatment, although, some functions related to energy metabolism and metabolism of terpenoids and polyketides were enriched in samples not receiving any inorganic N, whereas inorganic N addition enriched predicted functions related to metabolism of other amino acids and carbohydrates. Understanding the impact of different fertilizers on the structure and dynamics of the rhizosphere microbiome is an important step

  12. Metagenome-based diversity analyses suggest a strong locality signal for bacterial communities associated with oyster aquaculture farms in Ofunato Bay

    KAUST Repository

    Kobiyama, Atsushi

    2018-04-30

    Ofunato Bay, in Japan, is the home of buoy-and-rope-type oyster aquaculture activities. Since the oysters filter suspended materials and excrete organic matter into the seawater, bacterial communities residing in its vicinity may show dynamic changes depending on the oyster culture activities. We employed a shotgun metagenomic technique to study bacterial communities near oyster aquaculture facilities at the center of the bay (KSt. 2) and compared the results with those of two other localities far from the station, one to the northeast (innermost bay, KSt. 1) and the other to the southwest (bay entrance, KSt. 3). Seawater samples were collected every month from January to December 2015 from the surface (1 m) and deeper (8 or 10 m) layers of the three locations, and the sequentially filtered fraction on 0.2-μm membranes was sequenced on an Illumina MiSeq system. The acquired reads were uploaded to MG-RAST for KEGG functional abundance analysis, while taxonomic analyses at the phylum and genus levels were performed using MEGAN after parsing the BLAST output. Discrimination analyses were then performed using the ROC-AUC value of the cross validation, targeting the depth (shallow or deep), locality [(KSt. 1 + KSt. 2) vs. KSt 3; (KSt. 1 + KSt. 3) vs. KSt. 2 or the (KSt. 2 + KSt. 3) vs. KSt. 1] and seasonality (12 months). The matrix discrimination analysis on the adjacent 2 continuous seasons by ROC-AUC, which was based on the datasets that originated from different depths, localities and months, showed the strongest discrimination signal on the taxonomy matrix at the phylum level for the datasets from July to August compared with those from September to June, while the KEGG matrix showed the strongest signal for the datasets from March to June compared with those from July to February. Then, the locality combination was subjected to the same ROC-AUC discrimination analysis, resulting in significant differences between KSt. 2 and KSt. 1 + KSt. 3

  13. Metagenome-based diversity analyses suggest a strong locality signal for bacterial communities associated with oyster aquaculture farms in Ofunato Bay

    KAUST Repository

    Kobiyama, Atsushi; Ikeo, Kazuho; Reza, Md. Shaheed; Rashid, Jonaira; Yamada, Yuichiro; Ikeda, Yuri; Ikeda, Daisuke; Mizusawa, Nanami; Sato, Shigeru; Ogata, Takehiko; Jimbo, Mitsuru; Kudo, Toshiaki; Kaga, Shinnosuke; Watanabe, Shiho; Naiki, Kimiaki; Kaga, Yoshimasa; Mineta, Katsuhiko; Bajic, Vladimir B.; Gojobori, Takashi; Watabe, Shugo

    2018-01-01

    Ofunato Bay, in Japan, is the home of buoy-and-rope-type oyster aquaculture activities. Since the oysters filter suspended materials and excrete organic matter into the seawater, bacterial communities residing in its vicinity may show dynamic changes depending on the oyster culture activities. We employed a shotgun metagenomic technique to study bacterial communities near oyster aquaculture facilities at the center of the bay (KSt. 2) and compared the results with those of two other localities far from the station, one to the northeast (innermost bay, KSt. 1) and the other to the southwest (bay entrance, KSt. 3). Seawater samples were collected every month from January to December 2015 from the surface (1 m) and deeper (8 or 10 m) layers of the three locations, and the sequentially filtered fraction on 0.2-μm membranes was sequenced on an Illumina MiSeq system. The acquired reads were uploaded to MG-RAST for KEGG functional abundance analysis, while taxonomic analyses at the phylum and genus levels were performed using MEGAN after parsing the BLAST output. Discrimination analyses were then performed using the ROC-AUC value of the cross validation, targeting the depth (shallow or deep), locality [(KSt. 1 + KSt. 2) vs. KSt 3; (KSt. 1 + KSt. 3) vs. KSt. 2 or the (KSt. 2 + KSt. 3) vs. KSt. 1] and seasonality (12 months). The matrix discrimination analysis on the adjacent 2 continuous seasons by ROC-AUC, which was based on the datasets that originated from different depths, localities and months, showed the strongest discrimination signal on the taxonomy matrix at the phylum level for the datasets from July to August compared with those from September to June, while the KEGG matrix showed the strongest signal for the datasets from March to June compared with those from July to February. Then, the locality combination was subjected to the same ROC-AUC discrimination analysis, resulting in significant differences between KSt. 2 and KSt. 1 + KSt. 3

  14. Endomicrobium proavitum, the first isolate of Endomicrobia class. nov. (phylum Elusimicrobia)--an ultramicrobacterium with an unusual cell cycle that fixes nitrogen with a Group IV nitrogenase.

    Science.gov (United States)

    Zheng, Hao; Dietrich, Carsten; Radek, Renate; Brune, Andreas

    2016-01-01

    The bacterial tree contains many deep-rooting clades without any cultured representatives. One such clade is 'Endomicrobia', a class-level lineage in the phylum Elusimicrobia represented so far only by intracellular symbionts of termite gut flagellates. Here, we report the isolation and characterization of the first free-living member of this clade from sterile-filtered gut homogenate of defaunated (starch-fed) Reticulitermes santonensis. Strain Rsa215 is a strictly anaerobic ultramicrobacterium that grows exclusively on glucose, which is fermented to lactate, acetate, hydrogen and CO2. Ultrastructural analysis revealed a Gram-negative cell envelope and a peculiar cell cycle. The genome contains a single set of nif genes that encode homologues of Group IV nitrogenases, which were so far considered to have functions other than nitrogen fixation. We documented nitrogenase activity and diazotrophic growth by measuring acetylene reduction activity and (15)N2 incorporation into cell mass, and demonstrated that transcription of nifH and nitrogenase activity occur only in the absence of ammonium. Based on the ancestral relationship to 'Candidatus Endomicrobium trichonymphae' and other obligate endosymbionts, we propose the name 'Endomicrobium proavitum' gen. nov., sp. nov. for the first isolate of this lineage and the name 'Endomicrobia' class. nov. for the entire clade. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Metagenomic Analysis of Airborne Bacterial Community and Diversity in Seoul, Korea, during December 2014, Asian Dust Event.

    Science.gov (United States)

    Cha, Seho; Srinivasan, Sathiyaraj; Jang, Jun Hyeong; Lee, Dongwook; Lim, Sora; Kim, Kyung Sang; Jheong, Weonhwa; Lee, Dong-Won; Park, Eung-Roh; Chung, Hyun-Mi; Choe, Joonho; Kim, Myung Kyum; Seo, Taegun

    2017-01-01

    Asian dust or yellow sand events in East Asia are a major issue of environmental contamination and human health, causing increasing concern. A high amount of dust particles, especially called as particulate matter 10 (PM10), is transported by the wind from the arid and semi-arid tracks to the Korean peninsula, bringing a bacterial population that alters the terrestrial and atmospheric microbial communities. In this study, we aimed to explore the bacterial populations of Asian dust samples collected during November-December 2014. The dust samples were collected using the impinger method, and the hypervariable regions of the 16S rRNA gene were amplified using PCR followed by pyrosequencing. Analysis of the sequencing data were performed using Mothur software. The data showed that the number of operational taxonomic units and diversity index during Asian dust events were higher than those during non-Asian dust events. At the phylum level, the proportions of Proteobacteria, Actinobacteria, and Firmicutes were different between Asian dust and non-Asian dust samples. At the genus level, the proportions of the genus Bacillus (6.9%), Arthrobacter (3.6%), Blastocatella (2%), Planomicrobium (1.4%) were increased during Asian dust compared to those in non-Asian dust samples. This study showed that the significant relationship between bacterial populations of Asian dust samples and non-Asian dust samples in Korea, which could significantly affect the microbial population in the environment.

  16. Novel acsF Gene Primers Revealed a Diverse Phototrophic Bacterial Population, Including Gemmatimonadetes, in Lake Taihu (China)

    DEFF Research Database (Denmark)

    Huang, Yili; Zeng, Yanhua; Lu, Hang

    2016-01-01

    Seq sequencing of the 16S rRNA, pufM, and bchY genes was carried out to assess the diversity of local phototrophic communities. In addition, we designed new degenerate primers of aerobic cyclase gene acsF, which serves as a convenient marker for both phototrophic Gemmatimonadetes and phototrophic Proteobacteria...... a diverse community of phototrophic Gemmatimonadetes forming 30 operational taxonomic units. These species represented 10.5 and 17.3% of the acsF reads in the upper semiaerobic sediment and anoxic sediment, whereas their abundance in the water column was ... fundamental biological processes on Earth. Recently, the presence of photosynthetic reaction centers has been reported from a rarely studied bacterial phylum, Gemmatimonadetes, but almost nothing is known about the diversity and environmental distribution of these organisms. The newly designed acsF primers...

  17. Las degradation in a fluidized bed reactor and phylogenetic characterization of the biofilm

    Directory of Open Access Journals (Sweden)

    L. L. Oliveira

    2013-09-01

    Full Text Available A fluidized bed reactor was used to study the degradation of the surfactant linear alkylbenzene sulfonate (LAS. The reactor was inoculated with anaerobic sludge and was fed with a synthetic substrate supplemented with LAS in increasing concentrations (8.2 to 45.8 mg l-1. The removal efficiency of 93% was obtained after 270 days of operation. Subsequently, 16S rRNA gene sequencing and phylogenetic analysis of the sample at the last stage of the reactor operation recovered 105 clones belonging to the domain Bacteria. These clones represented a variety of phyla with significant homology to Bacteroidetes (40%, Proteobacteria (42%, Verrucomicrobia (4%, Acidobacteria (3%, Firmicutes (2%, and Gemmatimonadetes (1%. A small fraction of the clones (8% was not related to any phylum. Such phyla variety indicated the role of microbial consortia in degrading the surfactant LAS.

  18. Microbiological quality and bacterial diversity of the tropical oyster Crassostrea rhizophorae in a monitored farming system and from natural stocks.

    Science.gov (United States)

    Silva Neta, M T; Maciel, B M; Lopes, A T S; Marques, E L S; Rezende, R P; Boehs, G

    2015-12-02

    Microbiological evaluation is one of the most important parameters for analyzing the viability of an oyster farming system, which addresses public health and ecological concerns. Here, the microbiological quality of the oyster Crassostrea rhizophorae cultivated in a monitored environment and from natural beds in Bahia, northeastern Brazil, was determined. Bacterial diversity in oysters was measured by polymerase chain reaction-denaturing gradient gel electrophoresis. Sequence analysis revealed that most bacterial species showed similarity with uncultured or unidentified bacteria from environmental samples, and were clustered into the phylum Proteobacteria. Diverse bacteria from cultivated (monitored) oyster samples were grouped in the same cluster with a high similarity index (above 79%). Microbiological analyses revealed that these oysters did not contain pathogens. These results reflect the natural balance of the microbial communities essential to the maintenance of health and in inhibiting pathogen colonization in the oyster. On the other hand, bacterial diversity of samples from native stocks in extractive areas displayed a similarity index varying between 55 and 77%, and all samples were clustered separately from each other and from the cluster of samples derived from the cultivation area. Microbiological analyses showed that oysters from the extractive area were not fit for human consumption. This reflected a different composition of the microbial community in this area, probably resulting from anthropic impact. Our study also demonstrated that low temperatures and high rainfall limits the bacterial concentration in tropical oysters. This is the first study analyzing the total bacterial community profiles of the oyster C. rhizophorae.

  19. Extensive phylogenetic analysis of a soil bacterial community illustrates extreme taxon evenness and the effects of amplicon length, degree of coverage, and DNA fractionation on classification and ecological parameters.

    Science.gov (United States)

    Morales, Sergio E; Cosart, Theodore F; Johnson, Jesse V; Holben, William E

    2009-02-01

    To thoroughly investigate the bacterial community diversity present in a single composite sample from an agricultural soil and to examine potential biases resulting from data acquisition and analytical approaches, we examined the effects of percent G+C DNA fractionation, sequence length, and degree of coverage of bacterial diversity on several commonly used ecological parameters (species estimation, diversity indices, and evenness). We also examined variation in phylogenetic placement based on multiple commonly used approaches (ARB alignments and multiple RDP tools). The results demonstrate that this soil bacterial community is highly diverse, with 1,714 operational taxonomic units demonstrated and 3,555 estimated (based on the Chao1 richness estimation) at 97% sequence similarity using the 16S rRNA gene. The results also demonstrate a fundamental lack of dominance (i.e., a high degree of evenness), with 82% of phylotypes being encountered three times or less. The data also indicate that generally accepted cutoff values for phylum-level taxonomic classification might not be as applicable or as general as previously assumed and that such values likely vary between prokaryotic phyla or groups.

  20. Single-Cell Genome and Group-Specific dsrAB Sequencing Implicate Marine Members of the Class Dehalococcoidia (Phylum Chloroflexi) in Sulfur Cycling

    DEFF Research Database (Denmark)

    Wasmund, Kenneth; Cooper, Myriel; Schreiber, Lars

    2016-01-01

    The marine subsurface sediment biosphere is widely inhabited by bacteria affiliated with the class Dehalococcoidia (DEH), phylum Chloroflexi, and yet little is known regarding their metabolisms. In this report, genomic content from a single DEH cell (DEH-C11) with a 16S rRNA gene that was affilia......The marine subsurface sediment biosphere is widely inhabited by bacteria affiliated with the class Dehalococcoidia (DEH), phylum Chloroflexi, and yet little is known regarding their metabolisms. In this report, genomic content from a single DEH cell (DEH-C11) with a 16S rRNA gene...... that was affiliated with a diverse cluster of 16S rRNA gene sequences prevalent in marine sediments was obtained from sediments of Aarhus Bay, Denmark. The distinctive gene content of this cell suggests metabolic characteristics that differ from those of known DEH and Chloroflexi. The presence of genes encoding...... dissimilatory sulfite reductase (Dsr) suggests that DEH could respire oxidized sulfur compounds, although Chloroflexi have never been implicated in this mode of sulfur cycling. Using long-range PCR assays targeting DEH dsr loci, dsrAB genes were amplified and sequenced from various marine sediments. Many...

  1. Bacterial community composition and predicted functional ecology of sponges, sediment and seawater from the thousand islands reef complex, West Java, Indonesia.

    Science.gov (United States)

    de Voogd, Nicole J; Cleary, Daniel F R; Polónia, Ana R M; Gomes, Newton C M

    2015-04-01

    In the present study, we assessed the composition of Bacteria in four biotopes namely sediment, seawater and two sponge species (Stylissa massa and Xestospongia testudinaria) at four different reef sites in a coral reef ecosystem in West Java, Indonesia. In addition to this, we used a predictive metagenomic approach to estimate to what extent nitrogen metabolic pathways differed among bacterial communities from different biotopes. We observed marked differences in bacterial composition of the most abundant bacterial phyla, classes and orders among sponge species, water and sediment. Proteobacteria were by far the most abundant phylum in terms of both sequences and Operational Taxonomic Units (OTUs). Predicted counts for genes associated with the nitrogen metabolism suggested that several genes involved in the nitrogen cycle were enriched in sponge samples, including nosZ, nifD, nirK, norB and nrfA genes. Our data show that a combined barcoded pyrosequencing and predictive metagenomic approach can provide novel insights into the potential ecological functions of the microbial communities. Not only is this approach useful for our understanding of the vast microbial diversity found in sponges but also to understand the potential response of microbial communities to environmental change. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Combining flow cytometry and 16S rRNA gene pyrosequencing: A promising approach for drinking water monitoring and characterization

    KAUST Repository

    Prest, Emmanuelle I E C; El Chakhtoura, Joline; Hammes, Frederik A.; Saikaly, Pascal; van Loosdrecht, Mark C.M.; Vrouwenvelder, Johannes S.

    2014-01-01

    concentration changes for each bacterial phylum. The results revealed an increase in cell concentrations of specific bacterial phyla (e.g., Proteobacteria), along with a decrease in other phyla (e.g., Actinobacteria), which could not be concluded from the two

  3. Bacterial community composition in the gut content and ambient sediment of sea cucumber Apostichopus japonicus revealed by 16S rRNA gene pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Fei Gao

    Full Text Available The composition of the bacterial communities in the contents of the foregut and hindgut of the sea cucumber Apostichopus japonicus and in the ambient surface sediment was surveyed by 16S rRNA gene 454-pyrosequencing. A total of 188,623 optimized reads and 15,527 operational taxonomic units (OTUs were obtained from the ten gut contents samples and four surface sediment samples. The sequences in the sediments, foregut contents, and hindgut contents were assigned to 38.0±4.7, 31.2±6.2 and 27.8±6.5 phyla, respectively. The bacterial richness and Shannon diversity index were both higher in the ambient sediments than in the gut contents. Proteobacteria was the predominant phylum in both the gut contents and sediment samples. The predominant classes in the foregut, hindgut, and ambient sediment were Holophagae and Gammaproteobacteria, Deltaproteobacteria and Gammaproteobacteria, and Gammaproteobacteria and Deltaproteobacteria, respectively. The potential probiotics, including sequences related to Bacillus, lactic acid bacteria (Lactobacillus, Lactococcus, and Streptococcus and Pseudomonas were detected in the gut of A. japonicus. Principle component analysis and heatmap figure showed that the foregut, hindgut, and ambient sediment respectively harbored different characteristic bacterial communities. Selective feeding of A. japonicus may be the primary source of the different bacterial communities between the foregut contents and ambient sediments.

  4. Deciphering the Bacterial Microbiome in Huanglongbing-Affected Citrus Treated with Thermotherapy and Sulfonamide Antibiotics.

    Directory of Open Access Journals (Sweden)

    Chuanyu Yang

    Full Text Available Huanglongbing (HLB is a serious citrus disease that threatens the citrus industry. In previous studies, sulfonamide antibiotics and heat treatment suppressed 'Candidatus Liberibacter asiaticus' (Las, but did not completely eliminate the Las. Furthermore, there are few reports studying the bacterial microbiome of HLB-affected citrus treated by heat and sulfonamide antibiotics. In this study, combinations of heat (45°C or 40°C and sulfonamide treatment (sulfathiazole sodium-STZ, or sulfadimethoxine sodium-SDX were applied to HLB-affected citrus. The bacterial microbiome of HLB-affected citrus following thermotherapy and/or chemotherapy was characterized by PhyloChipTMG3-based metagenomics. Our results showed that the combination of thermotherapy at 45°C and chemotherapy with STZ and SDX was more effective against HLB than thermotherapy alone, chemotherapy alone, or a combination of thermotherapy at 40°C and chemotherapy. The PhyloChipTMG3-based results indicated that 311 empirical Operational Taxonomic Units (eOTUs were detected in 26 phyla. Cyanobacteria (18.01% were dominant after thermo-chemotherapy. Thermotherapy at 45°C decreased eOTUs (64.43% in leaf samples, compared with thermotherapy at 40°C (73.96% or without thermotherapy (90.68% and it also reduced bacterial family biodiversity. The eOTU in phylum Proteobacteria was reduced significantly and eOTU_28, representing "Candidatus Liberibacter," was not detected following thermotherapy at 45°C. Following antibiotic treatment with SDX and STZ, there was enhanced abundance of specific eOTUs belonging to the families Streptomycetaceae, Desulfobacteraceae, Chitinophagaceae, and Xanthomonadaceae, which may be implicated in increased resistance to plant pathogens. Our study further develops an integrated strategy for combating HLB, and also provides new insight into the bacterial microbiome of HLB-affected citrus treated by heat and sulfonamide antibiotics.

  5. Soil Bacterial Community Was Changed after Brassicaceous Seed Meal Application for Suppression of Fusarium Wilt on Pepper

    Directory of Open Access Journals (Sweden)

    Gaidi Ren

    2018-02-01

    Full Text Available Application of Brassicaceous seed meal (BSM is a promising biologically based disease-control practice but BSM could directly and indirectly also affect the non-target bacterial communities, including the beneficial populations. Understanding the bacterial response to BSM at the community level is of great significance for directing plant disease management through the manipulation of resident bacterial communities. Fusarium wilt is a devastating disease on pepper. However, little is known about the response of bacterial communities, especially the rhizosphere bacterial community, to BSM application to soil heavily infested with Fusarium wilt pathogen and cropped with peppers. In this study, a 25-day microcosm incubation of a natural Fusarium wilt pathogen-infested soil supplemented with three BSMs, i.e., Camelina sativa ‘Crantz’ (CAME, Brassica juncea ‘Pacific Gold’ (PG, and a mixture of PG and Sinapis alba cv. ‘IdaGold’ (IG (PG+IG, 1:1 ratio, was performed. Then, a further 35-day pot experiment was established with pepper plants growing in the BSM treated soils. The changes in the bacterial community in the soil after 25 days of incubation and changes in the rhizosphere after an additional 35 days of pepper growth were investigated by 454 pyrosequencing technique. The results show that the application of PG and PG+IG reduced the disease index by 100% and 72.8%, respectively, after 35 days of pepper growth, while the application of CAME did not have an evident suppressive effect. All BSM treatments altered the bacterial community structure and decreased the bacterial richness and diversity after 25 days of incubation, although this effect was weakened after an additional 35 days of pepper growth. At the phylum/class and the genus levels, the changes in specific bacterial populations resulting from the PG and PG+IG treatments, especially the significant increase in Actinobacteria-affiliated Streptomyces and an unclassified genus and

  6. Mechanisms of Bacterial (Serratia marcescens) Attachment to, Migration along, and Killing of Fungal Hyphae.

    Science.gov (United States)

    Hover, Tal; Maya, Tal; Ron, Sapir; Sandovsky, Hani; Shadkchan, Yana; Kijner, Nitzan; Mitiagin, Yulia; Fichtman, Boris; Harel, Amnon; Shanks, Robert M Q; Bruna, Roberto E; García-Véscovi, Eleonora; Osherov, Nir

    2016-05-01

    We have found a remarkable capacity for the ubiquitous Gram-negative rod bacterium Serratia marcescens to migrate along and kill the mycelia of zygomycete molds. This migration was restricted to zygomycete molds and several basidiomycete species. No migration was seen on any molds of the phylum Ascomycota. S. marcescens migration did not require fungal viability or surrounding growth medium, as bacteria migrated along aerial hyphae as well.S. marcescens did not exhibit growth tropism toward zygomycete mycelium. Bacterial migration along hyphae proceeded only when the hyphae grew into the bacterial colony. S. marcescens cells initially migrated along the hyphae, forming attached microcolonies that grew and coalesced to generate a biofilm that covered and killed the mycelium. Flagellum-defective strains of S. marcescens were able to migrate along zygomycete hyphae, although they were significantly slower than the wild-type strain and were delayed in fungal killing. Bacterial attachment to the mycelium does not necessitate type 1 fimbrial adhesion, since mutants defective in this adhesin migrated equally well as or faster than the wild-type strain. Killing does not depend on the secretion of S. marcescens chitinases, as mutants in which all three chitinase genes were deleted retained wild-type killing abilities. A better understanding of the mechanisms by which S. marcescens binds to, spreads on, and kills fungal hyphae might serve as an excellent model system for such interactions in general; fungal killing could be employed in agricultural fungal biocontrol. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Succession of bacterial community structure and diversity in a paddy soil oxygen gradient.

    Science.gov (United States)

    Noll, Matthias; Matthies, Diethart; Frenzel, Peter; Derakshani, Manigee; Liesack, Werner

    2005-03-01

    Cultivation-independent techniques were applied to assess the succession and phylogenetic composition of bacterial communities in a vertical oxygen gradient in flooded, unplanted paddy soil microcosms. Microsensor measurements showed that within 6 h of flooding, oxygen was depleted from 200 microM at the floodwater-soil interface to undetectable amounts at a depth of approximately 2 mm and below. The gradient was quite stable over time, although the oxygen depletion was less pronounced 84 days than 6 h after flooding. Community fingerprint patterns were obtained by terminal restriction fragment length polymorphism (T-RFLP) analysis from the oxic, transition, and anoxic zones of triplicate soil microcosms at 0, 1 and 6 h, and 1, 2, 7, 21, 30, 42, 84, and 168 days after flooding. Correspondence analyses revealed that T-RFLP patterns obtained using either community DNA or RNA were affected by time and oxygen zone, and that there was a significant interaction between the effects of time and oxygen zone. The temporal dynamics of bacterial populations were resolved more clearly using RNA than using DNA. At the RNA level, successional community dynamics were most pronounced from 1 h to 2 days and less pronounced from 2 to 21 days after flooding, for both oxic and anoxic zones. No effect of time or oxygen zone on the community dynamics was observed from 21 to 168 days after flooding. Dominant early successional populations were identified by cloning and comparative sequence analysis of environmental 16S rRNA and 16S rRNA genes as members of the Betaproteobacteria (oxic zone) and the clostridial cluster I (anoxic zone). Dominant late successional populations belonged to the Verrucomicrobia and Nitrospira (detected mainly in the oxic zone), and to the Myxococcales (detected mainly in the anoxic zone). In conclusion, the bacterial community developed through successional stages, leading at the RNA level to almost stable community patterns within 21 days after flooding. This

  8. Legacy effects of anaerobic soil disinfestation on soil bacterial community composition and production of pathogen-suppressing volatiles

    Directory of Open Access Journals (Sweden)

    Maaike evan Agtmaal

    2015-07-01

    Full Text Available There is increasing evidence that microbial volatiles (VOCs play an important role in natural suppression of soil-borne diseases, but little is known on the factors that influence production of suppressing VOCs. In the current study we examined whether a stress-induced change in soil microbial community composition would affect the production by soils of VOCs suppressing the plant-pathogenic oomycete Pythium. Using pyrosequencing of 16S ribosomal gene fragments we compared the composition of bacterial communities in sandy soils that had been exposed to anaerobic disinfestation (AD, a treatment used to kill harmful soil organisms, with the composition in untreated soils. Three months after the AD treatment had been finished, there was still a clear legacy effect of the former anaerobic stress on bacterial community composition with a strong increase in relative abundance of the phylum Bacteroidetes and a significant decrease of the phyla Acidobacteria, Planctomycetes, Nitrospirae, Chloroflexi and Chlorobi. This change in bacterial community composition coincided with loss of production of Pythium suppressing soil volatiles (VOCs and of suppression of Pythium impacts on Hyacinth root development. One year later, the composition of the bacterial community in the AD soils was reflecting that of the untreated soils. In addition, both production of Pythium-suppressing VOCs and suppression of Pythium in Hyacinth bioassays had returned to the levels of the untreated soil. GC/MS analysis identified several VOCs, among which compounds known to be antifungal, that were produced in the untreated soils but not in the AD soils. These compounds were again produced 15 months after the AD treatment. Our data indicate that soils exposed to a drastic stress can temporarily lose pathogen suppressive characteristics and that both loss and return of these suppressive characteristics coincides with shifts in the soil bacterial community composition. Our data are

  9. Cecal bacterial communities in wild Japanese rock ptarmigans and captive Svalbard rock ptarmigans.

    Science.gov (United States)

    Ushida, Kazunari; Segawa, Takahiro; Tsuchida, Sayaka; Murata, Koichi

    2016-02-01

    Preservation of indigenous gastrointestinal microbiota is deemed to be critical for successful captive breeding of endangered wild animals, yet its biology is poorly understood. Here, we investigated cecal bacterial communities in wild Japanese rock ptarmigans (Lagopus muta japonica) and compared them with those in Svalbard rock ptarmigans (L. m. hyperborea) in captivity. Ultra-deep sequencing of 16S rRNA gene indicated that the community structure of cecal microbiota in wild rock ptarmigans was remarkably different from that in captive Svalbard rock ptarmigans. Fundamental differences between bacterial communities in the two groups of birds were detected at the phylum level. Firmicutes, Actinobacteria, Bacteroidetes and Synergistetes were the major phyla detected in wild Japanese rock ptarmigans, whereas Firmicutes alone occupied more than 80% of abundance in captive Svalbard rock ptarmigans. Furthermore, unclassified genera of Coriobacteriaceae, Synergistaceae, Bacteroidaceae, Actinomycetaceae, Veillonellaceae and Clostridiales were the major taxa detected in wild individuals, whereas in zoo-reared birds, major genera were Ruminococcus, Blautia, Faecalibacterium and Akkermansia. Zoo-reared birds seemed to lack almost all rock ptarmigan-specific bacteria in their intestine, which may explain the relatively high rate of pathogenic infections affecting them. We show evidence that preservation and reconstitution of indigenous cecal microflora are critical for successful ex situ conservation and future re-introduction plan for the Japanese rock ptarmigan.

  10. The World Bacterial Biogeography and Biodiversity through Databases: A Case Study of NCBI Nucleotide Database and GBIF Database

    Directory of Open Access Journals (Sweden)

    Okba Selama

    2013-01-01

    Full Text Available Databases are an essential tool and resource within the field of bioinformatics. The primary aim of this study was to generate an overview of global bacterial biodiversity and biogeography using available data from the two largest public online databases, NCBI Nucleotide and GBIF. The secondary aim was to highlight the contribution each geographic area has to each database. The basis for data analysis of this study was the metadata provided by both databases, mainly, the taxonomy and the geographical area origin of isolation of the microorganism (record. These were directly obtained from GBIF through the online interface, while E-utilities and Python were used in combination with a programmatic web service access to obtain data from the NCBI Nucleotide Database. Results indicate that the American continent, and more specifically the USA, is the top contributor, while Africa and Antarctica are less well represented. This highlights the imbalance of exploration within these areas rather than any reduction in biodiversity. This study describes a novel approach to generating global scale patterns of bacterial biodiversity and biogeography and indicates that the Proteobacteria are the most abundant and widely distributed phylum within both databases.

  11. Unique hyper-thermal composting process in Kagoshima City forms distinct bacterial community structures.

    Science.gov (United States)

    Tashiro, Yukihiro; Tabata, Hanae; Itahara, Asuka; Shimizu, Natsuki; Tashiro, Kosuke; Sakai, Kenji

    2016-11-01

    A unique compost, Satsuma soil, is produced from three types of wastewater sludge using hyper-thermal processes at temperatures much higher than that of general thermophilic processes in Kagoshima City, Japan. We analyzed the bacterial community structures of this hyper-thermal compost sample and other sludges and composts by a high-throughput barcoded pyrosequencing method targeting the 16S rRNA gene. In total, 621,076 reads were derived from 17 samples and filtered. Artificial sequences were deleted and the reads were clustered based on the operational taxonomic units (OTUs) at 97% similarity. Phylum-level analysis of the hyper-thermal compost revealed drastic changes of the sludge structures (each relative abundance) from Firmicutes (average 47.8%), Proteobacteria (average 22.3%), and Bacteroidetes (average 10.1%) to two main phyla including Firmicutes (73.6%) and Actinobacteria (25.0%) with less Proteobacteria (∼0.3%) and Bacteroidetes (∼0.1%). Furthermore, we determined the predominant species (each relative abundance) of the hyper-thermal compost including Firmicutes related to Staphylococcus cohnii (13.8%), Jeotgalicoccus coquinae (8.01%), and Staphylococcus lentus (5.96%), and Actinobacteria related to Corynebacterium stationis (6.41%), and found that these species were not predominant in wastewater sludge. In contrast, we did not observe any common structures among eight other composts produced, using the hyper-thermal composts as the inoculums, under thermophilic conditions from different materials. Principle coordinate analysis of the hyper-thermal compost indicated a large difference in bacterial community structures from material sludge and other composts. These results suggested that a distinct bacterial community structure was formed by hyper-thermal composting. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Evidence of carbon fixation pathway in a bacterium from candidate phylum SBR1093 revealed with genomic analysis.

    Directory of Open Access Journals (Sweden)

    Zhiping Wang

    Full Text Available Autotrophic CO2 fixation is the most important biotransformation process in the biosphere. Research focusing on the diversity and distribution of relevant autotrophs is significant to our comprehension of the biosphere. In this study, a draft genome of a bacterium from candidate phylum SBR1093 was reconstructed with the metagenome of an industrial activated sludge. Based on comparative genomics, this autotrophy may occur via a newly discovered carbon fixation path, the hydroxypropionate-hydroxybutyrate (HPHB cycle, which was demonstrated in a previous work to be uniquely possessed by some genera from Archaea. This bacterium possesses all of the thirteen enzymes required for the HPHB cycle; these enzymes share 30∼50% identity with those in the autotrophic species of Archaea that undergo the HPHB cycle and 30∼80% identity with the corresponding enzymes of the mixotrophic species within Bradyrhizobiaceae. Thus, this bacterium might have an autotrophic growth mode in certain conditions. A phylogenetic analysis based on the 16S rRNA gene reveals that the phylotypes within candidate phylum SBR1093 are primarily clustered into 5 clades with a shallow branching pattern. This bacterium is clustered with phylotypes from organically contaminated environments, implying a demand for organics in heterotrophic metabolism. Considering the types of regulators, such as FnR, Fur, and ArsR, this bacterium might be a facultative aerobic mixotroph with potential multi-antibiotic and heavy metal resistances. This is the first report on Bacteria that may perform potential carbon fixation via the HPHB cycle, thus may expand our knowledge of the distribution and importance of the HPHB cycle in the biosphere.

  13. 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters.

    Science.gov (United States)

    Sundberg, Carina; Al-Soud, Waleed A; Larsson, Madeleine; Alm, Erik; Yekta, Sepehr S; Svensson, Bo H; Sørensen, Søren J; Karlsson, Anna

    2013-09-01

    The microbial community of 21 full-scale biogas reactors was examined using 454 pyrosequencing of 16S rRNA gene sequences. These reactors included seven (six mesophilic and one thermophilic) digesting sewage sludge (SS) and 14 (ten mesophilic and four thermophilic) codigesting (CD) various combinations of wastes from slaughterhouses, restaurants, households, etc. The pyrosequencing generated more than 160,000 sequences representing 11 phyla, 23 classes, and 95 genera of Bacteria and Archaea. The bacterial community was always both more abundant and more diverse than the archaeal community. At the phylum level, the foremost populations in the SS reactors included Actinobacteria, Proteobacteria, Chloroflexi, Spirochetes, and Euryarchaeota, while Firmicutes was the most prevalent in the CD reactors. The main bacterial class in all reactors was Clostridia. Acetoclastic methanogens were detected in the SS, but not in the CD reactors. Their absence suggests that methane formation from acetate takes place mainly via syntrophic acetate oxidation in the CD reactors. A principal component analysis of the communities at genus level revealed three clusters: SS reactors, mesophilic CD reactors (including one thermophilic CD and one SS), and thermophilic CD reactors. Thus, the microbial composition was mainly governed by the substrate differences and the process temperature. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  14. Taxonomic and functional characteristics of microbial communities and their correlation with physicochemical properties of four geothermal springs in Odisha, India.

    Science.gov (United States)

    Badhai, Jhasketan; Ghosh, Tarini S; Das, Subrata K

    2015-01-01

    This study describes microbial diversity in four tropical hot springs representing moderately thermophilic environments (temperature range: 40-58°C; pH: 7.2-7.4) with discrete geochemistry. Metagenome sequence data showed a dominance of Bacteria over Archaea; the most abundant phyla were Chloroflexi and Proteobacteria, although other phyla were also present, such as Acetothermia, Nitrospirae, Acidobacteria, Firmicutes, Deinococcus-Thermus, Bacteroidetes, Thermotogae, Euryarchaeota, Verrucomicrobia, Ignavibacteriae, Cyanobacteria, Actinobacteria, Planctomycetes, Spirochaetes, Armatimonadetes, Crenarchaeota, and Aquificae. The distribution of major genera and their statistical correlation analyses with the physicochemical parameters predicted that the temperature, aqueous concentrations of ions (such as sodium, chloride, sulfate, and bicarbonate), total hardness, dissolved solids and conductivity were the main environmental variables influencing microbial community composition and diversity. Despite the observed high taxonomic diversity, there were only little variations in the overall functional profiles of the microbial communities in the four springs. Genes involved in the metabolism of carbohydrates and carbon fixation were the most abundant functional class of genes present in these hot springs. The distribution of genes involved in carbon fixation predicted the presence of all the six known autotrophic pathways in the metagenomes. A high prevalence of genes involved in membrane transport, signal transduction, stress response, bacterial chemotaxis, and flagellar assembly were observed along with genes involved in the pathways of xenobiotic degradation and metabolism. The analysis of the metagenomic sequences affiliated to the candidate phylum Acetothermia from spring TB-3 provided new insight into the metabolism and physiology of yet-unknown members of this lineage of bacteria.

  15. Taxonomic and functional characteristics of microbial communities and their correlation with physicochemical properties of four geothermal springs in Odisha, India

    Directory of Open Access Journals (Sweden)

    Subrata K Das

    2015-10-01

    Full Text Available This study describes microbial diversity in four tropical hot springs representing moderately thermophilic environments (temperature range: 40-58 °C; pH: 7.2-7.4 with discrete geochemistry. Metagenome sequence data showed a dominance of Bacteria over Archaea; the most abundant phyla were Chloroflexi and Proteobacteria, although other phyla were also present, such as Acetothermia, Nitrospirae, Acidobacteria, Firmicutes, Deinococcus-Thermus, Bacteroidetes, Thermotogae, Euryarchaeota, Verrucomicrobia, Ignavibacteriae, Cyanobacteria, Actinobacteria, Planctomycetes, Spirochaetes, Armatimonadetes, Crenarchaeota, and Aquificae. The distribution of major genera and their statistical correlation analyses with the physicochemical parameters predicted that the temperature, aqueous concentrations of ions (such as sodium, chloride, sulfate, and bicarbonate, total hardness, dissolved solids and conductivity were the main environmental variables influencing microbial community composition and diversity. Despite the observed high taxonomic diversity, there were only little variations in the overall functional profiles of the microbial communities in the four springs. Genes involved in the metabolism of carbohydrates and carbon fixation were the most abundant functional class of genes present in these hot springs. The distribution of genes involved in carbon fixation predicted the presence of all the six known autotrophic pathways in the metagenomes. A high prevalence of genes involved in membrane transport, signal transduction, stress response, bacterial chemotaxis and flagellar assembly were observed along with genes involved in the pathways of xenobiotic degradation and metabolism. The analysis of the metagenomic sequences affiliated to the candidate phylum Acetothermia from spring TB-3 provided new insight into the metabolism and physiology of yet-unknown members of this lineage of bacteria.

  16. Spatial Variability of PAHs and Microbial Community Structure in Surrounding Surficial Soil of Coal-Fired Power Plants in Xuzhou, China.

    Science.gov (United States)

    Ma, Jing; Zhang, Wangyuan; Chen, Yi; Zhang, Shaoliang; Feng, Qiyan; Hou, Huping; Chen, Fu

    2016-09-02

    This work investigated the spatial profile and source analysis of polycyclic aromatic hydrocarbons (PAHs) in soil that surrounds coal-fired power plants in Xuzhou, China. High-throughput sequencing was employed to investigate the composition and structure of soil bacterial communities. The total concentration of 15 PAHs in the surface soils ranged from 164.87 to 3494.81 μg/kg dry weight. The spatial profile of PAHs was site-specific with a concentration of 1400.09-3494.81 μg/kg in Yaozhuang. Based on the qualitative and principal component analysis results, coal burning and vehicle emission were found to be the main sources of PAHs in the surface soils. The phylogenetic analysis revealed differences in bacterial community compositions among different sampling sites. Proteobacteria was the most abundant phylum, while Acidobacteria was the second most abundant. The orders of Campylobacterales, Desulfobacterales and Hydrogenophilales had the most significant differences in relative abundance among the sampling sites. The redundancy analysis revealed that the differences in bacterial communities could be explained by the organic matter content. They could also be explicated by the acenaphthene concentration with longer arrows. Furthermore, OTUs of Proteobacteria phylum plotted around particular samples were confirmed to have a different composition of Proteobacteria phylum among the sample sites. Evaluating the relationship between soil PAHs concentration and bacterial community composition may provide useful information for the remediation of PAH contaminated sites.

  17. Phylum level change in the cecal and fecal gut communities of rats fed diets containing different fermentable substrates supports a role for nitrogen as a factor contributing to community structure.

    Science.gov (United States)

    Kalmokoff, Martin; Franklin, Jeff; Petronella, Nicholas; Green, Judy; Brooks, Stephen P J

    2015-05-06

    Fermentation differs between the proximal and distal gut but little is known regarding how the bacterial communities differ or how they are influenced by diet. In order to investigate this, we compared community diversity in the cecum and feces of rats by 16S rRNA gene content and DNA shot gun metagenomics after feeding purified diets containing different fermentable substrates. Gut community composition was dependent on the source of fermentable substrate included in the diet. Cecal communities were dominated by Firmicutes, and contained a higher abundance of Lachnospiraceae compared to feces. In feces, community structure was shifted by varying degrees depending on diet towards the Bacteroidetes, although this change was not always evident from 16S rRNA gene data. Multi-dimensional scaling analysis (PCoA) comparing cecal and fecal metagenomes grouped by location within the gut rather than by diet, suggesting that factors in addition to substrate were important for community change in the distal gut. Differentially abundant genes in each environment supported this shift away from the Firmicutes in the cecum (e.g., motility) towards the Bacteroidetes in feces (e.g., Bacteroidales transposons). We suggest that this phylum level change reflects a shift to ammonia as the primary source of nitrogen used to support continued microbial growth in the distal gut.

  18. Telmatocola sphagniphila

    NARCIS (Netherlands)

    Kulichevskaya, I.S.; Serkebaeva, Y.M.; Kim, Y.; Rijpstra, W.I.C.; Sinninghe Damsté, J.S.; Liesack, W.; Dedysh, S.N.

    2012-01-01

    Members of the phylum Planctomycetes are common inhabitants of northern wetlands. We used barcoded pyrosequencing to survey bacterial diversity in an acidic (pH 4.0) Sphagnum peat sampled from the peat bog Obukhovskoye, European North Russia. A total of 21189 bacterial 16S rRNA gene sequences were

  19. Bacterial community variations in an alfalfa-rice rotation system revealed by 16S rRNA gene 454-pyrosequencing.

    Science.gov (United States)

    Lopes, Ana R; Manaia, Célia M; Nunes, Olga C

    2014-03-01

    Crop rotation is a practice harmonized with the sustainable rice production. Nevertheless, the implications of this empirical practice are not well characterized, mainly in relation to the bacterial community composition and structure. In this study, the bacterial communities of two adjacent paddy fields in the 3rd and 4th year of the crop rotation cycle and of a nonseeded subplot were characterized before rice seeding and after harvesting, using 454-pyrosequencing of the 16S rRNA gene. Although the phyla Acidobacteria, Proteobacteria, Chloroflexi, Actinobacteria and Bacteroidetes predominated in all the samples, there were variations in relative abundance of these groups. Samples from the 3rd and 4th years of the crop rotation differed on the higher abundance of groups of presumable aerobic bacteria and of presumable anaerobic and acidobacterial groups, respectively. Members of the phylum Nitrospira were more abundant after rice harvest than in the previously sampled period. Rice cropping was positively correlated with the abundance of members of the orders Acidobacteriales and 'Solibacterales' and negatively with lineages such as Chloroflexi 'Ellin6529'. Studies like this contribute to understand variations occurring in the microbial communities in soils under sustainable rice production, based on real-world data. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  20. Continuously Monocropped Jerusalem Artichoke Changed Soil Bacterial Community Composition and Ammonia-Oxidizing and Denitrifying Bacteria Abundances.

    Science.gov (United States)

    Zhou, Xingang; Wang, Zhilin; Jia, Huiting; Li, Li; Wu, Fengzhi

    2018-01-01

    Soil microbial communities have profound effects on the growth, nutrition and health of plants in agroecosystems. Understanding soil microbial dynamics in cropping systems can assist in determining how agricultural practices influence soil processes mediated by microorganisms. In this study, soil bacterial communities were monitored in a continuously monocropped Jerusalem artichoke (JA) system, in which JA was successively monocropped for 3 years in a wheat field. Soil bacterial community compositions were estimated by amplicon sequencing of the 16S rRNA gene. Abundances of ammonia-oxidizing and denitrifying bacteria were estimated by quantitative PCR analysis of the amoA , nirS , and nirK genes. Results showed that 1-2 years of monocropping of JA did not significantly impact the microbial alpha diversity, and the third cropping of JA decreased the microbial alpha diversity ( P < 0.05). Principal coordinates analysis and permutational multivariate analysis of variance analyses revealed that continuous monocropping of JA changed soil bacterial community structure and function profile ( P < 0.001). At the phylum level, the wheat field was characterized with higher relative abundances of Latescibacteria , Planctomycetes , and Cyanobacteria , the first cropping of JA with Actinobacteria , the second cropping of JA with Acidobacteria , Armatimonadetes , Gemmatimonadetes , and Proteobacteria . At the genus level, the first cropping of JA was enriched with bacterial species with pathogen-antagonistic and/or plant growth promoting potentials, while members of genera that included potential denitrifiers increased in the second and third cropping of JA. The first cropping of JA had higher relative abundances of KO terms related to lignocellulose degradation and phosphorus cycling, the second cropping of JA had higher relative abundances of KO terms nitrous-oxide reductase and nitric-oxide reductase, and the third cropping of JA had higher relative abundances of KO terms

  1. Continuously Monocropped Jerusalem Artichoke Changed Soil Bacterial Community Composition and Ammonia-Oxidizing and Denitrifying Bacteria Abundances

    Directory of Open Access Journals (Sweden)

    Xingang Zhou

    2018-04-01

    Full Text Available Soil microbial communities have profound effects on the growth, nutrition and health of plants in agroecosystems. Understanding soil microbial dynamics in cropping systems can assist in determining how agricultural practices influence soil processes mediated by microorganisms. In this study, soil bacterial communities were monitored in a continuously monocropped Jerusalem artichoke (JA system, in which JA was successively monocropped for 3 years in a wheat field. Soil bacterial community compositions were estimated by amplicon sequencing of the 16S rRNA gene. Abundances of ammonia-oxidizing and denitrifying bacteria were estimated by quantitative PCR analysis of the amoA, nirS, and nirK genes. Results showed that 1–2 years of monocropping of JA did not significantly impact the microbial alpha diversity, and the third cropping of JA decreased the microbial alpha diversity (P < 0.05. Principal coordinates analysis and permutational multivariate analysis of variance analyses revealed that continuous monocropping of JA changed soil bacterial community structure and function profile (P < 0.001. At the phylum level, the wheat field was characterized with higher relative abundances of Latescibacteria, Planctomycetes, and Cyanobacteria, the first cropping of JA with Actinobacteria, the second cropping of JA with Acidobacteria, Armatimonadetes, Gemmatimonadetes, and Proteobacteria. At the genus level, the first cropping of JA was enriched with bacterial species with pathogen-antagonistic and/or plant growth promoting potentials, while members of genera that included potential denitrifiers increased in the second and third cropping of JA. The first cropping of JA had higher relative abundances of KO terms related to lignocellulose degradation and phosphorus cycling, the second cropping of JA had higher relative abundances of KO terms nitrous-oxide reductase and nitric-oxide reductase, and the third cropping of JA had higher relative abundances of KO

  2. Distinct Bacterial Communities Associated with Massive and Branching Scleractinian Corals and Potential Linkages to Coral Susceptibility to Thermal or Cold Stress

    Directory of Open Access Journals (Sweden)

    Jiayuan Liang

    2017-06-01

    Full Text Available It is well known that different coral species have different tolerances to thermal or cold stress, which is presumed to be related to the density of Symbiodinium. However, the intrinsic factors between stress-tolerant characteristics and coral-associated bacteria are rarely studied. In this study, 16 massive coral and 9 branching coral colonies from 6 families, 10 genera, and 18 species were collected at the same time and location (Xinyi Reef in the South China Sea to investigate the bacterial communities. The results of an alpha diversity analysis showed that bacterial diversities associated with massive corals were generally higher than those with branching corals at different taxonomic levels (phylum, class, order, and so on. In addition, hierarchical clustering tree and PCoA analyses showed that coral species were clustered into two large groups according to the similarity of bacterial communities. Group I consisted of massive Goniastrea, Plesiastrea, Leptastrea, Platygyra, Echinopora, Porites, and Leptoria, and group II consisted of branching Acropora and Pocillopora. These findings suggested that both massive corals and branching corals have their own preference for the choice of associated bacteria, which may be involved in observed differences in thermal/cold tolerances. Further analysis found that 55 bacterial phyla, including 43 formally described phyla and 12 candidate phyla, were detected in these coral species. Among them, 52 phyla were recovered from the massive coral group, and 46 phyla were recovered from the branching coral group. Formally described coral pathogens have not been detected in these coral species, suggesting that they are less likely to be threatened by disease in this geographic area. This study highlights a clear relationship between the high complexity of bacterial community associated with coral, skeletal morphology of coral and potentially tolerances to thermal or cold stress.

