WorldWideScience

Sample records for bacterial pathogen vibrio

  1. Extracellular proteolytic enzymes produced by human pathogenic Vibrio species

    Directory of Open Access Journals (Sweden)

    Shin-Ichi eMiyoshi

    2013-11-01

    Full Text Available Bacteria in the genus Vibrio produce extracellular proteolytic enzymes to obtain nutrients via digestion of various protein substrates. However, the enzymes secreted by human pathogenic species have been documented to modulate the bacterial virulence. Several species including Vibrio cholerae and V. vulnificus are known to produce thermolysin-like metalloproteases termed vibriolysin. The vibriolysin from V. vulnificus, a causative agent of serious systemic infection, is a major toxic factor eliciting the secondary skin damage characterized by formation of the hemorrhagic brae. The vibriolysin from intestinal pathogens may play indirect roles in pathogenicity because it can activate protein toxins and hemagglutinin by the limited proteolysis and can affect the bacterial attachment to or detachment from the intestinal surface by degradation of the mucus layer. Two species causing wound infections, V. alginolyticus and V. parahaemolyticus, produce another metalloproteases so-called collagenases. Although the detailed pathological roles have not been studied, the collagenase is potent to accelerate the bacterial dissemination through digestion of the protein components of the extracellular matrix. Some species produce cymotrypsin-like serine proteases, which may also affect the bacterial virulence potential. The intestinal pathogens produce sufficient amounts of the metalloprotease at the small intestinal temperature; however, the metalloprotease production by extra-intestinal pathogens is much higher around the body surface temperature. On the other hand, the serine protease is expressed only in the absence of the metalloprotease.

  2. Temperature-dependent inhibition of opportunistic Vibrio pathogens by native coral commensal bacteria.

    Science.gov (United States)

    Frydenborg, Beck R; Krediet, Cory J; Teplitski, Max; Ritchie, Kim B

    2014-02-01

    Bacteria living within the surface mucus layer of corals compete for nutrients and space. A number of stresses affect the outcome of this competition. The interactions between native microorganisms and opportunistic pathogens largely determine the coral holobiont's overall health and fitness. In this study, we tested the hypothesis that commensal bacteria isolated from the mucus layer of a healthy elkhorn coral, Acropora palmata, are capable of inhibition of opportunistic pathogens, Vibrio shiloi AK1 and Vibrio coralliilyticus. These vibrios are known to cause disease in corals and their virulence is temperature dependent. Elevated temperature (30 °C) increased the cell numbers of one commensal and both Vibrio pathogens in monocultures. We further tested the hypothesis that elevated temperature favors pathogenic organisms by simultaneously increasing the fitness of vibrios and decreasing the fitness of commensals by measuring growth of each species within a co-culture over the course of 1 week. In competition experiments between vibrios and commensals, the proportion of Vibrio spp. increased significantly under elevated temperature. We finished by investigating several temperature-dependent mechanisms that could influence co-culture differences via changes in competitive fitness. The ability of Vibrio spp. to utilize glycoproteins found in A. palmata mucus increased or remained stable when exposed to elevated temperature, while commensals' tended to decrease utilization. In both vibrios and commensals, protease activity increased at 30 °C, while chiA expression increased under elevated temperatures for Vibrio spp. These results provide insight into potential mechanisms through which elevated temperature may select for pathogenic bacterial dominance and lead to disease or a decrease in coral fitness.

  3. Photoinactivation of major bacterial pathogens in aquaculture

    Directory of Open Access Journals (Sweden)

    Heyong Jin Roh

    2016-08-01

    Full Text Available Abstract Background Significant increases in the bacterial resistance to various antibiotics have been found in fish farms. Non-antibiotic therapies for infectious diseases in aquaculture are needed. In recent years, light-emitting diode technology has been applied to the inactivation of pathogens, especially those affecting humans. The purpose of this study was to assess the effect of blue light (wavelengths 405 and 465 nm on seven major bacterial pathogens that affect fish and shellfish important in aquaculture. Results We successfully demonstrate inactivation activity of a 405/465-nm LED on selected bacterial pathogens. Although some bacteria were not fully inactivated by the 465-nm light, the 405-nm light had a bactericidal effect against all seven pathogens, indicating that blue light can be effective without the addition of a photosensitizer. Photobacterium damselae, Vibrio anguillarum, and Edwardsiella tarda were the most susceptible to the 405-nm light (36.1, 41.2, and 68.4 J cm−2, respectively, produced one log reduction in the bacterial populations, whereas Streptococcus parauberis was the least susceptible (153.8 J cm−2 per one log reduction. In general, optical density (OD values indicated that higher bacterial densities were associated with lower inactivating efficacy, with the exception of P. damselae and Vibrio harveyi. In conclusion, growth of the bacterial fish and shellfish pathogens evaluated in this study was inactivated by exposure to either the 405- or 465-nm light. In addition, inactivation was dependent on exposure time. Conclusions This study presents that blue LED has potentially alternative therapy for treating fish and shellfish bacterial pathogens. It has great advantages in aspect of eco-friendly treating methods differed from antimicrobial methods.

  4. First characterization of bacterial pathogen, Vibrio alginolyticus, for Porites andrewsi White syndrome in the South China Sea.

    Science.gov (United States)

    Zhenyu, Xie; Shaowen, Ke; Chaoqun, Hu; Zhixiong, Zhu; Shifeng, Wang; Yongcan, Zhou

    2013-01-01

    White syndrome, a term for scleractinian coral disease with progressive tissue loss, is known to cause depressed growth and increased morality of coral reefs in the major oceans around the world, and the occurrence of this disease has been frequently reported in the past few decades. Investigations during April to September in both 2010 and 2011 identified widespread Porites andrewsi White syndrome (PAWS) in Xisha Archipelago, South China Sea. However, the causes and etiology of PAWS have been unknown. A transmission experiment was performed on P. andrewsi in the Qilianyu Subgroup (QLY). The results showed that there was a significant (P ≤ 0.05) difference between test and control groups after 28 days if the invalid replicates were excluded. Rates of tissue loss ranged from 0.90-10.76 cm(2) d(-1) with a mean of 5.40 ± 3.34 cm(2) d(-1) (mean ± SD). Bacterial strains were isolated from the PAWS corals at the disease outbreak sites in QLY of the Xisha Archipelago, South China Sea, and included in laboratory-based infection trials to satisfy Koch's postulates for establishing causality. Following exposure to bacterial concentrations of 10(5) cells mL(-1), the infected colonies exhibited similar signs to those observed in the field. Using phylogenetic 16S rRNA gene analysis, classical phenotypic trait comparison, Biolog automatic identification system, MALDI-TOF mass spectrometry and MALDI Biotyper method, two pathogenic strains were identified as Vibrio alginolyticus . This is the first report of V. alginolyticus as a pathogenic agent of PAWS in the South China Sea. Our results point out an urgent need to develop sensitive detection methods for V. alginolyticus virulence strains and robust diagnostics for coral disease caused by this and Vibrio pathogenic bacterium in the South China Sea.

  5. Bacterial dynamics in intestines of the black tiger shrimp and the Pacific white shrimp during Vibrio harveyi exposure.

    Science.gov (United States)

    Rungrassamee, Wanilada; Klanchui, Amornpan; Maibunkaew, Sawarot; Karoonuthaisiri, Nitsara

    2016-01-01

    The intestinal microbiota play important roles in health of their host, contributing to maintaining the balance and resilience against pathogen. To investigate effects of pathogen to intestinal microbiota, the bacterial dynamics upon a shrimp pathogen, Vibrio harveyi, exposures were determined in two economically important shrimp species; the black tiger shrimp (BT) and the Pacific white shrimp (PW). Both shrimp species were reared under the same diet and environmental conditions. Shrimp survival rates after the V. harveyi exposure revealed that the PW shrimp had a higher resistance to the pathogen than the BT shrimp. The intestinal bacterial profiles were determined by denaturing gradient gel electrophoresis (DGGE) and barcoded pyrosequencing of the 16S rRNA sequences under no pathogen challenge control and under pathogenic V. harveyi challenge. The DGGE profiles showed that the presence of V. harveyi altered the intestinal bacterial patterns in comparison to the control in BT and PW intestines. This implies that bacterial balance in shrimp intestines was disrupted in the presence of V. harveyi. The barcoded pyrosequencing analysis showed the similar bacterial community structures in intestines of BT and PW shrimp under a normal condition. However, during the time course exposure to V. harveyi, the relative abundance of bacteria belong to Vibrio genus was higher in the BT intestines at 12h after the exposure, whereas relative abundance of vibrios was more stable in PW intestines. The principle coordinates analysis based on weighted-UniFrac analysis showed that intestinal bacterial population in the BT shrimp lost their ability to restore their bacterial balance during the 72-h period of exposure to the pathogen, while the PW shrimp were able to reestablish their bacterial population to resemble those seen in the unexposed control group. This observation of bacterial disruption might correlate to different mortality rates observed between the two shrimp species

  6. Exogenous Polyunsaturated Fatty Acids Impact Membrane Remodeling and Affect Virulence Phenotypes among Pathogenic Vibrio Species.

    Science.gov (United States)

    Moravec, Anna R; Siv, Andrew W; Hobby, Chelsea R; Lindsay, Emily N; Norbash, Layla V; Shults, Daniel J; Symes, Steven J K; Giles, David K

    2017-11-15

    The pathogenic Vibrio species ( V. cholerae , V. parahaemolyticus , and V. vulnificus ) represent a constant threat to human health, causing foodborne and skin wound infections as a result of ingestion of or exposure to contaminated water and seafood. Recent studies have highlighted Vibrio 's ability to acquire fatty acids from environmental sources and assimilate them into cell membranes. The possession and conservation of such machinery provokes consideration of fatty acids as important factors in the pathogenic lifestyle of Vibrio species. The findings here link exogenous fatty acid exposure to changes in bacterial membrane phospholipid structure, permeability, phenotypes associated with virulence, and consequent stress responses that may impact survival and persistence of pathogenic Vibrio species. Polyunsaturated fatty acids (PUFAs) (ranging in carbon length and unsaturation) supplied in growth medium were assimilated into bacterial phospholipids, as determined by thin-layer chromatography and liquid chromatography-mass spectrometry. The incorporation of fatty acids variably affected membrane permeability, as judged by uptake of the hydrophobic compound crystal violet. For each species, certain fatty acids were identified as affecting resistance to antimicrobial peptide treatment. Significant fluctuations were observed with regard to both motility and biofilm formation following growth in the presence of individual PUFAs. Our results illustrate the important and complex roles of exogenous fatty acids in the membrane physiology and virulence of a bacterial genus that inhabits aquatic and host environments containing an abundance of diverse fatty acids. IMPORTANCE Bacterial responses to fatty acids include, but are not limited to, degradation for metabolic gain, modification of membrane lipids, alteration of protein function, and regulation of gene expression. Vibrio species exhibit significant diversity with regard to the machinery known to participate in the

  7. Characterization of the secretomes of two vibrios pathogenic to mollusks.

    Directory of Open Access Journals (Sweden)

    Stéphanie Madec

    Full Text Available Vibrio tapetis causes the brown ring disease in the Japanese clam Ruditapes philippinarum while Vibrio aestuarianus is associated with massive oyster mortalities. As extracellular proteins are often associated with the virulence of pathogenic bacteria, we undertook a proteomic approach to characterize the secretomes of both vibrios. The extracellular proteins (ECPs of both species were fractionated by SEC-FPLC and in vitro assays were performed to measure the effects of each fraction on hemocyte cellular parameters (phagocytosis and adhesion. Fractions showing a significant effect were subjected to SDS-PAGE, and proteins were identified by nano LC-MS/MS. 45 proteins were identified for V. aestuarianus and 87 for V. tapetis. Most of them belonged to outer membrane or were periplasmic, including porins or adhesins that were already described as virulence factors in other bacterial species. Others were transporter components, flagella proteins, or proteins of unknown function (14 and 15 respectively. Interestingly, for V. aestuarianus, we noted the secretion of 3 extracellular enzymes including the Vam metalloprotease and two other enzymes (one putative lipase and one protease. For V. tapetis, we identified five extracellular enymes, i.e. two different endochitinases, one protease, one lipase and an adhesin. A comparison of both secretomes also showed that only the putative extracellular lipase was common to both secretomes, underscoring the difference in pathogenicity mechanisms between these two species. Overall, these results characterize for the first time the secretomes of these two marine pathogenic vibrios and constitute a useful working basis to further analyze the contribution of specific proteins in the virulence mechanisms of these species.

  8. Pathogenic bacteriumVibrio harveyi: an endosymbiont in the marine parasitic ciliate protozoan Cryptocaryon irritans

    Institute of Scientific and Technical Information of China (English)

    QIAO Ying; WANG Jun; MAO Yong; LIU Min; CHEN Ruanni; SU Yongquan; KE Qiaozhen; HAN Kunhuang; ZHENG Weiqiang

    2017-01-01

    Vibrio harveyi, known as a pathogenic bacterium caused severe secondary bacterial infections of the large yellow croaker Larimichthys crocea, was identified as an endosymbiont in the marine parasitic ciliate protozoan Cryptocaryon irritans. Meta 16S sequencing method was used to identify the bacterial flora in C. irritans, and V. harveyi was isolated via culture-dependent method.Vibrio harveyi was observed in cytoplasm of C. irritans at the stage of tomont both by transmission electron microscopy and by Fluorescencein situ hybridization; no signal, however, was detected in nucleus area. The relationship betweenV. harveyi and C. irritans and the role of endosymbioticV. harveyi inC. irritans merit further investigation.

  9. Role and regulation of the orphan AphA protein of quorum sensing in pathogenic Vibrios.

    Science.gov (United States)

    Lu, Renfei; Osei-Adjei, George; Huang, Xinxiang; Zhang, Yiquan

    2018-03-01

    Quorum sensing (QS), a cell-to-cell communication process, is widely distributed in the bacterial kingdom. Bacteria use QS to control gene expression in response to cell density by detecting the signal molecules called autoinducers. AphA protein is the master QS regulator of vibrios operating at low cell density. It regulates the expression of a variety of genes, especially those encoding virulence factors, flagella/motility and biofilm formation. The role and regulation of AphA in vibrios, especially in human pathogenic vibrios, are summarized in this review. Clarification of the roles of AphA will help us to understand the pathogenesis of vibrios.

  10. AN INVESTIGATION ON PATHOGENIC VIBRIOS DISTRIBUTION IN DOMESTIC WASTEWATER

    OpenAIRE

    A. Almasi

    2005-01-01

    Municipal wastewater is one of the most important pollution sources for water supply resources. Identification and enumeration of pathogenic agents particularly pathogenic Vibrios are beneficial for controlling and prevention planning of the infectious diseases. This research was carried out to identify the distribution of the recognized pathogenic Vibrios with emphasizing on identification of Vibrio cholera in the wastewater of Kermanshah city western Iran in 2002. The method of study was cr...

  11. Effects of triclosan on bacterial community composition and Vibrio populations in natural seawater microcosms

    OpenAIRE

    Lydon, Keri Ann; Glinski, Donna A.; Westrich, Jason R.; Henderson, W. Matthew; Lipp, Erin K.

    2017-01-01

    Pharmaceuticals and personal care products, including antimicrobials, can be found at trace levels in treated wastewater effluent. Impacts of chemical contaminants on coastal aquatic microbial community structure and pathogen abundance are unknown despite the potential for selection through antimicrobial resistance. In particular, 'Vibrio', a marine bacterial genus that includes several human pathogens, displays resistance to the ubiquitous antimicrobial compound triclosan. Here we demonstrat...

  12. Effects of Dry Storage and Resubmersion of Oysters on Total Vibrio vulnificus and Total and Pathogenic (tdh+/trh+) Vibrio parahaemolyticus Levels.

    Science.gov (United States)

    Kinsey, Thomas P; Lydon, Keri A; Bowers, John C; Jones, Jessica L

    2015-08-01

    Vibrio vulnificus (Vv) and Vibrio parahaemolyticus (Vp) are the two leading causes of bacterial illnesses associated with raw shellfish consumption. Levels of these pathogens in oysters can increase during routine antifouling aquaculture practices involving dry storage in ambient air conditions. After storage, common practice is to resubmerge these stored oysters to reduce elevated Vv and Vp levels, but evidence proving the effectiveness of this practice is lacking. This study examined the changes in Vv and in total and pathogenic (thermostable direct hemolysin gene and the tdh-related hemolysin gene, tdh+ and trh+) Vp levels in oysters after 5 or 24 h of dry storage (28 to 32°C), followed by resubmersion (27 to 32°C) for 14 days. For each trial, replicate oyster samples were collected at initial harvest, after dry storage, after 7 days, and after 14 days of resubmersion. Oysters not subjected to dry storage were collected and analyzed to determine natural undisturbed vibrio levels (background control). Vibrio levels were measured using a most-probable-number enrichment followed by real-time PCR. After storage, vibrio levels (excluding tdh+ and trh+ Vp during 5-h storage) increased significantly (P oysters stored for 5 h) were not significantly different (P oysters. Vv and total and pathogenic Vp levels were not significantly different (P > 0.1) from levels in background oysters after 14 days of resubmersion, regardless of dry storage time. These data demonstrate that oyster resubmersion after dry storage at elevated ambient temperatures allows vibrio levels to return to those of background control samples. These results can be used to help minimize the risk of Vv and Vp illnesses and to inform the oyster industry on the effectiveness of routine storing and resubmerging of aquaculture oysters.

  13. Bacteriophage interactions with marine pathogenic Vibrios

    DEFF Research Database (Denmark)

    Kalatzis, Panagiotis

    development and spreading of antibiotic resistant bacteria in the environment. Bacteriophage therapy, constitutes a potent alternative not only for treatment but also for prevention of vibriosis in aquaculture and the current thesis addresses the potential and challenges of using phages to control Vibrio...... pathogens. The combinatory administration of virulent bacteriophages φSt2 and φGrn1, isolated against Vibrio alginolyticus significantly reduced the Vibrio load in cultures of Artemia salina live prey, decreasing subsequently the risk of a vibriosis outbreak in the marine hatchery. During infection...... therapy applications. Lytic phage vB_VspP_pVa5 that has been isolated against the rapidly emerging pathogen V. splendidus is also a promising candidate for phage therapy application according to its gene content and in vitro performance against its host. The genetic features of vB_VspP_pVa5 provide also...

  14. Effects of triclosan on bacterial community composition and 'Vibrio' populations in natural seawater microcosms

    Directory of Open Access Journals (Sweden)

    Keri Ann Lydon

    2017-05-01

    Full Text Available Pharmaceuticals and personal care products, including antimicrobials, can be found at trace levels in treated wastewater effluent. Impacts of chemical contaminants on coastal aquatic microbial community structure and pathogen abundance are unknown despite the potential for selection through antimicrobial resistance. In particular, 'Vibrio', a marine bacterial genus that includes several human pathogens, displays resistance to the ubiquitous antimicrobial compound triclosan. Here we demonstrated through use of natural seawater microcosms that triclosan (at a concentration of ~5 ppm can induce a significant 'Vibrio' growth response (68–1,700 fold increases in comparison with no treatment controls for three distinct coastal ecosystems: Looe Key Reef (Florida Keys National Marine Sanctuary, Doctors Arm Canal (Big Pine Key, FL, and Clam Bank Landing (North Inlet Estuary, Georgetown, SC. Additionally, microbial community analysis by 16 S rRNA gene sequencing for Looe Key Reef showed distinct changes in microbial community structure with exposure to 5 ppm triclosan, with increases observed in the relative abundance of 'Vibrio'naceae (17-fold, Pseudoalteromonadaceae (65-fold, Alteromonadaceae (108-fold, Colwelliaceae (430-fold, and Oceanospirillaceae (1,494-fold. While the triclosan doses tested were above concentrations typically observed in coastal surface waters, results identify bacterial families that are potentially resistant to triclosan and/or adapted to use triclosan as a carbon source. The results further suggest the potential for selection of 'Vibrio' in coastal environments, especially sediments, where triclosan may accumulate at high levels.

  15. Evolution of tolerance to PCBs and susceptibility to a bacterial pathogen (Vibrio harveyi) in Atlantic killifish (Fundulus heteroclitus) from New Bedford (MA, USA) harbor

    International Nuclear Information System (INIS)

    Nacci, Diane; Huber, Marina; Champlin, Denise; Jayaraman, Saro; Cohen, Sarah; Gauger, Eric; Fong, Allison; Gomez-Chiarri, Marta

    2009-01-01

    A population of the non-migratory estuarine fish Fundulus heteroclitus (Atlantic killifish) resident to New Bedford (NB), Massachusetts, USA, an urban harbor highly contaminated with polychlorinated biphenyls (PCBs), demonstrates recently evolved tolerance to some aspects of PCB toxicity. PCB toxicology, ecological theory, and some precedence supported expectations of increased susceptibility to pathogens in NB killifish. However, laboratory bacterial challenges of the marine pathogen Vibrio harveyi to wild fish throughout the reproductive season and to their mature laboratory-raised progeny demonstrated comparable survival by NB and reference killifish, and improved survival by NB males. These results are inconsistent with hypothesized trade-offs of adaptation, and suggest that evolved tolerance in NB killifish may include mechanisms that minimize the immunosuppressive effects of PCBs. Compensatory strategies of populations persisting in highly contaminated environments provide a unique perspective for understanding the long-term ecological effects of toxic chemicals. - Killifish resident to a highly PCB-contaminated estuary survive pathogenic bacterial challenges well, suggesting their tolerance to PCB immunosuppression

  16. Unique and conserved genome regions in Vibrio harveyi and related species in comparison with the shrimp pathogen Vibrio harveyi CAIM 1792

    DEFF Research Database (Denmark)

    Valles, Iliana Espinoza; Vora, Gary J; Lin, Baochuan

    2015-01-01

    Vibrio harveyi CAIM 1792 is a marine bacterial strain that causes mortality in farmed shrimp in north-west Mexico, and the identification of virulence genes in this strain is important for understanding its pathogenicity. The aim of this work was to compare the V. harveyi CAIM 1792 genome....... The proteome of CAIM 1792 had higher similarity to those of other V. harveyi strains (78 %) than to those of the other closely related species Vibrio owensii (67 %), Vibrio rotiferianus (63 %) and Vibrio campbellii (59 %). Pan-genome ORFans trees showed the best fit with the accepted phylogeny based on DNA......-DNA hybridization and multi-locus sequence analysis of 11 concatenated housekeeping genes. SNP analysis clustered 34/38 genomes within their accepted species. The pangenomic and SNP trees showed that V. harveyi is the most conserved of the four species studied and V. campbellii may be divided into at least three...

  17. A single regulatory gene is sufficient to alter Vibrio aestuarianus pathogenicity in oysters.

    Science.gov (United States)

    Goudenège, David; Travers, Marie Agnès; Lemire, Astrid; Petton, Bruno; Haffner, Philippe; Labreuche, Yannick; Tourbiez, Delphine; Mangenot, Sophie; Calteau, Alexandra; Mazel, Didier; Nicolas, Jean Louis; Jacq, Annick; Le roux, Frédérique

    2015-11-01

    Oyster diseases caused by pathogenic vibrios pose a major challenge to the sustainability of oyster farming. In France, since 2012 a disease affecting specifically adult oysters has been associated with the presence of Vibrio aestuarianus. Here, by combining genome comparison, phylogenetic analyses and high-throughput infections of strains isolated before or during the recent outbreaks, we show that virulent strains cluster into two V. aestuarianus lineages independently of the sampling dates. The bacterial lethal dose was not different between strains isolated before or after 2012. Hence, the emergence of a new highly virulent clonal strain is unlikely. Each lineage comprises nearly identical strains, the majority of them being virulent, suggesting that within these phylogenetically coherent virulent lineages a few strains have lost their pathogenicity. Comparative genomics allowed the identification of a single frameshift in a non-virulent strain. This mutation affects the varS gene that codes for a signal transduction histidine-protein kinase. Genetic analyses confirmed that varS is necessary for infection of oysters and for a secreted metalloprotease expression. For the first time in a Vibrio species, we show here that VarS is a key factor of pathogenicity. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Mortalities of Eastern and Pacific oyster Larvae caused by the pathogens Vibrio coralliilyticus and Vibrio tubiashii.

    Science.gov (United States)

    Richards, Gary P; Watson, Michael A; Needleman, David S; Church, Karlee M; Häse, Claudia C

    2015-01-01

    Vibrio tubiashii is reported to be a bacterial pathogen of larval Eastern oysters (Crassostrea virginica) and Pacific oysters (Crassostrea gigas) and has been associated with major hatchery crashes, causing shortages in seed oysters for commercial shellfish producers. Another bacterium, Vibrio coralliilyticus, a well-known coral pathogen, has recently been shown to elicit mortality in fish and shellfish. Several strains of V. coralliilyticus, such as ATCC 19105 and Pacific isolates RE22 and RE98, were misidentified as V. tubiashii until recently. We compared the mortalities caused by two V. tubiashii and four V. coralliilyticus strains in Eastern and Pacific oyster larvae. The 50% lethal dose (LD50) of V. coralliilyticus in Eastern oysters (defined here as the dose required to kill 50% of the population in 6 days) ranged from 1.1 × 10(4) to 3.0 × 10(4) CFU/ml seawater; strains RE98 and RE22 were the most virulent. This study shows that V. coralliilyticus causes mortality in Eastern oyster larvae. Results for Pacific oysters were similar, with LD50s between 1.2 × 10(4) and 4.0 × 10(4) CFU/ml. Vibrio tubiashii ATCC 19106 and ATCC 19109 were highly infectious toward Eastern oyster larvae but were essentially nonpathogenic toward healthy Pacific oyster larvae at dosages of ≥1.1 × 10(4) CFU/ml. These data, coupled with the fact that several isolates originally thought to be V. tubiashii are actually V. coralliilyticus, suggest that V. coralliilyticus has been a more significant pathogen for larval bivalve shellfish than V. tubiashii, particularly on the U.S. West Coast, contributing to substantial hatchery-associated morbidity and mortality in recent years. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. White shrimp (Litopenaeus vannamei) recombinant lysozyme has antibacterial activity against Gram negative bacteria: Vibrio alginolyticus, Vibrio parahemolyticus and Vibrio cholerae.

    Science.gov (United States)

    de-la-Re-Vega, Enrique; García-Galaz, Alfonso; Díaz-Cinco, Martha E; Sotelo-Mundo, Rogerio R

    2006-03-01

    C-type lysozyme has been described as an antibacterial component of the shrimp innate defence system. We determined quantitatively the antibacterial activity of white shrimp (Litopenaeus vannamei) recombinant lysozyme against three Gram negative bacteria: Vibrio alginolyticus, Vibrio parahemolyticus and Vibrio cholerae, using a turbidimetric assay with live bacteria and differential bacterial viable count after interaction with the protein. In conclusion, the antibacterial activity of recombinant shrimp lysozyme against Vibrio sp. is at least equal to the values against the Gram positive M. luteus and more active against the shrimp pathogens V. alginolyticus and V. parahemolyticus.

  20. Preliminary Study on Bacterial Pathogenic in Grouper Culture and Its Inhibitor Bacteria in Lampung Bay

    Directory of Open Access Journals (Sweden)

    A. Hatmanti

    2008-01-01

    Full Text Available Investigation of pathogenic bacteria and its inhibitor on grouper culture in some places of Lampung Bay had been carried out. Six strains of pathogenic bacteria and 28 strains of inhibitior bacteria were found in grouper and its habitat.  By inhibition test, 4 strains inhibited pathogenic bacteria were obtained. Inhibition test for Vibrio harveyi had also been performed using a bacterial collection of Marine Microbiology Laboratory of Research Center of Oceanography-LIPI.  The result showed that 3 strains could be used against bacterial infection. This study offers a positive prospect to prevent outbreak of bacterial diseases in grouper culture. Keywords: grouper culture, Lampung, inhibitor bacteria, pathogenic bacteria, inhibition test   ABSTRAK Penelitian penyakit bakterial dan bakteri penghambatnya pada budidaya ikan kerapu di beberapa tempat di perairan Teluk Lampung telah dilakukan. Enam strain bakteri patogen dan 28 strain bakteri penghambat telah berhasil diisolasi dari ikan kerapu dan habitat tempat hidupnya.  Dari hasil uji tantang (inhibition test yang dilakukan, diperoleh 4 strain bakteri penghambat yang mampu menekan pertumbuhan bakteri patogen. Selain itu, uji tantang terhadap bakteri patogen Vibrio harveyi, menggunakan bakteri penghambat koleksi Laboratorium Mikrobiologi Laut Puslit Oseanografi LIPI juga telah dilakukan.  Hasil penelitian menunjukkan bahwa 3 strain bakteri mampu memberikan hambatan terhadap pertumbuhan Vibrio harveyi.  Studi ini memberikan prospek positif terhadap penanggulangan penyakit bakterial pada budidaya ikan kerapu. Kata kunci: budidaya kerapu, Lampung, bakteri penghambat, bakteri patogen, uji tantang

  1. Exploration of Phage-Host Interactions in Fish Pathogen Vibrio anguillarum and Anti-Phage Defense Strategies

    DEFF Research Database (Denmark)

    Tan, Demeng

    The disease vibriosis is caused by the bacterial pathogen Vibrio anguillarum and results in large losses in aquaculture both in Denmark and around the world. Antibiotics have been widely used in antimicrobial prophylaxis and treatment of vibriosis. Recently, numerous multidrug-resistant strains...... of V. anguillarum have been isolated, indicating that antibiotic use has to be restricted and alternatives have to be developed. Lytic phages have been demonstrated to play an essential role in preventing bacterial infection. However, phages are also known to play a critical role in the evolution...... of bacterial pathogenicity development. Therefore, successful application of phage therapy in the treatment of vibriosis requires a detailed understanding of phage-host interactions, especially with regards to anti-phage defense mechanisms in the host. Part I. As a first approach, 24 V. anguillarum and 13...

  2. Disruption of bacterial balance in the gut of Portunus trituberculatus induced by Vibrio alginolyticus infection

    Science.gov (United States)

    Xia, Mengjie; Pei, Feng; Mu, Changkao; Ye, Yangfang; Wang, Chunlin

    2018-04-01

    Gut microbiota impacts the health of crustaceans. Vibrio alginolyticus is a main causative pathogen that induces the vibriosis in farmed swimming crabs, Portunus trituberculatus. However, it remains unknown whether gut bacteria perform functions during the progression of vibriosis. In this study, 16S rRNA gene amplicon sequencing was used to investigate temporal alteration of gut bacterial community in swimming crabs in response to 72-h V. alginolyticus challenge. Our results show that V. alginolyticus infection resulted in dynamic changes of bacterial community composition in swimming crabs. Such changes were highlighted by the overwhelming overabundance of Vibrio and a signifi cant fluctuation in the gut bacteria including the bacteria with high relative abundance and especially those with low relative abundance. These findings reveal that crab vibriosis gradually develops with the infection time of V. alginolyticus and tightly relates to the dysbiosis of gut bacterial community structure. This work contributes to our appreciation of the importance of the balance of gut bacterial community structure in maintaining the health of crustaceans.

  3. Multidrug Efflux Pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus Bacterial Food Pathogens

    Directory of Open Access Journals (Sweden)

    Jody L. Andersen

    2015-01-01

    Full Text Available Foodborne illnesses caused by bacterial microorganisms are common worldwide and constitute a serious public health concern. In particular, microorganisms belonging to the Enterobacteriaceae and Vibrionaceae families of Gram-negative bacteria, and to the Staphylococcus genus of Gram-positive bacteria are important causative agents of food poisoning and infection in the gastrointestinal tract of humans. Recently, variants of these bacteria have developed resistance to medically important chemotherapeutic agents. Multidrug resistant Escherichia coli, Salmonella enterica, Vibrio cholerae, Enterobacter spp., and Staphylococcus aureus are becoming increasingly recalcitrant to clinical treatment in human patients. Of the various bacterial resistance mechanisms against antimicrobial agents, multidrug efflux pumps comprise a major cause of multiple drug resistance. These multidrug efflux pump systems reside in the biological membrane of the bacteria and actively extrude antimicrobial agents from bacterial cells. This review article summarizes the evolution of these bacterial drug efflux pump systems from a molecular biological standpoint and provides a framework for future work aimed at reducing the conditions that foster dissemination of these multidrug resistant causative agents through human populations.

  4. Multidrug Efflux Pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus Bacterial Food Pathogens

    Science.gov (United States)

    Andersen, Jody L.; He, Gui-Xin; Kakarla, Prathusha; KC, Ranjana; Kumar, Sanath; Lakra, Wazir Singh; Mukherjee, Mun Mun; Ranaweera, Indrika; Shrestha, Ugina; Tran, Thuy; Varela, Manuel F.

    2015-01-01

    Foodborne illnesses caused by bacterial microorganisms are common worldwide and constitute a serious public health concern. In particular, microorganisms belonging to the Enterobacteriaceae and Vibrionaceae families of Gram-negative bacteria, and to the Staphylococcus genus of Gram-positive bacteria are important causative agents of food poisoning and infection in the gastrointestinal tract of humans. Recently, variants of these bacteria have developed resistance to medically important chemotherapeutic agents. Multidrug resistant Escherichia coli, Salmonella enterica, Vibrio cholerae, Enterobacter spp., and Staphylococcus aureus are becoming increasingly recalcitrant to clinical treatment in human patients. Of the various bacterial resistance mechanisms against antimicrobial agents, multidrug efflux pumps comprise a major cause of multiple drug resistance. These multidrug efflux pump systems reside in the biological membrane of the bacteria and actively extrude antimicrobial agents from bacterial cells. This review article summarizes the evolution of these bacterial drug efflux pump systems from a molecular biological standpoint and provides a framework for future work aimed at reducing the conditions that foster dissemination of these multidrug resistant causative agents through human populations. PMID:25635914

  5. Bacteriophages for detection of bacterial pathogens

    International Nuclear Information System (INIS)

    Kutateladze, M.

    2009-01-01

    The G. Eliava Institute of Bacteriophages, Microbiology and Virology (Tbilisi, Georgia) is one of the most famous institutions focused on bacteriophage research for the elaboration of appropriate phage methodologies for human and animal protection. The main direction of the institute is the study and production of bacteriophages against intestinal disorders (dysentery, typhoid, intesti) and purulent-septic infections (staphylococcus, streptococcus, pyophage, etc.). These preparations were successfully introduced during the Soviet era, and for decades were used throughout the former Soviet Union and in other Socialist countries for the treatment, prophylaxis, and diagnosis of various infectious diseases, including those caused by antibiotic-resistant bacterial strains. Bacteriophages were widely used for identifying and detecting infections caused by the most dangerous pathogens and causative agents of epidemiological outbreaks. The specific topic of this presentation is the phage typing of bacterial species, which can be an important method for epidemiological diagnostics. Together with different genetic methodologies - such as PCR-based methods, PFGE, plasmid fingerprinting, and ribosomal typing - phage typing is one method for identifying bacterial pathogens. The method has a high percentage of determination of phage types, high specificity of reaction, and is easy for interpretation and use by health workers. Phage typing was applied for inter-species differentiation of different species of Salmonella, S. typhi, Brucella spp, Staphylococcus aureus, E. col,i Clostridium deficile, Vibrio cholerae, Yersinia pestis, Yersinia enterocolitica, Lysteria monocytogenes, Clostridium perfringens, Clostridium tetani, plant pathogens, and other bacterial pathogens. In addition to addressing the utility and efficacy of phage typing, the paper will discuss the isolation and selection of diagnostic typing phages for interspecies differentiation of pathogens that is necessary

  6. From cholera to corals: Viruses as drivers of virulence in a major coral bacterial pathogen

    KAUST Repository

    Weynberg, Karen D.

    2015-12-08

    Disease is an increasing threat to reef-building corals. One of the few identified pathogens of coral disease is the bacterium Vibrio coralliilyticus. In Vibrio cholerae, infection by a bacterial virus (bacteriophage) results in the conversion of non-pathogenic strains to pathogenic strains and this can lead to cholera pandemics. Pathogenicity islands encoded in the V. cholerae genome play an important role in pathogenesis. Here we analyse five whole genome sequences of V. coralliilyticus to examine whether virulence is similarly driven by horizontally acquired elements. We demonstrate that bacteriophage genomes encoding toxin genes with homology to those found in pathogenic V. cholerae are integrated in V. coralliilyticus genomes. Virulence factors located on chromosomal pathogenicity islands also exist in some strains of V. coralliilyticus. The presence of these genetic signatures indicates virulence in V. coralliilyticus is driven by prophages and other horizontally acquired elements. Screening for pathogens of coral disease should target conserved regions in these elements.

  7. From cholera to corals: Viruses as drivers of virulence in a major coral bacterial pathogen

    KAUST Repository

    Weynberg, Karen D.; Voolstra, Christian R.; Neave, Matthew J.; Buerger, Patrick; van Oppen, Madeleine J. H.

    2015-01-01

    Disease is an increasing threat to reef-building corals. One of the few identified pathogens of coral disease is the bacterium Vibrio coralliilyticus. In Vibrio cholerae, infection by a bacterial virus (bacteriophage) results in the conversion of non-pathogenic strains to pathogenic strains and this can lead to cholera pandemics. Pathogenicity islands encoded in the V. cholerae genome play an important role in pathogenesis. Here we analyse five whole genome sequences of V. coralliilyticus to examine whether virulence is similarly driven by horizontally acquired elements. We demonstrate that bacteriophage genomes encoding toxin genes with homology to those found in pathogenic V. cholerae are integrated in V. coralliilyticus genomes. Virulence factors located on chromosomal pathogenicity islands also exist in some strains of V. coralliilyticus. The presence of these genetic signatures indicates virulence in V. coralliilyticus is driven by prophages and other horizontally acquired elements. Screening for pathogens of coral disease should target conserved regions in these elements.

  8. The application of bioflocs technology to protect brine shrimp (Artemia franciscana) from pathogenic Vibrio harveyi.

    Science.gov (United States)

    Crab, R; Lambert, A; Defoirdt, T; Bossier, P; Verstraete, W

    2010-11-01

    To study the potential biocontrol activity of bioflocs technology. Glycerol-grown bioflocs were investigated for their antimicrobial and antipathogenic properties against the opportunistic pathogen Vibrio harveyi. The bioflocs did not produce growth-inhibitory substances. However, bioflocs and biofloc supernatants decreased quorum sensing-regulated bioluminescence of V. harveyi. This suggested that the bioflocs had biocontrol activity against this pathogen because quorum sensing regulates virulence of vibrios towards different hosts. Interestingly, the addition of live bioflocs significantly increased the survival of gnotobiotic brine shrimp (Artemia franciscana) larvae challenged to V. harveyi. Bioflocs grown on glycerol as carbon source inhibit quorum sensing-regulated bioluminescence in V. harveyi and protect brine shrimp larvae from vibriosis. The results presented in this study indicate that in addition to water quality control and in situ feed production, bioflocs technology could help in controlling bacterial infections within the aquaculture pond. © 2010 The Authors. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology.

  9. Unusual adaptive, cross protection responses and growth phase resistance against peroxide killing in a bacterial shrimp pathogen, Vibrio harveyi.

    Science.gov (United States)

    Vattanaviboon, P; Mongkolsuk, S

    2001-06-12

    Oxidant induced protection against peroxide killing was investigated in a prawn bacterial pathogen, Vibrio harveyi. Exposure to 250 microM H(2)O(2) induced adaptive protection against subsequent exposure to killing concentrations of H(2)O(2). In addition, 200 microM t-butyl hydroperoxide (tBOOH) induced cross protection to H(2)O(2) killing. On the other hand, peroxide pretreatment did not induce protection against tBOOH killing. Peroxide induced adaptive and cross protection responses required new protein synthesis and were abolished by addition of a protein synthesis inhibitor. Pretreatments of V. harveyi with 250 microM H(2)O(2) and 200 microM tBOOH induced an increase in peroxide scavenging enzymes, catalase and alkyl hydroperoxide reductase subunit C. In addition, stationary phase cells of V. harveyi were more resistant to H(2)O(2) and iodoacetamide killing but highly susceptible to tBOOH killing compared to exponential phase cells. Many aspects of the oxidative stress response of V. harveyi are different from those of other bacteria and these factors may be important for bacterial survival in the environment and during interactions with host shrimp.

  10. Daily variations in pathogenic bacterial populations in a monsoon influenced tropical environment

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, L.; Anil, A.C.; Naik, S.D.; Gaonkar, C.C.

    and an assessment of the health of such an ecosystem benefits from high resolution observations. Virulent pathogenic Vibrio species are expected more frequently in tropical marine environments, since the virulence gene expression seems to increase at elevated... cells ml−1 (July 2009) to 5.9 x 107 cells ml−1 (February 2011) (Fig. 2b). Inter annual variations point out that the total bacterial abundance increased 5 from 2009 to 2011, while the viable bacterial numbers decreased. Complex physical, chemical...

  11. Comparative pathogenicity of Vibrio spp., Photobacterium damselae ssp. damselae and five isolates of Aeromonas salmonicida ssp. achromogenes in juvenile Atlantic halibut (Hippoglossus hippoglossus).

    Science.gov (United States)

    Bowden, T J; Bricknell, I R; Preziosi, B M

    2018-01-01

    Juvenile Atlantic halibut (~100 mg, Hippoglossus hippoglossus) were exposed to Vibrio proteolyticus, a Vibrio spp. isolate, Photobacterium damselae ssp. damselae and five different isolates of Aeromonas salmonicida ssp. achromogenes via an hour-long bath immersion to ascertain their variation in pathogenicity to this fish species. Results were analysed using Kaplan-Meier survival analysis. Analysis of the data from challenges using A. salmonicida ssp. achromogenes revealed three survival values of zero and a spread of values from 0 to 28.43. Challenges using a Vibrio spp isolate, V. proteolyticus and P. damselae resulted in Kaplan-Meier survival estimates of 31.21, 50.41 and 57.21, respectively. As all bacterial species tested could induce juvenile halibut mortalities, they must all be considered as potential pathogens. However, the degree of pathogenicity of A. salmonicida is isolate dependent. © 2017 John Wiley & Sons Ltd.

  12. Vibrio Pathogens: A Public Health Concern in Rural Water Resources in Sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Charles A. Osunla

    2017-10-01

    Full Text Available Members of the Vibrio genus are autochthonous inhabitants of aquatic environments and play vital roles in sustaining the aquatic milieu. The genus comprises about 100 species, which are mostly of marine or freshwater origin, and their classification is frequently updated due to the continuous discovery of novel species. The main route of transmission of Vibrio pathogens to man is through drinking of contaminated water and consumption inadequately cooked aquatic food products. In sub-Saharan Africa and much of the developing world, some rural dwellers use freshwater resources such as rivers for domestic activities, bathing, and cultural and religious purposes. This review describes the impact of inadequately treated sewage effluents on the receiving freshwater resources and the associated risk to the rural dwellers that depends on the water. Vibrio infections remain a threat to public health. In the last decade, Vibrio disease outbreaks have created alertness on the personal, economic, and public health uncertainties associated with the impact of contaminated water in the aquatic environment of sub-Saharan Africa. In this review, we carried out an overview of Vibrio pathogens in rural water resources in Sub-Saharan Africa and the implication of Vibrio pathogens on public health. Continuous monitoring of Vibrio pathogens among environmental freshwater and treated effluents is expected to help reduce the risk associated with the early detection of sources of infection, and also aid our understanding of the natural ecology and evolution of Vibrio pathogens.

  13. Vibrio Pathogens: A Public Health Concern in Rural Water Resources in Sub-Saharan Africa.

    Science.gov (United States)

    Osunla, Charles A; Okoh, Anthony I

    2017-10-07

    Members of the Vibrio genus are autochthonous inhabitants of aquatic environments and play vital roles in sustaining the aquatic milieu. The genus comprises about 100 species, which are mostly of marine or freshwater origin, and their classification is frequently updated due to the continuous discovery of novel species. The main route of transmission of Vibrio pathogens to man is through drinking of contaminated water and consumption inadequately cooked aquatic food products. In sub-Saharan Africa and much of the developing world, some rural dwellers use freshwater resources such as rivers for domestic activities, bathing, and cultural and religious purposes. This review describes the impact of inadequately treated sewage effluents on the receiving freshwater resources and the associated risk to the rural dwellers that depends on the water. Vibrio infections remain a threat to public health. In the last decade, Vibrio disease outbreaks have created alertness on the personal, economic, and public health uncertainties associated with the impact of contaminated water in the aquatic environment of sub-Saharan Africa. In this review, we carried out an overview of Vibrio pathogens in rural water resources in Sub-Saharan Africa and the implication of Vibrio pathogens on public health. Continuous monitoring of Vibrio pathogens among environmental freshwater and treated effluents is expected to help reduce the risk associated with the early detection of sources of infection, and also aid our understanding of the natural ecology and evolution of Vibrio pathogens.

  14. Vibrio Pathogens: A Public Health Concern in Rural Water Resources in Sub-Saharan Africa

    Science.gov (United States)

    Osunla, Charles A.

    2017-01-01

    Members of the Vibrio genus are autochthonous inhabitants of aquatic environments and play vital roles in sustaining the aquatic milieu. The genus comprises about 100 species, which are mostly of marine or freshwater origin, and their classification is frequently updated due to the continuous discovery of novel species. The main route of transmission of Vibrio pathogens to man is through drinking of contaminated water and consumption inadequately cooked aquatic food products. In sub-Saharan Africa and much of the developing world, some rural dwellers use freshwater resources such as rivers for domestic activities, bathing, and cultural and religious purposes. This review describes the impact of inadequately treated sewage effluents on the receiving freshwater resources and the associated risk to the rural dwellers that depends on the water. Vibrio infections remain a threat to public health. In the last decade, Vibrio disease outbreaks have created alertness on the personal, economic, and public health uncertainties associated with the impact of contaminated water in the aquatic environment of sub-Saharan Africa. In this review, we carried out an overview of Vibrio pathogens in rural water resources in Sub-Saharan Africa and the implication of Vibrio pathogens on public health. Continuous monitoring of Vibrio pathogens among environmental freshwater and treated effluents is expected to help reduce the risk associated with the early detection of sources of infection, and also aid our understanding of the natural ecology and evolution of Vibrio pathogens. PMID:28991153

  15. Bacteriophages in the control of pathogenic vibrios

    DEFF Research Database (Denmark)

    Plaza, Nicolás; Castillo Bermúdez, Daniel Elías; Perez-Reytor, Diliana

    2018-01-01

    constitute a continuing threat for aquaculture. Moreover, the continuous use of antibiotics has been accompanied by an emergence of antibiotic resistance in Vibrio species, implying a necessity for efficient treatments. One promising alternative that emerges is the use of lytic bacteriophages; however......, there are some drawbacks that should be overcome to make phage therapy a widely accepted method. In this work, we discuss about the major pathogenic Vibrio species and the progress, benefits and disadvantages that have been detected during the experimental use of bacteriophages to their control....

  16. Vibriophages and Their Interactions with the Fish Pathogen Vibrio anguillarum

    DEFF Research Database (Denmark)

    Tan, Demeng; Gram, Lone; Middelboe, Mathias

    2014-01-01

    Vibrio anguillarum is an important pathogen in aquaculture, responsible for the disease vibriosis in many fish and invertebrate species. Disease control by antibiotics is a concern due to potential development and spread of antibiotic resistance. The use of bacteriophages to control the pathogen...... patterns of the individual host isolates, key phenotypic properties related to phage susceptibility are distributed worldwide and maintained in the global Vibrio community for decades. The phage susceptibility pattern of the isolates did not show any relation to the physiological relationships obtained...... from Biolog GN2 profiles, demonstrating that similar phage susceptibility patterns occur across broad phylogenetic and physiological differences in Vibrio strains. Subsequent culture experiments with two phages and two V. anguillarum hosts demonstrated an initial strong lytic potential of the phages...

  17. Luminescence, virulence and quorum sensing signal production by pathogenic Vibrio campbellii and Vibrio harveyi isolates

    OpenAIRE

    Defoirdt, T.; Verstraete, W.; Bossier, P.

    2008-01-01

    Aims: To study the relationship between luminescence, autoinducer production and virulence of pathogenic vibrios.Methods and Results: Luminescence, quorum sensing signal production and virulence towards brine shrimp nauplii of 13 Vibrio campbellii and Vibrio harveyi strains were studied. Although only two of the tested strains were brightly luminescent, all of them were shown to produce the three different types of quorum sensing signals known to be produced by Vibrio harveyi. Cell-free cultu...

  18. Efficacy of zinc as an antibacterial agent against enteric bacterial pathogens

    International Nuclear Information System (INIS)

    Faiz, U.; Butt, T.; Hussain, W.; Hanif, F.

    2011-01-01

    Background: Diarrhoea is a serious threat all over the world with great economic implications especially evident in the developing world. This study was aimed at determining in vitro efficacy of Zinc (Zn) against common enteric bacterial pathogens. Method: A total of 100 bacterial enteric pathogens: Salmonellae (n=16), enteropathogenic Escherichia coli (EPEC) (n=26), Shigellae (n=28) and Vibrio cholerae (n=30) were isolated from diarrhoeal stool specimens at Department of Microbiology, Armed Forces Institute of Pathology Rawalpindi during April 2009 to Jan 2010. These isolates were tested against various concentrations of Zn supplemented in Mueller Hinton (MH) agar using a multipoint inoculator. A minimum inhibitory concentration of active Zn in ZnSO/sub 4/.7H/sub 2/O ranging from 0.03 mg/ml to 1 mg/ml was used. Results: Zn completely inhibited the growth of all the tested pathogens and most of them were inhibited at a concentration of 0.06 mg/ml to 0.5 mg/ml of Zn. Conclusions: Zinc has an excellent antibacterial activity against enteric bacterial pathogens common in our setup which may provide basis for treatment of diarrhoea. Clinical study based on these findings is recommended. (author)

  19. Laboratory simulation reveals significant impacts of ocean acidification on microbial community composition and host-pathogen interactions between the blood clam and Vibrio harveyi.

    Science.gov (United States)

    Zha, Shanjie; Liu, Saixi; Su, Wenhao; Shi, Wei; Xiao, Guoqiang; Yan, Maocang; Liu, Guangxu

    2017-12-01

    It has been suggested that climate change may promote the outbreaks of diseases in the sea through altering the host susceptibility, the pathogen virulence, and the host-pathogen interaction. However, the impacts of ocean acidification (OA) on the pathogen components of bacterial community and the host-pathogen interaction of marine bivalves are still poorly understood. Therefore, 16S rRNA high-throughput sequencing and host-pathogen interaction analysis between blood clam (Tegillarca granosa) and Vibrio harveyi were conducted in the present study to gain a better understanding of the ecological impacts of ocean acidification. The results obtained revealed a significant impact of ocean acidification on the composition of microbial community at laboratory scale. Notably, the abundance of Vibrio, a major group of pathogens to many marine organisms, was significantly increased under ocean acidification condition. In addition, the survival rate and haemolytic activity of V. harveyi were significantly higher in the presence of haemolymph of OA treated T. granosa, indicating a compromised immunity of the clam and enhanced virulence of V. harveyi under future ocean acidification scenarios. Conclusively, the results obtained in this study suggest that future ocean acidification may increase the risk of Vibrio pathogen infection for marine bivalve species, such as blood clams. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Vibrio vulnificus Type 6 Secretion System 1 Contains Anti-Bacterial Properties.

    Directory of Open Access Journals (Sweden)

    Selina R Church

    Full Text Available Vibrio vulnificus is a bacterium responsible for severe gastroenteritis, sepsis and wound infections. Gastroenteritis and sepsis are commonly associated with the consumption of raw oysters, whereas wound infection is often associated with the handling of contaminated fish. Although classical virulence factors of this emerging pathogen are well characterised, there remains a paucity of knowledge regarding the general biology of this species. To investigate the presence of previously unreported virulence factors, we applied whole genome sequencing to a panel of ten V. vulnificus strains with varying virulence potentials. This identified two novel type 6 secretion systems (T6SSs, systems that are known to have a role in bacterial virulence and population dynamics. By utilising a range of molecular techniques and assays we have demonstrated the functionality of one of these T6SSs. Furthermore, we have shown that this system is subject to thermoregulation and is negatively regulated by increasing salinity concentrations. This secretion system was also shown to be involved in the killing of V. vulnificus strains that did not possess this system and a model is proposed as to how this interaction may contribute to population dynamics within V. vulnificus strains. In addition to this intra-species killing, this system also contributes to the killing of inter bacterial species and may have a role in the general composition of Vibrio species in the environment.

  1. Organic metabolites produced by Vibrio parahaemolyticus strain ...

    African Journals Online (AJOL)

    Identification and action of several antibacterial metabolites produced by a fish pathogen Vibrio parahaemolyticus strain An3 from marine ecosystem of Goa has been demonstrated. Antibacterial activity of the crude cell extract of the test bacterium has been evaluated against indicator pathogenic bacterial strains such as ...

  2. Vaccines for viral and bacterial pathogens causing acute gastroenteritis: Part II: Vaccines for Shigella, Salmonella, enterotoxigenic E. coli (ETEC) enterohemorragic E. coli (EHEC) and Campylobacter jejuni

    Science.gov (United States)

    O’Ryan, Miguel; Vidal, Roberto; del Canto, Felipe; Carlos Salazar, Juan; Montero, David

    2015-01-01

    In Part II we discuss the following bacterial pathogens: Shigella, Salmonella (non-typhoidal), diarrheogenic E. coli (enterotoxigenic and enterohemorragic) and Campylobacter jejuni. In contrast to the enteric viruses and Vibrio cholerae discussed in Part I of this series, for the bacterial pathogens described here there is only one licensed vaccine, developed primarily for Vibrio cholerae and which provides moderate protection against enterotoxigenic E. coli (ETEC) (Dukoral®), as well as a few additional candidates in advanced stages of development for ETEC and one candidate for Shigella spp. Numerous vaccine candidates in earlier stages of development are discussed. PMID:25715096

  3. Antagonistic Activities of Purple Non-sulfur Bacterial Extracts Against Antibiotic Resistant Vibrio sp.

    Directory of Open Access Journals (Sweden)

    Chandrasekaran, R.

    2011-01-01

    Full Text Available Solvent extracts of native purple non-sulfur bacterial (PNSB isolates from the effluents of brackish shrimp culture ponds, near Nagapattinam coast (South India were evaluated for antibacterial activity by the disc diffusion method. Best results were shown by the chloroform extracts against oxytetracycline resistant Vibrio harveyi and Vibrio fischerii. Among the purple non-sulfur bacterial isolates, Rhodobacter sphaeroides, showed maximum antagonistic activity. The findings suggest that the antagonistic extracts from Rba. sphaeroides could be used as an effective antibiotic in controlling Vibrio spp., in aquaculture systems.

  4. Luminescence, virulence and quorum sensing signal production by pathogenic Vibrio campbellii and Vibrio harveyi isolates.

    Science.gov (United States)

    Defoirdt, T; Verstraete, W; Bossier, P

    2008-05-01

    To study the relationship between luminescence, autoinducer production and virulence of pathogenic vibrios. Luminescence, quorum sensing signal production and virulence towards brine shrimp nauplii of 13 Vibrio campbellii and Vibrio harveyi strains were studied. Although only two of the tested strains were brightly luminescent, all of them were shown to produce the three different types of quorum sensing signals known to be produced by Vibrio harveyi. Cell-free culture fluids of all strains significantly induced bioluminescence in the cholerae autoinducer 1, autoinducer 2 and harveyi autoinducer 1 reporter strains JAF375, JMH597 and JMH612, respectively. There was no relation between luminescence and signal production and virulence towards brine shrimp. There is a large difference between different strains of Vibrio campbellii and Vibrio harveyi with respect to bioluminescence. However, this is not reflected in signal production and virulence towards gnotobiotic brine shrimp. Moreover, there seems to be no relation between quorum sensing signal production and virulence towards brine shrimp. The results presented here indicate that strains that are most brightly luminescent are not necessarily the most virulent ones and that the lower virulence of some of the strains is not due to a lack of autoinducer production.

  5. Prevalence of potentially pathogenic Vibrio species in the seafood marketed in Malaysia.

    Science.gov (United States)

    Elhadi, Nasreldin; Radu, Son; Chen, Chien-Hsien; Nishibuchi, Mitsuaki

    2004-07-01

    Seafood samples obtained in seafood markets and supermarkets at 11 sites selected from four states in Malaysia were examined for the presence of nine potentially pathogenic species from the genus Vibrio between July 1998 and June 1999. We examined 768 sample sets that included shrimp, squid, crab, cockles, and mussels. We extensively examined shrimp samples from Selangor State to determine seasonal variation of Vibrio populations. Eight potentially pathogenic Vibrio species were detected, with overall incidence in the samples at 4.6% for V. cholerae, 4.7% for V. parahaemolyticus, 6.0% for V. vulnificus, 11% for V. alginolyticus, 9.9% for V. metschnikovii, 1.3% for V. mimicus, 13% for V. damsela, 7.6% for V. fluvialis, and 52% for a combined population of all of the above. As many as eight Vibrio species were detected in shrimp and only four in squid and peel mussels. The overall percent incidence of any of the eight vibrios was highest (82%) in cockles (Anadara granosa) among the seafoods examined and was highest (100%) in Kuching, Sarawak State, and lowest (25%) in Penang, Pulau Penang State, among the sampling sites. Of 97 strains of V. cholerae isolated, one strain belonged to the O1 serotype and 14 to the O139 serotype. The results indicate that the various seafood markets in Malaysia are contaminated with potentially pathogenic Vibrio species regardless of the season and suggest that there is a need for adequate consumer protection measures.

  6. Phytoplankton production systems in a shellfish hatchery: variations of the bacterial load and diversity of vibrios.

    Science.gov (United States)

    Dubert, J; Fernández-Pardo, A; Nóvoa, S; Barja, J L; Prado, S

    2015-06-01

    Outbreaks of disease caused by some Vibrio species represent the main production bottleneck in shellfish hatcheries. Although the phytoplankton used as food is one of the main sources of bacteria, studies of the associated bacterial populations, specifically vibrios, are scarce. The aim of the study was the microbiological monitoring of the microalgae as the first step in assessing the risk disease for bivalve cultures. Two phytoplankton production systems were sampled weekly throughout 1-year period in a bivalve hatchery. Quantitative analysis revealed high levels of marine heterotrophic bacteria in both systems throughout the study. Presumptive vibrios were detected occasionally and at low concentrations. In most of the cases, they belonged to the Splendidus and Harveyi clades. The early detection of vibrios in the microalgae may be the key for a successful bivalve culture. Their abundance and diversity were affected by factors related to the hatchery environment. This work represents the first long study where the presence of vibrios was evaluated rigorously in phytoplankton production systems and provides a suitable microbiological protocol to control and guarantee the quality of the algal cultures to avoid the risk of transferring potential pathogens to shellfish larvae and/or broodstock. © 2015 The Society for Applied Microbiology.

  7. Vibrio damsela as a pathogenic agent causing mortalities in cultured sea bass (Lates calcarifer)

    OpenAIRE

    Renault, Tristan; Haffner, Philippe; Malfondet, C.; Weppe, Maurice

    1994-01-01

    Vibrio anguillarum and Vibrio ordali are species frequently described as fish pathogens. Seven species of Vibrio can also be implicated in disease problems in mariculture (Toranzo 1990). sorne of Vibrios and Barja, In addition, these marine such as V. vulnificus (Tison et al.. 1982) and V. damsela (Love et al., 1981) can also cause illness homoiothermic animals

  8. Construction of a stable GFP-tagged Vibrio harveyi strain for bacterial dynamics analysis of abalone infection.

    Science.gov (United States)

    Travers, Marie-Agnès; Barbou, Annaïck; Le Goïc, Nelly; Huchette, Sylvain; Paillard, Christine; Koken, Marcel

    2008-12-01

    Vibrio harveyi is a bacterial marine pathogen that can cause fatal disease in a large range of vertebrates and invertebrates, including the commercially important marine gastropod, Haliotis tuberculata. Since 1997, strains of this bacterium have regularly been causing high mortalities in farmed and wild abalone populations. The way in which the pathogen enters into abalone and the disease transmission mechanisms are thus far unknown. Therefore, a pathogenic strain, ORM4, was green fluorescent protein-tagged and validated both for its growth characteristics and for its virulence as a genuine model for abalone disease. The strain allows V. harveyi quantification by flow cytometry in seawater and in abalone haemolymph as well as the in situ detection of the parasite inside abalone tissues.

  9. Application of photostable quantum dots for indirect immunofluorescent detection of specific bacterial serotypes on small marine animals

    International Nuclear Information System (INIS)

    Decho, Alan W; Beckman, Erin M; Chandler, G Thomas; Kawaguchi, Tomohiro

    2008-01-01

    An indirect immunofluorescence approach was developed using semiconductor quantum dot nanocrystals to label and detect a specific bacterial serotype of the bacterial human pathogen Vibrio parahaemolyticus, attached to small marine animals (i.e. benthic harpacticoid copepods), which are suspected pathogen carriers. This photostable labeling method using nanotechnology will potentially allow specific serotypes of other bacterial pathogens to be detected with high sensitivity in a range of systems, and can be easily applied for sensitive detection to other Vibrio species such as Vibrio cholerae

  10. Exposure of the grass shrimp, Palaemonetes pugio, to antimicrobial compounds affects associated Vibrio bacterial density and development of antibiotic resistance.

    Science.gov (United States)

    DeLorenzo, M E; Brooker, J; Chung, K W; Kelly, M; Martinez, J; Moore, J G; Thomas, M

    2016-04-01

    Antimicrobial compounds are widespread, emerging contaminants in the aquatic environment and may threaten ecosystem and human health. This study characterized effects of antimicrobial compounds common to human and veterinary medicine, aquaculture, and consumer personal care products [erythromycin (ERY), sulfamethoxazole (SMX), oxytetracycline (OTC), and triclosan (TCS)] in the grass shrimp Palaemonetes pugio. The effects of antimicrobial treatments on grass shrimp mortality and lipid peroxidation activity were measured. The effects of antimicrobial treatments on the bacterial community of the shrimp were then assessed by measuring Vibrio density and testing bacterial isolates for antibiotic resistance. TCS (0.33 mg/L) increased shrimp mortality by 37% and increased lipid peroxidation activity by 63%. A mixture of 0.33 mg/L TCS and 60 mg/L SMX caused a 47% increase in shrimp mortality and an 88% increase in lipid peroxidation activity. Exposure to SMX (30 mg/L or 60 mg/L) alone and to a mixture of SMX/ERY/OTC did not significantly affect shrimp survival or lipid peroxidation activity. Shrimp exposure to 0.33 mg/L TCS increased Vibrio density 350% as compared to the control whereas SMX, the SMX/TCS mixture, and the mixture of SMX/ERY/OTC decreased Vibrio density 78-94%. Increased Vibrio antibiotic resistance was observed for all shrimp antimicrobial treatments except for the mixture of SMX/ERY/OTC. Approximately 87% of grass shrimp Vibrio isolates displayed resistance to TCS in the control treatment suggesting a high level of TCS resistance in environmental Vibrio populations. The presence of TCS in coastal waters may preferentially increase the resistance and abundance of pathogenic bacteria. These results indicate the need for further study into the potential interactions between antimicrobials, aquatic organisms, and associated bacterial communities. © 2014 Wiley Periodicals, Inc.

  11. Isolation of lytic bacteriophage against Vibrio harveyi.

    Science.gov (United States)

    Crothers-Stomps, C; Høj, L; Bourne, D G; Hall, M R; Owens, L

    2010-05-01

    The isolation of lytic bacteriophage of Vibrio harveyi with potential for phage therapy of bacterial pathogens of phyllosoma larvae from the tropical rock lobster Panulirus ornatus. Water samples from discharge channels and grow-out ponds of a prawn farm in northeastern Australia were enriched for 24 h in a broth containing four V. harveyi strains. The bacteriophage-enriched filtrates were spotted onto bacterial lawns demonstrating that the bacteriophage host range for the samples included strains of V. harveyi, Vibrio campbellii, Vibrio rotiferianus, Vibrio parahaemolyticus and Vibrio proteolyticus. Bacteriophage were isolated from eight enriched samples through triple plaque purification. The host range of purified phage included V. harveyi, V. campbellii, V. rotiferianus and V. parahaemolyticus. Transmission electron microscope examination revealed that six purified phage belonged to the family Siphoviridae, whilst two belonged to the family Myoviridae. The Myoviridae appeared to induce bacteriocin production in a limited number of host bacterial strains, suggesting that they were lysogenic rather than lytic. A purified Siphoviridae phage could delay the entry of a broth culture of V. harveyi strain 12 into exponential growth, but could not prevent the overall growth of the bacterial strain. Bacteriophage with lytic activity against V. harveyi were isolated from prawn farm samples. Purified phage of the family Siphoviridae had a clear lytic ability and no apparent transducing properties, indicating they are appropriate for phage therapy. Phage resistance is potentially a major constraint to the use of phage therapy in aquaculture as bacteria are not completely eliminated. Phage therapy is emerging as a potential antibacterial agent that can be used to control pathogenic bacteria in aquaculture systems. The development of phage therapy for aquaculture requires initial isolation and determination of the bacteriophage host range, with subsequent creation of

  12. Host-pathogen interactions: A cholera surveillance system

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Aaron T.

    2016-02-22

    Bacterial pathogen-secreted proteases may play a key role in inhibiting a potentially widespread host-pathogen interaction. Activity-based protein profiling enabled the identification of a major Vibrio cholerae serine protease that limits the ability of a host-derived intestinal lectin to bind to the bacterial pathogen in vivo.

  13. Relationships between environmental factors and pathogenic Vibrios in the Northern Gulf of Mexico.

    Science.gov (United States)

    Johnson, C N; Flowers, A R; Noriea, N F; Zimmerman, A M; Bowers, J C; DePaola, A; Grimes, D J

    2010-11-01

    Although autochthonous vibrio densities are known to be influenced by water temperature and salinity, little is understood about other environmental factors associated with their abundance and distribution. Densities of culturable Vibrio vulnificus containing vvh (V. vulnificus hemolysin gene) and V. parahaemolyticus containing tlh (thermolabile hemolysin gene, ubiquitous in V. parahaemolyticus), tdh (thermostable direct hemolysin gene, V. parahaemolyticus pathogenicity factor), and trh (tdh-related hemolysin gene, V. parahaemolyticus pathogenicity factor) were measured in coastal waters of Mississippi and Alabama. Over a 19-month sampling period, vibrio densities in water, oysters, and sediment varied significantly with sea surface temperature (SST). On average, tdh-to-tlh ratios were significantly higher than trh-to-tlh ratios in water and oysters but not in sediment. Although tlh densities were lower than vvh densities in water and in oysters, the opposite was true in sediment. Regression analysis indicated that SST had a significant association with vvh and tlh densities in water and oysters, while salinity was significantly related to vibrio densities in the water column. Chlorophyll a levels in the water were correlated significantly with vvh in sediment and oysters and with pathogenic V. parahaemolyticus (tdh and trh) in the water column. Furthermore, turbidity was a significant predictor of V. parahaemolyticus density in all sample types (water, oyster, and sediment), and its role in predicting the risk of V. parahaemolyticus illness may be more important than previously realized. This study identified (i) culturable vibrios in winter sediment samples, (ii) niche-based differences in the abundance of vibrios, and (iii) predictive signatures resulting from correlations between environmental parameters and vibrio densities.

  14. Molecular characterization and phylogenetic analysis of highly pathogenic Vibrio alginolyticus strains isolated during mortality outbreaks in cultured Ruditapes decussatus juvenile.

    Science.gov (United States)

    Mechri, Badreddine; Monastiri, Abir; Medhioub, Amel; Medhioub, Mohamed Nejib; Aouni, Mahjoub

    2017-10-01

    In the summer of 2008 and 2009, a series of mortalities in growing out seeds of R. decussatus juveniles were occurred in the eastern Tunisian littoral. Nine predominant bacterial strains were isolated from dead and moribund juveniles and characterized as Vibrio alginolyticus. These isolates were subjected to biochemical and molecular characterization. All the Vibrio strains were tested for their susceptibility against the most widely used antibiotic in aquaculture as well as, the assessment of the presence of erythromycin (emrB) and tetracycline (tetS) resistance genes among the tested bacteria. The degree of genetic relatedness between V. alginolyticus strains was evaluated on the basis of the Entero-Bacterial Repetitive Intergenic Consensus (ERIC) and the Random Amplification of Polymorphic DNA-PCR (RAPD-PCR) approaches. We also looked for siderophore activity and the ability to grow under iron limitation. Furthermore, the pathogenic potential of the tested isolates was evaluated using R. decussatus larva and juveniles as infection models. On antimicrobial susceptibility test, Vibrio strains exhibited total resistance to at least four antibiotics. The MICs data revealed that flumequine and oxolinic acid were the most effective antibiotics to control the studied bacteria. Results also showed that studied antibiotics resistance genes were widely disseminated in the genome of V. alginolyticus strains. Both ERIC and RAPD-PCR fingerprinting showed the presence of genetic variation among Vibrio isolates. However, RAPD typing exhibited a higher discriminative potential than ERIC-PCR. Besides, we reported here for the first time the co-production of catechol and hydroxamte by V. alginolyticus species. The challenge experiment showed that most of Vibrio isolates caused high mortality rates for both larva and juveniles at 48-h post-exposure to a bacterial concentration of 10 6  CFU/ml. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Ozone Technology for Pathogenic Bacteria of Shrimp (Vibrio sp.) Disinfection

    Science.gov (United States)

    Wulansarie, Ria; Dyah Pita Rengga, Wara; Rustamadji

    2018-03-01

    One of important marine commodities in Indonesia, shrimps are susceptible with Vibrio sp bacteria infection. That infection must be cleared. One of the technologies for disinfecting Vibrio sp. is ozone technology. In this research, Vibrio sp. is a pathogenic bacterium which infects Penaeus vannamei. Ozone technology is applied for threatening Vibrio sp. In this research, ozonation was performed in different pH. Those are neutral, acid (pH=4), and base (pH=9). The sample was water from shrimp embankment from Balai Besar Perikanan Budidaya Air Payau (BBPBAP) located in Jepara. That water was the habitat of Penaeus vannamei shrimp. The brand of ozonator used in this research was “AQUATIC”. The used ozonator in this research had 0,0325 g/hour concentration. The flow rate of sample used in this research was 2 L/minute. The ozonation process was performed in continuous system. A tank, pipe, pump, which was connected with microfilter, flowmeter and ozone generator were the main tools in this research. It used flowmeter and valve to set the flow rate scalable as desired. The first step was the insert of 5 L sample into the receptacle. Then, by using a pump, a sample supplied to the microfilter to be filtered and passed into the flow meter. The flow rate was set to 2 LPM. Furthermore, gas from ozonator passed to the flow for the disinfection of bacteria and then was recycled to the tank and the process run continuously. Samples of the results of ozonation were taken periodically from time 0, 3, 7, 12, 18, 24 to 30 minutes. The samples of the research were analyzed using Total Plate Count (TPC) test in BBPBAP Jepara to determine the number of Vibrio sp. bacteria. The result of this research was the optimal condition for pathogenic bacteria of shrimp (Vibrio sp.) ozonation was in neutral condition.

  16. Contamination of community water sources by potentially pathogenic vibrios following sea water inundation.

    Science.gov (United States)

    Kanungo, Reba; Shashikala; Karunasagar, I; Srinivasan, S; Sheela, Devi; Venkatesh, K; Anitha, P

    2007-12-01

    Potentially pathogenic members of the Vibrionaceae family including Vibrio cholerae and Vibrio parahemolyticus were isolated from domestic sources of drinking water in coastal villages following sea water inundation during the tsunami in Southern India. Phenotypic and genotypic studies were done to confirm the identity and detection of toxins. Vibrio-gyr (gyrase B gene) was detected in all sixteen vibrio isolates. Toxin regulating genes i.e.: ctx gene, tdh gene, and trh gene, however were not detected in any of the strains, thereby ruling out presence of toxins which could endanger human life. Other potentially pathogenic bacteria Aeromonas and Plesiomonas were also isolated from hand pumps and wells, in a few localities. There was no immediate danger in the form of an outbreak or sporadic gastroenteritis at the time of the study. Timely chlorination and restoration of potable water supply to the flood affected population by governmental and nongovernmental agencies averted waterborne gastroenteritis. Assessment of quality of water and detection of potential virulent organisms is an important public health activity following natural disasters. This work highlights the importance of screening water sources for potentially pathogenic microorganisms after natural disasters to avert outbreaks of gastroenteritis and other infectious diseases.

  17. Pathogenic Vibrio parahaemolyticus isolated from biofouling on commercial vessels and harbor structures.

    Science.gov (United States)

    Revilla-Castellanos, Valeria J; Guerrero, Abraham; Gomez-Gil, Bruno; Navarro-Barrón, Erick; Lizárraga-Partida, Marcial L

    2015-01-01

    Ballast water is a significant vector of microbial dissemination; however, biofouling on commercial vessel hulls has been poorly studied with regard to pathogenic bacteria transport. Biofouling on three commercial vessels and seven port structures in Ensenada, Baja California, Mexico, was examined by qPCR to identify and quantify Vibrio parahaemolyticus, a worldwide recognized food-borne human pathogen. Pathogenic variants (trh+, tdh+) of V. parahaemolyticus were detected in biofouling homogenates samples from several docks in Ensenada and on the hulls of ships with Japanese and South Korean homeports, but not in reference sampling stations. A total of 26 tdh+ V. parahaemolyticus colonies and 1 ORF8+/O3:K6 strain were also isolated from enriched biofouling homogenate samples confirming the qPCR analysis. Our results suggest that biofouling is an important reservoir of pathogenic vibrios. Thus, ship biofouling might be an overlooked vector with regard to the dissemination of pathogens, primarily pathogenic V. parahaemolyticus.

  18. A pan-European ring trial to validate an International Standard for detection of Vibrio cholerae, Vibrio parahaemolyticus and Vibrio vulnificus in seafoods.

    Science.gov (United States)

    Hartnell, R E; Stockley, L; Keay, W; Rosec, J-P; Hervio-Heath, D; Van den Berg, H; Leoni, F; Ottaviani, D; Henigman, U; Denayer, S; Serbruyns, B; Georgsson, F; Krumova-Valcheva, G; Gyurova, E; Blanco, C; Copin, S; Strauch, E; Wieczorek, K; Lopatek, M; Britova, A; Hardouin, G; Lombard, B; In't Veld, P; Leclercq, A; Baker-Austin, C

    2018-02-10

    Globally, vibrios represent an important and well-established group of bacterial foodborne pathogens. The European Commission (EC) mandated the Comite de European Normalisation (CEN) to undertake work to provide validation data for 15 methods in microbiology to support EC legislation. As part of this mandated work programme, merging of ISO/TS 21872-1:2007, which specifies a horizontal method for the detection of V. parahaemolyticus and V. cholerae, and ISO/TS 21872-2:2007, a similar horizontal method for the detection of potentially pathogenic vibrios other than V. cholerae and V. parahaemolyticus was proposed. Both parts of ISO/TS 21872 utilized classical culture-based isolation techniques coupled with biochemical confirmation steps. The work also considered simplification of the biochemical confirmation steps. In addition, because of advances in molecular based methods for identification of human pathogenic Vibrio spp. classical and real-time PCR options were also included within the scope of the validation. These considerations formed the basis of a multi-laboratory validation study with the aim of improving the precision of this ISO technical specification and providing a single ISO standard method to enable detection of these important foodborne Vibrio spp.. To achieve this aim, an international validation study involving 13 laboratories from 9 countries in Europe was conducted in 2013. The results of this validation have enabled integration of the two existing technical specifications targeting the detection of the major foodborne Vibrio spp., simplification of the suite of recommended biochemical identification tests and the introduction of molecular procedures that provide both species level identification and discrimination of putatively pathogenic strains of V. parahaemolyticus by the determination of the presence of theromostable direct and direct related haemolysins. The method performance characteristics generated in this have been included in revised

  19. Characteristics of pathogenic Vibrio sp. isolated from the rockfish, Sebastes schlegeli

    International Nuclear Information System (INIS)

    Kim, Jong Hwa

    1995-02-01

    At the summer time, an infectious bacterial disease occurs and damages the net cage farms of rockfish (Sebastes schlegeli) at the western coast of Korea. The symptoms of this disease include darkness of body color, ulceration of skin, anemia of gill-filaments, and congestion of operculum. In order to know the attributes of pathogenicity of this disease, the study is performed with isolated bacteria from the rockfish sampled at the fish farm, located at Taean-gun Chungcheongnam-do, from June to September in 1994. The pathogenic bacteria cna be isolated from dermal lesion, kidney, liver, and spleen of the sick fish, and classified as Vibrio sp. based on the morphological, biological, and biochemical examinations. These isolates are proliferated in BTB teepol, TCBS, TSA, XA, BHIA, media, not in SS and MacConkey media, and the optimal growth conditions for NaCl concentration, pH, and temperature are 3%, 7∼8, and 25∼30 .deg. C, respectively. They turn out to be sensitive to three chemicals such as SXT (sulfamethoxazol + trimethoprim), nalidixic acid, and tetracycline, but resistant to ampicillin and penicillin G. Finally, the virulence of infectious bacteria is appeared at both 20 .deg. C and 27 .deg. C when isolated pathogenic strains are injected into the muscle of healthy rockfish

  20. Prevalence of Vibrio vulnificus and Vibrio parahaemolyticus in the Maryland Coastal Bays

    Science.gov (United States)

    De Pascuale, V. O.

    2016-02-01

    The bacterial family of Vibrionaceae is indigenous in the marine estuarine environments such as the Maryland Coastal Bays. Vibrio vulnificus and Vibrio parahaemolyticus are both pathogenic bacteria. Understanding the distribution of Vibrio species is crucial because of the health concerns associated with the bacteria. The aim of this study was to evaluate the overall abundance of bacteria with a focus on Vibrio species in the Maryland Coastal Bays. Seawater samples were collected from 10 different sites that differ with regard to water quality. The total bacteria count (TBC) was determined by two methods: Total plate count and Epifluorescence microscopy. The most-probable-number (MPN) methodology was used to estimate the population of Vibrio parahaemolyticus and Vibrio vulnificus. In addition to the bacteriological analysis, the environmental parameters of temperature and salinity were measured using YSI 6600 multiparameter meter. The average total bacteria count was 2.21 log CFU ml-1. Vibrio vulnificus comprised 5% of the total bacteria count while Vibrio parahaemolyticus comprised only 2% of the total bacteria count. Vibrio vulnificus ranged from 0.30 to 2.48 log MPN ml-1 at the sites tested. Lower Vibrio parahaemolyticus count was observed at the sites with a range of 0.30 to 1.97 log MPN ml-1. There was no significant correlation between the environmental parameters and the Vibrio spp. Since both Vibrio vulnificus and Vibrio parahaemolyticus peak in the summer, there is a potential for a risk of wound infections and gastrointestinal illness based on this data.

  1. [Factors of persistence and (or) pathogenicity in vibrios and aeromonads belonging to different ecotopes].

    Science.gov (United States)

    Bukharin, O V; Boĭko, A V; Zhuravleva, L A

    1998-01-01

    Factors of persistence and/or pathogenicity in Vibrio parahaemolyticus and Aeromonas hydrophila (hemolytic, lipase, lecithin, DNAase, RNAase, antilysozyme, "anti-interferon", anticomplementary activities and capacity for absorbing Congo red) were studied. The study revealed the interspecific and subpopulation (hospital and extraorganismal parts of the population) differences in the activity of the manifestation of these factors. Strong dependence of the whole complex of persistence and pathogenicity factors of their belonging to the hostal part of Vibrio and Aeromonas populations was shown.

  2. The ecology of Vibrio vulnificus, Vibrio cholerae, and Vibrio parahaemolyticus in North Carolina estuaries.

    Science.gov (United States)

    Blackwell, Karen Dyer; Oliver, James D

    2008-04-01

    While numerous studies have characterized the distribution and/or ecology of various pathogenic Vibrio spp., here we have simultaneously examined several estuarine sites for Vibrio vulnificus, V. cholerae, and V. parahaemolyticus. For a one year period, waters and sediment were monitored for the presence of these three pathogens at six different sites on the east coast of North Carolina in the United States. All three pathogens, identified using colony hybridization and PCR methods, occurred in these estuarine environments, although V. cholerae occurred only infrequently and at very low levels. Seventeen chemical, physical, and biological parameters were investigated, including salinity, water temperature, turbidity, dissolved oxygen, levels of various inorganic nutrients and dissolved organic carbon, as well as total vibrios, total coliforms, and E. coli. We found each of the Vibrio spp. in water and sediment to correlate to several of these environmental measurements, with water temperature and total Vibrio levels correlating highly (P<0.0001) with occurrence of the three pathogens. Thus, these two parameters may represent simple assays for characterizing the potential public health hazard of estuarine waters.

  3. Isolation of TDA-producing Phaeobacter strains from sea bass larval rearing units and their probiotic effect against pathogenic Vibrio spp. in Artemia cultures

    DEFF Research Database (Denmark)

    Grotkjær, Torben; Bentzon-Tilia, Mikkel; D'Alvise, Paul

    2016-01-01

    V. harveyi, which is the major bacterial pathogen in crustaceans and Mediterranean sea bass larvae cultures. Concomitantly, they significantly improved survival of V. harveyi-infected brine shrimp. 16S rRNA gene sequence homology identified the antagonists as Phaeobacter sp., and in silico DNA...... Vibrio anguillarum and reduce mortality in V. anguillarum-infected cod and turbot larvae. In this study, it was demonstrated that antagonistic Roseobacter-clade bacteria could be isolated from sea bass larval rearing units. In addition, it was shown that they not only antagonized V. anguillarum but also......-producing Phaeobacter isolated from Mediterranean marine larviculture are promising probiotic bacteria against pathogenic Vibrio in crustacean live-feed cultures for marine fish larvae....

  4. Relationships between Environmental Factors and Pathogenic Vibrios in the Northern Gulf of Mexico ▿ †

    Science.gov (United States)

    Johnson, C. N.; Flowers, A. R.; Noriea, N. F.; Zimmerman, A. M.; Bowers, J. C.; DePaola, A.; Grimes, D. J.

    2010-01-01

    Although autochthonous vibrio densities are known to be influenced by water temperature and salinity, little is understood about other environmental factors associated with their abundance and distribution. Densities of culturable Vibrio vulnificus containing vvh (V. vulnificus hemolysin gene) and V. parahaemolyticus containing tlh (thermolabile hemolysin gene, ubiquitous in V. parahaemolyticus), tdh (thermostable direct hemolysin gene, V. parahaemolyticus pathogenicity factor), and trh (tdh-related hemolysin gene, V. parahaemolyticus pathogenicity factor) were measured in coastal waters of Mississippi and Alabama. Over a 19-month sampling period, vibrio densities in water, oysters, and sediment varied significantly with sea surface temperature (SST). On average, tdh-to-tlh ratios were significantly higher than trh-to-tlh ratios in water and oysters but not in sediment. Although tlh densities were lower than vvh densities in water and in oysters, the opposite was true in sediment. Regression analysis indicated that SST had a significant association with vvh and tlh densities in water and oysters, while salinity was significantly related to vibrio densities in the water column. Chlorophyll a levels in the water were correlated significantly with vvh in sediment and oysters and with pathogenic V. parahaemolyticus (tdh and trh) in the water column. Furthermore, turbidity was a significant predictor of V. parahaemolyticus density in all sample types (water, oyster, and sediment), and its role in predicting the risk of V. parahaemolyticus illness may be more important than previously realized. This study identified (i) culturable vibrios in winter sediment samples, (ii) niche-based differences in the abundance of vibrios, and (iii) predictive signatures resulting from correlations between environmental parameters and vibrio densities. PMID:20817802

  5. Shellfish as reservoirs of bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Harry Hariharan

    2016-04-01

    Full Text Available The objective of this article is to present an overview on bacterial pathogens associated with shellfish in Grenada and other countries including the authors’ experience. Although there have been considerable published work on vibrios, there is a lack of information on Salmonella serovars associated with various shellfish. In Grenada, for instance the blue land crabs collected from their habitats were found to harbor several Salmonella serovars. Also, it is notable that only minimal research has been done on shellfish such as conchs and whelks, which are common in the Caribbean and West Indies. Information on anaerobic bacteria, particularly, non-spore forming bacteria associated with shellfish, in general, is also scanty. This review re-examines this globally important topic based on the recent findings as well as past observations. Strategies for reduction of bacteria in oysters are briefly mentioned because of the fact that oysters are consumed commonly without complete cooking.

  6. Bacterial pathogen spectrum of acute diarrheal outpatients in an urbanized rural district in Southwest China

    Directory of Open Access Journals (Sweden)

    Yongming Zhou

    2018-05-01

    Full Text Available Objectives: To conduct a one-year pathogen surveillance of acute diarrheal disease based on outpatient clinics in township hospitals in rural Hongta District of Yunnan Province, China. Methods: Fecal specimens of acute diarrhea cases and relevant epidemiological information were collected. Salmonella, Shigella, Vibrio, Aeromonas, Plesiomonas shigelloides and diarrheogenic Escherichia coli (DEC were examined. Results: Among the 797 stool specimens sampled, 198 samples (24.8% were positive in pathogen isolation, and 223 strains were isolated. The order of isolation rates from high to low were DEC, Aeromonas, P. shigelloides, Salmonella, Shigella and Vibrio. The overall positive rate in middle school students and preschool children was relatively high; while the overall positive rate of less than 1-year-old infants and above 55 years olds was relatively low. The isolates were analyzed by pulsed-field gel electrophoresis (PFGE. Some cases had the same or very close onset time, and the isolates had similar PFGE patterns, suggesting a possible outbreak once occurred but was not detected by the current infectious disease reporting system. Conclusions: Pathogen infection and transmission in rapidly urbanized rural areas is a serious issue. There is a great need for a more sensitive and accurate mode of monitoring, reporting and outbreak identification of diarrheal disease. Keywords: Diarrheal disease, Diarrheogenic pathogen, Molecular typing, Surveillance, Bacterial pathogen

  7. Insights into bacteriophage application in controlling Vibrio species

    Directory of Open Access Journals (Sweden)

    Vengadesh Letchumanan

    2016-07-01

    Full Text Available Bacterial infections from various organisms including Vibrio sp. pose a serious hazard to humans in many forms from clinical infection to affecting the yield of agriculture and aquaculture via infection of livestock. Vibrio sp. is one of the main foodborne pathogens causing human infection and is also a common cause of losses in the aquaculture industry. Prophylactic and therapeutic usage of antibiotics has become the mainstay of managing this problem, however this in turn led to the emergence of multidrug resistant strains of bacteria in the environment; which has raised awareness of the critical need for alternative non antibiotic based methods of preventing and treating bacterial infections. Bacteriophages - viruses that infect and result in the death of bacteria – are currently of great interest as a highly viable alternative to antibiotics. This article provides an insight into bacteriophage application in controlling Vibrio species as well underlining the advantages and drawbacks of phage therapy.

