WorldWideScience

Sample records for bacterial isolates dna

  1. Effect of DNA extraction and sample preservation method on rumen bacterial population.

    Science.gov (United States)

    Fliegerova, Katerina; Tapio, Ilma; Bonin, Aurelie; Mrazek, Jakub; Callegari, Maria Luisa; Bani, Paolo; Bayat, Alireza; Vilkki, Johanna; Kopečný, Jan; Shingfield, Kevin J; Boyer, Frederic; Coissac, Eric; Taberlet, Pierre; Wallace, R John

    2014-10-01

    The comparison of the bacterial profile of intracellular (iDNA) and extracellular DNA (eDNA) isolated from cow rumen content stored under different conditions was conducted. The influence of rumen fluid treatment (cheesecloth squeezed, centrifuged, filtered), storage temperature (RT, -80 °C) and cryoprotectants (PBS-glycerol, ethanol) on quality and quantity parameters of extracted DNA was evaluated by bacterial DGGE analysis, real-time PCR quantification and metabarcoding approach using high-throughput sequencing. Samples clustered according to the type of extracted DNA due to considerable differences between iDNA and eDNA bacterial profiles, while storage temperature and cryoprotectants additives had little effect on sample clustering. The numbers of Firmicutes and Bacteroidetes were lower (P rumen fluid subjected to the eDNA isolation procedure considerably changed the ratio of molecular operational taxonomic units (MOTUs) of Bacteroidetes and Firmicutes. Intracellular DNA extraction using bead-beating method from cheesecloth sieved rumen content mixed with PBS-glycerol and stored at -80 °C was found as the optimal method to study ruminal bacterial profile. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Biodegradation of carcinogenic textile azo dyes using bacterial isolates of mangrove sediment

    Directory of Open Access Journals (Sweden)

    Guru Prasad Srinivasan

    2014-02-01

    Full Text Available Objective: To evaluate the biodegrading property against carcinogenic azo dyes using bacterial isolates of mangrove sediment. Methods: The bacterial isolates were subjected to submerged fermentation and their growth kinetics were studied. The potential strain was characterized using 16S rDNA sequencing. Results: In the present study, dye degrading bacterial colonies were isolated from the mangrove sediment samples of Parangipettai estuarine area, Tamil Nadu. Of the 30 morphologically different strains isolated, 5 showed antagonistic property. The growth kinetics of the two strains, P1 and G1, which showed potent activity were calculated. One particular isolate (P1 showing promising dye degrading potential in the submerged fermentation was further characterized. The strain was identified as Paenibacillus sp. by 16S rDNA sequencing. Conclusions: This study reveals the less explored microflora of mangrove sediments. The novel strain may further be analyzed and used in the treatment of effluent from dye industry so as to reduce the impact of carcinogenic contaminants.

  3. DNA fingerprinting of spore-forming bacterial isolates, using Bacillus ...

    African Journals Online (AJOL)

    User

    Full Length Research Paper ... resulted in a search for better techniques for classifying ... only a few laboratories worldwide are able to perform a ... MATERIALS AND METHODS. Bacterial ... s with distilled water and blotted dry with tissue paper (Kimberly- ... A test on the quality and quantity of DNA extracted was conducted.

  4. Chitinase genes revealed and compared in bacterial isolates, DNA extracts and a metagenomic library from a phytopathogen suppressive soil

    Energy Technology Data Exchange (ETDEWEB)

    Hjort, K.; Bergstrom, M.; Adesina, M.F.; Jansson, J.K.; Smalla, K.; Sjoling, S.

    2009-09-01

    Soil that is suppressive to disease caused by fungal pathogens is an interesting source to target for novel chitinases that might be contributing towards disease suppression. In this study we screened for chitinase genes, in a phytopathogen-suppressive soil in three ways: (1) from a metagenomic library constructed from microbial cells extracted from soil, (2) from directly extracted DNA and (3) from bacterial isolates with antifungal and chitinase activities. Terminal-restriction fragment length polymorphism (T-RFLP) of chitinase genes revealed differences in amplified chitinase genes from the metagenomic library and the directly extracted DNA, but approximately 40% of the identified chitinase terminal-restriction fragments (TRFs) were found in both sources. All of the chitinase TRFs from the isolates were matched to TRFs in the directly extracted DNA and the metagenomic library. The most abundant chitinase TRF in the soil DNA and the metagenomic library corresponded to the TRF{sup 103} of the isolate, Streptomyces mutomycini and/or Streptomyces clavifer. There were good matches between T-RFLP profiles of chitinase gene fragments obtained from different sources of DNA. However, there were also differences in both the chitinase and the 16S rRNA gene T-RFLP patterns depending on the source of DNA, emphasizing the lack of complete coverage of the gene diversity by any of the approaches used.

  5. Rapid and inexpensive method for isolating plasmid DNA

    International Nuclear Information System (INIS)

    Aljanabi, S. M.; Al-Awadi, S. J.; Al-Kazaz, A. A.; Baghdad Univ.

    1997-01-01

    A small-scale and economical method for isolating plasmid DNA from bacteria is described. The method provides DNA of suitable quality for most DNA manipulation techniques. This DNA can be used for restriction endonuclease digestion, southern blot hybridization, nick translation and end labeling of DNA probes, Polymerase Chain Reaction (PCR) -based techniques, transformation, DNA cycle-sequencing, and Chain-termination method for DNA sequencing. The entire procedure is adapted to 1.5 ml microfuge tubes and takes approximately 30 mins. The DNA isolated by this method has the same purity produced by CTAB and cesium chloride precipitation and purification procedures respectively. The two previous methods require many hours to obtain the final product and require the use of very expensive equipment as ultracentrifuge. This method is well suited for the isolation of plasmid DNA from a large number of bacterial samples and in a very short time and low cost in laboratories where chemicals, expensive equipment and finance are limited factors in conducting molecular research. (authors). 11refs. 11refs

  6. Bacterial community analysis of activated sludge: an evaluation of four commonly used DNA extraction methods

    NARCIS (Netherlands)

    Vanysacker, L.; Declerck, S.A.J.; Hellemans, B.; De Meester, L.; Vankelecom, I.; Declerck, P.

    2010-01-01

    The effectiveness of three commercially available direct DNA isolation kits (Mobio, Fast, Qiagen) and one published direct DNA extraction protocol (Bead) for extracting bacterial DNA from different types of activated sludge was investigated and mutually compared. The DNA quantity and purity were

  7. Comparison of commercially-available preservatives for maintaining the integrity of bacterial DNA in human milk.

    Science.gov (United States)

    Lackey, Kimberly A; Williams, Janet E; Price, William J; Carrothers, Janae M; Brooker, Sarah L; Shafii, Bahman; McGuire, Mark A; McGuire, Michelle K

    2017-10-01

    Inhibiting changes to bacteria in human milk between sample collection and analysis is necessary for unbiased characterization of the milk microbiome. Although cold storage is considered optimal, alternative preservation is sometimes necessary. The objective of this study was to compare the effectiveness of several commercially-available preservatives with regard to maintaining bacterial DNA in human milk for delayed microbiome analysis. Specifically, we compared Life Technologies' RNAlater® stabilization solution, Biomatrica's DNAgard® Saliva, Advanced Instruments' Broad Spectrum Microtabs II™, and Norgen Biotek Corporation's Milk DNA Preservation and Isolation Kit. Aliquots of 8 pools of human milk were treated with each preservative. DNA was extracted immediately and at 1, 2, 4, and 6wk, during which time milk was held at 37°C. The V1-V3 region of the bacterial 16S rRNA gene was amplified and sequenced. Changes in bacterial community structure and diversity over time were evaluated. Comparable to other studies, the most abundant genera were Streptococcus (33.3%), Staphylococcus (14.0%), Dyella (6.3%), Pseudomonas (3.0%), Veillonella (2.5%), Hafnia (2.0%), Prevotella (1.7%), Rhodococcus (1.6%), and Granulicatella (1.4%). Overall, use of Norgen's Milk DNA Preservation and Isolation Kit best maintained the consistency of the bacterial community structure. Total DNA, diversity, and evenness metrics were also highest in samples preserved with this method. When collecting human milk for bacterial community analysis in field conditions where cold storage is not available, our results suggest that Norgen's Milk DNA Preservation and Isolation Kit may be a useful method, at least for a period of 2weeks. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. New Paenibacillus larvae bacterial isolates from honey bee colonies infected with American foulbrood disease in Egypt.

    Science.gov (United States)

    Masry, Saad Hamdy Daif; Kabeil, Sanaa Soliman; Hafez, Elsayed Elsayed

    2014-03-04

    The American foulbrood disease is widely distributed all over the world and causes a serious problem for the honeybee industry. Different infected larvae were collected from different apiaries, ground in phosphate saline buffer (PSB) and bacterial isolation was carried out on nutrient agar medium. Different colonies were observed and were characterized biologically. Two bacterial isolates (SH11 and SH33) were subjected to molecular identification using 16S rRNA gene and the sequence analysis revealed that the two isolates are Paenibacillus larvae with identity not exceeding 83%. The DNA sequence alignment between the other P. larvae bacterial strains and the two identified bacterial isolates showed that all the examined bacterial strains have the same ancestor, i.e. they have the same origin. The SH33 isolate was closely related to the P. larvae isolated from Germany, whereas the isolate SH11 was close to the P. larvae isolated from India. The phylogenetic tree constructed for 20 different Bacillus sp. and the two isolates SH11 and SH33 demonstrated that the two isolates are Bacillus sp. and they are new isolates. The bacterial isolates will be subjected to more tests for more confirmations.

  9. Intestinal Epithelial Cells Modulate Antigen-Presenting Cell Responses to Bacterial DNA

    Science.gov (United States)

    Campeau, J. L.; Salim, S. Y.; Albert, E. J.; Hotte, N.

    2012-01-01

    Intestinal epithelial cells and antigen-presenting cells orchestrate mucosal innate immunity. This study investigated the role of bacterial DNA in modulating epithelial and bone marrow-derived antigen-presenting cells (BM-APCs) and subsequent T-lymphocyte responses. Murine MODE-K epithelial cells and BM-APCs were treated with DNA from either Bifidobacterium breve or Salmonella enterica serovar Dublin directly and under coculture conditions with CD4+ T cells. Apical stimulation of MODE-K cells with S. Dublin DNA enhanced secretion of cytokines from underlying BM-APCs and induced interleukin-17 (IL-17) and gamma interferon (IFN-γ) secretion from CD4+ T cells. Bacterial DNA isolated from either strain induced maturation and increased cytokine secretion from BM-APCs. Conditioned medium from S. Dublin-treated MODE-K cells elicited an increase in cytokine secretion similar to that seen for S. Dublin DNA. Treatment of conditioned medium from MODE-K cells with RNase and protease prevented the S. Dublin-induced increased cytokine secretion. Oral feeding of mice with B. breve DNA resulted in enhanced levels of colonic IL-10 and transforming growth factor β (TGFβ) compared with what was seen for mice treated with S. Dublin DNA. In contrast, feeding mice with S. Dublin DNA increased levels of colonic IL-17 and IL-12p70. T cells from S. Dublin DNA-treated mice secreted high levels of IL-12 and IFN-γ compared to controls and B. breve DNA-treated mice. These results demonstrate that intestinal epithelial cells are able to modulate subsequent antigen-presenting and T-cell responses to bacterial DNA with pathogenic but not commensal bacterial DNA inducing effector CD4+ T lymphocytes. PMID:22615241

  10. Bacterial identification and subtyping using DNA microarray and DNA sequencing.

    Science.gov (United States)

    Al-Khaldi, Sufian F; Mossoba, Magdi M; Allard, Marc M; Lienau, E Kurt; Brown, Eric D

    2012-01-01

    The era of fast and accurate discovery of biological sequence motifs in prokaryotic and eukaryotic cells is here. The co-evolution of direct genome sequencing and DNA microarray strategies not only will identify, isotype, and serotype pathogenic bacteria, but also it will aid in the discovery of new gene functions by detecting gene expressions in different diseases and environmental conditions. Microarray bacterial identification has made great advances in working with pure and mixed bacterial samples. The technological advances have moved beyond bacterial gene expression to include bacterial identification and isotyping. Application of new tools such as mid-infrared chemical imaging improves detection of hybridization in DNA microarrays. The research in this field is promising and future work will reveal the potential of infrared technology in bacterial identification. On the other hand, DNA sequencing by using 454 pyrosequencing is so cost effective that the promise of $1,000 per bacterial genome sequence is becoming a reality. Pyrosequencing technology is a simple to use technique that can produce accurate and quantitative analysis of DNA sequences with a great speed. The deposition of massive amounts of bacterial genomic information in databanks is creating fingerprint phylogenetic analysis that will ultimately replace several technologies such as Pulsed Field Gel Electrophoresis. In this chapter, we will review (1) the use of DNA microarray using fluorescence and infrared imaging detection for identification of pathogenic bacteria, and (2) use of pyrosequencing in DNA cluster analysis to fingerprint bacterial phylogenetic trees.

  11. Isolation and characterization of the dnaA gene of Rickettsia prowazekii

    International Nuclear Information System (INIS)

    Waite, R.T.; Shaw, E.I.; Winkler, H.H.; Wood, D.G.

    1998-01-01

    The dnaA gene encoding the initiator protein of DNA replication was isolated from the obligate intracellular bacterium, Rickettsia prowazekii. Comparison of the deduced amino acid sequence of R. prowazekii DnaA with other bacterial DnaA proteins revealed extensive similarity. However, the rickettsial sequence is unique in the number of basic lysine residues found within a highly conserved portion of the putative DNA binding region, suggesting that the rickettsial protein may recognize a DNA sequence that differs from the consensus DnaA box sequence identified in other bacteria. Consensus DnaA box sequences, found upstream of many bacterial dnaA genes, were not identified upstream of rickettsial dnaA gene. In addition, gene organization within this region differed from that of other bacteria. The putative start of transcription of the rickettsial dnaA gene was localized to a site 522 nucleotides upstream of the DnaA start codon. Key words: Rickettsia prowazekii; dnaA gene; initiator protein (authors)

  12. Oral bacterial DNA findings in pericardial fluid

    Directory of Open Access Journals (Sweden)

    Anne-Mari Louhelainen

    2014-11-01

    Full Text Available Background: We recently reported that large amounts of oral bacterial DNA can be found in thrombus aspirates of myocardial infarction patients. Some case reports describe bacterial findings in pericardial fluid, mostly done with conventional culturing and a few with PCR; in purulent pericarditis, nevertheless, bacterial PCR has not been used as a diagnostic method before. Objective: To find out whether bacterial DNA can be measured in the pericardial fluid and if it correlates with pathologic–anatomic findings linked to cardiovascular diseases. Methods: Twenty-two pericardial aspirates were collected aseptically prior to forensic autopsy at Tampere University Hospital during 2009–2010. Of the autopsies, 10 (45.5% were free of coronary artery disease (CAD, 7 (31.8% had mild and 5 (22.7% had severe CAD. Bacterial DNA amounts were determined using real-time quantitative PCR with specific primers and probes for all bacterial strains associated with endodontic disease (Streptococcus mitis group, Streptococcus anginosus group, Staphylococcus aureus/Staphylococcus epidermidis, Prevotella intermedia, Parvimonas micra and periodontal disease (Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Treponema denticola, Fusobacterium nucleatus, and Dialister pneumosintes. Results: Of 22 cases, 14 (63.6% were positive for endodontic and 8 (36.4% for periodontal-disease-associated bacteria. Only one case was positive for bacterial culturing. There was a statistically significant association between the relative amount of bacterial DNA in the pericardial fluid and the severity of CAD (p=0.035. Conclusions: Oral bacterial DNA was detectable in pericardial fluid and an association between the severity of CAD and the total amount of bacterial DNA in pericardial fluid was found, suggesting that this kind of measurement might be useful for clinical purposes.

  13. Specific amplification of bacterial DNA by optimized so-called universal bacterial primers in samples rich of plant DNA.

    Science.gov (United States)

    Dorn-In, Samart; Bassitta, Rupert; Schwaiger, Karin; Bauer, Johann; Hölzel, Christina S

    2015-06-01

    Universal primers targeting the bacterial 16S-rRNA-gene allow quantification of the total bacterial load in variable sample types by qPCR. However, many universal primer pairs also amplify DNA of plants or even of archaea and other eukaryotic cells. By using these primers, the total bacterial load might be misevaluated, whenever samples contain high amounts of non-target DNA. Thus, this study aimed to provide primer pairs which are suitable for quantification and identification of bacterial DNA in samples such as feed, spices and sample material from digesters. For 42 primers, mismatches to the sequence of chloroplasts and mitochondria of plants were evaluated. Six primer pairs were further analyzed with regard to the question whether they anneal to DNA of archaea, animal tissue and fungi. Subsequently they were tested with sample matrix such as plants, feed, feces, soil and environmental samples. To this purpose, the target DNA in the samples was quantified by qPCR. The PCR products of plant and feed samples were further processed for the Single Strand Conformation Polymorphism method followed by sequence analysis. The sequencing results revealed that primer pair 335F/769R amplified only bacterial DNA in samples such as plants and animal feed, in which the DNA of plants prevailed. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Molecular cloning of cellulase genes from indigenous bacterial isolates

    International Nuclear Information System (INIS)

    Jong Bor Chyan; Pauline Liew Woan Ying; Mat Rasol Awang

    2006-01-01

    Indigenous cellulolytic bacterial isolates having high activities in degrading carboxymethyl cellulose (CMC) were isolated from local environments. Identification of these isolates were performed by molecular techniques. By using polymerase chain reaction (PCR) techniques, PCR products encoding cellulase gene were amplified from the total genomic DNAs. Purified PCR product was successfully cloned and expressed in Escherichia coli host system. The complete nucleotide sequences of the cellulase genes determined. The analysis of amino acid sequences deduced from the genes indicated that the cloned DNA fragments show high homology to those of endoglucanase genes of family GH5. All cloned genes consist of an N-terminal signal peptide, a catalytic domain of family 5 glycosyl hydrolase and a cellulose-binding domain of family III. (Author)

  15. DNA immunization with a herpes simplex virus 2 bacterial artificial chromosome

    International Nuclear Information System (INIS)

    Meseda, Clement A.; Schmeisser, Falko; Pedersen, Robin; Woerner, Amy; Weir, Jerry P.

    2004-01-01

    Construction of a herpes simplex virus 2 (HSV-2) bacterial artificial chromosome (BAC) is described. BAC vector sequences were inserted into the thymidine kinase gene of HSV-2 by homologous recombination. DNA from cells infected with the resulting recombinant virus was transformed into E. coli, and colonies containing the HSV-2 BAC (HSV2-BAC) were isolated and analyzed for the expected genotype. HSV2-BAC DNA was infectious when transfected back into mammalian cells and the resulting virus was thymidine kinase negative. When used to immunize mice, the HSV2-BAC DNA elicited a strong HSV-2 specific antibody response that was equal to or greater than live virus immunization. Further, HSV2-BAC immunization was protective when animals were challenged with a lethal dose of virus. The utility of the HSV2-BAC for construction of recombinant virus genomes was demonstrated by elimination of the HSV-2 glycoprotein D (gD) gene. A recombinant HSV-2 BAC with the gD gene deleted was isolated and shown to be incapable of producing infectious virus following transfection unless an HSV gD gene was expressed in a complementing cell line. Immunization of mice with the HSV2 gD-BAC also elicited an HSV-2 specific antibody response and was protective. The results demonstrate the feasibility of DNA immunization with HSV-2 bacterial artificial chromosomes for replicating and nonreplicating candidate HSV-2 vaccines, as well as the utility of BAC technology for construction and maintenance of novel HSV-2 vaccines. The results further suggest that such technology will be a powerful tool for dissecting the immune response to HSV-2

  16. Investigation of In vitro Mineral forming bacterial isolates from supragingival calculus.

    Science.gov (United States)

    Baris, O; Demir, T; Gulluce, M

    2017-12-01

    Although it is known that bacterial mechanisms are involved in dental calculus formation, which is a predisposing factor in periodontal diseases, there have been few studies of such associations, and therefore, information available is limited. The purpose of this study was to isolate and identify aerobic bacteria responsible for direct calcification from supragingival calculus samples. The study was conducted using supragingival calculus samples from patients with periodontal disease, which was required as part of conventional treatment. Isolations were performed by sampling the supragingival calculus with buffer and inoculating the samples on media on which crystallization could be observed. The 16S recombinant DNA of the obtained pure cultures was then amplified and sequenced. A few bacterial species that have not previously been associated with mineralization or identified on bacterial plaque or calculus were detected. The bacteria that caused mineralization an aerobic environment are identified as Neisseria flava, Aggregatibacter segnis, Streptococcus tigurinus, and Morococcus cerebrosus. These findings proved that bacteria potentially play a role in the etiopathology of supragingival calculus. The association between the effects of the identified bacteria on periodontal diseases and calculus formation requires further studies.

  17. Bacterial Endophytes Isolated from Plants in Natural Oil Seep Soils with Chronic Hydrocarbon Contamination.

    Science.gov (United States)

    Lumactud, Rhea; Shen, Shu Yi; Lau, Mimas; Fulthorpe, Roberta

    2016-01-01

    The bacterial endophytic communities of four plants growing abundantly in soils highly contaminated by hydrocarbons were analyzed through culturable and culture-independent means. Given their tolerance to the high levels of petroleum contamination at our study site, we sought evidence that Achillea millefolium, Solidago canadensis, Trifolium aureum, and Dactylis glomerata support high levels of hydrocarbon degrading endophytes. A total of 190 isolates were isolated from four plant species. The isolates were identified by partial 16S rDNA sequence analysis, with class Actinobacteria as the dominant group in all species except S. canadensis, which was dominated by Gammaproteobacteria. Microbacterium foliorum and Plantibacter flavus were present in all the plants, with M. foliorum showing predominance in D. glomerata and both endophytic bacterial species dominated T. aureum. More than 50% of the isolates demonstrated degradative capabilities for octanol, toluene, naphthalene, kerosene, or motor oil based on sole carbon source growth screens involving the reduction of tetrazolium dye. P. flavus isolates from all the sampled plants showed growth on all the petroleum hydrocarbons (PHCs) substrates tested. Mineralization of toluene and naphthalene was confirmed using gas-chromatography. 16S based terminal restriction fragment length polymorphism analysis revealed significant differences between the endophytic bacterial communities showing them to be plant host specific at this site. To our knowledge, this is the first account of the degradation potential of bacterial endophytes in these commonly occurring pioneer plants that were not previously known as phytoremediating plants.

  18. Efficacy of a marine bacterial nuclease against biofilm forming microorganisms isolated from chronic rhinosinusitis.

    Directory of Open Access Journals (Sweden)

    Robert C Shields

    Full Text Available BACKGROUND: The persistent colonization of paranasal sinus mucosa by microbial biofilms is a major factor in the pathogenesis of chronic rhinosinusitis (CRS. Control of microorganisms within biofilms is hampered by the presence of viscous extracellular polymers of host or microbial origin, including nucleic acids. The aim of this study was to investigate the role of extracellular DNA in biofilm formation by bacteria associated with CRS. METHODS/PRINCIPAL FINDINGS: Obstructive mucin was collected from patients during functional endoscopic sinus surgery. Examination of the mucous by transmission electron microscopy revealed an acellular matrix punctuated occasionally with host cells in varying states of degradation. Bacteria were observed in biofilms on mucosal biopsies, and between two and six different species were isolated from each of 20 different patient samples. In total, 16 different bacterial genera were isolated, of which the most commonly identified organisms were coagulase-negative staphylococci, Staphylococcus aureus and α-haemolytic streptococci. Twenty-four fresh clinical isolates were selected for investigation of biofilm formation in vitro using a microplate model system. Biofilms formed by 14 strains, including all 9 extracellular nuclease-producing bacteria, were significantly disrupted by treatment with a novel bacterial deoxyribonuclease, NucB, isolated from a marine strain of Bacillus licheniformis. Extracellular biofilm matrix was observed in untreated samples but not in those treated with NucB and extracellular DNA was purified from in vitro biofilms. CONCLUSION/SIGNIFICANCE: Our data demonstrate that bacteria associated with CRS form robust biofilms which can be reduced by treatment with matrix-degrading enzymes such as NucB. The dispersal of bacterial biofilms with NucB may offer an additional therapeutic target for CRS sufferers.

  19. A model capturing novel strand symmetries in bacterial DNA

    International Nuclear Information System (INIS)

    Sobottka, Marcelo; Hart, Andrew G.

    2011-01-01

    Highlights: → We propose a simple stochastic model to construct primitive DNA sequences. → The model provide an explanation for Chargaff's second parity rule in primitive DNA sequences. → The model is also used to predict a novel type of strand symmetry in primitive DNA sequences. → We extend the results for bacterial DNA sequences and compare distributional properties intrinsic to the model to statistical estimates from 1049 bacterial genomes. → We find out statistical evidences that the novel type of strand symmetry holds for bacterial DNA sequences. -- Abstract: Chargaff's second parity rule for short oligonucleotides states that the frequency of any short nucleotide sequence on a strand is approximately equal to the frequency of its reverse complement on the same strand. Recent studies have shown that, with the exception of organellar DNA, this parity rule generally holds for double-stranded DNA genomes and fails to hold for single-stranded genomes. While Chargaff's first parity rule is fully explained by the Watson-Crick pairing in the DNA double helix, a definitive explanation for the second parity rule has not yet been determined. In this work, we propose a model based on a hidden Markov process for approximating the distributional structure of primitive DNA sequences. Then, we use the model to provide another possible theoretical explanation for Chargaff's second parity rule, and to predict novel distributional aspects of bacterial DNA sequences.

  20. Absence of bacterial DNA in culture-negative urine from cats with and without lower urinary tract disease.

    Science.gov (United States)

    Lund, Heidi Sjetne; Skogtun, Gaute; Sørum, Henning; Eggertsdóttir, Anna Vigdís

    2015-10-01

    A diagnosis of bacterial cystitis commonly relies on a positive microbiological culture demonstrating the presence of a significant number of colony-forming units/ml urine, as urine within the upper urinary tract, bladder and proximal urethra generally is considered sterile. Recent studies from human and veterinary medicine indicate the presence of non-culturable bacteria in culture-negative urine samples. The aim of the present study was to determine the occurrence of bacterial DNA in culture-negative urine samples from cats with signs of feline lower urinary tract disease (FLUTD) and healthy control cats by 16S ribosomal DNA PCR and subsequent sequencing. The study sample included 38 culture-negative urine samples from cats with FLUTD and 43 culture-negative samples from control cats. Eight culture-positive urine samples from cats with FLUTD were included as external positive controls in addition to negative reaction controls. Of possible methodological limitations, degradation of DNA due to storage, the use of non-sedimented urine for DNA isolation and lack of internal positive reaction controls should be mentioned. The positive controls were recognised, but occurrence of bacterial DNA in culture-negative urine from cats with or without signs of lower urinary tract disease was not demonstrated. However, considering the possible methodological limitations, the presence of bacterial DNA in the urine of culture-negative FLUTD cats cannot be excluded based on the present results alone. Therefore, a prospective study reducing the possibility of degradation of DNA due to storage, in combination with modifications enhancing the chance of detecting even lower levels of bacterial DNA in culture-negative samples, seems warranted. © ISFM and AAFP 2014.

  1. DNA-mediated bacterial aggregation is dictated by acid-base interactions

    NARCIS (Netherlands)

    Das, Theerthankar; Krom, Bastiaan P.; van der Mei, Henny C.; Busscher, Henk J.; Sharma, Prashant K.

    2011-01-01

    Extracellular DNA (eDNA) plays a significant role in bacterial biofilm formation and aggregation. Here, for the first time, we present a physico-chemical analysis of the DNA-mediated aggregation for three bacterial strains (Streptococcus mutans LT11, Pseudomonas aeruginosa PAO1 and Staphylococcus

  2. DNA repair in bacterial cultures and plasmid DNA exposed to infrared laser for treatment of pain

    International Nuclear Information System (INIS)

    Canuto, K S; Sergio, L P S; Marciano, R S; Guimarães, O R; Polignano, G A C; Geller, M; Fonseca, A S; Paoli, F

    2013-01-01

    Biostimulation of tissues by low intensity lasers has been described on a photobiological basis and clinical protocols are recommended for treatment of various diseases, but their effects on DNA are controversial. The objective of this work was to evaluate effects of low intensity infrared laser exposure on survival and bacterial filamentation in Escherichia coli cultures, and induction of DNA lesions in bacterial plasmids. In E. coli cultures and plasmids exposed to an infrared laser at fluences used to treat pain, bacterial survival and filamentation and DNA lesions in plasmids were evaluated by electrophoretic profile. Data indicate that the infrared laser (i) increases survival of E. coli wild type in 24 h of stationary growth phase, (ii) induces bacterial filamentation, (iii) does not alter topological forms of plasmids and (iv) does not alter the electrophoretic profile of plasmids incubated with exonuclease III or formamidopyrimidine DNA glycosylase. A low intensity infrared laser at the therapeutic fluences used to treat pain can alter survival of E. coli wild type, induce filamentation in bacterial cells, depending on physiologic conditions and DNA repair, and induce DNA lesions other than single or double DNA strand breaks or alkali-labile sites, which are not targeted by exonuclease III or formamidopyrimidine DNA glycosylase. (letter)

  3. Bacterial endophytes isolated from plants in natural oil seep soils with chronic hydrocarbon contamination

    Directory of Open Access Journals (Sweden)

    Rhea eLumactud

    2016-05-01

    Full Text Available The bacterial endophytic communities of four plants growing abundantly in soils highly contaminated by hydrocarbons were analyzed through culturable and and culture-independent means. Given their tolerance to the high levels of petroleum contamination at our study site, we sought evidence that Achillea millefolium, Solidago canadensis, Trifolium aureum and Dactylis glomerata support high levels of hydrocarbon degrading endophytes. A total of 190 isolates were isolated from four plant species. The isolates were identified by partial 16S rDNA sequence analysis, with class Actinobacteria as the dominant group in all species except Solidago canadensis, which was dominated by Gammaproteobacteria. Microbacterium foliorum and Plantibacter flavus were present in all the plants, with M. foliorum showing predominance in D. glomerata and both endophytic bacterial species dominated T. aureum. More than 50% of the isolates demonstrated degradative capabilities for octanol, toluene, naphthalene, kerosene or motor oil based on sole carbon source growth screens involving the reduction of tetrazolium dye. P. flavus isolates from all the sampled plants showed growth on all the petroleum hydrocarbons substrates tested. Mineralization of toluene and naphthalene was confirmed using gas-chromatography. 16S based terminal restriction fragment length polymorphism analysis revealed significant differences between the endophytic bacterial communities showing them to be plant host specific at this site. To our knowledge, this is the first account of the degradation potential of bacterial endophytes in these commonly occurring pioneer plants that were not previously known as phytoremediating plants.

  4. Acceleration of the direct identification of Staphylococcus aureus versus coagulase-negative staphylococci from blood culture material: a comparison of six bacterial DNA extraction methods.

    Science.gov (United States)

    Loonen, A J M; Jansz, A R; Kreeftenberg, H; Bruggeman, C A; Wolffs, P F G; van den Brule, A J C

    2011-03-01

    To accelerate differentiation between Staphylococcus aureus and coagulase-negative staphylococci (CNS), this study aimed to compare six different DNA extraction methods from two commonly used blood culture materials, i.e. BACTEC and BacT/ALERT. Furthermore, we analysed the effect of reduced blood culture incubation for the detection of staphylococci directly from blood culture material. A real-time polymerase chain reaction (PCR) duplex assay was used to compare the six different DNA isolation protocols on two different blood culture systems. Negative blood culture material was spiked with methicillin-resistant S. aureus (MRSA). Bacterial DNA was isolated with automated extractor easyMAG (three protocols), automated extractor MagNA Pure LC (LC Microbiology Kit M(Grade)), a manual kit MolYsis Plus and a combination of MolYsis Plus and the easyMAG. The most optimal isolation method was used to evaluate reduced bacterial incubation times. Bacterial DNA isolation with the MolYsis Plus kit in combination with the specific B protocol on the easyMAG resulted in the most sensitive detection of S. aureus, with a detection limit of 10 CFU/ml, in BacT/ALERT material, whereas using BACTEC resulted in a detection limit of 100 CFU/ml. An initial S. aureus or CNS load of 1 CFU/ml blood can be detected after 5 h of incubation in BacT/ALERT 3D by combining the sensitive isolation method and the tuf LightCycler assay.

  5. Isolation, Characterization and Identification of Environmental Bacterial Isolates with Screening for Antagonism Against Three Bacterial Targets

    Science.gov (United States)

    2017-04-01

    ISOLATES WITH SCREENING FOR ANTAGONISM AGAINST THREE BACTERIAL TARGETS 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...Identification of environmental isolates followed the flowchart from “Bergey’s Manual of Determinative Bacteriology” (Holt et al. 1994), which

  6. Non-Enzymatic Detection of Bacterial Genomic DNA Using the Bio-Barcode Assay

    Science.gov (United States)

    Hill, Haley D.; Vega, Rafael A.; Mirkin, Chad A.

    2011-01-01

    The detection of bacterial genomic DNA through a non-enzymatic nanomaterials based amplification method, the bio-barcode assay, is reported. The assay utilizes oligonucleotide functionalized magnetic microparticles to capture the target of interest from the sample. A critical step in the new assay involves the use of blocking oligonucleotides during heat denaturation of the double stranded DNA. These blockers bind to specific regions of the target DNA upon cooling, and prevent the duplex DNA from re-hybridizing, which allows the particle probes to bind. Following target isolation using the magnetic particles, oligonucleotide functionalized gold nanoparticles act as target recognition agents. The oligonucleotides on the nanoparticle (barcodes) act as amplification surrogates. The barcodes are then detected using the Scanometric method. The limit of detection for this assay was determined to be 2.5 femtomolar, and this is the first demonstration of a barcode type assay for the detection of double stranded, genomic DNA. PMID:17927207

  7. Conjunctival sac bacterial flora isolated prior to cataract surgery

    Directory of Open Access Journals (Sweden)

    Suto C

    2012-01-01

    Full Text Available Chikako Suto1,2, Masahiro Morinaga1,2, Tomoko Yagi1,2, Chieko Tsuji3, Hiroshi Toshida41Department of Ophthalmology, Saiseikai Kurihashi Hospital, Saitama; 2Department of Ophthalmology, Tokyo Women's Medical University, Tokyo; 3Department of Clinical Laboratory, Saiseikai Kurihashi Hospital, Saitama; 4Department of Ophthalmology, Juntendo University Shizuoka Hospital, Izunokuni, Shizuoka, JapanObjective: To determine the trends of conjunctival sac bacterial flora isolated from patients prior to cataract surgery.Subjects and methods: The study comprised 579 patients (579 eyes who underwent cataract surgery. Specimens were collected by lightly rubbing the inferior palpebral conjunctival sac with a sterile cotton swab 2 weeks before surgery, and then cultured for isolation of bacteria and antimicrobial sensitivity testing. The bacterial isolates and percentage of drug-resistant isolates were compared among age groups and according to whether or not patients had diabetes mellitus, hyperlipidemia, dialysis therapy, oral steroid use, dry eye syndrome, or allergic conjunctivitis.Results: The bacterial isolation rate was 39.2%. There were 191 strains of Gram-positive cocci, accounting for the majority of all isolates (67.0%, among which methicillin-sensitive coagulase-negative staphylococci was the most frequent (127 strains, 44.5%, followed by methicillin-resistant coagulase-negative staphylococci (37 strains, 12.7%. All 76 Gram-positive bacillary isolates (26.7% were from the genus Corynebacterium. Among the 16 Gram-negative bacillary isolates (5.9%, the most frequent was Escherichia coli (1.0%. The bacterial isolation rate was higher in patients >60 years old, and was lower in patients with dry eye syndrome, patients under topical treatment for other ocular disorders, and patients with hyperlipidemia. There was no significant difference in bacterial isolation rate with respect to the presence/absence of diabetes mellitus, steroid therapy, dialysis, or

  8. Erwinia teleogrylli sp. nov., a Bacterial Isolate Associated with a Chinese Cricket.

    Directory of Open Access Journals (Sweden)

    Bo Liu

    Full Text Available A bacterial isolate (SCU-B244T was obtained in China from crickets (Teleogryllus occipitalis living in cropland deserted for approximately 10 years. The isolated bacteria were Gram-negative, facultatively anaerobic, oxidase-negative rods. A preliminary analysis of the 16S rRNA gene sequence indicated that the strain belongs to either the genus Erwinia or Pantoea. Analysis of multilocus sequence typing based on concatenated partial atpD, gyrB and infB gene sequences and physiological and biochemical characteristics indicated that the strain belonged to the genus Erwinia, as member of a new species as it was distinct from other known Erwinia species. Further analysis of the 16S rRNA gene showed SCU-B244T to have 94.71% identity to the closest species of that genus, Erwinia oleae (DSM 23398T, which is below the threshold of 97% used to discriminate bacterial species. DNA-DNA hybridization results (5.78±2.52% between SCU-B244T and Erwinia oleae (DSM 23398T confirmed that SCU-B244T and Erwinia oleae (DSM 23398T represent different species combined with average nucleotide identity values which range from 72.42% to 74.41. The DNA G+C content of SCU-B244T was 55.32 mol%, which also differs from that of Erwinia oleae (54.7 to 54.9 mol%. The polyphasic taxonomic approach used here confirmed that the strain belongs to the Erwinia group and represents a novel species. The name Erwinia teleogrylli sp. nov. is proposed for this novel taxon, for which the type strain is SCU-B244T (= CGMCC 1.12772T = DSM 28222T = KCTC 42022T.

  9. Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments

    NARCIS (Netherlands)

    Garbeva, P.; Overbeek, van L.S.; Vuurde, van J.W.L.; Elsas, van J.D.

    2001-01-01

    The diversity of endophytic bacterial populations of potato (Solanum tuberosum cv Desiree) was assessed using a combination of dilution plating of plant macerates followed by isolation and characterization of isolates, and direct PCR-DGGE on the basis of DNA extracted from plants. The culturable

  10. Does Extracellular DNA Production Vary in Staphylococcal Biofilms Isolated From Infected Implants versus Controls?

    Science.gov (United States)

    Zatorska, Beata; Groger, Marion; Moser, Doris; Diab-Elschahawi, Magda; Lusignani, Luigi Segagni; Presterl, Elisabeth

    2017-08-01

    Prosthetic implant infections caused by Staphylococcus aureus and epidermidis are major challenges for early diagnosis and treatment owing to biofilm formation on the implant surface. Extracellular DNA (eDNA) is actively excreted from bacterial cells in biofilms, contributing to biofilm stability, and may offer promise in the detection or treatment of such infections. (1) Does DNA structure change during biofilm formation? (2) Are there time-dependent differences in eDNA production during biofilm formation? (3) Is there differential eDNA production between clinical and control Staphylococcal isolates? (4) Is eDNA production correlated to biofilm thickness? We investigated eDNA presence during biofilm formation in 60 clinical and 30 control isolates of S aureus and S epidermidis. The clinical isolates were isolated from patients with infections of orthopaedic prostheses and implants: 30 from infected hip prostheses and 30 from infected knee prostheses. The control isolates were taken from healthy volunteers who had not been exposed to antibiotics and a hospital environment during the previous 3 and 12 months, respectively. Control S epidermidis was isolated from the skin of the antecubital fossa, and control S aureus was isolated from the nares. For the biofilm experiments the following methods were used to detect eDNA: (1) fluorescent staining with 4',6-diamidino-2-phenylindole (DAPI), (2) eDNA extraction using a commercial kit, and (3) confocal laser scanning microscopy for 24-hour biofilm observation using propidium iodide and concanavalin-A staining; TOTO ® -1 and SYTO ® 60 staining were used for observation and quantification of eDNA after 6 and 24 hours of biofilm formation. Additionally antibiotic resistance was described. eDNA production as observed by confocal laser scanning microscopy was greater in clinical isolates than controls (clinical isolates mean ± SD: 1.84% ± 1.31%; control mean ± SD: 1.17% ± 1.37%; p biofilm formation. After 24 hours, the

  11. Utilization of chitinolytic bacterial isolates to control anthracnose of ...

    African Journals Online (AJOL)

    Colletotrichum spp. are causal agents of anthracnose in many plant species. Biological control of Colletotrichum spp. utilizing bacterial isolates and fungi has been reported. However, chitinolytic bacterial isolate utilization to control anthracnose of cocoa leaf has not seemingly been studied yet. In this study, we used ...

  12. Isolate PM1 populations are dominant and novel methyl tert-butyl ether-degrading bacterial in compost biofilter enrichments.

    Science.gov (United States)

    Bruns, M A; Hanson, J R; Mefford, J; Scow, K M

    2001-03-01

    The gasoline additive MTBE, methyl tert-butyl ether, is a widespread and persistent groundwater contaminant. MTBE undergoes rapid mineralization as the sole carbon and energy source of bacterial strain PM1, isolated from an enrichment culture of compost biofilter material. In this report, we describe the results of microbial community DNA profiling to assess the relative dominance of isolate PM1 and other bacterial strains cultured from the compost enrichment. Three polymerase chain reaction (PCR)-based profiling approaches were evaluated: denaturing gradient gel electrophoresis (DGGE) analysis of 230 bp 16S rDNA fragments; thermal gradient gel electrophoresis (TGGE) analysis of 575 bp 16S rDNA fragments; and non-denaturing polyacrylamide gel electrophoresis of 300-1,500 bp fragments containing 16S/23S ribosomal intergenic transcribed spacer (ITS) regions. Whereas all three DNA profiling approaches indicated that PM1-like bands predominated in mixtures from MTBE-grown enrichments, ITS profiling provided the most abundant and specific sequence data to confirm strain PM1's presence in the enrichment. Moreover, ITS profiling did not produce non-specific PCR products that were observed with T/DGGE. A further advantage of ITS community profiling over other methods requiring restriction digestion (e.g. terminal restriction fragment length polymorphisms) was that it did not require an additional digestion step or the use of automated sequencing equipment. ITS bands, excised from similar locations in profiles of the enrichment and PM1 pure culture, were 99.9% identical across 750 16S rDNA positions and 100% identical across 691 spacer positions. BLAST comparisons of nearly full-length 16S rDNA sequences showed 96% similarity between isolate PM1 and representatives of at least four different genera in the Leptothrix subgroup of the beta-Proteobacteria (Aquabacterium, Leptothrix, Rubrivivax and Ideonella). Maximum likelihood and parsimony analyses of 1,249 nucleotide

  13. DMPD: The actions of bacterial DNA on murine macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10534106 The actions of bacterial DNA on murine macrophages. Sester DP, Stacey KJ, ... Show The actions of bacterial DNA on murine macrophages. PubmedID 10534106 Title The actions of bacterial DNA on murine macrophage

  14. Determination of the hydrocarbon-degrading metabolic capabilities of tropical bacterial isolates

    Energy Technology Data Exchange (ETDEWEB)

    Marquez-Rocha, F.J.; Olmos-Soto, J. [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, San Diego, CA (United States). Departamento de Biotecnologia Marina; Rosano-Hernandez, M.A.; Muriel-Garcia, M. [Instituto Mexicano del Petroleo, CD Carmen Camp (Mexico). Zona Marina/Tecnologia Ambiental

    2005-01-01

    Of more than 20 bacteria isolated from a tropical soil using minimal medium supplemented with hydrocarbons, 11 grew well on diesel as sole carbon source, and another 11 grew in the presence of polynuclear aromatic hydrocarbons (PAHs). Ten isolates were identified phenotypically as Pseudomonas sp. and eight as Bacillus sp. Gene sequences representing the catabolic genes (alkM, todM, ndoM, and xylM) and 16S rRNA gene sequences characteristic for Pseudomona and Bacillus were amplified by PCR, using DNA recovered from the supernatant of hydrocarbon-contaminated soil suspensions. Based on their rapid growth characteristics in the presence of hydrocarbons and the formation of PCR products for the catabolic genes alkM and ndoM six isolates were selected for biodegradation assays. After 30 days a mixed culture of two isolates achieved close to 70% hydrocarbon removal and apparent mineralization of 16% of the hydrocarbons present in the soil. Biodegradation rates varied from 275 to 387 mg hydrocarbon kg{sup -1} day{sup -1}. Several bacterial isolates obtained in this study have catabolic capabilities for the biodegradation of alkanes and aromatic hydrocarbons including PAHs. (author)

  15. Isolation and characterization of two new methanesulfonic acid-degrading bacterial isolates from a Portuguese soil sample.

    Science.gov (United States)

    De Marco, P; Murrell, J C; Bordalo, A A; Moradas-Ferreira, P

    2000-02-01

    Two novel bacterial strains that can utilize methanesulfonic acid as a source of carbon and energy were isolated from a soil sample collected in northern Portugal. Morphological, physiological, biochemical and molecular biological characterization of the two isolates indicate that strain P1 is a pink-pigmented facultative methylotroph belonging to the genus Methylobacterium, while strain P2 is a restricted methylotroph belonging to the genus Hyphomicrobium. Both strains are strictly aerobic, degrade methanesulfonate, and release small quantities of sulfite into the medium. Growth on methanesulfonate induces a specific polypeptide profile in each strain. This, together with the positive hybridization to a DNA probe that carries the msm genes of Methylosulfonomonas methylovora strain M2, strongly endorses the contention that a methanesulfonic acid monooxygenase related to that found in the previously known methanesulfonate-utilizing bacteria is present in strains P1 and P2. The isolation of bacteria containing conserved msm genes from diverse environments and geographical locations supports the hypothesis that a common enzyme may be globally responsible for the oxidation of methanesulfonate by natural methylotrophic communities.

  16. Polynucleotide probes that target a hypervariable region of 16S rRNA genes to identify bacterial isolates corresponding to bands of community fingerprints.

    Science.gov (United States)

    Heuer, H; Hartung, K; Wieland, G; Kramer, I; Smalla, K

    1999-03-01

    Temperature gradient gel electrophoresis (TGGE) is well suited for fingerprinting bacterial communities by separating PCR-amplified fragments of 16S rRNA genes (16S ribosomal DNA [rDNA]). A strategy was developed and was generally applicable for linking 16S rDNA from community fingerprints to pure culture isolates from the same habitat. For this, digoxigenin-labeled polynucleotide probes were generated by PCR, using bands excised from TGGE community fingerprints as a template, and applied in hybridizations with dot blotted 16S rDNA amplified from bacterial isolates. Within 16S rDNA, the hypervariable V6 region, corresponding to positions 984 to 1047 (Escherichia coli 16S rDNA sequence), which is a subset of the region used for TGGE (positions 968 to 1401), best met the criteria of high phylogenetic variability, required for sufficient probe specificity, and closely flanking conserved priming sites for amplification. Removal of flanking conserved bases was necessary to enable the differentiation of closely related species. This was achieved by 5' exonuclease digestion, terminated by phosphorothioate bonds which were synthesized into the primers. The remaining complementary strand was removed by single-strand-specific digestion. Standard hybridization with truncated probes allowed differentiation of bacteria which differed by only two bases within the probe target site and 1.2% within the complete 16S rDNA. However, a truncated probe, derived from an excised TGGE band of a rhizosphere community, hybridized with three phylogenetically related isolates with identical V6 sequences. Only one of the isolates comigrated with the excised band in TGGE, which was shown to be due to identical sequences, demonstrating the utility of a combined TGGE and V6 probe approach.

  17. Binding and entry of DNA in bacterial transformation

    Energy Technology Data Exchange (ETDEWEB)

    Lacks, S.A.

    1976-01-01

    Bacterial transformation in relation to DNA transport and competence in Streptococcus pneumoniae (also called Diplococcus pneumoniae) is discussed. This species will serve as a model with which to compare transformation in other bacterial species, particularly Bacillus subtilis and Haemophilus influenzae, with emphasis on the many similarities as well as differences.

  18. Mechanisms of ion-bombardment-induced DNA transfer into bacterial E. coli cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, L.D., E-mail: yuld@thep-center.org [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sangwijit, K. [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Phanchaisri, B. [Institute of Science and Technology Research, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongkumkoon, P. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thopan, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Singkarat, S. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Anuntalabhochai, S. [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2014-05-01

    Highlights: • Ion bombardment could induce DNA transfer into E. coli cells. • The DNA transfer induction depended on ion energy and fluence. • The mechanism was associated with the bacterial cell envelope structure. • A mechanism phase diagram was proposed to summarize the mechanism. - Abstract: As a useful ion beam biotechnology, ion-bombardment-induced DNA transfer into bacterial Escherichia coli (E. coli) cells has been successfully operated using argon ions. In the process ion bombardment of the bacterial cells modifies the cell envelope materials to favor the exogenous DNA molecules to pass through the envelope to enter the cell. The occurrence of the DNA transfer induction was found ion energy and fluence dependent in a complex manner. At ion energy of a few keV and a few tens of keV to moderate fluences the DNA transfer could be induced by ion bombardment of the bacterial cells, while at the same ion energy but to high fluences DNA transfer could not be induced. On the other hand, when the ion energy was medium, about 10–20 keV, the DNA transfer could not be induced by ion bombardment of the cells. The complexity of the experimental results indicated a complex mechanism which should be related to the complex structure of the bacterial E. coli cell envelope. A phase diagram was proposed to interpret different mechanisms involved as functions of the ion energy and fluence.

  19. Mechanisms of ion-bombardment-induced DNA transfer into bacterial E. coli cells

    International Nuclear Information System (INIS)

    Yu, L.D.; Sangwijit, K.; Prakrajang, K.; Phanchaisri, B.; Thongkumkoon, P.; Thopan, P.; Singkarat, S.; Anuntalabhochai, S.

    2014-01-01

    Highlights: • Ion bombardment could induce DNA transfer into E. coli cells. • The DNA transfer induction depended on ion energy and fluence. • The mechanism was associated with the bacterial cell envelope structure. • A mechanism phase diagram was proposed to summarize the mechanism. - Abstract: As a useful ion beam biotechnology, ion-bombardment-induced DNA transfer into bacterial Escherichia coli (E. coli) cells has been successfully operated using argon ions. In the process ion bombardment of the bacterial cells modifies the cell envelope materials to favor the exogenous DNA molecules to pass through the envelope to enter the cell. The occurrence of the DNA transfer induction was found ion energy and fluence dependent in a complex manner. At ion energy of a few keV and a few tens of keV to moderate fluences the DNA transfer could be induced by ion bombardment of the bacterial cells, while at the same ion energy but to high fluences DNA transfer could not be induced. On the other hand, when the ion energy was medium, about 10–20 keV, the DNA transfer could not be induced by ion bombardment of the cells. The complexity of the experimental results indicated a complex mechanism which should be related to the complex structure of the bacterial E. coli cell envelope. A phase diagram was proposed to interpret different mechanisms involved as functions of the ion energy and fluence

  20. Biological activity of some bacterial isolates against soil borne pathogenic fungi

    International Nuclear Information System (INIS)

    Makbol, H.; Refae, R.I.; Eid, H.A.; Mohamed, O.M.

    2011-01-01

    The antagonistic activity of three bacterial isolates namely Micro bacterium terregens, Cellulosimicrobium cellulans and Bacillus amyloliquefaciens was evaluated through direct confrontation method and filtrates culture against the growth of Fusarium solani, Fusarium oxysporum, Rhizoctonia solani and Phytophthra cactorum. All bacterial isolates showed the inhibition of the mycelia growth of the isolated fungi as resulting to confrontation methods except R. solani with C. cellulans that showed no inhibitory effect and energized the low activity with B. amyloliquefaciens. Culture filtrate of different bacterial isolates after different incubation periods revealed that the highest antifungal activity between 3-10 days

  1. Biosynthesis and structural characterization of silver nanoparticles from bacterial isolates

    International Nuclear Information System (INIS)

    Zaki, Sahar; El Kady, M.F.; Abd-El-Haleem, Desouky

    2011-01-01

    Graphical abstract: In this study five bacterial isolates belong to different genera were found to be able to biosynthesize silver nanoparticles. Biosynthesis and spectral characterization are reported here. Highlights: → About 300 bacterial isolates were screened for their ability to produce nanosilvers → Five of them were potential candidates for synthesis of silver nanoparticles → Production of silver nanoparticles was examined using UV-Vis, XRD, SEM and EDS. → The presence of nanoparticles with all five bacterial isolates was confirmed. -- Abstract: This study aimed to develop a green process for biosynthesis of silver nanomaterials by some Egyptian bacterial isolates. This target was achieved by screening an in-house culture collection consists of 300 bacterial isolates for silver nanoparticle formation. Through screening process, it was observed that strains belonging to Escherichia coli (S30, S78), Bacillus megaterium (S52), Acinetobacter sp. (S7) and Stenotrophomonas maltophilia (S54) were potential candidates for synthesis of silver nanoparticles. The extracellular production of silver nanoparticles by positive isolates was investigated by UV-Vis spectroscopy, X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results demonstrated that UV-visible spectrum of the aqueous medium containing silver ion showed a peak at 420 nm corresponding to the plasmon absorbance of silver nanoparticles. Scanning electron microscopy micrograph showed formation of silver nanoparticles in the range of 15-50 nm. XRD-spectrum of the silver nanoparticles exhibited 2θ values corresponding to the silver nanocrystal that produce in hexagonal and cubic crystal configurations with different plane of orientation. In addition, the signals of the silver atoms were observed by EDS-spectrum analysis that confirms the presence of silver nanoparticles (AgNPs) in all positive

  2. Quinolone Resistance in Bacterial Isolates from Chicken Carcasses ...

    African Journals Online (AJOL)

    Two hundred bacterial isolates including Escherichia coli (95; 47.5%), Salmonella serotypes (78; 38.0%), Klebsiella (17; 8.5%) and Staphylococcus aureus (12; 6.0%) were isolated from chicken carcasses within the six-year period. On the overall, the isolates were resistant to ciprofloxacin (40.5%), enrofloxacin (21.0%), ...

  3. Quantification of total phosphorothioate in bacterial DNA by a bromoimane-based fluorescent method.

    Science.gov (United States)

    Xiao, Lu; Xiang, Yu

    2016-06-01

    The discovery of phosphorothioate (PT) modifications in bacterial DNA has challenged our understanding of conserved phosphodiester backbone structure of cellular DNA. This exclusive DNA modification in bacteria is not found in animal cells yet, and its biological function in bacteria is still poorly understood. Quantitative information about the bacterial PT modifications is thus important for the investigation of their possible biological functions. In this study, we have developed a simple fluorescence method for selective quantification of total PTs in bacterial DNA, based on fluorescent labeling of PTs and subsequent release of the labeled fluorophores for absolute quantification. The method was highly selective to PTs and not interfered by the presence of reactive small molecules or proteins. The quantification of PTs in an E. coli DNA sample was successfully achieved using our method and gave a result of about 455 PTs per million DNA nucleotides, while almost no detectable PTs were found in a mammalian calf thymus DNA. With this new method, the content of phosphorothioate in bacterial DNA could be successfully quantified, serving as a simple method suitable for routine use in biological phosphorothioate related studies. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Isolation and identification of biocellulose-producing bacterial strains from Malaysian acidic fruits.

    Science.gov (United States)

    Voon, W W Y; Rukayadi, Y; Meor Hussin, A S

    2016-05-01

    Biocellulose (BC) is pure extracellular cellulose produced by several species of micro-organisms that has numerous applications in the food, biomedical and paper industries. However, the existing biocellulose-producing bacterial strain with high yield was limited. The aim of this study was to isolate and identify the potential biocellulose-producing bacterial isolates from Malaysian acidic fruits. One hundred and ninety-three bacterial isolates were obtained from 19 local acidic fruits collected in Malaysia and screened for their ability to produce BC. A total of 15 potential bacterial isolates were then cultured in standard Hestrin-Schramm (HS) medium statically at 30°C for 2 weeks to determine the BC production. The most potent bacterial isolates were identified using 16S rRNA gene sequence analysis, morphological and biochemical characteristics. Three new and potent biocellulose-producing bacterial strains were isolated from soursop fruit and identified as Stenotrophomonas maltophilia WAUPM42, Pantoea vagans WAUPM45 and Beijerinckia fluminensis WAUPM53. Stenotrophomonas maltophilia WAUPM42 was the most potent biocellulose-producing bacterial strain that produced the highest amount of BC 0·58 g l(-1) in standard HS medium. Whereas, the isolates P. vagans WAUPM45 and B. fluminensis WAUPM53 showed 0·50 and 0·52 g l(-1) of BC production, respectively. Biocellulose (BC) is pure extracellular cellulose that is formed by many micro-organisms in the presence of carbon source and acidic condition. It can replace plant-based cellulose in multifarious applications due to its unique characteristics. In this study, three potential biocellulose-producing bacterial strains were obtained from Malaysian acidic fruits and identified as Stenotrophomonas maltophilia WAUPM42, Pantoea vagans WAUPM45 and Beijerinckia fluminensis WAUPM53. This study reports for the first time the new biocellulose-producing bacterial strains isolated from Malaysian acidic fruits. © 2016 The

  5. Frequency of isolation and antibiotic resistance patterns of bacterial isolates from wound infections

    Directory of Open Access Journals (Sweden)

    Stojanović-Radić, Z.

    2016-12-01

    Full Text Available Six hundred and thirteen bacterial strains were isolated from wound swabs and the isolates were identified on the basis of growth on differential and selective media. In order to test the sensitivity of isolated strains to different antibiotics, the disc diffusion method, according to EUCAST protocol v 5.0 was used. The most common species isolated from wound swabs was Staphylococcus epidermidis (18.4%, followed by Staphylococcus aureus, Pseudomonas aeruginosa and Enterococcus faecalis (16.8%, 12.7% and 10.4%, respectively. The maximum resistance of Gram-positive cocci was observed to penicillin and the lowest to linezolid. Gram-negative bacteria showed the highest resistance to tetracyclines, while the same strains demonstrated the highest sensitivity to polypeptide antibiotics. Comparison of the resistance patterns of Gramnegative and Gram-positive bacterial strains showed significant difference in the tetracycline efficiency.

  6. Studies on hydrocarbon degradation by the bacterial isolate ...

    African Journals Online (AJOL)

    The hydrocarbon utilizing capability of Stenotrophomonas rhizophila (PM-1), isolated from oil contaminated soil composts from Western Ghats region of Karnataka was analyzed. In the bioremediation experiment, ONGC heavy crude oil and poly aromatic hydrocarbons (PAHs) utilization by the bacterial isolate was studied.

  7. Rapid DNA extraction of bacterial genome using laundry detergents ...

    African Journals Online (AJOL)

    Genomic DNA extraction from bacterial cells involves processes normally performed in most biological laboratories. Therefore, various methods have been offered, manually and kit, but these methods may be time consuming and costly. In this paper, genomic DNA extraction of Pseudomonas aeruginosa was investigated ...

  8. Rapid DNA extraction of bacterial genome using laundry detergents ...

    African Journals Online (AJOL)

    Yomi

    2012-01-03

    Jan 3, 2012 ... Genomic DNA extraction from bacterial cells involves processes normally performed in most biological laboratories. Therefore, various methods have been offered, manually and kit, but these methods may be time consuming and costly. In this paper, genomic DNA extraction of Pseudomonas aeruginosa ...

  9. Incidence and Antibiotic Susceptibility Pattern of Bacterial Isolates ...

    African Journals Online (AJOL)

    bacterial isolates. The isolates were characterized and identified by standard microbiological methods. Antibiotic susceptibility testing was carried out ... Pure cultures were characterized using morphological appearances on selective and .... J Nepal Health Res Council. 2007; 5(1): 22-26. 4. Taiwo SS, Okesina AB, Onile BA.

  10. Room temperature electrocompetent bacterial cells improve DNA transformation and recombineering efficiency.

    Science.gov (United States)

    Tu, Qiang; Yin, Jia; Fu, Jun; Herrmann, Jennifer; Li, Yuezhong; Yin, Yulong; Stewart, A Francis; Müller, Rolf; Zhang, Youming

    2016-04-20

    Bacterial competent cells are essential for cloning, construction of DNA libraries, and mutagenesis in every molecular biology laboratory. Among various transformation methods, electroporation is found to own the best transformation efficiency. Previous electroporation methods are based on washing and electroporating the bacterial cells in ice-cold condition that make them fragile and prone to death. Here we present simple temperature shift based methods that improve DNA transformation and recombineering efficiency in E. coli and several other gram-negative bacteria thereby economizing time and cost. Increased transformation efficiency of large DNA molecules is a significant advantage that might facilitate the cloning of large fragments from genomic DNA preparations and metagenomics samples.

  11. Recovery and identification of bacterial DNA from illicit drugs.

    Science.gov (United States)

    Cho, Kaymann T; Richardson, Michelle M; Kirkbride, K Paul; McNevin, Dennis; Nelson, Michelle; Pianca, Dennis; Roffey, Paul; Gahan, Michelle E

    2014-02-01

    Bacterial infections, including Bacillus anthracis (anthrax), are a common risk associated with illicit drug use, particularly among injecting drug users. There is, therefore, an urgent need to survey illicit drugs used for injection for the presence of bacteria and provide valuable information to health and forensic authorities. The objectives of this study were to develop a method for the extraction of bacterial DNA from illicit drugs and conduct a metagenomic survey of heroin and methamphetamine seized in the Australian Capital Territory during 2002-2011 for the presence of pathogens. Trends or patterns in drug contamination and their health implications for injecting drug users were also investigated. Methods based on the ChargeSwitch(®)gDNA mini kit (Invitrogen), QIAamp DNA extraction mini kit (QIAGEN) with and without bead-beating, and an organic phenol/chloroform extraction with ethanol precipitation were assessed for the recovery efficiency of both free and cellular bacterial DNA. Bacteria were identified using polymerase chain reaction and electrospray ionization-mass spectrometry (PCR/ESI-MS). An isopropanol pre-wash to remove traces of the drug and diluents, followed by a modified ChargeSwitch(®) method, was found to efficiently lyse cells and extract free and cellular DNA from Gram-positive and Gram-negative bacteria in heroin and methamphetamine which could then be identified by PCR/ESI-MS. Analysis of 12 heroin samples revealed the presence of DNA from species of Comamonas, Weissella, Bacillus, Streptococcus and Arthrobacter. No organisms were detected in the nine methamphetamine samples analysed. This study develops a method to extract and identify Gram-positive and Gram-negative bacteria from illicit drugs and demonstrates the presence of a range of bacterial pathogens in seized drug samples. These results will prove valuable for future work investigating trends or patterns in drug contamination and their health implications for injecting drug

  12. Bacterial DNA in water and dialysate: detection and significance for patient outcomes.

    Science.gov (United States)

    Handelman, Garry J; Megdal, Peter A; Handelman, Samuel K

    2009-01-01

    The fluid used for hemodialysis may contain DNA fragments from bacteria, which could be harmful for patient outcomes. DNA fragments from bacteria, containing the nonmethylated CpG motif, can trigger inflammation through the monocyte and lymphocyte Toll-like receptor 9, and these DNA fragments have been observed in dialysate. The fragments may transfer across the dialyzer into the patient's bloodstream during hemodialysis treatment. During hemodiafiltration, the fragments would be introduced directly into the bloodstream. The DNA fragments may arise from biofilm in the pipes of the water system, from growth of bacteria in the water, or as contaminants in the bicarbonate and salt mixture used for preparation of dialysate. Current filtration methods, such as Diasafe filters, are not able to remove these fragments. It would be prudent to seek to reduce or eliminate these contaminants. However, the cost and effort of decreasing bacterial DNA content may ultimately require substantial facility improvements; we therefore need to fund research studies to determine if modifications to reduce bacterial DNA content are clinically warranted. This research will require methods to accurately determine the species of bacteria that contribute the DNA, since this information will allow the source to be established as biofilm, bicarbonate mixtures, or other problems in the dialysis system such as bacterial growth or leakage during water preparation. In this review, the evidence for bacterial DNA fragments will be examined and suggestions for further studies will be described.

  13. Characterization of corrosive bacterial consortia isolated from petroleum-product-transporting pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Rajasekar, Aruliah; Ting, Yen-Peng [National Univ. of Singapore (Singapore). Dept. of Chemical and Biomolecular Engineering; Anandkumar, Balakrishnan [Sourashtra Coll., Madurai (India). Dept. of Biotechnology; Maruthamuthu, Sundaram [Central Electrochemical Research Inst., Karaikudi (India). Biocorrosion Group; Rahman, Pattanathu K.S.M. [Teesside Univ., Tees Valley (United Kingdom). Chemical and Bioprocess Engineering Group

    2010-01-15

    Microbiologically influenced corrosion is a problem commonly encountered in facilities in the oil and gas industries. The present study describes bacterial enumeration and identification in diesel and naphtha pipelines located in the northwest and southwest region in India, using traditional cultivation technique and 16S rDNA gene sequencing. Phylogenetic analysis of 16S rRNA sequences of the isolates was carried out, and the samples obtained from the diesel and naphtha-transporting pipelines showed the occurrence of 11 bacterial species namely Serratia marcescens ACE2, Bacillus subtilis AR12, Bacillus cereus ACE4, Pseudomonas aeruginosa AI1, Klebsiella oxytoca ACP, Pseudomonas stutzeri AP2, Bacillus litoralis AN1, Bacillus sp., Bacillus pumilus AR2, Bacillus carboniphilus AR3, and Bacillus megaterium AR4. Sulfate-reducing bacteria were not detected in samples from both pipelines. The dominant bacterial species identified in the petroleum pipeline samples were B. cereus and S. marcescens in the diesel and naphtha pipelines, respectively. Therefore, several types of bacteria may be involved in biocorrosion arising from natural biofilms that develop in industrial facilities. In addition, localized (pitting) corrosion of the pipeline steel in the presence of the consortia was observed by scanning electron microscopy analysis. The potential role of each species in biofilm formation and steel corrosion is discussed. (orig.)

  14. Antibiotic resistance profile of bacterial isolates from food sold on a ...

    African Journals Online (AJOL)

    The antibiotic resistance profile of bacterial isolates from cooked food samples sold in different eateries on the campus of the University of Ado-Ekiti was investigated. A total of seventy-eight bacterial isolates belonging to six genera were encountered in the following proportion: Escherichia coli (29.5%), Klebsiella spp.

  15. Antibacterial activity of some disinfectants, essential oils and radiation against some bacterial isolates

    International Nuclear Information System (INIS)

    Ramadan, A.B.; Abo-State, M.A.M.; Ghaly, M.F.; Ezzat, S.M.; Hefni, H.M.I.

    2006-01-01

    Nosocomial bacteria has been considered problems for all hospitals. Bacterial isolates of the present study were isolated from Sharkia Hospitals, Egypt. The isolates were S. aureus, P. aeruginosa, E. coli, Klebsiella spp., Citrobacter spp., Enterobacter spp., Proteus spp., Serratia spp. and S. epidermidis. Two disinfectants (savlon and phenolics) were examined against all the bacterial isolates at the hospitals recommended concentrations to determine the most resistance bacterial isolates. Twelve essential oils, ultraviolet radiation, Gamma radiation and laser were tested against the most resistant bacterial isolates to disinfectants and antiseptics. These bacterial isolates were S. aureus and P. aeruginosa. The most effective concentration of savlon was 2%, while that of phenolics were 4 and 5% . Fumigation of essential oils of Eugenia caryophyllata L., Marjorum hortensis L., Foeniculum vulgare L., Rosmarinus officinalis L. and Thymus vulgaris L. had high effects against these bacterial isolates. Rosmarinus officinalis L., Marjorum hortensis L., Eugenia caryophyllata L. and Thymus vulgaris L. essential oils had high effects on bacterial isolates by disc diffusion method. Matricaria chamomilla L. and Eucalyptus spp. oils had no effects against P. aeruginosa. Both essential oils of Jasminum gradiflocum L. and Jasminum sambac L. had no effects by fumigation and diffused essential oils. Ultraviolet irradiation had lethal effect on S. aureus when it exposed to ultraviolet for 10 minutes at a distance of 20 cm, while it had a lethal effect on P. aeruginosa when exposed to the rays for 7 minutes at the same distance. Gamma irradiation had lethal effect on P. aeruginosa and S. aureus at 2.5 and 3 KGy, respectively. Laser had a lethal effect on P. aeruginosa and S. aureus after 14 and 15 minutes of exposure, respectively

  16. Circulating bacterial-derived DNA fragment level is a strong predictor of cardiovascular disease in peritoneal dialysis patients.

    Directory of Open Access Journals (Sweden)

    Cheuk-Chun Szeto

    Full Text Available Circulating bacterial DNA fragment is related to systemic inflammatory state in peritoneal dialysis (PD patients. We hypothesize that plasma bacterial DNA level predicts cardiovascular events in new PD patients.We measured plasma bacterial DNA level in 191 new PD patients, who were then followed for at least a year for the development of cardiovascular event, hospitalization, and patient survival.The average age was 59.3 ± 11.8 years; plasma bacterial DNA level 34.9 ± 1.5 cycles; average follow up 23.2 ± 9.7 months. At 24 months, the event-free survival was 86.1%, 69.8%, 55.4% and 30.8% for plasma bacterial DNA level quartiles I, II, III and IV, respectively (p < 0.0001. After adjusting for confounders, plasma bacterial DNA level, baseline residual renal function and malnutrition-inflammation score were independent predictors of composite cardiovascular end-point; each doubling in plasma bacterial DNA level confers a 26.9% (95% confidence interval, 13.0 - 42.5% excess in risk. Plasma bacterial DNA also correlated with the number of hospital admission (r = -0.379, p < 0.0001 and duration of hospitalization for cardiovascular reasons (r = -0.386, p < 0.0001. Plasma bacterial DNA level did not correlate with baseline arterial pulse wave velocity (PWV, but with the change in carotid-radial PWV in one year (r = -0.238, p = 0.005.Circulating bacterial DNA fragment level is a strong predictor of cardiovascular event, need of hospitalization, as well as the progressive change in arterial stiffness in new PD patients.

  17. Isolation of bacterial extrachromosomal DNA from human dental plaque associated with periodontal disease, using transposon-aided capture (TRACA).

    Science.gov (United States)

    Warburton, Philip J; Allan, Elaine; Hunter, Stephanie; Ward, John; Booth, Veronica; Wade, William G; Mullany, Peter

    2011-11-01

    The human oral cavity is host to a complex microbial community estimated to comprise >700 bacterial species, of which at least half are thought to be not yet cultivable in vitro. To investigate the plasmids present in this community, we used a transposon-aided capture system, which allowed the isolation of plasmids from human oral supra- and subgingival plaque samples. Thirty-two novel plasmids and a circular molecule that could be an integrase-generated circular intermediate were isolated. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  18. In vitro activity of difloxacin against canine bacterial isolates

    NARCIS (Netherlands)

    Hoven, van den J.R.; Wagenaar, J.A.; Walker, R.D.

    2000-01-01

    The in vitro activity of difloxacin against canine bacterial isolates from clinical cases was studied in the United States and The Netherlands. Minimal inhibitory concentrations (MIC), the postantibiotic effect, the effect of pH on antimicrobial activity, and the bacterial killing rate tests were

  19. Assessing genetic heterogeneity within bacterial species isolated from gastrointestinal and environmental samples: How many isolates does it take?

    NARCIS (Netherlands)

    Dopfer, D.; Buist, W.; Soyer, Y.; Munoz, M.A.; Zadoks, R.N.; Geue, L.; Engel, B.

    2008-01-01

    Strain typing of bacterial isolates is increasingly used to identify sources of infection or product contamination and to elucidate routes of transmission of pathogens or spoilage organisms. Usually, the number of bacterial isolates belonging to the same species that is analyzed per sample is

  20. Isolation and screening of azo dye decolorizing bacterial isolates from dye-contaminated textile wastewater

    Directory of Open Access Journals (Sweden)

    Shahid Mahmood

    2011-04-01

    Full Text Available Azo dyes are released into wastewater streams without any pretreatment and pollute water and soilenvironments. To prevent contamination of our vulnerable resources, removal of these dye pollutants is of greatimportance. For this purpose, wastewater samples were collected from dye-contaminated sites of Faisalabad. About200 bacterial isolates were isolated through enrichment and then tested for their potential to remove RemazolBlack-B azo dye in liquid medium. Five bacterial isolates capable of degrading Remazol Black-B azo dye efficientlywere screened through experimentation on modified mineral salt medium. Isolate SS1 (collected from wastewater ofSupreme Textile Industry was able to completely remove the Remazol Black-B dye from the liquid medium in 18 h.Further, the isolate showed the best performance at the dye concentration of 100 mg L-1 medium (pH 7 and attemperature 35oC. Similarly, yeast extract proved to be the best carbon source for decolorization purpose. Theresults imply that the isolate SS1 could be used for the removal of the reactive dyes from textile effluents.

  1. Co-isolation of in vivo 32P-labeled specific transcripts and DNA without phenol extraction of nuclease digestion

    International Nuclear Information System (INIS)

    Hayes, S.; Hayes, C.; Brand, L.

    1981-01-01

    A method is described for isolation and quantitation of specific intact transcripts, for which a hybridization probe is available, from 32 P-labeled bacterial cells. The RNA is extracted in the absence of R Nase activity by incorporating an inert, physically removable R Nase inhibitor throughout the spheroplasting, cell lysis, and pronase digestion steps. [/sup 32/P]RNA is separated from [ 32 P]DNA, without recourse to phenol extraction of DNase treatment, on a Cs 2 SO/sub 4-/HCONH 2 step gradient in which the precipitated RNA forms a sharp band. Specific transcripts are purified from [ 32 P]RNA by physical separation of the transcript and hybridization probe using gel-exclusion chromatography. The gentleness of this technique enables the co-isolation of DNA and can facilitate the analysis of covalently joined RNA-DNA replication intermediates

  2. Microbial ecology of bacterially mediated PCB biodegradation

    International Nuclear Information System (INIS)

    Pettigrew, C.A. Jr.

    1989-01-01

    The roles of plasmid mediated and consortia mediated polychlorinated biphenyl (PCB) biodegradation by bacterial populations isolated from PCB contaminated freshwater sediments were investigated. PCB degrading bacteria were isolated by DNA:DNA colony hybridization, batch enrichments, and chemostat enrichment. Analysis of substrate removal and metabolite production were done using chlorinated biphenyl spray plates, reverse phase high pressure liquid chromatography, Cl - detection, and 14 C-labeled substrate mineralization methods. A bacterial consortium, designated LPS10, involved in a concerted metabolic attack on chlorinated biphenyls, was shown to mineralize 4-chlorobiphenyl (4CB) and 4,4'-dichlorobiphenyl (4,4' CB). The LPS10 consortium was isolated by both batch and chemostat enrichment using 4CB and biphenyl (BP) as sole carbon source and was found to have tree bacterial isolates that predominated; these included: Pseudomonas, testosteroni LPS10A which mediated the breakdown of 4CB and 4,4' CB to the putative meta-cleavage product and subsequently to 4-chlorobenzoic acid (4CBA), an isolate tentatively identified as an Arthrobacter sp. LPS10B which mediated 4CBA degradation, and Pseudomonas putida by A LPS10C whose role in the consortium has not been determined

  3. Environmental and Irradiation Effect on the Biosynthesis of Bio surfactant by Some Local Bacterial Isolates

    International Nuclear Information System (INIS)

    Ghoneimy, E.; Ahmed, S.; Desouki, S.; Rasmy, W.; El-Shahawy, M.

    2010-01-01

    Twenty eight bacterial isolates were isolated from The Suez Gulf sea water from the coast of the El-Nasr Petroleum Company on Suez Canal and formation water from overhead of an oil well in western desert of Egypt named (M68). Sixteen bacterial isolates were obtained from The Suez Gulf sea water. Twelve bacterial isolates were obtained from formation water (M68). The bacterial isolates were screened for bio surfactant production by using emulsification activity and haemolytic activity. The most potent two isolates N8 and S8 were selected according to three parameters; the ability of isolate to grow and produce surfactant on wide range of ph, temperature and salinity. The most promising bacterial isolates were subjected to different doses of gamma irradiation in a trial to improve their abilities for bio surfactant production which resulted in a passive effect on bio surfactant production

  4. Drug resistance patterns of bacterial isolates from infected wounds ...

    African Journals Online (AJOL)

    unhcc

    The resistance rate of S. aureus for penicillin was at 69.7%. Conclusions: High ... January 2013 to 30 December 2015 was conducted. BRHRLC is one of ... Wound infection, bacterial isolates, culture and antimicrobial susceptibility 113. Ethiop. J. Health ... Socio-demographic characteristic of patients and types of bacterial ...

  5. Bacterial natural transformation by highly fragmented and damaged DNA

    DEFF Research Database (Denmark)

    Overballe-Petersen, Søren; Harms, Klaus; Orlando, Ludovic Antoine Alexandre

    2013-01-01

    for microbes, but not as potential substrate for bacterial evolution. Here, we show that fragmented DNA molecules (≥20 bp) that additionally may contain abasic sites, cross-links, or miscoding lesions are acquired by the environmental bacterium Acinetobacter baylyi through natural transformation. With uptake......DNA molecules are continuously released through decomposition of organic matter and are ubiquitous in most environments. Such DNA becomes fragmented and damaged (often DNA is recognized as nutrient source...... of DNA from a 43,000-y-old woolly mammoth bone, we further demonstrate that such natural transformation events include ancient DNA molecules. We find that the DNA recombination is RecA recombinase independent and is directly linked to DNA replication. We show that the adjacent nucleotide variations...

  6. PROTOCOL FOR EXTRACTION OF BACTERIAL METAGENOME DNA TO PRAWN Macrobrachium carcinus L

    Directory of Open Access Journals (Sweden)

    J U González de la Cruz

    2011-07-01

    Full Text Available In this work we adapted a protocol for the extraction of metagenomic DNA (ADNmg bacteria in the digestive system (intestines, stomach and hepatopancreas of Macrobrachium carcinus L., with reference to the method of extracting bacterial DNA from soils and sediments (Rojas-Herrera et al., 2008. This methodology consisted of enzymatic, physics, mechanics and chemistry after a series of tests was abolished enzymatic lysis. However, the success ADNmg extraction was influenced mainly by the preparation of the samples, in particular the hepatopancreas, where it was necessary to remove the fat by thermal shock temperature and phase separation by centrifugation with the sample frozen.The effectiveness of isolated DNA fragmentation was verified by gel electrophoresis in denaturing gradient (DGGE after amplification with universal primers. In general, it had a low diversity (19 phylotypes between the different organs analyzed of 13.5 ± 1 (intestines to 11.7 ± 0.96 (stomach. The Shannon-Weaver index (2.45, Simpsons (10.88 and equity (0972 obtained from the digitization of the image of the gel, suggested that the phylotypes that form the gut microflora M. carcinus, is distributed unevenly between the different organs analyzed.

  7. Microbial interactions chapter: binding and entry of DNA in bacterial transformation

    Energy Technology Data Exchange (ETDEWEB)

    Lacks, S.A.