  3. The Deinococcus-Thermus phylum and the effect of rRNA composition on phylogenetic tree construction

    Science.gov (United States)

    Weisburg, W. G.; Giovannoni, S. J.; Woese, C. R.

    1989-01-01

    Through comparative analysis of 16S ribosomal RNA sequences, it can be shown that two seemingly dissimilar types of eubacteria Deinococcus and the ubiquitous hot spring organism Thermus are distantly but specifically related to one another. This confirms an earlier report based upon 16S rRNA oligonucleotide cataloging studies (Hensel et al., 1986). Their two lineages form a distinctive grouping within the eubacteria that deserved the taxonomic status of a phylum. The (partial) sequence of T. aquaticus rRNA appears relatively close to those of other thermophilic eubacteria. e.g. Thermotoga maritima and Thermomicrobium roseum. However, this closeness does not reflect a true evolutionary closeness; rather it is due to a "thermophilic convergence", the result of unusually high G+C composition in the rRNAs of thermophilic bacteria. Unless such compositional biases are taken into account, the branching order and root of phylogenetic trees can be incorrectly inferred.

  4. Spatial Variability of PAHs and Microbial Community Structure in Surrounding Surficial Soil of Coal-Fired Power Plants in Xuzhou, China

    Directory of Open Access Journals (Sweden)

    Jing Ma

    2016-09-01

    Full Text Available This work investigated the spatial profile and source analysis of polycyclic aromatic hydrocarbons (PAHs in soil that surrounds coal-fired power plants in Xuzhou, China. High-throughput sequencing was employed to investigate the composition and structure of soil bacterial communities. The total concentration of 15 PAHs in the surface soils ranged from 164.87 to 3494.81 μg/kg dry weight. The spatial profile of PAHs was site-specific with a concentration of 1400.09–3494.81 μg/kg in Yaozhuang. Based on the qualitative and principal component analysis results, coal burning and vehicle emission were found to be the main sources of PAHs in the surface soils. The phylogenetic analysis revealed differences in bacterial community compositions among different sampling sites. Proteobacteria was the most abundant phylum, while Acidobacteria was the second most abundant. The orders of Campylobacterales, Desulfobacterales and Hydrogenophilales had the most significant differences in relative abundance among the sampling sites. The redundancy analysis revealed that the differences in bacterial communities could be explained by the organic matter content. They could also be explicated by the acenaphthene concentration with longer arrows. Furthermore, OTUs of Proteobacteria phylum plotted around particular samples were confirmed to have a different composition of Proteobacteria phylum among the sample sites. Evaluating the relationship between soil PAHs concentration and bacterial community composition may provide useful information for the remediation of PAH contaminated sites.

  5. Controls on bacterial and archaeal community structure and greenhouse gas production in natural, mined, and restored Canadian peatlands

    Directory of Open Access Journals (Sweden)

    Nathan eBasiliko

    2013-07-01

    Full Text Available Northern peatlands are important global C reservoirs, largely because of their slow rates of microbial C mineralization. Particularly in sites that are heavily influenced by anthropogenic disturbances, there is scant information about microbial ecology and whether or not microbial community structure influences greenhouse gas production. This work characterized communities of bacteria and archaea using terminal restriction fragment length polymorphism and sequence analysis of 16S rRNA and functional genes across eight natural, mined, or restored peatlands in two locations in eastern Canada. Correlations were explored among chemical properties of peat, bacterial and archaeal community structure, and carbon dioxide and methane production rates under oxic and anoxic conditions. Bacteria and archaea similar to those found in other peat soil environments were detected. In contrast to other reports, methanogen diversity was low in our study, with only 2 groups of known or suspected methanogens. Although mining and restoration affected substrate availability and microbial activity, these land-uses did not consistently affect bacterial or archaeal community composition. In fact, larger differences were observed between the two locations and between oxic and anoxic peat samples than between mined and restored sites, with anoxic samples characterized by less detectable bacterial diversity and stronger dominance by members of the phylum Acidobacteria. There were also no apparent strong linkages between prokaryote community structure and methane or carbon dioxide production, suggesting that different organisms exhibit functional redundancy and/or that the same taxa function at very different rates when exposed to different peat substrates. In contrast to other earlier work focusing on fungal communities across similar mined and restored peatlands, bacterial and archaeal communities appeared to be more resistant or resilient to peat substrate changes brought

  6. Exploring the immediate and long-term impact on bacterial communities in soil amended with animal and urban organic waste fertilizers using pyrosequencing and screening for horizontal transfer of antibiotic resistance.

    Science.gov (United States)

    Riber, Leise; Poulsen, Pernille H B; Al-Soud, Waleed A; Skov Hansen, Lea B; Bergmark, Lasse; Brejnrod, Asker; Norman, Anders; Hansen, Lars H; Magid, Jakob; Sørensen, Søren J

    2014-10-01

    We investigated immediate and long-term effects on bacterial populations of soil amended with cattle manure, sewage sludge or municipal solid waste compost in an ongoing agricultural field trial. Soils were sampled in weeks 0, 3, 9 and 29 after fertilizer application. Pseudomonas isolates were enumerated, and the impact on soil bacterial community structure was investigated using 16S rRNA amplicon pyrosequencing. Bacterial community structure at phylum level remained mostly unaffected. Actinobacteria, Proteobacteria and Chloroflexi were the most prevalent phyla significantly responding to sampling time. Seasonal changes seemed to prevail with decreasing bacterial richness in week 9 followed by a significant increase in week 29 (springtime). The Pseudomonas population richness seemed temporarily affected by fertilizer treatments, especially in sludge- and compost-amended soils. To explain these changes, prevalence of antibiotic- and mercury-resistant pseudomonads was investigated. Fertilizer amendment had a transient impact on the resistance profile of the soil community; abundance of resistant isolates decreased with time after fertilizer application, but persistent strains appeared multiresistant, also in unfertilized soil. Finally, the ability of a P. putida strain to take up resistance genes from indigenous soil bacteria by horizontal gene transfer was present only in week 0, indicating a temporary increase in prevalence of transferable antibiotic resistance genes. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  7. First Description of Sulphur-Oxidizing Bacterial Symbiosis in a Cnidarian (Medusozoa Living in Sulphidic Shallow-Water Environments.

    Directory of Open Access Journals (Sweden)

    Sylvie Abouna

    Full Text Available Since the discovery of thioautotrophic bacterial symbiosis in the giant tubeworm Riftia pachyptila, there has been great impetus to investigate such partnerships in other invertebrates. In this study, we present the occurrence of a sulphur-oxidizing symbiosis in a metazoan belonging to the phylum Cnidaria in which this event has never been described previously.Scanning Electron Microscope (SEM, Transmission Electron Microscope (TEM observations and Energy-dispersive X-ray spectroscopy (EDXs analysis, were employed to unveil the presence of prokaryotes population bearing elemental sulphur granules, growing on the body surface of the metazoan. Phylogenetic assessments were also undertaken to identify this invertebrate and microorganisms in thiotrophic symbiosis. Our results showed the occurrence of a thiotrophic symbiosis in a cnidarian identified as Cladonema sp.This is the first report describing the occurrence of a sulphur-oxidizing symbiosis in a cnidarian. Furthermore, of the two adult morphologies, the polyp and medusa, this mutualistic association was found restricted to the polyp form of Cladonema sp.

  8. First Description of Sulphur-Oxidizing Bacterial Symbiosis in a Cnidarian (Medusozoa) Living in Sulphidic Shallow-Water Environments.

    Science.gov (United States)

    Abouna, Sylvie; Gonzalez-Rizzo, Silvina; Grimonprez, Adrien; Gros, Olivier

    2015-01-01

    Since the discovery of thioautotrophic bacterial symbiosis in the giant tubeworm Riftia pachyptila, there has been great impetus to investigate such partnerships in other invertebrates. In this study, we present the occurrence of a sulphur-oxidizing symbiosis in a metazoan belonging to the phylum Cnidaria in which this event has never been described previously. Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) observations and Energy-dispersive X-ray spectroscopy (EDXs) analysis, were employed to unveil the presence of prokaryotes population bearing elemental sulphur granules, growing on the body surface of the metazoan. Phylogenetic assessments were also undertaken to identify this invertebrate and microorganisms in thiotrophic symbiosis. Our results showed the occurrence of a thiotrophic symbiosis in a cnidarian identified as Cladonema sp. This is the first report describing the occurrence of a sulphur-oxidizing symbiosis in a cnidarian. Furthermore, of the two adult morphologies, the polyp and medusa, this mutualistic association was found restricted to the polyp form of Cladonema sp.

  9. Cultivation-Based and Molecular Assessment of Bacterial Diversity in the Rhizosheath of Wheat under Different Crop Rotations.

    Directory of Open Access Journals (Sweden)

    Muhammad Tahir

    Full Text Available A field study was conducted to compare the formationand bacterial communities of rhizosheaths of wheat grown under wheat-cotton and wheat-rice rotation and to study the effects of bacterial inoculation on plant growth. Inoculation of Azospirillum sp. WS-1 and Bacillus sp. T-34 to wheat plants increased root length, root and shoot dry weight and dry weight of rhizosheathsoil when compared to non-inoculated control plants, and under both crop rotations. Comparing both crop rotations, root length, root and shoot dry weight and dry weight of soil attached with roots were higher under wheat-cotton rotation. Organic acids (citric acid, malic acid, acetic acid and oxalic acid were detected in rhizosheaths from both rotations, with malic acid being most abundant with 24.8±2 and 21.3±1.5 μg g(-1 dry soil in wheat-cotton and wheat-rice rotation, respectively. Two sugars (sucrose, glucose were detected in wheat rhizosheath under both rotations, with highest concentrations of sucrose (4.08±0.5 μg g(-1 and 7.36±1.0 μg g(-1 and glucose (3.12±0.5 μg g(-1 and 3.01± μg g(-1 being detected in rhizosheaths of non-inoculated control plants under both rotations. Diversity of rhizosheath-associated bacteria was evaluated by cultivation, as well as by 454-pyrosequencing of PCR-tagged 16S rRNA gene amplicons. A total of 14 and 12 bacterial isolates predominantly belonging to the genera Arthrobacter, Azospirillum, Bacillus, Enterobacter and Pseudomonaswere obtained from the rhizosheath of wheat grown under wheat-cotton and wheat-rice rotation, respectively. Analysis of pyrosequencing data revealed Proteobacteria, Bacteriodetes and Verrucomicrobia as the most abundant phyla in wheat-rice rotation, whereas Actinobacteria, Firmicutes, Chloroflexi, Acidobacteria, Planctomycetes and Cyanobacteria were predominant in wheat-cotton rotation. From a total of 46,971 sequences, 10.9% showed ≥97% similarity with 16S rRNA genes of 32 genera previously shown to include

  10. Obligate sugar oxidation in Mesotoga spp., phylum Thermotogae, in the presence of either elemental sulfur or hydrogenotrophic sulfate-reducers as electron acceptor

    OpenAIRE

    Fadhlaoui, K.; Ben Hania, W.; Armougom, Fabrice; Bartoli, M.; Fardeau, Marie-Laure; Erauso, G.; Brasseur, G.; Aubert, C.; Hamdi, M.; Brochier-Armanet, C.; Dolla, A.; Ollivier, Bernard

    2018-01-01

    Mesotoga prima strain PhosAc3 is a mesophilic representative of the phylum Thermotogae comprising only fermentative bacteria so far. We show that while unable to ferment glucose, this bacterium is able to couple its oxidation to reduction of elemental sulfur. We demonstrate furthermore that M. prima strain PhosAc3 as well as M. prima strain MesG1 and Mesotoga infera are able to grow in syntrophic association with sulfate-reducing bacteria (SRB) acting as hydrogen scavengers through interspeci...

  11. The Ecological Controls on the Prevalence of Candidate Division TM7 in Polar Regions

    Directory of Open Access Journals (Sweden)

    Tristrom eWinsley

    2014-07-01

    Full Text Available The candidate division TM7 is ubiquitous and yet uncultured phylum of the Bacteria that encompasses a commonly environmental associated clade, TM7-1, and a ‘host-associated’ clade, TM7-3. However, as members of the TM7 phylum have not been cultured, little is known about what differs between these two clades. We hypothesized that these clades would have different environmental niches. To test this, we used a large-scale global soil dataset, encompassing 223 soil samples, their environmental parameters and associated bacterial 16S rRNA gene sequence data. We correlated chemical, physical and biological parameters of each soil with the relative abundance of the two major classes of the phylum to deduce factors that influence the groups’ seemingly ubiquitous nature. The two classes of the phylum (TM7-1 and TM7-3 were indeed distinct from each other in their habitat requirements. A key determinant of each class’ prevalence appears to be the pH of the soil. The class TM7-1 displays a facultative anaerobic nature with correlations to more acidic soils with total iron, silicon, titanium and copper indicating a potential for siderophore production. However, the TM7-3 class shows a more classical oligotrophic, heterotroph nature with a preference for more alkaline soils, and a probable pathogenic role with correlations to extractable iron, sodium and phosphate. In addition, the TM7-3 was abundant in diesel contaminated soils highlighting a resilient nature along with a possible carbon source. In addition to this both classes had unique co-occurrence relationships with other bacterial phyla. In particular, both groups had opposing correlations to the Gemmatimonadetes phylum, with the TM7-3 class seemingly being outcompeted by this phylum to result in a negative correlation. These ecological controls allow the characteristics of a TM7 phylum preferred niche to be defined and give insight into possible avenues for cultivation of this previously

  12. Factors influencing ruminal bacterial community diversity and composition and microbial fibrolytic enzyme abundance in lactating dairy cows with a focus on the role of active dry yeast.

    Science.gov (United States)

    AlZahal, Ousama; Li, Fuyong; Guan, Le Luo; Walker, Nicola D; McBride, Brian W

    2017-06-01

    The objective of the current study was to employ a DNA-based sequencing technology to study the effect of active dry yeast (ADY) supplementation, diet type, and sample location within the rumen on rumen bacterial community diversity and composition, and to use an RNA-based method to study the effect of ADY supplementation on rumen microbial metabolism during high-grain feeding (HG). Our previous report demonstrated that the supplementation of lactating dairy cows with ADY attenuated the effect of subacute ruminal acidosis. Therefore, we used samples from that study, where 16 multiparous, rumen-cannulated lactating Holstein cows were randomly assigned to 1 of 2 dietary treatments: ADY (Saccharomyces cerevisiae strain Y1242, 80 billion cfu/animal per day) or control (carrier only). Cows received a high-forage diet (77:23, forage:concentrate), then were abruptly switched to HG (49:51, forage:concentrate). Rumen bacterial community diversity and structure were highly influenced by diet and sampling location (fluid, solids, epimural). The transition to HG reduced bacterial diversity, but epimural bacteria maintained a greater diversity than fluid and solids. Analysis of molecular variance indicated a significant separation due to diet × sampling location, but not due to treatment. Across all samples, the analysis yielded 6,254 nonsingleton operational taxonomic units (OTU), which were classified into several phyla: mainly Firmicutes, Bacteroidetes, Fibrobacteres, Tenericutes, and Proteobacteria. High forage and solids were dominated by OTU from Fibrobacter, whereas HG and fluid were dominated by OTU from Prevotella. Epimural samples, however, were dominated in part by Campylobacter. Active dry yeast had no effect on bacterial community diversity or structure. The phylum SR1 was more abundant in all ADY samples regardless of diet or sampling location. Furthermore, on HG, OTU2 and OTU3 (both classified into Fibrobacter succinogenes) were more abundant with ADY in fluid

  13. Changes in Metabolically Active Bacterial Community during Rumen Development, and Their Alteration by Rhubarb Root Powder Revealed by 16S rRNA Amplicon Sequencing.

    Science.gov (United States)

    Wang, Zuo; Elekwachi, Chijioke; Jiao, Jinzhen; Wang, Min; Tang, Shaoxun; Zhou, Chuanshe; Tan, Zhiliang; Forster, Robert J

    2017-01-01

    The objective of this present study was to explore the initial establishment of metabolically active bacteria and subsequent evolution in four fractions: rumen solid-phase (RS), liquid-phase (RL), protozoa-associated (RP), and epithelium-associated (RE) through early weaning and supplementing rhubarb root powder in 7 different age groups (1, 10, 20, 38, 41, 50, and 60 d) during rumen development. Results of the 16S rRNA sequencing based on RNA isolated from the four fractions revealed that the potentially active bacterial microbiota in four fractions were dominated by the phyla Proteobacteria, Firmicutes , and Bacteroidetes regardless of different ages. An age-dependent increment of Chao 1 richness was observed in the fractions of RL and RE. The principal coordinate analysis (PCoA) indicated that samples in four fractions all clustered based on different age groups, and the structure of the bacterial community in RE was distinct from those in other three fractions. The abundances of Proteobacteria decreased significantly ( P < 0.05) with age, while increases in the abundances of Firmicutes and Bacteroidetes were noted. At the genus level, the abundance of the predominant genus Mannheimia in the Proteobacteria phylum decreased significantly ( P < 0.05) after 1 d, while the genera Quinella, Prevotella, Fretibacterium, Ruminococcus, Lachnospiraceae NK3A20 group , and Atopobium underwent different manners of increases and dominated the bacterial microbiota across four fractions. Variations of the distributions of some specific bacterial genera across fractions were observed, and supplementation of rhubarb affected the relative abundance of various genera of bacteria.

  14. Bacterial community structure and diversity responses to the direct revegetation of an artisanal zinc smelting slag after 5 years.

    Science.gov (United States)

    Luo, Youfa; Wu, Yonggui; Wang, Hu; Xing, Rongrong; Zheng, Zhilin; Qiu, Jing; Yang, Lian

    2018-05-01

    This comparative field study examined the responses of bacterial community structure and diversity to the revegetation of zinc (Zn) smelting waste slag with eight plant species after 5 years. The microbial community structure of waste slag with and without vegetation was evaluated using high-throughput sequencing. The physiochemical properties of Zn smelting slag after revegetation with eight plant rhizospheres for 5 years were improved compared to those of bulk slag. Revegetation significantly increased the microbial community diversity in plant rhizospheres, and at the phylum level, Proteobacteria, Acidobacteria, and Bacteroidetes were notably more abundant in rhizosphere slags than those in bulk waste slag. Additionally, revegetation increased the relative abundance of plant growth-promoting rhizobacteria such as Flavobacterium, Streptomyces, and Arthrobacter as well as symbiotic N 2 fixers such as Bradyrhizobium. Three dominant native plant species (Arundo donax, Broussonetia papyrifera, and Robinia pseudoacacia) greatly increased the quality of the rhizosphere slags. Canonical correspondence analysis showed that the differences in bacterial community structure between the bulk and rhizosphere slags were explained by slag properties, i.e., pH, available copper (Cu) and lead (Pb), moisture, available nitrogen (N), phosphorus (P), and potassium (K), and organic matter (OM); however, available Zn and cadmium (Cd) contents were the slag parameters that best explained the differences between the rhizosphere communities of the eight plant species. The results suggested that revegetation plays an important role in enhancing bacterial community abundance and diversity in rhizosphere slags and that revegetation may also regulate microbiological properties and diversity mainly through changes in heavy metal bioavailability and physiochemical slag characteristics.

  15. Comparative Metagenomics Reveal Phylum Level Temporal and Spatial Changes in Mycobiome of Belowground Parts of Crocus sativus.

    Directory of Open Access Journals (Sweden)

    Sheetal Ambardar

    Full Text Available Plant-fungal associations have been explored by routine cultivation based approaches and cultivation based approaches cannot catalogue more than 5% of fungal diversity associated with any niche. In the present study, an attempt has been made to catalogue fungal diversity associated with belowground parts i.e. rhizosphere and cormosphere, of Crocus sativus (an economically important herb during two growth stages, using cultivation independent ITS gene targeted approach, taking bulk soil as reference. The 454 pyrosequencing sequence data analysis suggests that the fungal diversity was niche and growth stage specific. Fungi diversity, in the present case, was not only different between the two organs (roots and corm but the dominance pattern varies between the cormosphere during two growth stages. Zygomycota was dominant fungal phylum in the rhizosphere whereas Basidiomycota was dominant in cormosphere during flowering stage. However in cormosphere though Basidiomycota was dominant phylum during flowering stage but Zygomycota was dominant during dormant stage. Interestingly, in cormosphere, the phyla which was dominant at dormant stage was rare at flowering stage and vice-versa (Basidiomycota: Flowering = 93.2% Dormant = 0.05% and Zygomycota: Flowering = 0.8% Dormant = 99.7%. At genus level, Rhizopus was dominant in dormant stage but was rare in flowering stage (Rhizopus: Dormant = 99.7% Flowering = 0.55%. This dynamics is not followed by the bulk soil fungi which was dominated by Ascomycota during both stages under study. The genus Fusarium, whose species F. oxysporum causes corm rot in C. sativus, was present during both stages with slightly higher abundance in roots. Interestingly, the abundance of Rhizopus varied a great deal in two stages in cormosphere but the abundance of Fusarium was comparable in two growth stages (Bulk soil Flowering = 0.05%, Rhizosphere Flowering = 1.4%, Cormosphere Flowering = 0.06%, Bulk soil Dormant = 2.47% and

  16. Phylum Level Change in the Cecal and Fecal Gut Communities of Rats Fed Diets Containing Different Fermentable Substrates Supports a Role for Nitrogen as a Factor Contributing to Community Structure

    Directory of Open Access Journals (Sweden)

    Martin Kalmokoff

    2015-05-01

    Full Text Available Fermentation differs between the proximal and distal gut but little is known regarding how the bacterial communities differ or how they are influenced by diet. In order to investigate this, we compared community diversity in the cecum and feces of rats by 16S rRNA gene content and DNA shot gun metagenomics after feeding purified diets containing different fermentable substrates. Gut community composition was dependent on the source of fermentable substrate included in the diet. Cecal communities were dominated by Firmicutes, and contained a higher abundance of Lachnospiraceae compared to feces. In feces, community structure was shifted by varying degrees depending on diet towards the Bacteroidetes, although this change was not always evident from 16S rRNA gene data. Multi-dimensional scaling analysis (PCoA comparing cecal and fecal metagenomes grouped by location within the gut rather than by diet, suggesting that factors in addition to substrate were important for community change in the distal gut. Differentially abundant genes in each environment supported this shift away from the Firmicutes in the cecum (e.g., motility towards the Bacteroidetes in feces (e.g., Bacteroidales transposons. We suggest that this phylum level change reflects a shift to ammonia as the primary source of nitrogen used to support continued microbial growth in the distal gut.

  17. Bacterial community evolutions driven by organic matter and powder activated carbon in simultaneous anammox and denitrification (SAD) process.

    Science.gov (United States)

    Ge, Cheng-Hao; Sun, Na; Kang, Qi; Ren, Long-Fei; Ahmad, Hafiz Adeel; Ni, Shou-Qing; Wang, Zhibin

    2018-03-01

    A distinct shift of bacterial community driven by organic matter (OM) and powder activated carbon (PAC) was discovered in the simultaneous anammox and denitrification (SAD) process which was operated in an anti-fouling submerged anaerobic membrane bio-reactor. Based on anammox performance, optimal OM dose (50 mg/L) was advised to start up SAD process successfully. The results of qPCR and high throughput sequencing analysis indicated that OM played a key role in microbial community evolutions, impelling denitrifiers to challenge anammox's dominance. The addition of PAC not only mitigated the membrane fouling, but also stimulated the enrichment of denitrifiers, accounting for the predominant phylum changing from Planctomycetes to Proteobacteria in SAD process. Functional genes forecasts based on KEGG database and COG database showed that the expressions of full denitrification functional genes were highly promoted in R C , which demonstrated the enhanced full denitrification pathway driven by OM and PAC under low COD/N value (0.11). Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Global Habitat Suitability and Ecological Niche Separation in the Phylum Placozoa.

    Directory of Open Access Journals (Sweden)

    Omid Paknia

    Full Text Available The enigmatic placozoans, which hold a key position in the metazoan Tree of Life, have attracted substantial attention in many areas of biological and biomedical research. While placozoans have become an emerging model system, their ecology and particularly biogeography remain widely unknown. In this study, we use modelling approaches to explore habitat preferences, and distribution pattern of the placozoans phylum. We provide hypotheses for discrete ecological niche separation between genetic placozoan lineages, which may also help to understand biogeography patterns in other small marine invertebrates. We, here, used maximum entropy modelling to predict placozoan distribution using 20 environmental grids of 9.2 km2 resolution. In addition, we used recently developed metrics of niche overlap to compare habitat suitability models of three genetic clades. The predicted distributions range from 55°N to 44°S and are restricted to regions of intermediate to warm sea surface temperatures. High concentrations of salinity and low nutrient concentrations appear as secondary factors. Tests of niche equivalency reveal the largest differences between placozoan clades I and III. Interestingly, the genetically well-separated clades I and V appear to be ecologically very similar. Our habitat suitability models predict a wider latitudinal distribution for placozoans, than currently described, especially in the northern hemisphere. With respect to biogeography modelling, placozoans show patterns somewhere between higher metazoan taxa and marine microorganisms, with the first group usually showing complex biogeographies and the second usually showing "no biogeography."

  19. Shifts of tundra bacterial and archaeal communities along a permafrost thaw gradient in Alaska.

    Science.gov (United States)

    Deng, Jie; Gu, Yunfu; Zhang, Jin; Xue, Kai; Qin, Yujia; Yuan, Mengting; Yin, Huaqun; He, Zhili; Wu, Liyou; Schuur, Edward A G; Tiedje, James M; Zhou, Jizhong

    2015-01-01

    Understanding the response of permafrost microbial communities to climate warming is crucial for evaluating ecosystem feedbacks to global change. This study investigated soil bacterial and archaeal communities by Illumina MiSeq sequencing of 16S rRNA gene amplicons across a permafrost thaw gradient at different depths in Alaska with thaw progression for over three decades. Over 4.6 million passing 16S rRNA gene sequences were obtained from a total of 97 samples, corresponding to 61 known classes and 470 genera. Soil depth and the associated soil physical-chemical properties had predominant impacts on the diversity and composition of the microbial communities. Both richness and evenness of the microbial communities decreased with soil depth. Acidobacteria, Verrucomicrobia, Alpha- and Gamma-Proteobacteria dominated the microbial communities in the upper horizon, whereas abundances of Bacteroidetes, Delta-Proteobacteria and Firmicutes increased towards deeper soils. Effects of thaw progression were absent in microbial communities in the near-surface organic soil, probably due to greater temperature variation. Thaw progression decreased the abundances of the majority of the associated taxa in the lower organic soil, but increased the abundances of those in the mineral soil, including groups potentially involved in recalcitrant C degradation (Actinomycetales, Chitinophaga, etc.). The changes in microbial communities may be related to altered soil C sources by thaw progression. Collectively, this study revealed different impacts of thaw in the organic and mineral horizons and suggests the importance of studying both the upper and deeper soils while evaluating microbial responses to permafrost thaw. © 2014 John Wiley & Sons Ltd.

  20. Correlation between system performance and bacterial composition under varied mixing intensity in thermophilic anaerobic digestion of food waste

    KAUST Repository

    Ghanimeh, Sophia A.; Al-Sanioura, Dana N.; Saikaly, Pascal; El-Fadel, Mutasem

    2017-01-01

    This study examines the stability and efficiency of thermophilic anaerobic digesters treating food waste under various mixing velocities (50–160 rpm). The results showed that high velocities (120 and 160 rpm) were harmful to the digestion process with 18–30% reduction in methane generation and 1.8 to 3.8 times increase in volatile fatty acids (VFA) concentrations, compared to mild mixing (50 and 80 rpm). Also, the removal rate of soluble COD dropped from 75 to 85% (at 50–80 rpm) to 20–59% (at 120–160 rpm). Similarly, interrupted mixing caused adverse impacts and led to near-failure conditions with excessive VFA accumulation (15.6 g l), negative removal rate of soluble COD and low methane generation (132 ml gVS). The best efficiency and stability were achieved under mild mixing (50 and 80 rpm). In particular, the 50 rpm stirring speed resulted in the highest methane generation (573 ml gVS). High-throughput sequencing of 16S rRNA genes revealed that the digesters were dominated by one bacterial genus (Petrotoga; phylym Thermotogae) at all mixing velocities except at 0 rpm, where the community was dominated by one bacterial genus (Anaerobaculum; phylum Synergistetes). The Petrotoga genus seems to have played a major role in the degradation of organic matter.

  1. Correlation between system performance and bacterial composition under varied mixing intensity in thermophilic anaerobic digestion of food waste

    KAUST Repository

    Ghanimeh, Sophia A.

    2017-12-07

    This study examines the stability and efficiency of thermophilic anaerobic digesters treating food waste under various mixing velocities (50–160 rpm). The results showed that high velocities (120 and 160 rpm) were harmful to the digestion process with 18–30% reduction in methane generation and 1.8 to 3.8 times increase in volatile fatty acids (VFA) concentrations, compared to mild mixing (50 and 80 rpm). Also, the removal rate of soluble COD dropped from 75 to 85% (at 50–80 rpm) to 20–59% (at 120–160 rpm). Similarly, interrupted mixing caused adverse impacts and led to near-failure conditions with excessive VFA accumulation (15.6 g l), negative removal rate of soluble COD and low methane generation (132 ml gVS). The best efficiency and stability were achieved under mild mixing (50 and 80 rpm). In particular, the 50 rpm stirring speed resulted in the highest methane generation (573 ml gVS). High-throughput sequencing of 16S rRNA genes revealed that the digesters were dominated by one bacterial genus (Petrotoga; phylym Thermotogae) at all mixing velocities except at 0 rpm, where the community was dominated by one bacterial genus (Anaerobaculum; phylum Synergistetes). The Petrotoga genus seems to have played a major role in the degradation of organic matter.

  2. Characterization of Bacterial and Fungal Microbiome in Children with Hirschsprung Disease with and without a History of Enterocolitis: A Multicenter Study.

    Directory of Open Access Journals (Sweden)

    Philip K Frykman

    Full Text Available Development of potentially life-threatening enterocolitis is the most frequent complication in children with Hirschsprung disease (HSCR, even after definitive corrective surgery. Intestinal microbiota likely contribute to the etiology of enterocolitis, so the aim of this study was to compare the fecal bacterial and fungal communities of children who developed Hirschsprung-associated enterocolitis (HAEC with HSCR patients who had never had enterocolitis. Eighteen Hirschsprung patients who had completed definitive surgery were enrolled: 9 had a history of HAEC and 9 did not. Fecal DNA was isolated and 16S and ITS-1 regions sequenced using Next Generation Sequencing and data analysis for species identification. The HAEC group bacterial composition showed a modest reduction in Firmicutes and Verrucomicrobia with increased Bacteroidetes and Proteobacteria compared with the HSCR group. In contrast, the fecal fungi composition of the HAEC group showed marked reduction in diversity with increased Candida sp., and reduced Malassezia and Saccharomyces sp. compared with the HSCR group. The most striking finding within the HAEC group is that the Candida genus segregated into "high burden" patients with 97.8% C. albicans and 2.2% C. tropicalis compared with "low burden" patients 26.8% C. albicans and 73% C. tropicalis. Interestingly even the low burden HAEC group had altered Candida community structure with just two species compared to more diverse Candida populations in the HSCR patients. This is the first study to identify Candida sp. as potentially playing a role in HAEC either as expanded commensal species as a consequence of enterocolitis (or treatment, or possibly as pathobioants contributing to the pathogenesis of HAEC. These findings suggest a dysbiosis in the gut microbial ecosystem of HAEC patients, such that there may be dominance of fungi and bacteria predisposing patients to development of HAEC.

  3. Genomic insights into the uncultured genus 'Candidatus Magnetobacterium' in the phylum Nitrospirae.

    Science.gov (United States)

    Lin, Wei; Deng, Aihua; Wang, Zhang; Li, Ying; Wen, Tingyi; Wu, Long-Fei; Wu, Martin; Pan, Yongxin

    2014-12-01

    Magnetotactic bacteria (MTB) of the genus 'Candidatus Magnetobacterium' in phylum Nitrospirae are of great interest because of the formation of hundreds of bullet-shaped magnetite magnetosomes in multiple bundles of chains per cell. These bacteria are worldwide distributed in aquatic environments and have important roles in the biogeochemical cycles of iron and sulfur. However, except for a few short genomic fragments, no genome data are available for this ecologically important genus, and little is known about their metabolic capacity owing to the lack of pure cultures. Here we report the first draft genome sequence of 3.42 Mb from an uncultivated strain tentatively named 'Ca. Magnetobacterium casensis' isolated from Lake Miyun, China. The genome sequence indicates an autotrophic lifestyle using the Wood-Ljungdahl pathway for CO2 fixation, which has not been described in any previously known MTB or Nitrospirae organisms. Pathways involved in the denitrification, sulfur oxidation and sulfate reduction have been predicted, indicating its considerable capacity for adaptation to variable geochemical conditions and roles in local biogeochemical cycles. Moreover, we have identified a complete magnetosome gene island containing mam, mad and a set of novel genes (named as man genes) putatively responsible for the formation of bullet-shaped magnetite magnetosomes and the arrangement of multiple magnetosome chains. This first comprehensive genomic analysis sheds light on the physiology, ecology and biomineralization of the poorly understood 'Ca. Magnetobacterium' genus.

  4. Complete mitochondrial genome sequence of Urechis caupo, a representative of the phylum Echiura.

    Science.gov (United States)

    Boore, Jeffrey L

    2004-09-15

    Mitochondria contain small genomes that are physically separate from those of nuclei. Their comparison serves as a model system for understanding the processes of genome evolution. Although hundreds of these genome sequences have been reported, the taxonomic sampling is highly biased toward vertebrates and arthropods, with many whole phyla remaining unstudied. This is the first description of a complete mitochondrial genome sequence of a representative of the phylum Echiura, that of the fat innkeeper worm, Urechis caupo. This mtDNA is 15,113 nts in length and 62% A+T. It contains the 37 genes that are typical for animal mtDNAs in an arrangement somewhat similar to that of annelid worms. All genes are encoded by the same DNA strand which is rich in A and C relative to the opposite strand. Codons ending with the dinucleotide GG are more frequent than would be expected from apparent mutational biases. The largest non-coding region is only 282 nts long, is 71% A+T, and has potential for secondary structures. Urechis caupo mtDNA shares many features with those of the few studied annelids, including the common usage of ATG start codons, unusual among animal mtDNAs, as well as gene arrangements, tRNA structures, and codon usage biases.

  5. Isolation and survey of novel fluoroacetate-degrading bacteria belonging to the phylum Synergistetes.

    Science.gov (United States)

    Davis, Carl K; Webb, Richard I; Sly, Lindsay I; Denman, Stuart E; McSweeney, Chris S

    2012-06-01

    Microbial dehalogenation of chlorinated compounds in anaerobic environments is well known, but the degradation of fluorinated compounds under similar conditions has rarely been described. Here, we report on the isolation of a bovine rumen bacterium that metabolizes fluoroacetate under anaerobic conditions, the mode of degradation and its presence in gut ecosystems. The bacterium was identified using 16S rRNA gene sequence analysis as belonging to the phylum Synergistetes and was designated strain MFA1. Growth was stimulated by amino acids with greater quantities of amino acids metabolized in the presence of fluoroacetate, but sugars were not fermented. Acetate, formate, propionate, isobutryate, isovalerate, ornithine and H(2) were end products of amino acid metabolism. Acetate was the primary end product of fluoroacetate dehalogenation, and the amount produced correlated with the stoichiometric release of fluoride which was confirmed using fluorine nuclear magnetic resonance ((19) F NMR) spectroscopy. Hydrogen and formate produced in situ were consumed during dehalogenation. The growth characteristics of strain MFA1 indicated that the bacterium may gain energy via reductive dehalogenation. This is the first study to identify a bacterium that can anaerobically dehalogenate fluoroacetate. Nested 16S rRNA gene-specific PCR assays detected the bacterium at low numbers in the gut of several herbivore species. © 2012 Commonwealth of Australia.

  6. The malleable gut microbiome of juvenile rainbow trout (Oncorhynchus mykiss): Diet-dependent shifts of bacterial community structures.

    Science.gov (United States)

    Michl, Stéphanie Céline; Ratten, Jenni-Marie; Beyer, Matt; Hasler, Mario; LaRoche, Julie; Schulz, Carsten

    2017-01-01

    Plant-derived protein sources are the most relevant substitutes for fishmeal in aquafeeds. Nevertheless, the effects of plant based diets on the intestinal microbiome especially of juvenile Rainbow trout (Oncorhynchus mykiss) are yet to be fully investigated. The present study demonstrates, based on 16S rDNA bacterial community profiling, that the intestinal microbiome of juvenile Rainbow trout is strongly affected by dietary plant protein inclusion levels. After first feeding of juveniles with either 0%, 50% or 97% of total dietary protein content derived from plants, statistically significant differences of the bacterial gut community for the three diet-types were detected, both at phylum and order level. The microbiome of juvenile fish consisted mainly of the phyla Proteobacteria, Firmicutes, Bacteroidetes, Fusobacteria and Actinobacteria, and thus fits the salmonid core microbiome suggested in previous studies. Dietary plant proteins significantly enhanced the relative abundance of the orders Lactobacillales, Bacillales and Pseudomonadales. Animal proteins in contrast significantly promoted Bacteroidales, Clostridiales, Vibrionales, Fusobacteriales and Alteromonadales. The overall alpha diversity significantly decreased with increasing plant protein inclusion levels and with age of experimental animals. In order to investigate permanent effects of the first feeding diet-type on the early development of the microbiome, a diet change was included in the study after 54 days, but no such effects could be detected. Instead, the microbiome of juvenile trout fry was highly dependent on the actual diet fed at the time of sampling.

  7. Influence of land use on bacterial and archaeal diversity and community structures in three natural ecosystems and one agricultural soil.

    Science.gov (United States)

    Lynn, Tin Mar; Liu, Qiong; Hu, Yajun; Yuan, Hongzhao; Wu, Xiaohong; Khai, Aye Aye; Wu, Jinshui; Ge, Tida

    2017-07-01

    Studying shifts in microbial communities under different land use can help in determining the impact of land use on microbial diversity. In this study, we analyzed four different land-use types to determine their bacterial and archaeal diversity and abundance. Three natural ecosystems, that is, wetland (WL), grassland (GL), and forest (FR) soils, and one agricultural soil, that is, tea plantation (TP) soil, were investigated to determine how land use shapes bacterial and archaeal diversity. For this purpose, molecular analyses, such as quantitative polymerase chain reaction (Q-PCR), 16S rRNA gene sequencing, and terminal restriction fragment length polymorphism (T-RFLP), were used. Soil physicochemical properties were determined, and statistical analyses were performed to identify the key factors affecting microbial diversity in these soils. Phylogenetic affiliations determined using the Ribosomal Database Project (RDP) database and T-RFLP revealed that the soils had differing bacterial diversity. WL soil was rich in only Proteobacteria, whereas GR soil was rich in Proteobacteria, followed by Actinobacteria. FR soil had higher abundance of Chloroflexi species than these soils. TP soil was rich in Actinobacteria, followed by Chloroflexi, Acidobacteria, Proteobacteria, and Firmicutes. The archaeal diversity of GL and FR soils was similar in that most of their sequences were closely related to Nitrososphaerales (Thaumarchaeota phylum). In contrast, WL soil, followed by TP soil, had greater archaeal diversity than other soils. Eight different archaeal classes were found in WL soil, and Pacearchaeota class was the richest one. The abundance of bacterial and archaeal 16S rRNA gene copies in WL and GL soils was significantly higher than that in FR and TP soils. Redundancy analysis showed that bacterial diversity was influenced by abiotic factors, e.g., total organic carbon and pH, whereas total nitrogen, pH, and cation exchange capacity (CEC) significantly affected

  8. Strong Regionality and Dominance of Anaerobic Bacterial Taxa Characterize Diazotrophic Bacterial Communities of the Arcto-Alpine Plant Species Oxyria digyna and Saxifraga oppositifolia

    Directory of Open Access Journals (Sweden)

    Manoj Kumar

    2017-10-01

    rhizosphere soil as well as the endosphere communities in the Mayrhofen region were all characterized by high relative abundances of nifH sequences related to Geobacter. In contrast, the endosphere and soil (bulk or rhizosphere soil communities in the High Arctic were highly divergent: endosphere communities in the arctic regions were shaped by Clostridium spp., while nifH sequences representing δ-Proteobacteria, β-Proteobacteria, Cyanobacteria (in Ny-Ålesund, and Verrucomicrobia (in Kilpisjärvi dominated the soil communities. Interestingly, the major PNFB genera identified in this study have been previously identified as members of conserved core microbiomes in the endospheres and seeds of these plants by 16S rRNA gene based analyses combined with bacterial isolation, suggesting a very tight interaction between diazotrophic bacteria and these arctic pioneer plants. Overall, anaerobic bacterial taxa dominated the PNFB communities of the endospheres and rhizospheres of the two plant species in all study sites. This could indicate anoxic conditions in and around plant roots at the time of sampling (early growth season, created by melting snow and underlying permafrost.

  9. Strong Regionality and Dominance of Anaerobic Bacterial Taxa Characterize Diazotrophic Bacterial Communities of the Arcto-Alpine Plant Species Oxyria digyna and Saxifraga oppositifolia.

    Science.gov (United States)

    Kumar, Manoj; van Elsas, Jan Dirk; Nissinen, Riitta

    2017-01-01

    as well as the endosphere communities in the Mayrhofen region were all characterized by high relative abundances of nifH sequences related to Geobacter . In contrast, the endosphere and soil (bulk or rhizosphere soil) communities in the High Arctic were highly divergent: endosphere communities in the arctic regions were shaped by Clostridium spp., while nifH sequences representing δ- Proteobacteria , β- Proteobacteria, Cyanobacteria (in Ny-Ålesund), and Verrucomicrobia (in Kilpisjärvi) dominated the soil communities. Interestingly, the major PNFB genera identified in this study have been previously identified as members of conserved core microbiomes in the endospheres and seeds of these plants by 16S rRNA gene based analyses combined with bacterial isolation, suggesting a very tight interaction between diazotrophic bacteria and these arctic pioneer plants. Overall, anaerobic bacterial taxa dominated the PNFB communities of the endospheres and rhizospheres of the two plant species in all study sites. This could indicate anoxic conditions in and around plant roots at the time of sampling (early growth season), created by melting snow and underlying permafrost.

  10. Dynamics of Panax ginseng Rhizospheric Soil Microbial Community and Their Metabolic Function

    Directory of Open Access Journals (Sweden)

    Yong Li

    2014-01-01

    Full Text Available The bacterial communities of 1- to 6-year ginseng rhizosphere soils were characterized by culture-independent approaches, random amplified polymorphic DNA (RAPD, and amplified ribosomal DNA restriction analysis (ARDRA. Culture-dependent method (Biolog was used to investigate the metabolic function variance of microbe living in rhizosphere soil. Results showed that significant genetic and metabolic function variance were detected among soils, and, with the increasing of cultivating years, genetic diversity of bacterial communities in ginseng rhizosphere soil tended to be decreased. Also we found that Verrucomicrobia, Acidobacteria, and Proteobacteria were the dominants in rhizosphere soils, but, with the increasing of cultivating years, plant disease prevention or plant growth promoting bacteria, such as Pseudomonas, Burkholderia, and Bacillus, tended to be rare.

  11. Evolutionary origins and diversification of proteobacterial mutualists.

    Science.gov (United States)

    Sachs, Joel L; Skophammer, Ryan G; Bansal, Nidhanjali; Stajich, Jason E

    2014-01-22

    Mutualistic bacteria infect most eukaryotic species in nearly every biome. Nonetheless, two dilemmas remain unresolved about bacterial-eukaryote mutualisms: how do mutualist phenotypes originate in bacterial lineages and to what degree do mutualists traits drive or hinder bacterial diversification? Here, we reconstructed the phylogeny of the hyperdiverse phylum Proteobacteria to investigate the origins and evolutionary diversification of mutualistic bacterial phenotypes. Our ancestral state reconstructions (ASRs) inferred a range of 34-39 independent origins of mutualist phenotypes in Proteobacteria, revealing the surprising frequency with which host-beneficial traits have evolved in this phylum. We found proteobacterial mutualists to be more often derived from parasitic than from free-living ancestors, consistent with the untested paradigm that bacterial mutualists most often evolve from pathogens. Strikingly, we inferred that mutualists exhibit a negative net diversification rate (speciation minus extinction), which suggests that mutualism evolves primarily via transitions from other states rather than diversification within mutualist taxa. Moreover, our ASRs infer that proteobacterial mutualist lineages exhibit a paucity of reversals to parasitism or to free-living status. This evolutionary conservatism of mutualism is contrary to long-standing theory, which predicts that selection should often favour mutants in microbial mutualist populations that exploit or abandon more slowly evolving eukaryotic hosts.

  12. Recent developments in the thermophilic microbiology of deep-sea hydrothermal vents.

    Science.gov (United States)

    Miroshnichenko, Margarita L; Bonch-Osmolovskaya, Elizaveta A

    2006-04-01

    The diversity of thermophilic prokaryotes inhabiting deep-sea hot vents was actively studied over the last two decades. The ever growing interest is reflected in the exponentially increasing number of novel thermophilic genera described. The goal of this paper is to survey the progress in this field made in the years 2000-2005. In this period, representatives of several new taxa of hyperthermophilic archaea were obtained from deep-sea environments. Two of these isolates had phenotypic features new for this group of organisms: the presence of an outer cell membrane (the genus Ignicoccus) and the ability to grow anaerobically with acetate and ferric iron (the genus Geoglobus). Also, our knowledge on the diversity of thermophilic bacteria from deep-sea thermal environments extended significantly. The new bacterial isolates represented diverse bacterial divisions: the phylum Aquificae, the subclass Epsilonproteobacteria, the order Thermotogales, the families Thermodesulfobacteriaceae, Deferribacteraceae, and Thermaceae, and a novel bacterial phylum represented by the genus Caldithrix. Most of these isolates are obligate or facultative lithotrophs, oxidizing molecular hydrogen in the course of different types of anaerobic respiration or microaerobic growth. The existence and significant ecological role of some of new bacterial thermophilic isolates was initially established by molecular methods.

  13. Comparative assessment of the bacterial communities associated with Aedes aegypti larvae and water from domestic water storage containers.

    Science.gov (United States)

    Dada, Nsa; Jumas-Bilak, Estelle; Manguin, Sylvie; Seidu, Razak; Stenström, Thor-Axel; Overgaard, Hans J

    2014-08-24

    Domestic water storage containers constitute major Aedes aegypti breeding sites. We present for the first time a comparative analysis of the bacterial communities associated with Ae. aegypti larvae and water from domestic water containers. The 16S rRNA-temporal temperature gradient gel electrophoresis (TTGE) was used to identify and compare bacterial communities in fourth-instar Ae. aegypti larvae and water from larvae positive and negative domestic containers in a rural village in northeastern Thailand. Water samples were cultured for enteric bacteria in addition to TTGE. Sequences obtained from TTGE and bacterial cultures were clustered into operational taxonomic units (OTUs) for analyses. Significantly lower OTU abundance was found in fourth-instar Ae. aegypti larvae compared to mosquito positive water samples. There was no significant difference in OTU abundance between larvae and mosquito negative water samples or between mosquito positive and negative water samples. Larval samples had significantly different OTU diversity compared to mosquito positive and negative water samples, with no significant difference between mosquito positive and negative water samples. The TTGE identified 24 bacterial taxa, belonging to the phyla Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and TM7 (candidate phylum). Seven of these taxa were identified in larval samples, 16 in mosquito positive and 13 in mosquito negative water samples. Only two taxa, belonging to the phyla Firmicutes and Actinobacteria, were common to both larvae and water samples. Bacilli was the most abundant bacterial class identified from Ae. aegypti larvae, Gammaproteobacteria from mosquito positive water samples, and Flavobacteria from mosquito negative water samples. Enteric bacteria belonging to the class Gammaproteobacteria were sparsely represented in TTGE, but were isolated from both mosquito positive and negative water samples by selective culture. Few bacteria from water samples were

  14. Characterization of the Fecal Microbial Communities of Duroc Pigs Using 16S rRNA Gene Pyrosequencing

    Directory of Open Access Journals (Sweden)

    Edward Alain B. Pajarillo

    2015-04-01

    Full Text Available This study characterized the fecal bacterial community structure and inter-individual variation in 30-week-old Duroc pigs, which are known for their excellent meat quality. Pyrosequencing of the V1–V3 hypervariable regions of the 16S rRNA genes generated 108,254 valid reads and 508 operational taxonomic units at a 95% identity cut-off (genus level. Bacterial diversity and species richness as measured by the Shannon diversity index were significantly greater than those reported previously using denaturation gradient gel electrophoresis; thus, this study provides substantial information related to both known bacteria and the untapped portion of unclassified bacteria in the population. The bacterial composition of Duroc pig fecal samples was investigated at the phylum, class, family, and genus levels. Firmicutes and Bacteroidetes predominated at the phylum level, while Clostridia and Bacteroidia were most abundant at the class level. This study also detected prominent inter-individual variation starting at the family level. Among the core microbiome, which was observed at the genus level, Prevotella was consistently dominant, as well as a bacterial phylotype related to Oscillibacter valericigenes, a valerate producer. This study found high bacterial diversity and compositional variation among individuals of the same breed line, as well as high abundance of unclassified bacterial phylotypes that may have important functions in the growth performance of Duroc pigs.