  8. Sialic Acid Catabolism Confers a Competitive Advantage to Pathogenic Vibrio cholerae in the Mouse Intestine▿

    Science.gov (United States)

    Almagro-Moreno, Salvador; Boyd, E. Fidelma

    2009-01-01

    Sialic acids comprise a family of nine-carbon ketosugars that are ubiquitous on mammalian mucous membranes. However, sialic acids have a limited distribution among Bacteria and are confined mainly to pathogenic and commensal species. Vibrio pathogenicity island 2 (VPI-2), a 57-kb region found exclusively among pathogenic strains of Vibrio cholerae, contains a cluster of genes (nan-nag) putatively involved in the scavenging (nanH), transport (dctPQM), and catabolism (nanA, nanE, nanK, and nagA) of sialic acid. The capacity to utilize sialic acid as a carbon and energy source might confer an advantage to V. cholerae in the mucus-rich environment of the gut, where sialic acid availability is extensive. In this study, we show that V. cholerae can utilize sialic acid as a sole carbon source. We demonstrate that the genes involved in the utilization of sialic acid are located within the nan-nag region of VPI-2 by complementation of Escherichia coli mutants and gene knockouts in V. cholerae N16961. We show that nanH, dctP, nanA, and nanK are highly expressed in V. cholerae grown on sialic acid. By using the infant mouse model of infection, we show that V. cholerae ΔnanA strain SAM1776 is defective in early intestinal colonization stages. In addition, SAM1776 shows a decrease in the competitive index in colonization-competition assays comparing the mutant strain with both O1 El Tor and classical strains. Our data indicate an important relationship between the catabolism of sialic acid and bacterial pathogenesis, stressing the relevance of the utilization of the resources found in the host's environment. PMID:19564383

  9. Sialic acid catabolism confers a competitive advantage to pathogenic vibrio cholerae in the mouse intestine.

    Science.gov (United States)

    Almagro-Moreno, Salvador; Boyd, E Fidelma

    2009-09-01

    Sialic acids comprise a family of nine-carbon ketosugars that are ubiquitous on mammalian mucous membranes. However, sialic acids have a limited distribution among Bacteria and are confined mainly to pathogenic and commensal species. Vibrio pathogenicity island 2 (VPI-2), a 57-kb region found exclusively among pathogenic strains of Vibrio cholerae, contains a cluster of genes (nan-nag) putatively involved in the scavenging (nanH), transport (dctPQM), and catabolism (nanA, nanE, nanK, and nagA) of sialic acid. The capacity to utilize sialic acid as a carbon and energy source might confer an advantage to V. cholerae in the mucus-rich environment of the gut, where sialic acid availability is extensive. In this study, we show that V. cholerae can utilize sialic acid as a sole carbon source. We demonstrate that the genes involved in the utilization of sialic acid are located within the nan-nag region of VPI-2 by complementation of Escherichia coli mutants and gene knockouts in V. cholerae N16961. We show that nanH, dctP, nanA, and nanK are highly expressed in V. cholerae grown on sialic acid. By using the infant mouse model of infection, we show that V. cholerae DeltananA strain SAM1776 is defective in early intestinal colonization stages. In addition, SAM1776 shows a decrease in the competitive index in colonization-competition assays comparing the mutant strain with both O1 El Tor and classical strains. Our data indicate an important relationship between the catabolism of sialic acid and bacterial pathogenesis, stressing the relevance of the utilization of the resources found in the host's environment.

  10. Monitoring of Vibrio harveyi quorum sensing activity in real time during infection of brine shrimp larvae.

    Science.gov (United States)

    Defoirdt, Tom; Sorgeloos, Patrick

    2012-12-01

    Quorum sensing, bacterial cell-to-cell communication, has been linked to the virulence of pathogenic bacteria. Indeed, in vitro experiments have shown that many bacterial pathogens regulate the expression of virulence genes by this cell-to-cell communication process. Moreover, signal molecules have been detected in samples retrieved from infected hosts and quorum sensing disruption has been reported to result in reduced virulence in different host-pathogen systems. However, data on in vivo quorum sensing activity of pathogens during infection of a host are currently lacking. We previously reported that quorum sensing regulates the virulence of Vibrio harveyi in a standardised model system with gnotobiotic brine shrimp (Artemia franciscana) larvae. Here, we monitored quorum sensing activity in Vibrio harveyi during infection of the shrimp, using bioluminescence as a read-out. We found that wild-type Vibrio harveyi shows a strong increase in quorum sensing activity early during infection. In this respect, the bacteria behave remarkably similar in different larvae, despite the fact that only half of them survive the infection. Interestingly, when expressed per bacterial cell, Vibrio harveyi showed around 200-fold higher maximal quorum sensing-regulated bioluminescence when associated with larvae than in the culture water. Finally, the in vivo quorum sensing activity of mutants defective in the production of one of the three signal molecules is consistent with their virulence, with no detectable in vivo quorum sensing activity in AI-2- and CAI-1-deficient mutants. These results indicate that AI-2 and CAI-1 are the dominant signals during infection of brine shrimp.

  11. Exploring the Effect of Phage Therapy in Preventing Vibrio anguillarum Infections in Cod and Turbot Larvae

    DEFF Research Database (Denmark)

    Rørbo, Nanna; Rønneseth, Anita; Kalatzis, Panos G.

    2018-01-01

    The aquaculture industry is suffering from losses associated with bacterial infections by opportunistic pathogens. Vibrio anguillarum is one of the most important pathogens, causing vibriosis in fish and shellfish cultures leading to high mortalities and economic losses. Bacterial resistance to a...... KVP40, demonstrating that the phage could also reduce mortality imposed by the background population of pathogens. Overall, phage-mediated reduction in mortality of cod and turbot larvae in experimental challenge assays with V. anguillarum pathogens suggested that application of broad...

  12. Prevalence of listeria, Aeromonas, and Vibrio species in fish used for human consumption in Turkey.

    Science.gov (United States)

    Yücel, Nihal; Balci, Senay

    2010-02-01

    A total of 78 raw retail fish samples from 30 freshwater and 48 marine fish were examined for the presence of Listeria, Aeromonas, and Vibrio species. The overall incidence of Listeria spp. was 30% in freshwater samples and 10.4% in marine fish samples. Listeria monocytogenes (44.5%) was the most commonly isolated species in freshwater fish, and Listeria murrayi (83.5%) was the most commonly isolated species in marine fish samples. Motile aeromonads were more common in marine fish samples (93.7%) than in freshwater fish samples (10%). Vibrio alginolyticus, Vibrio fluvialis, and Vibrio damsela were isolated only in marine fish samples, representing 40.9, 38.6, and 36.3% of Vibrio isolates, respectively. In freshwater and marine fish, the highest incidences of Listeria and Aeromonas were found in skin samples; the highest incidence of Vibrio in marine fish was found in gill samples. The location of Listeria spp. and L. monocytogenes in a fish was significantly different among freshwater fish. A high incidence of these bacterial pathogens was found in the brown trout (Salmo trutta) and horse mackerel (Trachurus trachurus). Handling of contaminated fish, cross-contamination, or eating raw fish might pose a health hazard, especially in immunosuppressed individuals, elderly people, and children. This study highlights the importance of bacterial pathogens in fish intended for human consumption, but more study is needed.

  13. Oral administration of formalin killed Vibrio anguillarum cells improves growth and protection against challenge with Vibrio harveyi in banana shrimp.

    Science.gov (United States)

    Patil, P K; Gopal, C; Panigrahi, A; Rajababu, D; Pillai, S M

    2014-03-01

    Larval rearing in hatcheries and highly intensive grow-out culture practices followed in shrimp production systems favour the growth of potential pathogenic bacterial loads. This study reports the efficacy of formalin-killed vibrio bacterin on growth, survival and protection to challenge with virulent Vibrio harveyi and Vibrio anguillarum in juveniles of banana shrimp Fenneropenaeus merguiensis. Postlarvae 15 (0·24 ± 0·01 g) were administered orally in different concentrations of bacterial preparation (0, 10(6) , 10(8) , 10(10) and 10(12 ) CFU kg(-1) feed) for a period of 6 weeks. Physicochemical and microbial quality of water in larval rearing tanks, and growth and survival of the postlarvae were monitored at regular intervals, and body composition was estimated at the end of the experiment. Shrimps were challenged with V. harveyi and V. anguillarum, and cumulative mortality was calculated. The group receiving 10(8)  CFU kg(-1) feed showed highest average weight gain (162·66 ± 22·94 mg) and survival (90·33 ± 4·5%) and lowest cumulative mortality following the challenge with V. anguillarum (26%) and V. harveyi (36·67%). The results of the study suggest that formalized vibrio administered orally to F. merguiensis postlarvae could induce both homologous and heterologous protection against V. anguillarum and V. harveyi. 'Vaccination' of shrimp postlarvae at hatcheries would help in preventing the losses due to vibriosis and the most susceptible stages of shrimp development. The study demonstrates the cross-protection offered by the oral feeding of formalin-killed Vibrio anguillarum against pathogenic V. harveyi challenge at the early developmental stages of banana shrimp, Fenneropenaeus merguiensis. © 2013 The Society for Applied Microbiology.

  14. Analysis of bacterial metagenomes from the Southwestern Gulf of Mexico for pathogens detection.

    Science.gov (United States)

    Escobedo-Hinojosa, Wendy; Pardo-López, Liliana

    2017-07-31

    Little is known about the diversity of bacteria in the Southwestern Gulf of Mexico. The aim of the study illustrated in this perspective was to search for the presence of bacterial pathogens in this ecosystem, using metagenomic data recently generated by the Mexican research group known as the Gulf of Mexico Research Consortium. Several genera of bacteria annotated as pathogens were detected in water and sediment marine samples. As expected, native and ubiquitous pathogenic bacteria genera such as Burkolderia, Halomonas, Pseudomonas, Shewanella and Vibrio were highly represented. Surprisingly, non-native genera of public health concern were also detected, including Borrelia, Ehrlichia, Leptospira, Mycobacterium, Mycoplasma, Salmonella, Staphylococcus, Streptococcus and Treponema. While there are no previous metagenomics studies of this environment, the potential influences of natural, anthropogenic and ecological factors on the diversity of putative pathogenic bacteria found in it are reviewed. The taxonomic annotation herein reported provides a starting point for an improved understanding of bacterial biodiversity in the Southwestern Gulf of Mexico. It also represents a useful tool in public health as it may help identify infectious diseases associated with exposure to marine water and ingestion of fish or shellfish, and thus may be useful in predicting and preventing waterborne disease outbreaks. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Pathogenicity Assay of Vibrio harveyi in Tiger Shrimp Larvae Employing Rifampicin-Resistant as A Molecular Marker

    Directory of Open Access Journals (Sweden)

    . Widanarni

    2007-12-01

    Full Text Available Rifampicin-resistant marker was employed as a reporter to assay pathogenicity of Vibrio harveyi  in shrimp larvae.  V. harveyi M. G3 and G7 that difference not schizotyping as shown by Pulsed-Filed Gel Electrophoresis (PFGE used in this study. Spontaneous mutation was conducted to generate V. harveyi resistant to rifampicin. Two groups of shrimp post-larvae (PL5 were immersed for 30 min in 106 CFU/ml of mutants and wild type of V. harveyi, respectively; and then placed in a 2 liter shrimp rearing tank for five days. A control group was immersed in sterile seawater. Growth curve analysis and pathogenicity assay of V. harveyi  showed that each of the V. harveyi mutant exhibited almost identical profiles to that of the wild type parental strain and did not show alteration in their pathogenicity. Sample from dead shrimp larvae showed that the dead shrimp larvae were infected by V. harveyi RfR, indicated that rifampicin-resistant marker effective as a reporter to assay pathogenicity of Vibrio harveyi in shrimp larvae. Key words: shrimp larvae, Vibrio harveyi, rifampicin-resistant, molecular marker

  16. Effects of Global Warming on Vibrio Ecology.

    Science.gov (United States)

    Vezzulli, Luigi; Pezzati, Elisabetta; Brettar, Ingrid; Höfle, Manfred; Pruzzo, Carla

    2015-06-01

    Vibrio-related infections are increasing worldwide both in humans and aquatic animals. Rise in global sea surface temperature (SST), which is approximately 1 °C higher now than 140 years ago and is one of the primary physical impacts of global warming, has been linked to such increases. In this chapter, major known effects of increasing SST on the biology and ecology of vibrios are described. They include the effects on bacterial growth rate, both in the field and in laboratory, culturability, expression of pathogenicity traits, and interactions with aquatic organisms and abiotic surfaces. Special emphasis is given to the effect of ocean warming on Vibrio interactions with zooplankters, which represent one of the most important aquatic reservoirs for these bacteria. The reported findings highlight the biocomplexity of the interactions between vibrios and their natural environment in a climate change scenario, posing the need for interdisciplinary studies to properly understand the connection between ocean warming and persistence and spread of vibrios in sea waters and the epidemiology of the diseases they cause.

  17. Interactions between the pathogenic bacterium Vibrio parahaemolyticus and red-tide dinoflagellates

    Science.gov (United States)

    Seong, Kyeong Ah; Jeong, Hae Jin

    2011-06-01

    Vibrio parahaemolyticus is a common pathogenic bacterium in marine and estuarine waters. To investigate interactions between V. parahaemolyticus and co-occurring redtide dinoflagellates, we monitored the daily abundance of 5 common red tide dinoflagellates in laboratory culture; Amphidinium carterae, Cochlodinium ploykrikoides, Gymnodinium impudicum, Prorocentrum micans, and P. minimum. Additionally, we measured the ingestion rate of each dinoflagellate on V. parahaemolyticus as a function of prey concentration. Each of the dinoflagellates responded differently to the abundance of V. parahaemolyticus. The abundances of A. carterae and P. micans were not lowered by V. parahaemolyticus, whereas that of C. polykrikodes was lowered considerably. The harmful effect depended on bacterial concentration and incubation time. Most C. polykrikoides cells died after 1 hour incubation when the V. parahaemolyticus concentration was 1.4×107 cells ml-1, while cells died within 2 days of incubation when the bacterial concentration was 1.5×106 cells ml-1. With increasing V. parahaemolyticus concentration, ingestion rates of P. micans, P. minimum, and A. carterae on the prey increased, whereas that on C. polykrikoides decreased. The maximum or highest ingestion rates of P. micans, P. minimum, and A. carterae on V. parahaemolyticus were 55, 5, and 2 cells alga-1 h-1, respectively. The results of the present study suggest that V. parahaemolyticus can be both the killer and prey for some red tide dinoflagellates.

  18. Ocean acidification and host-pathogen interactions: blue mussels, Mytilus edulis, encountering Vibrio tubiashii.

    Science.gov (United States)

    Asplund, Maria E; Baden, Susanne P; Russ, Sarah; Ellis, Robert P; Gong, Ningping; Hernroth, Bodil E

    2014-04-01

    Ocean acidification (OA) can shift the ecological balance between interacting organisms. In this study, we have used a model system to illustrate the interaction between a calcifying host organism, the blue mussel Mytilus edulis and a common bivalve bacterial pathogen, Vibrio tubiashii, with organisms being exposed to a level of acidification projected to occur by the end of the 21st century. OA exposures of the mussels were carried out in relative long-term (4 months) and short-term (4 days) experiments. We found no effect of OA on the culturability of V. tubiashii, in broth or in seawater. OA inhibited mussel shell growth and impaired crystalline shell structures but did not appear to affect mussel immune parameters (i.e haemocyte counts and phagocytotic capacity). Despite no evident impact on host immunity or growth and virulence of the pathogen, V. tubiashii was clearly more successful in infecting mussels exposed to long-term OA compared to those maintained under ambient conditions. Moreover, OA exposed V. tubiashii increased their viability when exposed to haemocytes of OA-treated mussel. Our findings suggest that even though host organisms may have the capacity to cope with periods of OA, these conditions may alter the outcome of host-pathogen interactions, favouring the success of the latter. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Molecular detection of human bacterial pathogens

    National Research Council Canada - National Science Library

    Liu, Dongyou

    2011-01-01

    .... Molecular Detection of Human Bacterial Pathogens addresses this issue, with international scientists in respective bacterial pathogen research and diagnosis providing expert summaries on current...

  20. Anethole inhibits growth of recently emerged multidrug resistant toxigenic Vibrio cholerae O1 El Tor variant strains in vitro

    OpenAIRE

    ZAHID, M. Shamim Hasan; AWASTHI, Sharda Prasad; HINENOYA, Atsushi; YAMASAKI, Shinji

    2015-01-01

    To search natural compounds having inhibitory effect on bacterial growth is important, particularly in view of growing multidrug resistant (MDR) strains of bacterial pathogens. Like other bacterial pathogens, MDR Vibrio cholerae, the causative agent of diarrheal disease cholera, is becoming a great concern. As an approach of searching new antimicrobial agents, here, we show that anethole, a well-studied natural component of sweet fennel and star anise seeds, could potentially inhibit the grow...

  1. Hatchery mortalities of larval oysters caused by Vibrio tubiashii and Vibrio coralliilyticus

    Science.gov (United States)

    Hatchery production of bivalve shellfish has been hampered by the occasional presence of opportunistic pathogens, particularly Vibrio coralliilyticus and Vibrio tubiashii. The present study reports the results of several avenues of research to better define these pathogens and the roles they play i...

  2. The Inhibitor Pathogen Bacteria’s of Sea Grape Caulerpa lentillifera Applies on Fresh Fish

    Directory of Open Access Journals (Sweden)

    Alfonsina M.Tapotubun

    2016-12-01

    Full Text Available Contamination of pathogen bacteries at the fresh fish may occur during the post harvesting to the consuming period, and endanger human health. One of simple and safe way to protect secureness of fresh fish food is the use of Caulerpa lentillifera to push down pathogen bacteries activity. The aims of this research to investigate lability of sea grape (Caulerpa lentillifera against the activity of pathogen bacteries Escherichia coli, Vibrio cholerae and Salmonella sp., in fresh fish, during storage phase, at ambient and ice temperatures. Method used in this research is experimental laboratories method, that is, 10%, 20% and 30% blended sea grapes applied on fresh fishes, Selar crumenopthalmus during storage of 1, 2 and 3 days at ambient and ice temperatures. All the applied of blended of Caulerpa lentillifera, shows the ability to obstruct the activity of bactery group coliform and Escherichia coli on fresh fish Selar crumenopthalmus up to 2x 24 hours, at ambient temperature, and 3x24 hours at ice temperature. During storage period, the occurance and grows of Salmonella sp. and Vibrio cholerae bacteries is undetected. Fresh sea grapes concentration of 10% is sufficient to be applied on fresh fish to obstruct the activity of pathogen bacteries Escherichia coli during storage time of 2 x 24 hours at room temperature, and 3 x 24 hours at ice temperature, and to block the occurance of Vibrio cholerae and Salmonella sp. during storage period. .

  3. pirABvp-Bearing Vibrio parahaemolyticus and Vibrio campbellii Pathogens Isolated from the Same AHPND-Affected Pond Possess Highly Similar Pathogenic Plasmids

    Directory of Open Access Journals (Sweden)

    Xuan Dong

    2017-10-01

    Full Text Available Acute hepatopancreatic necrosis disease (AHPND is a severe shrimp disease originally shown to be caused by virulent strains of Vibrio parahaemolyticus (VPAHPND. Rare cases of AHPND caused by Vibrio species other than V. parahaemolyticus were reported. We compared an AHPND-causing V. campbellii (VCAHPND and a VPAHPND isolate from the same AHPND-affected pond. Both strains are positive for the virulence genes pirABvp. Immersion challenge test with Litopenaeus vannamei indicated the two strains possessed similar pathogenicity. Complete genome comparison showed that the pirABvp-bearing plasmids in the two strains were highly homologous, and they both shared high homologies with plasmid pVA1, the reported pirABvp-bearing plasmid. Conjugation and DNA-uptake genes were found on the pVA1-type plasmids and the host chromosomes, respectively, which may facilitate the dissemination of pirABvp. Novel variations likely driven by ISVal1 in the genetic contexts of the pirABvp genes were found in the two strains. Moreover, the VCAHPND isolate additionally contains multiple antibiotic resistance genes, which may bring difficulties to control its future outbreak. The dissemination of the pirABvp in non-parahaemolyticus Vibrio also rises the concern of missing detection in industrial settings since the isolation method currently used mainly targeting V. parahaemolyticus. This study provides timely information for better understanding of the causes of AHPND and molecular epidemiology of pirABvp and also appeals for precautions to encounter the dissemination of the hazardous genes.

  4. Bacterial and viral pathogens detected in sea turtles stranded along the coast of Tuscany, Italy.

    Science.gov (United States)

    Fichi, G; Cardeti, G; Cersini, A; Mancusi, C; Guarducci, M; Di Guardo, G; Terracciano, G

    2016-03-15

    During 2014, six loggerhead turtles, Caretta caretta and one green turtle, Chelonia mydas, found stranded on the Tuscany coast of Italy, were examined for the presence of specific bacterial and viral agents, along with their role as carriers of fish and human pathogens. Thirteen different species of bacteria, 10 Gram negative and 3 Gram positive, were identified. Among them, two strains of Vibrio parahaemolyticus and one strain of Lactococcus garviae were recovered and confirmed by specific PCR protocols. No trh and tdh genes were detected in V. parahaemolyticus. The first isolation of L. garviae and the first detection of Betanodavirus in sea turtles indicate the possibility for sea turtles to act as carriers of fish pathogens. Furthermore, the isolation of two strains of V. parahaemolyticus highlights the possible role of these animals in human pathogens' diffusion. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. QStatin, a Selective Inhibitor of Quorum Sensing in Vibrio Species.

    Science.gov (United States)

    Kim, Byoung Sik; Jang, Song Yee; Bang, Ye-Ji; Hwang, Jungwon; Koo, Youngwon; Jang, Kyung Ku; Lim, Dongyeol; Kim, Myung Hee; Choi, Sang Ho

    2018-01-30

    Pathogenic Vibrio species cause diseases in diverse marine animals reared in aquaculture. Since their pathogenesis, persistence, and survival in marine environments are regulated by quorum sensing (QS), QS interference has attracted attention as a means to control these bacteria in aquatic settings. A few QS inhibitors of Vibrio species have been reported, but detailed molecular mechanisms are lacking. Here, we identified a novel, potent, and selective Vibrio QS inhibitor, named QStatin [1-(5-bromothiophene-2-sulfonyl)-1H-pyrazole], which affects Vibrio harveyi LuxR homologues, the well-conserved master transcriptional regulators for QS in Vibrio species. Crystallographic and biochemical analyses showed that QStatin binds tightly to a putative ligand-binding pocket in SmcR, the LuxR homologue in V. vulnificus , and changes the flexibility of the protein, thereby altering its transcription regulatory activity. Transcriptome analysis revealed that QStatin results in SmcR dysfunction, affecting the expression of SmcR regulon required for virulence, motility/chemotaxis, and biofilm dynamics. Notably, QStatin attenuated representative QS-regulated phenotypes in various Vibrio species, including virulence against the brine shrimp ( Artemia franciscana ). Together, these results provide molecular insights into the mechanism of action of an effective, sustainable QS inhibitor that is less susceptible to resistance than other antimicrobial agents and useful in controlling the virulence of Vibrio species in aquacultures. IMPORTANCE Yields of aquaculture, such as penaeid shrimp hatcheries, are greatly affected by vibriosis, a disease caused by pathogenic Vibrio infections. Since bacterial cell-to-cell communication, known as quorum sensing (QS), regulates pathogenesis of Vibrio species in marine environments, QS inhibitors have attracted attention as alternatives to conventional antibiotics in aquatic settings. Here, we used target-based high-throughput screening to identify

  6. Enteric bacterial pathogen detection in southern sea otters (Enhydra lutris nereis) is associated with coastal urbanization and freshwater runoff.

    Science.gov (United States)

    Miller, Melissa A; Byrne, Barbara A; Jang, Spencer S; Dodd, Erin M; Dorfmeier, Elene; Harris, Michael D; Ames, Jack; Paradies, David; Worcester, Karen; Jessup, David A; Miller, Woutrina A

    2010-01-01

    Although protected for nearly a century, California's sea otters have been slow to recover, in part due to exposure to fecally-associated protozoal pathogens like Toxoplasma gondii and Sarcocystis neurona. However, potential impacts from exposure to fecal bacteria have not been systematically explored. Using selective media, we examined feces from live and dead sea otters from California for specific enteric bacterial pathogens (Campylobacter, Salmonella, Clostridium perfringens, C. difficile and Escherichia coli O157:H7), and pathogens endemic to the marine environment (Vibrio cholerae, V. parahaemolyticus and Plesiomonas shigelloides). We evaluated statistical associations between detection of these pathogens in otter feces and demographic or environmental risk factors for otter exposure, and found that dead otters were more likely to test positive for C. perfringens, Campylobacter and V. parahaemolyticus than were live otters. Otters from more urbanized coastlines and areas with high freshwater runoff (near outflows of rivers or streams) were more likely to test positive for one or more of these bacterial pathogens. Other risk factors for bacterial detection in otters included male gender and fecal samples collected during the rainy season when surface runoff is maximal. Similar risk factors were reported in prior studies of pathogen exposure for California otters and their invertebrate prey, suggesting that land-sea transfer and/or facilitation of pathogen survival in degraded coastal marine habitat may be impacting sea otter recovery. Because otters and humans share many of the same foods, our findings may also have implications for human health.

  7. Vibrio parahaemolyticus- An emerging foodborne pathogen

    Directory of Open Access Journals (Sweden)

    S Nelapati

    2012-02-01

    Full Text Available Vibrio parahaemolyticus is a halophilic gram negative, motile, oxidase positive, straight or curved rod-shaped, facultative anaerobic bacteria that occur naturally in the marine environment. They form part of the indigenous microflora of aquatic habitats of various salinity and are the major causative agents for some of the most serious diseases in fish, shellfish and penacid shrimp. This human pathogen causes acute gastroenteritis characterized by diarrhea, vomiting and abdominal cramps through consumption of contaminated raw fish or shellfish. V. parahaemolyticus is the leading cause of gastroenteritis due to the consumption of seafood worldwide. The incidence of V. parahaemolyticus infection has been increasing in many parts of the world, due to the emergence of O3:K6 serotype carrying the tdh gene which is responsible for most outbreaks worldwide. The pathogenicity of this organism is closely correlated with the Kanagawa phenomenon (KP + due to production of Kanagawa hemolysin or the thermostable direct hemolysin (TDH. The TDH and TRH (TDH-related hemolysin encoded by tdh and trh genes are considered to be important virulence factors. [Vet. World 2012; 5(1.000: 48-63

  8. Vibrio lentus protects gnotobiotic sea bass (Dicentrarchus labrax L.) larvae against challenge with Vibrio harveyi.

    Science.gov (United States)

    Schaeck, M; Duchateau, L; Van den Broeck, W; Van Trappen, S; De Vos, P; Coulombet, C; Boon, N; Haesebrouck, F; Decostere, A

    2016-03-15

    Due to the mounting awareness of the risks associated with the use of antibiotics in aquaculture, treatment with probiotics has recently emerged as the preferred environmental-friendly prophylactic approach in marine larviculture. However, the presence of unknown and variable microbiota in fish larvae makes it impossible to disentangle the efficacy of treatment with probiotics. In this respect, the recent development of a germ-free culture model for European sea bass (Dicentrarchus labrax L.) larvae opened the door for more controlled studies on the use of probiotics. In the present study, 206 bacterial isolates, retrieved from sea bass larvae and adults, were screened in vitro for haemolytic activity, bile tolerance and antagonistic activity against six sea bass pathogens. Subsequently, the harmlessness and the protective effect of the putative probiotic candidates against the sea bass pathogen Vibrio harveyi were evaluated in vivo adopting the previously developed germ-free sea bass larval model. An equivalence trial clearly showed that no harmful effect on larval survival was elicited by all three selected probiotic candidates: Bacillus sp. LT3, Vibrio lentus and Vibrio proteolyticus. Survival of Vibrio harveyi challenged larvae treated with V. lentus was superior in comparison with the untreated challenged group, whereas this was not the case for the larvae supplemented with Bacillus sp. LT3 and V. proteolyticus. In this respect, our results unmistakably revealed the protective effect of V. lentus against vibriosis caused by V. harveyi in gnotobiotic sea bass larvae, rendering this study the first in its kind. Copyright © 2016. Published by Elsevier B.V.

  9. Resistance to Antimicrobial Peptides in Vibrios

    Directory of Open Access Journals (Sweden)

    Delphine Destoumieux-Garzón

    2014-10-01

    Full Text Available Vibrios are associated with a broad diversity of hosts that produce antimicrobial peptides (AMPs as part of their defense against microbial infections. In particular, vibrios colonize epithelia, which function as protective barriers and express AMPs as a first line of chemical defense against pathogens. Recent studies have shown they can also colonize phagocytes, key components of the animal immune system. Phagocytes infiltrate infected tissues and use AMPs to kill the phagocytosed microorganisms intracellularly, or deliver their antimicrobial content extracellularly to circumvent tissue infection. We review here the mechanisms by which vibrios have evolved the capacity to evade or resist the potent antimicrobial defenses of the immune cells or tissues they colonize. Among their strategies to resist killing by AMPs, primarily vibrios use membrane remodeling mechanisms. In particular, some highly resistant strains substitute hexaacylated Lipid A with a diglycine residue to reduce their negative surface charge, thereby lowering their electrostatic interactions with cationic AMPs. As a response to envelope stress, which can be induced by membrane-active agents including AMPs, vibrios also release outer membrane vesicles to create a protective membranous shield that traps extracellular AMPs and prevents interaction of the peptides with their own membranes. Finally, once AMPs have breached the bacterial membrane barriers, vibrios use RND efflux pumps, similar to those of other species, to transport AMPs out of their cytoplasmic space.

  10. Isolation and molecular identification of Vibrio spp. by sequencing of 16S rDNA from seafood, meat and meat products in Libya

    Science.gov (United States)

    Azwai, S.M.; Alfallani, E.A.; Abolghait, S.K.; Garbaj, A.M.; Naas, H.T.; Moawad, A.A.; Gammoudi, F.T.; Rayes, H.M.; Barbieri, I.; Eldaghayes, I.M.

    2016-01-01

    The genus Vibrio includes several food-borne pathogens that cause a spectrum of clinical conditions including septicemia, cholera and milder forms of gastroenteritis. Several Vibrio spp. are commonly associated with food-borne transmission including Vibrio cholerae, Vibrio parahemolyticus, and Vibrio vulnificus. Microbiological analysis for enumeration and isolation of Vibrio spp. were carried out for a total of 93 samples of seafood, meat and meat products from different geographic localities in Libya (Tripoli, Regdalin, Janzour and Tobruk). Vibrio spp. were detected by conventional cultural and molecular method using PCR and sequencing of 16S rDNA. Out of the 93 cultured samples only 48 (51.6%) yielded colonies on Thiosulfate Citrate Bile Salt agar (TCBS) with culture characteristics of Vibrio spp. More than half (n=27) of processed seafood samples (n=46) yielded colonies on TCBS, while only 44.6 % of samples of meat and meat products showed colonies on TCBS. Among cultured seafood samples, the highest bacterial count was recorded in clam with a count of 3.8 ×104 CFU\\g. Chicken burger samples showed the highest bacterial count with 6.5 ×104 CFU\\g. Molecular analysis of the isolates obtained in this study, showed that 11 samples out of 48 (22.9%) were Vibrio spp. Vibrio parahemolyticus was isolated from camel meat for the first time. This study is an initial step to provide a baseline for future molecular research targeting Vibrio spp. foodborne illnesses. This data will be used to provide information on the magnitude of such pathogens in Libyan seafood, meat and meat products. PMID:27004169

  11. Isolation and molecular identification of Vibrio spp. by sequencing of 16S rDNA from seafood, meat and meat products in Libya

    Directory of Open Access Journals (Sweden)

    S.M. Azwai

    2016-03-01

    Full Text Available The genus Vibrio includes several food-borne pathogens that cause a spectrum of clinical conditions including septicemia, cholera and milder forms of gastroenteritis. Several Vibrio spp. are commonly associated with food-borne transmission including Vibrio cholerae, Vibrio parahemolyticus, and Vibrio vulnificus. Microbiological analysis for enumeration and isolation of Vibrio spp. were carried out for a total of 93 samples of seafood, meat and meat products from different geographic localities in Libya (Tripoli, Regdalin, Janzour and Tobruk. Vibrio spp. were detected by conventional cultural and molecular method using PCR and sequencing of 16S rDNA. Out of the 93 cultured samples only 48 (51.6% yielded colonies on Thiosulfate Citrate Bile Salt agar (TCBS with culture characteristics of Vibrio spp. More than half (n=27 of processed seafood samples (n=46 yielded colonies on TCBS, while only 44.6% of samples of meat and meat products showed colonies on TCBS. Among cultured seafood samples, the highest bacterial count was recorded in clam with a count of 3.8 х104 CFU\\g. Chicken burger samples showed the highest bacterial count with 6.5 х104 CFU\\g. Molecular analysis of the isolates obtained in this study, showed that 11 samples out of 48 (22.9% were Vibrio spp. Vibrio parahemolyticus was isolated from camel meat for the first time. This study is an initial step to provide a baseline for future molecular research targeting Vibrio spp. foodborne illnesses. This data will be used to provide information on the magnitude of such pathogens in Libyan seafood, meat and meat products.

  12. Isolation and molecular identification of Vibrio spp. by sequencing of 16S rDNA from seafood, meat and meat products in Libya.

    Science.gov (United States)

    Azwai, S M; Alfallani, E A; Abolghait, S K; Garbaj, A M; Naas, H T; Moawad, A A; Gammoudi, F T; Rayes, H M; Barbieri, I; Eldaghayes, I M

    2016-01-01

    The genus Vibrio includes several food-borne pathogens that cause a spectrum of clinical conditions including septicemia, cholera and milder forms of gastroenteritis. Several Vibrio spp. are commonly associated with food-borne transmission including Vibrio cholerae, Vibrio parahemolyticus, and Vibrio vulnificus. Microbiological analysis for enumeration and isolation of Vibrio spp. were carried out for a total of 93 samples of seafood, meat and meat products from different geographic localities in Libya (Tripoli, Regdalin, Janzour and Tobruk). Vibrio spp. were detected by conventional cultural and molecular method using PCR and sequencing of 16S rDNA. Out of the 93 cultured samples only 48 (51.6%) yielded colonies on Thiosulfate Citrate Bile Salt agar (TCBS) with culture characteristics of Vibrio spp. More than half (n=27) of processed seafood samples (n=46) yielded colonies on TCBS, while only 44.6 % of samples of meat and meat products showed colonies on TCBS. Among cultured seafood samples, the highest bacterial count was recorded in clam with a count of 3.8 ×10(4) CFU\\g. Chicken burger samples showed the highest bacterial count with 6.5 ×10(4) CFU\\g. Molecular analysis of the isolates obtained in this study, showed that 11 samples out of 48 (22.9%) were Vibrio spp. Vibrio parahemolyticus was isolated from camel meat for the first time. This study is an initial step to provide a baseline for future molecular research targeting Vibrio spp. foodborne illnesses. This data will be used to provide information on the magnitude of such pathogens in Libyan seafood, meat and meat products.

  13. A novel bacteriocin-like substance (BLIS) from a pathogenic strain of Vibrio harveyi.

    Science.gov (United States)

    Prasad, Sathish; Morris, Peter C; Hansen, Rasmus; Meaden, Philip G; Austin, Brian

    2005-09-01

    Inter-strain and inter-species inhibition mediated by a bacteriocin-like inhibitory substance (BLIS) from a pathogenic Vibrio harveyi strain VIB 571 was demonstrated against four isolates of the same species, and one culture each of a Vibrio sp., Vibrio fischeri, Vibrio gazogenes and Vibrio parahaemolyticus. The crude BLIS, which was obtained by ammonium-sulphate precipitation of the cell-free supernatant of a 72 h broth culture of strain VIB 571, was inactivated by lipase, proteinase K, pepsin, trypsin, pronase E, SDS and incubation at > or =60 degrees C for 10 min. The activity was stable between pH 2-11 for at least 5 h. Anion-exchange chromatography, gel filtration, SDS-PAGE and two-dimensional gel electrophoresis revealed the presence of a single major peak, comprising a protein with a pI of approximately 5.4 and a molecular mass of approximately 32 kDa. The N-terminal amino acid sequence of the protein comprised Asp-Glu-Tyr-Ile-Ser-X-Asn-Lys-X-Ser-Ser-Ala-Asp-Ile (with X representing cysteine or modified amino acid residues). A similarity search based on the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) generated peptide masses and the N-terminal sequence did not yield any significant matches.

  14. Effect of organic acids on shrimp pathogen, Vibrio harveyi.

    Science.gov (United States)

    Mine, Saori; Boopathy, Raj

    2011-07-01

    Shrimp farming accounts for more than 40% of the world shrimp production. Luminous vibriosis is a shrimp disease that causes major economic losses in the shrimp industry as a result of massive shrimp kills due to infection. Some farms in the South Asia use antibiotics to control Vibrio harveyi, a responsible pathogen for luminous vibriosis. However, the antibiotic-resistant strain was found recently in many shrimp farms, which makes it necessary to develop alternative pathogen control methods. Short-chain fatty acids are metabolic products of organisms, and they have been used as food preservatives for a long time. Organic acids are also commonly added in feeds in animal husbandry, but not in aquaculture. In this study, growth inhibitory effects of short-chain fatty acids, namely formic acid, acetic acid, propionic acid, and butyric acid, on V. harveyi were investigated. Among four acids, formic acid showed the strongest inhibitory effect followed by acetic acid, propionic acid, and butyric acid. The minimum inhibitory concentration (MIC) of 0.035% formic acid suppressed growth of V. harveyi. The major inhibitory mechanism seems to be the pH effect of organic acids. The effective concentration 50 (EC50) values at 96 h inoculation for all organic acids were determined to be 0.023, 0.041, 0.03, and 0.066% for formic, acetic, propionic, and butyric acid, respectively. The laboratory study results are encouraging to formulate shrimp feeds with organic acids to control vibrio infection in shrimp aquaculture farms.

  15. Experimental Reservoirs of Human Pathogens: The Vibrio Cholerae Paradigm (7th Annual SFAF Meeting, 2012)

    Energy Technology Data Exchange (ETDEWEB)

    Colwell, Rita

    2012-06-01

    Rita Colwell on "Experimental Reservoirs of Human Pathogens: The Vibrio cholerae paradigm" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  16. Occurrence of Vibrio Pathotypes in the Final Effluents of Five Wastewater Treatment Plants in Amathole and Chris Hani District Municipalities in South Africa

    Directory of Open Access Journals (Sweden)

    Vuyokazi Nongogo

    2014-08-01

    Full Text Available We assessed the occurrence of Vibrio pathogens in the final effluents of five wastewater treatment plants (WWTPs located in Amathole and Chris Hani District Municipalities in South Africa over a 12 months period between September 2012 and August 2013 using standard membrane filtration technique followed by cultivation on thiosulphate citrate-bile salts-sucrose (TCBS agar. The identities of the presumptive Vibrio isolates were confirmed using polymerase chain reaction (PCR including delineation into V. parahaemolyticus, V. vulnificus and V. fluvialis pathotypes. The counts of Vibrio spp. varied with months in all the study sites and ranged in the order of 101 and 104 CFU/100mL. Vibrio distribution also showed seasonality with high counts being obtained in autumn and spring (p < 0.05. Prevalence of Vibrio spp. among the five WWTPs also differed significantly (p < 0.05. Of the 300 isolates that were confirmed as belonging to the Vibrio genus, 29% (86 were V. fluvialis, 28% (84 were V. vulnificus and 12% (35 were V. parahaemolyticus. The isolation of Vibrio pathogens from the final effluent suggests that this pathogen is in circulation in some pockets of the population and that the WWTPs under study do not efficiently remove bacterial pathogens from the wastewater and consequently are threats to public health.

  17. Predatory bacteria as natural modulators of Vibrio parahaemolyticus and Vibrio vulnificus in seawater and oysters

    Science.gov (United States)

    This study shows that naturally occurring Vibrio predatory bacteria (VPB) exert a major role in controlling pathogenic vibrios in seawater and shellfish. The growth and persistence of Vibrio parahaemolyticus (Vp) and Vibrio vulnificus (Vv) were assessed in natural seawater and in the Eastern oyster...

  18. Enteric bacterial pathogen detection in southern sea otters (Enhydra lutris nereis) is associated with coastal urbanization and freshwater runoff

    Science.gov (United States)

    Miller, Melissa A.; Byrne, Barbara A.; Jang, Spencer S.; Dodd, Erin M.; Dorfmeier, Elene; Harris, Michael D.; Ames, Jack; Paradies, David; Worcester, Karen; Jessup, David A.; Miller, Woutrina A.

    2009-01-01

    Although protected for nearly a century, California’s sea otters have been slow to recover, in part due to exposure to fecally-associated protozoal pathogens like Toxoplasma gondii and Sarcocystis neurona. However, potential impacts from exposure to fecal bacteria have not been systematically explored. Using selective media, we examined feces from live and dead sea otters from California for specific enteric bacterial pathogens (Campylobacter, Salmonella, Clostridium perfringens, C. difficile and Escherichia coli O157:H7), and pathogens endemic to the marine environment (Vibrio cholerae, V. parahaemolyticus and Plesiomonas shigelloides). We evaluated statistical associations between detection of these pathogens in otter feces and demographic or environmental risk factors for otter exposure, and found that dead otters were more likely to test positive for C. perfringens, Campylobacter and V. parahaemolyticus than were live otters. Otters from more urbanized coastlines and areas with high freshwater runoff (near outflows of rivers or streams) were more likely to test positive for one or more of these bacterial pathogens. Other risk factors for bacterial detection in otters included male gender and fecal samples collected during the rainy season when surface runoff is maximal. Similar risk factors were reported in prior studies of pathogen exposure for California otters and their invertebrate prey, suggesting that land-sea transfer and/or facilitation of pathogen survival in degraded coastal marine habitat may be impacting sea otter recovery. Because otters and humans share many of the same foods, our findings may also have implications for human health. PMID:19720009

  19. Lessons from a cooperative, bacterial-animal association: the Vibrio fischeri-Euprymna scolopes light organ symbiosis.

    Science.gov (United States)

    Ruby, E G

    1996-01-01

    Although the study of microbe-host interactions has been traditionally dominated by an interest in pathogenic associations, there is an increasing awareness of the importance of cooperative symbiotic interactions in the biology of many bacteria and their animal and plant hosts. This review examines a model system for the study of such symbioses, the light organ association between the bobtail squid Euprymna scolopes and the marine luminous bacterium Vibrio fischeri. Specifically, the initiation, establishment, and persistence of the benign bacterial infection of the juvenile host light organ are described, as are efforts to understand the mechanisms underlying this specific colonization program. Using molecular genetic techniques, mutant strains of V. fischeri have been constructed that are defective at specific stages of the development of the association. Some of the lessons that these mutants have begun to teach us about the complex and long-term nature of this cooperative venture are summarized.

  20. Sigma E regulators control hemolytic activity and virulence in a shrimp pathogenic Vibrio harveyi.

    Directory of Open Access Journals (Sweden)

    Pimonsri Rattanama

    Full Text Available Members of the genus Vibrio are important marine and aquaculture pathogens. Hemolytic activity has been identified as a virulence factor in many pathogenic vibrios including V. cholerae, V. parahaemolyticus, V. alginolyticus, V. harveyi and V. vulnificus. We have used transposon mutagenesis to identify genes involved in the hemolytic activity of shrimp-pathogenic V. harveyi strain PSU3316. Out of 1,764 mutants screened, five mutants showed reduced hemolytic activity on sheep blood agar and exhibited virulence attenuation in shrimp (Litopenaeus vannamei. Mutants were identified by comparing transposon junction sequences to a draft of assembly of the PSU3316 genome. Surprisingly none of the disrupted open reading frames or gene neighborhoods contained genes annotated as hemolysins. The gene encoding RseB, a negative regulator of the sigma factor (σ(E, was interrupted in 2 out of 5 transposon mutants, in addition, the transcription factor CytR, a threonine synthetase, and an efflux-associated cytoplasmic protein were also identified. Knockout mutations introduced into the rpoE operon at the rseB gene exhibited low hemolytic activity in sheep blood agar, and were 3-to 7-fold attenuated for colonization in shrimp. Comparison of whole cell extracted proteins in the rseB mutant (PSU4030 to the wild-type by 2-D gel electrophoresis revealed 6 differentially expressed proteins, including two down-regulated porins (OmpC-like and OmpN and an upregulated protease (DegQ which have been associated with σ(E in other organisms. Our study is the first report linking hemolytic activity to the σ(E regulators in pathogenic Vibrio species and suggests expression of this virulence-linked phenotype is governed by multiple regulatory pathways within the V. harveyi.

  1. Marine Bacillus spp. associated with the egg capsule of Concholepas concholepas (common name "loco") have an inhibitory activity toward the pathogen Vibrio parahaemolyticus.

    Science.gov (United States)

    Leyton, Yanett; Riquelme, Carlos

    2010-10-01

    The pandemic bacterium Vibrio parahaemolyticus, isolated from seawater, sediment, and marine organisms, is responsible for gastroenteric illnesses in humans and also cause diseases in aquaculture industry in Chile and other countries around the world. In this study, bacterial flora with inhibitory activity against pathogenic V. parahaemolyticus were collected from egg capsules of Concholepas concholepas and evaluated. The 16S rRNA fragment was sequenced from each isolated strain to determine its identity using the GenBank database. A phylogenetic analysis was made, and tests for the productions of antibacterial substance were performed using the double-layer method. Forty-five morphotypes of bacterial colonies were isolated, 8 of which presented an inhibitory effect on the growth of V. parahaemolyticus. 16S rRNA sequence and phylogenetic analysis show that these strains constitute taxa that are phylogenetically related to the Bacillus genus and are probably sister species or strains of the species Bacillus pumilus, Bacillus licheniform, or Bacillus sp. It is important to determine the nature of the antibacterial substance to evaluate their potential for use against the pathogen species V. parahaemolyticus.

  2. Suspension of oysters reduces the populations of Vibrio parahaemolyticus and Vibrio vulnificus.

    Science.gov (United States)

    Cole, K M; Supan, J; Ramirez, A; Johnson, C N

    2015-09-01

    Vibrio parahaemolyticus (Vp) and Vibrio vulnificus (Vv) are associated with the consumption of raw oysters and cause illnesses ranging from simple gastroenteritis to life-threatening septicaemia. These halophilic bacteria are frequently found in marine and estuarine systems, accumulating within the tissues of a number of aquatic organisms and passing on to humans after consumption, through contaminated water, or via open wounds. As benthic organisms capable of filtering 40 gallons of water per hour, sediment is an important source of potentially pathogenic vibrios in oysters destined for raw consumption. This research used off-bottom oyster culture to reduce vibrio concentrations in oysters. Colony hybridization was used to enumerate Vp and Vv in bottom and suspended oysters. Vv and Vp concentrations were generally lower in oysters suspended off-bottom, and suspension decreased vibrio loads in oysters by an average of 13%. Suspension of oysters reduced vibrio concentrations. This study found that oyster suspension significantly reduced some populations of potentially pathogenic vibrios. These results indicate that oyster suspension could be a viable approach for preharvest treatment to reduce illness in consumers of raw oysters. © 2015 The Society for Applied Microbiology.

  3. A nonluminescent and highly virulent Vibrio harveyi strain is associated with "bacterial white tail disease" of Litopenaeus vannamei shrimp.

    Directory of Open Access Journals (Sweden)

    Junfang Zhou

    Full Text Available Recurrent outbreaks of a disease in pond-cultured juvenile and subadult Litopenaeus vannamei shrimp in several districts in China remain an important problem in recent years. The disease was characterized by "white tail" and generally accompanied by mass mortalities. Based on data from the microscopical analyses, PCR detection and 16S rRNA sequencing, a new Vibrio harveyi strain (designated as strain HLB0905 was identified as the etiologic pathogen. The bacterial isolation and challenge tests demonstrated that the HLB0905 strain was nonluminescent but highly virulent. It could cause mass mortality in affected shrimp during a short time period with a low dose of infection. Meanwhile, the histopathological and electron microscopical analysis both showed that the HLB0905 strain could cause severe fiber cell damages and striated muscle necrosis by accumulating in the tail muscle of L. vannamei shrimp, which led the affected shrimp to exhibit white or opaque lesions in the tail. The typical sign was closely similar to that caused by infectious myonecrosis (IMN, white tail disease (WTD or penaeid white tail disease (PWTD. To differentiate from such diseases as with a sign of "white tail" but of non-bacterial origin, the present disease was named as "bacterial white tail disease (BWTD". Present study revealed that, just like IMN and WTD, BWTD could also cause mass mortalities in pond-cultured shrimp. These results suggested that some bacterial strains are changing themselves from secondary to primary pathogens by enhancing their virulence in current shrimp aquaculture system.

  4. Bacterial reproductive pathogens of cats and dogs.

    Science.gov (United States)

    Graham, Elizabeth M; Taylor, David J

    2012-05-01

    With the notable exception of Brucella canis, exogenous bacterial pathogens are uncommon causes of reproductive disease in cats and dogs. Most bacterial reproductive infections are endogenous, and predisposing factors for infection are important. This article reviews the etiology, pathogenesis, clinical presentation, diagnosis, treatment, and public health significance of bacterial reproductive pathogens in cats and dogs.

  5. Long-term effects of ocean warming on vibrios

    Science.gov (United States)

    Pruzzo, C.; Pezzati, E.; Brettar, I.; Reid, P. C.; Colwell, R.; Höfle, M. G.; vezzulli, L.

    2012-12-01

    Vibrios are a major source of human disease, play an important role in the ecology and health of marine animals and are regarded as an abundant fraction of culturable bacteria of the ocean. There has been a considerable global effort to reduce the risk of Vibrio infections and yet in most countries both human and non-human illnesses associated with these bacteria are increasing. The cause of this increase is not known, but since vibrios are strongly thermodependant there is good reason to believe that global warming may have contributed. To investigate this possibility we examined historical samples from the Continuous Plankton Recorder (CPR) archive using advanced molecular analysis and pyrosequencing. For the first time we were able to recover environmental DNA from CPR samples that had been stored for up to ~50 years in a formalin-fixed format, which is suitable for molecular analyses of the associated prokaryotic community. To overcome the problem of DNA degradation due to the sample age and storage in formalin we develop an unbiased index of abundance for Vibrio quantification in CPR samples termed a 'relative Vibrio Abundance Index' (VAI). VAI is defined as the ratio of Vibrio spp. cells to total bacterial cells assessed by Real-Time PCR using genus-specific and universal primers, respectively, producing small amplicons of similar size (~100bp). We assessed VAI index on 55 samples (each representing 10 nautical miles tow equal to 3 m3 of filtered sewater) collected in August by the CPR survey in the North Sea from off the Rhine and Humber estuaries between 1961 to 2005 showing that the genus Vibrio has increased in prevalence in the last 44 years and that this increase is correlated significantly, during the same period, with warming sea surface temperature. In addition, by applying deep sequencing analysis of a subset of these samples we provide evidence that bacteria belonging to the genus Vibrio, including the human pathogen V. cholerae, not only increased

  6. The Emergence of Vibrio pathogens in Europe: Ecology, Evolution and Pathogenesis (Paris, 11-12 March 2015

    Directory of Open Access Journals (Sweden)

    Frederique eLe Roux

    2015-08-01

    Full Text Available Global change has caused a worldwide increase in reports of Vibrio-associated diseases with ecosystem-wide impacts on humans and marine animals. In Europe, higher prevalence of human infections followed regional climatic trends with outbreaks occurring during episodes of unusually warm weather. Similar patterns were also observed in Vibrio-associated diseases affecting marine organisms such as fish, bivalves and corals. Basic knowledge is still lacking on the ecology and evolutionary biology of these bacteria as well as on their virulence mechanisms. Current limitations in experimental systems to study infection and the lack of diagnostic tools still prevent a better understanding of Vibrio emergence. A major challenge is to foster cooperation between fundamental and applied research in order to investigate the consequences of pathogen emergence in natural Vibrio populations and answer federative questions that meet societal needs. Here we report the proceedings of the first European workshop dedicated to these specific goals of the Vibrio research community by connecting current knowledge to societal issues related to ocean health and food security.

  7. Bacterial food-borne pathogens in Indian food

    International Nuclear Information System (INIS)

    Bandekar, J.R.

    2015-01-01

    Food technology and food processing techniques have made tremendous advances in preservation of food and ensuring safety of food by killing food-borne pathogens. In addition to old techniques such as pasteurization, canning, dehydration, fermentation and salting, a number of new techniques such as radiation processing, high pressure technology and pulsed electric field technology are being applied for preservation of food and to ensure food safety. Total Quality Management (TQM) concepts have been developed to take care of food safety from farm to table. Hazard Analysis at Critical Control Points (HACCP) is being applied for mass scale production of food to make food free from pathogens. Despite these advances, food-borne diseases have become one of the most widespread public health problems in the world. About two thirds of all the outbreaks are traced to microbial contaminated food. According to World Health Organization (WHO) estimates, food-borne and waterborne diarrhoeal diseases kill an estimated 2 million people annually, including many children. Food safety is a major concern not only for developing countries but also for the developed countries. A number of factors such as emergence of new food-borne pathogens, development of drug resistance in pathogens, changing life style, globalization of the food supply etc. are responsible for the continuous persistence of food-borne diseases. The food-borne disease outbreaks due to E. coli O157:H7, Listeria monocytogenes, Salmonella and Campylobacter, are responsible for recall of many foods resulting in heavy losses to food industry. Due to consumer demand, a number of Ready-To-Eat (RTE) minimally processed foods are increasingly marketed; however, there is increased risk of foodborne diseases with these products. Food Technology Division of Bhabha Atomic Research Centre, Mumbai, has been working on food-borne bacterial pathogens particularly Salmonella, Campylobacter, Listeria monocytogenes, Vibrio and Aeromonasf

  8. Heme Synthesis and Acquisition in Bacterial Pathogens.

    Science.gov (United States)

    Choby, Jacob E; Skaar, Eric P

    2016-08-28

    Bacterial pathogens require the iron-containing cofactor heme to cause disease. Heme is essential to the function of hemoproteins, which are involved in energy generation by the electron transport chain, detoxification of host immune effectors, and other processes. During infection, bacterial pathogens must synthesize heme or acquire heme from the host; however, host heme is sequestered in high-affinity hemoproteins. Pathogens have evolved elaborate strategies to acquire heme from host sources, particularly hemoglobin, and both heme acquisition and synthesis are important for pathogenesis. Paradoxically, excess heme is toxic to bacteria and pathogens must rely on heme detoxification strategies. Heme is a key nutrient in the struggle for survival between host and pathogen, and its study has offered significant insight into the molecular mechanisms of bacterial pathogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Plant innate immunity against human bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Maeli eMelotto

    2014-08-01

    Full Text Available Certain human bacterial pathogens such as the enterohemorrhagic Escherichia coli and Salmonella enterica are not proven to be plant pathogens yet. Nonetheless, under certain conditions they can survive on, penetrate into, and colonize internal plant tissues causing serious food borne disease outbreaks. In this review, we highlight current understanding on the molecular mechanisms of plant responses against human bacterial pathogens and discuss salient common and contrasting themes of plant interactions with phytopathogens or human pathogens.

  10. Development of a two-step, non-probed multiplex real-time PCR for surveilling Vibrio anguillarum in seawater

    Science.gov (United States)

    Vibrio anguillarum is an aggressive and halophilic bacterial pathogen commonly found in seawater. Its presence in aquaculture facilities causes significant morbidity and mortality among aquaculture species primarily from hemorrhaging of the body and skin of the infected fish that eventually leads t...

  11. A Nonluminescent and Highly Virulent Vibrio harveyi Strain Is Associated with “Bacterial White Tail Disease” of Litopenaeus vannamei Shrimp

    Science.gov (United States)

    Zhou, Junfang; Fang, Wenhong; Yang, Xianle; Zhou, Shuai; Hu, Linlin; Li, Xincang; Qi, Xinyong; Su, Hang; Xie, Layue

    2012-01-01

    Recurrent outbreaks of a disease in pond-cultured juvenile and subadult Litopenaeus vannamei shrimp in several districts in China remain an important problem in recent years. The disease was characterized by “white tail” and generally accompanied by mass mortalities. Based on data from the microscopical analyses, PCR detection and 16S rRNA sequencing, a new Vibrio harveyi strain (designated as strain HLB0905) was identified as the etiologic pathogen. The bacterial isolation and challenge tests demonstrated that the HLB0905 strain was nonluminescent but highly virulent. It could cause mass mortality in affected shrimp during a short time period with a low dose of infection. Meanwhile, the histopathological and electron microscopical analysis both showed that the HLB0905 strain could cause severe fiber cell damages and striated muscle necrosis by accumulating in the tail muscle of L. vannamei shrimp, which led the affected shrimp to exhibit white or opaque lesions in the tail. The typical sign was closely similar to that caused by infectious myonecrosis (IMN), white tail disease (WTD) or penaeid white tail disease (PWTD). To differentiate from such diseases as with a sign of “white tail” but of non-bacterial origin, the present disease was named as “bacterial white tail disease (BWTD)”. Present study revealed that, just like IMN and WTD, BWTD could also cause mass mortalities in pond-cultured shrimp. These results suggested that some bacterial strains are changing themselves from secondary to primary pathogens by enhancing their virulence in current shrimp aquaculture system. PMID:22383954

  12. Heme Synthesis and Acquisition in Bacterial Pathogens

    OpenAIRE

    Choby, Jacob E.; Skaar, Eric P.

    2016-01-01

    Bacterial pathogens require the iron-containing cofactor heme to cause disease. Heme is essential to the function of hemoproteins, which are involved in energy generation by the electron transport chain, detoxification of host immune effectors, and other processes. During infection, bacterial pathogens must synthesize heme or acquire heme from the host; however, host heme is sequestered in high-affinity hemoproteins. Pathogens have evolved elaborate strategies to acquire heme from host source...

  13. Bacteriophage interactions with Vibrio anguillarum and the potential for phage therapy in marine aquaculture

    DEFF Research Database (Denmark)

    Rørbo, Nanna Iben

    is widespread in the Vibrio community which underscore the lysogenic phages influence on bacterial evolution and functional properties. Highly genetically similar Vibrio phages, termed H20-like prophages, were isolated across large geographical scales being present both as freeliving phages and as prophages...... in V. anguillarum genomes. The H20-like phages’ widespread presence suggests a mutualistic interaction which selects for co-existence with V. anguillarum. In aquaculture, especially the larvae and fry are vulnerable to pathogens, and they are not susceptible to alternatives to antibiotics, e...

  14. Identifying some pathogenic Vibrio/Photobacterium species during mass mortalities of cultured Gilthead seabream (Sparus aurata and European seabass (Dicentrarchus labrax from some Egyptian coastal provinces

    Directory of Open Access Journals (Sweden)

    Mohammed Abdel-Aziz

    2013-12-01

    Full Text Available Vibrio alginolyticus, Vibrio parahemolyticus and Photobacterium damselae subsp damselae were isolated during recurrent episodes of mass mortalities among different stages of Gilthead sea bream (Sparus aurata and European seabass (Dicentrarchus labrax. The pathogens were recovered from the external/internal lesions of a total of 320 seeds, juvenile and adult fishes from the period of February 2013 through August 2013. Two hundred and sixty four bacterial isolates were retrieved and presumptively identified using morpho-chemical characterization and API®20NE. However, definitive molecular confirmation of V. alginolyticus was obtained through implementing collagenase gene based regular PCR technique. The total prevalence of V. alginolyticus, V. parahemolyticus and Photobacterium damselae subsp damselae among naturally infected Gilthead seabream and European seabass was 82.19%, 87.28% 10.27%, 6.79% and 7.54%, 5.93% respectively. Antibiogram has revealed that isolates were sensitive to ciprofloxacin, chloramphenicol, enrofloxacin, nalidixic acid and oxolinic acid while resistant to ampicillin, amoxicillin, and lincomycin.

  15. Inhibitory effects of Bacillus probionts on growth and toxin production of Vibrio harveyi pathogens of shrimp.

    Science.gov (United States)

    Nakayama, T; Lu, H; Nomura, N

    2009-12-01

    To investigate the effects of Bacillus subtilis, Bacillus licheniformis and Bacillus megaterium in terms of toxin and growth of pathogenic Vibrio harveyi. Three Bacillus probionts were isolated from probiotic BZT aquaculture and identified using a 16S rDNA sequence. Growth inhibition assay showed that supernatants from the 24-h culture of three Bacillus species were able to inhibit the growth of V. harveyi (LMG 4044); B. subtilis was the most effective based on the well diffusion method. Results of a liquid culture model showed that B. subtilis was also widely effective in inhibiting three strains of V. harveyi (isolated from Thailand, the Philippines and LMG 4044), and that both B. licheniformis and B. megaterium inhibit the growth of V. harveyi isolated from the Philippines. Moreover, a haemolytic activity assay demonstrated that V. harveyi (IFO 15634) was significantly decreased by the addition of B. licheniformis or B. megaterium supernatant. Bacillus subtilis inhibited Vibrio growth, and both B. licheniformis and B. megaterium suppressed haemolytic activity in Vibrio. The cell-free supernatants produced by Bacillus probionts inhibit Vibrio disease, and Bacillus probionts might have an influence on Vibrio cell-to-cell communications.

  16. Antibacterial Activity of Polyphenolic Fraction of Kombucha Against Enteric Bacterial Pathogens.

    Science.gov (United States)

    Bhattacharya, Debanjana; Bhattacharya, Semantee; Patra, Madhu Manti; Chakravorty, Somnath; Sarkar, Soumyadev; Chakraborty, Writachit; Koley, Hemanta; Gachhui, Ratan

    2016-12-01

    The emergence of multi-drug-resistant enteric pathogens has prompted the scientist community to explore the therapeutic potentials of traditional foods and beverages. The present study was undertaken to investigate the efficacy of Kombucha, a fermented beverage of sugared black tea, against enterotoxigenic Escherichia coli, Vibrio cholerae, Shigella flexneri and Salmonella Typhimurium followed by the identification of the antibacterial components present in Kombucha. The antibacterial activity was evaluated by determining the inhibition zone diameter, minimal inhibitory concentration and minimal bactericidal concentration. Kombucha fermented for 14 days showed maximum activity against the bacterial strains. Its ethyl acetate extract was found to be the most effective upon sequential solvent extraction of the 14-day Kombucha. This potent ethyl acetate extract was then subjected to thin layer chromatography for further purification of antibacterial ingredients which led to the isolation of an active polyphenolic fraction. Catechin and isorhamnetin were detected as the major antibacterial compounds present in this polyphenolic fraction of Kombucha by High Performance Liquid Chromatography. Catechin, one of the primary antibacterial polyphenols in tea was also found to be present in Kombucha. But isorhamnetin is not reported to be present in tea, which may thereby suggest the role of fermentation process of black tea for its production in Kombucha. To the best of our knowledge, this is the first report on the presence of isorhamnetin in Kombucha. The overall study suggests that Kombucha can be used as a potent antibacterial agent against entero-pathogenic bacterial infections, which mainly is attributed to its polyphenolic content.

  17. Coral pathogens identified for White Syndrome (WS epizootics in the Indo-Pacific.

    Directory of Open Access Journals (Sweden)

    Meir Sussman

    Full Text Available BACKGROUND: White Syndrome (WS, a general term for scleractinian coral diseases with acute signs of advancing tissue lesions often resulting in total colony mortality, has been reported from numerous locations throughout the Indo-Pacific, constituting a growing threat to coral reef ecosystems. METHODOLOGY/PRINCIPAL FINDINGS: Bacterial isolates were obtained from corals displaying disease signs at three ws outbreak sites: Nikko Bay in the Republic of Palau, Nelly Bay in the central Great Barrier Reef (GBR and Majuro Atoll in the Republic of the Marshall Islands, and used in laboratory-based infection trials to satisfy Henle-Koch's postulates, Evan's rules and Hill's criteria for establishing causality. Infected colonies produced similar signs to those observed in the field following exposure to bacterial concentrations of 1x10(6 cells ml(-1. Phylogenetic 16S rRNA gene analysis demonstrated that all six pathogens identified in this study were members of the gamma-Proteobacteria family Vibrionacae, each with greater than 98% sequence identity with the previously characterized coral bleaching pathogen Vibrio coralliilyticus. Screening for proteolytic activity of more than 150 coral derived bacterial isolates by a biochemical assay and specific primers for a Vibrio family zinc-metalloprotease demonstrated a significant association between the presence of isolates capable of proteolytic activity and observed disease signs. CONCLUSION/SIGNIFICANCE: This is the first study to provide evidence for the involvement of a unique taxonomic group of bacterial pathogens in the aetiology of Indo-Pacific coral diseases affecting multiple coral species at multiple locations. Results from this study strongly suggest the need for further investigation of bacterial proteolytic enzymes as possible virulence factors involved in Vibrio associated acute coral infections.

  18. The impact of shrimp farming effluent on bacterial communities in mangrove waters, Ceará, Brazil.

    Science.gov (United States)

    Sousa, O V; Macrae, A; Menezes, F G R; Gomes, N C M; Vieira, R H S F; Mendonça-Hagler, L C S

    2006-12-01

    The effects of shrimp farm effluents on bacterial communities in mangroves have been infrequently reported. Classic and molecular biology methods were used to survey bacterial communities from four mangroves systems. Water temperature, salinity, pH, total heterotrophic bacteria and maximum probable numbers of Vibrio spp. were investigated. Genetic profiles of bacterial communities were also characterized by polymerase chain reaction (PCR) amplification of eubacterial and Vibrio 16S rDNA using denaturing gradient gel electrophoresis (DGGE). Highest heterotrophic counts were registered in the mangrove not directly polluted by shrimp farming. The Enterobacteriaceae and Chryseomonas luteola dominated the heterotrophic isolates. Vibrio spp. pathogenic to humans and shrimps were identified. Eubacterial genetic profiles suggest a shared community structure independent of mangrove system. Vibrio genetic profiles were mangrove specific. Neither microbial counts nor genetic profiling revealed a significant decrease in species richness associated with shrimp farm effluent. The complex nature of mangrove ecosystems and their microbial communities is discussed.

  19. Antagonistic effect of Pseudomonas aeruginosa isolates from various ecological niches on Vibrio species pathogenic to crustaceans

    Institute of Scientific and Technical Information of China (English)

    Prabhakaran Priyaja; Puthumana Jayesh; Neil Scolastin Correya; Balachandran Sreelakshmi; Naduthalmuriparambil S Sudheer; Rosamma Philip; Isaac Sarogeni Bright Singh

    2014-01-01

    Objective: To abrogate pathogenic vibrios in aquaculture by testing the potential of Pseudomonas isolates from fresh water, brackish and marine environments as probiotics.Methods:Antagonistic activity of the compound against 7 Vibrio spp. was performed. Influence of salinity on the production of pyocyanin and the toxicity was done through the compound using brine shrimp lethality assay. Molecular characterization was performed to confirm that the isolates werePseudomonas aeruginosa. Results: Salinity was found to regulate the levels of pyocyanin production, with 5-10 g/L as the optimum. All Pseudomonas isolates grew at salinities ranging from 5 to 70 g/L. Isolates of marine origin produced detectable levels of pyocyanin up to 45 g/L salinity. Brackish and freshwater isolates ceased to produce pyocyanin at salinities above 30 g/L and 20 g/L, respectively. Culture supernatants of all 5 Pseudomonas isolates possessed the ability to restrict the growth of Vibrio spp. and maximum antagonistic effect on Vibrio harveyi was obtained when they were grown at salinities of 5 to 10 g/L. The marine isolate MCCB117, even when grown at a salinity of 45 g/L possessed the ability to inhibit Vibrio spp.Conclusions:Purification and structural elucidation of antagonistic compound were carried out. ideal for application in freshwater, MCCB102 and MCCB103 in brackish water and MCCB117 and The present investigation showed that Pseudomonas aeruginosa MCCB119 would be MCCB118 in marine aquaculture systems as putative probiotics in the management of vibrios.

  20. Molecular Mechanisms of Bacterial Pathogenicity

    Science.gov (United States)

    Fuchs, Thilo Martin

    Cautious optimism has arisen over recent decades with respect to the long struggle against bacteria, viruses, and parasites. This has been offset, however, by a fatal complacency stemming from previous successes such as the development of antimicrobial drugs, the eradication of smallpox, and global immunization programs. Infectious diseases nevertheless remain the world's leading cause of death, killing at least 17 million persons annually [61]. Diarrheal diseases caused by Vibrio cholerae or Shigella dysenteriae kill about 3 million persons every year, most of them young children: Another 4 million die of tuberculosis or tetanus. Outbreaks of diphtheria in Eastern Europe threatens the population with a disease that had previously seemed to be overcome. Efforts to control infectious diseases more comprehensively are undermined not only by socioeconomic conditions but also by the nature of the pathogenic organisms itself; some isolates of Staphylococcus aureus and Enterobacter have become so resistant to drugs by horizontal gene transfer that they are almost untreatable. In addition, the mechanism of genetic variability helps pathogens to evade the human immune system, thus compromising the development of powerful vaccines. Therefore detailed knowledge of the molecular mechanisms of microbial pathogenicity is absolutely necessary to develop new strategies against infectious diseases and thus to lower their impact on human health and social development.

  1. Vibrio harveyi as a causative agent of the White Syndrome in tropical stony corals.

    Science.gov (United States)

    Luna, Gian Marco; Bongiorni, Lucia; Gili, Claudia; Biavasco, Francesca; Danovaro, Roberto

    2010-02-01

    We investigated bacterial assemblages associated with corals displaying symptoms of the 'White Syndrome' (WS), a general term used for indicating the appearance of bands, spots or patches of tissue loss, which is devastating wide areas of tropical ecosystems worldwide. We collected WS-diseased (n = 15) and healthy (n = 15) corals from the natural reef (Indonesia, Indian Ocean) and from four large public aquaria. By using culture-dependent and culture-independent techniques, we found that a large fraction (73%) of the investigated WS events was associated with the presence of a high bacterial abundance and, specifically, of Vibrio spp. Vibrio harveyi, a pathogen of many marine organisms and recently involved in coral Yellow Band disease, was the most represented species, being recovered from five out of 15 diseased corals. In experimental infection assays, two V. harveyi strains, isolated from diseased corals, were inoculated on a total of 62 healthy colonies of Pocillopora damicornis. WS signs appeared in 57 corals, confirming the ability of V. harveyi strains to induce the disease. We conclude that V. harveyi is one of the coral pathogens involved in the appearance of WS. However, not all of the investigated WSs were associated to V. harveyi detection, nor to other Vibrio species (such as V. coralliilyticus), which supports the hypothesis that WS is not caused exclusively by Vibrio spp., but rather can have a multifactorial aetiology, or can represent a group of diseases caused by a variety of agents. Further investigations to identify specific virulence traits will contribute to the understanding of the role of V. harveyi in WS pathogenesis. © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.

  2. Increases in the amounts of Vibrio spp. in oysters upon addition of exogenous bacteria.

    Science.gov (United States)

    Froelich, Brett; Oliver, James

    2013-09-01

    The bacterial pathogen Vibrio vulnificus is found naturally in brackish coastal waters but can be greatly concentrated by filter-feeding organisms such as shellfish. Numerous experiments in which exogenous V. vulnificus cells are added to oysters in an attempt to measure uptake and depuration have been performed. In nearly all cases, results have shown that laboratory-grown bacteria are rapidly taken up by the oysters but ultimately eliminated, while naturally present Vibrio populations in oysters are resistant to depuration. In this study, oysters harvested during winter months, with low culturable Vibrio concentrations, were incubated in aquaria supplemented with strains of V. vulnificus that were either genotypically or phenotypically distinct from the background bacteria. These exogenous cells were eliminated from the oysters, as previously seen, but other vibrios already inhabiting the oysters responded to the V. vulnificus inoculum by rapidly increasing in number and maintaining a large stable population. The presence of such an oyster-adapted Vibrio population would be expected to prevent colonization by exogenous V. vulnificus cells, thus explaining the rapid depuration of these added bacteria.

  3. In vitro interactions of Acanthamoeba castellanii Neff and Vibrio harveyi.

    Science.gov (United States)

    Reyes-Batlle, María; Martín-Rodríguez, Alberto J; López-Arencibia, Atteneri; Sifaoui, Ines; Liendo, Aitor Rizo; Bethencourt Estrella, Carlos J; García Méndez, Ana B; Chiboub, Olfa; Hajaji, Soumaya; Valladares, Basilio; Martínez-Carretero, Enrique; Piñero, José E; Lorenzo-Morales, Jacob

    2017-12-01

    Free-living amoebae (FLA) are opportunistic protozoa widely distributed in the environment. They are frequently found in water and soil samples, but they have also been reported to be associated with bacterial human pathogens such as Legionella spp. Campylobacter spp or Vibrio cholerae among others. Including within Vibrio spp. V. harveyi (Johnson and Shunk, 1936) is a bioluminescent marine bacteria which has been found swimming freely in tropical marine waters, being part of the stomach and intestine microflora of marine animals, and as both a primary and opportunistic pathogen of marine animals. Our aim was to study the interactions between Vibrio harveyi and Acanthamoeba castellanii Neff. Firstly, in order to analyze changes in it cultivability, V. harveyi was coincubated with A. castellanii Neff axenic culture and with Acanthamoeba Conditioned Medium (ACM) at different temperatures in aerobic conditions. Interestingly, at 4 °C and 18-20 °C bacteria were still cultivable in marine agar, at 28 °C, in aerobic conditions, but there weren't significant differences comparing with the controls. We also noted an enhanced migration of Acanthamoeba toward V. harveyi on non-nutrient agar plates compared to controls with no bacteria. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Biofilm formation and phenotypic variation enhance predation-driven persistence of Vibrio cholerae

    DEFF Research Database (Denmark)

    Matz, Carsten; McDougald, D.; Moreno, A.M.

    2005-01-01

    Persistence of the opportunistic bacterial pathogen Vibrio cholerae in aquatic environments is the principal cause for seasonal occurrence of cholera epidemics. This causality has been explained by postulating that V. cholerae forms biofilms in association with animate and inanimate surfaces....... Alternatively, it has been proposed that bacterial pathogens are an integral part of the natural microbial food web and thus their survival is constrained by protozoan predation. Here, we report that both explanations are interrelated. our data show that biofilms are the protective agent enabling V. cholerae...... to survive protozoan grazing while their planktonic counterparts are eliminated. Grazing on planktonic V. cholerae was found to select for the biofilm-enhancing rugose phase variant, which is adapted to the surf ace-associated niche by the production of exopolymers. Interestingly, grazing resistance in V...

  5. Antagonistic effect of Pseudomonas aeruginosa isolates from various ecological niches on Vibrio species pathogenic to crustaceans

    Directory of Open Access Journals (Sweden)

    Prabhakaran Priyaja

    2014-01-01

    Full Text Available Objective: To abrogate pathogenic vibrios in aquaculture by testing the potential of Pseudomonas isolates from fresh water, brackish and marine environments as probiotics. Methods: Purification and structural elucidation of antagonistic compound were carried out. Antagonistic activity of the compound against 7 Vibrio spp. was performed. Influence of salinity on the production of pyocyanin and the toxicity was done through the compound using brine shrimp lethality assay. Molecular characterization was performed to confirm that the isolates were Pseudomonas aeruginosa. Results: Salinity was found to regulate the levels of pyocyanin production, with 5-10 g/L as the optimum. All Pseudomonas isolates grew at salinities ranging from 5 to 70 g/L. Isolates of marine origin produced detectable levels of pyocyanin up to 45 g/L salinity. Brackish and freshwater isolates ceased to produce pyocyanin at salinities above 30 g/L and 20 g/L, respectively. Culture supernatants of all 5 Pseudomonas isolates possessed the ability to restrict the growth of Vibrio spp. and maximum antagonistic effect on Vibrio harveyi was obtained when they were grown at salinities of 5 to 10 g/L. The marine isolate MCCB117, even when grown at a salinity of 45 g/L possessed the ability to inhibit Vibrio spp. Conclusions: The present investigation showed that Pseudomonas aeruginosa MCCB119 would be ideal for application in freshwater, MCCB102 and MCCB103 in brackish water and MCCB117 and MCCB118 in marine aquaculture systems as putative probiotics in the management of vibrios.

  6. Transcriptome Analysis and Discovery of Genes Involved in Immune Pathways from Coelomocytes of Sea Cucumber (Apostichopus japonicus) after Vibrio splendidus Challenge.

    Science.gov (United States)

    Gao, Qiong; Liao, Meijie; Wang, Yingeng; Li, Bin; Zhang, Zheng; Rong, Xiaojun; Chen, Guiping; Wang, Lan

    2015-07-17

    Vibrio splendidus is identified as one of the major pathogenic factors for the skin ulceration syndrome in sea cucumber (Apostichopus japonicus), which has vastly limited the development of the sea cucumber culture industry. In order to screen the immune genes involving Vibrio splendidus challenge in sea cucumber and explore the molecular mechanism of this process, the related transcriptome and gene expression profiling of resistant and susceptible biotypes of sea cucumber with Vibrio splendidus challenge were collected for analysis. A total of 319,455,942 trimmed reads were obtained, which were assembled into 186,658 contigs. After that, 89,891 representative contigs (without isoform) were clustered. The analysis of the gene expression profiling identified 358 differentially expression genes (DEGs) in the bacterial-resistant group, and 102 DEGs in the bacterial-susceptible group, compared with that in control group. According to the reported references and annotation information from BLAST, GO and KEGG, 30 putative bacterial-resistant genes and 19 putative bacterial-susceptible genes were identified from DEGs. The qRT-PCR results were consistent with the RNA-Seq results. Furthermore, many DGEs were involved in immune signaling related pathways, such as Endocytosis, Lysosome, MAPK, Chemokine and the ERBB signaling pathway.

  7. Draft Genome Sequences of the Fish Pathogen Vibrio harveyi Strains VH2 and VH5

    DEFF Research Database (Denmark)

    Castillo, Daniel; D'Alvise, Paul; Middelboe, Mathias

    2015-01-01

    Vibrio harveyi is an important marine pathogen that is responsible for vibriosis outbreaks in cultured fish and invertebrates worldwide. Here, we announce the draft genome sequences of V. harveyi strains VH2 and VH5, isolated from farmed juvenile Seriola dumerili during outbreaks of vibriosis...... in Crete, Greece....

  8. Methods to classify bacterial pathogens in cystic fibrosis

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Nielsen, Xiaohui Chen; Johansen, Ulla

    2011-01-01

    for identification of isolates from the Burkholderia complex to the species level. DNA typing by PFGE, which can be used for any bacterial pathogen, is described as it is employed for Pseudomonas aeruginosa. A commercially available ELISA method is described for measuring IgG antibodies against P. aeruginosa in CF......Many bacteria can be detected in CF sputum, pathogenic and commensal. Modified Koch's criteria for identification of established and emerging CF pathogens are therefore described. Methods are described to isolate bacteria and to detect bacterial biofilms in sputum or lung tissue from CF patients...

  9. Cytosolic Access of Intracellular Bacterial Pathogens: The Shigella Paradigm.

    Science.gov (United States)

    Mellouk, Nora; Enninga, Jost

    2016-01-01

    Shigella is a Gram-negative bacterial pathogen, which causes bacillary dysentery in humans. A crucial step of Shigella infection is its invasion of epithelial cells. Using a type III secretion system, Shigella injects several bacterial effectors ultimately leading to bacterial internalization within a vacuole. Then, Shigella escapes rapidly from the vacuole, it replicates within the cytosol and spreads from cell-to-cell. The molecular mechanism of vacuolar rupture used by Shigella has been studied in some detail during the recent years and new paradigms are emerging about the underlying molecular events. For decades, bacterial effector proteins were portrayed as main actors inducing vacuolar rupture. This includes the effector/translocators IpaB and IpaC. More recently, this has been challenged and an implication of the host cell in the process of vacuolar rupture has been put forward. This includes the bacterial subversion of host trafficking regulators, such as the Rab GTPase Rab11. The involvement of the host in determining bacterial vacuolar integrity has also been found for other bacterial pathogens, particularly for Salmonella. Here, we will discuss our current view of host factor and pathogen effector implications during Shigella vacuolar rupture and the steps leading to it.

  10. Antibacterial activity of plasma from crocodile (Crocodylus siamensis against pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Kommanee Jintana

    2012-07-01

    Full Text Available Abstract Background The Siamese crocodile (Crocodylus siamensis is a critically endangered species of freshwater crocodiles. Crocodilians live with opportunistic bacterial infection but normally suffer no adverse effects. They are not totally immune to microbial infection, but their resistance thereto is remarkably effective. In this study, crude and purified plasma extracted from the Siamese crocodile were examined for antibacterial activity against clinically isolated, human pathogenic bacterial strains and the related reference strains. Methods Crude plasma was prepared from whole blood of the Siamese crocodile by differential sedimentation. The crude plasma was examined for antibacterial activity by the liquid growth inhibition assay. The scanning electron microscopy was performed to confirm the effect of crude crocodile plasma on the cells of Salmonella typhi ATCC 11778. Effect of crude crocodile plasma on cell viability was tested by MTT assay. In addition, the plasma was purified by anion exchange column chromatography with DEAE-Toyopearl 650 M and the purified plasma was tested for antibacterial activity. Results Crude plasma was prepared from whole blood of the Siamese crocodile and exhibited substantial antibacterial activities of more than 40% growth inhibition against the six reference strains of Staphylococcus aureus, Salmonella typhi, Escherichia coli, Vibrio cholerae, Pseudomonas aeruginosa, and Staphylococcus epidermidis, and the four clinical isolates of Staphylococcus epidermidis, Pseudomonas aeruginosa, Salmonella typhi, and Vibrio cholerae. Especially, more than 80% growth inhibition was found in the reference strains of Salmonella typhi, Vibrio cholerae, and Staphylococcus epidermidis and in the clinical isolates of Salmonella typhi and Vibrio cholerae. The effect of the crude plasma on bacterial cells of Salmonella typhi, a certain antibacterial material probably penetrates progressively into the cytoplasmic space

  11. Comparative susceptibility of veliger larvae of four bivalve mollusks to a Vibrio alginolyticus strain.

    Science.gov (United States)

    Luna-González, A; Maeda-Martínez, A N; Sainz, J C; Ascencio-Valle, F

    2002-06-03

    The susceptibility of 7 d old veliger larvae of the scallops Argopecten ventricosus and Nodipecten subnodosus, the penshell Atrina maura, and the Pacific oyster Crassostrea gigas to a pathogenic strain of Vibrio alginolyticus was investigated by challenging the larvae with different bacterial concentrations in a semi-static assay. The results indicate that the larvae of the 2 scallop species are more susceptible to the V. alginolyticus strain than those of the oyster and the penshell. Signs of the disease were similar to bacillary necrosis described in previous work. Interspecies differences in susceptibility to pathogens are discussed.

  12. Transcriptome Analysis and Discovery of Genes Involved in Immune Pathways from Coelomocytes of Sea Cucumber (Apostichopus japonicus after Vibrio splendidus Challenge

    Directory of Open Access Journals (Sweden)

    Qiong Gao

    2015-07-01

    Full Text Available Vibrio splendidus is identified as one of the major pathogenic factors for the skin ulceration syndrome in sea cucumber (Apostichopus japonicus, which has vastly limited the development of the sea cucumber culture industry. In order to screen the immune genes involving Vibrio splendidus challenge in sea cucumber and explore the molecular mechanism of this process, the related transcriptome and gene expression profiling of resistant and susceptible biotypes of sea cucumber with Vibrio splendidus challenge were collected for analysis. A total of 319,455,942 trimmed reads were obtained, which were assembled into 186,658 contigs. After that, 89,891 representative contigs (without isoform were clustered. The analysis of the gene expression profiling identified 358 differentially expression genes (DEGs in the bacterial-resistant group, and 102 DEGs in the bacterial-susceptible group, compared with that in control group. According to the reported references and annotation information from BLAST, GO and KEGG, 30 putative bacterial-resistant genes and 19 putative bacterial-susceptible genes were identified from DEGs. The qRT-PCR results were consistent with the RNA-Seq results. Furthermore, many DGEs were involved in immune signaling related pathways, such as Endocytosis, Lysosome, MAPK, Chemokine and the ERBB signaling pathway.

  13. Abundance and Multilocus Sequence Analysis of Vibrio Bacteria Associated with Diseased Elkhorn Coral (Acropora palmata) of the Florida Keys.