    1977-01-01

    Genetic transformation of bacteria by DNA released from cells of a related strain is discussed. The mechanism by which the giant information-bearing molecules of DNA are transported into the bacterial cell was investigated. It was concluded that the overall process of DNA uptake consists of two main steps, binding of donor DNA to the outside of the cell and entry of the bound DNA into the cell. Each step is discussed in detail. Inasmuch as these phenomena occur at the cell surface, they are related to structures and functions of the cell wall and membrane. In addition, the development of competence, that is the formation of cell surface structures allowing DNA uptake, is examined from both a physiological and evolutionary point of view. Genetic transfer mediated by free DNA is an obvious and important form of cellular interaction. The development of competence involves another, quite distinct system of interaction between bacterial cells. Streptococcus pneumoniae, Bacillus subtilis, and Hemophilus influenzae were used as the test organisms. 259 references.

  8. Assessing Genetic Heterogeneity within Bacterial Species Isolated from Gastrointestinal and Environmental Samples: How Many Isolates Does It Take?▿

    OpenAIRE

    Döpfer, D.; Buist, W.; Soyer, Y.; Munoz, M. A.; Zadoks, R. N.; Geue, L.; Engel, B.

    2008-01-01

    Strain typing of bacterial isolates is increasingly used to identify sources of infection or product contamination and to elucidate routes of transmission of pathogens or spoilage organisms. Usually, the number of bacterial isolates belonging to the same species that is analyzed per sample is determined by convention, convenience, laboratory capacity, or financial resources. Statistical considerations and knowledge of the heterogeneity of bacterial populations in various sources can be used t...

  9. Oviposition responses of Aedes mosquitoes to bacterial isolates from attractive bamboo infusions.

    Science.gov (United States)

    Ponnusamy, Loganathan; Schal, Coby; Wesson, Dawn M; Arellano, Consuelo; Apperson, Charles S

    2015-09-23

    The mosquitoes Aedes aegypti and Aedes albopictus are vectors of pathogenic viruses that cause major human illnesses including dengue, yellow fever and chikungunya. Both mosquito species are expanding their geographic distributions and now occur worldwide in temperate and tropical climates. Collection of eggs in oviposition traps (ovitraps) is commonly used for monitoring and surveillance of container-inhabiting Aedes populations by public health agencies charged with managing mosquito-transmitted illness. Addition of an organic infusion in these traps increases the number of eggs deposited. Gravid females are guided to ovitraps by volatile chemicals produced from the breakdown of organic matter by microbes. We previously isolated and cultured 14 species of bacteria from attractive experimental infusions, made from the senescent leaves of canebrake bamboo (Arundinaria gigantea). Cultures were grown for 24 h at 28 °C with constant shaking (120 rpm) and cell densities were determined with a hemocytometer. Behavioral responses to single bacterial isolates and to a mix of isolates at different cell densities were evaluated using two-choice sticky-screen bioassay methods with gravid Ae. aegypti and Ae. albopictus. In behavioral assays of a mix of 14 bacterial isolates, significantly greater attraction responses were exhibited by Ae. aegypti and Ae. albopictus to bacterial densities of 10(7) and 10(8) cells/mL than to the control medium. When we tested single bacterial isolates, seven isolates (B1, B2, B3, B5, B12, B13 and B14) were significantly attractive to Ae. aegypti, and six isolates (B1, B5, B7, B10, B13 and B14) significantly attracted Ae. albopictus. Among all the isolates tested at three different cell densities, bacterial isolates B1, B5, B13 and B14 were highly attractive to both Aedes species. Our results show that at specific cell densities, some bacteria significantly influence the attraction of gravid Ae. aegypti and Ae. albopictus females to

  10. Isolation and analysis of high quality nuclear DNA with reduced organellar DNA for plant genome sequencing and resequencing

    Directory of Open Access Journals (Sweden)

    Zdepski Anna

    2011-05-01

    Full Text Available Abstract Background High throughput sequencing (HTS technologies have revolutionized the field of genomics by drastically reducing the cost of sequencing, making it feasible for individual labs to sequence or resequence plant genomes. Obtaining high quality, high molecular weight DNA from plants poses significant challenges due to the high copy number of chloroplast and mitochondrial DNA, as well as high levels of phenolic compounds and polysaccharides. Multiple methods have been used to isolate DNA from plants; the CTAB method is commonly used to isolate total cellular DNA from plants that contain nuclear DNA, as well as chloroplast and mitochondrial DNA. Alternatively, DNA can be isolated from nuclei to minimize chloroplast and mitochondrial DNA contamination. Results We describe optimized protocols for isolation of nuclear DNA from eight different plant species encompassing both monocot and eudicot species. These protocols use nuclei isolation to minimize chloroplast and mitochondrial DNA contamination. We also developed a protocol to determine the number of chloroplast and mitochondrial DNA copies relative to the nuclear DNA using quantitative real time PCR (qPCR. We compared DNA isolated from nuclei to total cellular DNA isolated with the CTAB method. As expected, DNA isolated from nuclei consistently yielded nuclear DNA with fewer chloroplast and mitochondrial DNA copies, as compared to the total cellular DNA prepared with the CTAB method. This protocol will allow for analysis of the quality and quantity of nuclear DNA before starting a plant whole genome sequencing or resequencing experiment. Conclusions Extracting high quality, high molecular weight nuclear DNA in plants has the potential to be a bottleneck in the era of whole genome sequencing and resequencing. The methods that are described here provide a framework for researchers to extract and quantify nuclear DNA in multiple types of plants.

  11. Clinical bacterial isolates from hospital environment as agents of ...

    African Journals Online (AJOL)

    The relationship between bacteria isolated from the hospital environment and those from wounds of operated patients was investigated to determine the causal agents of surgical site nosocomial infections. The study was carried out on bacterial species isolated from the theatre, surgical ward and patients' surgical wounds ...

  12. POLYSACCHARIDES AND eDNA AID BACTERIAL ATTACHMENT TO POLYMER BRUSH COATINGS (PLL-g-PEG)

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Ogaki, Ryosuke; Regina, Viduthalai R.

    measured the adsorption of peptides, polysaccharides and DNA to these coatings, as they represent bacterial adhesins with very different properties. While protein adsorption was minimized, we found considerable adsorption of polysaccharides, and exposure to DNA resulted in complete desorption...... of the conventional coating. These results explain why S. epidermidis, which produces polysaccharides and extracellular DNA, could successfully colonize the conventional PLL-g-PEG coatings. The ability of high-density PLL-g-PEG to resist polysaccharides, DNA, and bacterial adhesion of all strains is thus highly......Polymer brush coatings of poly(ethylene glycol) are considered the gold standard for nonfouling surfaces, but nevertheless, a few bacteria manage to attach and initiate biofilm formation on these coatings. To achieve robust resistance against bacterial adhesion and biofilm formation, grafting...

  13. Isolation of cell-free bacterial inclusion bodies.

    Science.gov (United States)

    Rodríguez-Carmona, Escarlata; Cano-Garrido, Olivia; Seras-Franzoso, Joaquin; Villaverde, Antonio; García-Fruitós, Elena

    2010-09-17

    Bacterial inclusion bodies are submicron protein clusters usually found in recombinant bacteria that have been traditionally considered as undesirable products from protein production processes. However, being fully biocompatible, they have been recently characterized as nanoparticulate inert materials useful as scaffolds for tissue engineering, with potentially wider applicability in biomedicine and material sciences. Current protocols for inclusion body isolation from Escherichia coli usually offer between 95 to 99% of protein recovery, what in practical terms, might imply extensive bacterial cell contamination, not compatible with the use of inclusion bodies in biological interfaces. Using an appropriate combination of chemical and mechanical cell disruption methods we have established a convenient procedure for the recovery of bacterial inclusion bodies with undetectable levels of viable cell contamination, below 10⁻¹ cfu/ml, keeping the particulate organization of these aggregates regarding size and protein folding features. The application of the developed protocol allows obtaining bacterial free inclusion bodies suitable for use in mammalian cell cultures and other biological interfaces.

  14. Multicenter Evaluation of the Bruker MALDI Biotyper CA System for the Identification of Clinical Aerobic Gram-Negative Bacterial Isolates.

    Directory of Open Access Journals (Sweden)

    Matthew L Faron

    Full Text Available The prompt and accurate identification of bacterial pathogens is fundamental to patient health and outcome. Recent advances in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS have revolutionized bacterial identification in the clinical laboratory, but uniform incorporation of this technology in the U.S. market has been delayed by a lack of FDA-cleared systems. In this study, we conducted a multicenter evaluation of the MALDI Biotyper CA (MBT-CA System (Bruker Daltonics Inc, Billerica, MA for the identification of aerobic gram-negative bacteria as part of a 510(k submission to the FDA. A total of 2,263 aerobic gram negative bacterial isolates were tested representing 23 genera and 61 species. Isolates were collected from various clinical sources and results obtained from the MBT-CA System were compared to DNA sequencing and/or biochemical testing. Isolates that failed to report as a "high confidence species ID" [log(score ≥2.00] were re-tested using an extraction method. The MBT-CA System identified 96.8% and 3.1% of isolates with either a "high confidence" or a "low confidence" [log(score value between 1.70 and <2.00] species ID, respectively. Two isolates did not produce acceptable confidence scores after extraction. The MBT-CA System correctly identified 99.8% (2,258/2,263 to genus and 98.2% (2,222/2,263 to species level. These data demonstrate that the MBT-CA System provides accurate results for the identification of aerobic gram-negative bacteria.

  15. Multicenter Evaluation of the Bruker MALDI Biotyper CA System for the Identification of Clinical Aerobic Gram-Negative Bacterial Isolates.

    Science.gov (United States)

    Faron, Matthew L; Buchan, Blake W; Hyke, Josh; Madisen, Neil; Lillie, Jennifer L; Granato, Paul A; Wilson, Deborah A; Procop, Gary W; Novak-Weekley, Susan; Marlowe, Elizabeth; Cumpio, Joven; Griego-Fullbright, Christen; Kindig, Sandra; Timm, Karen; Young, Stephen; Ledeboer, Nathan A

    2015-01-01

    The prompt and accurate identification of bacterial pathogens is fundamental to patient health and outcome. Recent advances in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) have revolutionized bacterial identification in the clinical laboratory, but uniform incorporation of this technology in the U.S. market has been delayed by a lack of FDA-cleared systems. In this study, we conducted a multicenter evaluation of the MALDI Biotyper CA (MBT-CA) System (Bruker Daltonics Inc, Billerica, MA) for the identification of aerobic gram-negative bacteria as part of a 510(k) submission to the FDA. A total of 2,263 aerobic gram negative bacterial isolates were tested representing 23 genera and 61 species. Isolates were collected from various clinical sources and results obtained from the MBT-CA System were compared to DNA sequencing and/or biochemical testing. Isolates that failed to report as a "high confidence species ID" [log(score) ≥2.00] were re-tested using an extraction method. The MBT-CA System identified 96.8% and 3.1% of isolates with either a "high confidence" or a "low confidence" [log(score) value between 1.70 and <2.00] species ID, respectively. Two isolates did not produce acceptable confidence scores after extraction. The MBT-CA System correctly identified 99.8% (2,258/2,263) to genus and 98.2% (2,222/2,263) to species level. These data demonstrate that the MBT-CA System provides accurate results for the identification of aerobic gram-negative bacteria.

  16. Invitro antimicrobial susceptibility pattern of bacterial isolates from ...

    African Journals Online (AJOL)

    ... of bacterial isolates from wound infections in university of Ilorin Teaching Hospital. ... The Fluoroquino lones are the favoured antimicrobial agents nowadays, ... In our environment however, a combination of Cloxacillin and Gentamicin is an ...

  17. DNA fingerprinting of spore-forming bacterial isolates, using Bacillus ...

    African Journals Online (AJOL)

    Bc-repetitive extragenic palindromic polymerase chain reaction (Bc-Rep PCR) analysis was conducted on seven Bacillus thuringiensis isolates accessed from the Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ) culture collection and on five local isolates of entomopathogenic spore-forming bacteria.

  18. Isolation of Biosurfactant–Producing Bacteria with Antimicrobial Activity against Bacterial Pathogens

    Directory of Open Access Journals (Sweden)

    Siripun Sarin

    2011-01-01

    Full Text Available The aims of this research were to study biosurfactant producing bacteria isolated from soil and to determine their property and efficiency as biosurfactants in order to inhibit bacterial pathogens. The result showed that there were 8 bacterial isolates out of 136 isolates of the total biosurfactant producing bacteria screened that exhibited the diameter of clear zone more than 1.5 cm. in the oil spreading test. The highest potential of emulsifying activity (%EA24 of 54.4 and the maximum additive concentration, (%MAC of 24.2 was obtained from the fermentation broth of the G7 isolate which the G7 isolate was later identified as Pseudomonas fluorescens. Escherichia coli, Staphylococcus aureus and Psuedomonas aeruginosa were the tested bacterial pathogens that were most sensitive to the acid precipitated biosurfactant obtained from P. fluorescens G7 with the lowest minimum inhibitory concentration (MIC of 41.6 mg/ml and minimum bactericidal concentration (MBC of 41.6 mg/ml compared with the acid precipitated bisurfactants of the other isolates used in the antimicrobial activity test. The type of the separated crude biosurfactant produced by P. fluorescens G7 analyzed later by using the rhamose test, TLC and FT-IR techniques was rhamnolipid.

  19. Identifying the bacterial community on the surface of Intralox belting in a meat boning room by culture-dependent and culture-independent 16S rDNA sequence analysis.

    Science.gov (United States)

    Brightwell, Gale; Boerema, Jackie; Mills, John; Mowat, Eilidh; Pulford, David

    2006-05-25

    We examined the bacterial community present on an Intralox conveyor belt system in an operating lamb boning room by sequencing the 16S ribosomal DNA (rDNA) of bacteria extracted in the presence or absence of cultivation. RFLP patterns for 16S rDNA clone library and cultures were generated using HaeIII and MspI restriction endonucleases. 16S rDNA amplicons produced 8 distinct RFLP pattern groups. RFLP groups I-IV were represented in the clone library and RFLP groups I and V-VIII were represented amongst the cultured isolates. Partial DNA sequences from each RFLP group revealed that all group I, II and VIII representatives were Pseudomonas spp., group III were Sphingomonas spp., group IV clones were most similar to an uncultured alpha proteobacterium, group V was similar to a Serratia spp., group VI with an Alcaligenes spp., and group VII with Microbacterium spp. Sphingomonads were numerically dominant in the culture-independent clone library and along with the group IV alpha proteobacterium were not represented amongst the cultured isolates. Serratia, Alcaligenes and Microbacterium spp. were only represented with cultured isolates. Pseudomonads were detected by both culture-dependent (84% of isolates) and culture-independent (12.5% of clones) methods and their presence at high frequency does pose the risk of product spoilage if transferred onto meat stored under aerobic conditions. The detection of sphingomonads in large numbers by the culture-independent method demands further analysis because sphingomonads may represent a new source of meat spoilage that has not been previously recognised in the meat processing environment. The 16S rDNA collections generated by both methods were important at representing the diversity of the bacterial population associated with an Intralox conveyor belt system.

  20. Isolation and in vitro evaluation of bacteriophages against MDR-bacterial isolates from septic wound infections.

    Directory of Open Access Journals (Sweden)

    Roja Rani Pallavali

    Full Text Available Multi-drug resistance has become a major problem for the treatment of pathogenic bacterial infections. The use of bacteriophages is an attractive approach to overcome the problem of drug resistance in several pathogens that cause fatal diseases. Our study aimed to isolate multi drug resistant bacteria from patients with septic wounds and then isolate and apply bacteriophages in vitro as alternative therapeutic agents. Pus samples were aseptically collected from Rajiv Gandhi Institute of Medical Science (RIMS, Kadapa, A.P., and samples were analyzed by gram staining, evaluating morphological characteristics, and biochemical methods. MDR-bacterial strains were collected using the Kirby-Bauer disk diffusion method against a variety of antibiotics. Bacteriophages were collected and tested in vitro for lytic activity against MDR-bacterial isolates. Analysis of the pus swab samples revealed that the most of the isolates detected had Pseudomonas aeruginosa as the predominant bacterium, followed by Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli. Our results suggested that gram-negative bacteria were more predominant than gram-positive bacteria in septic wounds; most of these isolates were resistant to ampicillin, amoxicillin, penicillin, vancomycin and tetracycline. All the gram-positive isolates (100% were multi-drug resistant, whereas 86% of the gram-negative isolates had a drug resistant nature. Further bacteriophages isolated from sewage demonstrated perfect lytic activity against the multi-drug resistant bacteria causing septic wounds. In vitro analysis of the isolated bacteriophages demonstrated perfect lysis against the corresponding MDR-bacteria, and these isolated phages may be promising as a first choice for prophylaxis against wound sepsis, Moreover, phage therapy does not enhance multi-drug resistance in bacteria and could work simultaneously on a wide variety of MDR-bacteria when used in a bacteriophage cocktail. Hence

  1. Bacteriophage-encoded shiga toxin gene in atypical bacterial host

    Directory of Open Access Journals (Sweden)

    Casas Veronica

    2011-07-01

    Full Text Available Abstract Background Contamination from fecal bacteria in recreational waters is a major health concern since bacteria capable of causing human disease can be found in animal feces. The Dog Beach area of Ocean Beach in San Diego, California is a beach prone to closures due to high levels of fecal indicator bacteria (FIB. A potential source of these FIB could be the canine feces left behind by owners who do not clean up after their pets. We tested this hypothesis by screening the DNA isolated from canine feces for the bacteriophage-encoded stx gene normally found in the virulent strains of the fecal bacterium Escherichia coli. Results Twenty canine fecal samples were collected, processed for total and bacterial fraction DNA, and screened by PCR for the stx gene. The stx gene was detected in the total and bacterial fraction DNA of one fecal sample. Bacterial isolates were then cultivated from the stx-positive fecal sample. Eighty nine of these canine fecal bacterial isolates were screened by PCR for the stx gene. The stx gene was detected in five of these isolates. Sequencing and phylogenetic analyses of 16S rRNA gene PCR products from the canine fecal bacterial isolates indicated that they were Enterococcus and not E. coli. Conclusions The bacteriophage-encoded stx gene was found in multiple species of bacteria cultivated from canine fecal samples gathered at the shoreline of the Dog Beach area of Ocean Beach in San Diego, California. The canine fecal bacteria carrying the stx gene were not the typical E. coli host and were instead identified through phylogenetic analyses as Enterococcus. This suggests a large degree of horizontal gene transfer of exotoxin genes in recreational waters.

  2. A novel bacterial isolate Stenotrophomonas maltophilia as living factory for synthesis of gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Shekhawat G

    2009-07-01

    Full Text Available Abstract Background The synthesis of gold nanoparticles (GNPs has received considerable attention with their potential applications in various life sciences related applications. Recently, there has been tremendous excitement in the study of nanoparticles synthesis by using some natural biological system, which has led to the development of various biomimetic approaches for the growth of advanced nanomaterials. In the present study, we have demonstrated the synthesis of gold nanoparticles by a novel bacterial strain isolated from a site near the famous gold mines in India. A promising mechanism for the biosynthesis of GNPs by this strain and their stabilization via charge capping was investigated. Results A bacterial isolate capable of gold nanoparticle synthesis was isolated and identified as a novel strain of Stenotrophomonas malophilia (AuRed02 based on its morphology and an analysis of its 16S rDNA gene sequence. After 8 hrs of incubation, monodisperse preparation of gold nanoparticles was obtained. Gold nanoparticles were characterized and found to be of ~40 nm size. Electrophoresis, Zeta potential and FTIR measurements confirmed that the particles are capped with negatively charged phosphate groups from NADP rendering them stable in aqueous medium. Conclusion The process of synthesis of well-dispersed nanoparticles using a novel microorganism isolated from the gold enriched soil sample has been reported in this study, leading to the development of an easy bioprocess for synthesis of GNPs. This is the first study in which an extensive characterization of the indigenous bacterium isolated from the actual gold enriched soil was conducted. Promising mechanism for the biosynthesis of GNPs by the strain and their stabilization via charge capping is suggested, which involves an NADPH-dependent reductase enzyme that reduces Au3+ to Au0 through electron shuttle enzymatic metal reduction process.

  3. Bacterial biomass and DNA diversity in an alluvial meadow soil upon long-term fertilization

    NARCIS (Netherlands)

    Naumova, N.B.; Kuikman, P.J.

    2001-01-01

    The denaturing gradient gel-electrophoresis of bacterial DNA fragments and the assessment of bacterial biomass revealed changes in the diversity of the bacterial community in a meadow alluvial soil upon long-term fertilization.

  4. Large Preferred Region for Packaging of Bacterial DNA by phiC725A, a Novel Pseudomonas aeruginosa F116-Like Bacteriophage.

    Directory of Open Access Journals (Sweden)

    Christine Pourcel

    Full Text Available Bacteriophage vB_PaeP_PAO1_phiC725A (short name phiC725A was isolated following mitomycin C induction of C7-25, a clinical Pseudomonas aeruginosa strain carrying phiC725A as a prophage. The phiC725A genome sequence shows similarity to F116, a P. aeruginosa podovirus capable of generalized transduction. Likewise, phiC725A is a podovirus with long tail fibers. PhiC725A was able to lysogenize two additional P. aeruginosa strains in which it was maintained both as a prophage and in an episomal state. Investigation by deep sequencing showed that bacterial DNA carried inside phage particles originated predominantly from a 700-800kb region, immediately flanking the attL prophage insertion site, whether the phages were induced from a lysogen or recovered after infection. This indicates that during productive replication, recombination of phage genomes with the bacterial chromosome at the att site occurs occasionally, allowing packaging of adjacent bacterial DNA.

  5. Isolasi, Seleksi Dan Opttmasi Produksi Protease Daribeberapaisolat Bakteri*(isolation, Selection and Optimalization of Protease Production of Some Bacterial Isolates)

    OpenAIRE

    Naiola, Elidar; Widhyastuti, Nunuk

    2002-01-01

    Thirty-seven out of sixty-one bacterial isolates from various sources of samples were screened for protease production. The isolate of ISO PL3 could produce the highest enzyme activity, and it was used as a standard bacterial strain in this observation. For any reason,we implemented ISO PL2 to study the optimum condition for producing bacterial protease. Result shows that the maximum protease activity was obtained in a medium containing 100 gram of rice brand in a liter tofu liquid waste. The...

  6. Towards understanding the molecular basis of bacterial DNA segregation

    DEFF Research Database (Denmark)

    Leonard, Thomas A.; Møller-Jensen, Jakob; Löwe, Jan

    2005-01-01

    Bacteria ensure the fidelity of genetic inheritance by the coordinated control of chromosome segregation and cell division. Here, we review the molecules and mechanisms that govern the correct subcellular positioning and rapid separation of newly replicated chromosomes and plasmids towards the ce...... common to the two processes. Finally, we discuss the role that the bacterial cytoskeleton plays in DNA partitioning and the missing link between prokaryotes and eukaryotes that is bacterial mechano-chemical motor proteins. Udgivelsesdato: Mar 29...

  7. Construction and applications of DNA probes for detection of polychlorinated biphenyl-degrading genotypes in toxic organic-contaminated soil environments

    International Nuclear Information System (INIS)

    Walia, S.; Khan, A.; Rosenthal, N.

    1990-01-01

    Several DNA probes for polychlorinated biphenyl (PCB)-degrading genotypes were constructed from PCB-degrading bacteria. These laboratory-engineered DNA probes were used for the detection, enumeration, and isolation of specific bacteria degrading PCBs. Dot blot analysis of purified DNA from toxic organic chemical-contaminated soil bacterial communities showed positive DNA-DNA hybridization with a 32P-labeled DNA probe (pAW6194, cbpABCD). Less than 1% of bacterial colonies isolated from garden topsoil and greater than 80% of bacteria isolated from PCB-contaminated soils showed DNA homologies with 32P-labeled DNA probes. Some of the PCB-degrading bacterial isolates detected by the DNA probe method did not show biphenyl clearance. The DNA probe method was found to detect additional organisms with greater genetic potential to degrade PCBs than the biphenyl clearance method did. Results from this study demonstrate the usefulness of DNA probes in detecting specific PCB-degrading bacteria, abundance of PCB-degrading genotypes, and genotypic diversity among PCB-degrading bacteria in toxic chemical-polluted soil environments. We suggest that the DNA probe should be used with caution for accurate assessment of PCB-degradative capacity within soils and further recommend that a combination of DNA probe and biodegradation assay be used to determine the abundance of PCB-degrading bacteria in the soil bacterial community

  8. Spectrum and Sensitivity of Bacterial Keratitis Isolates in Auckland

    Directory of Open Access Journals (Sweden)

    S. Marasini

    2016-01-01

    Full Text Available Background. The bacteria isolated from severe cases of keratitis and their antibiotic sensitivity are recognised to vary geographically and over time. Objectives. To identify the most commonly isolated bacteria in keratitis cases admitted over a 24-month period to a public hospital in Auckland, New Zealand, and to investigate in vitro sensitivity to antibiotics. Methods. Hospital admissions for culture-proven bacterial keratitis between January 2013 and December 2014 were identified. Laboratory records of 89 culture positive cases were retrospectively reviewed and antibiotic sensitivity patterns compared with previous studies from other NZ centres. Results. From 126 positive cultures, 35 species were identified. Staphylococcus was identified to be the most common isolate (38.2%, followed by Pseudomonas (21.3%. Over the last decade, infection due to Pseudomonas species, in the same setting, has increased (p≤0.05. Aminoglycosides, cefazolin, ceftazidime, erythromycin, tetracycline, and doxycycline were 100% effective against tested isolates in vitro. Amoxicillin (41.6%, cefuroxime (33.3%, and chloramphenicol (94.7% showed reduced efficacy against Gram-negative bacteria, whereas penicillin (51% and ciprofloxacin (98.8% showed reduced efficacy against Gram-positive bacteria. Conclusions. Despite a shift in the spectrum of bacterial keratitis isolates, antibiotic sensitivity patterns have generally remained stable and show comparability to results within the last decade from NZ centres.

  9. Spectrum and Sensitivity of Bacterial Keratitis Isolates in Auckland.

    Science.gov (United States)

    Marasini, S; Swift, S; Dean, S J; Ormonde, S E; Craig, J P

    2016-01-01

    Background. The bacteria isolated from severe cases of keratitis and their antibiotic sensitivity are recognised to vary geographically and over time. Objectives. To identify the most commonly isolated bacteria in keratitis cases admitted over a 24-month period to a public hospital in Auckland, New Zealand, and to investigate in vitro sensitivity to antibiotics. Methods. Hospital admissions for culture-proven bacterial keratitis between January 2013 and December 2014 were identified. Laboratory records of 89 culture positive cases were retrospectively reviewed and antibiotic sensitivity patterns compared with previous studies from other NZ centres. Results. From 126 positive cultures, 35 species were identified. Staphylococcus was identified to be the most common isolate (38.2%), followed by Pseudomonas (21.3%). Over the last decade, infection due to Pseudomonas species, in the same setting, has increased (p ≤ 0.05). Aminoglycosides, cefazolin, ceftazidime, erythromycin, tetracycline, and doxycycline were 100% effective against tested isolates in vitro. Amoxicillin (41.6%), cefuroxime (33.3%), and chloramphenicol (94.7%) showed reduced efficacy against Gram-negative bacteria, whereas penicillin (51%) and ciprofloxacin (98.8%) showed reduced efficacy against Gram-positive bacteria. Conclusions. Despite a shift in the spectrum of bacterial keratitis isolates, antibiotic sensitivity patterns have generally remained stable and show comparability to results within the last decade from NZ centres.

  10. Spectrum and Sensitivity of Bacterial Keratitis Isolates in Auckland

    Science.gov (United States)

    Swift, S.; Dean, S. J.; Ormonde, S. E.

    2016-01-01

    Background. The bacteria isolated from severe cases of keratitis and their antibiotic sensitivity are recognised to vary geographically and over time. Objectives. To identify the most commonly isolated bacteria in keratitis cases admitted over a 24-month period to a public hospital in Auckland, New Zealand, and to investigate in vitro sensitivity to antibiotics. Methods. Hospital admissions for culture-proven bacterial keratitis between January 2013 and December 2014 were identified. Laboratory records of 89 culture positive cases were retrospectively reviewed and antibiotic sensitivity patterns compared with previous studies from other NZ centres. Results. From 126 positive cultures, 35 species were identified. Staphylococcus was identified to be the most common isolate (38.2%), followed by Pseudomonas (21.3%). Over the last decade, infection due to Pseudomonas species, in the same setting, has increased (p ≤ 0.05). Aminoglycosides, cefazolin, ceftazidime, erythromycin, tetracycline, and doxycycline were 100% effective against tested isolates in vitro. Amoxicillin (41.6%), cefuroxime (33.3%), and chloramphenicol (94.7%) showed reduced efficacy against Gram-negative bacteria, whereas penicillin (51%) and ciprofloxacin (98.8%) showed reduced efficacy against Gram-positive bacteria. Conclusions. Despite a shift in the spectrum of bacterial keratitis isolates, antibiotic sensitivity patterns have generally remained stable and show comparability to results within the last decade from NZ centres. PMID:27213052

  11. Evaluation of DNA extraction methods for PCR-based detection of Listeria monocytogenes from vegetables.

    Science.gov (United States)

    Vojkovska, H; Kubikova, I; Kralik, P

    2015-03-01

    Epidemiological data indicate that raw vegetables are associated with outbreaks of Listeria monocytogenes. Therefore, there is a demand for the availability of rapid and sensitive methods, such as PCR assays, for the detection and accurate discrimination of L. monocytogenes. However, the efficiency of PCR methods can be negatively affected by inhibitory compounds commonly found in vegetable matrices that may cause false-negative results. Therefore, the sample processing and DNA isolation steps must be carefully evaluated prior to the introduction of such methods into routine practice. In this study, we compared the ability of three column-based and four magnetic bead-based commercial DNA isolation kits to extract DNA of the model micro-organism L. monocytogenes from raw vegetables. The DNA isolation efficiency of all isolation kits was determined using a triplex real-time qPCR assay designed to specifically detect L. monocytogenes. The kit with best performance, the PowerSoil(™) Microbial DNA Isolation Kit, is suitable for the extraction of amplifiable DNA from L. monocytogenes cells in vegetable with efficiencies ranging between 29.6 and 70.3%. Coupled with the triplex real-time qPCR assay, this DNA isolation kit is applicable to the samples with bacterial loads of 10(3) bacterial cells per gram of L. monocytogenes. Several recent outbreaks of Listeria monocytogenes have been associated with the consumption of fruits and vegetables. Real-time PCR assays allow fast detection and accurate quantification of microbes. However, the success of real-time PCR is dependent on the success with which template DNA can be extracted. The results of this study suggest that the PowerSoil(™) Microbial DNA Isolation Kit can be used for the extraction of amplifiable DNA from L. monocytogenes cells in vegetable with efficiencies ranging between 29.6 and 70.3%. This method is applicable to samples with bacterial loads of 10(3) bacterial cells per gram of L. monocytogenes. © 2014

  12. Pseudomonas floridensis sp. nov., a bacterial pathogen isolated from tomato.

    Science.gov (United States)

    Timilsina, Sujan; Minsavage, Gerald V; Preston, James; Newberry, Eric A; Paret, Matthews L; Goss, Erica M; Jones, Jeffrey B; Vallad, Gary E

    2018-01-01

    An unusual fluorescent pseudomonad was isolated from tomato exhibiting leaf spot symptoms similar to bacterial speck. Strains were fluorescent, oxidase- and arginine-dihydrolase-negative, elicited a hypersensitive reaction on tobacco and produced a soft rot on potato slices. However, the strains produced an unusual yellow, mucoid growth on media containing 5 % sucrose that is not typical of levan. Based on multilocus sequence analysis using 16S rRNA, gap1, gltA, gyrB and rpoD, these strains formed a distinct phylogenetic group in the genus Pseudomonas and were most closely related to Pseudomonas viridiflava within the Pseudomonassyringae complex. Whole-genome comparisons, using average nucleotide identity based on blast, of representative strain GEV388 T and publicly available genomes representing the genus Pseudomonas revealed phylogroup 7 P. viridiflava strain UASW0038 and P. viridiflava type strain ICMP 2848 T as the closest relatives with 86.59 and 86.56 % nucleotide identity, respectively. In silico DNA-DNA hybridization using the genome-to-genome distance calculation method estimated 31.1 % DNA relatedness between GEV388 T and P. viridiflava ATCC 13223 T , strongly suggesting the strains are representatives of different species. These results together with Biolog GEN III tests, fatty acid methyl ester profiles and phylogenetic analysis using 16S rRNA and multiple housekeeping gene sequences demonstrated that this group represents a novel species member of the genus Pseudomonas. The name Pseudomonas floridensis sp. nov. is proposed with GEV388 T (=LMG 30013 T =ATCC TSD-90 T ) as the type strain.

  13. Isolation of Bacterial Strain for Biodegradation of Fats, Oil and Grease

    International Nuclear Information System (INIS)

    Alkhatib, M.F.; Mohd Zahangir Alam; Shabana, H.F.M.

    2015-01-01

    Fat, oil and grease (FOG) deposition is one of the major problems that harm the environment and cause dissatisfaction for human. Uncontrolled and un-pre-treated FOG removal from the kitchen could lead to its accumulation in the piping system. Problems include the interference of fat with the aerobic microorganisms that are responsible in treating the wastewater by reducing oxygen transfer rates and for anaerobic microorganisms; their efficiency could also be reduced due to the reduction of the transport of soluble substrates to the bacterial biomass. Biodegradation could be one of the effective means to treat FOG. The main objective of this study is to isolate bacterial strains from the FOG waste and identify the strains that are capable in biodegrading FOG waste. FOG sample was collected from a sewer manhole. Enrichment technique was applied, followed by isolation of bacterial strains to determine which strain is able to degrade the FOG deposition. Some morphology for the bacterial strain was done to determine its characteristics. (author)

  14. Isolation of full-length putative rat lysophospholipase cDNA using improved methods for mRNA isolation and cDNA cloning

    International Nuclear Information System (INIS)

    Han, J.H.; Stratowa, C.; Rutter, W.J.

    1987-01-01

    The authors have cloned a full-length putative rat pancreatic lysophospholipase cDNA by an improved mRNA isolation method and cDNA cloning strategy using [ 32 P]-labelled nucleotides. These new methods allow the construction of a cDNA library from the adult rat pancreas in which the majority of recombinant clones contained complete sequences for the corresponding mRNAs. A previously recognized but unidentified long and relatively rare cDNA clone containing the entire sequence from the cap site at the 5' end to the poly(A) tail at the 3' end of the mRNA was isolated by single-step screening of the library. The size, amino acid composition, and the activity of the protein expressed in heterologous cells strongly suggest this mRNA codes for lysophospholipase

  15. How conserved are the bacterial communities associated with aphids? A detailed assessment of the Brevicoryne brassicae (Hemiptera: Aphididae) using 16S rDNA.

    Science.gov (United States)

    Clark, E L; Daniell, T J; Wishart, J; Hubbard, S F; Karley, A J

    2012-12-01

    Aphids harbor a community of bacteria that include obligate and facultative endosymbionts belonging to the Enterobacteriaceae along with opportunistic, commensal, or pathogenic bacteria. This study represents the first detailed analysis of the identity and diversity of the bacterial community associated with the cabbage aphid, Brevicoryne brassicae (L.). 16S rDNA sequence analysis revealed that the community of bacteria associated with B. brassicae was diverse, with at least four different bacterial community types detected among aphid lines, collected from widely dispersed sites in Northern Britain. The bacterial sequence types isolated from B. brassicae showed little similarity to any bacterial endosymbionts characterized in insects; instead, they were closely related to free-living extracellular bacterial species that have been isolated from the aphid gut or that are known to be present in the environment, suggesting that they are opportunistic bacteria transmitted between the aphid gut and the environment. To quantify variation in bacterial community between aphid lines, which was driven largely by differences in the proportions of two dominant bacterial orders, the Pseudomonales and the Enterobacteriales, we developed a novel real-time (Taqman) qPCR assay. By improving our knowledge of aphid microbial ecology, and providing novel molecular tools to examine the presence and function of the microbial community, this study forms the basis of further research to explore the influence of the extracellular bacterial community on aphid fitness, pest status, and susceptibility to control by natural enemies.

  16. A Novel AT-Rich DNA Recognition Mechanism for Bacterial Xenogeneic Silencer MvaT.

    Directory of Open Access Journals (Sweden)

    Pengfei Ding

    2015-06-01

    Full Text Available Bacterial xenogeneic silencing proteins selectively bind to and silence expression from many AT rich regions of the chromosome. They serve as master regulators of horizontally acquired DNA, including a large number of virulence genes. To date, three distinct families of xenogeneic silencers have been identified: H-NS of Proteobacteria, Lsr2 of the Actinomycetes, and MvaT of Pseudomonas sp. Although H-NS and Lsr2 family proteins are structurally different, they all recognize the AT-rich DNA minor groove through a common AT-hook-like motif, which is absent in the MvaT family. Thus, the DNA binding mechanism of MvaT has not been determined. Here, we report the characteristics of DNA sequences targeted by MvaT with protein binding microarrays, which indicates that MvaT prefers binding flexible DNA sequences with multiple TpA steps. We demonstrate that there are clear differences in sequence preferences between MvaT and the other two xenogeneic silencer families. We also determined the structure of the DNA-binding domain of MvaT in complex with a high affinity DNA dodecamer using solution NMR. This is the first experimental structure of a xenogeneic silencer in complex with DNA, which reveals that MvaT recognizes the AT-rich DNA both through base readout by an "AT-pincer" motif inserted into the minor groove and through shape readout by multiple lysine side chains interacting with the DNA sugar-phosphate backbone. Mutations of key MvaT residues for DNA binding confirm their importance with both in vitro and in vivo assays. This novel DNA binding mode enables MvaT to better tolerate GC-base pair interruptions in the binding site and less prefer A tract DNA when compared to H-NS and Lsr2. Comparison of MvaT with other bacterial xenogeneic silencers provides a clear picture that nature has evolved unique solutions for different bacterial genera to distinguish foreign from self DNA.

  17. The role indigenous bacterial isolates for bioremediation agent in the uranium contaminated aquatic environment

    International Nuclear Information System (INIS)

    Mochd Yazid

    2014-01-01

    A Research on the role of indigenous bacterial isolates for bio-remediation agent of the uranium contaminated in the aquatic environment has been conducted. The objective of the research is to study the role of Pseudomonas sp and Bacillus sp. have been isolated from low level uranium waste for bioremediation agent in their environment, such as the determination of efficiency of the uranium binding compared by the non indigenous bacterial, location of these binding and the influences of added acethyl acid stimulant. The uranium reduction studied was measured by weighting bacterial biomass and uranium concentration was measured by spectrophotometer. The acethyl acid stimulant addition has been done with the variation of concentration and volume. The efficiency of the uranium reduction by indigenous bacterial isolate such as Pseudomonas sp were 84.99 % and Bacillus sp were 52.70 %, so the reduction efficiency by non indigenous bacterial such as Pseudomonas aerogenes were 78.47 % and Bacillus subtilis were 45.22 % for 54 hours incubation time. The result of this research can be concluded that Pseudomonas sp and Bacillus sp. Indigenous bacterial have been isolates from the liquid uranium waste can contributed in bioremediation agent for uranium radionuclide in the environment for 60 ppm concentration with reduction efficiency 52.70 %-84.99 %, that is higher non indigenous bacterial for 54 hours incubation time, the stimulant addition of acethyl acid, the efficiency can be increased up to 99.8 %. (author)

  18. Prevalent Bacterial Species and Novel Phylotypes in Advanced Noma Lesions

    OpenAIRE

    Paster, B. J.; Falkler, Jr., W. A.; Enwonwu, C. O.; Idigbe, E. O.; Savage, K. O.; Levanos, V. A.; Tamer, M. A.; Ericson, R. L.; Lau, C. N.; Dewhirst, F. E.

    2002-01-01

    The purpose of this study was to determine the bacterial diversity in advanced noma lesions using culture-independent molecular methods. 16S ribosomal DNA bacterial genes from DNA isolated from advanced noma lesions of four Nigerian children were PCR amplified with universally conserved primers and spirochetal selective primers and cloned into Escherichia coli. Partial 16S rRNA sequences of approximately 500 bases from 212 cloned inserts were used initially to determine species identity or cl...

  19. Spectrum and Sensitivity of Bacterial Keratitis Isolates in Auckland

    OpenAIRE

    Marasini, S.; Swift, S.; Dean, S. J.; Ormonde, S. E.; Craig, J. P.

    2016-01-01

    Background. The bacteria isolated from severe cases of keratitis and their antibiotic sensitivity are recognised to vary geographically and over time. Objectives. To identify the most commonly isolated bacteria in keratitis cases admitted over a 24-month period to a public hospital in Auckland, New Zealand, and to investigate in vitro sensitivity to antibiotics. Methods. Hospital admissions for culture-proven bacterial keratitis between January 2013 and December 2014 were identified. Laborato...

  20. Multiple antimicrobial resistance in bacterial isolates from clinical ...

    African Journals Online (AJOL)

    A total of 545 clinical specimens (pus, blood, urine, and stool) and environmental specimens (air sample, saline solution, nasal swabs etc) were cultured for isolation and identification of aerobic bacteria and antimicrobial susceptibility testing. Out of these, 356(65%) specimens yielded one or more bacterial strains. Frequent ...

  1. Drug sensitivity patterns of bacterial isolates from septic post ...

    African Journals Online (AJOL)

    Background: Wound infections have been a problem in the field of surgery for a long time.Advances in control of infections have not completely eradicated this ... of bacterial isolates from septic postoperative wounds in Jinja hospital, Uganda.

  2. DNA isolation from rat tail or ear

    NARCIS (Netherlands)

    Cuppen, E.

    2010-01-01

    This protocol describes a rapid procedure for isolating DNA from rat tail or ear punches. The simplest version of the protocol can be scaled for use in 96-well (deep-well) plates. The quality of the DNA is sufficient for any polymerase chain reaction (PCR)-based genotyping approach.

  3. Plasmid profiling of bacterial isolates from confined environments

    Science.gov (United States)

    van Houdt, Rob; Provoost, Ann; Coninx, Ilse; Leys, Natalie; Mergeay, Max

    Plasmid profiling of bacterial isolates from confined environments R. Van Houdt, I. Coninx, A. Provoost, N. Leys, and M. Mergeay Expertise group for Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, B-2400 Mol, Belgium. Human exploration of extreme and isolated hostile environments such as space requires special confined small volume habitats to protect and house the crew. However, human confinement in such small volume habitats has restrictions on waste disposal and personal hygiene and inevitably generates a particular community of microorganisms within the habitat. These microorganisms are mainly originating from the crew (skin, mucous membranes, upper respiratory tract, mouth, and gastrointestinal tract) but also include the residing environmental microorganisms. Earth-based confined habitats such as the Antarctic Research Station Concordia are used as test beds for long-duration spaceflights to study the physiologic and psychological adaptation to isolated environments. The dynamics of the environmental microbial population in such a test bed could render additional insights in assessing the potential health risks in long-duration space missions. Not only total bacterial contamination levels are important, but it is essential to identify also the predominant microbial taxa and their mobile genetic elements (MGE). These MGEs could be exchanged between bacteria by horizontal gene transfer and may alter the pathogenic potential since they often carry antibiotic resistance or more in general adaptation-enhancing traits. In this study several bacterial strains isolated in the Concordia research station were examined for their plasmid content. An optimized protocol for extraction of large plasmids showed the present of at least one plasmid in 50% of the strains. For all strains the minimal inhibitory concentration of a range of antibiotics was determined indicating resistance to

  4. Metabolic fingerprinting of bacterial strains isolated from northern areas of Pakistan

    International Nuclear Information System (INIS)

    Zaheer, A.; Latif, Z.

    2017-01-01

    The diversity of Plant Growth Promoting Rhizobacteria (PGPR) in the rhizosphere plays a key role in the maintenance of sustainable agricultural system. In this study, samples were obtained from northern areas of Pakistan. Thirty bacterial strains were isolated, purified, characterized biochemically and subjected to the metabolic fingerprinting by performing nitrogen fixation, phosphate solubilization, protease, indole acetic acid (IAA) production, antibiotic susceptibility and heavy metal resistance test, lead acetate assay for the H2S production. Strains showing distinct characteristics were further characterized by 16S rDNA sequencing and characterized as Bacillus pumilus (KT273321), Acinetobacter baumanii (KT273323), Acinetobacter junii (KT273324), Pseudomonas aeruginosa (KT273325), Bacillus circulans (KT273326) and Bacillus cereus (KT273327). As most of the strains show positive results for resistance against heavy metals, phosphate solubilization, nitrogen fixation, IAA production, and so these strains might be utilized for the removal of heavy metals from the ecosystem as well as biofertilizer in agriculture lands of northern areas. (author)

  5. Methods to classify bacterial pathogens in cystic fibrosis

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Nielsen, Xiaohui Chen; Johansen, Ulla

    2011-01-01

    for identification of isolates from the Burkholderia complex to the species level. DNA typing by PFGE, which can be used for any bacterial pathogen, is described as it is employed for Pseudomonas aeruginosa. A commercially available ELISA method is described for measuring IgG antibodies against P. aeruginosa in CF......Many bacteria can be detected in CF sputum, pathogenic and commensal. Modified Koch's criteria for identification of established and emerging CF pathogens are therefore described. Methods are described to isolate bacteria and to detect bacterial biofilms in sputum or lung tissue from CF patients...

  6. Genomic diversity among drug sensitive and multidrug resistant isolates of Mycobacterium tuberculosis with identical DNA fingerprints.

    Directory of Open Access Journals (Sweden)

    Stefan Niemann

    2009-10-01

    Full Text Available Mycobacterium tuberculosis complex (MTBC, the causative agent of tuberculosis (TB, is characterized by low sequence diversity making this bacterium one of the classical examples of a genetically monomorphic pathogen. Because of this limited DNA sequence variation, routine genotyping of clinical MTBC isolates for epidemiological purposes relies on highly discriminatory DNA fingerprinting methods based on mobile and repetitive genetic elements. According to the standard view, isolates exhibiting the same fingerprinting pattern are considered direct progeny of the same bacterial clone, and most likely reflect ongoing transmission or disease relapse within individual patients.Here we further investigated this assumption and used massively parallel whole-genome sequencing to compare one drug-susceptible (K-1 and one multidrug resistant (MDR isolate (K-2 of a rapidly spreading M. tuberculosis Beijing genotype clone from a high incidence region (Karakalpakstan, Uzbekistan. Both isolates shared the same IS6110 RFLP pattern and the same allele at 23 out of 24 MIRU-VNTR loci. We generated 23.9 million (K-1 and 33.0 million (K-2 paired 50 bp purity filtered reads corresponding to a mean coverage of 483.5 fold and 656.1 fold respectively. Compared with the laboratory strain H37Rv both Beijing isolates shared 1,209 SNPs. The two Beijing isolates differed by 130 SNPs and one large deletion. The susceptible isolate had 55 specific SNPs, while the MDR variant had 75 specific SNPs, including the five known resistance-conferring mutations.Our results suggest that M. tuberculosis isolates exhibiting identical DNA fingerprinting patterns can harbour substantial genomic diversity. Because this heterogeneity is not captured by traditional genotyping of MTBC, some aspects of the transmission dynamics of tuberculosis could be missed or misinterpreted. Furthermore, a valid differentiation between disease relapse and exogenous reinfection might be impossible using

  7. Genomic diversity among drug sensitive and multidrug resistant isolates of Mycobacterium tuberculosis with identical DNA fingerprints.

    Science.gov (United States)

    Niemann, Stefan; Köser, Claudio U; Gagneux, Sebastien; Plinke, Claudia; Homolka, Susanne; Bignell, Helen; Carter, Richard J; Cheetham, R Keira; Cox, Anthony; Gormley, Niall A; Kokko-Gonzales, Paula; Murray, Lisa J; Rigatti, Roberto; Smith, Vincent P; Arends, Felix P M; Cox, Helen S; Smith, Geoff; Archer, John A C

    2009-10-12

    Mycobacterium tuberculosis complex (MTBC), the causative agent of tuberculosis (TB), is characterized by low sequence diversity making this bacterium one of the classical examples of a genetically monomorphic pathogen. Because of this limited DNA sequence variation, routine genotyping of clinical MTBC isolates for epidemiological purposes relies on highly discriminatory DNA fingerprinting methods based on mobile and repetitive genetic elements. According to the standard view, isolates exhibiting the same fingerprinting pattern are considered direct progeny of the same bacterial clone, and most likely reflect ongoing transmission or disease relapse within individual patients. Here we further investigated this assumption and used massively parallel whole-genome sequencing to compare one drug-susceptible (K-1) and one multidrug resistant (MDR) isolate (K-2) of a rapidly spreading M. tuberculosis Beijing genotype clone from a high incidence region (Karakalpakstan, Uzbekistan). Both isolates shared the same IS6110 RFLP pattern and the same allele at 23 out of 24 MIRU-VNTR loci. We generated 23.9 million (K-1) and 33.0 million (K-2) paired 50 bp purity filtered reads corresponding to a mean coverage of 483.5 fold and 656.1 fold respectively. Compared with the laboratory strain H37Rv both Beijing isolates shared 1,209 SNPs. The two Beijing isolates differed by 130 SNPs and one large deletion. The susceptible isolate had 55 specific SNPs, while the MDR variant had 75 specific SNPs, including the five known resistance-conferring mutations. Our results suggest that M. tuberculosis isolates exhibiting identical DNA fingerprinting patterns can harbour substantial genomic diversity. Because this heterogeneity is not captured by traditional genotyping of MTBC, some aspects of the transmission dynamics of tuberculosis could be missed or misinterpreted. Furthermore, a valid differentiation between disease relapse and exogenous reinfection might be impossible using standard

  8. Isolation and characterization of bacterial endophytes of Curcuma longa L.

    OpenAIRE

    Kumar, Ajay; Singh, Ritu; Yadav, Akhilesh; Giri, D. D.; Singh, P. K.; Pandey, Kapil D.

    2016-01-01

    Fourteen endophytic bacterial isolates were isolated from the rhizome of Curcuma longa L. were characterized on the basis of morphology, biochemical characteristics and 16S rRNA gene sequence analysis. The isolates were identified to six strains namely Bacillus cereus (ECL1), Bacillus thuringiensis (ECL2), Bacillus sp. (ECL3), Bacillus pumilis (ECL4), Pseudomonas putida (ECL5), and Clavibacter michiganensis (ECL6). All the strains produced IAA and solubilized phosphate and only two strains pr...

  9. Endophytic bacterial diversity in banana 'Prata Anã' (Musa spp. roots

    Directory of Open Access Journals (Sweden)

    Suzane A. Souza

    2013-01-01

    Full Text Available The genetic diversity of endophytic bacteria in banana 'Prata Anã' roots was characterized. Two hundred and one endophytic bacteria were isolated, 151 of which were classified as Gram-positive and 50 as Gram-negative. No hypersensitivity response was observed in any of the isolates. The rep-PCR technique generated different molecular profiles for each primer set (REP, ERIC and BOX. Fifty readable loci were obtained and all of the fragments were polymorphic. Amplified ribosomal DNA restriction analysis (ARDRA of the isolates based on cleavage with four restriction enzymes yielded 45 polymorphic bands and no monomorphic bands. PCR amplified the nifH gene in 24 isolates. 16S rDNA sequencing of the 201 bacterial isolates yielded 102 high-quality sequences. Sequence analyses revealed that the isolates were distributed among ten bacterial genera (Agrobacterium, Aneurinibacillus, Bacillus, Enterobacter, Klebsiella, Lysinibacillus, Micrococcus, Paenibacillus, Rhizobium and Sporolactobacillus and included 15 species. The greatest number of isolates belonged to the genus Bacillus. The bacteria identified in this study may be involved in promoting growth, phosphate solubilization, biological control and nitrogen fixation in bananas.

  10. Identification of the Bacterial Community Responsible for ...

    African Journals Online (AJOL)

    Identification of bacteria community responsible for decontaminating Eleme petrochemical industrial effluent using 16S PCR denaturing gradient gel electrophoresis (DGGE) was determined. Gene profiles were determined by extracting DNA from bacterial isolates and amplified by polymerase chain reaction (PCR) using ...

  11. Examination of bacterial inhibition using a catalytic DNA.

    Directory of Open Access Journals (Sweden)

    Long Qu

    Full Text Available Determination of accurate dosage of existing antibiotics and discovery of new antimicrobials or probiotics entail simple but effective methods that can conveniently track bacteria growth and inhibition. Here we explore the application of a previously reported fluorogenic E. coli-specific DNAzyme (catalytic DNA, RFD-EC1, as a molecular probe for monitoring bacterial inhibition exerted by antibiotics and for studying bacterial competition as a result of cohabitation. Because the DNAzyme method provides a convenient way to monitor the growth of E. coli, it is capable of determining the minimal inhibitory concentration (MIC of antibiotics much faster than the conventional optical density (OD method. In addition, since the target for RFD-EC1 is an extracellular protein molecule from E. coli, RFD-EC1 is able to identify pore-forming antibiotics or compounds that can cause membrane leakage. Finally, RFD-EC1 can be used to analyse the competition of cohabitating bacteria, specifically the inhibition of growth of E. coli by Bacillus subtilis. The current work represents the first exploration of a catalytic DNA for microbiological applications and showcases the utility of bacteria-sensing fluorogenic DNAzymes as simple molecular probes to facilitate antibiotic and probiotic research.

  12. Characterization of Botrytis cinerea isolates from chickpea: DNA ...

    African Journals Online (AJOL)

    Administrator

    2010-11-15

    Nov 15, 2010 ... 2Department of Plant Sciences, University of Hyderabad, Hyderabad 500 046, India. ... similarity of the isolates varied from 14-44%, and the isolates were separated ..... application to human mitochondrial DNA restriction sites.

  13. Isolation, identification and characterization of Bacillus amyloliquefaciens BZ-6, a bacterial isolate for enhancing oil recovery from oily sludge.

    Science.gov (United States)

    Liu, Wuxing; Wang, Xiaobing; Wu, Longhua; Chen, Mengfang; Tu, Chen; Luo, Yongming; Christie, Peter

    2012-06-01

    Over 100 biosurfactant-producing microorganisms were isolated from oily sludge and petroleum-contaminated soil from Shengli oil field in north China. Sixteen of the bacterial isolates produced biosurfactants and reduced the surface tension of the growth medium from 71 to treat oily sludge and the recovery efficiencies of oil from oily sludge were determined. The oil recovery efficiencies of different isolates ranged from 39% to 88%. Bacterial isolate BZ-6 was found to be the most efficient strain and the three phases (oil, water and sediment) were separated automatically after the sludge was treated with the culture medium of BZ-6. Based on morphological, physiological characteristics and molecular identification, isolate BZ-6 was identified as Bacillus amyloliquefaciens. The biosurfactant produced by isolate BZ-6 was purified and analyzed by high performance liquid chromatography-electrospray ionization tandem mass spectrometry. There were four ion peaks representing four different fengycin A homologues. Copyright © 2012. Published by Elsevier Ltd.

  14. Isolation, Characterization and Application of Bacterial Population From Agricultural Soil at Sohag Province, Egypt

    Directory of Open Access Journals (Sweden)

    Bahig, A. E.

    2008-01-01

    Full Text Available Forty soil samples of agriculture soil were collected from two different sites in Sohag province, Egypt, during hot and cold seasons. Twenty samples were from soil irrigated with canal water (site A and twenty samples were from soil irrigated with wastewater (site B. This study aimed to compare the incidence of plasmids in bacteria isolated from soil and to investigate the occurrence of metal and antibiotic resistance bacteria, and consequently to select the potential application of these bacteria in bioremediation. The total bacterial count (CFU/gm in site (B was higher than that in site (A. Moreover, the CFU values in summer were higher than those values in winter at both sites. A total of 771 bacterial isolates were characterized as Bacillus, Micrococcus, Staphylococcus, Pseudomonas, Eschershia, Shigella, Xanthomonas, Acetobacter, Citrobacter, Enterobacter, Moraxella and Methylococcus. Minimum inhibitory concentrations (MICs of Pb+2, Cu+2, Zn+2, Hg+2, Co+2, Cd+2, Cr+3, Te+2, As+2 and Ni+2 for plasmid-possessed bacteria were determined and the highest MICs were 1200 µg/mL for lead, 800 µg/mL for both Cobalt and Arsenate, 1200 µg/mL for Nickel, 1000 µg/ml for Copper and less than 600 µg/mL for other metals. Bacterial isolates from both sites A and B showed multiple heavy metal resistance. A total of 337 bacterial isolates contained plasmids and the incidence of plasmids was approximately 25-50% higher in bacteria isolated from site (B than that from site (A. These isolates were resistance to different antibiotics. Approximately, 61% of the bacterial isolates were able to assimilate insecticide, carbaryl, as a sole source of carbon and energy. However, the Citrobacter AA101 showed the best growth on carbaryl.

  15. High prevalence of biofilm synergy among bacterial soil isolates in cocultures indicates bacterial interspecific cooperation

    DEFF Research Database (Denmark)

    Ren, Dawei; Madsen, Jonas Stenløkke; Sørensen, Søren Johannes

    2015-01-01

    of single-species biofilms, indicating that all the individual strains benefit from inclusion in the multispecies community. Our results show a high prevalence of synergy in biofilm formation in multispecies consortia isolated from a natural bacterial habitat and suggest that interspecific cooperation...

  16. Hydroxychavicol, a key ingredient of Piper betle induces bacterial cell death by DNA damage and inhibition of cell division.

    Science.gov (United States)

    Singh, Deepti; Narayanamoorthy, Shwetha; Gamre, Sunita; Majumdar, Ananda Guha; Goswami, Manish; Gami, Umesh; Cherian, Susan; Subramanian, Mahesh

    2018-05-20

    Antibiotic resistance is a global problem and there is an urgent need to augment the arsenal against pathogenic bacteria. The emergence of different drug resistant bacteria is threatening human lives to be pushed towards the pre-antibiotic era. Botanical sources remain a vital source of diverse organic molecules that possess antibacterial property as well as augment existing antibacterial molecules. Piper betle, a climber, is widely used in south and south-east Asia whose leaves and nuts are consumed regularly. Hydroxychavicol (HC) isolated from Piper betle has been reported to possess antibacterial activity. It is currently not clear how the antibacterial activity of HC is manifested. In this investigation we show HC generates superoxide in E. coli cells. Antioxidants protected E. coli against HC induced cell death while gshA mutant was more sensitive to HC than wild type. DNA damage repair deficient mutants are hypersensitive to HC and HC induces the expression of DNA damage repair genes that repair oxidative DNA damage. HC treated E. coli cells are inhibited from growth and undergo DNA condensation. In vitro HC binds to DNA and cleaves it in presence of copper. Our data strongly indicates HC mediates bacterial cell death by ROS generation and DNA damage. Damage to iron sulfur proteins in the cells contribute to amplification of oxidative stress initiated by HC. Further HC is active against a number of Gram negative bacteria isolated from patients with a wide range of clinical symptoms and varied antibiotic resistance profiles. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. COMPARATIVE EVALUATION OF CONVENTIONAL VERSUS RAPID METHODS FOR AMPLIFIABLE GENOMIC DNA ISOLATION OF CULTURED Azospirillum sp. JG3

    Directory of Open Access Journals (Sweden)

    Stalis Norma Ethica

    2013-12-01

    Full Text Available As an initial attempt to reveal genetic information of Azospirillum sp. JG3 strain, which is still absence despite of the strains' ability in producing valued enzymes, two groups of conventional methods: lysis-enzyme and column-kit; and two rapid methods: thermal disruption and intact colony were evaluated. The aim is to determine the most practical method for obtaining high-grade PCR product using degenerate primers as part of routine-basis protocols for studying the molecular genetics of the Azospirillal bacteria. The evaluation includes the assessment of electrophoresis gel visualization, pellet appearance, preparation time, and PCR result of extracted genomic DNA from each method. Our results confirmed that the conventional methods were more superior to the rapid methods in generating genomic DNA isolates visible on electrophoresis gel. However, modification made in the previously developed DNA isolation protocol giving the simplest and most rapid method of all methods used in this study for extracting PCR-amplifiable DNA of Azospirillum sp. JG3. Intact bacterial cells (intact colony loaded on electrophoresis gel could present genomic DNA band, but could not be completely amplified by PCR without thermal treatment. It can also be inferred from our result that the 3 to 5-min heating in dH2O step is critical for the pre-treatment of colony PCR of Azospirillal cells.

  18. Isolation of bacterial cellulose nanocrystalline from pineapple peel waste: Optimization of acid concentration in the hydrolysis method

    Science.gov (United States)

    Anwar, Budiman; Rosyid, Nurul Huda; Effendi, Devi Bentia; Nandiyanto, Asep Bayu Dani; Mudzakir, Ahmad; Hidayat, Topik

    2016-02-01

    Isolation of needle-shaped bacterial cellulose nanocrystalline with a diameter of 16-64 nm, a fiber length of 258-806 nm, and a degree of crystallinity of 64% from pineapple peel waste using an acid hydrolysis process was investigated. Experimental showed that selective concentration of acid played important roles in isolating the bacterial cellulose nanocrystalline from the cellulose source. To achieve the successful isolation of bacterial cellulose nanocrystalline, various acid concentrations were tested. To confirm the effect of acid concentration on the successful isolation process, the reaction conditions were fixed at a temperature of 50°C, a hydrolysis time of 30 minutes, and a bacterial cellulose-to-acid ratio of 1:50. Pineapple peel waste was used as a model for a cellulose source because to the best of our knowledge, there is no report on the use of this raw material for producing bacterial cellulose nanocrystalline. In fact, this material can be used as an alternative for ecofriendly and cost-free cellulose sources. Therefore, understanding in how to isolate bacterial cellulose nanocrystalline from pineapple peel waste has the potential for large-scale production of inexpensive cellulose nanocrystalline.

  19. Trends of Bacterial Keratitis Culture Isolates in Jerusalem; a 13- Years Analysis.

    Directory of Open Access Journals (Sweden)

    Michael Politis

    Full Text Available To describe the trends in pathogens and antibacterial resistance of corneal culture isolates in infectious keratitis during a period of 13 years at Hadassah-Hebrew University Medical Center.A Retrospective analysis of bacterial corneal isolates was performed during the months of January 2002 to December 2014 at Hadassah Hebrew University Medical Center. Demographics, microbiological data and antibiotic resistance and sensitivity were collected.A total of 943 corneal isolates were analyzed during a 13 year period. A total of 415 positive bacterial cultures and 37 positive fungal cultures were recovered, representing 48% of the total cultures. The Annual incidence was 34.78 ± 6.54 cases. The most common isolate was coagulase-negative staphylococcus (32%, which had a significant decrease in trend throughout the study period (APC = -8.1, p = 0.002. Methicillin-resistant Staphylococcus aureus (MRSA appears to have a decrease trend (APC = -31.2, P = 0.5. There was an increase in the resistance trend of coagulase-negative staphylococci to penicillin (APC = 5.0, P = <0.001. None of the pathogens had developed any resistance to Vancomycin. (P = 0.88.Coagulase negative staphylococci were the predominant bacteria isolated from patients with keratitis. There was no significant change in the annual incidence of cases of bacterial keratitis seen over the past 13 years. Keratitis caused by MRSA appeared to decrease in contrast to the reported literature.

  20. Cluster analysis of Helicobacter pylori genomic DNA fingerprints suggests gastroduodenal disease-specific associations.

    Science.gov (United States)

    Go, M F; Chan, K Y; Versalovic, J; Koeuth, T; Graham, D Y; Lupski, J R

    1995-07-01

    Helicobacter pylori infection is now accepted as the most common cause of chronic active gastritis and peptic ulcer disease. The etiologies of many infectious diseases have been attributed to specific or clonal strains of bacterial pathogens. Polymerase chain reaction (PCR) amplification of DNA between repetitive DNA sequences, REP elements (REP-PCR), has been utilized to generate DNA fingerprints to examine similarity among strains within a bacterial species. Genomic DNA from H. pylori isolates obtained from 70 individuals (39 duodenal ulcers and 31 simple gastritis) was PCR-amplified using consensus probes to repetitive DNA elements. The H. pylori DNA fingerprints were analyzed for similarity and correlated with disease presentation using the NTSYS-pc computer program. Each H. pylori strain had a distinct DNA fingerprint except for two pairs. Single-colony DNA fingerprints of H. pylori from the same patient were identical, suggesting that each patient harbors a single strain. Computer-assisted cluster analysis of the REP-PCR DNA fingerprints showed two large clusters of isolates, one associated with simple gastritis and the other with duodenal ulcer disease. Cluster analysis of REP-PCR DNA fingerprints of H. pylori strains suggests that duodenal ulcer isolates, as a group, are more similar to one another and different from gastritis isolates. These results suggest that disease-specific strains may exist.

  1. Serotypes and DNA fingerprint profiles of Pasteurella multocida isolated from raptors

    Science.gov (United States)

    Wilson, M.A.; Duncan, R.M.; Nordholm, G.E.; Berlowski, B.M.

    1995-01-01

    Pasteurella multocida isolates from 21 raptors were examined by DNA fingerprint profile and serotyping methods. Isolates were obtained from noncaptive birds of prey found in 11 states from November 28, 1979, through February 10, 1993. Nine isolates were from bald eagles, and the remaining isolates were from hawks, falcons, and owls. Seven isolates were members of capsule group A, and 14 were nonencapsulated. One isolate was identified as somatic type 3, and another was type 3,4,7; both had unique HhaI DNA fingerprint profiles. Nineteen isolates expressed somatic type 1 antigen; HhaI profiles of all type 1 isolates were identical to each other and to the HhaI profile of the reference somatic type 1, strain X-73. The 19 type 1 isolates were differentiated by sequential digestion of DNA with HpaII; four HpaII fingerprint profiles were obtained. The HpaII profile of one isolate was identical to the HpaII profile of strain X-73. Incidence of P. multocida somatic type 1 in raptors suggests that this type may be prevalent in other wildlife or wildlife environments.

  2. Isolation and characterization of butachlor-catabolizing bacterial strain Stenotrophomonas acidaminiphila JS-1 from soil and assessment of its biodegradation potential.

    Science.gov (United States)

    Dwivedi, S; Singh, B R; Al-Khedhairy, A A; Alarifi, S; Musarrat, J

    2010-07-01

    Isolation, characterization and assessment of butachlor-degrading potential of bacterial strain JS-1 in soil. Butachlor-degrading bacteria were isolated using enrichment culture technique. The morphological, biochemical and genetic characteristics based on 16S rDNA sequence homology and phylogenetic analysis confirmed the isolate as Stenotrophomonas acidaminiphila strain JS-1. The strain JS-1 exhibited substantial growth in M9 mineral salt medium supplemented with 3.2 mmol l(-1) butachlor, as a sole source of carbon and energy. The HPLC analysis revealed almost complete disappearance of butachlor within 20 days in soil at a rate constant of 0.17 day(-1) and half-life (t((1/2))) of 4.0 days, following the first-order rate kinetics. The strain JS-1 in stationary phase of culture also produced 21.0 microg ml(-1) of growth hormone indole acetic acid (IAA) in the presence of 500 microg ml(-1) of tryptophan. The IAA production was stimulated at lower concentrations of butachlor, whereas higher concentrations above 0.8 mmol l(-1) were found inhibitory. The isolate JS-1 characterized as Stenotrophomonas acidaminiphila was capable of utilizing butachlor as sole source of carbon and energy. Besides being an efficient butachlor degrader, it substantially produces IAA. The bacterial strain JS-1 has a potential for butachlor remediation with a distinctive auxiliary attribute of plant growth stimulation.

  3. DNA Checkerboard Method for Bacterial Pathogen Identification in Oral Diseases

    OpenAIRE

    Nascimento, Cássio do; Issa, João Paulo Mardegan; Watanabe, Evandro; Ito, Izabel Yoko

    2006-01-01

    This work aim to show by literature review the principal characteristics of the DNA checkerboard method for bacterial pathogens identification in oral diseases, showing the most varieties uses and applications of this technique Este trabajo tiene como objetivo, presentar en una revisión de la literatura, las principales características del método de chequeo del DNA para la identificación de bacterias patógenas en la cavidad oral, mostrando las diferentes utilizaciones y aplicaciones de est...

  4. Isolation and characterization of copper tolerant bacterial isolates

    International Nuclear Information System (INIS)

    Farooq, S.; Shoeb, E.; Badar, U.; Akhtar, J.

    2008-01-01

    Twelve bacterial strains were isolated from metal contaminated sites close to the chemical factory, Purification and characterization of these strains was done. Maximum tolerable concentration (MTC) of all the isolated strains was determined against heavy metals cadmium chloride (CdCl/sub 2/), copper sulphate (CuSO/sub 4/), and nickel chloride (NiCI/sub 2/) and antibiotics kanamycin (Km), streptomycin (Sm), and chloramphenicol (Cm). Most promising strain was found to be GESSF012 which showed MTC of 4.5 mM and 1.6 mM against CdCI/sub 2/ in enriched and minimal media respectively; whereas MTC of 750 micro g/ml was against Sm. GESSF012 demonstrated the occurrence of multiple stress tolerance as this strain showed considerable tolerance against other heavy metals including CuSO/sub 4/, (3.0 mM in enriched media and 1.8 mM in minimal media) and NiCl/sub 2/, (2.0 mM in enriched media and 1.8 mM in minimal media) as well as other antibiotics Cm and Km (150 and 125 micro g/ml respectively). Plasmids were detected in most of the strains including GESSF012. (author)

  5. Isolation, Screening and Development of Local Bacterial Consortia With Azo Dyes Decolourising Capability

    Directory of Open Access Journals (Sweden)

    Khadijah, O.

    2009-01-01

    Full Text Available A total of 1540 bacterial isolates were isolated and screened for their ability to degrade selected azo dyes. Of these, nine isolates were chosen for further studies based on their ability to degrade a wide spectrum of dyes efficiently and rapidly. Several microbial consortia were developed and tested for their effectiveness. Overall the consortia were able to degrade 70 - 100% colour within 72 hours compared to 60 – 97% colour removed by individual isolates. A microbial consortium labelled C15 showed good growth in agitation culture but the colour removal was best in static culture with 80 - 100% colour removed in less than 72 hours. Based on the 16S rRNA sequencing, two of the bacterial isolates in C15 belong to the Chryseobacterium genus while the other one belongs to Flavobacterium genus.

  6. Comparative DNA isolation behaviours of silica and polymer based sorbents in batch fashion: monodisperse silica microspheres with bimodal pore size distribution as a new sorbent for DNA isolation.

    Science.gov (United States)

    Günal, Gülçin; Kip, Çiğdem; Eda Öğüt, S; İlhan, Hasan; Kibar, Güneş; Tuncel, Ali

    2018-02-01

    Monodisperse silica microspheres with bimodal pore-size distribution were proposed as a high performance sorbent for DNA isolation in batch fashion under equilibrium conditions. The proposed sorbent including both macroporous and mesoporous compartments was synthesized 5.1 μm in-size, by a "staged shape templated hydrolysis and condensation method". Hydrophilic polymer based sorbents were also obtained in the form of monodisperse-macroporous microspheres ca 5.5 μm in size, with different functionalities, by a developed "multi-stage microsuspension copolymerization" technique. The batch DNA isolation performance of proposed material was comparatively investigated using polymer based sorbents with similar morphologies. Among all sorbents tried, the best DNA isolation performance was achieved with the monodisperse silica microspheres with bimodal pore size distribution. The collocation of interconnected mesoporous and macroporous compartments within the monodisperse silica microspheres provided a high surface area and reduced the intraparticular mass transfer resistance and made easier both the adsorption and desorption of DNA. Among the polymer based sorbents, higher DNA isolation yields were achieved with the monodisperse-macroporous polymer microspheres carrying trimethoxysilyl and quaternary ammonium functionalities. However, batch DNA isolation performances of polymer based sorbents were significantly lower with respect to the silica microspheres.

  7. (+)-(10R)-Germacrene A synthase from goldenrod, Solidago canadensis; cDNA isolation, bacterial expression and functional analysis.

    Science.gov (United States)

    Prosser, Ian; Phillips, Andy L; Gittings, Simon; Lewis, Mervyn J; Hooper, Antony M; Pickett, John A; Beale, Michael H

    2002-08-01

    Profiling of sesquiterpene hydrocarbons in extracts of goldenrod, Solidago canadensis, by GC-MS revealed the presence of both enantiomers of germacrene D and lesser amounts of germacrene A, alpha-humulene, and beta-caryophyllene. A similarity-based cloning strategy using degenerate oligonucleotide primers, based on conserved amino acid sequences in known plant sesquiterpene synthases and RT-PCR, resulted in the isolation of a full length sesquiterpene synthase cDNA. Functional expression of the cDNA in E. coli, as an N-terminal thioredoxin fusion protein using the pET32b vector yielded an enzyme that was readily purified by nickel-chelate affinity chromatography. Chiral GC-MS analysis of products from of (3)H- and (2)H-labelled farnesyl diphosphate identified the enzyme as (+)-(10R)-germacrene A synthase. Sequence analysis and molecular modelling was used to compare this enzyme with the mechanistically related epi-aristolochene synthase from tobacco.

  8. Automated methods for single-stranded DNA isolation and dideoxynucleotide DNA sequencing reactions on a robotic workstation

    International Nuclear Information System (INIS)

    Mardis, E.R.; Roe, B.A.

    1989-01-01

    Automated procedures have been developed for both the simultaneous isolation of 96 single-stranded M13 chimeric template DNAs in less than two hours, and for simultaneously pipetting 24 dideoxynucleotide sequencing reactions on a commercially available laboratory workstation. The DNA sequencing results obtained by either radiolabeled or fluorescent methods are consistent with the premise that automation of these portions of DNA sequencing projects will improve the reproducibility of the DNA isolation and the procedures for these normally labor-intensive steps provides an approach for rapid acquisition of large amounts of high quality, reproducible DNA sequence data

  9. [Polyvalence of bacteriophages isolated from fruit trees, affected by bacterial fire blight].

    Science.gov (United States)

    Tovkach, F I; Moroz, S N; Korol', N A; Faĭdiuk, Iu V; Kushkina, A I

    2013-01-01

    Phage populations appearing as a result of a pathogenic process caused by Erwinia amylovora have been discovered and described. They accompany bacterial fire blight development in the process of quince, pear and apple trees vegetation in Zakarpattya region of Ukraine. Phage isolates of the affected pear and quince include polyvalent virulent phages able to develop on bacterial strains associated with plants--E. amylovora. E. "horticola" and Pantoea agglomerans. E. amylovora isolated from the plant tissues affected by the fire blight and detected at the same time as phages proved to be resistant to the viral infection. It is hard to explain now this characteristic however it was noticed that resistance to phages can change drastically in case of dissociation, lysogenization and mutagenesis of erwinia in laboratory conditions. Phage population study shows that they are heterogeneous and can obviously include not only polyvalent but also specific viruses. Further studies of biology and molecular genetics of pure lines of isolated phages will help to get closer to understanding the place and role of bacteriophages in the complicated network of relations between bacterial pathogens and plants.

  10. Profiles of antibiotic susceptibilities of bacterial isolates and physico ...

    African Journals Online (AJOL)

    The Venda region of South Africa is predominantly rural and residents rely on untreated water sources for daily water needs. The physico-chemical quality of these water sources including antibiotic susceptibilities of enteric bacterial isolates which would guide clinicians in the empiric management of diarrhoea have ...

  11. 40 CFR 798.5500 - Differential growth inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA...

    Science.gov (United States)

    2010-07-01

    ... repair proficient and repair deficient bacteria: âBacterial DNA damage or repair tests.â 798.5500 Section... inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA damage or repair tests.” (a... killing or growth inhibition of repair deficient bacteria in a set of repair proficient and deficient...

  12. Electron microscope autoradiography of isolated DNA molecules

    International Nuclear Information System (INIS)

    Delain, Etienne; Bouteille, Michel

    1980-01-01

    Autoradiographs of 3 H-thymidine-labelled DNA molecules were observed with an electron microscope. After ten months of exposure significant labelling was obtained with tritiated T7 DNA molecules which had a specific activity of 630,000 cpm/μg. Although isolated DNA molecules were not stretched out to such an extent that they could be rigorously compared to straight 'hot lines', the resolution was estimated and found to be similar to that obtained by autoradiography on thin plastic sections. The H.D. value was of the order of 1600A. From the known specific activity of the macromolecules, it was possible to compare the expected number of disintegrations from the samples to the number of grains obtained on the autoradiograms. This enabled us to calculate 1/ The absolute autoradiographic efficiency and 2/ The per cent ratio of thymidine residues labelled with tritium. These results throw some light on the resolution and sensitivity of electron microscope autoradiography of shadowed isolated macromolecules as compared to thin plastic sections

  13. Investigation of In vitro Mineral Forming Bacterial Isolates from ...

    African Journals Online (AJOL)

    Aim: Although it is known that bacterial mechanisms are involved in dental calculus formation, which is a predisposing factor in periodontal diseases, there have been few studies of such associations, and therefore, information available is limited. The purpose of this study was to isolate and identify aerobic bacteria ...

  14. Isolation and identification of marine fish tumour (odontoma associated bacteria

    Directory of Open Access Journals (Sweden)

    Ramalingam Vijayakumar

    2015-09-01

    Full Text Available Objective: To identify fish tumour associated bacteria. Methods: The marine fish Sphyraena jello with odontoma was collected from in Tamil Nadu (Southeast India, and tumour associated bacteria were isolated. Then the isolated bacteria were identified based on molecular characters. Results: A total of 4 different bacterial species were isolated from tumour tissue. The bacterial species were Bacillus sp., Pontibacter sp., Burkholderia sp. and Macrococcus sp., and the sequences were submitted in DNA Data Bank of Japan with accession numbers of AB859240, AB859241, AB859242 and AB859243 respectively. Conclusions: Four different bacterial species were isolated from Sphyraena jello, but the role of bacteria within tumour needs to be further investigated.