  15. Patterns and Drivers of Egg Pigment Intensity and Colour Diversity in the Ocean: A Meta-Analysis of Phylum Echinodermata.

    Science.gov (United States)

    Montgomery, E M; Hamel, J-F; Mercier, A

    Egg pigmentation is proposed to serve numerous ecological, physiological, and adaptive functions in egg-laying animals. Despite the predominance and taxonomic diversity of egg layers, syntheses reviewing the putative functions and drivers of egg pigmentation have been relatively narrow in scope, centring almost exclusively on birds. Nonvertebrate and aquatic species are essentially overlooked, yet many of them produce maternally provisioned eggs in strikingly varied colours, from pale yellow to bright red or green. We explore the ways in which these colour patterns correlate with behavioural, morphological, geographic and phylogenetic variables in extant classes of Echinodermata, a phylum that has close phylogenetic ties with chordates and representatives in nearly all marine environments. Results of multivariate analyses show that intensely pigmented eggs are characteristic of pelagic or external development whereas pale eggs are commonly brooded internally. Of the five egg colours catalogued, orange and yellow are the most common. Yellow eggs are a primitive character, associated with all types of development (predominant in internal brooders), whereas green eggs are always pelagic, occur in the most derived orders of each class and are restricted to the Indo-Pacific Ocean. Orange eggs are geographically ubiquitous and may represent a 'universal' egg pigment that functions well under a diversity of environmental conditions. Finally, green occurs chiefly in the classes Holothuroidea and Ophiuroidea, orange in Asteroidea, yellow in Echinoidea, and brown in Holothuroidea. By examining an unprecedented combination of egg colours/intensities and reproductive strategies, this phylum-wide study sheds new light on the role and drivers of egg pigmentation, drawing parallels with theories developed from the study of more derived vertebrate taxa. The primary use of pigments (of any colour) to protect externally developing eggs from oxidative damage and predation is

  16. Complete mitochondrial genome sequence of Urechis caupo, a representative of the phylum Echiura

    Directory of Open Access Journals (Sweden)

    Boore Jeffrey L

    2004-09-01

    Full Text Available Abstract Background Mitochondria contain small genomes that are physically separate from those of nuclei. Their comparison serves as a model system for understanding the processes of genome evolution. Although hundreds of these genome sequences have been reported, the taxonomic sampling is highly biased toward vertebrates and arthropods, with many whole phyla remaining unstudied. This is the first description of a complete mitochondrial genome sequence of a representative of the phylum Echiura, that of the fat innkeeper worm, Urechis caupo. Results This mtDNA is 15,113 nts in length and 62% A+T. It contains the 37 genes that are typical for animal mtDNAs in an arrangement somewhat similar to that of annelid worms. All genes are encoded by the same DNA strand which is rich in A and C relative to the opposite strand. Codons ending with the dinucleotide GG are more frequent than would be expected from apparent mutational biases. The largest non-coding region is only 282 nts long, is 71% A+T, and has potential for secondary structures. Conclusions Urechis caupo mtDNA shares many features with those of the few studied annelids, including the common usage of ATG start codons, unusual among animal mtDNAs, as well as gene arrangements, tRNA structures, and codon usage biases.

  17. The occurrence of arbuscular mycorrhizal fungi of the phylum Glomeromycota in Israeli soils

    Directory of Open Access Journals (Sweden)

    Janusz Błaszkowski

    2011-01-01

    Full Text Available In December 1997 and June-July 2000, 49 and 113 rhizosphere soil and root mixtures were collected, respectively, to determine the occurrence of arbuscular mycorrhizal fungi (AMF of the phylum Glomeromycota in different sites of Israel. Except for five samples taken from under cultivated plants, all the others came from under Ammophila arenaria and Oenothera drummondii colonizing sand dunes adjacent to the Mediterranean Sea. After a continuous cultivation of the mixtures in pot trap cultures with Plantago lanceolata as the plant host up to 2006 and their examination at least twice a year, spores of AMF were found in 41 and 103 cultures with the 1997 and 2000 soil and root mixtures, respectively. The spores represented 30 species and 8 undescribed morphotypes in 7 genera of the Glomeromycota. The AMF most frequently found in Israeli soils were Glomus aurantium and G. constrictum, followed by G. coronatum, G. gibbosum, an undescribed Glomus 178, and Scutellospora dipurpurescens. Up to 2001, 21 species of AMF were known to occur in Israel, and this paper increases this number to 33, of which 11 are new fungi for this country. Moreover, four species, G. aurantium, G. drummondii, G. walkeri and G. xanthium, were recently described as new for science based on spores isolated from Israeli soils. Additionally, the general distribution in the world of the formally described species found in Israel was presented.

  18. Functional bacterial and archaeal diversity revealed by 16S rRNA gene pyrosequencing during potato starch processing wastewater treatment in an UASB.

    Science.gov (United States)

    Antwi, Philip; Li, Jianzheng; Opoku Boadi, Portia; Meng, Jia; Shi, En; Xue, Chi; Zhang, Yupeng; Ayivi, Frederick

    2017-07-01

    Microbial community structure of sludge sampled from an UASB treating potato starch processing wastewater (PSPW) was investigated. Operational taxonomic units revealed at 97% sequence identity tolerance was 2922, 2869 and 3919 for bottom, middle and top sections of the reactor, respectively. Overall abundant phylum observed within the UASB was low-G+C-Gram-positive bacteria affiliated to Firmicutes (26.01%) followed by Chloroflexi (16.70%), Proteobacteria (12.71%), Cloacimonetes (10.72%), Bacteroidetes (7.87%), Synergistetes (9.02%) and Euryarchaeota (8.82%). Whiles Firmicutes had dominated the bottom and top section by 34.01% and 28.64%, respectively, middle section was predominantly Euryarchaeota (24.32%) with major dominance in methanogens affiliated to genus Methanosaeta. The results demonstrated substantial stratification of the microbial community structure along the reactor height with various functional bacterial groups which subsequently allowed degradation of organics in PSPW in sequential mode. The findings herein would provide guidance for optimizing the anaerobic process and operation of the UASB. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Inulin with different degrees of polymerization modulates composition of intestinal microbiota in mice.

    Science.gov (United States)

    Zhu, Limeng; Qin, Song; Zhai, Shixiang; Gao, Yonglin; Li, Lili

    2017-05-01

    The study aimed to analyze the global influences of dietary inulin with different degrees of polymerization (DP) on intestinal microbial communities. Six-week-old male C57BL/6J mice were treated with fructo-oligosaccharides and inulin for 6 weeks. Fecal samples were obtained at time point 0 and 6th week. 16S rRNA sequence analysis was used to measure intestinal microbiota performed on the Illumina MiSeq platform. Influences of dietary inulin on intestinal microbiota were more complex effects than bifidogenic effects, relative abundance of butyrate-producing bacteria increased after interventions. Akkermansia muciniphila, belonging to mucin-degrading species, became a dominant species in Verrucomicrobia phylum after treatment with fructo-oligosaccharides and inulin. Modulation effects of intestinal microbiota were positively correlated with DP. Lower DP interventions exhibited better effects than higher DP treatment on stimulation of probiotics. We hypothesized that Akkermansia muciniphila played an important role on maintaining balance between mucin and short chain fatty acids. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Novel Mono-, Di-, and Trimethylornithine Membrane Lipids in Northern Wetland Planctomycetes

    NARCIS (Netherlands)

    Moore, E.K.; Hopmans, E.C.; Rijpstra, W.I.C.; Villanueva, L.; Dedysh, S.N.; Kulichevskaya, I.S.; Wienk, H.L.J.; Schoutsen, F.; Sinninghe Damsté, J.S.

    2013-01-01

    Northern peatlands represent a significant global carbon store and commonly originate from Sphagnum moss-dominated wetlands. These ombrotrophic ecosystems are rain fed, resulting in nutrient-poor, acidic conditions. Members of the bacterial phylum Planctomycetes are highly abundant and appear to

  1. Genetic technologies for extremely thermophilic microorganisms of Sulfolobus, the only genetically tractable genus of crenarchaea

    DEFF Research Database (Denmark)

    Peng, Nan; Han, Wenyuan; Li, Yingjun

    2017-01-01

    Archaea represents the third domain of life, with the information-processing machineries more closely resembling those of eukaryotes than the machineries of the bacterial counterparts but sharing metabolic pathways with organisms of Bacteria, the sister prokaryotic phylum. Archaeal organisms also...

  2. Development of a multilocus-based approach for sponge (phylum Porifera) identification: refinement and limitations.

    Science.gov (United States)

    Yang, Qi; Franco, Christopher M M; Sorokin, Shirley J; Zhang, Wei

    2017-02-02

    For sponges (phylum Porifera), there is no reliable molecular protocol available for species identification. To address this gap, we developed a multilocus-based Sponge Identification Protocol (SIP) validated by a sample of 37 sponge species belonging to 10 orders from South Australia. The universal barcode COI mtDNA, 28S rRNA gene (D3-D5), and the nuclear ITS1-5.8S-ITS2 region were evaluated for their suitability and capacity for sponge identification. The highest Bit Score was applied to infer the identity. The reliability of SIP was validated by phylogenetic analysis. The 28S rRNA gene and COI mtDNA performed better than the ITS region in classifying sponges at various taxonomic levels. A major limitation is that the databases are not well populated and possess low diversity, making it difficult to conduct the molecular identification protocol. The identification is also impacted by the accuracy of the morphological classification of the sponges whose sequences have been submitted to the database. Re-examination of the morphological identification further demonstrated and improved the reliability of sponge identification by SIP. Integrated with morphological identification, the multilocus-based SIP offers an improved protocol for more reliable and effective sponge identification, by coupling the accuracy of different DNA markers.

  3. Biogeographic Comparison of Lophelia-Associated Bacterial Communities in the Western Atlantic Reveals Conserved Core Microbiome

    Directory of Open Access Journals (Sweden)

    Christina A. Kellogg

    2017-05-01

    Full Text Available Over the last decade, publications on deep-sea corals have tripled. Most attention has been paid to Lophelia pertusa, a globally distributed scleractinian coral that creates critical three-dimensional habitat in the deep ocean. The bacterial community associated with L. pertusa has been previously described by a number of studies at sites in the Mediterranean Sea, Norwegian fjords, off Great Britain, and in the Gulf of Mexico (GOM. However, use of different methodologies prevents direct comparisons in most cases. Our objectives were to address intra-regional variation and to identify any conserved bacterial core community. We collected samples from three distinct colonies of L. pertusa at each of four locations within the western Atlantic: three sites within the GOM and one off the east coast of the United States. Amplicon libraries of 16S rRNA genes were generated using primers targeting the V4–V5 hypervariable region and 454 pyrosequencing. The dominant phylum was Proteobacteria (75–96%. At the family level, 80–95% of each sample was comprised of five groups: Pirellulaceae, Pseudonocardiaceae, Rhodobacteraceae, Sphingomonadaceae, and unclassified Oceanospirillales. Principal coordinate analysis based on weighted UniFrac distances showed a clear distinction between the GOM and Atlantic samples. Interestingly, the replicate samples from each location did not always cluster together, indicating there is not a strong site-specific influence. The core bacterial community, conserved in 100% of the samples, was dominated by the operational taxonomic units of genera Novosphingobium and Pseudonocardia, both known degraders of aromatic hydrocarbons. The sequence of another core member, Propionibacterium, was also found in prior studies of L. pertusa from Norway and Great Britain, suggesting a role as a conserved symbiont. By examining more than 40,000 sequences per sample, we found that GOM samples were dominated by the identified conserved core

  4. Bacterial diversity in a soil sample from Uranium mining waste pile as estimated via a culture-independent 16S rDNA approach

    International Nuclear Information System (INIS)

    Satchanska, G.; Golovinsky, E.; Selenska-Pobell, S.

    2004-01-01

    Bacterial diversity was studied in a soil sample collected from a uranium mining waste pile situated near the town of Johanngeorgenstadt, Germany. As estimated by ICP-MS analysis the studied sample was highly contaminated with Fe, Al, Mn, Zn, As, Pb and U. The 16S rDNA retrieval, applied in this study, demonstrated that more than the half of the clones of the constructed 16S rDNA library were represented by individual RFLP profiles. This indicates that the composition of the bacterial community in the sample was very complex. However, several 16S rDNA RFLP groups were found to be predominant and they were subjected to a sequence analysis. The most predominant group, which represented about 13% of the clones of the 16S rDNA library, was affiliated with the Holophaga/Acidobacterium phylum. Significant was also the number of the proteobacterial sequences which were distributed in one predominant α-proteobacterial cluster representing 11% of the total number of clones and in two equal-sized β- and γ-proteobacterial clusters representing each 6% of the clones. Two smaller groups representing both 2% of the clones were affiliated with Nitrospira and with the novel division WS3. Three of the analysed sequences were evaluated as a novel, not yet described lineage and one as a putative chimera. (authors)

  5. Bacterial and diazotrophic diversities of endophytes in Dendrobium catenatum determined through barcoded pyrosequencing.

    Science.gov (United States)

    Li, Ou; Xiao, Rong; Sun, Lihua; Guan, Chenglin; Kong, Dedong; Hu, Xiufang

    2017-01-01

    As an epiphyte orchid, Dendrobium catenatum relies on microorganisms for requisite nutrients. Metagenome pyrosequencing based on 16S rRNA and nifH genes was used to characterize the bacterial and diazotrophic communities associated with D. catenatum collected from 5 districts in China. Based on Meta-16S rRNA sequencing, 22 bacterial phyla and 699 genera were identified, distributed as 125 genera from 8 phyla and 319 genera from 10 phyla shared by all the planting bases and all the tissues, respectively. The predominant Proteobacteria varied from 71.81% (GZ) to 96.08% (YN), and Delftia (10.39-38.42%), Burkholderia (2.71-15.98%), Escherichia/Shigella (4.90-25.12%), Pseudomonas (2.68-30.72%) and Sphingomonas (1.83-2.05%) dominated in four planting bases. Pseudomonas (17.94-22.06%), Escherichia/Shigella (6.59-11.59%), Delftia (9.65-22.14%) and Burkholderia (3.12-11.05%) dominated in all the tissues. According to Meta-nifH sequencing, 4 phyla and 45 genera were identified, while 17 genera and 24 genera from 4 phyla were shared by all the planting bases and all the tissues, respectively. Burkholderia and Bradyrhizobium were the most popular in the planting bases, followed by Methylovirgula and Mesorhizobium. Mesorhizobium was the most popular in different tissues, followed by Beijerinckia, Xanthobacter, and Burkholderia. Among the genera, 39 were completely overlapped with the results based on the 16S rRNA gene. In conclusion, abundant bacteria and diazotrophs were identified in common in different tissues of D. catenatum from five planting bases, which might play a great role in the supply of nutrients such as nitrogen. The exact abundance of phylum and genus on the different tissues from different planting bases need deeper sequencing with more samples.

  6. Bacterial and diazotrophic diversities of endophytes in Dendrobium catenatum determined through barcoded pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Ou Li

    Full Text Available As an epiphyte orchid, Dendrobium catenatum relies on microorganisms for requisite nutrients. Metagenome pyrosequencing based on 16S rRNA and nifH genes was used to characterize the bacterial and diazotrophic communities associated with D. catenatum collected from 5 districts in China. Based on Meta-16S rRNA sequencing, 22 bacterial phyla and 699 genera were identified, distributed as 125 genera from 8 phyla and 319 genera from 10 phyla shared by all the planting bases and all the tissues, respectively. The predominant Proteobacteria varied from 71.81% (GZ to 96.08% (YN, and Delftia (10.39-38.42%, Burkholderia (2.71-15.98%, Escherichia/Shigella (4.90-25.12%, Pseudomonas (2.68-30.72% and Sphingomonas (1.83-2.05% dominated in four planting bases. Pseudomonas (17.94-22.06%, Escherichia/Shigella (6.59-11.59%, Delftia (9.65-22.14% and Burkholderia (3.12-11.05% dominated in all the tissues. According to Meta-nifH sequencing, 4 phyla and 45 genera were identified, while 17 genera and 24 genera from 4 phyla were shared by all the planting bases and all the tissues, respectively. Burkholderia and Bradyrhizobium were the most popular in the planting bases, followed by Methylovirgula and Mesorhizobium. Mesorhizobium was the most popular in different tissues, followed by Beijerinckia, Xanthobacter, and Burkholderia. Among the genera, 39 were completely overlapped with the results based on the 16S rRNA gene. In conclusion, abundant bacteria and diazotrophs were identified in common in different tissues of D. catenatum from five planting bases, which might play a great role in the supply of nutrients such as nitrogen. The exact abundance of phylum and genus on the different tissues from different planting bases need deeper sequencing with more samples.

  7. Bacterial and diazotrophic diversities of endophytes in Dendrobium catenatum determined through barcoded pyrosequencing

    Science.gov (United States)

    Li, Ou; Sun, Lihua; Guan, Chenglin; Kong, Dedong

    2017-01-01

    As an epiphyte orchid, Dendrobium catenatum relies on microorganisms for requisite nutrients. Metagenome pyrosequencing based on 16S rRNA and nifH genes was used to characterize the bacterial and diazotrophic communities associated with D. catenatum collected from 5 districts in China. Based on Meta-16S rRNA sequencing, 22 bacterial phyla and 699 genera were identified, distributed as 125 genera from 8 phyla and 319 genera from 10 phyla shared by all the planting bases and all the tissues, respectively. The predominant Proteobacteria varied from 71.81% (GZ) to 96.08% (YN), and Delftia (10.39–38.42%), Burkholderia (2.71–15.98%), Escherichia/Shigella (4.90–25.12%), Pseudomonas (2.68–30.72%) and Sphingomonas (1.83–2.05%) dominated in four planting bases. Pseudomonas (17.94–22.06%), Escherichia/Shigella (6.59–11.59%), Delftia (9.65–22.14%) and Burkholderia (3.12–11.05%) dominated in all the tissues. According to Meta-nifH sequencing, 4 phyla and 45 genera were identified, while 17 genera and 24 genera from 4 phyla were shared by all the planting bases and all the tissues, respectively. Burkholderia and Bradyrhizobium were the most popular in the planting bases, followed by Methylovirgula and Mesorhizobium. Mesorhizobium was the most popular in different tissues, followed by Beijerinckia, Xanthobacter, and Burkholderia. Among the genera, 39 were completely overlapped with the results based on the 16S rRNA gene. In conclusion, abundant bacteria and diazotrophs were identified in common in different tissues of D. catenatum from five planting bases, which might play a great role in the supply of nutrients such as nitrogen. The exact abundance of phylum and genus on the different tissues from different planting bases need deeper sequencing with more samples. PMID:28931073

  8. Accession data for analysed Xestospongia testudinaria metatranscriptomes, supplement to: Jahn, Martin T; Markert, Sebastian M; Ryu, Taewoo; Ravasi, Timothy; Stigloher, Christian; Hentschel, Ute; Moitinho-Silva, Lucas (2016): Shedding light on cell compartmentation in the candidate phylum Poribacteria by high resolution visualisation and transcriptional profiling. Scientific Reports, 6, 35860

    KAUST Repository

    Jahn, Martin T

    2016-01-01

    Assigning functions to uncultivated environmental microorganisms continues to be a challenging endeavour. Here, we present a new microscopy protocol for fluorescence in situ hybridisation-correlative light and electron microscopy (FISH-CLEM) that enabled, to our knowledge for the first time, the identification of single cells within their complex microenvironment at electron microscopy resolution. Members of the candidate phylum Poribacteria, common and uncultivated symbionts of marine sponges, were used towards this goal. Cellular 3D reconstructions revealed bipolar, spherical granules of low electron density, which likely represent carbon reserves. Poribacterial activity profiles were retrieved from prokaryotic enriched sponge metatranscriptomes using simulation-based optimised mapping. We observed high transcriptional activity for proteins related to bacterial microcompartments (BMC) and we resolved their subcellular localisation by combining FISH-CLEM with immunohistochemistry (IHC) on ultra-thin sponge tissue sections. In terms of functional relevance, we propose that the BMC-A region may be involved in 1,2-propanediol degradation. The FISH-IHC-CLEM approach was proven an effective toolkit to combine -omics approaches with functional studies and it should be widely applicable in environmental microbiology.

  9. Bacterial prostatitis.

    Science.gov (United States)

    Gill, Bradley C; Shoskes, Daniel A

    2016-02-01

    The review provides the infectious disease community with a urologic perspective on bacterial prostatitis. Specifically, the article briefly reviews the categorization of prostatitis by type and provides a distillation of new findings published on bacterial prostatitis over the past year. It also highlights key points from the established literature. Cross-sectional prostate imaging is becoming more common and may lead to more incidental diagnoses of acute bacterial prostatitis. As drug resistance remains problematic in this condition, the reemergence of older antibiotics such as fosfomycin, has proven beneficial. With regard to chronic bacterial prostatitis, no clear clinical risk factors emerged in a large epidemiological study. However, bacterial biofilm formation has been associated with more severe cases. Surgery has a limited role in bacterial prostatitis and should be reserved for draining of a prostatic abscess or the removal of infected prostatic stones. Prostatitis remains a common and bothersome clinical condition. Antibiotic therapy remains the basis of treatment for both acute and chronic bacterial prostatitis. Further research into improving prostatitis treatment is indicated.

  10. Pyrosequencing-based assessment of the bacteria diversity in surface and subsurface peat layers of a northern wetland, with focus on poorly studied phyla and candidate divisions.

    Science.gov (United States)

    Serkebaeva, Yulia M; Kim, Yongkyu; Liesack, Werner; Dedysh, Svetlana N

    2013-01-01

    Northern peatlands play a key role in the global carbon and water budget, but the bacterial diversity in these ecosystems remains poorly described. Here, we compared the bacterial community composition in the surface (0-5 cm depth) and subsurface (45-50 cm) peat layers of an acidic (pH 4.0) Sphagnum-dominated wetland, using pyrosequencing of 16S rRNA genes. The denoised sequences (37,229 reads, average length ∼430 bp) were affiliated with 27 bacterial phyla and corresponded to 1,269 operational taxonomic units (OTUs) determined at 97% sequence identity. Abundant OTUs were affiliated with the Acidobacteria (35.5±2.4% and 39.2±1.2% of all classified sequences in surface and subsurface peat, respectively), Alphaproteobacteria (15.9±1.7% and 25.8±1.4%), Actinobacteria (9.5±2.0% and 10.7±0.5%), Verrucomicrobia (8.5±1.4% and 0.6±0.2%), Planctomycetes (5.8±0.4% and 9.7±0.6%), Deltaproteobacteria (7.1±0.4% and 4.4%±0.3%), and Gammaproteobacteria (6.6±0.4% and 2.1±0.1%). The taxonomic patterns of the abundant OTUs were uniform across all the subsamples taken from each peat layer. In contrast, the taxonomic patterns of rare OTUs were different from those of the abundant OTUs and varied greatly among subsamples, in both surface and subsurface peat. In addition to the bacterial taxa listed above, rare OTUs represented the following groups: Armatimonadetes, Bacteroidetes, Chlamydia, Chloroflexi, Cyanobacteria, Elusimicrobia, Fibrobacteres, Firmicutes, Gemmatimonadetes, Spirochaetes, AD3, WS1, WS4, WS5, WYO, OD1, OP3, BRC1, TM6, TM7, WPS-2, and FCPU426. OTU richness was notably higher in the surface layer (882 OTUs) than in the anoxic subsurface peat (483 OTUs), with only 96 OTUs common to both data sets. Most members of poorly studied phyla, such as the Acidobacteria, Verrucomicrobia, Planctomycetes and the candidate division TM6, showed a clear preference for growth in either oxic or anoxic conditions. Apparently, the bacterial communities in surface and

  11. The Microbiome in Posttraumatic Stress Disorder and Trauma-Exposed Controls: An Exploratory Study.

    Science.gov (United States)

    Hemmings, Sian M J; Malan-Müller, Stefanie; van den Heuvel, Leigh L; Demmitt, Brittany A; Stanislawski, Maggie A; Smith, David G; Bohr, Adam D; Stamper, Christopher E; Hyde, Embriette R; Morton, James T; Marotz, Clarisse A; Siebler, Philip H; Braspenning, Maarten; Van Criekinge, Wim; Hoisington, Andrew J; Brenner, Lisa A; Postolache, Teodor T; McQueen, Matthew B; Krauter, Kenneth S; Knight, Rob; Seedat, Soraya; Lowry, Christopher A

    2017-10-01

    Inadequate immunoregulation and elevated inflammation may be risk factors for posttraumatic stress disorder (PTSD), and microbial inputs are important determinants of immunoregulation; however, the association between the gut microbiota and PTSD is unknown. This study investigated the gut microbiome in a South African sample of PTSD-affected individuals and trauma-exposed (TE) controls to identify potential differences in microbial diversity or microbial community structure. The Clinician-Administered PTSD Scale for DSM-5 was used to diagnose PTSD according to Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition criteria. Microbial DNA was extracted from stool samples obtained from 18 individuals with PTSD and 12 TE control participants. Bacterial 16S ribosomal RNA gene V3/V4 amplicons were generated and sequenced. Microbial community structure, α-diversity, and β-diversity were analyzed; random forest analysis was used to identify associations between bacterial taxa and PTSD. There were no differences between PTSD and TE control groups in α- or β-diversity measures (e.g., α-diversity: Shannon index, t = 0.386, p = .70; β-diversity, on the basis of analysis of similarities: Bray-Curtis test statistic = -0.033, p = .70); however, random forest analysis highlighted three phyla as important to distinguish PTSD status: Actinobacteria, Lentisphaerae, and Verrucomicrobia. Decreased total abundance of these taxa was associated with higher Clinician-Administered PTSD Scale scores (r = -0.387, p = .035). In this exploratory study, measures of overall microbial diversity were similar among individuals with PTSD and TE controls; however, decreased total abundance of Actinobacteria, Lentisphaerae, and Verrucomicrobia was associated with PTSD status.

  12. Molecular diversity of rumen bacterial communities from tannin-rich and fiber-rich forage fed domestic Sika deer (Cervus nippon) in China.

    Science.gov (United States)

    Li, Zhi Peng; Liu, Han Lu; Li, Guang Yu; Bao, Kun; Wang, Kai Ying; Xu, Chao; Yang, Yi Feng; Yang, Fu He; Wright, André-Denis G

    2013-07-08

    Sika deer (Cervus nippon) have different dietary preferences to other ruminants and are tolerant to tannin-rich plants. Because the rumen bacteria in domestic Sika deer have not been comprehensively studied, it is important to investigate its rumen bacterial population in order to understand its gut health and to improve the productivity of domestic Sika deer. The rumen bacterial diversity in domestic Sika deer (Cervus nippon) fed oak leaves- (OL group) and corn stalks-based diets (CS group) were elucidated using 16S rRNA gene libraries and denaturing gradient gel electrophoresis (DGGE). Overall, 239 sequences were examined from the two groups, 139 clones from the OL group were assigned to 57 operational taxonomic units (OTUs) and 100 sequences from the CS group were divided into 50 OTUs. Prevotella-like sequences belonging to the phylum Bacteroidetes were the dominant bacteria in both groups (97.2% OL and 77% CS), and sequences related to Prevotella brevis were present in both groups. However, Prevotella shahii-like, Prevotella veroralis-like, Prevotella albensis-like, and Prevotella salivae-like sequences were abundant in the OL group compared to those in the CS group, while Succinivibrio dextrinosolvens-like and Prevotella ruminicola-like sequences were prevalent in the CS group. PCR-DGGE showed that bacterial communities clustered with respect to diets and the genus Prevotella was the dominant bacteria in the rumen of domestic Sika deer. However, the distribution of genus Prevotella from two groups was apparent. In addition, other fibrolytic bacteria, such as Clostridium populeti and Eubacterium cellulosolvens were found in the rumen of domestic Sika deer. The rumen of domestic Sika deer harbored unique bacteria which may represent novel species. The bacterial composition appeared to be affected by diet, and sequences related to Prevotella spp. may represent new species that may be related to the degradation of fiber biomass or tannins. Moreover, the mechanism

  13. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    , which influence the transition from a planktonic lifestyle to a sessile lifestyle, have been studied. Protein conditioning film formation was found to influence bacterial adhesion and subsequent biofilm formation considerable, and an aqueous extract of fish muscle tissue was shown to significantly...... tract to the microbial flocs in waste water treatment facilities. Microbial biofilms may however also cause a wide range of industrial and medical problems, and have been implicated in a wide range of persistent infectious diseases, including implantassociated microbial infections. Bacterial adhesion...... is the first committing step in biofilm formation, and has therefore been intensely scrutinized. Much however, still remains elusive. Bacterial adhesion is a highly complex process, which is influenced by a variety of factors. In this thesis, a range of physico-chemical, molecular and environmental parameters...

  14. Bacterial community structure in High-Arctic snow and freshwater as revealed by pyrosequencing of 16S rRNA genes and cultivation

    DEFF Research Database (Denmark)

    Møller, Annette K.; Søborg, Ditte A.; Abu Al-Soud, Waleed

    2013-01-01

    of the microbial assemblages was different within the snow layers and between snow and freshwater. The highest diversity was seen in snow. In the middle and top snow layers, Proteobacteria, Bacteroidetes and Cyanobacteria dominated, although Actinobacteria and Firmicutes were relatively abundant also. High numbers...... of chloroplasts were also observed. In the deepest snow layer, large percentages of Firmicutes and Fusobacteria were seen. In freshwater, Bacteroidetes, Actinobacteria and Verrucomicrobia were the most abundant phyla while relatively few Proteobacteria and Cyanobacteria were present. Possibly, light intensity...

  15. New molecular method to detect denitrifying anaerobic methane oxidation bacteria from different environmental niches.

    Science.gov (United States)

    Xu, Sai; Lu, Wenjing; Muhammad, Farooq Mustafa; Liu, Yanting; Guo, Hanwen; Meng, Ruihong; Wang, Hongtao

    2018-03-01

    The denitrifying anaerobic methane oxidation is an ecologically important process for reducing the potential methane emission into the atmosphere. The responsible bacterium for this process was Candidatus Methylomirabilis oxyfera belonging to the bacterial phylum of NC10. In this study, a new pair of primers targeting all the five groups of NC10 bacteria was designed to amplify NC10 bacteria from different environmental niches. The results showed that the group A was the dominant NC10 phylum bacteria from the sludges and food waste digestate while in paddy soil samples, group A and group B had nearly the same proportion. Our results also indicated that NC10 bacteria could exist in a high pH environment (pH9.24) from the food waste treatment facility. The Pearson relationship analysis showed that the pH had a significant positive relationship with the NC10 bacterial diversity (pbacteria. Copyright © 2017. Published by Elsevier B.V.

  16. Bacterial diversity in faeces from polar bear (Ursus maritimus in Arctic Svalbard

    Directory of Open Access Journals (Sweden)

    Brusetti Lorenzo

    2010-01-01

    Full Text Available Abstract Background Polar bears (Ursus maritimus are major predators in the Arctic marine ecosystem, feeding mainly on seals, and living closely associated with sea ice. Little is known of their gut microbial ecology and the main purpose of this study was to investigate the microbial diversity in faeces of polar bears in Svalbard, Norway (74-81°N, 10-33°E. In addition the level of blaTEM alleles, encoding ampicillin resistance (ampr were determined. In total, ten samples were collected from ten individual bears, rectum swabs from five individuals in 2004 and faeces samples from five individuals in 2006. Results A 16S rRNA gene clone library was constructed, and all sequences obtained from 161 clones showed affiliation with the phylum Firmicutes, with 160 sequences identified as Clostridiales and one sequence identified as unclassified Firmicutes. The majority of the sequences (70% were affiliated with the genus Clostridium. Aerobic heterotrophic cell counts on chocolate agar ranged between 5.0 × 104 to 1.6 × 106 colony forming units (cfu/ml for the rectum swabs and 4.0 × 103 to 1.0 × 105 cfu/g for the faeces samples. The proportion of ampr bacteria ranged from 0% to 44%. All of 144 randomly selected ampr isolates tested positive for enzymatic β-lactamase activity. Three % of the ampr isolates from the rectal samples yielded positive results when screened for the presence of blaTEM genes by PCR. BlaTEM alleles were also detected by PCR in two out of three total faecal DNA samples from polar bears. Conclusion The bacterial diversity in faeces from polar bears in their natural environment in Svalbard is low compared to other animal species, with all obtained clones affiliating to Firmicutes. Furthermore, only low levels of blaTEM alleles were detected in contrast to their increasing prevalence in some clinical and commensal bacterial populations.

  17. Bacterial diversity in faeces from polar bear (Ursus maritimus) in Arctic Svalbard.

    Science.gov (United States)

    Glad, Trine; Bernhardsen, Pål; Nielsen, Kaare M; Brusetti, Lorenzo; Andersen, Magnus; Aars, Jon; Sundset, Monica A

    2010-01-14

    Polar bears (Ursus maritimus) are major predators in the Arctic marine ecosystem, feeding mainly on seals, and living closely associated with sea ice. Little is known of their gut microbial ecology and the main purpose of this study was to investigate the microbial diversity in faeces of polar bears in Svalbard, Norway (74-81 degrees N, 10-33 degrees E). In addition the level of blaTEM alleles, encoding ampicillin resistance (ampr) were determined. In total, ten samples were collected from ten individual bears, rectum swabs from five individuals in 2004 and faeces samples from five individuals in 2006. A 16S rRNA gene clone library was constructed, and all sequences obtained from 161 clones showed affiliation with the phylum Firmicutes, with 160 sequences identified as Clostridiales and one sequence identified as unclassified Firmicutes. The majority of the sequences (70%) were affiliated with the genus Clostridium. Aerobic heterotrophic cell counts on chocolate agar ranged between 5.0 x 10(4) to 1.6 x 10(6) colony forming units (cfu)/ml for the rectum swabs and 4.0 x 10(3) to 1.0 x 10(5) cfu/g for the faeces samples. The proportion of ampr bacteria ranged from 0% to 44%. All of 144 randomly selected ampr isolates tested positive for enzymatic beta-lactamase activity. Three % of the ampr isolates from the rectal samples yielded positive results when screened for the presence of blaTEM genes by PCR. BlaTEM alleles were also detected by PCR in two out of three total faecal DNA samples from polar bears. The bacterial diversity in faeces from polar bears in their natural environment in Svalbard is low compared to other animal species, with all obtained clones affiliating to Firmicutes. Furthermore, only low levels of blaTEM alleles were detected in contrast to their increasing prevalence in some clinical and commensal bacterial populations.

  18. Bacterial diversity in faeces from polar bear (Ursus maritimus) in Arctic Svalbard

    Science.gov (United States)

    2010-01-01

    Background Polar bears (Ursus maritimus) are major predators in the Arctic marine ecosystem, feeding mainly on seals, and living closely associated with sea ice. Little is known of their gut microbial ecology and the main purpose of this study was to investigate the microbial diversity in faeces of polar bears in Svalbard, Norway (74-81°N, 10-33°E). In addition the level of blaTEM alleles, encoding ampicillin resistance (ampr) were determined. In total, ten samples were collected from ten individual bears, rectum swabs from five individuals in 2004 and faeces samples from five individuals in 2006. Results A 16S rRNA gene clone library was constructed, and all sequences obtained from 161 clones showed affiliation with the phylum Firmicutes, with 160 sequences identified as Clostridiales and one sequence identified as unclassified Firmicutes. The majority of the sequences (70%) were affiliated with the genus Clostridium. Aerobic heterotrophic cell counts on chocolate agar ranged between 5.0 × 104 to 1.6 × 106 colony forming units (cfu)/ml for the rectum swabs and 4.0 × 103 to 1.0 × 105 cfu/g for the faeces samples. The proportion of ampr bacteria ranged from 0% to 44%. All of 144 randomly selected ampr isolates tested positive for enzymatic β-lactamase activity. Three % of the ampr isolates from the rectal samples yielded positive results when screened for the presence of blaTEM genes by PCR. BlaTEM alleles were also detected by PCR in two out of three total faecal DNA samples from polar bears. Conclusion The bacterial diversity in faeces from polar bears in their natural environment in Svalbard is low compared to other animal species, with all obtained clones affiliating to Firmicutes. Furthermore, only low levels of blaTEM alleles were detected in contrast to their increasing prevalence in some clinical and commensal bacterial populations. PMID:20074323

  19. Seasonal Variation in Soil Microbial Biomass, Bacterial Community Composition and Extracellular Enzyme Activity in Relation to Soil Respiration in a Northern Great Plains Grassland

    Science.gov (United States)

    Wilton, E.; Flanagan, L. B.

    2014-12-01

    Soil respiration rate is affected by seasonal changes in temperature and moisture, but is this a direct effect on soil metabolism or an indirect effect caused by changes in microbial biomass, bacterial community composition and substrate availability? In order to address this question, we compared continuous measurements of soil and plant CO2 exchange made with an automatic chamber system to analyses conducted on replicate soil samples collected on four dates during June-August. Microbial biomass was estimated from substrate-induced respiration rate, bacterial community composition was determined by 16S rRNA amplicon pyrosequencing, and β-1,4-N-acetylglucosaminidase (NAGase) and phenol oxidase enzyme activities were assayed fluorometrically or by absorbance measurements, respectively. Soil microbial biomass declined from June to August in strong correlation with a progressive decline in soil moisture during this time period. Soil bacterial species richness and alpha diversity showed no significant seasonal change. However, bacterial community composition showed a progressive shift over time as measured by Bray-Curtis dissimilarity. In particular, the change in community composition was associated with increasing relative abundance in the alpha and delta classes, and declining abundance of the beta and gamma classes of the Proteobacteria phylum during June-August. NAGase showed a progressive seasonal decline in potential activity that was correlated with microbial biomass and seasonal changes in soil moisture. In contrast, phenol oxidase showed highest potential activity in mid-July near the time of peak soil respiration and ecosystem photosynthesis, which may represent a time of high input of carbon exudates into the soil from plant roots. This input of exudates may stimulate the activity of phenol oxidase, a lignolytic enzyme involved in the breakdown of soil organic matter. These analyses indicated that seasonal change in soil respiration is a complex

  20. Genomic distribution of B-vitamin auxotrophy and uptake transporters in environmental bacteria from the Chloroflexi phylum

    Energy Technology Data Exchange (ETDEWEB)

    Rodionova, Irina A.; Li, Xiaoqing; Plymale, Andrew E.; Motamedchaboki, Khatereh; Konopka, Allan; Romine, Margaret F.; Fredrickson, Jim K.; Osterman, Andrei; Rodionov, Dmitry A.

    2015-04-01

    Bacteria from the Chloroflexi phylum are dominant members of phototrophic microbial mat communities in terrestrial thermal environments. Vitamins of B-group are key intermediates (precursors) in the biosynthesis of indispensable enzyme cofactors driving numerous metabolic processes in all forms of life. A genomics-based reconstruction and comparative analysis of respective biosynthetic and salvage pathways and riboswitch regulons in over 20 representative Chloroflexi genomes revealed a widespread auxotrophy for some of the vitamins. The most prominent predicted phenotypic signature, auxotrophy for vitamins B1 and B7 was experimentally confirmed for the best studied model organism Chloroflexus aurantiacus. These observations along with identified candidate genes for the respective uptake transporters pointed to B vitamin exchange as an important aspect of syntrophic metabolism in microbial communities. Inferred specificities of homologous substrate-binding components of ABC transporters for vitamins B1 (ThiY) and B2 (RibY) were verified by thermofluorescent shift approach. A functional activity of the thiamine-specific transporter ThiXYZ from C. aurantiacus was experimentally verified by genetic complementation in E. coli. Expanding the integrative approach, which was applied here for a comprehensive analysis of B-vitamin metabolism in Chloroflexi would allow reconstruction of metabolic interdependencies in microbial communities.

  1. Bacterial mycophagy: definition and diagnosis of a unique bacterial-fungal interaction

    NARCIS (Netherlands)

    Leveau, J.H.J.; Preston, G.M.

    2008-01-01

    This review analyses the phenomenon of bacterial mycophagy, which we define as a set of phenotypic behaviours that enable bacteria to obtain nutrients from living fungi and thus allow the conversion of fungal into bacterial biomass. We recognize three types of bacterial strategies to derive

  2. Anthropogenic protection alters the microbiome in intertidal mangrove wetlands in Hainan Island.

    Science.gov (United States)

    Yun, Juanli; Deng, Yongcui; Zhang, Hongxun

    2017-08-01

    Intertidal mangrove wetlands are of great economic and ecological importance. The regular influence of tides has led to the microbial communities in these wetlands differing significantly from those in other habitats. In this study, we investigated the microbiomes of the two largest mangrove wetlands in Hainan Island, China, which have different levels of anthropogenic protection. Soil samples were collected from the root zone of 13 mangrove species. The microbial composition, including key functional groups, was assessed using Illumina sequencing. Bioinformatics analysis showed that there was a significant difference in the microbiomes between the protected Bamen Bay and the unprotected Dongzhai Bay. The overall microbiome was assigned into 78 phyla and Proteobacteria was the most abundant phylum at both sites. In the protected wetland, there were fewer marine-related microbial communities, such as sulfate-reducing bacteria, and more terrestrial-related communities, such as Verrucomicrobia methanotrophs. We also observed distinct microbial compositions among the different mangrove species at the protected site. Our data suggest that the different microbiomes of the two mangrove wetlands are the result of a complex interaction of the different environmental variables at the two sites.

  3. High-throughput sequencing reveals microbial communities in drinking water treatment sludge from six geographically distributed plants, including potentially toxic cyanobacteria and pathogens.

    Science.gov (United States)

    Xu, Hangzhou; Pei, Haiyan; Jin, Yan; Ma, Chunxia; Wang, Yuting; Sun, Jiongming; Li, Hongmin

    2018-04-10

    The microbial community structures of drinking water treatment sludge (DWTS) generated for raw water (RW) from different locations and with different source types - including river water, lake water and reservoir water -were investigated using high-throughput sequencing. Because the unit operations in the six DWTPs were similar, community composition in fresh sludge may be determined by microbial community in the corresponding RW. Although Proteobacteria, Cyanobacteria, Bacteroidetes, Firmicutes, Verrucomicrobia, and Planctomycetes were the dominant phyla among the six DWTS samples, no single phylum exhibited similar abundance across all the samples, owing to differences in total phosphorus, chemical oxygen demand, Al, Fe, and chloride in RW. Three genera of potentially toxic cyanobacteria (Planktothrix, Microcystis and Cylindrospermopsis), and four potential pathogens (Escherichia coli, Bacteroides ovatus, Prevotella copri and Rickettsia) were found in sludge samples. Because proliferation of potentially toxic cyanobacteria and Rickettsia in RW was mainly affected by nutrients, while growth of Escherichia coli, Bacteroides ovatus and Prevotella copri in RW may be influenced by Fe, control of nutrients and Fe in RW is essential to decrease toxic cyanobacteria and pathogens in DWTS. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Bacterial meningitis

    NARCIS (Netherlands)

    Roos, Karen L.; van de Beek, Diederik

    2010-01-01

    Bacterial meningitis is a neurological emergency. Empiric antimicrobial and adjunctive therapy should be initiated as soon as a single set of blood cultures has been obtained. Clinical signs suggestive of bacterial meningitis include fever, headache, meningismus, vomiting, photophobia, and an

  5. Characterization of the bacterial gut microbiota of piglets suffering from new neonatal porcine diarrhoea

    DEFF Research Database (Denmark)

    Hermann-Bank, Marie Louise; Skovgaard, Kerstin; Stockmarr, Anders

    2015-01-01

    . Results: NNPD was associated with a diminished quantity of bacteria from the phyla Actinobacteria and Firmicutes while genus Enterococcus was more than 24 times more abundant in diarrhoeic piglets. The number of bacteria from the phylum Fusobacteria was also doubled in piglets suffering from diarrhoea...

  6. Assessment of bacterial superficial contamination in classical or ritually slaughtered cattle using metagenetics and microbiological analysis.

    Science.gov (United States)

    Korsak, N; Taminiau, B; Hupperts, C; Delhalle, L; Nezer, C; Delcenserie, V; Daube, G

    2017-04-17

    The aim of this study was to investigate the influence of the slaughter technique (Halal vs Classical slaughter) on the superficial contamination of cattle carcasses, by using traditional microbiological procedures and 16S rDNA metagenetics. The purpose was also to investigate the neck area to identify bacteria originating from the digestive or the respiratory tract. Twenty bovine carcasses (10 from each group) were swabbed at the slaughterhouse, where both slaughtering methods are practiced. Two swabbing areas were chosen: one "legal" zone of 1600cm 2 (composed of zones from rump, flank, brisket and forelimb) and locally on the neck area (200cm 2 ). Samples were submitted to classical microbiology for aerobic Total Viable Counts (TVC) at 30°C and Enterobacteriaceae counts, while metagenetic analysis was performed on the same samples. The classical microbiological results revealed no significant differences between both slaughtering practices; with values between 3.95 and 4.87log CFU/100cm 2 and 0.49 and 1.94log CFU/100cm 2 , for TVC and Enterobacteriaceae respectively. Analysis of pyrosequencing data showed that differences in the bacterial population abundance between slaughtering methods were mainly observed in the "legal" swabbing zone compared to the neck area. Bacterial genera belonging to the Actinobacteria phylum were more abundant in the "legal" swabbing zone in "Halal" samples, while Brevibacterium and Corynebacterium were encountered more in "Halal" samples, in all swabbing areas. This was also the case for Firmicutes bacterial populations (families of Aerococcaceae, Planococcaceae). Except for Planococcoceae, the analysis of Operational Taxonomic Unit (OTU) abundances of bacteria from the digestive or respiratory tract revealed no differences between groups. In conclusion, the slaughtering method does not influence the superficial microbiological pattern in terms of specific microbiological markers of the digestive or respiratory tract. However

  7. Symbiotic bacteria associated with a bobtail squid reproductive system are detectable in the environment, and stable in the host and developing eggs.

    Science.gov (United States)

    Kerwin, Allison H; Nyholm, Spencer V

    2017-04-01

    Female Hawaiian bobtail squid, Euprymna scolopes, have an accessory nidamental gland (ANG) housing a bacterial consortium that is hypothesized to be environmentally transmitted and to function in the protection of eggs from fouling and infection. The composition, stability, and variability of the ANG and egg jelly coat (JC) communities were characterized and compared to the bacterial community composition of the surrounding environment using Illumina sequencing and transmission electron microscopy. The ANG bacterial community was conserved throughout hosts collected from the wild and was not affected by maintaining animals in the laboratory. The core symbiotic community was composed of Alphaproteobacteria and Opitutae (a class of Verrucomicrobia). Operational taxonomic units representing 94.5% of the average ANG abundance were found in either the seawater or sediment, which is consistent with the hypothesis of environmental transmission between generations. The bacterial composition of the JC was stable during development and mirrored that of the ANG. Bacterial communities from individual egg clutches also grouped with the ANG of the female that produced them. Collectively, these data suggest a conserved role of the ANG/JC community in host reproduction. Future directions will focus on determining the function of this symbiotic community, and how it may change during ANG development. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Lettuce and rhizosphere microbiome responses to growth promoting Pseudomonas species under field conditions.

    Science.gov (United States)

    Cipriano, Matheus A P; Lupatini, Manoeli; Lopes-Santos, Lucilene; da Silva, Márcio J; Roesch, Luiz F W; Destéfano, Suzete A L; Freitas, Sueli S; Kuramae, Eiko E

    2016-12-01

    Plant growth promoting rhizobacteria are well described and recommended for several crops worldwide. However, one of the most common problems in research into them is the difficulty in obtaining reproducible results. Furthermore, few studies have evaluated plant growth promotion and soil microbial community composition resulting from bacterial inoculation under field conditions. Here we evaluated the effect of 54 Pseudomonas strains on lettuce (Lactuca sativa) growth. The 12 most promising strains were phylogenetically and physiologically characterized for plant growth-promoting traits, including phosphate solubilization, hormone production and antagonism to pathogen compounds, and their effect on plant growth under farm field conditions. Additionally, the impact of beneficial strains on the rhizospheric bacterial community was evaluated for inoculated plants. The strains IAC-RBcr4 and IAC-RBru1, with different plant growth promoting traits, improved lettuce plant biomass yields up to 30%. These two strains also impacted rhizosphere bacterial groups including Isosphaera and Pirellula (phylum Planctomycetes) and Acidothermus, Pseudolabrys and Singusphaera (phylum Actinobacteria). This is the first study to demonstrate consistent results for the effects of Pseudomonas strains on lettuce growth promotion for seedlings and plants grown under tropical field conditions. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes

    Czech Academy of Sciences Publication Activity Database

    Zeng, Y.; Feng, F.; Medová, Hana; Dean, Jason; Koblížek, Michal

    2014-01-01

    Roč. 111, č. 21 (2014), s. 7795-7800 ISSN 0027-8424 R&D Projects: GA ČR P501/10/0221; GA MŠk ED2.1.00/03.0110; GA MŠk EE2.3.30.0059 Institutional support: RVO:61388971 Keywords : anoxygenic photosynthesis * pigments * horizontal gene transfer Subject RIV: EE - Microbiology, Virology Impact factor: 9.674, year: 2014

  10. Characterizing the Bacterial Communities in Retail Stores in the United States

    Science.gov (United States)

    2015-01-01

    filters (Tringe et al., 2008). The next two most abundant phyla detected in the stores were Actinobacteria (19%) and Firmicutes (17%). The relative...abundance of the phyla varied across the retail sites, especially for Proteobacteria and Actinobacteria . The high variability at the phylum level is...contrast, the direct pyrosequenced results showed a mixture of Proteobacteria, Firmicutes, and Actinobacteria . As shown in the Supplemental Figure 2

  11. Metagenome-assembled genomes of deep-branching magnetotactic bacteria in the Nitrospirae phylum

    Science.gov (United States)

    Zhang, W.; He, M.; Gu, L.; Tang, X.; Pan, Y.; Lin, W.