    Science.gov (United States)

    Kemp, Keri M; Westrich, Jason R; Alabady, Magdy S; Edwards, Martinique L; Lipp, Erin K

    2018-01-15

    The critically endangered elkhorn coral ( Acropora palmata ) is affected by white pox disease (WPX) throughout the Florida Reef Tract and wider Caribbean. The bacterium Serratia marcescens was previously identified as one etiologic agent of WPX but is no longer consistently detected in contemporary outbreaks. It is now believed that multiple etiologic agents cause WPX; however, to date, no other potential pathogens have been thoroughly investigated. This study examined the association of Vibrio bacteria with WPX occurrence from August 2012 to 2014 at Looe Key Reef in the Florida Keys, USA. The concentration of cultivable Vibrio was consistently greater in WPX samples than in healthy samples. The abundance of Vibrio bacteria relative to total bacteria was four times higher in samples from WPX lesions than in adjacent apparently healthy regions of diseased corals based on quantitative PCR (qPCR). Multilocus sequence analysis (MLSA) was used to assess the diversity of 69 Vibrio isolates collected from diseased and apparently healthy A. palmata colonies and the surrounding seawater. Vibrio species with known pathogenicity to corals were detected in both apparently healthy and diseased samples. While the causative agent(s) of contemporary WPX outbreaks remains elusive, our results suggest that Vibrio spp. may be part of a nonspecific heterotrophic bacterial bloom rather than acting as primary pathogens. This study highlights the need for highly resolved temporal sampling in situ to further elucidate the role of Vibrio during WPX onset and progression. IMPORTANCE Coral diseases are increasing worldwide and are now considered a major contributor to coral reef decline. In particular, the Caribbean has been noted as a coral disease hot spot, owing to the dramatic loss of framework-building acroporid corals due to tissue loss diseases. The pathogenesis of contemporary white pox disease (WPX) outbreaks in Acropora palmata remains poorly understood. This study investigates the

  14. Cytosolic access of intracellular bacterial pathogens: the Shigella paradigm

    Directory of Open Access Journals (Sweden)

    Nora eMellouk

    2016-04-01

    Full Text Available Shigella is a Gram-negative bacterial pathogen, which causes bacillary dysentery in humans. A crucial step of Shigella infection is its invasion of epithelial cells. Using a type III secretion system, Shigella injects several bacterial effectors ultimately leading to bacterial internalization within a vacuole. Then, Shigella escapes rapidly from the vacuole, it replicates within the cytosol and spreads from cell-to-cell. The molecular mechanism of vacuolar rupture used by Shigella has been studied in some detail during the recent years and new paradigms are emerging about the underlying molecular events. For decades, bacterial effector proteins were portrayed as main actors inducing vacuolar rupture. This includes the effector/translocators IpaB and IpaC. More recently, this has been challenged and an implication of the host cell in the process of vacuolar rupture has been put forward. This includes the bacterial subversion of host trafficking regulators, such as the Rab GTPase Rab11. The involvement of the host in determining bacterial vacuolar integrity has also been found for other bacterial pathogens, particularly for Salmonella. Here, we will discuss our current view of host factor and pathogen effector implications during Shigella vacuolar rupture and the steps leading to it.

  15. Molecular mechanisms of cell-cell spread of intracellular bacterial pathogens.

    Science.gov (United States)

    Ireton, Keith

    2013-07-17

    Several bacterial pathogens, including Listeria monocytogenes, Shigella flexneri and Rickettsia spp., have evolved mechanisms to actively spread within human tissues. Spreading is initiated by the pathogen-induced recruitment of host filamentous (F)-actin. F-actin forms a tail behind the microbe, propelling it through the cytoplasm. The motile pathogen then encounters the host plasma membrane, forming a bacterium-containing protrusion that is engulfed by an adjacent cell. Over the past two decades, much progress has been made in elucidating mechanisms of F-actin tail formation. Listeria and Shigella produce tails of branched actin filaments by subverting the host Arp2/3 complex. By contrast, Rickettsia forms tails with linear actin filaments through a bacterial mimic of eukaryotic formins. Compared with F-actin tail formation, mechanisms controlling bacterial protrusions are less well understood. However, recent findings have highlighted the importance of pathogen manipulation of host cell-cell junctions in spread. Listeria produces a soluble protein that enhances bacterial protrusions by perturbing tight junctions. Shigella protrusions are engulfed through a clathrin-mediated pathway at 'tricellular junctions'--specialized membrane regions at the intersection of three epithelial cells. This review summarizes key past findings in pathogen spread, and focuses on recent developments in actin-based motility and the formation and internalization of bacterial protrusions.

  16. Screening and evaluation of local bacteria isolated from shellfish as potential probiotics against pathogenic Vibrios.

    Science.gov (United States)

    Jasmin, M Y; Wagaman, Hazimah; Yin, Tan Ai; Ina-salwany, M Y; Daud, H M; Karim, Murni

    2016-07-01

    The present study was carried out to isolate, screen and evaluate potential candidates of local bacteria isolated from tiger shrimp Penaeus monodon and slipper cupped oysters Crassostrea iredalei as probiotics in shellfish aquaculture. A total of 144 of bacteria were successfully isolated from the intestine and stomach of 20 tails of healthy adult tiger shrimp P. monodon, while 136 were successfully isolated from the digestive tract, gills and inner shells of 10 healthy adult C. iredalei. The number of potential isolates was narrowed down to two from tiger shrimp, and one from slipper cupped oyster after in vitro screening assays. The three isolates, labeled as G11, I24 and S66, were identified as Virgibacillus sp., Bacillus sp. and Exiquobacterium sp., respectively, using 16S rDNA gene analysis. The antagonistic ability of the isolates towards Vibrio alginolyticus and Vibrio harveyi were conducted in stagnant and liquid modes via spot lawn and broth co-culture assay, respectively. In these assays, all the potential probionts were inhibitory to both pathogenic vibrios. In the in-vivo assay, Artemia was used as host and treated with different concentrations of potential probionts (10(4), 10(6) and 10(8) CFU ml(-1)), and challenged with V. alginolyticus and V. harveyi at 105 CFU ml(-1), respectively. Artemia treated with probiont G11 at all concentrations and challenged with V. alginolyticus had increased survival (70 ? 80 %), which was significantly higher as compared with group with only the pathogen (20 %). Meanwhile, probiont I24 increased the survival of Artemia by 70 % at a concentration of 10(8) CFU ml(-1) after being challenged with V. alginolyticus and Artemia treated with 10(6) CFU ml(-1) of probiont S66 had increased survival of 90% after being challenged with V. harveyi. Thus, the three isolates might have potential applications as probiotics in shellfish aquaculture against vibriosis. ?

  17. Probiotic modulation of the gut bacterial community of juvenile Litopenaeus vannamei challenged with Vibrio parahaemolyticus CAIM 170

    Directory of Open Access Journals (Sweden)

    Irasema E Luis-Villaseñor

    2015-09-01

    Full Text Available The protective effects of two probiotic mixtures was studied using the fingerprints of the bacterial community of Litopenaeus vannamei juveniles exposed to probiotics and challenged with Vibrio parahaemolyticus CAIM 170. Fingerprints were constructed using 16S rRNA gene and the PCR-SSCP (Single strand conformation polymorphism technique, and the probiotics used were an experimental Bacillus mixture (Bacillus tequilensis YC5-2 + B. endophyticus C2-2 and YC3-B and the commercial probiotic Alibio. The DNA for PCR-SSCP analyses was extracted directly from the guts of shrimps treated for 20 days with the probiotics and injected with 2.5*10(5 CFU g-1 of V. parahaemolyticus one week after suspension of the probiotic treatment. Untreated shrimps served as positive (injected with V. parahaemolyticus and negative (not injected controls Analysis of the bacterial community carried out after inoculation and 12 and 48 h later confirmed that V. parahaemolyticus was present in shrimps of the positive control , but not in the negative control or treated with the probiotic mixtures. A significant difference in the diversity of the bacterial community was observed between times after infection. The band patterns in 0-12 h were clustered into a different group from that determined after 48 h, and suggested that during bacterial infection the guts of whiteleg shrimp were dominated by gamma proteobacteria represented by Vibrio sp. and Photobacterium sp. Our results indicate that the experimental and the commercial mixtures are suitable to modulate the bacterial community of L. vannamei and could be used as a probiotic to control vibriosis in juvenile shrimp.

  18. Vibrio tapetis Displays an Original Type IV Secretion System in Strains Pathogenic for Bivalve Molluscs

    Directory of Open Access Journals (Sweden)

    Graciela M. Dias

    2018-02-01

    Full Text Available The Brown Ring Disease (BRD caused high mortality rates since 1986 in the Manila clam Venerupis philippinarum introduced and cultured in Western Europe from the 1970s. The causative agent of BRD is a Gram-Negative bacterium, Vibrio tapetis, which is also pathogenic to fish. Here we report the first assembly of the complete genome of V. tapetis CECT4600T, together with the genome sequences of 16 additional strains isolated across a broad host and geographic range. Our extensive genome dataset allowed us to describe the pathogen pan- and core genomes and to identify putative virulence factors. The V. tapetis core genome consists of 3,352 genes, including multiple potential virulence factors represented by haemolysins, transcriptional regulators, Type I restriction modification system, GGDEF domain proteins, several conjugative plasmids, and a Type IV secretion system. Future research on the coevolutionary arms race between V. tapetis virulence factors and host resistance mechanisms will improve our understanding of how pathogenicity develops in this emerging pathogen.

  19. Isolation and Characterization of Two Lytic Bacteriophages, φSt2 and φGrn1; Phage Therapy Application for Biological Control of Vibrio alginolyticus in Aquaculture Live Feeds.

    Directory of Open Access Journals (Sweden)

    Panos G Kalatzis

    Full Text Available Bacterial infections are a serious problem in aquaculture since they can result in massive mortalities in farmed fish and invertebrates. Vibriosis is one of the most common diseases in marine aquaculture hatcheries and its causative agents are bacteria of the genus Vibrio mostly entering larval rearing water through live feeds, such as Artemia and rotifers. The pathogenic Vibrio alginolyticus strain V1, isolated during a vibriosis outbreak in cultured seabream, Sparus aurata, was used as host to isolate and characterize the two novel bacteriophages φSt2 and φGrn1 for phage therapy application. In vitro cell lysis experiments were performed against the bacterial host V. alginolyticus strain V1 but also against 12 presumptive Vibrio strains originating from live prey Artemia salina cultures indicating the strong lytic efficacy of the 2 phages. In vivo administration of the phage cocktail, φSt2 and φGrn1, at MOI = 100 directly on live prey A. salina cultures, led to a 93% decrease of presumptive Vibrio population after 4 h of treatment. Current study suggests that administration of φSt2 and φGrn1 to live preys could selectively reduce Vibrio load in fish hatcheries. Innovative and environmental friendly solutions against bacterial diseases are more than necessary and phage therapy is one of them.

  20. Identifying Pathogenicity Islands in Bacterial Pathogenomics Using Computational Approaches

    Directory of Open Access Journals (Sweden)

    Dongsheng Che

    2014-01-01

    Full Text Available High-throughput sequencing technologies have made it possible to study bacteria through analyzing their genome sequences. For instance, comparative genome sequence analyses can reveal the phenomenon such as gene loss, gene gain, or gene exchange in a genome. By analyzing pathogenic bacterial genomes, we can discover that pathogenic genomic regions in many pathogenic bacteria are horizontally transferred from other bacteria, and these regions are also known as pathogenicity islands (PAIs. PAIs have some detectable properties, such as having different genomic signatures than the rest of the host genomes, and containing mobility genes so that they can be integrated into the host genome. In this review, we will discuss various pathogenicity island-associated features and current computational approaches for the identification of PAIs. Existing pathogenicity island databases and related computational resources will also be discussed, so that researchers may find it to be useful for the studies of bacterial evolution and pathogenicity mechanisms.

  1. Shrimp pathogenicity, hemolysis, and the presence of hemolysin and TTSS genes in Vibrio harveyi isolated from Thailand.

    Science.gov (United States)

    Rattanama, Pimonsri; Srinitiwarawong, Kanchana; Thompson, Janelle R; Pomwised, Rattanaruji; Supamattaya, Kidchakarn; Vuddhakul, Varaporn

    2009-09-23

    The virulence factors of Vibrio harveyi, the causative agent of luminous vibriosis, are not completely understood. We investigated the correlations between shrimp mortality, hemolysis, the presence of a hemolysin gene (vhh), and a gene involved in the type III secretion system (the Vibrio calcium response gene vcrD). V harveyi HY01 was isolated from a shrimp that died from vibriosis, and 36 other V. harveyi isolates were obtained from fish and shellfish in Hat Yai city, Thailand. An ocean isolate of V. harveyi BAA-1116 was also included. Thirteen isolates including V harveyi HYO1 caused shrimp death 12 h after injection. Most V harveyi isolates in this group (designated as Group A) caused hemolysis on prawn blood agar. None of the shrimp died after injection with V harveyi BAA-1116. Molecular analysis of all V harveyi isolates revealed the presence of vcrD in both pathogenic and non-pathogenic strains. Although vhh was detected in all V harveyi isolates, some isolates did not cause hemolysis, indicating that vhh gene expression might be regulated. Analysis of the V harveyi HYO1 genome revealed a V cholerae like-hemolysin gene, hlyA (designated as hhl). Specific primers designed for hhl detected this gene in 3 additional V harveyi isolates but the presence of this gene was not correlated with pathogenicity. Random amplified polymorphic DNA (RAPD) analysis revealed a high degree of genetic diversity in all V harveyi isolates, and there were no correlations among the hhl-positive isolates or the pathogenic strains.

  2. Effects of Intertidal Harvest Practices on Levels of Vibrio parahaemolyticus and Vibrio vulnificus Bacteria in Oysters.

    Science.gov (United States)

    Jones, J L; Kinsey, T P; Johnson, L W; Porso, R; Friedman, B; Curtis, M; Wesighan, P; Schuster, R; Bowers, J C

    2016-08-01

    Vibrio parahaemolyticus and Vibrio vulnificus can grow rapidly in shellfish subjected to ambient air conditions, such as during intertidal exposure. In this study, levels of total and pathogenic (tdh(+) and/or trh(+)) V. parahaemolyticus and total V. vulnificus were determined in oysters collected from two study locations where intertidal harvest practices are common. Samples were collected directly off intertidal flats, after exposure (ambient air [Washington State] or refrigerated [New Jersey]), and after reimmersion by natural tidal cycles. Samples were processed using a most-probable-number (MPN) real-time PCR method for total and pathogenic V. parahaemolyticus or V. vulnificus In Washington State, the mean levels of V. parahaemolyticus increased 1.38 log MPN/g following intertidal exposure and dropped 1.41 log MPN/g after reimmersion for 1 day, but the levels were dependent upon the container type utilized. Pathogenic V. parahaemolyticus levels followed a similar trend. However, V. vulnificus levels increased 0.10 log MPN/g during intertidal exposure in Washington but decreased by >1 log MPN/g after reimmersion. In New Jersey, initial levels of all vibrios studied were not significantly altered during the refrigerated sorting and containerizing process. However, there was an increase in levels after the first day of reimmersion by 0.79, 0.72, 0.92, and 0.71 log MPN/g for total, tdh(+) and trh(+) V. parahaemolyticus, and V. vulnificus, respectively. The levels of all targets decreased to those similar to background after a second day of reimmersion. These data indicate that the intertidal harvest and handling practices for oysters that were studied in Washington and New Jersey do not increase the risk of illness from V. parahaemolyticus or V. vulnificus Vibrio parahaemolyticus and Vibrio vulnificus are the leading causes of seafood-associated infectious morbidity and mortality in the United States. Vibrio spp. can grow rapidly in shellfish subjected to ambient

  3. Bovine Lactoferrin and Lactoferrin-Derived Peptides Inhibit the Growth of Vibrio cholerae and Other Vibrio species

    Directory of Open Access Journals (Sweden)

    Erika Acosta-Smith

    2018-01-01

    Full Text Available Vibrio is a genus of Gram-negative bacteria, some of which can cause serious infectious diseases. Vibrio infections are associated with the consumption of contaminated food and classified in Vibrio cholera infections and non-cholera Vibrio infections. In the present study, we investigate whether bovine lactoferrin (bLF and several synthetic peptides corresponding to bLF sequences, are able to inhibit the growth or have bactericidal effect against V. cholerae and other Vibrio species. The antibacterial activity of LF and LF-peptides was assessed by kinetics of growth or determination of colony forming unit in bacteria treated with the peptides and antibiotics. To get insight in the mode of action, the interaction between bLF and bLF-peptides (coupled to FITC and V. cholera was evaluated. The damage of effector-induced bacterial membrane permeability was measured by inclusion of the fluorescent dye propidium iodide using flow cytometry, whereas the bacterial ultrastructural damage in bacteria treated was observed by transmission electron microscopy. The results showed that bLF and LFchimera inhibited the growth of the V. cholerae strains; LFchimera permeabilized the bacteria which membranes were seriously damaged. Assays with a multidrug-resistant strain of Vibrio species indicated that combination of sub-lethal doses of LFchimera with ampicillin or tetracycline strongly reduced the concentration of the antibiotics to reach 95% growth inhibition. Furthermore, LFchimera were effective to inhibit the V. cholerae counts and damage due to this bacterium in a model mice. These data suggest that LFchimera and bLF are potential candidates to combat the V. cholerae and other multidrug resistant Vibrio species.

  4. Bovine Lactoferrin and Lactoferrin-Derived Peptides Inhibit the Growth of Vibrio cholerae and Other Vibrio species

    Science.gov (United States)

    Acosta-Smith, Erika; Viveros-Jiménez, Karina; Canizalez-Román, Adrian; Reyes-Lopez, Magda; Bolscher, Jan G. M.; Nazmi, Kamran; Flores-Villaseñor, Hector; Alapizco-Castro, Gerardo; de la Garza, Mireya; Martínez-Garcia, Jesús J.; Velazquez-Roman, Jorge; Leon-Sicairos, Nidia

    2018-01-01

    Vibrio is a genus of Gram-negative bacteria, some of which can cause serious infectious diseases. Vibrio infections are associated with the consumption of contaminated food and classified in Vibrio cholera infections and non-cholera Vibrio infections. In the present study, we investigate whether bovine lactoferrin (bLF) and several synthetic peptides corresponding to bLF sequences, are able to inhibit the growth or have bactericidal effect against V. cholerae and other Vibrio species. The antibacterial activity of LF and LF-peptides was assessed by kinetics of growth or determination of colony forming unit in bacteria treated with the peptides and antibiotics. To get insight in the mode of action, the interaction between bLF and bLF-peptides (coupled to FITC) and V. cholera was evaluated. The damage of effector-induced bacterial membrane permeability was measured by inclusion of the fluorescent dye propidium iodide using flow cytometry, whereas the bacterial ultrastructural damage in bacteria treated was observed by transmission electron microscopy. The results showed that bLF and LFchimera inhibited the growth of the V. cholerae strains; LFchimera permeabilized the bacteria which membranes were seriously damaged. Assays with a multidrug-resistant strain of Vibrio species indicated that combination of sub-lethal doses of LFchimera with ampicillin or tetracycline strongly reduced the concentration of the antibiotics to reach 95% growth inhibition. Furthermore, LFchimera were effective to inhibit the V. cholerae counts and damage due to this bacterium in a model mice. These data suggest that LFchimera and bLF are potential candidates to combat the V. cholerae and other multidrug resistant Vibrio species. PMID:29375503

  5. Ecology of pathogenic and non-pathogenic Vibrio parahaemolyticus on the French Atlantic coast. Effects of temperature, salinity, turbidity and chlorophyll a.

    Science.gov (United States)

    Julie, Deter; Solen, Lozach; Antoine, Véron; Jaufrey, Chollet; Annick, Derrien; Dominique, Hervio-Heath

    2010-04-01

    Vibrio parahaemolyticus is one of the principal bacterial causes for seafood-borne gastroenteritis in the world. In the present study, three sites located on the French Atlantic coast were monitored monthly for environmental parameters over 1 year. The presence of total and pathogenic V. parahaemolyticus in sediment, water and mussel samples was detected following enrichment by culture and real-time PCR (toxR gene, tdh, trh1 and trh2 virulence genes). Using generalized linear models, we showed that the presence of V. parahaemolyticus in water could be explained by a combination of mean temperature over the 7 days before the day of sampling (P turbidity (P = 0.058). In mussels, an effect of chlorophyll a (P = 0.005) was detected when an effect of the mean salinity over the 7 days before sampling was significant for the sediment (P < 0.001). We did not detect any significant effect of phytoplanktonic blooms or of the number of culturable bacteria on V. parahaemolyticus presence. No sample was revealed positive for tdh. The presence of trh1 and trh2 was positively influenced by the mean temperature during the 2 days before the day of sampling (P < 0.001 and P = 0.032). The importance of these ecological parameters is discussed in relation to the biology of V. parahaemolyticus.

  6. Models of Caenorhabditis elegans infection by bacterial and fungal pathogens.

    Science.gov (United States)

    Powell, Jennifer R; Ausubel, Frederick M

    2008-01-01

    The nematode Caenorhabditis elegans is a simple model host for studying the relationship between the animal innate immune system and a variety of bacterial and fungal pathogens. Extensive genetic and molecular tools are available in C. elegans, facilitating an in-depth analysis of host defense factors and pathogen virulence factors. Many of these factors are conserved in insects and mammals, indicating the relevance of the nematode model to the vertebrate innate immune response. Here, we describe pathogen assays for a selection of the most commonly studied bacterial and fungal pathogens using the C. elegans model system.

  7. Molecular Epidemiology and Genetic Variation of Pathogenic Vibrio parahaemolyticus in Peru

    Science.gov (United States)

    Gavilan, Ronnie G.; Zamudio, Maria L.; Martinez-Urtaza, Jaime

    2013-01-01

    Vibrio parahaemolyticus is a foodborne pathogen that has become a public health concern at the global scale. The epidemiological significance of V. parahaemolyticus infections in Latin America received little attention until the winter of 1997 when cases related to the pandemic clone were detected in the region, changing the epidemic dynamics of this pathogen in Peru. With the aim to assess the impact of the arrival of the pandemic clone on local populations of pathogenic V. parahaemolyticus in Peru, we investigated the population genetics and genomic variation in a complete collection of non-pandemic strains recovered from clinical sources in Peru during the pre- and post-emergence periods of the pandemic clone. A total of 56 clinical strains isolated in Peru during the period 1994 to 2007, 13 strains from Chile and 20 strains from Asia were characterized by Multilocus Sequence Typing (MLST) and checked for the presence of Variable Genomic Regions (VGRs). The emergence of O3:K6 cases in Peru implied a drastic disruption of the seasonal dynamics of infections and a shift in the serotype dominance of pathogenic V. parahaemolyticus. After the arrival of the pandemic clone, a great diversity of serovars not previously reported was detected in the country, which supports the introduction of additional populations cohabitating with the pandemic group. Moreover, the presence of genomic regions characteristic of the pandemic clone in other non-pandemic strains may represent early evidence of genetic transfer from the introduced population to the local communities. Finally, the results of this study stress the importance of population admixture, horizontal genetic transfer and homologous recombination as major events shaping the structure and diversity of pathogenic V. parahaemolyticus. PMID:23696906

  8. Occurrence of potentially pathogenic Vibrio in oysters (Crassostrea gigas) and waters from bivalve mollusk cultivations in the South Bay of Santa Catarina.

    Science.gov (United States)

    Ramos, Roberta Juliano; Miotto, Letícia Adélia; Miotto, Marília; Silveira Junior, Nelson; Cirolini, Andréia; Silva, Helen Silvestre da; Rodrigues, Dália dos Prazeres; Vieira, Cleide Rosana Werneck

    2014-01-01

    This research aimed to identify and quantify potentially pathogenic Vibrio from different cultivations of bivalve shellfish in the State of Santa Catarina, Brazil, and water regions in the South Bay, as well as correlate the incidence of these microorganisms with the physicochemical parameters of marine waters. Between October 2008 and March 2009, 60 oyster and seawater samples were collected from six regions of bivalve mollusk cultivation, and these samples were submitted for Vibrio counts. Twenty-nine (48.3%) oyster samples were revealed to be contaminated with one or more Vibrio species. The Vibrio parahaemolyticus and Vibrio vulnificus counts in the samples ranged from oyster and from oyster, respectively. Of the 60 seawater samples analyzed, 44 (73.3%) showed signs of contamination with one or more vibrio species. The counts of V. parahaemolyticus and V. vulnificus in the samples ranged from < 0.3 log10 MPN·100mL(-1) to 1.7 log10MPN·100mL(-1) seawater and from < 0.3 log10 MPN·100mL(-1) to 2.0 log10 MPN·100mL(-1) seawater, respectively. A positive correlation between V. vulnificus counts and the seawater temperature as well as a negative correlation between the V. parahaemolyticus counts and salinity were observed. The results suggest the need to implement strategies to prevent vibrio diseases from being transmitted by the consumption of contaminated bivalve shellfish.

  9. A multiplex PCR/LDR assay for simultaneous detection and identification of the NIAID category B bacterial food and water-borne pathogens.

    Science.gov (United States)

    Rundell, Mark S; Pingle, Maneesh; Das, Sanchita; Hussain, Aashiq; Ocheretina, Oksana; Charles, Macarthur; Larone, Davise H; Spitzer, Eric D; Golightly, Linnie; Barany, Francis

    2014-06-01

    Enteric pathogens that cause gastroenteritis remain a major global health concern. The goal of this study was to develop a multiplex PCR/ligation detection reaction (LDR) assay for the detection of all NIAID category B bacterial food and water-borne pathogens directly from stool specimens. To validate the PCR/LDR assay, clinical isolates of Campylobacter spp., Vibrio spp., Shigella spp., Salmonella spp., Listeria monocytogenes, Yersinia enterocolitica, and diarrheagenic Escherichia coli were tested. The sensitivity and specificity of the assay were assessed using a large number of seeded culture-negative stool specimens and a smaller set of clinical specimens from Haiti. The overall sensitivity ranged from 91% to 100% (median 100%) depending on the species. For the majority of organisms, the sensitivity was 100%. The overall specificity based on initial testing ranged from 98% to 100% depending on the species. After additional testing of discordant samples, the lowest specificity was 99.4%. PCR/LDR detected additional category B agents (particularly diarrheagenic E. coli) in 11/40 specimens from Haiti that were culture-positive for V. cholerae and in approximately 1% of routine culture-negative stool specimens from a hospital in New York. This study demonstrated the ability of the PCR/LDR assay to detect a large comprehensive panel of category B enteric bacterial pathogens as well as mixed infections. This type of assay has the potential to provide earlier warnings of possible public health threats and more accurate surveillance of food and water-borne pathogens. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Aktivitas Antibakteri Ekstrak Buah Adas (Foeniculum vulgare, Mill) pada Vibrio harveyi dan Vibrio alginolyticus

    OpenAIRE

    Budianto, Budianto; Prajitno, Arief; Yuniarti, Ating

    2017-01-01

    Evaluation of natural products as a safe and effective antimicrobial agent is a scientific strategy to treat the drugresistant pathogens.Fennel(FoeniculumvulgareMill) is an herbal plant that has an active in gredient which is one of its benefit sasan antibacterial material. In thisstudy,water extract of fennel fruit determined the antibacterial activity against Vibrio harveyi and Vibrio alginolyticus using the minimum Inhibitory  Concentration Test (MIC) and paper disk diffusion method....

  11. Bacterial genome engineering and synthetic biology: combating pathogens.

    Science.gov (United States)

    Krishnamurthy, Malathy; Moore, Richard T; Rajamani, Sathish; Panchal, Rekha G

    2016-11-04

    The emergence and prevalence of multidrug resistant (MDR) pathogenic bacteria poses a serious threat to human and animal health globally. Nosocomial infections and common ailments such as pneumonia, wound, urinary tract, and bloodstream infections are becoming more challenging to treat due to the rapid spread of MDR pathogenic bacteria. According to recent reports by the World Health Organization (WHO) and Centers for Disease Control and Prevention (CDC), there is an unprecedented increase in the occurrence of MDR infections worldwide. The rise in these infections has generated an economic strain worldwide, prompting the WHO to endorse a global action plan to improve awareness and understanding of antimicrobial resistance. This health crisis necessitates an immediate action to target the underlying mechanisms of drug resistance in bacteria. The advent of new bacterial genome engineering and synthetic biology (SB) tools is providing promising diagnostic and treatment plans to monitor and treat widespread recalcitrant bacterial infections. Key advances in genetic engineering approaches can successfully aid in targeting and editing pathogenic bacterial genomes for understanding and mitigating drug resistance mechanisms. In this review, we discuss the application of specific genome engineering and SB methods such as recombineering, clustered regularly interspaced short palindromic repeats (CRISPR), and bacterial cell-cell signaling mechanisms for pathogen targeting. The utility of these tools in developing antibacterial strategies such as novel antibiotic production, phage therapy, diagnostics and vaccine production to name a few, are also highlighted. The prevalent use of antibiotics and the spread of MDR bacteria raise the prospect of a post-antibiotic era, which underscores the need for developing novel therapeutics to target MDR pathogens. The development of enabling SB technologies offers promising solutions to deliver safe and effective antibacterial therapies.

  12. Zoonotic pathogens isolated from wild animals and environmental samples at two California wildlife hospitals.

    Science.gov (United States)

    Siembieda, Jennifer L; Miller, Woutrina A; Byrne, Barbara A; Ziccardi, Michael H; Anderson, Nancy; Chouicha, Nadira; Sandrock, Christian E; Johnson, Christine K

    2011-03-15

    To determine types and estimate prevalence of potentially zoonotic enteric pathogens shed by wild animals admitted to either of 2 wildlife hospitals and to characterize distribution of these pathogens and of aerobic bacteria in a hospital environment. Cross-sectional study. Fecal samples from 338 animals in 2 wildlife hospitals and environmental samples from 1 wildlife hospital. Fecal samples were collected within 24 hours of hospital admission. Environmental samples were collected from air and surfaces. Samples were tested for zoonotic pathogens via culture techniques and biochemical analyses. Prevalence of pathogen shedding was compared among species groups, ages, sexes, and seasons. Bacterial counts were determined for environmental samples. Campylobacter spp, Vibrio spp, Salmonella spp, Giardia spp, and Cryptosporidium spp (alone or in combination) were detected in 105 of 338 (31%) fecal samples. Campylobacter spp were isolated only from birds. Juvenile passerines were more likely to shed Campylobacter spp than were adults; prevalence increased among juvenile passerines during summer. Non-O1 serotypes of Vibrio cholerae were isolated from birds; during an oil-spill response, 9 of 10 seabirds screened were shedding this pathogen, which was also detected in environmental samples. Salmonella spp and Giardia spp were isolated from birds and mammals; Cryptosporidium spp were isolated from mammals only. Floors of animal rooms had higher bacterial counts than did floors with only human traffic. Potentially zoonotic enteric pathogens were identified in samples from several species admitted to wildlife hospitals, indicating potential for transmission if prevention is not practiced.

  13. Profile and Fate of Bacterial Pathogens in Sewage Treatment Plants Revealed by High-Throughput Metagenomic Approach.

    Science.gov (United States)

    Li, Bing; Ju, Feng; Cai, Lin; Zhang, Tong

    2015-09-01

    The broad-spectrum profile of bacterial pathogens and their fate in sewage treatment plants (STPs) were investigated using high-throughput sequencing based metagenomic approach. This novel approach could provide a united platform to standardize bacterial pathogen detection and realize direct comparison among different samples. Totally, 113 bacterial pathogen species were detected in eight samples including influent, effluent, activated sludge (AS), biofilm, and anaerobic digestion sludge with the abundances ranging from 0.000095% to 4.89%. Among these 113 bacterial pathogens, 79 species were reported in STPs for the first time. Specially, compared to AS in bulk mixed liquor, more pathogen species and higher total abundance were detected in upper foaming layer of AS. This suggests that the foaming layer of AS might impose more threat to onsite workers and citizens in the surrounding areas of STPs because pathogens in foaming layer are easily transferred into air and cause possible infections. The high removal efficiency (98.0%) of total bacterial pathogens suggests that AS treatment process is effective to remove most bacterial pathogens. Remarkable similarities of bacterial pathogen compositions between influent and human gut indicated that bacterial pathogen profiles in influents could well reflect the average bacterial pathogen communities of urban resident guts within the STP catchment area.

  14. Effects of triclosan on bacterial community composition and ...

    Science.gov (United States)

    Pharmaceuticals and personal care products, including antimicrobials, can be found at trace levels in treated wastewater effluent. Impacts of chemical contaminants on coastal aquatic microbial community structure and pathogen abundance are unknown despite the potential for selection through antimicrobial resistance. In particular, Vibrio, a marine bacterial genus that includes several human pathogens, displays resistance to the ubiquitous antimicrobial compound triclosan. Here we demonstrated through use of natural seawater microcosms that triclosan (at a concentration of ~5 ppm) can induce a significant Vibrio growth response (68–1,700 fold increases) in comparison with no treatment controls for three distinct coastal ecosystems: Looe Key Reef (Florida Keys National Marine Sanctuary), Doctors Arm Canal (Big Pine Key, FL), and Clam Bank Landing (North Inlet Estuary, Georgetown, SC). Additionally, microbial community analysis by 16 S rRNA gene sequencing for Looe Key Reef showed distinct changes in microbial community structure with exposure to 5 ppm triclosan, with increases observed in the relative abundance of Vibrionaceae (17-fold), Pseudoalteromonadaceae (65-fold), Alteromonadaceae (108-fold), Colwelliaceae (430-fold), and Oceanospirillaceae (1,494-fold). While the triclosan doses tested were above concentrations typically observed in coastal surface waters, results identify bacterial families that are potentially resistant to triclosan and/or adapted to u

  15. Aggregation-Induced-Emission Materials with Different Electric Charges as an Artificial Tongue: Design, Construction, and Assembly with Various Pathogenic Bacteria for Effective Bacterial Imaging and Discrimination.

    Science.gov (United States)

    Liu, Guang-Jian; Tian, Sheng-Nan; Li, Cui-Yun; Xing, Guo-Wen; Zhou, Lei

    2017-08-30

    Imaging-based total bacterial count and type identification of bacteria play crucial roles in clinical diagnostics, public health, biological and medical science, and environmental protection. Herein, we designed and synthesized a series of tetraphenylethenes (TPEs) functionalized with one or two aldehyde, carboxylic acid, and quaternary ammonium groups, which were successfully used as fluorescent materials for rapid and efficient staining of eight kinds of representative bacterial species, including pathogenic bacteria Vibrio cholera, Klebsiella pneumoniae, and Listeria monocytogenes and potential bioterrorism agent Yersinia pestis. By comparing the fluorescence intensity changes of the aggregation-induced-emission (AIE) materials before and after bacteria incubation, the sensing mechanisms (electrostatic versus hydrophobic interactions) were simply discussed. Moreover, the designed AIE materials were successfully used as an efficient artificial tongue for bacteria discrimination, and all of the bacteria tested were identified via linear discriminant analysis. Our current work provided a general method for simultaneous broad-spectrum bacterial imaging and species discrimination, which is helpful for bacteria surveillance in many fields.

  16. Virulence of luminescent and non-luminescent isogenic vibrios towards gnotobiotic Artemia franciscana larvae and specific pathogen-free Litopenaeus vannamei shrimp.

    Science.gov (United States)

    Phuoc, L H; Defoirdt, T; Sorgeloos, P; Bossier, P

    2009-04-01

    This study was conducted to test the virulence of luminescent (L) and non-luminescent (NL) isogenic strains of Vibrio campbellii LMG21363, Vibrio harveyi BB120 (wild type) and quorum-sensing mutant strains derived from the wild type such as Vibrio harveyi BB152, BB170, MM30 and BB886. The NL strains could be obtained by culturing rifampicin-resistant luminescent strains in the dark under static condition. The virulence of the L and NL strains was tested in gnotobiotic Artemia franciscana larvae challenged with 10(4) CFU ml(-1) of bacteria. All luminescent isogenic tested strains showed higher virulence compared to the NL strains. The virulence of L and NL V. campbellii and V. harveyi BB120 was also tested in specific pathogen-free juvenile shrimp upon intramuscular injection with 10(6) CFU of bacteria. In contrast with Artemia, there was no significant difference in mortality between the groups challenged with L and NL strains (P > 0.05). The non-luminescent strains were not able to revert back to the luminescent state and quorum sensing did not influence this phenotypic shift. Luminescent Vibrio strains can switch to a non-luminescent state by culturing them in static conditions. The NL strains become less virulent as verified in Artemia. The luminescent state of Vibrio cells in a culture needs to be verified in order to assure maintenance of virulence.

  17. Phenotypic and molecular typing of Vibrio harveyi isolates and their pathogenicity to tiger shrimp larvae.

    Science.gov (United States)

    Alavandi, S V; Manoranjita, V; Vijayan, K K; Kalaimani, N; Santiago, T C

    2006-11-01

    The objective of the present study was to identify the biotype(s) and molecular type(s) of Vibrio harveyi associated with pathogenicity in tiger shrimp (Penaeus monodon) larvae. Five luminescent and four nonluminescent V. harveyi isolates were subjected to phenotyping and random amplified polymorphic DNA (RAPD) fingerprinting, and pathogenicity testing to P. monodon mysis. Four isolates induced 34-41% mortality of P. monodon mysis when challenged at the rate of 10(6) CFU ml(-1) within 60 h. Sucrose-fermenting biotypes of V. harveyi appeared to be associated with pathogenicity to larval shrimp. Higher temperature and salinity appeared to play a role on the onset of vibriosis and mortality in the challenged larval shrimp. Pathogenic isolates of V. harveyi could be demarcated as revealed by their clustering in the dendrogram constructed based on the RAPD fingerprints. Nonluminescent V. harveyi also appear to be important aetiological agents of vibriosis of shrimp larvae. Sucrose-fermenting biotypes are likely to be pathogenic. High temperature may trigger onset of vibriosis. Biotyping of V. harveyi isolates and looking for traits, such as ability to ferment sucrose may be helpful in identifying the pathogenic forms, and such approach requires to be investigated further with larger number of isolates.

  18. Increased detection of mastitis pathogens by real-time PCR compared to bacterial culture.

    Science.gov (United States)

    Keane, O M; Budd, K E; Flynn, J; McCoy, F

    2013-09-21

    Rapid and accurate identification of mastitis pathogens is important for disease control. Bacterial culture and isolate identification is considered the gold standard in mastitis diagnosis but is time consuming and results in many culture-negative samples. Identification of mastitis pathogens by PCR has been proposed as a fast and sensitive alternative to bacterial culture. The results of bacterial culture and PCR for the identification of the aetiological agent of clinical mastitis were compared. The pathogen identified by traditional culture methods was also detected by PCR in 98 per cent of cases indicating good agreement between the positive results of bacterial culture and PCR. A mastitis pathogen could not be recovered from approximately 30 per cent of samples by bacterial culture, however, an aetiological agent was identified by PCR in 79 per cent of these samples. Therefore, a mastitis pathogen was detected in significantly more milk samples by PCR than by bacterial culture (92 per cent and 70 per cent, respectively) although the clinical relevance of PCR-positive culture-negative results remains controversial. A mixed infection of two or more mastitis pathogens was also detected more commonly by PCR. Culture-negative samples due to undetected Staphylococcus aureus infections were rare. The use of PCR technology may assist in rapid mastitis diagnosis, however, accurate interpretation of PCR results in the absence of bacterial culture remains problematic.

  19. High temperature and bacteriophages can indirectly select for bacterial pathogenicity in environmental reservoirs.

    Directory of Open Access Journals (Sweden)

    Ville-Petri Friman

    2011-03-01

    Full Text Available The coincidental evolution hypothesis predicts that traits connected to bacterial pathogenicity could be indirectly selected outside the host as a correlated response to abiotic environmental conditions or different biotic species interactions. To investigate this, an opportunistic bacterial pathogen, Serratia marcescens, was cultured in the absence and presence of the lytic bacteriophage PPV (Podoviridae at 25°C and 37°C for four weeks (N = 5. At the end, we measured changes in bacterial phage-resistance and potential virulence traits, and determined the pathogenicity of all bacterial selection lines in the Parasemia plantaginis insect model in vivo. Selection at 37°C increased bacterial motility and pathogenicity but only in the absence of phages. Exposure to phages increased the phage-resistance of bacteria, and this was costly in terms of decreased maximum population size in the absence of phages. However, this small-magnitude growth cost was not greater with bacteria that had evolved in high temperature regime, and no trade-off was found between phage-resistance and growth rate. As a result, phages constrained the evolution of a temperature-mediated increase in bacterial pathogenicity presumably by preferably infecting the highly motile and virulent bacteria. In more general perspective, our results suggest that the traits connected to bacterial pathogenicity could be indirectly selected as a correlated response by abiotic and biotic factors in environmental reservoirs.

  20. Analysis of bacterial communities and bacterial pathogens in a biogas plant by the combination of ethidium monoazide, PCR and Ion Torrent sequencing.

    Science.gov (United States)

    Luo, Gang; Angelidaki, Irini

    2014-09-01

    The present study investigated the changes of bacterial community composition including bacterial pathogens along a biogas plant, i.e. from the influent, to the biogas reactor and to the post-digester. The effects of post-digestion temperature and time on the changes of bacterial community composition and bacterial pathogens were also studied. Microbial analysis was made by Ion Torrent sequencing of the PCR amplicons from ethidium monoazide treated samples, and ethidium monoazide was used to cleave DNA from dead cells and exclude it from PCR amplification. Both similarity and taxonomic analysis showed that the bacterial community composition in the influent was changed after anaerobic digestion. Firmicutes were dominant in all the samples, while Proteobacteria decreased in the biogas reactor compared with the influent. Variations of bacterial community composition in the biogas reactor with time were also observed. This could be attributed to varying composition of the influent. Batch experiments showed that the methane recovery from the digested residues (obtained from biogas reactor) was mainly related with post-digestion temperature. However, post-digestion time rather than temperature had a significant effect on the changes of bacterial community composition. The changes of bacterial community composition were also reflected in the changes of relative abundance of bacterial pathogens. The richness and relative abundance of bacterial pathogens were reduced after anaerobic digestion in the biogas reactor. It was found in batch experiments that bacterial pathogens showed the highest relative abundance and richness after 30 days' post-digestion. Streptococcus bovis was found in all the samples. Our results showed that special attention should be paid to the post-digestion since the increase in relative abundance of bacterial pathogens after post-digestion might reflect regrowth of bacterial pathogens and limit biosolids disposal vectors. Copyright © 2014 Elsevier

  1. Effects of climate change on the persistence and dispersal of foodborne bacterial pathogens in the outdoor environment: A review.

    Science.gov (United States)

    Hellberg, Rosalee S; Chu, Eric

    2016-08-01

    According to the Intergovernmental Panel on Climate Change (IPCC), warming of the climate system is unequivocal. Over the coming century, warming trends such as increased duration and frequency of heat waves and hot extremes are expected in some areas, as well as increased intensity of some storm systems. Climate-induced trends will impact the persistence and dispersal of foodborne pathogens in myriad ways, especially for environmentally ubiquitous and/or zoonotic microorganisms. Animal hosts of foodborne pathogens are also expected to be impacted by climate change through the introduction of increased physiological stress and, in some cases, altered geographic ranges and seasonality. This review article examines the effects of climatic factors, such as temperature, rainfall, drought and wind, on the environmental dispersal and persistence of bacterial foodborne pathogens, namely, Bacillus cereus, Brucella, Campylobacter, Clostridium, Escherichia coli, Listeria monocytogenes, Salmonella, Staphylococcus aureus, Vibrio and Yersinia enterocolitica. These relationships are then used to predict how future climatic changes will impact the activity of these microorganisms in the outdoor environment and associated food safety issues. The development of predictive models that quantify these complex relationships will also be discussed, as well as the potential impacts of climate change on transmission of foodborne disease from animal hosts.

  2. Antibacterial Property of a Coral-Associated Bacterium Pseudoalteromonas luteoviolacea Against Shrimp Pathogenic Vibrio harveyi (In Vitro Study)

    OpenAIRE

    OCKY KARNA RADJASA; TORBEN MARTENS; HANS-PETER GROSSART; AGUS SABDONO; MEINHARD SIMON; TONNY BACHTIAR

    2005-01-01

    A coral-associated bacterium was successfully screened for secondary metabolites production based on PCR amplification of the nonribosomal peptide synthetase gene and was identified as closely related to Pseudoalteromonas luteoviolacea based on its 16S rDNA. The bacterium was found to inhibit the growth of shrimp pathogenic bacterium tested, Vibrio harveyi. To characterize the inhibiting metabolite, a 279 bp long DNA fragment was obtained and the deduced amino acid sequence showed conserved s...

  3. COMPARATIVE ACTIVITY OF CECROPIN A AND POLYMYXIN B AGAINST FROG BACTERIAL PATHOGENS

    Directory of Open Access Journals (Sweden)

    Ermin Schadich

    2013-03-01

    Full Text Available The antimicrobial activity of two antimicrobial peptides, cecropin A and polymyxin B against different bacterial pathogens associated with bacterial dermatosepticemia, a fatal bacterial infectious disease of frogs was investigated. The peptides were tested in serial of concentrations (100-0.19 µg/ml for growth inhibition of seven pathogens: Aeromonas hydrophila, Chryseobacterium meningosepticum, Citrobacter freundii, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis and Serratia liquefaciens. Their antimicrobial activity was compared with that of two antimicrobial peptides from frog skin, magainin 2 and aurein 2.1. Both cecropin A and polymyxin B, completely inhibited the growth of three pathogens: C. freundii, K. pneumoniae and P. aeruginosa at a concentration some sixteen times less than two skin peptides. Furthermore, cecropin A inhibited the growth of three pathogens resistant to the two skin peptides, A. hydrophila, C. meningosepticum and P. mirabilis. Polymyxin B also inhibited the growth of three pathogens resistant to the skin peptides, A. hydrophila, C. meningosepticum and S. liquefaciens. Cecropin A and polymyxin B have marked antibacterial activity against different frog bacterial pathogens indicating potential for therapeutic measures.Keywords: frogs, antimicrobial, bacteria, cecropin, polymyxin, resistance

  4. Genetic reprogramming of host cells by bacterial pathogens.

    Science.gov (United States)

    Tran Van Nhieu, Guy; Arbibe, Laurence

    2009-10-29

    During the course of infection, pathogens often induce changes in gene expression in host cells and these changes can be long lasting and global or transient and of limited amplitude. Defining how, when, and why bacterial pathogens reprogram host cells represents an exciting challenge that opens up the opportunity to grasp the essence of pathogenesis and its molecular details.

  5. Detección, cuantificación y caracterización morfológica de bacteriófagos indicadores de Vibrio Cholerae

    Directory of Open Access Journals (Sweden)

    Miguel Talledo

    2014-06-01

    Full Text Available La especificidad entre bacteriófagos y bacterias es una característica utilizada exitosamente para la detección de varias especies microbianas, Por este motivo, la detección de vibriófagos es una herramienta útil de investigación y podría ser un método rápido y conveniente de diagnóstico de Vibrio cholerae. El objetivo de este estudio fue detectar vibriófagos en muestras de aguas marinas someras y determinar las características morfológicas de estos vibriófagos. Se determinó la cinética de crecimiento de una cepa de Vibrio cholerae serotipo Inaba. Se analizaron cualitativa y cuantitativamente muestras tomadas de cinco puntos de un sector adyacente a la playa La Chira y de las desembocaduras del río Rímac y río Chillón, usándose distintos inóculos y varios periodos de incubación. Los bacteriófagos fueron concentrados y teñidos para el estudio morfológico por microscopía electrónica de transmisión. Los resultados obtenidos indican que la detección de vibriófagos podría ser una herramienta importante como indicador de la presencia de Vibrio cholerae.

  6. Manipulation of host membranes by the bacterial pathogens Listeria, Francisella, Shigella and Yersinia.

    Science.gov (United States)

    Pizarro-Cerdá, Javier; Charbit, Alain; Enninga, Jost; Lafont, Frank; Cossart, Pascale

    2016-12-01

    Bacterial pathogens display an impressive arsenal of molecular mechanisms that allow survival in diverse host niches. Subversion of plasma membrane and cytoskeletal functions are common themes associated to infection by both extracellular and intracellular pathogens. Moreover, intracellular pathogens modify the structure/stability of their membrane-bound compartments and escape degradation from phagocytic or autophagic pathways. Here, we review the manipulation of host membranes by Listeria monocytogenes, Francisella tularensis, Shigella flexneri and Yersinia spp. These four bacterial model pathogens exemplify generalized strategies as well as specific features observed during bacterial infection processes. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Development of a multiplex PCR assay for rapid and simultaneous detection of four genera of fish pathogenic bacteria.

    Science.gov (United States)

    Zhang, D F; Zhang, Q Q; Li, A H

    2014-11-01

    Species of genus Aeromonas, Vibrio, Edwardsiella and Streptococcus are the most common fish pathogenic bacteria that cause economically devastating losses in aquaculture. A multiplex polymerase chain reaction (mPCR) was developed for the simultaneous detection and differentiation of the four genera of fish pathogenic bacteria. Through the use of genus-specific primers instead of species-specific ones, the current mPCR covered much more target bacterial species compared with previously reported species-specific mPCR methods. The specificity of the four putative genus-specific primers was validated experimentally while used exclusively (uniplex PCR) or combined (mPCR) against bacterial genomic DNA templates of the target bacteria and nontarget bacteria. The PCR amplicons for the following genera were obtained as expected: Aeromonas (875 bp), Vibrio (524 bp), Edwardsiella (302 bp) and Streptococcus (197 bp), and the fragments could be separated clearly on the agarose gel electrophoresis. The mPCR did not produce nonspecific amplification products when used to amplify 21 nontarget species of bacteria. The mPCR detection limits for each target bacterial genera were 50 colony-forming units (CFU) in pure culture and 100 CFU in fish tissue samples. In conclusion, the mPCR assay was proven to be a powerful alternative to the conventional culture-based method, given its rapid, specific, sensitive and reliable detection of target pathogens. The fish pathogenic bacteria of genus Aeromonas, Vibrio, Edwardsiella and Streptococcus frequently cause severe outbreaks of diseases in cultured fish, and the genus-specific multiplex PCR assay developed in this study can detect the bacteria of the four genera when present in the samples either alone or mixed. The mPCR assay is expected to identify the causative agents more efficiently than uniplex PCR or species-specific multiplex PCR for clinical diagnosis, resulting in the earlier implementation of control measures. This m

  8. Bacterial pathogen manipulation of host membrane trafficking.

    Science.gov (United States)

    Asrat, Seblewongel; de Jesús, Dennise A; Hempstead, Andrew D; Ramabhadran, Vinay; Isberg, Ralph R

    2014-01-01

    Pathogens use a vast number of strategies to alter host membrane dynamics. Targeting the host membrane machinery is important for the survival and pathogenesis of several extracellular, vacuolar, and cytosolic bacteria. Membrane manipulation promotes bacterial replication while suppressing host responses, allowing the bacterium to thrive in a hostile environment. This review provides a comprehensive summary of various strategies used by both extracellular and intracellular bacteria to hijack host membrane trafficking machinery. We start with mechanisms used by bacteria to alter the plasma membrane, delve into the hijacking of various vesicle trafficking pathways, and conclude by summarizing bacterial adaptation to host immune responses. Understanding bacterial manipulation of host membrane trafficking provides insights into bacterial pathogenesis and uncovers the molecular mechanisms behind various processes within a eukaryotic cell.

  9. Interactions of microorganisms isolated from gilthead sea bream, Sparus aurata L., on Vibrio harveyi, a pathogen of farmed Senegalese sole, Solea senegalensis (Kaup).

    Science.gov (United States)

    Chabrillón, M; Rico, R M; Arijo, S; Díaz-Rosales, P; Balebona, M C; Moriñigo, M A

    2005-09-01

    Four bacterial isolates from farmed gilthead sea bream, Sparus aurata, included in a previous study as members of the Vibrionaceae and Pseudomonodaceae and the genus Micrococcus, have been evaluated for their adhesive ability to skin and intestinal mucus of farmed Senegalese sole, Solea senegalensis, and their antagonistic effect on Vibrio harveyi, a pathogen of sole. These isolates showed higher adhesion to sole mucus than the pathogenic strains of V. harveyi assayed. Only two of the isolates showed antagonistic activity to V. harveyi. Interactions of the four isolates with V. harveyi in respect of adhesion to skin and intestinal mucus under exclusion, competition and displacement conditions were studied. Three isolates were able to reduce the attachment to skin and intestinal sole mucus of a pathogenic strain of V. harveyi under displacement and exclusion conditions, but not under competition conditions. The in vivo probiotic potential of isolate Pdp11 was assessed by oral administration followed by challenge with the pathogenic V. harveyi strain Lg14/00. A group of 50 Senegalese sole received a commercial diet supplemented with 10(8) cfu g(-1) of lyophilized Lg14/00 for 15 days. A second group of fish received a non-supplemented commercial diet. After challenge the mortality of the fish receiving the diet supplemented with the potential probiotic isolate was significantly lower than that in the fish receiving the non-supplemented commercial diet. This study has shown that the ability to interfere with attachment of pathogens, as well as the adhesion to host surfaces, are suitable criteria for selection of candidate probiotics for use in the culture of Senegalese sole.

  10. Vibrio harveyi Adheres to and Penetrates Tissues of the European Abalone Haliotis tuberculata within the First Hours of Contact

    OpenAIRE

    Cardinaud, Marion; Barbou, Annaïck; Capitaine, Carole; Bidault, Adeline; Dujon, Antoine Marie; Moraga, Dario; Paillard, Christine

    2014-01-01

    International audience; Vibrio harveyi is a marine bacterial pathogen responsible for episodic epidemics generally associated with massive mortalities in many marine organisms, including the European abalone Haliotis tuberculata. The aim of this study was to identify the portal of entry and the dynamics of infection of V. harveyi in the European abalone. The results indicate that the duration of contact be-tween V. harveyi and the European abalone influences the mortality rate and precocity. ...

  11. Effects of ambient exposure, refrigeration, and icing on Vibrio vulnificus and Vibrio parahaemolyticus abundances in oysters.

    Science.gov (United States)

    Jones, J L; Lydon, K A; Kinsey, T P; Friedman, B; Curtis, M; Schuster, R; Bowers, J C

    2017-07-17

    Vibrio vulnificus (Vv) and V. parahaemolyticus (Vp) illnesses are typically acquired through the consumption of raw molluscan shellfish, particularly oysters. As Vibrio spp. are naturally-occurring bacteria, one means of mitigation of illness is achieved by limiting post-harvest growth. In this study, effects of ambient air storage, refrigeration, and icing of oysters on Vibrio spp. abundances were examined at two sites in Alabama (AL) [Dog River (DR) and Cedar Point (CP)] and one site in Delaware Bay, New Jersey (NJ). As the United States shellfish program recommendations include testing for total these organisms and gene targets, Vv and total (tlh) and pathogenic (tdh+ and trh+) Vp were enumerated from samples using MPN-real-time-PCR approaches. Mean Vv and Vp abundances in oysters from AL-DR were lowest in immediately iced samples (2.3 and -0.1 log MPN/g, respectively) and highest in the 5h ambient then refrigerated samples (3.4 and 0.5 log MPN/g, respectively). Similarly, in AL-CP Vv and Vp mean levels in oysters were lowest in immediately iced samples (3.6 and 1.2 log MPN/g, respectively) and highest in 5h ambient then refrigerated samples (5.1 and 3.2 log MPN/g, respectively). Mean levels of pathogenic Vp from AL sites were frequently below the limit of detection (oysters were highest in samples which were held for 7h in the shade (5.3 and 4.8 log MPN/g, respectively). Mean pathogenic Vp levels in oysters at initial harvest were also highest in oysters 7h in the shade (2.1 and 2.2 log MPN/g for tdh+ and trh+ Vp). Regardless of sampling location, Vibrio spp. levels were generally significantly (poysters exposed to 5h of air storage compared to the initially harvested samples. In addition, the data demonstrated that the use of layered ice resulted in lower Vibrio spp. levels in oysters, compared to those that were refrigerated post-harvest. These results suggest vibriosis risk can be mitigated by shorter storage times and more rapid cooling of oysters

  12. Genome-Wide Mutation Rate Response to pH Change in the Coral Reef Pathogen Vibrio shilonii AK1.

    Science.gov (United States)

    Strauss, Chloe; Long, Hongan; Patterson, Caitlyn E; Te, Ronald; Lynch, Michael

    2017-08-22

    Recent application of mutation accumulation techniques combined with whole-genome sequencing (MA/WGS) has greatly promoted studies of spontaneous mutation. However, such explorations have rarely been conducted on marine organisms, and it is unclear how marine habitats have influenced genome stability. This report resolves the mutation rate and spectrum of the coral reef pathogen Vibrio shilonii , which causes coral bleaching and endangers the biodiversity maintained by coral reefs. We found that its mutation rate and spectrum are highly similar to those of other studied bacteria from various habitats, despite the saline environment. The mutational properties of this marine bacterium are thus controlled by other general evolutionary forces such as natural selection and genetic drift. We also found that as pH drops, the mutation rate decreases and the mutation spectrum is biased in the direction of generating G/C nucleotides. This implies that evolutionary features of this organism and perhaps other marine microbes might be altered by the increasingly acidic ocean water caused by excess CO 2 emission. Nonetheless, further exploration is needed as the pH range tested in this study was rather narrow and many other possible mutation determinants, such as carbonate increase, are associated with ocean acidification. IMPORTANCE This study explored the pH dependence of a bacterial genome-wide mutation rate. We discovered that the genome-wide rates of appearance of most mutation types decrease linearly and that the mutation spectrum is biased in generating more G/C nucleotides with pH drop in the coral reef pathogen V. shilonii . Copyright © 2017 Strauss et al.

  13. Unraveling plant responses to bacterial pathogens through proteomics

    KAUST Repository

    Zimaro, Tamara; Gottig, Natalia; Garavaglia, Betiana S.; Gehring, Christoph A; Ottado, Jorgelina

    2011-01-01

    Plant pathogenic bacteria cause diseases in important crops and seriously and negatively impact agricultural production. Therefore, an understanding of the mechanisms by which plants resist bacterial infection at the stage of the basal immune response or mount a successful specific R-dependent defense response is crucial since a better understanding of the biochemical and cellular mechanisms underlying these interactions will enable molecular and transgenic approaches to crops with increased biotic resistance. In recent years, proteomics has been used to gain in-depth understanding of many aspects of the host defense against pathogens and has allowed monitoring differences in abundance of proteins as well as posttranscriptional and posttranslational processes, protein activation/inactivation, and turnover. Proteomics also offers a window to study protein trafficking and routes of communication between organelles. Here, we summarize and discuss current progress in proteomics of the basal and specific host defense responses elicited by bacterial pathogens. Copyright 2011 Tamara Zimaro et al.

  14. Unraveling plant responses to bacterial pathogens through proteomics

    KAUST Repository

    Zimaro, Tamara

    2011-11-03

    Plant pathogenic bacteria cause diseases in important crops and seriously and negatively impact agricultural production. Therefore, an understanding of the mechanisms by which plants resist bacterial infection at the stage of the basal immune response or mount a successful specific R-dependent defense response is crucial since a better understanding of the biochemical and cellular mechanisms underlying these interactions will enable molecular and transgenic approaches to crops with increased biotic resistance. In recent years, proteomics has been used to gain in-depth understanding of many aspects of the host defense against pathogens and has allowed monitoring differences in abundance of proteins as well as posttranscriptional and posttranslational processes, protein activation/inactivation, and turnover. Proteomics also offers a window to study protein trafficking and routes of communication between organelles. Here, we summarize and discuss current progress in proteomics of the basal and specific host defense responses elicited by bacterial pathogens. Copyright 2011 Tamara Zimaro et al.

  15. Broad spectrum pro-quorum-sensing molecules as inhibitors of virulence in vibrios.

    Directory of Open Access Journals (Sweden)

    Wai-Leung Ng

    Full Text Available Quorum sensing (QS is a bacterial cell-cell communication process that relies on the production and detection of extracellular signal molecules called autoinducers. QS allows bacteria to perform collective activities. Vibrio cholerae, a pathogen that causes an acute disease, uses QS to repress virulence factor production and biofilm formation. Thus, molecules that activate QS in V. cholerae have the potential to control pathogenicity in this globally important bacterium. Using a whole-cell high-throughput screen, we identified eleven molecules that activate V. cholerae QS: eight molecules are receptor agonists and three molecules are antagonists of LuxO, the central NtrC-type response regulator that controls the global V. cholerae QS cascade. The LuxO inhibitors act by an uncompetitive mechanism by binding to the pre-formed LuxO-ATP complex to inhibit ATP hydrolysis. Genetic analyses suggest that the inhibitors bind in close proximity to the Walker B motif. The inhibitors display broad-spectrum capability in activation of QS in Vibrio species that employ LuxO. To the best of our knowledge, these are the first molecules identified that inhibit the ATPase activity of a NtrC-type response regulator. Our discovery supports the idea that exploiting pro-QS molecules is a promising strategy for the development of novel anti-infectives.

  16. Roles of thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) in Vibrio parahaemolyticus.

    Science.gov (United States)

    Raghunath, Pendru

    2014-01-01

    Vibrio parahaemolyticus is the leading cause of seafood borne bacterial gastroenteritis in the world, often associated with the consumption of raw or undercooked seafood. However, not all strains of V. parahaemolyticus are pathogenic. The thermostable direct hemolysin (TDH) or TDH-related hemolysin (TRH) encoded by tdh and trh genes, respectively, are considered major virulence factors in V. parahaemolyticus. However, about 10% of clinical strains do not contain tdh and/or trh. Environmental isolates of V. parahaemolyticus lacking tdh and/or trh are also highly cytotoxic to human gastrointestinal cells. Even in the absence of these hemolysins, V. parahaemolyticus remains pathogenic indicating other virulence factors exist. This mini review aims at discussing the possible roles of tdh and trh genes in clinical and environmental isolates of V. parahaemolyticus.

  17. Proteomics Analysis Reveals Previously Uncharacterized Virulence Factors in Vibrio proteolyticus

    Directory of Open Access Journals (Sweden)

    Ann Ray

    2016-07-01

    Full Text Available Members of the genus Vibrio include many pathogens of humans and marine animals that share genetic information via horizontal gene transfer. Hence, the Vibrio pan-genome carries the potential to establish new pathogenic strains by sharing virulence determinants, many of which have yet to be characterized. Here, we investigated the virulence properties of Vibrio proteolyticus, a Gram-negative marine bacterium previously identified as part of the Vibrio consortium isolated from diseased corals. We found that V. proteolyticus causes actin cytoskeleton rearrangements followed by cell lysis in HeLa cells in a contact-independent manner. In search of the responsible virulence factor involved, we determined the V. proteolyticus secretome. This proteomics approach revealed various putative virulence factors, including active type VI secretion systems and effectors with virulence toxin domains; however, these type VI secretion systems were not responsible for the observed cytotoxic effects. Further examination of the V. proteolyticus secretome led us to hypothesize and subsequently demonstrate that a secreted hemolysin, belonging to a previously uncharacterized clan of the leukocidin superfamily, was the toxin responsible for the V. proteolyticus-mediated cytotoxicity in both HeLa cells and macrophages. Clearly, there remains an armory of yet-to-be-discovered virulence factors in the Vibrio pan-genome that will undoubtedly provide a wealth of knowledge on how a pathogen can manipulate host cells.

  18. The potential roles of bacterial communities in coral defence: A case study at Talang-talang reef

    Science.gov (United States)

    Kuek, Felicity W. I.; Lim, Li-Fang; Ngu, Lin-Hui; Mujahid, Aazani; Lim, Po-Teen; Leaw, Chui-Pin; Müller, Moritz

    2015-06-01

    Complex microbial communities are known to exert significant influence over coral reef ecosystems. The Talang- Satang National Park is situated off the coast of Sematan and is one of the most diverse ecosystems found off-Sarawak. Interestingly, the Talang-talang reef thrives at above-average temperatures of 28- 30°C throughout the year. Through isolation and identification (16S rRNA) of native microbes from the coral, the surface mucus layer (SML), as well as the surrounding sediment and waters, we were able to determine the species composition and abundance of the culturable bacteria in the coral reef ecosystem. Isolates found attached to the coral are related mostly to Vibrio spp., presumably attached to the mucus from the water column and surrounding sediment. Pathogenic Vibrio spp. and Bacillus spp. were dominant amongst the isolates from the water column and sediment, while known coral pathogens responsible for coral bleaching, Vibrio coralliilyticus and Vibrio shiloi, were isolated from the coral SML and sediment samples respectively. Coral SML isolates were found to be closely related to known nitrogen fixers and antibiotic producers with tolerance towards elevated temperatures and heavy metal contamination, offering a possible explanation why the local corals are able to thrive in higher than usual temperatures. This specialized microbiota may be important for protecting the corals from pathogens by occupying entry niches and/or through the production of secondary metabolites such as antibiotics. The communities from the coral SML were tested against each other at 28, 30 and 32°C, and were also assessed for the presence of type I modular polyketides synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes which are both involved in the production of antibiotic compounds. The bacterial community from the SML exhibited antimicrobial properties under normal temperatures while pathogenic strains appeared toxic at elevated temperatures and our results

  19. Prevalence of gastrointestinal bacterial pathogens in a population of zoo animals.

    Science.gov (United States)

    Stirling, J; Griffith, M; Blair, I; Cormican, M; Dooley, J S G; Goldsmith, C E; Glover, S G; Loughrey, A; Lowery, C J; Matsuda, M; McClurg, R; McCorry, K; McDowell, D; McMahon, A; Cherie Millar, B; Nagano, Y; Rao, J R; Rooney, P J; Smyth, M; Snelling, W J; Xu, J; Moore, J E

    2008-04-01

    Faecal prevalence of gastrointestinal bacterial pathogens, including Campylobacter, Escherichia coli O157:H7, Salmonella, Shigella, Yersinia, as well as Arcobacter, were examined in 317 faecal specimens from 44 animal species in Belfast Zoological Gardens, during July-September 2006. Thermophilic campylobacters including Campylobacter jejuni, Campylobacter coli and Campylobacter lari, were the most frequently isolated pathogens, where members of this genus were isolated from 11 animal species (11 of 44; 25%). Yersinia spp. were isolated from seven animal species (seven of 44; 15.9%) and included, Yersinia enterocolitica (five of seven isolates; 71.4%) and one isolate each of Yersinia frederiksenii and Yersinia kristensenii. Only one isolate of Salmonella was obtained throughout the entire study, which was an isolate of Salmonella dublin (O 1,9,12: H g, p), originating from tiger faeces after enrichment. None of the animal species found in public contact areas of the zoo were positive for any gastrointestinal bacterial pathogens. Also, water from the lake in the centre of the grounds, was examined for the same bacterial pathogens and was found to contain C. jejuni. This study is the first report on the isolation of a number of important bacterial pathogens from a variety of novel host species, C. jejuni from the red kangaroo (Macropus rufus), C. lari from a maned wolf (Chrysocyon brachyurus), Y. kristensenii from a vicugna (Vicugna vicugna) and Y. enterocolitica from a maned wolf and red panda (Ailurus fulgens). In conclusion, this study demonstrated that the faeces of animals in public contact areas of the zoo were not positive for the bacterial gastrointestinal pathogens examined. This is reassuring for the public health of visitors, particularly children, who enjoy this educational and recreational resource.

  20. Occurrence of potentially pathogenic Vibrio in oysters (Crassostrea gigas and waters from bivalve mollusk cultivations in the South Bay of Santa Catarina

    Directory of Open Access Journals (Sweden)

    Roberta Juliano Ramos

    2014-06-01

    Full Text Available Introduction This research aimed to identify and quantify potentially pathogenic Vibrio from different cultivations of bivalve shellfish in the State of Santa Catarina, Brazil, and water regions in the South Bay, as well as correlate the incidence of these microorganisms with the physicochemical parameters of marine waters. Methods Between October 2008 and March 2009, 60 oyster and seawater samples were collected from six regions of bivalve mollusk cultivation, and these samples were submitted for Vibrio counts. Results Twenty-nine (48.3% oyster samples were revealed to be contaminated with one or more Vibrio species. The Vibrio parahaemolyticus and Vibrio vulnificus counts in the samples ranged from < 0.5 log10 Most Probable Number (MPN g–1 to 2.3 log10 MPN g–1 oyster and from < 0.5 log10 MPN g–1 to 2.1 log10 MPN g–1 oyster, respectively. Of the 60 seawater samples analyzed, 44 (73.3% showed signs of contamination with one or more vibrio species. The counts of V. parahaemolyticus and V. vulnificus in the samples ranged from < 0.3 log10 MPN·100mL–1 to 1.7 log10MPN·100mL–1 seawater and from < 0.3 log10 MPN·100mL–1 to 2.0 log10 MPN·100mL–1 seawater, respectively. A positive correlation between V. vulnificus counts and the seawater temperature as well as a negative correlation between the V. parahaemolyticus counts and salinity were observed. Conclusions The results suggest the need to implement strategies to prevent vibrio diseases from being transmitted by the consumption of contaminated bivalve shellfish.

  1. Vibrio ecology - Identifying Environmental Determinants Favorable for the Presence and Transmission of Pathogenic Vibrios

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In a tri-coastal collaborative study, the population densities of vibrios are being determined in the Mississippi Sound, Puget Sound, Chesapeake Bay, and Timbalier...

  2. Pathogenicity Assay of Vibrio harveyi in Tiger Shrimp Larvae Employing Rifampicin-Resistant as A Molecular Marker

    OpenAIRE

    . Widanarni; D. Meha; Sri Nuryati; . Sukenda; A. Suwanto

    2007-01-01

    Rifampicin-resistant marker was employed as a reporter to assay pathogenicity of Vibrio harveyi  in shrimp larvae.  V. harveyi M. G3 and G7 that difference not schizotyping as shown by Pulsed-Filed Gel Electrophoresis (PFGE) used in this study. Spontaneous mutation was conducted to generate V. harveyi resistant to rifampicin. Two groups of shrimp post-larvae (PL5) were immersed for 30 min in 106 CFU/ml of mutants and wild type of V. harveyi, respectively; and then placed in a 2 liter shrimp r...

  3. The intrinsic resistome of bacterial pathogens.

    Science.gov (United States)

    Olivares, Jorge; Bernardini, Alejandra; Garcia-Leon, Guillermo; Corona, Fernando; B Sanchez, Maria; Martinez, Jose L

    2013-01-01

    Intrinsically resistant bacteria have emerged as a relevant health problem in the last years. Those bacterial species, several of them with an environmental origin, present naturally low-level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux pumps or the lack of appropriate targets for a given family of drugs. However, recently published articles indicate that the characteristic phenotype of susceptibility to antibiotics of a given bacterial species depends on the concerted activity of several elements, what has been named as intrinsic resistome. These determinants comprise not just classical resistance genes. Other elements, several of them involved in basic bacterial metabolic processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present review we analyze recent publications on the intrinsic resistomes of Escherichia coli and Pseudomonas aeruginosa. We present as well information on the role that global regulators of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical practice.

  4. The intrinsic resistome of bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Jorge Andrés Olivares Pacheco

    2013-04-01

    Full Text Available Intrinsically resistant bacteria have emerged as a relevant health problem in the last years. Those bacterial species, several of them with an environmental origin, present naturally a low-level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux pumps or the lack of appropriate targets for a given family of drugs. However, recently published articles indicate that the characteristic phenotype of susceptibility to antibiotics of a given bacterial species depends on the concerted activity of several elements, what has been named as intrinsic resistome. These determinants comprise not just classical resistance genes. Other elements, several of them involved in basic bacterial metabolic processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present review we analyse recent publications on the intrinsic resistomes of Escherichia coli and Pseudomonas aeruginosa. We present as well information on the role that global regulators of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical practice.

  5. Rapid proliferation of Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio cholerae during freshwater flash floods in French Mediterranean coastal lagoons.

    Science.gov (United States)

    Esteves, Kevin; Hervio-Heath, Dominique; Mosser, Thomas; Rodier, Claire; Tournoud, Marie-George; Jumas-Bilak, Estelle; Colwell, Rita R; Monfort, Patrick

    2015-11-01

    Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio cholerae of the non-O1/non-O139 serotype are present in coastal lagoons of southern France. In these Mediterranean regions, the rivers have long low-flow periods followed by short-duration or flash floods during and after heavy intense rainstorms, particularly at the end of the summer and in autumn. These floods bring large volumes of freshwater into the lagoons, reducing their salinity. Water temperatures recorded during sampling (15 to 24°C) were favorable for the presence and multiplication of vibrios. In autumn 2011, before heavy rainfalls and flash floods, salinities ranged from 31.4 to 36.1‰ and concentrations of V. parahaemolyticus, V. vulnificus, and V. cholerae varied from 0 to 1.5 × 10(3) most probable number (MPN)/liter, 0.7 to 2.1 × 10(3) MPN/liter, and 0 to 93 MPN/liter, respectively. Following heavy rainstorms that generated severe flash flooding and heavy discharge of freshwater, salinity decreased, reaching 2.2 to 16.4‰ within 15 days, depending on the site, with a concomitant increase in Vibrio concentration to ca. 10(4) MPN/liter. The highest concentrations were reached with salinities between 10 and 20‰ for V. parahaemolyticus, 10 and 15‰ for V. vulnificus, and 5 and 12‰ for V. cholerae. Thus, an abrupt decrease in salinity caused by heavy rainfall and major flooding favored growth of human-pathogenic Vibrio spp. and their proliferation in the Languedocian lagoons. Based on these results, it is recommended that temperature and salinity monitoring be done to predict the presence of these Vibrio spp. in shellfish-harvesting areas of the lagoons. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Antibiotic resistance in bacterial pathogens causing meningitis in ...

    African Journals Online (AJOL)

    Antibiotic resistance in bacterial pathogens causing meningitis in children at Harare Central Hospital, Zimbabwe. M Gudza-Mugabe, R.T. Mavenyengwa, M.P. Mapingure, S Mtapuri-Zinyowera, A Tarupiwa, V.J. Robertson ...

  7. Development and efficacy of an attenuated Vibrio harveyi vaccine candidate with cross protectivity against Vibrio alginolyticus.

    Science.gov (United States)

    Hu, Yong-hua; Deng, Tian; Sun, Bo-guang; Sun, Li

    2012-06-01

    Vibrio harveyi is a Gram-negative bacterial pathogen that can infect a wide range of marine animals. In previous studies, we have reported a virulent V. harveyi strain, T4D. In the present study, an attenuated mutant of T4D, T4DM, was obtained by selection of rifampicin resistance. Compared to the wild type, T4DM was different in whole-cell protein profile and much slower in growth rate when cultured in stress conditions caused by iron depletion. Virulence analysis showed that compared to T4D, T4DM exhibited a dramatically increased median lethal dose, impaired tissue dissemination capacity, defective hemolytic activity, and significantly reduced resistance against the killing effect of host serum. To examine the potential of T4DM as a live attenuated vaccine, Japanese flounder (Paralichthys olivaceus) were vaccinated with T4DM via intraperitoneal injection or immersion. The results showed that at one and two months post-vaccination, fish administered with T4DM via both approaches, in particular that of immersion, were effectively protected against not only V. harveyi but also Vibrio alginolyticus, another important fish pathogen. Microbiological analysis showed that following immersion vaccination, T4DM was recovered from the internal organs of the vaccinated fish in a time-dependent manner within the first 6 days post-vaccination. Serum antibodies against V. harveyi and V. alginolyticus were detected in T4DM-vaccinated fish, and, compared to serum from control fish, serum from T4DM-vaccinated fish was significantly enhanced in bactericidal activity. These results indicate that T4DM is an attenuated strain with residual infectivity and that T4DM can induce effective cross-species protection against both V. harveyi and V. alginolyticus when used as a live immersion vaccine. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Pathogenic Assay of Probiotic Bacteria Producing Proteolytic Enzymes as Bioremediation Bacteria Against Vannamei Shrimp Larvae (Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    Wilis Ari Setyati

    2017-06-01

    Full Text Available Application of bacteria in bioremediation of shrimp culture ponds is one of the methods used to clean internal pollutants. This study aimed to evaluate the pathogenicity of extracellular proteolytic enzyme produced by the probiotic bacteria as bioremediation bacteria on vannamei shrimp larvae culture. There were five probiotic bacteria, which were successfully isolated from the sediments served as substrate in mangrove area. The isolated bacteria were coded in number as 13, 19, 30, 33, and 36. Pathogenic bacteria Vibrio harveyi was used as positive control. Pathogenic assay was carried out in two different bacterial concentrations, i.e. 10⁸ and 10⁶ cells.mL-1. The results showed that the lowest survival rate (SR of shrimp larvae in positive control V. harveyi was 53 and 65%. Whereas isolates with the highest SR value (100% were obtained from bacteria coded as 13 and 30. Isolates no. 19, 33 and 36 had SR of more than 90%. Total plate count (TPC data showed that the bacteria increased significantly at the end of the study with an average increase value of 24%. The smallest TPC value was shown by bacterial isolate no. 19, while the largest was obtained from the isolate no. 13. These results suggest that all probiotic bacteria were not pathogenic to the vannamei shrimp larvae.   Keywords: aquaculture, shrimp, bioremediation, pathogenesis, vibrio.

  9. Continuous Exposure Of Vibrio Anguillarum To Tropodithietic Acid: Genetic Changes And Influence On Virulence

    DEFF Research Database (Denmark)

    Rasmussen, Bastian Barker; D'Alvise, Paul; Grotkjær, Torben

    2015-01-01

    Introduction: The fish pathogen Vibrio anguillarum is a major problem in aquaculture causing Vibriosis. Bacteria of the Roseobacter clade can antagonize pathogenic vibrios in cultures in live feed such as microalgae, rotifers and Artemia, as well as in fish larvae. Therefore, roseobacters could...

  10. Isolation and characterization of pathogenic Vibrio alginolyticus from diseased cobia Rachycentron canadum.

    Science.gov (United States)

    Liu, Ping-Chung; Lin, Ji-Yang; Hsiao, Pei-Tze; Lee, Kuo-Kau

    2004-01-01

    Outbreaks of serious mortality among cultured juvenile cobia Rachycentron canadum L. (weighing 8-10 g) characterized by lethargy, dark skin and ascites in the peritoneal cavity while some fish possessing damaged eyes occurred in July and August of 2001 in Taiwan. Fifteen motile bacterial strains were isolated from head kidney and/or the ascites on tryptic soy agar supplemented with 1% NaCl (TSA1) and/or thiosulphate citrate bile salt (TCBS) sucrose agar plates during the two outbreaks. All the isolates were characterized and identified as Vibrio alginolyticus on the basis of biochemical characteristics, and comparisons with those of the reference strain V. alginolyticus ATCC 17749. The strain C3c01 (a representative of the 15 similar field isolates), was virulent to the cobia with an LD50 value of 3.28 x 10(4) colony forming units/g fish body weight. All the moribund/dead fish exhibited lethargy, dark skin and ascites in the peritoneal cavity as that observed in natural outbreaks. The same bacteria could be reisolated from kidney and the ascites of fish after bacterial challenge using TSA1 and TCBS plates. The results reveal that V. alginolyticus is an infectious agent of vibriosis in the cobia.

  11. POTENCY OF VIBRIO ISOLATES FOR BIOCONTROL OF VIBRIOSIS IN TIGER SHRIMP (PENAEUS MONODON LARVAE

    Directory of Open Access Journals (Sweden)

    B. W. LAY

    2003-01-01

    Full Text Available This study was carried out to obtain Vibrio isolates able to function as biocontr ol of vibriosis in shrimp hatchery. Thirty one Vibrio isolates were isolated from tiger shrimp larvae and hatchery environments, i.e. Labuan, Pangandaran, and Lampung, Indonesia. Pathogenic V. harveyi MR5339 was obtained from Maros, South-Sulawesi and was made as a rifampicin resistant mutant (RFR to screen for those 31 Vibrio isolates in in vitro assays and to allow us to monitor their presence in shrimp larvae and larval rearing water. Almost all Vibrio isolates could inhibit the growth of pathogenic V. harveyi MR5339 RFR. SKT-b isolate from Skeletonema was the most effective to inhibit the growth of V. harveyi MR5339 Rf* and significantly reduced larval mortality in pathogen challenge assays. These prospective biocontrol bacteria, at concentration of 10" CFU/ml, did not show pathogenicity to shrimp larvae. SKT-b was Gram negative, short rod-shape, exhibited yellow colonies on TCBS and swarming on SWC-agar media, motile, u tilized glucose and sucrose but not lactose: produced extra-cellular protease and amylase, but did not produce chitmase. Partial sequencing of 16S-rRNA gene SKT-b showed SKT-b similarity to Vibrio alginofyticus.

  12. Molecular mechanisms underlying the emergence of bacterial pathogens: an ecological perspective.

    Science.gov (United States)

    Bartoli, Claudia; Roux, Fabrice; Lamichhane, Jay Ram

    2016-02-01

    The rapid emergence of new bacterial diseases negatively affects both human health and agricultural productivity. Although the molecular mechanisms underlying these disease emergences are shared between human- and plant-pathogenic bacteria, not much effort has been made to date to understand disease emergences caused by plant-pathogenic bacteria. In particular, there is a paucity of information in the literature on the role of environmental habitats in which plant-pathogenic bacteria evolve and on the stress factors to which these microbes are unceasingly exposed. In this microreview, we focus on three molecular mechanisms underlying pathogenicity in bacteria, namely mutations, genomic rearrangements and the acquisition of new DNA sequences through horizontal gene transfer (HGT). We briefly discuss the role of these mechanisms in bacterial disease emergence and elucidate how the environment can influence the occurrence and regulation of these molecular mechanisms by directly impacting disease emergence. The understanding of such molecular evolutionary mechanisms and their environmental drivers will represent an important step towards predicting bacterial disease emergence and developing sustainable management strategies for crops. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  13. Clostridium difficile is an autotrophic bacterial pathogen.

    Directory of Open Access Journals (Sweden)

    Michael Köpke

    Full Text Available During the last decade, Clostridium difficile infection showed a dramatic increase in incidence and virulence in the Northern hemisphere. This incessantly challenging disease is the leading cause of antibiotic-associated and nosocomial infectious diarrhea and became life-threatening especially among elderly people. It is generally assumed that all human bacterial pathogens are heterotrophic organisms, being either saccharolytic or proteolytic. So far, this has not been questioned as colonization of the human gut gives access to an environment, rich in organic nutrients. Here, we present data that C. difficile (both clinical and rumen isolates is also able to grow on CO2+H2 as sole carbon and energy source, thus representing the first identified autotrophic bacterial pathogen. Comparison of several different strains revealed high conservation of genes for autotrophic growth and showed that the ability to use gas mixtures for growth decreases or is lost upon prolonged culturing under heterotrophic conditions. The metabolic flexibility of C. difficile (heterotrophic growth on various substrates as well as autotrophy could allow the organism in the gut to avoid competition by niche differentiation and contribute to its survival when stressed or in unfavorable conditions that cause death to other bacteria. This may be an important trait for the pathogenicity of C. difficile.

  14. Inhibitory effect of Lactobacillus rhamnosus on pathogenic bacteria isolated from women with bacterial vaginosis

    Directory of Open Access Journals (Sweden)

    Gita Eslami

    2014-06-01

    Full Text Available Background: Considering the high prevalence of bacterial vaginosis and its association with urinary tract infection in women and treatment of gynecologic problems occur when a high recurrence of bacterial vaginosis is often treated with antibiotics. The purpose of this study is to investigate the inhibitory effect of Lactobacillus rhamnosus on pathogenic bacteria isolated from women with bacterial vaginosis, respectively.Materials and Methods: 96 samples from women with bacterial vaginosis discharge referred to health centers dependent Shahid Beheshti University in 91-92 were taken by a gynecologist with a dacron swab and put in sterile tubes containing TSB broth and Thioglycollate broth and were immediately sent to the lab location in cold chain for the next stages of investigation. From Thioglycollate and TSB medium was cultured on blood agar and EMB and Palkam and Differential diagnosis environments, and then incubated for 24 h at 37°C. Strains of Lactobacillus rhamnosus were cultured in MRSA environment and were transfered to the lab. After purification of pathogenic bacteria, MIC methods and antibiogram, Lactobacillus rhamnosus inhibitory effect on pathogenic bacteria is checked. Statistical analysis was done by SPSS software v.16.Results: The results of this study show the inhibitory effect of Lactobacillus rhamnosus on some pathogenic bacteria that cause bacterial vaginosis, including Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus saprophyticus, Streptococcus agalactiae, Entrococcus, Listeria monocytogenes and E.Coli. Microscopic examination of stained smears of the large number of Lactobacillus and pathogenic bacteria showed reduced. The prevalence of abnormal vaginal discharge, history of drug use means of preventing pregnancy and douching, respectively, 61%, 55%, 42% and 13% respectively. Significant difference was observed between the use and non-use of IUD in women with bacterial vaginosis infection

  15. Prevalence study of Vibrio species and frequency of the virulence genes of Vibrio parahaemolyticus isolated from fresh and salted shrimps in Genaveh seaport

    Directory of Open Access Journals (Sweden)

    S Hosseini

    2014-08-01

    Full Text Available Vibrio species are important seafood-borne pathogens that are responsible for 50-70% of gasteroenteritis. The present study was carried out in order to determine the prevalence of Vibrio species and the distribution of tdh, tlh and trh virulence genes in Vibrio parahaemolyticus isolated from fresh and salted shrimp samples. Totally, 60 fresh and salted shrimp samples were collected from the Genaveh seaport. Microbial culture was used to isolate Vibrio species. In addition, the presences of Vibrio parahaemolyticus, Vibrio cholera, Vibrio vulnificus and Vibrio harveyi and the virulence genes of V. parahaemolyticus were studied using the PCR method. Results showed that 20% of fresh and 23.33% of salted shrimp samples were positive for Vibrio species. In studied samples, V. vulnificus had the highest prevalence rate (8.33%, while V. cholera had the lowest prevalence rate (1.66%. From a total of 4 detected V. parahaemolyticus, all of them had tlh gene (100%. The distribution of tdh and trh genes in isolated V. parahaemolyticus strains were 50% and 25%, respectively. High prevalence of Vibrio species and especially virulent V. parahaemolyticus in samples confirmed the lack of hygienic condition in the production and distribution centers of shrimp.