  15. Variation in Ribosomal DNA among Isolates of the Mycorrhizal Fungus Cenococcum Geophilum FR.

    Science.gov (United States)

    Lobuglio, Katherine Frances

    1990-01-01

    Cenococcum geophilum Fr., a cosmopolitan mycorrhizal fungus, is well-known for its extremely wide host and habitat range. The ecological diversity of C. geophilum sharply contrasts its present taxonomic status as a monotypic form -genus. Restriction fragment length polymorphisms (RFLPs) in nuclear ribosomal DNA (rDNA) was used to assess the degree of genetic variation among 72 isolates of C. geophilum. The probe used in this study was the rDNA repeat cloned from C. geophilum isolate A145 (pCG15). Length of the rDNA repeat was approximately 9 kb. The rDNA clone was mapped for 5 restriction endonucleases. Hybridization with cloned Saccharomyces cerevisiae rDNA (pSR118, and pSR125 containing the 18S, and 5.8-25S rRNA genes respectively), and alignment of restriction endonuclease sites conserved in the rDNA genes of other fungi, were used to position the corresponding rDNAs of C. geophilum. Southern hybridizations with EcoRI, HindIII, XhoI, and PstI digested DNAs indicated extensive variation among the C. geophilum isolates, greater than has been previously reported to occur within a fungal species. Most of the rDNA polymorphisms occurred in the IGS region. Restriction endonuclease site and length polymorphisms were also observed in the 5.8S-26S genic regions. Sixteen size categories of length mutations, 6 restriction endonuclease site additions, and 4 restriction endonuclease site deletions were determined using isolate A145 as a reference. The rDNA repeat length among the isolates varied from approximately 8.5 to 10.2 kb. RFLPs were also observed in the mitochondrial (mt) 24S rRNA gene and flanking regions of HindIII digested DNAs of C. geophilum isolates representing both geographically distinct and similar origins. Among the C. geophilum isolates analyzed there were fewer RFLPs in mt-DNA than in nuclear rDNA. EcoRI rDNA phenotypes between C. geophilum and Elaphomyces anthracinus, its proposed teleomorph or sexual state, did not correspond. In addition, the four

  16. Comparison of different DNA isolation methods and use of dodecyle trimethyl ammonium bromide (DTAB for the isolation of DNA from meat products

    Directory of Open Access Journals (Sweden)

    Yusuf OZsENSOY

    2016-12-01

    Conclusion: DNA isolation kit, another best method, is recommended due to quality and quantity of DNA for researchers who do not want that phenol/chloroform method have toxic substances. This study is also the first study in which DTAB method is used for DNA extraction from meat products. [J Adv Vet Anim Res 2016; 3(4.000: 368-374

  17. Stimulation of bacterial DNA synthesis by algal exudates in attached algal-bacterial consortia

    International Nuclear Information System (INIS)

    Murray, R.E.; Cooksey, K.E.; Priscu, J.C.

    1986-01-01

    Algal-bacterial consortia attached to polystyrene surfaces were prepared in the laboratory by using the marine diatom Amphora coffeaeformis and the marine bacterium Vibrio proteolytica (the approved name of this bacterium is Vibrio proteolyticus. The organisms were attached to the surfaces at cell densities of approximately 5 x 10 4 cells cm -2 (diatoms) and 5 x 10 6 cells cm -2 (bacteria). The algal-bacterial consortia consistently exhibited higher rates of [ 3 H]thymidine incorporation than did biofilms composed solely of bacteria. The rates of [ 3 H]thymidine incorporation by the algal-bacterial consortia were fourfold greater than the rates of incorporation by monobacterial biofilms 16 h after biofilm formation and were 16-fold greater 70 h after biofilm formation. Extracellular material released from the attached Amphora cells supported rates of bacterial activity (0.8 x 10 -21 mol to 17.9 x 10 -21 mol of [ 3 H]thymidine incorporated cell -1 h -1 ) and growth (doubling time, 29.5 to 1.4 days) comparable to values reported for a wide variety of marine and freshwater ecosystems. In the presence of sessile diatom populations, DNA synthesis by attached V. proteolytica cells was light dependent and increased with increasing algal abundance. The metabolic activity of diatoms thus appears to be the rate-limiting process in biofilm development on illuminated surfaces under conditions of low bulk-water dissolved organic carbon

  18. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses

    DEFF Research Database (Denmark)

    Schostag, Morten; Stibal, Marek; Jacobsen, Carsten S.

    2015-01-01

    organic matter on the bacterial communities. The copy number of 16S rRNA genes and transcripts revealed no distinct seasonal changes indicating potential bacterial activity during winter despite soil temperatures well below -10ºC. Multivariate statistical analysis of the bacterial diversity data (DNA......The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78º......N) by co-extracting DNA and RNA from 12 soil cores collected monthly over a year. PCR amplicons of 16S rRNA genes (DNA) and reverse transcribed transcripts (cDNA) were quantified and sequenced to test for the effect of low winter temperature and seasonal variation in concentration of easily degradable...

  19. Fluoroquinolone treatment and susceptibility of isolates from bacterial keratitis.

    Science.gov (United States)

    Ray, Kathryn J; Prajna, Lalitha; Srinivasan, Muthiah; Geetha, Manoharan; Karpagam, Rajarathinam; Glidden, David; Oldenburg, Catherine E; Sun, Catherine Q; McLeod, Stephen D; Acharya, Nisha R; Lietman, Thomas M

    2013-03-01

    To analyze the relationship between fluoroquinolone use at presentation and minimum inhibitory concentration in bacterial keratitis. The Steroids for Corneal Ulcers Trial was a randomized, double-masked, placebo-controlled trial assessing the effect of adjunctive topical corticosteroid treatment on outcomes in bacterial keratitis. After presentation, all patients were treated with moxifloxacin hydrochloride, 0.5%. We compare antibiotic use at presentation with minimum inhibitory concentration against moxifloxacin for all isolates. Separate analyses accounted for organism species and fluoroquinolone generation. Topical fluoroquinolone use at presentation was reported in 92 of 480 cases (19.2%). Causative organisms in the 480 cases included Streptococcus pneumoniae (247 cases [51.5%]), Pseudomonas aeruginosa (109 cases [22.7%]), and Nocardia species (55 cases [11.5%]). Isolates from patients who reported fluoroquinolone use at presentation had a 2.01-fold-higher minimum inhibitory concentration (95% CI, 1.39-fold to 2.91-fold; P < .001). Fourth-generation fluoroquinolones were associated with a 3.48-fold-higher minimum inhibitory concentration than those isolates that were not exposed to pretreatment at enrollment (95% CI, 1.99-fold to 6.06-fold; P < .001). This study provides evidence that prior use of fluoroquinolones is associated with antibiotic resistance. clinicaltrials.gov Identifier: NCT00324168.

  20. Isolating silkworm genomic DNA without liquid nitrogen suitable for ...

    African Journals Online (AJOL)

    Genomic DNA was isolated from posterior silk gland of silkworms, Antheraea assama. Absolute alcohol was used as tissue fixing solution instead of grinding in liquid nitrogen, which yielded high molecular weight DNA (>40 kb). Samples yielded similar amount of DNA when fixed in absolute alcohol (400 μmg/g of silk gland ...

  1. A role for the weak DnaA binding sites in bacterial replication origins

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Løbner-Olesen, Anders

    2011-01-01

    DnaA initiates the chromosomal DNA replication in nearly all bacteria, and replication origins are characterized by binding sites for the DnaA protein (DnaA-boxes) along with an ‘AT-rich’ region. However, great variation in number, spatial organization and specificity of DnaA-boxes is observed...... between species. In the study by Taylor et al. (2011), new and unexpectedly weak DnaA-boxes were identified within the Caulobacter crescentus origin of replication (Cori). The position of weak and stronger DnaA-boxes follows a pattern seen in Escherichia coli oriC. This raises the possibility...... that bacterial origins might be more alike than previously thought....

  2. Molecular Characterization and Potential of Bacterial Species ...

    African Journals Online (AJOL)

    The 16S rRNA gene of total bacteria community and bacterial isolates were amplified by Polymerase Chain Reaction (PCR) using 16S rRNA primers. Total microbial community DNA amplicons were spliced into the PCR-TRAP Cloning Vector, used to transform competent cells of Escherichia coli and sequenced.

  3. Impact of cultivation on characterisation of species composition of soil bacterial communities.

    Science.gov (United States)

    McCaig, A E.; Grayston, S J.; Prosser, J I.; Glover, L A.

    2001-03-01

    The species composition of culturable bacteria in Scottish grassland soils was investigated using a combination of Biolog and 16S rDNA analysis for characterisation of isolates. The inclusion of a molecular approach allowed direct comparison of sequences from culturable bacteria with sequences obtained during analysis of DNA extracted directly from the same soil samples. Bacterial strains were isolated on Pseudomonas isolation agar (PIA), a selective medium, and on tryptone soya agar (TSA), a general laboratory medium. In total, 12 and 21 morphologically different bacterial cultures were isolated on PIA and TSA, respectively. Biolog and sequencing placed PIA isolates in the same taxonomic groups, the majority of cultures belonging to the Pseudomonas (sensu stricto) group. However, analysis of 16S rDNA sequences proved more efficient than Biolog for characterising TSA isolates due to limitations of the Microlog database for identifying environmental bacteria. In general, 16S rDNA sequences from TSA isolates showed high similarities to cultured species represented in sequence databases, although TSA-8 showed only 92.5% similarity to the nearest relative, Bacillus insolitus. In general, there was very little overlap between the culturable and uncultured bacterial communities, although two sequences, PIA-2 and TSA-13, showed >99% similarity to soil clones. A cloning step was included prior to sequence analysis of two isolates, TSA-5 and TSA-14, and analysis of several clones confirmed that these cultures comprised at least four and three sequence types, respectively. All isolate clones were most closely related to uncultured bacteria, with clone TSA-5.1 showing 99.8% similarity to a sequence amplified directly from the same soil sample. Interestingly, one clone, TSA-5.4, clustered within a novel group comprising only uncultured sequences. This group, which is associated with the novel, deep-branching Acidobacterium capsulatum lineage, also included clones isolated

  4. Phenol emulsion-enhanced DNA-driven subtractive cDNA cloning: isolation of low-abundance monkey cortex-specific mRNAs

    International Nuclear Information System (INIS)

    Travis, G.H.; Sutcliffe, J.G.

    1988-01-01

    To isolate cDNA clones of low-abundance mRNAs expressed in monkey cerebral cortex but absent from cerebellum, the authors developed an improved subtractive cDNA cloning procedure that requires only modest quantities of mRNA. Plasmid DNA from a monkey cerebellum cDNA library was hybridized in large excess to radiolabeled monkey cortex cDNA in a phenol emulsion-enhanced reaction. The unhybridized cortex cDNA was isolated by chromatography on hydroxyapatite and used to probe colonies from a monkey cortex cDNA library. Of 60,000 colonies screened, 163 clones were isolated and confirmed by colony hybridization or RNA blotting to represent mRNAs, ranging from 0.001% to 0.1% abundance, specific to or highly enriched in cerebral cortex relative to cerebellum. Clones of one medium-abundance mRNA were recovered almost quantitatively. Two of the lower-abundance mRNAs were expressed at levels reduced by a factor of 10 in Alzheimer disease relative to normal human cortex. One of these was identified as the monkey preprosomatostatin I mRNA

  5. Bacterial diversity of soil under eucalyptus assessed by 16S rDNA sequencing analysis Diversidade bacteriana de solo sob eucaliptos obtida por seqüenciamento do 16S rDNA

    Directory of Open Access Journals (Sweden)

    Érico Leandro da Silveira

    2006-10-01

    Full Text Available Studies on the impact of Eucalyptus spp. on Brazilian soils have focused on soil chemical properties and isolating interesting microbial organisms. Few studies have focused on microbial diversity and ecology in Brazil due to limited coverage of traditional cultivation and isolation methods. Molecular microbial ecology methods based on PCR amplified 16S rDNA have enriched the knowledge of soils microbial biodiversity. The objective of this work was to compare and estimate the bacterial diversity of sympatric communities within soils from two areas, a native forest (NFA and an eucalyptus arboretum (EAA. PCR primers, whose target soil metagenomic 16S rDNA were used to amplify soil DNA, were cloned using pGEM-T and sequenced to determine bacterial diversity. From the NFA soil 134 clones were analyzed, while 116 clones were analyzed from the EAA soil samples. The sequences were compared with those online at the GenBank. Phylogenetic analyses revealed differences between the soil types and high diversity in both communities. Soil from the Eucalyptus spp. arboretum was found to have a greater bacterial diversity than the soil investigated from the native forest area.Estudos sobre impacto do Eucalyptus spp. em solos brasileiros têm focalizado propriedades químicas do solo e isolamento de microrganismos de interesse. No Brasil há pouco enfoque em ecologia e diversidade microbiana, devido às limitações dos métodos tradicionais de cultivo e isolamento. A utilização de métodos moleculares no estudo da ecologia microbiana baseados na amplificação por PCR do 16S rDNA têm enriquecido o conhecimento da biodiversidade microbiana dos solos. O objetivo deste trabalho foi comparar e estimar a diversidade bacteriana de comunidades simpátricas em solos de duas áreas: uma floresta nativa (NFA e outra adjacente com arboreto de eucaliptos (EAA. Oligonucleotídeos iniciadores foram utilizados para amplificar o 16S rDNA metagenômico do solo, o qual foi

  6. Preponderance of bacterial isolates in urine of HIV-positive malaria-infected pregnant women with urinary tract infection.

    Science.gov (United States)

    Ako-Nai, Kwashie Ajibade; Ebhodaghe, Blessing Itohan; Osho, Patrick; Adejuyigbe, Ebun; Adeyemi, Folasade Mubiat; Kassim, Olakunle O

    2014-12-15

    This study examined HIV and malaria co-infection as a risk factor for urinary tract infections (UTIs) in pregnancy. The study group included 74 pregnant women, 20 to 42 years of age, who attended the antenatal clinic at the Specialist Hospital at Akure, Ondo State, Nigeria. Forty-four of the pregnant women were either HIV seropositive with malaria infection (HIV+Mal+) or HIV seropositive without malaria (HIV+Mal-). The remaining thirty pregnant women served as controls and included women HIV seronegative but with malaria (HIV-Mal+) and women HIV seronegative without malaria. UTI was indicated by a bacterial colony count of greater than 10⁵/mL of urine, using cysteine lactose electrolyte deficient medium (CLED) as the primary isolation medium. Bacterial isolates were characterized using convectional bacteriological methods, and antibiotics sensitivity tests were carried out using the disk diffusion method. A total of 246 bacterial isolates were recovered from the cultures, with a mean of 3.53 isolates per subject. Women who were HIV+Mal+ had the most diverse group of bacterial isolates and the highest frequency of UTIs. The bacterial isolates from the HIV+Mal+ women also showed the highest degree of antibiotic resistance. While pregnancy and HIV infection may each represent a risk factor for UTI, HIV and malaria co-infection may increase its frequency in pregnancy. The higher frequency of multiple antibiotic resistance observed among the isolates, particularly isolates from HIV+Mal+ subjects, poses a serious public health concern as these strains may aggravate the prognosis of both UTI and HIV infection.

  7. Surface physicochemistry and ionic strength affects eDNA's role in bacterial adhesion to abiotic surfaces

    DEFF Research Database (Denmark)

    Regina, Viduthalai R.; Lokanathan, Arcot R.; Modrzynski, Jakub Jan

    2014-01-01

    Extracellular DNA (eDNA) is an important structural component of biofilms formed by many bacteria, but few reports have focused on its role in initial cell adhesion. The aim of this study was to investigate the role of eDNA in bacterial adhesion to abiotic surfaces, and determine to which extent ...

  8. Bacterial isolates and their antimicrobial susceptibility patterns among pediatric patients with urinary tract infections.

    Science.gov (United States)

    Ayelign, Birhanu; Abebe, Betelehem; Shibeshi, Adugna; Meshesha, Sosina; Shibabaw, Tewodros; Addis, Zelalem; Gelaw, Aschalew; Dagnew, Mulat

    2018-01-01

    Urinary tract infection is a common pediatric problem with the potential to produce long-term morbidity. Therefore, appropriate diagnosis and prompt treatment is required. However, studies about magnitude of uropathogenicity and antimicrobial resistance pattern of pediatric urinary tract infection (UTI) are lacking in resource limited countries including Ethiopia. This study was aimed to determine bacterial isolates, antimicrobial susceptibility pattern among pediatric patients with UTI. A cross- sectional study was conducted. Pathogenic bacterial isolates were identified by culture and biochemical methods following standard procedures. Antimicrobial susceptibility testing of the isolates for commonly used antibiotics was done using the standard disc diffusion method on Muller Hinton agar. Associations between dependent and independent variables were measured using chi-square test and within 95% confidence interval. P values pediatric patients were included in the study, and 82 (26.45%) bacterial isolates were detected. Gram- negative bacteria were predominant etiologic agents of UTI in this study. E. coli was the most frequently occurring pathogen (n=45; 54.88%) followed by S. aureus and P.aeruginosa (n=8; 9.75% for both), P. vulgaris , P.aeruginosa (n=4; 4.88%, for both) and Enterococcus species (n=3; 3.66%). All K. pneumoniae , P. mirabilis , and K. ozanae straines were 100% resistance to ampicillin, followed by P. aeruginosa (87.5%) and E. coli (69%). While all Gram- positive bacterial isolates were 100% sensitive to ciprofloxacin. Malnutrition, history of catherization and previous history of UTI were independently associated with UTI (p=0.000). There was a high prevalence of uropathogenic bacteria and drug resistance particularly to ampicillin (72%) and tetracycline (37.80%). This condition indicates that antibiotic selection should be based on knowledge of the local prevalence of bacterial organisms and antibiotic sensitivities rather than empirical

  9. Good quality Vitis RNA obtained from an adapted DNA isolation protocol

    Directory of Open Access Journals (Sweden)

    Isabel Baiges

    2003-03-01

    Full Text Available Grapevine is a woody plant, whose high carbohydrate and phenolic compound contents usually interferes with nucleic acid isolation. After we tried several protocols for isolating RNA from the Vitis rootstock Richter- 110 (R-110 with little or no success, we adapted a method reported to be satisfactory for grapevine DNA isolation, to extract RNA. With slight protocol modifications, we succeeded to obtain polysaccharide- and phenolic-free RNA preparations from all vegetative tissues, without excessive sample handling. RNA isolated by the reported method permitted to obtain highly pure mRNA (messenger RNA to construct a cDNA (complementary DNA library and allowed gene transcription analysis by reverse Northern, which guarantees RNA integrity. This method may also be suitable for other plant species with high polysaccharide or phenolic contents.

  10. DNA polymorphisms and biocontrol of Bacillus antagonistic to citrus bacterial canker with indication of the interference of phyllosphere biofilms.

    Directory of Open Access Journals (Sweden)

    Tzu-Pi Huang

    Full Text Available Citrus bacterial canker caused by Xanthomonas axonopodis pv. citri is a devastating disease resulting in significant crop losses in various citrus cultivars worldwide. A biocontrol agent has not been recommended for this disease. To explore the potential of bacilli native to Taiwan to control this disease, Bacillus species with a broad spectrum of antagonistic activity against various phytopathogens were isolated from plant potting mixes, organic compost and the rhizosphere soil. Seven strains TKS1-1, OF3-16, SP4-17, HSP1, WG6-14, TLB7-7, and WP8-12 showing superior antagonistic activity were chosen for biopesticide development. The genetic identity based on 16S rDNA sequences indicated that all seven native strains were close relatives of the B. subtilis group and appeared to be discrete from the B. cereus group. DNA polymorphisms in strains WG6-14, SP4-17, TKS1-1, and WP8-12, as revealed by repetitive sequence-based PCR with the BOXA1R primers were similar to each other, but different from those of the respective Bacillus type strains. However, molecular typing of the strains using either tDNA-intergenic spacer regions or 16S-23S intergenic transcribed spacer regions was unable to differentiate the strains at the species level. Strains TKS1-1 and WG6-14 attenuated symptom development of citrus bacterial canker, which was found to be correlated with a reduction in colonization and biofilm formation by X. axonopodis pv. citri on leaf surfaces. The application of a Bacillus strain TKS1-1 endospore formulation to the leaf surfaces of citrus reduced the incidence of citrus bacterial canker and could prevent development of the disease.

  11. Studies on the repair of damaged DNA in bacteriophage, bacterial and mammalian systems. Comprehensive report, 1 February 1981-15 September 1983

    International Nuclear Information System (INIS)

    Friedberg, E.C.

    1983-01-01

    We have explored the molecular mechanism of the repair of DNA at a number of different levels of biological organization, by investigating bacteriophage, bacterial, yeast and mammalian (including human) cells. We have demonstrated that uv endonuclease of phage T4 not only possesses pyrimidine dimer (PD)-DNA glycosylase activity but also apyrimidinic (AP) endonuclease activity. The demonstration of both activities provided an explanation for the specific endonucleosytic cleavage of DNA at sites of pyrimidine dimers catalyzed by this small protein. A new apurinic/apyrimidinic (AP) endonuclease, specific for sites of of base loss in single stranded DNA has been isolated from E. celi and presumably recognizes these lesions in single stranded regions of duplex DNA. We have partially purified this enzyme and have carried out a preliminary characterization of the activity. We treated xeroderma pigmentosum and normal cells with sodium butyrate in the hope of restoring normal levels of excision repair to the former. Although this result was not obtained, we established that all cells treated with sodium butyrate show enhanced levels of repair synthesis, thus providing a means for increasing the sensitivity of this commonly used technique for measuring DNA repair in mammalian cells in culture

  12. Sterile paper points as a bacterial DNA-contamination source in microbiome profiles of clinical samples

    NARCIS (Netherlands)

    van der Horst, J.; Buijs, M.J.; Laine, M.L.; Wismeijer, D.; Loos, B.G.; Crielaard, W.; Zaura, E.

    2013-01-01

    Objectives High throughput sequencing of bacterial DNA from clinical samples provides untargeted, open-ended information on the entire microbial community. The downside of this approach is the vulnerability to DNA contamination from other sources than the clinical sample. Here we describe

  13. Laser capture microdissection of bacterial cells targeted by fluorescence in situ hybridization

    DEFF Research Database (Denmark)

    Schou, Kirstine Klitgaard; Mølbak, Lars; Jensen, Tim Kåre

    2005-01-01

    RNA gene PCR was performed from the dissected microcolonies, and the subsequent DNA sequence analysis identified the dissected bacterial cells as belonging to the Brachyspira aalborgi cluster 1. The advantage of this technique is the ability to combine the histological recognition of the specific bacteria......Direct cultivation-independent sequence retrieval of unidentified bacteria from histological tissue sections has been limited by the difficulty of selectively isolating specific bacteria from a complex environment. Here, a new DNA isolation approach is presented for prokaryotic cells...

  14. Characterization of Botrytis cinerea isolates from chickpea: DNA ...

    African Journals Online (AJOL)

    Characterization of Botrytis cinerea isolates from chickpea: DNA polymorphisms, cultural, morphological and virulence characteristics. Suresh Pande, Mamta Sharma, G. Krishna Kishore, L. Shivram, U. Naga Mangala ...

  15. Proteolysis produced within biofilms of bacterial isolates from raw milk tankers.

    Science.gov (United States)

    Teh, Koon Hoong; Flint, Steve; Palmer, Jon; Andrewes, Paul; Bremer, Phil; Lindsay, Denise

    2012-06-15

    In this study, six bacterial isolates that produced thermo-resistant enzymes isolated from the internal surfaces of raw milk tankers were evaluated for their ability to produce proteolysis within either single culture biofilms or co-culture biofilms. Biofilms were formed in an in vitro model system that simulated the upper internal surface of a raw milk tanker during a typical summer's day of milk collection in New Zealand. The bacterial isolates were further evaluated for their ability to form biofilms at 25, 30 and 37°C. Mutual and competitive effects were observed in some of the co-culture biofilms, with all isolates being able to form biofilms in either single culture or co-culture at the three temperatures. The proteolysis was also evaluated in both biofilms and corresponding planktonic cultures. The proteolysis per cell decreased as the temperature of incubation (20-37°C) increased. Furthermore, mutualistic interactions in terms of proteolysis were observed when cultures were grown as co-culture biofilms. This is the first study to show that proteolytic enzymes can be produced in biofilms on the internal surfaces of raw milk tankers. This has important implications for the cleaning and the temperature control of raw milk transport tankers. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. The effects of a low-intensity red laser on bacterial growth, filamentation and plasmid DNA

    International Nuclear Information System (INIS)

    Roos, C; Santos, J N; Guimarães, O R; Geller, M; Fonseca, A S; Paoli, F

    2013-01-01

    Exposure of nonphotosynthesizing microorganisms to light could increase cell division in cultures, a phenomenon denominated as biostimulation. However, data concerning the importance of the genetic characteristics of cells on this effect are as yet scarce. The aim of this work was to evaluate the effects of a low-intensity red laser on the growth, filamentation and plasmids in Escherichia coli cells proficient and deficient in DNA repair. E. coli cultures were exposed to a laser (658 nm, 10 mW, 1 and 8 J cm −2 ) to study bacterial growth and filamentation. Also, bacterial cultures hosting pBSK plasmids were exposed to the laser to study DNA topological forms from the electrophoretic profile in agarose gels. Data indicate the low-intensity red laser: (i) had no effect on the growth of E. coli wild type and exonuclease III deficient cells; (ii) induced bacterial filamentation, (iii) led to no alteration in the electrophoretic profile of plasmids from exonuclease III deficient cells, but plasmids from wild type cells were altered. A low-intensity red laser at the low fluences used in phototherapy has no effect on growth, but induces filamentation and alters the topological forms of plasmid DNA in E. coli cultures depending on the DNA repair mechanisms. (paper)

  17. Antibiotic resistance pattern of bacterial isolates in neonatal care unit

    Directory of Open Access Journals (Sweden)

    S Shrestha

    2010-12-01

    Full Text Available INTRODUCTION: Bacterial infections account for a huge proportion of neonatal deaths worldwide. The problem of antibiotic resistance among common bacterial pathogens mainly the gram negative bacteria is emerging globally which is of more serious concern in developing countries like Nepal. METHODS: A one year retrospective hospital based study was carried out to analyze the results of neonatal blood, cerebrospinal fluid, urine, stool and surface cultures and to look into the sensitivity pattern of the commonly used antibiotics. RESULTS: The positive yield of blood, urine, eye swab and CSF cultures were 19.56%, 38.5%, 60% and 0.36% respectively. The most common isolates in the blood culture were coagulase negative Staphylococcus, Acinetobacter, Enterobacter and non-haemolytic Streptococcus. A significant percent of the isolates were resistant to the first line antibiotics. Among the gram negative isolates more than 30% are resistant to cefotaxime and more than 50% are resistant to gentamicin. During the one year period we had Nursery outbreaks of methicillin resistant Staphylococcus aureus and Salmonella infections. With the help of environmental cultures we were able to trace the source and intervene appropriately. CONCLUSIONS: Continuous surveillance for antibiotic susceptibility, rational use of antibiotics and the strategy of antibiotic cycling can provide some answers to the emerging problem of antibiotic resistance.

  18. Antibiotic resistance pattern of bacterial isolates in neonatal care unit.

    Science.gov (United States)

    Shrestha, S; Adhikari, N; Rai, B K; Shreepaili, A

    2010-01-01

    Bacterial infections account for a huge proportion of neonatal deaths worldwide. The problem of antibiotic resistance among common bacterial pathogens mainly the gram negative bacteria is emerging globally which is of more serious concern in developing countries like Nepal. A one year retrospective hospital based study was carried out to analyze the results of neonatal blood, cerebrospinal fluid, urine, stool and surface cultures and to look into the sensitivity pattern of the commonly used antibiotics. The positive yield of blood, urine, eye swab and CSF cultures were 19.56%, 38.5%, 60% and 0.36% respectively. The most common isolates in the blood culture were coagulase negative Staphylococcus, Acinetobacter, Enterobacter and non-haemolytic Streptococcus. A significant percent of the isolates were resistant to the first line antibiotics. Among the gram negative isolates more than 30% are resistant to cefotaxime and more than 50% are resistant to gentamicin. During the one year period we had Nursery outbreaks of methicillin resistant Staphylococcus aureus and Salmonella infections. With the help of environmental cultures we were able to trace the source and intervene appropriately. Continuous surveillance for antibiotic susceptibility, rational use of antibiotics and the strategy of antibiotic cycling can provide some answers to the emerging problem of antibiotic resistance.

  19. Effects of ultrasonic pretreatment on quantity and composition of bacterial DNA recovered from granular activated carbon used for drinking water treatment.

    Science.gov (United States)

    Kim, Tae Gwan; Kim, Sun-Hye; Cho, Kyung-Suk

    2014-01-01

    Effects of ultrasonic pretreatment on bacterial DNA recovery from granular activated carbon (GAC) were investigated. GAC (Calgon F400), biologically activated, was sampled from an actual drinking water plant. Different ultrasonic energy densities (0-400 J·cm(-3)) were applied with agitation (250 rpm for 30 min), and recovered bacterial DNA was quantified using quantitative PCR. Energy density was linearly correlated with the concentration of carbon fines produced from GAC during ultrasonication. Ultrasonication alone had no effect on DNA recovery at ≤60 J·cm(-3), but a strongly adverse effect at >67 J·cm(-3) due to the produced carbon fines. Agitation along with ultrasonication strongly enhanced the bacterial DNA recovery when ≤40 J·cm(-3) was applied, although it did not affect the production of carbon fines. Ribosomal tag pyrosequencing was used to compare recovered bacterial communities (0, 20 and 30 J·cm(-3) with or without agitation). Ultrasonication allowed for obtaining a more diverse and richer bacterial community from GAC, compared with the control. Agitation did not show a positive effect on community organization (richness and diversity). Consistently, canonical correspondence analysis indicated that the energy density was associated with the relative abundances of particular bacterial members (P carbon fines as a by-product by ultrasonication interfere with the DNA recovery.

  20. Polyphenolics free DNA isolation and optimization of PCR-RAPD for ...

    African Journals Online (AJOL)

    , and good quality high molecular weight DNA samples. DNA was isolated from the mature and fresh young tender leaves obtained from various Italian wild populations of fennel. We performed a modified cetyl trimethyl ammonium bromide ...

  1. Bacterial Isolates from Blood Samples of Patients in University of ...

    African Journals Online (AJOL)

    Bacterial Isolates from Blood Samples of Patients in University of Benin Teaching Hospital Benin City, Edo State, Nigeria. ... The thioglychollate broth was sub cultured onto blood agar plate for anaerobic incubation, while the brain heart infusion broth was sub cultured onto chocolate, blood agar and McConkey agar for ...

  2. Automated DNA extraction from genetically modified maize using aminosilane-modified bacterial magnetic particles.

    Science.gov (United States)

    Ota, Hiroyuki; Lim, Tae-Kyu; Tanaka, Tsuyoshi; Yoshino, Tomoko; Harada, Manabu; Matsunaga, Tadashi

    2006-09-18

    A novel, automated system, PNE-1080, equipped with eight automated pestle units and a spectrophotometer was developed for genomic DNA extraction from maize using aminosilane-modified bacterial magnetic particles (BMPs). The use of aminosilane-modified BMPs allowed highly accurate DNA recovery. The (A(260)-A(320)):(A(280)-A(320)) ratio of the extracted DNA was 1.9+/-0.1. The DNA quality was sufficiently pure for PCR analysis. The PNE-1080 offered rapid assay completion (30 min) with high accuracy. Furthermore, the results of real-time PCR confirmed that our proposed method permitted the accurate determination of genetically modified DNA composition and correlated well with results obtained by conventional cetyltrimethylammonium bromide (CTAB)-based methods.

  3. Separation of PCR-ready DNA from dairy products using magnetic hydrophilic microspheres and poly(ethylene glycol)-NaCl water solutions

    Energy Technology Data Exchange (ETDEWEB)

    Rittich, Bohuslav [Masaryk University, Faculty of Science, Institute of Experimental Biology, Tvrdeho 14, CZ-611 37 Brno (Czech Republic); Brno University of Technology, Faculty of Chemistry, Institute of Food Science and Biotechnology, Purkynova 464/118, CZ-612 00 Brno (Czech Republic)], E-mail: rittich@sci.muni.cz; Spanova, Alena [Masaryk University, Faculty of Science, Institute of Experimental Biology, Tvrdeho 14, CZ-611 37 Brno (Czech Republic); Brno University of Technology, Faculty of Chemistry, Institute of Food Science and Biotechnology, Purkynova 464/118, CZ-612 00 Brno (Czech Republic); Salek, Petr [Brno University of Technology, Faculty of Chemistry, Institute of Food Science and Biotechnology, Purkynova 464/118, CZ-612 00 Brno (Czech Republic); Nemcova, Petra [Masaryk University, Faculty of Science, Institute of Experimental Biology, Tvrdeho 14, CZ-611 37 Brno (Czech Republic); Trachtova, Stepanka [Brno University of Technology, Faculty of Chemistry, Institute of Food Science and Biotechnology, Purkynova 464/118, CZ-612 00 Brno (Czech Republic); Horak, Daniel [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, CZ-162 06 Prague (Czech Republic)

    2009-05-15

    Carboxyl group-containing magnetic nonporous poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) (P(HEMA-co-GMA)) and magnetic glass microspheres were used for the isolation of bacterial DNA. P(HEMA-co-GMA) microspheres were prepared by the dispersion polymerization in toluene/2-methylpropan-1-ol mixture in the presence of magnetite nanoparticles obtained by coprecipitation of Fe(II) and Fe(III) salts with ammonium hydroxide. Carboxyl groups were then introduced by oxidation of the microspheres with potassium permanganate. The most extensive DNA recovery was achieved at PEG 6000 concentrations of 12% or 16% and 2 M NaCl. The method proposed was used for bacterial DNA isolation from different dairy products containing Bifidobacterium and Lactobacillus cells. The presence of target DNA and the quality of isolated DNA were checked by polymerase chain reaction (PCR) amplification with specific primers.

  4. Phenotypic characterization and 16S rDNA identification of culturable non-obligate halophilic bacterial communities from a hypersaline lake, La Sal del Rey, in extreme South Texas (USA).

    Science.gov (United States)

    Phillips, Kristen; Zaidan, Frederic; Elizondo, Omar R; Lowe, Kristine L

    2012-02-02

    La Sal del Rey ("the King's Salt") is one of several naturally-occurring salt lakes in Hidalgo County, Texas and is part of the Lower Rio Grande Valley National Wildlife Refuge. The research objective was to isolate and characterize halophilic microorganisms from La Sal del Rey. Water samples were collected from the lake and a small creek that feeds into the lake. Soil samples were collected from land adjacent to the water sample locations. Sample salinity was determined using a refractometer. Samples were diluted and cultured on a synthetic saline medium to grow halophilic bacteria. The density of halophiles was estimated by viable plate counts. A collection of isolates was selected, gram-stained, tested for catalase, and characterized using API 20E® test strips. Isolates were putatively identified by sequencing the 16S rDNA. Carbon source utilization by the microbial community from each sample site was examined using EcoPlate™ assays and the carbon utilization total activity of the community was determined. Results showed that salinity ranged from 4 parts per thousand (ppt) at the lake water source to 420 ppt in water samples taken just along the lake shore. The density of halophilic bacteria in water samples ranged from 1.2 × 102 - 5.2 × 103 colony forming units per ml (cfu ml-1) whereas the density in soil samples ranged from 4.0 × 105 - 2.5 × 106 colony forming units per gram (cfu g-1). In general, as salinity increased the density of the bacterial community decreased. Microbial communities from water and soil samples were able to utilize 12 - 31 carbon substrates. The greatest number of substrates utilized was by water-borne communities compared to soil-based communities, especially at lower salinities. The majority of bacteria isolated were gram-negative, catalase-positive, rods. Biochemical profiles constructed from API 20E® test strips showed that bacterial isolates from low-salinity water samples (4 ppt) showed the greatest phenotypic diversity

  5. Isolation and identification of bacterial causes of clinical mastitis in cattle in Sulaimania region

    Directory of Open Access Journals (Sweden)

    S. A. Hussein

    2008-01-01

    Full Text Available A total of 51 cases of bovine clinical mastitis in Sulaimani district were investigated for their bacteriological causative agents; 76 milk samples were cultured on primary and selective media and the isolated bacteria were tested for their susceptibility to antimicrobial agents used in commercial intramammary infusion products. Eighty two bacterial isolates were obtained and further identified using biochemical tests. Escherichia coli was the most common bacteria followed by Staphylococcus aureus, Streptococcus agalactia and coagulase–negative staphylococci. Two other bacterial species (Pseudomonas aeruginosa and Streptococcucs uberis were also isolated but in a lower proportion. Antibacterial susceptibility testing showed that the use of florfenicol, cephalexin and gentamicin may be useful for the treatment of clinical mastitis cases in cows.

  6. Comparison of bacterial DNA profiles of footwear insoles and soles of feet for the forensic discrimination of footwear owners.

    Science.gov (United States)

    Goga, Haruhisa

    2012-09-01

    It is crucial to identify the owner of unattended footwear left at a crime scene. However, retrieving enough DNA for DNA profiling from the owner's foot skin (plantar skin) cells from inside the footwear is often unsuccessful. This is sometimes because footwear that is used on a daily basis contains an abundance of bacteria that degrade DNA. Further, numerous other factors related to the inside of the shoe, such as high humidity and temperature, can encourage bacterial growth inside the footwear and enhance DNA degradation. This project sought to determine if bacteria from inside footwear could be used for footwear trace evidence. The plantar skins and insoles of shoes of volunteers were swabbed for bacteria, and their bacterial community profiles were compared using bacterial 16S rRNA terminal restriction fragment length polymorphism analysis. Sufficient bacteria were recovered from both footwear insoles and the plantar skins of the volunteers. The profiling identified that each volunteer's plantar skins harbored unique bacterial communities, as did the individuals' footwear insoles. In most cases, a significant similarity in the bacterial community was identified for the matched foot/insole swabs from each volunteer, as compared with those profiles from different volunteers. These observations indicate the probability to discriminate the owner of footwear by comparing the microbial DNA fingerprint from inside footwear with that of the skin from the soles of the feet of the suspected owner. This novel strategy will offer auxiliary forensic footwear evidence for human DNA identification, although further investigations into this technique are required.

  7. Accurate episomal HIV 2-LTR circles quantification using optimized DNA isolation and droplet digital PCR.

    Science.gov (United States)

    Malatinkova, Eva; Kiselinova, Maja; Bonczkowski, Pawel; Trypsteen, Wim; Messiaen, Peter; Vermeire, Jolien; Verhasselt, Bruno; Vervisch, Karen; Vandekerckhove, Linos; De Spiegelaere, Ward

    2014-01-01

    In HIV-infected patients on combination antiretroviral therapy (cART), the detection of episomal HIV 2-LTR circles is a potential marker for ongoing viral replication. Quantification of 2-LTR circles is based on quantitative PCR or more recently on digital PCR assessment, but is hampered due to its low abundance. Sample pre-PCR processing is a critical step for 2-LTR circles quantification, which has not yet been sufficiently evaluated in patient derived samples. We compared two sample processing procedures to more accurately quantify 2-LTR circles using droplet digital PCR (ddPCR). Episomal HIV 2-LTR circles were either isolated by genomic DNA isolation or by a modified plasmid DNA isolation, to separate the small episomal circular DNA from chromosomal DNA. This was performed in a dilution series of HIV-infected cells and HIV-1 infected patient derived samples (n=59). Samples for the plasmid DNA isolation method were spiked with an internal control plasmid. Genomic DNA isolation enables robust 2-LTR circles quantification. However, in the lower ranges of detection, PCR inhibition caused by high genomic DNA load substantially limits the amount of sample input and this impacts sensitivity and accuracy. Moreover, total genomic DNA isolation resulted in a lower recovery of 2-LTR templates per isolate, further reducing its sensitivity. The modified plasmid DNA isolation with a spiked reference for normalization was more accurate in these low ranges compared to genomic DNA isolation. A linear correlation of both methods was observed in the dilution series (R2=0.974) and in the patient derived samples with 2-LTR numbers above 10 copies per million peripheral blood mononuclear cells (PBMCs), (R2=0.671). Furthermore, Bland-Altman analysis revealed an average agreement between the methods within the 27 samples in which 2-LTR circles were detectable with both methods (bias: 0.3875±1.2657 log10). 2-LTR circles quantification in HIV-infected patients proved to be more

  8. Detecting Release of Bacterial dsDNA into the Host Cytosol Using Fluorescence Microscopy.

    Science.gov (United States)

    Dreier, Roland Felix; Santos, José Carlos; Broz, Petr

    2018-01-01

    Recognition of pathogens by the innate immune system relies on germline-encoded pattern recognition receptors (PRRs) that recognize unique microbial molecules, so-called pathogen-associated molecular patterns (PAMPs). Nucleic acids and their derivatives are one of the most important groups of PAMPs, and are recognized by a number of surface-associated as well as cytosolic PRRs. Cyclic GMP-AMP synthase (cGAS) recognizes the presence of pathogen- or host-derived dsDNA in the cytosol and initiates type-I-IFN production. Here, we describe a methodology that allows for evaluating the association of cGAS with released bacterial dsDNA during Francisella novicida infection of macrophages, by fluorescence confocal microscopy. This method can be adapted to the study of cGAS-dependent responses elicited by other intracellular bacterial pathogens and in other cell types.

  9. A BAC-bacterial recombination method to generate physically linked multiple gene reporter DNA constructs

    Directory of Open Access Journals (Sweden)

    Gong Shiaochin

    2009-03-01

    Full Text Available Abstract Background Reporter gene mice are valuable animal models for biological research providing a gene expression readout that can contribute to cellular characterization within the context of a developmental process. With the advancement of bacterial recombination techniques to engineer reporter gene constructs from BAC genomic clones and the generation of optically distinguishable fluorescent protein reporter genes, there is an unprecedented capability to engineer more informative transgenic reporter mouse models relative to what has been traditionally available. Results We demonstrate here our first effort on the development of a three stage bacterial recombination strategy to physically link multiple genes together with their respective fluorescent protein (FP reporters in one DNA fragment. This strategy uses bacterial recombination techniques to: (1 subclone genes of interest into BAC linking vectors, (2 insert desired reporter genes into respective genes and (3 link different gene-reporters together. As proof of concept, we have generated a single DNA fragment containing the genes Trap, Dmp1, and Ibsp driving the expression of ECFP, mCherry, and Topaz FP reporter genes, respectively. Using this DNA construct, we have successfully generated transgenic reporter mice that retain two to three gene readouts. Conclusion The three stage methodology to link multiple genes with their respective fluorescent protein reporter works with reasonable efficiency. Moreover, gene linkage allows for their common chromosomal integration into a single locus. However, the testing of this multi-reporter DNA construct by transgenesis does suggest that the linkage of two different genes together, despite their large size, can still create a positional effect. We believe that gene choice, genomic DNA fragment size and the presence of endogenous insulator elements are critical variables.

  10. A BAC-bacterial recombination method to generate physically linked multiple gene reporter DNA constructs.

    Science.gov (United States)

    Maye, Peter; Stover, Mary Louise; Liu, Yaling; Rowe, David W; Gong, Shiaochin; Lichtler, Alexander C

    2009-03-13

    Reporter gene mice are valuable animal models for biological research providing a gene expression readout that can contribute to cellular characterization within the context of a developmental process. With the advancement of bacterial recombination techniques to engineer reporter gene constructs from BAC genomic clones and the generation of optically distinguishable fluorescent protein reporter genes, there is an unprecedented capability to engineer more informative transgenic reporter mouse models relative to what has been traditionally available. We demonstrate here our first effort on the development of a three stage bacterial recombination strategy to physically link multiple genes together with their respective fluorescent protein (FP) reporters in one DNA fragment. This strategy uses bacterial recombination techniques to: (1) subclone genes of interest into BAC linking vectors, (2) insert desired reporter genes into respective genes and (3) link different gene-reporters together. As proof of concept, we have generated a single DNA fragment containing the genes Trap, Dmp1, and Ibsp driving the expression of ECFP, mCherry, and Topaz FP reporter genes, respectively. Using this DNA construct, we have successfully generated transgenic reporter mice that retain two to three gene readouts. The three stage methodology to link multiple genes with their respective fluorescent protein reporter works with reasonable efficiency. Moreover, gene linkage allows for their common chromosomal integration into a single locus. However, the testing of this multi-reporter DNA construct by transgenesis does suggest that the linkage of two different genes together, despite their large size, can still create a positional effect. We believe that gene choice, genomic DNA fragment size and the presence of endogenous insulator elements are critical variables.

  11. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses

    Science.gov (United States)

    Schostag, Morten; Stibal, Marek; Jacobsen, Carsten S.; Bælum, Jacob; Taş, Neslihan; Elberling, Bo; Jansson, Janet K.; Semenchuk, Philipp; Priemé, Anders

    2015-01-01

    The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78°N) by co-extracting DNA and RNA from 12 soil cores collected monthly over a year. PCR amplicons of 16S rRNA genes (DNA) and reverse transcribed transcripts (cDNA) were quantified and sequenced to test for the effect of low winter temperature and seasonal variation in concentration of easily degradable organic matter on the bacterial communities. The copy number of 16S rRNA genes and transcripts revealed no distinct seasonal changes indicating potential bacterial activity during winter despite soil temperatures well below −10°C. Multivariate statistical analysis of the bacterial diversity data (DNA and cDNA libraries) revealed a season-based clustering of the samples, and, e.g., the relative abundance of potentially active Cyanobacteria peaked in June and Alphaproteobacteria increased over the summer and then declined from October to November. The structure of the bulk (DNA-based) community was significantly correlated with pH and dissolved organic carbon, while the potentially active (RNA-based) community structure was not significantly correlated with any of the measured soil parameters. A large fraction of the 16S rRNA transcripts was assigned to nitrogen-fixing bacteria (up to 24% in June) and phototrophic organisms (up to 48% in June) illustrating the potential importance of nitrogen fixation in otherwise nitrogen poor Arctic ecosystems and of phototrophic bacterial activity on the soil surface. PMID:25983731

  12. Nonspecific Bacterial Flora Isolated from the Body Surface and Inside Ixodes ricinus Ticks.

    Science.gov (United States)

    Okła, Hubert; Sosnowska, Malwina; Jasik, Krzysztof P; Słodki, Jan; Wojtyczka, Robert D

    2012-09-28

    Ixodes ricinus and other representatives of the order Ixodida are vectors of typical pathogens: Borrelia burgdorferi sensu lato, Anaplasma phagocytophilium, Babesia spp., a tick-borne encephalitis virus, and other microorganisms which are important from a medical and veterinary point of view. The presented study focuses on the verification of nonspecific bacterial flora of I. ricinus. We analyzed ticks collected in a forest region in Silesia, an industrial district in Poland. Methods of classical microbiology and biochemical assays (API 20 NE test, API Staph test and MICRONAUT System) were used for isolation and identification of microorganisms living on the body surface of I. ricinus and inside ticks. The results show the presence of various bacteria on the surface and inside ticks' bodies. During the study, we isolated Acinetobacter lwoffi, Pseudomonas fluorescens, Aeromonas hydrophila, Achromobacter denitrificans, Alcaligenes faecalis, Stenotrophomonas maltophilia, Pseudomonas oryzihabitans, Micrococcus spp., Kocuria varians, Staphylococcus lentus, Kocuria kristinae, Streptococcus pneumoniae, Rhizobium radiobacter, Staphylococcus xylosus. Majority of the isolated species are non-pathogenic environmental microorganisms, but some of the isolated bacterial strains could cause severe infections.

  13. Comparison of two DNA microarrays for detection of plasmid-mediated antimicrobial resistance and virulence factor genes in clinical isolates of Enterobacteriaceae and non-Enterobacteriaceae.

    LENUS (Irish Health Repository)

    Walsh, Fiona

    2010-06-01

    A DNA microarray was developed to detect plasmid-mediated antimicrobial resistance (AR) and virulence factor (VF) genes in clinical isolates of Enterobacteriaceae and non-Enterobacteriaceae. The array was validated with the following bacterial species: Escherichiacoli (n=17); Klebsiellapneumoniae (n=3); Enterobacter spp. (n=6); Acinetobacter genospecies 3 (n=1); Acinetobacterbaumannii (n=1); Pseudomonasaeruginosa (n=2); and Stenotrophomonasmaltophilia (n=2). The AR gene profiles of these isolates were identified by polymerase chain reaction (PCR). The DNA microarray consisted of 155 and 133 AR and VF gene probes, respectively. Results were compared with the commercially available Identibac AMR-ve Array Tube. Hybridisation results indicated that there was excellent correlation between PCR and array results for AR and VF genes. Genes conferring resistance to each antibiotic class were identified by the DNA array. Unusual resistance genes were also identified, such as bla(SHV-5) in a bla(OXA-23)-positive carbapenem-resistant A. baumannii. The phylogenetic group of each E. coli isolate was verified by the array. These data demonstrate that it is possible to screen simultaneously for all important classes of mobile AR and VF genes in Enterobacteriaceae and non-Enterobacteriaceae whilst also assigning a correct phylogenetic group to E. coli isolates. Therefore, it is feasible to test clinical Gram-negative bacteria for all known AR genes and to provide important information regarding pathogenicity simultaneously.

  14. Diversity of endophytic fungal and bacterial communities in Ilex paraguariensis grown under field conditions.

    Science.gov (United States)

    Pérez, María Laura; Collavino, Mónica Mariana; Sansberro, Pedro Alfonso; Mroginski, Luis Amado; Galdeano, Ernestina

    2016-04-01

    The composition and diversity of the endophytic community associated with yerba mate (Ilex paraguariensis) was investigated using culture-depending methods. Fungi were identified based on their micromorphological characteristics and internal transcribed spacer rDNA sequence analysis; for bacteria 16S rDNA sequence analysis was used. Fungal and bacterial diversity did not show significant differences between organ age. The highest fungal diversity was registered during fall season and the lowest in winter. Bacterial diversity was higher in stems and increased from summer to winter, in contrast with leaves, which decreased. The most frequently isolated fungus was Fusarium, followed by Colletotrichum; they were both present in all the sampling seasons and organ types assayed. Actinobacteria represented 57.5 % of all bacterial isolates. The most dominant bacterial taxa were Curtobacterium and Microbacterium. Other bacteria frequently found were Methylobacterium, Sphingomonas, Herbiconiux and Bacillus. Nitrogen fixation and phosphate solubilization activity, ACC deaminase production and antagonism against plant fungal pathogens were assayed in endophytic bacterial strains. In the case of fungi, strains of Trichoderma, Penicillium and Aspergillus were assayed for antagonism against pathogenic Fusarium sp. All microbial isolates assayed showed at least one growth promoting activity. Strains of Bacillus, Pantoea, Curtobacterium, Methylobacterium, Brevundimonas and Paenibacillus had at least two growth-promoting activities, and Bacillus, Paenibacillus and the three endophytic fungi showed high antagonistic activity against Fusarium sp. In this work we have made a wide study of the culturable endophytic community within yerba mate plants and found that several microbial isolates could be considered as potential inoculants useful for improving yerba mate production.

  15. Testing of DNA isolation for the identification of hemp

    Directory of Open Access Journals (Sweden)

    Tomáš Vyhnánek

    2015-12-01

    Full Text Available Hemp is diploid organism (2n = 2x = 20, genome size 534 Mb with nine pairs of autosomes plus XX (♀ or XY (♂ chromosomes. Cannabis sativa L. is an important economic plant for the production of food, fibre, oils, and intoxicants. Genotypes (varieties or chemovar of hemp with low Δ9-tetrahydrocannabinol content are used for industrial applications. Varieties with high Δ9-tetrahydrocannabinol or high cannabidiol content are used for medicinal applications. Biochemical and molecular methods can be used for identification and classification. An important step for molecular biology methods is to obtain the matrix of the native and sufficiently pure DNA. We tested two different experimental variant of samples (20 mg and 100 mg of seeds, oilcake and dried flowers for analysis of the Italian variety Carmagnola for analysis (harvested in 2014, Hempoint Ltd., Czech Republic. The DNeasy® Plant Mini Kit (Qiagen, GE was used to isolate the DNA. The DNA concentration and purity was assessed by agarose electrophoresis and via a spectrophotometer. Samples of lower weight yielded lower values of DNA concentration (average 16.30 - 38.90 ng.µL-1, but with better purity than samples of higher weight (ratio A260nm/A280nm for low-weight samples was near 1.80. To test the applicability of DNA analysis, we used two SSR markers (CAN1347 and CAN2913. PCR products were separated on 1% agarose and on 8% polyacrylamide electrophoresis. DNA samples obtained from samples of higher weight exhibited less PCR amplification than samples of lower weight. We found no effect of sample weight on the formation of non-specific amplification products during the PCR reaction. Based on our results we can be recommended for practical isolation procedure using DNeasy® Plant Mini Kit with lower of sample weight (20 mg. In future work the procedure for DNA isolating from wheat-cannabis products, e. g. breads, rolls or pasta, will be optimized.

  16. A two primers random amplified polymorphic DNA procedure to obtain polymerase chain reaction fingerprints of bacterial species.

    Science.gov (United States)

    Rivas, R; Velázquez, E; Valverde, A; Mateos, P F; Martínez-Molina, E

    2001-04-01

    Polymerase chain reation (PCR) fingerprints are used to characterize and recognize bacteria and are generally obtained using universal primers that generate an array of DNA amplicons, which can be separated by electrophoresis. Universal primers 8F and 1491 R have been used to amplify specifically 16S rDNA. We have used these primers at an annealing temperature of 50 degrees C. Agarose gel electrophoresis of PCR products revealed several bands. The band pattern of each bacterial species was different and the strains belonging to the same species shared an identical pattern. The patterns obtained did not show variations with plasmid DNA content or the growth stage of the bacteria. The peculiarity of the randomly amplified polymorphic DNA (RAPD) described in this work lies in the use of two large primers (proximately 20 nt) to obtain the pattern, since normally a only smaller primer is used, and in the new application for the primers used to amplify 16S rDNA. This new procedure, called two primers (TP)-RAPD fingerprinting, is thus rapid, sensitive, reliable, highly reproducible and suitable for experiments with a large number of microorganisms, and can be applied to bacterial taxonomy, ecological studies and for the detection of new bacterial species.

  17. Monitoring of oil pollution at Gemsa Bay and bioremediation capacity of bacterial isolates with biosurfactants and nanoparticles.

    Science.gov (United States)

    El-Sheshtawy, H S; Khalil, N M; Ahmed, W; Abdallah, R I

    2014-10-15

    Fifteen crude oil-degrading bacterial isolates were isolated from an oil-polluted area in Gemsa Bay, Red Sea, Egypt. Two bacterial species showed the highest growth rate on crude oil hydrocarbons. From an analysis of 16S rRNA sequences, these isolates were identified as Pseudomonas xanthomarina KMM 1447 and Pseudomonas stutzeri ATCC 17588. Gas Chromatographic (GC) analysis of the crude oil remaining in the culture medium after one week at 30°C showed that the optimum biodegradation of crude petroleum oil was demonstrated at 50% in medium containing biosurfactant with two types of nanoparticles separately and two bacterial species. The complete degradation of some different members of polyaromatics and the percentage biodegradation of other polyaromatics increased in microcosm containing two different types of nanoparticles with biosurfactant after 7 days. In conclusion, these bacterial strains may be useful for the bioremediation process in the Gemsa Bay, Red Sea decreasing oil pollution in this marine ecosystem. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Biodegradation of the anionic surfactant sodium dodecyl sulfate by local bacterial isolate

    International Nuclear Information System (INIS)

    Ibrahim, H.M.M.; NoorEl-Din, M.R.

    2011-01-01

    Anionic surfactants, e.g., sodium dodecyl sulfate (SDS), as a main components in the detergent and cosmetic industries, contribute significantly to the pollution profile of sewage and wastewaters of all kinds. The purpose of this study was to isolate local SDS degrading bacteria. Screening was carried out by the conventional enrichment culture technique. One bacterial isolate was obtained; this isolate was primarily defined as gram-negative rods . It was capable of degrading 100% of 1000 and 2000 mg/l of SDS after 6 days of incubation. The isolate exhibited maximum growth at SDS concentration 4000 mg/I, but it was significantly decreased at higher concentration (16000 mg/I).All the carbon sources being tested repressed the degradation ability. Sodium nitrate at concentration of 2.0 g/I was the best nitrogen source for growth and SDS biodegradation, it enhanced the degradation of 3000 mg/I SDS by 95%,i.e., by 32% upon the control (broth medium containing NH 4 Cl). SDS degradation by the bacterium was optimum at initial ph 8.5, incubation temperature 35 degree C, and inoculum size 2% (v/v). Under the optimized conditions, almost 98% of initial SDS concentration (4000 mg/l) was degraded after 120 h of incubation. Gamma irradiation did not improve the biodegradation ability of this bacterial isolate.

  19. The bacterial diversity associated with bacterial diseases on Mud Crab (Scylla serrata Fab.) from Pemalang Coast, Indonesia

    Science.gov (United States)

    Sarjito; Desrina; Haditomo, AHC; Budi Prayitno, S.

    2018-05-01

    Bacterial disease is a problem in mud crab culture in Pemalang, Indonesia. The purpose of this study was to find out the bacteria associated with bacterial diseases on mud crab based on the molecular approach. Exploratory methods were conducted in this reserach. Twenty two bacteria (SJP 01 – SJP 22) were isolated from carapace and gills and hepathopancreas of moribound mud crab with TCBS and TSA medium. Based on rep PCR, five isolates (SJP 01, SJP 02, SJP 04, SJP 10 and SJP 11) were choosen for further investigation. Result from 16S rDNA sequence analysis, SJP 01, SJP 02, SJP 04, SJP 10 and SJP 11 were closely related to Exiguobacterium sp. ZJ2505 (99%), V. harveyi strain NCIMB1280 (98%), V. alginolyticus strain ATCC 17749(98%.), B. marisflavi strain TF-11 (97%) and E. aestuarii strain TF-16 (99%) respectively.

  20. Robust DNA Isolation and High-throughput Sequencing Library Construction for Herbarium Specimens.

    Science.gov (United States)

    Saeidi, Saman; McKain, Michael R; Kellogg, Elizabeth A

    2018-03-08

    Herbaria are an invaluable source of plant material that can be used in a variety of biological studies. The use of herbarium specimens is associated with a number of challenges including sample preservation quality, degraded DNA, and destructive sampling of rare specimens. In order to more effectively use herbarium material in large sequencing projects, a dependable and scalable method of DNA isolation and library preparation is needed. This paper demonstrates a robust, beginning-to-end protocol for DNA isolation and high-throughput library construction from herbarium specimens that does not require modification for individual samples. This protocol is tailored for low quality dried plant material and takes advantage of existing methods by optimizing tissue grinding, modifying library size selection, and introducing an optional reamplification step for low yield libraries. Reamplification of low yield DNA libraries can rescue samples derived from irreplaceable and potentially valuable herbarium specimens, negating the need for additional destructive sampling and without introducing discernible sequencing bias for common phylogenetic applications. The protocol has been tested on hundreds of grass species, but is expected to be adaptable for use in other plant lineages after verification. This protocol can be limited by extremely degraded DNA, where fragments do not exist in the desired size range, and by secondary metabolites present in some plant material that inhibit clean DNA isolation. Overall, this protocol introduces a fast and comprehensive method that allows for DNA isolation and library preparation of 24 samples in less than 13 h, with only 8 h of active hands-on time with minimal modifications.

  1. Analysis of the bacterial diversity existing on animal hide and wool: development of a preliminary PCR-restriction fragment length polymorphism fingerprint database for identifying isolates.

    Science.gov (United States)

    Chen, Yu; Gao, Hongwei; Zhang, Yanming; Deng, Mingjun; Wu, Zhenxing; Zhu, Laihua; Duan, Qing; Xu, Biao; Liang, Chengzhu; Yue, Zhiqin; Xiao, Xizhi

    2012-01-01

    Twenty-one bacterial strains were isolated from imported cattle hide and rabbit wool using two types of media, nutrient broth, and nutrient broth with serum. The bacteria identified were Brevibacillus laterosporus, Leclercia adecarboxylata, Peptococcus niger, Bacillus circulans, Raoultella ornithinolytica, Bacillus subtilis, Bacillus cereus, Bacillus thermobacillus, Bacillus choshinensis, Bacillus sphaericus, Acinetobacter haemolyticus, Sphingomonas paucimobilis, Bacillus thuringiensis, Staphylococcus intermedius, Mycobacteria, Moraxella, Klebsiella pneumoniae, Ralstonia pickettii, Staphylococcus chromogenes, Comamonas testosteroni, and Cupriavidus pauculus. The 16s rDNA gene of each bacterium was amplified using the universal primers 27f and 1492r. The amplicons were digested with AvaI, BamHI, BgII, DraI, EcoRI, EcoRV, HindIII, HinfI, HpaI, PstI, SmaI, TaqII, XbaI, XmaI, AluI, XhoI, and PvuI individually. A specific fingerprint from the PCR-restriction fragment length polymorphism method based on 16s rDNA was obtained for each bacterium. The results showed that the method developed was useful not only for bacterial identification but also for the etiological investigation of pathogens in imported animal hair and wool.

  2. ‘Corynebacterium fournierii,’ a new bacterial species isolated from the vaginal sample of a patient with bacterial vaginosis

    Directory of Open Access Journals (Sweden)

    K. Diop

    2017-07-01

    Full Text Available Here we describe briefly ‘Corynebacterium fournierii’ strain Marseille P2948 (= CSUR P2948 = DSM103271, a new bacterium that was isolated from the vaginal sample of a 21-year-old woman with bacterial vaginosis.

  3. Isolation, molecular and biochemical characterization of oil degrading bacteria from contaminated soil at an oil refinery

    International Nuclear Information System (INIS)

    AL-Deeb, T.M.; Malkawi, H.I.

    2009-01-01

    Biodegradation using microorganisms is considered to be cost-effective and environmentally friendly treatment of oil-contaminated sites. Oil-biodegrading bacterial strains were isolated, identified and characterized from oil contaminated soil samples at oil refinery in Zarqa (Jordan). Thirty four bacterial isolates were grown on mineral salt media supplemented with crude oil, but 16 showed positive biodegradation of diesel. All the 34 bacterial isolates were characterized at the molecular and bio-chemical levels, and showed positive polymerase chain reaction (PCR) amplification product size of 1500 bp when 16s rDNA bacterial universal primers were used. Eighteen bacterial isolates showed positive PCR amplification product size of 150 bp specific for the genus Pseudomonas and 3 bacterial isolates showed positive amplification product size of 1500 bp specific for the genus Acinetobacter. Biochemical and physiological characterization performed on the 34 bacterial isolates revealed the presence of oil biodegrading bacterial genera and species of Pseudomonas Acidovorans, P. aeruginosa, P. vesicularis, Acinetobacter calcoaceticus, Ac. lowffii, Micro-ococcus luteus, M. varians, M. lylae, M. roseus, Alcaligenes denitrificians, Bacillus megaterium, Comamonas sp., Moralxella sp., Bordetella sp., P. putida, P. stutzeri and P. mallei. (au)

  4. Microbiological and molecular identification of bacterial species isolated from nasal and oropharyngeal mucosa of fuel workers in Riyadh,

    Directory of Open Access Journals (Sweden)

    Suaad S. AlWakeel

    2017-09-01

    Full Text Available This study aimed to determine the bacterial species colonizing the nasal and oropharyngeal mucosa of fuel workers in Central Riyadh, Saudi Arabia on a microbiological and molecular level. Throat and nasal swab samples were obtained from 29 fuel station attendants in the period of time extending from March to May 2014 in Riyadh, Saudi Arabia. Microbiological identification techniques were utilized to identify the bacterial species isolated. Antibiotic sensitivity was assessed for each of the bacterial isolates. Molecular identification techniques based on PCR analysis of specific genomic sequences was conducted and was the basis on which phylogeny representation was done for 10 randomly selected samples of the isolates. Blood was drawn and a complete blood count was conducted to note the hematological indices for each of the study participants. Nineteen bacterial species were isolated from both the nasal cavity and the oropharynx including Streptococcus thoraltensis, alpha-hemolytic streptococci, Staphylococcus hominis, coagulase-negative staphylococci, Leuconostoc mesenteroides, Erysipelothrix rhusiopathiae and several others. We found 100% sensitivity of the isolates to ciprofloxacin, cefuroxime and gentamicin. Whereas cefotaxime and azithromycin posted sensitivities of 85.7% and 91.4%, respectively. Low sensitivities (<60% sensitivity to the antibiotics ampicillin, erythromycin, clarithromycin and norfloxacin were observed. Ninety-seven percent similarity to the microbial bank species was noted when the isolates were compared to it. Most hematological indices recorded were within the normal range. In conclusion, exposure to toxic fumes and compounds within fuel products may be a contributing factor to bacterial colonization of the respiratory tract in fuel workers.

  5. A rapid and low-cost DNA extraction method for isolating ...

    African Journals Online (AJOL)

    The price of commercial DNA extraction methods makes the routine use of polymerase chain reaction amplification (PCR) based methods rather costly for scientists in developing countries. A guanidium thiocayante-based DNA extraction method was investigated in this study for the isolation of Escherichia coli (E. coli) DNA ...

  6. Modified method for combined DNA and RNA isolation from peanut and other oil seeds.

    Science.gov (United States)

    Dang, Phat M; Chen, Charles Y

    2013-02-01

    Isolation of good quality RNA and DNA from seeds is difficult due to high levels of polysaccharides, polyphenols, and lipids that can degrade or co-precipitate with nucleic acids. Standard RNA extraction methods utilizing guanidinium-phenol-chloroform extraction has not shown to be successful. RNA isolation from plant seeds is a prerequisite for many seed specific gene expression studies and DNA is necessary in marker-assisted selection and other genetic studies. We describe a modified method to isolate both RNA and DNA from the same seed tissue and have been successful with several oil seeds including peanut, soybean, sunflower, canola, and oil radish. An additional LiCl precipitation step was added to isolate both RNA and DNA from the same seed tissues. High quality nucleic acids were observed based on A(260)/A(280) and A(260)/A(230) ratios above 2.0 and distinct bands on gel-electrophoresis. RNA was shown to be suitable for reverse transcriptase polymerase chain reaction based on actin or 60S ribosomal primer amplification and DNA was shown to have a single band on gel-electrophoresis analysis. This result shows that RNA and DNA isolated using this method can be appropriate for molecular studies in peanut and other oil containing seeds.

  7. Bacterial Isolates from the Urine of Women in Ilorin and their ...

    African Journals Online (AJOL)

    Bacterial Isolates from the Urine of Women in Ilorin and their Antibiotic Susceptibility Patterns. ... Methods: Urine samples of women suspected to have UTI were sent for microscopy, culture and sensitivity tests. The results were analyzed and the differences between the results of pregnant and non-pregnant patients were ...

  8. Restricted diffusion of DNA segments within the isolated Escherichia coli nucleoid.

    NARCIS (Netherlands)

    Cunha, S.; Woldringh, C.L.; Odijk, T.

    2005-01-01

    To study the dynamics and organization of the DNA within isolated Escherichia coli nucleoids, we track the movement of a specific DNA region. Labeling of such a region is achieved using the Lac-O/Lac-I system. The Lac repressor-GFP fusion protein binds to the DNA section where tandem repeats of the

  9. Isolation of DNA methyltransferase from plants

    International Nuclear Information System (INIS)

    Ehrlich, K.; Malbroue, C.

    1987-01-01

    DNA methyltransferases (DMT) were isolated from nuclei of cauliflower, soybean, and pea by extraction with 0.35 M NaCl. Assays were performed on hemimethylated Micrococcus luteus DNA or on M. luteus DNA to test for maintenance or de novo methylase activity, respectively. Fully methylated DNA was used as a substrate to determine background levels of methylation. Based on these tests, yields of maintenance DMT activity in the crude extract from pea hypocotyl, soybean hypocotyl, and cauliflower inflorescence were 2.8, 0.9, and 1.6 units per g wet tissue (one unit equals 1 pmol of methyl from [ 3 H]AdoMet incorporated into acid precipitable material per h at 30 0 ). Two peaks of DMT activity were detected in the soybean nuclear extract following phosphocellulose chromatography. One eluted at 0.4 M and the other at 0.8 M KCl. With both fractions maintenance activity was approximately 2 times that of the de novo activity. Using gel filtration the DMT eluted at 220,000 Daltons. The optimal pH for activity was between 6.5 and 7.0, and the optimal temperature was 30 0

  10. Plutonium interaction with a bacterial strain isolated from the waste isolation pilot plant (WIPP) environment

    International Nuclear Information System (INIS)

    Strietelmeier, B.A.; Kraus, S.M.; Leonard, P.A.; Triay, I.R.

    1996-01-01

    This work was conducted as part of a series of experiments to determine the association and interaction of various actinides with bacteria isolated from the WIPP site. The majority of bacteria that exist at the site are expected to be halophiles, or extreme halophiles, due to the high concentration of salt minerals at the location. Experiments were conducted to determine the toxicity of plutonium-n-239, neptunium-237 and americium-243 to several species of these halophiles and the results were reported elsewhere. As an extension of these experiments, we report an investigation of the type of association that occurs between 239 Pu and the isolate WIPP-1A, isolated by staff at Brookhaven National Laboratory, when grown in a high-salt, defined medium. Using scanning electron microscopy (SEM) techniques, we demonstrate a surface association of the 239 Pu with the bacterial cells

  11. Isolation and characterization of putative endophytic bacteria antagonistic to Phoma tracheiphila and Verticillium albo-atrum.

    Science.gov (United States)

    Kalai-Grami, Leila; Saidi, Sabrine; Bachkouel, Sarra; Ben Slimene, Imen; Mnari-Hattab, Monia; Hajlaoui, Mohamed Rebah; Limam, Ferid

    2014-09-01

    A collection of 200 bacterial isolates recovered from citrus plants (Citrus limon, Citrus sinensis, and Citrus reticulata), Medicago truncatula and Laurus nobilis, was established. In vitro screening indicated that 28 isolates exhibited an inhibitory activity against the vascular pathogens Phoma tracheiphila and Verticillium albo-atrum. Isolates were screened according to their hydrolytic activities, plant growth-promoting bacteria (PGPB) abilities, as well as for the presence of nonribosomal peptide synthetase (NRPS) genes responsible of the lipopeptide biosynthesis. The results were positive for 16 isolates which exhibited at least two PGPB activities and a single NRPS gene. Genetic diversity of the selected isolates was studied using random amplified polymorphic DNA (RAPD) and repetitive element PCR (REP) tools that showed clustering of strains into three major groups (I, II, and III) (i, ii, and iii), respectively. Clustering was further confirmed by the 16S rDNA sequencing that assigned nine isolates to Bacillus velezensis, four isolates to Bacillus methyltrophicus, one isolate to Bacillus amyloliquefaciens, and two isolates to Bacillus mojavensis. Organ-bacterial genotype interaction as well as positive correlation with NRPS genes are discussed.

  12. ‘Lactobacillus raoultii’ sp. nov., a new bacterium isolated from the vaginal flora of a woman with bacterial vaginosis

    Directory of Open Access Journals (Sweden)

    B. Nicaise

    2018-01-01

    Full Text Available We report the isolation of a new bacterium species, ‘Lactobacillus raoultii’ strain Marseille P4006 (CSUR P4006, isolated from a vaginal sample of a 45-year-old woman with bacterial vaginosis. Keywords: Bacterial vaginosis, culturomics, emerging bacteria, human microbiota, Lactobacillus raoultii, vaginal microbiota

  13. Isolation and sequence analysis of the wheat B genome subtelomeric DNA.

    Science.gov (United States)

    Salina, Elena A; Sergeeva, Ekaterina M; Adonina, Irina G; Shcherban, Andrey B; Afonnikov, Dmitry A; Belcram, Harry; Huneau, Cecile; Chalhoub, Boulos

    2009-09-05

    Telomeric and subtelomeric regions are essential for genome stability and regular chromosome replication. In this work, we have characterized the wheat BAC (bacterial artificial chromosome) clones containing Spelt1 and Spelt52 sequences, which belong to the subtelomeric repeats of the B/G genomes of wheats and Aegilops species from the section Sitopsis. The BAC library from Triticum aestivum cv. Renan was screened using Spelt1 and Spelt52 as probes. Nine positive clones were isolated; of them, clone 2050O8 was localized mainly to the distal parts of wheat chromosomes by in situ hybridization. The distribution of the other clones indicated the presence of different types of repetitive sequences in BACs. Use of different approaches allowed us to prove that seven of the nine isolated clones belonged to the subtelomeric chromosomal regions. Clone 2050O8 was sequenced and its sequence of 119,737 bp was annotated. It is composed of 33% transposable elements (TEs), 8.2% Spelt52 (namely, the subfamily Spelt52.2) and five non-TE-related genes. DNA transposons are predominant, making up 24.6% of the entire BAC clone, whereas retroelements account for 8.4% of the clone length. The full-length CACTA transposon Caspar covers 11,666 bp, encoding a transposase and CTG-2 proteins, and this transposon accounts for 40% of the DNA transposons. The in situ hybridization data for 2050O8 derived subclones in combination with the BLAST search against wheat mapped ESTs (expressed sequence tags) suggest that clone 2050O8 is located in the terminal bin 4BL-10 (0.95-1.0). Additionally, four of the predicted 2050O8 genes showed significant homology to four putative orthologous rice genes in the distal part of rice chromosome 3S and confirm the synteny to wheat 4BL. Satellite DNA sequences from the subtelomeric regions of diploid wheat progenitor can be used for selecting the BAC clones from the corresponding regions of hexaploid wheat chromosomes. It has been demonstrated for the first time

  14. COMPARATIVE EVALUATION OF CULTURE MEDIA FOR PATHOGEN ISOLATION OF PURULENT BACTERIAL MENINGITIS

    Directory of Open Access Journals (Sweden)

    Ya. V. Podkopaev

    2016-01-01

    Full Text Available The State Research Center for Applied Microbiology and Biotechnology has designed two nutrient media — chocolate agar and PBM-agar to isolate pathogens of purulent bacterial meningitis (PBM. In our previous research using collected microbial strains the media were shown to be highly susceptible and to provide the growth of Neisseria meningiti-dis, Streptococcus pneumoniae and Haemophilus influenzae strains, when inoculated with microbial suspensions containing single cells. When isolating Haemophilus influenzae, meningococci, and pneumococci the use of selective additives in both media assures selective isolation of required microorganisms, inhibiting contaminants. The objective of this research was to assess the media in bacteriological tests of clinical samples collected from the upper and lower respiratory tract in humans. The bacteriological plating of throat smear specimens (n = 90 from children and adults at the age of 0 to 66 with disorder of the upper respiratory tract on chocolate agar, PBM-agar and on a control medium in the absence of selective additives resulted in the equal amount of microbial cultures isolated. Of 154 isolated cultures 2, 23 and 9 were attributed to Neisseria meningitidis, Streptococcus pneumoniae and Haemophilus influenzae, respectively. The plating of throat smears (n = 10 from healthy people at the age of 30 to 55 on the analyzable and control media in the presence of additives allowed us to selectively isolate Haemophilus influenzae and Streptococcus pneumoniae cultures without a quantitative loss, with contaminants inhibited. By their growth characteristics chocolate agar and PBM-agar were highly competitive with reference media being used in clinical practice for isolating main causative agents of purulent bacterial meningitis.

  15. Isolation and characterization of a marsupial DNA photolyase

    Energy Technology Data Exchange (ETDEWEB)

    Sabourin, C.L.K.; Ley, R.D.

    1988-05-01

    Post UV-B (280-320 nm) exposure to UV-A (320-400 nm) reverses pyrimidine dimers in the epidermal DNA of the South American opossum Monodelphis domestica. To demonstrate that the observed photorepair is mediated by an enzyme, we have isolated a DNA photolyase from the opossum. DNA photolyase from liver was purified 3000-fold by ammonium sulfate fractionation and phenylsepharose, hydroxylapatite, DEAE-cellulose and DNA-cellulose column chromatography. Heat denaturation completely eliminated the photoreactivating activity. The enzyme was active in the pH range of 5.5 to 8.5 with a pH optimum of 7.5. The enzyme has an apparent molecular weight of 32 000 under nondenaturing conditions. The activity of the enzyme was not affected by sodium chloride up to 250 mM. The action spectrum for the purified DNA photolyase showed activity in the range of 325-475 nm with peak activity at 375 nm.

  16. The interaction of DNA gyrase with the bacterial toxin CcdB

    DEFF Research Database (Denmark)

    Kampranis, S C; Howells, A J; Maxwell, A

    1999-01-01

    CcdB is a bacterial toxin that targets DNA gyrase. Analysis of the interaction of CcdB with gyrase reveals two distinct complexes. An initial complex (alpha) is formed by direct interaction between GyrA and CcdB; this complex can be detected by affinity column and gel-shift analysis, and has...... of this initial complex with ATP in the presence of GyrB and DNA slowly converts it to a second complex (beta), which has a lower rate of ATP hydrolysis and is unable to catalyse supercoiling. The efficiency of formation of this inactive complex is dependent on the concentrations of ATP and CcdB. We suggest...

  17. Non liquid nitrogen-based-method for isolation of DNA from ...

    African Journals Online (AJOL)

    A simple, efficient, reliable and cost-effective method for isolation of total genomic DNA from fungi, suitable for polymerase chain reaction (PCR) amplification and other molecular applications was described. The main advantages of the method are: (1) does not require the use of liquid nitrogen for preparation of fungi DNA; ...

  18. Molecular application for identification of polycyclic aromatic hydrocarbons degrading bacteria (PAHD) species isolated from oil polluted soil in Dammam, Saud Arabia.

    Science.gov (United States)

    Ibrahim, Mohamed M; Al-Turki, Ameena; Al-Sewedi, Dona; Arif, Ibrahim A; El-Gaaly, Gehan A

    2015-09-01

    Soil contamination with petroleum hydrocarbon products such as diesel and engine oil is becoming one of the major environmental problems. This study describes hydrocarbons degrading bacteria (PHAD) isolated from long-standing petrol polluted soil from the eastern region, Dammam, Saudi Arabia. The isolated strains were firstly categorized by accessible shape detection, physiological and biochemistry tests. Thereafter, a technique established on the sequence analysis of a 16S rDNA gene was used. Isolation of DNA from the bacterial strains was performed, on which the PCR reaction was carried out. Strains were identified based on 16S rDNA sequence analysis, As follows amplified samples were spontaneously sequenced automatically and the attained results were matched to open databases. Among the isolated bacterial strains, S1 was identified as Staphylococcus aureus and strain S1 as Corynebacterium amycolatum.

  19. Adaptation of the neutral bacterial comet assay to assess antimicrobial-mediated DNA double-strand breaks in Escherichia coli

    Science.gov (United States)

    SOLANKY, DIPESH; HAYDEL, SHELLEY E.

    2012-01-01

    This study aimed to determine the mechanism of action of a natural antibacterial clay mineral mixture, designated CB, by investigating the induction of DNA double-strand breaks (DSBs) in Escherichia coli. To quantify DNA damage upon exposure to soluble antimicrobial compounds, we modified a bacterial neutral comet assay, which primarily associates the general length of an electrophoresed chromosome, or comet, with the degree of DSB-associated DNA damage. To appropriately account for antimicrobial-mediated strand fragmentation, suitable control reactions consisting of exposures to water, ethanol, kanamycin, and bleomycin were developed and optimized for the assay. Bacterial exposure to the CB clay resulted in significantly longer comet lengths, compared to water and kanamycin exposures, suggesting that the induction of DNA DSBs contributes to the killing activity of this antibacterial clay mineral mixture. The comet assay protocol described herein provides a general technique for evaluating soluble antimicrobial-derived DNA damage and for comparing DNA fragmentation between experimental and control assays. PMID:22940101

  20. Amplification of pico-scale DNA mediated by bacterial carrier DNA for small-cell-number transcription factor ChIP-seq

    DEFF Research Database (Denmark)

    Jakobsen, Janus S; Bagger, Frederik O; Hasemann, Marie S

    2015-01-01

    BACKGROUND: Chromatin-Immunoprecipitation coupled with deep sequencing (ChIP-seq) is used to map transcription factor occupancy and generate epigenetic profiles genome-wide. The requirement of nano-scale ChIP DNA for generation of sequencing libraries has impeded ChIP-seq on in vivo tissues of low...... transcription factor (CEBPA) and histone mark (H3K4me3) ChIP. We further demonstrate that genomic profiles are highly resilient to changes in carrier DNA to ChIP DNA ratios. CONCLUSIONS: This represents a significant advance compared to existing technologies, which involve either complex steps of pre...... cell numbers. RESULTS: We describe a robust, simple and scalable methodology for ChIP-seq of low-abundant cell populations, verified down to 10,000 cells. By employing non-mammalian genome mapping bacterial carrier DNA during amplification, we reliably amplify down to 50 pg of ChIP DNA from...