    2017-12-01

    Magnetotactic bacteria (MTB) are aquatic microorganisms that synthesize intracellular magnetic nanoparticles composed of magnetite and/or greigite. MTB have thus far been identified in the phyla of Proteobacteria, Nitrospirae, Omnitrophica, Latescibacteria and Planctomycetes (Lin et al., 2017b). Among these organisms, MTB belonging to the Nitrospirae phylum are of great interest because of the formation of hundreds of magnetite magnetosomes in a single cell and of the great potential for iron, sulfur, nitrogen, and carbon cycling in natural environments. However, due to the lack of genomic information, our current knowledge on magnetotactic Nitrospirae remains very limited. In the present study, we have identified and characterized two novel populations of uncultivated MTB from freshwater lakes in Shaanxi province, China. 16S rRNA gene-based analyses revealed that they belonged to two different clusters in the Nitrospirae. The draft population genomes of these two Nitrospirae MTB were successfully recovered through genome-resolved metagenomics, both of which containing nearly complete magnetosome gene clusters (MGCs) responsible for magnetosome biomineralization and organization. In consistent with our previous study (Lin et al., 2017a), we found that the gene content and gene organization of the MGCs in the Nitrospirae MTB were highly conserved, indicating that Nitrospirae gene clusters represent one of the ancestral types of MGCs. The population genome sequences suggest that magnetotactic Nitrospirae are capable of CO2 fixtion through Wood-Ljungdahl pathway. They may also reduce sulfate and nitrate/nitrite through sulfate reduction pathway and denitrification pathway, respectively. Our genomic analyses revealed the potential metabolic capability of the Nitrospirae MTB and shed light on their ecology, evolution and biomineralization mechanism. References: Lin W, Paterson GA, Zhu Q, Wang Y, Kopylova E, Li Y, Knight R, Bazylinski DA, Zhu R, Kirschvink JL, Pan Y

  12. Comparative analysis of the intestinal bacterial communities in different species of carp by pyrosequencing.

    Science.gov (United States)

    Li, Tongtong; Long, Meng; Gatesoupe, François-Joël; Zhang, Qianqian; Li, Aihua; Gong, Xiaoning

    2015-01-01

    Gut microbiota is increasingly regarded as an integral component of the host, due to important roles in the modulation of the immune system, the proliferation of the intestinal epithelium and the regulation of the dietary energy intake. Understanding the factors that influence the composition of these microbial communities is essential to health management, and the application to aquatic animals still requires basic investigation. In this study, we compared the bacterial communities harboured in the intestines and in the rearing water of grass carp (Ctenopharyngodon idellus), crucian carp (Carassius cuvieri), and bighead carp (Hypophthalmichthys nobilis), by using 454-pyrosequencing with barcoded primers targeting the V4 to V5 regions of the bacterial 16S rRNA gene. The specimens of the three species were cohabiting in the same pond. Between 6,218 and 10,220 effective sequences were read from each sample, resulting in a total of 110,398 sequences for 13 samples from gut microbiota and pond water. In general, the microbial communities of the three carps were dominated by Fusobacteria, Firmicutes, Proteobacteria and Bacteroidetes, but the abundance of each phylum was significantly different between species. At the genus level, the overwhelming group was Cetobacterium (97.29 ± 0.46 %) in crucian carp, while its abundance averaged c. 40 and 60 % of the sequences read in the other two species. There was higher microbial diversity in the gut of filter-feeding bighead carp than the gut of the two other species, with grazing feeding habits. The composition of intestine microbiota of grass carp and crucian carp shared higher similarity when compared with bighead carp. The principal coordinates analysis (PCoA) with the weighted UniFrac distance and the heatmap analysis suggested that gut microbiota was not a simple reflection of the microbial community in the local habitat but resulted from species-specific selective pressures, possibly dependent on behavioural, immune

  13. Taxonomy, Physiology, and Natural Products of Actinobacteria.

    Science.gov (United States)

    Barka, Essaid Ait; Vatsa, Parul; Sanchez, Lisa; Gaveau-Vaillant, Nathalie; Jacquard, Cedric; Meier-Kolthoff, Jan P; Klenk, Hans-Peter; Clément, Christophe; Ouhdouch, Yder; van Wezel, Gilles P

    2016-03-01

    Actinobacteria are Gram-positive bacteria with high G+C DNA content that constitute one of the largest bacterial phyla, and they are ubiquitously distributed in both aquatic and terrestrial ecosystems. Many Actinobacteria have a mycelial lifestyle and undergo complex morphological differentiation. They also have an extensive secondary metabolism and produce about two-thirds of all naturally derived antibiotics in current clinical use, as well as many anticancer, anthelmintic, and antifungal compounds. Consequently, these bacteria are of major importance for biotechnology, medicine, and agriculture. Actinobacteria play diverse roles in their associations with various higher organisms, since their members have adopted different lifestyles, and the phylum includes pathogens (notably, species of Corynebacterium, Mycobacterium, Nocardia, Propionibacterium, and Tropheryma), soil inhabitants (e.g., Micromonospora and Streptomyces species), plant commensals (e.g., Frankia spp.), and gastrointestinal commensals (Bifidobacterium spp.). Actinobacteria also play an important role as symbionts and as pathogens in plant-associated microbial communities. This review presents an update on the biology of this important bacterial phylum. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Platyhelminth Venom Allergen-Like (VAL) proteins: revealing structural diversity, class-specific features and biological associations across the phylum

    Science.gov (United States)

    CHALMERS, IAIN W.; HOFFMANN, KARL F.

    2012-01-01

    SUMMARY During platyhelminth infection, a cocktail of proteins is released by the parasite to aid invasion, initiate feeding, facilitate adaptation and mediate modulation of the host immune response. Included amongst these proteins is the Venom Allergen-Like (VAL) family, part of the larger sperm coating protein/Tpx-1/Ag5/PR-1/Sc7 (SCP/TAPS) superfamily. To explore the significance of this protein family during Platyhelminthes development and host interactions, we systematically summarize all published proteomic, genomic and immunological investigations of the VAL protein family to date. By conducting new genomic and transcriptomic interrogations to identify over 200 VAL proteins (228) from species in all 4 traditional taxonomic classes (Trematoda, Cestoda, Monogenea and Turbellaria), we further expand our knowledge related to platyhelminth VAL diversity across the phylum. Subsequent phylogenetic and tertiary structural analyses reveal several class-specific VAL features, which likely indicate a range of roles mediated by this protein family. Our comprehensive analysis of platyhelminth VALs represents a unifying synopsis for understanding diversity within this protein family and a firm context in which to initiate future functional characterization of these enigmatic members. PMID:22717097

  15. Bacterial lung abscess

    International Nuclear Information System (INIS)

    Groskin, S.A.; Panicek, D.M.; Ewing, D.K.; Rivera, F.; Math, K.; Teixeira, J.; Heitzman, E.R.

    1987-01-01

    A retrospective review of patients with bacterial lung abscess was carried out. Demographic, clinical, and radiographical features of this patient group are compared with similar data from patients with empyema and/or cavitated lung carcinoma; differential diagnostic points are stressed. The entity of radiographically occult lung abscess is discussed. Complications associated with bacterial lung abscess are discussed. Current therapeutic options and treatment philosophy for patients with bacterial lung abscess are noted

  16. Short-term effects of CO2 leakage on the soil bacterial community in a simulated gas leakage scenario.

    Science.gov (United States)

    Ma, Jing; Zhang, Wangyuan; Zhang, Shaoliang; Zhu, Qianlin; Feng, Qiyan; Chen, Fu

    2017-01-01

    The technology of carbon dioxide (CO 2 ) capture and storage (CCS) has provided a new option for mitigating global anthropogenic emissions with unique advantages. However, the potential risk of gas leakage from CO 2 sequestration and utilization processes has attracted considerable attention. Moreover, leakage might threaten soil ecosystems and thus cannot be ignored. In this study, a simulation experiment of leakage from CO 2 geological storage was designed to investigate the short-term effects of different CO 2 leakage concentration (from 400 g m -2 day -1 to 2,000 g m -2 day -1 ) on soil bacterial communities. A shunt device and adjustable flow meter were used to control the amount of CO 2 injected into the soil. Comparisons were made between soil physicochemical properties, soil enzyme activities, and microbial community diversity before and after injecting different CO 2 concentrations. Increasing CO 2 concentration decreased the soil pH, and the largest variation ranged from 8.15 to 7.29 ( p soil CO 2 concentration increased. The dominant phylum in the soil samples was Proteobacteria , whose proportion rose rapidly from 28.85% to 67.93%. In addition, the proportion of Acidobacteria decreased from 19.64% to 9.29% ( p soil ecosystems.

  17. Studies on bacterial community composition are affected by the time and storage method of the rumen content.

    Science.gov (United States)

    Granja-Salcedo, Yury Tatiana; Ramirez-Uscategui, Ricardo Andrés; Machado, Elwi Guillermo; Duarte Messana, Juliana; Takeshi Kishi, Luciano; Lino Dias, Ana Veronica; Berchielli, Telma Teresinha

    2017-01-01

    The objective of this study was to investigate three storage methods and four storage times for rumen sampling in terms of quality and yield of extracted metagenomic DNA as well as the composition of the rumen bacterial community. One Nellore steer fitted with a ruminal silicone-type cannula was used as a donor of ruminal contents. The experiment comprised 11 experimental groups: pellet control (PC), lyophilized control (LC), P-20: pellet stored frozen at -20°C for a period of 3, 6, and 12 months, P-80: pellet stored frozen at -80°C for a period of 3, 6, and 12 months, and L-20: lyophilized sample stored frozen at -20°C for a period of 3, 6, and 12 months. Metagenomic DNA concentrations were measured spectrophotometrically and fluorometrically and ion torrent sequencing was used to assess the bacterial community composition. The L-20 method could not maintain the yield of DNA during storage. In addition, the P-80 group showed a greater yield of metagenomic DNA than the other groups after 6 months of storage. Rumen samples stored as pellets (P-20 and P-80) resulted in lower richness Chao 1, ACE, and Shannon Wiener indices when compared to PC, while LC and PC were only different in richness ACE. The storage method and storage time influenced the proportions of 14 of 17 phyla identified by sequencing. In the P-20 group, the proportion of Cyanobacteria, Elusimicrobia, Fibrobacteres, Lentisphaerae, Proteobacteria, and Spirochaetes phyla identified was lower than 1%. In the P-80 group, there was an increase in the proportion of the Bacteroidetes phylum (p = 0.010); however, the proportion of Actinobacteria, Chloroflexi, SR1, Synergistetes, TM7, and WPS.2 phyla were unchanged compared to the PC group (p > 0.05). The class Clostridium was the most abundant in all stored groups and increased in its proportion, especially in the L-20 group. The rumen sample storage time significantly reduced the yield of metagenomic DNA extracted. Therefore, the storage method can

  18. Bacterial growth on macrophyte leachate and fate of bacterial production

    International Nuclear Information System (INIS)

    Findlay, S.; Carlough, L.; Crocker, M.T.; Gill, H.K.; Meyer, J.L.; Smith, P.J.

    1986-01-01

    The role bacteria play in transferring organic carbon to other trophic levels in aquatic ecosystems depends on the efficiency with which they convert dissolved organic [ 14 C]-labelled carbon into bacterial biomass and on the ability of consumers to graze bacteria. The authors have measured the conversion efficiency for bacteria growing on macrophyte-derived dissolved organic carbon and estimated the amount of bacterial production removed by grazing. Bacteria converted this DOC into new tissue with an efficiency of 53%, substantially higher than the apparent conversion efficiency of macrophyte-derived particulate organic carbon or other types of DOC. Two estimates of grazing indicate that the decline in bacterial numbers after the bloom was probably due to grazing by flagellates. These results show the significance of the bacterial link between DOC and other trophic levels

  19. BACTERIAL CONSORTIUM

    Directory of Open Access Journals (Sweden)

    Payel Sarkar

    2013-01-01

    Full Text Available Petroleum aromatic hydrocarbons like benzen e, toluene, ethyl benzene and xylene, together known as BTEX, has almost the same chemical structure. These aromatic hydrocarbons are released as pollutants in th e environment. This work was taken up to develop a solvent tolerant bacterial cons ortium that could degrade BTEX compounds as they all share a common chemical structure. We have isolated almost 60 different types of bacterial strains from different petroleum contaminated sites. Of these 60 bacterial strains almost 20 microorganisms were screene d on the basis of capability to tolerate high concentration of BTEX. Ten differe nt consortia were prepared and the compatibility of the bacterial strains within the consortia was checked by gram staining and BTEX tolerance level. Four successful mi crobial consortia were selected in which all the bacterial strains concomitantly grew in presence of high concentration of BTEX (10% of toluene, 10% of benzene 5% ethyl benzene and 1% xylene. Consortium #2 showed the highest growth rate in pr esence of BTEX. Degradation of BTEX by consortium #2 was monitored for 5 days by gradual decrease in the volume of the solvents. The maximum reduction observed wa s 85% in 5 days. Gas chromatography results also reveal that could completely degrade benzene and ethyl benzene within 48 hours. Almost 90% degradation of toluene and xylene in 48 hours was exhibited by consortium #2. It could also tolerate and degrade many industrial solvents such as chloroform, DMSO, acetonitrile having a wide range of log P values (0.03–3.1. Degradation of aromatic hydrocarbon like BTEX by a solvent tolerant bacterial consortium is greatly significant as it could degrade high concentration of pollutants compared to a bacterium and also reduces the time span of degradation.

  20. Bacterial surface adaptation

    Science.gov (United States)

    Utada, Andrew

    2014-03-01

    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. These crucial early stages of biofilm formation are at present poorly understood. By adapting methods from soft matter physics, we dissect bacterial social behavior at the single cell level for several prototypical bacterial species, including Pseudomonas aeruginosa and Vibrio cholerae.

  1. Bacterial Protein-Tyrosine Kinases

    DEFF Research Database (Denmark)

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten

    2010-01-01

    in exopolysaccharide production, virulence, DNA metabolism, stress response and other key functions of the bacterial cell. BY-kinases act through autophosphorylation (mainly in exopolysaccharide production) and phosphorylation of other proteins, which have in most cases been shown to be activated by tyrosine......Bacteria and Eukarya share essentially the same family of protein-serine/threonine kinases, also known as the Hanks-type kinases. However, when it comes to protein-tyrosine phosphorylation, bacteria seem to have gone their own way. Bacterial protein-tyrosine kinases (BY-kinases) are bacterial...... and highlighted their importance in bacterial physiology. Having no orthologues in Eukarya, BY-kinases are receiving a growing attention from the biomedical field, since they represent a particularly promising target for anti-bacterial drug design....

  2. Differentiation of bacterial and non-bacterial community-acquired pneumonia by thin-section computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Isao [Department of Respiratory Medicine, Kurashiki Central Hospital, 1-1-1 Miwa, Kurashiki 710-8602 (Japan); Department of Respiratory Medicine, Kyoto University, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507 (Japan)], E-mail: isaoito@kuhp.kyoto-u.ac.jp; Ishida, Tadashi [Department of Respiratory Medicine, Kurashiki Central Hospital, 1-1-1 Miwa, Kurashiki 710-8602 (Japan)], E-mail: ishidat@kchnet.or.jp; Togashi, Kaori [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507 (Japan)], E-mail: ktogashi@kuhp.kyoto-u.ac.jp; Niimi, Akio [Department of Respiratory Medicine, Kyoto University, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507 (Japan)], E-mail: niimi@kuhp.kyoto-u.ac.jp; Koyama, Hiroshi [General Internal Medicine, National Hospital Organization Kyoto Medical Center, 1-1 Fukakusa-Mukohatacho, Fushimi-ku, Kyoto 612-8555 (Japan)], E-mail: hkoyama-kyt@umin.ac.jp; Ishimori, Takayoshi [Department of Radiology, Kurashiki Central Hospital, 1-1-1 Miwa, Kurashiki 710-8602 (Japan)], E-mail: ti10794@kchnet.or.jp; Kobayashi, Hisataka [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507 (Japan); Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Room 1B40, MSC1088, 10 Center Drive, Bethesda, MD 20892-1088 (United States)], E-mail: kobayash@mail.nih.gov; Mishima, Michiaki [Department of Respiratory Medicine, Kyoto University, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507 (Japan)], E-mail: mishima@kuhp.kyoto-u.ac.jp

    2009-12-15

    Background and objective: The management of community-acquired pneumonia (CAP) depends, in part, on the identification of the causative agents. The objective of this study was to determine the potential of thin-section computed tomography (CT) in differentiating bacterial and non-bacterial pneumonia. Patients and methods: Thin-section CT studies were prospectively examined in hospitalized CAP patients within 2 days of admission, followed by retrospective assessment by two pulmonary radiologists. Thin-section CT findings on the pneumonias caused by each pathogen were examined, and two types of pneumonias were compared. Using multivariate logistic regression analyses, receiver operating characteristic (ROC) curves were produced. Results: Among 183 CAP episodes (181 patients, 125 men and 56 women, mean age {+-} S.D.: 61.1 {+-} 19.7) examined by thin-section CT, the etiologies of 125 were confirmed (94 bacterial pneumonia and 31 non-bacterial pneumonia). Centrilobular nodules were specific for non-bacterial pneumonia and airspace nodules were specific for bacterial pneumonia (specificities of 89% and 94%, respectively) when located in the outer lung areas. When centrilobular nodules were the principal finding, they were specific but lacked sensitivity for non-bacterial pneumonia (specificity 98% and sensitivity 23%). To distinguish the two types of pneumonias, centrilobular nodules, airspace nodules and lobular shadows were found to be important by multivariate analyses. ROC curve analysis discriminated bacterial pneumonia from non-bacterial pneumonia among patients without underlying lung diseases, yielding an optimal point with sensitivity and specificity of 86% and 79%, respectively, but was less effective when all patients were analyzed together (70% and 84%, respectively). Conclusion: Thin-section CT examination was applied for the differentiation of bacterial and non-bacterial pneumonias. Though showing some potential, this examination at the present time would

  3. Differentiation of bacterial and non-bacterial community-acquired pneumonia by thin-section computed tomography

    International Nuclear Information System (INIS)

    Ito, Isao; Ishida, Tadashi; Togashi, Kaori; Niimi, Akio; Koyama, Hiroshi; Ishimori, Takayoshi; Kobayashi, Hisataka; Mishima, Michiaki

    2009-01-01

    Background and objective: The management of community-acquired pneumonia (CAP) depends, in part, on the identification of the causative agents. The objective of this study was to determine the potential of thin-section computed tomography (CT) in differentiating bacterial and non-bacterial pneumonia. Patients and methods: Thin-section CT studies were prospectively examined in hospitalized CAP patients within 2 days of admission, followed by retrospective assessment by two pulmonary radiologists. Thin-section CT findings on the pneumonias caused by each pathogen were examined, and two types of pneumonias were compared. Using multivariate logistic regression analyses, receiver operating characteristic (ROC) curves were produced. Results: Among 183 CAP episodes (181 patients, 125 men and 56 women, mean age ± S.D.: 61.1 ± 19.7) examined by thin-section CT, the etiologies of 125 were confirmed (94 bacterial pneumonia and 31 non-bacterial pneumonia). Centrilobular nodules were specific for non-bacterial pneumonia and airspace nodules were specific for bacterial pneumonia (specificities of 89% and 94%, respectively) when located in the outer lung areas. When centrilobular nodules were the principal finding, they were specific but lacked sensitivity for non-bacterial pneumonia (specificity 98% and sensitivity 23%). To distinguish the two types of pneumonias, centrilobular nodules, airspace nodules and lobular shadows were found to be important by multivariate analyses. ROC curve analysis discriminated bacterial pneumonia from non-bacterial pneumonia among patients without underlying lung diseases, yielding an optimal point with sensitivity and specificity of 86% and 79%, respectively, but was less effective when all patients were analyzed together (70% and 84%, respectively). Conclusion: Thin-section CT examination was applied for the differentiation of bacterial and non-bacterial pneumonias. Though showing some potential, this examination at the present time would not

  4. Bacterial Prostatitis: Bacterial Virulence, Clinical Outcomes, and New Directions.

    Science.gov (United States)

    Krieger, John N; Thumbikat, Praveen

    2016-02-01

    Four prostatitis syndromes are recognized clinically: acute bacterial prostatitis, chronic bacterial prostatitis, chronic prostatitis/chronic pelvic pain syndrome, and asymptomatic prostatitis. Because Escherichia coli represents the most common cause of bacterial prostatitis, we investigated the importance of bacterial virulence factors and antimicrobial resistance in E. coli strains causing prostatitis and the potential association of these characteristics with clinical outcomes. A structured literature review revealed that we have limited understanding of the virulence-associated characteristics of E. coli causing acute prostatitis. Therefore, we completed a comprehensive microbiological and molecular investigation of a unique strain collection isolated from healthy young men. We also considered new data from an animal model system suggesting certain E. coli might prove important in the etiology of chronic prostatitis/chronic pelvic pain syndrome. Our human data suggest that E. coli needs multiple pathogenicity-associated traits to overcome anatomic and immune responses in healthy young men without urological risk factors. The phylogenetic background and accumulation of an exceptional repertoire of extraintestinal pathogenic virulence-associated genes indicate that these E. coli strains belong to a highly virulent subset of uropathogenic variants. In contrast, antibiotic resistance confers little added advantage to E. coli strains in these healthy outpatients. Our animal model data also suggest that certain pathogenic E. coli may be important in the etiology of chronic prostatitis/chronic pelvic pain syndrome through mechanisms that are dependent on the host genetic background and the virulence of the bacterial strain.

  5. Metagenomics profiling for assessing microbial diversity in both active and closed landfills.

    Science.gov (United States)

    Zainun, Mohamad Yusof; Simarani, Khanom

    2018-03-01

    The municipal landfill is an example of human-made environment that harbours some complex diversity of microorganism communities. To evaluate this complexity, the structures of bacterial communities in active (operational) and closed (non-operational) landfills in Malaysia were analysed with culture independent metagenomics approaches. Several points of soil samples were collected from 0 to 20cm depth and were subjected to physicochemical test, such as temperature, pH, and moisture content. In addition, the heavy metal contamination was determined by using ICPMS. The bacterial enumeration was examined on nutrient agar (NA) plates aerobically at 30°C. The soil DNA was extracted, purified and amplified prior to sequence the 16S rRNA gene for statistical and bioinformatics analyses. As a result, the average of bacteria for the closed landfill was higher compared to that for the active landfill at 9.16×10 7 and 1.50×10 7 , respectively. The higher bacterial OTUs sequenced was also recorded in closed landfills compared to active landfill i.e. 6625 and 4552 OTUs respectively. The data from both landfills showed that the predominant phyla belonged to Proteobacteria (55.7%). On average, Bacteroidetes was the second highest phylum followed by Firmicutes for the active landfill. While the phyla for communities in closed landfill were dominated by phyla from Acidobacteria and Actinobacteria. There was also Euryarchaeota (Archaea) which became a minor phylum that was detected in active landfill, but almost completely absent in closed landfill. As such, the composition of bacterial communities suggests some variances between the bacterial communities found in active and closed landfills. Thus, this study offers new clues pertaining to bacterial diversity pattern between the varied types of landfills studied. Copyright © 2017. Published by Elsevier B.V.

  6. Water bears in the Anthropocene: a comparison of urban and woodland tardigrade (Phylum Tardigrada communities in Southwestern Louisiana, USA

    Directory of Open Access Journals (Sweden)

    Harry A. Meyer

    2013-05-01

    Full Text Available Humans have had such a profound effect on global ecosystems, including biodiversity, that Anthropocene is being increasingly used as a chronological term to mark the period of greatest human impact. No areas show the effect of human impact on the environment more than cities, which often have novel combinations of species in unique communities. Tardigrades (Phylum Tardigrada have often been collected in cities, but studies dedicated to urban tardigrade biodiversity are few, and those comparing urban diversity with nearby rural or natural sites even fewer. In this paper we compare the diversity and abundance of tardigrade species in Lake Charles with a nearby forested nonurban site, Sam Houston Jones State Park (SHJSP. Although tardigrade density did not differ significantly between Lake Charles and SHJSP, species richness and diversity were greater in SHJSP (17 species, H1=3.01 than in Lake Charles (8 species, H1=1.30. All but one species found in Lake Charles also occurred in SHJSP. The number of species found in Lake Charles lies within the range (5-10 found in previous urban surveys. All tardigrade studies comparing urban with nearby nonurban habitats have found lower species richness in cities.

  7. Bacterial and fungal communities in a degraded ombrotrophic peatland undergoing natural and managed re-vegetation.

    Science.gov (United States)

    Elliott, David R; Caporn, Simon J M; Nwaishi, Felix; Nilsson, R Henrik; Sen, Robin

    2015-01-01

    The UK hosts 15-19% of global upland ombrotrophic (rain fed) peatlands that are estimated to store 3.2 billion tonnes of carbon and represent a critical upland habitat with regard to biodiversity and ecosystem services provision. Net production is dependent on an imbalance between growth of peat-forming Sphagnum mosses and microbial decomposition by microorganisms that are limited by cold, acidic, and anaerobic conditions. In the Southern Pennines, land-use change, drainage, and over 200 years of anthropogenic N and heavy metal deposition have contributed to severe peatland degradation manifested as a loss of vegetation leaving bare peat susceptible to erosion and deep gullying. A restoration programme designed to regain peat hydrology, stability and functionality has involved re-vegetation through nurse grass, dwarf shrub and Sphagnum re-introduction. Our aim was to characterise bacterial and fungal communities, via high-throughput rRNA gene sequencing, in the surface acrotelm/mesotelm of degraded bare peat, long-term stable vegetated peat, and natural and managed restorations. Compared to long-term vegetated areas the bare peat microbiome had significantly higher levels of oligotrophic marker phyla (Acidobacteria, Verrucomicrobia, TM6) and lower Bacteroidetes and Actinobacteria, together with much higher ligninolytic Basidiomycota. Fewer distinct microbial sequences and significantly fewer cultivable microbes were detected in bare peat compared to other areas. Microbial community structure was linked to restoration activity and correlated with soil edaphic variables (e.g. moisture and heavy metals). Although rapid community changes were evident following restoration activity, restored bare peat did not approach a similar microbial community structure to non-eroded areas even after 25 years, which may be related to the stabilisation of historic deposited heavy metals pollution in long-term stable areas. These primary findings are discussed in relation to bare peat

  8. Bacterial and fungal communities in a degraded ombrotrophic peatland undergoing natural and managed re-vegetation.

    Directory of Open Access Journals (Sweden)

    David R Elliott

    Full Text Available The UK hosts 15-19% of global upland ombrotrophic (rain fed peatlands that are estimated to store 3.2 billion tonnes of carbon and represent a critical upland habitat with regard to biodiversity and ecosystem services provision. Net production is dependent on an imbalance between growth of peat-forming Sphagnum mosses and microbial decomposition by microorganisms that are limited by cold, acidic, and anaerobic conditions. In the Southern Pennines, land-use change, drainage, and over 200 years of anthropogenic N and heavy metal deposition have contributed to severe peatland degradation manifested as a loss of vegetation leaving bare peat susceptible to erosion and deep gullying. A restoration programme designed to regain peat hydrology, stability and functionality has involved re-vegetation through nurse grass, dwarf shrub and Sphagnum re-introduction. Our aim was to characterise bacterial and fungal communities, via high-throughput rRNA gene sequencing, in the surface acrotelm/mesotelm of degraded bare peat, long-term stable vegetated peat, and natural and managed restorations. Compared to long-term vegetated areas the bare peat microbiome had significantly higher levels of oligotrophic marker phyla (Acidobacteria, Verrucomicrobia, TM6 and lower Bacteroidetes and Actinobacteria, together with much higher ligninolytic Basidiomycota. Fewer distinct microbial sequences and significantly fewer cultivable microbes were detected in bare peat compared to other areas. Microbial community structure was linked to restoration activity and correlated with soil edaphic variables (e.g. moisture and heavy metals. Although rapid community changes were evident following restoration activity, restored bare peat did not approach a similar microbial community structure to non-eroded areas even after 25 years, which may be related to the stabilisation of historic deposited heavy metals pollution in long-term stable areas. These primary findings are discussed in

  9. Bacterial and Fungal Communities in a Degraded Ombrotrophic Peatland Undergoing Natural and Managed Re-Vegetation

    Science.gov (United States)

    Elliott, David R.; Caporn, Simon J. M.; Nwaishi, Felix; Nilsson, R. Henrik; Sen, Robin

    2015-01-01

    The UK hosts 15–19% of global upland ombrotrophic (rain fed) peatlands that are estimated to store 3.2 billion tonnes of carbon and represent a critical upland habitat with regard to biodiversity and ecosystem services provision. Net production is dependent on an imbalance between growth of peat-forming Sphagnum mosses and microbial decomposition by microorganisms that are limited by cold, acidic, and anaerobic conditions. In the Southern Pennines, land-use change, drainage, and over 200 years of anthropogenic N and heavy metal deposition have contributed to severe peatland degradation manifested as a loss of vegetation leaving bare peat susceptible to erosion and deep gullying. A restoration programme designed to regain peat hydrology, stability and functionality has involved re-vegetation through nurse grass, dwarf shrub and Sphagnum re-introduction. Our aim was to characterise bacterial and fungal communities, via high-throughput rRNA gene sequencing, in the surface acrotelm/mesotelm of degraded bare peat, long-term stable vegetated peat, and natural and managed restorations. Compared to long-term vegetated areas the bare peat microbiome had significantly higher levels of oligotrophic marker phyla (Acidobacteria, Verrucomicrobia, TM6) and lower Bacteroidetes and Actinobacteria, together with much higher ligninolytic Basidiomycota. Fewer distinct microbial sequences and significantly fewer cultivable microbes were detected in bare peat compared to other areas. Microbial community structure was linked to restoration activity and correlated with soil edaphic variables (e.g. moisture and heavy metals). Although rapid community changes were evident following restoration activity, restored bare peat did not approach a similar microbial community structure to non-eroded areas even after 25 years, which may be related to the stabilisation of historic deposited heavy metals pollution in long-term stable areas. These primary findings are discussed in relation to bare

  10. AcEST: DK956208 [AcEST

    Lifescience Database Archive (English)

    Full Text Available t_id B5JPY8 Definition tr|B5JPY8|B5JPY8_9BACT Helix-turn-helix domain protein OS=Verrucomicrobiae bacterium ...5JPY8_9BACT Helix-turn-helix domain protein OS=Verrucomicrobiae bacterium DG1235 GN=VDG1235_3181 PE=4 SV=1 L

  11. Where the bugs are: analyzing distributions of bacterial phyla by descriptor keyword search in the nucleotide database.

    Science.gov (United States)

    Squartini, Andrea

    2011-07-26

    The associations between bacteria and environment underlie their preferential interactions with given physical or chemical conditions. Microbial ecology aims at extracting conserved patterns of occurrence of bacterial taxa in relation to defined habitats and contexts. In the present report the NCBI nucleotide sequence database is used as dataset to extract information relative to the distribution of each of the 24 phyla of the bacteria superkingdom and of the Archaea. Over two and a half million records are filtered in their cross-association with each of 48 sets of keywords, defined to cover natural or artificial habitats, interactions with plant, animal or human hosts, and physical-chemical conditions. The results are processed showing: (a) how the different descriptors enrich or deplete the proportions at which the phyla occur in the total database; (b) in which order of abundance do the different keywords score for each phylum (preferred habitats or conditions), and to which extent are phyla clustered to few descriptors (specific) or spread across many (cosmopolitan); (c) which keywords individuate the communities ranking highest for diversity and evenness. A number of cues emerge from the results, contributing to sharpen the picture on the functional systematic diversity of prokaryotes. Suggestions are given for a future automated service dedicated to refining and updating such kind of analyses via public bioinformatic engines.

  12. Phylogeny, diversity and host specialization in the phylum Synergistetes with emphasis on strains and clones of human origin.

    Science.gov (United States)

    Marchandin, Hélène; Damay, Audrey; Roudière, Laurent; Teyssier, Corinne; Zorgniotti, Isabelle; Dechaud, Hervé; Jean-Pierre, Hélène; Jumas-Bilak, Estelle

    2010-03-01

    Members of the phylum Synergistetes have been demonstrated in several environmental ecosystems and mammalian microflorae by culture-independent methods. In the past few years, the clinical relevance of some uncultivated phylotypes has been demonstrated in endodontic infections, and uncultured Synergistetes have been demonstrated in human mouth, gut and skin microbiota. However, Synergistetes are rarely cultured from human samples, and only 17 isolates are currently reported. Twelve members of Synergistetes isolated in the course of various infectious processes, including 3 Jonquetella anthropi, 2 Cloacibacillus evryensis, 2 Pyramidobacter piscolens and 5 unidentified strains, as well as 56 clones obtained by specific PCR from the normal vaginal microflora, were studied. 16S rRNA gene-based phylogeny showed that the clones were grouped into 3 clusters, corresponding to the genus Jonquetella, P. piscolens and one novel Synergistetes taxon. The presence and diversity of Synergistetes were reported for the first time in the vaginal microflora. Synergistetes were found in healthy patients, suggesting that they could play a functional role in human microflorae, but may also act as opportunistic pathogens. Studying the phylogenetic relationships between environmental and mammalian strains and clones revealed clearly delineated independent lineages according to the origin of the sequences. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  13. Accession data for analysed Xestospongia testudinaria metatranscriptomes, supplement to: Jahn, Martin T; Markert, Sebastian M; Ryu, Taewoo; Ravasi, Timothy; Stigloher, Christian; Hentschel, Ute; Moitinho-Silva, Lucas (2016): Shedding light on cell compartmentation in the candidate phylum Poribacteria by high resolution visualisation and transcriptional profiling. Scientific Reports, 6, 35860

    KAUST Repository

    Jahn, Martin T; Markert, Sebastian M; Ryu, Tae Woo; Ravasi, Timothy; Stigloher, Christian; Hentschel, Ute; Moitinho-Silva, Lucas

    2016-01-01

    -CLEM) that enabled, to our knowledge for the first time, the identification of single cells within their complex microenvironment at electron microscopy resolution. Members of the candidate phylum Poribacteria, common and uncultivated symbionts of marine sponges

  14. Bacterial Cell Mechanics.

    Science.gov (United States)

    Auer, George K; Weibel, Douglas B

    2017-07-25

    Cellular mechanical properties play an integral role in bacterial survival and adaptation. Historically, the bacterial cell wall and, in particular, the layer of polymeric material called the peptidoglycan were the elements to which cell mechanics could be primarily attributed. Disrupting the biochemical machinery that assembles the peptidoglycan (e.g., using the β-lactam family of antibiotics) alters the structure of this material, leads to mechanical defects, and results in cell lysis. Decades after the discovery of peptidoglycan-synthesizing enzymes, the mechanisms that underlie their positioning and regulation are still not entirely understood. In addition, recent evidence suggests a diverse group of other biochemical elements influence bacterial cell mechanics, may be regulated by new cellular mechanisms, and may be triggered in different environmental contexts to enable cell adaptation and survival. This review summarizes the contributions that different biomolecular components of the cell wall (e.g., lipopolysaccharides, wall and lipoteichoic acids, lipid bilayers, peptidoglycan, and proteins) make to Gram-negative and Gram-positive bacterial cell mechanics. We discuss the contribution of individual proteins and macromolecular complexes in cell mechanics and the tools that make it possible to quantitatively decipher the biochemical machinery that contributes to bacterial cell mechanics. Advances in this area may provide insight into new biology and influence the development of antibacterial chemotherapies.

  15. Bacterial Active Community Cycling in Response to Solar Radiation and Their Influence on Nutrient Changes in a High-Altitude Wetland.

    Science.gov (United States)

    Molina, Verónica; Hernández, Klaudia; Dorador, Cristina; Eissler, Yoanna; Hengst, Martha; Pérez, Vilma; Harrod, Chris

    2016-01-01

    Microbial communities inhabiting high-altitude spring ecosystems are subjected to extreme changes in solar irradiance and temperature throughout the diel cycle. Here, using 16S rRNA gene tag pyrosequencing (cDNA) we determined the composition of actively transcribing bacteria from spring waters experimentally exposed through the day (morning, noon, and afternoon) to variable levels of solar radiation and light quality, and evaluated their influence on nutrient recycling. Solar irradiance, temperature, and changes in nutrient dynamics were associated with changes in the active bacterial community structure, predominantly by Cyanobacteria, Verrucomicrobia, Proteobacteria, and 35 other Phyla, including the recently described Candidate Phyla Radiation (e.g., Parcubacteria, Gracilibacteria, OP3, TM6, SR1). Diversity increased at noon, when the highest irradiances were measured (3.3-3.9 H', 1125 W m -2 ) compared to morning and afternoon (0.6-2.8 H'). This shift was associated with a decrease in the contribution to pyrolibraries by Cyanobacteria and an increase of Proteobacteria and other initially low frequently and rare bacteria phyla (solar radiation. In addition, the percentage contribution of cyanobacterial sequences in the afternoon was similar to those recorded in the morning. The shifts in the contribution by Cyanobacteria also influenced the rate of change in nitrate, nitrite, and phosphate, highlighted by a high level of nitrate accumulation during hours of high radiation and temperature associated with nitrifying bacteria activity. We did not detect ammonia or nitrite oxidizing bacteria in situ , but both functional groups ( Nitrosomona and Nitrospira ) appeared mainly in pyrolibraries generated from dark incubations. In total, our results reveal that both the structure and the diversity of the active bacteria community was extremely dynamic through the day, and showed marked shifts in composition that influenced nutrient recycling, highlighting how abiotic

  16. Nafulsella turpanensis gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from soil.

    Science.gov (United States)

    Zhang, Lei; Shen, Xihui; Liu, Yingbao; Li, Shiqing

    2013-05-01

    A Gram-staining-negative, rod-shaped, gliding and pale-pink-pigmented bacterium, designated strain ZLM-10(T), was isolated from a soil sample collected from an arid area in Xinjiang province, China, and characterized in a taxonomic study using a polyphasic approach. The novel strain grew optimally at 30-37 °C and in the presence of 2 % (w/v) sea salts. The only respiratory quinone detected was MK-7 and the major cellular fatty acids were summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c), iso-C15 : 0 and iso-C17 : 0 3-OH. The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, an unidentified aminolipid and two unidentified aminophospholipids. The DNA G+C content was 45.4 mol%. Flexirubin-type pigments were not produced. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain ZLM-10(T) was a member of the phylum Bacteroidetes and appeared most closely related to Cesiribacter roseus 311(T) (90.2 % sequence similarity), Marivirga sericea LMG 13021(T) (89.2 %), Cesiribacter andamanensis AMV16(T) (89.1 %) and Marivirga tractuosa DSM 4126(T) (89.1 %). On the basis of phenotypic and genotypic data and phylogenetic inference, strain ZLM-10(T) should be classified as a novel species of a new genus in the family Flammeovirgaceae, for which the name Nafulsella turpanensis gen. nov., sp. nov. is proposed. The type strain of the type species is ZLM-10(T) ( = CCTCC AB 208222(T) = KCTC 23983(T)).

  17. Status Pencemaran Lingkungan Sungai Badung dan Sungai Mati di Provinsi Bali Berdasarkan Bioindikator Phylum Annelida

    Directory of Open Access Journals (Sweden)

    Mawardi Labbaik

    2017-11-01

    Full Text Available Water pollution is the entry or inclusion of substances, energy and other components into the water by human activities, so that water quality decrease to a certain level. This study a timed to monitor the pollution of aquatic environment in the Badung River and Mati River by using Annelida phylum as bioindicator, the study was conducted from February to March 2017. The data obtained were analyzed by the structure of the community, and also used ABC (Abudance-Biomass Comparison method. The result of the research showed that the most abundance of Annelida and dominant from all stations of Badung River and Mati River was Lumbriculus variegatus. Is showed that it contamination status was categorized as mild contamination because it was dominant by facultative organism. The structure of the Annelida community in the Badung River and Mati River with the value of the diversity index was categorized as low Annelida (H '<1.0. The uniformity index was categorized as depressed Annelida community (0.00

  18. Gut flora profiling and fecal metabolite composition of colorectal cancer patients and healthy individuals.

    Science.gov (United States)

    Wang, Xiaoxue; Wang, Jianping; Rao, Benqiang; Deng, Li

    2017-06-01

    Colorectal cancer is one of the most common types of cancer in the world and its morbidity and mortality rates are increasing due to alterations to human lifestyle and dietary habits. The relationship between human gut flora and colorectal cancer has attracted increasing attention. In the present study, a metabolic fingerprinting technique that combined pyrosequencing with gas chromatography-mass spectrometry was utilized to compare the differences in gut flora profiling and fecal metabolites between healthy individuals and patients with colorectal cancer. The results demonstrated that there were no significant differences in the abundance and diversity of gut flora between healthy individuals and patients with colorectal cancer (P>0.05) and the dominant bacterial phyla present in the gut of both groups included Firmicutes , Bacteroidetes and Verrucomicrobia . At the bacterial strain/genus level, significant differences were observed in the relative abundance of 18 species of bacteria (Pflora profiling and metabolite composition. These findings suggest that gut flora disorder results in the alteration of bacterial metabolism, which may be associated with the pathogenesis of colorectal cancer. The results of the present study are useful as a foundation for further studies to elucidate a potential colorectal cancer diagnostic index and therapeutic targets.

  19. Diversity Profile of Microbes Associated with Anaerobic Sulfur Oxidation in an Upflow Anaerobic Sludge Blanket Reactor Treating Municipal Sewage

    Science.gov (United States)

    Aida, Azrina A.; Kuroda, Kyohei; Yamamoto, Masamitsu; Nakamura, Akinobu; Hatamoto, Masashi; Yamaguchi, Takashi

    2015-01-01

    We herein analyzed the diversity of microbes involved in anaerobic sulfur oxidation in an upflow anaerobic sludge blanket (UASB) reactor used for treating municipal sewage under low-temperature conditions. Anaerobic sulfur oxidation occurred in the absence of oxygen, with nitrite and nitrate as electron acceptors; however, reactor performance parameters demonstrated that anaerobic conditions were maintained. In order to gain insights into the underlying basis of anaerobic sulfur oxidation, the microbial diversity that exists in the UASB sludge was analyzed comprehensively to determine their identities and contribution to sulfur oxidation. Sludge samples were collected from the UASB reactor over a period of 2 years and used for bacterial 16S rRNA gene-based terminal restriction fragment length polymorphism (T-RFLP) and next-generation sequencing analyses. T-RFLP and sequencing results both showed that microbial community patterns changed markedly from day 537 onwards. Bacteria belonging to the genus Desulforhabdus within the phylum Proteobacteria and uncultured bacteria within the phylum Fusobacteria were the main groups observed during the period of anaerobic sulfur oxidation. Their abundance correlated with temperature, suggesting that these bacterial groups played roles in anaerobic sulfur oxidation in UASB reactors. PMID:25817585

  20. Immigration has a large impact on the observed microbial community in anaerobic digesters

    DEFF Research Database (Denmark)

    Kirkegaard, Rasmus Hansen; McIlroy, Simon Jon; Kristensen, Jannie Munk

    Anaerobic digestion (AD) is globally applied for bioenergy production. Although its widespread application, improved understanding of the underlying microbial ecology is needed to provide solutions for optimised process performance. In this study, we investigated the impact of immigration...... on the microbial community and conducted detailed investigations of bacteria from the hitherto undescribed phylum Hyd24-12, which’s role in AD has been overlooked so far. A total of 32 AD reactors at 18 Danish full-scale wastewater treatment plants were sampled during five years of operation. The bacterial...... immigration into account, would highly bias the conclusions. One of the most abundant non-immigrating bacteria belonged to candidate phylum Hyd24-12. Using differential coverage binning of multiple AD metagenomes, we retrieved the first genome of Hyd24-12. The genome allowed for detailed metabolic...

  1. Evidence for the presence of key chlorophyll-biosynthesis-related proteins in the genus Rubrobacter (Phylum Actinobacteria) and its implications for the evolution and origin of photosynthesis.

    Science.gov (United States)

    Gupta, Radhey S; Khadka, Bijendra

    2016-02-01

    Homologs showing high degree of sequence similarity to the three subunits of the protochlorophyllide oxidoreductase enzyme complex (viz. BchL, BchN, and BchB), which carries out a central role in chlorophyll-bacteriochlorophyll (Bchl) biosynthesis, are uniquely found in photosynthetic organisms. The results of BLAST searches and homology modeling presented here show that proteins exhibiting a high degree of sequence and structural similarity to the BchB and BchN proteins are also present in organisms from the high G+C Gram-positive phylum of Actinobacteria, specifically in members of the genus Rubrobacter (R. x ylanophilus and R. r adiotolerans). The results presented exclude the possibility that the observed BLAST hits are for subunits of the nitrogenase complex or the chlorin reductase complex. The branching in phylogenetic trees and the sequence characteristics of the Rubrobacter BchB/BchN homologs indicate that these homologs are distinct from those found in other photosynthetic bacteria and that they may represent ancestral forms of the BchB/BchN proteins. Although a homolog showing high degree of sequence similarity to the BchL protein was not detected in Rubrobacter, another protein, belonging to the ParA/Soj/MinD family, present in these bacteria, exhibits high degree of structural similarity to the BchL. In addition to the BchB/BchN homologs, Rubrobacter species also contain homologs showing high degree of sequence similarity to different subunits of magnesium chelatase (BchD, BchH, and BchI) as well as proteins showing significant similarity to the BchP and BchG proteins. Interestingly, no homologs corresponding to the BchX, BchY, and BchZ proteins were detected in the Rubrobacter species. These results provide the first suggestive evidence that some form of photosynthesis either exists or was anciently present within the phylum Actinobacteria (high G+C Gram-positive) in members of the genus Rubrobacter. The significance of these results concerning the

  2. Bacterial vaginosis in pregnant adolescents: proinflammatory cytokine and bacterial sialidase profile. Cross-sectional study

    Directory of Open Access Journals (Sweden)

    Carolina Sanitá Tafner Ferreira

    Full Text Available ABSTRACT CONTEXT AND OBJECTIVE: Bacterial vaginosis occurs frequently in pregnancy and increases susceptibility to sexually transmitted infections (STI. Considering that adolescents are disproportionally affected by STI, the aim of this study was to evaluate the cervicovaginal levels of interleukin (IL-1 beta, IL-6, IL-8 and bacterial sialidase in pregnant adolescents with bacterial vaginosis. DESIGN AND SETTING: Cross-sectional study at mother and child referral units in Belém, Pará, Brazil. METHODS: Vaginal samples from 168 pregnant adolescents enrolled were tested for trichomoniasis and candidiasis. Their vaginal microbiota was classified according to the Nugent criteria (1991 as normal, intermediate or bacterial vaginosis. Cervical infection due to Chlamydia trachomatisand Neisseria gonorrhoeae was also assessed. Cytokine and sialidase levels were measured, respectively, using enzyme-linked immunosorbent assays and MUAN conversion in cervicovaginal lavages. Forty-eight adolescents (28.6% were excluded because they tested positive for some of the infections investigated. The remaining 120 adolescents were grouped according to vaginal flora type: normal (n = 68 or bacterial vaginosis (n = 52. Their cytokine and sialidase levels were compared between the groups using the Mann-Whitney test (P < 0.05. RESULTS: The pregnant adolescents with bacterial vaginosis had higher levels of IL-1 beta, IL-6 and IL-8 (P < 0.05. Sialidase was solely detected in 35 adolescents (67.2% with bacterial vaginosis. CONCLUSIONS: Not only IL-1 beta and sialidase levels, but also IL-6 and IL-8 levels are higher in pregnant adolescents with bacterial vaginosis, thus indicating that this condition elicits a more pronounced inflammatory response in this population, which potentially increases vulnerability to STI acquisition.

  3. Effect of continuous oleate addition on microbial communities involved in anaerobic digestion process

    DEFF Research Database (Denmark)

    Baserba, Manel Garrido; Angelidaki, Irini; Karakashev, Dimitar Borisov

    2012-01-01

    bacterial consortium related to functional specialization of the species towards oleate degradation. For the archaeal domain, the sequences were affiliated within Euryarchaeota phylum with three major groups (Methanosarcina, Methanosaeta and Methanobacterium genera). Results obtained in this study deliver...... a comprehensive picture on oleate degrading microbial communities in high organic strength wastewater. The findings might be utilized for development of strategies for biogas production from lipid-riched wastes....