  16. Determination of Contamination Profiles of Human Bacterial Pathogens in Shrimp Obtained from Java, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Dewanti-Hariyadi, R. [Center for Assessment of Traditional Foods, Department of Food Technology and Human Nutrition, Bogor Agricultural University (Indonesia); Suliantari,; Nuraida, L. [Department of Food Technology and Human Nutrition, Faculty of Agricultural Technology, Bogor Agricultural University (Indonesia); Fardiaz, S. [Inter University for Food and Nutrition, Bogor Agricultural University, Bogor (Indonesia)

    2005-01-15

    Shrimp continues to be an important export commodity for Indonesia and contributed significantly to the country’s revenue. However, shrimp exports have been frequently rejected by importing countries due to filth, Salmonella and insanitary conditions. This study was conducted to evaluate the profiles of bacterial contamination of ocean and aquaculture shrimp obtained from the area of West, Central and East Java; frozen shrimp and shrimp during industry production of frozen shrimp. The study indicated that both ocean and aquaculture shrimp obtained from the study area were heavily contaminated. On the average, shrimp obtained from West Java were more contaminated than those obtained from East and Central Java. The total bacterial counts were generally higher in ocean shrimp than those of aquaculture ones. Salmonella was present in two of 32 samples of ocean shrimp and in four of 32 samples of aquaculture shrimp obtained from the study area. Vibrio cholerae was not detected in shrimp from West Java, but was found in three out of 16 samples obtained from East and Central Java. V. parahaemolyticus was frequently identified in aquaculture shrimp but absent in fresh ocean shrimp. Studies on shrimp collected from six sampling points during frozen shrimp production revealed that processing will reduce the number of total bacterial, E. coli, and Staphylococal counts. However, the processing did not effectively reduce the incidence of Salmonella or V. parahaemolyticus when the raw material has been contaminated with the pathogens. Sizing and grading as well as arrangement of shrimp before freezing were considered as the critical points where bacteria should be controlled to inhibit growth and cross contamination with bacteria such as Listeria. Implementation of Good Agricultural Practices in production of raw shrimp as well as Hazard Analysis Critical Control Point at the line processing are expected to improve the quality of fresh and frozen shrimp. (author)

  17. Molecular assessment of bacterial pathogens - a contribution to drinking water safety.

    Science.gov (United States)

    Brettar, Ingrid; Höfle, Manfred G

    2008-06-01

    Human bacterial pathogens are considered as an increasing threat to drinking water supplies worldwide because of the growing demand of high-quality drinking water and the decreasing quality and quantity of available raw water. Moreover, a negative impact of climate change on freshwater resources is expected. Recent advances in molecular detection technologies for bacterial pathogens in drinking water bear the promise in improving the safety of drinking water supplies by precise detection and identification of the pathogens. More importantly, the array of molecular approaches allows understanding details of infection routes of waterborne diseases, the effects of changes in drinking water treatment, and management of freshwater resources.

  18. Passive Immune-Protection of Litopenaeus vannamei against Vibrio harveyi and Vibrio parahaemolyticus Infections with Anti-Vibrio Egg Yolk (IgY-Encapsulated Feed

    Directory of Open Access Journals (Sweden)

    Xiaojian Gao

    2016-05-01

    Full Text Available Vibrio spp. are major causes of mortality in white shrimp (Litopenaeus vannamei which is lacking adaptive immunity. Passive immunization with a specific egg yolk antibody (IgY is a potential method for the protection of shrimp against vibriosis. In this study, immune effects of the specific egg yolk powders (IgY against both V. harveyi and V. parahaemolyticus on white shrimp were evaluated. The egg yolk powders against V. harveyi and V. parahaemolyticus for passive immunization of white shrimp were prepared, while a tube agglutination assay and an indirect enzyme-linked immunosorbent assay (ELISA were used for detection of IgY titer. Anti-Vibrio egg yolk was encapsulated by β-cyclodextrin, which could keep the activity of the antibody in the gastrointestinal tract of shrimp. The results showed that the anti-Vibrio egg powders had an inhibiting effect on V. harveyi and V. parahaemolyticus in vitro. Lower mortality of infected zoeae, mysis, and postlarva was observed in groups fed with anti-Vibrio egg powders, compared with those fed with normal egg powders. The bacterial load in postlarva fed with specific egg powders in seeding ponds was significantly lower than those fed with normal egg powders in seeding ponds. These results show that passive immunization by oral administration with specific egg yolk powders (IgY may provide a valuable protection of vibrio infections in white shrimp.

  19. Inhibitory Effect of Lactobacillus reuteri on Some Pathogenic Bacteria Isolated From Women With Bacterial Vaginosis

    Directory of Open Access Journals (Sweden)

    Eslami

    2014-08-01

    Full Text Available Background Considering the high prevalence of bacterial vaginosis and its association with urinary tract infection in women and treatment of gynecologic problems occur when a high recurrence of bacterial vaginosis is often treated with antibiotics. Objectives The purpose of this study was to investigate the inhibitory effect of Lactobacillus reuteri on pathogenic bacteria isolated from women with bacterial vaginosis. Materials and Methods Ninety-six samples were obtained from vaginal discharge of women with bacterial vaginosis by a gynecologist with a Dacron swab and put in sterile tubes containing TSB broth and Thioglycollate broth. Then were immediately sent to the laboratory in cold chain for further assessment. Afterward, culture was transferred on blood agar, EMB, Palcam and differential diagnosis environments. Then cultures were incubated for 24 hours at 37 °C. Lactobacillus reuteri strains were cultured in MRS environment and transferred to laboratory. After purification of pathogenic bacteria, Lactobacillus reuteri inhibitory effect on pathogenic bacteria was evaluated by minimum inhibitory concentration (MIC and antibiogram. Statistical analysis was performed using SPSS software v.16. Results The results of this study demonstrated the inhibitory effect of Lactobacillus reuteri on some pathogenic bacteria that cause bacterial, including Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus saprophyticus, Streptococcus agalactiae, Enterococcus, Listeria monocytogenes and E. coli. Microscopic examination of stained smears of most Lactobacillus and pathogenic bacteria showed reduced. The prevalence of abnormal vaginal discharge, history of drug use, contraceptive methods and douching were 61%, 55%, 42% and 13%, respectively. Significant difference was observed between the use and non-use of IUD in women with bacterial. Conclusions Our findings indicated the inhibitory effect of Lactobacillus reuteri on pathogenic bacteria that

  20. Sequencing of Bacterial Genomes: Principles and Insights into Pathogenesis and Development of Antibiotics

    Directory of Open Access Journals (Sweden)

    Eric S. Donkor

    2013-10-01

    Full Text Available The impact of bacterial diseases on public health has become enormous, and is partly due to the increasing trend of antibiotic resistance displayed by bacterial pathogens. Sequencing of bacterial genomes has significantly improved our understanding about the biology of many bacterial pathogens as well as identification of novel antibiotic targets. Since the advent of genome sequencing two decades ago, about 1,800 bacterial genomes have been fully sequenced and these include important aetiological agents such as Streptococcus pneumoniae, Mycobacterium tuberculosis, Escherichia coli O157:H7, Vibrio cholerae, Clostridium difficile and Staphylococcus aureus. Very recently, there has been an explosion of bacterial genome data and is due to the development of next generation sequencing technologies, which are evolving so rapidly. Indeed, the field of microbial genomics is advancing at a very fast rate and it is difficult for researchers to be abreast with the new developments. This highlights the need for regular updates in microbial genomics through comprehensive reviews. This review paper seeks to provide an update on bacterial genome sequencing generally, and to analyze insights gained from sequencing in two areas, including bacterial pathogenesis and the development of antibiotics.

  1. Microbial minimalism: genome reduction in bacterial pathogens.

    Science.gov (United States)

    Moran, Nancy A

    2002-03-08

    When bacterial lineages make the transition from free-living or facultatively parasitic life cycles to permanent associations with hosts, they undergo a major loss of genes and DNA. Complete genome sequences are providing an understanding of how extreme genome reduction affects evolutionary directions and metabolic capabilities of obligate pathogens and symbionts.

  2. Encyclopedia of bacterial gene circuits whose presence or absence correlate with pathogenicity--a large-scale system analysis of decoded bacterial genomes.

    Science.gov (United States)

    Shestov, Maksim; Ontañón, Santiago; Tozeren, Aydin

    2015-10-13

    Bacterial infections comprise a global health challenge as the incidences of antibiotic resistance increase. Pathogenic potential of bacteria has been shown to be context dependent, varying in response to environment and even within the strains of the same genus. We used the KEGG repository and extensive literature searches to identify among the 2527 bacterial genomes in the literature those implicated as pathogenic to the host, including those which show pathogenicity in a context dependent manner. Using data on the gene contents of these genomes, we identified sets of genes highly abundant in pathogenic but relatively absent in commensal strains and vice versa. In addition, we carried out genome comparison within a genus for the seventeen largest genera in our genome collection. We projected the resultant lists of ortholog genes onto KEGG bacterial pathways to identify clusters and circuits, which can be linked to either pathogenicity or synergy. Gene circuits relatively abundant in nonpathogenic bacteria often mediated biosynthesis of antibiotics. Other synergy-linked circuits reduced drug-induced toxicity. Pathogen-abundant gene circuits included modules in one-carbon folate, two-component system, type-3 secretion system, and peptidoglycan biosynthesis. Antibiotics-resistant bacterial strains possessed genes modulating phagocytosis, vesicle trafficking, cytoskeletal reorganization, and regulation of the inflammatory response. Our study also identified bacterial genera containing a circuit, elements of which were previously linked to Alzheimer's disease. Present study produces for the first time, a signature, in the form of a robust list of gene circuitry whose presence or absence could potentially define the pathogenicity of a microbiome. Extensive literature search substantiated a bulk majority of the commensal and pathogenic circuitry in our predicted list. Scanning microbiome libraries for these circuitry motifs will provide further insights into the complex

  3. O antigen modulates insect vector acquisition of the bacterial plant pathogen Xylella fastidiosa.

    Science.gov (United States)

    Rapicavoli, Jeannette N; Kinsinger, Nichola; Perring, Thomas M; Backus, Elaine A; Shugart, Holly J; Walker, Sharon; Roper, M Caroline

    2015-12-01

    Hemipteran insect vectors transmit the majority of plant pathogens. Acquisition of pathogenic bacteria by these piercing/sucking insects requires intimate associations between the bacterial cells and insect surfaces. Lipopolysaccharide (LPS) is the predominant macromolecule displayed on the cell surface of Gram-negative bacteria and thus mediates bacterial interactions with the environment and potential hosts. We hypothesized that bacterial cell surface properties mediated by LPS would be important in modulating vector-pathogen interactions required for acquisition of the bacterial plant pathogen Xylella fastidiosa, the causative agent of Pierce's disease of grapevines. Utilizing a mutant that produces truncated O antigen (the terminal portion of the LPS molecule), we present results that link this LPS structural alteration to a significant decrease in the attachment of X. fastidiosa to blue-green sharpshooter foreguts. Scanning electron microscopy confirmed that this defect in initial attachment compromised subsequent biofilm formation within vector foreguts, thus impairing pathogen acquisition. We also establish a relationship between O antigen truncation and significant changes in the physiochemical properties of the cell, which in turn affect the dynamics of X. fastidiosa adhesion to the vector foregut. Lastly, we couple measurements of the physiochemical properties of the cell with hydrodynamic fluid shear rates to produce a Comsol model that predicts primary areas of bacterial colonization within blue-green sharpshooter foreguts, and we present experimental data that support the model. These results demonstrate that, in addition to reported protein adhesin-ligand interactions, O antigen is crucial for vector-pathogen interactions, specifically in the acquisition of this destructive agricultural pathogen. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. A survey of oysters (Crassostrea gigas) in New Zealand for Vibrio parahaemolyticus and Vibrio vulnificus.

    Science.gov (United States)

    Kirs, M; Depaola, A; Fyfe, R; Jones, J L; Krantz, J; Van Laanen, A; Cotton, D; Castle, M

    2011-05-27

    A microbiological survey was conducted to determine the levels of total and pathogenic Vibrio parahaemolyticus (Vp) and Vibrio vulnificus (Vv) in Pacific oysters (Crassostrea gigas) collected from commercial growing areas in the North Island, New Zealand. The survey was intended to be geographically representative of commercial growing areas of Pacific oysters in New Zealand, while selecting the time frame most likely to coincide with the increased abundance of pathogenic vibrio species. Vp was detected in 94.8% of oyster samples examined (n=58) with a geometric mean concentration of 99.3 MPN/g, while Vv was detected in 17.2% of oyster samples examined with a geometric mean concentration of 7.4 MPN/g. The frequency of Vp positive samples was 1.7 fold greater than reported in a study conducted three decades ago in New Zealand. Potentially virulent (tdh positive) Vp was detected in two samples (3.4%, n=58) while no trh (another virulence marker) positive samples were detected. 16S rRNA genotype could be assigned only to 58.8% of Vv isolates (8:1:1 A:B:AB ratio, n=10). There was a good agreement [98.2% of Vp (n=280) and 94.4% of Vv (n=18) isolates] between molecular tests and cultivation based techniques used to identify Vibrio isolates and there was a significant (R(2)=0.95, Pcultivation. There was no significant correlation between any of the environmental parameters tested and Vp or Vv concentrations. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Temporal and spatial variability in culturable pathogenic Vibrio spp. in Lake Pontchartrain, Louisiana, following hurricanes Katrina and Rita.

    Science.gov (United States)

    Nigro, Olivia D; Hou, Aixin; Vithanage, Gayatri; Fujioka, Roger S; Steward, Grieg F

    2011-08-01

    We investigated the abundance, distribution, and virulence gene content of Vibrio cholerae, V. parahaemolyticus, and V. vulnificus in the waters of southern Lake Pontchartrain in Louisiana on four occasions from October 2005 to September 2006, using selective cultivation and molecular assays. The three targeted pathogenic vibrios were generally below the detection level in January 2006, when the water was cold (13°C), and most abundant in September 2006, when the lake water was warmest (30°C). The maximum values for these species were higher than reported previously for the lake by severalfold to orders of magnitude. The only variable consistently correlated with total vibrio abundance within a single sampling was distance from shore (P = 0.000). Multiple linear regression of the entire data set revealed that distance from shore, temperature, and turbidity together explained 82.1% of the variability in total vibrio CFU. The log-transformed mean abundance of V. vulnificus CFU in the lake was significantly correlated with temperature (P = 0.014), but not salinity (P = 0.625). Virulence-associated genes of V. cholerae (ctx) and V. parahaemolyticus (trh and tdh) were not detected in any isolates of these species (n = 128 and n = 20, respectively). In contrast, 16S rRNA typing of V. vulnificus (n = 298) revealed the presence of both environmental (type A) and clinical (type B) strains. The percentage of the B-type V. vulnificus was significantly higher in the lake in October 2005 (35.8% of the total) than at other sampling times (P ≤ 0.004), consistent with the view that these strains represent distinct ecotypes.

  6. Assessment of bacterial pathogens in fresh rainwater and airborne particulate matter using Real-Time PCR

    Science.gov (United States)

    Kaushik, Rajni; Balasubramanian, Rajasekhar

    2012-01-01

    Bacterial pathogens in airborne particulate matter (PM) and in rainwater (RW) were detected using a robust and sensitive Real-Time PCR method. Both RW and PM were collected simultaneously in the tropical atmosphere of Singapore, which were then subjected to analysis for the presence of selected bacterial pathogens and potential pathogen of health concern ( Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Aeromonas hydrophila). These pathogens were found to be prevalent in both PM and RW samples with E. coli being the most prevalent potential pathogen in both types of samples. The temporal distribution of these pathogens in PM and RW was found to be similar to each other. Using the proposed microbiological technique, the atmospheric deposition (dry and wet deposition) of bacterial pathogens to lakes and reservoirs can be studied in view of growing concerns about the outbreak of waterborne diseases.

  7. Identification of capsule, biofilm, lateral flagellum, and type IV pili in Vibrio mimicus strains.

    Science.gov (United States)

    Tercero-Alburo, J J; González-Márquez, H; Bonilla-González, E; Quiñones-Ramírez, E I; Vázquez-Salinas, C

    2014-11-01

    Vibrio mimicus is a bacterium that causes gastroenteritis; it is closely related to Vibrio cholerae, and can cause acute diarrhea like cholera- or dysentery-type diarrhea. It is distributed worldwide. Factors associated with virulence (such as hemolysins, enterotoxins, proteases, phospholipases, aerobactin, and hemagglutinin) have been identified; however, its pathogenicity mechanism is still unknown. In pathogenic Vibrio species such as V. cholerae, Vibrio. parahaemolyticus and Vibrio vulnificus, capsule, biofilms, lateral flagellum, and type IV pili are structures described as essential for pathogenicity. These structures had not been described in V. mimicus until this work. We used 20 V. mimicus strains isolated from water (6), oyster (9), and fish (5) samples and we were able to identify the capsule, biofilm, lateral flagellum, and type IV pili through phenotypic tests, electron microscopy, PCR, and sequencing. In all tested strains, we observed and identified the presence of capsular exopolysaccharide, biofilm formation in an in vitro model, as well as swarming, multiple flagellation, and pili. In addition, we identified homologous genes to those described in other bacteria of the genus in which these structures have been found. Identification of these structures in V. mimicus is a contribution to the biology of this organism and can help to reveal its pathogenic behavior. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Consequences of organ choice in describing bacterial pathogen assemblages in a rodent population.

    Science.gov (United States)

    Villette, P; Afonso, E; Couval, G; Levret, A; Galan, M; Tatard, C; Cosson, J F; Giraudoux, P

    2017-10-01

    High-throughput sequencing technologies now allow for rapid cost-effective surveys of multiple pathogens in many host species including rodents, but it is currently unclear if the organ chosen for screening influences the number and identity of bacteria detected. We used 16S rRNA amplicon sequencing to identify bacterial pathogens in the heart, liver, lungs, kidneys and spleen of 13 water voles (Arvicola terrestris) collected in Franche-Comté, France. We asked if bacterial pathogen assemblages within organs are similar and if all five organs are necessary to detect all of the bacteria present in an individual animal. We identified 24 bacteria representing 17 genera; average bacterial richness for each organ ranged from 1·5 ± 0·4 (mean ± standard error) to 2·5 ± 0·4 bacteria/organ and did not differ significantly between organs. The average bacterial richness when organ assemblages were pooled within animals was 4·7 ± 0·6 bacteria/animal; Operational Taxonomic Unit accumulation analysis indicates that all five organs are required to obtain this. Organ type influences bacterial assemblage composition in a systematic way (PERMANOVA, 999 permutations, pseudo-F 4,51 = 1·37, P = 0·001). Our results demonstrate that the number of organs sampled influences the ability to detect bacterial pathogens, which can inform sampling decisions in public health and wildlife ecology.

  9. Anethole inhibits growth of recently emerged multidrug resistant toxigenic Vibrio cholerae O1 El Tor variant strains in vitro.

    Science.gov (United States)

    Zahid, M Shamim Hasan; Awasthi, Sharda Prasad; Hinenoya, Atsushi; Yamasaki, Shinji

    2015-05-01

    To search natural compounds having inhibitory effect on bacterial growth is important, particularly in view of growing multidrug resistant (MDR) strains of bacterial pathogens. Like other bacterial pathogens, MDR Vibrio cholerae, the causative agent of diarrheal disease cholera, is becoming a great concern. As an approach of searching new antimicrobial agents, here, we show that anethole, a well-studied natural component of sweet fennel and star anise seeds, could potentially inhibit the growth of MDR O1 El Tor biotype, the ongoing 7th cholera pandemic variant strains of toxigenic V. cholerae. The minimum inhibitory concentration (MIC) of anethole against diverse O1 El Tor biotype strains is evaluated as 200 µg/ml. Moreover, the effect of anethole is bactericidal and exerts rapid-killing action on V. cholerae cells. This study is the first report which demonstrates that anethole, purified from natural compound, is a potent inhibitor of growth of toxigenic V. cholerae. Our data suggest that anethole could be a potential antimicrobial drug candidate, particularly against MDR V. cholerae mediated infections.

  10. Vibrios and Aeromonas.

    Science.gov (United States)

    Holmberg, S D

    1988-09-01

    There are many similarities in the Vibrionaceae that cause human illness in the United States (see Table 1). Vibrios are characteristically indigenous to marine, estuarine, and brackish environments. They are distributed mainly in Gulf of Mexico coastal water, and these organisms "bloom" when the water is warm. Outbreaks of disease in humans frequently occur in summer, coinciding with multiplication of vibrios in warm water. Sporadic cases and small outbreaks of cholera continue to occur in persons living on or near the Gulf of Mexico, but infection in most persons is unrecognized. In fact, more serious and frequent illnesses result from V. vulnificus wound infections and from gastroenteritis caused by vibrios other than V. cholerae 01. Underlying hepatic or neoplastic disease (especially leukemia) apparently increases the likelihood and severity of illnesses caused by V. vulnificus and Aeromonas. Some Vibrionaceae produce clinical illness by means of enterotoxins identical or similar to cholera toxin. For many others, hemolysins, cytotoxins, and other exotoxins are necessary to produce disease; the importance of these virulence factors often is not known or the importance of these virulence factors often is not known or is of doubtful significance. Also, purported pathogenicity as demonstrated by animal models, such as fluid accumulation in ligated ileal loops, is quite nonspecific and needs to be interpreted cautiously. For Plesiomonas, a mode of pathogenesis has not been discovered. Eating raw shellfish (frequently raw oysters) has been linked epidemiologically to enteric infections with most of these bacteria; foreign travel and exposure to seawater are other frequently observed epidemiologic associations with infection. Foreign travel, particularly to the Yucatan Peninsula of Mexico, has been strongly associated with the acquisition of non-01 V. cholerae and Plesiomonas organisms. Most Vibrionaceae in the United States are susceptible in vitro--and illnesses

  11. Transcriptome analysis of Pacific white shrimp (Litopenaeus vannamei) challenged by Vibrio parahaemolyticus reveals unique immune-related genes.

    Science.gov (United States)

    Qin, Zhendong; Babu, V Sarath; Wan, Quanyuan; Zhou, Meng; Liang, Risheng; Muhammad, Asim; Zhao, Lijuan; Li, Jun; Lan, Jiangfeng; Lin, Li

    2018-06-01

    Pacific white shrimp (Litopenaeus vannamei) is an important cultural species worldwide. However, Vibrio spp. infections have caused a great economic loss in Pacific white shrimp culture industry. The immune responses of Pacific white shrimp to the Vibrio spp. is not fully characterized. In this study, the transcriptomic profiles of L. vannamei hemocytes were explored by injecting with or without Vibrio parahaemolyticus. Totally, 42,632 high-quality unigenes were obtained from RNAseq data. Comparative genome analysis showed 2258 differentially expressed genes (DEGs) following the Vibrio challenge, including 1017 up-regulated and 1241 down-regulated genes. Eight DEGs were randomly selected for further validation by quantitative real-time RT-PCR (qRT-PCR) and the results showed that are consistent with the RNA-seq data. Due to the lack of predictable adaptive immunity, shrimps rely on an innate immune system to defend themselves against invading microbes by recognizing and clearing them through humoral and cellular immune responses. Here we focused our studies on the humoral immunity, five genes (SR, MNK, CTL3, GILT, and ALFP) were selected from the transcriptomic data, which were significantly up-regulated by V. parahaemolyticus infection. These genes were widely expressed in six different tissues and were up-regulated by both Gram negative bacteria (V. parahaemolyticus) and Gram positive bacteria (Staphylococcus aureus). To further extend our studies, we knock-down those five genes by dsRNA in L. vannamei and analyzed the functions of specific genes against V. parahaemolyticus and S. aureus by bacterial clearance analysis. We found that the ability of L. vannamei was significantly reduced in bacterial clearance when treated with those specific dsRNA. These results indicate that those five genes play essential roles in antibacterial immunity and have its specific functions against different types of pathogens. The obtained data will shed a new light on the immunity

  12. Reduced Set of Virulence Genes Allows High Accuracy Prediction of Bacterial Pathogenicity in Humans

    Science.gov (United States)

    Iraola, Gregorio; Vazquez, Gustavo; Spangenberg, Lucía; Naya, Hugo

    2012-01-01

    Although there have been great advances in understanding bacterial pathogenesis, there is still a lack of integrative information about what makes a bacterium a human pathogen. The advent of high-throughput sequencing technologies has dramatically increased the amount of completed bacterial genomes, for both known human pathogenic and non-pathogenic strains; this information is now available to investigate genetic features that determine pathogenic phenotypes in bacteria. In this work we determined presence/absence patterns of different virulence-related genes among more than finished bacterial genomes from both human pathogenic and non-pathogenic strains, belonging to different taxonomic groups (i.e: Actinobacteria, Gammaproteobacteria, Firmicutes, etc.). An accuracy of 95% using a cross-fold validation scheme with in-fold feature selection is obtained when classifying human pathogens and non-pathogens. A reduced subset of highly informative genes () is presented and applied to an external validation set. The statistical model was implemented in the BacFier v1.0 software (freely available at ), that displays not only the prediction (pathogen/non-pathogen) and an associated probability for pathogenicity, but also the presence/absence vector for the analyzed genes, so it is possible to decipher the subset of virulence genes responsible for the classification on the analyzed genome. Furthermore, we discuss the biological relevance for bacterial pathogenesis of the core set of genes, corresponding to eight functional categories, all with evident and documented association with the phenotypes of interest. Also, we analyze which functional categories of virulence genes were more distinctive for pathogenicity in each taxonomic group, which seems to be a completely new kind of information and could lead to important evolutionary conclusions. PMID:22916122

  13. Diversity and Drug Resistance of Bacterial Pathogens Isolated from Bacterial Ascetic Disease in Cultured Turbot Scophthalmus maximus%养殖大菱鲆(Scophthalmus maximus)腹水病的病原多样性及其耐药性分析

    Institute of Scientific and Technical Information of China (English)

    王岚; 王印庚; 张正; 陈国华; 廖梅杰; 陈霞; 郭伟丽

    2017-01-01

    为了解引起养殖大菱鲆(Scophthalmus maximus)腹水病的病原多样性及其耐药性情况,针对2002-2010年由不同地区病样分离的27株细菌性病原进行了16S rDNA鉴定,并采用K-B法测定了27株细菌对22种抗生素的耐药性,分析了病原菌的耐药谱及耐药率变化.结果显示,大菱鲆腹水病病原菌主要有大菱鲆弧菌(Vibrio scophthalmi)、迟钝爱德华氏菌(Edwardsiella tarda)、鳗弧菌(Vibrio anguillarum)、哈维氏弧菌(Vibrio harveyi)、假交替单胞菌(Pseudoalteromonas espejiana).山东青岛地区以大菱鲆弧菌为主,威海地区以迟钝爱德华氏菌为主,烟台地区菌株种类分布平均.5类细菌对青霉素类、头孢菌素类、大环内酯类、复方新诺明耐药率高于50%.只有1株迟钝爱德华氏菌对氟苯尼考产生了耐药,其余菌株对其均没有耐药性,且在长期使用中不易产生耐药性,证实氟苯尼考为当前防治腹水病的一种良好抗菌药物.27株病原菌的耐药谱数量为27个,每个菌株具备自己独特的耐药谱,74.1%的菌株对10种以上的抗菌药物产生了耐药性,均有多重耐药性.%Turbot Scophthalmus maximus was introduced into China in 1992.Since then,it has become one of the most dominant mariculture industries.In recent years,however,a main bottleneck constraining its commercial development is the disease problem prevailing in the farms and causing significant mortalities.Ascites syndrome is a disease that is commonly found in larvae culture and grow-out period.The present study investigated the diversity and antimicrobial resistance of the pathogens isolated from bacterial ascetic disease in cultured turbot S.maximus in Shandong Province.In total,27 bacterial pathogens were collected from different regions of the province between 2002 and 2010.These 27 strains of pathogens were identified through the use of 16S rDNA gene sequence analysis and their antibiotic resistance profiles were tested with 22

  14. [Environmental drivers of emergence and spreading of Vibrio epidemics in South America].

    Science.gov (United States)

    Gavilán, Ronnie G; Martínez-Urtaza, Jaime

    2011-03-01

    Vibrio cholerae and V. parahaemolyticus are the two Vibrio species with a major impact on human health. Diseases caused by both pathogens are acquiring increasing relevance due to their expansion at global scale. In this paper, we resume the ecological aspects associated with the arrival and spreading of infections caused by V. parahaemolyticus and V. cholerae in Peru from a South American perspective. Moreover, we discuss the similarities in the emergence in Peru of cholera cases in 1991 and V. parahaemolyticus infections in 1997. These constituted exceptional experiments to evaluate the relationships between the Vibrio epidemics and changes in the environment. The epidemic radiations of V. cholerae and V. parahaemolyticus constitute to clear examples supporting the oceanic dispersion of pathogenic vibrios and have enabled the identification of El Niño events as a potential mechanism for the spreading of diseases through the ocean.

  15. Intestinal Colonization Dynamics of Vibrio cholerae.

    Directory of Open Access Journals (Sweden)

    Salvador Almagro-Moreno

    2015-05-01

    Full Text Available To cause the diarrheal disease cholera, Vibrio cholerae must effectively colonize the small intestine. In order to do so, the bacterium needs to successfully travel through the stomach and withstand the presence of agents such as bile and antimicrobial peptides in the intestinal lumen and mucus. The bacterial cells penetrate the viscous mucus layer covering the epithelium and attach and proliferate on its surface. In this review, we discuss recent developments and known aspects of the early stages of V. cholerae intestinal colonization and highlight areas that remain to be fully understood. We propose mechanisms and postulate a model that covers some of the steps that are required in order for the bacterium to efficiently colonize the human host. A deeper understanding of the colonization dynamics of V. cholerae and other intestinal pathogens will provide us with a variety of novel targets and strategies to avoid the diseases caused by these organisms.

  16. Influence of chlorine on the susceptibility of striped bass (Morone saxatilis) to Vibrio anguillarum

    Energy Technology Data Exchange (ETDEWEB)

    Hetrick, F M; Hall, Jr, L W; Wolski, S; Graves, W C; Roberson, B S

    1984-09-01

    The subtle effects that low levels of pollutants have on fish populations are probably more important than the effects of large spills, since the effects are less likely to be obvious and the source more difficult to detect in time to save the environment. An experiment was carried out to determine if exposure of striped bass to sublethal concentrations of chlorine affected their susceptibility to bacterial infection. Exposure of striped bass for 96 h to sublethal concentrations of total residual chlorine (TRC) (0.05-0.23 mg/L) did not increase their susceptibility to infection with the bacterial pathogen Vibrio anguillarum. Variables examined were TRC concentrations, length of exposure to chlorine, and the order of exposure to chlorine and the pathogen. Mortalities in the groups exposed to both chlorine and pathogen were not significantly different from those seen in groups receiving the bacteria only. Smaller fish are more susceptible than larger fish, and the LD50 is markedly affected by the ambient temperature in that fewer bacteria are needed to kill fish at lower temperatures. One contributing factor to this increased resistance of fish at higher water temperatures appears to be related to their immune status. 29 references, 5 tables.

  17. Probiotic E. coli Nissle 1917 biofilms on silicone substrates for bacterial interference against pathogen colonization.

    Science.gov (United States)

    Chen, Quan; Zhu, Zhiling; Wang, Jun; Lopez, Analette I; Li, Siheng; Kumar, Amit; Yu, Fei; Chen, Haoqing; Cai, Chengzhi; Zhang, Lijuan

    2017-03-01

    Bacterial interference is an alternative strategy to fight against device-associated bacterial infections. Pursuing this strategy, a non-pathogenic bacterial biofilm is used as a live, protective barrier to fence off pathogen colonization. In this work, biofilms formed by probiotic Escherichia coli strain Nissle 1917 (EcN) are investigated for their potential for long-term bacterial interference against infections associated with silicone-based urinary catheters and indwelling catheters used in the digestive system, such as feeding tubes and voice prostheses. We have shown that EcN can form stable biofilms on silicone substrates, particularly those modified with a biphenyl mannoside derivative. These biofilms greatly reduced the colonization by pathogenic Enterococcus faecalis in Lysogeny broth (LB) for 11days. Bacterial interference is an alternative strategy to fight against device-associated bacterial infections. Pursuing this strategy, we use non-pathogenic bacteria to form a biofilm that serves as a live, protective barrier against pathogen colonization. Herein, we report the first use of preformed probiotic E. coli Nissle 1917 biofilms on the mannoside-presenting silicone substrates to prevent pathogen colonization. The biofilms serve as a live, protective barrier to fence off the pathogens, whereas current antimicrobial/antifouling coatings are subjected to gradual coverage by the biomass from the rapidly growing pathogens in a high-nutrient environment. It should be noted that E. coli Nissle 1917 is commercially available and has been used in many clinical trials. We also demonstrated that this probiotic strain performed significantly better than the non-commercial, genetically modified E. coli strain that we previously reported. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Vibrio vulnificus phage PV94 is closely related to temperate phages of V. cholerae and other Vibrio species.

    Directory of Open Access Journals (Sweden)

    Mark Pryshliak

    Full Text Available BACKGROUND: Vibrio vulnificus is an important pathogen which can cause serious infections in humans. Yet, there is limited knowledge on its virulence factors and the question whether temperate phages might be involved in pathogenicity, as is the case with V. cholerae. Thus far, only two phages (SSP002 and VvAW1 infecting V. vulnificus have been genetically characterized. These phages were isolated from the environment and are not related to Vibrio cholerae phages. The lack of information on temperate V. vulnificus phages prompted us to isolate those phages from lysogenic strains and to compare them with phages of other Vibrio species. RESULTS: In this study the temperate phage PV94 was isolated from a V. vulnificus biotype 1 strain by mitomycin C induction. PV94 is a myovirus whose genome is a linear double-stranded DNA of 33,828 bp with 5'-protruding ends. Sequence analysis of PV94 revealed a modular organization of the genome. The left half of the genome comprising the immunity region and genes for the integrase, terminase and replication proteins shows similarites to V. cholerae kappa phages whereas the right half containing genes for structural proteins is closely related to a prophage residing in V. furnissii NCTC 11218. CONCLUSION: We present the first genomic sequence of a temperate phage isolated from a human V. vulnificus isolate. The sequence analysis of the PV94 genome demonstrates the wide distribution of closely related prophages in various Vibrio species. Moreover, the mosaicism of the PV94 genome indicates a high degree of horizontal genetic exchange within the genus Vibrio, by which V. vulnificus might acquire virulence-associated genes from other species.

  19. Autophagic clearance of bacterial pathogens: molecular recognition of intracellular microorganisms.

    Science.gov (United States)

    Pareja, Maria Eugenia Mansilla; Colombo, Maria I

    2013-01-01

    Autophagy is involved in several physiological and pathological processes. One of the key roles of the autophagic pathway is to participate in the first line of defense against the invasion of pathogens, as part of the innate immune response. Targeting of intracellular bacteria by the autophagic machinery, either in the cytoplasm or within vacuolar compartments, helps to control bacterial proliferation in the host cell, controlling also the spreading of the infection. In this review we will describe the means used by diverse bacterial pathogens to survive intracellularly and how they are recognized by the autophagic molecular machinery, as well as the mechanisms used to avoid autophagic clearance.

  20. Development of Quorum-Based Anti-Virulence Therapeutics Targeting Gram-Negative Bacterial Pathogens

    Directory of Open Access Journals (Sweden)

    Wen Shan Yew

    2013-08-01

    Full Text Available Quorum sensing is a cell density-dependent signaling phenomenon used by bacteria for coordination of population-wide phenotypes, such as expression of virulence genes, antibiotic resistance and biofilm formation. Lately, disruption of bacterial communication has emerged as an anti-virulence strategy with enormous therapeutic potential given the increasing incidences of drug resistance in pathogenic bacteria. The quorum quenching therapeutic approach promises a lower risk of resistance development, since interference with virulence generally does not affect the growth and fitness of the bacteria and, hence, does not exert an associated selection pressure for drug-resistant strains. With better understanding of bacterial communication networks and mechanisms, many quorum quenching methods have been developed against various clinically significant bacterial pathogens. In particular, Gram-negative bacteria are an important group of pathogens, because, collectively, they are responsible for the majority of hospital-acquired infections. Here, we discuss the current understanding of existing quorum sensing mechanisms and present important inhibitory strategies that have been developed against this group of pathogenic bacteria.

  1. The disease complex of the gypsy moth. II. Aerobic bacterial pathogens

    Science.gov (United States)

    J.D. Podgwaite; R.W. Campbell

    1972-01-01

    Eighty-six pathogenic aerobic bacterial isolates from diseased gypsy moth larvae collected in both sparse and dense populations were characterized and identified as members of the families Bacillaceae, Enterobacteriaceae, Lactobacillaceae, Pseudomonadaceae, and Achromobacteraceae. The commonest pathogens were Streptococcus faecalis, Bacillus cereus, Bacillus...

  2. Vibrio Parahemolyticus in the Wastewater of Kermanshah City

    Directory of Open Access Journals (Sweden)

    Ali Almasi

    2005-11-01

    Full Text Available آب و فاضلاب                                                                                                                                                                                                               شماره 51- سال 1383     Municipal wastewater is one of the most important pollution sources for water supply resources. Soil, vegetable, and food material are exposed as well. Identification and enumeration of pathogenic agents particularly pathogenic Vibrios are beneficial for control and prevention planning of the infectious diseases. This research carried out to identify the distribution of the recognized pathogenic Vibrios emphasizing on identification of Vibrio cholerain the wastewater of city of Kermanshah in 2001. Population of city of Kermanshah was estimated over 713000 and produced wastewater was approximately 150 l/cap/d. The method of study was cross-sectional descriptive. Sampling procedure was adopted from standard Methods for the Examination of water and wastewater, and the method for Vibrios identification was according to finegold 1990. There were 8 discharge outlet domestic wastewaters, which had been chosen as sampling sites. Samples were collected weekly in randomized manner in day time. Although 288 samples should be collected statistically, 339 samples were collected and analyzed. The results indicated that site 7 with 5 positives, sites 4 and 8 with 3 positives, site 5 with 2 postitives and sites 2, 3 and 6 with one positive suspected to vibrio pathogens. However, not any Vibrio detected in site 1. The most positive samples were seen in spring, late summer and early autumn. The positive results were detected in May, June, September, and October. Among samples which have been detected as a

  3. PathogenFinder - Distinguishing Friend from Foe Using Bacterial Whole Genome Sequence Data

    DEFF Research Database (Denmark)

    Cosentino, Salvatore; Larsen, Mette Voldby; Aarestrup, Frank Møller

    2013-01-01

    approaches. We describe PathogenFinder (http://cge.cbs.dtu.dk/services/PathogenFinder/), a web-server for the prediction of bacterial pathogenicity by analysing the input proteome, genome, or raw reads provided by the user. The method relies on groups of proteins, created without regard to their annotated...

  4. The role and regulation of catalase in respiratory tract opportunistic bacterial pathogens.

    Science.gov (United States)

    Eason, Mia M; Fan, Xin

    2014-09-01

    Respiratory tract bacterial pathogens are the etiologic agents of a variety of illnesses. The ability of these bacteria to cause disease is imparted through survival within the host and avoidance of pathogen clearance by the immune system. Respiratory tract pathogens are continually bombarded by reactive oxygen species (ROS), which may be produced by competing bacteria, normal metabolic function, or host immunological responses. In order to survive and proliferate, bacteria have adapted defense mechanisms to circumvent the effects of ROS. Bacteria employ the use of anti-oxidant enzymes, catalases and catalase-peroxidases, to relieve the effects of the oxidative stressors to which they are continually exposed. The decomposition of ROS has been shown to provide favorable conditions in which respiratory tract opportunistic bacterial pathogens such as Haemophilus influenzae, Mycobacterium tuberculosis, Legionella pneumophila, and Neisseria meningitidis are able to withstand exposure to highly reactive molecules and yet survive. Bacteria possessing mutations in the catalase gene have a decreased survival rate, yet may be able to compensate for the lack of catalatic activity if peroxidatic activity is present. An incomplete knowledge of the mechanisms by which catalase and catalase-peroxidases are regulated still persists, however, in some bacterial species, a regulatory factor known as OxyR has been shown to either up-regulate or down-regulate catalase gene expression. Yet, more research is still needed to increase the knowledge base in relation to this enzyme class. As with this review, we focus on major respiratory tract opportunistic bacterial pathogens in order to elucidate the function and regulation of catalases. The importance of the research could lead to the development of novel treatments against respiratory bacterial infections. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira.

    Science.gov (United States)

    Fouts, Derrick E; Matthias, Michael A; Adhikarla, Haritha; Adler, Ben; Amorim-Santos, Luciane; Berg, Douglas E; Bulach, Dieter; Buschiazzo, Alejandro; Chang, Yung-Fu; Galloway, Renee L; Haake, David A; Haft, Daniel H; Hartskeerl, Rudy; Ko, Albert I; Levett, Paul N; Matsunaga, James; Mechaly, Ariel E; Monk, Jonathan M; Nascimento, Ana L T; Nelson, Karen E; Palsson, Bernhard; Peacock, Sharon J; Picardeau, Mathieu; Ricaldi, Jessica N; Thaipandungpanit, Janjira; Wunder, Elsio A; Yang, X Frank; Zhang, Jun-Jie; Vinetz, Joseph M

    2016-02-01

    Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1) the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2) genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12) autotrophy as a bacterial virulence factor; 3) CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade's refractoriness to gene targeting; 4) finding Leptospira pathogen-specific specialized protein secretion systems; 5) novel virulence-related genes/gene families such as the Virulence Modifying (VM) (PF07598 paralogs) proteins and pathogen-specific adhesins; 6) discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7) and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately pathogenic

  6. What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira.

    Directory of Open Access Journals (Sweden)

    Derrick E Fouts

    2016-02-01

    Full Text Available Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1 the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2 genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12 autotrophy as a bacterial virulence factor; 3 CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade's refractoriness to gene targeting; 4 finding Leptospira pathogen-specific specialized protein secretion systems; 5 novel virulence-related genes/gene families such as the Virulence Modifying (VM (PF07598 paralogs proteins and pathogen-specific adhesins; 6 discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7 and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately

  7. Bacterial toxins as pathogen weapons against phagocytes

    Directory of Open Access Journals (Sweden)

    Ana edo Vale

    2016-02-01

    Full Text Available Bacterial toxins are virulence factors that manipulate host cell functions and take over the control of vital processes of living organisms to favour microbial infection. Some toxins directly target innate immune cells, thereby annihilating a major branch of the host immune response. In this review we will focus on bacterial toxins that act from the extracellular milieu and hinder the function of macrophages and neutrophils. In particular, we will concentrate on toxins from Gram-positive and Gram-negative bacteria that manipulate cell signalling or induce cell death by either imposing direct damage to the host cells cytoplasmic membrane or enzymatically modifying key eukaryotic targets. Outcomes regarding pathogen dissemination, host damage and disease progression will be discussed.

  8. Water Microbiology. Bacterial Pathogens and Water

    Directory of Open Access Journals (Sweden)

    João P. S. Cabral

    2010-10-01

    Full Text Available Water is essential to life, but many people do not have access to clean and safe drinking water and many die of waterborne bacterial infections. In this review a general characterization of the most important bacterial diseases transmitted through water—cholera, typhoid fever and bacillary dysentery—is presented, focusing on the biology and ecology of the causal agents and on the diseases’ characteristics and their life cycles in the environment. The importance of pathogenic Escherichia coli strains and emerging pathogens in drinking water-transmitted diseases is also briefly discussed. Microbiological water analysis is mainly based on the concept of fecal indicator bacteria. The main bacteria present in human and animal feces (focusing on their behavior in their hosts and in the environment and the most important fecal indicator bacteria are presented and discussed (focusing on the advantages and limitations of their use as markers. Important sources of bacterial fecal pollution of environmental waters are also briefly indicated. In the last topic it is discussed which indicators of fecal pollution should be used in current drinking water microbiological analysis. It was concluded that safe drinking water for all is one of the major challenges of the 21st century and that microbiological control of drinking water should be the norm everywhere. Routine basic microbiological analysis of drinking water should be carried out by assaying the presence of Escherichia coli by culture methods. Whenever financial resources are available, fecal coliform determinations should be complemented with the quantification of enterococci. More studies are needed in order to check if ammonia is reliable for a preliminary screening for emergency fecal pollution outbreaks. Financial resources should be devoted to a better understanding of the ecology and behavior of human and animal fecal bacteria in environmental waters.

  9. Water microbiology. Bacterial pathogens and water.

    Science.gov (United States)

    Cabral, João P S

    2010-10-01

    Water is essential to life, but many people do not have access to clean and safe drinking water and many die of waterborne bacterial infections. In this review a general characterization of the most important bacterial diseases transmitted through water-cholera, typhoid fever and bacillary dysentery-is presented, focusing on the biology and ecology of the causal agents and on the diseases' characteristics and their life cycles in the environment. The importance of pathogenic Escherichia coli strains and emerging pathogens in drinking water-transmitted diseases is also briefly discussed. Microbiological water analysis is mainly based on the concept of fecal indicator bacteria. The main bacteria present in human and animal feces (focusing on their behavior in their hosts and in the environment) and the most important fecal indicator bacteria are presented and discussed (focusing on the advantages and limitations of their use as markers). Important sources of bacterial fecal pollution of environmental waters are also briefly indicated. In the last topic it is discussed which indicators of fecal pollution should be used in current drinking water microbiological analysis. It was concluded that safe drinking water for all is one of the major challenges of the 21st century and that microbiological control of drinking water should be the norm everywhere. Routine basic microbiological analysis of drinking water should be carried out by assaying the presence of Escherichia coli by culture methods. Whenever financial resources are available, fecal coliform determinations should be complemented with the quantification of enterococci. More studies are needed in order to check if ammonia is reliable for a preliminary screening for emergency fecal pollution outbreaks. Financial resources should be devoted to a better understanding of the ecology and behavior of human and animal fecal bacteria in environmental waters.

  10. Ecology of Vibrio vulnificus in estuarine waters of eastern North Carolina.

    Science.gov (United States)

    Pfeffer, Courtney S; Hite, M Frances; Oliver, James D

    2003-06-01

    While several studies on the ecology of Vibrio vulnificus in Gulf Coast environments have been reported, there is little information on the distribution of this pathogen in East Coast waters. Thus, we conducted a multiyear study on the ecology of V. vulnificus in estuarine waters of the eastern United States, employing extensive multiple regression analyses to reveal the major environmental factors controlling the presence of this pathogen, and of Vibrio spp., in these environments. Monthly field samplings were conducted between July 2000 and April 2002 at six different estuarine sites along the eastern coast of North Carolina. At each site, water samples were taken and nine physicochemical parameters were measured. V. vulnificus isolates, along with estuarine bacteria, Vibrio spp., Escherichia coli organisms, and total coliforms, were enumerated in samples from each site by using selective media. During the last 6 months of the study, sediment samples were also analyzed for the presence of vibrios, including V. vulnificus. Isolates were confirmed as V. vulnificus by using hemolysin gene PCR or colony hybridization. V. vulnificus was isolated only when water temperatures were between 15 and 27 degrees C, and its presence correlated with water temperature and dissolved oxygen and vibrio levels. Levels of V. vulnificus in sediments were low, and no evidence for an overwintering in this environment was found. Multiple regression analysis indicated that vibrio levels were controlled primarily by temperature, turbidity, and levels of dissolved oxygen, estuarine bacteria, and coliforms. Water temperature accounted for most of the variability in the concentrations of both V. vulnificus (47%) and Vibrio spp. (48%).

  11. Application of bacterial lipopolysaccharide to improve survival of the black tiger shrimp after Vibrio harveyi exposure.

    Science.gov (United States)

    Rungrassamee, Wanilada; Maibunkaew, Sawarot; Karoonuthaisiri, Nitsara; Jiravanichpaisal, Pikul

    2013-10-01

    This study investigates an effect of bacterial lipopolysaccharide (LPS) as feed supplement to improve immunity of the black tiger shrimp (Penaeus monodon). LPS was coated to commercial feed pellets and given to the shrimp once or twice a day for 10 days before an exposure with shrimp pathogenic bacterium Vibrio harveyi. The growth rates, percent weight gains, total hemocyte and granulocyte counts and survival rates of shrimp between the LPS-coated pellet fed groups and a control group where shrimp fed with commercial feed pellets were compared. After 10 days of the feeding trials, growth rates were not significantly different in all groups, suggesting no toxicity from LPS supplement. To determine beneficial effect of LPS diets, each group was subsequently exposed to V. harveyi by immersion method and the survival rates were recorded for seven days after the immersion. Regardless of the dosages of LPS, the shrimp groups fed with LPS-coated pellets showed higher survival rates than the control group. There was no significant difference in survival rates between the two LPS dosages groups. In addition to survival under pathogen challenge, we also determine effect of LPS on immune-related genes after 10-day feeding trial. Gene expression analysis in the P. monodon intestines revealed that antilipopolysaccharide factor isoform 3 (ALF3), C-type lectin, and mucine-like peritrophin (mucin-like PM) were expressed significantly higher in a group fed with LPS supplemental diet once or twice a day than in a control group. The transcript levels of C-type lectin and mucin-like PM had increased significantly when LPS was given once a day, while significant induction of ALF3 transcripts was observed when shrimp were fed with LPS twice a day. The up-regulation of the immune gene levels in intestines and higher resistance to V. harveyi of the shrimp fed with LPS provide the evidence for potential application of LPS as an immunostimulant in P. monodon farming. Copyright © 2013

  12. The Global Acetylome of the Human Pathogen Vibrio cholerae V52 Reveals Lysine Acetylation of Major Transcriptional Regulators

    DEFF Research Database (Denmark)

    Jers, Carsten; Ravikumar, Vaishnavi; Lezyk, Mateusz Jakub

    2018-01-01

    Protein lysine acetylation is recognized as an important reversible post translational modification in all domains of life. While its primary roles appear to reside in metabolic processes, lysine acetylation has also been implicated in regulating pathogenesis in bacteria. Several global lysine...... acetylome analyses have been carried out in various bacteria, but thus far there have been no reports of lysine acetylation taking place in the important human pathogen Vibrio cholerae. In this study, we analyzed the lysine acetylproteome of the human pathogen V. cholerae V52. By applying a combination...... in direct regulation of virulence in V. cholerae were acetylated. In conclusion, this is the first global protein lysine acetylome analysis of V. cholerae and should constitute a valuable resource for in-depth studies of the impact of lysine acetylation in pathogenesis and other cellular processes....

  13. Multiplex PCR assay for simultaneous detection of six major bacterial pathogens of rice.

    Science.gov (United States)

    Cui, Z; Ojaghian, M R; Tao, Z; Kakar, K U; Zeng, J; Zhao, W; Duan, Y; Vera Cruz, C M; Li, B; Zhu, B; Xie, G

    2016-05-01

    The aim of this study was to develop a multiplex PCR (mPCR) assay for rapid, sensitive and simultaneous detection of six important rice pathogens: Xanthomonas oryzae pv. oryzae, X. oryzae pv. oryzicola, Pseudomonas fuscovaginae, Burkholderia glumae, Burkholderia gladioli and Acidovorax avenae subsp. avenae. Specific primers were designed through a bioinformatics pipeline. Sensitivity of detection was established using both traditional PCR and quantitative real-time PCR on isolated DNA and on bacterial cells both in vitro and in simulated diseased seeds and the parameters were optimized for an mPCR assay. A total of 150 bacterial strains were tested for specificity. The mPCR assay accurately predicted the presence of pathogens among 44 symptomatic and asymptomatic rice seed, sheath and leaf samples. This study confirmed that this mPCR assay is a rapid, reliable and simple tool for the simultaneous detection of six important rice bacterial pathogens. This study is the first report of a method allowing simultaneous detection of six major rice pathogens. The ability to use crude extracts from plants without bacterial isolation or DNA extraction enhances the value of this mPCR technology for rapid detection and aetiological/epidemiological studies. © 2016 The Society for Applied Microbiology.

  14. Detection of mastitis pathogens by analysis of volatile bacterial metabolites.

    Science.gov (United States)

    Hettinga, K A; van Valenberg, H J F; Lam, T J G M; van Hooijdonk, A C M

    2008-10-01

    The ability to detect mastitis pathogens based on their volatile metabolites was studied. Milk samples from cows with clinical mastitis, caused by Staphylococcus aureus, coagulase-negative staphylococci, Streptococcus uberis, Streptococcus dysgalactiae, and Escherichia coli were collected. In addition, samples from cows without clinical mastitis and with low somatic cell count (SCC) were collected for comparison. All mastitis samples were examined by using classical microbiological methods, followed by headspace analysis for volatile metabolites. Milk from culture-negative samples contained a lower number and amount of volatile components compared with cows with clinical mastitis. Because of variability between samples within a group, comparisons between pathogens were not sufficient for classification of the samples by univariate statistics. Therefore, an artificial neural network was trained to classify the pathogen in the milk samples based on the bacterial metabolites. The trained network differentiated milk from uninfected and infected quarters very well. When comparing pathogens, Staph. aureus produced a very different pattern of volatile metabolites compared with the other samples. Samples with coagulase-negative staphylococci and E. coli had enough dissimilarity with the other pathogens, making it possible to separate these 2 pathogens from each other and from the other samples. The 2 streptococcus species did not show significant differences between each other but could be identified as a different group from the other pathogens. Five groups can thus be identified based on the volatile bacterial metabolites: Staph. aureus, coagulase-negative staphylococci, streptococci (Strep. uberis and Strep. dysgalactiae as one group), E. coli, and uninfected quarters.

  15. Survey of bacterial pathogens on leaves and seeds of red mangrove ...

    African Journals Online (AJOL)

    Bacterial pathogens of red mangrove (Rhizophora mangle) were investigated. 50 samples each of leaves and seeds (healthy and diseased) were randomly collected and used for the analysis. Mean bacterial counts obtained were: healthy and diseased leaves; 8.26 x 103 and 5.9 l x l03 cfu/ml respectively; healthy seeds ...

  16. Vibrio elicits targeted transcriptional responses from copepod hosts.

    Science.gov (United States)

    Almada, Amalia A; Tarrant, Ann M

    2016-06-01

    Copepods are abundant crustaceans that harbor diverse bacterial communities, yet the nature of their interactions with microbiota are poorly understood. Here, we report that Vibrio elicits targeted transcriptional responses in the estuarine copepod Eurytemora affinis We pre-treated E. affinis with an antibiotic cocktail and exposed them to either a zooplankton specialist (Vibrio sp. F10 9ZB36) or a free-living species (Vibrio ordalii 12B09) for 24 h. We then identified via RNA-Seq a total of 78 genes that were differentially expressed following Vibrio exposure, including homologs of C-type lectins, chitin-binding proteins and saposins. The response differed between the two Vibrio treatments, with the greatest changes elicited upon inoculation with V. sp. F10 We suggest that these differentially regulated genes play important roles in cuticle integrity, the innate immune response, and general stress response, and that their expression may enable E. affinis to recognize and regulate symbiotic vibrios. We further report that V. sp. F10 culturability is specifically altered upon colonization of E. affinis These findings suggest that rather than acting as passive environmental vectors, copepods discriminately interact with vibrios, which may ultimately impact the abundance and activity of copepod-associated bacteria. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Quorum sensing signal molecules (acylated homoserine lactones) in Gram-negative fish pathogenic bacteria

    DEFF Research Database (Denmark)

    Bruhn, Jesper Bartholin; Dalsgaard, Inger; Nielsen, K.F.

    2005-01-01

    The aim of the present study was to investigate the production of quorum sensing signals (specifically acylated homoserine lactones, AHLs) among a selection of strains of Gram-negative fish bacterial pathogens. These signals are involved in the regulation of virulence factors in some human...... salmonicida and Vibrio splendidus were also positive. Aeromonas species produced N-butanoyl homoserine lactone (BHL) and N-hexanoyl homoserine lactone (HHL) and 1 additional product, whereas N-3-oxo-hexanoyl homoserine lactone (OHHL) and HHL were detected in Vibrio salmonicida. N-3-oxo-octanoyl homoserine...... lactone (OOHL) and N-3-octanoyl homoserine lactone (OHL) were detected in Y. ruckeii. AHLs were not detected from strains of Photobacterium damselae, Flavobacterium psychrophilum or Moritella viscosa. AHLs were extracted from fish infected with Y. ruckeri but not from fish infected with A. salmonicida...

  18. Quorum sensing determines the choice of antiphage defense strategy in Vibrio anguillarum

    DEFF Research Database (Denmark)

    Tan, Demeng; Svenningsen, Sine Lo; Middelboe, Mathias

    2015-01-01

    of the outcome of phage-bacterial encounters in the fish pathogen Vibrio anguillarum is bacterial cell-cell communication, known as quorum sensing. Specifically, V. anguillarum PF430-3 cells locked in the low-cell-density state (ΔvanT mutant) express high levels of the phage receptor OmpK, resulting in a high...... susceptibility to phage KVP40, but achieve protection from infection by enhanced biofilm formation. By contrast, cells locked in the high-cell-density state (ΔvanΟ mutant) are almost completely unsusceptible due to quorum-sensing-mediated downregulation of OmpK expression. The phenotypes of the two quorum......-sensing mutant strains are accurately reflected in the behavior of wild-type V. anguillarum, which (i) displays increased OmpK expression in aggregated cells compared to free-living variants in the same culture, (ii) displays a clear inverse correlation between ompK mRNA levels and the concentration of N...

  19. Optimization and Validation of Real Time PCR Assays for Absolute Quantification of toxigenic Vibrio cholerae and Escherichia coli

    DEFF Research Database (Denmark)

    Ferdous, J.; Hossain, Z. Z.; Tulsiani, S.

    2016-01-01

    and quantify DNA by real-time PCR for two pathogenic species, Escherichia coli (E. coli) and Vibrio cholerae (V.cholerae). In order to generate a standard curve, total bacterial DNA was diluted in a 10-fold series and each sample was adjusted to an estimated cell count. The starting bacterial DNA concentration......Quantitative real-time PCR (qPCR) is a dynamic and cogent assay for the detection and quantification of specified nucleic acid sequences and is more accurate compared to both traditional culture based techniques and ‘end point’ conventional PCR. Serial dilution of bacterial cell culture provides...... significant, low F ratios indicated that there was some variation in CT values when genomic DNA dilution was compared to dilution of cell suspension in media. Different water samples spiked with pure cultures of E. coli and V. cholerae were used as unknown samples. The standard curve constructed by the serial...

  20. The FUN of identifying gene function in bacterial pathogens; insights from Salmonella functional genomics.

    Science.gov (United States)

    Hammarlöf, Disa L; Canals, Rocío; Hinton, Jay C D

    2013-10-01

    The availability of thousands of genome sequences of bacterial pathogens poses a particular challenge because each genome contains hundreds of genes of unknown function (FUN). How can we easily discover which FUN genes encode important virulence factors? One solution is to combine two different functional genomic approaches. First, transcriptomics identifies bacterial FUN genes that show differential expression during the process of mammalian infection. Second, global mutagenesis identifies individual FUN genes that the pathogen requires to cause disease. The intersection of these datasets can reveal a small set of candidate genes most likely to encode novel virulence attributes. We demonstrate this approach with the Salmonella infection model, and propose that a similar strategy could be used for other bacterial pathogens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Genome Assembly and Computational Analysis Pipelines for Bacterial Pathogens

    KAUST Repository

    Rangkuti, Farania Gama Ardhina

    2011-06-01

    Pathogens lie behind the deadliest pandemics in history. To date, AIDS pandemic has resulted in more than 25 million fatal cases, while tuberculosis and malaria annually claim more than 2 million lives. Comparative genomic analyses are needed to gain insights into the molecular mechanisms of pathogens, but the abundance of biological data dictates that such studies cannot be performed without the assistance of computational approaches. This explains the significant need for computational pipelines for genome assembly and analyses. The aim of this research is to develop such pipelines. This work utilizes various bioinformatics approaches to analyze the high-­throughput genomic sequence data that has been obtained from several strains of bacterial pathogens. A pipeline has been compiled for quality control for sequencing and assembly, and several protocols have been developed to detect contaminations. Visualization has been generated of genomic data in various formats, in addition to alignment, homology detection and sequence variant detection. We have also implemented a metaheuristic algorithm that significantly improves bacterial genome assemblies compared to other known methods. Experiments on Mycobacterium tuberculosis H37Rv data showed that our method resulted in improvement of N50 value of up to 9697% while consistently maintaining high accuracy, covering around 98% of the published reference genome. Other improvement efforts were also implemented, consisting of iterative local assemblies and iterative correction of contiguated bases. Our result expedites the genomic analysis of virulent genes up to single base pair resolution. It is also applicable to virtually every pathogenic microorganism, propelling further research in the control of and protection from pathogen-­associated diseases.

  2. Pathogenic triad in bacterial meningitis: pathogen invasion, NF-κB activation and leukocyte transmigration that occur at the Blood-Brain Barrier

    Directory of Open Access Journals (Sweden)

    Sheng-He eHuang

    2016-02-01

    Full Text Available Bacterial meningitis remains the leading cause of disabilities worldwide. This life-threatening disease has a high mortality rate despite the availability of antibiotics and improved critical care. The interactions between bacterial surface components and host defense systems that initiate bacterial meningitis have been studied in molecular and cellular detail over the past several decades. Bacterial meningitis commonly exhibits triad hallmark features (THFs: pathogen penetration, nuclear factor-kappaB (NF-B activation in coordination with type 1 interferon (IFN signaling and leukocyte transmigration that occur at the blood-brain barrier (BBB, which consists mainly of brain microvascular endothelial cells (BMEC. This review outlines the progression of these early inter-correlated events contributing to the central nervous system (CNS inflammation and injury during the pathogenesis of bacterial meningitis. A better understanding of these issues is not only imperative to elucidating the pathogenic mechanism of bacterial meningitis, but may also provide the in-depth insight into the development of novel therapeutic interventions against this disease.

  3. Highly diverse recombining populations of Vibrio cholerae and Vibrio parahaemolyticus in French Mediterranean coastal lagoons

    Directory of Open Access Journals (Sweden)

    Kevin eEsteves

    2015-07-01

    Full Text Available Vibrio parahaemolyticus and Vibrio cholerae are ubiquitous to estuarine and marine environments. These two species can induce infections in humans. Therefore understanding the structure and dynamics of non-pandemic environmental populations in temperate regions, such as Mediterranean coastal systems, is important if we are to evaluate the risks of infection to humans.Environmental isolates of V. cholerae (n=109 and V. parahaemolyticus (n=89 sampled at different dates, stations and water salinities were investigated for virulence genes and by a multilocus sequence-based analysis (MLSA. V. cholerae isolates were all ctxA negative and only one isolate of V. parahaemolyticus displayed trh2 gene. Most Sequence Types (ST corresponded to unique ST isolated at one date or one station. Frequent recombination events were detected among different pathogenic species, V. parahaemolyticus, V. cholerae, Vibrio mimicus and Vibrio metoecus. Recombination had a major impact on the diversification of lineages. The genetic diversity assessed by the number of ST/strain was higher in low salinity conditions for V. parahaemolyticus and V. cholerae whereas the frequency of recombination events in V. cholerae was lower in low salinity. Mediterranean coastal lagoon systems housed V. cholerae and V. parahaemolyticus with genetic diversities equivalent to the worldwide diversity described so far. The presence of STs found in human infections as well as the frequency of recombination events in environmental vibrios populations could predict a potential epidemiological risk.

  4. Occurrence and antibacterial susceptibility pattern of bacterial pathogens isolated from diarrheal patients in Pakistan

    OpenAIRE

    Rasool, Muhammad H.; Siddique, Abu B.; Saqalein, Muhammad; Asghar, Muhammad J.; Zahoor, Muhammad A.; Aslam, Bilal; Shafiq, Humerah B.; Nisar, Muhammad A.

    2016-01-01

    Objective: To determine the occurrence of bacterial pathogens responsible for diarrhea and to engender information regarding the effectiveness of commonly used antibiotic against diarrhea. Methods: This cross-sectional study was conducted between April and July 2014. Samples were collected from the Divisional Headquarter and Allied Hospital, Faisalabad, Pakistan. The differential and selective media were used to isolate bacterial pathogens, which were identified through cultural character...

  5. Detection of Vibrio harveyi using hemolysin primer in tiger shrimp Penaeus monodon

    Directory of Open Access Journals (Sweden)

    Irma Suriyani

    2015-05-01

    Full Text Available ABSTRACT This study was aimed to analyze the sensitivity and ability of primer hemolysin in detecting pathogenetic Vibrio on tiger shrimp post-larvae (PL exposed under different exposure times in media inoculated with Vibrio harveyi. The PL of tiger shrimp were infected with 106 cfu/mL of V. harveyi by immersion method for three, six, 12, 24, 48 and 72 hours. The presence of hemolisin genes was detected by PCR techniques. The electrophoresis detected narrow hemolysin genes after PL were exposed for three and six hours. Clear visible bands of DNA Vibrio were observed for 12 hours of exposure. In contrast, no detected hemolysin gene of Vibrio was observed for PL exposed within 24, 48, and 72 hours. The rapid detection on Vibrio pathogenic for tiger shrimp PL should be conducted within three to 12 hours of exposure. No recommendation in utilizing this rapid detection for tiger shrimp PL exposed beyond 12 hours of V. harveyi. Keywords: specific primer, luminous Vibrio bacteria, pathogenic, PCR method, hemolysin gene  ABSTRAK Penelitian ini bertujuan untuk mengetahui kemampuan atau sensitivitas primer hemolisin dalam mendeteksi Vibrio patogen dengan lama pemaparan berbeda. Penelitian ini dilakukan dengan menginfeksikan Vibrio harveyi pada benur udang dengan metode perendaman pada konsentrasi 106 cfu/mL. Pengambilan sampel dilakukan pada waktu tiga, enam, 12, 24, 48, dan 72 jam pascainfeksi. Keberadaan gen hemolisin pada bakteri V. harveyi dideteksi menggunakan teknik polymerase chain reaction (PCR. Hasil elektroforesis memperlihatkan bahwa pada pemaparan tiga dan enam jam keberadaan gen hemolisin dari bakteri Vibrio patogen yang diinfeksikan sudah dapat terdeteksi pada benur walaupun masih terlihat tipis. Pada pemaparan 12 jam terlihat sangat jelas pita-pita DNA dari bakteri patogen. Sedangkan pada pemaparan 24, 48, dan 72 jam sudah tidak terdeteksi lagi gen hemolisin dari bakteri Vibrio. Hal ini diduga disebabkan terjadinya penurunan populasi

  6. Variability of Total and Pathogenic Vibrio parahaemolyticus Densities in Northern Gulf of Mexico Water and Oysters▿

    Science.gov (United States)

    Zimmerman, A. M.; DePaola, A.; Bowers, J. C.; Krantz, J. A.; Nordstrom, J. L.; Johnson, C. N.; Grimes, D. J.

    2007-01-01

    Vibrio parahaemolyticus is indigenous to coastal environments and a frequent cause of seafood-borne gastroenteritis in the United States, primarily due to raw-oyster consumption. Previous seasonal-cycle studies of V. parahaemolyticus have identified water temperature as the strongest environmental predictor. Salinity has also been identified, although it is evident that its effect on annual variation is not as pronounced. The effects of other environmental factors, both with respect to the seasonal cycle and intraseasonal variation, are uncertain. This study investigated intraseasonal variations of densities of total and pathogenic V. parahaemolyticus organisms in oysters and overlying waters during the summer of 2004 at two sites in the northern Gulf of Mexico. Regression analyses indicated significant associations (P turbidity in water and in oysters at the Mississippi site but not at the Alabama site. Pathogenic V. parahaemolyticus organisms in Mississippi oyster and water samples were detected in 56% (9 out of 16) and 78% (43 out of 55) of samples, respectively. In contrast, 44% (7 out of 16) of oyster samples and 30% (14 out of 47) of water samples from Alabama were positive. At both sites, there was greater sample-to-sample variability in pathogenic V. parahaemolyticus densities than in total V. parahaemolyticus densities. These data suggest that, although total V. parahaemolyticus densities may be very informative, there is greater uncertainty when total V. parahaemolyticus densities are used to predict the risk of infection by pathogenic V. parahaemolyticus than previously recognized. PMID:17921270

  7. Variability of total and pathogenic Vibrio parahaemolyticus densities in northern Gulf of Mexico water and oysters.

    Science.gov (United States)

    Zimmerman, A M; DePaola, A; Bowers, J C; Krantz, J A; Nordstrom, J L; Johnson, C N; Grimes, D J

    2007-12-01

    Vibrio parahaemolyticus is indigenous to coastal environments and a frequent cause of seafood-borne gastroenteritis in the United States, primarily due to raw-oyster consumption. Previous seasonal-cycle studies of V. parahaemolyticus have identified water temperature as the strongest environmental predictor. Salinity has also been identified, although it is evident that its effect on annual variation is not as pronounced. The effects of other environmental factors, both with respect to the seasonal cycle and intraseasonal variation, are uncertain. This study investigated intraseasonal variations of densities of total and pathogenic V. parahaemolyticus organisms in oysters and overlying waters during the summer of 2004 at two sites in the northern Gulf of Mexico. Regression analyses indicated significant associations (P turbidity in water and in oysters at the Mississippi site but not at the Alabama site. Pathogenic V. parahaemolyticus organisms in Mississippi oyster and water samples were detected in 56% (9 out of 16) and 78% (43 out of 55) of samples, respectively. In contrast, 44% (7 out of 16) of oyster samples and 30% (14 out of 47) of water samples from Alabama were positive. At both sites, there was greater sample-to-sample variability in pathogenic V. parahaemolyticus densities than in total V. parahaemolyticus densities. These data suggest that, although total V. parahaemolyticus densities may be very informative, there is greater uncertainty when total V. parahaemolyticus densities are used to predict the risk of infection by pathogenic V. parahaemolyticus than previously recognized.

  8. The ability of algal organic matter and surface runoff to promote the abundance of pathogenic and non-pathogenic strains of Vibrio parahaemolyticus in Long Island Sound, USA.

    Directory of Open Access Journals (Sweden)

    Jake D Thickman

    Full Text Available Food safety is a major concern in the shellfish industry, as severe illness can result from consuming shellfish that have accumulated waterborne pathogens. Shellfish harvesting areas are typically monitored for indicator bacteria such as fecal coliforms that serve as proxies for enteric pathogens although these indicators have shown little relation to some naturally occurring pathogenic bacteria such as Vibrio parahaemolyticus. To examine the dynamics and ecology of pathogenic and non-pathogenic strains of V. parahaemolyticus and address the relevance of indicator bacteria in predicting V. parahaemolyticus concentrations, field surveys and experiments were carried out in western Long Island Sound, NY, USA, a region that has experienced recent outbreaks of shellfish contaminated with V. parahaemolyticus. Pathogenic and non-pathogenic strains were quantified via PCR detection of marker genes and most probable number techniques. Field survey data showed little correspondence between fecal coliforms and V. parahaemolyticus, but significant correlations between V. parahaemolyticus and an alternative indicator, enterococci, and between V. parahaemolyticus and short-term (48 h rainfall were observed. Experiments demonstrated that enrichment of seawater with phytoplankton-derived dissolved organic matter significantly increased the concentration of total V. parahaemolyticus and the presence pathogenic V. parahaemolyticus, but higher temperatures did not. Collectively, these study results suggest that fecal coliforms may fail to account for the full suite of important shellfish pathogens but that enterococci could provide a potential alternative or supplement to shellfish sanitation monitoring. Given the ability of algal-derived dissolved organic matter to promote the growth of pathogenic V. parahaemolyticus, restricting nutrient inputs into coastal water bodies that promote algal blooms may indirectly decrease the proliferation of V. parahaemolyticus

  9. Bacterial bioluminescence regulates expression of a host cryptochrome gene in the squid-Vibrio symbiosis.

    Science.gov (United States)

    Heath-Heckman, Elizabeth A C; Peyer, Suzanne M; Whistler, Cheryl A; Apicella, Michael A; Goldman, William E; McFall-Ngai, Margaret J

    2013-04-02

    The symbiosis between the squid Euprymna scolopes and its luminous symbiont, Vibrio fischeri, is characterized by daily transcriptional rhythms in both partners and daily fluctuations in symbiont luminescence. In this study, we sought to determine whether symbionts affect host transcriptional rhythms. We identified two transcripts in host tissues (E. scolopes cry1 [escry1] and escry2) that encode cryptochromes, proteins that influence circadian rhythms in other systems. Both genes cycled daily in the head of the squid, with a pattern similar to that of other animals, in which expression of certain cry genes is entrained by environmental light. In contrast, escry1 expression cycled in the symbiont-colonized light organ with 8-fold upregulation coincident with the rhythms of bacterial luminescence, which are offset from the day/night light regime. Colonization of the juvenile light organ by symbionts was required for induction of escry1 cycling. Further, analysis with a mutant strain defective in light production showed that symbiont luminescence is essential for cycling of escry1; this defect could be complemented by presentation of exogenous blue light. However, blue-light exposure alone did not induce cycling in nonsymbiotic animals, but addition of molecules of the symbiont cell envelope to light-exposed animals did recover significant cycling activity, showing that light acts in synergy with other symbiont features to induce cycling. While symbiont luminescence may be a character specific to rhythms of the squid-vibrio association, resident microbial partners could similarly influence well-documented daily rhythms in other systems, such as the mammalian gut.

  10. Extract from the fermented soybean product Natto inhibits Vibrio biofilm formation and reduces shrimp mortality from Vibrio harveyi infection.

    Science.gov (United States)

    Yatip, Pattanan; Nitin Chandra Teja, D; Flegel, Timothy W; Soowannayan, Chumporn

    2018-01-01

    Many bacteria, including Vibrio pathogens of shrimp, need to colonize and/or form biofilms in hosts or the environment to cause disease. Thus, one possible control strategy for shrimp Vibriosis is biofilm inhibition. With this objective, an extract from the Japanese fermented soybean product, Natto was tested with the luminescent shrimp pathogen Vibrio harveyi (VH) for its ability to inhibit or degrade biofilm and to interfere with cell growth in broth. Natto is a traditional fermentation product of Bacillus subtilis var Natto (BSN1). Using 96 well microtiter plates coated with 0.4% chitosan, we found that biofilm formation by VH was inhibited, while growth in parallel broth cultures was not. When an extract from Natto prepared using BSN1 was mixed with feed for the whiteleg shrimp Penaeus vannamei before immersion challenge with V. harveyi at 10 6  cfu/ml, survival was significantly higher (p≤0.05) than for control shrimp given feed without these additives. Further work done to test whether d-amino acids were involved in biofilm formation as previously reported for B. subtilis, Staphylococus aureus and Pseudomonas aeruginosa gave negative results. In conclusion, we discovered that Natto extract can inhibit Vibrio biofilm formation and that it or BSN1 alone added to shrimp feed can significantly reduce shrimp mortality in immersion challenges with pathogenic VH. This shows some promise for possible application against Vibriosis in shrimp since Natto is generally regarded as safe (GRAS) for human consumption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Quantitative analyses of the bacterial microbiota of rearing environment, tilapia and common carp cultured in earthen ponds and inhibitory activity of its lactic acid bacteria on fish spoilage and pathogenic bacteria.

    Science.gov (United States)

    Kaktcham, Pierre Marie; Temgoua, Jules-Bocamdé; Ngoufack Zambou, François; Diaz-Ruiz, Gloria; Wacher, Carmen; Pérez-Chabela, María de Lourdes

    2017-02-01

    The present study aimed to evaluate the bacterial load of water, Nile Tilapia and common Carp intestines from earthen ponds, isolate lactic acid bacteria (LAB) and assess their antimicrobial activity against fish spoilage and pathogenic bacteria. Following enumeration and isolation of microorganisms the antimicrobial activity of the LAB isolates was evaluated. Taxonomic identification of selected antagonistic LAB strains was assessed, followed by partial characterisation of their antimicrobial metabolites. Results showed that high counts (>4 log c.f.u ml -1 or 8 log c.f.u g -1 ) of total aerobic bacteria were recorded in pond waters and fish intestines. The microbiota were also found to be dominated by Salmonella spp., Vibrio spp., Staphylococcus spp. and Escherichia coli. LAB isolates (5.60%) exhibited potent direct and extracellular antimicrobial activity against the host-derived and non host-derived spoilage and pathogenic bacteria. These antagonistic isolates were identified and Lactococcus lactis subsp. lactis was found as the predominant (42.85%) specie. The strains displayed the ability to produce lactic, acetic, butyric, propionic and valeric acids. Bacteriocin-like inhibitory substances with activity against Gram-positive and Gram-negative (Vibrio spp. and Pseudomonas aeruginosa) bacteria were produced by three L. lactis subsp. lactis strains. In this study, the LAB from the microbiota of fish and pond water showed potent antimicrobial activity against fish spoilage or pathogenic bacteria from the same host or ecological niche. The studied Cameroonian aquatic niche is an ideal source of antagonistic LAB that could be appropriate as new fish biopreservatives or disease control agents in aquaculture under tropical conditions in particular or worldwide in general.

  12. Characterization of DegQVh, a serine protease and a protective immunogen from a pathogenic Vibrio harveyi strain.

    Science.gov (United States)

    Zhang, Wei-wei; Sun, Kun; Cheng, Shuang; Sun, Li

    2008-10-01

    Vibrio harveyi is an important marine pathogen that can infect a number of aquaculture species. V. harveyi degQ (degQ(Vh)), the gene encoding a DegQ homologue, was cloned from T4, a pathogenic V. harveyi strain isolated from diseased fish. DegQ(Vh) was closely related to the HtrA family members identified in other Vibrio species and could complement the temperature-sensitive phenotype of an Escherichia coli strain defective in degP. Expression of degQ(Vh) in T4 was modulated by temperature, possibly through the sigma(E)-like factor. Enzymatic analyses demonstrated that the recombinant DegQ(Vh) protein expressed in and purified from E. coli was an active serine protease whose activity required the integrity of the catalytic site and the PDZ domains. The optimal temperature and pH of the recombinant DegQ(Vh) protein were 50 degrees C and pH 8.0. A vaccination study indicated that the purified recombinant DegQ(Vh) was a protective immunogen that could confer protection upon fish against infection by V. harveyi. In order to improve the efficiency of DegQ(Vh) as a vaccine, a genetic construct in the form of the plasmid pAQ1 was built, in which the DNA encoding the processed DegQ(Vh) protein was fused with the DNA encoding the secretion region of AgaV, an extracellular beta-agarase. The E. coli strain harboring pAQ1 could express and secrete the chimeric DegQ(Vh) protein into the culture supernatant. Vaccination of fish with viable E. coli expressing chimeric degQ(Vh) significantly (P < 0.001) enhanced the survival of fish against V. harveyi challenge, which was possibly due to the relatively prolonged exposure of the immune system to the recombinant antigen produced constitutively, albeit at a gradually decreasing level, by the carrier strain.

  13. Development of Rare Bacterial Monosaccharide Analogs for Metabolic Glycan Labeling in Pathogenic Bacteria.

    Science.gov (United States)

    Clark, Emily L; Emmadi, Madhu; Krupp, Katharine L; Podilapu, Ananda R; Helble, Jennifer D; Kulkarni, Suvarn S; Dube, Danielle H

    2016-12-16

    Bacterial glycans contain rare, exclusively bacterial monosaccharides that are frequently linked to pathogenesis and essentially absent from human cells. Therefore, bacterial glycans are intriguing molecular targets. However, systematic discovery of bacterial glycoproteins is hampered by the presence of rare deoxy amino sugars, which are refractory to traditional glycan-binding reagents. Thus, the development of chemical tools that label bacterial glycans is a crucial step toward discovering and targeting these biomolecules. Here, we explore the extent to which metabolic glycan labeling facilitates the studying and targeting of glycoproteins in a range of pathogenic and symbiotic bacterial strains. We began with an azide-containing analog of the naturally abundant monosaccharide N-acetylglucosamine and discovered that it is not broadly incorporated into bacterial glycans, thus revealing a need for additional azidosugar substrates to broaden the utility of metabolic glycan labeling in bacteria. Therefore, we designed and synthesized analogs of the rare deoxy amino d-sugars N-acetylfucosamine, bacillosamine, and 2,4-diacetamido-2,4,6-trideoxygalactose and established that these analogs are differentially incorporated into glycan-containing structures in a range of pathogenic and symbiotic bacterial species. Further application of these analogs will refine our knowledge of the glycan repertoire in diverse bacteria and may find utility in treating a variety of infectious diseases with selectivity.

  14. Isolation and molecular identification of Vibrio spp. by sequencing of 16S rDNA from seafood, meat and meat products in Libya

    OpenAIRE

    S.M. Azwai; E.A. Alfallani; S.K. Abolghait; A.M. Garbaj; H.T. Naas; A.A. Moawad; F.T. Gammoudi; H.M. Rayes; I. Barbieri; I.M. Eldaghayes

    2016-01-01

    The genus Vibrio includes several food-borne pathogens that cause a spectrum of clinical conditions including septicemia, cholera and milder forms of gastroenteritis. Several Vibrio spp. are commonly associated with food-borne transmission including Vibrio cholerae, Vibrio parahemolyticus, and Vibrio vulnificus. Microbiological analysis for enumeration and isolation of Vibrio spp. were carried out for a total of 93 samples of seafood, meat and meat products from different geographic localitie...

  15. Antibacterial Property of a Coral-Associated Bacterium Pseudoalteromonas luteoviolacea Against Shrimp Pathogenic Vibrio harveyi (In Vitro Study

    Directory of Open Access Journals (Sweden)

    OCKY KARNA RADJASA

    2005-06-01

    Full Text Available A coral-associated bacterium was successfully screened for secondary metabolites production based on PCR amplification of the nonribosomal peptide synthetase gene and was identified as closely related to Pseudoalteromonas luteoviolacea based on its 16S rDNA.The bacterium was found to inhibit the growth of shrimp pathogenic bacterium tested, Vibrio harveyi. To characterize the inhibiting metabolite, a 279 bp long DNA fragment was obtained and the deduced amino acid sequence showed conserved signature regions for peptide synthetases and revealed a high similarity to NosD (40% identity, a multifunctional peptide synthetase from Nostoc sp. GSV224, and NdaB (44% identity, a peptide synthetase module of Nodularia spumigena.

  16. Antibacterial Property of a Coral-Associated Bacterium Pseudoalteromonas luteoviolacea Against Shrimp Pathogenic Vibrio harveyi (In Vitro Study

    Directory of Open Access Journals (Sweden)

    OCKY KARNA RADJASA

    2005-06-01

    Full Text Available A coral-associated bacterium was successfully screened for secondary metabolites production based on PCR amplification of the nonribosomal peptide synthetase gene and was identified as closely related to Pseudoalteromonas luteoviolacea based on its 16S rDNA. The bacterium was found to inhibit the growth of shrimp pathogenic bacterium tested, Vibrio harveyi. To characterize the inhibiting metabolite, a 279 bp long DNA fragment was obtained and the deduced amino acid sequence showed conserved signature regions for peptide synthetases and revealed a high similarity to NosD (40% identity, a multifunctional peptide synthetase from Nostoc sp. GSV224, and NdaB (44% identity, a peptide synthetase module of Nodularia spumigena

  17. Quorum sensing negatively regulates chitinase in Vibrio harveyi.

    Science.gov (United States)

    Defoirdt, Tom; Darshanee Ruwandeepika, H A; Karunasagar, Indrani; Boon, Nico; Bossier, Peter

    2010-02-01

    Quorum sensing, bacterial cell-to-cell communication, regulates the virulence of Vibrio harveyi towards different hosts. Chitinase can be considered as a virulence factor because it helps pathogenic bacteria to attach to the host and to penetrate its tissues (e.g. in case of shrimp). Here, we show that quorum sensing negatively regulates chitinase in V. harveyi. Chitinolytic activity towards natural chitin from crab shells, the synthetic chitin derivative chitin azure, and fluorogenic chitin oligomers was significantly higher in a mutant in which the quorum-sensing system is completely inactivated when compared with a mutant in which the system is maximally active. Furthermore, the addition of signal molecule containing cell-free culture fluids decreased chitinase activity in a Harveyi Autoinducer 1 and Autoinducer 2-deficient double mutant. Finally, chitinase A mRNA levels were fivefold lower in the mutant in which the quorum-sensing system is maximally active when compared with the mutant in which the system is completely inactivated. [Correction added on 25 September 2009, after first online publication: the preceding sentence was corrected from 'Finally, chitinase A mRNA levels were fivefold lower in the mutant in which the quorum-sensing system is completely inactivated when compared with the mutant in which the system is maximally active.'] We argue that this regulation might help the vibrios to switch between host-associated and free-living life styles. © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.

  18. The squid-Vibrio symbioses: from demes to genes.

    Science.gov (United States)

    Kimbell, Jennifer R; McFall-Ngai, Margaret J

    2003-04-01

    The monospecific light organ association between the Hawaiian sepiolid squid Euprymna scolopes and the marine luminous bacterium Vibrio fischeri has been used as a model for the study of the most common type of coevolved animal-bacterial interaction; i.e., the association of Gram-negative bacteria with the extracellular apical surfaces of polarized epithelia. Analysis of the squid-vibrio symbiosis has ranged from characterizations of the harvesting mechanisms by which the host ensures colonization by the appropriate symbiont to identification of bacteria-induced changes in host gene expression that accompany the establishment and maintenance of the relationship. Studies of this model have been enhanced by extensive collaboration with microbiologists, who are able to manipulate the genetics of the bacterial symbiont. The results of our studies have indicated that initiation and persistence of the association requires a complex, reciprocal molecular dialogue between these two phylogenetically distant partners.