  1. Low-energy plasma immersion ion implantation to induce DNA transfer into bacterial E. coli

    Energy Technology Data Exchange (ETDEWEB)

    Sangwijit, K. [Biotechnology Unit, University of Phayao, Muang, Phayao 56000 (Thailand); Yu, L.D., E-mail: yuld@thep-center.org [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Sarapirom, S. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Faculty of Science, Maejo University, Bang Khen, Chiang Mai 50290 (Thailand); Pitakrattananukool, S. [School of Science, University of Phayao, Muang, Phayao 56000 (Thailand); Anuntalabhochai, S. [Biotechnology Unit, University of Phayao, Muang, Phayao 56000 (Thailand)

    2015-12-15

    Plasma immersion ion implantation (PIII) at low energy was for the first time applied as a novel biotechnology to induce DNA transfer into bacterial cells. Argon or nitrogen PIII at low bias voltages of 2.5, 5 and 10 kV and fluences ranging from 1 × 10{sup 12} to 1 × 10{sup 17} ions/cm{sup 2} treated cells of Escherichia coli (E. coli). Subsequently, DNA transfer was operated by mixing the PIII-treated cells with DNA. Successes in PIII-induced DNA transfer were demonstrated by marker gene expressions. The induction of DNA transfer was ion-energy, fluence and DNA-size dependent. The DNA transferred in the cells was confirmed functioning. Mechanisms of the PIII-induced DNA transfer were investigated and discussed in terms of the E. coli cell envelope anatomy. Compared with conventional ion-beam-induced DNA transfer, PIII-induced DNA transfer was simpler with lower cost but higher efficiency.

  2. DNA-based identification of spices: DNA isolation, whole genome amplification, and polymerase chain reaction.

    Science.gov (United States)

    Focke, Felix; Haase, Ilka; Fischer, Markus

    2011-01-26

    Usually spices are identified morphologically using simple methods like magnifying glasses or microscopic instruments. On the other hand, molecular biological methods like the polymerase chain reaction (PCR) enable an accurate and specific detection also in complex matrices. Generally, the origins of spices are plants with diverse genetic backgrounds and relationships. The processing methods used for the production of spices are complex and individual. Consequently, the development of a reliable DNA-based method for spice analysis is a challenging intention. However, once established, this method will be easily adapted to less difficult food matrices. In the current study, several alternative methods for the isolation of DNA from spices have been developed and evaluated in detail with regard to (i) its purity (photometric), (ii) yield (fluorimetric methods), and (iii) its amplifiability (PCR). Whole genome amplification methods were used to preamplify isolates to improve the ratio between amplifiable DNA and inhibiting substances. Specific primer sets were designed, and the PCR conditions were optimized to detect 18 spices selectively. Assays of self-made spice mixtures were performed to proof the applicability of the developed methods.

  3. Determination of alkylation of bacterial DNA as a rapid test for toxicological evaluation of alkylating xenobiotic agents

    Energy Technology Data Exchange (ETDEWEB)

    Botzenhart, K.; Waldner-Sander, S.; Schweinsberg, F.

    1986-05-01

    Alkylated purine bases from hydrolized DNA can be separated by HPLC and quantified with a fluorescence detector. We applied this method to bacterial DNA. 7-methylguanine was detected after treatment of Serratia marcescens with iodoacetamide, dimethyl sulfate and with polluted air.

  4. The Extraction and Partial Purification of Bacterial DNA as a Practical Exercise for GCE Advanced Level Students.

    Science.gov (United States)

    Falconer, A. C.; Hayes, L. J.

    1986-01-01

    Describes a relatively simple method of extraction and purification of bacterial DNA. This technique permits advanced secondary-level science students to obtain adequate amounts of DNA from very small pellets of bacteria and to observe some of its polymer properties. (ML)

  5. Nested polymerase chain reaction (PCR) targeting 16S rDNA for bacterial identification in empyema.

    Science.gov (United States)

    Prasad, Rajniti; Kumari, Chhaya; Das, B K; Nath, Gopal

    2014-05-01

    Empyema in children causes significant morbidity and mortality. However, identification of organisms is a major concern. To detect bacterial pathogens in pus specimens of children with empyema by 16S rDNA nested polymerase chain reaction (PCR) and correlate it with culture and sensitivity. Sixty-six children admitted to the paediatric ward with a diagnosis of empyema were enrolled prospectively. Aspirated pus was subjected to cytochemical examination, culture and sensitivity, and nested PCR targeting 16S rDNA using a universal eubacterial primer. Mean (SD) age was 5·8 (1·8) years (range 1-13). Analysis of aspirated pus demonstrated total leucocyte count >1000×10(6)/L, elevated protein (≧20 g/L) and decreased glucose (≤2·2 mmol/L) in 80·3%, 98·5% and 100%, respectively. Gram-positive cocci were detected in 29 (43·9%) and Gram-negative bacilli in two patients. Nested PCR for the presence of bacterial pathogens was positive in 50·0%, compared with 36·3% for culture. 16S rDNA PCR improves rates of detection of bacteria in pleural fluid, and can detect bacterial species in a single assay as well as identifying unusual and unexpected causal agents.

  6. The BER necessities: the repair of DNA damage in human-adapted bacterial pathogens.

    Science.gov (United States)

    van der Veen, Stijn; Tang, Christoph M

    2015-02-01

    During colonization and disease, bacterial pathogens must survive the onslaught of the host immune system. A key component of the innate immune response is the generation of reactive oxygen and nitrogen species by phagocytic cells, which target and disrupt pathogen molecules, particularly DNA, and the base excision repair (BER) pathway is the most important mechanism for the repair of such oxidative DNA damage. In this Review, we discuss how the human-specific pathogens Mycobacterium tuberculosis, Helicobacter pylori and Neisseria meningitidis have evolved specialized mechanisms of DNA repair, particularly their BER pathways, compared with model organisms such as Escherichia coli. This specialization in DNA repair is likely to reflect the distinct niches occupied by these important human pathogens in the host.

  7. Identification of bacterial strains isolated from the Mediterranean Sea exhibiting different abilities of biofilm formation.

    Science.gov (United States)

    Brian-Jaisson, Florence; Ortalo-Magné, Annick; Guentas-Dombrowsky, Linda; Armougom, Fabrice; Blache, Yves; Molmeret, Maëlle

    2014-07-01

    The Mediterranean Sea has rarely been investigated for the characterization of marine bacteria as compared to other marine environments such as the Atlantic or Pacific Ocean. Bacteria recovered from inert surfaces are poorly studied in these environments, when it has been shown that the community structure of attached bacteria can be dissimilar from that of planktonic bacteria present in the water column. The objectives of this study were to identify and characterize marine bacteria isolated from biofilms developed on inert surfaces immersed in the Mediterranean Sea and to evaluate their capacity to form a biofilm in vitro. Here, 13 marine bacterial strains have been isolated from different supports immersed in seawater in the Bay of Toulon (France). Phylogenetic analysis and different biological and physico-chemical properties have been investigated. Among the 13 strains recovered, 8 different genera and 12 different species were identified including 2 isolates of a novel bacterial species that we named Persicivirga mediterranea and whose genus had never been isolated from the Mediterranean Sea. Shewanella sp. and Pseudoalteromonas sp. were the most preponderant genera recovered in our conditions. The phenotypical characterization revealed that one isolate belonging to the Polaribacter genus differed from all the other ones by its hydrophobic properties and poor ability to form biofilms in vitro. Identifying and characterizing species isolated from seawater including from Mediterranean ecosystems could be helpful for example, to understand some aspects of bacterial biodiversity and to further study the mechanisms of biofilm (and biofouling) development in conditions approaching those of the marine environment.

  8. Bacterial mutagenicity and mammalian cell DNA damage by several substituted anilines.

    Science.gov (United States)

    Zimmer, D; Mazurek, J; Petzold, G; Bhuyan, B K

    1980-04-01

    Several substituted alkyl- and haloanilines were tested for their ability to mutate Salmonella typhimurium and to damage the DNA of mammalian (V79) cells. These results were correlated with their reported carcinogenicity. Of 9 suspected carcinogens, 4 were bacterial mutagens and 4 (out of 7 tested) damaged DNA of V79 cells. The following compounds were weakly mutagenic (less than 150 revertants/mumole): 4-fluoroaniline, 2,3-, 2,4-, 2,5- and 3,4-dimethylaniline, and 2-methyl-4-fluoroaniline. The following compounds were strong mutagens: 2,4,5-trimethylaniline, 2-methyl-4-chloro-, and 2-methyl-4-bromo-, 4-methyl-2-chloro-, 4-methyl-2-bromo- and 2-ethyl-4-chloroaniline. The compounds which damaged DNA in V79 cells were: 2 methyl-4-chloroaniline, 2-methyl-4-bromoaniline, 2,4,5- and 2,4,6-trimethylaniline.

  9. Isolation and characterization of a marsupial DNA photolyase

    International Nuclear Information System (INIS)

    Sabourin, C.L.K.; Ley, R.D.

    1988-01-01

    Post UV-B (280-320 nm) exposure to UV-A (320-400 nm) reverses pyrimidine dimers in the epidermal DNA of the South American opossum Monodelphis domestica. To demonstrate that the observed photorepair is mediated by an enzyme, we have isolated a DNA photolyase from the opossum. DNA photolyase from liver was purified 3000-fold by ammonium sulfate fractionation and phenylsepharose, hydroxylapatite, DEAE-cellulose and DNA-cellulose column chromatography. Heat denaturation completely eliminated the photoreactivating activity. The enzyme was active in the pH range of 5.5 to 8.5 with a pH optimum of 7.5. The enzyme has an apparent molecular weight of 32 000 under nondenaturing conditions. The activity of the enzyme was not affected by sodium chloride up to 250 mM. The action spectrum for the purified DNA photolyase showed activity in the range of 325-475 nm with peak activity at 375 nm. (author)

  10. Microbiological and molecular identification of bacterial species isolated from nasal and oropharyngeal mucosa of fuel workers in Riyadh, Saudi Arabia.

    Science.gov (United States)

    AlWakeel, Suaad S

    2017-09-01

    This study aimed to determine the bacterial species colonizing the nasal and oropharyngeal mucosa of fuel workers in Central Riyadh, Saudi Arabia on a microbiological and molecular level. Throat and nasal swab samples were obtained from 29 fuel station attendants in the period of time extending from March to May 2014 in Riyadh, Saudi Arabia. Microbiological identification techniques were utilized to identify the bacterial species isolated. Antibiotic sensitivity was assessed for each of the bacterial isolates. Molecular identification techniques based on PCR analysis of specific genomic sequences was conducted and was the basis on which phylogeny representation was done for 10 randomly selected samples of the isolates. Blood was drawn and a complete blood count was conducted to note the hematological indices for each of the study participants. Nineteen bacterial species were isolated from both the nasal cavity and the oropharynx including Streptococcus thoraltensis , alpha-hemolytic streptococci, Staphylococcus hominis , coagulase-negative staphylococci, Leuconostoc mesenteroides , Erysipelothrix rhusiopathiae and several others. We found 100% sensitivity of the isolates to ciprofloxacin, cefuroxime and gentamicin. Whereas cefotaxime and azithromycin posted sensitivities of 85.7% and 91.4%, respectively. Low sensitivities (fuel products may be a contributing factor to bacterial colonization of the respiratory tract in fuel workers.

  11. Occurrence and antibacterial susceptibility pattern of bacterial pathogens isolated from diarrheal patients in Pakistan

    OpenAIRE

    Rasool, Muhammad H.; Siddique, Abu B.; Saqalein, Muhammad; Asghar, Muhammad J.; Zahoor, Muhammad A.; Aslam, Bilal; Shafiq, Humerah B.; Nisar, Muhammad A.

    2016-01-01

    Objective: To determine the occurrence of bacterial pathogens responsible for diarrhea and to engender information regarding the effectiveness of commonly used antibiotic against diarrhea. Methods: This cross-sectional study was conducted between April and July 2014. Samples were collected from the Divisional Headquarter and Allied Hospital, Faisalabad, Pakistan. The differential and selective media were used to isolate bacterial pathogens, which were identified through cultural character...

  12. Evaluation of Lysis Methods for the Extraction of Bacterial DNA for Analysis of the Vaginal Microbiota.

    Science.gov (United States)

    Gill, Christina; van de Wijgert, Janneke H H M; Blow, Frances; Darby, Alistair C

    2016-01-01

    Recent studies on the vaginal microbiota have employed molecular techniques such as 16S rRNA gene sequencing to describe the bacterial community as a whole. These techniques require the lysis of bacterial cells to release DNA before purification and PCR amplification of the 16S rRNA gene. Currently, methods for the lysis of bacterial cells are not standardised and there is potential for introducing bias into the results if some bacterial species are lysed less efficiently than others. This study aimed to compare the results of vaginal microbiota profiling using four different pretreatment methods for the lysis of bacterial samples (30 min of lysis with lysozyme, 16 hours of lysis with lysozyme, 60 min of lysis with a mixture of lysozyme, mutanolysin and lysostaphin and 30 min of lysis with lysozyme followed by bead beating) prior to chemical and enzyme-based DNA extraction with a commercial kit. After extraction, DNA yield did not significantly differ between methods with the exception of lysis with lysozyme combined with bead beating which produced significantly lower yields when compared to lysis with the enzyme cocktail or 30 min lysis with lysozyme only. However, this did not result in a statistically significant difference in the observed alpha diversity of samples. The beta diversity (Bray-Curtis dissimilarity) between different lysis methods was statistically significantly different, but this difference was small compared to differences between samples, and did not affect the grouping of samples with similar vaginal bacterial community structure by hierarchical clustering. An understanding of how laboratory methods affect the results of microbiota studies is vital in order to accurately interpret the results and make valid comparisons between studies. Our results indicate that the choice of lysis method does not prevent the detection of effects relating to the type of vaginal bacterial community one of the main outcome measures of epidemiological studies

  13. Evaluation of Lysis Methods for the Extraction of Bacterial DNA for Analysis of the Vaginal Microbiota.

    Directory of Open Access Journals (Sweden)

    Christina Gill

    Full Text Available Recent studies on the vaginal microbiota have employed molecular techniques such as 16S rRNA gene sequencing to describe the bacterial community as a whole. These techniques require the lysis of bacterial cells to release DNA before purification and PCR amplification of the 16S rRNA gene. Currently, methods for the lysis of bacterial cells are not standardised and there is potential for introducing bias into the results if some bacterial species are lysed less efficiently than others. This study aimed to compare the results of vaginal microbiota profiling using four different pretreatment methods for the lysis of bacterial samples (30 min of lysis with lysozyme, 16 hours of lysis with lysozyme, 60 min of lysis with a mixture of lysozyme, mutanolysin and lysostaphin and 30 min of lysis with lysozyme followed by bead beating prior to chemical and enzyme-based DNA extraction with a commercial kit.After extraction, DNA yield did not significantly differ between methods with the exception of lysis with lysozyme combined with bead beating which produced significantly lower yields when compared to lysis with the enzyme cocktail or 30 min lysis with lysozyme only. However, this did not result in a statistically significant difference in the observed alpha diversity of samples. The beta diversity (Bray-Curtis dissimilarity between different lysis methods was statistically significantly different, but this difference was small compared to differences between samples, and did not affect the grouping of samples with similar vaginal bacterial community structure by hierarchical clustering.An understanding of how laboratory methods affect the results of microbiota studies is vital in order to accurately interpret the results and make valid comparisons between studies. Our results indicate that the choice of lysis method does not prevent the detection of effects relating to the type of vaginal bacterial community one of the main outcome measures of

  14. PCR-DGGE Analysis of Bacterial Population Attached to the Bovine Rumen Wall

    OpenAIRE

    Lukáš, F. (Filip); Šimůnek, J. (Jiří); Mrázek, J. (Jakub); Kopečný, J. (Jan)

    2010-01-01

    We isolated and amplified by PCR 16S rDNA from bacteria attached to the bovine rumen wall and analyzed it by denaturing gradient gel electrophoresis (DGGE) with subsequent sequence analysis. The attached bacterial community differed from the bacteria of rumen content; however, no differences were observed among the five epithelial sampling sites taken from each animal. The DGGE profile of the bacterial population attached to the rumen wall represented a high inter-animal variation.

  15. PCR (Polymerase Chain Reaction) Assay On Antibiotics Resistant Clinical Isolates Of Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    R, Maria Lina; S, Dadang; Suhadi, F.

    2000-01-01

    To detect to DNA of 9 drug-resistant isolates of m. tuberculosis such as isoniazid, streptomycin, isoniazid + streptomycin and isoniazid + rifampisin- resistant isolates, the DNA amplification by using PCR assay was carried out after lysing the bacterial cells. Two primer pairs for amplification used were Pt8 and Pt9 and Pt3 and Pt6. The amplified DNA taeget of 8 drug-resistant isolates and 1 drug-resistant isolate by means Pt8 8 Pt9 primer, gave the positive and negative result, respectively. Presence of amplified DNA target fragmens/bands on agarose gel, showed the positive result and vice verse. PCR process by using Pt3 and Pt6 primer revealed the positive results on 2 drug-resistant islates, whereas there was no amplified DNA bands from the other 7 isolates. DNA amplification by using either Pt8 and Pt9 or Pt3 and Pt6 primers occurred on H sub.37Rv strain DNA. Size of the amplified DNA products with Pt8 and Pt9 and Pt3 and Pt6 primers were 541 bp and 188 bp, respectively

  16. Xanthomonas euvesicatoria Causes Bacterial Spot Disease on Pepper Plant in Korea

    Directory of Open Access Journals (Sweden)

    Min-Seong Kyeon

    2016-10-01

    Full Text Available In 2004, bacterial spot-causing xanthomonads (BSX were reclassified into 4 species—Xanthomonas euvesicatoria, X. vesicatoria, X. perforans, and X. gardneri. Bacterial spot disease on pepper plant in Korea is known to be caused by both X. axonopodis pv. vesicatoria and X. vesicatoria. Here, we reidentified the pathogen causing bacterial spots on pepper plant based on the new classification. Accordingly, 72 pathogenic isolates were obtained from the lesions on pepper plants at 42 different locations. All isolates were negative for pectolytic activity. Five isolates were positive for amylolytic activity. All of the Korean pepper isolates had a 32 kDa-protein unique to X. euvesicatoria and had the same band pattern of the rpoB gene as that of X. euvesicatoria and X. perforans as indicated by PCR-restriction fragment length polymorphism analysis. A phylogenetic tree of 16S rDNA sequences showed that all of the Korean pepper plant isolates fit into the same group as did all the reference strains of X. euvesicatoria and X. perforans. A phylogenetic tree of the nucleotide sequences of 3 housekeeping genes—gapA, gyrB, and lepA showed that all of the Korean pepper plant isolates fit into the same group as did all of the references strains of X. euvesicatoria. Based on the phenotypic and genotypic characteristics, we identified the pathogen as X. euvesicatoria. Neither X. vesicatoria, the known pathogen of pepper bacterial spot, nor X. perforans, the known pathogen of tomato plant, was isolated. Thus, we suggest that the pathogen causing bacterial spot disease of pepper plants in Korea is X. euvesicatoria.

  17. Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Petranovic, Dina; Macek, B

    2006-01-01

    for phosphotyrosine-containing proteins in Streptomyces griseus by immunoaffinity chromatography identified bacterial SSBs as a novel target of bacterial tyrosine kinases. Since genes encoding protein-tyrosine kinases (PTKs) have not been recognized in streptomycetes, and SSBs from Streptomyces coelicolor (Sc......SSB) and Bacillus subtilis (BsSSB) share 38.7% identity, we used a B.subtilis protein-tyrosine kinase YwqD to phosphorylate two cognate SSBs (BsSSB and YwpH) in vitro. We demonstrate that in vivo phosphorylation of B.subtilis SSB occurs on tyrosine residue 82, and this reaction is affected antagonistically...... by kinase YwqD and phosphatase YwqE. Phosphorylation of B.subtilis SSB increased binding almost 200-fold to single-stranded DNA in vitro. Tyrosine phosphorylation of B.subtilis, S.coelicolor and Escherichia coli SSBs occured while they were expressed in E.coli, indicating that tyrosine phosphorylation...

  18. A one-step miniprep for the isolation of plasmid DNA and lambda phage particles.

    Directory of Open Access Journals (Sweden)

    George Lezin

    Full Text Available Plasmid DNA minipreps are fundamental techniques in molecular biology. Current plasmid DNA minipreps use alkali and the anionic detergent SDS in a three-solution format. In addition, alkali minipreps usually require additional column-based purification steps and cannot isolate other extra-chromosomal elements, such as bacteriophages. Non-ionic detergents (NIDs have been used occasionally as components of multiple-solution plasmid DNA minipreps, but a one-step approach has not been developed. Here, we have established a one-tube, one-solution NID plasmid DNA miniprep, and we show that this approach also isolates bacteriophage lambda particles. NID minipreps are more time-efficient than alkali minipreps, and NID plasmid DNA performs better than alkali DNA in many downstream applications. In fact, NID crude lysate DNA is sufficiently pure to be used in digestion and sequencing reactions. Microscopic analysis showed that the NID procedure fragments E. coli cells into small protoplast-like components, which may, at least in part, explain the effectiveness of this approach. This work demonstrates that one-step NID minipreps are a robust method to generate high quality plasmid DNA, and NID approaches can also isolate bacteriophage lambda particles, outperforming current standard alkali-based minipreps.

  19. Isolate extended state in the DNA molecular transistor with surface interaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Le, E-mail: wang_le917@gs.zzu.edu.cn; Qin, Zhi-Jie

    2016-02-01

    The field effect characteristic of a DNA molecular device is investigated in a tight binding model with binary disorder and side site correlation. Using the transfer-matrix method and Landauer–Büttiker theory, we find that the system has isolated extended state that is irrespective of the DNA sequence and can be modulated by the gate voltage. When the gate voltage reaches some proper value, the isolated extended state appears at the Fermi level of the system and the long range charge transport is greatly enhanced. We attribute this phenomenon to the combination of the external field, the surface interaction, and the intrinsic disorder of DNA. The result is a generic feature of the nanowire with binary disorder and surface interaction.

  20. cDNA fingerprinting of osteoprogenitor cells to isolate differentiation stage-specific genes.

    OpenAIRE

    Candeliere, G A; Rao, Y; Floh, A; Sandler, S D; Aubin, J E

    1999-01-01

    A cDNA fingerprinting strategy was developed to identify genes based on their differential expression pattern during osteoblast development. Preliminary biological and molecular staging of cDNA pools prepared by global amplification PCR allowed discrim-inating choices to be made in selection of expressed sequence tags (ESTs) to be isolated. Sequencing of selected ESTs confirmed that both known and novel genes can be isolated from any developmental stage of interest, e.g. from primitive progen...

  1. Xanthomonas oryzae pv oryzae the Causal Agent of Bacterial Leaf Blight of rice: Isolation, Characterization, and Study of Transposon Mutagenesis

    Directory of Open Access Journals (Sweden)

    Abdjad Asih Nawangsih

    2011-04-01

    Full Text Available Xanthomonas oryzae pv oryzae the Causal Agent of Bacterial Leaf Blight of rice: Isolation, Characterization, and Study of Transposon Mutagenesis. X. oryzae pv. oryzae (Xoo causes bacterial leaf blight (BLB of rice (Oryza sativa L., a major disease that constrains production of the staple crop in many countries of the world. Identification of X. oryzae pv. oryzae (Xoo was conducted based on the disease symptoms, pathogenicity, morphological, physiological, and genetic characteristics of bacterial cultures isolated from the infected plants. Fifty bacterial isolates predicted as Xoo have been successfully isolated. They are aerobic, rod shaped, and Gram negative bacteria. The isolates were evaluated for their hypersensitivity in tobacco and pathogenicity in rice plant. Fifty isolates induced hypersensitive reaction in tobacco and showed pathogenicity symptom in rice in different length. Based on physiological test, hypersensitivity and pathogenicity reactions, three bacterial isolates strongly predicted as Xoo, i.e. STG21, STG42, and STG46, were non indole formation, non pigment fluorescent, hydrolyzed casein, catalase activity positive, but negative oxidase. Partial sequencing of 16S rRNA genes of STG21 and STG42 showed 80% and 82% homology with X. oryzae, respectively, while STG46 showed 84% homology with X. campestris. Mini-Tn5 transposon mutagenesis of STG21 generated one of the mutants (M5 lossed it’s ability to induce hypersensitive reaction in tobacco plant and deficient in pathogenicity on rice. The lesion length of rice leaf caused by the mutant M5 decreased up to 80%.

  2. Pasteurella multocida isolated from wild birds of North America: a serotype and DNA fingerprint study of isolates from 1978 to 1993

    Science.gov (United States)

    Wilson, M.A.; Duncan, R.M.; Nordholm, G.E.; Berlowski, B.M.

    1995-01-01

    Serotype and DNA fingerprint methods were used to study Pasteurella multocida isolated from 320 wild birds of North America. Isolates were collected during 1978-93. The HhaI profiles of 314 isolates matched the HhaI profile of somatic reference type 1, strain X-73; somatic type 1 antigen was expressed by 310 isolates, and the serotype of four isolates was undetected. Differentiation of the 314 isolates was observed by digestion of DNA with HpaII. None of the HpaII profiles matched the HpaII profile of X-73 (designated HhaI 001/HpaII 001). Three HpaII profiles were recognized among the somatic type 1 isolates: HpaII 002 (n = 18), HpaII 003 (n = 122), and HpaII 004 (n = 174). Profile HpaII 002 was found among isolates collected during 1979-83. Profile HpaII 003 was identified from isolates collected during 1979-89, with the exception of two isolates in 1992. The HpaII 004 profile was identified from isolates collected during 1983-93. Of the six remaining isolates, four expressed somatic type 4 and had HhaI profiles identical to the somatic type 4 reference strain P-1662 profile (designated HhaI 004); these isolates were differentiated by digestion of DNA with HpaII. One isolate was identified as serotype F:11, and another was serotype A:3,4. In the present study, 314 of 316 (99.4%) isolates from wild birds in the Central, Mississippi, and Pacific flyways during 1978-93, were P. multocida somatic type 1.

  3. Culture-Negative Endocarditis Diagnosed Using 16S DNA Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Stephen Duffett

    2012-01-01

    Full Text Available 16S DNA polymerase chain reaction (PCR is a molecular amplification technique that can be used to identify bacterial pathogens in culture-negative endocarditis. Bacterial DNA can be isolated from surgically excised valve tissue or from blood collected in EDTA vials. Use of this technique is particularly helpful in identifying the bacterial pathogen in cases of culture-negative endocarditis. A case involving a 48-year-old man who presented with severe aortic regurgitation and a four-month prodrome of low-grade fever is reported. Blood and valve tissue cultures following valve replacement were negative. A valve tissue sample was sent for investigation with 16S DNA PCR, which successfully identified Streptococcus salivarius and was interpreted as the true diagnosis. A review of the literature suggests that 16S DNA PCR from valve tissue is a more sensitive diagnostic test than culture. It is also extremely specific, based on a sequence match of at least 500 base pairs.

  4. Solid-phase DNA isolation from food matrices using hydrophilic magnetic microspheres

    Czech Academy of Sciences Publication Activity Database

    Trachtová, Š.; Španová, A.; Tóth, J.; Prettl, Z.; Horák, Daniel; Gyenis, J.; Rittich, B.

    2015-01-01

    Roč. 94, April (2015), s. 375-381 ISSN 0960-3085 R&D Projects: GA ČR GAP206/12/0381 Institutional support: RVO:61389013 Keywords : DNA compaction * magnetic microspheres * DNA isolation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.687, year: 2015

  5. Assessment of biofilm formation in device-associated clinical bacterial isolates in a tertiary level hospital

    Directory of Open Access Journals (Sweden)

    Summaiya A Mulla

    2011-01-01

    Full Text Available Background: Biofilm formation is a developmental process with intercellular signals that regulate growth. Biofilms contaminate catheters, ventilators, and medical implants; they act as a source of disease for humans, animals, and plants. Aim: In this study we have done quantitative assessment of biofilm formation in device-associated clinical bacterial isolates in response to various concentrations of glucose in tryptic soya broth and with different incubation time. Materials and Methods: The study was carried out on 100 positive bacteriological cultures of medical devices, which were inserted in hospitalized patients. The bacterial isolates were processed as per microtitre plate method with tryptic soya broth alone and with varying concentrations of glucose and were observed in response to time. Results: Majority of catheter cultures were positive. Out of the total 100 bacterial isolates tested, 88 of them were biofilm formers. Incubation period of 16-20 h was found to be optimum for biofilm development. Conclusions: Availability of nutrition in the form of glucose enhances the biofilm formation by bacteria. Biofilm formation depends on adherence of bacteria to various surfaces. Time and availability of glucose are important factors for assessment of biofilm progress.

  6. DNA-crosslinker cisplatin eradicates bacterial persister cells.

    Science.gov (United States)

    Chowdhury, Nityananda; Wood, Thammajun L; Martínez-Vázquez, Mariano; García-Contreras, Rodolfo; Wood, Thomas K

    2016-09-01

    For all bacteria, nearly every antimicrobial fails since a subpopulation of the bacteria enter a dormant state known as persistence, in which the antimicrobials are rendered ineffective due to the lack of metabolism. This tolerance to antibiotics makes microbial infections the leading cause of death worldwide and makes treating chronic infections, including those of wounds problematic. Here, we show that the FDA-approved anti-cancer drug cisplatin [cis-diamminodichloroplatinum(II)], which mainly forms intra-strand DNA crosslinks, eradicates Escherichia coli K-12 persister cells through a growth-independent mechanism. Additionally, cisplatin is more effective at killing Pseudomonas aeruginosa persister cells than mitomycin C, which forms inter-strand DNA crosslinks, and cisplatin eradicates the persister cells of several pathogens including enterohemorrhagic E. coli, Staphylococcus aureus, and P. aeruginosa. Cisplatin was also highly effective against clinical isolates of S. aureus and P. aeruginosa. Therefore, cisplatin has broad spectrum activity against persister cells. Biotechnol. Bioeng. 2016;113: 1984-1992. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. DNA barcoding and isolation of vertically transmitted ascomycetes in sorghum from Burkina Faso

    DEFF Research Database (Denmark)

    Stokholm, Michaela S.; Wulff, Ednar Gadelha; Zida, Elisabeth P.

    2016-01-01

    -day-old seedlings was analyzed by 18S ribosomal DNA (rDNA) amplicon sequencing. More than 99% of the fungal rDNA was found to originate from ascomycetes. The distribution of ascomycetes at species level was subsequently analyzed by barcoding of ITS2 rDNA. Eighteen Operational Taxonomic Units (OTUs) were identified......Molecular identification of fungal taxa commonly transmitted through seeds of sorghum in Western Africa is lacking. In the present study, farm-saved seeds, collected from four villages in Northern Burkina Faso, were surface sterilized and the distribution of fungal DNA in seeds and seven...... samples collected in Central Burkina Faso confirming a common occurrence. E. sorghinum was highly predominant in seedlings both measured by DNA analysis and by isolation. The dominance of E. sorghinum was particularly strong in roots from poorly growing seedlings. Pathogenicity of E. sorghinum isolates...

  8. Genotypic and phenotypic diversity of Alicyclobacillus acidocaldarius isolates.

    Science.gov (United States)

    Félix-Valenzuela, L; Guardiola-Avila, I; Burgara-Estrella, A; Ibarra-Zavala, M; Mata-Haro, V

    2015-10-01

    The fruit juice industry recognizes Alicyclobacillus as a major quality control target micro-organism. In this study, we analysed 19 bacterial isolates to identify Alicyclobacillus species by polymerase chain reaction (PCR) and sequencing analyses. Phenotypic and genomic diversity among isolates were investigated by API 50CHB system and ERIC-PCR (enterobacterial repetitive intergenic consensus-PCR) respectively. All bacterial isolates were identified as Alicyclobacillus acidocaldarius, and almost all showed identical DNA sequences according to their 16S rRNA (rDNA) gene partial sequences. Only few carbohydrates were fermented by A. acidocaldarius isolates, and there was little variability in the biochemical profile. Genotypic fingerprinting of the A. acidocaldarius isolates showed high diversity, and clusters by ERIC-PCR were distinct to those obtained from the 16S rRNA gene phylogenetic tree. There was no correlation between phenotypic and genotypic variability in the A. acidocaldarius isolates analysed in this study. Detection of Alicyclobacillus strains is imperative in fruit concentrates and juices due to the production of guaiacol. Identification of the genera originates rejection of the product by processing industry. However, not all the Alicyclobacillus species are deteriorative and hence the importance to differentiate among them. In this study, partial 16S ribosomal RNA sequence alignment allowed the differentiation of species. In addition, ERIC-PCR was introduced for the genotypic characterization of Alicyclobacillus, as an alternative for differentiation among isolates from the same species. © 2015 The Society for Applied Microbiology.

  9. Diversity of ribosomal 16S DNA- and RNA-based bacterial community in an office building drinking water system.

    Science.gov (United States)

    Inkinen, J; Jayaprakash, B; Santo Domingo, J W; Keinänen-Toivola, M M; Ryu, H; Pitkänen, T

    2016-06-01

    Next-generation sequencing of 16S ribosomal RNA genes (rDNA) and ribosomal RNA (rRNA) was used to characterize water and biofilm microbiome collected from a drinking water distribution system of an office building after its first year of operation. The total bacterial community (rDNA) and active bacterial members (rRNA) sequencing databases were generated by Illumina MiSeq PE250 platform. As estimated by Chao1 index, species richness in cold water system was lower (180-260) in biofilms (Sphingomonas spp., Methylobacterium spp., Limnohabitans spp., Rhizobiales order) than in waters (250-580), (also Methylotenera spp.) (P = 0·005, n = 20). Similarly species richness (Chao1) was slightly higher (210-580) in rDNA libraries compared to rRNA libraries (150-400; P = 0·054, n = 24). Active Mycobacterium spp. was found in cross-linked polyethylene (PEX), but not in corresponding copper pipeline biofilm. Nonpathogenic Legionella spp. was found in rDNA libraries but not in rRNA libraries. Microbial communities differed between water and biofilms, between cold and hot water systems, locations in the building and between water rRNA and rDNA libraries, as shown by clear clusters in principal component analysis (PcoA). By using the rRNA method, we found that not all bacterial community members were active (e.g. Legionella spp.), whereas other members showed increased activity in some locations; for example, Pseudomonas spp. in hot water circulations' biofilm and order Rhizobiales and Limnohabitans spp. in stagnated locations' water and biofilm. rRNA-based methods may be better than rDNA-based methods for evaluating human health implications as rRNA methods can be used to describe the active bacterial fraction. This study indicates that copper as a pipeline material might have an adverse impact on the occurrence of Mycobacterium spp. The activity of Legionella spp. maybe questionable when detected solely by using DNA-based methods. © 2016 The Society for Applied

  10. ‘Lachnoclostridium massiliosenegalense’, a new bacterial species isolated from the human gut microbiota

    Directory of Open Access Journals (Sweden)

    M. Tidjani Alou

    2016-11-01

    Full Text Available We report the main characteristics of ‘Lachnoclostridium massiliosenegalense’ strain mt23T (=CSUR P299 =DSM 102084, a new bacterial species isolated from the gut microbiota of a healthy young girl from Senegal.

  11. Multiplex PCR assay for simultaneous detection of six major bacterial pathogens of rice.

    Science.gov (United States)

    Cui, Z; Ojaghian, M R; Tao, Z; Kakar, K U; Zeng, J; Zhao, W; Duan, Y; Vera Cruz, C M; Li, B; Zhu, B; Xie, G

    2016-05-01

    The aim of this study was to develop a multiplex PCR (mPCR) assay for rapid, sensitive and simultaneous detection of six important rice pathogens: Xanthomonas oryzae pv. oryzae, X. oryzae pv. oryzicola, Pseudomonas fuscovaginae, Burkholderia glumae, Burkholderia gladioli and Acidovorax avenae subsp. avenae. Specific primers were designed through a bioinformatics pipeline. Sensitivity of detection was established using both traditional PCR and quantitative real-time PCR on isolated DNA and on bacterial cells both in vitro and in simulated diseased seeds and the parameters were optimized for an mPCR assay. A total of 150 bacterial strains were tested for specificity. The mPCR assay accurately predicted the presence of pathogens among 44 symptomatic and asymptomatic rice seed, sheath and leaf samples. This study confirmed that this mPCR assay is a rapid, reliable and simple tool for the simultaneous detection of six important rice bacterial pathogens. This study is the first report of a method allowing simultaneous detection of six major rice pathogens. The ability to use crude extracts from plants without bacterial isolation or DNA extraction enhances the value of this mPCR technology for rapid detection and aetiological/epidemiological studies. © 2016 The Society for Applied Microbiology.

  12. Application of real-time PCR to postharvest physiology – DNA isolation

    Science.gov (United States)

    Real-time PCR technology has been widely used in the postharvest plant physiology research. One of the difficulties to isolate DNA from plant martial and pathogen cells is the presence of rigid polysaccharide cell walls and capsules, which physically protect DNA from cell lysis. Many materials requi...

  13. Replication and Transcription of Eukaryotic DNA in Esherichia coli

    Science.gov (United States)

    Morrow, John F.; Cohen, Stanley N.; Chang, Annie C. Y.; Boyer, Herbert W.; Goodman, Howard M.; Helling, Robert B.

    1974-01-01

    Fragments of amplified Xenopus laevis DNA, coding for 18S and 28S ribosomal RNA and generated by EcoRI restriction endonuclease, have been linked in vitro to the bacterial plasmid pSC101; and the recombinant molecular species have been introduced into E. coli by transformation. These recombinant plasmids, containing both eukaryotic and prokaryotic DNA, replicate stably in E. coli. RNA isolated from E. coli minicells harboring the plasmids hybridizes to amplified X. laevis rDNA. Images PMID:4600264

  14. DNA isolation by galactoacrylate-based nano-poly(HEMA-co-Gal-OPA) nanopolymers.

    Science.gov (United States)

    Türkcan Kayhan, Ceren; Zeynep Ural, Fulden; Koruyucu, Meryem; Gül Salman, Yeşim; Uygun, Murat; Aktaş Uygun, Deniz; Akgöl, Sinan; Denizli, Adil

    2017-10-01

    Isolation of DNA is one of the important processes for biotechnological applications such as investigation of DNA structures and functions, recombinant DNA preparations, identification of genetic factors and diagnosis and treatment of genetic disorders. The aim of this study was to synthesis and characterizes the galactoacrylate based nanopolymers with high surface area and to investigate the usability of these synthesized nanopolymers for DNA isolation studies. Nanopolymers were synthesized by the surfactant free emulsion polymerization technique by using the monomers of 2-hydroxyl ethylmethacrylate and 6-O-(2 ' -hydroxy-3 ' -acryloyloxypropyl)-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose. Galactoacrylate origin of these newly synthesized nanopolymers increased the interaction between DNA and nanopolymers. Prepared nanopolymers were characterized by SEM, FT-IR and ZETA sizer analysis. Synthesized nanopolymers were spherical, and their average particle size was about 246.8 nm. Adsorption of DNA onto galactoacrylate based nanopolymers was investigated by using different pHs, temperatures, ionic strength, DNA concentrations and desorption studies and maximum DNA adsorption was found to be as 567.12 mg/g polymer at 25 °C, in pH 5.0 acetate buffer. Reusability was investigated for 5 successive reuse and DNA adsorption capacity decreased only about 10% at the end of the 5th reuse.

  15. Isolation and Identification of Active Compound Cause Light Emmitting of Bacterial Photobacterium phosphoreum Isolated from the Indonesia Jepara Marine Squid

    Directory of Open Access Journals (Sweden)

    Idam Arif

    2005-04-01

    Full Text Available This research carried out to study the bioluminescence process of bacterial Photobacterium phosphoreum isolated from Indonesia marine squid. The method used in the present study involved isolation, purification, electrophoresis, and the absorbance and light intensity measurement. This result show that the luciferace enzyme of bacterial Photobacterium phosphoreum or called LBPP catalyzes the emission of visible light from the reaction of reduced flavin mononucleotide (FMNH2, molecular oxygen (O2, and an aldehyde (RCOH. The electrophoresis data show that LBPP comprised of two different subunits α and βwith 41kD and 38 kD molecular weights. The absorb pattern showed that the bioluminescence process centered around 516 nm and are consistent with the fluorescence data. This result concluded that the excitation state formed after LBPP bind subtracts and the ground state formed after LBPP releases product and visible light.

  16. Endophytic bacterial flora in root and stem tissues of black pepper (Piper nigrum L.) genotype: isolation, identification and evaluation against Phytophthora capsici.

    Science.gov (United States)

    Aravind, R; Kumar, A; Eapen, S J; Ramana, K V

    2009-01-01

    To isolate and identify black pepper (Piper nigrum L) associated endophytic bacteria antagonistic to Phytophthora capsici causing foot rot disease. Endophytic bacteria (74) were isolated, characterized and evaluated against P. capsici. Six genera belong to Pseudomonas spp (20 strains), Serratia (1 strain), Bacillus spp. (22 strains), Arthrobacter spp. (15 strains), Micrococcus spp. (7 strains), Curtobacterium sp. (1 strain) and eight unidentified strains were isolated from internal tissues of root and stem. Three isolates, IISRBP 35, IISRBP 25 and IISRBP 17 were found effective for Phytophthora suppression in multilevel screening assays which recorded over 70% disease suppression in greenhouse trials. A species closest match (99% similarity) of IISRBP 35 was established as Pseudomonas aeruginosa (Pseudomonas EF568931), IISRBP 25 as P. putida (Pseudomonas EF568932), and IISRBP 17 as Bacillus megaterium (B. megaterium EU071712) based on 16S rDNA sequencing. Black pepper associated P. aeruginosa, P. putida and B. megaterium were identified as effective antagonistic endophytes for biological control of Phytophthora foot rot in black pepper. This work provides the first evidence for endophytic bacterial diversity in black pepper stem and roots, with biocontrol potential against P. capsici infection.

  17. Quantitative Field Testing Rotylenchulus reniformis DNA from Metagenomic Samples Isolated Directly from Soil

    Science.gov (United States)

    Showmaker, Kurt; Lawrence, Gary W.; Lu, Shien; Balbalian, Clarissa; Klink, Vincent P.

    2011-01-01

    A quantitative PCR procedure targeting the β-tubulin gene determined the number of Rotylenchulus reniformis Linford & Oliveira 1940 in metagenomic DNA samples isolated from soil. Of note, this outcome was in the presence of other soil-dwelling plant parasitic nematodes including its sister genus Helicotylenchus Steiner, 1945. The methodology provides a framework for molecular diagnostics of nematodes from metagenomic DNA isolated directly from soil. PMID:22194958

  18. Bacterial community composition in different sediments from the Eastern Mediterranean Sea: a comparison of four 16S ribosomal DNA clone libraries.

    Science.gov (United States)

    Polymenakou, Paraskevi N; Bertilsson, Stefan; Tselepides, Anastasios; Stephanou, Euripides G

    2005-10-01

    The regional variability of sediment bacterial community composition and diversity was studied by comparative analysis of four large 16S ribosomal DNA (rDNA) clone libraries from sediments in different regions of the Eastern Mediterranean Sea (Thermaikos Gulf, Cretan Sea, and South lonian Sea). Amplified rDNA restriction analysis of 664 clones from the libraries indicate that the rDNA richness and evenness was high: for example, a near-1:1 relationship among screened clones and number of unique restriction patterns when up to 190 clones were screened for each library. Phylogenetic analysis of 207 bacterial 16S rDNA sequences from the sediment libraries demonstrated that Gamma-, Delta-, and Alphaproteobacteria, Holophaga/Acidobacteria, Planctomycetales, Actinobacteria, Bacteroidetes, and Verrucomicrobia were represented in all four libraries. A few clones also grouped with the Betaproteobacteria, Nitrospirae, Spirochaetales, Chlamydiae, Firmicutes, and candidate division OPl 1. The abundance of sequences affiliated with Gammaproteobacteria was higher in libraries from shallow sediments in the Thermaikos Gulf (30 m) and the Cretan Sea (100 m) compared to the deeper South Ionian station (2790 m). Most sequences in the four sediment libraries clustered with uncultured 16S rDNA phylotypes from marine habitats, and many of the closest matches were clones from hydrocarbon seeps, benzene-mineralizing consortia, sulfate reducers, sulk oxidizers, and ammonia oxidizers. LIBSHUFF statistics of 16S rDNA gene sequences from the four libraries revealed major differences, indicating either a very high richness in the sediment bacterial communities or considerable variability in bacterial community composition among regions, or both.

  19. Antibiotic Susceptibility Patterns of Bacterial Isolates from Pus Samples in a Tertiary Care Hospital of Punjab, India

    Directory of Open Access Journals (Sweden)

    Rugira Trojan

    2016-01-01

    Full Text Available We determined the prevalence and antibiotic susceptibilities patterns of bacterial isolates from pus samples collected from patients in a tertiary care hospital of Punjab, India. E. coli was the most prevalent pathogen (51.2% followed by Staphylococcus aureus (21%, Klebsiella pneumoniae (11.6%, Pseudomonas aeruginosa (5.8%, Citrobacter spp. (3.5%, Acinetobacter baumannii (2.3%, Proteus mirabilis (2.3%, and Streptococcus spp. (2.3%. E. coli, K. pneumoniae, A. baumannii, and Citrobacter isolates were resistant to multiple antibiotics including higher generation cephalosporins. S. aureus and Streptococcus isolates were sensitive to cloxacillin and vancomycin. However, P. aeruginosa, P. mirabilis, and Streptococcus isolates were found to be less resistant to the spectrum of antibiotics tested. Overall, our findings indicate the prevalence of resistance to different classes of antibiotics in bacterial isolates from pus infections and hence highlight the need for effective surveillance, regulator reporting, and antibiogram-guided antibiotic prescription.

  20. Bacterial Community Analysis, New Exoelectrogen Isolation and Enhanced Performance of Microbial Electrochemical Systems Using Nano-Decorated Anodes

    Science.gov (United States)

    Xu, Shoutao

    Microbial electrochemical systems (MESs) have attracted much research attention in recent years due to their promising applications in renewable energy generation, bioremediation, and wastewater treatment. In a MES, microorganisms interact with electrodes via electrons, catalyzing oxidation and reduction reactions at the anode and the cathode. The bacterial community of a high power mixed consortium MESs (maximum power density is 6.5W/m2) was analyzed by using denature gradient gel electrophoresis (DGGE) and 16S DNA clone library methods. The bacterial DGGE profiles were relatively complex (more than 10 bands) but only three brightly dominant bands in DGGE results. These results indicated there are three dominant bacterial species in mixed consortium MFCs. The 16S DNA clone library method results revealed that the predominant bacterial species in mixed culture is Geobacter sp (66%), Arcobacter sp and Citrobacter sp. These three bacterial species reached to 88% of total bacterial species. This result is consistent with the DGGE result which showed that three bright bands represented three dominant bacterial species. Exoelectrogenic bacterial strain SX-1 was isolated from a mediator-less microbial fuel cell by conventional plating techniques with ferric citrate as electron acceptor under anaerobic conditions. Phylogenetic analysis of the 16S rDNA sequence revealed that it was related to the members of Citrobacter genus with Citrobacter sp. sdy-48 being the most closely related species. The bacterial strain SX-1 produced electricity from citrate, acetate, glucose, sucrose, glycerol, and lactose in MFCs with the highest current density of 205 mA/m2 generated from citrate. Cyclic voltammetry analysis indicated that membrane associated proteins may play an important role in facilitating electron transfer from the bacteria to the electrode. This is the first study that demonstrates that Citrobacter species can transfer electrons to extracellular electron acceptors

  1. Bacterial intoxication evokes cellular senescence with persistent DNA damage and cytokine signalling

    Czech Academy of Sciences Publication Activity Database

    Blažková, Hana; Krejčíková, Kateřina; Moudrý, Pavel; Frisan, T.; Hodný, Zdeněk; Bartek, Jiří

    2009-01-01

    Roč. 14, 1-2 (2009), s. 357-367 ISSN 1582-1838 R&D Projects: GA AV ČR IAA500390501; GA ČR GA204/08/1418; GA ČR GA301/08/0353 Institutional research plan: CEZ:AV0Z50520514 Keywords : cellular senescence * DNA damage response * bacterial toxins Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.228, year: 2009

  2. Isolation and identification of Bacillus spp. from compost material, compost and mushroom casing soil active against Trichoderma spp.

    Directory of Open Access Journals (Sweden)

    Stanojević Olja

    2016-01-01

    Full Text Available The isolation of bacteria was carried out from samples of straw and chicken manure, compost at various stages of the composting process and casing soil used for growing button mushrooms. A preliminary screening of 108 bacterial isolates for antagonistic activity against Trichoderma aggressivum f. europaeum showed that 23 tested isolates inhibited mycelial growth of the pathogenic fungus. Further screening with four indicator isolates of fungi revealed that all 23 bacterial isolates inhibited the growth of T. aggressivum f. europaeum, T. harzianum and T. koningii, while only 13 isolates inhibited the growth of T. atroviride. T. aggressivum f. europaeum proved to be the most sensitive, with many bacterial isolates generating a high percentage of growth inhibition. Only two bacterial isolates (B-129 and B-268 were successful in inhibiting the growth of all 4 tested pathogens. All 23 bacterial isolates were characterized as Gram-positive and catalase-positive and were subjected to molecular identification based on the partial sequence, the hypervariant region of the 16S rDNA. It was shown that the obtained bacterial strains belong to Bacillus subtilis, B. amyloliquefaciens, B. licheniformis and B. pumilus species. [Projekat Ministarstva nauke Republike Srbije, br. 31043 i br. 173026

  3. Differential repair of etheno-DNA adducts by bacterial and human AlkB proteins.

    Science.gov (United States)

    Zdżalik, Daria; Domańska, Anna; Prorok, Paulina; Kosicki, Konrad; van den Born, Erwin; Falnes, Pål Ø; Rizzo, Carmelo J; Guengerich, F Peter; Tudek, Barbara

    2015-06-01

    AlkB proteins are evolutionary conserved Fe(II)/2-oxoglutarate-dependent dioxygenases, which remove alkyl and highly promutagenic etheno(ɛ)-DNA adducts, but their substrate specificity has not been fully determined. We developed a novel assay for the repair of ɛ-adducts by AlkB enzymes using oligodeoxynucleotides with a single lesion and specific DNA glycosylases and AP-endonuclease for identification of the repair products. We compared the repair of three ɛ-adducts, 1,N(6)-ethenoadenine (ɛA), 3,N(4)-ethenocytosine (ɛC) and 1,N(2)-ethenoguanine (1,N(2)-ɛG) by nine bacterial and two human AlkBs, representing four different structural groups defined on the basis of conserved amino acids in the nucleotide recognition lid, engaged in the enzyme binding to the substrate. Two bacterial AlkB proteins, MT-2B (from Mycobacterium tuberculosis) and SC-2B (Streptomyces coelicolor) did not repair these lesions in either double-stranded (ds) or single-stranded (ss) DNA. Three proteins, RE-2A (Rhizobium etli), SA-2B (Streptomyces avermitilis), and XC-2B (Xanthomonas campestris) efficiently removed all three lesions from the DNA substrates. Interestingly, XC-2B and RE-2A are the first AlkB proteins shown to be specialized for ɛ-adducts, since they do not repair methylated bases. Three other proteins, EcAlkB (Escherichia coli), SA-1A, and XC-1B removed ɛA and ɛC from ds and ssDNA but were inactive toward 1,N(2)-ɛG. SC-1A repaired only ɛA with the preference for dsDNA. The human enzyme ALKBH2 repaired all three ɛ-adducts in dsDNA, while only ɛA and ɛC in ssDNA and repair was less efficient in ssDNA. ALKBH3 repaired only ɛC in ssDNA. Altogether, we have shown for the first time that some AlkB proteins, namely ALKBH2, RE-2A, SA-2B and XC-2B can repair 1,N(2)-ɛG and that ALKBH3 removes only ɛC from ssDNA. Our results also suggest that the nucleotide recognition lid is not the sole determinant of the substrate specificity of AlkB proteins. Copyright © 2015 Elsevier B

  4. [Isolation and partial characterization of DNA topoisomerase I from the nucleoids of white mustard chloroplasts].

    Science.gov (United States)

    Belkina, G G; Pogul'skaia, E V; Iurina, N P

    2004-01-01

    DNA topoisomerase was isolated for the first time from nucleoids of white mustard (Sinapis alba L.) chloroplasts. The enzyme had a molecular weight of 70 kDa; it was ATP-independent, required the presence of mono- (K+) and bivalent (Mg2+) cations, and was capable of relaxing both negatively and positively supercoiled DNA. These results suggest that the enzyme isolated belongs to type IB DNA topoisomerases.

  5. Bacterial isolates from burn wound infections and their antibiograms: A eight-year study

    Directory of Open Access Journals (Sweden)

    Mehta Manjula

    2007-01-01

    Full Text Available Background: Infection is an important cause of mortality in burns. Rapidly emerging nosocomial pathogens and the problem of multi-drug resistance necessitates periodic review of isolation patterns and antibiogram in the burn ward. Aim: Keeping this in mind, the present retrospective study from wounds of patients admitted to burns unit was undertaken to determine the bacteriological profile and the resistance pattern from the burn ward over a period of three years (June 2002 to May 2005 and was compared with the results obtained during the previous five years (June 1997-May 2002, to ascertain any change in the bacteriological profile and antimicrobial resistance pattern. Materials and Methods: Bacterial isolates from 268 wound swabs taken from burn patients were identified by conventional biochemical methods and antimicrobial susceptibility was performed. Statistical comparison of bacterial isolates and their resistance pattern with previous five years data was done using c2 test. Results and Conclusions: During the period from 2002 to 2005 Pseudomonas species was the commonest pathogen isolated (51.5% followed by Acinetobacter species (14.28%, Staph. aureus (11.15%, Klebsiella species (9.23% and Proteus species (2.3%. When compared with the results of the previous five years i.e., 1997 to 2002, Pseudomonas species was still the commonest pathogen in the burns unit. However, the isolation of this organism and other gram-negative organisms had decreased in comparison to previous years. Newer drugs were found to be effective.

  6. DNA isolation by Chelex-100: an efficient approach to consider in leptospirosis early stages

    Directory of Open Access Journals (Sweden)

    Angel Alberto Noda

    2014-06-01

    Full Text Available Objective: To compare the value of leptospiral DNA extraction procedures from clinical samples for the early diagnosis of leptospirosis. Methods: Three DNA extraction procedures were applied for microbiological analysis, results of QIAmp DNA mini kit (QIAGEN, Germany, CLART HPV kit (GENOMICA, Spain and Chelex-100 assay were compared concerning extraction efficiency, DNA purity and DNA suitability for amplification by specific polymerase chain reaction for pathogenic leptospires from blood, plasma and serum artificially infected. Results: The comparison of extraction methods highlighted the efficiency of Chelex-100 and QIAmp DNA mini kit. Chelex-100 achieved the isolation of the highest concentration of leptospiral DNA from the culture and the spiked samples, with acceptable purities and without inhibitors to PCR. Conclusions: Chelex-100 assay is a rapid and effective approach for DNA isolation in clinical samples having pathogenic leptospires and it could be useful in the early diagnosis of leptospirosis.

  7. A protocol for large scale genomic DNA isolation for cacao genetics ...

    African Journals Online (AJOL)

    Advances in DNA technology, such as marker assisted selection, detection of quantitative trait loci and genomic selection also require the isolation of DNA from a large number of samples and the preservation of tissue samples for future use in cacao genome studies. The present study proposes a method for the ...

  8. Culturable bacterial endophytes isolated from Mangrove tree (Rhizophora apiculata Blume) enhance seedling growth in Rice.

    Science.gov (United States)

    Deivanai, Subramanian; Bindusara, Amitraghata Santhanam; Prabhakaran, Guruswamy; Bhore, Subhash Janardhan

    2014-07-01

    Endophytic bacteria do have several potential applications in medicine and in other various sectors of biotechnology including agriculture. Bacterial endophytes need to be explored for their potential applications in agricultural biotechnology. One of the potential applications of bacterial endophytes in agricultural is to enhance the growth of the agricultural crops. Hence, this study was undertaken to explore the plant growth promoting potential application of bacterial endophytes. The objective of this study was to examine the effect of endophytic bacteria from mangrove tree (Rhizophora apiculata Blume) for their efficacy in promoting seedling growth in rice. Eight endophytic bacterial isolates (EBIs) isolated from twig and petiole tissues of the mangrove were identified based on their 16S ribosomal ribonucleic acid (rRNA) gene sequence homology. Separately, surface sterilized paddy seeds were treated with cell-free broth and cell suspension of the EBIs. Rice seedlings were analyzed by various bioassays and data was recorded. The gene sequences of the isolates were closely related to two genera namely, Bacillus and Pantoea. Inoculation of EBIs from R. apiculata with rice seeds resulted in accelerated root and shoot growth with significant increase in chlorophyll content. Among the isolates, Pantoea ananatis (1MSE1) and Bacillus amyloliquefaciens (3MPE1) had shown predominance of activity. Endophytic invasion was recognized by the non-host by rapid accumulation of reactive oxygen species (ROS) and was counteracted by the production of hydrogen peroxide (H2O2) and lipid peroxide. The results demonstrated that EBIs from mangrove tree can increase the fitness of the rice seedlings under controlled conditions. These research findings could be useful to enhance the seedling growth and could serve as foundation in further research on enhancing the growth of the rice crop using endophytic bacteria.

  9. DnaK as Antibiotic Target: Hot Spot Residues Analysis for Differential Inhibition of the Bacterial Protein in Comparison with the Human HSP70.

    Directory of Open Access Journals (Sweden)

    Federica Chiappori

    Full Text Available DnaK, the bacterial homolog of human Hsp70, plays an important role in pathogens survival under stress conditions, like antibiotic therapies. This chaperone sequesters protein aggregates accumulated in bacteria during antibiotic treatment reducing the effect of the cure. Although different classes of DnaK inhibitors have been already designed, they present low specificity. DnaK is highly conserved in prokaryotes (identity 50-70%, which encourages the development of a unique inhibitor for many different bacterial strains. We used the DnaK of Acinetobacter baumannii as representative for our analysis, since it is one of the most important opportunistic human pathogens, exhibits a significant drug resistance and it has the ability to survive in hospital environments. The E.coli DnaK was also included in the analysis as reference structure due to its wide diffusion. Unfortunately, bacterial DnaK and human Hsp70 have an elevated sequence similarity. Therefore, we performed a differential analysis of DnaK and Hsp70 residues to identify hot spots in bacterial proteins that are not present in the human homolog, with the aim of characterizing the key pharmacological features necessary to design selective inhibitors for DnaK. Different conformations of DnaK and Hsp70 bound to known inhibitor-peptides for DnaK, and ineffective for Hsp70, have been analysed by molecular dynamics simulations to identify residues displaying stable and selective interactions with these peptides. Results achieved in this work show that there are some residues that can be used to build selective inhibitors for DnaK, which should be ineffective for the human Hsp70.

  10. Isolation and sequence analysis of the wheat B genome subtelomeric DNA

    Directory of Open Access Journals (Sweden)

    Huneau Cecile

    2009-09-01

    Full Text Available Abstract Background Telomeric and subtelomeric regions are essential for genome stability and regular chromosome replication. In this work, we have characterized the wheat BAC (bacterial artificial chromosome clones containing Spelt1 and Spelt52 sequences, which belong to the subtelomeric repeats of the B/G genomes of wheats and Aegilops species from the section Sitopsis. Results The BAC library from Triticum aestivum cv. Renan was screened using Spelt1 and Spelt52 as probes. Nine positive clones were isolated; of them, clone 2050O8 was localized mainly to the distal parts of wheat chromosomes by in situ hybridization. The distribution of the other clones indicated the presence of different types of repetitive sequences in BACs. Use of different approaches allowed us to prove that seven of the nine isolated clones belonged to the subtelomeric chromosomal regions. Clone 2050O8 was sequenced and its sequence of 119 737 bp was annotated. It is composed of 33% transposable elements (TEs, 8.2% Spelt52 (namely, the subfamily Spelt52.2 and five non-TE-related genes. DNA transposons are predominant, making up 24.6% of the entire BAC clone, whereas retroelements account for 8.4% of the clone length. The full-length CACTA transposon Caspar covers 11 666 bp, encoding a transposase and CTG-2 proteins, and this transposon accounts for 40% of the DNA transposons. The in situ hybridization data for 2050O8 derived subclones in combination with the BLAST search against wheat mapped ESTs (expressed sequence tags suggest that clone 2050O8 is located in the terminal bin 4BL-10 (0.95-1.0. Additionally, four of the predicted 2050O8 genes showed significant homology to four putative orthologous rice genes in the distal part of rice chromosome 3S and confirm the synteny to wheat 4BL. Conclusion Satellite DNA sequences from the subtelomeric regions of diploid wheat progenitor can be used for selecting the BAC clones from the corresponding regions of hexaploid wheat

  11. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment

    International Nuclear Information System (INIS)

    Kennedy, Edward M.; Cullen, Bryan R.

    2015-01-01

    CRISPR/Cas systems mediate bacterial adaptive immune responses that evolved to protect bacteria from bacteriophage and other horizontally transmitted genetic elements. Several CRISPR/Cas systems exist but the simplest variant, referred to as Type II, has a single effector DNA endonuclease, called Cas9, which is guided to its viral DNA target by two small RNAs, the crRNA and the tracrRNA. Initial efforts to adapt the CRISPR/Cas system for DNA editing in mammalian cells, which focused on the Cas9 protein from Streptococcus pyogenes (Spy), demonstrated that Spy Cas9 can be directed to DNA targets in mammalian cells by tracrRNA:crRNA fusion transcripts called single guide RNAs (sgRNA). Upon binding, Cas9 induces DNA cleavage leading to mutagenesis as a result of error prone non-homologous end joining (NHEJ). Recently, the Spy Cas9 system has been adapted for high throughput screening of genes in human cells for their relevance to a particular phenotype and, more generally, for the targeted inactivation of specific genes, in cell lines and in vivo in a number of model organisms. The latter aim seems likely to be greatly enhanced by the recent development of Cas9 proteins from bacterial species such as Neisseria meningitidis and Staphyloccus aureus that are small enough to be expressed using adeno-associated (AAV)-based vectors that can be readily prepared at very high titers. The evolving Cas9-based DNA editing systems therefore appear likely to not only impact virology by allowing researchers to screen for human genes that affect the replication of pathogenic human viruses of all types but also to derive clonal human cell lines that lack individual gene products that either facilitate or restrict viral replication. Moreover, high titer AAV-based vectors offer the possibility of directly targeting DNA viruses that infect discrete sites in the human body, such as herpes simplex virus and hepatitis B virus, with the hope that the entire population of viral DNA genomes

  12. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Edward M.; Cullen, Bryan R., E-mail: bryan.cullen@duke.edu

    2015-05-15

    CRISPR/Cas systems mediate bacterial adaptive immune responses that evolved to protect bacteria from bacteriophage and other horizontally transmitted genetic elements. Several CRISPR/Cas systems exist but the simplest variant, referred to as Type II, has a single effector DNA endonuclease, called Cas9, which is guided to its viral DNA target by two small RNAs, the crRNA and the tracrRNA. Initial efforts to adapt the CRISPR/Cas system for DNA editing in mammalian cells, which focused on the Cas9 protein from Streptococcus pyogenes (Spy), demonstrated that Spy Cas9 can be directed to DNA targets in mammalian cells by tracrRNA:crRNA fusion transcripts called single guide RNAs (sgRNA). Upon binding, Cas9 induces DNA cleavage leading to mutagenesis as a result of error prone non-homologous end joining (NHEJ). Recently, the Spy Cas9 system has been adapted for high throughput screening of genes in human cells for their relevance to a particular phenotype and, more generally, for the targeted inactivation of specific genes, in cell lines and in vivo in a number of model organisms. The latter aim seems likely to be greatly enhanced by the recent development of Cas9 proteins from bacterial species such as Neisseria meningitidis and Staphyloccus aureus that are small enough to be expressed using adeno-associated (AAV)-based vectors that can be readily prepared at very high titers. The evolving Cas9-based DNA editing systems therefore appear likely to not only impact virology by allowing researchers to screen for human genes that affect the replication of pathogenic human viruses of all types but also to derive clonal human cell lines that lack individual gene products that either facilitate or restrict viral replication. Moreover, high titer AAV-based vectors offer the possibility of directly targeting DNA viruses that infect discrete sites in the human body, such as herpes simplex virus and hepatitis B virus, with the hope that the entire population of viral DNA genomes

  13. Assessment of Rice Associated Bacterial Ability to Enhance Rice Seed Germination and Rice Growth Promotion

    Directory of Open Access Journals (Sweden)

    R. Gholamalizadeh

    2017-08-01

    Full Text Available ABSTRACT The application of beneficial bacteria has recently been used for sustainable agriculture. In current research, 71 bacterial isolates were obtained from rice plant and the rhizosphere soil of different paddy fields in Guilan province, Iran. After primitive investigation, 40 bacteria with typical predominant characteristics were selected. By PCR-RFLP of their 16S r-DNA gene, 8 Operational Taxonomic Units (OTUs totally consisted of 33 isolates were obtained. From all of them, 8 isolates were selected for rice seed germination experiment, then, effective isolates were used for pot experiment to evaluate their ability for promoting rice growth. All of them were able to increase rice growth and yield, but in different potential. These tested isolates were identified as Alcaligenes faecalis (DEp8, O1R4, Pantoea ananatis (AEn1, Bacillus vietnamensis (MR5, Bacillus idriensis (MR2 and Stenotrophomonas maltophilia by partial sequencing of their 16S r-DNA gene. Among them, AEn1 and MR5 produced indole-3- acetic acid (IAA in larger amounts than the other isolates and the isolates AEn1 and O1R4 were able to solubilize phosphate in higher amounts. According to the results obtained, it can be concluded that AEn1, O1R4 and MR5 can be considered as bacterial inoculants to use as alternatives for chemical fertilizers.

  14. Bacterial Endophytes Isolated from Plants in Natural Oil Seep Soils with Chronic Hydrocarbon Contamination

    OpenAIRE

    Lumactud, Rhea; Shen, Shu Yi; Lau, Mimas; Fulthorpe, Roberta

    2016-01-01

    The bacterial endophytic communities of four plants growing abundantly in soils highly contaminated by hydrocarbons were analyzed through culturable and and culture-independent means. Given their tolerance to the high levels of petroleum contamination at our study site, we sought evidence that Achillea millefolium, Solidago canadensis, Trifolium aureum and Dactylis glomerata support high levels of hydrocarbon degrading endophytes. A total of 190 isolates were isolated from four plant species....

  15. Comparison of field-collected ascovirus isolates by DNA hybridization, host range, and histopathology.

    Science.gov (United States)

    Hamm, J J; Styer, E L; Federici, B A

    1998-09-01

    Six field-collected ascovirus isolates obtained from five noctuid species in the continental United States were compared with respect to the general relatedness of their DNA, host range, and histopathology. Two isolates were from Spodoptera frugiperda, and the other four were from Autographa precationis, Heliothis virescens, Helicoverpa zea, and Trichoplusia ni. DNA-DNA hybridization studies showed that the six isolates belonged to three distinct viral species, with the isolates from S. frugiperda composing one species, those from A. precationis and H. virescens a second species, and those from H. zea and T. ni a third species. The host range and histopathology of each isolate was studied in eight noctuid species, S. frugiperda, Spodoptera ornithogalli, Spodoptera exigua, Spodoptera eridania, H. virescens, H. zea, A. precationis, and Feltia subterranea. Though some variation existed between the different isolates of each viral species, distinct patterns were apparent for each. The viral species from S. frugiperda had a host range that was limited primarily to Spodoptera species and both isolates of this virus only replicated and caused significant pathology in the fat body, whereas the viral species from A. precationis and H. virescens had a much broader host range that included most of the species tested, but also had a tissue tropism primarily restricted to the fat body. The viral species from T. ni and H. zea readily infected all the hosts tested, where the principal site of replication and significant pathology was the epidermis. In many test hosts, however, this viral species also replicated and caused significant pathology in the tracheal epithelium and to a lesser extent in the fat body. Aside from contributing to knowledge of ascovirus biology, these studies indicate that DNA hybridization profiles combined with studies of host range and tissue tropism can be used as characters for defining ascovirus species. Copyright 1998 Academic Press.

  16. Microbial Observatory (ISS-MO): Study of BSL-2 bacterial isolates from the International Space Station

    Data.gov (United States)

    National Aeronautics and Space Administration — In an on-going Microbial Observatory experimental investigation on the International Space Station (ISS) multiple bacterial isolates of Biosafety Level 2 (BSL-2)...

  17. Macrophage activation induced by Brucella DNA suppresses bacterial intracellular replication via enhancing NO production.

    Science.gov (United States)

    Liu, Ning; Wang, Lin; Sun, Changjiang; Yang, Li; Tang, Bin; Sun, Wanchun; Peng, Qisheng

    2015-12-01

    Brucella DNA can be sensed by TLR9 on endosomal membrane and by cytosolic AIM2-inflammasome to induce proinflammatory cytokine production that contributes to partially activate innate immunity. Additionally, Brucella DNA has been identified to be able to act as a major bacterial component to induce type I IFN. However, the role of Brucella DNA in Brucella intracellular growth remains unknown. Here, we showed that stimulation with Brucella DNA promote macrophage activation in TLR9-dependent manner. Activated macrophages can suppresses wild type Brucella intracellular replication at early stage of infection via enhancing NO production. We also reported that activated macrophage promotes bactericidal function of macrophages infected with VirB-deficient Brucella at the early or late stage of infection. This study uncovers a novel function of Brucella DNA, which can help us further elucidate the mechanism of Brucella intracellular survival. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Microplastics as a vector for the transport of the bacterial fish pathogen species Aeromonas salmonicida.

    Science.gov (United States)

    Viršek, Manca Kovač; Lovšin, Marija Nika; Koren, Špela; Kržan, Andrej; Peterlin, Monika

    2017-12-15

    Microplastics is widespread in the marine environment where it can cause numerous negative effects. It can provide space for the growth of organisms and serves as a vector for the long distance transfer of marine microorganisms. In this study, we examined the sea surface concentrations of microplastics in the North Adriatic and characterized bacterial communities living on the microplastics. DNA from microplastics particles was isolated by three different methods, followed by PCR amplification of 16S rDNA, clone libraries preparation and phylogenetic analysis. 28 bacterial species were identified on the microplastics particles including Aeromonas spp. and hydrocarbon-degrading bacterial species. Based on the 16S rDNA sequences the pathogenic fish bacteria Aeromonas salmonicida was identified for the first time on microplastics. Because A. salmonicida is responsible for illnesses in fish, it is crucial to get answers if and how microplastics pollution is responsible for spreading of diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Isolation and molecular identification chitinase-producing Streptomyces strains and examination of their in-vitro antagonistic effects

    Directory of Open Access Journals (Sweden)

    Alireza Dehnad

    2015-12-01

    Full Text Available Introduction: The chemical fungicides are used widely in the world. To reduce the application of synthetic fungicides in treating plant diseases, biological methods are considered as an alternative way to control plant diseases. Many actinomycetes, particularly Streptomyces species are biological agents against a broad spectrum of fungal plant pathogens. The purpose of this study was using the kitinolitik actinomycetes isolated from soil of Eastern Azerbaijan province In order to produce biological pesticides. Materials and methods: Soil samples were taken from different areas of Eastern Azerbaijan province. According to Streptomyces morphological features, single colonies were isolated. To identify the bacteria by molecular characteristic, the genomic DNA was extracted and then the sequences of 16S rDNA were replicated. By using specific primers the bacterial isolates containing chitinase gene were screened. The isolates consisted Chitinase enzyme and were antagonistically cultured with Alternaria genus which is a fungal plant pathogen. Results: Out of 60 soil collected samples, 31 Streptomyces bacterial isolates were separated. Four isolates showed positive results to selectivity action of the chitinase enzyme. Treatment of 3 bacterial isolates with 2 pathogenic fungi showed that AE09 is the most effective anti-fungal isolates. Discussion and conclusion: Soils in Eastern Azerbaijan province are rich of Streptomyces bacteria which generate antifungal compounds. Obtaining the Streptomyces bacteria which have chitinase gene, can lead to identification of very effective strains as anti-fungal.

  20. Antimicrobial resistance of bacterial strains isolated from avian cellulitis

    Directory of Open Access Journals (Sweden)

    MM Santos

    2014-03-01

    Full Text Available Avian cellulitis is an inflammatory process in the subcutaneous tissue, mainly located in the abdomen and thighs. This problem is commonly observed in poultry at slaughter and it is considered one of the major causes of condemnation of carcasses in Brazil. The aim of this study was to perform the microbial isolation of lesions of avian cellulitis from a processing plant located in the State of Goiás in order to analyze antimicrobial resistance by antibiogram test and to detect resistance genes by polymerase chain reaction. A total of 25 samples of avian cellulitis lesions were analyzed, from which 30 bacterial strains were isolated. There were eleven (44% strains of Escherichia coli, nine (36% strains of Staphylococcus epidermidis, seven (28% strains of Proteus mirabilis and three (12% strains of Manheimiahaemolytica. The antibiogram test showed that all strains were resistant to at least one antimicrobial. The gene of antimicrobial resistance tetB was detected in E. coli, S. epidermidis and P. mirabilis strains, and was the most frequently observed gene. The gene of antimicrobial resistance Sul1 was detected in all bacterial species, while tetA was found in E. coli and S. epidermidis strains, SHV in E. coli strains, S. epidermidis and P. mirabilis,and cat1 in one P. mirabilis strain. The results suggest a potential public health hazard due to the ability of these microorganisms to transmit antimicrobial resistancegenes to other microorganisms present in the intestinal tract of humans and animals, which may affect clinical-medical usage of these drugs.

  1. Utility of 16S rDNA Sequencing for Identification of Rare Pathogenic Bacteria.

    Science.gov (United States)

    Loong, Shih Keng; Khor, Chee Sieng; Jafar, Faizatul Lela; AbuBakar, Sazaly

    2016-11-01

    Phenotypic identification systems are established methods for laboratory identification of bacteria causing human infections. Here, the utility of phenotypic identification systems was compared against 16S rDNA identification method on clinical isolates obtained during a 5-year study period, with special emphasis on isolates that gave unsatisfactory identification. One hundred and eighty-seven clinical bacteria isolates were tested with commercial phenotypic identification systems and 16S rDNA sequencing. Isolate identities determined using phenotypic identification systems and 16S rDNA sequencing were compared for similarity at genus and species level, with 16S rDNA sequencing as the reference method. Phenotypic identification systems identified ~46% (86/187) of the isolates with identity similar to that identified using 16S rDNA sequencing. Approximately 39% (73/187) and ~15% (28/187) of the isolates showed different genus identity and could not be identified using the phenotypic identification systems, respectively. Both methods succeeded in determining the species identities of 55 isolates; however, only ~69% (38/55) of the isolates matched at species level. 16S rDNA sequencing could not determine the species of ~20% (37/187) of the isolates. The 16S rDNA sequencing is a useful method over the phenotypic identification systems for the identification of rare and difficult to identify bacteria species. The 16S rDNA sequencing method, however, does have limitation for species-level identification of some bacteria highlighting the need for better bacterial pathogen identification tools. © 2016 Wiley Periodicals, Inc.

  2. Induction and isolation of DNA transformation mutants in the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Hegerich, P.A.; Bruschi, C.V.

    1987-01-01

    The objective of this research was to induce and isolate mutants of the yeast Saccharomyces cerevisiae which have become transformable by purified plasmid DNA. Non-transformable yeast cells were mutagenized by ultraviolet light using a 65% lethal dose (480 ergs/mm 2 ). After a period of overnight liquid holding recovery, the irradiated cells were subjected to DNA transformation using our CaCl 2 protocol with the multi-marker shuttle plasmid pBB carrying the LEU 2 leucine gene. Following transformation the colonies that grew on selective leucineless medium were identified and subjected to further genetic analysis. From a total of 1 x 10 9 cells the authors have isolated 7 colonies deriving from putative mutants that have acquired the capability to uptake plasmid DNA. The transformants were cured from the plasmid by its mitotic loss on non-selective medium, then re-transformed to verify their genetic competence to give rise to a number of transformants comparable to transformable strains. We have identified and isolated one mutant, coded trs-1, which is able to reproduce a frequency of transformation comparable with the tranformable control. They, therefore, conclude that this mutant is specific for plasmid DNA transformation and that the mutation is mitotically stable

  3. Discrimination of Arcobacter butzleri isolates by polymerase chain reaction-mediated DNA fingerprinting

    DEFF Research Database (Denmark)

    Atabay, H. I.; Bang, Dang Duong; Aydin, F.

    2002-01-01

    Aims: The objective of this study was to subtype Arcobacter butzleri isolates using RAPD-PCR. Methods and Results: Thirty-five A. butzleri isolates obtained from chicken carcasses were examined. PCR-mediated DNA fingerprinting technique with primers of the variable sequence motifs was used...... to detect polymorphism within the isolates. Eleven distinct DNA profiles were obtained as follows: Of the 35 strains, 10 as profile 4; seven as profile 1; five as profile 3; three as profiles 2 and 9; two as profile 10; one as profiles 5, 6, 7, 8 and 11. Conclusions: Chicken carcasses sold in markets were...... found to be contaminated with several different strains of A. butzleri . RAPD-PCR technique was found to be a useful technique for distinguishing A. butzleri isolates. Significance and Impact of the Study: The presence of several different A. butzleri strains on chicken carcasses may indicate multiple...

  4. Screening of bovine milk samples for sub-clinical mastitis and antibiogram of bacterial isolates

    Directory of Open Access Journals (Sweden)

    Harini H. and Sumathi B.R.