  4. Prostatitis-bacterial - self-care

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000395.htm Prostatitis - bacterial - self-care To use the sharing features ... enable JavaScript. You have been diagnosed with bacterial prostatitis . This is an infection of the prostate gland. ...

  5. Autecology of crenarchaeotal and bacterial clades in marine sediments and microbial mats

    OpenAIRE

    Kubo, Kyoko

    2011-01-01

    The focus of this thesis was the autecology of the Miscellaneous Crenarchaeotal Group (MCG), a phylum-level clade of Archaea occurring mostly in marine sediments. Sequences of MCG 16S rRNA genes have been retrieved from a wide range of marine and terrestrial habitats, such as deep subsurface sediments, hydrothermal sediments, mud volcanoes, estuaries, hot springs and freshwater lake sediments. MCG members seem to have no general preferences for a particular temperature or salinity. So far, no...

  6. Shedding light on cell compartmentation in the candidate phylum Poribacteria by high resolution visualisation and transcriptional profiling

    KAUST Repository

    Jahn, Martin T.; Markert, Sebastian M.; Ryu, Tae Woo; Ravasi, Timothy; Stigloher, Christian; Hentschel, Ute; Moitinho-Silva, Lucas

    2016-01-01

    metatranscriptomes using simulation-based optimised mapping. We observed high transcriptional activity for proteins related to bacterial microcompartments (BMC) and we resolved their subcellular localisation by combining FISH-CLEM with immunohistochemistry (IHC

  7. Characterization of the bacterial gut microbiota in new neonatal porcine diarrhoea

    DEFF Research Database (Denmark)

    Hermann-Bank, Marie Louise

    from that of control piglets by a depletion of the phyla Firmicutes, Bacteroidetes, and Actinobacteria, while the numbers of genus Enterococcus and the class Beta- and Gammaproteobacteria (including family Enterobacteriaceae and species Escherichia coli), but also phylum Fusobacteria were elevated...... involved in diarrhoea was examined for a subset of piglets by qPCR using the 96.96 Dynamic Array™ Integrated Fluidic Circuits (Fluidigm). Similar to NNPD-field cases the gut microbiota of case piglets were characterized by reduced numbers of the phyla Firmicutes, Bacteroidetes, and Actinobacteria...

  8. [Spontaneous bacterial peritonitis].

    Science.gov (United States)

    Velkey, Bálint; Vitális, Eszter; Vitális, Zsuzsanna

    2017-01-01

    Spontaneous bacterial peritonitis occurs most commonly in cirrhotic patients with ascites. Pathogens get into the circulation by intestinal translocation and colonize in peritoneal fluid. Diagnosis of spontaneous bacterial peritonitis is based on elevated polymorphonuclear leukocyte count in the ascites (>0,25 G/L). Ascites culture is often negative but aids to get information about antibiotic sensitivity in positive cases. Treatment in stable patient can be intravenous then orally administrated ciprofloxacin or amoxicillin/clavulanic acid, while in severe cases intravenous III. generation cephalosporin. Nosocomial spontaneous bacterial peritonitis often caused by Gram-positive bacteria and multi-resistant pathogens can also be expected thus carbapenem should be the choice of the empiric treatment. Antibiotic prophylaxis should be considered. Norfloxacin is used most commonly, but changes are expected due to increase in quinolone resistance. As a primary prophylaxis, a short-term antibiotic treatment is recommended after gastrointestinal bleeding for 5 days, while long-term prophylaxis is for patients with low ascites protein, and advanced disease (400 mg/day). Secondary prophylaxis is recommended for all patients recovered from spontaneous bacterial peritonitis. Due to increasing antibiotic use of antibiotics prophylaxis is debated to some degree. Orv. Hetil., 2017, 158(2), 50-57.

  9. Betaproteobacteria dominance and diversity shifts in the bacterial community of a PAH-contaminated soil exposed to phenanthrene

    International Nuclear Information System (INIS)

    Martin, Florence; Torelli, Stéphane; Le Paslier, Denis; Barbance, Agnès; Martin-Laurent, Fabrice; Bru, David; Geremia, Roberto; Blake, Gérard; Jouanneau, Yves

    2012-01-01

    In this study, the PAH-degrading bacteria of a constructed wetland collecting road runoff has been studied through DNA stable isotope probing. Microcosms were spiked with 13 C-phenanthrene at 34 or 337 ppm, and bacterial diversity was monitored over a 14-day period. At 337 ppm, PAH degraders became dominated after 5 days by Betaproteobacteria, including novel Acidovorax, Rhodoferax and Hydrogenophaga members, and unknown bacteria related to Rhodocyclaceae. The prevalence of Betaproteobacteria was further demonstrated by phylum-specific quantitative PCR, and was correlated with a burst of phenanthrene mineralization. Striking shifts in the population of degraders were observed after most of the phenanthrene had been removed. Soil exposed to 34 ppm phenanthrene showed a similar population of degraders, albeit only after 14 days. Results demonstrate that specific Betaproteobacteria are involved in the main response to soil PAH contamination, and illustrate the potential of SIP approaches to investigate PAH biodegradation in soil. - Highlights: ► We explored PAH-degrading bacteria on a chronically polluted site by stable isotope probing. ► Betaproteobacteria appeared as the main phenanthrene degraders in soil. ► Most soil PAH degraders were poorly related to bacteria isolated so far. ► Diversity shifts occurred in the community of degraders when the PAH became less available. - On a site collecting road runoff, implementation of stable isotope probing to identify soil bacteria responsible for phenanthrene degradation, led to the discovery of new Betaproteobacteria distantly related to known PAH degraders.

  10. Quantification of bacterial and archaeal symbionts in high and low microbial abundance sponges using real-time PCR

    KAUST Repository

    Bayer, Kristina

    2014-07-09

    In spite of considerable insights into the microbial diversity of marine sponges, quantitative information on microbial abundances and community composition remains scarce. Here, we established qPCR assays for the specific quantification of four bacterial phyla of representative sponge symbionts as well as the kingdoms Eubacteria and Archaea. We could show that the 16S rRNA gene numbers of Archaea, Chloroflexi, and the candidate phylum Poribacteria were 4-6 orders of magnitude higher in high microbial abundance (HMA) than in low microbial abundance (LMA) sponges and that actinobacterial 16S rRNA gene numbers were 1-2 orders higher in HMA over LMA sponges, while those for Cyanobacteria were stable between HMA and LMA sponges. Fluorescence in situ hybridization of Aplysina aerophoba tissue sections confirmed the numerical dominance of Chloroflexi, which was followed by Poribacteria. Archaeal and actinobacterial cells were detected in much lower numbers. By use of fluorescence-activated cell sorting as a primer- and probe-independent approach, the dominance of Chloroflexi, Proteobacteria, and Poribacteria in A. aerophoba was confirmed. Our study provides new quantitative insights into the microbiology of sponges and contributes to a better understanding of the HMA/LMA dichotomy. The authors quantified sponge symbionts in eight sponge species from three different locations by real time PCR targetting 16S rRNA genes. Additionally, FISH was performed and diversity and abundance of singularized microbial symbionts from Aplysina aerophoba was determined for a comprehensive quantification work. © 2014 Federation of European Microbiological Societies.

  11. Rifaximin has minor effects on bacterial composition, inflammation and bacterial translocation in cirrhosis

    DEFF Research Database (Denmark)

    Kimer, Nina; Pedersen, Julie S.; Tavenier, Juliette

    2018-01-01

    .4), and MELD score 12 (±3.9). Patients received rifaximin 550 mg BD (n=36) or placebo BD (n=18). Blood and faecal (n=15) sampling were conducted at baseline and after four weeks. Bacterial DNA in blood was determined by real-time qPCR 16S rRNA gene quantification. Bacterial composition in faeces was analysed......BACKGROUND & AIMS: Decompensated cirrhosis is characterized by disturbed haemodynamics, immune dysfunction, and high risk of infections. Translocation of viable bacteria and bacterial products from the gut to the blood is considered a key driver in this process. Intestinal decontamination...... with rifaximin may reduce bacterial translocation (BT) and decrease inflammation. In a randomized, placebo-controlled trial investigated the effects of rifaximin on inflammation and BT in decompensated cirrhosis. METHODS: Fifty-four out-patients with cirrhosis and ascites were randomized, mean age 56 years (±8...

  12. Vaginal and Uterine Bacterial Communities in Postpartum Lactating Cows

    Directory of Open Access Journals (Sweden)

    Brooke A. Clemmons

    2017-06-01

    Full Text Available Reproductive inefficiency in cattle has major impacts on overall productivity of cattle operations, increasing cost of production, and impacting the sustainability of the cattle enterprise. Decreased reproductive success and associated disease states have been correlated with the presence of specific microbes and microbial community profiles, yet details of the relationship between microbial communities and host physiology are not well known. The present study profiles and compares the microbial communities in the bovine uterus and vagina using 16S rRNA sequencing of the V1–V3 hypervariable region at the time of artificial insemination. Significant differences (p < 0.05 between the vaginal and uterine communities were observed at the level of α-diversity metrics, including Chao1, Shannon’s Diversity Index, and observed OTU. Greater clustering of vaginal OTU was apparent in principal coordinate analysis compared to uterine OTU, despite greater diversity in the vaginal community in both weighted and unweighted UniFrac distance matrices (p < 0.05. There was a significantly greater relative abundance of unassigned taxa in the uterus (p = 0.008, otherwise there were few differences between the overall community profiles. Both vaginal and uterine communities were dominated by Firmicutes, although the relative abundance of rRNA sequences corresponding to species in this phylum was significantly (p = 0.007 lower in the uterine community. Additional differences were observed at the genus level, specifically in abundances within Clostridium (p = 0.009, Anaerofustis (p = 0.018, Atopobium (p = 0.035, Oscillospira (p = 0.035, 5-7N15 (p = 0.035, Mycoplasma (p = 0.035, Odoribacter (p = 0.042, and within the families Clostridiaceae (p = 0.006, Alcaligenaceae (p = 0.021, and Ruminococcaceae (p = 0.021. Overall, the comparison revealed differences and commonalities among bovine reproductive organs, which may be influenced by host physiology. The increased

  13. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    . As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will become...

  14. Endogeic earthworms shape bacterial functional communities and affect organic matter mineralization in a tropical soil

    Science.gov (United States)

    Bernard, Laetitia; Chapuis-Lardy, Lydie; Razafimbelo, Tantely; Razafindrakoto, Malalatiana; Pablo, Anne-Laure; Legname, Elvire; Poulain, Julie; Brüls, Thomas; O'Donohue, Michael; Brauman, Alain; Chotte, Jean-Luc; Blanchart, Eric

    2012-01-01

    Priming effect (PE) is defined as a stimulation of the mineralization of soil organic matter (SOM) following a supply of fresh organic matter. This process can have important consequences on the fate of SOM and on the management of residues in agricultural soils, especially in tropical regions where soil fertility is essentially based on the management of organic matter. Earthworms are ecosystem engineers known to affect the dynamics of SOM. Endogeic earthworms ingest large amounts of soil and assimilate a part of organic matter it contains. During gut transit, microorganisms are transported to new substrates and their activity is stimulated by (i) the production of readily assimilable organic matter (mucus) and (ii) the possible presence of fresh organic residues in the ingested soil. The objective of our study was to see (i) whether earthworms impact the PE intensity when a fresh residue is added to a tropical soil and (ii) whether this impact is linked to a stimulation/inhibition of bacterial taxa, and which taxa are affected. A tropical soil from Madagascar was incubated in the laboratory, with a 13C wheat straw residue, in the presence or absence of a peregrine endogeic tropical earthworm, Pontoscolex corethrurus. Emissions of 12CO2 and 13CO2 were followed during 16 days. The coupling between DNA-SIP (stable isotope probing) and pyrosequencing showed that stimulation of both the mineralization of wheat residues and the PE can be linked to the stimulation of several groups especially belonging to the Bacteroidetes phylum. PMID:21753801

  15. Diversity of Cultivable Midgut Microbiota at Different Stages of the Asian Tiger Mosquito, Aedes albopictus from Tezpur, India.

    Directory of Open Access Journals (Sweden)

    Kamlesh K Yadav

    Full Text Available Aedes aegypti and Ae. albopictus are among the most important vectors of arboviral diseases, worldwide. Recent studies indicate that diverse midgut microbiota of mosquitoes significantly affect development, digestion, metabolism, and immunity of their hosts. Midgut microbiota has also been suggested to modulate the competency of mosquitoes to transmit arboviruses, malaria parasites etc. Interestingly, the midgut microbial flora is dynamic and the diversity changes with the development of vectors, in addition to other factors such as species, sex, life-stage, feeding behavior and geographical origin. The aim of the present study was to investigate the midgut bacterial diversity among larva, adult male, sugar fed female and blood fed female Ae. albopictus collected from Tezpur, Northeastern India. Based on colony morphological characteristics, we selected 113 cultivable bacterial isolates for 16S rRNA gene sequence based molecular identification. Of the 113 isolates, we could identify 35 bacterial species belonging to 18 distinct genera under four major phyla, namely Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. Phyla Proteobacteria and Firmicutes accounted for majority (80% of the species, while phylum Actinobacteria constituted 17% of the species. Bacteroidetes was the least represented phylum, characterized by a single species- Chryseobacterium rhizoplanae, isolated from blood fed individuals. Dissection of midgut microbiota diversity at different developmental stages of Ae. albopictus will be helpful in better understanding mosquito-borne diseases, and for designing effective strategies to manage mosquito-borne diseases.

  16. Effect of freshwater mussels on the vertical distribution of anaerobic ammonia oxidizers and other nitrogen-transforming microorganisms in upper Mississippi river sediment

    Directory of Open Access Journals (Sweden)

    Ellen M. Black

    2017-07-01

    Full Text Available Targeted qPCR and non-targeted amplicon sequencing of 16S rRNA genes within sediment layers identified the anaerobic ammonium oxidation (anammox niche and characterized microbial community changes attributable to freshwater mussels. Anammox bacteria were normally distributed (Shapiro-Wilk normality test, W-statistic =0.954, p = 0.773 between 1 and 15 cm depth and were increased by a factor of 2.2 (p < 0.001 at 3 cm below the water-sediment interface when mussels were present. Amplicon sequencing of sediment at depths relevant to mussel burrowing (3 and 5 cm showed that mussel presence reduced observed species richness (p = 0.005, Chao1 diversity (p = 0.005, and Shannon diversity (p < 0.001, with more pronounced decreases at 5 cm depth. A non-metric, multidimensional scaling model showed that intersample microbial species diversity varied as a function of mussel presence, indicating that sediment below mussels harbored distinct microbial communities. Mussel presence corresponded with a 4-fold decrease in a majority of operational taxonomic units (OTUs classified in the phyla Gemmatimonadetes, Actinobacteria, Acidobacteria, Plantomycetes, Chloroflexi, Firmicutes, Crenarcheota, and Verrucomicrobia. 38 OTUs in the phylum Nitrospirae were differentially abundant (p < 0.001 with mussels, resulting in an overall increase from 25% to 35%. Nitrogen (N-cycle OTUs significantly impacted by mussels belonged to anammmox genus Candidatus Brocadia, ammonium oxidizing bacteria family Nitrosomonadaceae, ammonium oxidizing archaea genus Candidatus Nitrososphaera, nitrite oxidizing bacteria in genus Nitrospira, and nitrate- and nitrite-dependent anaerobic methane oxidizing organisms in the archaeal family “ANME-2d” and bacterial phylum “NC10”, respectively. Nitrosomonadaceae (0.9-fold (p < 0.001 increased with mussels, while NC10 (2.1-fold (p < 0.001, ANME-2d (1.8-fold (p < 0.001, and Candidatus Nitrososphaera (1.5-fold (p < 0

  17. Bacteriële meningitis

    NARCIS (Netherlands)

    Brouwer, M. C.; van de Beek, D.

    2012-01-01

    Bacterial meningitis is a severe disease which affects 35.000 Europeans each year and has a mortality rate of about 20%. During the past 25 years the epidemiology of bacterial meningitis has changed significantly due to the implementation of vaccination against Haemophilus influenzae, Neisseria

  18. Postviral Complications: Bacterial Pneumonia.

    Science.gov (United States)

    Prasso, Jason E; Deng, Jane C

    2017-03-01

    Secondary bacterial pneumonia after viral respiratory infection remains a significant source of morbidity and mortality. Susceptibility is mediated by a variety of viral and bacterial factors, and complex interactions with the host immune system. Prevention and treatment strategies are limited to influenza vaccination and antibiotics/antivirals respectively. Novel approaches to identifying the individuals with influenza who are at increased risk for secondary bacterial pneumonias are urgently needed. Given the threat of further pandemics and the heightened prevalence of these viruses, more research into the immunologic mechanisms of this disease is warranted with the hope of discovering new potential therapies. Published by Elsevier Inc.

  19. Biodegradability of bacterial surfactants.

    Science.gov (United States)

    Lima, Tânia M S; Procópio, Lorena C; Brandão, Felipe D; Carvalho, André M X; Tótola, Marcos R; Borges, Arnaldo C

    2011-06-01

    This work aimed at evaluating the biodegradability of different bacterial surfactants in liquid medium and in soil microcosms. The biodegradability of biosurfactants by pure and mixed bacterial cultures was evaluated through CO(2) evolution. Three bacterial strains, Acinetobacter baumanni LBBMA ES11, Acinetobacter haemolyticus LBBMA 53 and Pseudomonas sp. LBBMA 101B, used the biosurfactants produced by Bacillus sp. LBBMA 111A (mixed lipopeptide), Bacillus subtilis LBBMA 155 (lipopeptide), Flavobacterium sp. LBBMA 168 (mixture of flavolipids), Dietzia Maris LBBMA 191(glycolipid) and Arthrobacter oxydans LBBMA 201(lipopeptide) as carbon sources in minimal medium. The synthetic surfactant sodium dodecyl sulfate (SDS) was also mineralized by these microorganisms, but at a lower rate. CO(2) emitted by a mixed bacterial culture in soil microcosms with biosurfactants was higher than in the microcosm containing SDS. Biosurfactant mineralization in soil was confirmed by the increase in surface tension of the soil aqueous extracts after incubation with the mixed bacterial culture. It can be concluded that, in terms of biodegradability and environmental security, these compounds are more suitable for applications in remediation technologies in comparison to synthetic surfactants. However, more information is needed on structure of biosurfactants, their interaction with soil and contaminants and scale up and cost for biosurfactant production.

  20. Molecular approaches for bacterial azoreductases

    Directory of Open Access Journals (Sweden)

    Montira Leelakriangsak

    2013-12-01

    Full Text Available Azo dyes are the dominant types of synthetic dyes, widely used in textiles, foods, leather, printing, tattooing, cosmetics, and pharmaceutical industries. Many microorganisms are able to decolorize azo dyes, and there is increasing interest in biological waste treatment methods. Bacterial azoreductases can cleave azo linkages (-N=N- in azo dyes, forming aromatic amines. This review mainly focuses on employing molecular approaches, including gene manipulation and recombinant strains, to study bacterial azoreductases. The construction of the recombinant protein by cloning and the overexpression of azoreductase is described. The mechanisms and function of bacterial azoreductases can be studied by other molecular techniques discussed in this review, such as RT-PCR, southern blot analysis, western blot analysis, zymography, and muta-genesis in order to understand bacterial azoreductase properties, function and application. In addition, understanding the regulation of azoreductase gene expression will lead to the systematic use of gene manipulation in bacterial strains for new strategies in future waste remediation technologies.

  1. Response of microbial community of organic-matter-impoverished arable soil to long-term application of soil conditioner derived from dynamic rapid fermentation of food waste.

    Science.gov (United States)

    Hou, Jiaqi; Li, Mingxiao; Mao, Xuhui; Hao, Yan; Ding, Jie; Liu, Dongming; Xi, Beidou; Liu, Hongliang

    2017-01-01

    Rapid fermentation of food waste can be used to prepare soil conditioner. This process consumes less time and is more cost-effective than traditional preparation technology. However, the succession of the soil microbial community structure after long-term application of rapid fermentation-derived soil conditioners remains unclear. Herein, dynamic rapid fermentation (DRF) of food waste was performed to develop a soil conditioner and the successions and diversity of bacterial communities in an organic-matter-impoverished arable soil after six years of application of DRF-derived soil conditioner were investigated. Results showed that the treatment increased soil organic matter (SOM) accumulation and strawberry yield by 5.3 g/kg and 555.91 kg/ha, respectively. Proteobacteria, Actinobacteria, Acidobacteria, and Firmicutes became the dominant phyla, occupying 65.95%-77.52% of the bacterial sequences. Principal component analysis (PCA) results showed that the soil bacterial communities were largely influenced by the treatment. Redundancy analysis (RDA) results showed that the relative abundances of Gemmatimonadetes, Chloroflexi, Verrucomicrobia, Nitrospirae, and Firmicutes were significantly correlated with soil TC, TN, TP, NH4+-N, NO3--N, OM, and moisture. These communities were all distributed in the soil samples collected in the sixth year of application. Long-term treatment did not enhance the diversity of bacterial species but significantly altered the distribution of major functional bacterial communities in the soils. Application of DRF-derived soil conditioner could improve the soil quality and optimize the microbial community, ultimately enhancing fruit yields.

  2. Mycobacterium smegmatis SftH exemplifies a distinctive clade of superfamily II DNA-dependent ATPases with 3′ to 5′ translocase and helicase activities

    OpenAIRE

    Yakovleva, Lyudmila; Shuman, Stewart

    2012-01-01

    Bacterial DNA helicases are nucleic acid-dependent NTPases that play important roles in DNA replication, recombination and repair. We are interested in the DNA helicases of Mycobacteria, a genus of the phylum Actinobacteria, which includes the human pathogen Mycobacterium tuberculosis and its avirulent relative Mycobacterium smegmatis. Here, we identify and characterize M. smegmatis SftH, a superfamily II helicase with a distinctive domain structure, comprising an N-terminal NTPase domain and...

  3. Deciphering functional diversification within the lichen microbiota by meta-omics.

    Science.gov (United States)

    Cernava, Tomislav; Erlacher, Armin; Aschenbrenner, Ines Aline; Krug, Lisa; Lassek, Christian; Riedel, Katharina; Grube, Martin; Berg, Gabriele

    2017-07-19

    Recent evidence of specific bacterial communities extended the traditional concept of fungal-algal lichen symbioses by a further organismal kingdom. Although functional roles were already assigned to dominant members of the highly diversified microbiota, a substantial fraction of the ubiquitous colonizers remained unexplored. We employed a multi-omics approach to further characterize functional guilds in an unconventional model system. The general community structure of the lichen-associated microbiota was shown to be highly similar irrespective of the employed omics approach. Five highly abundant bacterial orders-Sphingomonadales, Rhodospirillales, Myxococcales, Chthoniobacterales, and Sphingobacteriales-harbor functions that are of substantial importance for the holobiome. Identified functions range from the provision of vitamins and cofactors to the degradation of phenolic compounds like phenylpropanoid, xylenols, and cresols. Functions that facilitate the persistence of Lobaria pulmonaria under unfavorable conditions were present in previously overlooked fractions of the microbiota. So far, unrecognized groups like Chthoniobacterales (Verrucomicrobia) emerged as functional protectors in the lichen microbiome. By combining multi-omics and imaging techniques, we highlight previously overlooked participants in the complex microenvironment of the lichens.

  4. Prokaryotes in subsoil – evidence for spatial separation of oligotrophs and copiotrophs by co-occurrence networks

    Directory of Open Access Journals (Sweden)

    Michael eSchloter

    2015-11-01

    Full Text Available Soil microbial communities provide a wide range of soil functions including nutrient cycling, soil formation, and plant growth promotion. On the small scale, nutrient rich soil hotspots developed from soil animal or plant activity are important drivers for microbial communities and their activity pattern. Nevertheless, in subsoil, the spatial heterogeneity of microbes with diverging lifestyles has been barely considered so far. In this study, the phylogenetic composition of the bacterial and archaeal microbiome based on 16S rRNA gene pyrosequencing was investigated in the soil compartments bulk soil, drilosphere, and rhizosphere in topsoil and in the subsoil of an agricultural field. With co-occurrence network analysis, the spatial separation of typically oligotrophs and heterotrophs in subsoil and hotspots was assessed. Four co-occurring bacterial communities were identified and attributed to bulk topsoil, bulk subsoil, drilosphere, and rhizosphere. The bacterial phyla Proteobacteria and Bacteroidetes, which represent many copiotrophic bacteria, are affiliated to the hotspot communities – the rhizosphere and drilosphere – both in topsoil and subsoil. Acidobacteria, Actinobacteria, Gemmatimonadetes, Planctomycetes, and Verrucomicrobia with many oligotrophic bacteria, are the abundant groups of the bulk subsoil community. The bacterial core microbiome in this soil was estimated and only covers 7.6% of the bacterial sequencing reads but includes both oligotrophic and copiotrophic bacteria. Instead, the archaeal core microbiome includes 56% of the overall archaeal diversity and comprises only the ammonium oxidizing Nitrososphaera. Thus, the spatial variability of nutrient quality and quantity strongly shapes the bacterial community composition and their interaction in subsoil, whereas archaea are a stable backbone of the soil prokaryotes.

  5. The abundance of functional genes, cbbL, nifH, amoA and apsA, and bacterial community structure of intertidal soil from Arabian Sea.

    Science.gov (United States)

    Keshri, Jitendra; Yousuf, Basit; Mishra, Avinash; Jha, Bhavanath

    2015-06-01

    The Gulf of Cambay is a trumpet-shaped inlet of the Arabian Sea, located along the west coast of India and confronts a high tidal range with strong water currents. The region belongs to a semi-arid zone and saline alkaline intertidal soils are considered biologically extreme. The selected four soil types (S1-S4) were affected by salinity, alkalinity and sodicity. Soil salinity ranged from 20 to 126 dS/m, soil pH 8.6-10.0 with high sodium adsorption ratio (SAR) and exchangeable sodium percentage (ESP). Abundance of the key functional genes like cbbL, nifH, amoA and apsA involved in biogeochemical cycling were targeted using qPCR, which varied from (2.36 ± 0.03) × 10(4) to (2.87 ± 0.26) × 10(8), (1.18 ± 0.28) × 10(6) to (1.01 ± 0.26) × 10(9), (1.41 ± 0.21) × 10(6) to (1.29 ± 0.05) × 10(8) and (8.47 ± 0.23) × 10(4) to (1.73 ± 0.01) × 10(6) per gram dry weight, respectively. The microbial community structure revealed that soils S1 and S3 were dominated by phylum Firmicutes whereas S4 and S2 showed an abundance of Proteobacterial clones. These soils also represented Bacteroidetes, Chloroflexi, Actinobacteria, Planctomycetes and Acidobacteria clones. Molecular phylogeny showed a significant variation in the bacterial community distribution among the intertidal soil types. A high number of novel taxonomic units were observed which makes the intertidal zone a unique reservoir of unidentified bacterial taxa that may be explored further. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Bacterial membrane proteomics.

    Science.gov (United States)

    Poetsch, Ansgar; Wolters, Dirk

    2008-10-01

    About one quarter to one third of all bacterial genes encode proteins of the inner or outer bacterial membrane. These proteins perform essential physiological functions, such as the import or export of metabolites, the homeostasis of metal ions, the extrusion of toxic substances or antibiotics, and the generation or conversion of energy. The last years have witnessed completion of a plethora of whole-genome sequences of bacteria important for biotechnology or medicine, which is the foundation for proteome and other functional genome analyses. In this review, we discuss the challenges in membrane proteome analysis, starting from sample preparation and leading to MS-data analysis and quantification. The current state of available proteomics technologies as well as their advantages and disadvantages will be described with a focus on shotgun proteomics. Then, we will briefly introduce the most abundant proteins and protein families present in bacterial membranes before bacterial membrane proteomics studies of the last years will be presented. It will be shown how these works enlarged our knowledge about the physiological adaptations that take place in bacteria during fine chemical production, bioremediation, protein overexpression, and during infections. Furthermore, several examples from literature demonstrate the suitability of membrane proteomics for the identification of antigens and different pathogenic strains, as well as the elucidation of membrane protein structure and function.

  7. Molecular diagnosis of bacterial vaginosis: Does adjustment for total bacterial load or human cellular content improve diagnostic performance?

    Science.gov (United States)

    Plummer, E L; Garland, S M; Bradshaw, C S; Law, M G; Vodstrcil, L A; Hocking, J S; Fairley, C K; Tabrizi, S N

    2017-02-01

    We investigated the utility of quantitative PCR assays for diagnosis of bacterial vaginosis and found that while the best model utilized bacterial copy number adjusted for total bacterial load (sensitivity=98%, specificity=93%, AUC=0.95[95%CI=0.93,0.97]), adjusting for total bacterial or human cell load did not consistently increase the diagnostic performance of the assays. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Arsenic uptake in bacterial calcite

    Science.gov (United States)

    Catelani, Tiziano; Perito, Brunella; Bellucci, Francesco; Lee, Sang Soo; Fenter, Paul; Newville, Matthew; Rimondi, Valentina; Pratesi, Giovanni; Costagliola, Pilario

    2018-02-01

    Bio-mediated processes for arsenic (As) uptake in calcite were investigated by means of X-ray Diffraction (XRD) and X-ray Absorption Spectroscopy (XAS) coupled with X-ray Fluorescence measurements. The environmental bacterial strain Bacillus licheniformis BD5, sampled at the Bullicame Hot Springs (Viterbo, Central Italy), was used to synthesize calcite from As-enriched growth media. Both liquid and solid cultures were applied to simulate planktonic and biofilm community environments, respectively. Bacterial calcite samples cultured in liquid media had an As enrichment factor (Kd) 50 times higher than that from solid media. The XRD analysis revealed an elongation of the crystal lattice along the c axis (by 0.03 Å) for biogenic calcite, which likely resulted from the substitution of larger arsenate for carbonate in the crystal. The XAS data also showed a clear difference in the oxidation state of sorbed As between bacterial and abiotic calcite. Abiotic chemical processes yielded predominantly As(V) uptake whereas bacterial precipitation processes led to the uptake of both As(III) and As(V). The presence of As(III) in bacterial calcite is proposed to result from subsequent reduction of arsenate to arsenite by bacterial activities. To the best of our knowledge, this is the first experimental observation of the incorporation of As(III) in the calcite crystal lattice, revealing a critical role of biochemical processes for the As cycling in nature.

  9. Arsenic uptake in bacterial calcite

    Energy Technology Data Exchange (ETDEWEB)

    Catelani, Tiziano; Perito, Brunella; Bellucci, Francesco; Lee, Sang Soo; Fenter, Paul; Newville, Matthew G.; Rimondi, Valentina; Pratesi, Giovanni; Costagliola, Pilario

    2018-02-01

    Bio-mediated processes for arsenic (As) uptake in calcite were investigated by means of X-ray Diffraction (XRD) and Xray Absorption Spectroscopy (XAS) coupled with X-ray Fluorescence measurements. The environmental bacterial strain Bacillus licheniformis BD5, sampled at the Bullicame Hot Springs (Viterbo, Central Italy), was used to synthesize calcite from As-enriched growth media. Both liquid and solid cultures were applied to simulate planktonic and biofilm community environments, respectively. Bacterial calcite samples cultured in liquid media had an As enrichment factor (Kd) 50 times higher than that from solid media. The XRD analysis revealed an elongation of the crystal lattice along the c axis (by 0.03Å) for biogenic calcite, which likely resulted from the substitution of larger arsenate for carbonate in the crystal. The XAS data also showed a clear difference in the oxidation state of sorbed As between bacterial and abiotic calcite. Abiotic chemical processes yielded predominantly As(V) uptake whereas bacterial precipitation processes led to the uptake of both As(III) and As(V). The presence of As(III) in bacterial calcite is proposed to result from subsequent reduction of arsenate to arsenite by bacterial activities. To the best of our knowledge, this is the first experimental observation of the incorporation of As(III) in the calcite crystal lattice, revealing a critical role of biochemical processes for the As cycling in nature.

  10. Bacterial communities of two ubiquitous Great Barrier Reef corals reveals both site- and species-specificity of common bacterial associates.

    Directory of Open Access Journals (Sweden)

    E Charlotte E Kvennefors

    Full Text Available BACKGROUND: Coral-associated bacteria are increasingly considered to be important in coral health, and altered bacterial community structures have been linked to both coral disease and bleaching. Despite this, assessments of bacterial communities on corals rarely apply sufficient replication to adequately describe the natural variability. Replicated data such as these are crucial in determining potential roles of bacteria on coral. METHODOLOGY/PRINCIPAL FINDINGS: Denaturing Gradient Gel Electrophoresis (DGGE of the V3 region of the 16S ribosomal DNA was used in a highly replicated approach to analyse bacterial communities on both healthy and diseased corals. Although site-specific variations in the bacterial communities of healthy corals were present, host species-specific bacterial associates within a distinct cluster of gamma-proteobacteria could be identified, which are potentially linked to coral health. Corals affected by "White Syndrome" (WS underwent pronounced changes in their bacterial communities in comparison to healthy colonies. However, the community structure and bacterial ribotypes identified in diseased corals did not support the previously suggested theory of a bacterial pathogen as the causative agent of the syndrome. CONCLUSIONS/SIGNIFICANCE: This is the first study to employ large numbers of replicated samples to assess the bacterial communities of healthy and diseased corals, and the first culture-independent assessment of bacterial communities on WS affected Acroporid corals on the GBR. Results indicate that a minimum of 6 replicate samples are required in order to draw inferences on species, spatial or health-related changes in community composition, as a set of clearly distinct bacterial community profiles exist in healthy corals. Coral bacterial communities may be both site and species specific. Furthermore, a cluster of gamma-proteobacterial ribotypes may represent a group of specific common coral and marine

  11. Bacterial meningitis in children

    International Nuclear Information System (INIS)

    Marji, S.

    2007-01-01

    To demonstrate the epidemiology, clinical manifestations and bacteriological profile of bacterial meningitis in children beyond the neonatal period in our hospital. This was a retrospective descriptive study conducted at Prince Rashid Hospital in Irbid, Jordan. The medical records of 50 children with the diagnosis of bacterial meningitis during 4 years period, were reviewed. The main cause of infection was streptococcus pneumoniae, followed by Haemophilus influenza and Niesseria meningitides. Mortality was higher in infants and meningococcal infection, while complications were more encountered in cases of streptococcus pneumoniae. Cerebrospinal fluid culture was positive in 11 cases and Latex agglutination test in 39. There is a significant reduction of the numbers of bacterial meningitis caused by Haemophilus influenza type B species. (author)

  12. Changes in microbial diversity in industrial wastewater evaporation ponds following artificial salination.

    Science.gov (United States)

    Ben-Dov, Eitan; Shapiro, Orr H; Gruber, Ronen; Brenner, Asher; Kushmaro, Ariel

    2008-11-01

    The salinity of industrial wastewater evaporation ponds was artificially increased from 3-7% to 12-16% (w/v), in an attempt to reduce the activity of sulfate-reducing bacteria (SRB) and subsequent emission of H2S. To investigate the changes in bacterial diversity in general, and SRB in particular, following this salination, two sets of universal primers targeting the 16S rRNA gene and the functional apsA [adenosine-5'-phosphosulfate (APS) reductase alpha-subunit] gene of SRB were used. Phylogenetic analysis indicated that Proteobacteria was the most dominant phylum both before and after salination (with 52% and 68%, respectively), whereas Firmicutes was the second most dominant phylum before (39%) and after (19%) salination. Sequences belonging to Bacteroidetes, Spirochaetes and Actinobacteria were also found. Several groups of SRB from Proteobacteria and Firmicutes were also found to inhabit this saline environment. Comparison of bacterial diversity before and after salination of the ponds revealed both a shift in community composition and an increase in microbial diversity following salination. The share of SRB in the 16S rRNA gene was reduced following salination, consistent with the reduction of H2S emissions. However, the community composition, as shown by apsA gene analysis, was not markedly affected.

  13. [Review of the relation between gut microbiome, metabolic disease and hypertension].

    Science.gov (United States)

    Barna, István; Nyúl, Dóra; Szentes, Tamás; Schwab, Richárd

    2018-03-01

    Gut flora has personal characteristics for each individual, similar to the fingerprints, consisting of a special mixture of bacterial species living in the intestines, now referred to as the gut microbiome. There is a strong correlation between the loss of microbial diversity and the functional bowel disorders, obesity, type 2 diabetes and cardiovascular disease as well as many autoimmune disorders. With genetic testing of stool diversity of the gut microbiome and exact analysis of the species and phylogenetic classification of the gut flora, the changes of diversity can be identified and the overgrowth of some bacteria can be revealed. In cases with pre- and manifest hypertension, an overgrowth of species from the phylum Firmicutes has been reported along with the relative decline of the phylum Bacteroidetes as opposed with cases of normotension. At the same time, the physiological balance among bacterial families was lost. According to the first studies, there is a correlation between hypertension and the lost balance of the gut microflora, both in animal experiments and in the human clinical setting. This evidence also suggests that targeted dietary alteration of the gut microbiome can be a new innovative approach in the treatment of hypertension. Orv Hetil. 2018; 159(9): 346-351.

  14. Bacterial growth kinetics

    International Nuclear Information System (INIS)

    Boonkitticharoen, V.; Ehrhardt, J.C.; Kirchner, P.T.

    1989-01-01

    Quantitative measurement of bacterial growth may be made using a radioassay technique. This method measures, by scintillation counting, the 14 CO 2 derived from the bacterial metabolism of a 14 C-labeled substrate. Mathematical growth models may serve as reliable tools for estimation of the generation rate constant (or slope of the growth curve) and provide a basis for evaluating assay performance. Two models, i.e., exponential and logistic, are proposed. Both models yielded an accurate fit to the data from radioactive measurement of bacterial growth. The exponential model yielded high precision values of the generation rate constant, with an average relative standard deviation of 1.2%. Under most conditions the assay demonstrated no changes in the slopes of growth curves when the number of bacteria per inoculation was changed. However, the radiometric assay by scintillation method had a growth-inhibiting effect on a few strains of bacteria. The source of this problem was thought to be hypersensitivity to trace amounts of toluene remaining on the detector

  15. Bacterial infec tions in travellers

    African Journals Online (AJOL)

    namely bacterial causes of travellers' diarrhoea and skin infections, as well as .... Vaccination: protective efficacy against typhoid may be overcome by ingesting a high bacterial load. Vaccine ..... preparation such as cream sauce. Only after ...

  16. Bacterial carbon cycling in a subarctic fjord

    DEFF Research Database (Denmark)

    Middelboe, Mathias; Glud, Ronnie Nøhr; Sejr, M.K.

    2012-01-01

    of viruses on bacterial mortality (4–36% of cell production) and carbon cycling. Heterotrophic bacterial consumption was closely coupled with autochthonous BDOC production, and the majority of the primary production was consumed by pelagic bacteria at all seasons. The relatively low measured BGE emphasized......In this seasonal study, we examined the environmental controls and quantitative importance of bacterial carbon consumption in the water column and the sediment in the subarctic Kobbefjord, Greenland. Depth-integrated bacterial production in the photic zone varied from 5.0 ± 2.7 mg C m−2 d−1...... in February to 42 ± 28 mg C m−2 d−1 in May and 34 ± 7 mg C m−2 d−1 in September, corresponding to a bacterial production to primary production ratio of 0.34 ± 0.14, 0.07 ± 0.04, and 0.08 ± 0.06, respectively. Based on measured bacterial growth efficiencies (BGEs) of 0.09–0.10, pelagic bacterial carbon...

  17. Bacterial cells with improved tolerance to polyamines

    DEFF Research Database (Denmark)

    2017-01-01

    Provided are bacterial cells genetically modified to improve their tolerance to certain commodity chemicals, such as polyamines, and methods of preparing and using such bacterial cells for production of polyamines and other compounds.......Provided are bacterial cells genetically modified to improve their tolerance to certain commodity chemicals, such as polyamines, and methods of preparing and using such bacterial cells for production of polyamines and other compounds....

  18. Viral-bacterial associations in acute apical abscesses.

    Science.gov (United States)

    Ferreira, Dennis C; Rôças, Isabela N; Paiva, Simone S M; Carmo, Flávia L; Cavalcante, Fernanda S; Rosado, Alexandre S; Santos, Kátia R N; Siqueira, José F

    2011-08-01

    Viral-bacterial and bacterial synergism have been suggested to contribute to the pathogenesis of several human diseases. This study sought to investigate the possible associations between 9 candidate endodontic bacterial pathogens and 9 human viruses in samples from acute apical abscesses. DNA extracts from purulent exudate aspirates of 33 cases of acute apical abscess were surveyed for the presence of 9 selected bacterial species using a 16S ribosomal RNA gene-based nested polymerase chain reaction (PCR) approach. Single or nested PCR assays were used for detection of the human papillomavirus (HPV) and herpesviruses types 1 to 8. Two-thirds of the abscess samples were positive for at least one of the target viruses. Specifically, the most frequently detected viruses were HHV-8 (54.5%); HPV (9%); and varicella zoster virus (VZV), Epstein-Barr virus (EBV), and HHV-6 (6%). Bacterial DNA was present in all cases and the most prevalent bacterial species were Treponema denticola (70%), Tannerella forsythia (67%), Porphyromonas endodontalis (67%), Dialister invisus (61%), and Dialister pneumosintes (57.5%). HHV-8 was positively associated with 7 of the target bacterial species and HPV with 4, but all these associations were weak. Several bacterial pairs showed a moderate positive association. Viral coinfection was found in 6 abscess cases, but no significant viral association could be determined. Findings demonstrated that bacterial and viral DNA occurred concomitantly in two-thirds of the samples from endodontic abscesses. Although this may suggest a role for viruses in the etiology of apical abscesses, the possibility also exists that the presence of viruses in abscess samples is merely a consequence of the bacterially induced disease process. Further studies are necessary to clarify the role of these viral-bacterial interactions, if any, in the pathogenesis of acute apical abscesses. Copyright © 2011 Mosby, Inc. All rights reserved.

  19. Adult bacterial meningitis

    DEFF Research Database (Denmark)

    Meyer, C N; Samuelsson, I S; Galle, M

    2004-01-01

    Episodes of adult bacterial meningitis (ABM) at a Danish hospital in 1991-2000 were identified from the databases of the Department of Clinical Microbiology, and compared with data from the Danish National Patient Register and the Danish National Notification System. Reduced penicillin susceptibi......Episodes of adult bacterial meningitis (ABM) at a Danish hospital in 1991-2000 were identified from the databases of the Department of Clinical Microbiology, and compared with data from the Danish National Patient Register and the Danish National Notification System. Reduced penicillin...

  20. Bacterial Communities: Interactions to Scale

    Directory of Open Access Journals (Sweden)

    Reed M. Stubbendieck

    2016-08-01

    Full Text Available In the environment, bacteria live in complex multispecies communities. These communities span in scale from small, multicellular aggregates to billions or trillions of cells within the gastrointestinal tract of animals. The dynamics of bacterial communities are determined by pairwise interactions that occur between different species in the community. Though interactions occur between a few cells at a time, the outcomes of these interchanges have ramifications that ripple through many orders of magnitude, and ultimately affect the macroscopic world including the health of host organisms. In this review we cover how bacterial competition influences the structures of bacterial communities. We also emphasize methods and insights garnered from culture-dependent pairwise interaction studies, metagenomic analyses, and modeling experiments. Finally, we argue that the integration of multiple approaches will be instrumental to future understanding of the underlying dynamics of bacterial communities.

  1. Prokaryotic communities differ along a geothermal soil photic gradient.

    Science.gov (United States)

    Meadow, James F; Zabinski, Catherine A

    2013-01-01

    Geothermal influenced soils exert unique physical and chemical limitations on resident microbial communities but have received little attention in microbial ecology research. These environments offer a model system in which to investigate microbial community heterogeneity and a range of soil ecological concepts. We conducted a 16S bar-coded pyrosequencing survey of the prokaryotic communities in a diatomaceous geothermal soil system and compared communities across soil types and along a conspicuous photic depth gradient. We found significant differences between the communities of the two different soils and also predictable differences between samples taken at different depths. Additionally, we targeted three ecologically relevant bacterial phyla, Cyanobacteria, Planctomycetes, and Verrucomicrobia, for clade-wise comparisons with these variables and found strong differences in their abundances, consistent with the autecology of these groups.

  2. Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat.

    Science.gov (United States)

    Pankratov, Timofey A; Ivanova, Anastasia O; Dedysh, Svetlana N; Liesack, Werner

    2011-07-01

    Northern peatlands represent a major global carbon store harbouring approximately one-third of the global reserves of soil organic carbon. A large proportion of these peatlands consists of acidic Sphagnum-dominated ombrotrophic bogs, which are characterized by extremely low rates of plant debris decomposition. The degradation of cellulose, the major component of Sphagnum-derived litter, was monitored in long-term incubation experiments with acidic (pH 4.0) peat extracts. This process was almost undetectable at 10°C and occurred at low rates at 20°C, while it was significantly accelerated at both temperature regimes by the addition of available nitrogen. Cellulose breakdown was only partially inhibited in the presence of cycloheximide, suggesting that bacteria participated in this process. We aimed to identify these bacteria by a combination of molecular and cultivation approaches and to determine the factors that limit their activity in situ. The indigenous bacterial community in peat was dominated by Alphaproteobacteria and Acidobacteria. The addition of cellulose induced a clear shift in the community structure towards an increase in the relative abundance of the Bacteroidetes. Increasing temperature and nitrogen availability resulted in a selective development of bacteria phylogenetically related to Cytophaga hutchinsonii (94-95% 16S rRNA gene sequence similarity), which densely colonized microfibrils of cellulose. Among isolates obtained from this community only some subdivision 1 Acidobacteria were capable of degrading cellulose, albeit at a very slow rate. These Acidobacteria represent indigenous cellulolytic members of the microbial community in acidic peat and are easily out-competed by Cytophaga-like bacteria under conditions of increased nitrogen availability. Members of the phylum Firmicutes, known to be key players in cellulose degradation in neutral habitats, were not detected in the cellulolytic community enriched at low pH. © 2011 Society for

  3. Oral bacterial DNA findings in pericardial fluid

    Directory of Open Access Journals (Sweden)

    Anne-Mari Louhelainen

    2014-11-01

    Full Text Available Background: We recently reported that large amounts of oral bacterial DNA can be found in thrombus aspirates of myocardial infarction patients. Some case reports describe bacterial findings in pericardial fluid, mostly done with conventional culturing and a few with PCR; in purulent pericarditis, nevertheless, bacterial PCR has not been used as a diagnostic method before. Objective: To find out whether bacterial DNA can be measured in the pericardial fluid and if it correlates with pathologic–anatomic findings linked to cardiovascular diseases. Methods: Twenty-two pericardial aspirates were collected aseptically prior to forensic autopsy at Tampere University Hospital during 2009–2010. Of the autopsies, 10 (45.5% were free of coronary artery disease (CAD, 7 (31.8% had mild and 5 (22.7% had severe CAD. Bacterial DNA amounts were determined using real-time quantitative PCR with specific primers and probes for all bacterial strains associated with endodontic disease (Streptococcus mitis group, Streptococcus anginosus group, Staphylococcus aureus/Staphylococcus epidermidis, Prevotella intermedia, Parvimonas micra and periodontal disease (Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Treponema denticola, Fusobacterium nucleatus, and Dialister pneumosintes. Results: Of 22 cases, 14 (63.6% were positive for endodontic and 8 (36.4% for periodontal-disease-associated bacteria. Only one case was positive for bacterial culturing. There was a statistically significant association between the relative amount of bacterial DNA in the pericardial fluid and the severity of CAD (p=0.035. Conclusions: Oral bacterial DNA was detectable in pericardial fluid and an association between the severity of CAD and the total amount of bacterial DNA in pericardial fluid was found, suggesting that this kind of measurement might be useful for clinical purposes.

  4. Endocarditis in adults with bacterial meningitis.

    Science.gov (United States)

    Lucas, Marjolein J; Brouwer, Matthijs C; van der Ende, Arie; van de Beek, Diederik

    2013-05-21

    Endocarditis may precede or complicate bacterial meningitis, but the incidence and impact of endocarditis in bacterial meningitis are unknown. We assessed the incidence and clinical characteristics of patients with meningitis and endocarditis from a nationwide cohort study of adults with community-acquired bacterial meningitis in the Netherlands from 2006 to 2012. Endocarditis was identified in 24 of 1025 episodes (2%) of bacterial meningitis. Cultures yielded Streptococcus pneumoniae in 13 patients, Staphylococcus aureus in 8 patients, and Streptococcus agalactiae, Streptococcus pyogenes, and Streptococcus salivarius in 1 patient each. Clues leading to the diagnosis of endocarditis were cardiac murmurs, persistent or recurrent fever, a history of heart valve disease, and S aureus as the causative pathogen of bacterial meningitis. Treatment consisted of prolonged antibiotic therapy in all patients and surgical valve replacement in 10 patients (42%). Two patients were treated with oral anticoagulants, and both developed life-threatening intracerebral hemorrhage. Systemic (70%) and neurological (54%) complications occurred frequently, leading to a high proportion of patients with unfavorable outcome (63%). Seven of 24 patients (29%) with meningitis and endocarditis died. Endocarditis is an uncommon coexisting condition in bacterial meningitis but is associated with a high rate of unfavorable outcome.