  19. Intracellular phase for an extracellular bacterial pathogen: MgtC shows the way

    Directory of Open Access Journals (Sweden)

    Audrey Bernut

    2015-08-01

    Full Text Available Pseudomonas aeruginosa is an extracellular pathogen known to impair host phagocytic functions. However, our recent results identify MgtC as a novel actor in P. aeruginosa virulence, which plays a role in an intramacrophage phase of this pathogen. In agreement with its intracellular function, P. aeruginosa mgtC gene expression is strongly induced when the bacteria reside within macrophages. MgtC was previously known as a horizontally-acquired virulence factor important for multiplication inside macrophages in several intracellular bacterial pathogens. MgtC thus provides a singular example of a virulence determinant that subverts macrophages both in intracellular and extracellular pathogens. Moreover, we demonstrate that P. aeru-ginosa MgtC is required for optimal growth in Mg2+ deprived medium, a property shared by MgtC factors from intracellular pathogens and, under Mg2+ limitation, P. aeruginosaMgtC prevents biofilm formation. We propose that MgtC has a similar function in intracellular and extracellular pathogens, which contributes to macrophage resistance and fine-tune adaptation to the host in relation to the different bacterial lifestyles. MgtC thus appears as an attractive target for antivirulence strategies and our work provides a natural peptide as MgtC antagonist, which paves the way for the development of MgtC inhibitors.

  20. A Rab-centric perspective of bacterial pathogen-occupied vacuoles.

    Science.gov (United States)

    Sherwood, Racquel Kim; Roy, Craig R

    2013-09-11

    The ability to create and maintain a specialized organelle that supports bacterial replication is an important virulence property for many intracellular pathogens. Living in a membrane-bound vacuole presents inherent challenges, including the need to remodel a plasma membrane-derived organelle into a novel structure that will expand and provide essential nutrients to support replication, while also having the vacuole avoid membrane transport pathways that target bacteria for destruction in lysosomes. It is clear that pathogenic bacteria use different strategies to accomplish these tasks. The dynamics by which host Rab GTPases associate with pathogen-occupied vacuoles provide insight into the mechanisms used by different bacteria to manipulate host membrane transport. In this review we highlight some of the strategies bacteria use to maintain a pathogen-occupied vacuole by focusing on the Rab proteins involved in biogenesis and maintenance of these novel organelles. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Antibiotic Resistant Salmonella and Vibrio Associated with Farmed Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    Sanjoy Banerjee

    2012-01-01

    Full Text Available Salmonella and Vibrio species were isolated and identified from Litopenaeus vannamei cultured in shrimp farms. Shrimp samples showed occurrence of 3.3% of Salmonella and 48.3% of Vibrio. The isolates were also screened for antibiotic resistance to oxolinic acid, sulphonamides, tetracycline, sulfamethoxazole/trimethoprim, norfloxacin, ampicillin, doxycycline hydrochloride, erythromycin, chloramphenicol, and nitrofurantoin. Salmonella enterica serovar Corvallis isolated from shrimp showed individual and multiple antibiotic resistance patterns. Five Vibrio species having individual and multiple antibiotic resistance were also identified. They were Vibrio cholerae (18.3%, V. mimicus (16.7%, V. parahaemolyticus (10%, V. vulnificus (6.7%, and V. alginolyticus (1.7%. Farm owners should be concerned about the presence of these pathogenic bacteria which also contributes to human health risk and should adopt best management practices for responsible aquaculture to ensure the quality of shrimp.

  2. Host-Derived Sialic Acids Are an Important Nutrient Source Required for Optimal Bacterial Fitness In Vivo.

    Science.gov (United States)

    McDonald, Nathan D; Lubin, Jean-Bernard; Chowdhury, Nityananda; Boyd, E Fidelma

    2016-04-12

    A major challenge facing bacterial intestinal pathogens is competition for nutrient sources with the host microbiota.Vibrio cholerae is an intestinal pathogen that causes cholera, which affects millions each year; however, our knowledge of its nutritional requirements in the intestinal milieu is limited. In this study, we demonstrated that V. cholerae can grow efficiently on intestinal mucus and its component sialic acids and that a tripartite ATP-independent periplasmic SiaPQM strain, transporter-deficient mutant NC1777, was attenuated for colonization using a streptomycin-pretreated adult mouse model. In in vivo competition assays, NC1777 was significantly outcompeted for up to 3 days postinfection. NC1777 was also significantly outcompeted in in vitro competition assays in M9 minimal medium supplemented with intestinal mucus, indicating that sialic acid uptake is essential for fitness. Phylogenetic analyses demonstrated that the ability to utilize sialic acid was distributed among 452 bacterial species from eight phyla. The majority of species belonged to four phyla, Actinobacteria (members of Actinobacillus, Corynebacterium, Mycoplasma, and Streptomyces), Bacteroidetes (mainly Bacteroides, Capnocytophaga, and Prevotella), Firmicutes (members of Streptococcus, Staphylococcus, Clostridium, and Lactobacillus), and Proteobacteria (including Escherichia, Shigella, Salmonella, Citrobacter, Haemophilus, Klebsiella, Pasteurella, Photobacterium, Vibrio, and Yersinia species), mostly commensals and/or pathogens. Overall, our data demonstrate that the ability to take up host-derived sugars and sialic acid specifically allows V. cholerae a competitive advantage in intestinal colonization and that this is a trait that is sporadic in its occurrence and phylogenetic distribution and ancestral in some genera but horizontally acquired in others. Sialic acids are nine carbon amino sugars that are abundant on all mucous surfaces. The deadly human pathogen Vibrio cholerae contains

  3. Vibrio trends in the ecology of the Venice lagoon.

    Science.gov (United States)

    Rahman, Mohammad Shamsur; Martino, Maria Elena; Cardazzo, Barbara; Facco, Pierantonio; Bordin, Paola; Mioni, Renzo; Novelli, Enrico; Fasolato, Luca

    2014-04-01

    Vibrio is a very diverse genus that is responsible for different human and animal diseases. The accurate identification of Vibrio at the species level is important to assess the risks related to public health and diseases caused by aquatic organisms. The ecology of Vibrio spp., together with their genetic background, represents an important key for species discrimination and evolution. Thus, analyses of population structure and ecology association are necessary for reliable characterization of bacteria and to investigate whether bacterial species are going through adaptation processes. In this study, a population of Vibrionaceae was isolated from shellfish of the Venice lagoon and analyzed in depth to study its structure and distribution in the environment. A multilocus sequence analysis (MLSA) was developed on the basis of four housekeeping genes. Both molecular and biochemical approaches were used for species characterization, and the results were compared to assess the consistency of the two methods. In addition, strain ecology and the association between genetic information and environment were investigated through statistical models. The phylogenetic and population analyses achieved good species clustering, while biochemical identification was demonstrated to be imprecise. In addition, this study provided a fine-scale overview of the distribution of Vibrio spp. in the Venice lagoon, and the results highlighted a preferential association of the species toward specific ecological variables. These findings support the use of MLSA for taxonomic studies and demonstrate the need to consider environmental information to obtain broader and more accurate bacterial characterization.

  4. Diversity and dynamics of the Vibrio community in well water used for drinking in Guinea-Bissau (West Africa).

    Science.gov (United States)

    Machado, A; Bordalo, A A

    2014-09-01

    Bacteria of the genus Vibrio are ubiquitous in aquatic environments and can be found either in culturable or in a viable but nonculturable (VBNC) state. The genus comprises many pathogenic species accountable for water and food-borne diseases that prove to be fatal, especially in developing countries, as in Guinea-Bissau (West Africa), where cholera is endemic. In order to ascertain the abundance and structure of Vibrio spp. community in well waters that serve as the sole source of water for the population, quantitative polymerase chain reaction (qPCR), PCR-denaturant gradient gel electrophoresis (DGGE), and cloning approaches were used. Results suggest that Vibrio spp. were present throughout the year in acidic, freshwater wells with a seasonal community composition shift. Vibrio spp. abundance was in accordance with the abundance found in coastal environments. Sequences closely related to pathogenic Vibrio species were retrieved from well water revealing exposure of the population to such pathogens. pH, ammonium, and turbidity, regulated by the rain pattern, seem to be the variables that contributed mostly to the shaping and selection of the Vibrio spp. community. These results reinforce the evidence for water monitoring with culture-independent methods and the clear need to create/recover water infrastructures and a proper water resources management in West African countries with similar environmental conditions.

  5. Hemocytes from Pediculus humanus humanus are hosts for human bacterial pathogens.

    Directory of Open Access Journals (Sweden)

    Eric eGhigo

    2015-01-01

    Full Text Available Pediculus humanus humanus is an human ectoparasite which represents a serious public health threat because it is vector for pathogenic bacteria. It is important to understand and identify where bacteria reside in human body lice to define new strategies to counterstroke the capacity of vectorization of the bacterial pathogens by body lice. It is known that phagocytes from vertebrates can be hosts or reservoirs for several microbes. Therefore, we wondered if Pediculus humanus humanus phagocytes could hide pathogens. In this study, we characterized the phagocytes from Pediculus humanus humanus and evaluated their contribution as hosts for human pathogens such as Rickettsia prowazekii, Bartonella quintana and Acinetobacter baumannii.

  6. Bacterial Serine/Threonine Protein Kinases in Host-Pathogen Interactions*

    Science.gov (United States)

    Canova, Marc J.; Molle, Virginie

    2014-01-01

    In bacterial pathogenesis, monitoring and adapting to the dynamically changing environment in the host and an ability to disrupt host immune responses are critical. The virulence determinants of pathogenic bacteria include the sensor/signaling proteins of the serine/threonine protein kinase (STPK) family that have a dual role of sensing the environment and subverting specific host defense processes. STPKs can sense a wide range of signals and coordinate multiple cellular processes to mount an appropriate response. Here, we review some of the well studied bacterial STPKs that are essential virulence factors and that modify global host responses during infection. PMID:24554701

  7. Bacterial serine/threonine protein kinases in host-pathogen interactions.

    Science.gov (United States)

    Canova, Marc J; Molle, Virginie

    2014-04-04

    In bacterial pathogenesis, monitoring and adapting to the dynamically changing environment in the host and an ability to disrupt host immune responses are critical. The virulence determinants of pathogenic bacteria include the sensor/signaling proteins of the serine/threonine protein kinase (STPK) family that have a dual role of sensing the environment and subverting specific host defense processes. STPKs can sense a wide range of signals and coordinate multiple cellular processes to mount an appropriate response. Here, we review some of the well studied bacterial STPKs that are essential virulence factors and that modify global host responses during infection.

  8. Characterisation of bacterial brown spot pathogen from dry bean ...

    African Journals Online (AJOL)

    Pseudomonas syringae pv. syringae (Pss) causes bacterial brown spot (BBS) of beans (Phaseolus vulgaris L.), with yield losses of up to 55% in South Africa. Pss has a wide host range and for many of these, the pathogen has been biochemically and genetically characterised. However, few studies have been conducted on ...

  9. Recovery and evolutionary analysis of complete integron gene cassette arrays from Vibrio

    Directory of Open Access Journals (Sweden)

    Gillings Michael R

    2006-01-01

    Full Text Available Abstract Background Integrons are genetic elements capable of the acquisition, rearrangement and expression of genes contained in gene cassettes. Gene cassettes generally consist of a promoterless gene associated with a recombination site known as a 59-base element (59-be. Multiple insertion events can lead to the assembly of large integron-associated cassette arrays. The most striking examples are found in Vibrio, where such cassette arrays are widespread and can range from 30 kb to 150 kb. Besides those found in completely sequenced genomes, no such array has yet been recovered in its entirety. We describe an approach to systematically isolate, sequence and annotate large integron gene cassette arrays from bacterial strains. Results The complete Vibrio sp. DAT722 integron cassette array was determined through the streamlined approach described here. To place it in an evolutionary context, we compare the DAT722 array to known vibrio arrays and performed phylogenetic analyses for all of its components (integrase, 59-be sites, gene cassette encoded genes. It differs extensively in terms of genomic context as well as gene cassette content and organization. The phylogenetic tree of the 59-be sites collectively found in the Vibrio gene cassette pool suggests frequent transfer of cassettes within and between Vibrio species, with slower transfer rates between more phylogenetically distant relatives. We also identify multiple cases where non-integron chromosomal genes seem to have been assembled into gene cassettes and others where cassettes have been inserted into chromosomal locations outside integrons. Conclusion Our systematic approach greatly facilitates the isolation and annotation of large integrons gene cassette arrays. Comparative analysis of the Vibrio sp. DAT722 integron obtained through this approach to those found in other vibrios confirms the role of this genetic element in promoting lateral gene transfer and suggests a high rate of gene

  10. Saharan dust nutrients promote Vibrio bloom formation in marine surface waters.

    Science.gov (United States)

    Westrich, Jason R; Ebling, Alina M; Landing, William M; Joyner, Jessica L; Kemp, Keri M; Griffin, Dale W; Lipp, Erin K

    2016-05-24

    Vibrio is a ubiquitous genus of marine bacteria, typically comprising a small fraction of the total microbial community in surface waters, but capable of becoming a dominant taxon in response to poorly characterized factors. Iron (Fe), often restricted by limited bioavailability and low external supply, is an essential micronutrient that can limit Vibrio growth. Vibrio species have robust metabolic capabilities and an array of Fe-acquisition mechanisms, and are able to respond rapidly to nutrient influx, yet Vibrio response to environmental pulses of Fe remains uncharacterized. Here we examined the population growth of Vibrio after natural and simulated pulses of atmospherically transported Saharan dust, an important and episodic source of Fe to tropical marine waters. As a model for opportunistic bacterial heterotrophs, we demonstrated that Vibrio proliferate in response to a broad range of dust-Fe additions at rapid timescales. Within 24 h of exposure, strains of Vibrio cholerae and Vibrio alginolyticus were able to directly use Saharan dust-Fe to support rapid growth. These findings were also confirmed with in situ field studies; arrival of Saharan dust in the Caribbean and subtropical Atlantic coincided with high levels of dissolved Fe, followed by up to a 30-fold increase of culturable Vibrio over background levels within 24 h. The relative abundance of Vibrio increased from ∼1 to ∼20% of the total microbial community. This study, to our knowledge, is the first to describe Vibrio response to Saharan dust nutrients, having implications at the intersection of marine ecology, Fe biogeochemistry, and both human and environmental health.

  11. Bithionol blocks pathogenicity of bacterial toxins, ricin, and Zika virus

    Science.gov (United States)

    Disease pathways form overlapping networks, and hub proteins represent attractive targets for broad-spectrum drugs. Using bacterial toxins as a proof of concept, we describe a new approach of discovering broad-spectrum therapies capable of inhibiting host proteins that mediate multiple pathogenic pa...

  12. Temperature Effect Study on Growth and Survival of Pathogenic Vibrio parahaemolyticus in Jinjiang Oyster (Crassostrea rivularis with Rapid Count Method

    Directory of Open Access Journals (Sweden)

    Yuan Wang

    2018-01-01

    Full Text Available The growth of Vibrio parahaemolyticus (V. parahaemolyticus in oysters during postharvest storage increases the possibility of its infection in humans. In this work, to investigate the growth or survival profiles in different media, pathogenic V. parahaemolyticus in APW, Jinjiang oyster (JO, Crassostrea rivularis slurry, and live JO were studied under different temperatures. All the strain populations were counted through our double-layer agar plate (DLAP method. In APW, the pathogenic V. parahaemolyticus showed continuous growth under 15, 25, and 35°C, while a decline in behavior was displayed under 5°C. The similar survival trend of pathogenic V. parahaemolyticus in JO slurry and live JO was observed under 5, 25, and 35°C, except the delayed growth or decline profile compared to APW. Under 15°C, they displayed decline and growth profile in JO slurry and live JO, respectively. These results indicate the different sensitivity of pathogenic V. parahaemolyticus in these matrices to temperature variation. Furthermore, nonpathogenic V. parahaemolyticus displayed little difference in survival profiles when inoculated in live JO under corresponding temperatures. The results indicate that inhibition or promotion effect could be regulated under different storage temperature for both pathogenic and nonpathogenic strains. Besides, the DLAP method showed the obvious quickness and efficiency during the bacteria count.

  13. Cholix Toxin, a Novel ADP-ribosylating Factor from Vibrio cholerae

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, Rene; Purdy, Alexandra E.; Fieldhouse, Robert J.; Kimber, Matthew S.; Bartlett, Douglas H.; Merrill, A. Rod (Guelph); (NIH); (UCSD)

    2008-07-15

    The ADP-ribosyltransferases are a class of enzymes that display activity in a variety of bacterial pathogens responsible for causing diseases in plants and animals, including those affecting mankind, such as diphtheria, cholera, and whooping cough. We report the characterization of a novel toxin from Vibrio cholerae, which we call cholix toxin. The toxin is active against mammalian cells (IC50 = 4.6 {+-} 0.4 ng/ml) and crustaceans (Artemia nauplii LD50 = 10 {+-} 2 {mu}g/ml). Here we show that this toxin is the third member of the diphthamide-specific class of ADP-ribose transferases and that it possesses specific ADP-ribose transferase activity against ribosomal eukaryotic elongation factor 2. We also describe the high resolution crystal structures of the multidomain toxin and its catalytic domain at 2.1- and 1.25-{angstrom} resolution, respectively. The new structural data show that cholix toxin possesses the necessary molecular features required for infection of eukaryotes by receptor-mediated endocytosis, translocation to the host cytoplasm, and inhibition of protein synthesis by specific modification of elongation factor 2. The crystal structures also provide important insight into the structural basis for activation of toxin ADP-ribosyltransferase activity. These results indicate that cholix toxin may be an important virulence factor of Vibrio cholerae that likely plays a significant role in the survival of the organism in an aquatic environment.

  14. The pore-forming bacterial effector, VopQ, halts autophagic turnover.

    Science.gov (United States)

    Sreelatha, Anju; Orth, Kim; Starai, Vincent J

    2013-12-01

    Vibrio parahemolyticus Type III effector VopQ is both necessary and sufficient to induce autophagy within one hour of infection. We demonstrated that VopQ interacts with the Vo domain of the conserved vacuolar H(+)-ATPase. Membrane-associated VopQ subsequently forms pores in the membranes of acidic compartments, resulting in immediate release of protons without concomitant release of lumenal protein contents. These studies show how a bacterial pathogen can compromise host ion potentials using a gated pore-forming effector to equilibrate levels of small molecules found in endolysosomal compartments and disrupt cellular processes such as autophagy.

  15. Infection Vibrio sp. Bacteria on Kappaphycus Seaweed Varieties Brown and Green

    Science.gov (United States)

    Irmawati, Yuni; Sudirjo, Fien

    2017-10-01

    Disease in seaweed or ice-ice, until today is still a major problem in the cultivation of seaweed. Changes in extreme environmental conditions is a trigger factor of ice-ice, which can result in seaweed susceptible to infection with pathogenic microorganisms, such as bacteria Vibrio sp. This research aims to determine the bacteria Vibrio sp. infection in seaweed Kappaphycus varieties of brown and green. Vibrio sp. bacteria isolated in the infected seaweed thallus ice-ice, grown on TCBS media, purification, gram staining and biochemical tests. Vibrio sp. infected to seaweed Kappaphycus brown and green varieties in containers controlled by different density, 105 CFU/ml, 106 CFU/ml and 107CFU/ml. Observations were made to change clinical effect in thallus seaweed for 14 days of observation. The results obtained show that the levels of infection bacteria Vibrio sp. higher in seaweed Kappaphycus green varieties both in density 105 CFU/ml, 106 CFU/ml and 107CFU/ml, when compared with varieties brown.

  16. Comparison of classifications of aptamers against Vibrio ...

    African Journals Online (AJOL)

    As a novel method to detect the pathogen Vibrio alginolyticus, 45 aptamers were previously selected and tested. In order to better understand the properties of these aptamers, it was essential to classify these aptamers based on appropriate criteria. The primary structure of 45 aptamers against V. alginolyticus was analyzed ...

  17. Survival of foodborne pathogens (Escherichia coli O157:H7, Salmonella Typhimurium, Staphylococcus aureus, Listeria monocytogenes, and Vibrio parahaemolyticus) in raw ready-to-eat crab marinated in soy sauce.

    Science.gov (United States)

    Cho, T J; Kim, N H; Kim, S A; Song, J H; Rhee, M S

    2016-12-05

    Knowing the survival characteristics of foodborne pathogens in raw ready-to-eat (RTE) seafood is the key to predicting whether they pose a microbiological hazard. The present study examined the survival of Escherichia coli O157:H7, Salmonella Typhimurium, Vibrio parahaemoliticus, Listeria monocytogenes, and Staphylococcus aureus in raw RTE crab marinated in soy sauce. Inoculated crabs (initial bacterial population=4.1-4.4logCFU/g) were immersed in soy sauce and then stored at refrigeration (5°C) or room temperature (22°C) for up to 28days. At 5°C, all bacteria (except V. parahaemolyticus) survived in crab samples until Day 28 (counts of 1.4, 1.6, 3.1, 3.2 log CFU/g for E. coli O157:H7, S. Typhimurium, L. monocytogenes, and S. aureus, respectively). However, at 22°C, all tested bacteria were more susceptible to the antimicrobial effects of marination. Regardless of temperature, foodborne pathogens attached to crab samples were more resistant to marination than those suspended in soy sauce samples; however, the survival pattern for each species was different. Gram-positive bacteria were most resistant to marination conditions (high salinity, low pH), whereas V. parahaemolyticus was extremely susceptible. Marination is the only antibacterial step in the manufacturing processes; however, the results presented herein reveal that this is not sufficient to inactivate foodborne pathogens. In particular, the survival of pathogens on crabs at refrigeration temperature may pose a major hazard for the consumption of raw RTE seafood. Thus, appropriate decontamination methods and implementation of safety management practices are needed. This study provides predictive microbiological information of foodborne pathogens in raw RTE seafood with marination. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Exoproteome and Secretome Derived Broad Spectrum Novel Drug and Vaccine Candidates in Vibrio cholerae Targeted by Piper betel Derived Compounds

    Science.gov (United States)

    Barh, Debmalya; Barve, Neha; Gupta, Krishnakant; Chandra, Sudha; Jain, Neha; Tiwari, Sandeep; Leon-Sicairos, Nidia; Canizalez-Roman, Adrian; Rodrigues dos Santos, Anderson; Hassan, Syed Shah; Almeida, Síntia; Thiago Jucá Ramos, Rommel; Augusto Carvalho de Abreu, Vinicius; Ribeiro Carneiro, Adriana; de Castro Soares, Siomar; Luiz de Paula Castro, Thiago; Miyoshi, Anderson; Silva, Artur; Kumar, Anil; Narayan Misra, Amarendra; Blum, Kenneth; Braverman, Eric R.; Azevedo, Vasco

    2013-01-01

    Vibrio cholerae is the causal organism of the cholera epidemic, which is mostly prevalent in developing and underdeveloped countries. However, incidences of cholera in developed countries are also alarming. Because of the emergence of new drug-resistant strains, even though several generic drugs and vaccines have been developed over time, Vibrio infections remain a global health problem that appeals for the development of novel drugs and vaccines against the pathogen. Here, applying comparative proteomic and reverse vaccinology approaches to the exoproteome and secretome of the pathogen, we have identified three candidate targets (ompU, uppP and yajC) for most of the pathogenic Vibrio strains. Two targets (uppP and yajC) are novel to Vibrio, and two targets (uppP and ompU) can be used to develop both drugs and vaccines (dual targets) against broad spectrum Vibrio serotypes. Using our novel computational approach, we have identified three peptide vaccine candidates that have high potential to induce both B- and T-cell-mediated immune responses from our identified two dual targets. These two targets were modeled and subjected to virtual screening against natural compounds derived from Piper betel. Seven compounds were identified first time from Piper betel to be highly effective to render the function of these targets to identify them as emerging potential drugs against Vibrio. Our preliminary validation suggests that these identified peptide vaccines and betel compounds are highly effective against Vibrio cholerae. Currently we are exhaustively validating these targets, candidate peptide vaccines, and betel derived lead compounds against a number of Vibrio species. PMID:23382822

  19. Exoproteome and secretome derived broad spectrum novel drug and vaccine candidates in Vibrio cholerae targeted by Piper betel derived compounds.

    Directory of Open Access Journals (Sweden)

    Debmalya Barh

    Full Text Available Vibrio cholerae is the causal organism of the cholera epidemic, which is mostly prevalent in developing and underdeveloped countries. However, incidences of cholera in developed countries are also alarming. Because of the emergence of new drug-resistant strains, even though several generic drugs and vaccines have been developed over time, Vibrio infections remain a global health problem that appeals for the development of novel drugs and vaccines against the pathogen. Here, applying comparative proteomic and reverse vaccinology approaches to the exoproteome and secretome of the pathogen, we have identified three candidate targets (ompU, uppP and yajC for most of the pathogenic Vibrio strains. Two targets (uppP and yajC are novel to Vibrio, and two targets (uppP and ompU can be used to develop both drugs and vaccines (dual targets against broad spectrum Vibrio serotypes. Using our novel computational approach, we have identified three peptide vaccine candidates that have high potential to induce both B- and T-cell-mediated immune responses from our identified two dual targets. These two targets were modeled and subjected to virtual screening against natural compounds derived from Piper betel. Seven compounds were identified first time from Piper betel to be highly effective to render the function of these targets to identify them as emerging potential drugs against Vibrio. Our preliminary validation suggests that these identified peptide vaccines and betel compounds are highly effective against Vibrio cholerae. Currently we are exhaustively validating these targets, candidate peptide vaccines, and betel derived lead compounds against a number of Vibrio species.

  20. Inhibition of Vibrio anguillarum by Pseudomonas fluorescens AH2, a possible probiotic treatment of fish

    DEFF Research Database (Denmark)

    Gram, Lone; Melchiorsen, Jette; Spanggaard, Bettina

    1999-01-01

    To study the possible use of probiotics in fish farming, we evaluated the in vitro and in vivo antagonism of antibacterial strain Pseudomonas fluorescens strain AH2 against the fish- pathogenic bacterium Vibrio anguillarum. As iron is important in virulence and bacterial interactions, the effect....... fluorescens AH2 inhibited the growth of V. anguillarum during coculture, independently of the iron concentration, when the initial count of the antagonist was 100 to 1,000 times greater that of the fish pathogen. These in vitro results were successfully repeated in vivo. A probiotic effect in vivo was tested...... by exposing rainbow trout (Oncorynchus mykiss Walbaum) to P. fluorescens AH2 at a density of 10(5) CFU/ml for 5 days before a challenge with V. anguillarum at 10(4) to 10(5) CFU/ml for 1 h. Some fish were also exposed to P. fluorescens AH2 at 10(7) CFU/ml during the 1-h infection. The combined probiotic...

  1. Competitive Survival of Escherichia coli, Vibrio cholerae, Salmonella typhimurium and Shigella dysenteriae in Riverbed Sediments.

    Science.gov (United States)

    Abia, Akebe Luther King; Ubomba-Jaswa, Eunice; Momba, Maggy Ndombo Benteke

    2016-11-01

    Studies on the survival of bacterial enteric pathogens in riverbed sediments have mostly focused on individual organisms. Reports on the competitive survival of these pathogens in riverbed sediments under the same experimental setup are limited. We investigated the survival of Escherichia coli, Salmonella enterica ser. Typhimurium, Vibrio cholerae and Shigella dysenteriae in riverbed sediments of the Apies River. Experiments were performed in flow chambers containing three sediment types and connected to aquarium pumps immersed in river water to maintain continuous water circulation. Each chamber was inoculated with ~10 7  CFU/mL (final concentration) of each microorganism and kept at 4, 20 and 30 °C. Chambers were sampled on days 0, 1, 2, 7, 14 and 28. At 4 °C, only E. coli and S. typhimurium survived throughout the 28 experimental days. V. cholerae had the shortest survival time at this temperature and was not detected in any of the sediment chambers 24 h after inoculation. S. dysenteriae only survived until day 7. At an increased temperature of 20 °C, only S. dysenteriae was not detected on day 28 of the experiment. At 30 °C, V. cholerae and Salmonella survived longer (28 days) than E. coli (14 days) and S. dysenteriae (4 days). Vibrio cholerae was shown to have the highest T 90 values (32 days) in all sediment types at 20 and 30 °C. We conclude that the sediments of the Apies River present a favourable environment for the survival of indicator and pathogenic bacteria depending on the prevailing temperature.

  2. Biochemical characterization of a catalase from Vibrio vulnificus, a pathogen that causes gastroenteritis.

    Science.gov (United States)

    Pei, Jihua; Wang, Haijun; Wu, Limin; Xia, Shenglong; Xu, Changlong; Zheng, Bo; Li, Tianya; Jiang, Yi

    2017-01-01

    Vibrio vulnificus is a virulent human pathogen causing gastroenteritis and possibly life threatening septicemia in patients. Most V. vulnificus are catalase positive and can deactivate peroxides, thus allowing them to survive within the host. In the study presented here, a catalase from V. vulnificus (CAT-Vv) was purified to homogeneity after expression in Escherichia coli. The kinetics and function of CAT-Vv were examined. CAT-Vv catalyzed the reduction of H 2 O 2 at an optimal pH of 7.5 and temperature of 35°C. The V max and K m values were 65.8±1.2 U/mg and 10.5±0.7 mM for H 2 O 2 , respectively. Mutational analysis suggests that amino acids involved in heme binding play a key role in the catalysis. Quantitative reverse transcription-PCR revealed that in V. vulnificus, transcription of CAT-Vv was upregulated by low salinity, heat, and oxidative stresses. This research gives new clues to help inhibit the growth of, and infection by V. vulnificus.

  3. Alien vs. predator: bacterial challenge alters coral microbiomes unless controlled by Halobacteriovorax predators

    Directory of Open Access Journals (Sweden)

    Rory M. Welsh

    2017-05-01

    Full Text Available Coral microbiomes are known to play important roles in organismal health, response to environmental stress, and resistance to disease. The coral microbiome contains diverse assemblages of resident bacteria, ranging from defensive and metabolic symbionts to opportunistic bacteria that may turn harmful in compromised hosts. However, little is known about how these bacterial interactions influence the mechanism and controls of overall structure, stability, and function of the microbiome. We sought to test how coral microbiome dynamics were affected by interactions between two bacteria: Vibrio coralliilyticus, a known temperature-dependent pathogen of some corals, and Halobacteriovorax, a unique bacterial predator of Vibrio and other gram-negative bacteria. We challenged reef-building coral with V. coralliilyticus in the presence or absence of Halobacteriovorax predators, and monitored microbial community dynamics with 16S rRNA gene profiling time-series. Vibrio coralliilyticus inoculation increased the mean relative abundance of Vibrios by greater than 35% from the 4 to 8 hour time point, but not in the 24 & 32 hour time points. However, strong secondary effects of the Vibrio challenge were also observed for the rest of the microbiome such as increased richness (observed species, and reduced stability (increased beta-diversity. Moreover, after the transient increase in Vibrios, two lineages of bacteria (Rhodobacterales and Cytophagales increased in coral tissues, suggesting that V. coralliilyticus challenge opens niche space for these known opportunists. Rhodobacterales increased from 6.99% (±0.05 SEM to a maximum mean relative abundance of 48.75% (±0.14 SEM in the final time point and Cytophagales from <0.001% to 3.656%. Halobacteriovorax predators are commonly present at low-abundance on coral surfaces. Based on the keystone role of predators in many ecosystems, we hypothesized that Halobacteriovorax predators might help protect corals by

  4. Host-Derived Sialic Acids Are an Important Nutrient Source Required for Optimal Bacterial Fitness In Vivo

    Directory of Open Access Journals (Sweden)

    Nathan D. McDonald

    2016-04-01

    Full Text Available A major challenge facing bacterial intestinal pathogens is competition for nutrient sources with the host microbiota. Vibrio cholerae is an intestinal pathogen that causes cholera, which affects millions each year; however, our knowledge of its nutritional requirements in the intestinal milieu is limited. In this study, we demonstrated that V. cholerae can grow efficiently on intestinal mucus and its component sialic acids and that a tripartite ATP-independent periplasmic SiaPQM strain, transporter-deficient mutant NC1777, was attenuated for colonization using a streptomycin-pretreated adult mouse model. In in vivo competition assays, NC1777 was significantly outcompeted for up to 3 days postinfection. NC1777 was also significantly outcompeted in in vitro competition assays in M9 minimal medium supplemented with intestinal mucus, indicating that sialic acid uptake is essential for fitness. Phylogenetic analyses demonstrated that the ability to utilize sialic acid was distributed among 452 bacterial species from eight phyla. The majority of species belonged to four phyla, Actinobacteria (members of Actinobacillus, Corynebacterium, Mycoplasma, and Streptomyces, Bacteroidetes (mainly Bacteroides, Capnocytophaga, and Prevotella, Firmicutes (members of Streptococcus, Staphylococcus, Clostridium, and Lactobacillus, and Proteobacteria (including Escherichia, Shigella, Salmonella, Citrobacter, Haemophilus, Klebsiella, Pasteurella, Photobacterium, Vibrio, and Yersinia species, mostly commensals and/or pathogens. Overall, our data demonstrate that the ability to take up host-derived sugars and sialic acid specifically allows V. cholerae a competitive advantage in intestinal colonization and that this is a trait that is sporadic in its occurrence and phylogenetic distribution and ancestral in some genera but horizontally acquired in others.

  5. Isolation and characterization of pathogenic Vibrio alginolyticus from sea cage cultured cobia (Rachycentron canadum (Linnaeus 1766)) in India.

    Science.gov (United States)

    Rameshkumar, P; Nazar, A K A; Pradeep, M A; Kalidas, C; Jayakumar, R; Tamilmani, G; Sakthivel, M; Samal, A K; Sirajudeen, S; Venkatesan, V; Nazeera, B M

    2017-11-01

    Mass mortalities of cobia, Rachycentron canadum, sub-adults occurred during August 2013 in cage culture in the Gulf of Mannar, Mandapam Tamil Nadu, India. The epizootic of disease was started with typical classical clinical signs followed by acute mortality. Grossly, severe haemorrhage and congestion were observed in the gastric mucosa. The abdomen was distended with peritoneal fluid. The heart revealed haemopericardium and fibrinous pericardium. Histologically, the gastric mucosa showed severe erosion and necrosis. Haemorrhagic pericarditis and an increased size of the melano macrophage centre (MMC) in the tail kidney were other histopathological changes. Vibrio sp. was isolated from the gastric lesions and heart blood swab of moribund fishes and it was found to be virulent to the cobia fingerlings. After the challenge, the same bacterium could be re-isolated from moribund fingerlings. The 16S ribosomal RNA of the isolate was amplified and blast analysis of the sequence confirmed that the pathogen was Vibrio alginolyticus. The confirmation was also correlated with its cultural, biochemical and pathomorphological changes. This is the second report and the first incidence of epizootics with severe pathological lesions in cultured cobia in India. The study throws light on the pathology of vibriosis. By practising cage farm management measures, occurrences of infection may be prevented. The epizootics of vibriosis caused serious economic losses to farmers. Natural blooms of the pathogen can be prevented by sea cage management measures such as, changing the inner net of the cages, changing the location of the cages to relatively clean water (about 50 m apart) from the affected site and providing shade over the cages while the water temperature rises. Supplementation of the feed with immunostimulants and mineral mixture may be practised to improve the immune response against infection. Early diagnosis and sea cage management measures may prevent occurrences of the

  6. Importance of Soil Amendments: Survival of Bacterial Pathogens in Manure and Compost Used as Organic Fertilizers.

    Science.gov (United States)

    Sharma, Manan; Reynnells, Russell

    2016-08-01

    Biological soil amendments (BSAs) such as manure and compost are frequently used as organic fertilizers to improve the physical and chemical properties of soils. However, BSAs have been known to be a reservoir for enteric bacterial pathogens such as enterohemorrhagic Escherichia coli (EHEC), Salmonella spp., and Listeria spp. There are numerous mechanisms by which manure may transfer pathogens to growing fruits and vegetables, and several outbreaks of infections have been linked to manure-related contamination of leafy greens. In the United States several commodity-specific guidelines and current and proposed federal rules exist to provide guidance on the application of BSAs as fertilizers to soils, some of which require an interval between the application of manure to soils and the harvest of fruits and vegetables. This review examines the survival, persistence, and regrowth/resuscitation of bacterial pathogens in manure, biosolids, and composts. Moisture, along with climate and the physicochemical properties of soil, manure, or compost, plays a significant role in the ability of pathogens to persist and resuscitate in amended soils. Adaptation of enteric bacterial pathogens to the nonhost environment of soils may also extend their persistence in manure- or compost-amended soils. The presence of antibiotic-resistance genes in soils may also be increased by manure application. Overall, BSAs applied as fertilizers to soils can support the survival and regrowth of pathogens. BSAs should be handled and applied in a manner that reduces the prevalence of pathogens in soils and the likelihood of transfer of food-borne pathogens to fruits and vegetables. This review will focus on two BSAs-raw manure and composted manure (and other feedstocks)-and predominantly on the survival of enteric bacterial pathogens in BSAs as applied to soils as organic fertilizers.

  7. QStatin, a Selective Inhibitor of Quorum Sensing in Vibrio Species

    Directory of Open Access Journals (Sweden)

    Byoung Sik Kim

    2018-01-01

    Full Text Available Pathogenic Vibrio species cause diseases in diverse marine animals reared in aquaculture. Since their pathogenesis, persistence, and survival in marine environments are regulated by quorum sensing (QS, QS interference has attracted attention as a means to control these bacteria in aquatic settings. A few QS inhibitors of Vibrio species have been reported, but detailed molecular mechanisms are lacking. Here, we identified a novel, potent, and selective Vibrio QS inhibitor, named QStatin [1-(5-bromothiophene-2-sulfonyl-1H-pyrazole], which affects Vibrio harveyi LuxR homologues, the well-conserved master transcriptional regulators for QS in Vibrio species. Crystallographic and biochemical analyses showed that QStatin binds tightly to a putative ligand-binding pocket in SmcR, the LuxR homologue in V. vulnificus, and changes the flexibility of the protein, thereby altering its transcription regulatory activity. Transcriptome analysis revealed that QStatin results in SmcR dysfunction, affecting the expression of SmcR regulon required for virulence, motility/chemotaxis, and biofilm dynamics. Notably, QStatin attenuated representative QS-regulated phenotypes in various Vibrio species, including virulence against the brine shrimp (Artemia franciscana. Together, these results provide molecular insights into the mechanism of action of an effective, sustainable QS inhibitor that is less susceptible to resistance than other antimicrobial agents and useful in controlling the virulence of Vibrio species in aquacultures.

  8. Directed antigen delivery as a vaccine strategy for an intracellular bacterial pathogen

    Science.gov (United States)

    Bouwer, H. G. Archie; Alberti-Segui, Christine; Montfort, Megan J.; Berkowitz, Nathan D.; Higgins, Darren E.

    2006-03-01

    We have developed a vaccine strategy for generating an attenuated strain of an intracellular bacterial pathogen that, after uptake by professional antigen-presenting cells, does not replicate intracellularly and is readily killed. However, after degradation of the vaccine strain within the phagolysosome, target antigens are released into the cytosol for endogenous processing and presentation for stimulation of CD8+ effector T cells. Applying this strategy to the model intracellular pathogen Listeria monocytogenes, we show that an intracellular replication-deficient vaccine strain is cleared rapidly in normal and immunocompromised animals, yet antigen-specific CD8+ effector T cells are stimulated after immunization. Furthermore, animals immunized with the intracellular replication-deficient vaccine strain are resistant to lethal challenge with a virulent WT strain of L. monocytogenes. These studies suggest a general strategy for developing safe and effective, attenuated intracellular replication-deficient vaccine strains for stimulation of protective immune responses against intracellular bacterial pathogens. CD8+ T cell | replication-deficient | Listeria monocytogenes

  9. A conserved tad pilus promotes Vibrio vulnificus oyster colonization.

    Science.gov (United States)

    Pu, Meng; Duriez, Patrick; Arazi, Mattan; Rowe-Magnus, Dean A

    2018-02-01

    Vibrio vulnificus has the highest death rate (>35%) and per-case economic burden ($3.3 million) of any foodborne pathogen in the United States. Infections occur via open wounds or following ingestion of contaminated seafood, most infamously oysters. We isolated a 1000th generation descendant, designated NT that exhibited increased biofilm and aggregate formation relative to its parent. We identified two significant causal changes underlying these phenotypes. First, the entire 24-kb capsular polysaccharide biosynthesis locus, which is essential for virulence but inhibits biofilm formation, had been purged from the genome. However, NT formed more extensive biofilms and aggregates than a defined cps mutant, suggesting that additional factor(s) contributed to its phenotypes. Second, the expression of a tight adherence (tad) pilus locus was elevated in NT. Deletion of the associated pilin (flp) decreased NT biofilm and aggregate formation. Furthermore, NTΔflp strains were deficient relative to NT in an oyster colonization model, demonstrating a positive correlation between the biofilm and aggregation phenotypes associated with Tad pilus production and efficient bacterial retention by feeding oysters. Despite being widely distributed in the Vibrionaceae, this is the first demonstration of a bona fide physiological role for a Tad pilus in this bacterial family. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Application of Reverse Transcriptase-PCR-DGGE as a rapid method for routine determination of Vibrio spp. in foods.

    Science.gov (United States)

    Chahorm, Kanchana; Prakitchaiwattana, Cheunjit

    2018-01-02

    The aim of this research was to evaluate the feasibility of PCR-DGGE and Reverse Transcriptase-PCR-DGGE techniques for rapid detection of Vibrio species in foods. Primers GC567F and 680R were initially evaluated for amplifying DNA and cDNA of ten references Vibrio species by PCR method. The GC-clamp PCR amplicons were separated according to their sequences by the DGGE using 10% (w/v) polyacrylamide gel containing 45-70% urea and formamide denaturants. Two pair of Vibrio species, which could not be differentiated on the gel, was Vibrio fluvialis - Vibrio furnissii and Vibrio parahaemolyticus - Vibrio harveyi. To determine the detection limit, in the community of 10 reference strains containing the same viable population, distinct DNA bands of 3 species; Vibrio cholerae, Vibrio mimicus and Vibrio alginolyticus were consistently observed by PCR-DGGE technique. In fact, 5 species; Vibrio cholerae, Vibrio mimicus, Vibrio alginolyticus, Vibrio parahaemolyticus and Vibrio fluvialis consistently observed by Reverse Transcriptase-PCR-DGGE. In the community containing different viable population increasing from 10 2 to 10 5 CFU/mL, PCR-DGGE analysis only detected the two most prevalent species, while RT-PCR-DGGE detected the five most prevalent species. Therefore, Reverse Transcriptase-PCR-DGGE was also selected for detection of various Vibrio cell conditions, including viable cell (VC), injured cells from frozen cultures (IVC) and injured cells from frozen cultures with pre-enrichment (PIVC). It was found that cDNA band of all cell conditions gave the same migratory patterns, except that multiple cDNA bands of Plesiomonas shigelloides under IVC and PIVC conditions were found. When Reverse Transcriptase-PCR-DGGE was used for detecting Vibrio parahaemolyticus in the pathogen-spiked food samples, Vibrio parahaemolyticus could be detected in the spiked samples containing at least 10 2 CFU/g of this pathogen. The results obtained also corresponded to standard method (USFDA, 2004

  11. Convergent use of RhoGAP toxins by eukaryotic parasites and bacterial pathogens.

    Directory of Open Access Journals (Sweden)

    Dominique Colinet

    2007-12-01

    Full Text Available Inactivation of host Rho GTPases is a widespread strategy employed by bacterial pathogens to manipulate mammalian cellular functions and avoid immune defenses. Some bacterial toxins mimic eukaryotic Rho GTPase-activating proteins (GAPs to inactivate mammalian GTPases, probably as a result of evolutionary convergence. An intriguing question remains whether eukaryotic pathogens or parasites may use endogenous GAPs as immune-suppressive toxins to target the same key genes as bacterial pathogens. Interestingly, a RhoGAP domain-containing protein, LbGAP, was recently characterized from the parasitoid wasp Leptopilina boulardi, and shown to protect parasitoid eggs from the immune response of Drosophila host larvae. We demonstrate here that LbGAP has structural characteristics of eukaryotic RhoGAPs but that it acts similarly to bacterial RhoGAP toxins in mammals. First, we show by immunocytochemistry that LbGAP enters Drosophila immune cells, plasmatocytes and lamellocytes, and that morphological changes in lamellocytes are correlated with the quantity of LbGAP they contain. Demonstration that LbGAP displays a GAP activity and specifically interacts with the active, GTP-bound form of the two Drosophila Rho GTPases Rac1 and Rac2, both required for successful encapsulation of Leptopilina eggs, was then achieved using biochemical tests, yeast two-hybrid analysis, and GST pull-down assays. In addition, we show that the overall structure of LbGAP is similar to that of eukaryotic RhoGAP domains, and we identify distinct residues involved in its interaction with Rac GTPases. Altogether, these results show that eukaryotic parasites can use endogenous RhoGAPs as virulence factors and that despite their differences in sequence and structure, eukaryotic and bacterial RhoGAP toxins are similarly used to target the same immune pathways in insects and mammals.

  12. Potensi Ekstrak Daun Binahong (Anredera cordifolia Sebagai Penghambat Bakteri Vibrio harveyi

    Directory of Open Access Journals (Sweden)

    Gde Raka Angga Kartika

    2016-07-01

    Full Text Available Binahong (Anredera cordifolia is a plant that can treat various kinds of diseases, because this plant has a high antioxidant content and as an antibacterial and antiviral. Vibriosis disease caused by the bacterium Vibrio harveyi is a serious problem in marine and brackish culture, this disease can cause death for shrimp and fish that farmed in marine or brackish. This study aims to determine the potential of using leaf extract Binahong with different concentrations as Vibrio harveyi inhibiting bacterial growth in vitro. The method used is to test the Minimum inhibitory concentration (MIC to determine minimum levels inhibit the growth of Vibrio harveyi and Minimum Bactericidal Concentration (MBC using paper disc. The results showed the use of leaf extract Binahong (Anredera cordifolia with different concentrations significant effect on the growth of Vibrio harveyi in vitro. Binahong leaf extract (Anredera cordifolia with a concentration of 3%, 5%, 7%, 9%, 11% and 13% is only bacteriostatic which inhibits the growth of bacteria Vibrio harveyi with the best concentration obtained is equal to 13%.

  13. The host-encoded Heme Regulated Inhibitor (HRI facilitates virulence-associated activities of bacterial pathogens.

    Directory of Open Access Journals (Sweden)

    Niraj Shrestha

    Full Text Available Here we show that cells lacking the heme-regulated inhibitor (HRI are highly resistant to infection by bacterial pathogens. By examining the infection process in wild-type and HRI null cells, we found that HRI is required for pathogens to execute their virulence-associated cellular activities. Specifically, unlike wild-type cells, HRI null cells infected with the gram-negative bacterial pathogen Yersinia are essentially impervious to the cytoskeleton-damaging effects of the Yop virulence factors. This effect is due to reduced functioning of the Yersinia type 3 secretion (T3S system which injects virulence factors directly into the host cell cytosol. Reduced T3S activity is also observed in HRI null cells infected with the bacterial pathogen Chlamydia which results in a dramatic reduction in its intracellular proliferation. We go on to show that a HRI-mediated process plays a central role in the cellular infection cycle of the Gram-positive pathogen Listeria. For this pathogen, HRI is required for the post-invasion trafficking of the bacterium to the infected host cytosol. Thus by depriving Listeria of its intracellular niche, there is a highly reduced proliferation of Listeria in HRI null cells. We provide evidence that these infection-associated functions of HRI (an eIF2α kinase are independent of its activity as a regulator of protein synthesis. This is the first report of a host factor whose absence interferes with the function of T3S secretion and cytosolic access by pathogens and makes HRI an excellent target for inhibitors due to its broad virulence-associated activities.

  14. The neglected intrinsic resistome of bacterial pathogens.

    Directory of Open Access Journals (Sweden)

    Alicia Fajardo

    Full Text Available Bacteria with intrinsic resistance to antibiotics are a worrisome health problem. It is widely believed that intrinsic antibiotic resistance of bacterial pathogens is mainly the consequence of cellular impermeability and activity of efflux pumps. However, the analysis of transposon-tagged Pseudomonas aeruginosa mutants presented in this article shows that this phenotype emerges from the action of numerous proteins from all functional categories. Mutations in some genes make P. aeruginosa more susceptible to antibiotics and thereby represent new targets. Mutations in other genes make P. aeruginosa more resistant and therefore define novel mechanisms for mutation-driven acquisition of antibiotic resistance, opening a new research field based in the prediction of resistance before it emerges in clinical environments. Antibiotics are not just weapons against bacterial competitors, but also natural signalling molecules. Our results demonstrate that antibiotic resistance genes are not merely protective shields and offer a more comprehensive view of the role of antibiotic resistance genes in the clinic and in nature.

  15. Relationship of the luminous bacterial symbiont of the Caribbean flashlight fish, Kryptophanaron alfredi (family Anomalopidae) to other luminous bacteria based on bacterial luciferase (luxA) genes.

    Science.gov (United States)

    Haygood, M G

    1990-01-01

    Flashlight fishes (family Anomalopidae) have light organs that contain luminous bacterial symbionts. Although the symbionts have not yet been successfully cultured, the luciferase genes have been cloned directly from the light organ of the Caribbean species, Kryptophanaron alfredi. The goal of this project was to evaluate the relationship of the symbiont to free-living luminous bacteria by comparison of genes coding for bacterial luciferase (lux genes). Hybridization of a lux AB probe from the Kryptophanaron alfredi symbiont to DNAs from 9 strains (8 species) of luminous bacteria showed that none of the strains tested had lux genes highly similar to the symbiont. The most similar were a group consisting of Vibrio harveyi, Vibrio splendidus and Vibrio orientalis. The nucleotide sequence of the luciferase alpha subunit gene luxA) of the Kryptophanaron alfredi symbiont was determined in order to do a more detailed comparison with published luxA sequences from Vibrio harveyi, Vibrio fischeri and Photobacterium leiognathi. The hybridization results, sequence comparisons and the mol% G + C of the Kryptophanaron alfredi symbiont luxA gene suggest that the symbiont may be considered as a new species of luminous Vibrio related to Vibrio harveyi.

  16. Studies on the pathogenic bacterium of ulcer disease in Epinephelus awoara

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Studies were conducted to determine the cause of the acute mortality of cage-cultured Epinephelus awoara in the Tong'an Bay of Xiamen, China during the summer of 2002. Predominant bacteria strain TS-628 was isolated from the diseased grouper. The virulence test confirmed that TS-628 was the pathogenic bacterium. Biochemical characteristics of the isolates were determined using the automatic bacterial identification system and standard tube tests. To further confirm the identification, a 1 121 bp 16S rRNA gene sequence of the isolate was amplified by PCR, which had been deposited into Genbank (accession number: AY747308). According to the biochemical characteristics and by comparing the 16S rRNA gene homology of the isolate, the pathogenic bacterium was identified as Vibrio harveyi. Drug sensitivity tests showed that this pathogenic bacterium was sensitive to 16 antibacterials, especially to chloramphenicol and actinospectacin, but completely resistant to antibacterials likes vancomycin, penicillin, lincomycin, and so on.

  17. Vibrio Species in Wastewater Final Effluents and Receiving Watershed in South Africa: Implications for Public Health

    Directory of Open Access Journals (Sweden)

    Allisen N. Okeyo

    2018-06-01

    Full Text Available Wastewater treatment facilities in South Africa are obliged to make provision for wastewater effluent quality management, with the aim of securing the integrity of the surrounding watersheds and environments. The Department of Water Affairs has documented regulatory parameters that have, over the years, served as a guideline for quality monitoring/management purposes. However, these guidelines have not been regularly updated and this may have contributed to some of the water quality anomalies. Studies have shown that promoting the monitoring of the current routinely monitored parameters (both microbial and physicochemical may not be sufficient. Organisms causing illnesses or even outbreaks, such as Vibrio pathogens with their characteristic environmental resilience, are not included in the guidelines. In South Africa, studies that have been conducted on the occurrence of Vibrio pathogens in domestic and wastewater effluent have made it apparent that these pathogens should also be monitored. The importance of effective wastewater management as one of the key aspects towards protecting surrounding environments and receiving watersheds, as well as protecting public health, is highlighted in this review. Emphasis on the significance of the Vibrio pathogen in wastewater is a particular focus.

  18. Radiation Sensitivity of some Food Borne Bacterial Pathogens in Animal Foods and Minced Meat

    International Nuclear Information System (INIS)

    Mohammed, W.S.; Ali, A.R.; Alexan, A.F.

    2010-01-01

    Bacteriological examination of 100 samples of animal food stuffs (fish meal and bone and meat meal; as models of dry food materials) and 50 samples of minced meat (as a model of moist food materials) revealed the isolation of different bacterial pathogens; Escherichia coli, Klebsiella spp., Pseudomonas aeruginosa, Proteus spp., Staph. aureus and Salmonella species, in a decreasing order of occurrence. In the experiment; the dry food stuffs were sterilized in autoclave and the minced meat was sterilized by gamma irradiation at 10 kGy. The efficacy of gamma irradiation against the inoculated bacterial isolates (E coli 0157: H7, Salmonella enteritidis and Staph. aureus) in animal food stuffs and minced meat was investigated. Irradiated samples were stored at room temperature (25 degree C) for 2 weeks. The food borne pathogens used in this study showed a difference in radiation sensitivity. E. coli 0157: H7, Staphylococcus aureus and Salmonella enteritidis were eradicated at 1, 2 and 3 kGy, respectively. Also, inoculated pathogens in minced meat were more sensitive to ionizing radiation than dry animal food stuffs. It could be concluded that low doses of gamma irradiation are effective means of inactivating pathogenic bacteria. This radiation sensitivity is related to the bacterial isolates and the evaluated growth

  19. The depressed central carbon and energy metabolisms is associated to the acquisition of levofloxacin resistance in Vibrio alginolyticus.

    Science.gov (United States)

    Cheng, Zhi-Xue; Yang, Man-Jun; Peng, Bo; Peng, Xuan-Xian; Lin, Xiang-Min; Li, Hui

    2018-06-15

    The overuse and misuse of antibiotics lead to bacterial antibiotic resistance, challenging human health and intensive cultivation. It is especially required to understand for the mechanism of antibiotic resistance to control antibiotic-resistant pathogens. The present study characterized the differential proteome of levofloxacin-resistant Vibrio alginolyticus with the most advanced iTRAQ quantitative proteomics technology. A total of 160 proteins of differential abundance were identified, where 70 were decreased and 90 were increased. Further analysis demonstrated that crucial metabolic pathways like TCA cycle were significantly down-regulated. qRT-PCR analysis demonstrated the decreased gene expression of glycolysis/gluconeogenesis, the TCA cycle, and fatty acid biosynthesis. Moreover, Na(+)-NQR complex gene expression, membrane potential and the adenylate energy charge ratio were decreased, indicating that the decreased central carbon metabolism is associated to the acquisition of levofloxacin resistance. Therefore, the reduced central carbon and energy metabolisms form a characteristic feature as fitness costs of V. alginolyticus in resistance to levofloxacin. The overuse and misuse of antibiotics lead to bacterial antibiotic resistance, challenging human health and intensive cultivation. Understanding for the antibiotic resistance mechanisms is especially required to control these antibiotic-resistant pathogens. The present study characterized the differential proteome of levofloxacin-resistant Vibrio alginolyticus using the most advanced iTRAQ quantitative proteomics technology. A total of 160 differential abundance of proteins were identified with 70 decreases and 90 increases by liquid chromatography matrix assisted laser desorption ionization mass spectrometry. Most interestingly, crucial metabolic pathways such as the TCA cycle sharply fluctuated. This is the first report that the reduced central carbon and energy metabolisms form a characteristic feature

  20. Molecular Epidemiologic Typing Systems of Bacterial Pathogens: Current Issues and Perpectives

    Directory of Open Access Journals (Sweden)

    Struelens Marc J

    1998-01-01

    Full Text Available The epidemiologic typing of bacterial pathogens can be applied to answer a number of different questions: in case of outbreak, what is the extent and mode of transmission of epidemic clone(s ? In case of long-term surveillance, what is the prevalence over time and the geographic spread of epidemic and endemic clones in the population? A number of molecular typing methods can be used to classify bacteria based on genomic diversity into groups of closely-related isolates (presumed to arise from a common ancestor in the same chain of transmission and divergent, epidemiologically-unrelated isolates (arising from independent sources of infection. Ribotyping, IS-RFLP fingerprinting, macrorestriction analysis of chromosomal DNA and PCR-fingerprinting using arbitrary sequence or repeat element primers are useful methods for outbreak investigations and regional surveillance. Library typing systems based on multilocus sequence-based analysis and strain-specific probe hybridization schemes are in development for the international surveillance of major pathogens like Mycobacterium tuberculosis. Accurate epidemiological interpretation of data obtained with molecular typing systems still requires additional research on the evolution rate of polymorphic loci in bacterial pathogens.

  1. Inhibitory Activity of Lactid Acid Bacteria Isolated from Tape Waterlily Seed to Enteric Pathogenic Bacteria (Vibrio cholera, Salmonella typhi, Shigella disentri, and E.coli and Its’ Susceptibility to Antibiotic, Bile Salt and Acidic Condition

    Directory of Open Access Journals (Sweden)

    Iin Khusnul Khotimah

    2012-03-01

    Full Text Available The aim of this research was to observe inhibitory activity of LAB isolated from tape waterlily seed to enteric pathogenic bacteria (Vibrio cholera, Salmonella typhi, Shigella disentri, E.coli ATCC 25922 and it’s susceptibility to antibiotic, in bile salt and under acidic condition. Microbia in the tape ( a fermented product of waterlily seed to showed were Streptococcus thermophilus (IKH-1, Pediococcus pentosaceus (IKH-2 and Leuconostoc mesentroides (IKH-8. Streptococcus thermophillus showed inhibition against the growth of Shigella disentri with inhibition zones 16,28 mm, but did not against the growth of V. Cholera, S. typhi, E.coli. Pediococcus pentosaceus inhibit Vibrio cholera, dan Salmonella thypi with inhibition zones 18,59 mm dan 7,91 mm. So that, Leuconostoc mesenteroides inhibit Salmonella thypi with zones inhibits average 8,25 mm. Chloramfenicol at 0.05 mg concentrations did not show inhibition against the growth of isolated Streptococcus thermophillus, Pediococcus pentosaceus and Leuconostoc mesentroides. These isolates could survive too in bile salt (2% and acidified media (pH 3.   Keyword : The tape of  waterlily seed, LAB, probiotic and enteric pathogenic   KEMAMPUAN PENGHAMBATAN BAKTERI ASAM LAKTAT DARI TAPE BIJI TERATAI TERHADAP PATOGENIK ENTERIK (VIBRIO CHOLERA, SALMONELLA THYPI, SHIGELLA DISENTRI, E. COLI, ANTIBIOTIK, KETAHANANNYA TERHADAP BILE SALT DAN ASAM   ABSTRAK   Penelitian ini bertujuan untuk menguji kemampuan penghambatan bakteri asam laktat yang diisolasi dari tape biji teratai terhadap patogenik enterik (Vibrio cholera, Salmonella thypi, Shigella disentri, E. Coli ATCC 25922, antibiotik, bile salt dan asam. Jenis bakteri yang diketahui tumbuh selama fermentasi tape biji teratai adalah Streptococcus thermopilus (IKH-1, Pediococcus pentosaceus(IKH-2, dan Leuconostoc mesentroides (IKH-8. Pengamatan terhadap uji penghambatan patogenik enterik (Vibrio cholera, Salmonella thypi, Shigella disentri, dan E. Coli ATCC

  2. Abundance and antibiotic susceptibility of Vibrio spp. isolated from microplastics

    Science.gov (United States)

    Laverty, A. L.; Darr, K.; Dobbs, F. C.

    2016-02-01

    In recent years, there has been a growing concern for `microplastics' (particles pieces, paired seawater samples, and from them cultured 44 putative Vibrio spp. isolates, 18 of which were PCR-confirmed as V. parahaemolyticus and 3 as V. vulnificus. There were no PCR-confirmed V. cholerae isolates. We used the Kirby-Bauer disk diffusion susceptibility test to examine the isolates' response to six antibiotics: chloramphenicol (30μg), gentamicin (10μg), ampicillin (10μg), streptomycin (10μg), tetracycline (30μg), and rifampin (5μg). Vibrio isolates were susceptible to three or more of the six antibiotics tested and all were susceptible to tetracycline and chloramphenicol. There were no apparent differences between the antibiotic susceptibilities of vibrios isolated from microplastics compared to those from the water column. In every instance tested, vibrios on microplastics were enriched by at least two orders of magnitude compared to those from paired seawater samples. This study demonstrates that microplastic particles serve as a habitat for Vibrio species, in particular V. vulnificus and V. parahaemolyticus, confirming the conjecture of Zettler et al. (2013) that plastics may serve as a vector for these and other potentially pathogenic bacteria.

  3. Whole transcriptome profiling of successful immune response to Vibrio infections in the oyster Crassostrea gigas by digital gene expression analysis.

    Directory of Open Access Journals (Sweden)

    Julien de Lorgeril

    Full Text Available The cultivated Pacific oyster Crassostrea gigas has suffered for decades large scale summer mortality phenomenon resulting from the interaction between the environment parameters, the oyster physiological and/or genetic status and the presence of pathogenic microorganisms including Vibrio species. To obtain a general picture of the molecular mechanisms implicated in C. gigas immune responsiveness to circumvent Vibrio infections, we have developed the first deep sequencing study of the transcriptome of hemocytes, the immunocompetent cells. Using Digital Gene Expression (DGE, we generated a transcript catalog of up-regulated genes from oysters surviving infection with virulent Vibrio strains (Vibrio splendidus LGP32 and V. aestuarianus LPi 02/41 compared to an avirulent one, V. tasmaniensis LMG 20012(T. For that an original experimental infection protocol was developed in which only animals that were able to survive infections were considered for the DGE approach. We report the identification of cellular and immune functions that characterize the oyster capability to survive pathogenic Vibrio infections. Functional annotations highlight genes related to signal transduction of immune response, cell adhesion and communication as well as cellular processes and defence mechanisms of phagocytosis, actin cytosqueleton reorganization, cell trafficking and autophagy, but also antioxidant and anti-apoptotic reactions. In addition, quantitative PCR analysis reveals the first identification of pathogen-specific signatures in oyster gene regulation, which opens the way for in depth molecular studies of oyster-pathogen interaction and pathogenesis. This work is a prerequisite for the identification of those physiological traits controlling oyster capacity to survive a Vibrio infection and, subsequently, for a better understanding of the phenomenon of summer mortality.

  4. Detection of respiratory bacterial pathogens causing atypical pneumonia by multiplex Lightmix® RT-PCR.

    Science.gov (United States)

    Wagner, Karoline; Springer, Burkard; Imkamp, Frank; Opota, Onya; Greub, Gilbert; Keller, Peter M

    2018-04-01

    Pneumonia is a severe infectious disease. In addition to common viruses and bacterial pathogens (e.g. Streptococcus pneumoniae), fastidious respiratory pathogens like Chlamydia pneumoniae, Mycoplasma pneumoniae and Legionella spp. can cause severe atypical pneumonia. They do not respond to penicillin derivatives, which may cause failure of antibiotic empirical therapy. The same applies for infections with B. pertussis and B. parapertussis, the cause of pertussis disease, that may present atypically and need to be treated with macrolides. Moreover, these fastidious bacteria are difficult to identify by culture or serology, and therefore often remain undetected. Thus, rapid and accurate identification of bacterial pathogens causing atypical pneumonia is crucial. We performed a retrospective method evaluation study to evaluate the diagnostic performance of the new, commercially available Lightmix ® multiplex RT-PCR assay that detects these fastidious bacterial pathogens causing atypical pneumonia. In this retrospective study, 368 clinical respiratory specimens, obtained from patients suffering from atypical pneumonia that have been tested negative for the presence of common agents of pneumonia by culture and viral PCR, were investigated. These clinical specimens have been previously characterized by singleplex RT-PCR assays in our diagnostic laboratory and were used to evaluate the diagnostic performance of the respiratory multiplex Lightmix ® RT-PCR. The multiplex RT-PCR displayed a limit of detection between 5 and 10 DNA copies for different in-panel organisms and showed identical performance characteristics with respect to specificity and sensitivity as in-house singleplex RT-PCRs for pathogen detection. The Lightmix ® multiplex RT-PCR assay represents a low-cost, time-saving and accurate diagnostic tool with high throughput potential. The time-to-result using an automated DNA extraction device for respiratory specimens followed by multiplex RT-PCR detection was

  5. Vibrio rotiferianus sp. nov., isolated from cultures of the rotifer Brachionus plicatilis.

    Science.gov (United States)

    Gomez-Gil, B; Thompson, F L; Thompson, C C; Swings, J

    2003-01-01

    Five Gram-negative bacterial strains, oxidase-positive, motile by means of more than one polar flagella, facultative anaerobe, arginine dihydrolase-negative, lysine- and omithine decarboxylase-positive, sensitive to the vibriostatic agent O/129, were isolated from a flow-through rotifer culture system in Gent, Belgium, and previously characterized by fluorescent amplified fragment length polymorphism. Comparison of the 16S rDNA sequence of strain LMG 21460T indicated close relationships (approximately 99% similarity) to Vibrio campbellii, Vibrio harveyi, Vibrio alginolyticus and Vibrio parahaemolyticus. However, DNA hybridization experiments revealed similarity values below 70% with its closest species V. campbellii and V. harveyi. Additionally, the analysed strains differ from related Vibrio species by the utilization of melibiose and production of acid from L-arabinose and amygdalin. Among the strains analysed, differences were observed in some phenotypic characters, particularly susceptibility to ampicillin, polymyxin B and amikacin, and urease activity. The major fatty acids identified were 16:0, 18:1 omega7c, 14:0, 12:0 3-OH and 18:0. Vibrio rotiferianus sp. nov. is proposed, with type strain LMG 21460T (=CAIM 577T); it has a DNA G+C content of 44.5 +/- 0.01 mol%.

  6. Regulation of Metalloprotease Gene Expression in Vibrio vulnificus by a Vibrio harveyi LuxR Homologue

    Science.gov (United States)

    Shao, Chung-Ping; Hor, Lien-I

    2001-01-01

    Expression of the Vibrio vulnificus metalloprotease gene, vvp, was turned up rapidly when bacterial growth reached the late log phase. A similar pattern of expression has been found in the metalloprotease gene of Vibrio cholerae, and this has been shown to be regulated by a Vibrio harveyi LuxR-like transcriptional activator. To find out whether a LuxR homologue exists in V. vulnificus, a gene library of this organism was screened by colony hybridization using a probe derived from a sequence that is conserved in various luxR-like genes of vibrios. A gene containing a 618-bp open reading frame was identified and found to be identical to the smcR gene of V. vulnificus reported previously. An isogenic SmcR-deficient (RD) mutant was further constructed by an in vivo allelic exchange technique. This mutant exhibited an extremely low level of vvp transcription compared with that of the parent strain. On the other hand, the cytolysin gene, vvhA, was expressed at a higher level in the RD mutant than in the parent strain during the log phase of growth. These data suggested that SmcR might not only be a positive regulator of the protease gene but might also be involved in negative regulation of the cytolysin gene. Virulence of the RD mutant in either normal or iron-overloaded mice challenged by intraperitoneal injection was comparable to that of the parent strain, indicating that SmcR is not required for V. vulnificus virulence in mice. PMID:11157950

  7. Selection and identification of non-pathogenic bacteria isolated from fermented pickles with antagonistic properties against two shrimp pathogens.

    Science.gov (United States)

    Zokaeifar, Hadi; Balcázar, José Luis; Kamarudin, Mohd Salleh; Sijam, Kamaruzaman; Arshad, Aziz; Saad, Che Roos

    2012-06-01

    In this study, potential probiotic strains were isolated from fermented pickles based on antagonistic activity against two shrimp pathogens (Vibrio harveyi and Vibrio parahaemolyticus). Two strains L10 and G1 were identified by biochemical tests, followed by16S ribosomal RNA gene sequence analysis as Bacillus subtilis, and characterized by PCR amplification of repetitive bacterial DNA elements (Rep-PCR). Subsequently, B. subtilis L10 and G1 strains were tested for antibacterial activity under different physical conditions, including culture medium, salinity, pH and temperature using the agar well diffusion assay. Among the different culture media, LB broth was the most suitable medium for antibacterial production. Both strains showed the highest level of antibacterial activity against two pathogens at 30 °C and 1.0% NaCl. Under the pH conditions, strain G1 showed the greatest activity against V. harveyi at pH 7.3-8.0 and against V. parahaemolyticus at pH 6.0-8.0, whereas strain L10 showed the greatest activity against two pathogens at pH 7.3. The cell-free supernatants of both strains were treated with four different enzymes in order to characterize the antibacterial substances against V. harveyi. The result showed considerable reduction of antibacterial activity for both strains, indicating the proteinaceous nature of the antibacterial substances. A wide range of tolerance to NaCl, pH and temperature was also recorded for both strains. In addition, both strains showed no virulence effect in juvenile shrimp Litopenaeus vannamei. On the basis of these results and safety of strains to L. vannamei, they may be considered for future challenge experiments in shrimp as a very promising alternative to the use of antibiotics.

  8. Occurrence and molecular characterisation of Vibrio parahaemolyticus in crustaceans commercialised in Venice area, Italy.

    Science.gov (United States)

    Caburlotto, Greta; Suffredini, Elisabetta; Toson, Marica; Fasolato, Luca; Antonetti, Paolo; Zambon, Michela; Manfrin, Amedeo

    2016-03-02

    Infections due to the pathogenic human vibrios, Vibrio parahaemolyticus, Vibrio cholerae and Vibrio vulnificus, are mainly associated with consumption of raw or partially cooked bivalve molluscs. At present, little is known about the presence of Vibrio species in crustaceans and the risk of vibriosis associated with the consumption of these products. The aim of the present study was to evaluate the prevalence and concentration of the main pathogenic Vibrio spp. in samples of crustaceans (n=143) commonly eaten in Italy, taking into account the effects of different variables such as crustacean species, storage conditions and geographic origin. Subsequently, the potential pathogenicity of V. parahaemolyticus strains isolated from crustaceans (n=88) was investigated, considering the classic virulence factors (tdh and trh genes) and four genes coding for relevant proteins of the type III secretion systems 2 (T3SS2α and T3SS2β). In this study, the presence of V. cholerae and V. vulnificus was never detected, whereas 40 samples (28%) were positive for V. parahaemolyticus with an overall prevalence of 41% in refrigerated products and 8% in frozen products. The highest prevalence and average contamination levels were detected in Crangon crangon (prevalence 58% and median value 3400 MPN/g) and in products from the northern Adriatic Sea (35%), with the samples from the northern Venetian Lagoon reaching a median value of 1375 MPN/g. While genetic analysis confirmed absence of the tdh gene, three of the isolates contained the trh gene and, simultaneously, the T3SS2β genes. Moreover three possibly clonal tdh-negative/trh-negative isolates carried the T3SS2α apparatus. The detection of both T3SS2α and T3SS2β apparatuses in V. parahaemolyticus strains isolated from crustaceans emphasised the importance of considering new genetic markers associated with virulence besides the classical factors. Moreover this study represents the first report dealing with Vibrio spp. in

  9. The expression of heterologous MAM-7 in Lactobacillus rhamnosus reduces its intrinsic capacity to inhibit colonization of pathogen Vibrio parahaemolyticus in vitro.

    Science.gov (United States)

    Beltran, Sebastian; Munoz-Bergmann, Cristian A; Elola-Lopez, Ana; Quintana, Javiera; Segovia, Cristopher; Trombert, Annette N

    2016-01-07

    Vibrio parahaemolyticus (V. parahaemolyticus) is a Gram-negative, halophilic bacterium recognized as one of the most important foodborne pathogen. When ingested, V. parahaemolyticus causes a self-limiting illness (Vibriosis), characterized mainly by watery diarrhoea. Treatment is usually oral rehydration and/or antibiotics in complicated cases. Since 1996, the pathogenic and pandemic V. parahaemolyticus O3:K6 serotype has spread worldwide, increasing the reported number of vibriosis cases. Thus, the design of new strategies for pathogen control and illness prevention is necessary. Lactobacillus sp. grouped Gram positive innocuous bacteria, part of normal intestinal microbiota and usually used as oral vaccines for several diarrheic diseases. Recombinants strains of Lactobacillus (RL) expressing pathogen antigens can be used as part of an anti-adhesion strategy where RL block the pathogen union sites in host cells. Thus, we aimed to express MAM-7 V. parahaemolyticus adhesion protein in Lactobacillus sp. to generate an RL that prevents pathogen colonization. We cloned the MAM-7 gene from V. parahaemolyticus RIMD 2210633 in Lactobacillus expression vectors. Recombinant strains (Lactobacillus rhamnosus pSEC-MAM7 and L. rhamnosus pCWA-MAM7) adhered to CaCo-2 cells and competed with the pathogen. However, the L. rhamnosus wild type strain showed the best capacity to inhibit pathogen colonization in vitro. In addition, LDH-assay showed that recombinant strains were cytotoxic compared with the wild type isogenic strain. MAM-7 expression in lactobacilli reduces the intrinsic inhibitory capacity of L. rhamnosus against V. parahaemolyticus.

  10. Comprehensive identification of Vibrio vulnificus genes required for growth in human serum.

    Science.gov (United States)

    Carda-Diéguez, M; Silva-Hernández, F X; Hubbard, T P; Chao, M C; Waldor, M K; Amaro, C

    2018-12-31

    Vibrio vulnificus can be a highly invasive pathogen capable of spreading from an infection site to the bloodstream, causing sepsis and death. To survive and proliferate in blood, the pathogen requires mechanisms to overcome the innate immune defenses and metabolic limitations of this host niche. We created a high-density transposon mutant library in YJ016, a strain representative of the most virulent V. vulnificus lineage (or phylogroup) and used transposon insertion sequencing (TIS) screens to identify loci that enable the pathogen to survive and proliferate in human serum. Initially, genes underrepresented for insertions were used to estimate the V. vulnificus essential gene set; comparisons of these genes with similar TIS-based classification of underrepresented genes in other vibrios enabled the compilation of a common Vibrio essential gene set. Analysis of the relative abundance of insertion mutants in the library after exposure to serum suggested that genes involved in capsule biogenesis are critical for YJ016 complement resistance. Notably, homologues of two genes required for YJ016 serum-resistance and capsule biogenesis were not previously linked to capsule biogenesis and are largely absent from other V. vulnificus strains. The relative abundance of mutants after exposure to heat inactivated serum was compared with the findings from the serum screen. These comparisons suggest that in both conditions the pathogen relies on its Na + transporting NADH-ubiquinone reductase (NQR) complex and type II secretion system to survive/proliferate within the metabolic constraints of serum. Collectively, our findings reveal the potency of comparative TIS screens to provide knowledge of how a pathogen overcomes the diverse limitations to growth imposed by serum.

  11. Interactions of seedborne bacterial pathogens with host and non-host plants in relation to seed infestation and seedling transmission.

    Science.gov (United States)

    Dutta, Bhabesh; Gitaitis, Ronald; Smith, Samuel; Langston, David

    2014-01-01

    The ability of seed-borne bacterial pathogens (Acidovorax citrulli, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, Xanthomonas euvesicatoria, and Pseudomonas syringae pv. glycinea) to infest seeds of host and non-host plants (watermelon, tomato, pepper, and soybean) and subsequent pathogen transmission to seedlings was investigated. A non-pathogenic, pigmented strain of Serratia marcescens was also included to assess a null-interacting situation with the same plant species. Flowers of host and non-host plants were inoculated with 1 × 10(6) colony forming units (CFUs)/flower for each bacterial species and allowed to develop into fruits or umbels (in case of onion). Seeds harvested from each host/non-host bacterial species combination were assayed for respective bacteria by plating on semi-selective media. Additionally, seedlots for each host/non-host bacterial species combination were also assayed for pathogen transmission by seedling grow-out (SGO) assays under greenhouse conditions. The mean percentage of seedlots infested with compatible and incompatible pathogens was 31.7 and 30.9% (by plating), respectively and they were not significantly different (P = 0.67). The percentage of seedlots infested with null-interacting bacterial species was 16.8% (by plating) and it was significantly lower than the infested lots generated with compatible and incompatible bacterial pathogens (P = 0.03). None of the seedlots with incompatible/null-interacting bacteria developed symptoms on seedlings; however, when seedlings were assayed for epiphytic bacterial presence, 19.5 and 9.4% of the lots were positive, respectively. These results indicate that the seeds of non-host plants can become infested with incompatible and null-interacting bacterial species through flower colonization and they can be transmitted via epiphytic colonization of seedlings. In addition, it was also observed that flowers and seeds of non-host plants can be colonized by

  12. Interactions of seedborne bacterial pathogens with host and non-host plants in relation to seed infestation and seedling transmission.

    Directory of Open Access Journals (Sweden)

    Bhabesh Dutta

    Full Text Available The ability of seed-borne bacterial pathogens (Acidovorax citrulli, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, Xanthomonas euvesicatoria, and Pseudomonas syringae pv. glycinea to infest seeds of host and non-host plants (watermelon, tomato, pepper, and soybean and subsequent pathogen transmission to seedlings was investigated. A non-pathogenic, pigmented strain of Serratia marcescens was also included to assess a null-interacting situation with the same plant species. Flowers of host and non-host plants were inoculated with 1 × 10(6 colony forming units (CFUs/flower for each bacterial species and allowed to develop into fruits or umbels (in case of onion. Seeds harvested from each host/non-host bacterial species combination were assayed for respective bacteria by plating on semi-selective media. Additionally, seedlots for each host/non-host bacterial species combination were also assayed for pathogen transmission by seedling grow-out (SGO assays under greenhouse conditions. The mean percentage of seedlots infested with compatible and incompatible pathogens was 31.7 and 30.9% (by plating, respectively and they were not significantly different (P = 0.67. The percentage of seedlots infested with null-interacting bacterial species was 16.8% (by plating and it was significantly lower than the infested lots generated with compatible and incompatible bacterial pathogens (P = 0.03. None of the seedlots with incompatible/null-interacting bacteria developed symptoms on seedlings; however, when seedlings were assayed for epiphytic bacterial presence, 19.5 and 9.4% of the lots were positive, respectively. These results indicate that the seeds of non-host plants can become infested with incompatible and null-interacting bacterial species through flower colonization and they can be transmitted via epiphytic colonization of seedlings. In addition, it was also observed that flowers and seeds of non-host plants can be

  13. Corrosion of mild steel and stainless steel by marine Vibrio sp.

    Digital Repository Service at National Institute of Oceanography (India)

    PrabhaDevi; Wagh, A.B.

    Microbially induced corrosion (MIC) of stainless steel and mild steel coupons exposed to media with and without a bacterial culture Vibrio sp. was studied using Scanning Electron Microscope (SEM). Pitting type of corrosion was noticed which was more...

  14. Genome Sequence of Vibrio cholerae Strain O1 Ogawa El Tor, Isolated in Mexico, 2013

    OpenAIRE

    Díaz-Quiñonez, José Alberto; Hernández-Monroy, Irma; López-Martínez, Irma; Ortiz-Alcántara, Joanna; González-Durán, Elizabeth; Ruiz-Matus, Cuitláhuac; Kuri-Morales, Pablo; Ramírez-González, José Ernesto

    2014-01-01

    We present the draft genome sequence of Vibrio cholerae InDRE 3140 recovered in 2013 during a cholera outbreak in Mexico. The genome showed the Vibrio 7th pandemic islands VSP1 and VSP2, the pathogenic islands VPI-1 and VPI-2, the integrative and conjugative element SXT/R391 (ICE-SXT), and both prophages CTXφ and RS1φ.

  15. Pathogenic bacteria associated with oysters (Crassostrea brasiliana) and estuarine water along the south coast of Brazil.

    Science.gov (United States)

    Ristori, Christiane A; Iaria, Sebastião T; Gelli, Dilma S; Rivera, Irma N G

    2007-08-01

    Oysters and estuarine water samples were collected monthly, from June 1998 to March 1999, in the Cananéia estuary, on the south coast of São Paulo, Brazil, and analyzed for bacterial hazards with and without depuration in filtered estuarine water. Aeromonas spp., Plesiomonas shigelloides, Vibrio cholerae O1, Vibrio parahaemolyticus, and Vibrio vulnificus were counted in oyster samples using the most probable number (MPN) and their presence verified in the surrounding estuarine water samples. The presence of Salmonella, Shigella, Escherichia coli O157:H7, and fecal coliforms counts were determined in oysters and in water samples too. Sixty percent of water samples contained fecal coliforms ranging from 200 CFU/100 ml and 100%, 30%, 20% and 10% were positive for V. parahaemolyticus, Salmonella, Aeromonas, and V. vulnificus in 5 l of water samples, respectively. In oyster samples, the fecal coliforms concentration ranged from or =2.4 x 10(3) MPN/g in 40% of untreated and from oyster samples and their concentration varied from 3.6 to > or =2.4 x 10(3) MPN/g. For the untreated oyster samples 80%, 70%, and 10% were positive for V. vulnificus (oyster samples 60%, 30%, and 0% of them contained the same bacteria, respectively. Escherichia coli O157:H7, Shigella spp., P. shigelloides, and V. cholerae O1 were not detected in any of the samples. Fecal indicators did not correlate with Vibrio presence (p>0.05), although the isolation of Aeromonas species had a positive correlation (p = 0.017). The results showed no correlation between temperature, salinity, and bacteria (p > 0.05). The comparison between bacterial concentration in treated and untreated oyster samples, showed that only Aeromonas was higher in untreated oyster samples (p = 0.039). This study contributes toward creating a more global understanding of food-borne bacterial pathogens. The presence and concentration of viable bacterial hazards in oysters and water surrounding areas was determined for the first time

  16. Antibacterial activity of polyphenolic fraction of Kombucha against Vibrio cholerae: targeting cell membrane.

    Science.gov (United States)

    Bhattacharya, D; Ghosh, D; Bhattacharya, S; Sarkar, S; Karmakar, P; Koley, H; Gachhui, R

    2018-02-01

    The present study was undertaken to determine the mechanism of antibacterial activity of a polyphenolic fraction, composed of mainly catechin and isorhamnetin, previously isolated from Kombucha, a 14-day fermented beverage of sugared black tea, against the enteropathogen Vibrio cholerae N16961. Bacterial growth was found to be seriously impaired by the polyphenolic fraction in a dose-dependent manner. Scanning Electron Microscopy demonstrated morphological alterations in bacterial cells when exposed to the polyphenolic fraction in a concentration-dependent manner. Permeabilization assays confirmed that the fraction disrupted bacterial membrane integrity in both time- and dose-dependent manners, which were proportional to the production of intracellular reactive oxygen species (ROS). Furthermore, each of the polyphenols catechin and isorhamnetin showed the ability to permeate bacterial cell membranes by generating oxidative stress, thereby suggesting their role in the antibacterial potential of Kombucha. Thus, the basic mechanism of antibacterial activity of the Kombucha polyphenolic fraction against V. cholerae involved bacterial membrane permeabilization and morphological changes, which might be due to the generation of intracellular ROS. To the best of our knowledge, this is the first report on the investigation of antibacterial mechanism of Kombucha, which is mostly attributed to its polyphenolic content. The emergence of multidrug-resistant Vibrio cholerae strains has hindered an efficient anti-Vibrio therapy. This study has demonstrated the membrane damage-mediated antibacterial mechanism of Kombucha, a popular fermented beverage of sugared tea, which is mostly attributed to its polyphenolic content. This study also implies the exploitation of Kombucha as a potential new source of bioactive polyphenols against V. cholerae. © 2017 The Society for Applied Microbiology.

  17. Bacterial genomics reveal the complex epidemiology of an emerging pathogen in arctic and boreal ungulates

    Science.gov (United States)

    Forde, Taya L.; Orsel, Karin; Zadoks, Ruth N.; Biek, Roman; Adams, Layne G.; Checkley, Sylvia L.; Davison, Tracy; De Buck, Jeroen; Dumond, Mathieu; Elkin, Brett T.; Finnegan, Laura; Macbeth, Bryan J.; Nelson, Cait; Niptanatiak, Amanda; Sather, Shane; Schwantje, Helen M.; van der Meer, Frank; Kutz, Susan J.

    2016-01-01

    Northern ecosystems are currently experiencing unprecedented ecological change, largely driven by a rapidly changing climate. Pathogen range expansion, and emergence and altered patterns of infectious disease, are increasingly reported in wildlife at high latitudes. Understanding the causes and consequences of shifting pathogen diversity and host-pathogen interactions in these ecosystems is important for wildlife conservation, and for indigenous populations that depend on wildlife. Among the key questions are whether disease events are associated with endemic or recently introduced pathogens, and whether emerging strains are spreading throughout the region. In this study, we used a phylogenomic approach to address these questions of pathogen endemicity and spread for Erysipelothrix rhusiopathiae, an opportunistic multi-host bacterial pathogen associated with recent mortalities in arctic and boreal ungulate populations in North America. We isolated E. rhusiopathiae from carcasses associated with large-scale die-offs of muskoxen in the Canadian Arctic Archipelago, and from contemporaneous mortality events and/or population declines among muskoxen in northwestern Alaska and caribou and moose in western Canada. Bacterial genomic diversity differed markedly among these locations; minimal divergence was present among isolates from muskoxen in the Canadian Arctic, while in caribou and moose populations, strains from highly divergent clades were isolated from the same location, or even from within a single carcass. These results indicate that mortalities among northern ungulates are not associated with a single emerging strain of E. rhusiopathiae, and that alternate hypotheses need to be explored. Our study illustrates the value and limitations of bacterial genomic data for discriminating between ecological hypotheses of disease emergence, and highlights the importance of studying emerging pathogens within the broader context of environmental and host factors.