    Full Text Available The study was undertaken to find out the incidence of subclinical mastitis (SCM and to assess the antibiotic sensitivity pattern of the causative organisms in lactating cows in and around Kanakapura taluk, Ramanagara district of Karnataka state. The prevalence of subclinical mastitis was assessed by the results of 3 different screening tests and bacteriological evaluation was done for the milk samples that were found positive. The predominant bacterial isolates recovered were Staphylococcus aureus (58% and Escherichia coli (23.5% followed by Staphylococcus epidermidis (8%, Streptococcus sp. (5.5%, Klebsiella sp. (3% and Bacillus sp. (2%. The in vitro antibiogram studies of bacterial isolates revealed higher sensitivity for ciprofloxacin (89%, ofloxacin (85%, enrofloxacin (82%, gentamicin (80% and chloramphenicol (75%, resistant to colistin, neomycin, streptomycin, penicillin and tetracycline. [Vet. World 2011; 4(8.000: 358-359

  5. Absolute quantification of olive oil DNA by droplet digital-PCR (ddPCR): Comparison of isolation and amplification methodologies.

    Science.gov (United States)

    Scollo, Francesco; Egea, Leticia A; Gentile, Alessandra; La Malfa, Stefano; Dorado, Gabriel; Hernandez, Pilar

    2016-12-15

    Olive oil is considered a premium product for its nutritional value and health benefits, and the ability to define its origin and varietal composition is a key step towards ensuring the traceability of the product. However, isolating the DNA from such a matrix is a difficult task. In this study, the quality and quantity of olive oil DNA, isolated using four different DNA isolation protocols, was evaluated using the qRT-PCR and ddPCR techniques. The results indicate that CTAB-based extraction methods were the best for unfiltered oil, while Nucleo Spin-based extraction protocols showed greater overall reproducibility. The use of both qRT-PCR and ddPCR led to the absolute quantification of the DNA copy number. The results clearly demonstrate the importance of the choice of DNA-isolation protocol, which should take into consideration the qualitative aspects of DNA and the evaluation of the amplified DNA copy number. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. A simple method for DNA isolation from Xanthomonas spp.

    Directory of Open Access Journals (Sweden)

    Gomes Luiz Humberto

    2000-01-01

    Full Text Available A simple DNA isolation method was developed with routine chemicals that yields high quality and integrity preparations when compared to some of the most well known protocols. The method described does not require the use of lysing enzymes, water bath and the DNA was obtained within 40 minutes The amount of nucleic acid extracted (measured in terms of absorbancy at 260 nm from strains of Xanthomonas spp., Pseudomonas spp. and Erwinia spp. was two to five times higher than that of the most commonly used method.

  7. Identification of Fic-1 as an enzyme that inhibits bacterial DNA replication by AMPylating GyrB, promoting filament formation.

    Science.gov (United States)

    Lu, Canhua; Nakayasu, Ernesto S; Zhang, Li-Qun; Luo, Zhao-Qing

    2016-01-26

    The morphology of bacterial cells is important for virulence, evasion of the host immune system, and coping with environmental stresses. The widely distributed Fic proteins (filamentation induced by cAMP) are annotated as proteins involved in cell division because of the presence of the HPFx[D/E]GN[G/K]R motif. We showed that the presence of Fic-1 from Pseudomonas fluorescens significantly reduced the yield of plasmid DNA when expressed in Escherichia coli or P. fluorescens. Fic-1 interacted with GyrB, a subunit of DNA gyrase, which is essential for bacterial DNA replication. Fic-1 catalyzed the AMPylation of GyrB at Tyr(109), a residue critical for binding ATP, and exhibited auto-AMPylation activity. Mutation of the Fic-1 auto-AMPylated site greatly reduced AMPylation activity toward itself and toward GyrB. Fic-1-dependent AMPylation of GyrB triggered the SOS response, indicative of DNA replication stress or DNA damage. Fic-1 also promoted the formation of elongated cells when the SOS response was blocked. We identified an α-inhibitor protein that we named anti-Fic-1 (AntF), encoded by a gene immediately upstream of Fic-1. AntF interacted with Fic-1, inhibited the AMPylation activity of Fic-1 for GyrB in vitro, and blocked Fic-1-mediated inhibition of DNA replication in bacteria, suggesting that Fic-1 and AntF comprise a toxin-antitoxin module. Our work establishes Fic-1 as an AMPylating enzyme that targets GyrB to inhibit DNA replication and may target other proteins to regulate bacterial morphology. Copyright © 2016, American Association for the Advancement of Science.

  8. “Lachnoclostridium touaregense,” a new bacterial species isolated from the human gut microbiota

    Directory of Open Access Journals (Sweden)

    M. Tidjani Alou

    2016-11-01

    Full Text Available We report the main characteristics of “Lachnoclostridium touaregense” strain Marseille-P2415T (= CSUR P2415 = DSM 102219, a new bacterial species isolated from the gut microbiota of a healthy young girl from Niger.

  9. Efficient recovery of environmental DNA for expression cloning by indirect extraction methods

    NARCIS (Netherlands)

    Gabor, Esther; de Vries, Erik; Janssen, DB

    2003-01-01

    Using direct and cell extraction-based (indirect) isolation methods, DNA was obtained from environmental samples with largely differing characteristics (loam soil, sand soil, sediment, activated sludge, and compost) and evaluated with respect to the comprised bacterial diversity and its suitability

  10. Development and validation of an rDNA operon based primer walking strategy applicable to de novo bacterial genome finishing.

    Directory of Open Access Journals (Sweden)

    Alexander William Eastman

    2015-01-01

    Full Text Available Advances in sequencing technology have drastically increased the depth and feasibility of bacterial genome sequencing. However, little information is available that details the specific techniques and procedures employed during genome sequencing despite the large numbers of published genomes. Shotgun approaches employed by second-generation sequencing platforms has necessitated the development of robust bioinformatics tools for in silico assembly, and complete assembly is limited by the presence of repetitive DNA sequences and multi-copy operons. Typically, re-sequencing with multiple platforms and laborious, targeted Sanger sequencing are employed to finish a draft bacterial genome. Here we describe a novel strategy based on the identification and targeted sequencing of repetitive rDNA operons to expedite bacterial genome assembly and finishing. Our strategy was validated by finishing the genome of Paenibacillus polymyxa strain CR1, a bacterium with potential in sustainable agriculture and bio-based processes. An analysis of the 38 contigs contained in the P. polymyxa strain CR1 draft genome revealed 12 repetitive rDNA operons with varied intragenic and flanking regions of variable length, unanimously located at contig boundaries and within contig gaps. These highly similar but not identical rDNA operons were experimentally verified and sequenced simultaneously with multiple, specially designed primer sets. This approach also identified and corrected significant sequence rearrangement generated during the initial in silico assembly of sequencing reads. Our approach reduces the required effort associated with blind primer walking for contig assembly, increasing both the speed and feasibility of genome finishing. Our study further reinforces the notion that repetitive DNA elements are major limiting factors for genome finishing. Moreover, we provided a step-by-step workflow for genome finishing, which may guide future bacterial genome finishing

  11. Promising Biological Indicator of Heavy Metal Pollution: Bioluminescent Bacterial Strains Isolated and Characterized from Marine Niches of Goa, India.

    Science.gov (United States)

    Thakre, Neha A; Shanware, Arti S

    2015-09-01

    In present study, several marine water samples collected from the North Goa Beaches, India for isolation of luminescent bacterial species. Isolates obtained labelled as DP1-5 and AB1-6. Molecular characterization including identification of a microbial culture using 16S rRNA gene based molecular technique and phylogenetic analysis confirmed that DP3 & AB1 isolates were Vibrio harveyi. All of the isolates demonstrated multiple metal resistances in terms of growth, with altered luminescence with variable metal concentration. Present investigations were an attempt towards exploring and reporting an updated diversity of bioluminescent bacterial species from various sites around the Goa, India which would be explored in future for constructing luminescence based biosensor for efficiently monitoring the level of hazardous metals in the environment.

  12. Spatial pattern in Antarctica: what can we learn from Antarctic bacterial isolates?

    Science.gov (United States)

    Chong, Chun Wie; Goh, Yuh Shan; Convey, Peter; Pearce, David; Tan, Irene Kit Ping

    2013-09-01

    A range of small- to moderate-scale studies of patterns in bacterial biodiversity have been conducted in Antarctica over the last two decades, most suggesting strong correlations between the described bacterial communities and elements of local environmental heterogeneity. However, very few of these studies have advanced interpretations in terms of spatially associated patterns, despite increasing evidence of patterns in bacterial biogeography globally. This is likely to be a consequence of restricted sampling coverage, with most studies to date focusing only on a few localities within a specific Antarctic region. Clearly, there is now a need for synthesis over a much larger spatial to consolidate the available data. In this study, we collated Antarctic bacterial culture identities based on the 16S rRNA gene information available in the literature and the GenBank database (n > 2,000 sequences). In contrast to some recent evidence for a distinct Antarctic microbiome, our phylogenetic comparisons show that a majority (~75 %) of Antarctic bacterial isolates were highly similar (≥99 % sequence similarity) to those retrieved from tropical and temperate regions, suggesting widespread distribution of eurythermal mesophiles in Antarctic environments. However, across different Antarctic regions, the dominant bacterial genera exhibit some spatially distinct diversity patterns analogous to those recently proposed for Antarctic terrestrial macroorganisms. Taken together, our results highlight the threat of cross-regional homogenisation in Antarctic biodiversity, and the imperative to include microbiota within the framework of biosecurity measures for Antarctica.

  13. Aerobic De-Epoxydation of Trichothecene Mycotoxins by a Soil Bacterial Consortium Isolated Using In Situ Soil Enrichment

    Directory of Open Access Journals (Sweden)

    Wei-Jie He

    2016-09-01

    Full Text Available Globally, the trichothecene mycotoxins deoxynivalenol (DON and nivalenol (NIV are among the most widely distributed mycotoxins that contaminate small grain cereals. In this study, a bacterial consortium, PGC-3, with de-epoxydation activity was isolated from soil by an in situ soil enrichment method. Screening of 14 soil samples that were sprayed with DON revealed that 4 samples were able to biotransform DON into de-epoxydized DON (dE-DON. Among these, the PGC-3 consortium showed the highest and most stable activity to biotransform DON into dE-DON and NIV into dE-NIV. PGC-3 exhibited de-epoxydation activity at a wide range of pH (5–10 and temperatures (20–37 °C values under aerobic conditions. Sequential subculturing with a continued exposure to DON substantially reduced the microbial population diversity of this consortium. Analyses of the 16S rDNA sequences indicated that PGC-3 comprised 10 bacterial genera. Among these, one species, Desulfitobacterium, showed a steady increase in relative abundance, from 0.03% to 1.55% (a 52-fold increase, as higher concentrations of DON were used in the subculture media, from 0 to 500 μg/mL. This study establishes the foundation to further develop bioactive agents that can detoxify trichothecene mycotoxins in cereals and enables for the characterization of detoxifying genes and their regulation.

  14. Isolation and characterization of bacterial endophytes of Curcuma longa L.

    Science.gov (United States)

    Kumar, Ajay; Singh, Ritu; Yadav, Akhilesh; Giri, D D; Singh, P K; Pandey, Kapil D

    2016-06-01

    Fourteen endophytic bacterial isolates were isolated from the rhizome of Curcuma longa L. were characterized on the basis of morphology, biochemical characteristics and 16S rRNA gene sequence analysis. The isolates were identified to six strains namely Bacillus cereus (ECL1), Bacillus thuringiensis (ECL2), Bacillus sp. (ECL3), Bacillus pumilis (ECL4), Pseudomonas putida (ECL5), and Clavibacter michiganensis (ECL6). All the strains produced IAA and solubilized phosphate and only two strains produced siderophore (ECL3 and ECL5) during plant growth promoting trait analysis. All the endophytic strains utilized glucose, sucrose and yeast extract as a carbon source where as glycine, alanine, cystine and glutamine as nitrogen source. The strains were mostly sensitive to antibiotic chloramphenicol followed by erythromycin while resistant to polymixin B. The endophytic strains effectively inhibit the growth of Escherichia coli, Klebsiella pneumoniae and some of the fungal strain like Fusarium solani and Alterneria alternata. The strain ECL2 and ECL4 tolerated maximum 8 % of NaCl concentration where as strains ECL5 and ECL6 6 % in salinity tolerance.

  15. Bacterial Isolates and Their Antimicrobial Susceptibility Patterns of Wound Infections among Inpatients and Outpatients Attending the University of Gondar Referral Hospital, Northwest Ethiopia

    Directory of Open Access Journals (Sweden)

    Aynalem Mohammed

    2017-01-01

    Full Text Available Background. The widespread uses of antibiotics, together with the length of time over which they have been available, have led to the emergence of resistant bacterial pathogens contributing to morbidity and mortality. This study was aimed to assess bacterial isolates and their drug susceptibility patterns from inpatients and outpatients with pus and/or wound discharge. Methods. A cross-sectional study was conducted at the University of Gondar Referral Hospital from March to May, 2014. Wound swab samples were collected from each study participant and inoculated into appropriate media. The bacterial pathogens were identified using standard microbiological methods. Antimicrobial susceptibility tests were performed using disk diffusion technique following Kirby-Bauer method. Results. A total of 137 study subjects were included in the study with bacterial isolation rate of 115 (83.9%. Of all, 81 (59.1% were males. Seventy-seven (57% of the isolates were Gram-negative and 59 (43% were Gram-positive. From the total isolates, Staphylococcus aureus was the most predominant isolate 39/115 (34% followed by Klebsiella species (13%, coagulase negative staphylococci spp. (12% and Pseudomonas aeruginosa. Gram-positive isolates were resistant to ampicillin (86.4%, amoxicillin (83%, penicillin (81.3%, oxacillin (74.6%, and tetracycline (59.4%, while Gram-negative isolates were resistant to amoxicillin (97.4%, ampicillin (94.8%, tetracycline (72.7%, trimethoprim/sulfamethoxazole (66%, and chloramphenicol (54.5%. Conclusion. High prevalence of bacterial isolates was found, Staphylococcus aureus being the most dominant. High rates of multiple drug resistance pathogens to the commonly used antimicrobial agents were isolated. Therefore, concerned bodies should properly monitor the choice of antibiotics to be used as prophylaxis and empiric treatment in the study area.

  16. Isolation of Retroelement from Plant Genomic DNA

    OpenAIRE

    sprotocols

    2014-01-01

    Author: Pat Heslop-Harrison ### Abstract: Retroelements and their derivatives are an ubiquitous and abundant component of plant genomes. From the 1990s, PCR based techniques have been developed to isolate the elements from genomic DNA of different plants, and the methods and primers used are presented here. Major classes of retroelements include the Ty1-copia, the Ty3-gypsy and the LINE (non-LTR) groups. Mixed PCR products representing the full heterogeneous pool of retrotransposo...

  17. Ultra-fast repair of single-strand breaks in DNA of. gamma. -irradiated Chinese hamster cells

    Energy Technology Data Exchange (ETDEWEB)

    Leontjeva, G A; Mantzighin, Yu A; Gaziev, A I [AN SSSR, Pushchino-na-Oke. Inst. Biologicheskoj Fiziki

    1976-12-01

    Studies of the effect of thermal treatment of Chinese hamster cells on sedimentation of DNA in the alkaline sucrose gradient showed that heating the cells to 68/sup 0/C for 15 min caused the same degradation as ..gamma..-irradiation with 5 to 7 krad at 37/sup 0/C. The inhibition of cellular repair enzymes by heating was therefore unacceptable. The process of ultra-fast repair is essentially determined by the DNA-ligase reaction, which is activated in the presence of Mg ions, and inhibited in mammalian cells in the presence of EDTA and pyrophosphate. Sedimentation profiles were therefore measured for the DNA of Chinese hamster cells ..gamma..-irradiated (5 krad) at 0/sup 0/C or 22/sup 0/C in the presence of Mg/sup + +/, or EDTA and pyrophosphate, and the results demonstrated ultra-fast repair only at 20 to 37/sup 0/C, in contrast to bacteria. A study was made of the temperature dependence of the activity of the DNA ligases isolated from E.coli and rabbit bone marrow. The NAD-dependent bacterial DNA ligase was active at temperatures from 0 to 40/sup 0/C, whereas ATP-dependent DNA ligase of mammals only showed activity in the range 15 to 40/sup 0/C. The differing temperature dependences of ultra-fast repair in bacterial and mammalian cells are in agreement with the temperature dependences of the activities of isolated enzymes, and the results suggest that the process of ultra-fast repair of single-strand breaks of DNA takes place in both bacterial and mammalian cells.

  18. MICROBIAL PROFILE AND ANTIBIOTIC RESISTANCE PATTERN OF THE BACTERIAL ISOLATES IN A TERTIARY CARE PSYCHIATRY HOSPITAL

    Directory of Open Access Journals (Sweden)

    Jyoti

    2015-11-01

    Full Text Available BACKGROUND: Antibiotic resistance is a challenge for effective management of infections as it increases the morbidity, mortality and costs of treating infectious diseases. AIMS: This study was aimed to obtain the profile of the bacterial isolates and their antibiotic resistance pattern. SETTINGS AND DESIGN: It is a cross sectional study carried out in a tertiary care psychiatry hospital in India. MATERIALS AND METHODS: Isolation and identification of the isolates were done by standard methods. Susceptibility patterns were checked by Kirby Bauer disc diffusion method. STATISTICAL ANALYSIS USED: Statistical analysis was done by using SPSS 16.0 version to calculate the frequencies as well as for cross tabulation. RESULTS: Significant bacterial growth observed in 43(25.6% samples, of which 39(90.7% showed resistant to at least one of the antibiotics used and 36(83.7% were multi-drug resistant. Gram negative organism accounted for the 25(58.14% of total significant isolates, Escherichia coli being the highest (76% in this group. Among multi-drug resistant (MDR isolates E.coli was the highest (44.4% and imipenem resistance was also observed in 1(5.3% of 19 E.coli isolates. Among the 43 isolates 18(41.86% were Gram positive with Streptococcus spp. showing incidence of 41.7% among the total MDR isolates. CONCLUSION: Increasing incidence of MDR strains seen in the population requires continuous monitoring and a restricted use of antibiotics to keep a check on resistance pattern, for effective treatment plan.

  19. Aerobic cyanide degradation by bacterial isolates from cassava factory wastewater.

    Science.gov (United States)

    Kandasamy, Sujatha; Dananjeyan, Balachandar; Krishnamurthy, Kumar; Benckiser, Gero

    2015-01-01

    Ten bacterial strains that utilize cyanide (CN) as a nitrogen source were isolated from cassava factory wastewater after enrichment in a liquid media containing sodium cyanide (1 mM) and glucose (0.2% w/v). The strains could tolerate and grow in cyanide concentrations of up to 5 mM. Increased cyanide levels in the media caused an extension of lag phase in the bacterial growth indicating that they need some period of acclimatisation. The rate of cyanide removal by the strains depends on the initial cyanide and glucose concentrations. When initial cyanide and glucose concentrations were increased up to 5 mM, cyanide removal rate increased up to 63 and 61 per cent by Bacillus pumilus and Pseudomonas putida. Metabolic products such as ammonia and formate were detected in culture supernatants, suggesting a direct hydrolytic pathway without an intermediate formamide. The study clearly demonstrates the potential of aerobic treatment with cyanide degrading bacteria for cyanide removal in cassava factory wastewaters.

  20. Distribution, antibiotic susceptibility and tolerance of bacterial isolates in culture-positive cases of endocarditis in The Netherlands

    NARCIS (Netherlands)

    van der Meer, J. T.; van Vianen, W.; Hu, E.; van Leeuwen, W. B.; Valkenburg, H. A.; Thompson, J.; Michel, M. F.

    1991-01-01

    During a two-year period data were collected nationwide in The Netherlands on 438 episodes of bacterial endocarditis (BE) in 432 patients. Of the strains isolated in these patients 419 were available for analysis. Of these, 326 were isolated in native valve endocarditis (NVE) and 93 in prosthetic

  1. The Unculturables: targeted isolation of bacterial species associated with canine periodontal health or disease from dental plaque.

    Science.gov (United States)

    Davis, Ian J; Bull, Christopher; Horsfall, Alexander; Morley, Ian; Harris, Stephen

    2014-08-01

    The current inability to culture the entirety of observed bacteria is well known and with the advent of ever more powerful molecular tools, that can survey bacterial communities at previously unattainable depth, the gap in our capacity to culture and define all of these species increases exponentially. This gap has essentially become the rate limiting step in determining how the knowledge of which species are present in a sample can be applied to understand the role of these species in an ecosystem or disease process. A case in point is periodontal disease, which is the most widespread oral disease in dogs. If untreated the disease results in significant pain, eventual loss of the dentition and potentially an increased risk of systemic diseases. Previous molecular based studies have identified the bacterial species associated with periodontal disease in dogs; however without cultured strains from many of these species it has not been possible to study whether they play a role in the disease process. Using a quantitative polymerase chain reaction (qPCR) directed approach a range of microbiological media were screened and optimized to enrich for previously uncultivated target species. A systematic screening methodology was then employed to isolate the species of interest. In cases where the target species were not cultivable in isolation, helper strains grown underneath a nitrocellulose membrane were used to provide the necessary growth factors. This guided media optimization approach enabled the purification of 14 species, 8 of which we had previously been unable to cultivate in isolation. It is also applicable to the targeted isolation of isolates from species that have previously been cultured (for example to study intra-species variation) as demonstrated by the successful isolation of 6 targeted isolates of already cultured species. To our knowledge this is the first time this combination of qPCR guided media optimization, strategic screening and helper strain

  2. Leaf storage conditions and genomic DNA isolation efficiency in ...

    African Journals Online (AJOL)

    SERVER

    2008-03-04

    Mar 4, 2008 ... Full Length Research Paper. Leaf storage ... 2006; Chen and Yang, 2004; Nan et al., 2003; Ipek and. Madison, 2001 ... the same function of pure DNA isolation. These are .... eppendorf tube and then dropped in liquid nitrogen for 2 min. The weighed ..... the solubility of polysaccharides in ethanol, effectively.

  3. Isolation and identification of bacterial pathogen from mastitis milk in Central Java Indonesia

    Science.gov (United States)

    Harjanti, D. W.; Ciptaningtyas, R.; Wahyono, F.; Setiatin, ET

    2018-01-01

    Mastitis is a multi-etiologic disease of the mammary gland characterized mainly by reduction in milk production and milk quality due to intramammary infection by pathogenic bacteria. Nearly 83% of lactating dairy cows in Indonesia are infected with mastitis in various inflammation degrees. This study was conducted to isolate and identify the pathogen in milk collected from mastitis-infected dairy cows. The study was carried out in ten smallholder dairy farms in Central Java Indonesia based on animal examination, California mastitis test, isolation bacterial pathogens, Gram staining, Catalase and Coagulase test, and identification of bacteria species using Vitek. Bacteriological examination of milk samples revealed 15 isolates where Streptococcus was predominant species (73.3%) and the coagulase negative Staphylococcus species was identified at the least bacteria (26.7%). The Streptococcus bacteria found were Streptococcus uberis (2 isolates), Streptococcus sanguinis(6 isolates), Streptococcus dysgalactiaessp dysgalactiae(1 isolate) , Streptococcus mitis (1 isolate) and Streptococcus agalactiae (1 isolate). The Staphylococcus isolates comprising of Staphylococcus simulans (1 isolate) and Staphylococcus chromogens (3 isolates). Contamination of raw milkwith pathogenic bacteria can cause outbreaks of human disease (milk borne disease). Thus, proper milk processing method that couldinhibit the growth or kill these pathogenic bacteria is important to ensure the safety of milk and milk products.

  4. Exposure to bacterial DNA before hemorrhagic shock strongly aggravates systemic inflammation and gut barrier loss via an IFN-gamma-dependent route

    NARCIS (Netherlands)

    Luyer, Misha D.; Buurman, Wim A.; Hadfoune, M.'hamed; Wolfs, T.; van't Veer, Cornelis; Jacobs, Jan A.; Dejong, Cornelis H.; Greve, Jan Willem M.

    2007-01-01

    OBJECTIVE: To investigate the role of bacterial DNA in development of an excessive inflammatory response and loss of gut barrier loss following systemic hypotension. SUMMARY BACKGROUND DATA: Bacterial infection may contribute to development of inflammatory complications following major surgery;

  5. Isolation and characterization of cDNA clones for human erythrocyte β-spectrin

    International Nuclear Information System (INIS)

    Prchal, J.T.; Morley, B.J.; Yoon, S.H.; Coetzer, T.L.; Palek, J.; Conboy, J.G.; Kan, Y.W.

    1987-01-01

    Spectrin is an important structural component of the membrane skeleton that underlies and supports the erythrocyte plasma membrane. It is composed of nonidentical α (M/sub r/ 240,000) and β (M/sub r/ 220,000) subunits, each of which contains multiple homologous 106-amino acid segments. The authors report here the isolation and characterization of a human erythroid-specific β-spectrin cDNA clone that encodes parts of the β-9 through β-12 repeat segments. This cDNA was used as a hybridization probe to assign the β-spectrin gene to human chromosome 14 and to begin molecular analysis of the gene and its mRNA transcripts. RNA transfer blot analysis showed that the reticulocyte β-spectrin mRNA is 7.8 kilobases in length. Southern blot analysis of genomic DNA revealed the presence of restriction fragment length polymorphisms (RFLPs) within the β-spectrin gene locus. The isolation of human spectrin cDNA probes and the identification of closely linked RFLPs will facilitate analysis of mutant spectrin genes causing congenital hemolytic anemias associated with quantitative and qualitative spectrin abnormalities

  6. DNA methylation differentially regulates cytokine secretion in gingival epithelia in response to bacterial challenges.

    Science.gov (United States)

    Drury, Jeanie L; Chung, Whasun Oh

    2015-03-01

    Epigenetic modifications are changes in gene expression without altering DNA sequence. We previously reported that bacteria-specific innate immune responses are regulated by epigenetic modifications. Our hypothesis is that DNA methylation affects gingival cytokine secretion in response to bacterial stimulation. Gingival epithelial cells (GECs) were treated with DNMT-1 inhibitors prior to Porphyromonas gingivalis (Pg) or Fusobacterium nucleatum (Fn) exposure. Protein secretion was assessed using ELISA. Gene expression was quantified using qRT-PCR. The ability of bacteria to invade inhibitor pretreated GECs was assessed utilizing flow cytometry. Changes were compared to unstimulated GECs. GEC upregulation of IL-6 and CXCL1 by Pg or Fn stimulation was significantly diminished by inhibitor pretreatment. Pg stimulated IL-1α secretion and inhibitor pretreatment significantly enhanced this upregulation, while Fn alone or with inhibitor pretreatment had no effect on IL-1α expression. GEC upregulation of human beta-definsin-2 in response to Pg and Fn exposure was enhanced following the inhibitor pretreatment. GEC susceptibility to bacterial invasion was unaltered. These results suggest that DNA methylation differentially affects gingival cytokine secretion in response to Pg or Fn. Our data provide basis for better understanding of how epigenetic modifications, brought on by exposure to oral bacteria, will subsequently affect host susceptibility to oral diseases. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Imipenem/cilastatin encapsulated polymeric nanoparticles for destroying carbapenem-resistant bacterial isolates.

    Science.gov (United States)

    Shaaban, Mona I; Shaker, Mohamed A; Mady, Fatma M

    2017-04-11

    Carbapenem-resistance is an extremely growing medical threat in antibacterial therapy as the incurable resistant strains easily develop a multi-resistance action to other potent antimicrobial agents. Nonetheless, the protective delivery of current antibiotics using nano-carriers opens a tremendous approach in the antimicrobial therapy, allowing the nano-formulated antibiotics to beat these health threat pathogens. Herein, we encapsulated imipenem into biodegradable polymeric nanoparticles to destroy the imipenem-resistant bacteria and overcome the microbial adhesion and dissemination. Imipenem loaded poly Ɛ-caprolactone (PCL) and polylactide-co-glycolide (PLGA) nanocapsules were formulated using double emulsion evaporation method. The obtained nanocapsules were characterized for mean particle diameter, morphology, loading efficiency, and in vitro release. The in vitro antimicrobial and anti adhesion activities were evaluated against selected imipenem-resistant Klebsiella pneumoniae and Pseudomonas aeruginosa clinical isolates. The obtained results reveal that imipenem loaded PCL nano-formulation enhances the microbial susceptibility and antimicrobial activity of imipenem. The imipenem loaded PCL nanoparticles caused faster microbial killing within 2-3 h compared to the imipenem loaded PLGA and free drug. Successfully, PCL nanocapsules were able to protect imipenem from enzymatic degradation by resistant isolates and prevent the emergence of the resistant colonies, as it lowered the mutation prevention concentration of free imipenem by twofolds. Moreover, the imipenem loaded PCL eliminated bacterial attachment and the biofilm assembly of P. aeruginosa and K. pneumoniae planktonic bacteria by 74 and 78.4%, respectively. These promising results indicate that polymeric nanoparticles recover the efficacy of imipenem and can be considered as a new paradigm shift against multidrug-resistant isolates in treating severe bacterial infections.

  8. Marinospirillum insulare sp. nov., a novel halophilic helical bacterium isolated from kusaya gravy.

    Science.gov (United States)

    Satomi, M; Kimura, B; Hayashi, M; Okuzumi, M; Fujii, T

    2004-01-01

    A novel species that belongs to the genus Marinospirillum is described on the basis of phenotypic characteristics, phylogenetic analysis of 16S rRNA and gyrB gene sequences and DNA-DNA hybridization. Four strains of helical, halophilic, Gram-negative, heterotrophic bacteria were isolated from kusaya gravy, which is fermented brine that is used for the production of traditional dried fish in the Izu Islands of Japan. All of the new isolates were motile by means of bipolar tuft flagella, of small cell size, coccoid-body-forming and aerophilic; it was concluded that they belong to the same bacterial species, based on DNA-DNA hybridization values (>70% DNA relatedness). DNA G+C contents of the new strains were 42-43 mol% and they had isoprenoid quinone Q-8 as the major component. Phylogenetic analysis of 16S rRNA gene sequences indicated that the new isolates were members of the genus Marinospirillum; sequence similarity of the new isolates to Marinospirillum minutulum, Marinospirillum megaterium and Marinospirillum alkaliphilum was 98.5, 98.2 and 95.2%, respectively. Phylogenetic analysis based on the gyrB gene indicated that the new isolates had enough phylogenetic distance from M. minutulum and M. megaterium to be regarded as different species, with 84.7 and 78.7% sequence similarity, respectively. DNA-DNA hybridization showed that the new isolates had <36% DNA relatedness to M. minutulum and M. megaterium, supporting the phylogenetic conclusion. Thus, a novel species is proposed: Marinospirillum insulare sp. nov. (type strain, KT=LMG 21802T=NBRC 100033T).

  9. Bacterial community in ancient permafrost alluvium at the Mammoth Mountain (Eastern Siberia).

    Science.gov (United States)

    Brouchkov, Anatoli; Kabilov, Marsel; Filippova, Svetlana; Baturina, Olga; Rogov, Victor; Galchenko, Valery; Mulyukin, Andrey; Fursova, Oksana; Pogorelko, Gennady

    2017-12-15

    Permanently frozen (approx. 3.5Ma) alluvial Neogene sediments exposed in the Aldan river valley at the Mammoth Mountain (Eastern Siberia) are unique, ancient, and poorly studied permafrost environments. So far, the structure of the indigenous bacterial community has remained unknown. Use of 16S metagenomic analysis with total DNA isolation using DNA Spin Kit for Soil (MO-Bio) and QIAamp DNA Stool Mini Kit (Qiagen) has revealed the major and minor bacterial lineages in the permafrost alluvium sediments. In sum, 61 Operational Taxonomic Units (OTUs) with 31,239 reads (Qiagen kit) and 15,404 reads (Mo-Bio kit) could be assigned to the known taxa. Only three phyla, Bacteroidetes, Proteobacteria and Firmicutes, comprised >5% of the OTUs abundance and accounted for 99% of the total reads. OTUs pertaining to the top families (Chitinophagaceae, Caulobacteraceae, Sphingomonadaceae, Bradyrhizobiaceae, Halomonadaceae) held >90% of reads. The abundance of Actinobacteria was less (0.7%), whereas members of other phyla (Deinococcus-Thermus, Cyanobacteria/Chloroplast, Fusobacteria, and Acidobacteria) constituted a minor fraction of reads. The bacterial community in the studied ancient alluvium differs from other permafrost sediments, mainly by predominance of Bacteroidetes (>52%). The diversity of this preserved bacterial community has the potential to cause effects unknown if prompted to thaw and spread with changing climate. Therefore, this study elicits further reason to study how reintroduction of these ancient bacteria could affect the surrounding ecosystem, including current bacterial species. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Influence of DNA isolation on Q-PCR-based quantification of methanogenic Archaea in biogas fermenters.

    Science.gov (United States)

    Bergmann, I; Mundt, K; Sontag, M; Baumstark, I; Nettmann, E; Klocke, M

    2010-03-01

    Quantitative real-time PCR (Q-PCR) is commonly applied for the detection of certain microorganisms in environmental samples. However, some environments, like biomass-degrading biogas fermenters, are enriched with PCR-interfering substances. To study the impact of the DNA extraction protocol on the results of Q-PCR-based analysis of the methane-producing archaeal community in biogas fermenters, nine different protocols with varying cell disruption and DNA purification approaches were tested. Differences in the quantities of the isolated DNA and the purity parameters were found, with the best cell lysis efficiencies being obtained by a combined lysozyme/SDS-based lysis. When DNA was purified by sephacryl columns, the amount of DNA decreased by one log cycle but PCR inhibitors were eliminated sufficiently. In the case of detection of methanogenic Archaea, the chosen DNA isolation protocol strongly influenced the Q-PCR-based determination of 16S rDNA copy numbers. For example, with protocols including mechanical cell disruption, the 16S rDNA of Methanobacteriales were predominantly amplified (81-90% of the total 16S rDNA copy numbers), followed by the 16S rDNA of Methanomicrobiales (9-18%). In contrast, when a lysozyme/SDS-based cell lysis was applied, the 16S rDNA copy numbers determined for these two orders were the opposite (Methanomicrobiales 82-95%, Methanobacteriales 4-18%). In extreme cases, the DNA isolation method led to discrimination of some groups of methanogens (e.g. members of the Methanosaetaceae). In conclusion, for extraction of high amounts of microbial DNA with high purity from samples of biogas plants, a combined lysozyme/SDS-based cell lysis followed by a purification step with sephacryl columns is recommended. Copyright 2010 Elsevier GmbH. All rights reserved.

  11. Correlation of bistranded clustered abasic DNA lesion processing with structural and dynamic DNA helix distortion

    Science.gov (United States)

    Bignon, Emmanuelle; Gattuso, Hugo; Morell, Christophe; Dehez, François; Georgakilas, Alexandros G.; Monari, Antonio; Dumont, Elise

    2016-01-01

    Clustered apurinic/apyrimidinic (AP; abasic) DNA lesions produced by ionizing radiation are by far more cytotoxic than isolated AP lesion entities. The structure and dynamics of a series of seven 23-bp oligonucleotides featuring simple bistranded clustered damage sites, comprising of two AP sites, zero, one, three or five bases 3′ or 5′ apart from each other, were investigated through 400 ns explicit solvent molecular dynamics simulations. They provide representative structures of synthetically engineered multiply damage sites-containing oligonucleotides whose repair was investigated experimentally (Nucl. Acids Res. 2004, 32:5609-5620; Nucl. Acids Res. 2002, 30: 2800–2808). The inspection of extrahelical positioning of the AP sites, bulge and non Watson–Crick hydrogen bonding corroborates the experimental measurements of repair efficiencies by bacterial or human AP endonucleases Nfo and APE1, respectively. This study provides unprecedented knowledge into the structure and dynamics of clustered abasic DNA lesions, notably rationalizing the non-symmetry with respect to 3′ to 5′ position. In addition, it provides strong mechanistic insights and basis for future studies on the effects of clustered DNA damage on the recognition and processing of these lesions by bacterial or human DNA repair enzymes specialized in the processing of such lesions. PMID:27587587

  12. Pantoea hericii sp. nov., Isolated from the Fruiting Bodies of Hericium erinaceus.

    Science.gov (United States)

    Rong, Chengbo; Ma, Yuanwei; Wang, Shouxian; Liu, Yu; Chen, Sanfeng; Huang, Bin; Wang, Jing; Xu, Feng

    2016-06-01

    Three Gram-negative, facultatively anaerobic bacterial isolates were obtained from the fruiting bodies of the edible mushroom Hericium erinaceus showing symptoms of soft rot disease in Beijing, China. Sequences of partial 16S rRNA gene placed these isolates in the genus Pantoea. Multilocus sequence analysis based on the partial sequences of atpD, gyrB, infB and rpoB revealed P. eucalypti and P. anthophila as their closest phylogenetic relatives and indicated that these isolates constituted a possible novel species. DNA-DNA hybridization studies confirmed the classification of these isolates as a novel species and phenotypic tests allowed for differentiation from the closest phylogenetic neighbours. The name Pantoea hericii sp. nov. [Type strain LMG 28847(T) = CGMCC 1.15224(T) = JZB 2120024(T)] is proposed.

  13. Isolation and identification of female DNA on postcoital penile swabs.

    Science.gov (United States)

    Cina, S J; Collins, K A; Pettenati, M J; Fitts, M

    2000-06-01

    After sexual assault, cells originating from the assailant may be recovered from the victim. Through polymerase chain reaction (PCR)-based technology, positive scientific identification of the assailant may be made from these cells. Described is a prospective study describing a method for positively identifying cells from a female sex partner obtained from postcoital swabs of the penis of the male sex partner. Swabs were taken from the penis of a man at 1- to 24-hour intervals after coitus. DNA was isolated from each swab through standard organic extraction methods. The presence of female DNA was detected using the gender-specific amelogenin marker. Extracted DNA was amplified for eight different genetic loci using the Promega PowerPlex kit (Promega) and Amplitaq Gold (Perkin Elmer). Amplified samples were electrophoresed on precast sequencing gels (Hitachi) and were analyzed fluorescently using Hitachi's FMBIO 2 fluorescent scanner and software. Each sample obtained from a penile swab or condom was compared to male and female buccal controls. Female DNA was isolated from all postcoital penile swabs as determined by exclusive amplification of the X-chromosome specific 212 base pair amelogenin marker. In all cases, scientific identification of the female DNA from the swabs was determined by coamplification of eight STR loci (PowerPlex) and was compared to female and male control profiles. Cells shed from a female victim during sexual intercourse can be retrieved from the penis of a male offender after sexual intercourse during a 1- to 24-hour postcoital interval. DNA can be extracted from these cells and can be used to scientifically identify the female sexual participant through PCR-based technology. It is suggested that penile swabs be taken from alleged perpetrators of sexual assaults to associate them with a female victim.

  14. Bacteria and bacterial DNA in atherosclerotic plaque and aneurysmal wall biopsies from patients with and without periodontitis

    Directory of Open Access Journals (Sweden)

    Zahra Armingohar

    2014-05-01

    Full Text Available Background: Several studies have reported an association between chronic periodontitis (CP and cardiovascular diseases. Detection of periodontopathogens, including red complex bacteria (RCB, in vascular lesions has suggested these bacteria to be involved in the pathogenesis of atherosclerosis and abdominal aortic aneurysms. Objective: In this study, we investigate bacteria and their DNA in vascular biopsies from patients with vascular diseases (VD; i.e. abdominal aortic aneurysms, atherosclerotic carotid, and common femoral arteries, with and without CP. Methods: DNA was extracted from vascular biopsies selected from 40 VD patients: 30 with CP and 10 without CP. The V3-V5 region of the 16S rDNA (V3-V5 was polymerase chain reaction (PCR-amplified, and the amplicons were cloned into Escherichia coli, sequenced, and classified (GenBank and the Human Oral Microbiome database. Species-specific primers were used for the detection of Porphyromonas gingivalis. In addition, 10 randomly selected vascular biopsies from the CP group were subjected to scanning electron microscopy (SEM for visualization of bacteria. Checkerboard DNA–DNA hybridization was performed to assess the presence of RCB in 10 randomly selected subgingival plaque samples from CP patients. Results: A higher load and mean diversity of bacteria were detected in vascular biopsies from VD patients with CP compared to those without CP. Enterobacteriaceae were frequently detected in vascular biopsies together with cultivable, commensal oral, and not-yet-cultured bacterial species. While 70% of the subgingival plaque samples from CP patients showed presence of RCB, only P. gingivalis was detected in one vascular biopsy. Bacterial cells were seen in all 10 vascular biopsies examined by SEM. Conclusions: A higher bacterial load and more diverse colonization were detected in VD lesions of CP patients as compared to patients without CP. This indicated that a multitude of bacterial species both

  15. Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies

    KAUST Repository

    Wang, Yong; Qian, Pei-Yuan

    2009-01-01

    Bacterial 16S ribosomal DNA (rDNA) amplicons have been widely used in the classification of uncultured bacteria inhabiting environmental niches. Primers targeting conservative regions of the rDNAs are used to generate amplicons of variant regions

  16. Rapid isolation of high molecular weight DNA from single dried ...

    African Journals Online (AJOL)

    ANAND

    For studying genetic diversity in populations of predatory coccinellid, Cryptolaemus montrouzieri. Mulsant (Coccinellidae: Coleoptera), our attempts to isolate high quality DNA from individual adult beetle using several previously reported protocols and even modifications were quite unsuccessful as the insect size was small ...

  17. Isolation and characterization of diuron-degrading bacteria from lotic surface water.

    Science.gov (United States)

    Batisson, Isabelle; Pesce, Stéphane; Besse-Hoggan, Pascale; Sancelme, Martine; Bohatier, Jacques

    2007-11-01

    The bacterial community structure of a diuron-degrading enrichment culture from lotic surface water samples was analyzed and the diuron-degrading strains were selected using a series of techniques combining temporal temperature gradient gel electrophoresis (TTGE) of 16 S rDNA gene V1-V3 variable regions, isolation of strains on agar plates, colony hybridization methods, and biodegradation assays. The TTGE fingerprints revealed that diuron had a strong impact on bacterial community structure and highlighted both diuron-sensitive and diuron-adapted bacterial strains. Two bacterial strains, designated IB78 and IB93 and identified as belonging to Pseudomonas sp. and Stenotrophomonas sp., were isolated and shown to degrade diuron in pure resting cells in a first-order kinetic reaction during the first 24 h of incubation with no 3,4-DCA detected. The percentages of degradation varied from 25% to 60% for IB78 and 20% to 65% for IB93 and for a diuron concentration range from 20 mg/L to 2 mg/L, respectively. It is interesting to note that diuron was less degraded by single isolates than by mixed resting cells, thereby underlining a cumulative effect between these two strains. To the best of our knowledge, this is the first report of diuron-degrading strains isolated from lotic surface water.

  18. A new approach for cloning hLIF cDNA from genomic DNA isolated from the oral mucous membrane.

    Science.gov (United States)

    Cui, Y H; Zhu, G Q; Chen, Q J; Wang, Y F; Yang, M M; Song, Y X; Wang, J G; Cao, B Y

    2011-11-25

    Complementary DNA (cDNA) is valuable for investigating protein structure and function in the study of life science, but it is difficult to obtain by traditional reverse transcription. We employed a novel strategy to clone human leukemia inhibitory factor (hLIF) gene cDNA from genomic DNA, which was directly isolated from the mucous membrane of mouth. The hLIF sequence, which is 609 bp long and is composed of three exons, can be acquired within a few hours by amplifying each exon and splicing all of them using overlap-PCR. This new approach developed is simple, time- and cost-effective, without RNA preparation or cDNA synthesis, and is not limited to the specific tissues for a particular gene and the expression level of the gene.

  19. Cadmium Bio sorption by Some Bacterial Isolates and Their Mutants Induced by gamma Radiation

    International Nuclear Information System (INIS)

    Tawfik, Z.S.; Elsonbaty, S.M.; Abdalla, N.M.

    1999-01-01

    Cadmium bio sorption by bacterial cells is recognized as a potential alternative to existing recovery technologies. Bacterial strains under investigation were isolated from air surrounding gamma industrial facility Co 60 source of the NCRRT, Cairo. The effect of different concentrations of cadmium on the growth was determined for the spore forming bacteria B.coagulans, B.megaterium, B.pumilus, B.pantothenticus, and also for Staphylo coccus aureus, the reference standard strain used in these study for comparison was B.subtilis MERK 10646. The results indicated that, B.pantothenticus was the most tolerant isolate, and it can resist up to 400 ppm. Cadmium capacity for B.subtilis parent strain was increased through the influence of different doses of gamma radiation, selected mutant of B.subtilis show enhanced level of cadmium accumulation. The effect of environmental parameters as ph, temperature and also the effect of biomass factor on cadmium uptake by B.pantothenticus and B.subtilis (m) was traced

  20. An isolated Hda-clamp complex is functional in the regulatory inactivation of DnaA and DNA replication.

    Science.gov (United States)

    Kawakami, Hironori; Su'etsugu, Masayuki; Katayama, Tsutomu

    2006-10-01

    In Escherichia coli, a complex consisting of Hda and the DNA-loaded clamp-subunit of the DNA polymerase III holoenzyme promotes hydrolysis of DnaA-ATP. The resultant ADP-DnaA is inactive for initiation of chromosomal DNA replication, thereby repressing excessive initiations. As the cellular content of the clamp is 10-100 times higher than that of Hda, most Hda molecules might be complexed with the clamp in vivo. Although Hda predominantly forms irregular aggregates when overexpressed, in the present study we found that co-overexpression of the clamp with Hda enhances Hda solubility dramatically and we efficiently isolated the Hda-clamp complex. A single molecule of the complex appears to consist of two Hda molecules and a single clamp. The complex is competent in DnaA-ATP hydrolysis and DNA replication in the presence of DNA and the clamp deficient subassembly of the DNA polymerase III holoenzyme (pol III*). These findings indicate that the clamp contained in the complex is loaded onto DNA through an interaction with the pol III* and that the Hda activity is preserved in these processes. The complex consisting of Hda and the DNA-unloaded clamp may play a specific role in a process proceeding to the DnaA-ATP hydrolysis in vivo.

  1. Development of a Novel Self-Enclosed Sample Preparation Device for DNA/RNA Isolation in Space

    Science.gov (United States)

    Zhang, Ye; Mehta, Satish K.; Pensinger, Stuart J.; Pickering, Karen D.

    2011-01-01

    Modern biology techniques present potentials for a wide range of molecular, cellular, and biochemistry applications in space, including detection of infectious pathogens and environmental contaminations, monitoring of drug-resistant microbial and dangerous mutations, identification of new phenotypes of microbial and new life species. However, one of the major technological blockades in enabling these technologies in space is a lack of devices for sample preparation in the space environment. To overcome such an obstacle, we constructed a prototype of a DNA/RNA isolation device based on our novel designs documented in the NASA New Technology Reporting System (MSC-24811-1/3-1). This device is self-enclosed and pipette free, purposely designed for use in the absence of gravity. Our design can also be modified easily for preparing samples in space for other applications, such as flowcytometry, immunostaining, cell separation, sample purification and separation according to its size and charges, sample chemical labeling, and sample purification. The prototype of our DNA/RNA isolation device was tested for efficiencies of DNA and RNA isolation from various cell types for PCR analysis. The purity and integrity of purified DNA and RNA were determined as well. Results showed that our developed DNA/RNA isolation device offers similar efficiency and quality in comparison to the samples prepared using the standard protocol in the laboratory.

  2. Biosynthesis of Bio surfactant by Egyptian Local Bacterial Isolates Using Different Agricultural Wastes

    International Nuclear Information System (INIS)

    El-Shahawy, M.R.

    2014-01-01

    Fifteen bacterial isolates were isolated from sea water from the coast of the General Petroleum Company on Suez Gulf. They were screened for bio surfactant production using emulsification activity and haemolytic activity. The most potent isolate B11 were selected according to two parameters: The ability to grow and produce surfactant and its haemolytic activity on blood agar plates. The isolate B11 was characterized and identified as Bacillus licheniformis according to API system. The isolate was subjected to different doses of gamma irradiation in a trial to improve its ability for bio surfactant production which resulted in a passive effect on bio surfactant production. Three types of agricultural wastes (Rice straw, Cane Bagasse, Corn straw) were used as fertilizers for bio surfactant biosynthesis by the promising isolate in concentrations of 1, 2, 3, 4, 5 g/l. At five g/l concentration cane bagasse gave high production of bio surfactant with maximum capacity at (32%) flowed by rice straw at 18% and corn straw at 9.8 %.

  3. First isolation of microorganisms from the gut diverticulum of Aedes aegypti (Diptera: Culicidae: new perspectives for an insect-bacteria association

    Directory of Open Access Journals (Sweden)

    Desiely Silva Gusmão

    2007-12-01

    Full Text Available We show for the first time that the ventral diverticulum of the mosquito gut (impermeable sugar storage organ harbors microorganisms. The gut diverticulum from newly emerged and non-fed Aedes aegypti was dissected under aseptic conditions, homogenized and plated on BHI medium. Microbial isolates were identified by sequencing of 16S rDNA for bacteria and 28S rDNA for yeast. A direct DNA extraction from Ae. aegypti gut diverticulum was also performed. The bacterial isolates were: Bacillus sp., Bacillus subtilis and Serratia sp. The latter was the predominant bacteria found in our isolations. The yeast species identified was Pichia caribbica.

  4. Bacteria isolated from abscesses of small ruminants inspected in the semiarid region of Brazil

    Directory of Open Access Journals (Sweden)

    Wellington Erasmo Lima e Silva

    2016-06-01

    Full Text Available Loss in the supply chain of small ruminants owing to condemnations of carcasses in the abattoirs and slaughterhouses is common in northeastern Brazil. This study aims to identify bacterial agents, including Mycobacterium spp., in the abscesses found in the postmortem analysis of the carcasses of sheep and goats bred in northeastern Brazil. Our analysis involved 679 goats and 1,838 sheep carcasses. Abscess samples were extracted and inoculated on blood agar and Lowenstein Jensen with pyruvate or glycerol for bacterial isolation. We then performed polymerase chain reaction of the hps 65 gene; samples positive for Mycobacterium spp. were subjected to DNA sequencing. Relative frequencies of abscesses in goats and sheep were 5.44 and 3.26%, respectively. Microbiological analysis revealed 87.7% bacterial growth in the inoculated samples. Among these, Corynebacterium pseudotuberculosis represented 67.7% of the isolates. We observed 1.9% mycobacteria growth in the abscess samples inoculated on Lowenstein-Jensen medium. PCR of DNA extracted from abscesses samples showed amplification of 0.9% of samples. After sequencing, Mycobacterium spp. isolate was identified as M. novocastrense. C. pseudotuberculosis was the main agent responsible for the formation of abscesses in the examined animals, and we did not identify any species of the M. tuberculosis complex in the examined small ruminants.

  5. DistAMo: A web-based tool to characterize DNA-motif distribution on bacterial chromosomes

    Directory of Open Access Journals (Sweden)

    Patrick eSobetzko

    2016-03-01

    Full Text Available Short DNA motifs are involved in a multitude of functions such as for example chromosome segregation, DNA replication or mismatch repair. Distribution of such motifs is often not random and the specific chromosomal pattern relates to the respective motif function. Computational approaches which quantitatively assess such chromosomal motif patterns are necessary. Here we present a new computer tool DistAMo (Distribution Analysis of DNA Motifs. The algorithm uses codon redundancy to calculate the relative abundance of short DNA motifs from single genes to entire chromosomes. Comparative genomics analyses of the GATC-motif distribution in γ-proteobacterial genomes using DistAMo revealed that (i genes beside the replication origin are enriched in GATCs, (ii genome-wide GATC distribution follows a distinct pattern and (iii genes involved in DNA replication and repair are enriched in GATCs. These features are specific for bacterial chromosomes encoding a Dam methyltransferase. The new software is available as a stand-alone or as an easy-to-use web-based server version at http://www.computational.bio.uni-giessen.de/distamo.

  6. A rapid and inexpensive method for isolation of total DNA from Trichoderma spp (Hypocreaceae).

    Science.gov (United States)

    Vazquez-Angulo, J C; Mendez-Trujillo, V; González-Mendoza, D; Morales-Trejo, A; Grimaldo-Juarez, O; Cervantes-Díaz, L

    2012-05-15

    Extraction of high-quality genomic DNA for PCR amplification from filamentous fungi is difficult because of the complex cell wall and the high concentrations of polysaccharides and other secondary metabolites that bind to or co-precipitate with nucleic acids. We developed a modified sodium dodecyl sulfate/phenol protocol, without maceration in liquid nitrogen and without a final ethanol precipitation step. The A(260/280) absorbance ratios of isolated DNA were approximately 1.7-1.9, demonstrating that the DNA fraction is pure and can be used for analysis. Additionally, the A(260/230) values were higher than 1.6, demonstrating negligible contamination by polysaccharides. The DNA isolated by this protocol is of sufficient quality for molecular applications; this technique could be applied to other organisms that have similar substances that hinder DNA extraction. The main advantages of the method are that the mycelium is directly recovered from culture medium and it does not require the use of expensive and specialized equipment.

  7. Human cultured cells are capable to incorporate isolated plant mitochondria loaded with exogenous DNA

    Directory of Open Access Journals (Sweden)

    Laktionov P. P.

    2012-07-01

    Full Text Available Aim. To investigate the possibility of human cultured cells to incorporate isolated mitochondria together with exogenous DNA introduced into organelles. Methods. Two approaches were used for this purpose, fluorescent labelling of mitochondria and/or DNA with subsequent analysis of the cells subjected to incubation by microscopy or by quantitative PCR. Results. We have shown that human cultured cells lines, HeLa and HUVEC, are capable to uptake isolated plant mitochondria and that this process depends on the incubation time and concentration of organelles present in medium. The incorporated mitochondria can serve as vehicles to deliver exogenous DNA into human cells, this DNA is then distributed in different cell compartments. Conclusions. These results are preliminary and need further investigations, including testing the possibility of human cells to incorporate the mitochondria of human or animal origin and creating genetic construction which could provide certain selectivity or stability of the transferred exogenous DNA upon cell uptake of the mitochondria as vectors.

  8. Isolation and characterization of the human uracil DNA glycosylase gene

    International Nuclear Information System (INIS)

    Vollberg, T.M.; Siegler, K.M.; Cool, B.L.; Sirover, M.A.

    1989-01-01

    A series of anti-human placental uracil DNA glycosylase monoclonal antibodies was used to screen a human placental cDNA library in phage λgt11. Twenty-seven immunopositive plaques were detected and purified. One clone containing a 1.2-kilobase (kb) human cDNA insert was chosen for further study by insertion into pUC8. The resultant recombinant plasmid selected by hybridization a human placental mRNA that encoded a 37-kDa polypeptide. This protein was immunoprecipitated specifically by an anti-human placenta uracil DNA glycosylase monoclonal antibody. RNA blot-hybridization (Northern) analysis using placental poly(A) + RNA or total RNA from four different human fibroblast cell strains revealed a single 1.6-kb transcript. Genomic blots using DNA from each cell strain digested with either EcoRI or PstI revealed a complex pattern of cDNA-hydridizing restriction fragments. The genomic analysis for each enzyme was highly similar in all four human cell strains. In contrast, a single band was observed when genomic analysis was performed with the identical DNA digests with an actin gene probe. During cell proliferation there was an increase in the level of glycosylase mRNA that paralleled the increase in uracil DNA glycosylase enzyme activity. The isolation of the human uracil DNA glycosylase gene permits an examination of the structure, organization, and expression of a human DNA repair gene

  9. ‘Tidjanibacter massiliensis’ gen. nov., sp. nov., a new bacterial species isolated from human colon

    Directory of Open Access Journals (Sweden)

    M. Mailhe

    2017-05-01

    Full Text Available We report the summary of main characteristics of Tidjanibacter massiliensis strain Marseille-P3084T, a new bacterial species isolated from the liquid sample of the colon of a patient with a history of irritable bowel syndrome.

  10. Identification of a DNA restriction-modification system in Pectobacterium carotovorum strains isolated from Poland.

    Science.gov (United States)

    Waleron, K; Waleron, M; Osipiuk, J; Podhajska, A J; Lojkowska, E

    2006-02-01

    Polish isolates of pectinolytic bacteria from the species Pectobacterium carotovorum were screened for the presence of a DNA restriction-modification (R-M) system. Eighty-nine strains of P. carotovorum were isolated from infected potato plants. Sixty-six strains belonged to P. carotovorum ssp. atrosepticum and 23 to P. carotovorum ssp. carotovorum. The presence of restriction enzyme Pca17AI, which is an isoschizomer of EcoRII endonuclease, was observed in all isolates of P. c. atrosepticum but not in P. c. carotovorum. The biochemical properties, PCR amplification, and sequences of the Pca17AI restriction endonuclease and methyltransferase genes were compared with the prototype EcoRII R-M system genes. Only when DNA isolated from cells of P. c. atrosepticum was used as a template, amplification of a 680 bp homologous to the gene coding EcoRII endonuclease. Endonuclease Pca17AI, having a relatively low temperature optimum, was identified. PCR amplification revealed that the nucleotide sequence of genes for EcoRII and Pca17AI R-M are different. Dcm methylation was observed in all strains of Pectobacterium and other Erwinia species tested. The sequence of a DNA fragment coding Dcm methylase in P. carotovorum was different from that of Escherichia coli. Pca17AI is the first psychrophilic isoschizomer of EcoRII endonuclease. The presence of specific Dcm methylation in chromosomal DNA isolated from P. carotovorum is described for the first time. A 680 bp PCR product, unique for P. c. atrosepticum strains, could serve as a molecular marker for detection of these bacteria in environmental samples.

  11. Dark fermentative biohydrogen production by mesophilic bacterial consortia isolated from riverbed sediments

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sneha; Sudhakaran, Anu K.; Sarma, Priyangshu Manab; Subudhi, Sanjukta; Mandal, Ajoy Kumar; Lal, Banwari [Environmental and Industrial Biotechnology Division, The Energy and Resources Institute (TERI), Habitat Place, Darbari Seth Block, Lodhi Road, New Delhi 110003 (India); Gandham, Ganesh [Hindustan Petroleum Corporation Limited, Mumbai Refinery, B. D. Patil Marg, Mahul, Mumbai 400074 (India)

    2010-10-15

    Dark fermentative bacterial strains were isolated from riverbed sediments and investigated for hydrogen production. A series of batch experiments were conducted to study the effect of pH, substrate concentration and temperature on hydrogen production from a selected bacterial consortium, TERI BH05. Batch experiments for fermentative conversion of sucrose, starch, glucose, fructose, and xylose indicated that TERI BH05 effectively utilized all the five sugars to produce fermentative hydrogen. Glucose was the most preferred carbon source indicating highest hydrogen yields of 22.3 mmol/L. Acetic and butyric acid were the major soluble metabolites detected. Investigation on optimization of pH, temperature, and substrate concentration revealed that TERI BH05 produced maximum hydrogen at 37 C, pH 6 with 8 g/L of glucose supplementation and maximum yield of hydrogen production observed was 2.0-2.3 mol H{sub 2}/mol glucose. Characterization of TERI BH05 revealed the presence of two different bacterial strains showing maximum homology to Clostridium butyricum and Clostridium bifermentans. (author)

  12. Staphylococcus epidermidis isolated in 1965 are more susceptible to triclosan than current isolates

    DEFF Research Database (Denmark)

    Skovgaard, Sissel; Nielsen, Lene Nørby; Larsen, Marianne Halberg

    2013-01-01

    pathogen Staphylococcus epidermidis with isolates collected in the 1960s prior to introduction of triclosan to the market. Of 64 current S. epidermidis isolates 12.5% were found to have tolerance towards triclosan defined as MIC≥0.25 mg/l compared to none of 34 isolates obtained in the 1960s. When passaged......Since its introduction to the market in the 1970s, the synthetic biocide triclosan has had widespread use in household and medical products. Although decreased triclosan susceptibility has been observed for several bacterial species, when exposed under laboratory settings, no in vivo studies have...... in the laboratory in the presence of triclosan, old and current susceptible isolates could be adapted to the same triclosan MIC level as found in current tolerant isolates. DNA sequence analysis revealed that laboratory-adapted strains carried mutations in fabI encoding the enoyl-acyl carrier protein reductase...

  13. Pemotongan dan Menyambung DNA dalam Kloning Gen, Studi pada Kloning Gen Prolidase dari Bakteri Asam Laktat

    Directory of Open Access Journals (Sweden)

    Ketut Suriasih

    2015-03-01

    Full Text Available Gene cloning in lactic acid bacteria (LAB is crucial in term to increase their ability to hydrolyze milk protein such as proline. This proline could be hydrolyzed when the LAB undergone cloning on their genome coding the enzyme. The cloning process need technology to separate/isolate the gene capable of proline hydrolyze. Isolation of DNA containing prolidase gene, need DNA genome cutting. After isolation of DNA gene coding prolidase, it is then recombined with other bacterial DNA to obtained recombinant gene. The process need ligase. In gene cloning, knowledge of cutting and joining the DNA should be understood. The enzyme take the role in cutting and joining the DNA were restriction endonuclease and ligase. The restriction enzyme function (1 in inserting a gen into plasmid contained in a vector during gene cloning, and gene expression experiment, and (2 to identify the gene. It is important that the researcher already have standardized  sequenced gene as control. The DNA contained target gene was cut using some restriction enzyme, then the gene was arrayed in electrophoresis gel using southern blot technique. DNA sequence was elucidated by addition of ethydium bromide. To identify/characterize the isolated gene, this DNA sequence was encountered the control DNA.

  14. Genotyping of Giardia lamblia isolates from humans in China and Korea using ribosomal DNA Sequences.

    Science.gov (United States)

    Yong, T S; Park, S J; Hwang, U W; Yang, H W; Lee, K W; Min, D Y; Rim, H J; Wang, Y; Zheng, F

    2000-08-01

    Genetic characterization of a total of 15 Giardia lamblia isolates, 8 from Anhui Province, China (all from purified cysts) and 7 from Seoul, Korea (2 from axenic cultures and 5 from purified cysts), was performed by polymerase chain reaction amplification and sequencing of a 295-bp region near the 5' end of the small subunit ribosomal DNA (eukaryotic 16S rDNA). Phylogenetic analyses were subsequently conducted using sequence data obtained in this study, as well as sequences published from other Giardia isolates. The maximum parsimony method revealed that G. lamblia isolates from humans in China and Korea are divided into 2 major lineages, assemblages A and B. All 7 Korean isolates were grouped into assemblage A, whereas 4 Chinese isolates were grouped into assemblage A and 4 into assemblage B. Two Giardia microti isolates and 2 dog-derived Giardia isolates also grouped into assemblage B, whereas Giardia ardeae and Giardia muris were unique.

  15. Isolation of Pseudobutyrivibrio ruminis and Pseudobutyrivibrio xylanivorans from rumen of Creole goats fed native forage diet.

    Science.gov (United States)

    Grilli, D J; Cerón, M E; Paez, S; Egea, V; Schnittger, L; Cravero, S; Escudero, M Sosa; Allegretti, L; Arenas, G N

    2013-09-01

    We isolated and identified functional groups of bacteria in the rumen of Creole goats involved in ruminal fermentation of native forage shrubs. The functional bacterial groups were evaluated by comparing the total viable, total anaerobic, cellulolytic, hemicellulolytic, and amylolytic bacterial counts in the samples taken from fistulated goats fed native forage diet (Atriplex lampa and Prosopis flexuosa). Alfalfa hay and corn were used as control diet. The roll tubes method increased the possibility of isolating and 16S rDNA gene sequencing allowed definitive identification of bacterial species involved in the ruminal fermentation. The starch and fiber contents of the diets influenced the number of total anaerobic bacteria and fibrolytic and amylolytic functional groups. Pseudobutyrivibrio ruminis and Pseudobutyrivibrio xylanivorans were the main species isolated and identified. The identification of bacterial strains involved in the rumen fermentation helps to explain the ability of these animals to digest fiber plant cell wall contained in native forage species.

  16. Evaluation of methods for the extraction and purification of DNA from the human microbiome.

    Directory of Open Access Journals (Sweden)

    Sanqing Yuan

    Full Text Available DNA extraction is an essential step in all cultivation-independent approaches to characterize microbial diversity, including that associated with the human body. A fundamental challenge in using these approaches has been to isolate DNA that is representative of the microbial community sampled.In this study, we statistically evaluated six commonly used DNA extraction procedures using eleven human-associated bacterial species and a mock community that contained equal numbers of those eleven species. These methods were compared on the basis of DNA yield, DNA shearing, reproducibility, and most importantly representation of microbial diversity. The analysis of 16S rRNA gene sequences from a mock community showed that the observed species abundances were significantly different from the expected species abundances for all six DNA extraction methods used.Protocols that included bead beating and/or mutanolysin produced significantly better bacterial community structure representation than methods without both of them. The reproducibility of all six methods was similar, and results from different experimenters and different times were in good agreement. Based on the evaluations done it appears that DNA extraction procedures for bacterial community analysis of human associated samples should include bead beating and/or mutanolysin to effectively lyse cells.

  17. Improving the yield and quality of DNA isolated from white-rot fungi.

    Science.gov (United States)

    Kuhad, R C; Kapoor, R K; Lal, R

    2004-01-01

    A new simple method used to eliminate polysaccharides that cause problems during DNA isolation was established for 6 different white-rot fungi using 1% hexadecyltrimethylammonium bromide (CTAB) as wash buffer and followed by centrifugation. Variation in the DNA yield and quality was ascertained using precipitating agents, detergents and cell-wall-hydrolyzing chitinase. Considerable amount of exopolysaccharides from fungal biomass was removed with the use of 1% CTAB wash buffer followed by centrifugation. The DNA varied in terms of yield and quality. For the DNA extraction use of 2% SDS in extraction buffer worked best for Pycnoporus cinnabarinus, Cyathus bulleri, Cyathus striatus and Cyathus stercoreus, while 2% CTAB worked best for Phanerochaete chrysosporium and Pleurotus ostreatus. Elimination of phenol and use of absolute ethanol for precipitating DNA resulted in good yield and quality of DNA. This DNA was amenable to restriction endonuclease digestion.

  18. Advantages and Limitations of Ribosomal RNA PCR and DNA Sequencing for Identification of Bacteria in Cardiac Valves of Danish Patients

    DEFF Research Database (Denmark)

    Kemp, Michael; Bangsborg, Jette; Kjerulf, Anne

    2013-01-01

    of direct molecular identification should also address weaknesses, their relevance in the given setting, and possible improvements. In this study cardiac valves from 56 Danish patients referred for surgery for infective endocarditis were analysed by microscopy and culture as well as by PCR targeting part...... of the bacterial 16S rRNA gene followed by DNA sequencing of the PCR product. PCR and DNA sequencing identified significant bacteria in 49 samples from 43 patients, including five out of 13 culture-negative cases. No rare, exotic, or intracellular bacteria were identified. There was a general agreement between...... bacterial identity obtained by ribosomal PCR and DNA sequencing from the valves and bacterial isolates from blood culture. However, DNA sequencing of the 16S rRNA gene did not discriminate well among non-haemolytic streptococci, especially within the Streptococcus mitis group. Ribosomal PCR with subsequent...

  19. Diversity and biological activities of the bacterial community associated with the marine sponge Phorbas tenacior (Porifera, Demospongiae).

    Science.gov (United States)

    Dupont, S; Carré-Mlouka, A; Descarrega, F; Ereskovsky, A; Longeon, A; Mouray, E; Florent, I; Bourguet-Kondracki, M L

    2014-01-01

    The diversity of the cultivable microbiota of the marine sponge Phorbas tenacior frequently found in the Mediterranean Sea was investigated, and its potential as a source of antimicrobial, antioxidant and antiplasmodial compounds was evaluated. The cultivable bacterial community was studied by isolation, cultivation and 16S rRNA gene sequencing. Twenty-three bacterial strains were isolated and identified in the Proteobacteria (α or γ classes) and Actinobacteria phyla. Furthermore, three different bacterial morphotypes localized extracellularly within the sponge tissues were revealed by microscopic observations. Bacterial strains were assigned to seven different genera, namely Vibrio, Photobacterium, Shewanella, Pseudomonas, Ruegeria, Pseudovibrio and Citricoccus. The strains affiliated to the same genus were differentiated according to their genetic dissimilarities using random amplified polymorphic DNA (RAPD) analyses. Eleven bacterial strains were selected for evaluation of their bioactivities. Three isolates Pseudovibrio P1Ma4, Vibrio P1MaNal1 and Citricoccus P1S7 revealed antimicrobial activity; Citricoccus P1S7 and Vibrio P1MaNal1 isolates also exhibited antiplasmodial activity, while two Vibrio isolates P1Ma8 and P1Ma5 displayed antioxidant activity. These data confirmed the importance of Proteobacteria and Actinobacteria associated with marine sponges as a reservoir of bioactive compounds. This study presents the first report on the diversity of the cultivable bacteria associated with the marine sponge Phorbas tenacior, frequently found in the Mediterranean Sea. Evaluation of the antiplasmodial, antimicrobial and antioxidant activities of the isolates has been investigated and allowed to select bacterial strains, confirming the importance of Proteobacteria and Actinobacteria as sources of bioactive compounds. © 2013 The Society for Applied Microbiology.

  20. Pseudomonas, Pantoea and Cupriavidus isolates induce calcium carbonate precipitation for biorestoration of ornamental stone.

    Science.gov (United States)

    Daskalakis, M I; Magoulas, A; Kotoulas, G; Catsikis, I; Bakolas, A; Karageorgis, A P; Mavridou, A; Doulia, D; Rigas, F

    2013-08-01

    Bacterially induced calcium carbonate precipitation from various isolates was investigated aiming at developing an environmentally friendly technique for ornamental stone protection and restoration. Micro-organisms isolated from stone samples and identified using 16S rDNA and biochemical tests promoted calcium carbonate precipitation in solid and novel liquid growth media. Biomineral morphology was studied on marble samples with scanning electron microscopy. Most isolates demonstrated specimen weight increase, covering partially or even completely the marble surfaces mainly with vaterite. The conditions under which vaterite precipitated and its stability throughout the experimental runs are presented. A growth medium that facilitated bacterial growth of different species and promoted biomineralization was formulated. Most isolates induced biomineralization of CaCO3 . Micro-organisms may actually be a milestone in the investigation of vaterite formation facilitating our understanding of geomicrobiological interactions. Pseudomonas, Pantoea and Cupriavidus strains could be candidates for bioconsolidation of ornamental stone protection. Characterization of biomineralization capacity of different bacterial species improves understanding of the bacterially induced mineralization processes and enriches the list of candidates for biorestoration applications. Knowledge of biomineral morphology assists in differentiating mineral from biologically induced precipitates. © 2013 The Society for Applied Microbiology.

  1. Specificity of DNA import into isolated mitochondria from plants and mammals

    Directory of Open Access Journals (Sweden)

    Koulintchenko M. V.

    2014-01-01

    Full Text Available Aim. Investigation of different features of DNA import into plant and human mitochondria, for a better understanding of mitochondrial genetics and generation of biotechnological tools. Methods. DNA up-take experiments with isolated plant mitochondria, using as substrates various sequences associated or not with the specific terminal inverted repeats (TIRs present at each end of the plant mitochondrial linear plasmids. Results. It was established that the DNA import efficiency has a non-linear dependence on DNA size. It was shown that import into plant mitochondria of DNA molecules of «medium» sizes, i. e. between 4 and 7 kb, barely has any sequence specificity: neither TIRs from the 11.6 kb Brassica plasmid, nor TIRs from the Zea mays S-plasmids influenced DNA import into Solanum tuberosum mitochondria. Conclusions. The data obtained support the hypothesis about species-specific import mechanism operating under the mitochondrial linear plasmids transfer into plant mitochondria.

  2. Isolation of Microarray-Grade Total RNA, MicroRNA, and DNA from a Single PAXgene Blood RNA Tube

    DEFF Research Database (Denmark)

    Kruhøffer, Mogens; Andersen, Lars Dyrskjøt; Voss, Thorsten

    2007-01-01

    We have developed a procedure for isolation of microRNA and genomic DNA in addition to total RNA from whole blood stabilized in PAXgene Blood RNA tubes. The procedure is based on automatic extraction on a BioRobot MDx and includes isolation of DNA from a fraction of the stabilized blood...... and recovery of small RNA species that are otherwise lost. The procedure presented here is suitable for large-scale experiments and is amenable to further automation. Procured total RNA and DNA was tested using Affymetrix Expression and single-nucleotide polymorphism GeneChips, respectively, and isolated micro......RNA was tested using spotted locked nucleic acid-based microarrays. We conclude that the yield and quality of total RNA, microRNA, and DNA from a single PAXgene blood RNA tube is sufficient for downstream microarray analysis....

  3. Isolation and molecular identification of Vibrio spp. by sequencing of 16S rDNA from seafood, meat and meat products in Libya

    Science.gov (United States)

    Azwai, S.M.; Alfallani, E.A.; Abolghait, S.K.; Garbaj, A.M.; Naas, H.T.; Moawad, A.A.; Gammoudi, F.T.; Rayes, H.M.; Barbieri, I.; Eldaghayes, I.M.

    2016-01-01

    The genus Vibrio includes several food-borne pathogens that cause a spectrum of clinical conditions including septicemia, cholera and milder forms of gastroenteritis. Several Vibrio spp. are commonly associated with food-borne transmission including Vibrio cholerae, Vibrio parahemolyticus, and Vibrio vulnificus. Microbiological analysis for enumeration and isolation of Vibrio spp. were carried out for a total of 93 samples of seafood, meat and meat products from different geographic localities in Libya (Tripoli, Regdalin, Janzour and Tobruk). Vibrio spp. were detected by conventional cultural and molecular method using PCR and sequencing of 16S rDNA. Out of the 93 cultured samples only 48 (51.6%) yielded colonies on Thiosulfate Citrate Bile Salt agar (TCBS) with culture characteristics of Vibrio spp. More than half (n=27) of processed seafood samples (n=46) yielded colonies on TCBS, while only 44.6 % of samples of meat and meat products showed colonies on TCBS. Among cultured seafood samples, the highest bacterial count was recorded in clam with a count of 3.8 ×104 CFU\\g. Chicken burger samples showed the highest bacterial count with 6.5 ×104 CFU\\g. Molecular analysis of the isolates obtained in this study, showed that 11 samples out of 48 (22.9%) were Vibrio spp. Vibrio parahemolyticus was isolated from camel meat for the first time. This study is an initial step to provide a baseline for future molecular research targeting Vibrio spp. foodborne illnesses. This data will be used to provide information on the magnitude of such pathogens in Libyan seafood, meat and meat products. PMID:27004169

  4. Isolation and molecular identification of Vibrio spp. by sequencing of 16S rDNA from seafood, meat and meat products in Libya

    Directory of Open Access Journals (Sweden)

    S.M. Azwai

    2016-03-01

    Full Text Available The genus Vibrio includes several food-borne pathogens that cause a spectrum of clinical conditions including septicemia, cholera and milder forms of gastroenteritis. Several Vibrio spp. are commonly associated with food-borne transmission including Vibrio cholerae, Vibrio parahemolyticus, and Vibrio vulnificus. Microbiological analysis for enumeration and isolation of Vibrio spp. were carried out for a total of 93 samples of seafood, meat and meat products from different geographic localities in Libya (Tripoli, Regdalin, Janzour and Tobruk. Vibrio spp. were detected by conventional cultural and molecular method using PCR and sequencing of 16S rDNA. Out of the 93 cultured samples only 48 (51.6% yielded colonies on Thiosulfate Citrate Bile Salt agar (TCBS with culture characteristics of Vibrio spp. More than half (n=27 of processed seafood samples (n=46 yielded colonies on TCBS, while only 44.6% of samples of meat and meat products showed colonies on TCBS. Among cultured seafood samples, the highest bacterial count was recorded in clam with a count of 3.8 х104 CFU\\g. Chicken burger samples showed the highest bacterial count with 6.5 х104 CFU\\g. Molecular analysis of the isolates obtained in this study, showed that 11 samples out of 48 (22.9% were Vibrio spp. Vibrio parahemolyticus was isolated from camel meat for the first time. This study is an initial step to provide a baseline for future molecular research targeting Vibrio spp. foodborne illnesses. This data will be used to provide information on the magnitude of such pathogens in Libyan seafood, meat and meat products.

  5. Isolation and molecular identification of Vibrio spp. by sequencing of 16S rDNA from seafood, meat and meat products in Libya.

    Science.gov (United States)

    Azwai, S M; Alfallani, E A; Abolghait, S K; Garbaj, A M; Naas, H T; Moawad, A A; Gammoudi, F T; Rayes, H M; Barbieri, I; Eldaghayes, I M

    2016-01-01

    The genus Vibrio includes several food-borne pathogens that cause a spectrum of clinical conditions including septicemia, cholera and milder forms of gastroenteritis. Several Vibrio spp. are commonly associated with food-borne transmission including Vibrio cholerae, Vibrio parahemolyticus, and Vibrio vulnificus. Microbiological analysis for enumeration and isolation of Vibrio spp. were carried out for a total of 93 samples of seafood, meat and meat products from different geographic localities in Libya (Tripoli, Regdalin, Janzour and Tobruk). Vibrio spp. were detected by conventional cultural and molecular method using PCR and sequencing of 16S rDNA. Out of the 93 cultured samples only 48 (51.6%) yielded colonies on Thiosulfate Citrate Bile Salt agar (TCBS) with culture characteristics of Vibrio spp. More than half (n=27) of processed seafood samples (n=46) yielded colonies on TCBS, while only 44.6 % of samples of meat and meat products showed colonies on TCBS. Among cultured seafood samples, the highest bacterial count was recorded in clam with a count of 3.8 ×10(4) CFU\\g. Chicken burger samples showed the highest bacterial count with 6.5 ×10(4) CFU\\g. Molecular analysis of the isolates obtained in this study, showed that 11 samples out of 48 (22.9%) were Vibrio spp. Vibrio parahemolyticus was isolated from camel meat for the first time. This study is an initial step to provide a baseline for future molecular research targeting Vibrio spp. foodborne illnesses. This data will be used to provide information on the magnitude of such pathogens in Libyan seafood, meat and meat products.

  6. Bacterial communities in sediment of a Mediterranean marine protected area.

    Science.gov (United States)

    Catania, Valentina; Sarà, Gianluca; Settanni, Luca; Quatrini, Paola

    2017-04-01

    Biodiversity is crucial in preservation of ecosystems, and bacterial communities play an indispensable role for the functioning of marine ecosystems. The Mediterranean marine protected area (MPA) "Capo Gallo-Isola delle Femmine" was instituted to preserve marine biodiversity. The bacterial diversity associated with MPA sediment was compared with that from sediment of an adjacent harbour exposed to intense nautical traffic. The MPA sediment showed higher diversity with respect to the impacted site. A 16S rDNA clone library of the MPA sediment allowed the identification of 7 phyla: Proteobacteria (78%), Firmicutes (11%), Acidobacteria (3%), Actinobacteria (3%), Bacteroidetes (2%), Planctomycetes (2%), and Cyanobacteria (1%). Analysis of the hydrocarbon (HC)-degrading bacteria was performed using enrichment cultures. Most of the MPA sediment isolates were affiliated with Gram-positive G+C rich bacteria, whereas the majority of taxa in the harbour sediment clustered with Alpha- and Gammaproteobacteria; no Gram-positive HC degraders were isolated from the harbour sediment. Our results show that protection probably has an influence on bacterial diversity, and suggest the importance of monitoring the effects of protection at microbial level as well. This study creates a baseline of data that can be used to assess changes over time in bacterial communities associated with a Mediterranean MPA.