  5. [The composition of the gastrointestinal bacterial flora of mouse embryos and the placenta tissue bacterial flora].

    Science.gov (United States)

    Lei, D; Lin, Y; Jiang, X; Lan, L; Zhang, W; Wang, B X

    2017-03-02

    Objective: To explore the composition of the gastrointestinal bacterial flora of mouse embryos and the placenta tissue bacterial flora. Method: Twenty-four specimens were collected from pregnant Kunming mouse including 8 mice of early embryonic (12-13 days) gastrointestinal tissues, 8 cases of late embryonic (19-20 days)gastrointestinal tissues, 8 of late pregnancy placental tissues.The 24 samples were extracted by DNeasy Blood & Tissue kit for high-throughput DNA sequencing. Result: The level of Proteobacteria, Bacteroidetes, Actino-bacteria and Firmicutes were predominantin all specimens.The relative content of predominant bacterial phyla in each group: Proteobacteria (95.00%, 88.14%, 87.26%), Bacteroidetes(1.71%, 2.15%, 2.63%), Actino-Bacteria(1.16%, 4.10%, 3.38%), Firmicutes(0.75%, 2.62%, 2.01%). At the level of family, there were nine predominant bacterial families in which Enterobacteriaeae , Shewanel laceae and Moraxellaceae were dominant.The relative content of dominant bacterial family in eachgroup: Enterobacteriaeae (46.99%, 44.34%, 41.08%), Shewanellaceae (21.99%, 21.10%, 19.05%), Moraxellaceae (9.18%, 7.09%, 5.64%). From the species of flora, the flora from fetal gastrointestinal in early pregnancy and late pregnancy (65.44% and 62.73%) were the same as that from placenta tissue in the late pregnancy.From the abundance of bacteria, at the level of family, the same content of bacteria in three groups accounted for 78.16%, 72.53% and 65.78% respectively. Conclusion: It was proved that the gastrointestinal bacterial flora of mouse embryos and the placenta tissue bacterial flora were colonized. At the same time the bacteria are classified.

  6. C-reactive protein and bacterial meningitis

    DEFF Research Database (Denmark)

    Gerdes, Lars Ulrik; Jørgensen, P E; Nexø, E

    1998-01-01

    The aim of the study was to review published articles on the diagnostic accuracy of C-reactive protein (CRP) tests with cerebrospinal fluid and serum in diagnosing bacterial meningitis. The literature from 1980 and onwards was searched using the electronic databases of MEDLINE, and we used summary...... measured in serum, and 4 in which it had been measured in both cerebrospinal fluid and serum. The odds ratio for bacterial meningitis versus aseptic meningitis for a positive CRP test with cerebrospinal fluid was estimated at 241 (95% confidence interval [CI]: 59-980), and the central tendencies.......06-0.08, respectively, the post-test probability of not having bacterial meningitis given a negative test is very high (> or = 97%), in the range of a pre-test probability (prevalence of bacterial meningitis) from 10 to 30%, whereas the post-test probability of bacterial meningitis given a positive test is considerably...

  7. The Transcriptomes of Xiphinema index and Longidorus elongatus Suggest Independent Acquisition of Some Plant Parasitism Genes by Horizontal Gene Transfer in Early-Branching Nematodes

    Science.gov (United States)

    Danchin, Etienne G.J.; Perfus-Barbeoch, Laetitia; Rancurel, Corinne; Thorpe, Peter; Da Rocha, Martine; Bajew, Simon; Neilson, Roy; Sokolova (Guzeeva), Elena; Da Silva, Corinne; Guy, Julie; Labadie, Karine; Esmenjaud, Daniel; Helder, Johannes; Jones, John T.

    2017-01-01

    Nematodes have evolved the ability to parasitize plants on at least four independent occasions, with plant parasites present in Clades 1, 2, 10 and 12 of the phylum. In the case of Clades 10 and 12, horizontal gene transfer of plant cell wall degrading enzymes from bacteria and fungi has been implicated in the evolution of plant parasitism. We have used ribonucleic acid sequencing (RNAseq) to generate reference transcriptomes for two economically important nematode species, Xiphinema index and Longidorus elongatus, representative of two genera within the early-branching Clade 2 of the phylum Nematoda. We used a transcriptome-wide analysis to identify putative horizontal gene transfer events. This represents the first in-depth transcriptome analysis from any plant-parasitic nematode of this clade. For each species, we assembled ~30 million Illumina reads into a reference transcriptome. We identified 62 and 104 transcripts, from X. index and L. elongatus, respectively, that were putatively acquired via horizontal gene transfer. By cross-referencing horizontal gene transfer prediction with a phylum-wide analysis of Pfam domains, we identified Clade 2-specific events. Of these, a GH12 cellulase from X. index was analysed phylogenetically and biochemically, revealing a likely bacterial origin and canonical enzymatic function. Horizontal gene transfer was previously shown to be a phenomenon that has contributed to the evolution of plant parasitism among nematodes. Our findings underline the importance and the extensiveness of this phenomenon in the evolution of plant-parasitic life styles in this speciose and widespread animal phylum. PMID:29065523

  8. The Transcriptomes of Xiphinema index and Longidorus elongatus Suggest Independent Acquisition of Some Plant Parasitism Genes by Horizontal Gene Transfer in Early-Branching Nematodes.

    Science.gov (United States)

    Danchin, Etienne G J; Perfus-Barbeoch, Laetitia; Rancurel, Corinne; Thorpe, Peter; Da Rocha, Martine; Bajew, Simon; Neilson, Roy; Guzeeva, Elena Sokolova; Da Silva, Corinne; Guy, Julie; Labadie, Karine; Esmenjaud, Daniel; Helder, Johannes; Jones, John T; den Akker, Sebastian Eves-van

    2017-10-23

    Nematodes have evolved the ability to parasitize plants on at least four independent occasions, with plant parasites present in Clades 1, 2, 10 and 12 of the phylum. In the case of Clades 10 and 12, horizontal gene transfer of plant cell wall degrading enzymes from bacteria and fungi has been implicated in the evolution of plant parasitism. We have used ribonucleic acid sequencing (RNAseq) to generate reference transcriptomes for two economically important nematode species, Xiphinema index and Longidorus elongatus , representative of two genera within the early-branching Clade 2 of the phylum Nematoda. We used a transcriptome-wide analysis to identify putative horizontal gene transfer events. This represents the first in-depth transcriptome analysis from any plant-parasitic nematode of this clade. For each species, we assembled ~30 million Illumina reads into a reference transcriptome. We identified 62 and 104 transcripts, from X. index and L. elongatus , respectively, that were putatively acquired via horizontal gene transfer. By cross-referencing horizontal gene transfer prediction with a phylum-wide analysis of Pfam domains, we identified Clade 2-specific events. Of these, a GH12 cellulase from X. index was analysed phylogenetically and biochemically, revealing a likely bacterial origin and canonical enzymatic function. Horizontal gene transfer was previously shown to be a phenomenon that has contributed to the evolution of plant parasitism among nematodes. Our findings underline the importance and the extensiveness of this phenomenon in the evolution of plant-parasitic life styles in this speciose and widespread animal phylum.

  9. The Transcriptomes of Xiphinema index and Longidorus elongatus Suggest Independent Acquisition of Some Plant Parasitism Genes by Horizontal Gene Transfer in Early-Branching Nematodes

    Directory of Open Access Journals (Sweden)

    Etienne G.J. Danchin

    2017-10-01

    Full Text Available Nematodes have evolved the ability to parasitize plants on at least four independent occasions, with plant parasites present in Clades 1, 2, 10 and 12 of the phylum. In the case of Clades 10 and 12, horizontal gene transfer of plant cell wall degrading enzymes from bacteria and fungi has been implicated in the evolution of plant parasitism. We have used ribonucleic acid sequencing (RNAseq to generate reference transcriptomes for two economically important nematode species, Xiphinema index and Longidorus elongatus, representative of two genera within the early-branching Clade 2 of the phylum Nematoda. We used a transcriptome-wide analysis to identify putative horizontal gene transfer events. This represents the first in-depth transcriptome analysis from any plant-parasitic nematode of this clade. For each species, we assembled ~30 million Illumina reads into a reference transcriptome. We identified 62 and 104 transcripts, from X. index and L. elongatus, respectively, that were putatively acquired via horizontal gene transfer. By cross-referencing horizontal gene transfer prediction with a phylum-wide analysis of Pfam domains, we identified Clade 2-specific events. Of these, a GH12 cellulase from X. index was analysed phylogenetically and biochemically, revealing a likely bacterial origin and canonical enzymatic function. Horizontal gene transfer was previously shown to be a phenomenon that has contributed to the evolution of plant parasitism among nematodes. Our findings underline the importance and the extensiveness of this phenomenon in the evolution of plant-parasitic life styles in this speciose and widespread animal phylum.

  10. Bacterial meningitis in immunocompromised patients

    NARCIS (Netherlands)

    van Veen, K.E.B.

    2018-01-01

    Bacterial meningitis is an acute infection of the meninges, in The Netherlands most commonly caused by Streptococcus pneumoniae and Neisseria meningitides. Risk factors for acquiring bacterial meningitis include a decreased function of the immune system. The aim of this thesis was to study

  11. Bacterial cellulose/boehmite composites

    International Nuclear Information System (INIS)

    Salvi, Denise T.B. de; Barud, Hernane S.; Messaddeq, Younes; Ribeiro, Sidney J.L.; Caiut, Jose Mauricio A.

    2011-01-01

    Composites based on bacterial cellulose membranes and boehmite were obtained. SEM results indicate that the bacterial cellulose (BC) membranes are totally covered by boehmite and obtained XRD patterns suggest structural changes due to this boehmite addition. Thermal stability is accessed through TG curves and is dependent on boehmite content. Transparency is high comparing to pure BC as can be seen through UV-vis absorption spectroscopy. (author)

  12. Bacterial diversity in the bottom boundary layer of the inner continental shelf of Oregon, USA

    KAUST Repository

    Bertagnolli, AD

    2011-06-21

    There have been few studies of the bacterial community within the bottom boundary layer (BBL) the turbulent region of the water column above the benthos in shallow seas. Typically, the BBL has large amounts of particulate organic matter suspended by turbulence, and it is often the first region of the water column to become hypoxic when oxygen declines. Communities at the surface (5 m) and in the BBL (1 to 10 m above the sea floor) were compared by terminal restriction fragment length polymorphism (T-RFLP) analysis and sequencing of the 16S rRNA gene. Multivariate statistical methods (hierarchical clustering, non-metric multidimensional scaling, and analysis of similarity (ANOSIM)) indicated that the microbial community of the BBL is distinct from the surface community. ANOSIM supported the distinction between surface and BBLs (R values 0.427 and 0.463, based on analysis with restriction enzymes BsuR1 and Hin6I, respectively, p < 0.1%). Six terminal restriction fragments showed an increase in abundance with depth. Cloning, screening and sequencing identified these as a novel environmental clade (Eastern North Pacific Chromatiales (ENPC) clade), the ARTIC96BD-19 clade of Gammaproteobacteria, the 6N14 and Agg8 clades of the phylum Planctomycetes, the OM60/NOR5 clade of Gammaproteobacteria, and uncultivated members of the Roseobacter clade in the MB11C09 and ULA23 subgroups. To the best of our knowledge, this analysis is the first to focus on the unique composition of microbial communities of the BBL in shallow, inner-shelf regions off the coast of Oregon, USA, and the first to report that an uncharacterized clade of Chromatiales is indigenous in this habitat.

  13. Bacterial diversity in the bottom boundary layer of the inner continental shelf of Oregon, USA

    KAUST Repository

    Bertagnolli, AD; Treusch, AH; Mason, OU; Stingl, Ulrich; Vergin, KL; Chan, F; Beszteri, B; Giovannoni, SJ

    2011-01-01

    There have been few studies of the bacterial community within the bottom boundary layer (BBL) the turbulent region of the water column above the benthos in shallow seas. Typically, the BBL has large amounts of particulate organic matter suspended by turbulence, and it is often the first region of the water column to become hypoxic when oxygen declines. Communities at the surface (5 m) and in the BBL (1 to 10 m above the sea floor) were compared by terminal restriction fragment length polymorphism (T-RFLP) analysis and sequencing of the 16S rRNA gene. Multivariate statistical methods (hierarchical clustering, non-metric multidimensional scaling, and analysis of similarity (ANOSIM)) indicated that the microbial community of the BBL is distinct from the surface community. ANOSIM supported the distinction between surface and BBLs (R values 0.427 and 0.463, based on analysis with restriction enzymes BsuR1 and Hin6I, respectively, p < 0.1%). Six terminal restriction fragments showed an increase in abundance with depth. Cloning, screening and sequencing identified these as a novel environmental clade (Eastern North Pacific Chromatiales (ENPC) clade), the ARTIC96BD-19 clade of Gammaproteobacteria, the 6N14 and Agg8 clades of the phylum Planctomycetes, the OM60/NOR5 clade of Gammaproteobacteria, and uncultivated members of the Roseobacter clade in the MB11C09 and ULA23 subgroups. To the best of our knowledge, this analysis is the first to focus on the unique composition of microbial communities of the BBL in shallow, inner-shelf regions off the coast of Oregon, USA, and the first to report that an uncharacterized clade of Chromatiales is indigenous in this habitat.

  14. The effect of temperature change on the microbial diversity and community structure along the chronosequence of the sub-arctic glacier forefield of Styggedalsbreen (Norway).

    Science.gov (United States)

    Mateos-Rivera, Alejandro; Yde, Jacob C; Wilson, Bryan; Finster, Kai W; Reigstad, Laila J; Øvreås, Lise

    2016-04-01

    Microbial communities in the glacier forefield of Styggedalsbreen, Norway, were investigated along a chronosequence from newly exposed soil to vegetated soils using next-generation sequencing of the 16S rRNA gene. In order to monitor the short-term effect of temperature on community successions along the soil gradient, the soil samples were incubated at three different temperatures (5°C, 10°C and 22°C). The microbial community composition along the chronosequence differed according to distance from the glacial terminus and incubation temperature. Samples close to the glacier terminus were dominated by Proteobacteria at 5°C and 10°C, while at 22°C members of Chloroflexi, Acidobacteria and Verrucomicrobia in addition to Proteobacteria accounted for most of the diversity, indicating that sites close to the glacier terminus are more closely related to former subglacial environments. Within the Archaea domain, members of the phylum Euryarchaeota dominated in samples closer to the glacier terminus with a shift to members of the phyla Thaumarchaeota-Crenarchaeota with increased soil age. Our data indicate that composition and diversity of the microbial communities along the glacier forefield depend not only on exposure time but are also to a large degree influenced by soil surface temperature and soil maturation. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Prokaryote community dynamics in anaerobic co-digestion of swine manure, rice straw and industrial clay residuals.

    Science.gov (United States)

    Jiménez, Janet; Theuerl, Susanne; Bergmann, Ingo; Klocke, Michael; Guerra, Gilda; Romero-Romero, Osvaldo

    The aim of this study was to analyze the effect of the addition of rice straw and clay residuals on the prokaryote methane-producing community structure in a semi-continuously stirred tank reactor fed with swine manure. Molecular techniques, including terminal restriction fragment length polymorphism and a comparative nucleotide sequence analyses of the prokaryotic 16S rRNA genes, were performed. The results showed a positive effect of clay addition on methane yield during the co-digestion of swine manure and rice straw. At the digestion of swine manure, the bacterial phylum Firmicutes and the archaeal family Methanosarcinaceae, particularly Methanosarcina species, were predominant. During the co-digestion of swine manure and rice straw the microbial community changed, and with the addition of clay residual, the phylum Bacteroidetes predominated. The new nutritional conditions resulted in a shift in the archaeal family Methanosarcinaceae community as acetoclastic Methanosaeta species became dominant.

  16. Insights on the Effects of Heat Pretreatment, pH, and Calcium Salts on Isolation of Rare Actinobacteria from Karstic Caves

    Science.gov (United States)

    Fang, Bao-Zhu; Salam, Nimaichand; Han, Ming-Xian; Jiao, Jian-Yu; Cheng, Juan; Wei, Da-Qiao; Xiao, Min; Li, Wen-Jun

    2017-01-01

    The phylum Actinobacteria is one of the most ubiquitously present bacterial lineages on Earth. In the present study, we try to explore the diversity of cultivable rare Actinobacteria in Sigangli Cave, Yunnan, China by utilizing a combination of different sample pretreatments and under different culture conditions. Pretreating the samples under different conditions of heat, setting the isolation condition at different pHs, and supplementation of media with different calcium salts were found to be effective for isolation of diverse rare Actinobacteria. During our study, a total of 204 isolates affiliated to 30 genera of phylum Actinobacteria were cultured. Besides the dominant Streptomyces, rare Actinobacteria of the genera Actinocorallia, Actinomadura, Agromyces, Alloactinosynnema, Amycolatopsis, Beutenbergia, Cellulosimicrobium, Gordonia, Isoptericola, Jiangella, Knoellia, Kocuria, Krasilnikoviella, Kribbella, Microbacterium, Micromonospora, Mumia, Mycobacterium, Nocardia, Nocardioides, Nocardiopsis, Nonomuraea, Oerskovia, Pseudokineococcus, Pseudonocardia, Rhodococcus, Saccharothrix, Streptosporangium, and Tsukamurella were isolated from these cave samples. PMID:28848538

  17. Molecular detection of human bacterial pathogens

    National Research Council Canada - National Science Library

    Liu, Dongyou

    2011-01-01

    .... Molecular Detection of Human Bacterial Pathogens addresses this issue, with international scientists in respective bacterial pathogen research and diagnosis providing expert summaries on current...

  18. Sterol Synthesis in Diverse Bacteria.

    Science.gov (United States)

    Wei, Jeremy H; Yin, Xinchi; Welander, Paula V

    2016-01-01

    Sterols are essential components of eukaryotic cells whose biosynthesis and function has been studied extensively. Sterols are also recognized as the diagenetic precursors of steranes preserved in sedimentary rocks where they can function as geological proxies for eukaryotic organisms and/or aerobic metabolisms and environments. However, production of these lipids is not restricted to the eukaryotic domain as a few bacterial species also synthesize sterols. Phylogenomic studies have identified genes encoding homologs of sterol biosynthesis proteins in the genomes of several additional species, indicating that sterol production may be more widespread in the bacterial domain than previously thought. Although the occurrence of sterol synthesis genes in a genome indicates the potential for sterol production, it provides neither conclusive evidence of sterol synthesis nor information about the composition and abundance of basic and modified sterols that are actually being produced. Here, we coupled bioinformatics with lipid analyses to investigate the scope of bacterial sterol production. We identified oxidosqualene cyclase (Osc), which catalyzes the initial cyclization of oxidosqualene to the basic sterol structure, in 34 bacterial genomes from five phyla (Bacteroidetes, Cyanobacteria, Planctomycetes, Proteobacteria, and Verrucomicrobia) and in 176 metagenomes. Our data indicate that bacterial sterol synthesis likely occurs in diverse organisms and environments and also provides evidence that there are as yet uncultured groups of bacterial sterol producers. Phylogenetic analysis of bacterial and eukaryotic Osc sequences confirmed a complex evolutionary history of sterol synthesis in this domain. Finally, we characterized the lipids produced by Osc-containing bacteria and found that we could generally predict the ability to synthesize sterols. However, predicting the final modified sterol based on our current knowledge of sterol synthesis was difficult. Some bacteria

  19. Ecophysiology of Uncultured Filamentous Anaerobes Belonging to the Phylum KSB3 That Cause Bulking in Methanogenic Granular Sludge▿ †

    Science.gov (United States)

    Yamada, Takeshi; Kikuchi, Kae; Yamauchi, Toshihiro; Shiraishi, Koji; Ito, Tsukasa; Okabe, Satoshi; Hiraishi, Akira; Ohashi, Akiyoshi; Harada, Hideki; Kamagata, Yoichi; Nakamura, Kazunori; Sekiguchi, Yuji

    2011-01-01

    A filamentous bulking of a methanogenic granular sludge caused by uncultured filamentous bacteria of the candidate phylum KSB3 in an upflow anaerobic sludge blanket (UASB) system has been reported. To characterize the physiological traits of the filaments, a polyphasic approach consisting of rRNA-based activity monitoring of the KSB3 filaments using the RNase H method and substrate uptake profiling using microautoradiography combined with fluorescence in situ hybridization (MAR-FISH) was conducted. On the basis of rRNA-based activity, the monitoring of a full-scale UASB reactor operated continuously revealed that KSB3 cells became active and predominant (up to 54% of the total 16S rRNA) in the sludge when the carbohydrate loading to the system increased. Batch experiments with a short incubation of the sludge with maltose, glucose, fructose, and maltotriose at relatively low concentrations (approximately 0.1 mM) in the presence of yeast extract also showed an increase in KSB3 rRNA levels under anaerobic conditions. MAR-FISH confirmed that the KSB3 cells took up radioisotopic carbons from [14C]maltose and [14C]glucose under the same incubation conditions in the batch experiments. These results suggest that one of the important ecophysiological characteristics of KSB3 cells in the sludge is carbohydrate degradation in wastewater and that high carbohydrate loadings may trigger an outbreak of KSB3 bacteria, causing sludge bulking in UASB systems. PMID:21257808

  20. [Bacterial vaginosis].

    Science.gov (United States)

    Romero Herrero, Daniel; Andreu Domingo, Antonia

    2016-07-01

    Bacterial vaginosis (BV) is the main cause of vaginal dysbacteriosis in the women during the reproductive age. It is an entity in which many studies have focused for years and which is still open for discussion topics. This is due to the diversity of microorganisms that cause it and therefore, its difficult treatment. Bacterial vaginosis is probably the result of vaginal colonization by complex bacterial communities, many of them non-cultivable and with interdependent metabolism where anaerobic populations most likely play an important role in its pathogenesis. The main symptoms are an increase of vaginal discharge and the unpleasant smell of it. It can lead to serious consequences for women, such as an increased risk of contracting sexually transmitted infections including human immunodeficiency virus and upper genital tract and pregnancy complications. Gram stain is the gold standard for microbiological diagnosis of BV, but can also be diagnosed using the Amsel clinical criteria. It should not be considered a sexually transmitted disease but it is highly related to sex. Recurrence is the main problem of medical treatment. Apart from BV, there are other dysbacteriosis less characterized like aerobic vaginitis of which further studies are coming slowly but are achieving more attention and consensus among specialists. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  1. Human milk metagenome: a functional capacity analysis

    Science.gov (United States)

    2013-01-01

    Background Human milk contains a diverse population of bacteria that likely influences colonization of the infant gastrointestinal tract. Recent studies, however, have been limited to characterization of this microbial community by 16S rRNA analysis. In the present study, a metagenomic approach using Illumina sequencing of a pooled milk sample (ten donors) was employed to determine the genera of bacteria and the types of bacterial open reading frames in human milk that may influence bacterial establishment and stability in this primal food matrix. The human milk metagenome was also compared to that of breast-fed and formula-fed infants’ feces (n = 5, each) and mothers’ feces (n = 3) at the phylum level and at a functional level using open reading frame abundance. Additionally, immune-modulatory bacterial-DNA motifs were also searched for within human milk. Results The bacterial community in human milk contained over 360 prokaryotic genera, with sequences aligning predominantly to the phyla of Proteobacteria (65%) and Firmicutes (34%), and the genera of Pseudomonas (61.1%), Staphylococcus (33.4%) and Streptococcus (0.5%). From assembled human milk-derived contigs, 30,128 open reading frames were annotated and assigned to functional categories. When compared to the metagenome of infants’ and mothers’ feces, the human milk metagenome was less diverse at the phylum level, and contained more open reading frames associated with nitrogen metabolism, membrane transport and stress response (P milk metagenome also contained a similar occurrence of immune-modulatory DNA motifs to that of infants’ and mothers’ fecal metagenomes. Conclusions Our results further expand the complexity of the human milk metagenome and enforce the benefits of human milk ingestion on the microbial colonization of the infant gut and immunity. Discovery of immune-modulatory motifs in the metagenome of human milk indicates more exhaustive analyses of the functionality of the human

  2. Radiological aspects of bacterial lung abscess

    International Nuclear Information System (INIS)

    Groskin, S.A.; Panicek, D.; Ewing, D.; Rivera, F.; Math, K.; Teixeira, J.; Heitzman, E.R.

    1987-01-01

    Clinical, radiological, and pathological data derived from an analysis of over 70 cases of bacterial lung abscess are presented. Etiologic agents and risk factors are presented. Key radiographic findings are discussed, and those that are most useful in differentiating bacterial lung abscess from cavitated carcinoma, infected cyst, and emphysema are emphasized. Radiographic aspects of the complications of bacterial lung abscess are illustrated, and radiological approaches to their therapy are discussed

  3. Bacterial, Fungal, Parasitic, and Viral Myositis

    OpenAIRE

    Crum-Cianflone, Nancy F.

    2008-01-01

    Infectious myositis may be caused by a broad range of bacterial, fungal, parasitic, and viral agents. Infectious myositis is overall uncommon given the relative resistance of the musculature to infection. For example, inciting events, including trauma, surgery, or the presence of foreign bodies or devitalized tissue, are often present in cases of bacterial myositis. Bacterial causes are categorized by clinical presentation, anatomic location, and causative organisms into the categories of pyo...

  4. Bacterial cells with improved tolerance to polyols

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to bacterial cells genetically modified to improve their tolerance to certain commodity chemicals, such as diols and other polyols, and to methods of preparing and using such bacterial cells for production of polyols and other compounds.......The present invention relates to bacterial cells genetically modified to improve their tolerance to certain commodity chemicals, such as diols and other polyols, and to methods of preparing and using such bacterial cells for production of polyols and other compounds....

  5. Bacterial Vaginosis

    Science.gov (United States)

    ... Archive STDs Home Page Bacterial Vaginosis (BV) Chlamydia Gonorrhea Genital Herpes Hepatitis HIV/AIDS & STDs Human Papillomavirus ( ... of getting other STDs, such as chlamydia and gonorrhea . These bacteria can sometimes cause pelvic inflammatory disease ( ...

  6. The intrinsic resistome of bacterial pathogens.

    Science.gov (United States)

    Olivares, Jorge; Bernardini, Alejandra; Garcia-Leon, Guillermo; Corona, Fernando; B Sanchez, Maria; Martinez, Jose L

    2013-01-01

    Intrinsically resistant bacteria have emerged as a relevant health problem in the last years. Those bacterial species, several of them with an environmental origin, present naturally low-level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux pumps or the lack of appropriate targets for a given family of drugs. However, recently published articles indicate that the characteristic phenotype of susceptibility to antibiotics of a given bacterial species depends on the concerted activity of several elements, what has been named as intrinsic resistome. These determinants comprise not just classical resistance genes. Other elements, several of them involved in basic bacterial metabolic processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present review we analyze recent publications on the intrinsic resistomes of Escherichia coli and Pseudomonas aeruginosa. We present as well information on the role that global regulators of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical practice.

  7. The intrinsic resistome of bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Jorge Andrés Olivares Pacheco

    2013-04-01

    Full Text Available Intrinsically resistant bacteria have emerged as a relevant health problem in the last years. Those bacterial species, several of them with an environmental origin, present naturally a low-level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux pumps or the lack of appropriate targets for a given family of drugs. However, recently published articles indicate that the characteristic phenotype of susceptibility to antibiotics of a given bacterial species depends on the concerted activity of several elements, what has been named as intrinsic resistome. These determinants comprise not just classical resistance genes. Other elements, several of them involved in basic bacterial metabolic processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present review we analyse recent publications on the intrinsic resistomes of Escherichia coli and Pseudomonas aeruginosa. We present as well information on the role that global regulators of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical practice.

  8. Bacterial flora of sturgeon fingerling

    International Nuclear Information System (INIS)

    Arani, A.S.; Mosahab, R.

    2008-01-01

    The study on microbial populations is a suitable tool to understand and apply control methods to improve the sanitary level of production in fish breeding and rearing centers, ensure health of sturgeon fingerlings at the time of their release into the rivers and also in the conversation and restoration of these valuable stocks in the Caspian Sea, Iran. A laboratory research based on Austin methods (Austin, B., Austin, D.A. 1993) was conducted for bacterial study on 3 sturgeon species naming A. persicus, A. stellatus and A. nudiventris during different growth stages. Bacterial flora of Acinetobacter, Moraxella, Aeromonas, Vibrio, Edwardsiella, Staphylococcus, Proteus, Yersinia, Pseudomonas and Plesiomonas were determined. The factors which may induce changes in bacterial populations during different stages of fife are the followings: quality of water in rearing ponds, different conditions for growth stages, suitable time for colonization of bacterial flora in rearing pond, water temperature increase in fingerlings size and feeding condition. (author)

  9. Characterisation of the gill mucosal bacterial communities of four butterflyfish species: a reservoir of bacterial diversity in coral reef ecosystems.

    Science.gov (United States)

    Reverter, Miriam; Sasal, Pierre; Tapissier-Bontemps, N; Lecchini, D; Suzuki, M

    2017-06-01

    While recent studies have suggested that fish mucus microbiota play an important role in homeostasis and prevention of infections, very few studies have investigated the bacterial communities of gill mucus. We characterised the gill mucus bacterial communities of four butterflyfish species and although the bacterial diversity of gill mucus varied significantly between species, Shannon diversities were high (H = 3.7-5.7) in all species. Microbiota composition differed between butterflyfishes, with Chaetodon lunulatus and C. ornatissimus having the most similar bacterial communities, which differed significantly from C. vagabundus and C. reticulatus. The core bacterial community of all species consisted of mainly Proteobacteria followed by Actinobacteria and Firmicutes. Chaetodonlunulatus and C. ornatissimus bacterial communities were mostly dominated by Gammaproteobacteria with Vibrio as the most abundant genus. Chaetodonvagabundus and C. reticulatus presented similar abundances of Gammaproteobacteria and Alphaproteobacteria, which were well represented by Acinetobacter and Paracoccus, respectively. In conclusion, our results indicate that different fish species present specific bacterial assemblages. Finally, as mucus layers are nutrient hotspots for heterotrophic bacteria living in oligotrophic environments, such as coral reef waters, the high bacterial diversity found in butterflyfish gill mucus might indicate external fish mucus surfaces act as a reservoir of coral reef bacterial diversity. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Mechanical Homogenization Increases Bacterial Homogeneity in Sputum

    Science.gov (United States)

    Stokell, Joshua R.; Khan, Ammad

    2014-01-01

    Sputum obtained from patients with cystic fibrosis (CF) is highly viscous and often heterogeneous in bacterial distribution. Adding dithiothreitol (DTT) is the standard method for liquefaction prior to processing sputum for molecular detection assays. To determine if DTT treatment homogenizes the bacterial distribution within sputum, we measured the difference in mean total bacterial abundance and abundance of Burkholderia multivorans between aliquots of DTT-treated sputum samples with and without a mechanical homogenization (MH) step using a high-speed dispersing element. Additionally, we measured the effect of MH on bacterial abundance. We found a significant difference between the mean bacterial abundances in aliquots that were subjected to only DTT treatment and those of the aliquots which included an MH step (all bacteria, P = 0.04; B. multivorans, P = 0.05). There was no significant effect of MH on bacterial abundance in sputum. Although our results are from a single CF patient, they indicate that mechanical homogenization increases the homogeneity of bacteria in sputum. PMID:24759710

  11. The effects of various land reclamation scenarios on the succession of soil Bacteria, Archaea, and fungi over the short and long term

    Directory of Open Access Journals (Sweden)

    Junjian eLi

    2016-03-01

    Full Text Available Ecological restoration of mining areas has mainly focused on the succession dynamics of vegetation and the fate of microbial communities remains poorly understood. We examined changes in soil characteristics and plant and microbial communities with increasing reclamation period in an open coal mine. Bacterial, archaeal and fungal communities were assessed by tag-encoded 454 pyrosequencing. At the phylum level, Proteobacteria, Crenarchaeota, and Ascomycota had the highest detected relative abundance within bacteria, archaea, and fungi, respectively. Partial regressions and canonical correspondence analysis demonstrated that vegetation played a major role in bacterial and archaeal diversity and assemblies, and soil characteristics, especially nitrogen, were important for fungal diversity and assemblies. Spearman rank correlation indicated that bacterial and archaeal communities showed synergistic succession with plants; whereas, fungal communities showed no such pattern. Overall, our data suggest that there are different drivers of bacterial, archaeal and fungal succession during secondary succession in a reclaimed open mine.

  12. Significant relationship between soil bacterial community structure and incidence of bacterial wilt disease under continuous cropping system.

    Science.gov (United States)

    She, Siyuan; Niu, Jiaojiao; Zhang, Chao; Xiao, Yunhua; Chen, Wu; Dai, Linjian; Liu, Xueduan; Yin, Huaqun

    2017-03-01

    Soil bacteria are very important in biogeochemical cycles and play significant role in soil-borne disease suppression. Although continuous cropping is responsible for soil-borne disease enrichment, its effect on tobacco plant health and how soil bacterial communities change are yet to be elucidated. In this study, soil bacterial communities across tobacco continuous cropping time-series fields were investigated through high-throughput sequencing of 16S ribosomal RNA genes. The results showed that long-term continuous cropping could significantly alter soil microbial communities. Bacterial diversity indices and evenness indices decreased over the monoculture span and obvious variations for community structures across the three time-scale tobacco fields were detected. Compared with the first year, the abundances of Arthrobacter and Lysobacter showed a significant decrease. Besides, the abundance of the pathogen Ralstonia spp. accumulated over the monoculture span and was significantly correlated with tobacco bacterial wilt disease rate. Moreover, Pearson's correlation demonstrated that the abundance of Arthrobacter and Lysobacter, which are considered to be beneficial bacteria had significant negative correlation with tobacco bacterial wilt disease. Therefore, after long-term continuous cropping, tobacco bacterial wilt disease could be ascribed to the alteration of the composition as well as the structure of the soil microbial community.

  13. Bacterial diversity in goat milk from the Guanzhong area of China.

    Science.gov (United States)

    Zhang, Fuxin; Wang, Zhaoxia; Lei, Feiyan; Wang, Bini; Jiang, Shuaiming; Peng, Qiannan; Zhang, Jiachao; Shao, Yuyu

    2017-10-01

    In this study, the V3 and V4 regions of the 16S rRNA gene from metagenomic DNA were sequenced to identify differences in microbial diversity in raw milk of Saanen and Guanzhong goats from the Guanzhong area of China. The results showed that Proteobacteria was the predominant phylum, accounting for 71.31% of all phyla identified in milk from the 2 breeds, and Enterobacter was the predominant genus (24.69%) within the microbial community. Microbial alpha diversity from Saanen goat milk was significantly higher than that of Guanzhong goat milk based on bioinformatic analysis of indices of Chao1, Shannon, Simpson, observed species, and the abundance-based coverage estimator. Functional genes and their likely metabolic pathways were predicted, which demonstrated that the functional genes present in the bacteria in goat milk were enriched in pathways for amino acid metabolism and carbohydrate metabolism, which represented 11.93 and 11.23% of functional genes, respectively. Physicochemical properties such as pH, protein, fat, and AA levels were also determined and correlations made with microbial diversity. We detected a significant difference in the content of lactose and 6 AA, which were higher in Saanen milk than in Guanzhong milk, and positively correlated with microbial carbohydrate metabolism and AA metabolism. Lactococcus, Lactobacillus, Bifidobacterium, Enterococcus, and Streptococcus, which are lactose-utilizing genera, were more abundant in Saanen milk than in Guanzhong milk. Higher levels of lactose in Saanen goat milk may explain its greater microbial diversity. We also demonstrated that most of the AA metabolism-related bacterial genera (e.g., Massilia, Bacteroides, Lysobacter) were enriched in Saanen goat milk. In this research, both probiotic and pathogenic bacteria were identified in goat milk, which provided the microbial information necessary to direct the utilization of beneficial microbial resources and prevent the development of harmful organisms in

  14. Temperate bacterial viruses as double-edged swords in bacterial warfare.

    Science.gov (United States)

    Gama, João Alves; Reis, Ana Maria; Domingues, Iolanda; Mendes-Soares, Helena; Matos, Ana Margarida; Dionisio, Francisco

    2013-01-01

    It has been argued that bacterial cells may use their temperate viruses as biological weapons. For instance, a few bacterial cells among a population of lysogenic cells could release the virus and kill susceptible non-lysogenic competitors, while their clone mates would be immune. Because viruses replicate inside their victims upon infection, this process would amplify their number in the arena. Sometimes, however, temperate viruses spare recipient cells from death by establishing themselves in a dormant state inside cells. This phenomenon is called lysogenization and, for some viruses such as the λ virus, the probability of lysogenization increases with the multiplicity of infection. Therefore, the amplification of viruses leads to conflicting predictions about the efficacy of temperate viruses as biological weapons: amplification can increase the relative advantage of clone mates of lysogens but also the likelihood of saving susceptible cells from death, because the probability of lysogenization is higher. To test the usefulness of viruses as biological weapons, we performed competition experiments between lysogenic Escherichia coli cells carrying the λ virus and susceptible λ-free E. coli cells, either in a structured or unstructured habitat. In structured and sometimes in unstructured habitats, the λ virus qualitatively behaved as a "replicating toxin". However, such toxic effect of λ viruses ceased after a few days of competition. This was due to the fact that many of initially susceptible cells became lysogenic. Massive lysogenization of susceptible cells occurred precisely under the conditions where the amplification of the virus was substantial. From then on, these cells and their descendants became immune to the λ virus. In conclusion, if at short term bacterial cells may use temperate viruses as biological weapons, after a few days only the classical view of temperate bacterial viruses as parasitic agents prevails.

  15. Temperate bacterial viruses as double-edged swords in bacterial warfare.

    Directory of Open Access Journals (Sweden)

    João Alves Gama

    Full Text Available It has been argued that bacterial cells may use their temperate viruses as biological weapons. For instance, a few bacterial cells among a population of lysogenic cells could release the virus and kill susceptible non-lysogenic competitors, while their clone mates would be immune. Because viruses replicate inside their victims upon infection, this process would amplify their number in the arena. Sometimes, however, temperate viruses spare recipient cells from death by establishing themselves in a dormant state inside cells. This phenomenon is called lysogenization and, for some viruses such as the λ virus, the probability of lysogenization increases with the multiplicity of infection. Therefore, the amplification of viruses leads to conflicting predictions about the efficacy of temperate viruses as biological weapons: amplification can increase the relative advantage of clone mates of lysogens but also the likelihood of saving susceptible cells from death, because the probability of lysogenization is higher. To test the usefulness of viruses as biological weapons, we performed competition experiments between lysogenic Escherichia coli cells carrying the λ virus and susceptible λ-free E. coli cells, either in a structured or unstructured habitat. In structured and sometimes in unstructured habitats, the λ virus qualitatively behaved as a "replicating toxin". However, such toxic effect of λ viruses ceased after a few days of competition. This was due to the fact that many of initially susceptible cells became lysogenic. Massive lysogenization of susceptible cells occurred precisely under the conditions where the amplification of the virus was substantial. From then on, these cells and their descendants became immune to the λ virus. In conclusion, if at short term bacterial cells may use temperate viruses as biological weapons, after a few days only the classical view of temperate bacterial viruses as parasitic agents prevails.

  16. Bacterial disease management: challenges, experience, innovation and future prospects: Challenges in Bacterial Molecular Plant Pathology.

    Science.gov (United States)

    Sundin, George W; Castiblanco, Luisa F; Yuan, Xiaochen; Zeng, Quan; Yang, Ching-Hong

    2016-12-01

    Plant diseases caused by bacterial pathogens place major constraints on crop production and cause significant annual losses on a global scale. The attainment of consistent effective management of these diseases can be extremely difficult, and management potential is often affected by grower reliance on highly disease-susceptible cultivars because of consumer preferences, and by environmental conditions favouring pathogen development. New and emerging bacterial disease problems (e.g. zebra chip of potato) and established problems in new geographical regions (e.g. bacterial canker of kiwifruit in New Zealand) grab the headlines, but the list of bacterial disease problems with few effective management options is long. The ever-increasing global human population requires the continued stable production of a safe food supply with greater yields because of the shrinking areas of arable land. One major facet in the maintenance of the sustainability of crop production systems with predictable yields involves the identification and deployment of sustainable disease management solutions for bacterial diseases. In addition, the identification of novel management tactics has also come to the fore because of the increasing evolution of resistance to existing bactericides. A number of central research foci, involving basic research to identify critical pathogen targets for control, novel methodologies and methods of delivery, are emerging that will provide a strong basis for bacterial disease management into the future. Near-term solutions are desperately needed. Are there replacement materials for existing bactericides that can provide effective disease management under field conditions? Experience should inform the future. With prior knowledge of bactericide resistance issues evolving in pathogens, how will this affect the deployment of newer compounds and biological controls? Knowledge is critical. A comprehensive understanding of bacterial pathosystems is required to not

  17. Molecular analysis of the bacterial diversity in a specialized consortium for diesel oil degradation

    Energy Technology Data Exchange (ETDEWEB)

    Paixao, Douglas Antonio Alvaredo; Accorsini, Fabio Raphael; Vidotti, Maria Benincasa; Lemos, Eliana Gertrudes de Macedo [Universidade Estadual Paulista (FCAV/UNESP), Jaboticabal, SP (Brazil). Fac. de Ciencias Agrarias e Veterinarias], Emails: douglas_unespfcav@yahoo.com.br, vidotti@netsite.com.bregerle@fcav.unesp.br; Dimitrov, Mauricio Rocha [Universidade de Sao Paulo (USP), SP (Brazil)], Email: mau_dimitrov@yahoo.com.br; Pereira, Rodrigo Matheus [EMBRAPARA Soybean - Empresa Brasileira de Pesquisa Agropecuaria (EMBRAPA - Soja), Londrina, PR (Brazil)], Email: poetbr@gmail.com

    2010-05-15

    Diesel oil is a compound derived from petroleum, consisting primarily of hydrocarbons. Poor conditions in transportation and storage of this product can contribute significantly to accidental spills causing serious ecological problems in soil and water and affecting the diversity of the microbial environment. The cloning and sequencing of the 16S rRNA gene is one of the molecular techniques that allows estimation and comparison of the microbial diversity in different environmental samples. The aim of this work was to estimate the diversity of microorganisms from the Bacteria domain in a consortium specialized in diesel oil degradation through partial sequencing of the 16S rRNA gene. After the extraction of DNA metagenomics, the material was amplified by PCR reaction using specific oligonucleotide primers for the 16S rRNA gene. The PCR products were cloned into a pGEM-T-Easy vector (Promega), and Escherichia coli was used as the host cell for recombinant DNAs. The partial clone sequencing was obtained using universal oligonucleotide primers from the vector. The genetic library obtained generated 431 clones. All the sequenced clones presented similarity to phylum Proteobacteria, with Gammaproteobacteria the most present group (49.8 % of the clones), followed by Alphaproteobacteira (44.8 %) and Betaproteobacteria (5.4 %). The Pseudomonas genus was the most abundant in the metagenomics library, followed by the Parvibaculum and the Sphingobium genus, respectively. After partial sequencing of the 16S rRNA, the diversity of the bacterial consortium was estimated using DOTUR software. When comparing these sequences to the database from the National Center for Biotechnology Information (NCBI), a strong correlation was found between the data generated by the software used and the data deposited in NCBI. (author)

  18. Dynamics of the microbiota found in the vaginas of dairy cows during the transition period: Associations with uterine diseases and reproductive outcome.

    Science.gov (United States)

    Bicalho, M L S; Santin, T; Rodrigues, M X; Marques, C E; Lima, S F; Bicalho, R C

    2017-04-01

    We investigated the microbiota found in the vaginas of Holstein dairy cows during the transition period and described the differences in bacterial composition and total bacterial load (TBL) associated with disease and fertility. Vaginal swabs were collected at -7, 0, 3, and 7 d relative to parturition from 111 dairy cows housed on a commercial dairy farm near Ithaca, New York. Microbiota were characterized by next-generation DNA sequencing of the bacterial 16S rRNA gene, and TBL was determined by real-time quantitative PCR. We applied repeated-measures ANOVA to evaluate the associations of uterine disease and related risk factors with the microbiota and TBL. We estimated phylum-specific bacterial load by multiplying the TBL by the relative abundance of each phylum observed in the metagenomics results. We confirmed the validity of this approach for estimating bacterial load by enumerating the number of bacteria in an artificial sample mixed in vitro and in clinical and healthy vaginal samples. Phyla associated with uterine disease and related risk factors were Proteobacteria, Fusobacteria, and Bacteroidetes. Cows with retained placenta and healthy cows had similar TBL at the day of parturition, but at d 7 postpartum, cows with retained placenta showed a significantly higher TBL, mainly driven by higher estimated loads of Fusobacteria and Bacteroidetes. Cows diagnosed with metritis had a significantly higher estimated load of Proteobacteria at d -7 and at calving and higher estimated loads of Fusobacteria in the postpartum samples. Additionally, the estimated load of Bacteroidetes at d 7 postpartum was higher for cows diagnosed with endometritis at 35 days in milk. Higher estimated loads of Fusobacteria and Bacteroidetes were also evident in cows with postpartum fever, in primiparous cows, in cows with assisted parturition, and in cows that gave birth to twins. Our findings demonstrated that microbiota composition and TBL were associated with known periparturient

  19. Analysis of bacterial communities and bacterial pathogens in a biogas plant by the combination of ethidium monoazide, PCR and Ion Torrent sequencing.

    Science.gov (United States)

    Luo, Gang; Angelidaki, Irini

    2014-09-01

    The present study investigated the changes of bacterial community composition including bacterial pathogens along a biogas plant, i.e. from the influent, to the biogas reactor and to the post-digester. The effects of post-digestion temperature and time on the changes of bacterial community composition and bacterial pathogens were also studied. Microbial analysis was made by Ion Torrent sequencing of the PCR amplicons from ethidium monoazide treated samples, and ethidium monoazide was used to cleave DNA from dead cells and exclude it from PCR amplification. Both similarity and taxonomic analysis showed that the bacterial community composition in the influent was changed after anaerobic digestion. Firmicutes were dominant in all the samples, while Proteobacteria decreased in the biogas reactor compared with the influent. Variations of bacterial community composition in the biogas reactor with time were also observed. This could be attributed to varying composition of the influent. Batch experiments showed that the methane recovery from the digested residues (obtained from biogas reactor) was mainly related with post-digestion temperature. However, post-digestion time rather than temperature had a significant effect on the changes of bacterial community composition. The changes of bacterial community composition were also reflected in the changes of relative abundance of bacterial pathogens. The richness and relative abundance of bacterial pathogens were reduced after anaerobic digestion in the biogas reactor. It was found in batch experiments that bacterial pathogens showed the highest relative abundance and richness after 30 days' post-digestion. Streptococcus bovis was found in all the samples. Our results showed that special attention should be paid to the post-digestion since the increase in relative abundance of bacterial pathogens after post-digestion might reflect regrowth of bacterial pathogens and limit biosolids disposal vectors. Copyright © 2014 Elsevier

  20. Non-homogeneous flow profiles in sheared bacterial suspensions

    Science.gov (United States)

    Samanta, Devranjan; Cheng, Xiang

    Bacterial suspensions under shear exhibit interesting rheological behaviors including the remarkable ``superfluidic'' state with vanishing viscosity at low shear rates. Theoretical studies have shown that such ``superfluidic'' state is linked with non-homogeneous shear flows, which are induced by coupling between nematic order of active fluids and hydrodynamics of shear flows. However, although bulk rheology of bacterial suspensions has been experimentally studied, shear profiles within bacterial suspensions have not been explored so far. Here, we experimentally investigate the flow behaviors of E. coli suspensions under planar oscillatory shear. Using confocal microscopy and PIV, we measure velocity profiles across gap between two shear plates. We find that with increasing shear rates, high-concentration bacterial suspensions exhibit an array of non-homogeneous flow behaviors like yield-stress flows and shear banding. We show that these non-homogeneous flows are due to collective motion of bacterial suspensions. The phase diagram of sheared bacterial suspensions is systematically mapped as functions of shear rates an bacterial concentrations. Our experiments provide new insights into rheology of bacterial suspensions and shed light on shear induced dynamics of active fluids. Chemical Engineering and Material Science department.

  1. Bacterial reproductive pathogens of cats and dogs.

    Science.gov (United States)

    Graham, Elizabeth M; Taylor, David J

    2012-05-01

    With the notable exception of Brucella canis, exogenous bacterial pathogens are uncommon causes of reproductive disease in cats and dogs. Most bacterial reproductive infections are endogenous, and predisposing factors for infection are important. This article reviews the etiology, pathogenesis, clinical presentation, diagnosis, treatment, and public health significance of bacterial reproductive pathogens in cats and dogs.