  18. Infection of an Insect Vector with a Bacterial Plant Pathogen Increases Its Propensity for Dispersal

    Science.gov (United States)

    Coy, Monique R.; Stelinski, Lukasz L.; Pelz-Stelinski, Kirsten S.

    2015-01-01

    The spread of vector-transmitted pathogens relies on complex interactions between host, vector and pathogen. In sessile plant pathosystems, the spread of a pathogen highly depends on the movement and mobility of the vector. However, questions remain as to whether and how pathogen-induced vector manipulations may affect the spread of a plant pathogen. Here we report for the first time that infection with a bacterial plant pathogen increases the probability of vector dispersal, and that such movement of vectors is likely manipulated by a bacterial plant pathogen. We investigated how Candidatus Liberibacter asiaticus (CLas) affects dispersal behavior, flight capacity, and the sexual attraction of its vector, the Asian citrus psyllid (Diaphorina citri Kuwayama). CLas is the putative causal agent of huanglongbing (HLB), which is a disease that threatens the viability of commercial citrus production worldwide. When D. citri developed on CLas-infected plants, short distance dispersal of male D. citri was greater compared to counterparts reared on uninfected plants. Flight by CLas-infected D. citri was initiated earlier and long flight events were more common than by uninfected psyllids, as measured by a flight mill apparatus. Additionally, CLas titers were higher among psyllids that performed long flights than psyllid that performed short flights. Finally, attractiveness of female D. citri that developed on infected plants to male conspecifics increased proportionally with increasing CLas bacterial titers measured within female psyllids. Our study indicates that the phytopathogen, CLas, may manipulate movement and mate selection behavior of their vectors, which is a possible evolved mechanism to promote their own spread. These results have global implications for both current HLB models of disease spread and control strategies. PMID:26083763

  19. Infection of an Insect Vector with a Bacterial Plant Pathogen Increases Its Propensity for Dispersal.

    Directory of Open Access Journals (Sweden)

    Xavier Martini

    Full Text Available The spread of vector-transmitted pathogens relies on complex interactions between host, vector and pathogen. In sessile plant pathosystems, the spread of a pathogen highly depends on the movement and mobility of the vector. However, questions remain as to whether and how pathogen-induced vector manipulations may affect the spread of a plant pathogen. Here we report for the first time that infection with a bacterial plant pathogen increases the probability of vector dispersal, and that such movement of vectors is likely manipulated by a bacterial plant pathogen. We investigated how Candidatus Liberibacter asiaticus (CLas affects dispersal behavior, flight capacity, and the sexual attraction of its vector, the Asian citrus psyllid (Diaphorina citri Kuwayama. CLas is the putative causal agent of huanglongbing (HLB, which is a disease that threatens the viability of commercial citrus production worldwide. When D. citri developed on CLas-infected plants, short distance dispersal of male D. citri was greater compared to counterparts reared on uninfected plants. Flight by CLas-infected D. citri was initiated earlier and long flight events were more common than by uninfected psyllids, as measured by a flight mill apparatus. Additionally, CLas titers were higher among psyllids that performed long flights than psyllid that performed short flights. Finally, attractiveness of female D. citri that developed on infected plants to male conspecifics increased proportionally with increasing CLas bacterial titers measured within female psyllids. Our study indicates that the phytopathogen, CLas, may manipulate movement and mate selection behavior of their vectors, which is a possible evolved mechanism to promote their own spread. These results have global implications for both current HLB models of disease spread and control strategies.

  20. Isolation of Biosurfactant–Producing Bacteria with Antimicrobial Activity against Bacterial Pathogens

    Directory of Open Access Journals (Sweden)

    Siripun Sarin

    2011-01-01

    Full Text Available The aims of this research were to study biosurfactant producing bacteria isolated from soil and to determine their property and efficiency as biosurfactants in order to inhibit bacterial pathogens. The result showed that there were 8 bacterial isolates out of 136 isolates of the total biosurfactant producing bacteria screened that exhibited the diameter of clear zone more than 1.5 cm. in the oil spreading test. The highest potential of emulsifying activity (%EA24 of 54.4 and the maximum additive concentration, (%MAC of 24.2 was obtained from the fermentation broth of the G7 isolate which the G7 isolate was later identified as Pseudomonas fluorescens. Escherichia coli, Staphylococcus aureus and Psuedomonas aeruginosa were the tested bacterial pathogens that were most sensitive to the acid precipitated biosurfactant obtained from P. fluorescens G7 with the lowest minimum inhibitory concentration (MIC of 41.6 mg/ml and minimum bactericidal concentration (MBC of 41.6 mg/ml compared with the acid precipitated bisurfactants of the other isolates used in the antimicrobial activity test. The type of the separated crude biosurfactant produced by P. fluorescens G7 analyzed later by using the rhamose test, TLC and FT-IR techniques was rhamnolipid.

  1. Vibrio campbellii hmgA-mediated pyomelanization impairs quorum sensing, virulence and cellular fitness

    Directory of Open Access Journals (Sweden)

    Zheng eWang

    2013-12-01

    Full Text Available Melanization due to the inactivation of the homogentisate-1,2-dioxygenase gene (hmgA has been demonstrated to increase stress resistance, persistence and virulence in some bacterial species but such pigmented mutants have not been observed in pathogenic members of the Vibrio Harveyi clade. In this study, we used Vibrio campbellii ATCC BAA-1116 as model organism to understand how melanization affected cellular phenotype, metabolism and virulence. An in-frame deletion of the hmgA gene resulted in the overproduction of a pigment in cell culture supernatants and cellular membranes that was identified as pyomelanin. Unlike previous demonstrations in Vibrio cholerae, Burkholderia cepacia and Pseudomonas aeruginosa, the pigmented V. campbellii mutant did not show increased UV resistance and was found to be ~2.7 times less virulent than the wild type strain in Penaeus monodon shrimp virulence assays. However, the extracted pyomelanin pigment did confer a higher resistance to oxidative stress when incubated with wild type cells. Microarray-based transcriptomic analyses revealed that the hmgA gene deletion and subsequent pyomelanin production negatively effected the expression of 129 genes primarily involved in energy production, amino acid and lipid metabolism, and protein translation and turnover. This transcriptional response was mediated in part by an impairment of the quorum sensing regulon as transcripts of the quorum sensing high cell density master regulator LuxR and other operonic members of this regulon were significantly repressed in the hmgA mutant. Taken together, the results suggest that the pyomelanization of V. campbellii sufficiently impairs the metabolic activities of this organism and renders it less fit and virulent than its isogenic wild type strain.

  2. Vibrio campbellii hmgA-mediated pyomelanization impairs quorum sensing, virulence, and cellular fitness.

    Science.gov (United States)

    Wang, Zheng; Lin, Baochuan; Mostaghim, Anahita; Rubin, Robert A; Glaser, Evan R; Mittraparp-Arthorn, Pimonsri; Thompson, Janelle R; Vuddhakul, Varaporn; Vora, Gary J

    2013-01-01

    Melanization due to the inactivation of the homogentisate-1,2-dioxygenase gene (hmgA) has been demonstrated to increase stress resistance, persistence, and virulence in some bacterial species but such pigmented mutants have not been observed in pathogenic members of the Vibrio Harveyi clade. In this study, we used Vibrio campbellii ATCC BAA-1116 as model organism to understand how melanization affected cellular phenotype, metabolism, and virulence. An in-frame deletion of the hmgA gene resulted in the overproduction of a pigment in cell culture supernatants and cellular membranes that was identified as pyomelanin. Unlike previous demonstrations in Vibrio cholerae, Burkholderia cepacia, and Pseudomonas aeruginosa, the pigmented V. campbellii mutant did not show increased UV resistance and was found to be ~2.7 times less virulent than the wild type strain in Penaeus monodon shrimp virulence assays. However, the extracted pyomelanin pigment did confer a higher resistance to oxidative stress when incubated with wild type cells. Microarray-based transcriptomic analyses revealed that the hmgA gene deletion and subsequent pyomelanin production negatively effected the expression of 129 genes primarily involved in energy production, amino acid, and lipid metabolism, and protein translation and turnover. This transcriptional response was mediated in part by an impairment of the quorum sensing regulon as transcripts of the quorum sensing high cell density master regulator LuxR and other operonic members of this regulon were significantly less abundant in the hmgA mutant. Taken together, the results suggest that the pyomelanization of V. campbellii sufficiently impairs the metabolic activities of this organism and renders it less fit and virulent than its isogenic wild type strain.

  3. Nested PCR Assay for Eight Pathogens: A Rapid Tool for Diagnosis of Bacterial Meningitis.

    Science.gov (United States)

    Bhagchandani, Sharda P; Kubade, Sushant; Nikhare, Priyanka P; Manke, Sonali; Chandak, Nitin H; Kabra, Dinesh; Baheti, Neeraj N; Agrawal, Vijay S; Sarda, Pankaj; Mahajan, Parikshit; Ganjre, Ashish; Purohit, Hemant J; Singh, Lokendra; Taori, Girdhar M; Daginawala, Hatim F; Kashyap, Rajpal S

    2016-02-01

    Bacterial meningitis is a dreadful infectious disease with a high mortality and morbidity if remained undiagnosed. Traditional diagnostic methods for bacterial meningitis pose a challenge in accurate identification of pathogen, making prognosis difficult. The present study is therefore aimed to design and evaluate a specific and sensitive nested 16S rDNA genus-based polymerase chain reaction (PCR) assay using clinical cerebrospinal fluid (CSF) for rapid diagnosis of eight pathogens causing the disease. The present work was dedicated to development of an in-house genus specific 16S rDNA nested PCR covering pathogens of eight genera responsible for causing bacterial meningitis using newly designed as well as literature based primers for respective genus. A total 150 suspected meningitis CSF obtained from the patients admitted to Central India Institute of Medical Sciences (CIIMS), India during the period from August 2011 to May 2014, were used to evaluate clinical sensitivity and clinical specificity of optimized PCR assays. The analytical sensitivity and specificity of our newly designed genus-specific 16S rDNA PCR were found to be ≥92%. With such a high sensitivity and specificity, our in-house nested PCR was able to give 100% sensitivity in clinically confirmed positive cases and 100% specificity in clinically confirmed negative cases indicating its applicability in clinical diagnosis. Our in-house nested PCR system therefore can diagnose the accurate pathogen causing bacterial meningitis and therefore be useful in selecting a specific treatment line to minimize morbidity. Results are obtained within 24 h and high sensitivity makes this nested PCR assay a rapid and accurate diagnostic tool compared to traditional culture-based methods.

  4. Genetic diversity of citrus bacterial canker pathogens preserved in herbarium specimens.

    Science.gov (United States)

    Li, Wenbin; Song, Qijian; Brlansky, Ronald H; Hartung, John S

    2007-11-20

    Citrus bacterial canker (CBC) caused by Xanthomonas axonopodis pv. citri (Xac) was first documented in India and Java in the mid 19th century. Since that time, the known distribution of the disease has steadily increased. Concurrent with the dispersion of the pathogen, the diversity of described strains continues to increase, with novel strains appearing in Saudi Arabia, Iran, and Florida in the last decade. Herbarium specimens of infected plants provide an historical record documenting both the geographic distribution and genetic diversity of the pathogen in the past. However, no method was available to assess the genetic diversity within these herbarium samples. We have developed a method, insertion event scanning (IES), and applied the method to characterize the diversity present within CBC populations documented as herbarium specimens over the past century. IES is based on the specific amplification of junction fragments that define insertion events. The potential for IES in current forensic applications is demonstrated by finding an exact match of pathogen genotypes preserved in herbarium specimens from Japan and Florida, demonstrating the source of the original outbreak of citrus canker in Florida in 1911. IES is a very sensitive technique for differentiating bacterial strains and can be applied to any of the several hundred bacteria for which full genomic sequence data are available.

  5. Lactic-acid bacteria increase the survival of marine shrimp, Litopenaeus vannamei, after infection with Vibrio harveyi

    Directory of Open Access Journals (Sweden)

    Felipe do Nascimento Vieira

    2007-12-01

    Full Text Available This study evaluated the survival, post-larvae quality, and the population of bacteria in Litopenaeus vannamei after the addition of two strains of lactic-acid bacteria (2 and B6 experimentally infected by Vibrio harveyi. Fifteen hundred nauplii were distributed in 20 L capacity tanks with four replicates. The survival of control animals was lower (21% than that of animals fed with the strains B6 (50% and 2 (44%. Total bacterial population in the water and larvae, as well as of the Vibrio ssp. in water was not different among the treatments. No difference was observed in the population of Vibrio ssp. between the control larvae (5.5±0.5 log UFC/mL and that fed with strain 2 (5.4±0.1 log UFC/mL. Shrimp from control and fed with strain 2 showed significantly higher bacterial population than those fed with strain B6 (1.2±0.2 log UFC/mL. It was detected the lower load of Vibrio ssp. bacteria with potential of pathogenicity after feeding with strain B6.Moreover, these larvae showed more active behavior and low number of necrosis in relation to the control group and to that fed with strain 2.Este trabalho avaliou a adição de duas cepas de bactérias lácticas (2 e B6 na sobrevivência, qualidade de pós-larva e na população de bactérias na larvicultura de Litopenaeus vannamei experimentalmente infectado por Vibrio harveyi. Mil e quinhentos náuplios foram distribuídos em tanques de 20 L com quatro repetições. A sobrevivência dos animais controle foi menor (21% do que a dos alimentados com as cepas B6 (50% e 2 (44%. Sobrevivência de misis após desafio com V. harveyi foi maior em B6 do que nos outros tratamentos. A população total de bactérias na água e nas larvas, bem como de Vibrio ssp. na água não foi diferente entre os tratamentos. Não houve diferença, também, entre a população de Vibrio ssp. em larvas do grupo controle (5,5±0,5 log UFC/mL e larvas alimentadas com a cepa 2 (5,4±0,1 log UFC/mL. Camarões do grupo controle e

  6. Concurrent Detection of Human Norovirus and Bacterial Pathogens in Water Samples from an Agricultural Region in Central California Coast

    Directory of Open Access Journals (Sweden)

    Peng Tian

    2017-08-01

    Full Text Available Bacterial pathogens and human norovirus (HuNoV are major cause for acute gastroenteritis caused by contaminated food and water. Public waterways can become contaminated from a variety of sources and flood after heavy rain events, leading to pathogen contamination of produce fields. We initiated a survey of several public watersheds in a major leafy green produce production region of the Central California Coast to determine the prevalence of HuNoV as well as bacterial pathogens. Moore swabs were used to collect environmental samples bi-monthly at over 30 sampling sites in the region. High prevalence of HuNoV and bacterial pathogens were detected in environmental water samples in the region. The overall detection rates of HuNoV, O157 Shiga toxin-producing Escherichia coli (STEC, non-O157 STEC, Salmonella, and Listeria were 25.58, 7.91, 9.42, 59.65, and 44.30%, respectively. The detection rates of Salmonella and L. monocytogenes were significantly higher in the spring. Fall and spring had elevated detection rates of O157 STEC. The overall detection rates of non-O157 STEC in the fall were lower than the other seasons but not significant. The overall detection rates of HuNoV were highest in fall, followed by spring and winter, with summer being lowest and significantly lower than other seasons. This study presented the first study of evaluating the correlation between the detection rate of HuNoV and the detection rates of four bacterial pathogens from environmental water. Overall, there was no significant difference in HuNoV detection rates between samples testing positive or negative for the four bacterial pathogens tested. Pathogens in animal-impacted and human-impacted areas were investigated. There were significant higher detection rates in animal-impacted areas than that of human-impacted areas for bacterial pathogens. However, there was no difference in HuNoV detection rates between these two areas. The overall detection levels of generic E

  7. Investigation of Vibrio alginolyticus, V. harveyi, and V. parahaemolyticus in large yellow croaker, Pseudosciaena crocea (Richardson reared in Xiangshan Bay, China

    Directory of Open Access Journals (Sweden)

    Lu Liu

    2016-05-01

    Full Text Available Large yellow croaker (LYC, Pseudosciaena crocea is an economically important fish species of mariculture in China. The variation of yearly production of LYC has been increasingly related to the outbreaks of fish diseases. Moreover, Vibrio infections have been identified in this fish frequently. To understand the pattern of Vibrio infections in LYC, we conducted a culture-independent survey of Vibrios in farmed LYC populations using a multiplex PCR method targeting Vibrio alginolyticus, Vibrio harveyi and Vibrio parahaemolyticus. The results showed that three fish pathogenic Vibrios had been detected in LYC populations at each sampling with a prevalence ranging from 6.7% to 73.3% but no single species dominated the Vibrio infection. The findings indicate that three Vibrio species still have impact on health status of farmed LYC and LYC aquaculture requires more efficacious prophylactic strategies. Keywords: Vibrio, Large yellow croaker, Multiplex PCR, Epidemiology

  8. Vibrio Cholerae 01 Infections In Jos, Nigeria | Opajobi | African ...

    African Journals Online (AJOL)

    A study to determine the prevalence of Vibrio cholerae 01 in stool sample submitted for routine examination of enteric pathogens, as well as identify the serotypes and antibiogram of the isolates to commonly used antibiotics was undertaken. The survey involved the examination of 774 (763 stool and 11 rectal swabs) ...

  9. Norepinephrine and dopamine increase motility, biofilm formation and virulence of Vibrio harveyi

    Directory of Open Access Journals (Sweden)

    Qian eYang

    2014-11-01

    Full Text Available Vibrio harveyi is one of the major pathogens of aquatic organisms, affecting both vertebrates and invertebrates, and causes important losses in the aquaculture industry. In order to develop novel methods to control disease caused by this pathogen, we need to obtain a better understanding of pathogenicity mechanisms. Sensing of catecholamines increases both growth and production of virulence-related factors in pathogens of terrestrial animals and humans. However, at this moment, knowledge on the impact of catecholamines on the virulence of pathogens of aquatic organisms is lacking. In the present study, we report that in V. harveyi, norepinephrine and dopamine increased growth in serum-supplemented medium, siderophore production, swimming motility and expression of genes involved in flagellar motility, biofilm formation, and exopolysaccharide production. Consistent with this, pretreatment of V. harveyi with catecholamines prior to inoculation into the rearing water resulted in significantly decreased survival of gnotobiotic brine shrimp larvae, when compared to larvae challenged with untreated V. harveyi. Further, norepinephrine-induced effects could be neutralized by α-adrenergic antagonists or by the bacterial catecholamine receptor antagonist LED209, but not by β-adrenergic or dopaminergic antagonists. Dopamine-induced effects could be neutralized by dopaminergic antagonists or LED209, but not by adrenergic antagonists. Together, our results indicate that catecholamine sensing increases the success of transmission of V. harveyi and that interfering with catecholamine sensing might be an interesting strategy to control vibriosis in aquaculture. We hypothesise that upon tissue and/or hemocyte damage during infection, pathogens come into contact with elevated catecholamine levels, and that this stimulates the expression of virulence factors that are required to colonize a new host.

  10. Norepinephrine and dopamine increase motility, biofilm formation, and virulence of Vibrio harveyi.

    Science.gov (United States)

    Yang, Qian; Anh, Nguyen D Q; Bossier, Peter; Defoirdt, Tom

    2014-01-01

    Vibrio harveyi is one of the major pathogens of aquatic organisms, affecting both vertebrates and invertebrates, and causes important losses in the aquaculture industry. In order to develop novel methods to control disease caused by this pathogen, we need to obtain a better understanding of pathogenicity mechanisms. Sensing of catecholamines increases both growth and production of virulence-related factors in pathogens of terrestrial animals and humans. However, at this moment, knowledge on the impact of catecholamines on the virulence of pathogens of aquatic organisms is lacking. In the present study, we report that in V. harveyi, norepinephrine (NE) and dopamine (Dopa) increased growth in serum-supplemented medium, siderophore production, swimming motility, and expression of genes involved in flagellar motility, biofilm formation, and exopolysaccharide production. Consistent with this, pretreatment of V. harveyi with catecholamines prior to inoculation into the rearing water resulted in significantly decreased survival of gnotobiotic brine shrimp larvae, when compared to larvae challenged with untreated V. harveyi. Further, NE-induced effects could be neutralized by α-adrenergic antagonists or by the bacterial catecholamine receptor antagonist LED209, but not by β-adrenergic or dopaminergic antagonists. Dopa-induced effects could be neutralized by dopaminergic antagonists or LED209, but not by adrenergic antagonists. Together, our results indicate that catecholamine sensing increases the success of transmission of V. harveyi and that interfering with catecholamine sensing might be an interesting strategy to control vibriosis in aquaculture. We hypothesize that upon tissue and/or hemocyte damage during infection, pathogens come into contact with elevated catecholamine levels, and that this stimulates the expression of virulence factors that are required to colonize a new host.

  11. Rhizosphere-associated Pseudomonas induce systemic resistance to herbivores at the cost of susceptibility to bacterial pathogens.

    Science.gov (United States)

    Haney, Cara H; Wiesmann, Christina L; Shapiro, Lori R; Melnyk, Ryan A; O'Sullivan, Lucy R; Khorasani, Sophie; Xiao, Li; Han, Jiatong; Bush, Jenifer; Carrillo, Juli; Pierce, Naomi E; Ausubel, Frederick M

    2017-10-31

    Plant-associated soil microbes are important mediators of plant defence responses to diverse above-ground pathogen and insect challengers. For example, closely related strains of beneficial rhizosphere Pseudomonas spp. can induce systemic resistance (ISR), systemic susceptibility (ISS) or neither against the bacterial foliar pathogen Pseudomonas syringae pv. tomato DC3000 (Pto DC3000). Using a model system composed of root-associated Pseudomonas spp. strains, the foliar pathogen Pto DC3000 and the herbivore Trichoplusia ni (cabbage looper), we found that rhizosphere-associated Pseudomonas spp. that induce either ISS and ISR against Pto DC3000 all increased resistance to herbivory by T. ni. We found that resistance to T. ni and resistance to Pto DC3000 are quantitative metrics of the jasmonic acid (JA)/salicylic acid (SA) trade-off and distinct strains of rhizosphere-associated Pseudomonas spp. have distinct effects on the JA/SA trade-off. Using genetic analysis and transcriptional profiling, we provide evidence that treatment of Arabidopsis with Pseudomonas sp. CH267, which induces ISS against bacterial pathogens, tips the JA/SA trade-off towards JA-dependent defences against herbivores at the cost of a subset of SA-mediated defences against bacterial pathogens. In contrast, treatment of Arabidopsis with the ISR strain Pseudomonas sp. WCS417 disrupts JA/SA antagonism and simultaneously primes plants for both JA- and SA-mediated defences. Our findings show that ISS against the bacterial foliar pathogens triggered by Pseudomonas sp. CH267, which is a seemingly deleterious phenotype, may in fact be an adaptive consequence of increased resistance to herbivory. Our work shows that pleiotropic effects of microbiome modulation of plant defences are important to consider when using microbes to modify plant traits in agriculture. © 2017 John Wiley & Sons Ltd.

  12. Detection of Pathogenic Biofilms with Bacterial Amyloid Targeting Fluorescent Probe, CDy11

    DEFF Research Database (Denmark)

    Kim, Jun Young; Sahu, Srikanta; Yau, Yin Hoe

    2016-01-01

    Bacterial biofilms are responsible for a wide range of persistent infections. In the clinic, diagnosis of biofilm-associated infections relies heavily on culturing methods, which fail to detect nonculturable bacteria. Identification of novel fluorescent probes for biofilm imaging will greatly...... facilitate diagnosis of pathogenic bacterial infection. Herein, we report a novel fluorescent probe, CDy11 (compound of designation yellow 11), which targets amyloid in the Pseudomonas aeruginosa biofilm matrix through a diversity oriented fluorescent library approach (DOFLA). CDy11 was further demonstrated...

  13. The expression of heterologous MAM-7 in Lactobacillus rhamnosus reduces its intrinsic capacity to inhibit colonization of pathogen Vibrio parahaemolyticus in vitro

    Directory of Open Access Journals (Sweden)

    Sebastian Beltran

    Full Text Available BACKGROUND: Vibrio parahaemolyticus (V. parahaemolyticus is a Gram-negative, halophilic bacterium recognized as one of the most important foodborne pathogen. When ingested, V. parahaemolyticus causes a self-limiting illness (Vibriosis, characterized mainly by watery diarrhoea. Treatment is usually oral rehydration and/or antibiotics in complicated cases. Since 1996, the pathogenic and pandemic V. parahaemolyticus O3:K6 serotype has spread worldwide, increasing the reported number of vibriosis cases. Thus, the design of new strategies for pathogen control and illness prevention is necessary. Lactobacillus sp. grouped Gram positive innocuous bacteria, part of normal intestinal microbiota and usually used as oral vaccines for several diarrheic diseases. Recombinants strains of Lactobacillus (RL expressing pathogen antigens can be used as part of an anti-adhesion strategy where RL block the pathogen union sites in host cells. Thus, we aimed to express MAM-7 V. parahaemolyticus adhesion protein in Lactobacillus sp. to generate an RL that prevents pathogen colonization RESULTS: We cloned the MAM-7 gene from V. parahaemolyticus RIMD 2210633 in Lactobacillus expression vectors. Recombinant strains (Lactobacillus rhamnosus pSEC-MAM7 and L. rhamnosus pCWA-MAM7 adhered to CaCo-2 cells and competed with the pathogen. However, the L. rhamnosus wild type strain showed the best capacity to inhibit pathogen colonization in vitro. In addition, LDH-assay showed that recombinant strains were cytotoxic compared with the wild type isogenic strain CONCLUSIONS: MAM-7 expression in lactobacilli reduces the intrinsic inhibitory capacity of L. rhamnosus against V. parahaemolyticus

  14. Relationship between lactobacilli and opportunistic bacterial pathogens associated with vaginitis.

    Science.gov (United States)

    Razzak, Mohammad Sabri A; Al-Charrakh, Alaa H; Al-Greitty, Bara Hamid

    2011-04-01

    Vaginitis, is an infectious inflammation of the vaginal mucosa, which sometimes involves the vulva. The balance of the vaginal flora is maintained by the Lactobacilli and its protective and probiotic role in treating and preventing vaginal infection by producing antagonizing compounds which are regarded as safe for humans. The aim of this study was to evaluate the protective role of Lactobacilli against common bacterial opportunistic pathogens in vaginitis and study the effects of some antibiotics on Lactobacilli isolates. In this study (110) vaginal swabs were obtained from women suffering from vaginitis who admitted to Babylon Hospital of Maternity and Paediatrics in Babylon province, Iraq. The study involved the role of intrauterine device among married women with vaginitis and also involved isolation of opportunistic bacterial isolates among pregnant and non pregnant women. This study also involved studying probiotic role of Lactobacilli by production of some defense factors like hydrogen peroxide, bacteriocin, and lactic acid. Results revealed that a total of 130 bacterial isolates were obtained. Intrauterine device was a predisposing factor for vaginitis. The most common opportunistic bacterial isolates were Staphylococcus aureus, Escherichia coli, Streptococcus agalactiae, and Klebsiella pneumoniae. All Lactobacilli were hydrogen peroxide producers while some isolates were bacteriocin producers that inhibited some of opportunistic pathogens (S. aureus, E. coli). Lactobacilli were sensitive to erythromycin while 93.3% of them were resistant to ciprofloxacin and (40%, 53.3%) of them were resistant to amoxicillin and gentamycin respectively. Results revealed that there was an inverse relationship between Lactobacilli presence and organisms causing vaginitis. This may be attributed to the production of defense factors by Lactobacilli. The types of antibiotics used to treat vaginitis must be very selective in order not to kill the beneficial bacteria

  15. Determination of Bacterial Pathogen in Foods for Export and their Raw Material

    International Nuclear Information System (INIS)

    Marambio, E.; Cordano, A.M.; Insunza, M.; Fernández, M.; Astorga, J.

    2005-01-01

    Chile is a South American country with an important fish and shellfish production. These products are some of the most important items for the economy of the country. From 1998 to 2001, Chile exported $1 137 625 788 of fish and shellfish. Statistics also show that frozen vegetables are fast becoming high on the food export list. During recent years (1998 to 2001) $223 312 248 worth of frozen vegetables were exported to different countries. This study was performed to trace the presence of pathogens in some of these Chilean foods to be exported: 97 samples of salmon and 84 samples of different frozen vegetables (asparagus, peas and corn) were analyzed in order to determine their levels of microbial contamination. Total bacteria counts (mesophilic aerobes bacteria), Escherichia coli, Staphylococcus aureus, Bacillus cereus, Clostridium perfringens, Salmonella spp. and Listeria monocytogenes were tested. Vibrio cholerae was tested only in salmon samples. The analysis of salmon samples showed that the raw material presented a very good quality. However, during the filleting process the fish was contaminated, presenting higher total bacteria counts. Only one of the 48 final product samples presented contamination with a pathogenic bacteria (Listeria monocytogenes (<100 cfu/g)). Frozen vegetable samples (raw material and final products) did not present any of the pathogen bacteria studied. The mesophilic aerobes bacteria counts were reduced during processing due to the effectiveness of the good manufacturing practices and the technological process used. (author)

  16. Determination of Bacterial Pathogen in Foods for Export and their Raw Material

    Energy Technology Data Exchange (ETDEWEB)

    Marambio, E.; Cordano, A. M.; Insunza, M.; Fernández, M.; Astorga, J. [Sección Microbiología de Alimentos, Instituto de Salud Pública de Chile (Chile)

    2005-01-15

    Chile is a South American country with an important fish and shellfish production. These products are some of the most important items for the economy of the country. From 1998 to 2001, Chile exported $1 137 625 788 of fish and shellfish. Statistics also show that frozen vegetables are fast becoming high on the food export list. During recent years (1998 to 2001) $223 312 248 worth of frozen vegetables were exported to different countries. This study was performed to trace the presence of pathogens in some of these Chilean foods to be exported: 97 samples of salmon and 84 samples of different frozen vegetables (asparagus, peas and corn) were analyzed in order to determine their levels of microbial contamination. Total bacteria counts (mesophilic aerobes bacteria), Escherichia coli, Staphylococcus aureus, Bacillus cereus, Clostridium perfringens, Salmonella spp. and Listeria monocytogenes were tested. Vibrio cholerae was tested only in salmon samples. The analysis of salmon samples showed that the raw material presented a very good quality. However, during the filleting process the fish was contaminated, presenting higher total bacteria counts. Only one of the 48 final product samples presented contamination with a pathogenic bacteria (Listeria monocytogenes (<100 cfu/g)). Frozen vegetable samples (raw material and final products) did not present any of the pathogen bacteria studied. The mesophilic aerobes bacteria counts were reduced during processing due to the effectiveness of the good manufacturing practices and the technological process used. (author)

  17. The human-bacterial pathogen protein interaction networks of Bacillus anthracis, Francisella tularensis, and Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    Matthew D Dyer

    2010-08-01

    Full Text Available Bacillus anthracis, Francisella tularensis, and Yersinia pestis are bacterial pathogens that can cause anthrax, lethal acute pneumonic disease, and bubonic plague, respectively, and are listed as NIAID Category A priority pathogens for possible use as biological weapons. However, the interactions between human proteins and proteins in these bacteria remain poorly characterized leading to an incomplete understanding of their pathogenesis and mechanisms of immune evasion.In this study, we used a high-throughput yeast two-hybrid assay to identify physical interactions between human proteins and proteins from each of these three pathogens. From more than 250,000 screens performed, we identified 3,073 human-B. anthracis, 1,383 human-F. tularensis, and 4,059 human-Y. pestis protein-protein interactions including interactions involving 304 B. anthracis, 52 F. tularensis, and 330 Y. pestis proteins that are uncharacterized. Computational analysis revealed that pathogen proteins preferentially interact with human proteins that are hubs and bottlenecks in the human PPI network. In addition, we computed modules of human-pathogen PPIs that are conserved amongst the three networks. Functionally, such conserved modules reveal commonalities between how the different pathogens interact with crucial host pathways involved in inflammation and immunity.These data constitute the first extensive protein interaction networks constructed for bacterial pathogens and their human hosts. This study provides novel insights into host-pathogen interactions.

  18. ANALYSIS OF IMMUNE RESPONSES ON TRANSGENIC TIGER SHRIMP (Penaeus monodon AGAINST PATHOGENIC BACTERIUM Vibrio harveyi

    Directory of Open Access Journals (Sweden)

    Andi Parenrengi

    2014-06-01

    Full Text Available Vibriosis is one of main diseases of the black tiger shrimp Penaeus monodon infected by pathogenic bioluminous bacterium Vibrio harveyi that can cause mass mortalities in shrimp culture. The bacteria can also trigger the disease white spot syndrome virus (WSSV. An effort to produce shrimp disease-resistant strains has been done through transgenesis technology with antiviral gene transfection. By this technology, it is expected an increase in the immune response of shrimp in a variety of diseasecausing pathogens. This study aimed to determine the immune responses (total haemocytes, haemocyte differentiation, and phenoloxydase activity of transgenic tiger shrimp against pathogenic bacterium V. harveyi. Research using completely randomized design, which consists of two treatments and three replications. Test animals being used were transgenic and non-transgenic shrimp with size, weight 3.93±1.25 g and a total length of 7.59±0.87 cm. Treatments being tested were the injection of bacterium V. harveyi (density of 5x106 cfu/mL of 0.1 mL/individual on transgenic (A and non-transgenic shrimp (B. Immune response parameters such as total haemocytes, haemocyte differentiation, and phenoloxydase activity were observed on day 1, 3, and 6 days after challenging. Data were analyzed using t-test by SPSS software. The results showed that the total haemocyte of transgenic shrimp was not significantly different (P>0.05 from non-transgenic shrimp, but haemocyte differentiation and phenoloxydase activity were significantly different (P<0.05 especially on sixth days after being exposed to the bioluminescent bacteria. The study results implied that transgenic shrimp has a better immune response compared than non-transgenic shrimp.

  19. Search for microRNAs expressed by intracellular bacterial pathogens in infected mammalian cells.

    Science.gov (United States)

    Furuse, Yuki; Finethy, Ryan; Saka, Hector A; Xet-Mull, Ana M; Sisk, Dana M; Smith, Kristen L Jurcic; Lee, Sunhee; Coers, Jörn; Valdivia, Raphael H; Tobin, David M; Cullen, Bryan R

    2014-01-01

    MicroRNAs are expressed by all multicellular organisms and play a critical role as post-transcriptional regulators of gene expression. Moreover, different microRNA species are known to influence the progression of a range of different diseases, including cancer and microbial infections. A number of different human viruses also encode microRNAs that can attenuate cellular innate immune responses and promote viral replication, and a fungal pathogen that infects plants has recently been shown to express microRNAs in infected cells that repress host cell immune responses and promote fungal pathogenesis. Here, we have used deep sequencing of total expressed small RNAs, as well as small RNAs associated with the cellular RNA-induced silencing complex RISC, to search for microRNAs that are potentially expressed by intracellular bacterial pathogens and translocated into infected animal cells. In the case of Legionella and Chlamydia and the two mycobacterial species M. smegmatis and M. tuberculosis, we failed to detect any bacterial small RNAs that had the characteristics expected for authentic microRNAs, although large numbers of small RNAs of bacterial origin could be recovered. However, a third mycobacterial species, M. marinum, did express an ∼ 23-nt small RNA that was bound by RISC and derived from an RNA stem-loop with the characteristics expected for a pre-microRNA. While intracellular expression of this candidate bacterial microRNA was too low to effectively repress target mRNA species in infected cultured cells in vitro, artificial overexpression of this potential bacterial pre-microRNA did result in the efficient repression of a target mRNA. This bacterial small RNA therefore represents the first candidate microRNA of bacterial origin.

  20. Search for microRNAs expressed by intracellular bacterial pathogens in infected mammalian cells.

    Directory of Open Access Journals (Sweden)

    Yuki Furuse

    Full Text Available MicroRNAs are expressed by all multicellular organisms and play a critical role as post-transcriptional regulators of gene expression. Moreover, different microRNA species are known to influence the progression of a range of different diseases, including cancer and microbial infections. A number of different human viruses also encode microRNAs that can attenuate cellular innate immune responses and promote viral replication, and a fungal pathogen that infects plants has recently been shown to express microRNAs in infected cells that repress host cell immune responses and promote fungal pathogenesis. Here, we have used deep sequencing of total expressed small RNAs, as well as small RNAs associated with the cellular RNA-induced silencing complex RISC, to search for microRNAs that are potentially expressed by intracellular bacterial pathogens and translocated into infected animal cells. In the case of Legionella and Chlamydia and the two mycobacterial species M. smegmatis and M. tuberculosis, we failed to detect any bacterial small RNAs that had the characteristics expected for authentic microRNAs, although large numbers of small RNAs of bacterial origin could be recovered. However, a third mycobacterial species, M. marinum, did express an ∼ 23-nt small RNA that was bound by RISC and derived from an RNA stem-loop with the characteristics expected for a pre-microRNA. While intracellular expression of this candidate bacterial microRNA was too low to effectively repress target mRNA species in infected cultured cells in vitro, artificial overexpression of this potential bacterial pre-microRNA did result in the efficient repression of a target mRNA. This bacterial small RNA therefore represents the first candidate microRNA of bacterial origin.

  1. Responses of a bacterial pathogen to phosphorus limitation of its aquatic invertebrate host

    OpenAIRE

    Frost, P. C.; Ebert, D.; Smith, V. H.

    2008-01-01

    Host nutrition is thought to affect the establishment, persistence, and severity of pathogenic infections. Nutrient-deficient foods possibly benefit pathogens by constraining host immune function or benefit hosts by limiting parasite growth and reproduction. However, the effects of poor elemental food quality on a host's susceptibility to infection and disease have received little study. Here we show that the bacterial microparasite Pasteuria ramosa is affected by the elemental nutrition of i...

  2. Survival behaviour and virulence of the fish pathogen Vibrio ordalii in seawater microcosms.

    Science.gov (United States)

    Ruiz, Pamela; Poblete-Morales, Matías; Irgang, Rute; Toranzo, Alicia E; Avendaño-Herrera, Ruben

    2016-06-15

    Vibrio ordalii, the causative agent of atypical vibriosis, is a Gram-negative, motile, rod-shaped bacterium that severely affects the salmonid aquaculture industry. V. ordalii has been biochemically, antigenically and genetically characterized. However, studies on the survival behaviour of this bacterium in aquatic environments are scarce, and there is no information regarding its disease transmission and infectious abilities outside of the fish host or regarding water as a possible reservoir. The present study investigated the survival behaviour of V. ordalii Vo-LM-06 and Vo-LM-18 in sterile and non-sterile seawater microcosms. After a year in sterile seawater without nutrients, 1% of both V. ordalii strains survived (~10(3) colony-forming units ml(-1)), and long-term maintenance did not affect bacterial biochemical or genetic properties. Additionally, V. ordalii maintained for 60 d in sterile seawater remained infective in rainbow trout Oncorhynchus mykiss. However, after 2 d of natural seawater exposure, this bacterium became non-culturable, indicating that autochthonous microbiota may play an important role in survival. Recuperation assays that added fresh medium to non-sterile microcosms did not favour V. ordalii recovery on solid media. Our results contribute towards a better understanding of V. ordalii survival behaviour in seawater ecosystems.

  3. Study on the relationship of protease production and luminescence in Vibrio harveyi.

    Science.gov (United States)

    Nakayama, T; Nomura, N; Matsumura, M

    2006-07-01

    To demonstrate that Vibrio harveyi produces various types of toxins and how the production of those toxins is related with luminescence. Luminescence and toxicity of eight V. harveyi were evaluated. We demonstrated that all V. harveyi emitting luminescence were isolated from marine organisms and also showed that they were highly pathogenic when compared with culture collection V. harveyi based on cytotoxic assay test. On the contrary, V. harveyi isolated from shrimp farm showed no luminescence but showed high pathogenicity based on toxicity test. The effect of protease inhibitors on pathogenicity and luminescence was also investigated. We demonstrated that light emission of pathogenic V. harveyi remarkably decreased after addition of protease inhibitor. Furthermore, extracellular proteins from cell-free culture supernatant of luminescent and nonluminescent V. harveyi were compared using SDS-PAGE analysis. Results showed that there were differences in molecular weight and amount of proteins. Vibrio harveyi parasiting marine organisms have both luminescence and pathogenicity. Based on this study, luminescence and protease toxin activity in V. harveyi are related. Moreover, this paper clarified that V. harveyi produces various types of toxins. The current study demonstrated that V. harveyi produces two kinds of toxins, haemolysin and protease toxin. It may be clear roots of V. harveyi toxin.

  4. Analysis of the SOS response of Vibrio and other bacteria with multiple chromosomes

    Directory of Open Access Journals (Sweden)

    Sanchez-Alberola Neus

    2012-02-01

    Full Text Available Abstract Background The SOS response is a well-known regulatory network present in most bacteria and aimed at addressing DNA damage. It has also been linked extensively to stress-induced mutagenesis, virulence and the emergence and dissemination of antibiotic resistance determinants. Recently, the SOS response has been shown to regulate the activity of integrases in the chromosomal superintegrons of the Vibrionaceae, which encompasses a wide range of pathogenic species harboring multiple chromosomes. Here we combine in silico and in vitro techniques to perform a comparative genomics analysis of the SOS regulon in the Vibrionaceae, and we extend the methodology to map this transcriptional network in other bacterial species harboring multiple chromosomes. Results Our analysis provides the first comprehensive description of the SOS response in a family (Vibrionaceae that includes major human pathogens. It also identifies several previously unreported members of the SOS transcriptional network, including two proteins of unknown function. The analysis of the SOS response in other bacterial species with multiple chromosomes uncovers additional regulon members and reveals that there is a conserved core of SOS genes, and that specialized additions to this basic network take place in different phylogenetic groups. Our results also indicate that across all groups the main elements of the SOS response are always found in the large chromosome, whereas specialized additions are found in the smaller chromosomes and plasmids. Conclusions Our findings confirm that the SOS response of the Vibrionaceae is strongly linked with pathogenicity and dissemination of antibiotic resistance, and suggest that the characterization of the newly identified members of this regulon could provide key insights into the pathogenesis of Vibrio. The persistent location of key SOS genes in the large chromosome across several bacterial groups confirms that the SOS response plays an

  5. Analysis of the SOS response of Vibrio and other bacteria with multiple chromosomes.

    Science.gov (United States)

    Sanchez-Alberola, Neus; Campoy, Susana; Barbé, Jordi; Erill, Ivan

    2012-02-03

    The SOS response is a well-known regulatory network present in most bacteria and aimed at addressing DNA damage. It has also been linked extensively to stress-induced mutagenesis, virulence and the emergence and dissemination of antibiotic resistance determinants. Recently, the SOS response has been shown to regulate the activity of integrases in the chromosomal superintegrons of the Vibrionaceae, which encompasses a wide range of pathogenic species harboring multiple chromosomes. Here we combine in silico and in vitro techniques to perform a comparative genomics analysis of the SOS regulon in the Vibrionaceae, and we extend the methodology to map this transcriptional network in other bacterial species harboring multiple chromosomes. Our analysis provides the first comprehensive description of the SOS response in a family (Vibrionaceae) that includes major human pathogens. It also identifies several previously unreported members of the SOS transcriptional network, including two proteins of unknown function. The analysis of the SOS response in other bacterial species with multiple chromosomes uncovers additional regulon members and reveals that there is a conserved core of SOS genes, and that specialized additions to this basic network take place in different phylogenetic groups. Our results also indicate that across all groups the main elements of the SOS response are always found in the large chromosome, whereas specialized additions are found in the smaller chromosomes and plasmids. Our findings confirm that the SOS response of the Vibrionaceae is strongly linked with pathogenicity and dissemination of antibiotic resistance, and suggest that the characterization of the newly identified members of this regulon could provide key insights into the pathogenesis of Vibrio. The persistent location of key SOS genes in the large chromosome across several bacterial groups confirms that the SOS response plays an essential role in these organisms and sheds light into the

  6. Impact of transgenic potatoes expressing anti-bacterial agents on bacterial endophytes is comparable with the effects of plant genotype, soil type and pathogen infection

    NARCIS (Netherlands)

    Rasche, F; Velvis, H; Zachow, C; Berg, G; Van Elsas, JD; Sessitsch, A

    1. Blackleg and soft rot disease of potatoes Solanum tuberosum L., mainly caused by the bacterial pathogen Erwinia carotovora ssp. atrospetica (Eca), lead to enormous yield losses world-wide. Genetically modified (GM) potatoes producing anti-bacterial agents, such as cecropin/attacin and T4

  7. Impact of transgenic potatoes expressing anti-bacterial agents on bacterial endophytes is comparable with the effects of plant genotype, soil type and pathogen infection

    NARCIS (Netherlands)

    Rasche, F.; Velvis, H.; Zachow, C.; Berg, G.; Elsas, van J.D.; Sessitsch, A.

    2006-01-01

    1. Blackleg and soft rot disease of potatoes Solanum tuberosum L., mainly caused by the bacterial pathogen Erwinia carotovora ssp. atrospetica (Eca), lead to enormous yield losses world-wide. Genetically modified (GM) potatoes producing anti-bacterial agents, such as cecropin/attacin and T4

  8. Molecular variations in Vibrio alginolyticus and V. harveyi in shrimp-farming systems upon stress

    OpenAIRE

    Santhyia,Anix Vivek; Mulloorpeedikayil,Rosalind George; Kollanoor,Riji John; Jeyaseelan,Prince M.J.

    2015-01-01

    A study was performed to investigate the genomic variations in the shrimp farm isolates of Vibrio alginolyticus and V. harveyi when the isolates were subjected to environmental stress. Samples of shrimps, water and sediment were collected from Southern Indian coastal shrimp farms. Vibrio isolates were biochemically identified and confirmed using 16S rDNA and gyrB gene specific PCR. The bacterial strains were genotyped by PCR fingerprinting using GTG(5) and IS (Insertion Sequence) primers. Sev...

  9. Estimation of decay rates for fecal indicator bacteria and bacterial pathogens in agricultural field-applied manure

    Science.gov (United States)

    Field-applied manure is an important source of pathogenic exposure in surface water bodies for humans and ecological receptors. We analyzed the persistence and decay of fecal indicator bacteria and bacterial pathogens from three sources (cattle, poultry, swine) for agricultural f...

  10. Genome Sequence of Vibrio cholerae Strain O1 Ogawa El Tor, Isolated in Mexico, 2013.

    Science.gov (United States)

    Díaz-Quiñonez, José Alberto; Hernández-Monroy, Irma; López-Martínez, Irma; Ortiz-Alcántara, Joanna; González-Durán, Elizabeth; Ruiz-Matus, Cuitláhuac; Kuri-Morales, Pablo; Ramírez-González, José Ernesto

    2014-10-30

    We present the draft genome sequence of Vibrio cholerae InDRE 3140 recovered in 2013 during a cholera outbreak in Mexico. The genome showed the Vibrio 7th pandemic islands VSP1 and VSP2, the pathogenic islands VPI-1 and VPI-2, the integrative and conjugative element SXT/R391 (ICE-SXT), and both prophages CTXφ and RS1φ. Copyright © 2014 Díaz-Quiñonez et al.

  11. Lipopolysaccharide O-antigen prevents phagocytosis of Vibrio anguillarum by rainbow trout (Oncorhynchus mykiss skin epithelial cells.

    Directory of Open Access Journals (Sweden)

    Kristoffer Lindell

    Full Text Available Colonization of host tissues is a first step taken by many pathogens during the initial stages of infection. Despite the impact of bacterial disease on wild and farmed fish, only a few direct studies have characterized bacterial factors required for colonization of fish tissues. In this study, using live-cell and confocal microscopy, rainbow trout skin epithelial cells, the main structural component of the skin epidermis, were demonstrated to phagocytize bacteria. Mutant analyses showed that the fish pathogen Vibrio anguillarum required the lipopolysaccharide O-antigen to evade phagocytosis and that O-antigen transport required the putative wzm-wzt-wbhA operon, which encodes two ABC polysaccharide transporter proteins and a methyltransferase. Pretreatment of the epithelial cells with mannose prevented phagocytosis of V. anguillarum suggesting that a mannose receptor is involved in the uptake process. In addition, the O-antigen transport mutants could not colonize the skin but they did colonize the intestines of rainbow trout. The O-antigen polysaccharides were also shown to aid resistance to the antimicrobial factors, lysozyme and polymyxin B. In summary, rainbow trout skin epithelial cells play a role in the fish innate immunity by clearing bacteria from the skin epidermis. In defense, V. anguillarum utilizes O-antigen polysaccharides to evade phagocytosis by the epithelial cells allowing it to colonize rapidly fish skin tissues.

  12. Lipopolysaccharide O-Antigen Prevents Phagocytosis of Vibrio anguillarum by Rainbow Trout (Oncorhynchus mykiss) Skin Epithelial Cells

    Science.gov (United States)

    Lindell, Kristoffer; Fahlgren, Anna; Hjerde, Erik; Willassen, Nils-Peder; Fällman, Maria; Milton, Debra L.

    2012-01-01

    Colonization of host tissues is a first step taken by many pathogens during the initial stages of infection. Despite the impact of bacterial disease on wild and farmed fish, only a few direct studies have characterized bacterial factors required for colonization of fish tissues. In this study, using live-cell and confocal microscopy, rainbow trout skin epithelial cells, the main structural component of the skin epidermis, were demonstrated to phagocytize bacteria. Mutant analyses showed that the fish pathogen Vibrio anguillarum required the lipopolysaccharide O-antigen to evade phagocytosis and that O-antigen transport required the putative wzm-wzt-wbhA operon, which encodes two ABC polysaccharide transporter proteins and a methyltransferase. Pretreatment of the epithelial cells with mannose prevented phagocytosis of V. anguillarum suggesting that a mannose receptor is involved in the uptake process. In addition, the O-antigen transport mutants could not colonize the skin but they did colonize the intestines of rainbow trout. The O-antigen polysaccharides were also shown to aid resistance to the antimicrobial factors, lysozyme and polymyxin B. In summary, rainbow trout skin epithelial cells play a role in the fish innate immunity by clearing bacteria from the skin epidermis. In defense, V. anguillarum utilizes O-antigen polysaccharides to evade phagocytosis by the epithelial cells allowing it to colonize rapidly fish skin tissues. PMID:22662189

  13. Defense reactions of bean genotypes to bacterial pathogens in controlled conditions

    Science.gov (United States)

    Uysal, B.; Bastas, K. K.

    2018-03-01

    This study was focused on the role of antioxidant enzymes and total protein in imparting resistance against common bacterial blight caused by Xanthomonas axonopodis pv. phaseoli (Xap) and halo blight caused by Pseudomonas syringae pv. phaseolicola (Psp) in bean. Activities of Ascorbate peroxidase (APX), Catalase (CAT) and total protein were studied in resistant and susceptible bean genotypes. Five-day-old seedlings were inoculated with a bacterial suspension (108 CFU ml-1) and harvested at different time intervals (0, 12, 24 and 36 up to 72 h) under controlled growing conditions and assayed for antioxidant enzymes and total protein. Temporal increase of CAT, APX enzymes activities showed maximum activity at 12 h after both pathogens inoculation (hpi) in resistant cultivar, whereas in susceptible it increased at 72 h after both pathogens inoculation for CAT and 12, 24 h for APX enzymes. Maximum total protein activities were observed at 12 h and 24 h respectively after Xap, Psp inoculation (hpi) in resistant and maximum activities were observed at 24 h and 72 h respectively after Xap, Psp inoculation (hpi) in susceptible. Increase of antioxidant enzyme and total protein activities might be an important component in the defense strategy of resistance and susceptible bean genotypes against the bacterial infection. These findings suggest that disease protection is proportional to the amount of enhanced CAT, APX enzyme and total protein activity.

  14. Application of polymerase chain reaction for detection of Vibrio parahaemolyticus associated with tropical seafoods and coastal environment.

    Science.gov (United States)

    Dileep, V; Kumar, H S; Kumar, Y; Nishibuchi, M; Karunasagar, Indrani; Karunasagar, Iddya

    2003-01-01

    To study the incidence of Vibrio parahaemolyticus in seafoods, water and sediment by molecular techniques vs conventional microbiological methods. Of 86 samples analysed, 28 recorded positive for V. parahaemolyticus by conventional microbiological method, while 53 were positive by the toxR-targeted PCR, performed directly on enrichment broth lysates. While one sample of molluscan shellfish was positive for tdh gene, trh gene was detected in three enrichment broths of molluscan shellfish. Direct application of PCR to enrichment broths will be useful for the rapid and sensitive detection of potentially pathogenic strains of V. parahemolyticus in seafoods. Vibrio parahaemolyticus is an important human pathogen responsible for food-borne gastroenteritis world-wide. As, both pathogenic and non-pathogenic strains of V. parahaemolyticus exist in the seafood, application of PCR specific for the virulence genes (tdh & trh) will help in detection of pathogenic strains of V. parahaemolyticus and consequently reduce the risk of food-borne illness.

  15. Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria.

    Science.gov (United States)

    Pugazhendhi, Arivalagan; Prabakar, Desika; Jacob, Jaya Mary; Karuppusamy, Indira; Saratale, Rijuta Ganesh

    2018-01-01

    Microfouling is evolving at a fast rate causing augmented mortality rates and damage worldwide. Until now, several remedial measures have been exploited to overcome microfouling, amongst them nanoparticles play a superior role. Currently, green synthesized nanoparticles have been centered owing to its eco-friendly, cost effectively and non-toxic nature which has also increased its industrial applications (biomedicine, food and textile). In the present research Silver Nanoparticles (Ag NPs) synthesized using marine red algae Gelidium amansii. The synthesized Ag NPs were characterized using UV-Vis Spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). Further the antibacterial potentials of Ag NPs were evaluated against pathogenic Gram positive (Staphylococcus aureus, Bacillus pumilus) and Gram negative bacterial (Escherichia coli, Pseudomonas aeruginosa, Vibrio parahaemolyticus, Aeromonas hydrophila) pathogens. Our findings suggest that Ag NPs synthesized using a green approach effectively reduce the bacterial growth by eliciting a bactericidal activity against the Gram Negative and Gram Positive biofilm forming pathogens. Thereby, Ag NPs synthesized using G. amansii could reflect as potential anti micro-fouling coatings for various biomedical and environmental applications. Copyright © 2017. Published by Elsevier Ltd.

  16. Contribution of non-immune phagocytes to protection of mice against Vibrio cholerae

    International Nuclear Information System (INIS)

    Tsuru, Sumiaki; Seno, Masao; Tsuchiya, Choji; Noritake, Masayuki; Wasada, Kazunori

    1980-01-01

    Bacterial kinetics of Vibrio cholerae 569B in the local infection of mice was examined after the γ-ray-irradiation or the treatment with carrageenan. In the control mice, bacterial number decreased exponentially. In the mice treated with carrageenan gave similar tendency. In the irradiated mice, however, decrease in bacterial number was not as significant and the clearance was never observed. From these results, it is concluded that the protection against V. cholerae local infection depends mainly on polymorphonuclear cells in the early phase. (author)

  17. An Overview of the Control of Bacterial Pathogens in Cattle Manure

    Directory of Open Access Journals (Sweden)

    Christy E. Manyi-Loh

    2016-08-01

    Full Text Available Cattle manure harbors microbial constituents that make it a potential source of pollution in the environment and infections in humans. Knowledge of, and microbial assessment of, manure is crucial in a bid to prevent public health and environmental hazards through the development of better management practices and policies that should govern manure handling. Physical, chemical and biological methods to reduce pathogen population in manure do exist, but are faced with challenges such as cost, odor pollution, green house gas emission, etc. Consequently, anaerobic digestion of animal manure is currently one of the most widely used treatment method that can help to salvage the above-mentioned adverse effects and in addition, produces biogas that can serve as an alternative/complementary source of energy. However, this method has to be monitored closely as it could be fraught with challenges during operation, caused by the inherent characteristics of the manure. In addition, to further reduce bacterial pathogens to a significant level, anaerobic digestion can be combined with other methods such as thermal, aerobic and physical methods. In this paper, we review the bacterial composition of cattle manure as well as methods engaged in the control of pathogenic microbes present in manure and recommendations that need to be respected and implemented in order to prevent microbial contamination of the environment, animals and humans.

  18. Endogenous MMTV proviruses induce susceptibility to both viral and bacterial pathogens.

    Directory of Open Access Journals (Sweden)

    Sanchita Bhadra

    2006-12-01

    Full Text Available Most inbred mice carry germline proviruses of the retrovirus, mouse mammary tumor virus (MMTV (called Mtvs, which have multiple replication defects. A BALB/c congenic mouse strain lacking all endogenous Mtvs (Mtv-null was resistant to MMTV oral and intraperitoneal infection and tumorigenesis compared to wild-type BALB/c mice. Infection of Mtv-null mice with an MMTV-related retrovirus, type B leukemogenic virus, also resulted in severely reduced viral loads and failure to induce T-cell lymphomas, indicating that resistance is not dependent on expression of a superantigen (Sag encoded by exogenous MMTV. Resistance to MMTV in Mtv-null animals was not due to neutralizing antibodies. Further, Mtv-null mice were resistant to rapid mortality induced by intragastric inoculation of the Gram-negative bacterium, Vibrio cholerae, but susceptibility to Salmonella typhimurium was not significantly different from BALB/c mice. Susceptibility to both MMTV and V. cholerae was reconstituted by the presence of any one of three endogenous Mtvs located on different chromosomes and was associated with increased pathogen load. One of these endogenous proviruses is known to encode only Sag. Therefore, Mtv-encoded Sag appears to provide a unique genetic susceptibility to specific viruses and bacteria. Since human endogenous retroviruses also encode Sags, these studies have broad implications for pathogen-induced responses in mice and humans.

  19. Factores ambientales vinculados con la aparición y dispersión de las epidemias de Vibrio en América del Sur Environmental drivers of emergence and spreading of Vibrio epidemics in South America

    Directory of Open Access Journals (Sweden)

    Ronnie G. Gavilán

    2011-03-01

    Full Text Available El Vibrio cholerae y el V. parahaemolyticus son las principales especies de Vibrio que ocasionan infecciones en seres humanos. Las infecciones causadas por estos dos patógenos están teniendo una creciente importancia debido a su imparable expansión a nivel mundial. En el presente artículo se resumen los aspectos ecológicos asociados con la llegada y dispersión de las epidemias por V. parahaemolyticus y V. cholera en Perú desde una perspectiva sudamericana. De igual forma, se discute las similitudes en la aparición del cólera en 1991 y las infecciones por V. parahaemolyticus en 1997 en Perú, que sirvieron como experimentos únicos para analizar la relación entre las epidemias de Vibrio y los cambios en el medio ambiente. Estas dos radiaciones epidémicas constituyen unos claros ejemplos que apoyan la teoría de la dispersión oceánica de vibrios patógenos y permiten identificar a los episodios de El Niño como un mecanismo potencial de transmisión de enfermedades a través del océano.Vibrio cholerae and V. parahaemolyticus are the two Vibrio species with a major impact on human health. Diseases caused by both pathogens are acquiring increasing relevance due to their expansion at global scale. In this paper, we resume the ecological aspects associated with the arrival and spreading of infections caused by V. parahaemolyticus and V. cholerae in Peru from a South American perspective. Moreover, we discuss the similarities in the emergence in Peru of cholera cases in 1991 and V. parahaemolyticus infections in 1997. These constituted exceptional experiments to evaluate the relationships between the Vibrio epidemics and changes in the environment. The epidemic radiations of V. cholerae and V. parahaemolyticus constitute to clear examples supporting the oceanic dispersion of pathogenic vibrios and have enabled the identification of El Niño events as a potential mechanism for the spreading of diseases through the ocean.

  20. The effect of γ radiation on the expression of the virulence genes of Salmonella typhimurium and Vibrio spp

    International Nuclear Information System (INIS)

    Lim, Sangyong; Jung, Jinwoo; Kim, Dongho

    2007-01-01

    The principle benefit of food irradiation is the reduction of food-borne bacteria in food products. However, the microbiological safety with respect to increased virulence of surviving pathogens after irradiation remains an important issue with regard to the effectiveness of food irradiation. In this study, the transcriptional changes of virulence genes of Salmonella and Vibrio spp. after γ radiation were investigated by real-time PCR (RT-PCR). Samonella typhimurium is dependent upon the products of a large number of genes located within Salmonella pathogenicity islands (SPI) on the chromosome. The expressions of seven genes including four SPI genes, hilD, ssrB, pipB, and sopD, were measured at 1 h after 1 kGy irradiation. Compared with non-irradiated controls, the expression of hilD encoded within SPI1 and sopD encoding SPI1-related effector proteins was reduced about 4- and 16-fold, respectively. The expressions of Vibrio toxin genes, vvhA, ctxA, and tdh, were also monitored during the course of a growth cycle after re-inoculation of irradiated Vibrio spp. (0.5 and 1.0 kGy). The expressions of Vibrio toxin genes tested did not increase compared with non-irradiated counterparts. Results from this study indicate that γ radiation is much more likely to reduce the virulence gene expression of surviving pathogens

  1. The effect of {gamma} radiation on the expression of the virulence genes of Salmonella typhimurium and Vibrio spp

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sangyong; Jung, Jinwoo [Radiation Food Science and Biotechnology Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup 580-185 (Korea, Republic of); Kim, Dongho [Radiation Food Science and Biotechnology Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup 580-185 (Korea, Republic of)], E-mail: fungikim@kaeri.re.kr

    2007-11-15

    The principle benefit of food irradiation is the reduction of food-borne bacteria in food products. However, the microbiological safety with respect to increased virulence of surviving pathogens after irradiation remains an important issue with regard to the effectiveness of food irradiation. In this study, the transcriptional changes of virulence genes of Salmonella and Vibrio spp. after {gamma} radiation were investigated by real-time PCR (RT-PCR). Samonella typhimurium is dependent upon the products of a large number of genes located within Salmonella pathogenicity islands (SPI) on the chromosome. The expressions of seven genes including four SPI genes, hilD, ssrB, pipB, and sopD, were measured at 1 h after 1 kGy irradiation. Compared with non-irradiated controls, the expression of hilD encoded within SPI1 and sopD encoding SPI1-related effector proteins was reduced about 4- and 16-fold, respectively. The expressions of Vibrio toxin genes, vvhA, ctxA, and tdh, were also monitored during the course of a growth cycle after re-inoculation of irradiated Vibrio spp. (0.5 and 1.0 kGy). The expressions of Vibrio toxin genes tested did not increase compared with non-irradiated counterparts. Results from this study indicate that {gamma} radiation is much more likely to reduce the virulence gene expression of surviving pathogens.

  2. Draft Genome Sequence of Vibrio parahaemolyticus VH3, Isolated from an Aquaculture Environment in Greece

    DEFF Research Database (Denmark)

    Castillo, Daniel; Jun, Jin Woo; D'Alvise, Paul

    2015-01-01

    Vibrio parahaemolyticus is an important foodborne pathogen responsible for gastroenteritis outbreaks globally. It has also been identified as an important pathogen in aquatic organisms. Here, we report a draft genome sequence of V. parahaemolyticus, strain VH3, isolated from farmed juvenile greater...

  3. Genomes of foodborne and waterborne pathogens

    National Research Council Canada - National Science Library

    Fratamico, Pina M; Liu, Yanhong; Kathariou, Sophia

    2011-01-01

    ... of Pathogenic Vibrio cholerae * 85 Salvador Almagro-Moreno, Ronan A. Murphy, and E. Fidelma Boyd 8. Genomics of the Enteropathogenic Yersiniae * 101 Alan McNally, Nicholas R. Thomson, and Brendan W. ...

  4. The annual cycle of zooplankton-associated Vibrio cholerae and related vibrios in Albufera lake and its coastal surrounding waters (Valencia, Spain).

    Science.gov (United States)

    Arnau, A; Pujalte, M J; Amaro, C; Garay, E

    1988-12-01

    Most probable numbers of zooplankton-associated Vibrio spp. and V. cholerae were determined in Albufera lake, Spain, and in its coastal receiving waters throughout a year. Highest counts of 10(5) bacterial cells/g of plankton were associated to high temperatures and were also related to the kind of water. All isolates were non-01 serovars, and most belonged to Heiberg groups I and II.

  5. The BER necessities: the repair of DNA damage in human-adapted bacterial pathogens.

    Science.gov (United States)

    van der Veen, Stijn; Tang, Christoph M

    2015-02-01

    During colonization and disease, bacterial pathogens must survive the onslaught of the host immune system. A key component of the innate immune response is the generation of reactive oxygen and nitrogen species by phagocytic cells, which target and disrupt pathogen molecules, particularly DNA, and the base excision repair (BER) pathway is the most important mechanism for the repair of such oxidative DNA damage. In this Review, we discuss how the human-specific pathogens Mycobacterium tuberculosis, Helicobacter pylori and Neisseria meningitidis have evolved specialized mechanisms of DNA repair, particularly their BER pathways, compared with model organisms such as Escherichia coli. This specialization in DNA repair is likely to reflect the distinct niches occupied by these important human pathogens in the host.

  6. Bacterial and viral pathogens in live oysters: 2007 United States market survey.

    Science.gov (United States)

    DePaola, Angelo; Jones, Jessica L; Woods, Jacquelina; Burkhardt, William; Calci, Kevin R; Krantz, Jeffrey A; Bowers, John C; Kasturi, Kuppuswamy; Byars, Robin H; Jacobs, Emily; Williams-Hill, Donna; Nabe, Khamphet

    2010-05-01

    Two samples of market oysters, primarily from retail establishments, were collected twice each month in each of nine states during 2007. Samples were shipped refrigerated overnight to five U.S. Food and Drug Administration laboratories on a rotating basis and analyzed by most probable number (MPN) for total and pathogenic Vibrio parahaemolyticus and V. vulnificus numbers and for the presence of toxigenic V. cholerae, Salmonella spp., norovirus (NoV), and hepatitis A virus (HAV). Levels of indicator organisms, including fecal coliforms (MPN), Escherichia coli (MPN), male-specific bacteriophage, and aerobic plate counts, were also determined. V. parahaemolyticus and V. vulnificus levels were distributed seasonally and geographically by harvest region and were similar to levels observed in a previous study conducted in 1998-1999. Levels of pathogenic V. parahaemolyticus were typically several logs lower than total V. parahaemolyticus levels regardless of season or region. Pathogenic V. parahaemolyticus levels in the Gulf and Mid-Atlantic regions were about two logs greater than the levels observed in the Pacific and North Atlantic regions. Pathogens generally associated with fecal pollution were detected sporadically or not at all (toxigenic V. cholerae, 0%; Salmonella, 1.5%; NoV, 3.9%; HAV, 4.4%). While seasonal prevalences of NoV and HAV were generally greater in oysters harvested from December to March, the low detection frequency obscured any apparent seasonal effects. Overall, there was no relationship between the levels of indicator microorganisms and the presence of enteric viruses. These data provide a baseline that can be used to further validate risk assessment predictions, determine the effectiveness of new control measures, and compare the level of protection provided by the U.S. shellfish sanitation system to those in other countries.

  7. Evaluation of synergy and bacterial regrowth in photocatalytic ozonation disinfection of municipal wastewater.

    Science.gov (United States)

    Mecha, Achisa C; Onyango, Maurice S; Ochieng, Aoyi; Momba, Maggy N B

    2017-12-01

    The use of solar and ultraviolet titanium dioxide photocatalytic ozonation processes to inactivate waterborne pathogens (Escherichia coli, Salmonella species, Shigella species and Vibrio cholerae) in synthetic water and secondary municipal wastewater effluent is presented. The performance indicators were bacterial inactivation efficiency, post-disinfection regrowth and synergy effects (collaboration) between ozonation and photocatalysis (photocatalytic ozonation). Photocatalytic ozonation effectively inactivated the target bacteria and positive synergistic interactions were observed, leading to synergy indices (SI) of up to 1.86 indicating a performance much higher than that of ozonation and photocatalysis individually (SI≤1, no synergy; SI>1 shows synergy between the two processes). Furthermore, there was a substantial reduction in contact time required for complete bacterial inactivation by 50-75% compared to the individual unit processes of ozonation and photocatalysis. Moreover, no post-treatment bacterial regrowth after 24 and 48h in the dark was observed. Therefore, the combined processes overcame the limitations of the individual unit processes in terms of the suppression of bacterial reactivation and regrowth owing to the fact that bacterial cells were irreparably damaged. The treated wastewater satisfied the bacteriological requirements in treated wastewater for South Africa. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Pathogenic Leptospira species express surface-exposed proteins belonging to the bacterial immunoglobulin superfamily

    Science.gov (United States)

    Matsunaga, James; Barocchi, Michele A.; Croda, Julio; Young, Tracy A.; Sanchez, Yolanda; Siqueira, Isadora; Bolin, Carole A.; Reis, Mitermayer G.; Riley, Lee W.; Haake, David A.; Ko, Albert I.

    2005-01-01

    Summary Proteins with bacterial immunoglobulin-like (Big) domains, such as the Yersinia pseudotuberculosis invasin and Escherichia coli intimin, are surface-expressed proteins that mediate host mammalian cell invasion or attachment. Here, we report the identification and characterization of a new family of Big domain proteins, referred to as Lig (leptospiral Ig-like) proteins, in pathogenic Leptospira. Screening of L. interrogans and L. kirschneri expression libraries with sera from leptospirosis patients identified 13 lambda phage clones that encode tandem repeats of the 90 amino acid Big domain. Two lig genes, designated ligA and ligB, and one pseudo-gene, ligC, were identified. The ligA and ligB genes encode amino-terminal lipoprotein signal peptides followed by 10 or 11 Big domain repeats and, in the case of ligB, a unique carboxy-terminal non-repeat domain. The organization of ligC is similar to that of ligB but contains mutations that disrupt the reading frame. The lig sequences are present in pathogenic but not saprophytic Leptospira species. LigA and LigB are expressed by a variety of virulent leptospiral strains. Loss of Lig protein and RNA transcript expression is correlated with the observed loss of virulence during culture attenuation of pathogenic strains. High-pressure freeze substitution followed by immunocytochemical electron microscopy confirmed that the Lig proteins were localized to the bacterial surface. Immunoblot studies with patient sera found that the Lig proteins are a major antigen recognized during the acute host infection. These observations demonstrate that the Lig proteins are a newly identified surface protein of pathogenic Leptospira, which by analogy to other bacterial immunoglobulin superfamily virulence factors, may play a role in host cell attachment and invasion during leptospiral pathogenesis. PMID:12890019

  9. Natural transformation of Vibrio parahaemolyticus: A rapid method to create genetic deletions.

    Science.gov (United States)

    Chimalapati, Suneeta; de Souza Santos, Marcela; Servage, Kelly; De Nisco, Nicole J; Dalia, Ankur B; Orth, Kim

    2018-03-19

    The Gram-negative bacterium Vibrio parahaemolyticus is an opportunistic human pathogen and the leading cause of seafood borne acute gastroenteritis worldwide. Recently, this bacterium was implicated as the etiologic agent of a severe shrimp disease with consequent devastating outcomes to shrimp farming. In both cases, acquisition of genetic material via horizontal transfer provided V. parahaemolyticus with new virulence tools to cause disease. Dissecting the molecular mechanisms of V. parahaemolyticus pathogenesis often requires manipulating its genome. Classically, genetic deletions in V. parahaemolyticus are performed using a laborious, lengthy, multi-step process. Herein, we describe a fast and efficient method to edit this bacterium's genome based on V. parahaemolyticus natural competence. Although this method is similar to one previously described, V. parahaemolyticus requires counter selection for curing of acquired plasmids due to its recalcitrant nature of retaining extrachromosomal DNA. We believe this approach will be of use to the Vibrio community. Importance Spreading of Vibrios throughout the world correlates with increased global temperatures. As they spread, they find new niches to survive, proliferate and invade. Therefore, genetic manipulation of Vibrios is of utmost importance for studying these species. Herein, we have delineated and validated a rapid method to create genetic deletions in Vibrio parahaemolyticus This study provides insightful methodology for studies with other Vibrio species. Copyright © 2018 American Society for Microbiology.

  10. Factors affecting the uptake and retention of Vibrio vulnificus in oysters.

    Science.gov (United States)

    Froelich, Brett A; Noble, Rachel T

    2014-12-01

    Vibrio vulnificus, a bacterium ubiquitous in oysters and coastal water, is capable of causing ailments ranging from gastroenteritis to grievous wound infections or septicemia. The uptake of these bacteria into oysters is often examined in vitro by placing oysters in seawater amended with V. vulnificus. Multiple teams have obtained similar results in studies where laboratory-grown bacteria were observed to be rapidly taken up by oysters but quickly eliminated. This technique, along with suggested modifications, is reviewed here. In contrast, the natural microflora within oysters is notoriously difficult to eliminate via depuration. The reason for the transiency of exogenous bacteria is that those bacteria are competitively excluded by the oyster's preexisting microflora. Evidence of this phenomenon is shown using in vitro oyster studies and a multiyear in situ case study. Depuration of the endogenous oyster bacteria occurs naturally and can also be artificially induced, but both of these events require extreme conditions, natural or otherwise, as explained here. Finally, the "viable but nonculturable" (VBNC) state of Vibrio is discussed. This bacterial torpor can easily be confused with a reduction in bacterial abundance, as bacteria in this state fail to grow on culture media. Thus, oysters collected from colder months may appear to be relatively free of Vibrio but in reality harbor VBNC cells that respond to exogenous bacteria and prevent colonization of oyster matrices. Bacterial-uptake experiments combined with studies involving cell-free spent media are detailed that demonstrate this occurrence, which could explain why the microbial community in oysters does not always mirror that of the surrounding water. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  11. Quorum sensing and bacterial pathogenicity: From molecules to disease

    Directory of Open Access Journals (Sweden)

    Antariksh Deep

    2011-01-01

    Full Text Available Quorum sensing in prokaryotic biology refers to the ability of a bacterium to sense information from other cells in the population when they reach a critical concentration (i.e. a Quorum and communicate with them. The "language" used for this intercellular communication is based on small, self-generated signal molecules called as autoinducers. Quorum sensing is thought to afford pathogenic bacteria a mechanism to minimize host immune responses by delaying the production of tissue-damaging virulence factors until sufficient bacteria have amassed and are prepared to overwhelm host defense mechanisms and establish infection. Quorum sensing systems are studied in a large number of gram-negative bacterial species belonging to α, β, and γ subclasses of proteobacteria. Among the pathogenic bacteria, Pseudomonas aeruginosa is perhaps the best understood in terms of the virulence factors regulated and the role the Quorum sensing plays in pathogenicity. Presently, Quorum sensing is considered as a potential novel target for antimicrobial therapy to control multi/all drug-resistant infections. This paper reviews Quorum sensing in gram positive and gram negative bacteria and its role in biofilm formation.

  12. Relationship between lactobacilli and opportunistic bacterial pathogens associated with vaginitis

    OpenAIRE

    Razzak, Mohammad Sabri A.; Al-Charrakh, Alaa H.; AL-Greitty, Bara Hamid

    2011-01-01

    Background: Vaginitis, is an infectious inflammation of the vaginal mucosa, which sometimes involves the vulva. The balance of the vaginal flora is maintained by the Lactobacilli and its protective and probiotic role in treating and preventing vaginal infection by producing antagonizing compounds which are regarded as safe for humans. Aim: The aim of this study was to evaluate the protective role of Lactobacilli against common bacterial opportunistic pathogens in vaginitis and study the effec...

  13. Characterization of Chemically-Induced Bacterial Ghosts (BGs Using Sodium Hydroxide-Induced Vibrio parahaemolyticus Ghosts (VPGs

    Directory of Open Access Journals (Sweden)

    Hyun Jung Park

    2016-11-01

    Full Text Available Acellular bacterial ghosts (BGs are empty non-living bacterial cell envelopes, commonly generated by controlled expression of the cloned lysis gene E of bacteriophage PhiX174. In this study, Vibrio parahaemolyticus ghosts (VPGs were generated by chemically-induced lysis and the method is based on minimum inhibitory concentration (MIC of sodium hydroxide (NaOH, acetic acid, boric acid, citric acid, maleic acid, hydrochloric acid, and sulfuric acid. The MIC values of the respective chemicals were 3.125, 6.25, <50.0, 25.0, 6.25, 1.56, and 0.781 mg/mL. Except for boric acid, the lysis efficiency reached more than 99.99% at 5 min after treatment of all chemicals. Among those chemicals, NaOH-induced VPGs appeared completely DNA-free, which was confirmed by quantitative real-time PCR. Besides, lipopolysaccharides (LPS extracted from the NaOH-induced VPGs showed no distinctive band on SDS-PAGE gel after silver staining. On the other hand, LPS extracted from wild-type bacterial cells, as well as the organic acids-induced VPGs showed triple major bands and LPS extracted from the inorganic acids-induced VPGs showed double bands. It suggests that some surface structures in LPS of the NaOH-induced VPGs may be lost, weakened, or modified by the MIC of NaOH. Nevertheless, Limulus amoebocyte lysate assay revealed that there is no significant difference in endotoxic activity between the NaOH-induced VPGs and wild-type bacterial cells. Macrophages exposed to the NaOH-induced VPGs at 0.5 × 106 CFU/mL showed cell viability of 97.9%, however, the MIC of NaOH did not reduce the cytotoxic effect of wild-type bacterial cells. Like Escherichia coli LPS, the NaOH-induced VPGs are an excellent activator of pro-inflammatory cytokines (IL-1β and iNOS, anti-inflammatory cytokine (IL-10, and dual activities (IL-6 in the stimulated macrophage cells. On the other hand, the induction of TNF-α mRNA was remarkable in the macrophages exposed with wild-type cells. Scanning

  14. Vibrio sp. DSM 14379 pigment production--a competitive advantage in the environment?

    Science.gov (United States)

    Starič, Nejc; Danevčič, Tjaša; Stopar, David

    2010-10-01

    The ability to produce several antibacterial agents greatly increases the chance of producer's survival. In this study, red-pigmented Vibrio sp. DSM 14379 and Bacillus sp., both isolated from the same sampling volume from estuarine waters of the Northern Adriatic Sea, were grown in a co-culture. The antibacterial activity of the red pigment extract was tested on Bacillus sp. in microtiter plates. The MIC(50) for Bacillus sp. was estimated to be around 10⁻⁵ mg/L. The extract prepared form the nonpigmented mutant of Vibrio sp. had no antibacterial effect. The pigment production of Vibrio sp. was studied under different physicochemical conditions. There was no pigment production at high or low temperatures, high or low salt concentrations in peptone yeast extract (PYE) medium, low glucose concentration in mineral growth medium or high glucose concentration in PYE medium. This indicates that the red pigment production is a luxurious good that Vibrio sp. makes only under favorable conditions. The Malthusian fitness of Bacillus sp. in a co-culture with Vibrio sp. under optimal environmental conditions dropped from 4.0 to -7.6, which corresponds to three orders of magnitude decrease in the number of CFU relative to the monoculture. The nonpigmented mutant of Vibrio sp. in a co-culture with Bacillus sp. had a significant antibacterial activity. This result shows that studying antibacterial properties in isolation (i.e. pigment extract only) may not reveal full antibacterial potential of the bacterial strain. The red pigment is a redundant antibacterial agent of Vibrio sp.

  15. Comparative Resistance of Bacterial Foodborne Pathogens to Non-thermal Technologies for Food Preservation.

    Science.gov (United States)

    Cebrián, Guillermo; Mañas, Pilar; Condón, Santiago

    2016-01-01

    In this paper the resistance of bacterial foodborne pathogens to manosonication (MS), pulsed electric fields (PEFs), high hydrostatic pressure (HHP), and UV-light (UV) is reviewed and compared. The influence of different factors on the resistance of bacterial foodborne pathogens to these technologies is also compared and discussed. Only results obtained under harmonized experimental conditions have been considered. This has allowed us to establish meaningful comparisons and draw significant conclusions. Among the six microorganisms here considered, Staphyloccocus aureus is the most resistant foodborne pathogen to MS and HHP and Listeria monocytogenes to UV. The target microorganism of PEF would change depending on the treatment medium pH. Thus, L. monocytogenes is the most PEF resistant microorganism at neutral pH but Gram-negatives (Escherichia coli, Salmonella spp., Cronobacter sakazakii, Campylobacter jejuni) would display a similar or even higher resistance at acidic pH. It should be noted that, in acidic products, the baroresistance of some E. coli strains would be comparable to that of S. aureus. The factors affecting the resistance of bacterial foodborne pathogens, as well as the magnitude of the effect, varied depending on the technology considered. Inter- and intra-specific differences in microbial resistance to PEF and HHP are much greater than to MS and UV. Similarly, both the pH and aw of the treatment medium highly condition microbial resistance to PEF and HHP but no to MS or UV. Growth phase also drastically affected bacterial HHP resistance. Regarding UV, the optical properties of the medium are, by far, the most influential factor affecting its lethal efficacy. Finally, increasing treatment temperature leads to a significant increase in lethality of the four technologies, what opens the possibility of the development of combined processes including heat. The appearance of sublethally damaged cells following PEF and HHP treatments could also be

  16. Comparative Resistance of Bacterial Foodborne Pathogens to Non-thermal Technologies for Food Preservation

    Science.gov (United States)

    Cebrián, Guillermo; Mañas, Pilar; Condón, Santiago

    2016-01-01

    In this paper the resistance of bacterial foodborne pathogens to manosonication (MS), pulsed electric fields (PEFs), high hydrostatic pressure (HHP), and UV-light (UV) is reviewed and compared. The influence of different factors on the resistance of bacterial foodborne pathogens to these technologies is also compared and discussed. Only results obtained under harmonized experimental conditions have been considered. This has allowed us to establish meaningful comparisons and draw significant conclusions. Among the six microorganisms here considered, Staphyloccocus aureus is the most resistant foodborne pathogen to MS and HHP and Listeria monocytogenes to UV. The target microorganism of PEF would change depending on the treatment medium pH. Thus, L. monocytogenes is the most PEF resistant microorganism at neutral pH but Gram-negatives (Escherichia coli, Salmonella spp., Cronobacter sakazakii, Campylobacter jejuni) would display a similar or even higher resistance at acidic pH. It should be noted that, in acidic products, the baroresistance of some E. coli strains would be comparable to that of S. aureus. The factors affecting the resistance of bacterial foodborne pathogens, as well as the magnitude of the effect, varied depending on the technology considered. Inter- and intra-specific differences in microbial resistance to PEF and HHP are much greater than to MS and UV. Similarly, both the pH and aw of the treatment medium highly condition microbial resistance to PEF and HHP but no to MS or UV. Growth phase also drastically affected bacterial HHP resistance. Regarding UV, the optical properties of the medium are, by far, the most influential factor affecting its lethal efficacy. Finally, increasing treatment temperature leads to a significant increase in lethality of the four technologies, what opens the possibility of the development of combined processes including heat. The appearance of sublethally damaged cells following PEF and HHP treatments could also be

  17. COMPARATIVE RESISTANCE OF BACTERIAL FOODBORNE PATHOGENS TO NON-THERMAL TECHNOLOGIES FOR FOOD PRESERVATION

    Directory of Open Access Journals (Sweden)

    Guillermo eCebrián

    2016-05-01

    Full Text Available In this paper the resistance of bacterial foodborne pathogens to manosonication (MS, pulsed electric fields (PEF, high hydrostatic pressure (HHP and UV-light (UV is reviewed and compared. The influence of different factors on the resistance of bacterial foodborne pathogens to these technologies is also compared and discussed. Only results obtained under harmonized experimental conditions have been considered. This has allowed us to establish meaningful comparisons and draw significant conclusions. Among the six microorganisms here considered, Staphyloccocus aureus is the most resistant foodborne pathogen to MS and HHP and Listeria monocytogenes to UV. The target microorganism of PEF would change depending on the treatment medium pH. Thus, L. monocytogenes is the most PEF resistant microorganism at neutral pH but Gram-negatives (Escherichia coli, Salmonella spp., Cronobacter sakazakii, Campylobacter jejuni would display a similar or even higher resistance at acidic pH. It should be noted that, in acidic products, the baroresistance of some E. coli strains would be comparable to that of S. aureus. The factors affecting the resistance of bacterial foodborne pathogens, as well as the magnitude of the effect, varied depending on the technology considered. Inter- and intra-specific differences in microbial resistance to PEF and HHP are much greater than to MS and UV. Similarly, both the pH and aw of the treatment medium highly condition microbial resistance to PEF and HHP but no to MS or UV. Growth phase also drastically affected bacterial HHP resistance. Regarding UV, the optical properties of the medium are, by far, the most influential factor affecting its lethal efficacy. Finally, increasing treatment temperature leads to a significant increase in lethality of the four technologies, what opens the possibility of the development of combined processes including heat. The appearance of sublethally damaged cells following PEF and HHP treatments could

  18. Modulation of Intestinal Paracellular Transport by Bacterial Pathogens.

    Science.gov (United States)

    Roxas, Jennifer Lising; Viswanathan, V K

    2018-03-25

    The passive and regulated movement of ions, solutes, and water via spaces between cells of the epithelial monolayer plays a critical role in the normal intestinal functioning. This paracellular pathway displays a high level of structural and functional specialization, with the membrane-spanning complexes of the tight junctions, adherens junctions, and desmosomes ensuring its integrity. Tight junction proteins, like occludin, tricellulin, and the claudin family isoforms, play prominent roles as barriers to unrestricted paracellular transport. The past decade has witnessed major advances in our understanding of the architecture and function of epithelial tight junctions. While it has been long appreciated that microbes, notably bacterial and viral pathogens, target and disrupt junctional complexes and alter paracellular permeability, the precise mechanisms remain to be defined. Notably, renewed efforts will be required to interpret the available data on pathogen-mediated barrier disruption in the context of the most recent findings on tight junction structure and function. While much of the focus has been on pathogen-induced dysregulation of junctional complexes, commensal microbiota and their products may influence paracellular permeability and contribute to the normal physiology of the gut. Finally, microbes and their products have become important tools in exploring host systems, including the junctional properties of epithelial cells. © 2018 American Physiological Society. Compr Physiol 8:823-842, 2018. Copyright © 2018 American Physiological Society. All rights reserved.