  7. Lactobacillus nantensis sp. nov., isolated from French wheat sourdough.

    Science.gov (United States)

    Valcheva, Rosica; Ferchichi, Mounir F; Korakli, Maher; Ivanova, Iskra; Gänzle, Michael G; Vogel, Rudi F; Prévost, Hervé; Onno, Bernard; Dousset, Xavier

    2006-03-01

    A polyphasic taxonomic study of the bacterial flora isolated from traditional French wheat sourdough, using phenotypic characterization and phylogenetic as well as genetic methods, revealed a consistent group of isolates that could not be assigned to any recognized species. These results were confirmed by randomly amplified polymorphic DNA and amplified fragment length polymorphism fingerprinting analyses. Cells were Gram-positive, homofermentative rods. Comparative 16S rRNA gene sequence analysis of the representative strain LP33T indicated that these strains belong to the genus Lactobacillus and that they formed a branch distinct from their closest relatives Lactobacillus farciminis, Lactobacillus alimentarius, Lactobacillus paralimentarius and Lactobacillus mindensis. DNA-DNA reassociation experiments with the three phylogenetically closest Lactobacillus species confirmed that LP33T (= DSM 16982T = CIP 108546T = TMW 1.1265T) represents the type strain of a novel species, for which the name Lactobacillus nantensis sp. nov. is proposed.

  8. Susceptibility of different bacterial species isolated from food animals to copper sulphate, zinc chloride and antimicrobial substances used for disinfection

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Hasman, Henrik

    2004-01-01

    that Danish bacterial isolates from livestock so far have not or have only to a limited degree developed resistance to antimicrobial compounds commonly used for disinfection. Acquired copper resistance was only found in enterococci. There were large differences in the intrinsic susceptibility of the different...... of susceptibilities to the different antimicrobial agents. Large variations were observed in the susceptibility of the different bacterial species to the different compounds. Staphylococci were in general very susceptible to all antimicrobial compounds tested. The Salmonella isolates were in general less susceptible...

  9. Characterisation of the aerobic bacterial flora of boid snakes: application of MALDI-TOF mass spectrometry.

    Science.gov (United States)

    Plenz, Bastian; Schmidt, Volker; Grosse-Herrenthey, Anke; Krüger, Monika; Pees, Michael

    2015-03-14

    The aim of this study was to identify aerobic bacterial isolates from the respiratory tract of boids with matrix-assisted laser desorption ionisation-time-of-flight mass spectrometry (MALDI-TOF MS). From 47 boid snakes, swabs from the oral cavity, tracheal wash samples and, in cases in which postmortem examination was performed, pulmonary tissue samples were taken. Each snake was classified as having inflammation of the respiratory tract and/or oral cavity, or without evidence of inflammation based on combination of clinical, cytological and histopathological findings. Samples collected from the respiratory tract and oral cavity were inoculated onto routine media and bacteria were cultured aerobically. All morphologically distinct individual colonies obtained were analysed using MALDI-TOF MS. Unidentified isolates detected in more than three snakes were selected for further 16S rDNA PCR and sequencing. Among all examined isolates (n=243), 49 per cent (n=119) could be sufficiently speciated using MALDI-TOF MS. Molecular biology revealed several bacterial species that have not been previously described in reptiles. With an average of 6.3 different isolates from the respiratory tract and/or oral cavity, boids with inflammatory disease harboured significantly more bacterial species than boids without inflammatory disease (average 2.8 isolates). British Veterinary Association.

  10. The use of 14C-FIAU to predict bacterial thymidine kinase presence: Implications for radiolabeled FIAU bacterial imaging

    International Nuclear Information System (INIS)

    Peterson, Kristin L.; Reid, William C.; Freeman, Alexandra F.; Holland, Steven M.; Pettigrew, Roderic I.; Gharib, Ahmed M.; Hammoud, Dima A.

    2013-01-01

    Currently available infectious disease imaging techniques cannot differentiate between infection and sterile inflammation or between different types of infections. Recently, radiolabeled FIAU was found to be a substrate for the thymidine kinase (TK) enzyme of multiple pathogenic bacteria, leading to its translational use in the imaging of bacterial infections. Patients with immunodeficiencies, however, are susceptible to a different group of pathogenic bacteria when compared to immunocompetent subjects. In this study, we wanted to predict the usefulness of radiolabeled FIAU in the detection of bacterial infections commonly occurring in patients with immunodeficiencies, in vitro, prior to attempting in vivo imaging with 124 I-FIAU-PET. Methods: We obtained representative strains of bacterial pathogens isolated from actual patients with genetic immunodeficiencies. We evaluated the bacterial susceptibility of different strains to the effect of incubation with FIAU, which would implicate the presence of the thymidine kinase (TK) enzyme. We also incubated the bacteria with 14 C-FIAU and consequently measured its rate of incorporation in the bacterial DNA using a liquid scintillation counter. Results: Unlike the other bacterial strains, the growth of Pseudomonas aeruginosa was not halted by FIAU at any concentration. All the tested clinical isolates demonstrated different levels of 14 C-FIAU uptake, except for P. aeruginosa. Conclusion: Radiolabeled FIAU has been successful in delineating bacterial infections, both in preclinical and pilot translational studies. In patients with immunodeficiencies, Pseudomonas infections are commonly encountered and are usually difficult to differentiate from fungal infections. The use of radiolabeled FIAU for in vivo imaging of those patients, however, would not be useful, considering the apparent lack of TK enzyme in Pseudomonas. One has to keep in mind that not all pathogenic bacteria possess the TK enzyme and as such will not all

  11. Characterization of bacterial diversity in pulque, a traditional Mexican alcoholic fermented beverage, as determined by 16S rDNA analysis.

    Science.gov (United States)

    Escalante, Adelfo; Rodríguez, María Elena; Martínez, Alfredo; López-Munguía, Agustín; Bolívar, Francisco; Gosset, Guillermo

    2004-06-15

    The bacterial diversity in pulque, a traditional Mexican alcoholic fermented beverage, was studied in 16S rDNA clone libraries from three pulque samples. Sequenced clones identified as Lactobacillus acidophilus, Lactobacillus strain ASF360, L. kefir, L. acetotolerans, L. hilgardii, L. plantarum, Leuconostoc pseudomesenteroides, Microbacterium arborescens, Flavobacterium johnsoniae, Acetobacter pomorium, Gluconobacter oxydans, and Hafnia alvei, were detected for the first time in pulque. Identity of 16S rDNA sequenced clones showed that bacterial diversity present among pulque samples is dominated by Lactobacillus species (80.97%). Seventy-eight clones exhibited less than 95% of relatedness to NCBI database sequences, which may indicate the presence of new species in pulque samples.

  12. Shake and stew: a non-destructive PCR-ready DNA isolation method from a single preserved fish larva.

    Science.gov (United States)

    Alvarado Bremer, J R; Smith, B L; Moulton, D L; Lu, C-P; Cornic, M

    2014-01-01

    A rapid non-destructive alternative to isolate DNA from an individual fish larva is presented, based on the suspension of epithelial cells through vortex forces, and the release of DNA in a heated alkaline solution. DNA from >6056 fish larvae isolated using this protocol has yielded a high PCR amplification success rate (>93%), suggesting its applicability to other taxonomic groups or sources when tissue amount is the limiting factor. © 2014 The Fisheries Society of the British Isles.

  13. Impact of Sample Type and DNA Isolation Procedure on Genomic Inference of Microbiome Composition

    DEFF Research Database (Denmark)

    Knudsen, Berith Elkær; Bergmark, Lasse; Munk, Patrick

    2016-01-01

    that in standard protocols. Based on this insight, we designed an improved DNA isolation procedure optimized for microbiome genomics that can be used for the three examined specimen types and potentially also for other biological specimens. A standard operating procedure is available from https://dx.doi.org/10......Explorations of complex microbiomes using genomics greatly enhance our understanding about their diversity, biogeography, and function. The isolation of DNA from microbiome specimens is a key prerequisite for such examinations, but challenges remain in obtaining sufficient DNA quantities required...... for certain sequencing approaches, achieving accurate genomic inference of microbiome composition, and facilitating comparability of findings across specimen types and sequencing projects. These aspects are particularly relevant for the genomics-based global surveillance of infectious agents and antimicrobial...

  14. Effects of atmospheric pressure plasmas on isolated and cellular DNA-a review.

    Science.gov (United States)

    Arjunan, Krishna Priya; Sharma, Virender K; Ptasinska, Sylwia

    2015-01-29

    Atmospheric Pressure Plasma (APP) is being used widely in a variety of biomedical applications. Extensive research in the field of plasma medicine has shown the induction of DNA damage by APP in a dose-dependent manner in both prokaryotic and eukaryotic systems. Recent evidence suggests that APP-induced DNA damage shows potential benefits in many applications, such as sterilization and cancer therapy. However, in several other applications, such as wound healing and dentistry, DNA damage can be detrimental. This review reports on the extensive investigations devoted to APP interactions with DNA, with an emphasis on the critical role of reactive species in plasma-induced damage to DNA. The review consists of three main sections dedicated to fundamental knowledge of the interactions of reactive oxygen species (ROS)/reactive nitrogen species (RNS) with DNA and its components, as well as the effects of APP on isolated and cellular DNA in prokaryotes and eukaryotes.

  15. [Studies on the repair of damaged DNA in bacteriophage, bacterial and mammalian systems]: Final report

    International Nuclear Information System (INIS)

    Friedberg, E.C.

    1987-08-01

    This study sought to exploit the use of uv radiation as a source of genomic damage. We explored the molecular mechanism of the repair of DNA damage at a number of different levels of biological organization, by investigating bacteriophage, bacterial, yeast and mammalian cells. Not only have observations obtained in one biological system suggested specific experimental approaches in others, but we have also learned that some biochemical pathways for DNA repair are unique to specific organisms. Our studies are summarized in terms of 4 major areas of research activity that span the past 16 years. 86 refs

  16. In vitro susceptibility of gram-negative bacterial isolates to chlorhexidine gluconate.

    Science.gov (United States)

    Mengistu, Y; Erge, W; Bellete, B

    1999-05-01

    To investigate the susceptibility of clinical isolates of gram-negative bacteria to chlorhexidine gluconate. Prospective laboratory study. Tikur Anbessa Hospital, Addis Ababa, Ethiopia. Clinical specimens from 443 hospital patients. Significant number of gram negative bacteria were not inhibited by chlorhexidine gluconate (0.02-0.05%) used for antisepsis. Four hundred and forty three strains of gram-negative bacteria were isolated from Tikur Anbessa Hospital patients. Escherichia coli (31.6%) and Klebsiella pneumoniae (23%) were the most frequently isolated bacteria followed by Proteus species (13.3%), Pseudomonas species (9.2%), and Citrobacter species (6.1%). Each organism was tested to chlorhexidine gluconate (CHG), minimum inhibitory concentration (MIC) ranging from 0.0001% to 1%w/v. All Salmonella species and E. coli were inhibited by CHG, MIC or = 0.1%). Our results showed that a significant number of the gram-negative bacterial isolates were not inhibited by CHG at the concentration used for disinfection of wounds or instruments (MIC 0.02-0.05% w/v). It is therefore important to select appropriate concentration of this disinfectant and rationally use it for disinfection and hospital hygiene. Continuing follow up and surveillance is also needed to detect resistant bacteria to chlorhexidine or other disinfectants in time.

  17. Isolation of amoebic-bacterial consortia capable of degrading trichloroethylene

    International Nuclear Information System (INIS)

    Tyndall, R.L.; Ironside, K.; Little, C.D.; Katz, S.; Kennedy, J.

    1990-01-01

    Groundwater from a waste disposal site contaminated with chlorinated alkenes was examined for the presence of amoebic-bacterial consortia capable of degrading the suspected carcinogen, trichloroethylene (TCE). Consortia were readily isolated from all of four test wells. They contained free-living amoebae, and heterotrophic and methylotrophic bacteria. Electron microscopic examination showed bacteria localized throughout the amoebic cytoplasm and an abundance of hyphomicrobium, but not Type I methanotrophs. The presence of Type II methanotrophs was indirectly indicated by lipid analysis of one consortium. The consortia have been passaged for over two years on mineral salts media in a methane atmosphere, which would not be expected to maintain the heterotrophs or amoebae separately. The methanotrophic bacteria apparently provided a stable nutrient source, allowing the persistence of the various genera. By use of 14 C-radiotracer techniques, the degradation of TCE by the consortia was observed with 14 C eventuating predominantly in CO 2 and water-soluble products. In a more detailed examination of one consortia, the amoebae and heterotrohic components did not degrade TCE, while a mixed culture of heterotrophs and methanotrophs did degrade TCE, suggesting the latter component was the primary cause for the consortium's ability to degrade TCE. Amoebic-bacterial consortia may play a role in stabilizing and preserving methylotrophic bacteria in hostile environments

  18. Molecular Characterization and Analysis of 16S Ribosomal DNA in Some Isolates of Demodex folicullorum.

    Science.gov (United States)

    Daneshparvar, Afrooz; Mowlavi, Gholamreza; Mirjalali, Hamed; Hajjaran, Homa; Mobedi, Iraj; Naddaf, Saeed Reza; Shidfar, Mohammadreza; Sadat Makki, Mahsa

    2017-01-01

    Demodicosis is one of the most prevalent skin diseases resulting from infestation by Demodex mites. This parasite usually inhabits in follicular infundibulum or sebaceous duct and transmits through close contact with an infested host. This study was carried from September 2014 to January 2016 at Tehran University of Medical Sciences, Tehran, Iran. DNA extraction and amplification of 16S ribosomal RNA was performed on four isolates, already obtained from four different patients and identified morphologically though clearing with 10% Potassium hydroxide (KOH) and microscopical examination. Amplified fragments from the isolates were compared with GeneBank database and phylogenetic analysis was carried out using MEGA6 software. A 390 bp fragment of 16S rDNA was obtained in all isolates and analysis of generated sequences showed high similarity with those submitted to GenBank, previously. Intra-species similarity and distance also showed 99.983% and 0.017, respectively, for the studied isolates. Multiple alignments of the isolates showed Single Nucleotide Polymorphisms (SNPs) in 16S rRNA fragment. Phylogenetic analysis revealed that all 4 isolates clustered with other D. folliculorum, recovered from GenBank database. Our accession numbers KF875587 and KF875589 showed more similarity together in comparison with two other studied isolates. Mitochondrial 16S rDNA is one of the most suitable molecular barcodes for identification D. folliculorum and this fragment can use for intra-species characterization of the most human-infected mites.

  19. Molecular Characterization and Analysis of 16S Ribosomal DNA in some Isolates of Demodex folliculorum

    Directory of Open Access Journals (Sweden)

    Afrooz DANESHPARVAR

    2017-06-01

    Full Text Available Background: Demodicosis is one of the most prevalent skin diseases resulting from infestation by Demodex mites. This parasite usually inhabits in follicular infundibulum or sebaceous duct transmitted through close contact with an infested host.Methods: This study was carried from September 2014 to January 2016 at Tehran University of Medical Sciences, Tehran, Iran. DNA extraction and amplification of 16S ribosomal RNA was performed on four isolates, obtained from four patients and identified morphologically through clearing with 10% Potassium hydroxide (KOH and microscopical examination. Amplified fragments from the isolates were compared with GenBank database and phylogenetic analysis was carried out using MEGA6 software.Results: A 390 bp fragment of 16S rDNA was obtained in all isolates and analysis of generated sequences showed high similarity with those submitted to GenBank, previously. Intra-species similarity and distance also showed 99.983% and 0.017, respectively, for the studied isolates. Multiple alignments of the isolates showed Single Nucleotide Polymorphisms (SNPs in 16S rRNA fragment. Phylogenetic analysis revealed that all 4 isolates clustered with other D. folliculorum, recovered from GenBank database. Our accession numbers KF875587 and KF875589 showed more similarity together in comparison with two other studied isolates. Conclusion: Mitochondrial 16S rDNA is one of the most suitable molecular barcodes for identification D. folliculorum and this fragment can use for intra-species characterization of the most human-infected mites.

  20. Bacterial DNA of Ocean and Land on the Surface of the International Space Station.

    Science.gov (United States)

    Grebennikova, Tatiana

    A.V. Syroeshkin2, T.V. Grebennikova1, E.V. Shubralova3, V.A. Shuvalov3, O.S. Tsygankov4, V.B. Lapshin2 1D. I. Ivanovsky Virology Institute, Moscow, Russia 2 Academician E. K. Fedorov Institute of Applied Geophysics, Moscow, Russia 3S.P. Korolev Rocket and Space Corporation «Energia» Korolev, Russia 4Central Research Institute of Machine Building, Korolev, Russia Existence of biological molecules as markers of microorganisms in the space environment has always attracted attention of researchers. There is great attention to the search for extraterrestrial life forms [Nicholson W.L. 2009, Kawaguchi Y. et al 2013], and as well as the coping mechanisms of living organisms in the interplanetary space [Hotchin J. et al 1965, Baranov V.M. 2009, Horneck G. et al 2010]. Experiments on American and Japanese segments of the International Space Station (ISS) over the different nature of resistance during prolonged stay in space were conducted [Scalzi G et al 2012, Wassmann M. et al 2012]. As a result of these experiments confirmed the possibility of preserving the viability of organisms in an open space for a long time. Consequence, became interested in the transfer of living matter from the stratosphere to near-Earth space [Smith D.J. 2013]. We hypothesized that viable forms, or at least, intact DNA can be transferred to the orbit of the ISS with the ascending branch of the global electric circuit. Samples of cosmic dust collected from the surface of the window of the ISS during the exit of an astronaut in space. Samples (washes with material of tampons and tampons) which were in vacuo, were analyzed for the presence of bacterial DNA by nested PCR using primers specific DNA genus Mycobacterium, the DNA of the strain of the genus Bacillus anthracis and DNA encoding the bacterial 16S ribosomal RNA after transportation of the samples to Earth. The results of amplification, followed by sequencing and phylogenetic analysis showed the presence in samples of cosmic dust DNA

  1. Plasmid profilling and similarities in identities of probable microbes isolated from crude oil contaminated agricultural soil

    Directory of Open Access Journals (Sweden)

    Toochukwu Ekwutosi OGBULIE

    2013-05-01

    Full Text Available Plasmid analysis of bacteria isolated from agricultural soil experimentally contaminated with crude oil was carried out and the resultant bands’ depicting the different molecular sizes of the plasmid DNA molecules per isolate was obtained. There was no visible band observed for Klebsiella indicating that the organism lack plasmid DNA that confers degradative ability to it, possibly the gene could be borne on the chromosomal DNA which enabled its persistence in the polluted soil. Molecular characterization was undertaken to confirm the identities of the possible microorganisms that may be present in crude oil-contaminated soil. The result of the DNA extracted and amplified in a PCR using EcoRI and EcoRV restriction enzymes for cutting the DNA of the bacterial cells indicated no visible band for cuts made with EcoRV restriction enzyme showing that the enzyme is not specific for bacterial DNA of isolates in the samples, hence there was no amplification. By contrast though, visible bands of amplicons were observed using EcoRI restriction enzymes. The resultant visible bands of microbial profile obtained using the universal RAPD primer with nucleotide sequence of 5’—CTC AAA GCA TCT AGG TCC A---3’ showed that only Pseudomonas fluorescens and Bacillus mycoides had visible bands at identical position on the gel indicating that both species possibly had identical sequence or genes of negligible differences coding for degradation of hydrocarbons as shown by similar values in molecular weight and positions in the gel electrophoresis field.

  2. Genotyping of Single Nucleotide Polymorphisms in DNA Isolated from Serum Using Sequenom MassARRAY Technology.

    Directory of Open Access Journals (Sweden)

    Tess V Clendenen

    Full Text Available Large epidemiologic studies have the potential to make valuable contributions to the assessment of gene-environment interactions because they prospectively collected detailed exposure data. Some of these studies, however, have only serum or plasma samples as a low quantity source of DNA.We examined whether DNA isolated from serum can be used to reliably and accurately genotype single nucleotide polymorphisms (SNPs using Sequenom multiplex SNP genotyping technology. We genotyped 81 SNPs using samples from 158 participants in the NYU Women's Health Study. Each participant had DNA from serum and at least one paired DNA sample isolated from a high quality source of DNA, i.e. clots and/or cell precipitates, for comparison.We observed that 60 of the 81 SNPs (74% had high call frequencies (≥95% using DNA from serum, only slightly lower than the 85% of SNPs with high call frequencies in DNA from clots or cell precipitates. Of the 57 SNPs with high call frequencies for serum, clot, and cell precipitate DNA, 54 (95% had highly concordant (>98% genotype calls across all three sample types. High purity was not a critical factor to successful genotyping.Our results suggest that this multiplex SNP genotyping method can be used reliably on DNA from serum in large-scale epidemiologic studies.

  3. Antimicrobial susceptibility pattern of bacterial isolates from surgical wound infections in Tertiary Care Hospital in Allahabad, India

    Directory of Open Access Journals (Sweden)

    A K Kapoor

    2012-01-01

    Full Text Available The aim of present study to analyze the occurrence and in-vitro antimicrobial susceptibility of bacterial pathogens isolated from surgical wound infections. Specimens from a total of 129 patients undergoing either emergency or elective surgery were collected from infected sites or stitch lines and inoculated onto appropriate media. The bacterial cultures were identified utilizing standard microbiological and biochemical methods. Isolates were tested for susceptibility to antimicrobials using the Kirby Bauer disk diffusion method. Statistical analysis was performed using the chi-square test. Of 129 patients investigated (62 emergency and 67 elective surgery cases, bacterial isolates were isolated with almost equal frequency both from emergency and elective surgery cases. Of 108 (83.72% culture positive samples, 62 (57.41% were Gram negative, 39 (36.11% Gram positive, and 7 (6.48% showed multiple organisms. Of total 115 bacteria isolated (101 single and 7 double organisms culture positive, 33 (28.69% were Escherichia coli and were also the commonest; followed by Staphylococcus aureus, 30 (26.09% cases. S. aureus and Streptococcus spp. showed maximum susceptibility (100% to linezolid and vancomycin. Maximum susceptibility of E. coli was observed to ciprofloxacin (75.7%, followed by gentamicin (54.5%; of Klebsiella spp. to ceftriaxone and gentamicin (66.6% each, of Proteus spp. to gentamicin (70% followed by ciprofloxacin (60%, and of Pseudomonas aeruginosa to piperacillin (100% and tobramycin (71.4%. E. coli and S. aureus were the most common and Salmonella spp. and Acinetobacter spp. were the least common organism causing surgical site infections. The definitive therapy included ciprofloxacin and gentamicin for E. coli; linezolid and vancomycin for S. aureus and Streptococcus spp; ceftriaxone and ciprofloxacin for Klebsiella spp., Citrobacter spp., acinetobacter spp and Salmonella spp.

  4. Occurrence and antibacterial susceptibility pattern of bacterial pathogens isolated from diarrheal patients in Pakistan

    Directory of Open Access Journals (Sweden)

    Muhammad H. Rasool

    2016-03-01

    Full Text Available Objective: To determine the occurrence of bacterial pathogens responsible for diarrhea and to engender information regarding the effectiveness of commonly used antibiotic against diarrhea. Methods: This cross-sectional study was conducted between April and July 2014. Samples were collected from the Divisional Headquarter and Allied Hospital, Faisalabad, Pakistan. The differential and selective media were used to isolate bacterial pathogens, which were identified through cultural characteristics, microscopy, and biochemical tests. Disc diffusion assay was carried out using Muller Hinton agar medium, and minimum inhibitory concentration was determined using broth dilution method against isolated pathogens. Results: One hundred and forty-one (100% samples were positive for some bacteria. Frequency of occurrence was Bacillus cereus (B. cereus (66%, Escherichia coli (E. coli (48.5%, Salmonella typhi (S. Typhi (27.7%, Pseudomonas aeruginosa (P. aeruginosa (8.5%, and Staphylococcus aureus (S. aureus (4.3%. Single pathogen was detected in 20 (14.2% samples whereas combinations were found in 121 (85.8% samples. Bacillus cereus and E. coli were the most frequently detected pathogens followed by the S. Typhi, P. aeruginosa, and Staph. aureus. The percentage occurrence of isolated pathogens was 31% in B. cereus, 31% in E. coli, 18% in S. Typhi, 5% in P. aeruginosa, and 3% in Staph. aureus. Conclusion: Pseudomonas aeruginosa showed resistance against Amoxicillin and Cefotaxime, whereas S. aureus was found resistant against Cefotaxime. Statistical analysis using one way Analysis of Variance revealed that Ofloxacin and Gentamicin had significant (p<0.05 differences against all isolates as compared with other antibiotics used in this study.

  5. Occurrence and antibacterial susceptibility pattern of bacterial pathogens isolated from diarrheal patients in Pakistan.

    Science.gov (United States)

    Rasool, Muhammad H; Siddique, Abu B; Saqalein, Muhammad; Asghar, Muhammad J; Zahoor, Muhammad A; Aslam, Bilal; Shafiq, Humerah B; Nisar, Muhammad A

    2016-03-01

    To determine the occurrence of bacterial pathogens responsible for diarrhea and to engender information regarding the effectiveness of commonly used antibiotic against diarrhea. This cross-sectional study was conducted between April and July 2014. Samples were collected from the Divisional Headquarter and Allied Hospital, Faisalabad, Pakistan. The differential and selective media were used to isolate bacterial pathogens, which were identified through cultural characteristics, microscopy, and biochemical tests. Disc diffusion assay was carried out using Muller Hinton agar medium, and minimum inhibitory concentration was determined using broth dilution method against isolated pathogens. One hundred and forty-one (100%) samples were positive for some bacteria. Frequency of occurrence was Bacillus cereus (B. cereus) (66%), Escherichia coli (E.coli) (48.5%), Salmonella typhi (S. Typhi) (27.7%), Pseudomonas aeruginosa (P. aeruginosa) (8.5%), and Staphylococcus aureus (S. aureus) (4.3%). Single pathogen was detected in 20 (14.2%) samples whereas combinations were found in 121 (85.8%) samples. Bacillus cereus and E.coli were the most frequently detected pathogens followed by the S. Typhi, P. aeruginosa, and Staph. aureus. The percentage occurrence of isolated pathogens was 31% in B. cereus, 31% in E. coli, 18% in S. Typhi, 5% in P. aeruginosa, and 3% in Staph. aureus. Pseudomonas aeruginosa showed resistance against Amoxicillin and Cefotaxime, whereas S. aureus was found resistant against Cefotaxime. Statistical analysis using one way Analysis of Variance revealed that Ofloxacin and Gentamicin had significant (p less than 0.05) differences against all isolates as compared with other antibiotics used in this study.

  6. USE OF COMPETITIVE DNA HYBRIDIZATION TO IDENTIFY DIFFERENCES IN THE GENOMES OF TWO CLOSELY RELATED FECAL INDICATOR BACTERIA

    Science.gov (United States)

    Although recent technological advances in DNA sequencing and computational biology now allow scientists to compare entire microbial genomes, comparisons of closely related bacterial species and individual isolates by whole-genome sequencing approaches remains prohibitively expens...

  7. Optimization of DNA isolation and PCR protocol for RAPD analysis ...

    African Journals Online (AJOL)

    hope&shola

    The method involves a modified CTAB extraction employing polyvinyl ... The technique is ideal for isolation of DNA from different plant species and .... The tubes were incubated at 65°C in hot air oven or water bath for 60-90 min with intermittent shaking and .... permission to collect germ plasm Financial assistance (to.

  8. Bacterial succession during curing process of a skate (Dipturus batis) and isolation of novel strains.

    Science.gov (United States)

    Reynisson, E; Thornór Marteinsson, V; Jónsdóttir, R; Magnússon, S H; Hreggvidsson, G O

    2012-08-01

    To study the succession of cultivated and uncultivated microbes during the traditional curing process of skate. The microbial diversity was evaluated by sequencing 16Sr RNA clone libraries and cultivation in variety of media from skate samples taken periodically during a 9-day curing process. A pH shift was observed (pH 6·64-9·27) with increasing trimethylamine (2·6 up to 75·6 mg N per 100 g) and total volatile nitrogen (TVN) (from 58·5 to 705·8 mg N per 100 g) but with relatively slow bacterial growth. Uncured skate was dominated by Oceanisphaera and Pseudoalteromonas genera but was substituted after curing by Photobacterium and Aliivibrio in the flesh and Pseudomonas on the skin. Almost 50% of the clone library is derived from putative undiscovered species. Cultivation and enrichment strategies resulted in isolation of putatively new species belonging to the genera Idiomarina, Rheinheimera, Oceanisphaera, Providencia and Pseudomonas. The most abundant genera able to hydrolyse urea to ammonia were Oceanisphaera, Psychrobacter, Pseudoalteromonas and isolates within the Pseudomonas genus. The curing process of skate is controlled and achieved by a dynamic bacterial community where the key players belong to Oceanisphaera, Pseudoalteromonas, Photobacterium, Aliivibrio and Pseudomonas. For the first time, the bacterial population developments in the curing process of skate are presented and demonstrate a reservoir of many yet undiscovered bacterial species. No Claim to Norwegian Government works Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  9. Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies

    KAUST Repository

    Wang, Yong

    2009-10-09

    Bacterial 16S ribosomal DNA (rDNA) amplicons have been widely used in the classification of uncultured bacteria inhabiting environmental niches. Primers targeting conservative regions of the rDNAs are used to generate amplicons of variant regions that are informative in taxonomic assignment. One problem is that the percentage coverage and application scope of the primers used in previous studies are largely unknown. In this study, conservative fragments of available rDNA sequences were first mined and then used to search for candidate primers within the fragments by measuring the coverage rate defined as the percentage of bacterial sequences containing the target. Thirty predicted primers with a high coverage rate (>90%) were identified, which were basically located in the same conservative regions as known primers in previous reports, whereas 30% of the known primers were associated with a coverage rate of <90%. The application scope of the primers was also examined by calculating the percentages of failed detections in bacterial phyla. Primers A519-539, E969- 983, E1063-1081, U515 and E517, are highly recommended because of their high coverage in almost all phyla. As expected, the three predominant phyla, Firmicutes, Gemmatimonadetes and Proteobacteria, are best covered by the predicted primers. The primers recommended in this report shall facilitate a comprehensive and reliable survey of bacterial diversity in metagenomic studies. © 2009 Wang, Qian.

  10. Analysis of pyrimidine dimer content of isolated DNA by nuclease digestion

    International Nuclear Information System (INIS)

    Farland, W.H.; Sutherland, B.M.

    1980-01-01

    Isolated DNA is highly susceptible to degradation by exogenous nucleases. Complete digestion is possible with a number of well-characterized enzymes from a variety of sources. Treatment of DNA with a battery of enzymes including both phosphodiesterase and phosphatase activities yields a mixture of nucleosides and inorganic phosphate (P/sub i/) as a final product. Unlike native DNA, ultraviolet-irradiated DNA is resistant to complete digestion. Setlow et al. demonstrated that the structural changes in the DNA responsible for the nuclease resistance were the formation of cyclobutyl pyrimidine dimers, the major photoproduct in UV-irradiated DNA. Using venom phosphodiesterase, they demonstrated that UV irradiation of DNA affected both the rate and extent of enzymatic hydrolysis. In addition, it was demonstrated that the major nuclease-resistant product of this hydrolysis was an oligonucleotide containing dimerized pyrimidines. Treatment of the DNA to split the dimers, either photochemically or photoenzymatically, rendered the polymer more susceptible to hydrolysis by the phosphodiesterase. The specificity of photoreactivating enzyme for pyrimidine dimers lends support to the role of these structures in conferring nuclease resistance to UV-irradiated DNA. The nuclease resistance of DNA containing dimers has been the basis of several assays for the measurement of these photoproducts. Sutherland and Chamberlin reported the development of a rapid and sensitive assay for dimers in 32 P-labeled DNA

  11. A rapid two-step algorithm detects and identifies clinical macrolide and beta-lactam antibiotic resistance in clinical bacterial isolates.

    Science.gov (United States)

    Lu, Xuedong; Nie, Shuping; Xia, Chengjing; Huang, Lie; He, Ying; Wu, Runxiang; Zhang, Li

    2014-07-01

    Aiming to identify macrolide and beta-lactam resistance in clinical bacterial isolates rapidly and accurately, a two-step algorithm was developed based on detection of eight antibiotic resistance genes. Targeting at genes linked to bacterial macrolide (msrA, ermA, ermB, and ermC) and beta-lactam (blaTEM, blaSHV, blaCTX-M-1, blaCTX-M-9) antibiotic resistances, this method includes a multiplex real-time PCR, a melting temperature profile analysis as well as a liquid bead microarray assay. Liquid bead microarray assay is applied only when indistinguishable Tm profile is observed. The clinical validity of this method was assessed on clinical bacterial isolates. Among the total 580 isolates that were determined by our diagnostic method, 75% of them were identified by the multiplex real-time PCR with melting temperature analysis alone, while the remaining 25% required both multiplex real-time PCR with melting temperature analysis and liquid bead microarray assay for identification. Compared with the traditional phenotypic antibiotic susceptibility test, an overall agreement of 81.2% (kappa=0.614, 95% CI=0.550-0.679) was observed, with a sensitivity and specificity of 87.7% and 73% respectively. Besides, the average test turnaround time is 3.9h, which is much shorter in comparison with more than 24h for the traditional phenotypic tests. Having the advantages of the shorter operating time and comparable high sensitivity and specificity with the traditional phenotypic test, our two-step algorithm provides an efficient tool for rapid determination of macrolide and beta-lactam antibiotic resistances in clinical bacterial isolates. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. All-in-one nanowire-decorated multifunctional membrane for rapid cell lysis and direct DNA isolation.

    KAUST Repository

    So, Hongyun; Lee, Kunwoo; Murthy, Niren; Pisano, Albert P

    2014-01-01

    This paper describes a handheld device that uses an all-in-one membrane for continuous mechanical cell lysis and rapid DNA isolation without the assistance of power sources, lysis reagents, and routine centrifugation. This nanowire-decorated multifunctional membrane was fabricated to isolate DNA by selective adsorption to silica surface immediately after disruption of nucleus membranes by ultrasharp tips of nanowires for a rapid cell lysis, and it can be directly assembled with commercial syringe filter holders. The membrane was fabricated by photoelectrochemical etching to create microchannel arrays followed by hydrothermal synthesis of nanowires and deposition of silica. The proposed membrane successfully purifies high-quality DNA within 5 min, whereas a commercial purification kit needs more than an hour.

  13. All-in-one nanowire-decorated multifunctional membrane for rapid cell lysis and direct DNA isolation.

    KAUST Repository

    So, Hongyun

    2014-11-24

    This paper describes a handheld device that uses an all-in-one membrane for continuous mechanical cell lysis and rapid DNA isolation without the assistance of power sources, lysis reagents, and routine centrifugation. This nanowire-decorated multifunctional membrane was fabricated to isolate DNA by selective adsorption to silica surface immediately after disruption of nucleus membranes by ultrasharp tips of nanowires for a rapid cell lysis, and it can be directly assembled with commercial syringe filter holders. The membrane was fabricated by photoelectrochemical etching to create microchannel arrays followed by hydrothermal synthesis of nanowires and deposition of silica. The proposed membrane successfully purifies high-quality DNA within 5 min, whereas a commercial purification kit needs more than an hour.

  14. Isolation of proteins involved in the replication of adenoviral DNA in vitro

    International Nuclear Information System (INIS)

    Lichy, J.H.; Nagata, K.; Friefeld, B.R.; Enomoto, T.; Field, J.; Guggenheimer, R.A.; Ikeda, J.E.; Horwitz, M.S.; Hurwitz, J.

    1983-01-01

    The simple mechanism of replication of adenoviral DNA has made adenovirus an especially useful model system for studies of eukaryotic replication mechanisms. The availability of this in vitro system that replicates exogenously added Ad DNA-pro has made it possible to characterize the factors involved in replication. The results presented in this paper summarize our further fractionation of the in vitro system. First, the properties of two factors purified from the uninfected nuclear extract are described. Second, the separation of the pTP/Ad Pol complex into subunits and the properties of the isolated subunits are presented. The 140K protein is shown to possess the Ad DNA polymerase activity. The results suggest that the only DNA polymerase required for adenoviral DNA replication in vitro is the 140K Ad DNA polymerase and that this enzyme is probably a viral gene product. 50 references, 10 figures, 3 tables

  15. Glycerol Monolaurate Inhibits Lipase Production by Clinical Ocular Isolates Without Affecting Bacterial Cell Viability.

    Science.gov (United States)

    Flanagan, Judith Louise; Khandekar, Neeta; Zhu, Hua; Watanabe, Keizo; Markoulli, Maria; Flanagan, John Terence; Papas, Eric

    2016-02-01

    We sought to determine the relative lipase production of a range of ocular bacterial isolates and to assess the efficacy of glycerol monolaurate (GML) in inhibiting this lipase production in high lipase-producing bacteria without affecting bacterial cell growth. Staphylococcus aureus,Staphylococcus epidermidis,Propionibacterium acnes, and Corynebacterium spp. were inoculated at a density of 10(6)/mL in varying concentrations of GML up to 25 μg/mL for 24 hours at 37 °C with constant shaking. Bacterial suspensions were centrifuged, bacterial cell density was determined, and production of bacterial lipase was quantified using a commercial lipase assay kit. Staphylococcus spp. produced high levels of lipase activity compared with P. acnes and Corynebacterium spp. GML inhibited lipase production by Staphylococcal spp. in a dose-dependent manner, with S. epidermidis lipase production consistently more sensitive to GML than S. aureus. Glycerol monolaurate showed significant (P < 0.05) lipase inhibition above concentrations of 15 μg/mL in S. aureus and was not cytotoxic up to 25 μg/mL. For S. epidermidis, GML showed significant (P < 0.05) lipase inhibition above 7.5 μg/mL. Lipase activity varied between species and between strains. Staphylococcal spp. produced higher lipase activity compared with P. acnes and Corynebacterium spp. Glycerol monolaurate inhibited lipase production by S. aureus and S. epidermidis at concentrations that did not adversely affect bacterial cell growth. GML can be used to inhibit ocular bacterial lipase production without proving detrimental to commensal bacteria viability.

  16. Bacterial diversity characterization in petroleum samples from Brazilian reservoirs

    Science.gov (United States)

    de Oliveira, Valéria Maia; Sette, Lara Durães; Simioni, Karen Christina Marques; dos Santos Neto, Eugênio Vaz

    2008-01-01

    This study aimed at evaluating potential differences among the bacterial communities from formation water and oil samples originated from biodegraded and non-biodegraded Brazilian petroleum reservoirs by using a PCR-DGGE based approach. Environmental DNA was isolated and used in PCR reactions with bacterial primers, followed by separation of 16S rDNA fragments in the DGGE. PCR products were also cloned and sequenced, aiming at the taxonomic affiliation of the community members. The fingerprints obtained allowed the direct comparison among the bacterial communities from oil samples presenting distinct degrees of biodegradation, as well as between the communities of formation water and oil sample from the non-biodegraded reservoir. Very similar DGGE band profiles were observed for all samples, and the diversity of the predominant bacterial phylotypes was shown to be low. Cloning and sequencing results revealed major differences between formation water and oil samples from the non-biodegraded reservoir. Bacillus sp. and Halanaerobium sp. were shown to be the predominant components of the bacterial community from the formation water sample, whereas the oil sample also included Alicyclobacillus acidoterrestris, Rhodococcus sp., Streptomyces sp. and Acidithiobacillus ferrooxidans. The PCR-DGGE technique, combined with cloning and sequencing of PCR products, revealed the presence of taxonomic groups not found previously in these samples when using cultivation-based methods and 16S rRNA gene library assembly, confirming the need of a polyphasic study in order to improve the knowledge of the extent of microbial diversity in such extreme environments. PMID:24031244

  17. Characterization of CCN and IN activity of bacterial isolates collected in Atlanta, GA

    Science.gov (United States)

    Purdue, Sara; Waters, Samantha; Karthikeyan, Smruthi; Konstantinidis, Kostas; Nenes, Athanasios

    2016-04-01

    Characterization of CCN activity of bacteria, other than a few select types such as Pseudomonas syringae, is limited, especially when looked at in conjunction with corresponding IN activity. The link between these two points is especially important for bacteria as those that have high CCN activity are likely to form an aqueous phase required for immersion freezing. Given the high ice nucleation temperature of bacterial cells, especially in immersion mode, it is important to characterize the CCN and IN activity of many different bacterial strains. To this effect, we developed a droplet freezing assay (DFA) which consists of an aluminum cold plate, cooled by a continuous flow of an ethylene glycol-water mixture, in order to observe immersion freezing of the collected bacteria. Here, we present the initial results on the CCN and IN activities of bacterial samples we have collected in Atlanta, GA. Bacterial strains were collected and isolated from rainwater samples taken from different storms throughout the year. We then characterized the CCN activity of each strain using a DMT Continuous Flow Streamwise Thermal Gradient CCN Counter by exposing the aerosolized bacteria to supersaturations ranging from 0.05% to 0.6%. Additionally, using our new DFA, we characterized the IN activity of each bacterial strain at temperatures ranging from -20oC to 0oC. The combined CCN and IN activity gives us valuable information on how some uncharacterized bacteria contribute to warm and mixed-phase cloud formation in the atmosphere.

  18. Isolation, identification, characterization, and evaluation of cadmium removal capacity of Enterobacter species.

    Science.gov (United States)

    Abbas, Syed Zaghum; Rafatullah, Mohd; Ismail, Norli; Lalung, Japareng

    2014-12-01

    This study focused on the isolation and characterization of high cadmium-resistant bacterial strains, possible exploitation of its cadmium-accumulation and cadmium-induced proteins. Cadmium-resistant bacterial strains designated as RZ1 and RZ2 were isolated from industrial wastewater of Penang, Malaysia. These isolates were identified as Enterobacter mori and Enterobacter sp. WS12 on the basis of phenotypic, biochemical and 16S rDNA sequence based molecular phylogenetic characteristics. Both isolates were Gram negative, cocci, and growing well in Lauria-Bertani broth medium at 35 °C temperature and pH 7.0. Results also indicated that Enterobacter mori and Enterobacter sp. WS12are capable to remove 87.75 and 85.11% of the cadmium from 100 µg ml(-1) concentration, respectively. This study indicates that these strains can be useful as an inexpensive and efficient bioremediation technology to remove and recover the cadmium from wastewater. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. ‘Olegusella massiliensis’ strain KHD7, a new bacterial genus isolated from the female genital tract

    Directory of Open Access Journals (Sweden)

    K. Diop

    2016-07-01

    Full Text Available We report the main characteristics of ‘Olegusella massiliensis’ gen. nov., sp. nov., strain KHD7 (= CSUR P2268=DSM 101849, a new member of the Coriobacteriaceae family isolated from the vaginal flora of a patient with bacterial vaginosis.

  20. Plasmid DNA Analysis of Pasteurella multocida Serotype B isolated from Haemorrhagic Septicaemia outbreaks in Malaysia

    Directory of Open Access Journals (Sweden)

    Jamal, H.

    2005-01-01

    Full Text Available A total of 150 purified isolates of Pasteurella multocida serotype B were used (Salmah, 2004 for plasmid DNA curing experiment to determine hyaluronidase activity, antibiotic resistance pattern (ARP and mice lethality test (LD50 for their role of pathogenicity. A plasmid curing experiment was carried out by using the intercalating agent; ethidium bromide and rifampicin, where it was found all the plasmids had been cured (plasmidless from Pasteurella multocida. All of these plasmidless isolates maintained their phenotypic characteristics. They showed the same antibiotic resistancepattern as before curing, produced hyaluronidase and possessed lethality activity in mice when injected intraperitoneally(i.p. Based on this observation, the antibiotic resistance, hyaluronidase activity and mice virulence could probably be chromosomal-mediated. Plasmids were detected 100% in all P. multocida isolates with identical profile of 2 plasmids size 3.0 and 5.5 kb. No large plasmids could be detected in all isolates. Since all the isolates appeared to have identicalplasmid profiles, they were subjected to restriction enzyme(RE analysis. From RE analysis results obtained, it can be concluded that the plasmid DNA in serotype B isolates are identical. Only 4 of 32 REs were found to cleave these plasmids with identical restriction fingerprints; BglII, HaeIII, RsaI and SspI. From RE analysis results, it can be concluded that the plasmid DNA isolates are identical. This plasmid might not played any role in pathogenicity of Pasteurella multocida serotype B, however this information is important for the construction of shuttle vectors in genetic studies of the pathogenicity of haemorrhagic septicaemia(HS.

  1. Antimicrobial sensitivity and frequency of DRUG resistance among bacterial strains isolated from cancer patients

    International Nuclear Information System (INIS)

    Faiz, M.; Bashir, T.

    2004-01-01

    Blood stream infections (bacteremia) is potentially life threatening. Concomitant with a change in the incidence and epidemiology of infecting organisms, there has been an increase in resistance to many antibiotic compounds. The widespread emergence of resistance among bacterial pathogens has an impact on our ability to treat patients effectively. The changing spectrum of microbial pathogens and widespread emergence of microbial resistance to antibiotic drugs has emphasized the need to monitor the prevalence of resistance in these strains. In the present study frequency of isolation of clinically significant bacteria and their susceptibility and resistance pattern against a wide range of antimicrobial drugs from positive blood cultures collected during 2001-2003 was studied. A total of 102 consecutive isolates were found with 63% gram positive and 44% gram negative strains. The dominating pathogens were Staphylococcus aureus (51%), Streptococci (31%), Pseudomonas (40%), Proteus (13%), Klebsiella (13%). The isolated strains were tested against a wide range of antibiotics belonging to cephalosporins, aminoglycosides and quinolone derivative group by disk diffusion method. It has been observed that isolated strains among gram positive and negative strains showed different level of resistance against aminoglycosides and cephalosporin group of antibiotics with gram positives showing highest number and frequency of resistance against aminoglycosides (40-50%) and cephalosporins.(35-45%) whereas cephalosporins were found to be more effective against gram negatives with low frequency of resistant strains. Cabapenem and quinolone derivative drugs were found to be most effective among other groups in both gram positive and negative strains with 23-41% strains found sensitive to these two drugs. The frequency of sensitive strains against aminoglycoside and cephalosporin in gram negative and gram positive strains were found to be decreasing yearwise with a trend towards an

  2. The Potency of Local Bacterial Isolates Encapsulated Within Sodium Alginate in Carbofuran Degradation

    Science.gov (United States)

    Priyani, Nunuk; Pratiwi, Dian; Suryanto, Dwi

    2018-03-01

    Research on the viability of bacteria encapsulated within sodium alginate and their potential in carbofuran degradation has been done. A total of 8 bacterial isolates have been isolated from slaughter house waste. A 100 ml of Bushnell-Hass Broth (BHB) medium containing 146.982 ppm of carbofuran was used as a medium. As much as 2 gr of beads which equal to 108cells.ml‑1 was inoculated into each medium culture and incubated for 15 days at ambient temperature and was shaken at 100 rpm. Analysis of carbofuran residues using High Performance Liquid Chromatography (HPLC) showed that the best 2 isolates, DN 1 and OR 2, were able to decrease carbofuran phenol concentration up to 30.37 % and 32.09% respectively compared to control. These results suggested that no significant different from the ability of free cell which decreased carbofuran phenol concentration up to 32.54% and 28.29%.

  3. Bacterial flora of conjunctiva after death

    Directory of Open Access Journals (Sweden)

    Sagili Chandrasekhara Reddy

    2013-10-01

    Full Text Available AIM:To evaluate the frequency of bacterial flora of conjunctiva after death (cadaver eyes which will give information about the bacterial contamination of donor eyes, and the in-vitro sensitivity of isolated bacteria to the commonly used antibiotics in ophthalmic practice.METHODS: Conjunctival swabs were taken from the cadavers (motor vehicle accident deaths and patients who died in the hospital, within 6h after death, and sent for culture and sensitivity test. Conjunctival swabs, taken from the healthy conjunctiva of patients admitted for cataract surgery, were sent for culture and sensitivity as controls (eyes in those of living status. The bacterial isolates were tested against the commonly used antibiotics (chloramphenicol, gentamicin, ciprofloxacin in ophthalmology practice.RESULTS: Bacteria were isolated in 41 out of 100 conjunctival swabs (41%, taken from 50 cadavers (study group. Coagulase negative staphylococcus was the most common bacteria isolated (15%, followed by pseudomonas aeruginosa (5%. Gentamicin was effective against majority of the bacterial isolates (82%. Bacteria were isolated from 7 out of 100 conjunctival swabs taken as control group (eyes in living state. Coagulase negative staphylococcus was the most common organism (5% isolated in control group; the others were staphylococcus aureus (1% and beta hemolyticus streptococci (1%.CONCLUSION: Bacteria were isolated from 41% of the cadaver eyes. High percentage sensitivity of the bacterial isolates to gentamicin (82% supports the practice of thorough irrigation of the eyes with gentamicin solution before starting the procedure of enucleation followed by immersion of the enucleated eyeballs in gentamycin solution, to prevent the bacterial contamination.

  4. Isolation and characterization of cDNA clones for carrot extensin and a proline-rich 33-kDa protein

    International Nuclear Information System (INIS)

    Chen, J.; Varner, J.E.

    1985-01-01

    Extensins are hydroxyproline-rich glycoproteins associated with most dicotyledonous plant cell walls. To isolate cDNA clones encoding extensin, the authors started by isolating poly(A) + RNA from carrot root tissue, and then translating the RNA in vitro, in the presence of tritiated leucine or proline. A 33-kDa peptide was identified in the translation products as a putative extensin precursor. From a cDNA library constructed with poly(A) + RNA from wounded carrots, one cDNA clone (pDC5) was identified that specifically hybridized to poly(A) + RNA encoding this 33-kDa peptide. They isolated three cDNA clones (pDC11, pDC12, and pDC16) from another cDNA library using pCD5 as a probe. DNA sequence data, RNA hybridization analysis, and hybrid released in vitro translation indicate that the cDNA clones pDC11 encodes extensin and that cDNA clones pDC12 and pDC16 encode the 33-kDa peptide, which as yet has an unknown identity and function. The assumption that the 33-kDa peptide was an extensin precursor was invalid. RNA hybridization analysis showed that RNA encoded by both clone types is accumulated upon wounding

  5. Antimicrobial resistance of bacterial enteropathogens isolated from stools in Madagascar.

    Science.gov (United States)

    Randrianirina, Frederique; Ratsima, Elisoa Hariniana; Ramparany, Lova; Randremanana, Rindra; Rakotonirina, Hanitra Clara; Andriamanantena, Tahiry; Rakotomanana, Fanjasoa; Rajatonirina, Soatiana; Richard, Vincent; Talarmin, Antoine

    2014-02-25

    Diarrheal diseases are a major public health problem in developing countries, and are one of the main causes of hospital admissions in Madagascar. The Pasteur Institute of Madagascar undertook a study to determine the prevalence and the pathogenicity of bacterial, viral and protozoal enteropathogens in diarrheal and non-diarrheal stools of children aged less than 5 years in Madagascar. We present here the results of the analysis of antimicrobial susceptibility of the bacteria isolated during this study. The study was conducted in the community setting in 14 districts of Madagascar from October 2008 to May 2009. Conventional methods and PCR were used to identify the bacteria; antimicrobial susceptibility was determined using an agar diffusion method for enterobacteriaceae and MICs were measured by an agar dilution method for Campylobacter sp. In addition to the strains isolated during this study, Salmonella sp and Shigella sp isolated at the Pasteur Institute of Madagascar from 2005 to 2009 were included in the analysis to increase the power of the study. Twenty-nine strains of Salmonella sp, 35 strains of Shigella sp, 195 strains of diarrheagenic E. coli, 203 strains of C. jejuni and 71 strains of C. coli isolated in the community setting were tested for antibiotic resistance. Fifty-five strains of Salmonella sp and 129 strains of Shigella sp isolated from patients referred to the Pasteur Institute of Madagascar were also included in the study. Many E. coli and Shigella isolates (around 80%) but fewer Salmonella isolates were resistant to ampicillin and trimethoprim/sulfamethoxazole. A small proportion of strains of each species were resistant to ciprofloxacin and only 3% of E. coli strains presented a resistance to third generation cephalosporins due to the production of extended-spectrum beta-lactamases. The resistance of Campylobacter sp to ampicillin was the most prevalent, whereas less than 5% of isolates were resistant to each of the other antibiotics. The

  6. Genotypic and phenotypic diversity of Bacillus spp. isolated from steel plant waste

    Directory of Open Access Journals (Sweden)

    Chartone-Souza Edmar

    2008-10-01

    Full Text Available Abstract Background Molecular studies of Bacillus diversity in various environments have been reported. However, there have been few investigations concerning Bacillus in steel plant environments. In this study, genotypic and phenotypic diversity and phylogenetic relationships among 40 bacterial isolates recovered from steel plant waste were investigated using classical and molecular methods. Results 16S rDNA partial sequencing assigned all the isolates to the Bacillus genus, with close genetic relatedness to the Bacillus subtilis and Bacillus cereus groups, and to the species Bacillus sphaericus. tDNA-intergenic spacer length polymorphisms and the 16S–23S intergenic transcribed spacer region failed to identify the isolates at the species level. Genomic diversity was investigated by molecular typing with rep (repetitive sequence based PCR using the primer sets ERIC2 (enterobacterial repetitive intergenic consensus, (GTG5, and BOXAIR. Genotypic fingerprinting of the isolates reflected high intraspecies and interspecies diversity. Clustering of the isolates using ERIC-PCR fingerprinting was similar to that obtained from the 16S rRNA gene phylogenetic tree, indicating the potential of the former technique as a simple and useful tool for examining relationships among unknown Bacillus spp. Physiological, biochemical and heavy metal susceptibility profiles also indicated considerable phenotypic diversity. Among the heavy metal compounds tested Zn, Pb and Cu were least toxic to the bacterial isolates, whereas Ag inhibited all isolates at 0.001 mM. Conclusion Isolates with identical 16S rRNA gene sequences had different genomic fingerprints and differed considerably in their physiological capabilities, so the high levels of phenotypic diversity found in this study are likely to have ecological relevance.

  7. Comparative Analysis of the Genomic DNA Isolation Methods on Inula sp. (Asteraceae

    Directory of Open Access Journals (Sweden)

    Emre SEVİNDİK

    2016-12-01

    Full Text Available Simple, fast, low-cost and high throughput protocols are required for DNA isolation of plant species. In this study, phenol chloroform isoamyl alcohol and commercial (Sigma DNA isolation kit methods were applied on some Inula species that belong to Asteraceae family. Genomic DNA amounts, A260, A280, A260/A230 and purity degrees (A260/A280 that were obtained through both methods were measured through electrophoresis and spectrophotometer. Additionally, PCR amplification was realized by primer pairs specific to nrDNA ITS, cpDNA ndhF (972F-1603R and trnL-F regions. Results showed that maximum genomic DNA in nanograms obtained by phenol chloroform isoamyl alcohol method. The study also revealed that I. macrocephala had the maximum DNA and I. heterolepis had the minimum DNA amount. A260/A280 purity degrees showed that the highest and lowest purity in gDNAs obtained through phenol-choloform isoamyl alcohol method were in I.aucheriana and I. salicina, respectively. The highest and lowest purity degrees of gDNAs obtained through commercial kit was observed in I. fragilis and I. macrocephala samples, respectively. PCR amplification results showed that while band profiles of each three regions (ITS, trnL-F and ndhF did not yield positive results in PCR amplifications using phenol-choloform isoamyl alcohol method; PCR band profiles obtained through commercial kit yielded positive results. As a result, it is fair to say that the relation of genomic DNA with PCR was found to be more efficient although the maximum amount of genomic DNA was obtained through phenol chloroform isoamyl alcohol method.

  8. Characterization and identification of newly isolated Acinetobacter baumannii strain serdang 1 for phenol removal

    Science.gov (United States)

    Yadzir, Z. H. M.; Shukor, M. Y.; Nazir, M. S.; Abdullah, M. A.

    2012-09-01

    A new indigenous bacterial strain from Malaysian soil contaminated with petroleum waste had been successfully isolated, characterized and identified for phenol removal. The gram negative bacteria showed 98% identity with Acinetobacter baumannii based on Biolog{trade mark, serif} Identification System and the determination of a partial 16S ribosomal RNA (rRNA) sequence. The isolate clustered with species belonging to Acinetobacter clade in a 16S rDNA-based neighbour-joining phylogenetic tree.

  9. Homogeneity of the 16S rDNA sequence among geographically disparate isolates of Taylorella equigenitalis

    Directory of Open Access Journals (Sweden)

    Moore JE

    2006-01-01

    Full Text Available Abstract Background At present, six accessible sequences of 16S rDNA from Taylorella equigenitalis (T. equigenitalis are available, whose sequence differences occur at a few nucleotide positions. Thus it is important to determine these sequences from additional strains in other countries, if possible, in order to clarify any anomalies regarding 16S rDNA sequence heterogeneity. Here, we clone and sequence the approximate full-length 16S rDNA from additional strains of T. equigenitalis isolated in Japan, Australia and France and compare these sequences to the existing published sequences. Results Clarification of any anomalies regarding 16S rDNA sequence heterogeneity of T. equigenitalis was carried out. When cloning, sequencing and comparison of the approximate full-length 16S rDNA from 17 strains of T. equigenitalis isolated in Japan, Australia and France, nucleotide sequence differences were demonstrated at the six loci in the 1,469 nucleotide sequence. Moreover, 12 polymorphic sites occurred among 23 sequences of the 16S rDNA, including the six reference sequences. Conclusion High sequence similarity (99.5% or more was observed throughout, except from nucleotide positions 138 to 501 where substitutions and deletions were noted.

  10. Homogeneity of the 16S rDNA sequence among geographically disparate isolates of Taylorella equigenitalis

    Science.gov (United States)

    Matsuda, M; Tazumi, A; Kagawa, S; Sekizuka, T; Murayama, O; Moore, JE; Millar, BC

    2006-01-01

    Background At present, six accessible sequences of 16S rDNA from Taylorella equigenitalis (T. equigenitalis) are available, whose sequence differences occur at a few nucleotide positions. Thus it is important to determine these sequences from additional strains in other countries, if possible, in order to clarify any anomalies regarding 16S rDNA sequence heterogeneity. Here, we clone and sequence the approximate full-length 16S rDNA from additional strains of T. equigenitalis isolated in Japan, Australia and France and compare these sequences to the existing published sequences. Results Clarification of any anomalies regarding 16S rDNA sequence heterogeneity of T. equigenitalis was carried out. When cloning, sequencing and comparison of the approximate full-length 16S rDNA from 17 strains of T. equigenitalis isolated in Japan, Australia and France, nucleotide sequence differences were demonstrated at the six loci in the 1,469 nucleotide sequence. Moreover, 12 polymorphic sites occurred among 23 sequences of the 16S rDNA, including the six reference sequences. Conclusion High sequence similarity (99.5% or more) was observed throughout, except from nucleotide positions 138 to 501 where substitutions and deletions were noted. PMID:16398935

  11. TREHALOSE-BASED ADDITIVE IMPROVED INTER-PRIMER BINDING SITE REACTIONS FOR DNA ISOLATED FROM RECALCITRANT PLANTS

    Directory of Open Access Journals (Sweden)

    Veronika Lancíková

    2014-02-01

    Full Text Available Trehalose-based (TBT-PAR additive was tested in order to optimize PCR amplification for DNA isolated from recalcitrant plants. Retrotransposon-based inter-primer binding site reactions were significantly improved with TBT-PAR solution using genomic DNA isolated from flax (Linum usitatissimum L., genotypes Kyivskyi, Bethune grown in radio-contaminated and non-radioactive remediated Chernobyl experimental fields. Additionally, similar improvements were observed using 19 recalcitrant genotypes of maize (Zea mays L. and three genotypes of yacon (Smallanthus sonchifolius, Poepp. et Endl., genotypes PER05, ECU45, BOL22 grown in standard field conditions.

  12. Short communication: Antiproliferative effect of wild Lactobacillus strains isolated from fermented foods on HT-29 cells.

    Science.gov (United States)

    Tuo, Y F; Zhang, L W; Yi, H X; Zhang, Y C; Zhang, W Q; Han, X; Du, M; Jiao, Y H; Wang, S M

    2010-06-01

    In vitro studies, animal models, epidemiology, and human intervention studies provide evidence that some lactic acid bacteria can reduce the risk of certain cancers. In this study, heat-killed bacterial cells, genomic DNA, and cell wall of 7 wild Lactobacillus strains isolated from traditional fermented foods in western China were tested in vitro for cytotoxicity on colonic cancer cell line HT-29 by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The heat-killed bacterial cells, genomic DNA, and cell wall of the 7 strains exhibited direct antiproliferative activities against HT-29 cells. Among the strains, the cellular components of Lactobacillus coryniformis ssp. torquens T3L exerted marked antiproliferative activities against HT-29 cells. The maximum inhibition rates of HT-29 cells by the heat-killed bacterial cells (1x10(7) cfu/mL), cell wall (20 microg of protein/mL) and genomic DNA (100 microg/mL) of L. coryniformis ssp. torquens T3L were 30, 44.9, and 35.9%, respectively. The results indicate that the heat-killed bacterial cells, cell wall, and genomic DNA of the 7 wild Lactobacillus strains could inhibit the growth of HT-29 cells. 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Fungal Peritonitis Due to Fusarium solani Species Complex Sequential Isolates Identified with DNA Sequencing in a Kidney Transplant Recipient in Brazil.

    Science.gov (United States)

    da Silva-Rocha, Walicyranison Plinio; Zuza-Alves, Diana Luzia; Melo, Analy Salles de Azevedo; Chaves, Guilherme Maranhão

    2015-12-01

    Fungal peritonitis is a rare serious complication most commonly observed in immunocompromised patients under peritoneal dialysis. Nevertheless, this clinical condition is more difficult to treat than bacterial peritonitis. Bacterial peritonitis followed by the use of antibiotics is the main risk factor for developing fungal peritonitis. Candida spp. are more frequently isolated, and the isolation of filamentous fungi is only occasional. Here we describe a case of Fusarium solani species complex peritonitis associated with bacterial peritonitis in a female kidney transplant recipient with previous history of nephrotic syndrome. The patient has had Enterobacter sp. endocarditis and was hypertensive and diabetic. Two sequential isolates of F. solani were recovered from cultures and identified with different molecular techniques. She was successfully treated with 50 mg daily amphotericin B for 4 weeks.

  14. ISOLATION AND CHARACTERIZATION OF BIFENTHRIN CATABOLIZING BACTERIAL STRAIN BACILLUS CIBI FROM SOIL FOR PYRETHROIDS BIODEGRADATION

    OpenAIRE

    Preeti Pandey; Geetika Pant; G. Sibi

    2014-01-01

    Pyrethroids are commonly used in most parts of the world and are reported to have potential health risks. Bifenthrin, a third generation pyrethroid used as insecticide has caused potential effect on aquatic life and human health. Bioremediation is a practical approach to reduce pesticide in the environment and reports of microbial degradation of bifenthrin are meagre. This study was aimed at isolating and characterizing bacterial isolates for the efficient removal of bifenthrin residues in th...

  15. The effect of rhamnolipid biosurfactant produced by Pseudomonas fluorescens on model bacterial strains and isolates from industrial wastewater.

    Science.gov (United States)

    Vasileva-Tonkova, Evgenia; Sotirova, Anna; Galabova, Danka

    2011-02-01

    In this study, the effect of rhamnolipid biosurfactant produced by Pseudomonas fluorescens on bacterial strains, laboratory strains, and isolates from industrial wastewater was investigated. It was shown that biosurfactant, depending on the concentration, has a neutral or detrimental effect on the growth and protein release of model Gram (+) strain Bacillus subtilis 168. The growth and protein release of model Gram (-) strain Pseudomonas aeruginosa 1390 was not influenced by the presence of biosurfactant in the medium. Rhamnolipid biosurfactant at the used concentrations supported the growth of some slow growing on hexadecane bacterial isolates, members of the microbial community. Changes in cell surface hydrophobicity and permeability of some Gram (+) and Gram (-) isolates in the presence of rhamnolipid biosurfactant were followed in experiments in vitro. It was found that bacterial cells treated with biosurfactant became more or less hydrophobic than untreated cells depending on individual characteristics and abilities of the strains. For all treated strains, an increase in the amount of released protein was observed with increasing the amount of biosurfactant, probably due to increased cell permeability as a result of changes in the organization of cell surface structures. The results obtained could contribute to clarify the relationships between members of the microbial community as well as suggest the efficiency of surface properties of rhamnolipid biosurfactant from Pseudomonas fluorescens making it potentially applicable in bioremediation of hydrocarbon-polluted environments.

  16. Multiple, novel biologically active endophytic actinomycetes isolated from upper Amazonian rainforests.

    Science.gov (United States)

    Bascom-Slack, Carol A; Ma, Cong; Moore, Emily; Babbs, Beatrice; Fenn, Kathleen; Greene, Joshua S; Hann, Bradley D; Keehner, Jocelyn; Kelley-Swift, Elizabeth G; Kembaiyan, Vivek; Lee, Sun Jin; Li, Puyao; Light, David Y; Lin, Emily H; Schorn, Michelle A; Vekhter, Daniel; Boulanger, Lori-Ann; Hess, W M; Vargas, Percy Núñez; Strobel, Gary A; Strobel, Scott A

    2009-08-01

    Microbial biodiversity provides an increasingly important source of medically and industrially useful compounds. We have isolated 14 actinomycete species from a collection of approximately 300 plant stem samples from the upper Amazonian rainforest in Peru. All of the cultured isolates produce substances with inhibitory activity directed at a range of potential fungal and bacterial pathogens. For some organisms, this activity is very broad in spectrum while other organisms show specific activity against a limited number of organisms. Two of these organisms preferentially inhibit bacterial test organisms over eukaryotic organisms. rDNA sequence analysis indicates that these organisms are not equivalent to any other cultured deposits in GenBank. Our results provide evidence of the untapped biodiversity in the form of biologically active microbes present within the tissues of higher plants.

  17. Cyclic AMP Regulates Bacterial Persistence through Repression of the Oxidative Stress Response and SOS-Dependent DNA Repair in Uropathogenic Escherichia coli.

    Science.gov (United States)

    Molina-Quiroz, Roberto C; Silva-Valenzuela, Cecilia; Brewster, Jennifer; Castro-Nallar, Eduardo; Levy, Stuart B; Camilli, Andrew

    2018-01-09

    Bacterial persistence is a transient, nonheritable physiological state that provides tolerance to bactericidal antibiotics. The stringent response, toxin-antitoxin modules, and stochastic processes, among other mechanisms, play roles in this phenomenon. How persistence is regulated is relatively ill defined. Here we show that cyclic AMP, a global regulator of carbon catabolism and other core processes, is a negative regulator of bacterial persistence in uropathogenic Escherichia coli , as measured by survival after exposure to a β-lactam antibiotic. This phenotype is regulated by a set of genes leading to an oxidative stress response and SOS-dependent DNA repair. Thus, persister cells tolerant to cell wall-acting antibiotics must cope with oxidative stress and DNA damage and these processes are regulated by cyclic AMP in uropathogenic E. coli IMPORTANCE Bacterial persister cells are important in relapsing infections in patients treated with antibiotics and also in the emergence of antibiotic resistance. Our results show that in uropathogenic E. coli , the second messenger cyclic AMP negatively regulates persister cell formation, since in its absence much more persister cells form that are tolerant to β-lactams antibiotics. We reveal the mechanism to be decreased levels of reactive oxygen species, specifically hydroxyl radicals, and SOS-dependent DNA repair. Our findings suggest that the oxidative stress response and DNA repair are relevant pathways to target in the design of persister-specific antibiotic compounds. Copyright © 2018 Molina-Quiroz et al.

  18. Extraction of Total DNA and RNA from Marine Filter Samples and Generation of a cDNA as Universal Template for Marker Gene Studies.

    Science.gov (United States)

    Schneider, Dominik; Wemheuer, Franziska; Pfeiffer, Birgit; Wemheuer, Bernd

    2017-01-01

    Microbial communities play an important role in marine ecosystem processes. Although the number of studies targeting marker genes such as the 16S rRNA gene has been increased in the last few years, the vast majority of marine diversity is rather unexplored. Moreover, most studies focused on the entire bacterial community and thus disregarded active microbial community players. Here, we describe a detailed protocol for the simultaneous extraction of DNA and RNA from marine water samples and for the generation of cDNA from the isolated RNA which can be used as a universal template in various marker gene studies.

  19. Detection of KPC-2 in a Clinical Isolate of Proteus mirabilis and First Reported Description of Carbapenemase Resistance Caused by a KPC Beta-Lactamase in P. mirabilis

    Science.gov (United States)

    An isolate of Proteus mirabilis recovered from bacterial cultures was shown to be resistant to imipenem, meropenem, and ertapenem by disk diffusion susceptibility testing. Amplification of whole cell and/or plasmid DNA recovered from the isolate using primers specific for the blaKPC carbapenemase g...

  20. cDNA cloning of human DNA topoisomerase I. Catalytic activity of a 67.7-kDa carboxyl-terminal fragment

    International Nuclear Information System (INIS)

    D'Arpa, P.; Machlin, P.S.; Ratrie, H. III; Rothfield, N.F.; Cleveland, D.W.; Earnshaw, W.C.

    1988-01-01

    cDNA clones encoding human topoisomerase I were isolated from an expression vector library (λgt11) screened with autoimmune anti-topoisomerase I serum. One of these clones has been expressed as a fusion protein comprised of a 32-kDa fragment of the bacterial TrpE protein linked to 67.7 kDa of protein encoded by the cDNA. Three lines of evidence indicate that the cloned cDNA encodes topoisomerase I. (i) Proteolysis maps of the fusion protein and human nuclear topoisomerase I are essentially identical. (ii) The fusion protein relaxes supercoiled DNA, an activity that can be immunoprecipitated by anti-topoisomerase I serum. (iii) Sequence analysis has revealed that the longest cDNA clone (3645 base pairs) encodes a protein of 765 amino acids that shares 42% identity with Saccharomyces cerevisiae topoisomerase I. The sequence data also show that the catalytically active 67.7-kDa fragment is comprised of the carboxyl terminus

  1. Inhibitory effect of Lactobacillus rhamnosus on pathogenic bacteria isolated from women with bacterial vaginosis

    Directory of Open Access Journals (Sweden)

    Gita Eslami

    2014-06-01

    Full Text Available Background: Considering the high prevalence of bacterial vaginosis and its association with urinary tract infection in women and treatment of gynecologic problems occur when a high recurrence of bacterial vaginosis is often treated with antibiotics. The purpose of this study is to investigate the inhibitory effect of Lactobacillus rhamnosus on pathogenic bacteria isolated from women with bacterial vaginosis, respectively.Materials and Methods: 96 samples from women with bacterial vaginosis discharge referred to health centers dependent Shahid Beheshti University in 91-92 were taken by a gynecologist with a dacron swab and put in sterile tubes containing TSB broth and Thioglycollate broth and were immediately sent to the lab location in cold chain for the next stages of investigation. From Thioglycollate and TSB medium was cultured on blood agar and EMB and Palkam and Differential diagnosis environments, and then incubated for 24 h at 37°C. Strains of Lactobacillus rhamnosus were cultured in MRSA environment and were transfered to the lab. After purification of pathogenic bacteria, MIC methods and antibiogram, Lactobacillus rhamnosus inhibitory effect on pathogenic bacteria is checked. Statistical analysis was done by SPSS software v.16.Results: The results of this study show the inhibitory effect of Lactobacillus rhamnosus on some pathogenic bacteria that cause bacterial vaginosis, including Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus saprophyticus, Streptococcus agalactiae, Entrococcus, Listeria monocytogenes and E.Coli. Microscopic examination of stained smears of the large number of Lactobacillus and pathogenic bacteria showed reduced. The prevalence of abnormal vaginal discharge, history of drug use means of preventing pregnancy and douching, respectively, 61%, 55%, 42% and 13% respectively. Significant difference was observed between the use and non-use of IUD in women with bacterial vaginosis infection

  2. DNA-A of a highly pathogenic Indian cassava mosaic virus isolated from Jatropha curcas causes symptoms in Nicotiana benthamiana.

    Science.gov (United States)

    Wang, Gang; Sun, Yanwei; Xu, Ruirui; Qu, Jing; Tee, Chuansia; Jiang, Xiyuan; Ye, Jian

    2014-04-01

    Jatropha curcas mosaic disease (JcMD) is a newly emerging disease that has been reported in Africa and India. Here, we report the complete nucleotide sequence of a new Indian cassava mosaic virus isolate (ICMV-SG) from Singapore. Infection of ICMV-SG showed more severe JcMD in Jatropha curcas and Nicotiana benthamiana than the other ICMV isolates reported previously, though ICMV-SG shares high sequence identity with the other ICMV isolates. Agroinfectious DNA-A alone sufficiently induced systemic symptoms in N. benthamiana, but not in J. curcas. Results from agroinfection assays showed that systemic infection of ICMV-SG in J. curcas required both DNA-A and DNA-B components.

  3. Reliable genotyping of the koala (Phascolarctos cinereus) using DNA isolated from a single faecal pellet.

    Science.gov (United States)

    Wedrowicz, Faye; Karsa, Mawar; Mosse, Jennifer; Hogan, Fiona E

    2013-07-01

    The koala, an Australian icon, has been added to the threatened species list. Rationale for the listing includes proposed declines in population size, threats to populations (e.g. disease) and loss and fragmentation of habitat. There is now an urgent need to obtain accurate data to assess the status of koala populations in Australia, to ensure the long-term viability of this species. Advances in genetic techniques have enabled DNA analysis to study and inform the management of wild populations; however, sampling of individual koalas is difficult in tall, often remote, eucalypt forest. The collection of faecal pellets (scats) from the forest floor presents an opportunistic sampling strategy, where DNA can be collected without capturing or even sighting an individual. Obtaining DNA via noninvasive sampling can be used to rapidly sample a large proportion of a population; however, DNA from noninvasively collected samples is often degraded. Factors influencing DNA quality and quantity include environmental exposure, diet and methods of sample collection, storage and DNA isolation. Reduced DNA quality and quantity can introduce genotyping errors and provide inaccurate DNA profiles, reducing confidence in the ability of such data to inform management/conservation strategies. Here, we present a protocol that produces a reliable individual koala genotype from a single faecal pellet and highlight the importance of optimizing DNA isolation and analysis for the species of interest. This method could readily be adapted for genetic studies of mammals other than koalas, particularly those whose diet contains high proportions of volatile materials that are likely to induce DNA damage. © 2013 John Wiley & Sons Ltd.

  4. Mechanisms of bacterial DNA replication restart

    Science.gov (United States)

    Windgassen, Tricia A; Wessel, Sarah R; Bhattacharyya, Basudeb

    2018-01-01

    Abstract Multi-protein DNA replication complexes called replisomes perform the essential process of copying cellular genetic information prior to cell division. Under ideal conditions, replisomes dissociate only after the entire genome has been duplicated. However, DNA replication rarely occurs without interruptions that can dislodge replisomes from DNA. Such events produce incompletely replicated chromosomes that, if left unrepaired, prevent the segregation of full genomes to daughter cells. To mitigate this threat, cells have evolved ‘DNA replication restart’ pathways that have been best defined in bacteria. Replication restart requires recognition and remodeling of abandoned replication forks by DNA replication restart proteins followed by reloading of the replicative DNA helicase, which subsequently directs assembly of the remaining replisome subunits. This review summarizes our current understanding of the mechanisms underlying replication restart and the proteins that drive the process in Escherichia coli (PriA, PriB, PriC and DnaT). PMID:29202195

  5. Inhibitory Effect of Lactobacillus reuteri on Some Pathogenic Bacteria Isolated From Women With Bacterial Vaginosis

    Directory of Open Access Journals (Sweden)

    Eslami

    2014-08-01

    Full Text Available Background Considering the high prevalence of bacterial vaginosis and its association with urinary tract infection in women and treatment of gynecologic problems occur when a high recurrence of bacterial vaginosis is often treated with antibiotics. Objectives The purpose of this study was to investigate the inhibitory effect of Lactobacillus reuteri on pathogenic bacteria isolated from women with bacterial vaginosis. Materials and Methods Ninety-six samples were obtained from vaginal discharge of women with bacterial vaginosis by a gynecologist with a Dacron swab and put in sterile tubes containing TSB broth and Thioglycollate broth. Then were immediately sent to the laboratory in cold chain for further assessment. Afterward, culture was transferred on blood agar, EMB, Palcam and differential diagnosis environments. Then cultures were incubated for 24 hours at 37 °C. Lactobacillus reuteri strains were cultured in MRS environment and transferred to laboratory. After purification of pathogenic bacteria, Lactobacillus reuteri inhibitory effect on pathogenic bacteria was evaluated by minimum inhibitory concentration (MIC and antibiogram. Statistical analysis was performed using SPSS software v.16. Results The results of this study demonstrated the inhibitory effect of Lactobacillus reuteri on some pathogenic bacteria that cause bacterial, including Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus saprophyticus, Streptococcus agalactiae, Enterococcus, Listeria monocytogenes and E. coli. Microscopic examination of stained smears of most Lactobacillus and pathogenic bacteria showed reduced. The prevalence of abnormal vaginal discharge, history of drug use, contraceptive methods and douching were 61%, 55%, 42% and 13%, respectively. Significant difference was observed between the use and non-use of IUD in women with bacterial. Conclusions Our findings indicated the inhibitory effect of Lactobacillus reuteri on pathogenic bacteria that

  6. Looping and clustering model for the organization of protein-DNA complexes on the bacterial genome

    Science.gov (United States)

    Walter, Jean-Charles; Walliser, Nils-Ole; David, Gabriel; Dorignac, Jérôme; Geniet, Frédéric; Palmeri, John; Parmeggiani, Andrea; Wingreen, Ned S.; Broedersz, Chase P.

    2018-03-01

    The bacterial genome is organized by a variety of associated proteins inside a structure called the nucleoid. These proteins can form complexes on DNA that play a central role in various biological processes, including chromosome segregation. A prominent example is the large ParB-DNA complex, which forms an essential component of the segregation machinery in many bacteria. ChIP-Seq experiments show that ParB proteins localize around centromere-like parS sites on the DNA to which ParB binds specifically, and spreads from there over large sections of the chromosome. Recent theoretical and experimental studies suggest that DNA-bound ParB proteins can interact with each other to condense into a coherent 3D complex on the DNA. However, the structural organization of this protein-DNA complex remains unclear, and a predictive quantitative theory for the distribution of ParB proteins on DNA is lacking. Here, we propose the looping and clustering model, which employs a statistical physics approach to describe protein-DNA complexes. The looping and clustering model accounts for the extrusion of DNA loops from a cluster of interacting DNA-bound proteins that is organized around a single high-affinity binding site. Conceptually, the structure of the protein-DNA complex is determined by a competition between attractive protein interactions and loop closure entropy of this protein-DNA cluster on the one hand, and the positional entropy for placing loops within the cluster on the other. Indeed, we show that the protein interaction strength determines the ‘tightness’ of the loopy protein-DNA complex. Thus, our model provides a theoretical framework for quantitatively computing the binding profiles of ParB-like proteins around a cognate (parS) binding site.