  2. Bacterial Community Succession in Pine-Wood Decomposition.

    Science.gov (United States)

    Kielak, Anna M; Scheublin, Tanja R; Mendes, Lucas W; van Veen, Johannes A; Kuramae, Eiko E

    2016-01-01

    Though bacteria and fungi are common inhabitants of decaying wood, little is known about the relationship between bacterial and fungal community dynamics during natural wood decay. Based on previous studies involving inoculated wood blocks, strong fungal selection on bacteria abundance and community composition was expected to occur during natural wood decay. Here, we focused on bacterial and fungal community compositions in pine wood samples collected from dead trees in different stages of decomposition. We showed that bacterial communities undergo less drastic changes than fungal communities during wood decay. Furthermore, we found that bacterial community assembly was a stochastic process at initial stage of wood decay and became more deterministic in later stages, likely due to environmental factors. Moreover, composition of bacterial communities did not respond to the changes in the major fungal species present in the wood but rather to the stage of decay reflected by the wood density. We concluded that the shifts in the bacterial communities were a result of the changes in wood properties during decomposition and largely independent of the composition of the wood-decaying fungal communities.

  3. Spontaneous Bacterial Peritonitis in Subclinical Hypothyroidism

    Directory of Open Access Journals (Sweden)

    Dalip Gupta

    2013-11-01

    Full Text Available Hypothyroidism is an uncommon cause of ascites. Here we describe a case of a 75 year-old female patient with spontaneous bacterial peritonitis and subclinical hypothyroidism that resolved with thyroid replacement and antibiotic therapy respectively. Ascitic fluid analysis revealed a gram-positive bacterium on gram staining. A review of the literature revealed just one other reported case of myxoedema ascites with concomitant spontaneous bacterial peritonitis and no case has till been reported of spontaneous bacterial peritonitis in subclinical hypothyroidism.

  4. Electrical conductivity measurements of bacterial nanowires from Pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Maruthupandy, Muthusamy; Anand, Muthusamy; Beevi, Akbar Sait Hameedha; Priya, Radhakrishnan Jeeva; Maduraiveeran, Govindhan

    2015-01-01

    The extracellular appendages of bacteria (flagella) that transfer electrons to electrodes are called bacterial nanowires. This study focuses on the isolation and separation of nanowires that are attached via Pseudomonas aeruginosa bacterial culture. The size and roughness of separated nanowires were measured using transmission electron microscopy (TEM) and atomic force microscopy (AFM), respectively. The obtained bacterial nanowires indicated a clear image of bacterial nanowires measuring 16 nm in diameter. The formation of bacterial nanowires was confirmed by microscopic studies (AFM and TEM) and the conductivity nature of bacterial nanowire was investigated by electrochemical techniques. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), which are nondestructive voltammetry techniques, suggest that bacterial nanowires could be the source of electrons—which may be used in various applications, for example, microbial fuel cells, biosensors, organic solar cells, and bioelectronic devices. Routine analysis of electron transfer between bacterial nanowires and the electrode was performed, providing insight into the extracellular electron transfer (EET) to the electrode. CV revealed the catalytic electron transferability of bacterial nanowires and electrodes and showed excellent redox activities. CV and EIS studies showed that bacterial nanowires can charge the surface by producing and storing sufficient electrons, behave as a capacitor, and have features consistent with EET. Finally, electrochemical studies confirmed the development of bacterial nanowires with EET. This study suggests that bacterial nanowires can be used to fabricate biomolecular sensors and nanoelectronic devices. (paper)

  5. Bacterial stress

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Bacterial stress. Physicochemical and chemical parameters: temperature, pressure, pH, salt concentration, oxygen, irradiation. Nutritional depravation: nutrient starvation, water shortage. Toxic compounds: Antibiotics, heavy metals, toxins, mutagens. Interactions with other cells: ...

  6. The Invasive Brazilian Pepper Tree (Schinus terebinthifolius) Is Colonized by a Root Microbiome Enriched With Alphaproteobacteria and Unclassified Spartobacteria.

    Science.gov (United States)

    Dawkins, Karim; Esiobu, Nwadiuto

    2018-01-01

    Little is known about the rhizosphere microbiome of the Brazilian pepper tree (BP) - a noxious category 1 invasive plant inducing an enormous economic and ecological toll in Florida. Some invasive plants have been shown to drastically change the soil microbiome compared to other native plants. The rhizobacteria community structure of BP, two Florida native plants ( Hamelia patens and Bidens alba ) and bulk soils were characterized across six geographical sites. Although all 19 well-known and 10 poorly described phyla were observed in all plant rhizospheres, BP contained the least total bacterial abundance (OTUs) with a distinct bacteria community structure and clustering patterns differing significantly (pCOA and PERMANOVA) from the natives and bulk soil. The BP rhizosphere community contained the highest overall Proteobacteria diversity (Shannon's diversity 3.25) in spite of a twofold reduction in richness of the Gammaproteobacteria. Remarkably, the invasive BP rhizosphere was highly enriched with Alphaproteobacteria, dominated by Rhizobiales, including Rhodoplanes and Bradyrhizobiaceae. Also, the relative abundance of Spartobacteria under BP rhizosphere was more than twice that of native plants and bulk soil; featuring unique members of the family Chthoniobacteraceae (DA101 genus). The trend was different for the family Pedosphaerae in the phylum Verrucomicrobia where the abundance declined under BP (26%) compared to (33-66%) for the H. patens native plant and bulk soil. BP shared the lowest number of unique phylotypes with bulk soil (146) compared to the other native plants with bulk soil ( B. alba - 222, H. patens - 520) suggestive of its capacity to overcome biotic resistance. Although there were no specific biomarkers found, taken together, our data suggests that the occurrence of key bacteria groups across multiple taxonomic ranks provides a somewhat consistent profile of the invasive BP rhizo-community. Furthermore, based on the observed prevalence of a

  7. The Invasive Brazilian Pepper Tree (Schinus terebinthifolius Is Colonized by a Root Microbiome Enriched With Alphaproteobacteria and Unclassified Spartobacteria

    Directory of Open Access Journals (Sweden)

    Karim Dawkins

    2018-05-01

    Full Text Available Little is known about the rhizosphere microbiome of the Brazilian pepper tree (BP – a noxious category 1 invasive plant inducing an enormous economic and ecological toll in Florida. Some invasive plants have been shown to drastically change the soil microbiome compared to other native plants. The rhizobacteria community structure of BP, two Florida native plants (Hamelia patens and Bidens alba and bulk soils were characterized across six geographical sites. Although all 19 well-known and 10 poorly described phyla were observed in all plant rhizospheres, BP contained the least total bacterial abundance (OTUs with a distinct bacteria community structure and clustering patterns differing significantly (pCOA and PERMANOVA from the natives and bulk soil. The BP rhizosphere community contained the highest overall Proteobacteria diversity (Shannon’s diversity 3.25 in spite of a twofold reduction in richness of the Gammaproteobacteria. Remarkably, the invasive BP rhizosphere was highly enriched with Alphaproteobacteria, dominated by Rhizobiales, including Rhodoplanes and Bradyrhizobiaceae. Also, the relative abundance of Spartobacteria under BP rhizosphere was more than twice that of native plants and bulk soil; featuring unique members of the family Chthoniobacteraceae (DA101 genus. The trend was different for the family Pedosphaerae in the phylum Verrucomicrobia where the abundance declined under BP (26% compared to (33–66% for the H. patens native plant and bulk soil. BP shared the lowest number of unique phylotypes with bulk soil (146 compared to the other native plants with bulk soil (B. alba – 222, H. patens – 520 suggestive of its capacity to overcome biotic resistance. Although there were no specific biomarkers found, taken together, our data suggests that the occurrence of key bacteria groups across multiple taxonomic ranks provides a somewhat consistent profile of the invasive BP rhizo-community. Furthermore, based on the observed

  8. Corticosteroids for Bacterial Keratitis

    Science.gov (United States)

    Srinivasan, Muthiah; Mascarenhas, Jeena; Rajaraman, Revathi; Ravindran, Meenakshi; Lalitha, Prajna; Glidden, David V.; Ray, Kathryn J.; Hong, Kevin C.; Oldenburg, Catherine E.; Lee, Salena M.; Zegans, Michael E.; McLeod, Stephen D.; Lietman, Thomas M.; Acharya, Nisha R.

    2013-01-01

    Objective To determine whether there is a benefit in clinical outcomes with the use of topical corticosteroids as adjunctive therapy in the treatment of bacterial corneal ulcers. Methods Randomized, placebo-controlled, double-masked, multicenter clinical trial comparing prednisolone sodium phosphate, 1.0%, to placebo as adjunctive therapy for the treatment of bacterial corneal ulcers. Eligible patients had a culture-positive bacterial corneal ulcer and received topical moxifloxacin for at least 48 hours before randomization. Main Outcome Measures The primary outcome was best spectacle-corrected visual acuity (BSCVA) at 3 months from enrollment. Secondary outcomes included infiltrate/scar size, reepithelialization, and corneal perforation. Results Between September 1, 2006, and February 22, 2010, 1769 patients were screened for the trial and 500 patients were enrolled. No significant difference was observed in the 3-month BSCVA (−0.009 logarithm of the minimum angle of resolution [logMAR]; 95% CI, −0.085 to 0.068; P = .82), infiltrate/scar size (P = .40), time to reepithelialization (P = .44), or corneal perforation (P > .99). A significant effect of corticosteroids was observed in subgroups of baseline BSCVA (P = .03) and ulcer location (P = .04). At 3 months, patients with vision of counting fingers or worse at baseline had 0.17 logMAR better visual acuity with corticosteroids (95% CI, −0.31 to −0.02; P = .03) compared with placebo, and patients with ulcers that were completely central at baseline had 0.20 logMAR better visual acuity with corticosteroids (−0.37 to −0.04; P = .02). Conclusions We found no overall difference in 3-month BSCVA and no safety concerns with adjunctive corticosteroid therapy for bacterial corneal ulcers. Application to Clinical Practice Adjunctive topical corticosteroid use does not improve 3-month vision in patients with bacterial corneal ulcers. PMID:21987582

  9. Diagnosis and treatment of bacterial prostatitis.

    Science.gov (United States)

    Videčnik Zorman, Jerneja; Matičič, Mojca; Jeverica, Samo; Smrkolj, Tomaž

    2015-01-01

    Prostate inflammation is a common syndrome, especially in men under 50. It usually presents with voiding symptoms and pain in the genitourinary area, and sometimes as sexual dysfunction. Based on clinical and laboratory characteristics, prostatitis is classified as acute bacterial prostatitis, chronic bacterial prostatitis, chronic inflammatory and non-inflammatory prostatitis or chronic pelvic pain syndrome, and asymptomatic inflammatory prostatitis. Bacterial prostatitis is most often caused by infection with uropathogens, mainly Gram-negative bacilli, but Gram-positive and atypical microorganisms have also been identified as causative organisms of chronic prostatitis. According to reports by several authors, Chlamydia trachomatis and Trichomonas vaginalis are some of the most common pathogens, making chronic prostatitis a sexually transmitted disease. Diagnosis and treatment of acute and chronic bacterial prostatitis in particular can be challenging.

  10. Bacterial endophytes enhance competition by invasive plants.

    Science.gov (United States)

    Rout, Marnie E; Chrzanowski, Thomas H; Westlie, Tara K; DeLuca, Thomas H; Callaway, Ragan M; Holben, William E

    2013-09-01

    Invasive plants can alter soil microbial communities and profoundly alter ecosystem processes. In the invasive grass Sorghum halepense, these disruptions are consequences of rhizome-associated bacterial endophytes. We describe the effects of N2-fixing bacterial strains from S. halepense (Rout and Chrzanowski, 2009) on plant growth and show that bacteria interact with the plant to alter soil nutrient cycles, enabling persistence of the invasive. • We assessed fluxes in soil nutrients for ∼4 yr across a site invaded by S. halepense. We assayed the N2-fixing bacteria in vitro for phosphate solubilization, iron chelation, and production of the plant-growth hormone indole-3-acetic acid (IAA). We assessed the plant's ability to recruit bacterial partners from substrates and vertically transmit endophytes to seeds and used an antibiotic approach to inhibit bacterial activity in planta and assess microbial contributions to plant growth. • We found persistent alterations to eight biogeochemical cycles (including nitrogen, phosphorus, and iron) in soils invaded by S. halepense. In this context, three bacterial isolates solubilized phosphate, and all produced iron siderophores and IAA in vitro. In growth chamber experiments, bacteria were transmitted vertically, and molecular analysis of bacterial community fingerprints from rhizomes indicated that endophytes are also horizontally recruited. Inhibiting bacterial activity with antibiotics resulted in significant declines in plant growth rate and biomass, with pronounced rhizome reductions. • This work suggests a major role of endophytes on growth and resource allocation of an invasive plant. Indeed, bacterial isolate physiology is correlated with invader effects on biogeochemical cycles of nitrogen, phosphate, and iron.

  11. Autophagy and bacterial clearance: a not so clear picture

    OpenAIRE

    Mostowy, Serge

    2012-01-01

    Autophagy, an intracellular degradation process highly conserved from yeast to humans, is viewed as an important defence mechanism to clear intracellular bacteria. However, recent work has shown that autophagy may have different roles during different bacterial infections that restrict bacterial replication (antibacterial autophagy), act in cell autonomous signalling (non-bacterial autophagy) or support bacterial replication (pro-bacterial autophagy). This review will focus on newfound intera...

  12. Elucidating Duramycin’s Bacterial Selectivity and Mode of Action on the Bacterial Cell Envelope

    Directory of Open Access Journals (Sweden)

    Sahar Hasim

    2018-02-01

    Full Text Available The use of naturally occurring antimicrobial peptides provides a promising route to selectively target pathogenic agents and to shape microbiome structure. Lantibiotics, such as duramycin, are one class of bacterially produced peptidic natural products that can selectively inhibit the growth of other bacteria. However, despite longstanding characterization efforts, the microbial selectivity and mode of action of duramycin are still obscure. We describe here a suite of biological, chemical, and physical characterizations that shed new light on the selective and mechanistic aspects of duramycin activity. Bacterial screening assays have been performed using duramycin and Populus-derived bacterial isolates to determine species selectivity. Lipidomic profiles of selected resistant and sensitive strains show that the sensitivity of Gram-positive bacteria depends on the presence of phosphatidylethanolamine (PE in the cell membrane. Further the surface and interface morphology were studied by high resolution atomic force microscopy and showed a progression of cellular changes in the cell envelope after treatment with duramycin for the susceptible bacterial strains. Together, these molecular and cellular level analyses provide insight into duramycin’s mode of action and a better understanding of its selectivity.

  13. Bacterial meningitis

    NARCIS (Netherlands)

    Heckenberg, Sebastiaan G. B.; Brouwer, Matthijs C.; van de Beek, Diederik

    2014-01-01

    Bacterial meningitis is a neurologic emergency. Vaccination against common pathogens has decreased the burden of disease. Early diagnosis and rapid initiation of empiric antimicrobial and adjunctive therapy are vital. Therapy should be initiated as soon as blood cultures have been obtained,

  14. Antimicrobial susceptibility in community-acquired bacterial ...

    African Journals Online (AJOL)

    Objectives: To determine the antimicrobial susceptibility patterns of Streptococcus pneumoniae and Haemophilus influenzae, two bacterial pathogens commonly associated with communityacquired pneumonia. Design: Cross-sectional study. Setting: Bacterial isolates were obtained from adults suspected to have ...

  15. Spatio-temporal interdependence of bacteria and phytoplankton during a Baltic Sea spring bloom

    Directory of Open Access Journals (Sweden)

    Carina eBunse

    2016-04-01

    Full Text Available In temperate systems, phytoplankton spring blooms deplete inorganic nutrients and are major sources of organic matter for the microbial loop. In response to phytoplankton exudates and environmental factors, heterotrophic microbial communities are highly dynamic and change their abundance and composition both on spatial and temporal scales. Yet, most of our understanding about these processes comes from laboratory model organism studies, mesocosm experiments or single temporal transects. Spatial-temporal studies examining interactions of phytoplankton blooms and bacterioplankton community composition and function, though being highly informative, are scarce. In this study, pelagic microbial community dynamics (bacteria and phytoplankton and environmental variables were monitored during a spring bloom across the Baltic Proper (two cruises between North Germany to Gulf of Finland. To test to what extent bacterioplankton community composition relates to the spring bloom, we used next generation amplicon sequencing of the 16S rRNA gene, phytoplankton diversity analysis based on microscopy counts and population genotyping of the dominating diatom Skeletonema marinoi. Several phytoplankton bloom related and environmental variables were identified to influence bacterial community composition. Members of Bacteroidetes and Alphaproteobacteria dominated the bacterial community composition but the bacterial groups showed no apparent correlation with direct bloom related variables. The less abundant bacterial phyla Actinobacteria, Planctomycetes, and Verrucomicrobia, on the other hand, were strongly associated with phytoplankton biomass, diatom:dinoflagellate ratio and colored dissolved organic matter (cDOM. Many bacterial operational taxonomic units (OTUs showed high niche specificities. For example, particular Bacteroidetes OTUs were associated with two distinct genetic clusters of S. marinoi. Our study revealed the complexity of interactions of bacterial

  16. Chitin mixed in potting soil alters lettuce growth, the survival of zoonotic bacteria on the leaves and associated rhizosphere microbiology.

    Directory of Open Access Journals (Sweden)

    Jane eDebode

    2016-04-01

    Full Text Available Chitin is a promising soil amendment for improving soil quality, plant growth and plant resilience. The objectives of this study were twofold. First, to study the effect of chitin mixed in potting soil on lettuce growth and on the survival of two zoonotic bacterial pathogens, Escherichia coli O157:H7 and Salmonella enterica on the lettuce leaves. Second, to assess the related changes in the microbial lettuce rhizosphere, using phospholipid fatty acid (PLFA analysis and amplicon sequencing of a bacterial 16S rRNA gene fragment and the fungal ITS2. As a result of chitin addition, lettuce fresh yield weight was significantly increased. S. enterica survival in the lettuce phyllosphere was significantly reduced. The E. coli O157:H7 survival was also lowered, but not significantly. Moreover, significant changes were observed in the bacterial and fungal community of the lettuce rhizosphere. PLFA analysis showed a significant increase in fungal and bacterial biomass. Amplicon sequencing showed no increase in fungal and bacterial biodiversity, but relative abundances of the bacterial phyla Acidobacteria, Verrucomicrobia, Actinobacteria, Bacteroidetes, and Proteobacteria and the fungal phyla Ascomycota, Basidiomycota, and Zygomycota were significantly changed. More specifically, a more than tenfold increase was observed for operational taxonomic units (OTUs belonging to the bacterial genera Cellvibrio, Pedobacter, Dyadobacter, and Streptomyces and to the fungal genera Lecanicillium and Mortierella. These genera include several species previously reported to be involved in biocontrol, plant growth promotion, the nitrogen cycle and chitin degradation. These results enhance the understanding of the response of the rhizosphere microbiome to chitin amendment. Moreover, this is the first study to investigate the use of soil amendments to control the survival of S. enterica on plant leaves.

  17. Understanding alternative fluxes/effluxes through comparative metabolic pathway analysis of phylum actinobacteria using a simplified approach.

    Science.gov (United States)

    Verma, Mansi; Lal, Devi; Saxena, Anjali; Anand, Shailly; Kaur, Jasvinder; Kaur, Jaspreet; Lal, Rup

    2013-12-01

    Actinobacteria are known for their diverse metabolism and physiology. Some are dreadful human pathogens whereas some constitute the natural flora for human gut. Therefore, the understanding of metabolic pathways is a key feature for targeting the pathogenic bacteria without disturbing the symbiotic ones. A big challenge faced today is multiple drug resistance by Mycobacterium and other pathogens that utilize alternative fluxes/effluxes. With the availability of genome sequence, it is now feasible to conduct the comparative in silico analysis. Here we present a simplified approach to compare metabolic pathways so that the species specific enzyme may be traced and engineered for future therapeutics. The analyses of four key carbohydrate metabolic pathways, i.e., glycolysis, pyruvate metabolism, tri carboxylic acid cycle and pentose phosphate pathway suggest the presence of alternative fluxes. It was found that the upper pathway of glycolysis was highly variable in the actinobacterial genomes whereas lower glycolytic pathway was highly conserved. Likewise, pentose phosphate pathway was well conserved in contradiction to TCA cycle, which was found to be incomplete in majority of actinobacteria. The clustering based on presence and absence of genes of these metabolic pathways clearly revealed that members of different genera shared identical pathways and, therefore, provided an easy method to identify the metabolic similarities/differences between pathogenic and symbiotic organisms. The analyses could identify isoenzymes and some key enzymes that were found to be missing in some pathogenic actinobacteria. The present work defines a simple approach to explore the effluxes in four metabolic pathways within the phylum actinobacteria. The analysis clearly reflects that actinobacteria exhibit diverse routes for metabolizing substrates. The pathway comparison can help in finding the enzymes that can be used as drug targets for pathogens without effecting symbiotic organisms

  18. Insights from 20 years of bacterial genome sequencing

    DEFF Research Database (Denmark)

    Land, Miriam; Hauser, Loren; Jun, Se-Ran

    2015-01-01

    Since the first two complete bacterial genome sequences were published in 1995, the science of bacteria has dramatically changed. Using third-generation DNA sequencing, it is possible to completely sequence a bacterial genome in a few hours and identify some types of methylation sites along...... the genome as well. Sequencing of bacterial genome sequences is now a standard procedure, and the information from tens of thousands of bacterial genomes has had a major impact on our views of the bacterial world. In this review, we explore a series of questions to highlight some insights that comparative...... genomics has produced. To date, there are genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. However, the distribution is quite skewed towards a few phyla that contain model organisms. But the breadth is continuing to improve, with projects dedicated to filling...

  19. Peritonitis - spontaneous bacterial

    Science.gov (United States)

    Spontaneous bacterial peritonitis (SBP); Ascites - peritonitis; Cirrhosis - peritonitis ... who are on peritoneal dialysis for kidney failure. Peritonitis may have other causes . These include infection from ...

  20. Bacterial lipases

    NARCIS (Netherlands)

    Jaeger, Karl-Erich; Ransac, Stéphane; Dijkstra, Bauke W.; Colson, Charles; Heuvel, Margreet van; Misset, Onno

    Many different bacterial species produce lipases which hydrolyze esters of glycerol with preferably long-chain fatty acids. They act at the interface generated by a hydrophobic lipid substrate in a hydrophilic aqueous medium. A characteristic property of lipases is called interfacial activation,

  1. Stimulation of bacterial DNA synthesis by algal exudates in attached algal-bacterial consortia

    International Nuclear Information System (INIS)

    Murray, R.E.; Cooksey, K.E.; Priscu, J.C.

    1986-01-01

    Algal-bacterial consortia attached to polystyrene surfaces were prepared in the laboratory by using the marine diatom Amphora coffeaeformis and the marine bacterium Vibrio proteolytica (the approved name of this bacterium is Vibrio proteolyticus. The organisms were attached to the surfaces at cell densities of approximately 5 x 10 4 cells cm -2 (diatoms) and 5 x 10 6 cells cm -2 (bacteria). The algal-bacterial consortia consistently exhibited higher rates of [ 3 H]thymidine incorporation than did biofilms composed solely of bacteria. The rates of [ 3 H]thymidine incorporation by the algal-bacterial consortia were fourfold greater than the rates of incorporation by monobacterial biofilms 16 h after biofilm formation and were 16-fold greater 70 h after biofilm formation. Extracellular material released from the attached Amphora cells supported rates of bacterial activity (0.8 x 10 -21 mol to 17.9 x 10 -21 mol of [ 3 H]thymidine incorporated cell -1 h -1 ) and growth (doubling time, 29.5 to 1.4 days) comparable to values reported for a wide variety of marine and freshwater ecosystems. In the presence of sessile diatom populations, DNA synthesis by attached V. proteolytica cells was light dependent and increased with increasing algal abundance. The metabolic activity of diatoms thus appears to be the rate-limiting process in biofilm development on illuminated surfaces under conditions of low bulk-water dissolved organic carbon

  2. Bacterial cells with improved tolerance to isobutyric acid

    DEFF Research Database (Denmark)

    2017-01-01

    Bacterial cells genetically modified to improve their tolerance to certain commodity chemicals, such as isobutyric acid and related compounds, and methods of preparing and using such bacterial cells for production of isobutyric acid and related compounds.......Bacterial cells genetically modified to improve their tolerance to certain commodity chemicals, such as isobutyric acid and related compounds, and methods of preparing and using such bacterial cells for production of isobutyric acid and related compounds....

  3. Impact of Trichloroethylene Exposure on the Microbial Diversity and Protein Expression in Anaerobic Granular Biomass at 37°C and 15°C

    Directory of Open Access Journals (Sweden)

    Alma Siggins

    2012-01-01

    Full Text Available Granular biomass from a laboratory-scale anaerobic bioreactor trial was analysed to identify changes in microbial community structure and function in response to temperature and trichloroethylene (TCE. Two bioreactors were operated at 37°C, while two were operated at 15°C. At the time of sampling, one of each temperature pair of bioreactors was exposed to process failure-inducing concentrations of TCE (60 mg L−1 while the other served as a TCE-free control. Bacterial community structure was investigated using denaturing gradient gel electrophoresis (DGGE and 16S rRNA gene clone library analysis. Temperature was identified as an important factor for bacterial community composition, while minor differences were associated with trichloroethylene supplementation. Proteobacteria was the dominant phylum in all bioreactors, while clone library analysis revealed a higher proportion of Bacteroidetes-, Chloroflexi-, and Firmicutes-like clones at 15°C than at 37°C. Comparative metaproteomics in the presence and absence of TCE was carried out by two-dimensional gel electrophoresis (2-DGE, and 28 protein spots were identified, with putative functions related to cellular processes, including methanogenesis, glycolysis, the glyoxylate cycle, and the methyl malonyl pathway. A good agreement between metaproteomic species assignment and phylogenetic information was observed, with 10 of the identified proteins associated with members of the phylum Proteobacteria.

  4. Biodiversity of thermophilic prokaryotes with hydrolytic activities in hot springs of Uzon Caldera, Kamchatka (Russia).

    Science.gov (United States)

    Kublanov, Ilya V; Perevalova, Anna A; Slobodkina, Galina B; Lebedinsky, Aleksander V; Bidzhieva, Salima K; Kolganova, Tatyana V; Kaliberda, Elena N; Rumsh, Lev D; Haertlé, Thomas; Bonch-Osmolovskaya, Elizaveta A

    2009-01-01

    Samples of water from the hot springs of Uzon Caldera with temperatures from 68 to 87 degrees C and pHs of 4.1 to 7.0, supplemented with proteinaceous (albumin, casein, or alpha- or beta-keratin) or carbohydrate (cellulose, carboxymethyl cellulose, chitin, or agarose) biological polymers, were filled with thermal water and incubated at the same sites, with the contents of the tubes freely accessible to the hydrothermal fluid. As a result, several enrichment cultures growing in situ on different polymeric substrates were obtained. Denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA gene fragments obtained after PCR with Bacteria-specific primers showed that the bacterial communities developing on carbohydrates included the genera Caldicellulosiruptor and Dictyoglomus and that those developing on proteins contained members of the Thermotogales order. DGGE analysis performed after PCR with Archaea- and Crenarchaeota-specific primers showed that archaea related to uncultured environmental clones, particularly those of the Crenarchaeota phylum, were present in both carbohydrate- and protein-degrading communities. Five isolates obtained from in situ enrichments or corresponding natural samples of water and sediments represented the bacterial genera Dictyoglomus and Caldanaerobacter as well as new archaea of the Crenarchaeota phylum. Thus, in situ enrichment and consequent isolation showed the diversity of thermophilic prokaryotes competing for biopolymers in microbial communities of terrestrial hot springs.

  5. Seasonal patterns in microbial communities inhabiting the hot springs of Tengchong, Yunnan Province, China.

    Science.gov (United States)

    Briggs, Brandon R; Brodie, Eoin L; Tom, Lauren M; Dong, Hailiang; Jiang, Hongchen; Huang, Qiuyuan; Wang, Shang; Hou, Weiguo; Wu, Geng; Huang, Liuquin; Hedlund, Brian P; Zhang, Chuanlun; Dijkstra, Paul; Hungate, Bruce A

    2014-06-01

    Studies focusing on seasonal dynamics of microbial communities in terrestrial and marine environments are common; however, little is known about seasonal dynamics in high-temperature environments. Thus, our objective was to document the seasonal dynamics of both the physicochemical conditions and the microbial communities inhabiting hot springs in Tengchong County, Yunnan Province, China. The PhyloChip microarray detected 4882 operational taxonomic units (OTUs) within 79 bacterial phylum-level groups and 113 OTUs within 20 archaeal phylum-level groups, which are additional 54 bacterial phyla and 11 archaeal phyla to those that were previously described using pyrosequencing. Monsoon samples (June 2011) showed increased concentrations of potassium, total organic carbon, ammonium, calcium, sodium and total nitrogen, and decreased ferrous iron relative to the dry season (January 2011). At the same time, the highly ordered microbial communities present in January gave way to poorly ordered communities in June, characterized by higher richness of Bacteria, including microbes related to mesophiles. These seasonal changes in geochemistry and community structure are likely due to high rainfall influx during the monsoon season and indicate that seasonal dynamics occurs in high-temperature environments experiencing significant changes in seasonal recharge. Thus, geothermal environments are not isolated from the surrounding environment and seasonality affects microbial ecology. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Bacterial community succession in pine-wood decomposition

    Directory of Open Access Journals (Sweden)

    Anna eKielak

    2016-03-01

    Full Text Available Though bacteria and fungi are common inhabitants of decaying wood, little is known about the relationship between bacterial and fungal community dynamics during natural wood decay. Based on previous studies involving inoculated wood blocks, strong fungal selection on bacteria abundance and community composition was expected to occur during natural wood decay. Here we focused on bacterial and fungal community compositions in pine wood samples collected from dead trees in different stages of decomposition. We showed that bacterial communities undergo less drastic changes than fungal communities during wood decay. Furthermore, we found that bacterial community assembly was a stochastic process at initial stage of wood decay and became more deterministic in later stages, likely due to environmental factors. Moreover, composition of bacterial communities did not respond to the changes in the major fungal species present in the wood but rather to the stage of decay reflected by the wood density. We concluded that the shifts in the bacterial communities were a result of the changes in wood properties during decomposition and largely independent of the composition of the wood-decaying fungal communities.

  7. Microbial analysis in primary and persistent endodontic infections by using pyrosequencing.

    Science.gov (United States)

    Hong, Bo-Young; Lee, Tae-Kwon; Lim, Sang-Min; Chang, Seok Woo; Park, Joonhong; Han, Seung Hyun; Zhu, Qiang; Safavi, Kamran E; Fouad, Ashraf F; Kum, Kee Yeon

    2013-09-01

    The aim of this study was to investigate the bacterial community profile of intracanal microbiota in primary and persistent endodontic infections associated with asymptomatic chronic apical periodontitis by using GS-FLX Titanium pyrosequencing. The null hypothesis was that there is no difference in diversity of overall bacterial community profiles between primary and persistent infections. Pyrosequencing analysis from 10 untreated and 8 root-filled samples was conducted. Analysis from 18 samples yielded total of 124,767 16S rRNA gene sequences (with a mean of 6932 reads per sample) that were taxonomically assigned into 803 operational taxonomic units (3% distinction), 148 genera, and 10 phyla including unclassified. Bacteroidetes was the most abundant phylum in both primary and persistent infections. There were no significant differences in bacterial diversity between the 2 infection groups (P > .05). The bacterial community profile that was based on dendrogram showed that bacterial population in both infections was not significantly different in their structure and composition (P > .05). The present pyrosequencing study demonstrates that persistent infections have as diverse bacterial community as primary infections. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Endocarditis in adults with bacterial meningitis

    NARCIS (Netherlands)

    Lucas, Marjolein J.; Brouwer, Matthijs C.; van der Ende, Arie; van de Beek, Diederik

    2013-01-01

    Endocarditis may precede or complicate bacterial meningitis, but the incidence and impact of endocarditis in bacterial meningitis are unknown. We assessed the incidence and clinical characteristics of patients with meningitis and endocarditis from a nationwide cohort study of adults with

  9. Bacterial Degradation of Aromatic Compounds

    Directory of Open Access Journals (Sweden)

    Qing X. Li

    2009-01-01

    Full Text Available Aromatic compounds are among the most prevalent and persistent pollutants in the environment. Petroleum-contaminated soil and sediment commonly contain a mixture of polycyclic aromatic hydrocarbons (PAHs and heterocyclic aromatics. Aromatics derived from industrial activities often have functional groups such as alkyls, halogens and nitro groups. Biodegradation is a major mechanism of removal of organic pollutants from a contaminated site. This review focuses on bacterial degradation pathways of selected aromatic compounds. Catabolic pathways of naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene are described in detail. Bacterial catabolism of the heterocycles dibenzofuran, carbazole, dibenzothiophene, and dibenzodioxin is discussed. Bacterial catabolism of alkylated PAHs is summarized, followed by a brief discussion of proteomics and metabolomics as powerful tools for elucidation of biodegradation mechanisms.

  10. Determining the bacterial cell biology of Planctomycetes.

    Science.gov (United States)

    Boedeker, Christian; Schüler, Margarete; Reintjes, Greta; Jeske, Olga; van Teeseling, Muriel C F; Jogler, Mareike; Rast, Patrick; Borchert, Daniela; Devos, Damien P; Kucklick, Martin; Schaffer, Miroslava; Kolter, Roberto; van Niftrik, Laura; Engelmann, Susanne; Amann, Rudolf; Rohde, Manfred; Engelhardt, Harald; Jogler, Christian

    2017-04-10

    Bacteria of the phylum Planctomycetes have been previously reported to possess several features that are typical of eukaryotes, such as cytosolic compartmentalization and endocytosis-like macromolecule uptake. However, recent evidence points towards a Gram-negative cell plan for Planctomycetes, although in-depth experimental analysis has been hampered by insufficient genetic tools. Here we develop methods for expression of fluorescent proteins and for gene deletion in a model planctomycete, Planctopirus limnophila, to analyse its cell organization in detail. Super-resolution light microscopy of mutants, cryo-electron tomography, bioinformatic predictions and proteomic analyses support an altered Gram-negative cell plan for Planctomycetes, including a defined outer membrane, a periplasmic space that can be greatly enlarged and convoluted, and an energized cytoplasmic membrane. These conclusions are further supported by experiments performed with two other Planctomycetes, Gemmata obscuriglobus and Rhodopirellula baltica. We also provide experimental evidence that is inconsistent with endocytosis-like macromolecule uptake; instead, extracellular macromolecules can be taken up and accumulate in the periplasmic space through unclear mechanisms.

  11. Bacterial community affects toxin production by Gymnodinium catenatum.

    Directory of Open Access Journals (Sweden)

    Maria E Albinsson

    Full Text Available The paralytic shellfish toxin (PST-producing dinoflagellate Gymnodinium catenatum grows in association with a complex marine bacterial community that is both essential for growth and can alter culture growth dynamics. Using a bacterial community replacement approach, we examined the intracellular PST content, production rate, and profile of G. catenatum cultures grown with bacterial communities of differing complexity and composition. Clonal offspring were established from surface-sterilized resting cysts (produced by sexual crosses of strain GCDE06 and strain GCLV01 and grown with: 1 complex bacterial communities derived from each of the two parent cultures; 2 simplified bacterial communities composed of the G. catenatum-associated bacteria Marinobacter sp. strain DG879 or Alcanivorax sp. strain DG881; 3 a complex bacterial community associated with an untreated, unsterilized sexual cross of the parents. Toxin content (STX-equivalent per cell of clonal offspring (134-197 fmol STX cell(-1 was similar to the parent cultures (169-206 fmol STX cell(-1, however cultures grown with single bacterial types contained less toxin (134-146 fmol STX cell(-1 than offspring or parent cultures grown with more complex mixed bacterial communities (152-176 fmol STX cell(-1. Specific toxin production rate (fmol STX day(-1 was strongly correlated with culture growth rate. Net toxin production rate (fmol STX cell(-1 day(-1 did not differ among treatments, however, mean net toxin production rate of offspring was 8-fold lower than the parent cultures, suggesting that completion of the sexual lifecycle in laboratory cultures leads to reduced toxin production. The PST profiles of offspring cultures were most similar to parent GCDE06 with the exception of cultures grown with Marinobacter sp. DG879 which produced higher proportions of dcGTX2+3 and GC1+2, and lower proportions of C1+2 and C3+4. Our data demonstrate that the bacterial community can alter intracellular STX

  12. Bacterial community affects toxin production by Gymnodinium catenatum.

    Science.gov (United States)

    Albinsson, Maria E; Negri, Andrew P; Blackburn, Susan I; Bolch, Christopher J S

    2014-01-01

    The paralytic shellfish toxin (PST)-producing dinoflagellate Gymnodinium catenatum grows in association with a complex marine bacterial community that is both essential for growth and can alter culture growth dynamics. Using a bacterial community replacement approach, we examined the intracellular PST content, production rate, and profile of G. catenatum cultures grown with bacterial communities of differing complexity and composition. Clonal offspring were established from surface-sterilized resting cysts (produced by sexual crosses of strain GCDE06 and strain GCLV01) and grown with: 1) complex bacterial communities derived from each of the two parent cultures; 2) simplified bacterial communities composed of the G. catenatum-associated bacteria Marinobacter sp. strain DG879 or Alcanivorax sp. strain DG881; 3) a complex bacterial community associated with an untreated, unsterilized sexual cross of the parents. Toxin content (STX-equivalent per cell) of clonal offspring (134-197 fmol STX cell(-1)) was similar to the parent cultures (169-206 fmol STX cell(-1)), however cultures grown with single bacterial types contained less toxin (134-146 fmol STX cell(-1)) than offspring or parent cultures grown with more complex mixed bacterial communities (152-176 fmol STX cell(-1)). Specific toxin production rate (fmol STX day(-1)) was strongly correlated with culture growth rate. Net toxin production rate (fmol STX cell(-1) day(-1)) did not differ among treatments, however, mean net toxin production rate of offspring was 8-fold lower than the parent cultures, suggesting that completion of the sexual lifecycle in laboratory cultures leads to reduced toxin production. The PST profiles of offspring cultures were most similar to parent GCDE06 with the exception of cultures grown with Marinobacter sp. DG879 which produced higher proportions of dcGTX2+3 and GC1+2, and lower proportions of C1+2 and C3+4. Our data demonstrate that the bacterial community can alter intracellular STX

  13. Copper effects on bacterial activity of estuarine silty sediments

    Science.gov (United States)

    Almeida, Adelaide; Cunha, Ângela; Fernandes, Sandra; Sobral, Paula; Alcântara, Fernanda

    2007-07-01

    Bacteria of silty estuarine sediments were spiked with copper to 200 μg Cu g -1 dry weight sediment in order to assess the impact of copper on bacterial degradation of organic matter and on bacterial biomass production. Bacterial density was determined by direct counting under epifluorescence microscopy and bacterial production by the incorporation of 3H-Leucine. Leucine turnover rate was evaluated by 14C-leucine incorporation and ectoenzymatic activities were estimated as the hydrolysis rate of model substrates for β-glucosidase and leucine-aminopeptidase. The presence of added copper in the microcosms elicited, after 21 days of incubation, generalised anoxia and a decrease in organic matter content. The non-eroded surface of the copper-spiked sediment showed, when compared to the control, a decrease in bacterial abundance and significant lower levels of bacterial production and of leucine turnover rate. Bacterial production and leucine turnover rate decreased to 1.4% and 13% of the control values, respectively. Ectoenzymatic activities were also negatively affected but by smaller factors. After erosion by the water current in laboratory flume conditions, the eroded surface of the control sediment showed a generalised decline in all bacterial activities. The erosion of the copper-spiked sediment showed, however, two types of responses with respect to bacterial activities at the exposed surface: positive responses of bacterial production and leucine turnover rate contrasting with slight negative responses of ectoenzymatic activities. The effects of experimental erosion in the suspended cells were also different in the control and in the copper-spiked sediment. Bacterial cells in the control microcosm exhibited, when compared to the non-eroded sediment cells, decreases in all activities after the 6-h suspension. The response of the average suspended copper-spiked sediment cell differed from the control by a less sharp decrease in ectoenzymatic activities and

  14. Algal-bacterial interactions in metal contaminated floodplain sediments

    International Nuclear Information System (INIS)

    Boivin, M.E.Y.; Greve, G.D.; Garcia-Meza, J.V.; Massieux, B.; Sprenger, W.; Kraak, M.H.S.; Breure, A.M.; Rutgers, M.; Admiraal, W.

    2007-01-01

    The aim of the present study was to investigate algal-bacterial interactions in a gradient of metal contaminated natural sediments. By means of multivariate techniques, we related the genetic structure (denaturing gradient gel electrophoresis, DGGE) and the physiological structure (community-level physiological profiling, CLPP) of the bacterial communities to the species composition of the algal communities and to the abiotic environmental variables, including metal contamination. The results revealed that genetic and physiological structure of the bacterial communities correlated with the species composition of the algal community, but hardly to the level of metal pollution. This must be interpreted as an indication for a strong and species-specific linkage of algal and bacterial species in floodplain sediments. Metals were, however, not proven to affect either the algal or the bacterial communities of the Dutch river floodplains. - Algal and bacterial communities in floodplain sediments are interlinked, but are not affected by metal pollution

  15. Glyphosate Shapes a Dinoflagellate-Associated Bacterial Community While Supporting Algal Growth as Sole Phosphorus Source

    Directory of Open Access Journals (Sweden)

    Cong Wang

    2017-12-01

    Full Text Available Glyphosate is a widely used herbicide that can potentially be a phosphorus (P source for phytoplankton and microbes when discharged into the coastal ocean. In contrast to bacteria, few eukaryotic phytoplankton species appear capable of directly utilizing glyphosate. In this study, we observed, after a long delay (>60 days, Prorocentrum donghaiense, a dinoflagellate known to cause major harmful algal blooms in the East China Sea, could grow in a medium with glyphosate as the sole P source; suggesting that P. donghaiense growth was through bacterial mediation. To understand how the bacteria community might respond to glyphosate, we analyzed the 16S rRNA genes of the microbial community present in P. donghaiense cultures when grown under lower (36 μM and higher (360 μM glyphosate concentrations. Based on both Sanger and Illumina high throughput sequencing, we obtained more than 55,323 good-quality sequences, which were classified into six phyla. As the concentration of glyphosate rose, our results showed a significant increase in the phyla Proteobacteria and Firmicutes and a decrease in the phylum Bacteroidetes. Further qPCR (Quantitative PCR analysis showed higher abundances of two specific phylotypes in the higher-glyphosate P. donghaiense cultures when compared to the lower-glyphosate and no-glyphosate cultures. Correspondingly, qPCR displayed the same trend for the abundance of a gammaproteobacterial type of phnJ, a gene encoding Alpha-D-ribose 1-methylphosphonate 5-phosphate C-P lyase, which is responsible for phosphonate degradation. In addition, Tax4Fun analysis based on our 16S rRNA gene sequences results in higher predicted abundances of phosphonate metabolizing genes in glyphosate-treated cultures. This study demonstrates that glyphosate could selectively promote the growth of particular groups of bacteria within an algal culture and in glyphosate enriched coastal waters, this interaction may potentially further facilitate the growth of

  16. Neonatal Bacterial Meningitis And Dexamethasone Adjunctive ...

    African Journals Online (AJOL)

    Methodology: Babies admitted from1992 to 1995 in the Special Care Baby Unit of the University of Maiduguri Teaching Hospital, Maduguri, Nigeria, with bacterial meningitis were studied prospectively. Neonatal bacterial meningitis was confirmed if the cerebrospinal fluid (CSF) microbiological, chemical, immunological and ...

  17. Molecular analysis of microbial community in arsenic-rich groundwater of Kolsor, West Bengal.

    Science.gov (United States)

    Sarkar, Angana; Paul, Dhiraj; Kazy, Sufia K; Sar, Pinaki

    2016-01-01

    Bacterial community composition within the highly arsenic (As) contaminated groundwater from Kolsur, West Bengal was analyzed over a period of 3 years using 16S rRNA gene clone library and Denaturing Gradient Gel Electrophoresis (DGGE). Molecular phylogenetic study revealed abundance of α-Proteobacteria (56%) and Firmicutes (29%) along with members of β-Proteobacteria, Verrucomicrobia and Sphingobacteria as relatively minor groups. Along with consistent physicochemical environment, a stable microbial community structure comprising of bacterial genera Agrobacterium-Rhizobium, Ochrobactrum, Pseudomonas, Anoxybacillus and Penibacillus was recorded over the three years study period. Presence of cytosolic arsenate reductase (arsC) gene was observed within the microbial community. Phylogenetic analyses revealed that all the arsC sequences were closely related to the same gene from γ-proteobacterial members while the community was consisted of mainly α-proteobacterial groups. Such phylogenetic incongruence between 16S rRNA and arsC genes possibly indicated horizontal gene transfer (HGT) of the ars genes within the groundwater community. Overall, the study reported a nearly stable geomicrobial environment and genetic determinant related to As homeostasis gene, and provided a better insight on biogeochemistry of As contaminated aquifer of West Bengal.

  18. Bacterial fatty acid metabolism in modern antibiotic discovery.

    Science.gov (United States)

    Yao, Jiangwei; Rock, Charles O

    2017-11-01

    Bacterial fatty acid synthesis is essential for many pathogens and different from the mammalian counterpart. These features make bacterial fatty acid synthesis a desirable target for antibiotic discovery. The structural divergence of the conserved enzymes and the presence of different isozymes catalyzing the same reactions in the pathway make bacterial fatty acid synthesis a narrow spectrum target rather than the traditional broad spectrum target. Furthermore, bacterial fatty acid synthesis inhibitors are single-targeting, rather than multi-targeting like traditional monotherapeutic, broad-spectrum antibiotics. The single-targeting nature of bacterial fatty acid synthesis inhibitors makes overcoming fast-developing, target-based resistance a necessary consideration for antibiotic development. Target-based resistance can be overcome through multi-targeting inhibitors, a cocktail of single-targeting inhibitors, or by making the single targeting inhibitor sufficiently high affinity through a pathogen selective approach such that target-based mutants are still susceptible to therapeutic concentrations of drug. Many of the pathogens requiring new antibiotic treatment options encode for essential bacterial fatty acid synthesis enzymes. This review will evaluate the most promising targets in bacterial fatty acid metabolism for antibiotic therapeutics development and review the potential and challenges in advancing each of these targets to the clinic and circumventing target-based resistance. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Initial insights into bacterial succession during human decomposition.

    Science.gov (United States)

    Hyde, Embriette R; Haarmann, Daniel P; Petrosino, Joseph F; Lynne, Aaron M; Bucheli, Sibyl R

    2015-05-01

    Decomposition is a dynamic ecological process dependent upon many factors such as environment, climate, and bacterial, insect, and vertebrate activity in addition to intrinsic properties inherent to individual cadavers. Although largely attributed to microbial metabolism, very little is known about the bacterial basis of human decomposition. To assess the change in bacterial community structure through time, bacterial samples were collected from several sites across two cadavers placed outdoors to decompose and analyzed through 454 pyrosequencing and analysis of variable regions 3-5 of the bacterial 16S ribosomal RNA (16S rRNA) gene. Each cadaver was characterized by a change in bacterial community structure for all sites sampled as time, and decomposition, progressed. Bacteria community structure is variable at placement and before purge for all body sites. At bloat and purge and until tissues began to dehydrate or were removed, bacteria associated with flies, such as Ignatzschineria and Wohlfahrtimonas, were common. After dehydration and skeletonization, bacteria associated with soil, such as Acinetobacter, were common at most body sites sampled. However, more cadavers sampled through multiple seasons are necessary to assess major trends in bacterial succession.

  20. SEXUAL DYSFUNCTION ASSOCIATION WITH THE CHRONIC BACTERIAL PROSTATITIS

    Directory of Open Access Journals (Sweden)

    H. S. Ibishev

    2013-01-01

    Full Text Available The study involved 230 patients aged 20 to 45 years with a diagnosis of chronic bacterial prostatitis. The study found that in patients with chronic bacterial prostatitis clinical picture, in addition to pain, is a lower urinary tract symptoms, neuro-vegetative and sexual dysfunction. In patients with chronic bacterial prostatitis, recorded various sexual disorders, most of which are normalized after antibiotic therapy. Erectile dysfunction, which are recorded in patients with chronic bacterial prostatitis is psychogenic in nature dysfunction.

  1. The burden of bacterial vaginosis: women's experience of the physical, emotional, sexual and social impact of living with recurrent bacterial vaginosis.