  19. Comparative genome analysis of non-toxigenic non-O1 versus toxigenic O1 Vibrio cholerae

    OpenAIRE

    Mukherjee, Munmun; Kakarla, Prathusha; Kumar, Sanath; Gonzalez, Esmeralda; Floyd, Jared T.; Inupakutika, Madhuri; Devireddy, Amith Reddy; Tirrell, Selena R.; Bruns, Merissa; He, Guixin; Lindquist, Ingrid E.; Sundararajan, Anitha; Schilkey, Faye D.; Mudge, Joann; Varela, Manuel F.

    2014-01-01

    Pathogenic strains of Vibrio cholerae are responsible for endemic and pandemic outbreaks of the disease cholera. The complete toxigenic mechanisms underlying virulence in Vibrio strains are poorly understood. The hypothesis of this work was that virulent versus non-virulent strains of V. cholerae harbor distinctive genomic elements that encode virulence. The purpose of this study was to elucidate genomic differences between the O1 serotypes and non-O1 V. cholerae PS15, a non-toxigenic strain,...

  20. Distribution of pathogenic bacteria in imported frozen shrimps and their radiation decontamination

    International Nuclear Information System (INIS)

    Harun or Rashid; Ito, Hitoshi; Ishigaki, Isao

    1991-01-01

    The distribution of pathogenic vibrios and other bacteria in 8 samples of the imported frozen shrimps and the effects of irradiation on these bacteria were investigated. The total aerobic bacteria were determined to be 2 x 10 4 to 4 x 10 6 per gram. Coliforms were mainly consisted of Enterobacter, and no pathogenic species such as Salmonella and Escherichia were detected. Total 66 vibrios named V. parahaemolyticus, V, mimicus, V. alginolyticus, V. vulnificus, V. fluvialis and 4 strains of Listeria monocytogenes were isolated. The necessary doses for elimination of vibrio isolates and Aeromonas hydrophila were ca. 3 kGy in frozen shrimps, whereas ca. 3.5 kGy were required to reduce the number by 4 logs for L. monocytogenes. (author)

  1. PREVALENCE AND IDENTIFICATION OF VIBRIO SPP. ISOLATED ON AQUACULTURED GILTHEAD SEA BREAM

    Directory of Open Access Journals (Sweden)

    C. Scarano

    2011-01-01

    Full Text Available The aim of the study was to investigate the prevalence of Vibrio spp isolated from gilthead sea bream (Sparus aurata farmed on sea cages and to identify and characterize the pathogen by molecular techniques. Eighty fish were collected from two hatcheries located on the North-Est Sardinian Mediterranean coast, and microbiological analysis were performed on different body parts such as skin, gills, muscle and intestinal tract. Subsequently 100 pure colonies with typical morphology and phenotypic characteristics were selected and submitted to the molecular identification. The analysis on the prevalence of Vibrio spp showed the effect of the hatchery rearing system (P<0.001, of the date of sampling (P<0.001, and of the body part (P<0.001. All the strains selected were confirmed to be members of the genus Vibrio spp by the molecular method/techinique/identification, whereas the rpoA gene sequence analyses allowed to identify 89 strains belonging to the species Vibrio harveyi, 6 to V. diabolicus, 2 to V. parahaemolyticus and 1 to V. mediterranei.

  2. Microbiological food safety issues in Brazil: bacterial pathogens.

    Science.gov (United States)

    Gomes, Bruna Carrer; Franco, Bernadette Dora Gombossy de Melo; De Martinis, Elaine Cristina Pereira

    2013-03-01

    The globalization of food supply impacts patterns of foodborne disease outbreaks worldwide, and consumers are having increased concern about microbiological food safety. In this sense, the assessment of epidemiological data of foodborne diseases in different countries has not only local impact, but it can also be of general interest, especially in the case of major global producers and exporters of several agricultural food products, such as Brazil. In this review, the most common agents of foodborne illnesses registered in Brazil will be presented, compiled mainly from official databases made available to the public. In addition, some representative examples of studies on foodborne bacterial pathogens commonly found in Brazilian foods are provided.

  3. Acetone Formation in the Vibrio Family: a New Pathway for Bacterial Leucine Catabolism

    Science.gov (United States)

    Nemecek-Marshall, Michele; Wojciechowski, Cheryl; Wagner, William P.; Fall, Ray

    1999-01-01

    There is current interest in biological sources of acetone, a volatile organic compound that impacts atmospheric chemistry. Here, we determined that leucine-dependent acetone formation is widespread in the Vibrionaceae. Sixteen Vibrio isolates, two Listonella species, and two Photobacterium angustum isolates produced acetone in the presence of l-leucine. Shewanella isolates produced much less acetone. Growth of Vibrio splendidus and P. angustum in a fermentor with controlled aeration revealed that acetone was produced after a lag in late logarithmic or stationary phase of growth, depending on the medium, and was not derived from acetoacetate by nonenzymatic decarboxylation in the medium. l-Leucine, but not d-leucine, was converted to acetone with a stoichiometry of approximately 0.61 mol of acetone per mol of l-leucine. Testing various potential leucine catabolites as precursors of acetone showed that only α-ketoisocaproate was efficiently converted by whole cells to acetone. Acetone production was blocked by a nitrogen atmosphere but not by electron transport inhibitors, suggesting that an oxygen-dependent reaction is required for leucine catabolism. Metabolic labeling with deuterated (isopropyl-d7)-l-leucine revealed that the isopropyl carbons give rise to acetone with full retention of deuterium in each methyl group. These results suggest the operation of a new catabolic pathway for leucine in vibrios that is distinct from the 3-hydroxy-3-methylglutaryl-coenzyme A pathway seen in pseudomonads. PMID:10601206

  4. Diverse mechanisms of metaeffector activity in an intracellular bacterial pathogen, Legionella pneumophila.

    Science.gov (United States)

    Urbanus, Malene L; Quaile, Andrew T; Stogios, Peter J; Morar, Mariya; Rao, Chitong; Di Leo, Rosa; Evdokimova, Elena; Lam, Mandy; Oatway, Christina; Cuff, Marianne E; Osipiuk, Jerzy; Michalska, Karolina; Nocek, Boguslaw P; Taipale, Mikko; Savchenko, Alexei; Ensminger, Alexander W

    2016-12-16

    Pathogens deliver complex arsenals of translocated effector proteins to host cells during infection, but the extent to which these proteins are regulated once inside the eukaryotic cell remains poorly defined. Among all bacterial pathogens, Legionella pneumophila maintains the largest known set of translocated substrates, delivering over 300 proteins to the host cell via its Type IVB, Icm/Dot translocation system. Backed by a few notable examples of effector-effector regulation in L. pneumophila, we sought to define the extent of this phenomenon through a systematic analysis of effector-effector functional interaction. We used Saccharomyces cerevisiae, an established proxy for the eukaryotic host, to query > 108,000 pairwise genetic interactions between two compatible expression libraries of ~330 L. pneumophila-translocated substrates. While capturing all known examples of effector-effector suppression, we identify fourteen novel translocated substrates that suppress the activity of other bacterial effectors and one pair with synergistic activities. In at least nine instances, this regulation is direct-a hallmark of an emerging class of proteins called metaeffectors, or "effectors of effectors". Through detailed structural and functional analysis, we show that metaeffector activity derives from a diverse range of mechanisms, shapes evolution, and can be used to reveal important aspects of each cognate effector's function. Metaeffectors, along with other, indirect, forms of effector-effector modulation, may be a common feature of many intracellular pathogens-with unrealized potential to inform our understanding of how pathogens regulate their interactions with the host cell. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  5. Repair of ultraviolet-light-induced DNA damage in Vibrio cholerae

    International Nuclear Information System (INIS)

    Das, G.; Sil, K.; Das, J.

    1981-01-01

    Repair of ultraviolet-light-induced DNA damage in a highly pathogenic Gram-negative bacterium, Vibrio cholerae, has been examined. All three strains of V. cholerae belonging to two serotypes, Inaba and Ogawa, are very sensitive to ultraviolet irradiation, having inactivation cross-sections ranging from 0.18 to 0.24 m 2 /J. Although these cells are proficient in repairing the DNA damage by a photoreactivation mechanism, they do not possess efficient dark repair systems. The mild toxinogenic strain 154 of classical Vibrios presumably lacks any excision repair mechanism and studies of irradiated cell DNA indicate that the ultraviolet-induced pyrimidine dimers may not be excised. Ultraviolet-irradiated cells after saturation of dark repair can be further photoreactivated. (Auth.)

  6. Vibrio bacteria in raw oysters: managing risks to human health.

    Science.gov (United States)

    Froelich, Brett A; Noble, Rachel T

    2016-03-05

    The human-pathogenic marine bacteria Vibrio vulnificus and V. parahaemolyticus are strongly correlated with water temperature, with concentrations increasing as waters warm seasonally. Both of these bacteria can be concentrated in filter-feeding shellfish, especially oysters. Because oysters are often consumed raw, this exposes people to large doses of potentially harmful bacteria. Various models are used to predict the abundance of these bacteria in oysters, which guide shellfish harvest policy meant to reduce human health risk. Vibrio abundance and behaviour varies from site to site, suggesting that location-specific studies are needed to establish targeted risk reduction strategies. Moreover, virulence potential, rather than simple abundance, should be also be included in future modeling efforts. © 2016 The Author(s).

  7. Effects of Lactobacillus rhamnosus and Lactobacillus acidophilus on bacterial vaginal pathogens.

    Science.gov (United States)

    Bertuccini, Lucia; Russo, Rosario; Iosi, Francesca; Superti, Fabiana

    2017-06-01

    The human vagina is colonized by a variety of microbes. Lactobacilli are the most common, mainly in healthy women; however, the microbiota composition can change rapidly, leading to infection or to a state in which potential pathogenic microorganisms co-exist with other commensals. In premenopausal women, urogenital infections, such as bacterial vaginosis and aerobic vaginitis, remain an important health problem. Treatment of these infections involves different kind of antibiotics; however, the recurrence rate remains high, and it must be also underlined that antibiotics are unable to spontaneously restore normal flora characterized by an abundant community of Lactobacilli. The main limitation is the inability to offer a long-term defensive barrier, thus facilitating relapses and recurrences. We report here the antimicrobial activities of two commercially existing Lactobacillus strains, Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus GLA-14 strains and their combination (Respecta® probiotic blend) against four different pathogens responsible for both bacterial vaginosis ( Gardenerella vaginalis and Atopobium vaginae) and aerobic vaginitis ( Staphylococcus aureus and Escherichia coli) by co-culturing assay. The probiotic combination, even if resulting in a different microbicidal activity against the different strains tested, demonstrated the efficacy of combined Lactobacillus strain treatment.

  8. Effect of water coagulation by seeds of Moringa oleifera on bacterial concentrations.

    Science.gov (United States)

    Madsen, M; Schlundt, J; Omer, E F

    1987-06-01

    The effects of a Sudanese water purification method traditionally used in Sudan to treat turbid waters were studied with respect to turbidity reduction and removal of faecal indicator bacteria as well as selected enteric bacterial pathogens. Water treatment was performed at 30 degrees C with Moringa oleifera seed material as a coagulant, and the technique employed corresponded closely to that used to clarify turbid water in Sudanese villages. A turbidity reduction of 80.0-99.5% paralleled by a primary bacterial reduction of 1-4 log units (90.00-99.99%) was obtained within the first 1 to 2 h of treatment, the bacteria being concentrated in the coagulated sediment. During the 24 h observation period a secondary bacterial increase due to regrowth in the supernatant water was consistently observed for Salmonella typhimurium and Shigella sonnei, in some cases for Escherichia coli, but not for Vibrio cholerae, Streptococcus faecalis and Clostridium perfringens. The potential of the method when compared with some alternative for the improvement of rural drinking water supplies is discussed.

  9. Metabolic responses of Haliotis diversicolor to Vibrio parahaemolyticus infection.

    Science.gov (United States)

    Lu, Jie; Shi, Yanyan; Cai, Shuhui; Feng, Jianghua

    2017-01-01

    Vibrio parahemolyticus is a devastating bacterial pathogen that often causes outbreak of vibriosis in abalone Haliotis diversicolor. Elucidation of metabolic mechanisms of abalones in responding to V. parahemolyticus infection is essential for controlling the epidemic. In this work, 1 H NMR-based metabolomic techniques along with correlation and network analyses are used to investigate characteristic metabolites, as well as corresponding disturbed pathways in hepatopancreas and gill of H. diversicolor after V. parahemolyticus infection for 48 h. Results indicate that obvious gender- and tissue-specific metabolic responses are induced. Metabolic responses in female abalones are more clearly observed than those in males, which are primarily manifested in the accumulation of branched-chain amino acids and the depletion of organic osmolytes (homarine, betaine and taurine) in the infected gills of female abalones, as well as in the depletion of glutamate, branched-chain and aromatic amino acids in the infected hepatopancreases of female abalones. Moreover, based on major metabolic functions of the characteristic metabolites, we have found that V. parahemolyticus infection not only cause the disturbance in energy metabolism, nucleotide metabolism and osmotic balance, but also induce oxidative stress, immune stress and neurotoxic effect in different tissues with various mechanisms. Our study provides details of metabolic responses of abalones to V. parahemolyticus infection and will shed light on biochemical defence mechanisms of male and female hosts against pathogen infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Temporal and Spatial Variation in the Abundance of Total and Pathogenic Vibrio parahaemolyticus in Shellfish in China.

    Directory of Open Access Journals (Sweden)

    Haihong Han

    Full Text Available We investigated the abundance of total and pathogenic Vibrio parahaemolyticus in shellfish sampled from four provinces in China during May 2013 and March 2014 using the most probable number-polymerase chain reaction (MPN-PCR method. Total V. parahaemolyticus was detected in 67.7% of 496 samples. A total of 38.1% and 10.1% of samples exceeded 1,000 MPN g(-1 and 10,000 MPN g(-1, respectively. V. parahaemolyticus densities followed a seasonal and geographical trend, with Guangxi and Sichuan shellfish possessing total V. parahaemolyticus levels that were 100-fold higher than those of the Liaoning and Shandong regions. Moreover, the levels of V. parahaemolyticus were at least 10-fold higher in the summer and autumn than in the cooler seasons. Pathogenic V. parahaemolyticus levels were generally lower than total V. parahaemolyticus levels by several log units and tended to be high in samples contaminated with high total V. parahaemolyticus levels. The aqua farms had a lower prevalence but higher abundance of total V. parahaemolyticus compared to retail markets. The catering markets showed the lowest levels of total V. parahaemolyticus, but 20.0% of samples exceeded 1,000 MPN g(-1. The levels of both total and pathogenic V. parahaemolyticus in oysters were higher than in clams. The log-transformed abundance of V. parahaemolyticus was significantly correlated with both water temperature and air temperature but not water salinity. These results provide baseline contamination data of V. parahaemolyticus in shellfish in China, which can be applied to local risk assessments to prioritize risk control to key sectors and evaluate the effectiveness of future control measures.

  11. Occurrence and antibacterial susceptibility pattern of bacterial pathogens isolated from diarrheal patients in Pakistan

    Directory of Open Access Journals (Sweden)

    Muhammad H. Rasool

    2016-03-01

    Full Text Available Objective: To determine the occurrence of bacterial pathogens responsible for diarrhea and to engender information regarding the effectiveness of commonly used antibiotic against diarrhea. Methods: This cross-sectional study was conducted between April and July 2014. Samples were collected from the Divisional Headquarter and Allied Hospital, Faisalabad, Pakistan. The differential and selective media were used to isolate bacterial pathogens, which were identified through cultural characteristics, microscopy, and biochemical tests. Disc diffusion assay was carried out using Muller Hinton agar medium, and minimum inhibitory concentration was determined using broth dilution method against isolated pathogens. Results: One hundred and forty-one (100% samples were positive for some bacteria. Frequency of occurrence was Bacillus cereus (B. cereus (66%, Escherichia coli (E. coli (48.5%, Salmonella typhi (S. Typhi (27.7%, Pseudomonas aeruginosa (P. aeruginosa (8.5%, and Staphylococcus aureus (S. aureus (4.3%. Single pathogen was detected in 20 (14.2% samples whereas combinations were found in 121 (85.8% samples. Bacillus cereus and E. coli were the most frequently detected pathogens followed by the S. Typhi, P. aeruginosa, and Staph. aureus. The percentage occurrence of isolated pathogens was 31% in B. cereus, 31% in E. coli, 18% in S. Typhi, 5% in P. aeruginosa, and 3% in Staph. aureus. Conclusion: Pseudomonas aeruginosa showed resistance against Amoxicillin and Cefotaxime, whereas S. aureus was found resistant against Cefotaxime. Statistical analysis using one way Analysis of Variance revealed that Ofloxacin and Gentamicin had significant (p<0.05 differences against all isolates as compared with other antibiotics used in this study.

  12. Occurrence and antibacterial susceptibility pattern of bacterial pathogens isolated from diarrheal patients in Pakistan.

    Science.gov (United States)

    Rasool, Muhammad H; Siddique, Abu B; Saqalein, Muhammad; Asghar, Muhammad J; Zahoor, Muhammad A; Aslam, Bilal; Shafiq, Humerah B; Nisar, Muhammad A

    2016-03-01

    To determine the occurrence of bacterial pathogens responsible for diarrhea and to engender information regarding the effectiveness of commonly used antibiotic against diarrhea. This cross-sectional study was conducted between April and July 2014. Samples were collected from the Divisional Headquarter and Allied Hospital, Faisalabad, Pakistan. The differential and selective media were used to isolate bacterial pathogens, which were identified through cultural characteristics, microscopy, and biochemical tests. Disc diffusion assay was carried out using Muller Hinton agar medium, and minimum inhibitory concentration was determined using broth dilution method against isolated pathogens. One hundred and forty-one (100%) samples were positive for some bacteria. Frequency of occurrence was Bacillus cereus (B. cereus) (66%), Escherichia coli (E.coli) (48.5%), Salmonella typhi (S. Typhi) (27.7%), Pseudomonas aeruginosa (P. aeruginosa) (8.5%), and Staphylococcus aureus (S. aureus) (4.3%). Single pathogen was detected in 20 (14.2%) samples whereas combinations were found in 121 (85.8%) samples. Bacillus cereus and E.coli were the most frequently detected pathogens followed by the S. Typhi, P. aeruginosa, and Staph. aureus. The percentage occurrence of isolated pathogens was 31% in B. cereus, 31% in E. coli, 18% in S. Typhi, 5% in P. aeruginosa, and 3% in Staph. aureus. Pseudomonas aeruginosa showed resistance against Amoxicillin and Cefotaxime, whereas S. aureus was found resistant against Cefotaxime. Statistical analysis using one way Analysis of Variance revealed that Ofloxacin and Gentamicin had significant (p less than 0.05) differences against all isolates as compared with other antibiotics used in this study.

  13. Environmental parameters influence on the dynamics of total and pathogenic Vibrio parahaemolyticus densities in Crassostrea virginica harvested from Mexico's Gulf coast.

    Science.gov (United States)

    López-Hernández, Karla M; Pardío-Sedas, Violeta T; Lizárraga-Partida, Leonardo; Williams, José de J; Martínez-Herrera, David; Flores-Primo, Argel; Uscanga-Serrano, Roxana; Rendón-Castro, Karla

    2015-02-15

    The influence of environmental parameters on the total and pathogenic Vibrio parahaemolyticus seasonal densities in American oysters (Crassostrea virginica) was evaluated for 1 year. Harvesting site A yielded the highest mean densities of V. parahaemolyticus tlh+, tdh+/trh-, tdh-/trh+ and tdh+/trh+ during spring season at 2.57, 1.74, 0.36, and -0.40 log10 MPN/g, respectively, and tdh+/orf8+ during winter season (0.90 log10 MPN/g). V. parahaemolyticus tlh+ densities were associated to salinity (R(2)=0.372, Pturbidity (R(2)=0.597, P<0.035), and orf8+ to temperature, salinity, and pH (R(2)=0.964, P<0.001). The exposure to salinity and temperature conditions during winter and spring seasons regulated the dynamics of V. parahaemolyticus harboring potentially pathogenic genotypes within the oyster. The adaptive response of V. parahaemolyticus to seasonal environmental changes may lead to an increase in survival and virulence, threatening the seafood safety and increasing the risk of illness. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Environmental parameters influence on the dynamics of total and pathogenic Vibrio parahaemolyticus densities in Crassostrea virginica harvested from Mexico’s Gulf coast

    International Nuclear Information System (INIS)

    López-Hernández, Karla M.; Pardío-Sedas, Violeta T.; Lizárraga-Partida, Leonardo; Williams, José de J.; Martínez-Herrera, David; Flores-Primo, Argel; Uscanga-Serrano, Roxana; Rendón-Castro, Karla

    2015-01-01

    Highlights: • V. parahaemolyticus densities in oysters were isolated in spring and winter seasons. • Pathogenic genes abundances varied with environmental parameters seasonal changes. • Water temperature modulated V. parahaemolyticus abundance during reduced salinities. • V. parahaemolyticus with potentially pathogenic genes raises important health issues. - Abstract: The influence of environmental parameters on the total and pathogenic Vibrio parahaemolyticus seasonal densities in American oysters (Crassostrea virginica) was evaluated for 1 year. Harvesting site A yielded the highest mean densities of V. parahaemolyticus tlh+, tdh+/trh−, tdh−/trh+ and tdh+/trh+ during spring season at 2.57, 1.74, 0.36, and −0.40 log 10 MPN/g, respectively, and tdh+/orf8+ during winter season (0.90 log 10 MPN/g). V. parahaemolyticus tlh+ densities were associated to salinity (R 2 = 0.372, P < 0.022), tdh+/trh+ to turbidity (R 2 = 0.597, P < 0.035), and orf8+ to temperature, salinity, and pH (R 2 = 0.964, P < 0.001). The exposure to salinity and temperature conditions during winter and spring seasons regulated the dynamics of V. parahaemolyticus harboring potentially pathogenic genotypes within the oyster. The adaptive response of V. parahaemolyticus to seasonal environmental changes may lead to an increase in survival and virulence, threatening the seafood safety and increasing the risk of illness

  15. Short chain and polyunsaturated fatty acids in host gut health and foodborne bacterial pathogen inhibition.

    Science.gov (United States)

    Peng, Mengfei; Biswas, Debabrata

    2017-12-12

    As a major source of microbes and their numerous beneficial effects, the gut microflora/microbiome is intimately linked to human health and disease. The exclusion of enteric pathogens by these commensal microbes partially depends upon the production of bioactive compounds such as short-chain fatty acids (SCFAs) and polyunsaturated fatty acids (PUFAs). These key intestinal microbial byproducts are crucial to the maintenance of a healthy gut microbial community. Moreover, SCFAs and PUFAs play multiple critical roles in host defense and immunity, including anti-cancer, anti-inflammation, and anti-oxidant activities, as well as out-competition of enteric bacterial pathogens. In this review article, we hereby aim to highlight the importance of SCFAs and PUFAs and the microbes involved in production of these beneficial intestinal components, and their biological functions, specifically as to their immunomodulation and interactions with enteric bacterial pathogens. Finally, we also advance potential applications of these fatty acids with regards to food safety and human gut health.

  16. Forecasting the Human Pathogen Vibrio Parahaemolyticus in Shellfish Tissue within Long Island Sound

    Science.gov (United States)

    Whitney, M. M.; DeRosia-Banick, K.

    2016-02-01

    Vibrio parahaemolyticus (Vp) is a marine bacterium that occurs naturally in brackish and saltwater environments and may be found in higher concentrations in the warmest months. Vp is a growing threat to producing safe seafood. Consumption of shellfish with high Vp levels can result in gastrointestinal human illnesses. Management response to Vp-related illness outbreaks includes closure of shellfish growing areas. Water quality observations, Vp measurements, and model forecasts are key components to effective management of shellfish growing areas. There is a clear need for observations within the growing area themselves. These areas are offshore of coastal stations and typically inshore of the observing system moorings. New field observations in Long Island Sound (LIS) shellfish growing areas are described and their agreement with high-resolution satellite sea surface temperature data is discussed. A new dataset of Vp concentrations in shellfish tissue is used to determine the LIS-specific Vp vs. temperature relationship following methods in the FDA pre-harvest Vp risk model. This information is combined with output from a high-resolution hydrodynamic model of LIS to make daily forecasts of Vp levels. The influence of river inflows, the role of heat waves, and predictions for future warmer climates are discussed. The key elements of this observational-modeling approach to pathogen forecasting are extendable to other coastal systems.

  17. Inhibition of photosynthesis and bleaching of zooxanthellae by the coral pathogen Vibrio shiloi.

    Science.gov (United States)

    Ben-Haim, Y; Banim, E; Kushmaro, A; Loya, Y; Rosenberg, E

    1999-06-01

    Vibrio shiloi is the causative agent of bleaching (loss of endosymbiotic zooxanthellae) of the coral Oculina patagonica in the Mediterranean Sea. To obtain information on the mechanism of bleaching, we examined the effect of secreted material (AK1-S) produced by V. shiloi on zooxanthellae isolated from corals. AK1-S caused a rapid inhibition of photosynthesis of the algae, as measured with a Mini-PAM fluorometer. The inhibition of photosynthesis was caused by (i) ammonia produced during the growth of V. shiloi on protein-containing media and (ii) a non-dialysable heat-resistant factor. This latter material did not inhibit photosynthesis of the algae by itself but, when added to different concentrations of NH4Cl, enhanced the inhibition approximately two- to threefold. Ammonia and the enhancer were effective to different degrees on zooxanthellae isolated from four species of coral examined. In addition to the rapid inhibition of photosynthesis, AK1-S caused bleaching (loss of pigmentation) and lysis of zooxanthellae. Bleaching was more rapid than lysis, reaching a peak (25% bleached algae) after 6 h. The factors in AK1-S responsible for bleaching and lysis were different from those responsible for the inhibition of photosynthesis, because they were heat sensitive, non-dialysable and active in the dark. Thus, the coral pathogen V. shiloi produces an array of extracellular materials that can inhibit photosynthesis, bleach and lyse zooxanthellae.

  18. Analysis of bacterial communities and bacterial pathogens in a biogas plant by the combination of ethidium monoazide, PCR and Ion Torrent sequencing

    DEFF Research Database (Denmark)

    Luo, Gang; Angelidaki, Irini

    2014-01-01

    with time were also observed. This could be attributed to varying composition of the influent. Batch experiments showed that the methane recovery from the digested residues (obtained from biogas reactor) was mainly related with post-digestion temperature. However, post-digestion time rather than temperature......The present study investigated the changes of bacterial community composition including bacterial pathogens along a biogas plant, i.e. from the influent, to the biogas reactor and to the post-digester. The effects of post-digestion temperature and time on the changes of bacterial community...... showed that the bacterial community composition in the influent was changed after anaerobic digestion. Firmicutes were dominant in all the samples, while Proteobacteria decreased in the biogas reactor compared with the influent. Variations of bacterial community composition in the biogas reactor...

  19. Two type IV pili of Vibrio parahaemolyticus play different roles in biofilm formation.

    Science.gov (United States)

    Shime-Hattori, Akiko; Iida, Tetsuya; Arita, Michiko; Park, Kwon-Sam; Kodama, Toshio; Honda, Takeshi

    2006-11-01

    Vibrio parahaemolyticus RIMD2210633 has two sets of type IV-A pilus genes. One set is similar to that found in other Gram-negative bacteria, such as Pseudomonas aeruginosa, Vibrio cholerae (chitin-regulated pilus; ChiRP), and Vibrio vulnificus. The other is homologous to the genes for the mannose-sensitive hemagglutinin (MSHA) pilus. In this study, we analyzed the effects of the deletions in the pilin genes for each type IV pilus (the ChiRP and the MSHA pilus) on biofilm formation. Although the MSHA pilin mutant formed aggregates, the number of bacteria that attached directly to the coverslip was reduced, suggesting that this pilus contributes to the bacterial attachment to the surface of the coverslip. In contrast, the ChiRP mutant attached to the surface of the coverslip, but did not form aggregates, suggesting that ChiRP plays a role in bacterial agglutination during biofilm formation. These results suggest that the two type IV pili of V. parahaemolyticus contribute to biofilm formation in different ways. Both mutants showed a lower fitness for adsorption onto chitin particles than that of the wild type. Collectively, these data suggest that the use of two type IV pili is a refined strategy of V. parahaemolyticus for survival in natural environments.

  20. Multipurpose assessment for the quantification of Vibrio spp. and total bacteria in fish and seawater using multiplex real-time polymerase chain reaction

    Science.gov (United States)

    Kim, Ji Yeun; Lee, Jung-Lim

    2014-01-01

    Background This study describes the first multiplex real-time polymerase chain reaction assay developed, as a multipurpose assessment, for the simultaneous quantification of total bacteria and three Vibrio spp. (V. parahaemolyticus, V. vulnificus and V. anguillarum) in fish and seawater. The consumption of raw finfish as sushi or sashimi has been increasing the chance of Vibrio outbreaks in consumers. Freshness and quality of fishery products also depend on the total bacterial populations present. Results The detection sensitivity of the specific targets for the multiplex assay was 1 CFU mL−1 in pure culture and seawater, and 10 CFU g−1 in fish. While total bacterial counts by the multiplex assay were similar to those obtained by cultural methods, the levels of Vibrio detected by the multiplex assay were generally higher than by cultural methods of the same populations. Among the natural samples without Vibrio spp. inoculation, eight out of 10 seawater and three out of 20 fish samples were determined to contain Vibrio spp. Conclusion Our data demonstrate that this multiplex assay could be useful for the rapid detection and quantification of Vibrio spp. and total bacteria as a multipurpose tool for surveillance of fish and water quality as well as diagnostic method. © 2014 The Authors. Journal of the Science of Food and Agriculture published by JohnWiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:24752974

  1. Polyphyly of non-bioluminescent Vibrio fischeri sharing a lux-locus deletion.

    Science.gov (United States)

    Wollenberg, M S; Preheim, S P; Polz, M F; Ruby, E G

    2012-03-01

    This study reports the first description and molecular characterization of naturally occurring, non-bioluminescent strains of Vibrio fischeri. These 'dark' V. fischeri strains remained non-bioluminescent even after treatment with both autoinducer and aldehyde, substrate additions that typically maximize light production in dim strains of luminous bacteria. Surprisingly, the entire lux locus (eight genes) was absent in over 97% of these dark V. fischeri strains. Although these strains were all collected from a Massachusetts (USA) estuary in 2007, phylogenetic reconstructions allowed us to reject the hypothesis that these newly described non-bioluminescent strains exhibit monophyly within the V. fischeri clade. These dark strains exhibited a competitive disadvantage against native bioluminescent strains when colonizing the light organ of the model V. fischeri host, the Hawaiian bobtail squid Euprymna scolopes. Significantly, we believe that the data collected in this study may suggest the first observation of a functional, parallel locus-deletion event among independent lineages of a non-pathogenic bacterial species. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  2. The Diversity of Vibrios Associated with Vibriosis in Pacific White Shrimp (Litopenaeus vannamei) from Extensive Shrimp Pond in Kendal District, Indonesia

    Science.gov (United States)

    Sarjito; Harjuno Condro Haditomo, Alfabetian; Desrina; Djunaedi, Ali; Budi Prayitno, Slamet

    2018-02-01

    Vibriosis out breaks frequently occur in extensive shrimps farming. The study were commenced to find out the clinical signs of white shrimp that was infected by the Vibrio and to identify the bacterial associated with vibriosis in the pacific white shrimp, Litopenaeus vannamei. Bacterial isolates were gained from hepatopancreas and telson of moribund shrimps that were collected from extensive shrimp ponds of Kendal District, Indonesia and cultured on Thiosulfate Citrate Bile Salts Sucrose Agar (TCBSA). Isolates were clustered and identified using repetitive sequence-based polymerase chain reaction (rep-PCR). Three representative isolates (SJV 03, SJV 05 and SJV 19) were amplified with PCR using primers for 16S rRNA, and sequence for further identification. The clinical signs of shrimps affected by vibrio were pale hepatopancreas, weak of telson, dark and reddish coloration of smouth, patches of red colour in part of the body on the carapace, periopods, pleuopods, and telson. A total of 19 isolates were obtained and belong to three groups of genus Vibrios. Result of the 16S DNA sequence analysis, the vibrio found in this study related to vibriosis in white shrimps from extensive shrimp ponds of Kendal were closely related to Vibrio harveyi (SJV 03); V. parahaemolyticus (SJV 05) and V. alginolyticus (SJV 19).

  3. Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion

    OpenAIRE

    Yan, Jing; Nadell, Carey D.; Stone, Howard A.; Wingreen, Ned S.; Bassler, Bonnie L.

    2017-01-01

    Biofilms, surface-attached communities of bacteria encased in an extracellular matrix, are a major mode of bacterial life. How the material properties of the matrix contribute to biofilm growth and robustness is largely unexplored, in particular in response to environmental perturbations such as changes in osmotic pressure. Here, using Vibrio cholerae as our model organism, we show that during active cell growth, matrix production enables biofilm-dwelling bacterial cells to establish an osmot...

  4. Yeast cell wall extract induces disease resistance against bacterial and fungal pathogens in Arabidopsis thaliana and Brassica crop.

    Directory of Open Access Journals (Sweden)

    Mari Narusaka

    Full Text Available Housaku Monogatari (HM is a plant activator prepared from a yeast cell wall extract. We examined the efficacy of HM application and observed that HM treatment increased the resistance of Arabidopsis thaliana and Brassica rapa leaves to bacterial and fungal infections. HM reduced the severity of bacterial leaf spot and anthracnose on A. thaliana and Brassica crop leaves with protective effects. In addition, gene expression analysis of A. thaliana plants after treatment with HM indicated increased expression of several plant defense-related genes. HM treatment appears to induce early activation of jasmonate/ethylene and late activation of salicylic acid (SA pathways. Analysis using signaling mutants revealed that HM required SA accumulation and SA signaling to facilitate resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola and the fungal pathogen Colletotrichum higginsianum. In addition, HM-induced resistance conferred chitin-independent disease resistance to bacterial pathogens in A. thaliana. These results suggest that HM contains multiple microbe-associated molecular patterns that activate defense responses in plants. These findings suggest that the application of HM is a useful tool that may facilitate new disease control methods.

  5. Vibrios patogênicos em ostras (Crassostrea rhizophorae servidas em restaurantes no Rio de Janeiro: um alerta para a Saúde Pública Pathogenic Vibrios in oysters (Crassostrea rhizophorae served at restaurants in Rio de Janeiro: a public health warning

    Directory of Open Access Journals (Sweden)

    Christiane Soares Pereira

    2007-06-01

    Full Text Available Avaliaram-se 40 amostras de ostras (Crassostrea rhizophorae servidas in natura em 15 restaurantes da Cidade do Rio de Janeiro, a fim de investigar a presença de Vibrio spp. As amostras de ostras foram analisadas e submetidas a enriquecimento em água peptonada alcalina adicionada de 1 e 3% de NaCl, incubadas a 37°C por 24 horas. Em seguida, os cultivos foram semeados em agar tiossulfato citrato bile sacarose e as colônias suspeitas foram submetidas à caracterização bioquímica. Vibrio parahaemolyticus, Vibrio carchariae, Vibrio alginolyticus e Vibrio vulnificus representaram as principais espécies (> 60% isoladas a partir das ostras in natura.Forty oyster samples (Crassostrea rhizophorae served raw in 15 restaurants in the city of Rio de Janeiro were evaluated in order to investigate the presence of Vibrio spp. The oyster samples were analyzed and subjected to enrichment in alkaline peptone water with the addition of 1 and 3% NaCl and incubated at 37°C for 24 hours. Following this, the cultures were seeded onto thiosulfate citrate bile sucrose agar (TCBS and the suspected colonies were subjected to biochemical characterization. Vibrio parahaemolyticus, Vibrio carchariae, Vibrio alginolyticus and Vibrio vulnificus were the main species (> 60% isolated from raw oysters.

  6. Complete Genome Sequence of Vibrio campbellii LMB 29 Isolated from Red Drum with Four Native Megaplasmids

    Directory of Open Access Journals (Sweden)

    Jinxin Liu

    2017-10-01

    Full Text Available Vibrio spp. are the most common pathogens for animals reared in aquaculture. Vibrio campbellii, which is often involved in shrimp, fish and mollusks diseases, is widely distributed in the marine environment worldwide, but our knowledge about its pathogenesis and antimicrobial resistance is very limited. The existence of this knowledge gap is at least partially because that V. campbellii was originally classified as Vibrio harveyi, and the detailed information of its comparative genome analysis to other Vibrio spp. is currently lacking. In this study, the complete genome of a V. campbellii predominant strain, LMB29, was determined by MiSeq in conjunction with PacBio SMRT sequencing. This genome consists of two circular DNA chromosomes and four megaplasmids. Comparative genome analysis indicates that LMB29 shares a 96.66% similarity (average nucleotide identity with the V. campbellii ATCC strain BAA-1116 based on a 75% AF (average fraction calculations, and its functional profile is very similar to V. campbellii E1 and V. campbellii CAIM115. Both type III secretion system (T3SS and type VI secretion system (T6SS, along with the tlh gene which encodes a thermolabile hemolysin, are present in LMB29 which may contribute to the bacterial pathogenesis. The virulence of this strain was experimental confirmed by performing a LDH assay on a fish cell infection model, and cell death was observed as early as within 3 h post infection. Thirty-seven antimicrobial resistance genes (>45% identity were predicted in LMB29 which includes a novel rifampicin ADP ribosyltransferase, arr-9, in plasmid pLMB157. The gene arr-9 was predicted on a genomic island with horizontal transferable potentials which may facilitate the rifampicin resistance dissemination. Future researches are needed to explore the pathogenesis of V. campbellii LMB29, but the availability of this genome sequence will certainly aid as a basis for further analysis.

  7. Bacterial surface adaptation

    Science.gov (United States)

    Utada, Andrew

    2014-03-01

    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. These crucial early stages of biofilm formation are at present poorly understood. By adapting methods from soft matter physics, we dissect bacterial social behavior at the single cell level for several prototypical bacterial species, including Pseudomonas aeruginosa and Vibrio cholerae.

  8. DNA Checkerboard Method for Bacterial Pathogen Identification in Oral Diseases

    OpenAIRE

    Nascimento, Cássio do; Issa, João Paulo Mardegan; Watanabe, Evandro; Ito, Izabel Yoko

    2006-01-01

    This work aim to show by literature review the principal characteristics of the DNA checkerboard method for bacterial pathogens identification in oral diseases, showing the most varieties uses and applications of this technique Este trabajo tiene como objetivo, presentar en una revisión de la literatura, las principales características del método de chequeo del DNA para la identificación de bacterias patógenas en la cavidad oral, mostrando las diferentes utilizaciones y aplicaciones de est...

  9. A transient expression assay for the in planta efficacy screening of an antimicrobial peptide against grapevine bacterial pathogens.

    Science.gov (United States)

    Visser, M; Stephan, D; Jaynes, J M; Burger, J T

    2012-06-01

    Natural and synthetic antimicrobial peptides (AMPs) are of increasing interest as potential resistance conferring elements in plants against pathogen infection. The efficacy of AMPs against pathogens is prescreened by in vitro assays, and promising AMP candidates are introduced as transgenes into plants. As in vitro and in planta environments differ, a prescreening procedure of the AMP efficacy in the plant environment is desired. Here, we report the efficacy of the purified synthetic peptide D4E1 against the grapevine-infecting bacterial pathogens Agrobacterium vitis and Xylophilus ampelinus in vitro and describe for the first time an in planta prescreening procedure based on transiently expressed D4E1. The antimicrobial effect of D4E1 against Ag. vitis and X. ampelinus was shown by a reduction in colony-forming units in vitro in a traditional plate-based assay and by a reduction in bacterial titres in planta as measured by quantitative real-time PCR (qPCR) in grapevine leaves transiently expressing D4E1. A statistically significant reduction in titre was shown for X. ampelinus, but for Ag. vitis, a significant reduction in titre was only observed in a subset of plants. The titres of both grapevine-infecting bacterial pathogens were reduced in an in vitro assay and for X. ampelinus in an in planta assay by D4E1 application. This widens the applicability of D4E1 as a potential resistance-enhancing element to additional pathogens and in a novel plant species. D4E1 is a promising candidate to confer enhanced resistance against the two tested grapevine bacterial pathogens, and the applied transient expression system proved to be a valuable tool for prescreening of D4E1 efficacy in an in planta environment. The described prescreening procedure can be used for other AMPs and might be adapted to other plant species and pathogens before the expensive and tedious development of stably transgenic lines is started. © 2012 The Authors. Letters in Applied Microbiology © 2012

  10. Antimicrobial activity of heterotrophic bacterial communities from the marine sponge Erylus discophorus (Astrophorida, Geodiidae.

    Directory of Open Access Journals (Sweden)

    Ana Patrícia Graça

    Full Text Available Heterotrophic bacteria associated with two specimens of the marine sponge Erylus discophorus were screened for their capacity to produce bioactive compounds against a panel of human pathogens (Staphylococcus aureus wild type and methicillin-resistant S. aureus (MRSA, Bacillus subtilis, Pseudomonas aeruginosa, Acinetobacter baumanii, Candida albicans and Aspergillus fumigatus, fish pathogen (Aliivibrio fischeri and environmentally relevant bacteria (Vibrio harveyi. The sponges were collected in Berlengas Islands, Portugal. Of the 212 isolated heterotrophic bacteria belonging to Alpha- and Gammaproteobacteria, Actinobacteria and Firmicutes, 31% produced antimicrobial metabolites. Bioactivity was found against both Gram positive and Gram negative and clinically and environmentally relevant target microorganisms. Bioactivity was found mainly against B. subtilis and some bioactivity against S. aureus MRSA, V. harveyi and A. fisheri. No antifungal activity was detected. The three most bioactive genera were Pseudovibrio (47.0%, Vibrio (22.7% and Bacillus (7.6%. Other less bioactive genera were Labrenzia, Acinetobacter, Microbulbifer, Pseudomonas, Gordonia, Microbacterium, Micrococcus and Mycobacterium, Paenibacillus and Staphylococcus. The search of polyketide I synthases (PKS-I and nonribosomal peptide synthetases (NRPSs genes in 59 of the bioactive bacteria suggested the presence of PKS-I in 12 strains, NRPS in 3 strains and both genes in 3 strains. Our results show the potential of the bacterial community associated with Erylus discophorus sponges as producers of bioactive compounds.

  11. Investigation of household contamination of Vibrio cholerae in Bangladesh

    DEFF Research Database (Denmark)

    Hossain, Zenat Zebin; Farhana, Israt; Mohan Tulsiani, Suhella

    . cholerae El Tor strain N16961, showed hemolysis and proteolysis activity but none of them exhibited any hemagglutinin activity on human erythrocytes. The study findings indicate that V. cholerae contamination is mostly originated in and around kitchen area rather than latrine area. Contaminated food...... and water supply may be the reason behind this relatively high presence of virulence factors in food plates and water pots. Direct exposure routes of disease transmission should be a major consideration in cholera prevention policies. Investigation of household contamination of Vibrio cholerae in Bangladesh......The role of in-house transmission on the incidence of Vibrio cholerae, the deadly waterborne pathogen, is still not developed. The aim of the current study was to investigate possible contamination routes in household domain for effective cholera control in Bangladesh. To examine the prevalence...

  12. Screening of probiotic bacteria and its role on artificial infection of Vibrio harvey in white shrimp (Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    . Sukenda

    2007-07-01

    Full Text Available Probiotic was screened from 28 strains of normal bacterial flora isolated from rearing water in a Litopenaeus vannamei farm based on its inhibitory activity against the growth of Vibrio harveyi.  Antibacterial activity was also tested in vivo to V. harveyi in L. vannamei.  The result showed that  the probiotic has a antibacterial effect on V. harveyi.  The in vivo test showed that shrimps injected with probiotic previously before challenged with V. harveyi has survival higher than control.  Probiotic isolate was suspected as Vibrio furnissi. Keywords:  biocontrol, inhibitory activity, Vibrio furnissi, Vibrio harveyi, Litopenaeus vannamei   AbstraK Bakteri probiotik ditapis dari 28 strain bacteria flora yang diisolasi dari air pemeliharaan udang vaname Litopenaeus vannamei berdasarkan aktivitas penghambatannya terhadap pertumbuhan Vibrio harveyi.  Aktivitas bakteri probiotik juga diuji secara in vivo terhadap V. harveyi pada udang putih.  Hasil penelitian menunjukkan bahwa bakteri probiotik isolat memiliki kemampuan antibakteria terhadap V. harveyi.  Uji in vivo menunjukkan bahwa udang yang diinjeksi probiotik sebelum diuji tantang dengan V. harveyi memiliki kelangsungan hidup lebih tinggi daripada kontrol.  Isolat probiotik tersebut diduga adalah Vibrio furnissi. Kata kunci:  biokontrol, aktivitas penghambatan, Vibrio furnissi, Vibrio harveyi, Litopenaeus vannamei

  13. Bacterial and Viral Pathogens in Live Oysters: 2007 United States Market Survey ▿

    Science.gov (United States)

    DePaola, Angelo; Jones, Jessica L.; Woods, Jacquelina; Burkhardt, William; Calci, Kevin R.; Krantz, Jeffrey A.; Bowers, John C.; Kasturi, Kuppuswamy; Byars, Robin H.; Jacobs, Emily; Williams-Hill, Donna; Nabe, Khamphet

    2010-01-01

    Two samples of market oysters, primarily from retail establishments, were collected twice each month in each of nine states during 2007. Samples were shipped refrigerated overnight to five U.S. Food and Drug Administration laboratories on a rotating basis and analyzed by most probable number (MPN) for total and pathogenic Vibrio parahaemolyticus and V. vulnificus numbers and for the presence of toxigenic V. cholerae, Salmonella spp., norovirus (NoV), and hepatitis A virus (HAV). Levels of indicator organisms, including fecal coliforms (MPN), Escherichia coli (MPN), male-specific bacteriophage, and aerobic plate counts, were also determined. V. parahaemolyticus and V. vulnificus levels were distributed seasonally and geographically by harvest region and were similar to levels observed in a previous study conducted in 1998-1999. Levels of pathogenic V. parahaemolyticus were typically several logs lower than total V. parahaemolyticus levels regardless of season or region. Pathogenic V. parahaemolyticus levels in the Gulf and Mid-Atlantic regions were about two logs greater than the levels observed in the Pacific and North Atlantic regions. Pathogens generally associated with fecal pollution were detected sporadically or not at all (toxigenic V. cholerae, 0%; Salmonella, 1.5%; NoV, 3.9%; HAV, 4.4%). While seasonal prevalences of NoV and HAV were generally greater in oysters harvested from December to March, the low detection frequency obscured any apparent seasonal effects. Overall, there was no relationship between the levels of indicator microorganisms and the presence of enteric viruses. These data provide a baseline that can be used to further validate risk assessment predictions, determine the effectiveness of new control measures, and compare the level of protection provided by the U.S. shellfish sanitation system to those in other countries. PMID:20190085

  14. Nucleic Acid-based Detection of Bacterial Pathogens Using Integrated Microfluidic Platform Systems

    Directory of Open Access Journals (Sweden)

    Carl A. Batt

    2009-05-01

    Full Text Available The advent of nucleic acid-based pathogen detection methods offers increased sensitivity and specificity over traditional microbiological techniques, driving the development of portable, integrated biosensors. The miniaturization and automation of integrated detection systems presents a significant advantage for rapid, portable field-based testing. In this review, we highlight current developments and directions in nucleic acid-based micro total analysis systems for the detection of bacterial pathogens. Recent progress in the miniaturization of microfluidic processing steps for cell capture, DNA extraction and purification, polymerase chain reaction, and product detection are detailed. Discussions include strategies and challenges for implementation of an integrated portable platform.

  15. Stimulation of bacterial DNA synthesis by algal exudates in attached algal-bacterial consortia

    International Nuclear Information System (INIS)

    Murray, R.E.; Cooksey, K.E.; Priscu, J.C.

    1986-01-01

    Algal-bacterial consortia attached to polystyrene surfaces were prepared in the laboratory by using the marine diatom Amphora coffeaeformis and the marine bacterium Vibrio proteolytica (the approved name of this bacterium is Vibrio proteolyticus. The organisms were attached to the surfaces at cell densities of approximately 5 x 10 4 cells cm -2 (diatoms) and 5 x 10 6 cells cm -2 (bacteria). The algal-bacterial consortia consistently exhibited higher rates of [ 3 H]thymidine incorporation than did biofilms composed solely of bacteria. The rates of [ 3 H]thymidine incorporation by the algal-bacterial consortia were fourfold greater than the rates of incorporation by monobacterial biofilms 16 h after biofilm formation and were 16-fold greater 70 h after biofilm formation. Extracellular material released from the attached Amphora cells supported rates of bacterial activity (0.8 x 10 -21 mol to 17.9 x 10 -21 mol of [ 3 H]thymidine incorporated cell -1 h -1 ) and growth (doubling time, 29.5 to 1.4 days) comparable to values reported for a wide variety of marine and freshwater ecosystems. In the presence of sessile diatom populations, DNA synthesis by attached V. proteolytica cells was light dependent and increased with increasing algal abundance. The metabolic activity of diatoms thus appears to be the rate-limiting process in biofilm development on illuminated surfaces under conditions of low bulk-water dissolved organic carbon

  16. Antimicrobial effects of essential oils of Cinnamosma fragrans on the bacterial communities in the rearing water of Penaeus monodon larvae.

    Science.gov (United States)

    Sarter, Samira; Randrianarivelo, Roger; Ruez, Philippe; Raherimandimby, Marson; Danthu, Pascal

    2011-04-01

    Farmed shrimps are vectors of various Vibrio species that are considered a potential health hazard. Previous study has shown that Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio alginolyticus dominated in the water and larval samples of shrimp hatchery (Randrianarivelo et al. 2010 ). The effects of two essential oils (EOs) of Cinnamosma fragrans, an endemic plant to Madagascar (B8: linalool-type and B143: 1,8-cineole-type), were determined on the total heterotrophic aerobic bacteria and the Vibrio concentrations in the rearing water of Penaeus monodon hatchery. The assays took place in OSO Farming's shrimp hatchery in Madagascar. EOs were directly added to the water tank. The bacterial concentrations of water tank were assessed on marine agar and thiosulfate citrate bile sucrose agar. The larvae culture corresponded to four replicates each of B8, B143, erythromycin (E), and control (oil and antibiotic free). The bacterial concentration of the rearing water in B8, B143, and antibiotic (E) tanks were significantly lower (p  0.05) between the three treatments B8, B143, and E. This study demonstrated that both EOs of C. fragrans, like antibiotic, inhibited bacterial growth in the rearing water of P. monodon larvae. The potential of C. fragrans EO to control the bacterial load in in vivo conditions of P. monodon hatchery makes it a relevant option for producers to minimize risk of Vibrio growth in the rearing water of larvae, which is the primary source of colonization of shrimp larvae.

  17. Possibilities of avoidance and control of bacterial plant diseases when using pathogen-tested (certified) or - treated planting material

    NARCIS (Netherlands)

    Janse, J.; Wenneker, M.

    2002-01-01

    Testing of planting material for freedom from phytopathogenic bacteria is an important, although not exclusive, method for control of bacterial diseases of plants. Ideally, pathogen-free or pathogen-/disease-resistant planting material is desirable, but this situation is not always possible on a

  18. Evaluation of the natural prevalence of Vibrio spp. in Uruguayan mussels (Mytilus sp.) and their control using irradiation

    International Nuclear Information System (INIS)

    Lopez, C.

    2001-01-01

    The presence of potentially pathogenic bacteria belonging to the Vibrionacea, especially Vibrio cholerae, and of Salmonella spp., was examined in fresh Uruguayan mussels (Mytilus sp.) during two annual seasons. The radiation decimal reduction dose (D 10 ) of various toxigenic strains of Vibrio cholerae was determined to vary in vitro between 0.11 and 0.19 kGy. These results and those from the examination of natural Vibrio spp. contamination in mussels were used to conclude that 1.0 kGy would be enough to render Uruguayan mussels Vibrio-safe. Mussels irradiated in the shell at the optical dose survived long enough to allow the eventual introduction of irradiation as an effective intervention measure without affecting local marketing practices, and making it possible to market the fresh mussels live, as required by Uruguayan legislation. (author)

  19. Powerful colloidal silver nanoparticles for the prevention of gastrointestinal bacterial infections

    International Nuclear Information System (INIS)

    Le, Anh-Tuan; Le, Thi Tam; Nguyen, Van Quy; Tran, Huy Hoang; Dang, Duc Anh; Tran, Quang Huy; Vu, Dinh Lam

    2012-01-01

    In this work we have demonstrated a powerful disinfectant ability of colloidal silver nanoparticles (NPs) for the prevention of gastrointestinal bacterial infections. The silver NPs colloid was synthesized by a UV-enhanced chemical precipitation. Two gastrointestinal bacterial strains of Escherichia coli (ATCC 43888-O157:k-:H7) and Vibrio cholerae (O1) were used to verify the antibacterial activity of the as-prepared silver NPs colloid by means of surface disinfection assay in agar plates and turbidity assay in liquid media. Transmission electron microscopy was also employed to analyze the ultrastructural changes of bacterial cells caused by silver NPs. Noticeably, our silver NPs colloid displayed a highly effective bactericidal effect against two tested gastrointestinal bacterial strains at a silver concentration as low as ∼3 mg l −1 . More importantly, the silver NPs colloid showed an enhancement of antibacterial activity and long-lasting disinfectant effect as compared to conventional chloramin B (5%) disinfection agent. These advantages of the as-prepared colloidal silver NPs make them very promising for environmental treatments contaminated with gastrointestinal bacteria and other infectious pathogens. Moreover, the powerful disinfectant activity of silver-containing materials can also help in controlling and preventing further outbreak of diseases. (paper)

  20. Spaceflight and Simulated Microgravity Increases Virulence of the Known Bacterial Pathogen S. Marcescens

    Science.gov (United States)

    Clemens-Grisham, Rachel Andrea; Bhattacharya, Sharmila; Wade, William

    2016-01-01

    After spaceflight, the number of immune cells is reduced in humans. In other research models, including Drosophila, not only is there a reduction in the number of plasmatocytes, but expression of immune-related genes is also changed after spaceflight. These observations suggest that the immune system is compromised after exposure to microgravity. It has also been reported that there is a change in virulence of some bacterial pathogens after spaceflight. We recently observed that samples of gram-negative S. marcescens retrieved from spaceflight is more virulent than ground controls, as determined by reduced survival and increased bacterial growth in the host. We were able to repeat this finding of increased virulence after exposure to simulated microgravity using the rotating wall vessel, a ground based analog to microgravity. With the ground and spaceflight samples, we looked at involvement of the Toll and Imd pathways in the Drosophila host in fighting infection by ground and spaceflight samples. We observed that Imd-pathway mutants were more susceptible to infection by the ground bacterial samples, which aligns with the known role of this pathway in fighting infections by gram-negative bacteria. When the Imd-pathway mutants were infected with the spaceflight sample, however, they exhibited the same susceptibility as seen with the ground control bacteria. Interestingly, all mutant flies show the same susceptibility to the spaceflight bacterial sample as do wild type flies. This suggests that neither humoral immunity pathway is effectively able to counter the increased pathogenicity of the space-flown S. marcescens bacteria.

  1. Antibacterial screening of traditional herbal plants and standard antibiotics against some human bacterial pathogens.

    Science.gov (United States)

    Awan, Uzma Azeem; Andleeb, Saiqa; Kiyani, Ayesha; Zafar, Atiya; Shafique, Irsa; Riaz, Nazia; Azhar, Muhammad Tehseen; Uddin, Hafeez

    2013-11-01

    Chloroformic and isoamyl alcohol extracts of Cinnnamomum zylanicum, Cuminum cyminum, Curcuma long Linn, Trachyspermum ammi and selected standard antibiotics were investigated for their in vitro antibacterial activity against six human bacterial pathogens. The antibacterial activity was evaluated and based on the zone of inhibition using agar disc diffusion method. The tested bacterial strains were Streptococcus pyogenes, Staphylococcus epidermidis, Klebsiella pneumonia, Staphylococcus aurues, Serratia marcesnces, and Pseudomonas aeruginosa. Ciprofloxacin showed highly significant action against K. pneumonia and S. epidermidis while Ampicillin and Amoxicillin indicated lowest antibacterial activity against tested pathogens. Among the plants chloroform and isoamyl alcohol extracts of C. cyminum, S. aromaticum and C. long Linn had significant effect against P. aeruginosa, S. marcesnces and S. pyogenes. Comparison of antibacterial activity of medicinal herbs and standard antibiotics was also recorded via activity index. Used medicinal plants have various phytochemicals which reasonably justify their use as antibacterial agent.

  2. Variations of immune parameters in the lined seahorse Hippocampus erectus after infection with enteritis pathogen of Vibrio parahaemolyticus.

    Science.gov (United States)

    Lin, Tingting; Zhang, Dong; Liu, Xin; Xiao, Dongxue

    2016-03-01

    Enteritis has been increasingly recognized as one of the major obstacles for the lined seahorse Hippocampus erectus mass culture success. In the present study, the intestinal bacteria strains of the lined seahorses H. erectus suffered from enteritis were isolated, then their pathogenicities were confirmed by artificial infection, and one pathogenic bacteria strain named DS3 was obtained. The median lethal dose (LD50) of strain DS3 for 10 days was determined. The seahorses with different infection levels of uninfected (control), early stage of infection (ESI) and late stage of infection (LSI) were respectively sampled at 0, 3, 6 and 9 days post infection, and 12 immune parameters in the plasma were analyzed. The strain DS3 identified with a biochemical test combined with a molecular method was Vibrio parahaemolyticus, and its LD50 for 10 days was 1.3 × 10(3) cfu/fish. Six parameters including monocytes/leucocytes, leucocytes phagocytic rate, interleukin-2, interferon-α, lysozyme and immunoglobulin M exhibited a generally similar variation trend: highest in the control, second in the ESI and lowest in the LSI throughout the entire experiment. In view of the infection level of V. parahaemolyticus to H. erectus is largely decided by the seahorse's own immune capacity, therefore, these immune parameters were high in the non- or slightly infected seahorses, and low in the severely infected individuals may be an indicator for immune level. These immune parameters may be reliable indicators for the juvenile and broodstock quality assessment. Moreover, clarification of the enteritis pathogen also provides guidances for targeted medicine choice for the lined seahorse. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A retrospective analysis of antimicrobial resistance in bacterial pathogens in an equine hospital (2012-2015).

    Science.gov (United States)

    van Spijk, J N; Schmitt, S; Fürst, A E; Schoster, A

    2016-06-01

    Antimicrobial resistance has become an important concern in veterinary medicine. The aim of this study was to describe the rate of antimicrobial resistance in common equine pathogens and to determine the occurrence of multidrug-resistant isolates. A retrospective analysis of all susceptibility testing results from bacterial pathogens cultured from horses at the University of Zurich Equine Hospital (2012-2015) was performed. Strains exhibiting resistance to 3 or more antimicrobial categories were defined as multidrug-resistant. Susceptibility results from 303 bacterial pathogens were analyzed, most commonly Escherichia coli (60/303, 20%) and Staphylococcus aureus (40/303, 13%). High rates of acquired resistance against commonly used antimicrobials were found in most of the frequently isolated equine pathogens. The highest rate of multidrug resistance was found in isolates of Acinetobacter baumannii (23/24, 96%), followed by Enterobacter cloacae complex (24/28, 86%) and Escherichia coli (48/60, 80%). Overall, 60% of Escherichia coli isolates were phenotypically ESBL-producing and 68% of Staphylococcus spp. were phenotypically methicillin-resistant. High rates of acquired antimicrobial resistance towards commonly used antibiotics are concerning and underline the importance of individual bacteriological and antimicrobial susceptibility testing to guide antimicrobial therapy. Minimizing and optimizing antimicrobial therapy in horses is needed.

  4. Lactic-acid bacteria increase the survival of marine shrimp, Litopenaeus vannamei, after infection with Vibrio harveyi

    OpenAIRE

    Vieira, Felipe do Nascimento; Pedrotti, Fabiola Santiago; Buglione Neto, Celso Carlos; Mouriño, José Luiz Pedreira; Beltrame, Elpídio; Martins, Maurício Laterça; Ramirez, Cristina; Arana, Luis Alejandro Vinatea

    2007-01-01

    This study evaluated the survival, post-larvae quality, and the population of bacteria in Litopenaeus vannamei after the addition of two strains of lactic-acid bacteria (2 and B6) experimentally infected by Vibrio harveyi. Fifteen hundred nauplii were distributed in 20 L capacity tanks with four replicates. The survival of control animals was lower (21%) than that of animals fed with the strains B6 (50%) and 2 (44%). Total bacterial population in the water and larvae, as well as of the Vibrio...

  5. Novel aptamer-linked nanoconjugate approach for detection of waterborne bacterial pathogens: an update

    Science.gov (United States)

    Singh, Gulshan; Manohar, Murli; Adegoke, Anthony Ayodeji; Stenström, Thor Axel; Shanker, Rishi

    2017-01-01

    The lack of microbiologically safe water in underdeveloped nations is the prime cause of infectious disease outbreaks. The need for the specific identification and detection of microorganisms encourages the development of advanced, rapid, sensitive and highly specific methods for the monitoring of pathogens and management of potential risk to human health. The rapid molecular assays based on detection of specific molecular signatures offer advantages over conventional methods in terms of specificity and sensitivity but require complex instrumentation and skilled personnel. Nanotechnology is an emerging area and provides a robust approach for the identification of pathogenic microorganism utilizing the peculiar properties of nanomaterials, i.e. small size (1-100 nm) and large surface area. This emerging technology promises to fulfill the urgent need of a novel strategy to enhance the bacterial identification and quantitation in the environment. In this context, the peculiar properties of gold nanoparticles, their plasmonic shifts, and changes in magnetic properties have been utilized for the simple and cost-effective detection of bacterial nucleic acids, antigens and toxins with quite improved sensitivity. One of the promising leads to develop an advance detection method might be the coupling of nucleic acid aptamers (capable of interacting specifically with bacteria, protozoa, and viruses) with nanomaterials. Such aptamer-nano conjugate can be used for the specific recognition of infectious agents in different environmental matrices. This review summarizes the application of nanotechnology in the area of pathogen detection and discusses the prospects of coupling nucleic acid aptamers with nanoparticles for the specific detection of targeted pathogens.

  6. Novel aptamer-linked nanoconjugate approach for detection of waterborne bacterial pathogens: an update

    International Nuclear Information System (INIS)

    Singh, Gulshan; Manohar, Murli; Adegoke, Anthony Ayodeji; Stenström, Thor Axel; Shanker, Rishi

    2017-01-01

    The lack of microbiologically safe water in underdeveloped nations is the prime cause of infectious disease outbreaks. The need for the specific identification and detection of microorganisms encourages the development of advanced, rapid, sensitive and highly specific methods for the monitoring of pathogens and management of potential risk to human health. The rapid molecular assays based on detection of specific molecular signatures offer advantages over conventional methods in terms of specificity and sensitivity but require complex instrumentation and skilled personnel. Nanotechnology is an emerging area and provides a robust approach for the identification of pathogenic microorganism utilizing the peculiar properties of nanomaterials, i.e. small size (1–100 nm) and large surface area. This emerging technology promises to fulfill the urgent need of a novel strategy to enhance the bacterial identification and quantitation in the environment. In this context, the peculiar properties of gold nanoparticles, their plasmonic shifts, and changes in magnetic properties have been utilized for the simple and cost-effective detection of bacterial nucleic acids, antigens and toxins with quite improved sensitivity. One of the promising leads to develop an advance detection method might be the coupling of nucleic acid aptamers (capable of interacting specifically with bacteria, protozoa, and viruses) with nanomaterials. Such aptamer-nano conjugate can be used for the specific recognition of infectious agents in different environmental matrices. This review summarizes the application of nanotechnology in the area of pathogen detection and discusses the prospects of coupling nucleic acid aptamers with nanoparticles for the specific detection of targeted pathogens.

  7. Novel aptamer-linked nanoconjugate approach for detection of waterborne bacterial pathogens: an update

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Gulshan, E-mail: gsingh.gulshan@gmail.com [Durban University of Technology, Institute for Water and Wastewater Technology (IWWT) (South Africa); Manohar, Murli [Jamia Hamdard (Hamdard University), Department of Biochemistry (India); Adegoke, Anthony Ayodeji; Stenström, Thor Axel [Durban University of Technology, Institute for Water and Wastewater Technology (IWWT) (South Africa); Shanker, Rishi [Ahmedabad University, Division of Biological & Life Sciences, School of Arts & Sciences (India)

    2017-01-15

    The lack of microbiologically safe water in underdeveloped nations is the prime cause of infectious disease outbreaks. The need for the specific identification and detection of microorganisms encourages the development of advanced, rapid, sensitive and highly specific methods for the monitoring of pathogens and management of potential risk to human health. The rapid molecular assays based on detection of specific molecular signatures offer advantages over conventional methods in terms of specificity and sensitivity but require complex instrumentation and skilled personnel. Nanotechnology is an emerging area and provides a robust approach for the identification of pathogenic microorganism utilizing the peculiar properties of nanomaterials, i.e. small size (1–100 nm) and large surface area. This emerging technology promises to fulfill the urgent need of a novel strategy to enhance the bacterial identification and quantitation in the environment. In this context, the peculiar properties of gold nanoparticles, their plasmonic shifts, and changes in magnetic properties have been utilized for the simple and cost-effective detection of bacterial nucleic acids, antigens and toxins with quite improved sensitivity. One of the promising leads to develop an advance detection method might be the coupling of nucleic acid aptamers (capable of interacting specifically with bacteria, protozoa, and viruses) with nanomaterials. Such aptamer-nano conjugate can be used for the specific recognition of infectious agents in different environmental matrices. This review summarizes the application of nanotechnology in the area of pathogen detection and discusses the prospects of coupling nucleic acid aptamers with nanoparticles for the specific detection of targeted pathogens.

  8. Baby bottle steam sterilizers disinfect home nebulizers inoculated with bacterial respiratory pathogens.

    Science.gov (United States)

    Towle, Dana; Callan, Deborah A; Farrel, Patricia A; Egan, Marie E; Murray, Thomas S

    2013-09-01

    Contaminated nebulizers are a potential source of bacterial infection but no single method is universally accepted for disinfection. We hypothesized that baby-bottle steam sterilizers effectively disinfect home nebulizers. Home nebulizers were inoculated with the common CF respiratory pathogens methicillin resistant Staphylococcus aureus, Burkholderia cepacia, Haemophilus influenzae, mucoid and non mucoid Pseudomonas aeruginosa, and Stenotrophomonas maltophilia. The nebulizers were swabbed for bacterial growth, treated with either the AVENT (Philips), the NUK Quick & Ready (Gerber) or DRY-POD (Camera Baby) baby bottle steam sterilizer and reswabbed for bacterial growth. All steam sterilizers were effective at disinfecting all home nebulizers. Viable bacteria were not recovered from any inoculated site after steam treatment, under any conditions tested. Steam treatment is an effective disinfection method. Additional studies are needed to confirm whether these results are applicable to the clinical setting. Copyright © 2012 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  9. In vitro antibacterial activity of methanol and water extracts of adiantum capillus veneris and tagetes patula against multidrug resistant bacterial strains

    International Nuclear Information System (INIS)

    Hussain, M.M.; Ahmad, B.; Bashid, E.; Hashim, S.

    2014-01-01

    The aim of present study was to screen the antimicrobial activities of extracts of leaves and stems of Adiantum capillus veneris and Tagetes patula against multidrug-resistant (MDR) bacterial strains. Extracts from the leaves and stems of these plants were extracted with methanol and water and tested for their antibacterial activity by disc diffusion method against ten MDR bacterial strains i.e., Citrobacter freundii, Escherichia coli, Providencia, Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumoniae, Proteus vulgaris, Salmonella typhi, Shigella and Vibrio cholerae. Leaves methanol extract (LME) of Adiantum showed maximum Zone of Inhibition (ZI) against Providencia, Klebsiella pneumoniae, Shigella, Vibrio cholerae, Staphylococcus aureus, Proteus vulgaris and Salmonella typhi, whereas its stem methanol extract (SME) was very active against Escherichia coli, Klebsiella pneumoniae and Salmonella typhi. Similarly LME of Tagetes showed highest ZI against Escherichia coli and Vibrio cholerae while SME showed highest ZI to Escherichia coli, Vibrio cholerae, Providencia, Shigella and Klebsiella pneumoniae. Leaves water extract (LWE) of Adiantum was very active against all ten bacterial strains while its stem water extract (SWE) showed maximum ZI against Escherichia coli, Klebsiella pneumoniae and Salmonella typhi, Shigella, Proteus vulgaris and Providencia. LWE of Tagetes was only active against Vibrio cholerae whereas SWE was very active against Salmonella typhi and active against P. vulgaris, Citrobacter freundii and Vibrio cholerae. It was concluded from this study that extracts of both Adiantum and Tagetes have prominent activities against most of the MDR bacterial strains and needs further studies for utmost benefits. (author)

  10. Antimicrobial activities of Streptomyces pulcher, S. canescens and S. citreofluorescens against fungal and bacterial pathogens of tomato in vitro.

    Science.gov (United States)

    el-Abyad, M S; el-Sayed, M A; el-Shanshoury, A R; el-Sabbagh, S M

    1996-01-01

    Thirty-seven actinomycete species isolated from fertile cultivated soils in Egypt were screened for the production of antimicrobial compounds against a variety of test organisms. Most of the isolates exhibited antimicrobial activities against Gram-positive, Gram-negative, and acid-fast bacteria, yeasts and filamentous fungi, with special attention to fungal and bacterial pathogens of tomato. On starch-nitrate agar, 14 strains were active against Fusarium oxysporum f.sp. lycopersici (the cause of Fusarium wilt), 18 against Verticillium albo-atrum (the cause of Verticillium wilt), and 18 against Alternaria solani (the cause of early blight). In liquid media, 14 isolates antagonized Pseudomonas solanacearum (the cause of bacterial wilt) and 20 antagonized Clavibacter michiganensis ssp. michiganensis (the cause of bacterial canker). The most active antagonists of the pathogenic microorganisms studied were found to be Streptomyces pulcher, S. canescens (syn. S. albidoflavus) and S. citreofluorescens (syn. S. anulatus). The antagonistic activities of S. pulcher and S. canescens against pathogenic fungi were assessed on solid media, and those of S. pulcher and S. citreofluorescens against pathogenic bacteria in liquid media under shaking conditions. The optimum culture conditions were determined.

  11. Vibrio Type III Effector VPA1380 Is Related to the Cysteine Protease Domain of Large Bacterial Toxins

    Science.gov (United States)

    Calder, Thomas; Kinch, Lisa N.; Fernandez, Jessie; Salomon, Dor; Grishin, Nick V.; Orth, Kim

    2014-01-01

    Vibrio parahaemolyticus is a Gram-negative halophilic bacterium and one of the leading causes of food-borne gastroenteritis. Its genome harbors two Type III Secretion Systems (T3SS1 and T3SS2), but only T3SS2 is required for enterotoxicity seen in animal models. Effector proteins secreted from T3SS2 have been previously shown to promote colonization of the intestinal epithelium, invasion of host cells, and destruction of the epithelial monolayer. In this study, we identify VPA1380, a T3SS2 effector protein that is toxic when expressed in yeast. Bioinformatic analyses revealed that VPA1380 is highly similar to the inositol hexakisphosphate (IP6)-inducible cysteine protease domains of several large bacterial toxins. Mutations in conserved catalytic residues and residues in the putative IP6-binding pocket abolished toxicity in yeast. Furthermore, VPA1380 was not toxic in IP6 deficient yeast cells. Therefore, our findings suggest that VPA1380 is a cysteine protease that requires IP6 as an activator. PMID:25099122

  12. Vibrio type III effector VPA1380 is related to the cysteine protease domain of large bacterial toxins.

    Directory of Open Access Journals (Sweden)

    Thomas Calder

    Full Text Available Vibrio parahaemolyticus is a Gram-negative halophilic bacterium and one of the leading causes of food-borne gastroenteritis. Its genome harbors two Type III Secretion Systems (T3SS1 and T3SS2, but only T3SS2 is required for enterotoxicity seen in animal models. Effector proteins secreted from T3SS2 have been previously shown to promote colonization of the intestinal epithelium, invasion of host cells, and destruction of the epithelial monolayer. In this study, we identify VPA1380, a T3SS2 effector protein that is toxic when expressed in yeast. Bioinformatic analyses revealed that VPA1380 is highly similar to the inositol hexakisphosphate (IP6-inducible cysteine protease domains of several large bacterial toxins. Mutations in conserved catalytic residues and residues in the putative IP6-binding pocket abolished toxicity in yeast. Furthermore, VPA1380 was not toxic in IP6 deficient yeast cells. Therefore, our findings suggest that VPA1380 is a cysteine protease that requires IP6 as an activator.

  13. Simulated hatchery system to assess bacteriophage efficacy against Vibrio harveyi.

    Science.gov (United States)

    Raghu Patil, J; Desai, Srividya Narayanamurthy; Roy, Panchali; Durgaiah, Murali; Saravanan, R Sanjeev; Vipra, Aradhana

    2014-12-02

    Vibriosis caused by luminous Vibrio harveyi commonly contributes to poor survival in shrimp hatcheries and aquaculture ponds. Lytic bacteriophages pathogenic for V. harveyi are currently being investigated as an alternative to antibiotics to prevent vibriosis. Here, 8 bacteriophages were isolated from oysters and clams using V. harveyi strains as baiting hosts. Among these bacteriophages, 1 strain (VHP6b) identified as broadly pathogenic for 27 V. harveyi strains examined was further characterized by electron microscopy and genome sequence analysis. Phage VHP6b possessed a tail and morphology consistent with it being a member of the family Siphoviridae, and its genome and proteome were most closely related to the Vibrio phages SSP02 and MAR10. An integrase gene essential for lysogeny was not evident. The ability of bacteriophage VHP6b to protect shrimp postlarvae against vibriosis caused by V. harveyi strain VH6 was demonstrated in a model system designed to simulate typical hatchery conditions. Bacteriophage treatment improved survival of postlarvae by 40 to 60% under these conditions, so therapies based on this or other bacteriophages may be useful in shrimp hatcheries.

  14. Comparison of direct-plating and broth-enrichment culture methods for detection of potential bacterial pathogens in respiratory secretions.

    Science.gov (United States)

    Kaur, Ravinder; Wischmeyer, Jareth; Morris, Matthew; Pichichero, Michael E

    2017-11-01

    We compared the recovery of potential respiratory bacterial pathogens and normal flora from nasopharyngeal specimens collected from children during health and at the onset of acute otitis media (AOM) by selective direct-plating and overnight broth-enrichment. Overall, 3442 nasal wash (NW) samples collected from young children were analysed from a 10-year prospective study. NWs were cultured by (1) direct-plating to TSAII/5 % sheep blood agar and chocolate agar plates and (2) overnight broth-enrichment in BacT/ALERT SA-broth followed by plating. Standard microbiology techniques were applied to identify three dominant respiratory bacterial pathogens: Streptococcus pneumoniae (Spn), Haemophilus influenzae (Hflu) and Moraxella catarrhalis (Mcat) as well as two common nasal flora, Staphylococcus aureus (SA) and alpha-haemolytic Streptococci (AHS).Results/Key findings. Direct-plating of NW resulted in isolation of Spn from 37.8 %, Hflu from 13.6 % and Mcat from 33.2 % of samples. In comparison, overnight broth-enrichment isolated fewer Spn (30.1 %), Hflu (6.2 %) and Mcat (16.2 %) (Penrichment resulted in significant increased isolation of SA (6.0 %) and AHS (30.1 %) (Penrichment when samples were collected from healthy children but not during AOM. In middle ear fluids (MEF) at the onset of AOM, broth-enrichment resulted in higher recovery of Spn (+10.4 %, Penrichment significantly reduces the accurate detection of bacterial respiratory pathogens and increases identification of SA and AHS in NW. Broth-enrichment improves detection of bacterial respiratory pathogens in MEF samples.

  15. Dynamics of fecal indicator bacteria, bacterial pathogen genes, and organic wastewater contaminants in the Little Calumet River: Portage Burns Waterway, Indiana

    Science.gov (United States)

    Haack, Sheridan K.; Duris, Joseph W.

    2013-01-01

    Little information exists on the co-occurrence of fecal indicator bacteria (FIB), bacterial pathogens, and organic wastewater-associated chemicals (OWCs) within Great Lakes tributaries. Fifteen watershed sites and one beach site adjacent to the Little Calumet River–Portage Burns Waterway (LCRPBW) on Lake Michigan were tested on four dates for pH, dissolved oxygen, specific conductance, chloride, color, ammonia- and nitrate-nitrogen, soluble phosphorus, sulfate, turbidity, and atrazine; for concentrations of FIB; and for genes indicating the presence of human-pathogenic enterococci (ENT) and of Shiga-toxin producing Escherichia coli (EC) from various animal sources. Nineteen samples were also tested for 60 OWCs. Half of the watershed samples met EC recreational water quality standards; none met ENT standards. Human-wastewater-associated OWC detections were correlated with human-influence indicators such as population/km2, chloride concentrations, and the presence of WWTP effluents, but EC and ENT concentrations were not. Bacterial pathogen genes indicated rural human and several potential animal sources. OWCs of human or ecosystem health concern (musk fragrances AHTN and HHCB, alkylphenols, carbamazepine) and 3 bacterial pathogen genes were detected at the mouth of the LCRPBW, but no such OWCs and only 1 pathogen gene were detected at the beach. The LCRPBW has significant potential to deliver FIB, potential bacterial pathogens, and OWCs of human or ecosystem health concern to the nearshore of Lake Michigan, under conditions enhancing nearshore transport of the river plume. Nearshore mixing of lake and river water, and the lack of relationship between OWCs and FIB or pathogen genes, pose numerous challenges for watershed and nearshore assessment and remediation.

  16. The Sit-and-Wait Hypothesis in Bacterial Pathogens: A Theoretical Study of Durability and Virulence

    Directory of Open Access Journals (Sweden)

    Liang Wang

    2017-11-01

    Full Text Available The intriguing sit-and-wait hypothesis predicts that bacterial durability in the external environment is positively correlated with their virulence. Since its first proposal in 1987, the hypothesis has been spurring debates in terms of its validity in the field of bacterial virulence. As a special case of the vector-borne transmission versus virulence tradeoff, where vector is now replaced by environmental longevity, there are only sporadic studies over the last three decades showing that environmental durability is possibly linked with virulence. However, no systematic study of these works is currently available and epidemiological analysis has not been updated for the sit-and-wait hypothesis since the publication of Walther and Ewald’s (2004 review. In this article, we put experimental evidence, epidemiological data and theoretical analysis together to support the sit-and-wait hypothesis. According to the epidemiological data in terms of gain and loss of virulence (+/- and durability (+/- phenotypes, we classify bacteria into four groups, which are: sit-and-wait pathogens (++, vector-borne pathogens (+-, obligate-intracellular bacteria (--, and free-living bacteria (-+. After that, we dive into the abundant bacterial proteomic data with the assistance of bioinformatics techniques in order to investigate the two factors at molecular level thanks to the fast development of high-throughput sequencing technology. Sequences of durability-related genes sourced from Gene Ontology and UniProt databases and virulence factors collected from Virulence Factor Database are used to search 20 corresponding bacterial proteomes in batch mode for homologous sequences via the HMMER software package. Statistical analysis only identified a modest, and not statistically significant correlation between mortality and survival time for eight non-vector-borne bacteria with sit-and-wait potentials. Meanwhile, through between-group comparisons, bacteria with higher

  17. Simultaneous Detection of Key Bacterial Pathogens Related to Pneumonia and Meningitis Using Multiplex PCR Coupled With Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    2018-04-01

    Full Text Available Pneumonia and meningitis continue to present an enormous public health burden and pose a major threat to young children. Among the causative organisms of pneumonia and meningitis, bacteria are the most common causes of serious disease and deaths. It is challenging to accurately and rapidly identify these agents. To solve this problem, we developed and validated a 12-plex PCR coupled with matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS method (bacterial pathogen-mass spectrometry, BP-MS that can be used to simultaneously screen for 11 key bacterial pathogens related to pneumonia and meningitis. Forty-six nasopharyngeal swabs and 12 isolates were used to determine the specificity of the method. The results showed that, using the BP-MS method, we could accurately identify the expected bacteria without cross-reactivity with other pathogens. For the 11 target bacterial pathogens, the analytical sensitivity of the BP-MS method was as low as 10 copies/reaction. To further evaluate the clinical effectiveness of this method, 204 nasopharyngeal swabs from hospitalized children with suspected pneumonia were tested using this method. In total, 81.9% (167/204 of the samples were positive for at least one of the 11 target pathogens. Among the 167 bacteria-positive samples, the rate of multiple infections was 55.7% (93/167, and the most frequent combination was Streptococcus pneumoniae with Haemophilus influenzae, representing 46.2% (43/93 two-pathogen mixed infections. We used real-time PCR and nested PCR to confirm positive results, with identical results obtained for 81.4% (136/167 of the samples. The BP-MS method is a sensitive and specific molecular detection technique in a multiplex format and with high sample throughput. Therefore, it will be a powerful tool for pathogen screening and antibiotic selection at an early stage of disease.

  18. Insights into the emergent bacterial pathogen Cronobacter spp., generated by multilocus sequence typing and analysis

    Directory of Open Access Journals (Sweden)

    Susan eJoseph

    2012-11-01

    Full Text Available Cronobacter spp. (previously known as Enterobacter sakazakii is a bacterial pathogen affecting all age groups, with particularly severe clinical complications in neonates and infants. One recognised route of infection being the consumption of contaminated infant formula. As a recently recognised bacterial pathogen of considerable importance and regulatory control, appropriate detection and identification schemes are required. The application of multilocus sequence typing (MLST and analysis (MLSA of the seven alleles atpD, fusA, glnS, gltB, gyrB, infB and ppsA (concatenated length 3036 base pairs has led to considerable advances in our understanding of the genus. This approach is supported by both the reliability of DNA sequencing over subjective phenotyping and the establishment of a MLST database which has open access and is also curated; http://www.pubMLST.org/cronobacter. MLST has been used to describe the diversity of the newly recognised genus, instrumental in the formal recognition of new Cronobacter species (C. universalis and C. condimenti and revealed the high clonality of strains and the association of clonal complex 4 with neonatal meningitis cases. Clearly the MLST approach has considerable benefits over the use of non-DNA sequence based methods of analysis for newly emergent bacterial pathogens. The application of MLST and MLSA has dramatically enabled us to better understand this opportunistic bacterium which can cause irreparable damage to a newborn baby’s brain, and has contributed to improved control measures to protect neonatal health.

  19. Light scattering sensor for real-time identification of Vibrio parahaemolyticus, V. vulnificus and V. cholera colonies on solid agar plates

    Science.gov (United States)

    The three most common pathogenic species of Vibrio, V. cholerae, V. parahemolyticus and V. vulnificus, are of major concern as water- and food-borne pathogens because of an increasing incidence of water and seafood related outbreaks and illnesses worldwide. Current methods are time-consuming and req...

  20. Identification of DLD, by immunoproteomic analysis and evaluation as a potential vaccine antigen against three Vibrio species in Epinephelus coioides.

    Science.gov (United States)

    Pang, Huanying; Chen, Liming; Hoare, Rowena; Huang, Yucong; ZaoheWu; Jian, Jichang

    2016-02-24

    Vibrio spp. represent a serious threat to the culture of Epinephelus coioides (Orange-spotted Grouper) in Southeast Asia. In this study we used two-dimensional electrophoresis (2-DE) and Western blotting to identify common immunogenic proteins of Vibrio alginolyticus, Vibrio harveyi and Vibrio parahaemolyticus. Membranes were probed with orange-spotted grouper anti-V. alginolyticus sera and accordingly 60, 58 and 48 immunogenic protein spots were detected. By matching analysis for the three Western blotting membranes, 6 cross immunogenic spots for the three Vibrio species were identified. They were Outer membrane protein W (OmpW), dihydrolipoamide dehydrogenase (DLD), succinate dehydrogenase flavoprotein subunit(SDHA), elongation factor Ts(Ts), peptide ABC transporter periplasmic peptide-binding protein and phosphoenolpyruvate carboxykinase(PEPCK). One of the proteins, DLD, was used to evaluate the cross protective function for E. coioides with a bacterial immunization and challenge method. The relative percent survival rate of E. coioides against V. alginolyticus, V. harveyi and V. parahaemolyticus was 90%, 86% and 80%, respectively. This work may provide potential cross protective vaccine candidate antigens for three Vibrio species, and DLD may be considered as an effective cross-protective immunogen against three Vibrio species. Copyright © 2016. Published by Elsevier Ltd.

  1. Sampling the light-organ microenvironment of Euprymna scolopes: description of a population of host cells in association with the bacterial symbiont Vibrio fischeri.

    Science.gov (United States)

    Nyholm, S V; McFall-Ngai, M J

    1998-10-01

    The symbiosis between the squid Euprymna scolopes and the luminous bacterium Vibrio fischeri has a pronounced diel rhythm, one component of which is the venting of the contents of the light organ into the surrounding seawater each day at dawn. In this study, we explored the use of this behavior to sample the microenvironment of the light-organ crypts. Intact crypt contents, which emerge from the lateral pores of the organ as a thick paste-like exudate, were collected from anesthetized host animals that had been exposed to a light cue. Microscopy revealed that the expelled material is composed of a conspicuous population of host cells in association with the bacterial symbionts, all of which are embedded in a dense acellular matrix that strongly resembles the bacteria-based biofilms described in other systems. Assays of the viability of expelled crypt cells revealed no dead bacterial symbionts and a mixture of live and dead host cells. Analyses of the ultrastructure, biochemistry, and phagocytic activity of a subset of the host cell population suggested that some of these cells are macrophage-like molluscan hemocytes.