  7. Uptake and expression of bacterial and cyanobacterial genes by isolated cucumber etioplasts

    Energy Technology Data Exchange (ETDEWEB)

    Daniell, H.; McFadden, B.A.

    1987-09-01

    The uptake and expression by plastids isolated from dark-grown cucumber cotyledons (etioplasts) of two pUC derivatives, pCS75 and pUC9-CM, respectively carrying genes for the large and small subunits of ribulose bisphosphate carboxylase/oxygenase of Anacystis nidulans or chloramphenicol acetyltransferase, is reported. Untreated etioplasts take up only 3% as much DNA as that taken up by EDTA-washed etioplasts after 2 hr of incubation with nick-translated (/sup 32/P)-pCS75. The presence or absence of light does not affect DNA uptake, binding, or breakdown by etioplasts. Calcium or magnesium ions inhibit DNA uptake by 86% but enhance binding and breakdown of donor DNA by EDTA-treated etioplasts. Uncouplers that abolish membrane potential, transmembrane proton gradient, or both do not affect DNA uptake, binding, or breakdown by etioplasts. However, both DNA uptake and binding are severely inhibited by ATP. After the incubation of EDTA-treated etioplasts with pCS75, immunoprecipitation using antiserum to the small subunit of ribulose bisphosphate carboxylase/oxygenase from A. nidulans reveals the synthesis of small subunits. Treatment of etioplasts with 10 mM EDTA shows a 10-min duration to be optimal for the expression of chloramphenicol acetyltransferase encoded by pUC9-CM. A progressive increase in the expression of this enzyme is observed with an increase in the concentration of pUC9-CM in the DNA uptake medium. The plasmid-dependent incorporation of (/sup 35/S) methionine by EDTA-treated organelles declines markedly during cotyledon greening in vivo.

  8. Frequency of β-lactamase enzyme and antibiogram pattern in bacterial flora isolated from staffs hands

    Directory of Open Access Journals (Sweden)

    Shilla Jalalpoor

    2011-12-01

    Full Text Available Background: β-lactamase is an enzyme that can inactivate β–Lactam family antibiotics. High prevalence of β-lactamase producer bacteria on the staff hands, due to antibiotic resistance and nosocomial infection in hospitalized patients. The objective of this study was to assess the frequency of β-lactamase positive bacteria and antibiogram pattern in bacterial flora isolated from staff hands of the Al-Zahra hospital in Isfahan.Materials and Method: This laboratory research was performed during of 2005-2007 in Al-Zahra hospital in Isfahan. According to statistical formula, we randomly selected 80 samples from staff hands. Staff hand samples collected with finger print method. Bacterial identification was performed with microbiological methods and β–lactamase production was performed with Acidometric method and antibiogram pattern was performed with Kirby Bauer method.Results: According to the acidometric test results of 80 isolated staff hands, 61.85% of strains produce β–lactamase. Staphylococcus spp., Bacillus spp. and Enterobacteriaceae were the most important producers respectively (70.83%, 64.72% and 50%. According to antibiogram test results, penicillin and vancomycin had the highest and lowest resistance. Conclusion: High frequency of β–lactamase in bacterial survey represents colonization of bacteria in staff hands; may be due to facility transmission β–lactamase plasmid genes in bacteria. We suggest better hand washing in hospitals and prescription of β–lactame antibiotics was based only on antibiogram results

  9. Use of scintillometric quantitation of unscheduled DNA synthesis in isolated rat hepatocytes for the screening of genotoxic agents

    International Nuclear Information System (INIS)

    Hsia, M.T.

    1987-01-01

    The induction of unscheduled DNA synthesis has been considered as a suitable endpoint for the screening of genotoxic agents. Experimentally, unscheduled DNA synthesis is most frequently measured by autoradiography. The purpose of this report was to examine the usefulness of the liquid scintillation counting technique in measuring unscheduled DNA synthesis response in isolated rat hepatocytes. The various liquid scintillation counting-based unscheduled DNA synthesis assay procedures were examined according to the following groupings: (1) procedures based on the acid precipitation of cellular macromolecules, (2) procedures based on isopycnic gradient centrifugation of solubilized cells, (3) procedures based on nuclei isolation in conjunction with other DNA purification methods, and (4) procedures based on the selective retention of hepatocellular DNA. Limited cases in which test chemicals gave positive unscheduled DNA synthesis response in liquid scintillation counting-based assays and negative unscheduled DNA synthesis response in autoradiography-based assays are presented. It is concluded that liquid scintillation counting-based unscheduled DNA synthesis assays represent an appropriate system for inclusion in carcinogenicity and mutagenicity testing programs

  10. The T4 Phage DNA Mimic Protein Arn Inhibits the DNA Binding Activity of the Bacterial Histone-like Protein H-NS*

    Science.gov (United States)

    Ho, Chun-Han; Wang, Hao-Ching; Ko, Tzu-Ping; Chang, Yuan-Chih; Wang, Andrew H.-J.

    2014-01-01

    The T4 phage protein Arn (Anti restriction nuclease) was identified as an inhibitor of the restriction enzyme McrBC. However, until now its molecular mechanism remained unclear. In the present study we used structural approaches to investigate biological properties of Arn. A structural analysis of Arn revealed that its shape and negative charge distribution are similar to dsDNA, suggesting that this protein could act as a DNA mimic. In a subsequent proteomic analysis, we found that the bacterial histone-like protein H-NS interacts with Arn, implying a new function. An electrophoretic mobility shift assay showed that Arn prevents H-NS from binding to the Escherichia coli hns and T4 p8.1 promoters. In vitro gene expression and electron microscopy analyses also indicated that Arn counteracts the gene-silencing effect of H-NS on a reporter gene. Because McrBC and H-NS both participate in the host defense system, our findings suggest that T4 Arn might knock down these mechanisms using its DNA mimicking properties. PMID:25118281

  11. Analysis of bacterial flora associated with peri-implantitis using obligate anaerobic culture technique and 16S rDNA gene sequence.

    Science.gov (United States)

    Tamura, Naoki; Ochi, Morio; Miyakawa, Hiroshi; Nakazawa, Futoshi

    2013-01-01

    To analyze and characterize the predominant bacterial flora associated with peri-implantitis by using culture techniques under obligate anaerobic conditions and 16S rDNA gene sequences. Subgingival bacterial specimens were taken from 30 patients: control (n = 15), consisting of patients with only healthy implants; and test (n = 15), consisting of patients with peri-implantitis. In both groups, subgingival bacterial specimens were taken from the deepest sites. An anaerobic glove box system was used to cultivate bacterial strains. The bacterial strains were identified by 16S rDNA genebased polymerase chain reaction and comparison of the gene sequences. Peri-implantitis sites had approximately 10-fold higher mean colony forming units (per milliliter) than healthy implant sites. A total of 69 different bacterial species were identified in the peri-implantitis sites and 53 in the healthy implant sites. The predominant bacterial species in the peri-implantitis sites were Eubacterium nodatum, E. brachy, E. saphenum, Filifactor alocis, Slackia exigua, Parascardovia denticolens, Prevotella intermedia, Fusobacterium nucleatum, Porphyromonas gingivalis, Centipeda periodontii, and Parvimonas micra. The predominant bacteria in healthy implant sites apart from Streptococcus were Pseudoramibacter alactolyticus, Veillonella species, Actinomyces israelii, Actinomyces species, Propionibacterium acnes, and Parvimonas micra. These results suggest that the environment in the depths of the sulcus showing peri-implantitis is well suited for growth of obligate anaerobic bacteria. The present study demonstrated that the sulcus around oral implants with peri-implantitis harbors high levels of asaccharolytic anaerobic gram-positive rods (AAGPRs) such as E. nodatum, E. brachy, E. saphenum, Filifactor alocis, Slackia exigua, and gram-negative anaerobic rods, suggesting that conventional periodontopathic bacteria are not the only periodontal pathogens active in peri-implantitis, and that AAGPRs

  12. Degradation and depolymerization of plastic waste by local bacterial isolates and bubble column reactor

    Science.gov (United States)

    Hussein, Amal A.; Alzuhairi, Mohammed; Aljanabi, Noor H.

    2018-05-01

    Accumulation of plastics, especially Polyethylene terephthalate (PET), is an ever increasing ecological threat due to its excessive usage in everyday human life. Nowadays, there are many methods to get rid of plastic wastes including burning, recycling and burying. However, these methods are not very active since their long period, anaerobic conditions that increase the rate of toxic materials released into the environment. This work aims to study the biological degradation of PET microorganism isolated from soil sample. Thirty eight (38) bacterial isolates were isolated from ten soil and plastic waste sample collected from four different waste disposal sites in Baghdad city during different periods between December 2016 and March 2017. Isolation was performed using enrichment culture method (flasks method) by culturing the soil samples in flasks with MSM medium where there is no carbon source only PET. Results showed that Al-Za'farania sample gave a higher number of isolates (13 isolates), while other samples gave less number of isolates. Screening was performed depending on their ability to grow in liquid MSM which contains PET powder and pieces and change the color of the PET-emulsified liquid medium as well as their ability to form the clear zone on PET-MSM agar. The results showed that NH-D-1 isolate has the higher ability to degrade DPET and PET pieces. According to morphological, biochemical characterization and Vitek-2 technique, the most active isolate was identified as Acinetobacter baumannii.

  13. Isolation and identification of a bacterium from marine shrimp digestive tract: A new degrader of starch and protein

    Science.gov (United States)

    Li, Jiqiu; Tan, Beiping; Mai, Kangsen

    2011-09-01

    It is a practical approach to select candidate probiotic bacterial stains on the basis of their special traits. Production of digestive enzyme was used as a trait to select a candidate probiotic bacterial strain in this study. In order to select a bacterium with the ability to degrade both starch and protein, an ideal bacterial strain STE was isolated from marine shrimp ( Litopenaeus vannamei) intestines by using multiple selective media. The selected isolate STE was identified on the basis of its morphological, physiological, and biochemical characteristics as well as molecular analyses. Results of degradation experiments confirmed the ability of the selected isolate to degrade both starch and casein. The isolate STE was aerobic, Gram-negative, rod-shaped, motile and non-spore-forming, and had catalase and oxidase activities but no glucose fermentation activity. Among the tested carbon/nitrogen sources, only Tween40, alanyl-glycine, aspartyl-glycine, and glycyl-l-glutamic acid were utilized by the isolate STE. Results of homology comparison analyses of the 16S rDNA sequences showed that the isolate STE had a high similarity to several Pseudoalteromonas species and, in the phylogenetic tree, grouped with P. ruthenica with maximum bootstrap support (100%). In conclusion, the isolate STE was characterized as a novel strain belonging to the genus Pseudoalteromonas. This study provides a further example of a probiotic bacterial strain with specific characteristics isolated from the host gastrointestinal tract.

  14. Imipenem-resistant Gram-negative bacterial isolates carried by persons upon medical examination in Korea.

    Science.gov (United States)

    Kim, So Yeon; Shin, Sang Yop; Rhee, Ji-Young; Ko, Kwan Soo

    2017-08-01

    Carbapenem-resistant Gram-negative bacteria (CR-GNB) have emerged and disseminated worldwide, become a great concern worldwide including Korea. The prevalence of fecal carriage of imipenem-resistant Gram-negative bacteria (IR-GNB) in persons in Korea was investigated. Stool samples were collected from 300 persons upon medical examination. Samples were screened for IR-GNB by using MacConkey agar with 2 μl/ml imipenem. Species were identified by 16S rRNA gene sequence analysis, and antimicrobial susceptibility was determined by the broth microdilution method. In total, 82 IR-GNB bacterial isolates were obtained from 79 (26.3%) out of 300 healthy persons. Multilocus sequence typing analysis showed very high diversity among IR P. aeruginosa, S. maltophilia, and E. cloacae isolates, and pulsed-field gel electrophoresis revealed five main pulsotypes of IR P. mirabilis. As for the presence of metallo-β-lactamases (MBLs), only one IMP-25-producing S. marcescens isolate was identified. Although only one carbapenemase-producing isolate was identified, the high colonization rates with IR-GNB isolates in this study is notable because carriers may be a reservoir for the dissemination of resistant pathogens within the community as well as in health care institutions.

  15. Isolation and identification of bacterial populations of zoonotic importance from captive non-venomous snakes in Malaysia.

    Science.gov (United States)

    Abba, Yusuf; Ilyasu, Yusuf Maina; Noordin, Mustapha Mohamed

    2017-07-01

    Captivity of non-venomous snakes such as python and boa are common in zoos, aquariums and as pets in households. Poor captivity conditions expose these reptiles to numerous pathogens which may result in disease conditions. The purpose of this study was to investigate the common bacteria isolated from necropsied captive snakes in Malaysia over a five year period. A total of 27 snake carcasses presented for necropsy at the Universiti Putra Malaysia (UPM) were used in this survey. Samples were aseptically obtained at necropsy from different organs/tissues (lung, liver, heart, kindey, oesophagus, lymph node, stomach, spinal cord, spleen, intestine) and cultured onto 5% blood and McConkey agar, respectively. Gram staining, morphological evaluation and biochemical test such as oxidase, catalase and coagulase were used to tentatively identify the presumptive bacterial isolates. Pythons had the highest number of cases (81.3%) followed by anaconda (14.8%) and boa (3.7%). Mixed infection accounted for 81.5% in all snakes and was highest in pythons (63%). However, single infection was only observed in pythons (18.5%). A total of 82.7%, 95.4% and 100% of the bacterial isolates from python, anaconda and boa, respectively were gram negative. Aeromonas spp was the most frequently isolated bacteria in pythons and anaconda with incidences of 25 (18%) and 8 (36.6%) with no difference (p > 0.05) in incidence, respectively, while Salmonella spp was the most frequently isolated in boa and significantly higher (p snakes have public health importance and have been incriminated in human infections worldwide. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Isolation and characterization of Ornithobacterium rhinotracheale in the commercial turkey, quail flocks and domestic pigeons by bacteriological and molecular methods

    Directory of Open Access Journals (Sweden)

    Banani, M.

    2011-12-01

    Full Text Available Ornithobacterium rhinotracheale (ORT is a respiratory pathogen which has been isolated throughout the world from numerous bird species. The present study was designed to isolate and characterize the ORT from domestic turkeys, quails and pigeons. For this purpose, 250 samples from each bird species (turkey, quail and pigeon with or without respiratory signs were tested by taking of tracheal swabs. In addition, respiratory tissue samples (tracheal and lung, from 250 slaughtered turkeys, 50 slaughtered quails and 100dead pigeons were also subjected to culture for ORT as tracheal swabs. Respiratory tissues were also tested for bacterial DNA by using polymerase chain reaction (PCR. In general, 30 isolates including 4 isolates from turkeys, 3 isolates from quails and 23 isolates from pigeons were identified as ORT by bacteriologicalmethod and then confirmed by PCR. Bacterial DNA was detected in 20%, 50% and 35% of respiratory tissues in turkeys, quails and pigeons respectively. Five ORT isolates from pigeon and all four isolates from turkey showed smaller colony size, while other isolates had larger colonies when cultured in blood agar. Fifty percent of the isolates with larger colony but none of the isolates with small colony size could agglutinate red blood cells (RBCs. All of the isolates were sensitive to danofloxacin and chloramphenicolwhile more than 90% of pigeon isolates were resistant to ampicillin. All of turkey and quail and 30% of pigeon isolates were resistant to tetracycline. Our ORT isolates showed high identity (98%- 100% insequence of 16S rRNA gene to related data in GeneBank.

  17. Isolation/separation of plasmid DNA using hemoglobin modified magnetic nanocomposites as solid-phase adsorbent.

    Science.gov (United States)

    Chen, Xu-Wei; Mao, Quan-Xing; Liu, Jia-Wei; Wang, Jian-Hua

    2012-10-15

    Hemoglobin (Hb) modified magnetic nanocomposites are prepared by immobilization of Hb onto the surface of amino-functionalized Fe(3)O(4)@SiO(2) magnetic nanoparticles via covalent bonding with glutaraldehyde as cross-linker. The obtained nanocomposites are characterized with FT-IR, SEM, XRD and surface charge analysis. A direct solid-phase extraction procedure for the isolation/separation of plasmid DNA using this nanocomposite as a novel adsorbent is thus developed. Some important experimental parameters governing the sorption efficiency, i.e., the pH of sample solution and the ionic strength, are investigated. The Hb modified magnetic nanocomposites provide a sorption capacity of 27.86 mg g(-1) for DNA. By using 2.0mg of the nanocomposites as sorption medium and a suitable acidity of pH 6.1, a sorption efficiency of 93% is achieved for 25 μg mL(-1) of DNA in 1.0 mL of sample solution. Afterwards, the absorbed DNA could be readily recovered by using 1.0 mL of Tris-HCl buffer (pH 8.9, 0.01 mol L(-1)), giving rise to a recovery of ca. 68.3%. The present solid-phased extraction protocol is applied for the isolation of plasmid DNA from Escherichia coli culture, resulting in comparable yield and purity of plasmid DNA with respect to those obtained by using commercial kits. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Isolation, screening and molecular identification of novel bacterial strain removing methylene blue from water solutions

    Science.gov (United States)

    Kilany, Mona

    2017-11-01

    The potentially deleterious effects of methylene blue (MB) on human health drove the interest in its removal promptly. Bioremediation is an effective and eco friendly for removing MB. Soil bacteria were isolated and examined for their potential to remove MB. The most potent bacterial candidate was characterized and identified using 16S rRNA sequence technique. The evolutionary history of the isolate was conducted by maximum likelihood method. Some physiochemical parameters were optimized for maximum decolorization. Decolorization mechanism and microbial toxicity study of MB (100 mg/l) and by-products were investigated. Participation of heat killed bacteria in color adsorption have been investigated too. The bacterial isolate was identified as Stenotrophomonas maltophilia strain Kilany_MB 16S ribosomal RNA gene with 99% sequence similarity. The sequence was submitted to NCBI (Accession number = KU533726). Phylogeny depicted the phylogenetic relationships between 16S ribosomal RNA gene, partial sequence (1442 bp), of the isolated strain and other strains related to Stenotrophomonas maltophilia in the GenBank database. The optimal conditions were investigated to be pH 5 at 30 °C, after 24 h using 5 mg/l MB showing optimum decolorization percentage (61.3%). Microbial toxicity study demonstrated relative reduction in the toxicity of MB decolorized products on test bacteria. Mechanism of color removal was proved by both biosorption and biodegradation, where heat-killed and live cells showed 43 and 52% of decolorization, respectively, as a maximum value after 24-h incubation. It was demonstrated that the mechanism of color removal is by adsorption. Therefore, good performance of S maltophilia in MB color removal reinforces the exploitation of these bacteria in environmental clean-up and restoration of the ecosystem.

  19. Ionome changes in Xylella fastidiosa-infected Nicotiana tabacum correlate with virulence and discriminate between subspecies of bacterial isolates.

    Science.gov (United States)

    Oliver, J E; Sefick, S A; Parker, J K; Arnold, T; Cobine, P A; De La Fuente, L

    2014-10-01

    Characterization of ionomes has been used to uncover the basis of nutrient utilization and environmental adaptation of plants. Here, ionomic profiles were used to understand the phenotypic response of a plant to infection by genetically diverse isolates of Xylella fastidiosa, a gram-negative, xylem-limited bacterial plant pathogen. In this study, X. fastidiosa isolates were used to infect a common model host (Nicotiana tabacum 'SR1'), and leaf and sap concentrations of eleven elements together with plant colonization and symptoms were assessed. Multivariate statistical analysis revealed that changes in the ionome were significantly correlated with symptom severity and bacterial populations in host petioles. Moreover, plant ionome modification by infection could be used to differentiate the X. fastidiosa subspecies with which the plant was infected. This report establishes host ionome modification as a phenotypic response to infection.

  20. Comparison of strategies for the isolation of PCR-compatible, genomic DNA from a municipal biogas plants.

    Science.gov (United States)

    Weiss, Agnes; Jérôme, Valérie; Freitag, Ruth

    2007-06-15

    The goal of the project was the extraction of PCR-compatible genomic DNA representative of the entire microbial community from municipal biogas plant samples (mash, bioreactor content, process water, liquid fertilizer). For the initial isolation of representative DNA from the respective lysates, methods were used that employed adsorption, extraction, or precipitation to specifically enrich the DNA. Since no dedicated method for biogas plant samples was available, preference was given to kits/methods suited to samples that resembled either the bioreactor feed, e.g. foodstuffs, or those intended for environmental samples including wastewater. None of the methods succeeded in preparing DNA that was directly PCR-compatible. Instead the DNA was found to still contain considerable amounts of difficult-to-remove enzyme inhibitors (presumably humic acids) that hindered the PCR reaction. Based on the isolation method that gave the highest yield/purity for all sample types, subsequent purification was attempted by agarose gel electrophoresis followed by electroelution, spermine precipitation, or dialysis through nitrocellulose membrane. A combination of phenol/chloroform extraction followed by purification via dialysis constituted the most efficient sample treatment. When such DNA preparations were diluted 1:100 they did no longer inhibit PCR reactions, while they still contained sufficient genomic DNA to allow specific amplification of specific target sequences.

  1. The Isolation of DNA by Polycharged Magnetic Particles: An Analysis of the Interaction by Zeta Potential and Particle Size.

    Science.gov (United States)

    Haddad, Yazan; Xhaxhiu, Kledi; Kopel, Pavel; Hynek, David; Zitka, Ondrej; Adam, Vojtech

    2016-04-20

    Magnetic isolation of biological targets is in major demand in the biotechnology industry today. This study considers the interaction of four surface-modified magnetic micro- and nanoparticles with selected DNA fragments. Different surface modifications of nanomaghemite precursors were investigated: MAN37 (silica-coated), MAN127 (polyvinylpyrrolidone-coated), MAN158 (phosphate-coated), and MAN164 (tripolyphosphate-coated). All particles were positive polycharged agglomerated monodispersed systems. Mean particle sizes were 0.48, 2.97, 2.93, and 3.67 μm for MAN37, MAN127, MAN164, and MAN158, respectively. DNA fragments exhibited negative zeta potential of -0.22 mV under binding conditions (high ionic strength, low pH, and dehydration). A decrease in zeta potential of particles upon exposure to DNA was observed with exception of MAN158 particles. The measured particle size of MAN164 particles increased by nearly twofold upon exposure to DNA. Quantitative PCR isolation of DNA with a high retrieval rate was observed by magnetic particles MAN127 and MAN164. Interaction between polycharged magnetic particles and DNA is mediated by various binding mechanisms such as hydrophobic and electrostatic interactions. Future development of DNA isolation technology requires an understanding of the physical and biochemical conditions of this process.

  2. A Polymerase Chain Reaction-Based Method for Isolating Clones from a Complimentary DNA Library in Sheep

    Science.gov (United States)

    Friis, Thor Einar; Stephenson, Sally; Xiao, Yin; Whitehead, Jon

    2014-01-01

    The sheep (Ovis aries) is favored by many musculoskeletal tissue engineering groups as a large animal model because of its docile temperament and ease of husbandry. The size and weight of sheep are comparable to humans, which allows for the use of implants and fixation devices used in human clinical practice. The construction of a complimentary DNA (cDNA) library can capture the expression of genes in both a tissue- and time-specific manner. cDNA libraries have been a consistent source of gene discovery ever since the technology became commonplace more than three decades ago. Here, we describe the construction of a cDNA library using cells derived from sheep bones based on the pBluescript cDNA kit. Thirty clones were picked at random and sequenced. This led to the identification of a novel gene, C12orf29, which our initial experiments indicate is involved in skeletal biology. We also describe a polymerase chain reaction-based cDNA clone isolation method that allows the isolation of genes of interest from a cDNA library pool. The techniques outlined here can be applied in-house by smaller tissue engineering groups to generate tools for biomolecular research for large preclinical animal studies and highlights the power of standard cDNA library protocols to uncover novel genes. PMID:24447069

  3. Bacterial Population Genetics in a Forensic Context

    Energy Technology Data Exchange (ETDEWEB)

    Velsko, S P

    2009-11-02

    This report addresses the recent Department of Homeland Security (DHS) call for a Phase I study to (1) assess gaps in the forensically relevant knowledge about the population genetics of eight bacterial agents of concern, (2) formulate a technical roadmap to address those gaps, and (3) identify new bioinformatics tools that would be necessary to analyze and interpret population genetic data in a forensic context. The eight organisms that were studied are B. anthracis, Y. pestis, F. tularensis, Brucella spp., E. coli O157/H7, Burkholderia mallei, Burkholderia pseudomallei, and C. botulinum. Our study focused on the use of bacterial population genetics by forensic investigators to test hypotheses about the possible provenance of an agent that was used in a crime or act of terrorism. Just as human population genetics underpins the calculations of match probabilities for human DNA evidence, bacterial population genetics determines the level of support that microbial DNA evidence provides for or against certain well-defined hypotheses about the origins of an infecting strain. Our key findings are: (1) Bacterial population genetics is critical for answering certain types of questions in a probabilistic manner, akin (but not identical) to 'match probabilities' in DNA forensics. (2) A basic theoretical framework for calculating likelihood ratios or posterior probabilities for forensic hypotheses based on microbial genetic comparisons has been formulated. This 'inference-on-networks' framework has deep but simple connections to the population genetics of mtDNA and Y-STRs in human DNA forensics. (3) The 'phylogeographic' approach to identifying microbial sources is not an adequate basis for understanding bacterial population genetics in a forensic context, and has limited utility, even for generating 'leads' with respect to strain origin. (4) A collection of genotyped isolates obtained opportunistically from international locations

  4. Comparison of Methods for Isolating High Quality DNA and RNA from an Oleaginous Fungus Cunninghamella bainieri Strain 2a1

    OpenAIRE

    Noor Adila, A. K.; Farah Diba, A. B.; Zamri, Z.; Wan Mohtar, W. Y.; Aidil, A. H.; Mahadi, N. M.; Murad, A. M. A.

    2007-01-01

    A number of protocols have been reported for efficient fungal DNA and RNA isolation. However, many of these methods are often designed for certain groups or morphological forms of fungi and, in some cases, are species dependent. In this report, we compared four published protocols for DNA isolation from a locally isolated oleaginous fungus, Cunninghamella bainieri strain 2a1. These protocols either involved the use of polyvinyl pyrrolidone (PVP), hexacetyltrimethylammonium bromide (CTAB) or w...

  5. Menadione-induced DNA fragmentation without 8-oxo-2'-deoxyguanosine formation in isolated rat hepatocytes

    DEFF Research Database (Denmark)

    Fischer-Nielsen, A; Corcoran, G B; Poulsen, H E

    1995-01-01

    Menadione (2-methyl-1,4-naphthoquinone) induces oxidative stress in cells causing perturbations in the cytoplasm as well as nicking of DNA. The mechanisms by which DNA damage occurs are still unclear, but a widely discussed issue is whether menadione-generated reactive oxygen species (ROS) directly...... damage DNA. In the present study, we measured the effect of menadione on formation of 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodG), an index of oxidative DNA base modifications, and on DNA fragmentation. Isolated hepatocytes from phenobarbital-pretreated rats were exposed to menadione, 25-400 micro......M, for 15, 90 or 180 min with or without prior depletion of reduced glutathione (GSH) by diethyl maleate. Menadione caused profound GSH depletion and internucleosomal DNA fragmentation, which was demonstrated by a prominent fragmentation ladder on agarose gel electrophoresis. We found no oxidative...

  6. Bacterial community profiling of milk samples as a means to understand culture-negative bovine clinical mastitis.

    Science.gov (United States)

    Kuehn, Joanna S; Gorden, Patrick J; Munro, Daniel; Rong, Ruichen; Dong, Qunfeng; Plummer, Paul J; Wang, Chong; Phillips, Gregory J

    2013-01-01

    Inflammation and infection of bovine mammary glands, commonly known as mastitis, imposes significant losses each year in the dairy industry worldwide. While several different bacterial species have been identified as causative agents of mastitis, many clinical mastitis cases remain culture negative, even after enrichment for bacterial growth. To understand the basis for this increasingly common phenomenon, the composition of bacterial communities from milk samples was analyzed using culture independent pyrosequencing of amplicons of 16S ribosomal RNA genes (16S rDNA). Comparisons were made of the microbial community composition of culture negative milk samples from mastitic quarters with that of non-mastitic quarters from the same animals. Genomic DNA from culture-negative clinical and healthy quarter sample pairs was isolated, and amplicon libraries were prepared using indexed primers specific to the V1-V2 region of bacterial 16S rRNA genes and sequenced using the Roche 454 GS FLX with titanium chemistry. Evaluation of the taxonomic composition of these samples revealed significant differences in the microbiota in milk from mastitic and healthy quarters. Statistical analysis identified seven bacterial genera that may be mainly responsible for the observed microbial community differences between mastitic and healthy quarters. Collectively, these results provide evidence that cases of culture negative mastitis can be associated with bacterial species that may be present below culture detection thresholds used here. The application of culture-independent bacterial community profiling represents a powerful approach to understand long-standing questions in animal health and disease.

  7. Quorum Sensing Activity of Mesorhizobium sp. F7 Isolated from Potable Water

    Directory of Open Access Journals (Sweden)

    Pei-Ling Yong

    2014-01-01

    Full Text Available We isolated a bacterial isolate (F7 from potable water. The strain was identified as Mesorhizobium sp. by 16S rDNA gene phylogenetic analysis and screened for N-acyl homoserine lactone (AHL production by an AHL biosensor. The AHL profile of the isolate was further analyzed using high resolution triple quadrupole liquid chromatography mass spectrometry (LC/MS which confirmed the production of multiple AHLs, namely, N-3-oxo-octanoyl-L-homoserine lactone (3-oxo-C8-HSL and N-3-oxo-decanoyl-L-homoserine lactone (3-oxo-C10-HSL. These findings will open the perspective to study the function of these AHLs in plant-microbe interactions.

  8. A simple and rapid method for isolation of high quality genomic DNA from fruit trees and conifers using PVP.

    Science.gov (United States)

    Kim, C S; Lee, C H; Shin, J S; Chung, Y S; Hyung, N I

    1997-03-01

    Because DNA degradation is mediated by secondary plant products such as phenolic terpenoids, the isolation of high quality DNA from plants containing a high content of polyphenolics has been a difficult problem. We demonstrate an easy extraction process by modifying several existing ones. Using this process we have found it possible to isolate DNAs from four fruit trees, grape (Vitis spp.), apple (Malus spp.), pear (Pyrus spp.) and persimmon (Diospyros spp.) and four species of conifer, Pinus densiflora, Pinus koraiensis,Taxus cuspidata and Juniperus chinensis within a few hours. Compared with the existing method, we have isolated high quality intact DNAs (260/280 = 1.8-2.0) routinely yielding 250-500 ng/microl (total 7.5-15 microg DNA from four to five tissue discs).

  9. Ocular surface infections in northeastern state of malaysia: a 10-year review of bacterial isolates and antimicrobial susceptibility.

    Science.gov (United States)

    Rahman, Zaidah A; Harun, Azian; Hasan, Habsah; Mohamed, Zeehaida; Noor, Siti S Md; Deris, Zakuan Z; Ismail, Nabilah; Hassan, Asma S; Ahmad, Fadzhilah; Yaakub, Azhany

    2013-09-01

    Ocular surface infections that include infections of conjunctiva, adnexa, and cornea have the potential risk of causing blindness within a given population. Empirical antibiotic therapy is usually initiated based on epidemiological data of common causative agents. Thus, the aims of this study were to determine the bacterial agents and their susceptibility patterns of isolates from ocular surface specimens in our hospital. This is a retrospective analysis and records of bacterial isolates from ocular surface specimens in Hospital Universiti Sains Malaysia from January 2001 to December 2010 were examined. Specimens were processed according to standard laboratory procedures. Antimicrobial susceptibility testing was conducted based on Clinical and Laboratory Standards Institute recommendations. Only single, nonrepetitive isolates were included in the analysis. A total of 1,267 isolates were obtained during the study period, which comprised Staphylococcus aureus (n = 299, 23.6%), Pseudomonas aeruginosa (n = 194, 15.3%), Streptococcus pneumoniae (n = 108, 8.5%), Haemophilus influenzae (n = 100, 7.9%), Haemophilus parainfluenzae (n = 84, 6.6%), and Enterobacter spp. (n = 81, 6.4%). Fungi contributed to 4.4% of the total isolates. The antimicrobial susceptibility testing demonstrated that gram-positive bacteria were generally resistant to gentamicin (19%-57%), whereas gram-negative bacteria were resistant to chloramphenicol (27%-58%). Based on the above results, knowledge of the initial Gram stain findings is imperative before the commencement of empirical antibiotic therapy. Therefore, a simple Gram staining for all eye specimens is highly recommended.

  10. Endophytic Colonization and In Planta Nitrogen Fixation by a Herbaspirillum sp. Isolated from Wild Rice Species

    Science.gov (United States)

    Elbeltagy, Adel; Nishioka, Kiyo; Sato, Tadashi; Suzuki, Hisa; Ye, Bin; Hamada, Toru; Isawa, Tsuyoshi; Mitsui, Hisayuki; Minamisawa, Kiwamu

    2001-01-01

    Nitrogen-fixing bacteria were isolated from the stems of wild and cultivated rice on a modified Rennie medium. Based on 16S ribosomal DNA (rDNA) sequences, the diazotrophic isolates were phylogenetically close to four genera: Herbaspirillum, Ideonella, Enterobacter, and Azospirillum. Phenotypic properties and signature sequences of 16S rDNA indicated that three isolates (B65, B501, and B512) belong to the Herbaspirillum genus. To examine whether Herbaspirillum sp. strain B501 isolated from wild rice, Oryza officinalis, endophytically colonizes rice plants, the gfp gene encoding green fluorescent protein (GFP) was introduced into the bacteria. Observations by fluorescence stereomicroscopy showed that the GFP-tagged bacteria colonized shoots and seeds of aseptically grown seedlings of the original wild rice after inoculation of the seeds. Conversely, for cultivated rice Oryza sativa, no GFP fluorescence was observed for shoots and only weak signals were observed for seeds. Observations by fluorescence and electron microscopy revealed that Herbaspirillum sp. strain B501 colonized mainly intercellular spaces in the leaves of wild rice. Colony counts of surface-sterilized rice seedlings inoculated with the GFP-tagged bacteria indicated significantly more bacterial populations inside the original wild rice than in cultivated rice varieties. Moreover, after bacterial inoculation, in planta nitrogen fixation in young seedlings of wild rice, O. officinalis, was detected by the acetylene reduction and 15N2 gas incorporation assays. Therefore, we conclude that Herbaspirillum sp. strain B501 is a diazotrophic endophyte compatible with wild rice, particularly O. officinalis. PMID:11679357

  11. Filtration Isolation of Nucleic Acids: A Simple and Rapid DNA Extraction Method.

    Science.gov (United States)

    McFall, Sally M; Neto, Mário F; Reed, Jennifer L; Wagner, Robin L

    2016-08-06

    FINA, filtration isolation of nucleic acids, is a novel extraction method which utilizes vertical filtration via a separation membrane and absorbent pad to extract cellular DNA from whole blood in less than 2 min. The blood specimen is treated with detergent, mixed briefly and applied by pipet to the separation membrane. The lysate wicks into the blotting pad due to capillary action, capturing the genomic DNA on the surface of the separation membrane. The extracted DNA is retained on the membrane during a simple wash step wherein PCR inhibitors are wicked into the absorbent blotting pad. The membrane containing the entrapped DNA is then added to the PCR reaction without further purification. This simple method does not require laboratory equipment and can be easily implemented with inexpensive laboratory supplies. Here we describe a protocol for highly sensitive detection and quantitation of HIV-1 proviral DNA from 100 µl whole blood as a model for early infant diagnosis of HIV that could readily be adapted to other genetic targets.

  12. Pattern of Bacterial Pathogens and Their Susceptibility Isolated from Surgical Site Infections at Selected Referral Hospitals, Addis Ababa, Ethiopia

    Directory of Open Access Journals (Sweden)

    Walelign Dessie

    2016-01-01

    Full Text Available Background. The emergence of multidrug resistant bacterial pathogens in hospitals is becoming a challenge for surgeons to treat hospital acquired infections. Objective. To determine bacterial pathogens and drug susceptibility isolated from surgical site infections at St. Paul Specialized Hospital Millennium Medical College and Yekatit 12 Referral Hospital Medical College, Addis Ababa, Ethiopia. Methods. A cross-sectional study was conducted between October 2013 and March 2014 on 107 surgical site infected patients. Wound specimens were collected using sterile cotton swab and processed as per standard operative procedures in appropriate culture media; and susceptibility testing was done using Kirby-Bauer disc diffusion technique. The data were analyzed by using SPSS version 20. Result. From a total of 107 swabs collected, 90 (84.1% were culture positive and 104 organisms were isolated. E. coli (24 (23.1% was the most common organism isolated followed by multidrug resistant Acinetobacter species (23 (22.1%. More than 58 (75% of the Gram negative isolates showed multiple antibiotic resistance (resistance ≥ 5 drugs. Pan-antibiotic resistance was noted among 8 (34.8% Acinetobacter species and 3 (12.5% E. coli. This calls for abstinence from antibiotic abuse. Conclusion. Gram negative bacteria were the most important isolates accounting for 76 (73.1%. Ampicillin, amoxicillin, penicillin, cephazoline, and tetracycline showed resistance while gentamicin and ciprofloxacin were relatively effective antimicrobials.

  13. Isolation and characterization of two novel ethanol-tolerant facultative-anaerobic thermophilic bacteria strains from waste compost.

    Science.gov (United States)

    Fong, Jiunn C N; Svenson, Charles J; Nakasugi, Kenlee; Leong, Caine T C; Bowman, John P; Chen, Betty; Glenn, Dianne R; Neilan, Brett A; Rogers, Peter L

    2006-10-01

    In a search for potential ethanologens, waste compost was screened for ethanol-tolerant thermophilic microorganisms. Two thermophilic bacterial strains, M5EXG and M10EXG, with tolerance of 5 and 10% (v/v) ethanol, respectively, were isolated. Both isolates are facultative anaerobic, non-spore forming, non-motile, catalase-positive, oxidase-negative, Gram-negative rods that are capable of utilizing a range of carbon sources including arabinose, galactose, mannose, glucose and xylose and produce low amounts of ethanol, acetate and lactate. Growth of both isolates was observed in fully defined minimal media within the temperature range 50-80 degrees C and pH 6.0-8.0. Phylogenetic analysis of the 16S rDNA sequences revealed that both isolates clustered with members of subgroup 5 of the genus Bacillus. G+C contents and DNA-DNA relatedness of M5EXG and M10EXG revealed that they are strains belonging to Geobacillus thermoglucosidasius. However, physiological and biochemical differences were evident when isolates M5EXG and M10EXG were compared with G. thermoglucosidasius type strain (DSM 2542(T)). The new thermophilic, ethanol-tolerant strains of G. thermoglucosidasius may be candidates for ethanol production at elevated temperatures.

  14. Detection of Ribosomal DNA Sequence Polymorphisms in the Protist Plasmodiophora brassicae for the Identification of Geographical Isolates

    Directory of Open Access Journals (Sweden)

    Rawnak Laila

    2017-01-01

    Full Text Available Clubroot is a soil-borne disease caused by the protist Plasmodiophora brassicae (P. brassicae. It is one of the most economically important diseases of Brassica rapa and other cruciferous crops as it can cause remarkable yield reductions. Understanding P. brassicae genetics, and developing efficient molecular markers, is essential for effective detection of harmful races of this pathogen. Samples from 11 Korean field populations of P. brassicae (geographic isolates, collected from nine different locations in South Korea, were used in this study. Genomic DNA was extracted from the clubroot-infected samples to sequence the ribosomal DNA. Primers and probes for P. brassicae were designed using a ribosomal DNA gene sequence from a Japanese strain available in GenBank (accession number AB526843; isolate NGY. The nuclear ribosomal DNA (rDNA sequence of P. brassicae, comprising 6932 base pairs (bp, was cloned and sequenced and found to include the small subunits (SSUs and a large subunit (LSU, internal transcribed spacers (ITS1 and ITS2, and a 5.8s. Sequence variation was observed in both the SSU and LSU. Four markers showed useful differences in high-resolution melting analysis to identify nucleotide polymorphisms including single- nucleotide polymorphisms (SNPs, oligonucleotide polymorphisms, and insertions/deletions (InDels. A combination of three markers was able to distinguish the geographical isolates into two groups.

  15. Comparison of DNA extraction protocols for microbial communities from soil treated with biochar

    Science.gov (United States)

    Leite, D.C.A.; Balieiro, F.C.; Pires, C.A.; Madari, B.E.; Rosado, A.S.; Coutinho, H.L.C.; Peixoto, R.S.

    2014-01-01

    Many studies have evaluated the effects of biochar application on soil structure and plant growth. However, there are very few studies describing the effect of biochar on native soil microbial communities. Microbial analysis of environmental samples requires accurate and reproducible methods for the extraction of DNA from samples. Because of the variety among microbial species and the strong adsorption of the phosphate backbone of the DNA molecule to biochar, extracting and purifying high quality microbial DNA from biochar-amended soil is not a trivial process and can be considerably more difficult than the extraction of DNA from other environmental samples. The aim of this study was to compare the relative efficacies of three commercial DNA extraction kits, the FastDNA® SPIN Kit for Soil (FD kit), the PowerSoil® DNA Isolation Kit (PS kit) and the ZR Soil Microbe DNA Kit Miniprep™ (ZR kit), for extracting microbial genomic DNA from sand treated with different types of biochar. The methods were evaluated by comparing the DNA yields and purity and by analysing the bacterial and fungal community profiles generated by PCR-DGGE. Our results showed that the PCR-DGGE profiles for bacterial and fungal communities were highly affected by the purity and yield of the different DNA extracts. Among the tested kits, the PS kit was the most efficient with respect to the amount and purity of recovered DNA and considering the complexity of the generated DGGE microbial fingerprint from the sand-biochar samples. PMID:24948928

  16. Bacterial infection increases risk of carcinogenesis by targeting mitochondria

    DEFF Research Database (Denmark)

    Strickertsson, Jesper A.B.; Desler, Claus; Rasmussen, Lene Juel

    2017-01-01

    pathways, and compares the impact of the bacterial alteration of mitochondrial function to that of cancer. Bacterial virulence factors have been demonstrated to induce mutations of mitochondrial DNA (mtDNA) and to modulate DNA repair pathways of the mitochondria. Furthermore, virulence factors can induce...... or impair the intrinsic apoptotic pathway. The effect of bacterial targeting of mitochondria is analogous to behavior of mitochondria in a wide array of tumours, and this strongly suggests that mitochondrial targeting of bacteria is a risk factor for carcinogenesis....

  17. Rehosting of Bacterial Chaperones for High-Quality Protein Production▿

    Science.gov (United States)

    Martínez-Alonso, Mónica; Toledo-Rubio, Verónica; Noad, Rob; Unzueta, Ugutz; Ferrer-Miralles, Neus; Roy, Polly; Villaverde, Antonio

    2009-01-01

    Coproduction of DnaK/DnaJ in Escherichia coli enhances solubility but promotes proteolytic degradation of their substrates, minimizing the yield of unstable polypeptides. Higher eukaryotes have orthologs of DnaK/DnaJ but lack the linked bacterial proteolytic system. By coexpression of DnaK and DnaJ in insect cells with inherently misfolding-prone recombinant proteins, we demonstrate simultaneous improvement of soluble protein yield and quality and proteolytic stability. Thus, undesired side effects of bacterial folding modulators can be avoided by appropriate rehosting in heterologous cell expression systems. PMID:19820142

  18. Identification and Characterization of Novel Biocontrol Bacterial

    Directory of Open Access Journals (Sweden)

    Young Cheol Kim

    2014-09-01

    Full Text Available Because bacterial isolates from only a few genera have been developed commercially as biopesticides, discovery and characterization of novel bacterial strains will be a key to market expansion. Our previous screen using plant bioassays identified 24 novel biocontrol isolates representing 12 different genera. In this study, we characterized the 3 isolates showing the best biocontrol activities. The isolates were Pantoea dispersa WCU35, Proteus myxofaciens WCU244, and Exiguobacterium acetylicum WCU292 based on 16S rRNA sequence analysis. The isolates showed differential production of extracellular enzymes, antimicrobial activity against various fungal or bacterial plant pathogens, and induced systemic resistance activity against tomato gray mold disease caused by Botrytis cinerea. E. acetylicum WCU292 lacked strong in vitro antimicrobial activity against plant pathogens, but induced systemic resistance against tomato gray mold disease. These results confirm that the trait of biological control is found in a wide variety of bacterial genera

  19. Monoterpene biosynthesis in lemon (Citrus limon) cDNA isolation and functional analysis of four monoterpene synthases

    NARCIS (Netherlands)

    Lücker, J.; Tamer, El M.K.; Schwab, W.; Verstappen, F.W.A.; Plas, van der L.H.W.; Bouwmeester, H.J.; Verhoeven, H.A.

    2002-01-01

    Citrus limon possesses a high content and large variety of monoterpenoids, especially in the glands of the fruit flavedo. The genes responsible for the production of these monoterpenes have never been isolated. By applying a random sequencing approach to a cDNA library from mRNA isolated from the

  20. Biodegradation of Maya crude oil fractions by bacterial strains and a defined mixed culture isolated from Cyperus laxus rhizosphere soil in a contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Ramirez, I. J.; Gutierrez-Rojas, M.; Favela-Torres, E. [Autonomous Metropolitan University (UAM)- Iztapalapa, Dept. of Biotechnology, Federal District (Mexico); Ramirez-Sada, H. [Autonomous Metropolitan University (UAM)-Xochimilco, Dept. of Biological Systems, Federal District (Mexico)

    2003-12-01

    Biodegradation of aliphatic, aromatic, and polar constituents of Maya crude oil by a set of isolated bacterial strains and a defined mixed culture made up with all isolated strains, was evaluated. The bacterial strains were obtained from the rhizosphere of Cyperus laxus, a native plant on a highly hydrocarbon-polluted site. Oxygen uptake rate was used to determine the culture transfer timing during the enrichment culture. Results showed that five of the isolated strains were able to degrade 50 per cent of the aliphatic fractions of Maya crude oil. With the defined mixed culture the level of biodegradation was 47 per cent for aliphatics and 6 per cent of the aromatic-polar mixture. When grown in the presence of total hydrocarbons, the defined mixed culture was able to degrade 40 per cent of the aliphatic fraction and 26 per cent of the aromatic fraction. By combining enrichment cultures with oxygen uptake rate to determine the culture transfer timing during the enrichment cultures allowed the isolation of bacterial strains that are able to degrade specific hydrocarbon fractions at high consumption rates. 28 refs., 4 tabs., 1 fig.

  1. Novel extraction strategy of ribosomal RNA and genomic DNA from cheese for PCR-based investigations.

    Science.gov (United States)

    Bonaïti, Catherine; Parayre, Sandrine; Irlinger, Françoise

    2006-03-15

    Cheese microorganisms, such as bacteria and fungi, constitute a complex ecosystem that plays a central role in cheeses ripening. The molecular study of cheese microbial diversity and activity is essential but the extraction of high quality nucleic acid may be problematic: the cheese samples are characterised by a strong buffering capacity which negatively influenced the yield of the extracted rRNA. The objective of this study is to develop an effective method for the direct and simultaneous isolation of yeast and bacterial ribosomal RNA and genomic DNA from the same cheese samples. DNA isolation was based on a protocol used for nucleic acids isolation from anaerobic digestor, without preliminary washing step with the combined use of the action of chaotropic agent (acid guanidinium thiocyanate), detergents (SDS, N-lauroylsarcosine), chelating agent (EDTA) and a mechanical method (bead beating system). The DNA purification was carried out by two washing steps of phenol-chloroform. RNA was isolated successfully after the second acid extraction step by recovering it from the phenolic phase of the first acid extraction. The novel method yielded pure preparation of undegraded RNA accessible for reverse transcription-PCR. The extraction protocol of genomic DNA and rRNA was applicable to complex ecosystem of different cheese matrices.

  2. Construction of bacterial artificial chromosome libraries for Zhikong Scallop Chlamys farreri

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yang; ZHANG Xiaojun; Chantel F.SCHEURING; ZHANG Hongbin; LI Fuhua; XIANG Jianhai

    2008-01-01

    Two Large-insert genomic bacterial artificial chromosome (BAC) libraries of Zhikong scallop Chlamys farreri were constructed to promote our genetic and genomic research.High-quality megabase-sized DNA was isolated from the adductor muscle of the scallop and partially digested by BamH I and Mbo I,respectively.The BamH I library consisted of 53760 clones while the Mbo I library consisted of 7680 clones.Approximately 96% of the clones in BamH I library contained nuclear DNA inserts in average size of 100 kb,providing a coverage of 5.3 haploid genome equivalents.Similarly,the Mbo I library with an average insert of 145 kb and no insert-empty clones,thus providing a genome coverage of 1.1 haploid genome equivalents.

  3. Disinfectant and antibiotic activities: a comparative analysis in Brazilian hospital bacterial isolates

    Directory of Open Access Journals (Sweden)

    Guimarães Márcia Aparecida

    2000-01-01

    Full Text Available Nosocomial infections are an important cause of morbidity and mortality all over the world. It has been shown that appropriate environmental hygienic and disinfection practices can be very helpful to hospital infection control. The purpose of this study was to evaluate the bactericidal activity of some disinfectants against antibiotic-susceptible and antibiotic-resistant hospital bacterial isolates. The susceptibility of 27 clinical isolates to disinfectants and antibiotics was determined by the Association of Official Analytical Chemist?s (AOAC Use-Dilution method and by the Kirby-Bauer method, respectively. All strains tested were susceptible to sodium hypochlorite, glutaraldehyde and to the association quaternary ammonium - formaldehyde - ethyl alcohol disinfectants. However, the susceptibility of strains to phenol and to one quaternary ammonium compound was variable. Among twenty-one antibiotic-multiresistant strains (methicillin-resistant staphylococci, Enterococcus spp, Pseudomonas aeruginosa, Klebsiella pneumoniae, Proteus mirabilis, Enterobacter cloacae, Serratia marcescens and Escherichia coli eleven (52% and eight (38% strains were resistant to the quaternary ammonium and phenol compounds, respectively. Among six isolates that demonstrated susceptibility to antibiotics (staphylococci, Enterococcus spp, P. mirabilis, E. cloacae and E. coli two strains (33% showed resistance to these disinfectants. The results demonstrated the lack of correlation between antibiotic-susceptibility and susceptibility to disinfectants in hospital strains.

  4. Immunity induced shortly after DNA vaccination of rainbow trout against rhabdoviruses protects against heterologous virus but not against bacterial pathogens

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lorenzen, Ellen; Einer-Jensen, Katja

    2002-01-01

    whereas no increased survival was found upon challenge with bacterial pathogens. Within two months after vaccination, the cross-protection disappeared while the specific immunity to homologous virus remained high. The early immunity induced by the DNA vaccines thus appeared to involve short-lived non......It was recently reported that DNA vaccination of rainbow trout fingerlings against viral hemorrhagic septicaemia virus (VHSV) induced protection within 8 days after intramuscular injection of plasmid DNA. In order to analyse the specificity of this early immunity, fish were vaccinated with plasmid...... DNA encoding the VHSV or the infectious haematopoietic necrosis virus (IHNV) glycoprotein genes and later challenged with homologous or heterologous pathogens. Challenge experiments revealed that immunity established shortly after vaccination was cross-protective between the two viral pathogens...

  5. Optimal DNA Isolation Method for Detection of Nontuberculous Mycobacteria by Polymerase Chain Reaction.

    Science.gov (United States)

    Mohammadi, Samira; Esfahani, Bahram Nasr; Moghim, Sharareh; Mirhendi, Hossein; Zaniani, Fatemeh Riyahi; Safaei, Hajieh Ghasemian; Fazeli, Hossein; Salehi, Mahshid

    2017-01-01

    Nontuberculous mycobacteria (NTM) are a group of opportunistic pathogens and these are widely dispersed in water and soil resources. Identification of mycobacteria isolates by conventional methods including biochemical tests, growth rates, colony pigmentation, and presence of acid-fast bacilli is widely used, but these methods are time-consuming, labor-intensive, and may sometimes remain inconclusive. The DNA was extracted from NTM cultures using CTAB, Chelex, Chelex + Nonidet P-40, FTA ® Elute card, and boiling The quantity and quality of the DNA extracted via these methods were determined using UV-photometer at 260 and 280 nm, and polymerase chain reaction (PCR) amplification of the heat-shock protein 65 gene with serially diluted DNA samples. The CTAB method showed more positive results at 1:10-1:100,000 at which the DNA amount was substantial. With the Chelex method of DNA extraction, PCR amplification was detected at 1:10 and 1:1000 dilutions. According to the electrophoresis results, the CTAB and Chelex DNA extraction methods were more successful in comparison with the others as regard producing suitable concentrations of DNA with the minimum use of PCR inhibitor.

  6. Optimal DNA Isolation Method for Detection of Nontuberculous Mycobacteria by Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Samira Mohammadi

    2017-01-01

    Full Text Available Background: Nontuberculous mycobacteria (NTM are a group of opportunistic pathogens and these are widely dispersed in water and soil resources. Identification of mycobacteria isolates by conventional methods including biochemical tests, growth rates, colony pigmentation, and presence of acid-fast bacilli is widely used, but these methods are time-consuming, labor-intensive, and may sometimes remain inconclusive. Materials and Methods: The DNA was extracted from NTM cultures using CTAB, Chelex, Chelex + Nonidet P-40, FTA® Elute card, and boiling The quantity and quality of the DNA extracted via these methods were determined using UV-photometer at 260 and 280 nm, and polymerase chain reaction (PCR amplification of the heat-shock protein 65 gene with serially diluted DNA samples. Results: The CTAB method showed more positive results at 1:10–1:100,000 at which the DNA amount was substantial. With the Chelex method of DNA extraction, PCR amplification was detected at 1:10 and 1:1000 dilutions. Conclusions: According to the electrophoresis results, the CTAB and Chelex DNA extraction methods were more successful in comparison with the others as regard producing suitable concentrations of DNA with the minimum use of PCR inhibitor.

  7. Antibiotic Resistance and Virulence Phenotypes of Recent Bacterial Strains Isolated from Urinary Tract Infections in Elderly Patients with Prostatic Disease

    Directory of Open Access Journals (Sweden)

    Cristina Delcaru

    2017-05-01

    Full Text Available Acute bacterial prostatitis is one of the frequent complications of urinary tract infection (UTI. From the approximately 10% of men having prostatitis, 7% experience a bacterial prostatitis. The purpose of this study was to investigate the prevalence of uropathogens associated with UTIs in older patients with benign prostatic hyperplasia and to assess their susceptibility to commonly prescribed antibiotics as well as the relationships between microbial virulence and resistance features. Uropathogenic Escherichia coli was found to be the most frequent bacterial strain isolated from patients with benign prostatic hyperplasia, followed by Enterococcus spp., Enterobacter spp., Klebsiella spp., Proteus spp., Pseudomonas aeruginosa, and Serratia marcescens. Increased resistance rates to tetracyclines, quinolones, and sulfonamides were registered. Besides their resistance profiles, the uropathogenic isolates produced various virulence factors with possible implications in the pathogenesis process. The great majority of the uropathogenic isolates revealed a high capacity to adhere to HEp-2 cell monolayer in vitro, mostly exhibiting a localized adherence pattern. Differences in the repertoire of soluble virulence factors that can affect bacterial growth and persistence within the urinary tract were detected. The Gram-negative strains produced pore-forming toxins—such as hemolysins, lecithinases, and lipases—proteases, siderophore-like molecules resulted from the esculin hydrolysis and amylases, while Enterococcus sp. strains were positive only for caseinase and esculin hydrolase. Our study demonstrates that necessity of investigating the etiology and local resistance patterns of uropathogenic organisms, which is crucial for determining appropriate empirical antibiotic treatment in elderly patients with UTI, while establishing correlations between resistance and virulence profiles could provide valuable input about the clinical evolution and

  8. Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans.

    Science.gov (United States)

    Ocsoy, Ismail; Paret, Mathews L; Ocsoy, Muserref Arslan; Kunwar, Sanju; Chen, Tao; You, Mingxu; Tan, Weihong

    2013-10-22

    Bacterial spot caused by Xanthomonas perforans is a major disease of tomatoes, leading to reduction in production by 10-50%. While copper (Cu)-based bactericides have been used for disease management, most of the X. perforans strains isolated from tomatoes in Florida and other locations worldwide are Cu-resistant. We have developed DNA-directed silver (Ag) nanoparticles (NPs) grown on graphene oxide (GO). These Ag@dsDNA@GO composites effectively decrease X. perforans cell viability in culture and on plants. At the very low concentration of 16 ppm of Ag@dsDNA@GO, composites show excellent antibacterial capability in culture with significant advantages in improved stability, enhanced antibacterial activity, and stronger adsorption properties. Application of Ag@dsDNA@GO at 100 ppm on tomato transplants in a greenhouse experiment significantly reduced the severity of bacterial spot disease compared to untreated plants, giving results similar to those of the current grower standard treatment, with no phytotoxicity.

  9. Detailed adsorption mechanism of plasmid DNA by newly isolated cellulose from waste flower spikes of Thypa latifolia using quantum chemical calculations.

    Science.gov (United States)

    Mujtaba, Muhammad; Kaya, Murat; Akyuz, Lalehan; Erdonmez, Demet; Akyuz, Bahar; Sargin, Idris

    2017-09-01

    Current study was designed to use the newly obtained cellulose from waste flower spikes of Thypa latifolia plant for plasmid DNA adsorption. Cellulose was isolated according to a previously described method including acid and base treatment, and cellulose content was recorded as 17%. T. latifolia cellulose was physicochemically characterized via FT-IR, TGA and SEM techniques. Detailed mechanism of plasmid DNA adsorption by newly isolated cellulose was described using chemical quantum calculations. To check the effect of Cu ++ immobilization on the affinity of cellulose for plasmid DNA, copper ions were immobilized onto T. latifolia cellulose. pUC18 plasmid DNA was used for adsorption studies. Membranes prepared with only T. latifolia cellulose and Cu ++ immobilized T. latifolia cellulose revealed different adsorption ratios as 43.9 and 86.9% respectively. This newly isolated cellulose from waste flower spikes of T. latifolia can be utilized as a suitable carrier for plasmid DNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Role of special cross-links in structure formation of bacterial DNA polymer

    Science.gov (United States)

    Agarwal, Tejal; Manjunath, G. P.; Habib, Farhat; Lakshmi Vaddavalli, Pavana; Chatterji, Apratim

    2018-01-01

    Using data from contact maps of the DNA-polymer of Escherichia coli (E. Coli) (at kilobase pair resolution) as an input to our model, we introduce cross-links between monomers in a bead-spring model of a ring polymer at very specific points along the chain. Via suitable Monte Carlo simulations, we show that the presence of these cross-links leads to a particular organization of the chain at large (micron) length scales of the DNA. We also investigate the structure of a ring polymer with an equal number of cross-links at random positions along the chain. We find that though the polymer does get organized at the large length scales, the nature of the organization is quite different from the organization observed with cross-links at specific biologically determined positions. We used the contact map of E. Coli bacteria which has around 4.6 million base pairs in a single circular chromosome. In our coarse-grained flexible ring polymer model, we used 4642 monomer beads and observed that around 80 cross-links are enough to induce the large-scale organization of the molecule accounting for statistical fluctuations caused by thermal energy. The length of a DNA chain even of a simple bacterial cell such as E. Coli is much longer than typical proteins, hence we avoided methods used to tackle protein folding problems. We define new suitable quantities to identify the large scale structure of a polymer chain with a few cross-links.

  11. Paenibacillus motobuensis sp. nov., isolated from a composting machine utilizing soil from Motobu-town, Okinawa, Japan.

    Science.gov (United States)

    Iida, Ken-ichiro; Ueda, Yasuichi; Kawamura, Yoshiaki; Ezaki, Takayuki; Takade, Akemi; Yoshida, Shin-ichi; Amako, Kazunobu

    2005-09-01

    A novel bacterial strain, MC10(T), was isolated from a compost sample produced in a composting machine utilizing soil from Motobu-town, Okinawa, Japan. The isolate was Gram-negative, but produced endospores. These conflicting characters prompted a taxonomic study of the isolate. The isolate was examined using a combination of phenotypic characterization, cellular fatty acid analysis, DNA base composition determination and 16S rRNA gene sequence analysis. Phylogenetic analysis, based on 16S rRNA gene sequence comparisons, placed strain MC10(T) within the genus Paenibacillus. As in other Paenibacillus species, the isolate contained anteiso-C(15:0) as the major fatty acid and the DNA G+C content was 47.0 mol%. However, 16S rRNA gene sequence similarity values of less than 95.6% were found between this isolate and all members of the genus Paenibacillus. Based upon these results, strain MC10(T) (=GTC 1835(T)=JCM 12774(T)=CCUG 50090(T)) should be designated as the type strain of a novel species within the genus Paenibacillus, Paenibacillus motobuensis sp. nov.

  12. Detection and isolation of novel rhizopine-catabolizing bacteria from the environment

    Science.gov (United States)

    Gardener; de Bruijn FJ

    1998-12-01

    Microbial rhizopine-catabolizing (Moc) activity was detected in serial dilutions of soil and rhizosphere washes. The activity observed generally ranged between 10(6) and 10(7) catabolic units per g, and the numbers of nonspecific culture-forming units were found to be approximately 10 times higher. A diverse set of 37 isolates was obtained by enrichment on scyllo-inosamine-containing media. However, none of the bacteria that were isolated were found to contain DNA sequences homologous to the known mocA, mocB, and mocC genes of Sinorhizobium meliloti L5-30. Twenty-one of the isolates could utilize an SI preparation as the sole carbon and nitrogen source for growth. Partial sequencing of 16S ribosomal DNAs (rDNAs) amplified from these strains indicated that five distinct bacterial genera (Arthrobacter, Sinorhizobium, Pseudomonas, Aeromonas, and Alcaligenes) were represented in this set. Only 6 of these 21 isolates could catabolize 3-O-methyl-scyllo-inosamine under standard assay conditions. Two of these, strains D1 and R3, were found to have 16S rDNA sequences very similar to those of Sinorhizobium meliloti. However, these strains are not symbiotically effective on Medicago sativa, and DNA sequences homologous to the nodB and nodC genes were not detected in strains D1 and R3 by Southern hybridization analysis.

  13. Molecular diversity of thermophilic bacteria isolated from Pasinler hot spring (Erzurum, Turkey)

    OpenAIRE

    ADIGÜZEL, Ahmet; İNAN, Kadriye; ŞAHİN, Fikrettin; ARASOĞLU, Tulin; GÜLLÜCE, Medine

    2011-01-01

    The present study was conducted to determine the phenotypic and genotypic characterization of thermophilic bacteria isolated from Pasinler hot spring, Erzurum, Turkey. Fatty acid profiles, BOX PCR fingerprints, and 16S rDNA sequence data were used for the phenotypic and genotypic characterization of thermophilic bacteria. Totally 9 different bacterial strains were selected based on morphological, physiological, and biochemical tests. These strains were characterized by molecular tests includi...

  14. Draft Genome Sequence of Exiguobacterium sp. Strain BMC-KP, an Environmental Isolate from Bryn Mawr, Pennsylvania.

    Science.gov (United States)

    Hyson, Peter; Shapiro, Joshua A; Wien, Michelle W

    2015-10-08

    Exiguobacterium sp. strain BMC-KP was isolated as part of a student environmental sampling project at Bryn Mawr College, PA. Sequencing of bacterial DNA assembled a 3.32-Mb draft genome. Analysis suggests the presence of genes for tolerance to cold and toxic metals, broad carbohydrate metabolism, and genes derived from phage. Copyright © 2015 Hyson et al.

  15. Characterization of gut bacterial flora of Apis mellifera from north-west Pakistan

    Directory of Open Access Journals (Sweden)

    Syed Ishtiaq Anjum

    2018-02-01

    Full Text Available Gut microbiota has been recognized to play a beneficial role in honey bees (Apis mellifera. Present study was designed to characterize the gut bacterial flora of honey bees in north-west Pakistan. Total 150 aerobic and facultative anaerobic bacteria from guts of 45 worker bees were characterized using biochemical assays and 16S rDNA sequencing followed by bioinformatics analysis. The gut isolates were classified into three bacterial phyla of Firmicutes (60%, Proteobacteria (26% and Actinobacteria (14%. Most of the isolates belonged to genera and families of Staphylococcus, Bacillus, Enterococcus, Ochrobactrum, Sphingomonas, Ralstonia, Enterobacteriaceae, Corynebacterium and Micrococcineae. Many of these bacteria were tolerant to acidic environments and fermented sugars, hence considered beneficial gut inhabitants and involved the maintenance of a healthy microbiota. However, several opportunistic commensals that proliferate in the hive environment including members Staphylococcus haemolyticus group and Sphingomonas paucimobilis were also identified. This is the first report on bee gut microbiota from north-west Pakistan geographically situated at the crossroads of Indian subcontinent and central Asia.

  16. Efficient Sleeping Beauty DNA Transposition From DNA Minicircles

    Directory of Open Access Journals (Sweden)

    Nynne Sharma

    2013-01-01

    Full Text Available DNA transposon-based vectors have emerged as new potential delivery tools in therapeutic gene transfer. Such vectors are now showing promise in hematopoietic stem cells and primary human T cells, and clinical trials with transposon-engineered cells are on the way. However, the use of plasmid DNA as a carrier of the vector raises safety concerns due to the undesirable administration of bacterial sequences. To optimize vectors based on the Sleeping Beauty (SB DNA transposon for clinical use, we examine here SB transposition from DNA minicircles (MCs devoid of the bacterial plasmid backbone. Potent DNA transposition, directed by the hyperactive SB100X transposase, is demonstrated from MC donors, and the stable transfection rate is significantly enhanced by expressing the SB100X transposase from MCs. The stable transfection rate is inversely related to the size of circular donor, suggesting that a MC-based SB transposition system benefits primarily from an increased cellular uptake and/or enhanced expression which can be observed with DNA MCs. DNA transposon and transposase MCs are easily produced, are favorable in size, do not carry irrelevant DNA, and are robust substrates for DNA transposition. In accordance, DNA MCs should become a standard source of DNA transposons not only in therapeutic settings but also in the daily use of the SB system.

  17. Characterization of Lactic Acid Bacteria Isolated from Sauce-type Kimchi.

    Science.gov (United States)

    Jung, Suk Hee; Park, Joung Whan; Cho, Il Jae; Lee, Nam Keun; Yeo, In-Cheol; Kim, Byung Yong; Kim, Hye Kyung; Hahm, Young Tae

    2012-09-01

    This study was carried out to investigate the isolation and characterization of lactic acid bacteria (LAB) from naturally fermented sauce-type kimchi. Sauce-type kimchi was prepared with fresh, chopped ingredients (Korean cabbage, radish, garlic, ginger, green onion, and red pepper). The two isolated bacteria from sauce-type kimchi were identified as Pediococcus pentosaceus and Lactobacillus brevis by 16S rDNA sequencing and tentatively named Pediococcus sp. IJ-K1 and Lactobacillus sp. IJ-K2, respectively. Pediococcus sp. IJ-K1 was isolated from the early and middle fermentation stages of sauce-type kimchi whereas Lactobacillus sp. IJ-K2 was isolated from the late fermentation stage. The resistance of Pediococcus sp. IJ-K1 and Lactobacillus sp. IJ-K2 to artificial gastric and bile acids led to bacterial survival rates that were 100% and 84.21%, respectively.

  18. Variation of DNA damage levels in peripheral blood mononuclear cells isolated in different laboratories

    DEFF Research Database (Denmark)

    Godschalk, Roger W L; Ersson, Clara; Stępnik, Maciej

    2014-01-01

    This study investigated the levels of DNA strand breaks and formamidopyrimidine DNA glycosylase (FPG) sensitive sites, as assessed by the comet assay, in peripheral blood mononuclear cells (PBMC) from healthy women from five different countries in Europe. The laboratory in each country (referred...... to as 'centre') collected and cryopreserved PBMC samples from three donors, using a standardised cell isolation protocol. The samples were analysed in 13 different laboratories for DNA damage, which is measured by the comet assay. The study aim was to assess variation in DNA damage in PBMC samples that were......%) by standardisation of the primary comet assay endpoint with calibration curve samples. The level of DNA strand breaks in the samples from two of the centres (0.56-0.61 lesions/10(6) bp) was significantly higher compared with the other three centres (0.41-0.45 lesions/10(6) bp). In contrast, there was no difference...

  19. Combination of culture-independent and culture-dependent molecular methods for the determination of bacterial community of iru, a fermented Parkia biglobosa seeds.

    Directory of Open Access Journals (Sweden)

    Gbenga Adedeji Adewumi

    2013-01-01

    Full Text Available In this study, bacterial composition of iru produced by natural, uncontrolled fermentation of Parkia biglobosa seeds was assessed using culture-independent method in combination with culture-based genotypic typing techniques. PCR-denaturing gradient gel electrophoresis (DGGE revealed similarity in DNA fragments with the two DNA extraction methods used and confirmed bacterial diversity in the sixteen iru samples from different production regions. DNA sequencing of the highly variable V3 region of the 16S rRNA genes obtained from PCR-DGGE identified species related to Bacillus subtilis as consistent bacterial species in the fermented samples, while other major bands were identified as close relatives of Staphylococcus vitulinus, Morganella morganii, B. thuringiensis, Staphylococcus saprophyticus, Tetragenococcus halophilus, Ureibacillus thermosphaericus, Brevibacillus parabrevis, Salinicoccus jeotgali, Brevibacterium sp. and Uncultured bacteria clones. Bacillus species were cultured as potential starter cultures and clonal relationship of different isolates determined using amplified ribosomal DNA restriction analysis (ARDRA combined with 16S-23S rRNA gene internal transcribed spacer (ITS PCR amplification, restriction analysis (ITS-PCR-RFLP and randomly amplified polymorphic DNA (RAPD-PCR. This further discriminated Bacillus subtilis and its variants from food-borne pathogens such as Bacillus cereus and suggested the need for development of controlled fermentation processes and good manufacturing practices (GMP for iru production to achieve product consistency, safety quality and improved shelf life.

  20. Overexpression of Aldo-Keto-Reductase in Azole-resistant Clinical Isolates of Candida Glabrata Determined by cDNA-AFLP

    Directory of Open Access Journals (Sweden)

    Mansour Heidari

    2013-01-01

    Full Text Available Background: Candida glabrata causes significant medical problems in immunocompromised patients. Many strains of this yeast are intrinsically resistant to azole antifungal agents, and treatment is problematic, leading to high morbidity and mortality rates in immunosuppressed individuals. The primary goal of this study was to investigate the genes involved in the drug resistance of clinical isolates of C. glabrata.Methods: The clinical isolates of C. glabrata were collected in an epidemiological survey of candidal infection inimmunocompromised patients and consisted of four fluconazole and itraconazole resistant isolates, two fluconazoleand itraconazole sensitive isolates, and C. glabrata CBS 138 as reference strain. Antifungal susceptibility patterns ofthe organisms were determined beforehand by the Clinical and Laboratory Standards Institute (CLSI. The potentialgene(s implicated in antifungal resistance were investigated using complementary DNA- Amplified Fragment Length Polymorphism (cDNA-AFLP. Semi-quantitative RT-PCR was carried out to evaluate the expression of gene(s in resistant isolates as compared to sensitive and reference strains.Results and conclusions: The aldo-keto-reductase superfamily (AKR gene was upregulated in the resistant clinicalisolates as assessed by cDNA-AFLP. Semi-quantitative RT-PCR revealed AKR mRNA expression approximately twice that seen in the sensitive isolates. Overexpression of the AKR gene was associated with increased fluconazole and itraconazole resistance in C. glabrata. The data suggest that upregulation of the AKR gene might give a new insight into the mechanism of azole resistance.

  1. Characterization of bacterial diversity associated with calcareous deposits and drip-waters, and isolation of calcifying bacteria from two Colombian mines.

    Science.gov (United States)

    García G, Mariandrea; Márquez G, Marco Antonio; Moreno H, Claudia Ximena

    2016-01-01

    Bacterial carbonate precipitation has implications in geological processes and important biotechnological applications. Bacteria capable of precipitating carbonates have been isolated from different calcium carbonate deposits (speleothems) in caves, soil, freshwater and seawater around the world. However, the diversity of bacteria from calcareous deposits in Colombia, and their ability to precipitate carbonates, remains unknown. In this study, conventional microbiological methods and molecular tools, such as temporal temperature gradient electrophoresis (TTGE), were used to assess the composition of bacterial communities associated with carbonate deposits and drip-waters from two Colombian mines. A genetic analysis of these bacterial communities revealed a similar level of diversity, based on the number of bands detected using TTGE. The dominant phylogenetic affiliations of the bacteria, determined using 16S rRNA gene sequencing, were grouped into two phyla: Proteobacteria and Firmicutes. Within these phyla, seven genera were capable of precipitating calcium carbonates: Lysinibacillus, Bacillus, Strenotophomonas, Brevibacillus, Methylobacterium, Aeromicrobium and Acinetobacter. FTIR and SEM/EDX were used to analyze calcium carbonate crystals produced by isolated Acinetobacter gyllenbergii. The results showed that rhombohedral and angular calcite crystals with sizes of 90μm were precipitated. This research provides information regarding the presence of complex bacterial communities in secondary carbonate deposits from mines and their ability to precipitate calcium carbonate from calcareous deposits of Colombian mines. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. Isolation, cDNA cloning, and structure-based functional characterization of oryctin, a hemolymph protein from the coconut rhinoceros beetle, Oryctes rhinoceros, as a novel serine protease inhibitor.

    Science.gov (United States)

    Horita, Shoichiro; Ishibashi, Jun; Nagata, Koji; Miyakawa, Takuya; Yamakawa, Minoru; Tanokura, Masaru

    2010-09-24

    We isolated oryctin, a 66-residue peptide, from the hemolymph of the coconut rhinoceros beetle Oryctes rhinoceros and cloned its cDNA. Oryctin is dissimilar to any other known peptides in amino acid sequence, and its function has been unknown. To reveal that function, we determined the solution structure of recombinant (13)C,(15)N-labeled oryctin by heteronuclear NMR spectroscopy. Oryctin exhibits a fold similar to that of Kazal-type serine protease inhibitors but has a unique additional C-terminal α-helix. We performed protease inhibition assays of oryctin against several bacterial and eukaryotic proteases. Oryctin does inhibit the following serine proteases: α-chymotrypsin, endopeptidase K, subtilisin Carlsberg, and leukocyte elastase, with K(i) values of 3.9 × 10(-10) m, 6.2 × 10(-10) m, 1.4 × 10(-9) m, and 1.2 × 10(-8) m, respectively. Although the target molecule of oryctin in the beetle hemolymph remains obscure, our results showed that oryctin is a novel single domain Kazal-type inhibitor and could play a key role in protecting against bacterial infections.

  3. Icecolors '93: Beginnings of an antarctic phytoplankton and bacterial DNA library from southern ocean natural communities exposed to ultraviolet-B

    International Nuclear Information System (INIS)

    Jovine, R.V.M.; Prezelin, B.

    1994-01-01

    Springtime ozone depletion and the resultant increase in ultraviolet-B (UV-B) radiation [280-320 nanometers (nm)] have deleterious effects on primary productivity. To assess damage to cellular components other than the photosynthetic apparatus, we isolated total community DNA from samples in the field before, during, and after the 1993 springtime depletion in stratospheric ozone. The effort was motivated by the concern that the ozone-dependent increases in UV-B radiation may increase DNA damage within primary producers. This increase in damage could result in changes of species composition as well as hereditary changes within species that can influence the competitiveness of these organisms in their natural community. Previous studies have focused on DNA damage in isolated cultures of antarctic phytoplankton that were irradiated with UV-B under lab conditions. These studies clearly indicate variable species sensitivities to the increase in UV-B flux. These studies, however, did not resolve the question of whether such damage occurred in field samples collected from actively mixing, polyphyletic phytoplankton communities. Potential species composition changes and the resultant changes in the trophic dynamics cannot be interpreted in terms of DNA damage unless this damage can be documented in samples isolated under these dynamic natural conditions. 7 refs., 2 figs

  4. Evaluating variation in human gut microbiota profiles due to DNA extraction method and inter-subject differences.

    Science.gov (United States)

    Wagner Mackenzie, Brett; Waite, David W; Taylor, Michael W

    2015-01-01

    The human gut contains dense and diverse microbial communities which have profound influences on human health. Gaining meaningful insights into these communities requires provision of high quality microbial nucleic acids from human fecal samples, as well as an understanding of the sources of variation and their impacts on the experimental model. We present here a systematic analysis of commonly used microbial DNA extraction methods, and identify significant sources of variation. Five extraction methods (Human Microbiome Project protocol, MoBio PowerSoil DNA Isolation Kit, QIAamp DNA Stool Mini Kit, ZR Fecal DNA MiniPrep, phenol:chloroform-based DNA isolation) were evaluated based on the following criteria: DNA yield, quality and integrity, and microbial community structure based on Illumina amplicon sequencing of the V4 region of bacterial and archaeal 16S rRNA genes. Our results indicate that the largest portion of variation within the model was attributed to differences between subjects (biological variation), with a smaller proportion of variation associated with DNA extraction method (technical variation) and intra-subject variation. A comprehensive understanding of the potential impact of technical variation on the human gut microbiota will help limit preventable bias, enabling more accurate diversity estimates.

  5. Evaluating variation in human gut microbiota profiles due to DNA extraction method and inter-subject differences

    Directory of Open Access Journals (Sweden)

    Brett eWagner Mackenzie

    2015-02-01

    Full Text Available The human gut contains dense and diverse microbial communities which have profound influences on human health. Gaining meaningful insights into these communities requires provision of high quality microbial nucleic acids from human fecal samples, as well as an understanding of the sources of variation and their impacts on the experimental model. We present here a systematic analysis of commonly used microbial DNA extraction methods, and identify significant sources of variation. Five extraction methods (Human Microbiome Project protocol, MoBio PowerSoil DNA Isolation Kit, QIAamp DNA Stool Mini Kit, ZR Fecal DNA MiniPrep, phenol:chloroform-based DNA isolation were evaluated based on the following criteria: DNA yield, quality and integrity, and microbial community structure based on Illumina amplicon sequencing of the V4 region of bacterial and archaeal 16S rRNA genes. Our results indicate that the largest portion of variation within the model was attributed to differences between subjects (biological variation, with a smaller proportion of variation associated with DNA extraction method (technical variation and intra-subject variation. A comprehensive understanding of the potential impact of technical variation on the human gut microbiota will help limit preventable bias, enabling more accurate diversity estimates.