    Directory of Open Access Journals (Sweden)

    Jade E Bilardi

    Full Text Available BACKGROUND: Bacterial vaginosis is a common vaginal infection, causing an abnormal vaginal discharge and/or odour in up to 50% of sufferers. Recurrence is common following recommended treatment. There are limited data on women's experience of bacterial vaginosis, and the impact on their self-esteem, sexual relationships and quality of life. The aim of this study was to explore the experiences and impact of recurrent bacterial vaginosis on women. METHODS: A social constructionist approach was chosen as the framework for the study. Thirty five women with male and/or female partners participated in semi-structured interviews face-to-face or by telephone about their experience of recurrent bacterial vaginosis. RESULTS: Recurrent bacterial vaginosis impacted on women to varying degrees, with some women reporting it had little impact on their lives but most reporting it had a moderate to severe impact. The degree to which it impacted on women physically, emotionally, sexually and socially often depended on the frequency of episodes and severity of symptoms. Women commonly reported that symptoms of bacterial vaginosis made them feel embarrassed, ashamed, 'dirty' and very concerned others may detect their malodour and abnormal discharge. The biggest impact of recurrent bacterial vaginosis was on women's self-esteem and sex lives, with women regularly avoiding sexual activity, in particular oral sex, as they were too embarrassed and self-conscious of their symptoms to engage in these activities. Women often felt confused about why they were experiencing recurrent bacterial vaginosis and frustrated at their lack of control over recurrence. CONCLUSION: Women's experience of recurrent bacterial vaginosis varied broadly and significantly in this study. Some women reported little impact on their lives but most reported a moderate to severe impact, mainly on their self-esteem and sex life. Further support and acknowledgement of these impacts are required when

  2. Bacterial flora of conjunctiva after death

    Directory of Open Access Journals (Sweden)

    Sagili Chandrasekhara Reddy

    2013-10-01

    Full Text Available AIM:To evaluate the frequency of bacterial flora of conjunctiva after death (cadaver eyes which will give information about the bacterial contamination of donor eyes, and the in-vitro sensitivity of isolated bacteria to the commonly used antibiotics in ophthalmic practice.METHODS: Conjunctival swabs were taken from the cadavers (motor vehicle accident deaths and patients who died in the hospital, within 6h after death, and sent for culture and sensitivity test. Conjunctival swabs, taken from the healthy conjunctiva of patients admitted for cataract surgery, were sent for culture and sensitivity as controls (eyes in those of living status. The bacterial isolates were tested against the commonly used antibiotics (chloramphenicol, gentamicin, ciprofloxacin in ophthalmology practice.RESULTS: Bacteria were isolated in 41 out of 100 conjunctival swabs (41%, taken from 50 cadavers (study group. Coagulase negative staphylococcus was the most common bacteria isolated (15%, followed by pseudomonas aeruginosa (5%. Gentamicin was effective against majority of the bacterial isolates (82%. Bacteria were isolated from 7 out of 100 conjunctival swabs taken as control group (eyes in living state. Coagulase negative staphylococcus was the most common organism (5% isolated in control group; the others were staphylococcus aureus (1% and beta hemolyticus streptococci (1%.CONCLUSION: Bacteria were isolated from 41% of the cadaver eyes. High percentage sensitivity of the bacterial isolates to gentamicin (82% supports the practice of thorough irrigation of the eyes with gentamicin solution before starting the procedure of enucleation followed by immersion of the enucleated eyeballs in gentamycin solution, to prevent the bacterial contamination.

  3. Different continuous cropping spans significantly affect microbial community membership and structure in a vanilla-grown soil as revealed by deep pyrosequencing.

    Science.gov (United States)

    Xiong, Wu; Zhao, Qingyun; Zhao, Jun; Xun, Weibing; Li, Rong; Zhang, Ruifu; Wu, Huasong; Shen, Qirong

    2015-07-01

    In the present study, soil bacterial and fungal communities across vanilla continuous cropping time-series fields were assessed through deep pyrosequencing of 16S ribosomal RNA (rRNA) genes and internal transcribed spacer (ITS) regions. The results demonstrated that the long-term monoculture of vanilla significantly altered soil microbial communities. Soil fungal diversity index increased with consecutive cropping years, whereas soil bacterial diversity was relatively stable. Bray-Curtis dissimilarity cluster and UniFrac-weighted principal coordinate analysis (PCoA) revealed that monoculture time was the major determinant for fungal community structure, but not for bacterial community structure. The relative abundances (RAs) of the Firmicutes, Actinobacteria, Bacteroidetes, and Basidiomycota phyla were depleted along the years of vanilla monoculture. Pearson correlations at the phyla level demonstrated that Actinobacteria, Armatimonadetes, Bacteroidetes, Verrucomicrobia, and Firmicutes had significant negative correlations with vanilla disease index (DI), while no significant correlation for fungal phyla was observed. In addition, the amount of the pathogen Fusarium oxysporum accumulated with increasing years and was significantly positively correlated with vanilla DI. By contrast, the abundance of beneficial bacteria, including Bradyrhizobium and Bacillus, significantly decreased over time. In sum, soil weakness and vanilla stem wilt disease after long-term continuous cropping can be attributed to the alteration of the soil microbial community membership and structure, i.e., the reduction of the beneficial microbes and the accumulation of the fungal pathogen.

  4. Does circumcision alter the periurethral uropathogenic bacterial flora

    African Journals Online (AJOL)

    Background: The aim of this study was to assess the pattern of periurethral bacterial flora in uncircumcised boys and to evaluate the effect of circumcision on alteration of periurethral uropathogenic bacterial flora. Materials and Methods: Pattern of periurethral bacterial flora before and after circumcision was studied ...

  5. Diazotrophic Bacterial Community of Degraded Pastures

    Directory of Open Access Journals (Sweden)

    João Tiago Correia Oliveira

    2017-01-01

    Full Text Available Pasture degradation can cause changes in diazotrophic bacterial communities. Thus, this study aimed to evaluate the culturable and total diazotrophic bacterial community, associated with regions of the rhizosphere and roots of Brachiaria decumbens Stapf. pastures in different stages of degradation. Samples of roots and rhizospheric soil were collected from slightly, partially, and highly degraded pastures. McCrady’s table was used to obtain the Most Probable Number (MPN of bacteria per gram of sample, in order to determine population density and calculate the Shannon-Weaver diversity index. The diversity of total diazotrophic bacterial community was determined by the technique of Denaturing Gradient Gel Electrophoresis (DGGE of the nifH gene, while the diversity of the culturable diazotrophic bacteria was determined by the Polymerase Chain Reaction (BOX-PCR technique. The increase in the degradation stage of the B. decumbens Stapf. pasture did not reduce the population density of the cultivated diazotrophic bacterial community, suggesting that the degradation at any degree of severity was highly harmful to the bacteria. The structure of the total diazotrophic bacterial community associated with B. decumbens Stapf. was altered by the pasture degradation stage, suggesting a high adaptive capacity of the bacteria to altered environments.

  6. The epidemiology of bacterial meningitis in Kosovo.

    Science.gov (United States)

    Namani, Sadie A; Koci, Remzie A; Qehaja-Buçaj, Emine; Ajazaj-Berisha, Lindita; Mehmeti, Murat

    2014-07-14

    The purpose of this study was to present the epidemiologic features of bacterial meningitis in the developing country of Kosovo. Data were collected from active surveillance of bacterial meningitis cases treated at the University Clinical Center of Kosovo in the years 2000 (first post-war year) and 2010. Meningitis cases in 2000 compared with 2010 showed a 35.5% decline in incidence (from 4.8 to 3.1 cases per 100,000 population) and a decrease in the case fatality rate from 10% to 5%. In children, there was a lower mortality rate (5% versus 2%) and a lower incidence of neurological complications (13% versus 16%) as compared to adults (32% versus 10% and 16% versus 35%, respectively). Neisseria meningitidis was the most common pathogen of bacterial meningitis in both study periods. Bacterial meningitis was most prevalent in the pediatric population, and showed an increase in the median age, from three years in 2000 to seven years in 2010. A steady number of bacterial meningitis cases in adults throughout last decade (around 20 cases per year) was recorded. During the last decade, gradual changes have been observed in the epidemiology of bacterial meningitis that are unrelated to the introduction of new vaccines, but are partly due to the improvement of living conditions.

  7. The use of 14C-FIAU to predict bacterial thymidine kinase presence: Implications for radiolabeled FIAU bacterial imaging

    International Nuclear Information System (INIS)

    Peterson, Kristin L.; Reid, William C.; Freeman, Alexandra F.; Holland, Steven M.; Pettigrew, Roderic I.; Gharib, Ahmed M.; Hammoud, Dima A.

    2013-01-01

    Currently available infectious disease imaging techniques cannot differentiate between infection and sterile inflammation or between different types of infections. Recently, radiolabeled FIAU was found to be a substrate for the thymidine kinase (TK) enzyme of multiple pathogenic bacteria, leading to its translational use in the imaging of bacterial infections. Patients with immunodeficiencies, however, are susceptible to a different group of pathogenic bacteria when compared to immunocompetent subjects. In this study, we wanted to predict the usefulness of radiolabeled FIAU in the detection of bacterial infections commonly occurring in patients with immunodeficiencies, in vitro, prior to attempting in vivo imaging with 124 I-FIAU-PET. Methods: We obtained representative strains of bacterial pathogens isolated from actual patients with genetic immunodeficiencies. We evaluated the bacterial susceptibility of different strains to the effect of incubation with FIAU, which would implicate the presence of the thymidine kinase (TK) enzyme. We also incubated the bacteria with 14 C-FIAU and consequently measured its rate of incorporation in the bacterial DNA using a liquid scintillation counter. Results: Unlike the other bacterial strains, the growth of Pseudomonas aeruginosa was not halted by FIAU at any concentration. All the tested clinical isolates demonstrated different levels of 14 C-FIAU uptake, except for P. aeruginosa. Conclusion: Radiolabeled FIAU has been successful in delineating bacterial infections, both in preclinical and pilot translational studies. In patients with immunodeficiencies, Pseudomonas infections are commonly encountered and are usually difficult to differentiate from fungal infections. The use of radiolabeled FIAU for in vivo imaging of those patients, however, would not be useful, considering the apparent lack of TK enzyme in Pseudomonas. One has to keep in mind that not all pathogenic bacteria possess the TK enzyme and as such will not all

  8. Antibiotic resistance of bacterial biofilms

    DEFF Research Database (Denmark)

    Hoiby, N.; Bjarnsholt, T.; Givskov, M.

    2010-01-01

    A biofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting of polysaccharide, protein and DNA. Bacterial biofilms cause chronic infections because they show increased tolerance to antibiotics and disinfectant chemicals as well as resisting phagocytosis...... and other components of the body's defence system. The persistence of, for example, staphylococcal infections related to foreign bodies is due to biofilm formation. Likewise, chronic Pseudomonas aeruginosa lung infection in cystic fibrosis patients is caused by biofilm-growing mucoid strains....... Characteristically, gradients of nutrients and oxygen exist from the top to the bottom of biofilms and these gradients are associated with decreased bacterial metabolic activity and increased doubling times of the bacterial cells; it is these more or less dormant cells that are responsible for some of the tolerance...

  9. Biological consequences of ancient gene acquisition and duplication in the large genome soil bacterium, ""solibacter usitatus"" strain Ellin6076

    Energy Technology Data Exchange (ETDEWEB)

    Challacombe, Jean F [Los Alamos National Laboratory; Eichorst, Stephanie A [Los Alamos National Laboratory; Xie, Gary [Los Alamos National Laboratory; Kuske, Cheryl R [Los Alamos National Laboratory; Hauser, Loren [ORNL; Land, Miriam [ORNL

    2009-01-01

    Bacterial genome sizes range from ca. 0.5 to 10Mb and are influenced by gene duplication, horizontal gene transfer, gene loss and other evolutionary processes. Sequenced genomes of strains in the phylum Acidobacteria revealed that 'Solibacter usistatus' strain Ellin6076 harbors a 9.9 Mb genome. This large genome appears to have arisen by horizontal gene transfer via ancient bacteriophage and plasmid-mediated transduction, as well as widespread small-scale gene duplications. This has resulted in an increased number of paralogs that are potentially ecologically important (ecoparalogs). Low amino acid sequence identities among functional group members and lack of conserved gene order and orientation in the regions containing similar groups of paralogs suggest that most of the paralogs were not the result of recent duplication events. The genome sizes of cultured subdivision 1 and 3 strains in the phylum Acidobacteria were estimated using pulsed-field gel electrophoresis to determine the prevalence of the large genome trait within the phylum. Members of subdivision 1 were estimated to have smaller genome sizes ranging from ca. 2.0 to 4.8 Mb, whereas members of subdivision 3 had slightly larger genomes, from ca. 5.8 to 9.9 Mb. It is hypothesized that the large genome of strain Ellin6076 encodes traits that provide a selective metabolic, defensive and regulatory advantage in the variable soil environment.

  10. Genomic analysis of Melioribacter roseus, facultatively anaerobic organotrophic bacterium representing a novel deep lineage within Bacteriodetes/Chlorobi group.

    Directory of Open Access Journals (Sweden)

    Vitaly V Kadnikov

    Full Text Available Melioribacter roseus is a moderately thermophilic facultatively anaerobic organotrophic bacterium representing a novel deep branch within Bacteriodetes/Chlorobi group. To better understand the metabolic capabilities and possible ecological functions of M. roseus and get insights into the evolutionary history of this bacterial lineage, we sequenced the genome of the type strain P3M-2(T. A total of 2838 open reading frames was predicted from its 3.30 Mb genome. The whole proteome analysis supported phylum-level classification of M. roseus since most of the predicted proteins had closest matches in Bacteriodetes, Proteobacteria, Chlorobi, Firmicutes and deeply-branching bacterium Caldithrix abyssi, rather than in one particular phylum. Consistent with the ability of the bacterium to grow on complex carbohydrates, the genome analysis revealed more than one hundred glycoside hydrolases, glycoside transferases, polysaccharide lyases and carbohydrate esterases. The reconstructed central metabolism revealed pathways enabling the fermentation of complex organic substrates, as well as their complete oxidation through aerobic and anaerobic respiration. Genes encoding the photosynthetic and nitrogen-fixation machinery of green sulfur bacteria, as well as key enzymes of autotrophic carbon fixation pathways, were not identified. The M. roseus genome supports its affiliation to a novel phylum Ignavibateriae, representing the first step on the evolutionary pathway from heterotrophic ancestors of Bacteriodetes/Chlorobi group towards anaerobic photoautotrophic Chlorobi.

  11. Nest Material Shapes Eggs Bacterial Environment.

    Directory of Open Access Journals (Sweden)

    Cristina Ruiz-Castellano

    Full Text Available Selective pressures imposed by pathogenic microorganisms to embryos have selected in hosts for a battery of antimicrobial lines of defenses that includes physical and chemical barriers. Due to the antimicrobial properties of volatile compounds of green plants and of chemicals of feather degrading bacteria, the use of aromatic plants and feathers for nest building has been suggested as one of these barriers. However, experimental evidence suggesting such effects is scarce in the literature. During two consecutive years, we explored experimentally the effects of these nest materials on loads of different groups of bacteria (mesophilic bacteria, Enterobacteriaceae, Staphylococcus and Enterococcus of eggshells in nests of spotless starlings (Sturnus unicolor at the beginning and at the end of the incubation period. This was also explored in artificial nests without incubation activity. We also experimentally increased bacterial density of eggs in natural and artificial nests and explored the effects of nest lining treatments on eggshell bacterial load. Support for the hypothetical antimicrobial function of nest materials was mainly detected for the year and location with larger average values of eggshell bacterial density. The beneficial effects of feathers and plants were more easily detected in artificial nests with no incubation activity, suggesting an active role of incubation against bacterial colonization of eggshells. Pigmented and unpigmented feathers reduced eggshell bacterial load in starling nests and artificial nest boxes. Results from artificial nests allowed us to discuss and discard alternative scenarios explaining the detected association, particularly those related to the possible sexual role of feathers and aromatic plants in starling nests. All these results considered together confirm the antimicrobial functionality mainly of feathers but also of plants used as nest materials, and highlight the importance of temporally and

  12. Nest Material Shapes Eggs Bacterial Environment.

    Science.gov (United States)

    Ruiz-Castellano, Cristina; Tomás, Gustavo; Ruiz-Rodríguez, Magdalena; Martín-Gálvez, David; Soler, Juan José

    2016-01-01

    Selective pressures imposed by pathogenic microorganisms to embryos have selected in hosts for a battery of antimicrobial lines of defenses that includes physical and chemical barriers. Due to the antimicrobial properties of volatile compounds of green plants and of chemicals of feather degrading bacteria, the use of aromatic plants and feathers for nest building has been suggested as one of these barriers. However, experimental evidence suggesting such effects is scarce in the literature. During two consecutive years, we explored experimentally the effects of these nest materials on loads of different groups of bacteria (mesophilic bacteria, Enterobacteriaceae, Staphylococcus and Enterococcus) of eggshells in nests of spotless starlings (Sturnus unicolor) at the beginning and at the end of the incubation period. This was also explored in artificial nests without incubation activity. We also experimentally increased bacterial density of eggs in natural and artificial nests and explored the effects of nest lining treatments on eggshell bacterial load. Support for the hypothetical antimicrobial function of nest materials was mainly detected for the year and location with larger average values of eggshell bacterial density. The beneficial effects of feathers and plants were more easily detected in artificial nests with no incubation activity, suggesting an active role of incubation against bacterial colonization of eggshells. Pigmented and unpigmented feathers reduced eggshell bacterial load in starling nests and artificial nest boxes. Results from artificial nests allowed us to discuss and discard alternative scenarios explaining the detected association, particularly those related to the possible sexual role of feathers and aromatic plants in starling nests. All these results considered together confirm the antimicrobial functionality mainly of feathers but also of plants used as nest materials, and highlight the importance of temporally and geographically

  13. Detergent-compatible bacterial amylases.

    Science.gov (United States)

    Niyonzima, Francois N; More, Sunil S

    2014-10-01

    Proteases, lipases, amylases, and cellulases are enzymes used in detergent formulation to improve the detergency. The amylases are specifically supplemented to the detergent to digest starchy stains. Most of the solid and liquid detergents that are currently manufactured contain alkaline enzymes. The advantages of using alkaline enzymes in the detergent formulation are that they aid in removing tough stains and the process is environmentally friendly since they reduce the use of toxic detergent ingredients. Amylases active at low temperature are preferred as the energy consumption gets reduced, and the whole process becomes cost-effective. Most microbial alkaline amylases are used as detergent ingredients. Various reviews report on the production, purification, characterization, and application of amylases in different industry sectors, but there is no specific review on bacterial or fungal alkaline amylases or detergent-compatible amylases. In this mini-review, an overview on the production and property studies of the detergent bacterial amylases is given, and the stability and compatibility of the alkaline bacterial amylases in the presence of the detergents and the detergent components are highlighted.

  14. Bacterial pathogen manipulation of host membrane trafficking.

    Science.gov (United States)

    Asrat, Seblewongel; de Jesús, Dennise A; Hempstead, Andrew D; Ramabhadran, Vinay; Isberg, Ralph R

    2014-01-01

    Pathogens use a vast number of strategies to alter host membrane dynamics. Targeting the host membrane machinery is important for the survival and pathogenesis of several extracellular, vacuolar, and cytosolic bacteria. Membrane manipulation promotes bacterial replication while suppressing host responses, allowing the bacterium to thrive in a hostile environment. This review provides a comprehensive summary of various strategies used by both extracellular and intracellular bacteria to hijack host membrane trafficking machinery. We start with mechanisms used by bacteria to alter the plasma membrane, delve into the hijacking of various vesicle trafficking pathways, and conclude by summarizing bacterial adaptation to host immune responses. Understanding bacterial manipulation of host membrane trafficking provides insights into bacterial pathogenesis and uncovers the molecular mechanisms behind various processes within a eukaryotic cell.

  15. Grepafloxacin in Patients with Acute Bacterial Exacerbations of Chronic Bronchitis - a Question of Speed in Bacterial Killing

    Directory of Open Access Journals (Sweden)

    Jerome J Schentag

    1998-01-01

    Full Text Available OBJECTIVE: To characterize the population pharmacokinetics and pharmacodynamics of oral grepafloxacin in patients with acute bacterial exacerbations of chronic bronchitis (ABECB, with particular attention to the speed of bacterial killing. This was possible because the study design incorporated daily cultures of the patients’ sputum.

  16. Bacterial vaginosis - aftercare

    Science.gov (United States)

    Bacterial vaginosis (BV) is a type of vaginal infection. The vagina normally contains both healthy bacteria and unhealthy bacteria. BV occurs when more unhealthy bacteria grow than healthy bacteria. No one knows ...

  17. The bacterial meningitis score to distinguish bacterial from aseptic meningitis in children from Sao Paulo, Brazil.

    Science.gov (United States)

    Mekitarian Filho, Eduardo; Horita, Sérgio Massaru; Gilio, Alfredo Elias; Alves, Anna Cláudia Dominguez; Nigrovic, Lise E

    2013-09-01

    In a retrospective cohort of 494 children with meningitis in Sao Paulo, Brazil, the Bacterial Meningitis Score identified all the children with bacterial meningitis (sensitivity 100%, 95% confidence interval: 92-100% and negative predictive value 100%, 95% confidence interval: 98-100%). Addition of cerebrospinal fluid lactate to the score did not improve clinical prediction rule performance.

  18. [Bacterial biofilms and infection].

    Science.gov (United States)

    Lasa, I; Del Pozo, J L; Penadés, J R; Leiva, J

    2005-01-01

    In developed countries we tend to think of heart disease and the numerous forms of cancer as the main causes of mortality, but on a global scale infectious diseases come close, or may even be ahead: 14.9 million deaths in 2002 compared to cardiovascular diseases (16.9 million deaths) and cancer (7.1 million deaths) (WHO report 2004). The infectious agents responsible for human mortality have evolved as medical techniques and hygienic measures have changed. Modern-day acute infectious diseases caused by specialized bacterial pathogens such as diphtheria, tetanus, cholera, plague, which represented the main causes of death at the beginning of XX century, have been effectively controlled with antibiotics and vaccines. In their place, more than half of the infectious diseases that affect mildly immunocompromised patients involve bacterial species that are commensal with the human body; these can produce chronic infections, are resistant to antimicrobial agents and there is no effective vaccine against them. Examples of these infections are the otitis media, native valve endocarditis, chronic urinary infections, bacterial prostatitis, osteomyelitis and all the infections related to medical devices. Direct analysis of the surface of medical devices or of tissues that have been foci of chronic infections shows the presence of large numbers of bacteria surrounded by an exopolysaccharide matrix, which has been named the "biofilm". Inside the biofilm, bacteria grow protected from the action of the antibodies, phagocytic cells and antimicrobial treatments. In this article, we describe the role of bacterial biofilms in human persistent infections.

  19. Abdominal radiation causes bacterial translocation

    International Nuclear Information System (INIS)

    Guzman-Stein, G.; Bonsack, M.; Liberty, J.; Delaney, J.P.

    1989-01-01

    The purpose of this study was to determine if a single dose of radiation to the rat abdomen leads to bacterial translocation into the mesenteric lymph nodes (MLN). A second issue addressed was whether translocation correlates with anatomic damage to the mucosa. The radiated group (1100 cGy) which received anesthesia also was compared with a control group and a third group which received anesthesia alone but no abdominal radiation. Abdominal radiation lead to 100% positive cultures of MLN between 12 hr and 4 days postradiation. Bacterial translocation was almost nonexistent in the control and anesthesia group. Signs of inflammation and ulceration of the intestinal mucosa were not seen until Day 3 postradiation. Mucosal damage was maximal by Day 4. Bacterial translocation onto the MLN after a single dose of abdominal radiation was not apparently dependent on anatomical, histologic damage of the mucosa

  20. Obligate sugar oxidation in Mesotoga spp., phylum Thermotogae, in the presence of either elemental sulfur or hydrogenotrophic sulfate-reducers as electron acceptor.

    Science.gov (United States)

    Fadhlaoui, Khaled; Ben Hania, Wagdi; Armougom, Fabrice; Bartoli, Manon; Fardeau, Marie-Laure; Erauso, Gaël; Brasseur, Gaël; Aubert, Corinne; Hamdi, Moktar; Brochier-Armanet, Céline; Dolla, Alain; Ollivier, Bernard

    2018-01-01

    Mesotoga prima strain PhosAc3 is a mesophilic representative of the phylum Thermotogae comprising only fermentative bacteria so far. We show that while unable to ferment glucose, this bacterium is able to couple its oxidation to reduction of elemental sulfur. We demonstrate furthermore that M. prima strain PhosAc3 as well as M. prima strain MesG1 and Mesotoga infera are able to grow in syntrophic association with sulfate-reducing bacteria (SRB) acting as hydrogen scavengers through interspecies hydrogen transfer. Hydrogen production was higher in M. prima strain PhosAc3 cells co-cultured with SRB than in cells cultured alone in the presence of elemental sulfur. We propose that the efficient sugar-oxidizing metabolism by M. prima strain PhosAc3 in syntrophic association with a hydrogenotrophic sulfate-reducing bacterium can be extrapolated to all members of the Mesotoga genus. Genome comparison of Thermotogae members suggests that the metabolic difference between Mesotoga and Thermotoga species (sugar oxidation versus fermentation) is mainly due to the absence of the bifurcating [FeFe]-hydrogenase in the former. Such an obligate oxidative process for using sugars, unusual within prokaryotes, is the first reported within the Thermotogae. It is hypothesized to be of primary ecological importance for growth of Mesotoga spp. in the environments that they inhabit. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Rhodonellum psychrophilum gen. nov., sp. nov., a novel psychrophilic and alkaliphilic bacterium of the phylum Bacteroidetes isolated from Greenland.

    Science.gov (United States)

    Schmidt, Mariane; Priemé, Anders; Stougaard, Peter

    2006-12-01

    A novel alkaliphilic and psychrophilic bacterium was isolated from the cold and alkaline ikaite tufa columns of the Ikka Fjord in south-west Greenland. According to 16S rRNA gene sequence analysis, strain GCM71(T) belonged to the family 'Flexibacteraceae' in the phylum Bacteroidetes. Strain GCM71(T), together with five related isolates from ikaite columns, formed a separate cluster with 86-93 % gene sequence similarity to their closest relative, Belliella baltica. The G+C content of the DNA from strain GCM71(T) was 43.1 mol%, whereas that of B. baltica was reported to be 35 mol%. DNA-DNA hybridization between strain GCM71(T) and B. baltica was 9.5 %. The strain was red pigmented, Gram-negative, strictly aerobic with non-motile, rod-shaped cells. The optimal growth conditions for strain GCM71(T) were pH 9.2-10.0, 5 degrees C and 0.6 % NaCl. The fatty acid profile of the novel strain was dominated by branched and unsaturated fatty acids (90-97 %), with a high abundance of iso-C(17 : 1)omega9c (17.5 %), iso-C(17 : 0) 3-OH (17.5 %) and summed feature 3, comprising iso-C(15 : 0) 2-OH and/or C(16 : 1)omega7c (12.6 %). Phylogenetic, chemotaxonomic and physiological characteristics showed that the novel strain could not be affiliated to any known genus. A new genus, Rhodonellum gen. nov., is proposed to accommodate the novel strain. Strain GCM71(T) (=DSM 17998(T)=LMG 23454(T)) is proposed as the type strain of the type species, Rhodonellum psychrophilum sp. nov.

  2. Presence of bacterial DNA and bacterial peptidoglycans in joints of patients with rheumatoid arthritis and other arthritides

    NARCIS (Netherlands)

    van der Heijden, I. M.; Wilbrink, B.; Tchetverikov, I.; Schrijver, I. A.; Schouls, L. M.; Hazenberg, M. P.; Breedveld, F. C.; Tak, P. P.

    2000-01-01

    The continuous presence of bacteria or their degraded antigens in the synovium may be involved in the pathogenesis of rheumatoid arthritis (RA). The aim of this study was to determine the presence of bacterial nucleic acids and bacterial cell wall constituents in the joints of patients with RA and

  3. The Burden of Bacterial Vaginosis: Women’s Experience of the Physical, Emotional, Sexual and Social Impact of Living with Recurrent Bacterial Vaginosis

    Science.gov (United States)

    Bilardi, Jade E.; Walker, Sandra; Temple-Smith, Meredith; McNair, Ruth; Mooney-Somers, Julie; Bellhouse, Clare; Fairley, Christopher K.; Chen, Marcus Y.; Bradshaw, Catriona

    2013-01-01

    Background Bacterial vaginosis is a common vaginal infection, causing an abnormal vaginal discharge and/or odour in up to 50% of sufferers. Recurrence is common following recommended treatment. There are limited data on women’s experience of bacterial vaginosis, and the impact on their self-esteem, sexual relationships and quality of life. The aim of this study was to explore the experiences and impact of recurrent bacterial vaginosis on women. Methods A social constructionist approach was chosen as the framework for the study. Thirty five women with male and/or female partners participated in semi-structured interviews face-to-face or by telephone about their experience of recurrent bacterial vaginosis. Results Recurrent bacterial vaginosis impacted on women to varying degrees, with some women reporting it had little impact on their lives but most reporting it had a moderate to severe impact. The degree to which it impacted on women physically, emotionally, sexually and socially often depended on the frequency of episodes and severity of symptoms. Women commonly reported that symptoms of bacterial vaginosis made them feel embarrassed, ashamed, ‘dirty’ and very concerned others may detect their malodour and abnormal discharge. The biggest impact of recurrent bacterial vaginosis was on women’s self-esteem and sex lives, with women regularly avoiding sexual activity, in particular oral sex, as they were too embarrassed and self-conscious of their symptoms to engage in these activities. Women often felt confused about why they were experiencing recurrent bacterial vaginosis and frustrated at their lack of control over recurrence. Conclusion Women’s experience of recurrent bacterial vaginosis varied broadly and significantly in this study. Some women reported little impact on their lives but most reported a moderate to severe impact, mainly on their self-esteem and sex life. Further support and acknowledgement of these impacts are required when managing women

  4. Bacterial pyomyositis in a patient with aplastic anaemia.

    OpenAIRE

    Mitsuyasu, R.; Gale, R. P.

    1980-01-01

    Bacterial pyomyositis is common in the tropids but is rare in temperate climates. A patient with aplastic anaemia who had never left the continental United States developed bacterial pyomyositis secondary to Staphylococcus aureus which responded to antibiotics and surgical drainage. Bacterial pyomyositis should be considered in the differential diagnosis of fever and myalgias in the immunocompromised patient.

  5. Bacterial community associated with the intestinal tract of Chinese mitten crab (Eriocheir sinensis farmed in Lake Tai, China.

    Directory of Open Access Journals (Sweden)

    Xiaobing Chen

    Full Text Available Chinese mitten crab (CMC, Eriocheir sinensis is an economically valuable species in South-East Asia that has been widely farmed in China. Characterization of the intestinal bacterial diversity of CMC will provide insights into the aquaculturing of CMCs. Based on the analysis of cloned 16S rRNA genes from culture-independent CMC gut bacteria, 124 out of 128 different clones reveal >95% nucleotide similarity to the species belonging to the four phyla of Tenericutes, Bacteroidetes, Firmicutes and Proteobacteria; one clone shows 91% sequence similarity to the member of TM7 (a candidate phylum without cultured representatives. Fluorescent in situ hybridization also reveals the abundance of Bacteroidetes in crab intestine. Electron micrographs show that spherical and filamentous bacteria are closely associated with the microvillus brush border of the midgut epithelium and are often inserted into the space between the microvilli using a stalk-like cell appendage. In contrast, the predominant rod-shaped bacteria in the hindgut are tightly attached to the epithelium surface by an unusual pili-like structure. Both 16S rRNA gene denaturing gel gradient electrophoresis and metagenome library indicate that the CMC Mollicutes group 2 appears to be present in both the midgut and hindgut with no significant difference in abundance. The CMC Mollicutes group 1, however, was found mostly in the midgut of CMCs. The CMC gut Mollicutes phylotypes appear to be most closely related to Mollicutes symbionts detected in the gut of isopods (Crustacea: Isopoda. Overall, the results suggest that CMCs harbor diverse, novel and specific gut bacteria, which are likely to live in close relationships with the CMC host.

  6. Minerals in soil select distinct bacterial communities in their microhabitats.

    Science.gov (United States)

    Carson, Jennifer K; Campbell, Louise; Rooney, Deirdre; Clipson, Nicholas; Gleeson, Deirdre B

    2009-03-01

    We tested the hypothesis that different minerals in soil select distinct bacterial communities in their microhabitats. Mica (M), basalt (B) and rock phosphate (RP) were incubated separately in soil planted with Trifolium subterraneum, Lolium rigidum or left unplanted. After 70 days, the mineral and soil fractions were separated by sieving. Automated ribosomal intergenic spacer analysis was used to determine whether the bacterial community structure was affected by the mineral, fraction and plant treatments. Principal coordinate plots showed clustering of bacterial communities from different fraction and mineral treatments, but not from different plant treatments. Permutational multivariate anova (permanova) showed that the microhabitats of M, B and RP selected bacterial communities different from each other in unplanted and L. rigidum, and in T. subterraneum, bacterial communities from M and B differed (Ppermanova also showed that each mineral fraction selected bacterial communities different from the surrounding soil fraction (P<0.05). This study shows that the structure of bacterial communities in soil is influenced by the mineral substrates in their microhabitat and that minerals in soil play a greater role in bacterial ecology than simply providing an inert matrix for bacterial growth. This study suggests that mineral heterogeneity in soil contributes to the spatial variation in bacterial communities.

  7. Bacterial strategies of resistance to antimicrobial peptides.

    Science.gov (United States)

    Joo, Hwang-Soo; Fu, Chih-Iung; Otto, Michael

    2016-05-26

    Antimicrobial peptides (AMPs) are a key component of the host's innate immune system, targeting invasive and colonizing bacteria. For successful survival and colonization of the host, bacteria have a series of mechanisms to interfere with AMP activity, and AMP resistance is intimately connected with the virulence potential of bacterial pathogens. In particular, because AMPs are considered as potential novel antimicrobial drugs, it is vital to understand bacterial AMP resistance mechanisms. This review gives a comparative overview of Gram-positive and Gram-negative bacterial strategies of resistance to various AMPs, such as repulsion or sequestration by bacterial surface structures, alteration of membrane charge or fluidity, degradation and removal by efflux pumps.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. © 2016 The Author(s).

  8. Probing bacterial adhesion at the single-cell level

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Müller, Torsten; Meyer, Rikke Louise

    be considered. We have developed a simple and versatile method to make single-cell bacterial probes for measuring single cell adhesion by force spectroscopy using atomic force microscopy (AFM). A single-cell probe was readily made by picking up a bacterial cell from a glass surface by approaching a tipless AFM...... cantilever coated with the commercial cell adhesive CellTakTM. We applied the method to study adhesion of living cells to abiotic surfaces at the single-cell level. Immobilisation of single bacterial cells to the cantilever was stable for several hours, and viability was confirmed by Live/Dead staining...... on the adhesion force, we explored the bond formation and adhesive strength of four different bacterial strains towards three abiotic substrates with variable hydrophobicity and surface roughness. The adhesion force and final rupture length were dependent on bacterial strains, surfaces properties, and time...

  9. Contrasting ability to take up leucine and thymidine among freshwater bacterial groups: implications for bacterial production measurements

    Science.gov (United States)

    Pérez, María Teresa; Hörtnagl, Paul; Sommaruga, Ruben

    2010-01-01

    We examined the ability of different freshwater bacterial groups to take up leucine and thymidine in two lakes. Utilization of both substrates by freshwater bacteria was examined at the community level by looking at bulk incorporation rates and at the single-cell level by combining fluorescent in situ hybridization and signal amplification by catalysed reporter deposition with microautoradiography. Our results showed that leucine was taken up by 70–80% of Bacteria-positive cells, whereas only 15–43% of Bacteria-positive cells were able to take up thymidine. When a saturating substrate concentration in combination with a short incubation was used, 80–90% of Betaproteobacteria and 67–79% of Actinobacteria were positive for leucine uptake, whereas thymidine was taken up by bacterial group. Bacterial abundance was a good predictor of the relative contribution of bacterial groups to leucine uptake, whereas when thymidine was used Actinobacteria represented the large majority (> 80%) of the cells taking up this substrate. Increasing the substrate concentration to 100 nM did not affect the percentage of R-BT cells taking up leucine (> 90% even at low concentrations), but moderately increased the fraction of thymidine-positive R-BT cells to a maximum of 35% of the hybridized cells. Our results show that even at very high concentrations, thymidine is not taken up by all, otherwise active, bacterial cells. PMID:19725866

  10. 9 CFR 113.64 - General requirements for live bacterial vaccines.

    Science.gov (United States)

    2010-01-01

    ... bacterial vaccines. 113.64 Section 113.64 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... STANDARD REQUIREMENTS Live Bacterial Vaccines § 113.64 General requirements for live bacterial vaccines... bacterial vaccine shall meet the requirements in this section. (a) Purity test. Final container samples of...

  11. Identification of transcriptional signals in Encephalitozoon cuniculi widespread among Microsporidia phylum: support for accurate structural genome annotation

    Directory of Open Access Journals (Sweden)

    Wincker Patrick

    2009-12-01

    Full Text Available Abstract Background Microsporidia are obligate intracellular eukaryotic parasites with genomes ranging in size from 2.3 Mbp to more than 20 Mbp. The extremely small (2.9 Mbp and highly compact (~1 gene/kb genome of the human parasite Encephalitozoon cuniculi has been fully sequenced. The aim of this study was to characterize noncoding motifs that could be involved in regulation of gene expression in E. cuniculi and to show whether these motifs are conserved among the phylum Microsporidia. Results To identify such signals, 5' and 3'RACE-PCR experiments were performed on different E. cuniculi mRNAs. This analysis confirmed that transcription overrun occurs in E. cuniculi and may result from stochastic recognition of the AAUAAA polyadenylation signal. Such experiments also showed highly reduced 5'UTR's (E. cuniculi genes presented a CCC-like motif immediately upstream from the coding start. To characterize other signals involved in differential transcriptional regulation, we then focused our attention on the gene family coding for ribosomal proteins. An AAATTT-like signal was identified upstream from the CCC-like motif. In rare cases the cytosine triplet was shown to be substituted by a GGG-like motif. Comparative genomic studies confirmed that these different signals are also located upstream from genes encoding ribosomal proteins in other microsporidian species including Antonospora locustae, Enterocytozoon bieneusi, Anncaliia algerae (syn. Brachiola algerae and Nosema ceranae. Based on these results a systematic analysis of the ~2000 E. cuniculi coding DNA sequences was then performed and brings to highlight that 364 translation initiation codons (18.29% of total CDSs had been badly predicted. Conclusion We identified various signals involved in the maturation of E. cuniculi mRNAs. Presence of such signals, in phylogenetically distant microsporidian species, suggests that a common regulatory mechanism exists among the microsporidia. Furthermore

  12. The Bacterial Sequential Markov Coalescent.

    Science.gov (United States)

    De Maio, Nicola; Wilson, Daniel J

    2017-05-01

    Bacteria can exchange and acquire new genetic material from other organisms directly and via the environment. This process, known as bacterial recombination, has a strong impact on the evolution of bacteria, for example, leading to the spread of antibiotic resistance across clades and species, and to the avoidance of clonal interference. Recombination hinders phylogenetic and transmission inference because it creates patterns of substitutions (homoplasies) inconsistent with the hypothesis of a single evolutionary tree. Bacterial recombination is typically modeled as statistically akin to gene conversion in eukaryotes, i.e. , using the coalescent with gene conversion (CGC). However, this model can be very computationally demanding as it needs to account for the correlations of evolutionary histories of even distant loci. So, with the increasing popularity of whole genome sequencing, the need has emerged for a faster approach to model and simulate bacterial genome evolution. We present a new model that approximates the coalescent with gene conversion: the bacterial sequential Markov coalescent (BSMC). Our approach is based on a similar idea to the sequential Markov coalescent (SMC)-an approximation of the coalescent with crossover recombination. However, bacterial recombination poses hurdles to a sequential Markov approximation, as it leads to strong correlations and linkage disequilibrium across very distant sites in the genome. Our BSMC overcomes these difficulties, and shows a considerable reduction in computational demand compared to the exact CGC, and very similar patterns in simulated data. We implemented our BSMC model within new simulation software FastSimBac. In addition to the decreased computational demand compared to previous bacterial genome evolution simulators, FastSimBac provides more general options for evolutionary scenarios, allowing population structure with migration, speciation, population size changes, and recombination hotspots. FastSimBac is

  13. Bacterial binding to extracellular proteins - in vitro adhesion

    DEFF Research Database (Denmark)

    Schou, C.; Fiehn, N.-E.

    1999-01-01

    Viridans streptococci, bacterial adherence, extracellular matrix proteins, surface receptors, endocarditis......Viridans streptococci, bacterial adherence, extracellular matrix proteins, surface receptors, endocarditis...

  14. Bacterial translocation: impact of probiotics

    OpenAIRE

    Jeppsson, Bengt; Mangell, Peter; Adawi, Diya; Molin, Göran

    2004-01-01

    There is a considerable amount of data in humans showing that patients who cannot take in nutrients enterally have more organ failure in the intensive care unit, a less favourable prognosis, and a higher frequency of septicaemia, in particular involving bacterial species from the intestinal tract. However, there is little evidence that this is connected with translocation of bacterial species in humans. Animal data more uniformly imply the existence of such a connection. The main focus of thi...

  15. Pyrosequencing and genetic diversity of microeukaryotes

    DEFF Research Database (Denmark)

    Harder, Christoffer Bugge

    carefully selected waterworks (Article IV), where the bacterial metabolic diversity and its important for water purification was described. Building on this, the most important part of the thesis consists of two pyrosequencing analyses of protozoa with newly developed 18S primers. One specifically targets...... Cercozoa, a particularly abundant phylum of protozoa (Article III), on heath land that had been subjected to prolonged artificially induced drought in a Danish free-air climate-manipulation experiment (CLIMAITE). Article III showed that the testate cercozoan forms responded negatively to prolonged drought...

  16. Antibiotics promote aggregation within aquatic bacterial communities

    Directory of Open Access Journals (Sweden)

    Gianluca eCorno

    2014-07-01

    Full Text Available The release of antibiotics (AB into the environment poses several threats for human health due to potential development of ABresistant natural bacteria. Even though the use of low-dose antibiotics has been promoted in health care and farming, significant amounts of AB are observed in aquatic environments. Knowledge on the impact of AB on natural bacterial communities is missing both in terms of spread and evolution of resistance mechanisms, and of modifications of community composition and productivity. New approaches are required to study the response of microbial communities rather than individual resistance genes. In this study a chemostat-based experiment with 4 coexisting bacterial strains has been performed to mimicking the response of a freshwater bacterial community to the presence of antibiotics in low and high doses. Bacterial abundance rapidly decreased by 75% in the presence of AB, independently of their concentration, and remained constant until the end of the experiment. The bacterial community was mainly dominated by Aeromonas hydrophila and Brevundimonas intermedia while the other two strains, Micrococcus luteus and Rhodococcus sp. never exceed 10%. Interestingly, the bacterial strains, which were isolated at the end of the experiment, were not AB-resistant, while reassembled communities composed of the 4 strains, isolated from treatments under AB stress, significantly raised their performance (growth rate, abundance in the presence of AB compared to the communities reassembled with strains isolated from the treatment without AB. By investigating the phenotypic adaptations of the communities subjected to the different treatments, we found that the presence of AB significantly increased co-aggregation by 5-6 fold.These results represent the first observation of co-aggregation as a successful strategy of AB resistance based on phenotype in aquatic bacterial communities, and can represent a fundamental step in the understanding of

  17. Photoinactivation of major bacterial pathogens in aquaculture

    Directory of Open Access Journals (Sweden)

    Heyong Jin Roh

    2016-08-01

    Full Text Available Abstract Background Significant increases in the bacterial resistance to various antibiotics have been found in fish farms. Non-antibiotic therapies for infectious diseases in aquaculture are needed. In recent years, light-emitting diode technology has been applied to the inactivation of pathogens, especially those affecting humans. The purpose of this study was to assess the effect of blue light (wavelengths 405 and 465 nm on seven major bacterial pathogens that affect fish and shellfish important in aquaculture. Results We successfully demonstrate inactivation activity of a 405/465-nm LED on selected bacterial pathogens. Although some bacteria were not fully inactivated by the 465-nm light, the 405-nm light had a bactericidal effect against all seven pathogens, indicating that blue light can be effective without the addition of a photosensitizer. Photobacterium damselae, Vibrio anguillarum, and Edwardsiella tarda were the most susceptible to the 405-nm light (36.1, 41.2, and 68.4 J cm−2, respectively, produced one log reduction in the bacterial populations, whereas Streptococcus parauberis was the least susceptible (153.8 J cm−2 per one log reduction. In general, optical density (OD values indicated that higher bacterial densities were associated with lower inactivating efficacy, with the exception of P. damselae and Vibrio harveyi. In conclusion, growth of the bacterial fish and shellfish pathogens evaluated in this study was inactivated by exposure to either the 405- or 465-nm light. In addition, inactivation was dependent on exposure time. Conclusions This study presents that blue LED has potentially alternative therapy for treating fish and shellfish bacterial pathogens. It has great advantages in aspect of eco-friendly treating methods differed from antimicrobial methods.

  18. Does circumcision alter the periurethral uropathogenic bacterial flora

    Directory of Open Access Journals (Sweden)

    Mushtaq Ahmad Laway

    2012-01-01

    Full Text Available Background: The aim of this study was to assess the pattern of periurethral bacterial flora in uncircumcised boys and to evaluate the effect of circumcision on alteration of periurethral uropathogenic bacterial flora. Materials and Methods: Pattern of periurethral bacterial flora before and after circumcision was studied prospectively in 124 boys. The results were analysed to compare change in bacterial colonisation before and after circumcision. Results: The age range was 6 weeks to 96 months. Most (94.3% of the boys had religious indication and 5.7% had medical indication for circumcision. E. coli, Proteus and Klebsiella were most common periurethral bacterial flora in uncircumcised subjects. Coagulase-negative staphylococcus and Staphylococcus aureus was most common periurethral bacterial flora in circumcised subjects. In 66.1% of circumcised subjects, no bacteria were grown from periurethral region. Conclusion: We conclude that presence of prepuce is associated with great quantity of periurethral bacteria, greater likelihood of the presence of high concentration of uropathogens and high incidence of urinary tract infection (UTI. This study provides circumstantial evidence supporting the idea that early circumcision may be beneficial for prevention of UTI.

  19. Metamorphosis of a butterfly-associated bacterial community.

    Science.gov (United States)

    Hammer, Tobin J; McMillan, W Owen; Fierer, Noah

    2014-01-01

    Butterflies are charismatic insects that have long been a focus of biological research. They are also habitats for microorganisms, yet these microbial symbionts are little-studied, despite their likely importance to butterfly ecology and evolution. In particular, the diversity and composition of the microbial communities inhabiting adult butterflies remain uncharacterized, and it is unknown how the larval (caterpillar) and adult microbiota compare. To address these knowledge gaps, we used Illumina sequencing of 16S rRNA genes from internal bacterial communities associated with multiple life stages of the neotropical butterfly Heliconius erato. We found that the leaf-chewing larvae and nectar- and pollen-feeding adults of H. erato contain markedly distinct bacterial communities, a pattern presumably rooted in their distinct diets. Larvae and adult butterflies host relatively small and similar numbers of bacterial phylotypes, but few are common to both stages. The larval microbiota clearly simplifies and reorganizes during metamorphosis; thus, structural changes in a butterfly's bacterial community parallel those in its own morphology. We furthermore identify specific bacterial taxa that may mediate larval and adult feeding biology in Heliconius and other butterflies. Although male and female Heliconius adults differ in reproductive physiology and degree of pollen feeding, bacterial communities associated with H. erato are not sexually dimorphic. Lastly, we show that captive and wild individuals host different microbiota, a finding that may have important implications for the relevance of experimental studies using captive butterflies.

  20. Metamorphosis of a butterfly-associated bacterial community.

    Directory of Open Access Journals (Sweden)

    Tobin J Hammer

    Full Text Available Butterflies are charismatic insects that have long been a focus of biological research. They are also habitats for microorganisms, yet these microbial symbionts are little-studied, despite their likely importance to butterfly ecology and evolution. In particular, the diversity and composition of the microbial communities inhabiting adult butterflies remain uncharacterized, and it is unknown how the larval (caterpillar and adult microbiota compare. To address these knowledge gaps, we used Illumina sequencing of 16S rRNA genes from internal bacterial communities associated with multiple life stages of the neotropical butterfly Heliconius erato. We found that the leaf-chewing larvae and nectar- and pollen-feeding adults of H. erato contain markedly distinct bacterial communities, a pattern presumably rooted in their distinct diets. Larvae and adult butterflies host relatively small and similar numbers of bacterial phylotypes, but few are common to both stages. The larval microbiota clearly simplifies and reorganizes during metamorphosis; thus, structural changes in a butterfly's bacterial community parallel those in its own morphology. We furthermore identify specific bacterial taxa that may mediate larval and adult feeding biology in Heliconius and other butterflies. Although male and female Heliconius adults differ in reproductive physiology and degree of pollen feeding, bacterial communities associated with H. erato are not sexually dimorphic. Lastly, we show that captive and wild individuals host different microbiota, a finding that may have important implications for the relevance of experimental studies using captive butterflies.