  2. Prevalence of Vibrio parahaemolyticus in oyster and clam culturing environments in Taiwan.

    Science.gov (United States)

    Yu, Wei-Ting; Jong, Koa-Jen; Lin, Yu-Ren; Tsai, Shing-en; Tey, Yao Hsien; Wong, Hin-chung

    2013-01-01

    Vibrio parahaemolyticus is the most prevalent gastroenteritis pathogen in Taiwan and some other Asian countries, and it frequently occurs in oysters and other seafood. This study monitors changes in the density of V. parahaemolyticus and environmental parameters in oyster and hard clam aquacultural environments in Taiwan. Water, sediment and shellfish samples were collected from five sampling sites in 2008-2010, and analyzed for environmental physiochemical parameters, numbers of indicator bacteria (total aerobic counts, total coliforms and fecal coliforms), Vibrio and V. parahaemolyticus present. The results for open oyster farms and hard clam ponds did not differ significantly. V. parahaemolyticus was detected in 77.5, 77.5, 70.8 and 68.8% of the water, sediment, oyster and clam samples, respectively. The densities of V. parahaemolyticus were significantly higher in shellfish than in sediment or water samples, with mean values of 1.33, 1.04 and -0.02 Log CFU/g, respectively. Among these five sampling sites, Shengang and Fangyuan yielded significantly different data from those obtained at the other three sites. As determined by linear multiple regression, V. parahaemolyticus density in water samples depended significantly on the precipitation and Vibrio count, while the V. parahaemolyticus density in the sediment or shellfish samples depended significantly on the salinity of the seawater. Among 1076 isolates examined, a total of three putative pathogenic isolates were identified from 2.5% of the examined samples, and these isolates exhibited hemolytic or urease activities and the presence of gene markers for tdh, trh, type III secretion system (T3SS) 1 (vcrD1) or T3SS2α (vcrD2). The results herein may facilitate the assessment of risk associated with this pathogen in Taiwan and other geographically similar regions. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Adherence And Pathogenicity Assay Of Vibrio Harveyi In Tiger Shrimp (Penaeus Monodon) Larvae For Screening Biocontrol Agent

    OpenAIRE

    SUWANTO, ANTONIUS; HALA, YUSMINAH; AFFANDI, RIDWAN; Jr., MUHAMMAD ZAIRIN

    2002-01-01

    Rifampicin-resistant marker was employed as a reporter to detect the adherence and colonization of V. harveyi in shrimp larvae. Vibrio harveyi P1B and YA32.2 were isolated from dead shrimp larvae in Besuki, Northern Coast of East Java, while V. harveyi HB3, was isolated from pristine sea water in Pacitan, Southern Coast of East Java. Vibrio metschnikovii used as biocontrol agent was isolated from healthy shrimp larvae in Serang, West Java. Spontaneous mutation was conducted to generate V. h...

  4. Quorum Sensing Disruption in Vibrio harveyi Bacteria by Clay Materials.

    Science.gov (United States)

    Naik, Sajo P; Scholin, Jonathon; Ching, San; Chi, Fang; Herpfer, Marc

    2018-01-10

    This work describes the use of clay minerals as catalysts for the degradation of quorum sensing molecule N-(3-oxooctanoyl)-dl-homoserine lactone. Certain clay minerals as a result of their surface properties and porosity can catalytically degrade the quorum sensing molecule into smaller fragments. The disruption of quorum sensing by clay in a growing Gram-negative Vibrio harveyi bacteria culture was also studied by monitoring luminescence and population density of the bacteria, wherein quenching of bacterial quorum sensing activity was observed by means of luminescence reduction. The results of this study show that food-grade clays can be used as biocatalysts in disrupting bacterial activity in various media.

  5. Inhibitory potential of nine mentha species against pathogenic bacteria strains

    International Nuclear Information System (INIS)

    Hussain, A.; Ahmad, N.; Rashid, M.; Ikram, A. U.; Shinwari, Z. K.

    2015-01-01

    Plants produce secondary metabolites, which are used in their growth and defense against pathogenic agents. These plant based metabolites can be used as natural antibiotics against pathogenic bacteria. Synthetic antibiotics caused different side effects and become resistant to bacteria. Therefore the main objective of the present study was to investigate the inhibitory potential of nine Mentha species extracts against pathogenic bacteria. The methanolic leaves extracts of nine Mentha species (Mentha arvensis, Mentha longifolia, Mentha officinalis, Mentha piperita, Mentha citrata, Mentha pulegium, Mentha royleana, Mentha spicata and Mentha suareolens) were compared for antimicrobial activities. These Mentha species showed strong antibacterial activity against four microorganisms tested. Mentha arvensis showed 25 mm and 30 mm zones of inhibition against Staphylococcus aureus, Vibrio cholera and Enterobacter aerogens. Moreover, Mentha longifolia showed 24 mm zone of inhibition against Staphylococcus aureus. Mentha officinalis showed 30 mm zone of inhibition against Staphylococcus aureus. 25 mm inhibitory zone was recorded against Staphylococcus aureus by Mentha piperita. Mentha royleana showed 25 mm zone of inhibition against Vibrio cholera, while Mentha spicata showed 21 mm, 22 mm and 23 mm zones of inhibition against Staphylococcus aureus, Vibrio cholera and Enterobacter aerogens. Moreover most of the Mentha species showed zone of inhibition in the range of 10-20 mm. (author)

  6. Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion.

    Science.gov (United States)

    Yan, Jing; Nadell, Carey D; Stone, Howard A; Wingreen, Ned S; Bassler, Bonnie L

    2017-08-23

    Biofilms, surface-attached communities of bacteria encased in an extracellular matrix, are a major mode of bacterial life. How the material properties of the matrix contribute to biofilm growth and robustness is largely unexplored, in particular in response to environmental perturbations such as changes in osmotic pressure. Here, using Vibrio cholerae as our model organism, we show that during active cell growth, matrix production enables biofilm-dwelling bacterial cells to establish an osmotic pressure difference between the biofilm and the external environment. This pressure difference promotes biofilm expansion on nutritious surfaces by physically swelling the colony, which enhances nutrient uptake, and enables matrix-producing cells to outcompete non-matrix-producing cheaters via physical exclusion. Osmotic pressure together with crosslinking of the matrix also controls the growth of submerged biofilms and their susceptibility to invasion by planktonic cells. As the basic physicochemical principles of matrix crosslinking and osmotic swelling are universal, our findings may have implications for other biofilm-forming bacterial species.Most bacteria live in biofilms, surface-attached communities encased in an extracellular matrix. Here, Yan et al. show that matrix production in Vibrio cholerae increases the osmotic pressure within the biofilm, promoting biofilm expansion and physical exclusion of non-matrix producing cheaters.

  7. [Development of the soft independent modelling of class analogies model to discrimination Vibrio parahemolyticus by Smartongue].

    Science.gov (United States)

    Huang, Jianfeng; Zhao, Guangying; Dou, Wenchao

    2011-04-01

    To explore a new rapid detection method for detecting of Food pathogens. We used the Smartongue, to determine the composition informations of the liquid culture samples and combined with soft independent modelling of class analogies (SIMCA) to analyze their respective species, then set up a Smartongue -SIMCA model to discriminate the V. parahaemolyticus. The Smartongue has 6 working electrodes and three frequency segments, we can built 18 discrimination models in one detection. After comparing all the 18 discrimination models, the optimal working electrodes and frequency segments were selected out, they were: palladium electrode in 1 Hz frequency segment, tungsten electrode in 100 Hz and silver electrode in 100 Hz. Then 10 species of pathogenic Vibrio were discriminated by the 3 models. The V. damsela, V. metschnikovii, V. alginalyticus, V. cincinnatiensis, V. metschnikovii and V. cholerae O serogroup samples could be discriminated by the SIMCA model of V. parahaemolyticus with palladium electrode 1 Hz frequency segment; V. mimicus and V. vulnincus samples could be discriminated by the SIMCA model of V. parahaemolyticus with tungsten electrode 100 Hz frequency segment; V. carcariae and V. cholerae non-O serogroup samples could be discriminated with the SIMCA model of V. parahaemolyticus in silver electrode 100 Hz frequency segment. The accurate discrimination of ten species of Vibrio samples is 100%. The Smartongue combined with SIMCA can discriminate V. parahaemolyticus with other pathogenic Vibrio effectively. It has a promising future as a new rapid detection method for V. parahaemolyticus.

  8. Isolation of bioactive compound from marine seaweeds against fish pathogenic bacteria Vibrio alginolyticus (VA09 and characterisation by FTIR

    Directory of Open Access Journals (Sweden)

    Rajasekar Thirunavukkarasu

    2013-08-01

    Full Text Available Objective: Fresh marine seaweeds Gracilaria edulis, Gracillaria verrcosa, Acanthospora spicifera, Ulva facita, Ulva lacta (U. lacta, Kappaphycus spicifera, Sargassum ilicifolium, Sargassum wightii (S. wightii, Padina tetramatica and Padina gymonospora were collected from Mandapam (Rameshwaram, Tamil Nadu of South East coast of India and were screened for antibacterial activity. Methods: All the collected seaweeds were extracted by using five different solvent (methanol, isopropanol, acetone, chloroform, diethyl ether to study their extracts against fish pathogenic bacteria V. alginolyticus (VA09 purchased from MTCC. And minimum inhibition carried out by using Resazurin micro-titre assay. Crude extract of S. wightii analysied by FTIR. Results: The methanolic extract of S. wightii produced a maximum zone of inhibition (1.95±0.11 cm, isopropanol extract maximum inhibition was produced by S. wightii (1.93±0.78 cm, Acetone extract of Gracilaria verrcosa showed maximum zone of inhibition (1.36±0.05 cm, chloroform extract of S. wightii produced a maximum zone (1.56±0.25 cm and diethyl ether extract of S. wightii produced maximum zone of inhibition(1.86±0.11 cm. Based on the antibacterial activity S. wightii, U. lacta and Padina tetramatica showed best antibacterial activity against Vibrio harveyi. In this three seaweeds were taken for MIC study. The S. wightii methanolic extract, U. lacta diethyl ether extract and Padina tetramatica methanolic extract showed a higher MIC values, and despectively were 25 mg/mL, 50 mg/mL and 50 mg/mL. FTIR result showed that mostly phenolic compounds were present in the S. wightii. Conclusions: Based on the FTIR result S. wightii have high amount of phenolic compound. Phenolic compound have the good antimicrobial activity. The results clearly show that seaweed S. wightii is an interesting source for biologically active compounds that may be applied for prophylaxis and therapy of bacterial fish diseases and it should

  9. Diversity and Antagonistic Activity of Actinomycete Strains From Myristica Swamp Soils Against Human Pathogens

    Directory of Open Access Journals (Sweden)

    Varghese Rlnoy

    2014-05-01

    Full Text Available Under the present investigation Actinomycetes were isolated from the soils of Myristica swamps of southern Western Ghats and the antagonistic activity against different human bacterial pathogens was evaluated. Results of the present study revealed that Actinomycetes population in the soils of Myristica swamp was spatially and seasonally varied. Actinomycetes load was varied from 24×104 to 71×103, from 129×103 to 40×103 and from 31×104 to 84×103 in post monsoon, monsoon and pre monsoon respectively. A total of 23 Actinomycetes strains belonging to six genera were isolated from swamp soils. Identification of the isolates showed that most of the isolates belonged to the genus Streptomyces (11, followed by Nocardia (6, Micromonospora (3, Pseudonocardia (1, Streptosporangium (1, and Nocardiopsis (1. Antagonistic studies revealed that 91.3% of Actinomycete isolates were active against one or more tested pathogens, of that 56.52% exhibited activity against Gram negative and 86.95% showed activity against Gram positive bacteria. 39.13% isolates were active against all the bacterial pathogens selected and its inhibition zone diameter was also high. 69.5% of Actinomycetes were exhibited antibacterial activity against Listeria followed by Bacillus cereus (65.21%, Staphylococcus (60.86%, Vibrio cholera (52.17%, Salmonella (52.17% and E. coli (39.13%. The results indicate that the Myristica swamp soils of Southern Western Ghats might be a remarkable reserve of Actinomycetes with potential antagonistic activity.

  10. Microbiome analysis and detection of pathogenic bacteria of Penaeus monodon from Jakarta Bay and Bali.

    Science.gov (United States)

    Oetama, Vincensius S P; Hennersdorf, Philipp; Abdul-Aziz, Muslihudeen A; Mrotzek, Grit; Haryanti, Haryanti; Saluz, Hans Peter

    2016-09-30

    Penaeus monodon, the Asian black tiger shrimp is one of the most widely consumed marine crustaceans worldwide. In this study, we examine and compare the fecal microbiota of P. monodon from highly polluted waters around Jakarta Bay, with those of less polluted waters of Bali. Using next generation sequencing techniques, we identified potential bacterial pathogens and common viral diseases of shrimp. Proteobacteria (96.08%) was found to be the most predominant phylum, followed by Bacteriodetes (2.32%), Fusobacteria (0.96%), and Firmicutes (0.53%). On the order level, Vibrionales (66.20%) and Pseudoaltermonadales (24.81%) were detected as predominant taxa. qPCR profiling was used as a confirmatory step and further revealed Vibrio alginolyticus and Photobacterium damselae as two potential pathogenic species present in most of the samples. In addition, viral diseases for shrimp were discovered among the samples, WSSV in Jakarta free-living samples, YHV in Bali free-living samples and IHHNV in both. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Effect of probiotic supplemented diet on marine shrimp survival after challenge with Vibrio harveyi Efeito do uso de dieta suplementada com o probiótico sobre a sobrevivência de camarões marinhos após o desafio com Vibrio harveyi

    OpenAIRE

    F.N. Vieira; C.C. Buglione; J.P.L. Mouriño; A. Jatobá; M.L. Martins; D.D. Schleder; E.R. Andreatta; M.A. Barraco; L.A. Vinatea

    2010-01-01

    The effect of a Lactobacillus plantarum-supplemented diet on shrimp growth, digestive tract bacterial microbiota, survival, and some hemato-immunological parameters after an experimental challenge with Vibrio harveyi was studied. No difference (P>0.05) was observed in shrimp survival (80±6%) and final weight (6.63±0.56g) after 60 days feeding trial. Total bacteria count and Vibrio spp. count in the digestive tract were not diferent (P>0.05) until day 40, but they were lower (P0.05) than the c...

  12. Bacterial Pathogens and Community Composition in Advanced Sewage Treatment Systems Revealed by Metagenomics Analysis Based on High-Throughput Sequencing

    Science.gov (United States)

    Lu, Xin; Zhang, Xu-Xiang; Wang, Zhu; Huang, Kailong; Wang, Yuan; Liang, Weigang; Tan, Yunfei; Liu, Bo; Tang, Junying

    2015-01-01

    This study used 454 pyrosequencing, Illumina high-throughput sequencing and metagenomic analysis to investigate bacterial pathogens and their potential virulence in a sewage treatment plant (STP) applying both conventional and advanced treatment processes. Pyrosequencing and Illumina sequencing consistently demonstrated that Arcobacter genus occupied over 43.42% of total abundance of potential pathogens in the STP. At species level, potential pathogens Arcobacter butzleri, Aeromonas hydrophila and Klebsiella pneumonia dominated in raw sewage, which was also confirmed by quantitative real time PCR. Illumina sequencing also revealed prevalence of various types of pathogenicity islands and virulence proteins in the STP. Most of the potential pathogens and virulence factors were eliminated in the STP, and the removal efficiency mainly depended on oxidation ditch. Compared with sand filtration, magnetic resin seemed to have higher removals in most of the potential pathogens and virulence factors. However, presence of the residual A. butzleri in the final effluent still deserves more concerns. The findings indicate that sewage acts as an important source of environmental pathogens, but STPs can effectively control their spread in the environment. Joint use of the high-throughput sequencing technologies is considered a reliable method for deep and comprehensive overview of environmental bacterial virulence. PMID:25938416

  13. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment

    Science.gov (United States)

    Davin-Regli, Anne; Pagès, Jean-Marie

    2015-01-01

    Enterobacter aerogenes and E. cloacae have been reported as important opportunistic and multiresistant bacterial pathogens for humans during the last three decades in hospital wards. These Gram-negative bacteria have been largely described during several outbreaks of hospital-acquired infections in Europe and particularly in France. The dissemination of Enterobacter sp. is associated with the presence of redundant regulatory cascades that efficiently control the membrane permeability ensuring the bacterial protection and the expression of detoxifying enzymes involved in antibiotic degradation/inactivation. In addition, these bacterial species are able to acquire numerous genetic mobile elements that strongly contribute to antibiotic resistance. Moreover, this particular fitness help them to colonize several environments and hosts and rapidly and efficiently adapt their metabolism and physiology to external conditions and environmental stresses. Enterobacter is a versatile bacterium able to promptly respond to the antibiotic treatment in the colonized patient. The balance of the prevalence, E. aerogenes versus E. cloacae, in the reported hospital infections during the last period, questions about the horizontal transmission of mobile elements containing antibiotic resistance genes, e.g., the efficacy of the exchange of resistance genes Klebsiella pneumoniae to Enterobacter sp. It is also important to mention the possible role of antibiotic use in the treatment of bacterial infectious diseases in this E. aerogenes/E. cloacae evolution. PMID:26042091

  14. Impact of Vibrio parahaemolyticus and white spot syndrome virus (WSSV) co-infection on survival of penaeid shrimp Litopenaeus vannamei

    Science.gov (United States)

    Zhang, Xiaojing; Song, Xiaoling; Huang, Jie

    2016-11-01

    White spot syndrome virus (WSSV) is an important viral pathogen that infects farmed penaeid shrimp, and the threat of Vibrio parahaemolyticus infection to shrimp farming has become increasingly severe. Viral and bacterial cross or superimposed infections may induce higher shrimp mortality. We used a feeding method to infect Litopenaeus vannamei with WSSV and then injected a low dose of V. parahaemolyticus (WSSV+Vp), or we first infected L. vannamei with a low-dose injection of V. parahaemolyticus and then fed the shrimp WSSV to achieve viral infection (Vp+WSSV). The eff ect of V. parahaemolyticus and WSSV co-infection on survival of L. vannamei was evaluated by comparing cumulative mortality rates between experimental and control groups. We also spread L. vannamei hemolymph on thiosulfate citrate bile salt sucrose agar plates to determine the number of Vibrio, and the WSSV copy number in L. vannamei gills was determined using an absolute quantitative polymerase chain reaction (PCR) method. LvMyD88 and Lvakt gene expression levels were detected in gills of L. vannamei by real-time PCR to determine the cause of the diff erent mortality rates. Our results show that (1) the cumulative mortality rate of L. vannamei in the WSSV+Vp group reached 100% on day 10 after WSSV infection, whereas the cumulative mortality rate of L. vannamei in the Vp+WSSV group and the WSSV-alone control group approached 100% on days 11 and 13 of infection; (2) the number of Vibrio in the L. vannamei group infected with V. parahaemolyticus alone declined gradually, whereas the other groups showed significant increases in the numbers of Vibrio ( P<0.05); (3) the WSSV copy numbers in the gills of the WSSV+Vp, Vp+WSSV, and the WSSV-alone groups increased from 105 to 107 /mg tissue 72, 96, and 144 h after infection, respectively. These results suggest that V. parahaemolyticus infection accelerated proliferation of WSSV in L. vannamei and vice versa. The combined accelerated proliferation of both V

  15. CRISPR-Cas and Contact-Dependent Secretion Systems Present on Excisable Pathogenicity Islands with Conserved Recombination Modules.

    Science.gov (United States)

    Carpenter, Megan R; Kalburge, Sai S; Borowski, Joseph D; Peters, Molly C; Colwell, Rita R; Boyd, E Fidelma

    2017-05-15

    Pathogenicity islands (PAIs) are mobile integrated genetic elements that contain a diverse range of virulence factors. PAIs integrate into the host chromosome at a tRNA locus that contains their specific bacterial attachment site, attB , via integrase-mediated site-specific recombination generating attL and attR sites. We identified conserved recombination modules (integrases and att sites) previously described in choleragenic Vibrio cholerae PAIs but with novel cargo genes. Clustered regularly interspaced short palindromic repeat (CRISPR)-associated proteins (Cas proteins) and a type VI secretion system (T6SS) gene cluster were identified at the Vibrio pathogenicity island 1 (VPI-1) insertion site in 19 V. cholerae strains and contained the same recombination module. Two divergent type I-F CRISPR-Cas systems were identified, which differed in Cas protein homology and content. The CRISPR repeat sequence was identical among all V. cholerae strains, but the CRISPR spacer sequences and the number of spacers varied. In silico analysis suggests that the CRISPR-Cas systems were active against phages and plasmids. A type III secretion system (T3SS) was present in 12 V. cholerae strains on a 68-kb island inserted at the same tRNA-serine insertion site as VPI-2 and contained the same recombination module. Bioinformatics analysis showed that two divergent T3SSs exist among the strains examined. Both the CRISPR and T3SS islands excised site specifically from the bacterial chromosome as complete units, and the cognate integrases were essential for this excision. These data demonstrated that identical recombination modules that catalyze integration and excision from the chromosome can acquire diverse cargo genes, signifying a novel method of acquisition for both CRISPR-Cas systems and T3SSs. IMPORTANCE This work demonstrated the presence of CRISPR-Cas systems and T3SSs on PAIs. Our work showed that similar recombination modules can associate with different cargo genes and

  16. Bacterial Dissemination. Main Pathogens and Hygiene in Chicken Slaughter: A Review

    OpenAIRE

    Sales, Ronaldo de Oliveira; Universidade Federal do Ceará; Porto, Ernani; Universidade Luis de Queiroz - Piracicaba - SP

    2013-01-01

    In this bibliographical review, the different types of bacterial dissemination are presented, as well as the main pathogenic bacteria involved in chicken slaughter. The influence of hygiene in chicken slaughter upon storage and sale conditions on the retail market is also discussed. Nesta revisão bibliográfica são apresentados os diferentes tipos de disseminação bacteriana, como também as principais bactérias patogênicas envolvidas no abate de frangos. Discute-se ainda a influência da higi...

  17. Transcriptome Analysis Revealed Changes of Multiple Genes Involved in Haliotis discus hannai Innate Immunity during Vibrio parahemolyticus Infection.

    Science.gov (United States)

    Nam, Bo-Hye; Jung, Myunghee; Subramaniyam, Sathiyamoorthy; Yoo, Seung-il; Markkandan, Kesavan; Moon, Ji-Young; Kim, Young-Ok; Kim, Dong-Gyun; An, Cheul Min; Shin, Younhee; Jung, Ho-jin; Park, Jun-hyung

    2016-01-01

    Abalone (Haliotis discus hannai) is one of the most valuable marine aquatic species in Korea, Japan and China. Tremendous exposure to bacterial infection is common in aquaculture environment, especially by Vibrio sp. infections. It's therefore necessary and urgent to understand the mechanism of H. discus hannai host defense against Vibrio parahemolyticus infection. However studies on its immune system are hindered by the lack of genomic resources. In the present study, we sequenced the transcriptome of control and bacterial challenged H. discus hannai tissues. Totally, 138 MB of reference transcriptome were obtained from de novo assembly of 34 GB clean bases from ten different libraries and annotated with the biological terms (GO and KEGG). A total of 10,575 transcripts exhibiting the differentially expression at least one pair of comparison and the functional annotations highlight genes related to immune response, cell adhesion, immune regulators, redox molecules and mitochondrial coding genes. Mostly, these groups of genes were dominated in hemocytes compared to other tissues. This work is a prerequisite for the identification of those physiological traits controlling H. discus hannai ability to survive against Vibrio infection.

  18. Transcriptome Analysis Revealed Changes of Multiple Genes Involved in Haliotis discus hannai Innate Immunity during Vibrio parahemolyticus Infection

    Science.gov (United States)

    Nam, Bo-Hye; Jung, Myunghee; Subramaniyam, Sathiyamoorthy; Yoo, Seung-il; Markkandan, Kesavan; Moon, Ji-Young; Kim, Young-Ok; Kim, Dong-Gyun; An, Cheul Min; Shin, Younhee; Jung, Ho-jin; Park, Jun-hyung

    2016-01-01

    Abalone (Haliotis discus hannai) is one of the most valuable marine aquatic species in Korea, Japan and China. Tremendous exposure to bacterial infection is common in aquaculture environment, especially by Vibrio sp. infections. It’s therefore necessary and urgent to understand the mechanism of H. discus hannai host defense against Vibrio parahemolyticus infection. However studies on its immune system are hindered by the lack of genomic resources. In the present study, we sequenced the transcriptome of control and bacterial challenged H. discus hannai tissues. Totally, 138 MB of reference transcriptome were obtained from de novo assembly of 34 GB clean bases from ten different libraries and annotated with the biological terms (GO and KEGG). A total of 10,575 transcripts exhibiting the differentially expression at least one pair of comparison and the functional annotations highlight genes related to immune response, cell adhesion, immune regulators, redox molecules and mitochondrial coding genes. Mostly, these groups of genes were dominated in hemocytes compared to other tissues. This work is a prerequisite for the identification of those physiological traits controlling H. discus hannai ability to survive against Vibrio infection. PMID:27088873

  19. Transcriptome Analysis Revealed Changes of Multiple Genes Involved in Haliotis discus hannai Innate Immunity during Vibrio parahemolyticus Infection.

    Directory of Open Access Journals (Sweden)

    Bo-Hye Nam

    Full Text Available Abalone (Haliotis discus hannai is one of the most valuable marine aquatic species in Korea, Japan and China. Tremendous exposure to bacterial infection is common in aquaculture environment, especially by Vibrio sp. infections. It's therefore necessary and urgent to understand the mechanism of H. discus hannai host defense against Vibrio parahemolyticus infection. However studies on its immune system are hindered by the lack of genomic resources. In the present study, we sequenced the transcriptome of control and bacterial challenged H. discus hannai tissues. Totally, 138 MB of reference transcriptome were obtained from de novo assembly of 34 GB clean bases from ten different libraries and annotated with the biological terms (GO and KEGG. A total of 10,575 transcripts exhibiting the differentially expression at least one pair of comparison and the functional annotations highlight genes related to immune response, cell adhesion, immune regulators, redox molecules and mitochondrial coding genes. Mostly, these groups of genes were dominated in hemocytes compared to other tissues. This work is a prerequisite for the identification of those physiological traits controlling H. discus hannai ability to survive against Vibrio infection.

  20. Removal of salmonella-typhi, shigella-dysenteriae, vibrio-cholerae and rotavirus from water using a water-treatment tablet

    CSIR Research Space (South Africa)

    Rodda, N

    1993-01-01

    Full Text Available previously demonstrated. This study evaluated the efficiency of removal of Salmonella typhi, Shigella dysenteriae, Vibrio cholerae and rotavirus from simulated hard water of high organic content and colour. All four pathogenic micro organisms were...

  1. Associations between vaginal pathogenic community and bacterial vaginosis in Chinese reproductive-age women.

    Directory of Open Access Journals (Sweden)

    Zongxin Ling

    Full Text Available BACKGROUND: Bacterial vaginosis (BV is one of the most common urogenital infections among women of reproductive age that represents shifts in microbiota from Lactobacillus spp. to diverse anaerobes. The aim of our study was to evalute the diagnostic values of Gardnerella, Atopobium, Eggerthella, Megasphaera typeI, Leptotrichia/Sneathia and Prevotella, defined as a vaginal pathogenic community for BV and their associations with vaginal pH and Nugent scores. METHODS AND FINDINGS: We investigated the vaginal pathogenic bacteria and Lactobacillus spp. with species-specific real-time quantitative PCR (qPCR in 50 BV-positive and 50 BV-negative Chinese women of reproductive age. Relative to BV-negative subjects, a siginificant decline in Lactobacillus and an obvious increase in bacteria in the vaginal pathogenic community were observed in BV-postive subjects (P<0.05. With the exception of Megasphaera typeI, other vaginal pathogenic bacteria were highly predictable for BV with a better sensitivity and specificity. The vaginal pathogenic community was positively associated with vaginal pH and Nugent scores, while Lactobacillus spp., such as L. iners and L. crispatus was negatively associated with them (P<0.05. CONCLUSIONS: Our data implied that the prevalance of vaginal pathogenic bacteria as well as the depletion of Lactobacillus was highly accurate for BV diagnosis. Vaginal microbiota shifts, especially the overgrowth of the vaginal pathogenic community, showed well diagnostic values in predicting BV. Postive correlations between those vaginal pathogenic bacteria and vaginal pH, Nugent score indicated the vaginal pathogenic community rather than a single vaginal microorganism, was participated in the onset of BV directly.

  2. Specific inflammatory response of Anemonia sulcata (Cnidaria) after bacterial injection causes tissue reaction and enzymatic activity alteration.

    Science.gov (United States)

    Trapani, M R; Parisi, M G; Parrinello, D; Sanfratello, M A; Benenati, G; Palla, F; Cammarata, M

    2016-03-01

    The evolution of multicellular organisms was marked by adaptations to protect against pathogens. The mechanisms for discriminating the ''self'' from ''non-self" have evolved into a long history of cellular and molecular strategies, from damage repair to the co-evolution of host-pathogen interactions. We investigated the inflammatory response in Anemonia sulcata (Cnidaria: Anthozoa) following injection of substances that varied in type and dimension, and observed clear, strong and specific reactions, especially after injection of Escherichia coli and Vibrio alginolyticus. Moreover, we analyzed enzymatic activity of protease, phosphatase and esterase, showing how the injection of different bacterial strains alters the expression of these enzymes and suggesting a correlation between the appearance of the inflammatory reaction and the modification of enzymatic activities. Our study shows for the first time, a specific reaction and enzymatic responses following injection of bacteria in a cnidarian. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Halophilic and halotolerant actinomycetes from a marine saltern of Goa, India producing anti-bacterial metabolites.

    Science.gov (United States)

    Ballav, Shuvankar; Kerkar, Savita; Thomas, Sabu; Augustine, Nimmy

    2015-03-01

    Marine salterns are estuarine ecosystems in Goa, receiving inputs from riverine and marine waters. The Salinity fluctuates between 0 and 300 psu which makes it a conducive niche for salt tolerant and salt loving Actinomycetales. Halotolerant and halophilic Actinomycetales producing anti-bacterial metabolites were studied from crystallizer pond sediments of Ribandar saltern, Goa. Three media viz. Starch casein, R2A and Inorganic salt starch agar at four different salinities (35, 50, 75 and 100 psu) were used for isolation. R2A agar at 35 psu was the most preferred by hypersaline actinomycetes. The dominant group was halotolerant Streptomyces spp. others being rare actinomycetes viz. Nocardiopsis, Micromonospora and Kocuria spp. More than 50% of the isolates showed anti-bacterial activity against one or more of the fifteen human pathogens tested. Eight strains from 4 genera showed consistent anti-bacterial activity and studied in detail. Most halotolerant isolates grew from 0 to 75 psu, with optimum antibiotic production at 35 psu whereas halophiles grew at 20 to 100 psu with optimum antibiotic production at 35 psu. Four Streptomyces strains showed multiple inhibition against test organisms while four rare actinomycetes were specific in their inhibitory activity. This is the first report of a halophilic Kocuria sp., Nocardiopsis sp., and halotolerant Micromonospora sp. producing anti-bacterial compound(s) against Staphylococcus aureus, Staphylococcus citreus, and Vibrio cholerae, respectively. Sequential extraction with varying polarity of organic solvents showed that the extracts inhibited different test pathogens. These results suggest that halophilic and halotolerant actinomycetes from marine salterns are a potential source of anti-bacterial compounds. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Diversity and biological activities of the bacterial community associated with the marine sponge Phorbas tenacior (Porifera, Demospongiae).

    Science.gov (United States)

    Dupont, S; Carré-Mlouka, A; Descarrega, F; Ereskovsky, A; Longeon, A; Mouray, E; Florent, I; Bourguet-Kondracki, M L

    2014-01-01

    The diversity of the cultivable microbiota of the marine sponge Phorbas tenacior frequently found in the Mediterranean Sea was investigated, and its potential as a source of antimicrobial, antioxidant and antiplasmodial compounds was evaluated. The cultivable bacterial community was studied by isolation, cultivation and 16S rRNA gene sequencing. Twenty-three bacterial strains were isolated and identified in the Proteobacteria (α or γ classes) and Actinobacteria phyla. Furthermore, three different bacterial morphotypes localized extracellularly within the sponge tissues were revealed by microscopic observations. Bacterial strains were assigned to seven different genera, namely Vibrio, Photobacterium, Shewanella, Pseudomonas, Ruegeria, Pseudovibrio and Citricoccus. The strains affiliated to the same genus were differentiated according to their genetic dissimilarities using random amplified polymorphic DNA (RAPD) analyses. Eleven bacterial strains were selected for evaluation of their bioactivities. Three isolates Pseudovibrio P1Ma4, Vibrio P1MaNal1 and Citricoccus P1S7 revealed antimicrobial activity; Citricoccus P1S7 and Vibrio P1MaNal1 isolates also exhibited antiplasmodial activity, while two Vibrio isolates P1Ma8 and P1Ma5 displayed antioxidant activity. These data confirmed the importance of Proteobacteria and Actinobacteria associated with marine sponges as a reservoir of bioactive compounds. This study presents the first report on the diversity of the cultivable bacteria associated with the marine sponge Phorbas tenacior, frequently found in the Mediterranean Sea. Evaluation of the antiplasmodial, antimicrobial and antioxidant activities of the isolates has been investigated and allowed to select bacterial strains, confirming the importance of Proteobacteria and Actinobacteria as sources of bioactive compounds. © 2013 The Society for Applied Microbiology.

  5. Anaerobic respiratory growth of Vibrio harveyi, Vibrio fischeri and Photobacterium leiognathi with trimethylamine N-oxide, nitrate and fumarate: ecological implications.

    Science.gov (United States)

    Proctor, L M; Gunsalus, R P

    2000-08-01

    Two symbiotic species, Photobacterium leiognathi and Vibrio fischeri, and one non-symbiotic species, Vibrio harveyi, of the Vibrionaceae were tested for their ability to grow by anaerobic respiration on various electron acceptors, including trimethylamine N-oxide (TMAO) and dimethylsulphoxide (DMSO), compounds common in the marine environment. Each species was able to grow anaerobically with TMAO, nitrate or fumarate, but not with DMSO, as an electron acceptor. Cell growth under microaerophilic growth conditions resulted in elevated levels of TMAO reductase, nitrate reductase and fumarate reductase activity in each strain, whereas growth in the presence of the respective substrate for each enzyme further elevated enzyme activity. TMAO reductase specific activity was the highest of all the reductases. Interestingly, the bacteria-colonized light organs from the two squids, Euprymna scolopes and Euprymna morsei, and the light organ of the ponyfish, Leiognathus equus, also had high levels of TMAO reductase enzyme activity, in contrast to non-symbiotic tissues. The ability of these bacterial symbionts to support cell growth by respiration with TMAO may conceivably eliminate the competition for oxygen needed for both bioluminescence and metabolism.

  6. Egypt's Red Sea coast: phylogenetic analysis of cultured microbial consortia in industrialized sites.

    Science.gov (United States)

    Mustafa, Ghada A; Abd-Elgawad, Amr; Abdel-Haleem, Alyaa M; Siam, Rania

    2014-01-01

    The Red Sea possesses a unique geography, and its shores are rich in mangrove, macro-algal and coral reef ecosystems. Various sources of pollution affect Red Sea biota, including microbial life. We assessed the effects of industrialization on microbes along the Egyptian Red Sea coast at eight coastal sites and two lakes. The bacterial communities of sediment samples were analyzed using bacterial 16S rDNA pyrosequencing of V6-V4 hypervariable regions. The taxonomic assignment of 131,402 significant reads to major bacterial taxa revealed five main bacterial phyla dominating the sampled sites: Proteobacteria (68%), Firmicutes (13%), Fusobacteria (12%), Bacteriodetes (6%), and Spirochetes (0.03%). Further analysis revealed distinct bacterial consortia that primarily included (1) marine Vibrio spp.-suggesting a "marine Vibrio phenomenon"; (2) potential human pathogens; and (3) oil-degrading bacteria. We discuss two divergent microbial consortia that were sampled from Solar Lake West near Taba/Eilat and Saline Lake in Ras Muhammad; these consortia contained the highest abundance of human pathogens and no pathogens, respectively. Our results draw attention to the effects of industrialization on the Red Sea and suggest the need for further analysis to overcome the hazardous effects observed at the impacted sites.

  7. Small non-coding RNAs: new insights in modulation of host immune response by intracellular bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Waqas Ahmed

    2016-10-01

    Full Text Available Pathogenic bacteria possess intricate regulatory networks that temporally control the production of virulence factors, and enable the bacteria to survive and proliferate within host cell. Small non-coding RNAs (sRNAs have been identified as important regulators of gene expression in diverse biological contexts. Recent research has shown bacterial sRNAs involved in growth and development, cell proliferation, differentiation, metabolism, cell signaling and immune response through regulating protein–protein interactions or via their ability to base pair with RNA and DNA. In this review, we provide a brief overview of mechanism of action employed by immune-related sRNAs, their known functions in immunity, and how they can be integrated into regulatory circuits that govern virulence, which will facilitates to understand pathogenesis and the development of novel, more effective therapeutic approaches to treat infections caused by intracellular bacterial pathogens.

  8. Diet and environment shape fecal bacterial microbiota composition and enteric pathogen load of grizzly bears.

    Directory of Open Access Journals (Sweden)

    Clarissa Schwab

    Full Text Available BACKGROUND: Diet and environment impact the composition of mammalian intestinal microbiota; dietary or health disturbances trigger alterations in intestinal microbiota composition and render the host susceptible to enteric pathogens. To date no long term monitoring data exist on the fecal microbiota and pathogen load of carnivores either in natural environments or in captivity. This study investigates fecal microbiota composition and the presence of pathogenic Escherichia coli and toxigenic clostridia in wild and captive grizzly bears (Ursus arctos and relates these to food resources consumed by bears. METHODOLOGY/PRINCIPAL FINDINGS: Feces were obtained from animals of two wild populations and from two captive animals during an active bear season. Wild animals consumed a diverse diet composed of plant material, animal prey and insects. Captive animals were fed a regular granulated diet with a supplement of fruits and vegetables. Bacterial populations were analyzed using quantitative PCR. Fecal microbiota composition fluctuated in wild and in captive animals. The abundance of Clostridium clusters I and XI, and of C. perfringens correlated to regular diet protein intake. Enteroaggregative E. coli were consistently present in all populations. The C. sordellii phospholipase C was identified in three samples of wild animals and for the first time in Ursids. CONCLUSION: This is the first longitudinal study monitoring the fecal microbiota of wild carnivores and comparing it to that of captive individuals of the same species. Location and diet affected fecal bacterial populations as well as the presence of enteric pathogens.

  9. Diet and environment shape fecal bacterial microbiota composition and enteric pathogen load of grizzly bears.

    Science.gov (United States)

    Schwab, Clarissa; Cristescu, Bogdan; Northrup, Joseph M; Stenhouse, Gordon B; Gänzle, Michael

    2011-01-01

    Diet and environment impact the composition of mammalian intestinal microbiota; dietary or health disturbances trigger alterations in intestinal microbiota composition and render the host susceptible to enteric pathogens. To date no long term monitoring data exist on the fecal microbiota and pathogen load of carnivores either in natural environments or in captivity. This study investigates fecal microbiota composition and the presence of pathogenic Escherichia coli and toxigenic clostridia in wild and captive grizzly bears (Ursus arctos) and relates these to food resources consumed by bears. Feces were obtained from animals of two wild populations and from two captive animals during an active bear season. Wild animals consumed a diverse diet composed of plant material, animal prey and insects. Captive animals were fed a regular granulated diet with a supplement of fruits and vegetables. Bacterial populations were analyzed using quantitative PCR. Fecal microbiota composition fluctuated in wild and in captive animals. The abundance of Clostridium clusters I and XI, and of C. perfringens correlated to regular diet protein intake. Enteroaggregative E. coli were consistently present in all populations. The C. sordellii phospholipase C was identified in three samples of wild animals and for the first time in Ursids. This is the first longitudinal study monitoring the fecal microbiota of wild carnivores and comparing it to that of captive individuals of the same species. Location and diet affected fecal bacterial populations as well as the presence of enteric pathogens.

  10. Sensitivity of the vibrios to ultraviolet-radiation

    International Nuclear Information System (INIS)

    Banerjee, S.K.; Chatterjee, S.N.

    1977-01-01

    The ultraviolet-inactivation kinetics of a number of strains of Vibrio cholerae (classical), Vibrio cholerae (el tor), NAG vibrios and Vibrio parahaemolyticus were investigated. Statistical analyses revealed significant differences between any two of the four types of vibrio in respect of their sensitivity to U.V. (author)

  11. Draft genome sequence of pathogenic bacteria Vibrio parahaemolyticus strain Ba94C2, associated with acute hepatopancreatic necrosis disease isolate from South America

    Directory of Open Access Journals (Sweden)

    Leda Restrepo

    2016-09-01

    Full Text Available Vibrio parahaemolyticus is a pathogenic bacteria which has been associated to the early mortality syndrome (EMS also known as hepatopancreatic necrosis disease (AHPND causing high mortality in shrimp farms. Pathogenic strains contain two homologous genes related to insecticidal toxin genes, PirA and PirB, these toxin genes are located on a plasmid contained within the bacteria. Genomic sequences have allowed the finding of two strains with a divergent structure related to the geographic region from where they were found. The isolates from the geographic collection of Southeast Asia and Mexico show variable regions on the plasmid genome, indicating that even though they are not alike they still conserve the toxin genes. In this paper, we report for the first time, a pathogenic V. parahaemolyticus strain in shrimp from South America that showed symptoms of AHPND. The genomic analysis revealed that this strain of V. parahaemolyticus found in South America appears to be more related to the Southeast Asia as compared to the Mexican strains. This finding is of major importance for the shrimp industry, especially in regards to the urgent need for disease control strategies to avoid large EMS outbreaks and economic loss, and to determine its dispersion in South America. The whole-genome shotgun project of V. parahaemolyticus strain Ba94C2 have been deposited at DDBJ/EMBL/GenBank under the accession PRJNA335761.

  12. Effect of three pathogenic vibrio infections on the non-specific immunity of croaker, Pseudosciaena crocea%三种致病弧菌感染对大黄鱼非特异性免疫功能的影响

    Institute of Scientific and Technical Information of China (English)

    李思源; 葛明峰; 胡亚萍; 蔡林婷; 王国良

    2012-01-01

    Ulcer disease, which caused by the pathogens such as Vibrio alginolytkus, Vibrio harveyi and Vibrio parahaemolyticus according to the researches, is the most common, wide spreading and harmful disease of cage cultured croaker, Pseudosciaena crocea. In this research, we set 3 experimental groups with injections of 0.2 cm3 Vibrio harveyi, Vibrio alginolyticus and Vibrio parahaemolyticus, respectively, besides a control group treated with a same dose of normal saline. At the intervals ofO, 1,2,4,7, 10, 13, 16 and 20 days after infection, blood leucocytes , NBT-positive cells and lysozyme level were taken and measured for the influence on the croaker' s non-specific immunity function under the pressure of 3 pathogenic vibrio . The results show that the change of blood physiological signs in the croaker mainly occurred 1 ~ 7 days after infection. At the initial stage, each experimental group had a significantly increase in white blood cell and NBT positive cell number (p <0.05). The percentage of lymphocyte and neutrophilic granulocyte decreased with an increasing percentage of monocyte (p <0.05). Thereafter, white blood cells started to decline and the percentage of lymphocyte and neutrophilic granulocyte started to increased. Seven days after infection, the number of varied blood cells didn' t change significantly any more, and the group infected by vibrio heavily had an obvious significant change of blood physiological signs and NBT positive cell number. The activity of lysozyme in serum was higher than spleen, but both of them were first increased and then decreased, at last they went to an accordant tendency. So we conclude that the activation of stress response and non-specific immunity function' s happened at the early stage of infection. The pathogenic vibrio showed different influences, with a time lag, on the non-specific immunity.%溶藻弧菌(Vibrio alginolyticus)、哈维氏弧菌(Vibrio harveyi)、副溶血弧菌(Vibrio parahaemolyticus

  13. Vibrio cholerae interactions with Mytilus galloprovincialis hemocytes mediated by serum components.

    Directory of Open Access Journals (Sweden)

    Laura eCanesi

    2013-12-01

    Full Text Available Edible bivalves (e.g., mussels, oysters can accumulate large amount of bacteria in their tissues and act as passive carriers of pathogens to humans. Bacterial persistence inside bivalves depends, at least in part, on hemolymph anti-bacterial activity that is exerted by both serum soluble factors and phagocytic cells (i.e., the hemocytes. It was previously shown that Mytilus galloprovincialis hemolymph serum contains opsonins that mediate D-mannose-sensitive interactions between hemocytes and V. cholerae O1 El Tor bacteria that carry the Mannose–Sensitive Hemagglutinin (MSHA. These opsonins enhance phagocytosis and killing of vibrios by facilitating their binding to hemocytes. Since V. cholerae strains not carrying the MSHA ligand (O1 classical, non O1/O139 are present in coastal water and can be entrapped by mussels, we studied whether in mussel serum, in addition to opsonins directed towards MSHA, other components can mediate opsonization of these bacteria. By comparing interactions of O1 classical and non O1/O139 strains with hemocytes in ASW and serum, it was found that M. galloprovincialis serum contains components that increase by at approximately two fold their adhesion to, association with and killing by hemocytes. Experiments conducted with high and low molecular mass fractions obtained by serum ultrafiltration indicated that these compounds have molecular mass higher than 5000 Da. Serum exposure to high temperature (80°C abolished its opsonizing capability suggesting that the involved serum active components are of protein nature. Further studies are needed to define the chemical properties and specificity of both the involved bacterial ligands and hemolymph opsonins. This information will be central not only to better understand V. cholerae ecology, but also to improve current bivalve depuration practices and properly protect human health.

  14. Quorum-sensing regulators control virulence gene expression in Vibrio cholerae

    OpenAIRE

    Zhu, Jun; Miller, Melissa B.; Vance, Russell E.; Dziejman, Michelle; Bassler, Bonnie L.; Mekalanos, John J.

    2002-01-01

    The production of virulence factors including cholera toxin and the toxin-coregulated pilus in the human pathogen Vibrio cholerae is strongly influenced by environmental conditions. The well-characterized ToxR signal transduction cascade is responsible for sensing and integrating the environmental information and controlling the virulence regulon. We show here that, in addition to the known components of the ToxR signaling circuit, quorum-sensing regulators are involved in regulation of V. ch...

  15. Experimental infection with different bacterial strains in larvae and juvenile Litopenaeus vannamei reared in Santa Catarina State, Brazil - doi: 10.4025/actascibiolsci.v32i3.5471 Experimental infection with different bacterial strains in larvae and juvenile Litopenaeus vannamei reared in Santa Catarina State, Brazil - doi: 10.4025/actascibiolsci.v32i3.5471

    Directory of Open Access Journals (Sweden)

    Adolfo Jatoba

    2010-09-01

    Full Text Available This study evaluated the pathogenic characteristics of bacteria isolated from Litopenaeus vannamei during an outbreak at the Laboratory of Marine Shrimp, UFSC, Santa Catarina State, Brazil. Their virulence potential in larvae and juvenile shrimp and the effects on the total haemocyte count, phenoloxidase activity and serum agglutinate titre were examined after experimental infection. Bacterial strains were isolated from larvae and adult shrimps, identified by the AP120E biochemical system as: two strains of Vibrio alginolyticus, three of Aeromonas salmonicida and one of Pasteurella multocida sp. and Pasteurella sp. All the bacterial strains isolated in this study caused mortality in shrimp. One strain of V. alginolyticus was responsible for 97.3 and 88.7% mortality in larvae and juvenil shrimps, respectively. The shrimp immunological system was influenced by experimental infection with V. alginolyticus. Decrease in the total haemocyte count and increase in the phenoloxidase activity and the serum agglutinate titre (p V. alginolyticus isolated from larvae and juvenile reared marine shrimp.This study evaluated the pathogenic characteristics of bacteria isolated from Litopenaeus vannamei during an outbreak at the Laboratory of Marine Shrimp, UFSC, Santa Catarina State, Brazil. Their virulence potential in larvae and juvenile shrimp and the effects on the total haemocyte count, phenoloxidase activity and serum agglutinate titre were examined after experimental infection. Bacterial strains were isolated from larvae and adult shrimps, identified by the AP120E biochemical system as: two strains of Vibrio alginolyticus, three of Aeromonas salmonicida and one of Pasteurella multocida sp. and Pasteurella sp. All the bacterial strains isolated in this study caused mortality in shrimp. One strain of V. alginolyticus was responsible for 97.3 and 88.7% mortality in larvae and juvenil shrimps, respectively. The shrimp immunological system was influenced by

  16. Isolation and characterization of Pseudoalteromonas sp. from fermented Korean food, as an antagonist to Vibrio harveyi.

    Science.gov (United States)

    Morya, V K; Choi, Wooyoung; Kim, Eun-Ki

    2014-02-01

    The microbial intervention for sustainable management of aquaculture, especially use of probiotics, is one of the most popular and practical approaches towards controlling pathogens. Vibrio harveyi is a well-known pathogenic bacterium, which is associated to a huge economic loss in the aquaculture system by causing vibriosis. The present study is crafted for screening and characterization of anti-Vibrio strains, which were isolated from various traditional fermented Korean foods. A total of 196 strains have been isolated from soybean paste (78 strains), red chili paste (49 strains), soy sauce (18 strains), jeotgal-a salted fish (34 strains), and the gazami crab-Portunus trituberculatus (17 strains). Fifteen strains showed an inhibitory effect on the growth of V. harveyi when subjected to coculture condition. Among the strains isolated, one has been identified as a significant anti-Vibrio strain. Further biochemical characterization and 16S rDNA sequencing revealed it as Pseudoalteromonas aliena, which had been deposited at the Korean Culture Center of Microorganisms (KCCM), Korea and designated as KCCM 11207P. The culture supernatants did not have any antimicrobial properties either in pure or in coculture condition. The culture supernatant was not toxic when supplemented to the swimming crab, Zoea, and Artemia larvae in aquaculture system. The results were very encouraging and showed a significant reduction in accumulated mortality. Here, we reported that pathogenic vibriosis can be controlled by Pseudoalteromonas sp. under in vitro and in vivo conditions. The results indicated that the biotic treatment offers a promising alternative to the use of antibiotics in crab aquaculture.

  17. Reflected scatterometry for noninvasive interrogation of bacterial colonies

    Science.gov (United States)

    A phenotyping of bacterial colonies on agar plates using forward-scattering diffraction-pattern analysis provided promising classification of several different bacteria such as Salmonella, Vibrio, Listeria, and E. coli. Since the technique is based on forward-scattering phenomena, light transmittanc...

  18. Isocitrate dehydrogenase mutation in Vibrio anguillarum results in virulence attenuation and immunoprotection in rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Mou, Xiangyu; Spinard, Edward J; Hillman, Shelby L; Nelson, David R

    2017-11-14

    Vibrio anguillarum is an extracellular bacterial pathogen that is a causative agent of vibriosis in finfish and crustaceans with mortality rates ranging from 30% to 100%. Mutations in central metabolism (glycolysis and the TCA cycle) of intracellular pathogens often result in attenuated virulence due to depletion of required metabolic intermediates; however, it was not known whether mutations in central metabolism would affect virulence in an extracellular pathogen such as V. anguillarum. Seven central metabolism mutants were created and characterized with regard to growth in minimal and complex media, expression of virulence genes, and virulence in juvenile rainbow trout (Oncorhynchus mykiss). Only the isocitrate dehydrogenase (icd) mutant was attenuated in virulence against rainbow trout challenged by either intraperitoneal injection or immersion. Further, the icd mutant was shown to be immunoprotective against wild type V. anguillarum infection. There was no significant decrease in the expression of the three hemolysin genes detected by qRT-PCR. Additionally, only the icd mutant exhibited a significantly decreased growth yield in complex media. Growth yield was directly related to the abundance of glutamate. A strain with a restored wild type icd gene was created and shown to restore growth to a wild type cell density in complex media and pathogenicity in rainbow trout. The data strongly suggest that a decreased growth yield, resulting from the inability to synthesize α-ketoglutarate, caused the attenuation despite normal levels of expression of virulence genes. Therefore, the ability of an extracellular pathogen to cause disease is dependent upon the availability of host-supplied nutrients for growth. Additionally, a live vaccine strain could be created from an icd deletion strain.

  19. Prevalence and molecular typing of Vibrio parahaemolyticus isolated from seafood in Shanghai using multilocus sequence typing (MLST)

    Science.gov (United States)

    Vibrio parahaemolyticus is a gram-negative bacterium that inhabits coastal and marine environments. Thermostable direct hemolysin (tdh), tdh-related hemolysin (trh) and the type III secretion system are considered the potential virulent factors of pathogenic V. parahaemolyticus. The frequency of str...

  20. Detection of human bacterial pathogens in ticks collected from Louisiana black bears (Ursus americanus luteolus).

    Science.gov (United States)

    Leydet, Brian F; Liang, Fang-Ting

    2013-04-01

    There are 4 major human-biting tick species in the northeastern United States, which include: Amblyomma americanum, Amblyomma maculatum, Dermacentor variabilis, and Ixodes scapularis. The black bear is a large mammal that has been shown to be parasitized by all the aforementioned ticks. We investigated the bacterial infections in ticks collected from Louisiana black bears (Ursus americanus subspecies luteolus). Eighty-six ticks were collected from 17 black bears in Louisiana from June 2010 to March 2011. All 4 common human-biting tick species were represented. Each tick was subjected to polymerase chain reaction (PCR) targeting select bacterial pathogens and symbionts. Bacterial DNA was detected in 62% of ticks (n=53). Rickettsia parkeri, the causative agent of an emerging spotted fever group rickettsiosis, was identified in 66% of A. maculatum, 28% of D. variabilis, and 11% of I. scapularis. The Lyme disease bacterium, Borrelia burgdorferi, was detected in 2 I. scapularis, while one A. americanum was positive for Borrelia bissettii, a putative human pathogen. The rickettsial endosymbionts Candidatus Rickettsia andeanae, rickettsial endosymbiont of I. scapularis, and Rickettsia amblyommii were detected in their common tick hosts at 21%, 39%, and 60%, respectively. All ticks were PCR-negative for Anaplasma phagocytophilum, Ehrlichia spp., and Babesia microti. This is the first reported detection of R. parkeri in vector ticks in Louisiana; we also report the novel association of R. parkeri with I. scapularis. Detection of both R. parkeri and B. burgdorferi in their respective vectors in Louisiana demands further investigation to determine potential for human exposure to these pathogens. Copyright © 2013 Elsevier GmbH. All rights reserved.

  1. Isolation and identification of bacterial pathogen from mastitis milk in Central Java Indonesia

    Science.gov (United States)

    Harjanti, D. W.; Ciptaningtyas, R.; Wahyono, F.; Setiatin, ET

    2018-01-01

    Mastitis is a multi-etiologic disease of the mammary gland characterized mainly by reduction in milk production and milk quality due to intramammary infection by pathogenic bacteria. Nearly 83% of lactating dairy cows in Indonesia are infected with mastitis in various inflammation degrees. This study was conducted to isolate and identify the pathogen in milk collected from mastitis-infected dairy cows. The study was carried out in ten smallholder dairy farms in Central Java Indonesia based on animal examination, California mastitis test, isolation bacterial pathogens, Gram staining, Catalase and Coagulase test, and identification of bacteria species using Vitek. Bacteriological examination of milk samples revealed 15 isolates where Streptococcus was predominant species (73.3%) and the coagulase negative Staphylococcus species was identified at the least bacteria (26.7%). The Streptococcus bacteria found were Streptococcus uberis (2 isolates), Streptococcus sanguinis(6 isolates), Streptococcus dysgalactiaessp dysgalactiae(1 isolate) , Streptococcus mitis (1 isolate) and Streptococcus agalactiae (1 isolate). The Staphylococcus isolates comprising of Staphylococcus simulans (1 isolate) and Staphylococcus chromogens (3 isolates). Contamination of raw milkwith pathogenic bacteria can cause outbreaks of human disease (milk borne disease). Thus, proper milk processing method that couldinhibit the growth or kill these pathogenic bacteria is important to ensure the safety of milk and milk products.

  2. Antibacterial activity of food-grade chitosan against Vibrio parahaemolyticus biofilms.

    Science.gov (United States)

    Xie, Ting; Liao, Zhenlin; Lei, Huan; Fang, Xiang; Wang, Jie; Zhong, Qingping

    2017-09-01

    Biofilm is a community composed of microbes and the extracellular polymeric substances. This special architecture poses a significant public health risk as it increases the fitness of bacteria in harsh conditions and renders bacterial resistance to antimicrobial agents and cleaning. In this study, we investigated the inhibition and eradication effects of chitosan on the biofilm of Vibrio parahaemolyticus, an important food-borne pathogen. The crystal violet staining, [2, 3-bis (2-methoxy-4-nitro-5- sulfophenyl)-2H-tetrazolium-5-carboxanilide] (XTT) reduction method, phenol-sulfuric acid method, fluorescence microscope and confocal laser scanning microscope (CLSM) observation were conducted. The results indicated that the minimum inhibitory concentration (MIC) of chitosan was 1.25 mg/mL. Sub-MIC of chitosan could significantly inhibit biofilm formation, reduce the metabolic activities and the secretion of extracellular polysaccharide (EPS). Moreover, chitosan at 4MIC could eradicate 85.06% mature biofilm of V. parahaemolyticus, and decrease 81.43% EPS in mature biofilm. These results were also confirmed by the visual images obtained from fluorescence microscopy and CLSM. This study elucidated that chitosan was not only effective to prevent biofilm formation, but also eradicate mature biofilms of V. parahaemolyticus. Copyright © 2017. Published by Elsevier Ltd.

  3. Occurrence of Vibrio and Salmonella species in mussels (Mytilus galloprovincialis) collected along the Moroccan Atlantic coast.

    Science.gov (United States)

    Mannas, Hasna; Mimouni, Rachida; Chaouqy, Noureddine; Hamadi, Fatima; Martinez-Urtaza, Jaime

    2014-01-01

    This study reports the occurrence of different Vibrio and Salmonella species in 52 samples of Mytilus galloprovincialis collected from four sites along the Atlantic coast between Agadir and Essaouira (Anza, Cap Ghir, Imssouane and Essaouira). The level of Escherichia coli (E. coli) was also determined to evaluate the degree of microbial pollution in the investigated areas. In this study three methods were used : AFNOR NF EN ISO 6579 V08-013 for Salmonella spp., the provisional method routinely used by several laboratories (Institut Pasteur, Paris,…) for Vibrio cholerae and Vibrio parahaemolyticus in the seafood, and the most probable number method (MPN) using Norm ISO/TS 16649-3 (2005) for E. coli. The most frequently isolated Vibrios were Vibrio alginolyticus (90.4% of samples), followed by V. cholerae non O1 non O139 (15.4%) and V. parahaemolyticus (7.7%). Salmonella spp. was found in 15% of the samples. The number of E. coli ranged between 0.2/100 g and 1.8 10(3) /100 g of mussel soft tissues. This study indicates the potential sanitary risk associated with the presence of pathogenic bacteria in cultivated mussels in the two populous regions of southern Morocco, where shellfish production and maritime tourism are important to the local economy.

  4. Occurrence of Vibrio parahaemolyticus and Vibrio vulnificus in retail raw oysters from the eastern coast of Thailand.

    Science.gov (United States)

    Changchai, Nuttawee; Saunjit, Sudarat

    2014-05-01

    Occurrence, population density and virulence of Vibrio parahaemolyticus and V. vulnificus in 240 retail raw oysters collected monthly between March 2010 and February 2011 from Ang Sila coast, Chon Buri Province, Thailand were determined using most probable number (MPN) multiplex PCR. Multiplex PCR detected V. parahaemolyticus in 219 raw oyster samples, of which 29 samples contained the virulence tdh. MPN values for V. parahaemolyticus and pathogenic strains in most samples ranged from 10 to 10(2) and from 3 to 10 MPN/g, respectively. The presence of V. vulnificus was found in 53 oyster samples in amounts between 10 and 10(2) MPN/g. Of 1,087 V. parahaemolyticus isolates, 14 and 2 isolates carried tdh and virulence trh, respectively but none with both genes. However, none of the presumptive isolates was shown to be V. vulnificus. The detection of pathogenic V. parahaemolyticus and V. vulnificus in raw oysters has rendered high awareness of risk in consumption of raw or undercooked oysters.

  5. A scoping review of the role of wildlife in the transmission of bacterial pathogens and antimicrobial resistance to the food Chain.

    Science.gov (United States)

    Greig, J; Rajić, A; Young, I; Mascarenhas, M; Waddell, L; LeJeune, J

    2015-06-01

    Wildlife can contribute to environmental contamination with bacterial pathogens and their transfer to the human food chain. Global usage and frequent misuse of antimicrobials contribute to emergence of new antimicrobial resistant (AMR) strains of foodborne pathogens. We conducted a scoping review of published research to identify and characterize the evidence on wildlife's role in transmission of AMR and/or bacterial pathogens to the food chain. An advisory group (AG) of 13 North American experts from diverse disciplines was surveyed to solicit insight in the review scope, priority topics and research characteristics. A pre-tested search strategy was implemented in seven bibliographic databases (1990 to January 2013). Citations were relevance screened, and key characteristics on priority topics extracted independently by two reviewers. Analysis identified topic areas with solid evidence and main knowledge gaps. North America reported 30% of 866 relevant articles. The prevalence of five targeted bacterial pathogens and/or AMR in any pathogen in wildlife was reported in 582 articles. Transmission risk factors for selected bacteria or AMR in any bacteria were reported in 300. Interventions to control transmission were discussed in 124 articles and formally evaluated in 50. The majority of primary research investigated birds, cervids, rodents, feral pigs, opossums, E. coli (n = 329), Salmonella (n = 293) and Campylobacter (n = 124). An association between wildlife and transmission of bacterial pathogens and/or AMR to the food chain was supported in 122 studies. The scoping review identified a significant body of research on the role of wild birds in the prevalence and transmission of E. coli, Salmonella and Campylobacter. There was little research employing molecular methods contributing to the evidence concerning the importance and direction of transmission of wildlife/pathogen combinations. Given the advancements of these methods, future research should focus in this

  6. Impact of thermal stress on evolutionary trajectories of pathogen resistance in three-spined stickleback (Gasterosteus aculeatus).

    Science.gov (United States)

    Schade, Franziska M; Shama, Lisa N S; Wegner, K Mathias

    2014-07-26

    Pathogens are a major regulatory force for host populations, especially under stressful conditions. Elevated temperatures may enhance the development of pathogens, increase the number of transmission stages, and can negatively influence host susceptibility depending on host thermal tolerance. As a net result, this can lead to a higher prevalence of epidemics during summer months. These conditions also apply to marine ecosystems, where possible ecological impacts and the population-specific potential for evolutionary responses to changing environments and increasing disease prevalence are, however, less known. Therefore, we investigated the influence of thermal stress on the evolutionary trajectories of disease resistance in three marine populations of three-spined sticklebacks Gasterosteus aculeatus by combining the effects of elevated temperature and infection with a bacterial strain of Vibrio sp. using a common garden experiment. We found that thermal stress had an impact on fish weight and especially on survival after infection after only short periods of thermal acclimation. Environmental stress reduced genetic differentiation (QST) between populations by releasing cryptic within-population variation. While life history traits displayed positive genetic correlations across environments with relatively weak genotype by environment interactions (GxE), environmental stress led to negative genetic correlations across environments in pathogen resistance. This reversal of genetic effects governing resistance is probably attributable to changing environment-dependent virulence mechanisms of the pathogen interacting differently with host genotypes, i.e. GPathogenxGHostxE or (GPathogenxE)x(GHostxE) interactions, rather than to pure host genetic effects, i.e. GHostxE interactions. To cope with climatic changes and the associated increase in pathogen virulence, host species require wide thermal tolerances and pathogen-resistant genotypes. The higher resistance we found

  7. Suppression of Virulence of Toxigenic Vibrio cholerae by Anethole through the Cyclic AMP (cAMP-cAMP Receptor Protein Signaling System.

    Directory of Open Access Journals (Sweden)

    M Shamim Hasan Zahid

    Full Text Available Use of natural compounds as antivirulence drugs could be an alternative therapeutic approach to modify the outcome of bacterial infections, particularly in view of growing resistance to available antimicrobials. Here, we show that sub-bactericidal concentration of anethole, a component of sweet fennel seed, could suppress virulence potential in O1 El Tor biotype strains of toxigenic Vibrio cholerae, the causative agent of the ongoing 7th cholera pandemic. The expression of cholera toxin (CT and toxin coregulated pilus (TCP, the major virulence factors of V. cholerae, is controlled through a regulatory cascade involving activation of ToxT with synergistic coupling interaction of ToxR/ToxS with TcpP/TcpH. We present evidence that anethole inhibits in vitro expression of CT and TCP in a toxT-dependent but toxR/toxS-independent manner and through repression of tcpP/tcpH, by using bead-ELISA, western blotting and quantitative real-time RT-PCR assays. The cyclic AMP (cAMP-cAMP receptor protein (CRP is a well-studied global signaling system in bacterial pathogens, and this complex is known to suppress expression of tcpP/tcpH in V. cholerae. We find that anethole influences the virulence regulatory cascade by over-expressing cyaA and crp genes. Moreover, suppression of toxigenic V. cholerae-mediated fluid accumulation in ligated ileum of rabbit by anethole demonstrates its potentiality as an antivirulence drug candidate against the diseases caused by toxigenic V. cholerae. Taken altogether, these results revealing a mechanism of virulence inhibition in V. cholerae by the natural compound anethole, may have relevance in designing antivirulence compounds, particularly against multiple antibiotic resistant bacterial pathogens.

  8. Suppression of Virulence of Toxigenic Vibrio cholerae by Anethole through the Cyclic AMP (cAMP)-cAMP Receptor Protein Signaling System.

    Science.gov (United States)

    Zahid, M Shamim Hasan; Awasthi, Sharda Prasad; Asakura, Masahiro; Chatterjee, Shruti; Hinenoya, Atsushi; Faruque, Shah M; Yamasaki, Shinji

    2015-01-01

    Use of natural compounds as antivirulence drugs could be an alternative therapeutic approach to modify the outcome of bacterial infections, particularly in view of growing resistance to available antimicrobials. Here, we show that sub-bactericidal concentration of anethole, a component of sweet fennel seed, could suppress virulence potential in O1 El Tor biotype strains of toxigenic Vibrio cholerae, the causative agent of the ongoing 7th cholera pandemic. The expression of cholera toxin (CT) and toxin coregulated pilus (TCP), the major virulence factors of V. cholerae, is controlled through a regulatory cascade involving activation of ToxT with synergistic coupling interaction of ToxR/ToxS with TcpP/TcpH. We present evidence that anethole inhibits in vitro expression of CT and TCP in a toxT-dependent but toxR/toxS-independent manner and through repression of tcpP/tcpH, by using bead-ELISA, western blotting and quantitative real-time RT-PCR assays. The cyclic AMP (cAMP)-cAMP receptor protein (CRP) is a well-studied global signaling system in bacterial pathogens, and this complex is known to suppress expression of tcpP/tcpH in V. cholerae. We find that anethole influences the virulence regulatory cascade by over-expressing cyaA and crp genes. Moreover, suppression of toxigenic V. cholerae-mediated fluid accumulation in ligated ileum of rabbit by anethole demonstrates its potentiality as an antivirulence drug candidate against the diseases caused by toxigenic V. cholerae. Taken altogether, these results revealing a mechanism of virulence inhibition in V. cholerae by the natural compound anethole, may have relevance in designing antivirulence compounds, particularly against multiple antibiotic resistant bacterial pathogens.

  9. Bacterial communities associated with Porites white patch syndrome (PWPS) on three western Indian Ocean (WIO) coral reefs.

    Science.gov (United States)

    Séré, Mathieu G; Tortosa, Pablo; Chabanet, Pascale; Turquet, Jean; Quod, Jean-Pascal; Schleyer, Michael H

    2013-01-01

    The scleractinian coral Porites lutea, an important reef-building coral on western Indian Ocean reefs (WIO), is affected by a newly-reported white syndrome (WS) the Porites white patch syndrome (PWPS). Histopathology and culture-independent molecular techniques were used to characterise the microbial communities associated with this emerging disease. Microscopy showed extensive tissue fragmentation generally associated with ovoid basophilic bodies resembling bacterial aggregates. Results of 16S rRNA sequence analysis revealed a high variability between bacterial communities associated with PWPS-infected and healthy tissues in P. lutea, a pattern previously reported in other coral diseases such as black band disease (BBD), white band disease (WBD) and white plague diseases (WPD). Furthermore, substantial variations in bacterial communities were observed at the different sampling locations, suggesting that there is no strong bacterial association in Porites lutea on WIO reefs. Several sequences affiliated with potential pathogens belonging to the Vibrionaceae and Rhodobacteraceae were identified, mainly in PWPS-infected coral tissues. Among them, only two ribotypes affiliated to Shimia marina (NR043300.1) and Vibrio hepatarius (NR025575.1) were consistently found in diseased tissues from the three geographically distant sampling localities. The role of these bacterial species in PWPS needs to be tested experimentally.

  10. Factors related to occurrence and distribution of selected bacterial and protozoan pathogens in Pennsylvania streams

    Science.gov (United States)

    Duris, Joseph W.; Reif, Andrew G.; Donna A. Crouse,; Isaacs, Natasha M.

    2013-01-01

    The occurrence and distribution of fecal indicator bacteria (FIB) and bacterial and protozoan pathogens are controlled by diverse factors. To investigate these factors in Pennsylvania streams, 217 samples were collected quarterly from a 27-station water-quality monitoring network from July 2007 through August 2009. Samples were analyzed for concentrations of Escherichia coli (EC) and enterococci (ENT) indicator bacteria, concentrations of Cryptosporidium oocysts and Giardia cysts, and the presence of four genes related to pathogenic types of EC (eaeA, stx2, stx1, rfbO157) plus three microbial source tracking (MST) gene markers that are also associated with pathogenic ENT and EC (esp, LTIIa, STII). Water samples were concurrently analyzed for basic water chemistry, physical measures of water quality, nutrients, metals, and a suite of 79 organic compounds that included hormones, pharmaceuticals, and antibiotics. For each sample location, stream discharge was measured by using standardized methods at the time of sample collection, and ancillary sample site information, such as land use and geological characteristics, was compiled. Samples exceeding recreational water quality criteria were more likely to contain all measured pathogen genes but notCryptosporidium or Giardia (oo)cysts. FIB and Giardia density and frequency of eaeA gene occurrence were significantly related to season. When discharge at a sampling location was high (>75th percentile of daily mean discharge), there were greater densities of FIB and Giardia, and the stx2, rfbO157, STII, and esp genes were found more frequently than at other discharge conditions. Giardia occurrence was likely related to nonpoint sources, which are highly influential during seasonal overland transport resulting from snowmelt and elevated precipitation in late winter and spring in Pennsylvania. When MST markers of human, swine, or bovine origin were present, samples more frequently carried the eaeA, stx2

  11. Molecular analysis of bacterial communities and detection of potential pathogens in a recirculating aquaculture system for Scophthalmus maximus and Solea senegalensis.

    Science.gov (United States)

    Martins, Patrícia; Cleary, Daniel F R; Pires, Ana C C; Rodrigues, Ana Maria; Quintino, Victor; Calado, Ricardo; Gomes, Newton C M

    2013-01-01

    The present study combined a DGGE and barcoded 16S rRNA pyrosequencing approach to assess bacterial composition in the water of a recirculating aquaculture system (RAS) with a shallow raceway system (SRS) for turbot (Scophthalmus maximus) and sole (Solea senegalensis). Barcoded pyrosequencing results were also used to determine the potential pathogen load in the RAS studied. Samples were collected from the water supply pipeline (Sup), fish production tanks (Pro), sedimentation filter (Sed), biofilter tank (Bio), and protein skimmer (Ozo; also used as an ozone reaction chamber) of twin RAS operating in parallel (one for each fish species). Our results revealed pronounced differences in bacterial community composition between turbot and sole RAS, suggesting that in the systems studied there is a strong species-specific effect on water bacterial communities. Proteobacteria was the most abundant phylum in the water supply and all RAS compartments. Other important taxonomic groups included the phylum Bacteriodetes. The saltwater supplied displayed a markedly lower richness and appeared to have very little influence on bacterial composition. The following potentially pathogenic species were detected: Photobacterium damselae in turbot (all compartments), Tenacibaculum discolor in turbot and sole (all compartments), Tenacibaculum soleae in turbot (all compartments) and sole (Pro, Sed and Bio), and Serratia marcescens in turbot (Sup, Sed, Bio and Ozo) and sole (only Sed) RAS. Despite the presence of these pathogens, no symptomatic fish were observed. Although we were able to identify potential pathogens, this approach should be employed with caution when monitoring aquaculture systems, as the required phylogenetic resolution for reliable identification of pathogens may not always be possible to achieve when employing 16S rRNA gene fragments.

  12. Molecular analysis of bacterial communities and detection of potential pathogens in a recirculating aquaculture system for Scophthalmus maximus and Solea senegalensis.

    Directory of Open Access Journals (Sweden)

    Patrícia Martins

    Full Text Available The present study combined a DGGE and barcoded 16S rRNA pyrosequencing approach to assess bacterial composition in the water of a recirculating aquaculture system (RAS with a shallow raceway system (SRS for turbot (Scophthalmus maximus and sole (Solea senegalensis. Barcoded pyrosequencing results were also used to determine the potential pathogen load in the RAS studied. Samples were collected from the water supply pipeline (Sup, fish production tanks (Pro, sedimentation filter (Sed, biofilter tank (Bio, and protein skimmer (Ozo; also used as an ozone reaction chamber of twin RAS operating in parallel (one for each fish species. Our results revealed pronounced differences in bacterial community composition between turbot and sole RAS, suggesting that in the systems studied there is a strong species-specific effect on water bacterial communities. Proteobacteria was the most abundant phylum in the water supply and all RAS compartments. Other important taxonomic groups included the phylum Bacteriodetes. The saltwater supplied displayed a markedly lower richness and appeared to have very little influence on bacterial composition. The following potentially pathogenic species were detected: Photobacterium damselae in turbot (all compartments, Tenacibaculum discolor in turbot and sole (all compartments, Tenacibaculum soleae in turbot (all compartments and sole (Pro, Sed and Bio, and Serratia marcescens in turbot (Sup, Sed, Bio and Ozo and sole (only Sed RAS. Despite the presence of these pathogens, no symptomatic fish were observed. Although we were able to identify potential pathogens, this approach should be employed with caution when monitoring aquaculture systems, as the required phylogenetic resolution for reliable identification of pathogens may not always be possible to achieve when employing 16S rRNA gene fragments.

  13. [Characterization of haemolysis of the Vibrio parahaemolyticus no.93].

    Science.gov (United States)

    Su, S C; Lee, C Y

    1997-02-01

    Vibrio parahaemolyticus is a causative bacterium of food poisoning, and the haemolysin produced by this organism has been considered as one of the important virulence factors. In order to understand the pathogenic mechanism of this bacterium, the characteristics of haemolysin from Vibrio parahaemolyticus isolated from Taiwan were studied. One of the clinical strains, V. parahaemolyticus No.93, presents a weak hemolytic zone on 7% NaCl-Wagatsuma medium. The DNA hybridization results show that V. parahemolyticus has neither tdh nor trh gene. V. parahaemolyticus No.93 shows obviously hemolytic zone on 3%-NaCl Wagatsuma medium (human blood). The crude extracellular protein of V. parahaemolyticus No. 93 was evaluated for its heat tolerance and enzyme activities by media assay. The results show that this crude extracellular protein is thermolabile. The crude extracellular protein of V. parahaemolyticus No.93 was analyzed on 10% SDS-PAGE and an apparent band of 64 kDa protein was observed. Furthermore, the crude extracellular protein was analyzed by running gelatin-SDS-PAGE and hemoglobin-SDS-PAGE, and three clear zones on 62 kDa, 52 kDa and 41 kDa were observed on both SDS-PAGEs. Thus we propose that the crude extracellular protein of the V. parahaemolyticus No.93 can degrade gelatin as well as hemoglobin. Whether these protease being the virulence factors of Vibrio parahaemolyticus No.93 needs to be further studied.

  14. Pharmacodynamic evaluation of commonly prescribed oral antibiotics against respiratory bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Pignatari Antonio CC

    2011-10-01

    Full Text Available Abstract Background Upper and lower respiratory tract infections (RTIs account for a substantial portion of outpatient antibiotic utilization. However, the pharmacodynamic activity of commonly used oral antibiotic regimens has not been studied against clinically relevant pathogens. The objective of this study was to assess the probability of achieving the requisite pharmacodynamic exposure for oral antibacterial regimens commonly prescribed for RTIs in adults against bacterial isolates frequently involved in these processes (S. pneumoniae, H. influenzae, and M. catharralis. Methods Using a 5000-subject Monte Carlo simulation, the cumulative fractions of response (CFR, (i.e., probabilities of achieving requisite pharmacodynamic targets for the most commonly prescribed oral antibiotic regimens, as determined by a structured survey of medical prescription patterns, were assessed against local respiratory bacterial isolates from adults in São Paulo collected during the same time period. Minimal inhibitory concentration (MIC of 230 isolates of Streptococcus pneumoniae (103, Haemophilus influenzae (98, and Moraxella catharralis (29 from a previous local surveillance were used. Results The most commonly prescribed antibiotic regimens were azithromycin 500 mg QD, amoxicillin 500 mg TID, and levofloxacin 500 mg QD, accounting for 58% of the prescriptions. Varied doses of these agents, plus gatifloxacin, amoxicillin-clavulanate, moxifloxacin, and cefaclor made up the remaining regimens. Utilizing aggressive pharmacodynamic exposure targets, the only regimens to achieve greater than 90% CFR against all three pathogens were amoxicillin/amoxicillin-clavulanate 500 mg TID (> 91%, gatifloxacin 400 mg QD (100%, and moxifloxacin 400 mg QD (100%. Considering S. pneumoniae isolates alone, azithromycin 1000 mg QD also achieved greater than 90% CFR (91.3%. Conclusions The only regimens to achieve high CFR against all three pathogen populations in both scenarios

  15. The early stages of the immune response of the European abalone Haliotis tuberculata to a Vibrio harveyi infection.

    Science.gov (United States)

    Cardinaud, Marion; Dheilly, Nolwenn M; Huchette, Sylvain; Moraga, Dario; Paillard, Christine

    2015-08-01

    Vibrio harveyi is a marine bacterial pathogen responsible for episodic abalone mortalities in France, Japan and Australia. In the European abalone, V. harveyi invades the circulatory system in a few hours after exposure and is lethal after 2 days of infection. In this study, we investigated the responses of European abalone immune cells over the first 24 h of infection. Results revealed an initial induction of immune gene expression including Rel/NF-kB, Mpeg and Clathrin. It is rapidly followed by a significant immuno-suppression characterized by reduced cellular hemocyte parameters, immune response gene expressions and enzymatic activities. Interestingly, Ferritin was overexpressed after 24 h of infection suggesting that abalone attempt to counter V. harveyi infection using soluble effectors. Immune function alteration was positively correlated with V. harveyi concentration. This study provides the evidence that V. harveyi has a hemolytic activity and an immuno-suppressive effect in the European abalone. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Vibrio vulnificus: An Environmental and Clinical Burden

    Directory of Open Access Journals (Sweden)

    Sing-Peng Heng

    2017-05-01

    Full Text Available Vibrio vulnificus is a Gram negative, rod shaped bacterium that belongs to the family Vibrionaceae. It is a deadly, opportunistic human pathogen which is responsible for the majority of seafood-associated deaths worldwide. V. vulnificus infection can be fatal as it may cause severe wound infections potentially requiring amputation or lead to sepsis in susceptible individuals. Treatment is increasingly challenging as V. vulnificus has begun to develop resistance against certain antibiotics due to their indiscriminate use. This article aims to provide insight into the antibiotic resistance of V. vulnificus in different parts of the world as well as an overall review of its clinical manifestations, treatment, and prevention. Understanding the organism's antibiotic resistance profile is vital in order to select appropriate treatment and initiate appropriate prevention measures to treat and control V. vulnificus infections, which should eventually help lower the mortality rate associated with this pathogen worldwide.

  17. Co-transcriptomic Analysis by RNA Sequencing to Simultaneously Measure Regulated Gene Expression in Host and Bacterial Pathogen

    KAUST Repository

    Ravasi, Timothy; Mavromatis, Charalampos Harris; Bokil, Nilesh J.; Schembri, Mark A.; Sweet, Matthew J.

    2016-01-01

    Intramacrophage pathogens subvert antimicrobial defence pathways using various mechanisms, including the targeting of host TLR-mediated transcriptional responses. Conversely, TLR-inducible host defence mechanisms subject intramacrophage pathogens to stress, thus altering pathogen gene expression programs. Important biological insights can thus be gained through the analysis of gene expression changes in both the host and the pathogen during an infection. Traditionally, research methods have involved the use of qPCR, microarrays and/or RNA sequencing to identify transcriptional changes in either the host or the pathogen. Here we describe the application of RNA sequencing using samples obtained from in vitro infection assays to simultaneously quantify both host and bacterial pathogen gene expression changes, as well as general approaches that can be undertaken to interpret the RNA sequencing data that is generated. These methods can be used to provide insights into host TLR-regulated transcriptional responses to microbial challenge, as well as pathogen subversion mechanisms against such responses.

  18. Co-transcriptomic Analysis by RNA Sequencing to Simultaneously Measure Regulated Gene Expression in Host and Bacterial Pathogen

    KAUST Repository

    Ravasi, Timothy

    2016-01-24

    Intramacrophage pathogens subvert antimicrobial defence pathways using various mechanisms, including the targeting of host TLR-mediated transcriptional responses. Conversely, TLR-inducible host defence mechanisms subject intramacrophage pathogens to stress, thus altering pathogen gene expression programs. Important biological insights can thus be gained through the analysis of gene expression changes in both the host and the pathogen during an infection. Traditionally, research methods have involved the use of qPCR, microarrays and/or RNA sequencing to identify transcriptional changes in either the host or the pathogen. Here we describe the application of RNA sequencing using samples obtained from in vitro infection assays to simultaneously quantify both host and bacterial pathogen gene expression changes, as well as general approaches that can be undertaken to interpret the RNA sequencing data that is generated. These methods can be used to provide insights into host TLR-regulated transcriptional responses to microbial challenge, as well as pathogen subversion mechanisms against such responses.

  19. Simultaneous Detection of Brown Rot- and Soft Rot-Causing Bacterial Pathogens from Potato Tubers Through Multiplex PCR.

    Science.gov (United States)

    Ranjan, R K; Singh, Dinesh; Baranwal, V K

    2016-11-01

    Ralstonia solanacearum (Smith) Yabuuchi et al. and Erwinia carotovora subsp. carotovora (Jones) Bergey et al. (Pectobacterium carotovorum subsp. carotovorum) are the two major bacterial pathogens of potato causing brown rot (wilt) and soft rot diseases, respectively, in the field and during storage. Reliable and early detection of these pathogens are keys to avoid occurrence of these diseases in potato crops and reduce yield loss. In the present study, multiplex polymerase chain reaction (PCR) protocol was developed for simultaneous detection of R. solanacearum and E. carotovora subsp. carotovora from potato tubers. A set of oligos targeting the pectatelyase (pel) gene of E. carotovora subsp. carotovora and the universal primers based on 16S r RNA gene of R. solanacearum were used. The standardized multiplex PCR protocol could detect R. solanacearum and E. carotovora subsp. carotovora up to 0.01 and 1.0 ng of genomic DNA, respectively. The protocol was further validated on 96 stored potato tuber samples, collected from different potato-growing states of India, viz. Uttarakhand, Odisha, Meghalaya and Delhi. 53.1 % tuber samples were positive for R. solanacearum, and 15.1 % of samples were positive for E. carotovora subsp. carotovora, and both the pathogens were positive in 26.0 % samples when BIO-PCR was used. This method offers sensitive, specific, reliable and fast detection of two major bacterial pathogens from potato tubers simultaneously, particularly pathogen-free seed certification in large scale.

  20. Identification of Vibrio harveyi as a causative bacterium for a tail rot disease of sea bream Sparus aurata from research hatchery in Malta.

    Science.gov (United States)

    Haldar, S; Maharajan, A; Chatterjee, S; Hunter, S A; Chowdhury, N; Hinenoya, A; Asakura, M; Yamasaki, S

    2010-10-20

    A bacterial disease was reported from gilthead sea bream (Sparus aurata) within a hatchery environment in Malta. Symptoms included complete erosion of tail, infection in the eye, mucous secretion and frequent mortality. A total of 540 strains were initially isolated in marine agar from different infected body parts and culture water sources. Subsequently 100 isolates were randomly selected, identified biochemically and all were found to be Vibrio harveyi-related organisms; finally from 100 isolates a total of 13 numbers were randomly selected and accurately identified as V. harveyi by 16S rRNA gene sequencing and species-specific PCR. Ribotyping of these strains with HindIII revealed total of six clusters. In vivo challenge study with representative isolates from each cluster proved two clusters each were highly pathogenic, moderately pathogenic and non-pathogenic. All 13 isolates were positive for hemolysin gene, a potential virulence factor. Further analysis revealed probably a single copy of this gene was encoded in all isolates, although not in the same locus in the genome. Although V. harveyi was reported to be an important pathogen for many aquatic organisms, to our knowledge this might be the first report of disease caused by V. harveyi and their systematic study in the sea bream hatchery from Malta. Copyright © 2009 Elsevier GmbH. All rights reserved.