  6. Isolation and expression of a pea vicilin cDNA in the yeast Saccharomyces cerevisiae.

    OpenAIRE

    Watson, M D; Lambert, N; Delauney, A; Yarwood, J N; Croy, R R; Gatehouse, J A; Wright, D J; Boulter, D

    1988-01-01

    A cDNA clone containing the complete coding sequence for vicilin from pea (Pisum sativum L.) was isolated. It specifies a 50,000-Mr protein that in pea is neither post-translationally processed nor glycosylated. The cDNA clone was expressed in yeast from a 2 micron plasmid by using the yeast phosphoglycerate kinase promoter and initiator codon. The resultant fusion protein, which contains the first 16 amino acid residues of phosphoglycerate kinase in addition to the vicilin sequence, was puri...

  7. Construction of Infectious cDNA Clone of a Chrysanthemum stunt viroid Korean Isolate

    Directory of Open Access Journals (Sweden)

    Ju-Yeon Yoon

    2014-03-01

    Full Text Available Chrysanthemum stunt viroid (CSVd, a noncoding infectious RNA molecule, causes seriously economic losses of chrysanthemum for 3 or 4 years after its first infection. Monomeric cDNA clones of CSVd isolate SK1 (CSVd-SK1 were constructed in the plasmids pGEM-T easy vector and pUC19 vector. Linear positive-sense transcripts synthesized in vitro from the full-length monomeric cDNA clones of CSVd-SK1 could infect systemically tomato seedlings and chrysanthemum plants, suggesting that the linear CSVd RNA transcribed from the cDNA clones could be replicated as efficiently as circular CSVd in host species. However, direct inoculation of plasmid cDNA clones containing full-length monomeric cDNA of CSVd-SK1 failed to infect tomato and chrysanthemum and linear negative-sense transcripts from the plasmid DNAs were not infectious in the two plant species. The cDNA sequences of progeny viroid in systemically infected tomato and chrysanthemum showed a few substitutions at a specific nucleotide position, but there were no deletions and insertions in the sequences of the CSVd progeny from tomato and chrysanthemum plants.

  8. Chryseobacterium formosense sp. nov., isolated from the rhizosphere of Lactuca sativa L. (garden lettuce).

    Science.gov (United States)

    Young, Chiu-Chung; Kämpfer, Peter; Shen, Fo-Ting; Lai, Wei-An; Arun, A B

    2005-01-01

    A yellow-pigmented bacterial strain (CC-H3-2T), isolated from the rhizosphere of Lactuca sativa L. (garden lettuce) in Taiwan, was investigated using a polyphasic taxonomic approach. The cells were Gram-negative, rod-shaped and non-spore-forming. Phylogenetic analyses using the 16S rRNA gene sequence of the isolate indicated that the organism belongs to the genus Chryseobacterium, with the highest sequence similarity to the type strains of Chryseobacterium indoltheticum (97.7 %), Chryseobacterium scophthalmum (97.5 %), Chryseobacterium joostei (97.2 %) and Chryseobacterium defluvii (97.2 %). The major whole-cell fatty acids were iso-C(15 : 0) (52.2 %) and iso-C(17 : 0) 3-OH. DNA-DNA hybridization experiments revealed levels of only 27.4 % to C. scophthalmum, 27.1 % to C. indoltheticum, 14.1 % to C. joostei and 7.8 % to C. defluvii. DNA-DNA relatedness and biochemical and chemotaxonomic properties demonstrate that strain CC-H3-2T represents a novel species, for which the name Chryseobacterium formosense sp. nov. is proposed. The type strain is CC-H3-2T (=CCUG 49271T=CIP 108367T).

  9. Comparison of DNA extraction protocols for microbial communities from soil treated with biochar

    Directory of Open Access Journals (Sweden)

    D.C.A. Leite

    2014-01-01

    Full Text Available Many studies have evaluated the effects of biochar application on soil structure and plant growth. However, there are very few studies describing the effect of biochar on native soil microbial communities. Microbial analysis of environmental samples requires accurate and reproducible methods for the extraction of DNA from samples. Because of the variety among microbial species and the strong adsorption of the phosphate backbone of the DNA molecule to biochar, extracting and purifying high quality microbial DNA from biochar-amended soil is not a trivial process and can be considerably more difficult than the extraction of DNA from other environmental samples. The aim of this study was to compare the relative efficacies of three commercial DNA extraction kits, the FastDNA® SPIN Kit for Soil (FD kit, the PowerSoil® DNA Isolation Kit (PS kit and the ZR Soil Microbe DNA Kit MiniprepTM (ZR kit, for extracting microbial genomic DNA from sand treated with different types of biochar. The methods were evaluated by comparing the DNA yields and purity and by analysing the bacterial and fungal community profiles generated by PCR-DGGE. Our results showed that the PCR-DGGE profiles for bacterial and fungal communities were highly affected by the purity and yield of the different DNA extracts. Among the tested kits, the PS kit was the most efficient with respect to the amount and purity of recovered DNA and considering the complexity of the generated DGGE microbial fingerprint from the sand-biochar samples.

  10. Comparison of Methods for Isolating High Quality DNA and RNA from an Oleaginous Fungus Cunninghamella bainieri Strain 2a1

    Directory of Open Access Journals (Sweden)

    Noor Adila, A. K.

    2007-01-01

    Full Text Available A number of protocols have been reported for efficient fungal DNA and RNA isolation. However, many of these methods are often designed for certain groups or morphological forms of fungi and, in some cases, are species dependent. In this report, we compared four published protocols for DNA isolation from a locally isolated oleaginous fungus, Cunninghamella bainieri strain 2a1. These protocols either involved the use of polyvinyl pyrrolidone (PVP, hexacetyltrimethylammonium bromide (CTAB or without using PVB or CTAB. For RNA isolation, we tested two published protocols, one of which is based on TRI REAGENT (Molecular Research Center, USA and another is simple method employing phenol for RNA extraction and LiCl for precipitation. We found that the protocol involving the use of CTAB produced the highest genomic DNA yield with the best quality compared to other protocols. In the presence of CTAB, unwanted polysaccharides were removed and this method yielded an average amount of 816 ± 12.2 µg DNA/g mycelia with UV absorbance ratios A260/280 and A260/230 of 1.67 ± 0.64 and 1.97 ± 0.23, respectively. The genomic DNA isolated via this protocol is also suitable for PCR amplification and restriction enzyme digestion. As for RNA isolation, the method involving phenol extraction and LiCl precipitation produced the highest yield of RNA with an average amount of 372 ± 6.0 µg RNA/g mycelia. The RNA appears to be relatively pure since it has UV absorbance ratios A260/280 and A260/230 of 1.89 ± 2.00 and 1.99 ± 0.03, respectively. Finally, we have demonstrated that this method could produce RNA of sufficient quality for RT-PCR that amplified a 600 bp fragment of ∆12-fatty acid desaturase gene in C. bainieri.

  11. Modeling the integration of bacterial rRNA fragments into the human cancer genome.

    Science.gov (United States)

    Sieber, Karsten B; Gajer, Pawel; Dunning Hotopp, Julie C

    2016-03-21

    Cancer is a disease driven by the accumulation of genomic alterations, including the integration of exogenous DNA into the human somatic genome. We previously identified in silico evidence of DNA fragments from a Pseudomonas-like bacteria integrating into the 5'-UTR of four proto-oncogenes in stomach cancer sequencing data. The functional and biological consequences of these bacterial DNA integrations remain unknown. Modeling of these integrations suggests that the previously identified sequences cover most of the sequence flanking the junction between the bacterial and human DNA. Further examination of these reads reveals that these integrations are rich in guanine nucleotides and the integrated bacterial DNA may have complex transcript secondary structures. The models presented here lay the foundation for future experiments to test if bacterial DNA integrations alter the transcription of the human genes.

  12. Mitochondrial DNA structure of an isolated Tunisian Berber population and its relationship with Mediterranean populations.

    Science.gov (United States)

    Ben Halim, Nizar; Hsouna, Sana; Lasram, Khaled; Chargui, Mariem; Khemira, Laaroussi; Saidane, Rachid; Abdelhak, Sonia; Kefi, Rym

    2018-02-01

    Douiret is an isolated Berber population from South-Eastern Tunisia. The strong geographic and cultural isolation characterising this population might have contributed to remarkable endogamy and consanguinity, which were practiced for several centuries. The objective of this study is to evaluate the mitochondrial DNA (mtDNA) genetic structure of Douiret and to compare it to other Mediterranean populations with a special focus on major haplogroup T. Genomic DNA was extracted from blood samples of 58 unrelated individuals collected from the different patrilineal lineages of the population. The hypervariable region 1 of the mtDNA was amplified and sequenced. For comparative analyses, additional HVS1 sequences (n = 4857) were compiled from previous studies. The maternal background of the studied sample from Douiret was mainly of Eurasian origin (74%) followed by Sub-Saharan (17%) and North African (3%) lineages. Douiret harbours the highest frequency of haplogroup T in the Mediterranean region, assigned to the unique subclade T1a (38%). Phylogenetic analysis showed an outlier position of Douiret at the Mediterranean level. The genetic structure of Douiret highlights the presence of founders, most likely of Near/Middle Eastern origin, who conquered this area during the Middle/Late Upper Palaeolithic and Neolithic dispersals.

  13. Determination of melting curves of irradiated DNA preparations and of preparations isolated from irradiated calf lymph nodes

    International Nuclear Information System (INIS)

    Grabowska, B.

    1977-01-01

    Measurements of melting curves enabled to establish differences of melting temperature, hyperchromic effect and breadth of the helix - coil phase transition dependent on dose of the ionizing radiation applied and on kind of the irradiated object. Changes of the investigated parameters of DNA irradiated after isolation were detectably more pronounced that of DNA from irradiated lymph nodes. The obtained results suggest a protective role of tissue to the secondary structure of DNA. (author)

  14. Anaerobic halo- alkaliphilic bacterial community of athalassic, hypersaline Mono lake and Owens Lake in California

    Science.gov (United States)

    Pikuta, Elena V.; Detkova, Ekaterina N.; Bej, Asim K.; Marsic, Damien; Hoover, Richard B.

    2003-02-01

    The bacterial diversity of microbial extremophiles from the meromictic, hypersaline Mono Lake and a small evaporite pool in Owens Lake of California was studied. In spite of these regions had differing mineral background and different concentrations of NaCl in water they contain the same halo- alkaliphiles anaerobic bacterial community. Three new species of bacteria were detected in this community: primary anaerobe, dissipotrophic saccharolytic spirochete Spirochaeta americana strain AspG1T, primary anaerobe which is proteolytic Tindallia californiensis strain APOT, and secondary anaerobe, hydrogen using Desulfonatronum thiodismutans strain MLF1T, which is sulfate- reducer with chemo-litho-autotrophic metabolism. All of these bacteria are obligate alkaliphiles and dependent upon Na+ ions and CO32- ions in growth mediums. It is interesting that closest relationships for two of these species were isolates from samples of equatorial African soda Magadi lake: Spirochaeta americana AspG1T has 99.4% similarity on 16S rDNA- analyses with Spirochaeta alkalica Z- 7491T, and Tindallia californiensis APOT has 99.1% similarity with Tindallia magadiensis Z-7934T. But result of DNA-DNA- hybridization demonstrated less then 50% similarity between Spirochaeta americana AspG1T and Spirochaeta alkalica Z-7491T. Percent of homology between Tindallia californiensis APOT and Tindallia magadiensis Z-7934T is only 55%. The sulfate-reducer from the alkalic anaerobic community of Magadi lake Desulfonatronovibrio hydrogenovorans Z-7935T was phylogenetically distant from this sulfate-reducer in Mono lake, but genetically closer (99.7% similarity) to the sulfate-reducer, isolated from Central Asian alkalic lake Khadyn in Siberia Desulfonatronum lacustre Z-7951T. The study of key enzymes (hydrogenase and CO- hydrogenase) in Tindallia californiensis APOT and Desulfonatronum thiodismutans MLF1T showed the presence of high activity of both the enzymes in first and only hydrogenase in second

  15. Bacterial signatures in thrombus aspirates of patients with lower limb arterial and venous thrombosis.

    Science.gov (United States)

    Vakhitov, Damir; Tuomisto, Sari; Martiskainen, Mika; Korhonen, Janne; Pessi, Tanja; Salenius, Juha-Pekka; Suominen, Velipekka; Lehtimäki, Terho; Karhunen, Pekka J; Oksala, Niku

    2018-06-01

    Increasing data supports the role of bacterial inflammation in adverse events of cardiovascular and cerebrovascular diseases. In our previous research, DNA of bacterial species found in coronary artery thrombus aspirates and ruptured cerebral aneurysms were mostly of endodontic and periodontal origin, where Streptococcus mitis group DNA was the most common. We hypothesized that the genomes of S mitis group could be identified in thrombus aspirates of patients with lower limb arterial and deep venous thrombosis. Thrombus aspirates and control blood samples taken from 42 patients with acute or acute-on-chronic lower limb ischemia (Rutherford I-IIb) owing to arterial or graft thrombosis (n = 31) or lower limb deep venous thrombosis (n = 11) were examined using a quantitative real-time polymerase chain reaction to detect all possible bacterial DNA and DNA of S mitis group in particular. The samples were considered positive, if the amount of bacterial DNA in the thrombus aspirates was 2-fold or greater in comparison with control blood samples. In the positive samples the mean difference for the total bacterial DNA was 12.1-fold (median, 7.1), whereas the differences for S mitis group DNA were a mean of 29.1 and a median of 5.2-fold. Of the arterial thrombus aspirates, 57.9% were positive for bacterial DNA, whereas bacterial genomes were found in 75% of bypass graft thrombosis with 77.8% of the prosthetic grafts being positive. Of the deep vein thrombus aspirates, 45.5% contained bacterial genomes. Most (80%) of bacterial DNA-positive cases contained DNA from the S mitis group. Previous arterial interventions were significantly associated with the occurrence of S mitis group DNA (P = .049, Fisher's exact test). This is the first study to report the presence of bacterial DNA, predominantly of S mitis group origin, in the thrombus aspirates of surgical patients with lower limb arterial and deep venous thrombosis, suggesting their possible role in the pathogenesis of

  16. An update on Gardneralla vaginalis associated bacterial vaginosis in Malaysia

    Institute of Scientific and Technical Information of China (English)

    Nada Khairi Younus; Renu Gopinath; Ravindran Jegasothy; Syafinaz Amin Nordin; Alex van Belkum; Narcisse Mary; Vasantha Kumari Neela

    2017-01-01

    Objeetive:To update the status of Gardnerella vaginalis (G.vaginalis) as a causative agent of bacterial vaginosis (BV) in Malaysia and to define its epidemiology,metronidazole resistance and virulence properties.Methods:It is a single-centre (Gynaecology clinic at the Hospital Kuala Lumpur,Malaysia) prospective study with laboratory-based microbiological follow up and analyses.Vaginal swabs collected from the patients suspected for BV were subjected to clinical BV diagnosis,isolation and identification of G.vaginalis,metronidazole susceptibility testing,vaginolysin and sialidase gene PCR,Piot's biotyping and amplified ribosomal DNA restriction analysis genotyping.Results:Among the 207 patients suspected for BV,G.vaginalis was isolated from 47 subjects.G.vaginalis coexisted with Trichomonas vaginalis and Candida albicans in 26 samples.Three G.vaginalis isolates were resistant to metronidazole.Biotyping revealed 1 and 7 as the common types.Amplified ribosomal DNA restriction analysis genotype Ⅱ was found to be more common (n =22;46%) than Ⅰ (n =12;25.53%) and Ⅲ (n =13;27.6%).All genotype Ⅰ and Ⅲ isolates carried the sialidase gene,while 91.6% and 84.6% contained the vaginolysin gene.Genotype Ⅰ was significantly associated with postgynaecological surgical complications and abortions (P =0.002).Conclusions:The existence of pathogenic G.vaginalis clones in Malaysia including drug resistant strains should not be taken lightly and needs to be monitored as these may bring more complications especially among women of child bearing age and pregnant women.

  17. Interaction of polybrominated diphenyl ethers (PBDEs) with anaerobic mixed bacterial cultures isolated from river sediment

    Energy Technology Data Exchange (ETDEWEB)

    Yen, J H; Liao, W C; Chen, W C [Department of Agricultural Chemistry, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China); Wang, Y.S., E-mail: yswang@ntu.edu.tw [Department of Agricultural Chemistry, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China)

    2009-06-15

    The degradation of flame retardant polybrominated diphenyl ethers (PBDE), including tetra-brominated diphenyl ether (BDE-47), penta-brominated diphenyl ether (BDE-99 and -100), and hexa-brominated diphenyl ether (BDE-153 and -154), by anaerobic bacterial mixed cultures isolated from river sediment was investigated. The effects of PBDEs on changes of anaerobic bacterial community in sediment culture were also studied. Sediments were collected from Er-Jen River and Nan-Kan River basins, which were both heavily polluted rivers in Taiwan, and bacteria from the sediment samples were enriched before the experiment was conducted. Into the anaerobic bacterial mixed cultures, 0.1 {mu}g/mL of PBDEs was added followed by incubation under 30 deg. C for 70 days. Residues of PBDE were determined by gas chromatography with electron capture detector (GC-ECD), and the changes of bacterial community were analyzed by denaturing gradient gel electrophoresis (DGGE). Less than 20% of PBDEs were degraded after 70 days of incubation in all samples except for BDE-47 from the Nan-Kan River sediment. In that culture, BDE-47 was found to have notably degraded. In particular, after 42 days of incubation; BDE-47 was degraded, suddenly and sharply, to a negligible level on Day 70, and the result was confirmed by a repeated experiment. An interesting result was that although BDE-47 was degraded fast in the Nan-Kan River sediment, the bacterial communities did not shift significantly as we had speculated at Day 70. From UPGMA dendrograms, PBDEs changed the composition of bacterial communities, and the extents varied with the variety of PBDE congeners. By the amendment with BDE-153 or -154, bacterial communities would be changed immediately and irreversibly throughout the rest of the incubation period. No significant difference in degradation of PBDEs was observed between sediment bacteria from Er-Jen River and Nan-Kan River. However, the results verified the persistence of PBDEs in the environment.

  18. Interaction of polybrominated diphenyl ethers (PBDEs) with anaerobic mixed bacterial cultures isolated from river sediment

    International Nuclear Information System (INIS)

    Yen, J.H.; Liao, W.C.; Chen, W.C.; Wang, Y.S.

    2009-01-01

    The degradation of flame retardant polybrominated diphenyl ethers (PBDE), including tetra-brominated diphenyl ether (BDE-47), penta-brominated diphenyl ether (BDE-99 and -100), and hexa-brominated diphenyl ether (BDE-153 and -154), by anaerobic bacterial mixed cultures isolated from river sediment was investigated. The effects of PBDEs on changes of anaerobic bacterial community in sediment culture were also studied. Sediments were collected from Er-Jen River and Nan-Kan River basins, which were both heavily polluted rivers in Taiwan, and bacteria from the sediment samples were enriched before the experiment was conducted. Into the anaerobic bacterial mixed cultures, 0.1 μg/mL of PBDEs was added followed by incubation under 30 deg. C for 70 days. Residues of PBDE were determined by gas chromatography with electron capture detector (GC-ECD), and the changes of bacterial community were analyzed by denaturing gradient gel electrophoresis (DGGE). Less than 20% of PBDEs were degraded after 70 days of incubation in all samples except for BDE-47 from the Nan-Kan River sediment. In that culture, BDE-47 was found to have notably degraded. In particular, after 42 days of incubation; BDE-47 was degraded, suddenly and sharply, to a negligible level on Day 70, and the result was confirmed by a repeated experiment. An interesting result was that although BDE-47 was degraded fast in the Nan-Kan River sediment, the bacterial communities did not shift significantly as we had speculated at Day 70. From UPGMA dendrograms, PBDEs changed the composition of bacterial communities, and the extents varied with the variety of PBDE congeners. By the amendment with BDE-153 or -154, bacterial communities would be changed immediately and irreversibly throughout the rest of the incubation period. No significant difference in degradation of PBDEs was observed between sediment bacteria from Er-Jen River and Nan-Kan River. However, the results verified the persistence of PBDEs in the environment.

  19. Efficient generation of recombinant RNA viruses using targeted recombination-mediated mutagenesis of bacterial artificial chromosomes containing full-length cDNA

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Risager, Peter Christian; Fahnøe, Ulrik

    2013-01-01

    Background Infectious cDNA clones are a prerequisite for directed genetic manipulation of RNA viruses. Here, a strategy to facilitate manipulation and rescue of classical swine fever viruses (CSFVs) from full-length cDNAs present within bacterial artificial chromosomes (BACs) is described....... This strategy allows manipulation of viral cDNA by targeted recombination-mediated mutagenesis within bacteria. Results A new CSFV-BAC (pBeloR26) derived from the Riems vaccine strain has been constructed and subsequently modified in the E2 coding sequence, using the targeted recombination strategy to enable...

  20. Viral-bacterial associations in acute apical abscesses.

    Science.gov (United States)

    Ferreira, Dennis C; Rôças, Isabela N; Paiva, Simone S M; Carmo, Flávia L; Cavalcante, Fernanda S; Rosado, Alexandre S; Santos, Kátia R N; Siqueira, José F

    2011-08-01

    Viral-bacterial and bacterial synergism have been suggested to contribute to the pathogenesis of several human diseases. This study sought to investigate the possible associations between 9 candidate endodontic bacterial pathogens and 9 human viruses in samples from acute apical abscesses. DNA extracts from purulent exudate aspirates of 33 cases of acute apical abscess were surveyed for the presence of 9 selected bacterial species using a 16S ribosomal RNA gene-based nested polymerase chain reaction (PCR) approach. Single or nested PCR assays were used for detection of the human papillomavirus (HPV) and herpesviruses types 1 to 8. Two-thirds of the abscess samples were positive for at least one of the target viruses. Specifically, the most frequently detected viruses were HHV-8 (54.5%); HPV (9%); and varicella zoster virus (VZV), Epstein-Barr virus (EBV), and HHV-6 (6%). Bacterial DNA was present in all cases and the most prevalent bacterial species were Treponema denticola (70%), Tannerella forsythia (67%), Porphyromonas endodontalis (67%), Dialister invisus (61%), and Dialister pneumosintes (57.5%). HHV-8 was positively associated with 7 of the target bacterial species and HPV with 4, but all these associations were weak. Several bacterial pairs showed a moderate positive association. Viral coinfection was found in 6 abscess cases, but no significant viral association could be determined. Findings demonstrated that bacterial and viral DNA occurred concomitantly in two-thirds of the samples from endodontic abscesses. Although this may suggest a role for viruses in the etiology of apical abscesses, the possibility also exists that the presence of viruses in abscess samples is merely a consequence of the bacterially induced disease process. Further studies are necessary to clarify the role of these viral-bacterial interactions, if any, in the pathogenesis of acute apical abscesses. Copyright © 2011 Mosby, Inc. All rights reserved.

  1. Clostridium perfringens isolate typing by multiplex PCR

    Directory of Open Access Journals (Sweden)

    MR Ahsani

    2010-01-01

    Full Text Available Clostridium perfringens is an important pathogen that provokes numerous different diseases. This bacterium is classified into five different types, each of which capable of causing a different disease. There are various methods for the bacterial identification, many are labor-intensive, time-consuming, expensive and also present low sensitivity and specificity. The aim of this research was to identify the different types of C. perfringens using PCR molecular method. In this study, 130 sheep-dung samples were randomly collected from areas around the city of Kerman, southeastern Iran. After processing and culturing of samples, the produced colonies were morphologically studied, gram stain test was also carried out and the genera of these bacteria were identified through biochemical tests. DNA extracted from isolated bacteria for genotyping was tested by multiplex PCR with specific primers. Based on length of synthesized fragments by PCR, toxin types and bacterial strains were detected. C. perfringens isolated types were divided as follows: 17.39% type A, 21.74% type B, 34.78% type C and 26.09% type D. It should be emphasized that, up to the present moment, C. perfringens type A has not been reported in Iran.

  2. Bacterial flora of spices and its control by gamma irradiation

    International Nuclear Information System (INIS)

    El-Zawahry, Y.A.; Youssef, Y.A.; Awny, N.M.; Hussein, H.A.

    1985-01-01

    The bacterial contamination was tested in 26 samples of spices. Chili, allspice and paprika were the most contaminated spices by bacteria. Five bacterial genera were isolated, namely bacillus, staphylococcus, streptococcus, micrococcus, and coccobacillus, all being gram-positive. Most isolates have been related to the genus bacillus. The bacterial isolates were identified as B. alvei, B. circulans, B. megaterium, B. pasteurii, B. pumilus, B. thuringiensis, B. sphaericus, B. incertaesedis, Micrococcus luteus, staphylococcus aureus, streptococcus sp. and coccobacillus sp. Irradiation of spices led to a significant decrease in the bacterial count of all samples. The dose required to inhibit completely the natural bacterial flora was 25 KGY. The most radioresistant isolates were staphylococcus aureus and micrococcus luteus which were subjected to sublethal doses of 15 and 20 KGY respectively. The dose response curves of the 2 most radioresistant isolates showed simple exponential relationship. The D 10-value of S. aureus and M. luteus were 0.9 and 1.1 KGY, respectively. The effect of storage period on the bacterial load of, as well as, the antibacterial activity of the tested spices were investigated. (author)

  3. Bacterial flora of spices and its control by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    El-Zawahry, Y A; Youssef, Y A; Awny, N M; Hussein, H A

    1985-01-01

    The bacterial contamination was tested in 26 samples of spices. Chili, allspice and paprika were the most contaminated spices by bacteria. Five bacterial genera were isolated, namely bacillus, staphylococcus, streptococcus, micrococcus, and coccobacillus, all being gram-positive. Most isolates have been related to the genus bacillus. The bacterial isolates were identified as B. alvei, B. circulans, B. megaterium, B. pasteurii, B. pumilus, B. thuringiensis, B. sphaericus, B. incertaesedis, Micrococcus luteus, staphylococcus aureus, streptococcus sp. and coccobacillus sp. Irradiation of spices led to a significant decrease in the bacterial count of all samples. The dose required to inhibit completely the natural bacterial flora was 25 KGY. The most radioresistant isolates were staphylococcus aureus and micrococcus luteus which were subjected to sublethal doses of 15 and 20 KGY respectively. The dose response curves of the 2 most radioresistant isolates showed simple exponential relationship. The D 10-value of S. aureus and M. luteus were 0.9 and 1.1 KGY, respectively. The effect of storage period on the bacterial load of, as well as, the antibacterial activity of the tested spices were investigated.

  4. Detection of carboxylesterase and esterase activity in culturable gut bacterial flora isolated from diamondback moth, Plutella xylostella (Linnaeus, from India and its possible role in indoxacarb degradation

    Directory of Open Access Journals (Sweden)

    Shanivarsanthe Leelesh Ramya

    2016-06-01

    Full Text Available Abstract Diamondback moth (DBM, Plutella xylostella (Linnaeus, is a notorious pest of brassica crops worldwide and is resistant to all groups of insecticides. The insect system harbors diverse groups of microbiota, which in turn helps in enzymatic degradation of xenobiotic-like insecticides. The present study aimed to determine the diversity of gut microflora in DBM, quantify esterase activity and elucidate their possible role in degradation of indoxacarb. We screened 11 geographic populations of DBM in India and analyzed them for bacterial diversity. The culturable gut bacterial flora underwent molecular characterization with 16S rRNA. We obtained 25 bacterial isolates from larvae (n = 13 and adults (n = 12 of DBM. In larval gut isolates, gammaproteobacteria was the most abundant (76%, followed by bacilli (15.4%. Molecular characterization placed adult gut bacterial strains into three major classes based on abundance: gammaproteobacteria (66%, bacilli (16.7% and flavobacteria (16.7%. Esterase activity from 19 gut bacterial isolates ranged from 0.072 to 2.32 µmol/min/mg protein. Esterase bands were observed in 15 bacterial strains and the banding pattern differed in Bacillus cereus – KC985225 and Pantoea agglomerans – KC985229. The bands were characterized as carboxylesterase with profenofos used as an inhibitor. Minimal media study showed that B. cereus degraded indoxacarb up to 20%, so it could use indoxacarb for metabolism and growth. Furthermore, esterase activity was greater with minimal media than control media: 1.87 versus 0.26 µmol/min/mg protein. Apart from the insect esterases, bacterial carboxylesterase may aid in the degradation of insecticides in DBM.

  5. Bakteri Simbion Gastropoda Pleuroploca trapesium Dari Perairan Ternate, Sebagai Alternatif Antibakteri MDR (Bacterial Symbiont Gastropoda Pleuroploca trapezium from Ternate, as Alternative Antibacterial MDR

    Directory of Open Access Journals (Sweden)

    Delianis Pringgenies

    2014-03-01

    The bacteria resistant to some antibiotics are known as multi drug resistant (MDR. To overcome the problem, it is needed to search for a new antibiotic compounds more effectively and efficiently. This study aims to identify potential from symbionts of Pleuroploca trapezium as a source of antibacteria MDR and identifying the bacteria that were active against the MDR. Samples were collected from Ternate, Maluku. Isolation of symbiotic bacteria, screening for bacteria which producing secondary metabolites as anti-MDR bacteria, antibacterial test, isolation of clinical pathogenic bacteria of MDR. Conducting anti-bacterial sensitivity test,  sensitivity test for antibacterial,  DNA exctraction, DNA amplification based on PCR method, DNA sequencing.  Result of 16S r-DNA sequence was then analyzed and edited using GENETYX program and followed by 16S rDNA sequence analysis. Screening of bacteria associated with P. trapezium resulted in 19 isolates with 5 active bacteria. Based on the size of the zone forming and the consistency of zone, so the best isolate is TPT 4.7. The identification shows that TPT 4.7 has a close relationship with the Paracoccus sp. MBIC4019 with homologi of 95%, which shows the relationship at the genus level. Its suggest that these results are very promising as a new antibacterial material. Keywords: antibacterial, symbiotic bacteria, Pleuroploca trapezium, multi drugs resistant

  6. Novel bacterial sulfur oxygenase reductases from bioreactors treating gold-bearing concentrates

    DEFF Research Database (Denmark)

    Chen, Z-W; Liu, Y-Y; Wu, J-F

    2007-01-01

    The microbial community and sulfur oxygenase reductases of metagenomic DNA from bioreactors treating gold-bearing concentrates were studied by 16S rRNA library, real-time polymerase chain reaction (RT-PCR), conventional cultivation, and molecular cloning. Results indicated that major bacterial......) of bacteria and archaea were 4.59 x 10(9) and 6.68 x 10(5), respectively. Bacterial strains representing Acidithiobacillus, Leptospirillum, and Sulfobacillus were isolated from the bioreactors. To study sulfur oxidation in the reactors, pairs of new PCR primers were designed for the detection of sulfur...... oxygenase reductase (SOR) genes. Three sor-like genes, namely, sor (Fx), sor (SA), and sor (SB) were identified from metagenomic DNAs of the bioreactors. The sor (Fx) is an inactivated SOR gene and is identical to the pseudo-SOR gene of Ferroplasma acidarmanus. The sor (SA) and sor (SB) showed...

  7. Nitrogen gas plasma treatment of bacterial spores induces oxidative stress that damages the genomic DNA.

    Science.gov (United States)

    Sakudo, Akikazu; Toyokawa, Yoichi; Nakamura, Tetsuji; Yagyu, Yoshihito; Imanishi, Yuichiro

    2017-01-01

    Gas plasma, produced by a short high‑voltage pulse generated from a static induction thyristor power supply [1.5 kilo pulse/sec (kpps)], was demonstrated to inactivate Geobacillus stearothermophilus spores (decimal reduction time at 15 min, 2.48 min). Quantitative polymerase chain reaction and enzyme‑linked immunosorbent assays further indicated that nitrogen gas plasma treatment for 15 min decreased the level of intact genomic DNA and increased the level of 8-hydroxy-2'-deoxyguanosine, a major product of DNA oxidation. Three potential inactivation factors were generated during operation of the gas plasma instrument: Heat, longwave ultraviolet-A and oxidative stress (production of hydrogen peroxide, nitrite and nitrate). Treatment of the spores with hydrogen peroxide (3x2‑4%) effectively inactivated the bacteria, whereas heat treatment (100˚C), exposure to UV-A (75‑142 mJ/cm2) and 4.92 mM peroxynitrite (•ONOO‑), which is decomposed into nitrite and nitrate, did not. The results of the present study suggest the gas plasma treatment inactivates bacterial spores primarily by generating hydrogen peroxide, which contributes to the oxidation of the host genomic DNA.

  8. Carboxyl-functionalized magnetic microparticle carrier for isolation and identification of DNA in dairy products

    International Nuclear Information System (INIS)

    Horak, Daniel; Rittich, Bohuslav; Spanova, Alena

    2007-01-01

    Magnetite nanoparticles about 14nm in diameter were obtained by chemical coprecipitation of Fe(II) and Fe(III) salts with aqueous ammonia in the presence of poly(ethylene glycol) (PEG). Magnetic poly(glycidyl methacrylate) (PGMA) microspheres about 1μm in diameter were prepared by dispersion polymerization of GMA in aqueous ethanol in the presence of PEG-coated magnetite nanoparticles. The microspheres were hydrolyzed and carboxyl groups introduced by oxidation with KMnO 4 . The particles reversibly bound bacterial DNA of Bifidobacterium and Lactobacillus genera in the presence of high concentrations of PEG 6000 and sodium chloride from crude cell lysates of various dairy products (butter milk, cheese, yoghurt, probiotic tablets) or from cell lyophilisates. The presence of Bifidobacterium and Lactobacillus DNA in samples was confirmed by PCR amplification

  9. Carboxyl-functionalized magnetic microparticle carrier for isolation and identification of DNA in dairy products

    Energy Technology Data Exchange (ETDEWEB)

    Horak, Daniel [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovskeho Sq. 2, 162 06 Prague 6 (Czech Republic)]. E-mail: horak@imc.cas.cz; Rittich, Bohuslav [Masaryk University Brno, Tvrdeho 14, 602 00 Brno (Czech Republic)]. E-mail: rittich@sci.muni.cz; Spanova, Alena [Masaryk University Brno, Tvrdeho 14, 602 00 Brno (Czech Republic)]. E-mail: spanova@sci.muni.cz

    2007-04-15

    Magnetite nanoparticles about 14nm in diameter were obtained by chemical coprecipitation of Fe(II) and Fe(III) salts with aqueous ammonia in the presence of poly(ethylene glycol) (PEG). Magnetic poly(glycidyl methacrylate) (PGMA) microspheres about 1{mu}m in diameter were prepared by dispersion polymerization of GMA in aqueous ethanol in the presence of PEG-coated magnetite nanoparticles. The microspheres were hydrolyzed and carboxyl groups introduced by oxidation with KMnO{sub 4}. The particles reversibly bound bacterial DNA of Bifidobacterium and Lactobacillus genera in the presence of high concentrations of PEG 6000 and sodium chloride from crude cell lysates of various dairy products (butter milk, cheese, yoghurt, probiotic tablets) or from cell lyophilisates. The presence of Bifidobacterium and Lactobacillus DNA in samples was confirmed by PCR amplification.

  10. Bacterial Exposures and Associations with Atopy and Asthma in Children.

    Directory of Open Access Journals (Sweden)

    Maria Valkonen

    Full Text Available The increase in prevalence of asthma and atopic diseases in Western countries has been linked to aspects of microbial exposure patterns of people. It remains unclear which microbial aspects contribute to the protective farm effect.The objective of this study was to identify bacterial groups associated with prevalence of asthma and atopy, and to quantify indoor exposure to some of these bacterial groups.A DNA fingerprinting technique, denaturing gradient gel electrophoresis (DGGE, was applied to mattress dust samples of farm children and control children in the context of the GABRIEL Advanced study. Associations between signals in DGGE and atopy, asthma and other allergic health outcomes were analyzed. Quantitative DNA based assays (qPCR for four bacterial groups were applied on the dust samples to seek quantitative confirmation of associations indicated in DNA fingerprinting.Several statistically significant associations between individual bacterial signals and also bacterial diversity in DGGE and health outcomes in children were observed. The majority of these associations showed inverse relationships with atopy, less so with asthma. Also, in a subsequent confirmation study using a quantitative method (qPCR, higher mattress levels of specifically targeted bacterial groups - Mycobacterium spp., Bifidobacteriaceae spp. and two different clusters of Clostridium spp. - were associated with a lower prevalence of atopy.DNA fingerprinting proved useful in identifying bacterial signals that were associated with atopy in particular. These findings were quantitatively confirmed for selected bacterial groups with a second method. High correlations between the different bacterial exposures impede a clear attribution of protective effects to one specific bacterial group. More diverse bacterial flora in mattress dust may link to microbial exposure patterns that protect against development of atopic diseases.

  11. Bacterial sex in dental plaque.

    Science.gov (United States)

    Olsen, Ingar; Tribble, Gena D; Fiehn, Nils-Erik; Wang, Bing-Yan

    2013-01-01

    Genes are transferred between bacteria in dental plaque by transduction, conjugation, and transformation. Membrane vesicles can also provide a mechanism for horizontal gene transfer. DNA transfer is considered bacterial sex, but the transfer is not parallel to processes that we associate with sex in higher organisms. Several examples of bacterial gene transfer in the oral cavity are given in this review. How frequently this occurs in dental plaque is not clear, but evidence suggests that it affects a number of the major genera present. It has been estimated that new sequences in genomes established through horizontal gene transfer can constitute up to 30% of bacterial genomes. Gene transfer can be both inter- and intrageneric, and it can also affect transient organisms. The transferred DNA can be integrated or recombined in the recipient's chromosome or remain as an extrachromosomal inheritable element. This can make dental plaque a reservoir for antimicrobial resistance genes. The ability to transfer DNA is important for bacteria, making them better adapted to the harsh environment of the human mouth, and promoting their survival, virulence, and pathogenicity.

  12. Bacterial sex in dental plaque

    Directory of Open Access Journals (Sweden)

    Ingar Olsen

    2013-06-01

    Full Text Available Genes are transferred between bacteria in dental plaque by transduction, conjugation, and transformation. Membrane vesicles can also provide a mechanism for horizontal gene transfer. DNA transfer is considered bacterial sex, but the transfer is not parallel to processes that we associate with sex in higher organisms. Several examples of bacterial gene transfer in the oral cavity are given in this review. How frequently this occurs in dental plaque is not clear, but evidence suggests that it affects a number of the major genera present. It has been estimated that new sequences in genomes established through horizontal gene transfer can constitute up to 30% of bacterial genomes. Gene transfer can be both inter- and intrageneric, and it can also affect transient organisms. The transferred DNA can be integrated or recombined in the recipient's chromosome or remain as an extrachromosomal inheritable element. This can make dental plaque a reservoir for antimicrobial resistance genes. The ability to transfer DNA is important for bacteria, making them better adapted to the harsh environment of the human mouth, and promoting their survival, virulence, and pathogenicity.

  13. Analysis of isolates within species of anuran trypanosomes using random amplified polymorphic DNA.

    Science.gov (United States)

    Lun, Z R; Desser, S S

    1996-01-01

    A total of 20 decamer primers were used to generate random applied polymorphic DNA (RAPD) markers from 5 isolates of Trypanosoma fallisi, 3 isolates of T. ranarum, 2 isolates of T. rotatorium, and 2 isolates of T. rotatorium-like trypanosomes in addition to 2 species from the American Type Culture Collection, T. chattoni (ATCC 50294) and Trypanosoma sp. (ATCC 50295). A slight polymorphism was observed among the four isolates of T. fallisi obtained form American toads, Bufo americanus, collected in Algonquin Park, Ontario, Canada, and an isolate obtained from the same species of host collected in Marquette, Michigan, United States, and produced similarity coefficients ranging from 80.7% to 96.9%. Pronounced polymorphism was recorded among the three isolates of T. ranarum from bullfrogs, Rana catesbeiana, collected in Ontario, Canada, and in Maryland, United States, and from a Northern leopard frog, R. pipiens, collected in Minnesota (USA). The similarity coefficients ranged from 54.7% to 59.5%, suggesting that alleles of these isolates were conserved over a wide geographic range. The high degree of polymorphism observed in two isolates of T. rotatorium from a bullfrog collected in Ontario and two isolates of a T. rotatorium-like parasite from the green frog R. clamitans, collected in Louisiana (USA) suggests that they are different species. These results reflect the high similarity among isolates from the same geographic location and the pronounced polymorphism apparent among isolates from distant geographic locations.

  14. Visual Analysis of DNA Microarray Data for Accurate Molecular Identification of Non-albicans Candida Isolates from Patients with Candidemia Episodes

    OpenAIRE

    De Luca Ferrari, Michela; Ribeiro Resende, Mariângela; Sakai, Kanae; Muraosa, Yasunori; Lyra, Luzia; Gonoi, Tohru; Mikami, Yuzuru; Tominaga, Kenichiro; Kamei, Katsuhiko; Zaninelli Schreiber, Angelica; Trabasso, Plinio; Moretti, Maria Luiza

    2013-01-01

    The performance of a visual slide-based DNA microarray for the identification of non-albicans Candida spp. was evaluated. Among 167 isolates that had previously been identified by Vitek 2, the agreement between DNA microarray and sequencing results was 97.6%. This DNA microarray platform showed excellent performance.

  15. ‘Lactomassilus timonensis,’ a new anaerobic bacterial species isolated from the milk of a healthy African mother

    Directory of Open Access Journals (Sweden)

    A.H. Togo

    2018-01-01

    Full Text Available We here report the main characteristics of a new anaerobic bacterial genus and species ‘Lactomassilus timonensis,’ strain Marseille-P4641T (CSUR = P4641, isolated by microbial culturomics from the milk of a 35-year-old healthy lactating mother from Mali. Keywords: Culturomics, Human breast milk microbiota, Lactomassilus timonensis, Taxonomy

  16. Investigation of Endophytic Bacterial Community in Supposedly Axenic Cultures of Pineapple and Orchids with Evidence on Abundant Intracellular Bacteria.

    Science.gov (United States)

    Esposito-Polesi, Natalia Pimentel; de Abreu-Tarazi, Monita Fiori; de Almeida, Cristina Vieira; Tsai, Siu Mui; de Almeida, Marcílio

    2017-01-01

    Asepsis, defined as the absence of microbial contamination, is one of the most important requirements of plant micropropagation. In long-term micropropagated cultures, there may occasionally occur scattered microorganism growth in the culture medium. These microorganisms are common plant components and are known as latent endophytes. Thus, the aim of this research was to investigate the presence of endophytic bacteria in asymptomatic pineapple and orchid microplants, which were cultivated in three laboratories for 1 year. Isolation and characterization of bacterial isolates, PCR-DGGE from total genomic DNA of microplants and ultrastructural analysis of leaves were performed. In the culture-dependent technique, it was only possible to obtain bacterial isolates from pineapple microplants. In this case, the bacteria genera identified in the isolation technique were Bacillus, Acinetobacter, and Methylobacterium. The scanning electron microscopy and transmission electron microscopy (SEM and TEM) analyses revealed the presence of endophytic bacteria in intracellular spaces in the leaves of pineapple and orchid microplants, independent of the laboratory or cultivation protocol. Our results strongly indicate that there are endophytic bacterial communities inhabiting the microplants before initiation of the in vitro culture and that some of these endophytes persist in their latent form and can also grow in the culture medium even after long-term micropropagation, thus discarding the concept of "truly axenic plants."

  17. A model to explain plant growth promotion traits: a multivariate analysis of 2,211 bacterial isolates.

    Directory of Open Access Journals (Sweden)

    Pedro Beschoren da Costa

    Full Text Available Plant growth-promoting bacteria can greatly assist sustainable farming by improving plant health and biomass while reducing fertilizer use. The plant-microorganism-environment interaction is an open and complex system, and despite the active research in the area, patterns in root ecology are elusive. Here, we simultaneously analyzed the plant growth-promoting bacteria datasets from seven independent studies that shared a methodology for bioprospection and phenotype screening. The soil richness of the isolate's origin was classified by a Principal Component Analysis. A Categorical Principal Component Analysis was used to classify the soil richness according to isolate's indolic compound production, siderophores production and phosphate solubilization abilities, and bacterial genera composition. Multiple patterns and relationships were found and verified with nonparametric hypothesis testing. Including niche colonization in the analysis, we proposed a model to explain the expression of bacterial plant growth-promoting traits according to the soil nutritional status. Our model shows that plants favor interaction with growth hormone producers under rich nutrient conditions but favor nutrient solubilizers under poor conditions. We also performed several comparisons among the different genera, highlighting interesting ecological interactions and limitations. Our model could be used to direct plant growth-promoting bacteria bioprospection and metagenomic sampling.

  18. Molecular Epidemiologic Typing Systems of Bacterial Pathogens: Current Issues and Perpectives

    Directory of Open Access Journals (Sweden)

    Struelens Marc J

    1998-01-01

    Full Text Available The epidemiologic typing of bacterial pathogens can be applied to answer a number of different questions: in case of outbreak, what is the extent and mode of transmission of epidemic clone(s ? In case of long-term surveillance, what is the prevalence over time and the geographic spread of epidemic and endemic clones in the population? A number of molecular typing methods can be used to classify bacteria based on genomic diversity into groups of closely-related isolates (presumed to arise from a common ancestor in the same chain of transmission and divergent, epidemiologically-unrelated isolates (arising from independent sources of infection. Ribotyping, IS-RFLP fingerprinting, macrorestriction analysis of chromosomal DNA and PCR-fingerprinting using arbitrary sequence or repeat element primers are useful methods for outbreak investigations and regional surveillance. Library typing systems based on multilocus sequence-based analysis and strain-specific probe hybridization schemes are in development for the international surveillance of major pathogens like Mycobacterium tuberculosis. Accurate epidemiological interpretation of data obtained with molecular typing systems still requires additional research on the evolution rate of polymorphic loci in bacterial pathogens.

  19. Identification and Genetic Characterization of Ralstonia solanacearum Species Complex Isolates from Cucurbita maxima in China.

    Science.gov (United States)

    She, Xiaoman; Yu, Lin; Lan, Guobing; Tang, Yafei; He, Zifu

    2017-01-01

    Ralstonia solanacearum species complex is a devastating phytopathogen with an unusually wide host range, and new host plants are continuously being discovered. In June 2016, a new bacterial wilt on Cucurbita maxima was observed in Guangdong province, China. Initially, in the adult plant stage, several leaves of each plant withered suddenly and drooped; the plant then wilted completely, and the color of their vasculature changed to dark brown, ultimately causing the entire plant to die. Creamy-whitish bacterial masses were observed to ooze from crosscut stems of these diseased plants. To develop control strategies for C. maxima bacterial wilt, the causative pathogenic isolates were identified and characterized. Twenty-four bacterial isolates were obtained from diseased C. maxima plants, and 16S rRNA gene sequencing and pathogenicity analysis results indicated that the pathogen of C. maxima bacterial wilt was Ralstonia solanacearum . The results from DNA-based analysis, host range determination and bacteriological identification confirmed that the 24 isolates belonged to R. solanacearum phylotype I, race 1, and eight of these isolates belonged to biovar 3, while 16 belonged to biovar 4. Based on the results of partial egl gene sequence analysis, the 24 isolates clustered into three egl- sequence type groups, sequevars 17, 45, and 56. Sequevar 56 is a new sequevar which is described for the first time in this paper. An assessment of the resistance of 21 pumpkin cultivars revealed that C. moschata cv. Xiangyu1 is resistant to strain RS378, C. moschata cv. Xiangmi is moderately resistant to strain RS378, and 19 other pumpkin cultivars, including four C. maxima cultivars and 15 C. moschata cultivars, are susceptible to strain RS378. To the best of our knowledge, this is the first report of C. maxima bacterial wilt caused by R. solanacearum race 1 in the world. Our results provide valuable information for the further development of control strategies for C. maxima wilt

  20. Identification and Genetic Characterization of Ralstonia solanacearum Species Complex Isolates from Cucurbita maxima in China

    Directory of Open Access Journals (Sweden)

    Xiaoman She

    2017-10-01

    Full Text Available Ralstonia solanacearum species complex is a devastating phytopathogen with an unusually wide host range, and new host plants are continuously being discovered. In June 2016, a new bacterial wilt on Cucurbita maxima was observed in Guangdong province, China. Initially, in the adult plant stage, several leaves of each plant withered suddenly and drooped; the plant then wilted completely, and the color of their vasculature changed to dark brown, ultimately causing the entire plant to die. Creamy-whitish bacterial masses were observed to ooze from crosscut stems of these diseased plants. To develop control strategies for C. maxima bacterial wilt, the causative pathogenic isolates were identified and characterized. Twenty-four bacterial isolates were obtained from diseased C. maxima plants, and 16S rRNA gene sequencing and pathogenicity analysis results indicated that the pathogen of C. maxima bacterial wilt was Ralstonia solanacearum. The results from DNA-based analysis, host range determination and bacteriological identification confirmed that the 24 isolates belonged to R. solanacearum phylotype I, race 1, and eight of these isolates belonged to biovar 3, while 16 belonged to biovar 4. Based on the results of partial egl gene sequence analysis, the 24 isolates clustered into three egl- sequence type groups, sequevars 17, 45, and 56. Sequevar 56 is a new sequevar which is described for the first time in this paper. An assessment of the resistance of 21 pumpkin cultivars revealed that C. moschata cv. Xiangyu1 is resistant to strain RS378, C. moschata cv. Xiangmi is moderately resistant to strain RS378, and 19 other pumpkin cultivars, including four C. maxima cultivars and 15 C. moschata cultivars, are susceptible to strain RS378. To the best of our knowledge, this is the first report of C. maxima bacterial wilt caused by R. solanacearum race 1 in the world. Our results provide valuable information for the further development of control strategies

  1. Isolasi dan Identifikasi Bakteri dari Tinja Orangutan Penderita Gangguan Gastrointestinal (BACTERIAL ISOLATION AND IDENTIFICATION IN FAECES OF ORANGUTAN WITH GASTROINTESTINAL DISTURBANCE

    Directory of Open Access Journals (Sweden)

    Michael Haryadi Wibowo

    2016-03-01

    Full Text Available Orangutans are among protected animals by the law. One of orangutans’ main health problems isgastrointestinal disease due to bacterial infection. Microbiological data of causative agent of illness inorangutan still not much reported scientifically. This research aim was to identify causative agent ofbacterial infection on gastrointestinal disorder in orangutan isolated from stool samples. The sampleswere collected from Yayasan Konservasi Alam Yogyakarta and Borneo Orangutan Survival, Semboja,Kalimantan Timur. Fresh fecal samples were collected using sterile swab and put them into a steriletransport media. To achieve pure cultures, bacterial isolation was performed by using plate streaking onselective media. Gram stain was done to confirm the cell uniformity and morphology. Bacterialidentification was performed according to Bergey’s Manual Determinative Bacteriology on some biochemicalcharacters to determine the isolated bacteria. The result showed that three bacteria were identified fromstool samples orangutan from Yayasan Konservasi Alam Yogyakarta, i.e.: Citrobacter amalonaticus,Providensia rustigianii, and Proteus mirabilis. Meanwhile, three bacteria, which were Klebsiella planticola,Enterobanter agglomerans and Escherichia coli, were also identified in samples taken from Borneo orangutan.

  2. Mineralisation of 2,6-dichlorobenzamide (BAM) in dichlobenil-exposed soils and isolation of a BAM-mineralising Aminobacter sp

    DEFF Research Database (Denmark)

    Simonsen, A.; Holtze, M.S.; Sørensen, S.R.

    2006-01-01

    dichlobenil being mineralised within 50 days. By inoculating soil showing the fastest mineralisation of BAM into a mineral medium with BAM as the only carbon and nitrogen source an enrichment culture was established. Community analysis based on extracted DNA revealed a change of the bacterial community...... but without any clear indication of key members within the BAM-mineralising culture. Parallel cultivation resulted for the first time in the isolation of a BAM-mineralising bacterium, identified as an Aminobacter sp. Rapid bacterial mineralisation of BAM in dichlobenil-exposed soils....

  3. Validity of the tritiated thymidine method for estimating bacterial growth rates: measurement of isotope dilution during DNA synthesis

    International Nuclear Information System (INIS)

    Pollard, P.C.; Moriarty, D.J.W.

    1984-01-01

    The rate of tritiated thymidine incorporation into DNA was used to estimate bacterial growth rates in aquatic environments. To be accurate, the calculation of growth rates has to include a factor for the dilution of isotope before incorporation. The validity of an isotope dilution analysis to determine this factor was verified in experiments reported here with cultures of a marine bacterium growing in a chemostat. Growth rates calculated from data on chemostat dilution rates and cell density agreed well with rates calculated by tritiated thymidine incorporation into DNA and isotope dilution analysis. With sufficiently high concentrations of exogenous thymidine, de novo synthesis of deoxythymidine monophosphate was inhibited, thereby preventing the endogenous dilution of isoope. The thymidine technique was also shown to be useful for measuring growth rates of mixed suspensions of bacteria growing anaerobically. Thymidine was incorporated into the DNA of a range of marine pseudomonads that were investigated. Three species did not take up thymidine. The common marine cyanobacterium Synechococcus species did not incorporate thymidine into DNA

  4. Bacterial diversity in a soil sample from Uranium mining waste pile as estimated via a culture-independent 16S rDNA approach

    International Nuclear Information System (INIS)

    Satchanska, G.; Golovinsky, E.; Selenska-Pobell, S.

    2004-01-01

    Bacterial diversity was studied in a soil sample collected from a uranium mining waste pile situated near the town of Johanngeorgenstadt, Germany. As estimated by ICP-MS analysis the studied sample was highly contaminated with Fe, Al, Mn, Zn, As, Pb and U. The 16S rDNA retrieval, applied in this study, demonstrated that more than the half of the clones of the constructed 16S rDNA library were represented by individual RFLP profiles. This indicates that the composition of the bacterial community in the sample was very complex. However, several 16S rDNA RFLP groups were found to be predominant and they were subjected to a sequence analysis. The most predominant group, which represented about 13% of the clones of the 16S rDNA library, was affiliated with the Holophaga/Acidobacterium phylum. Significant was also the number of the proteobacterial sequences which were distributed in one predominant α-proteobacterial cluster representing 11% of the total number of clones and in two equal-sized β- and γ-proteobacterial clusters representing each 6% of the clones. Two smaller groups representing both 2% of the clones were affiliated with Nitrospira and with the novel division WS3. Three of the analysed sequences were evaluated as a novel, not yet described lineage and one as a putative chimera. (authors)

  5. Detection of carboxylesterase and esterase activity in culturable gut bacterial flora isolated from diamondback moth, Plutella xylostella (Linnaeus), from India and its possible role in indoxacarb degradation.

    Science.gov (United States)

    Ramya, Shanivarsanthe Leelesh; Venkatesan, Thiruvengadam; Srinivasa Murthy, Kottilingam; Jalali, Sushil Kumar; Verghese, Abraham

    2016-01-01

    Diamondback moth (DBM), Plutella xylostella (Linnaeus), is a notorious pest of brassica crops worldwide and is resistant to all groups of insecticides. The insect system harbors diverse groups of microbiota, which in turn helps in enzymatic degradation of xenobiotic-like insecticides. The present study aimed to determine the diversity of gut microflora in DBM, quantify esterase activity and elucidate their possible role in degradation of indoxacarb. We screened 11 geographic populations of DBM in India and analyzed them for bacterial diversity. The culturable gut bacterial flora underwent molecular characterization with 16S rRNA. We obtained 25 bacterial isolates from larvae (n=13) and adults (n=12) of DBM. In larval gut isolates, gammaproteobacteria was the most abundant (76%), followed by bacilli (15.4%). Molecular characterization placed adult gut bacterial strains into three major classes based on abundance: gammaproteobacteria (66%), bacilli (16.7%) and flavobacteria (16.7%). Esterase activity from 19 gut bacterial isolates ranged from 0.072 to 2.32μmol/min/mg protein. Esterase bands were observed in 15 bacterial strains and the banding pattern differed in Bacillus cereus - KC985225 and Pantoea agglomerans - KC985229. The bands were characterized as carboxylesterase with profenofos used as an inhibitor. Minimal media study showed that B. cereus degraded indoxacarb up to 20%, so it could use indoxacarb for metabolism and growth. Furthermore, esterase activity was greater with minimal media than control media: 1.87 versus 0.26μmol/min/mg protein. Apart from the insect esterases, bacterial carboxylesterase may aid in the degradation of insecticides in DBM. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  6. Rapid diagnosis of virulent Pasteurella multocida isolated from farm animals with clinical manifestation of pneumonia respiratory infection using 16S rDNA and KMT1 gene

    Directory of Open Access Journals (Sweden)

    Gamal Mohamedin Hassan

    2016-01-01

    Full Text Available Objective: To characterize intra-isolates variation between clinical isolates of Pasteurella multocida (P. multocida isolated from sheep, cattle and buffalo at molecular level to check the distribution of pneumonia and hemorrhagic septicemia in some regions of Fayoum, Egypt. Methods: These isolates were obtained from various locations in the Fayoum Governorate, Egypt and they were identified by amplifying 16S rDNA and KMT1 genes using their DNA as a template in PCR reaction. Results: The results demonstrated that the five selective isolates of P. multocida had similar size of PCR products that generated one band of 16S rDNA having 1 471 bp and KMT1 gene having 460 bp. The phylogenetic tree and similarity of the five selective isolates of P. multocida which were collected from GenBank database were calculated and analyzed for the nucleotide sequence of 16S rDNA and KMT1 genes. The sequencing result of 16S rRNA gene product (1 471 bp for the five selective isolates of P. multocida showed that the isolates of sheep (FUP2 shared 94.08%, 88.10% homology with the buffalo isolate (FUP8 and cattle isolate (FUP9 respectively, whereas, the buffalo isolate (FUP5 shared 98.18% and 94.40% homology with the cattle isolates (FUP12 and FUP9. Conclusions: The results indicated the relationships of P. multocida isolated from buffalo and cattle rather than the close relationships between P. multocida isolated from cattle and sheep. Diagnosis of P. multocida by 16S rDNA and KMT1 gene sequences was important to determine the antigen that is responsible for protective cover within the same group of animals and to help for the production of new vaccines for the control of microbial infection for domestic animals.

  7. Isolation and Antibiogram of Aerobic Nasal Bacterial Flora of Apparently Healthy West African Dwarf Goats

    Directory of Open Access Journals (Sweden)

    B. O. Emikpe

    2009-01-01

    Full Text Available Goats are important in the livestock economy by their adaptability to adverse environmental conditions as they are good sources of protein and income for the rural poor. Studies conducted on the bacterial flora of the respiratory tract in goats focused on the pneumonic lungs, with fewer studies on the apparently normal nasal passage and antibiogram of isolated organisms. This study was carried out on 60 apparently healthy West African Dwarf goats. The nasal swab from each goat was analyzed using standard methods. The disc diffusion technique was used for the antibiotic sensitivity test. Three hundred and twenty-eight isolates were obtained. The most frequently isolated species was Streptococcus spp., while Escherichia coli and Staphylococcus aureus were the second dominant bacteria. Other species were isolated at relatively lower rates. The isolation of Mannheimia haemolytica and Pasteurella multocida from the nasal cavity of apparently healthy goats in this study reflects their possible role in most common respiratory diseases encountered in small ruminants. Most of the bacteria were found to be susceptible to streptomycin, quinolones (perfloxacin, ciprofloxacin and ofloxacin and gentamicin, while they were resistant to tetracycline, augmentin and erythromycin. This study shows the relationship between misuse or unrestricted use of antibiotics and drug resistance. Therefore, there is a need for practitioners and researchers to be informed of the appropriate antibiotics to be used in respiratory infections and during control programs.

  8. Direct identification of antibiotic resistance genes on single plasmid molecules using CRISPR/Cas9 in combination with optical DNA mapping

    Science.gov (United States)

    Müller, Vilhelm; Rajer, Fredrika; Frykholm, Karolin; Nyberg, Lena K.; Quaderi, Saair; Fritzsche, Joachim; Kristiansson, Erik; Ambjörnsson, Tobias; Sandegren, Linus; Westerlund, Fredrik

    2016-12-01

    Bacterial plasmids are extensively involved in the rapid global spread of antibiotic resistance. We here present an assay, based on optical DNA mapping of single plasmids in nanofluidic channels, which provides detailed information about the plasmids present in a bacterial isolate. In a single experiment, we obtain the number of different plasmids in the sample, the size of each plasmid, an optical barcode that can be used to identify and trace the plasmid of interest and information about which plasmid that carries a specific resistance gene. Gene identification is done using CRISPR/Cas9 loaded with a guide-RNA (gRNA) complementary to the gene of interest that linearizes the circular plasmids at a specific location that is identified using the optical DNA maps. We demonstrate the principle on clinically relevant extended spectrum beta-lactamase (ESBL) producing isolates. We discuss how the gRNA sequence can be varied to obtain the desired information. The gRNA can either be very specific to identify a homogeneous group of genes or general to detect several groups of genes at the same time. Finally, we demonstrate an example where we use a combination of two gRNA sequences to identify carbapenemase-encoding genes in two previously not characterized clinical bacterial samples.

  9. Application of Pulsed-Field Gel Electrophoresis and Binary Typing as Tools in Veterinary Clinical Microbiology and Molecular Epidemiologic Analysis of Bovine and Human Staphylococcus aureus Isolates

    Science.gov (United States)

    Zadoks, Ruth; van Leeuwen, Willem; Barkema, Herman; Sampimon, Otlis; Verbrugh, Henri; Schukken, Ynte Hein; van Belkum, Alex

    2000-01-01

    Thirty-eight bovine mammary Staphylococcus aureus isolates from diverse clinical, temporal, and geographical origins were genotyped by pulsed-field gel electrophoresis (PFGE) after SmaI digestion of prokaryotic DNA and by means of binary typing using 15 strain-specific DNA probes. Seven pulsed-field types and four subtypes were identified, as were 16 binary types. Concordant delineation of genetic relatedness was documented by both techniques, yet based on practical and epidemiological considerations, binary typing was the preferable method. Genotypes of bovine isolates were compared to 55 previously characterized human S. aureus isolates through cluster analysis of binary types. Genetic clusters containing strains of both human and bovine origin were found, but bacterial genotypes were predominantly associated with a single host species. Binary typing proved an excellent tool for comparison of S. aureus strains, including methicillin-resistant S. aureus, derived from different host species and from different databases. For 28 bovine S. aureus isolates, detailed clinical observations in vivo were compared to strain typing results in vitro. Associations were found between distinct genotypes and severity of disease, suggesting strain-specific bacterial virulence. Circumstantial evidence furthermore supports strain-specific routes of bacterial dissemination. We conclude that PFGE and binary typing can be successfully applied for genetic analysis of S. aureus isolates from bovine mammary secretions. Binary typing in particular is a robust and simple method and promises to become a powerful tool for strain characterization, for resolution of clonal relationships of bacteria within and between host species, and for identification of sources and transmission routes of bovine S. aureus. PMID:10790124

  10. Bacterial Protein-Tyrosine Kinases

    DEFF Research Database (Denmark)

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten

    2010-01-01

    in exopolysaccharide production, virulence, DNA metabolism, stress response and other key functions of the bacterial cell. BY-kinases act through autophosphorylation (mainly in exopolysaccharide production) and phosphorylation of other proteins, which have in most cases been shown to be activated by tyrosine......Bacteria and Eukarya share essentially the same family of protein-serine/threonine kinases, also known as the Hanks-type kinases. However, when it comes to protein-tyrosine phosphorylation, bacteria seem to have gone their own way. Bacterial protein-tyrosine kinases (BY-kinases) are bacterial...... and highlighted their importance in bacterial physiology. Having no orthologues in Eukarya, BY-kinases are receiving a growing attention from the biomedical field, since they represent a particularly promising target for anti-bacterial drug design....

  11. Diversity and antibiograms of bacterial organisms isolated from samples of household drinking-water consumed by HIV-positive individuals in rural settings, South Africa.

    Science.gov (United States)

    Samie, A; Mashao, M B; Bessong, P O; NKgau, T F; Momba, M N B; Obi, C L

    2012-09-01

    Diarrhoea is a hallmark of HIV infections in developing countries, and many diarrhoea-causing agents are often transmitted through water. The objective of the study was to determine the diversity and antibiotic susceptibility profiles of bacterial organisms isolated from samples of household drinking-water consumed by HIV-infected and AIDS patients. In the present study, household water stored for use by HIV-positive patients was tested for microbial quality, and isolated bacterial organisms were analyzed for their susceptibility profiles against 25 different antibiotics. The microbial quality of water was generally poor, and about 58% of water samples (n=270) were contaminated with faecal coliforms, with counts varying from 2 colony-forming unit (CFU)/100 mL to 2.4x10⁴ CFU/100 mL. Values of total coliform counts ranged from 17 CFU/100 mL to 7.9x10⁵/100 mL. In total, 37 different bacterial species were isolated, and the major isolates included Acinetobacter lwoffii (7.5%), Enterobacter cloacae (7.5%), Shigella spp. (14.2%), Yersinia enterocolitica (6.7%), and Pseudomonas spp. (16.3%). No Vibrio cholerae could be isolated; however, V. fluvialis was isolated from three water samples. The isolated organisms were highly resistant to cefazolin (83.5%), cefoxitin (69.2%), ampicillin (66.4%), and cefuroxime (66.2%). Intermediate resistance was observed against gentamicin (10.6%), cefepime (13.4%), ceftriaxone (27.6%), and cefotaxime (29.9%). Levofloxacin (0.7%), ceftazidime (2.2%), meropenem (3%), and ciprofloxacin (3.7%) were the most active antibiotics against all the microorganisms, with all recording less than 5% resistance. Multiple drug resistance was very common, and 78% of the organisms were resistant to three or more antibiotics. Education on treatment of household water is advised for HIV-positive patients, and measures should be taken to improve point-of-use water treatment as immunosuppressed individuals would be more susceptible to opportunistic

  12. Fate of exogenously supplied bacterial DNA in soybean

    Energy Technology Data Exchange (ETDEWEB)

    Ndiku, Luyindula [Commissariat des Sciences Nucleaires, Kinshasa (Zaire). Centre Regional d' Etudes Nucleaires

    1980-01-01

    The fate of exogenously supplied radiolabelled DNA from agrobacterium tumefaciens and micrococcus lysodeikticus was investigated in soybean tissues growing under various physiological conditions. The following observations are made: (a) Rapid degradation and reutilization of the donor DNA was observed in callus tissue culture. (b) Germinating seeds and five-day old seedlings were shown to degrade DNA in the incubation medium and to ultilize these degradation products for their own DNA synthesis. Reutilization could be almost totally suppressed the addition of unlabelled thymidine as a competitor. This allowed a detection of significant amounts of residuel donor closely but transiently associated with the plant tissues. (c) In soybean shoots dipped into a solution of donor DNA, partly this DNA was found to first migrate to the leaves where mostly labelled endogenous DNA was later found. Very large amounts of polymerized exogenous DNA were found in the regenerated roots after 12 days of culture.

  13. Molecular profiles of Venezuelan isolates of Trypanosoma sp. by random amplified polymorphic DNA method.

    Science.gov (United States)

    Perrone, T M; Gonzatti, M I; Villamizar, G; Escalante, A; Aso, P M

    2009-05-12

    Nine Trypanosoma sp. Venezuelan isolates, initially presumed to be T. evansi, were collected from three different hosts, capybara (Apure state), horse (Apure state) and donkey (Guarico state) and compared by the random amplification polymorphic DNA technique (RAPD). Thirty-one to 46 reproducible fragments were obtained with 12 of the 40 primers that were used. Most of the primers detected molecular profiles with few polymorphisms between the seven horse, capybara and donkey isolates. Quantitative analyses of the RAPD profiles of these isolates revealed a high degree of genetic conservation with similarity coefficients between 85.7% and 98.5%. Ten of the primers generated polymorphic RAPD profiles with two of the three Trypanosoma sp. horse isolates, namely TeAp-N/D1 and TeGu-N/D1. The similarity coefficient between these two isolates and the rest, ranged from 57.9% to 68.4% and the corresponding dendrogram clustered TeAp-N/D1 and Te Gu-N/D1 in a genetically distinct group.

  14. Chitosanase purified from bacterial isolate Bacillus licheniformis of ruined vegetables displays broad spectrum biofilm inhibition.

    Science.gov (United States)

    Muslim, Sahira Nsayef; Al-Kadmy, Israa M S; Hussein, Nadheema Hammood; Mohammed Ali, Alaa Naseer; Taha, Buthainah Mohammed; Aziz, Sarah Naji; Kheraif, Abdulaziz Abdullah Al; Divakar, Darshan Devang; Ramakrishnaiah, Ravikumar

    2016-11-01

    A number of bacterial species produces chitosanases which has variety of applications because of its high biodegradability, non-toxicity and antimicrobial assets. In the present study chitosanase is purified from new bacterial species Bacillus licheniformis from spoiled vegetable. This novel strain of Bacillus licheniformis isolated from spoilt cucumber and pepper samples has the ability to produce the chitosanase enzyme when grown on chitosan substrate. Study also examined its antibiofilm properties against diverse bacterial species with biofilm forming ability. The purified chitosanase inhibited the biofilm formation ability for all Gram-negative and Gram-positive biofilm-forming bacteria [biofilm producers] tested in this study in congo red agar and microtiter plate's methods. Highly antibiofilm activity of chitosanase was recorded against Pseudomonas aeruginosa followed by Klebsiella pneumoniae with reduction of biofilm formation upto 22 and 29%, respectively compared with [100] % of control. Biofilm formation has multiple role including ability to enhance resistance and self-protection from external stress. This chitosanase has promising benefit as antibiofilm agent against biofilm forming pathogenic bacteria and has promising application as alternative antibiofilm agents to combat the growing number of multidrug resistant pathogen-associated infections, especially in situation where biofilms are involved. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Acute binge drinking increases serum endotoxin and bacterial DNA levels in healthy individuals.

    Directory of Open Access Journals (Sweden)

    Shashi Bala

    Full Text Available Binge drinking, the most common form of alcohol consumption, is associated with increased mortality and morbidity; yet, its biological consequences are poorly defined. Previous studies demonstrated that chronic alcohol use results in increased gut permeability and increased serum endotoxin levels that contribute to many of the biological effects of chronic alcohol, including alcoholic liver disease. In this study, we evaluated the effects of acute binge drinking in healthy adults on serum endotoxin levels. We found that acute alcohol binge resulted in a rapid increase in serum endotoxin and 16S rDNA, a marker of bacterial translocation from the gut. Compared to men, women had higher blood alcohol and circulating endotoxin levels. In addition, alcohol binge caused a prolonged increase in acute phase protein levels in the systemic circulation. The biological significance of the in vivo endotoxin elevation was underscored by increased levels of inflammatory cytokines, TNFα and IL-6, and chemokine, MCP-1, measured in total blood after in vitro lipopolysaccharide stimulation. Our findings indicate that even a single alcohol binge results in increased serum endotoxin levels likely due to translocation of gut bacterial products and disturbs innate immune responses that can contribute to the deleterious effects of binge drinking.

  16. Isolation and Cloning of cDNA Fragment of Gene Encoding for Multidrug Resistance Associated Protein from M. affine.

    Directory of Open Access Journals (Sweden)

    Utut Widyastuti Suharsono

    2008-11-01

    Full Text Available Isolation and Cloning of cDNA Fragment of Gene Encoding for Multidrug Resistance Associated Protein from M. affine. M. affine can grow well in acid soil with high level of soluble aluminum. One of the important proteins in the detoxifying xenobiotic stress including acid and Al stresses is a multidrug resistance associated protein (MRP encoded by mrp gene. The objective of this research is to isolate and clone the cDNA fragment of MaMrp encoding MRP from M. affine. By reverse transcription, total cDNA had been synthesized from the total RNA as template. The fragment of cDNA MaMrp had been successfully isolated by PCR by using total cDNA as template and mrp primer designed from A. thaliana, yeast, and human. This fragment was successfully inserted into pGEM-T Easy and the recombinant plasmid was successfully introduced into E. coli DH5α. Nucleotide sequence analysis showed that the lenght of MaMrp fragment is 633 bp encoding 208 amino acids. Local alignment analysis based on nucleotide of mRNA showed that MaMrp fragment is 69% identical to AtMrp1 and 63% to AtMrp from A. thaliana. Based on deduced amino acid sequence, MaMRP is 84% identical to part of AtMRP13, 77% to AtMRP12, and 73% to AtMRP1 from A. thaliana respectively. Alignment analysis with AtMRP1 showed that MaMRP fragment is located in TM1 and NBF1 domains and has a specific amino acid sequence QCKAQLQNMEEE.

  17. Bacterial diversity at different stages of the composting process

    Directory of Open Access Journals (Sweden)

    Paulin Lars

    2010-03-01

    Full Text Available Abstract Background Composting is an aerobic microbiological process that is facilitated by bacteria and fungi. Composting is also a method to produce fertilizer or soil conditioner. Tightened EU legislation now requires treatment of the continuously growing quantities of organic municipal waste before final disposal. However, some full-scale composting plants experience difficulties with the efficiency of biowaste degradation and with the emission of noxious odours. In this study we examine the bacterial species richness and community structure of an optimally working pilot-scale compost plant, as well as a full-scale composting plant experiencing typical problems. Bacterial species composition was determined by isolating total DNA followed by amplifying and sequencing the gene encoding the 16S ribosomal RNA. Results Over 1500 almost full-length 16S rRNA gene sequences were analysed and of these, over 500 were present only as singletons. Most of the sequences observed in either one or both of the composting processes studied here were similar to the bacterial species reported earlier in composts, including bacteria from the phyla Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria and Deinococcus-Thermus. In addition, a number of previously undetected bacterial phylotypes were observed. Statistical calculations estimated a total bacterial diversity of over 2000 different phylotypes in the studied composts. Conclusions Interestingly, locally enriched or evolved bacterial variants of familiar compost species were observed in both composts. A detailed comparison of the bacterial diversity revealed a large difference in composts at the species and strain level from the different composting plants. However, at the genus level, the difference was much smaller and illustrated a delay of the composting process in the full-scale, sub-optimally performing plants.

  18. Optimization and molecular identification of novel cellulose degrading bacteria isolated from Egyptian environment

    Directory of Open Access Journals (Sweden)

    Azhar A. Hussain

    2017-06-01

    Full Text Available Cellulase producing bacteria were isolated from both soil and ward poultry, using CMC (carboxymethylcellulose agar medium and screened by iodine method. Cellulase activity of the isolated bacteria was determined by DNS (dinitrosalicylic acid method. The highly cellulolytic isolates (BTN7A, BTN7B, BMS4 and SA5 were identified on the basis of Gram staining, morphological cultural characteristics, and biochemical tests. They were also identified with 16S rDNA analysis. The phylogenetic analysis of their 16S rDNA sequence data showed that BTN7B has 99% similarity with Anoxybacillus flavithermus, BMS4 has 99% similarity with Bacillus megaterium, SA5 has 99% homology with Bacillus amyloliquefaciens and BTN7A was 99% similar with Bacillus subtilis. Cellulase production by these strains was optimized by controlling different environmental and nutritional factors such as pH, temperature, incubation period, different volumes of media, aeration rate and carbon source. The cellulase specific activity was calculated in each case. In conclusion four highly cellulolytic bacterial strains were isolated and identified and the optimum conditions for each one for cellulase production were determined. These strains could be used for converting plant waste to more useful compounds.

  19. Pathogenicity of Bacillus thuringiensis isolated from two species of Acromyrmex (Hymenoptera, Formicidae

    Directory of Open Access Journals (Sweden)

    L. M. N. Pinto

    Full Text Available The control of Acromyrmex leaf-cutting ants is necessary due to the severe damage they cause to diverse crops. A possibility was to control them using the bacterium Bacillus thuringiensis (Bt that characteristically produces insecticidal crystal proteins (ICPs. The ICPs have been effective in controlling lepidopterans, dipterans, and coleopterans, but their action against hymenopterans is unknown. This paper describes an attempt to isolate Bt from ants of two Acromyrmex species, to evaluate its pathogenicity towards these ants, and to test isolates by PCR. Bacterial isolates of Bt obtained from A. crassispinus and A. lundi have been assayed against A. lundi in the laboratory. The bioassays were carried out in BOD at 25°C, with a 12-hour photoperiod, until the seventh day after treatment. The Bt isolates obtained were submitted to total DNA extraction and tested by PCR with primers specific to cry genes. The results showed Bt presence in 40% of the assessed samples. The data from the in vivo assays showed a mortality rate higher than 50% in the target population, with the Bt HA48 isolate causing 100% of corrected mortality. The PCR results of Bt isolates showed a magnification of DNA fragments relative to cry1 genes in 22% of the isolates, and cry9 in 67%. Cry2, cry3, cry7, and cry8 genes were not detected in the tested samples, and 22% had no magnified DNA fragments corresponding to the assessed cry genes. The results are promising not only regarding allele identification in new isolates, but also fort the assays aimed at determining the Bt HA48 LC50's, which can eventually be applied in controlling of Acromyrmex leaf-cutting ants.

  20. Alkaliphilus crotonatoxidans sp. nov., a strictly anaerobic, crotonate-dismutating bacterium isolated from a methanogenic environment.

    Science.gov (United States)

    Cao, Xianhua; Liu, Xiaoli; Dong, Xiuzhu

    2003-07-01

    Two bacterial strains were isolated from methanogenic butyrate-oxidizing mixed cultures. The cells were straight to slightly curved, gram-positive rods that were motile by means of multiple flagella and formed endospores. Growth was observed in the temperature range 15-45 degrees C (optimum 37 degrees C) and pH range 5.5-9.0 (optimum pH 7.5). The novel isolates were strictly anaerobic chemo-organotrophs capable of utilizing yeast extract, peptone, tryptone and a variety of sugars and organic acids, but not glucose. None of the accessory electron acceptors tested (elemental sulfur, thiosulfate or fumarate) improved growth, except crotonate, which was dismutated to butyrate and acetate. The G + C content of the DNA of one of the isolates, strain B11-2T, was 30.6 mol%. Phylogenetic analysis based on 16S rDNA sequence similarity between strain B11-2T and some other strictly anaerobic, spore-forming bacteria indicated that the novel isolates represented a species in cluster XI within the low-GC gram-positive bacteria, being most closely related to Alkaliphilus transvaalensis JCM 10712T. DNA-DNA relatedness between strain B11-2T and A. transvaalensis JCM 10712T was 21%. On the basis of physiological and molecular properties, and cellular fatty acid and cell wall compositions, the novel isolates are proposed to represent a novel species of the genus Alkaliphilus, for which the name Alkaliphilus crotonatoxidans is proposed (type strain B11-2T=AS 1.2897T=JCM 11672T).