WorldWideScience

Sample records for bacterial antibioticresistance enzymes

  1. A bacterial antibiotic-resistance gene that complements the human multidrug-resistance P-glycoprotein gene

    NARCIS (Netherlands)

    van Veen, HW; Callaghan, R; Soceneantu, L; Sardini, A; Konings, WN; Higgins, CF

    1998-01-01

    Bacteria have developed many fascinating antibiotic-resistance mechanisms(1,2). A protein in Lactococcus lactis, LmrA, mediates antibiotic resistance by extruding amphiphilic compounds from the inner leaflet of the cytoplasmic membrane(3,4). Unlike other known bacterial multidrug-resistance

  2. An investigation of total bacterial communities, culturable antibiotic-resistant bacterial communities and integrons in the river water environments of Taipei city.

    Science.gov (United States)

    Yang, Chu-Wen; Chang, Yi-Tang; Chao, Wei-Liang; Shiung, Iau-Iun; Lin, Han-Sheng; Chen, Hsuan; Ho, Szu-Han; Lu, Min-Jheng; Lee, Pin-Hsuan; Fan, Shao-Ning

    2014-07-30

    The intensive use of antibiotics may accelerate the development of antibiotic-resistant bacteria (ARB). The global geographical distribution of environmental ARB has been indicated by many studies. However, the ARB in the water environments of Taiwan has not been extensively investigated. The objective of this study was to investigate the communities of ARB in Huanghsi Stream, which presents a natural acidic (pH 4) water environment. Waishuanghsi Stream provides a neutral (pH 7) water environment and was thus also monitored to allow comparison. The plate counts of culturable bacteria in eight antibiotics indicate that the numbers of culturable carbenicillin- and vancomycin-resistant bacteria in both Huanghsi and Waishuanghsi Streams are greater than the numbers of culturable bacteria resistant to the other antibiotics tested. Using a 16S rDNA sequencing approach, both the antibiotic-resistant bacterial communities (culture-based) and the total bacterial communities (metagenome-based) in Waishuanghsi Stream exhibit a higher diversity than those in Huanghsi Stream were observed. Of the three classes of integron, only class I integrons were identified in Waishuanghsi Stream. Our results suggest that an acidic (pH 4) water environment may not only affect the community composition of antibiotic-resistant bacteria but also the horizontal gene transfer mediated by integrons. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. The Dimerization Domain in DapE Enzymes Is required for Catalysis

    OpenAIRE

    Nocek, Boguslaw; Starus, Anna; Makowska-Grzyska, Magdalena; Gutierrez, Blanca; Sanchez, Stephen; Jedrzejczak, Robert; Mack, Jamey C.; Olsen, Kenneth W.; Joachimiak, Andrzej; Holz, Richard C.

    2014-01-01

    The emergence of antibiotic-resistant bacterial strains underscores the importance of identifying new drug targets and developing new antimicrobial compounds. Lysine and meso-diaminopimelic acid are essential for protein production and bacterial peptidoglycan cell wall remodeling and are synthesized in bacteria by enzymes encoded within dap operon. Therefore dap enzymes may serve as excellent targets for developing a new class of antimicrobial agents. The dapE-encoded N-succinyl-L,L-diaminopi...

  4. Inactivation Effect of Antibiotic-Resistant Gene Using Chlorine Disinfection

    Directory of Open Access Journals (Sweden)

    Takashi Furukawa

    2017-07-01

    Full Text Available The aim of this study was to elucidate the inactivation effects on the antibiotic-resistance gene (vanA of vancomycin-resistant enterococci (VRE using chlorination, a disinfection method widely used in various water treatment facilities. Suspensions of VRE were prepared by adding VRE to phosphate-buffered saline, or the sterilized secondary effluent of a wastewater treatment plant. The inactivation experiments were carried out at several chlorine concentrations and stirring time. Enterococci concentration and presence of vanA were determined. The enterococci concentration decreased as chlorine concentrations and stirring times increased, with more than 7.0 log reduction occurring under the following conditions: 40 min stirring at 0.5 mg Cl2/L, 20 min stirring at 1.0 mg Cl2/L, and 3 min stirring at 3.0 mg Cl2/L. In the inactivation experiment using VRE suspended in secondary effluent, the culturable enterococci required much higher chlorine concentration and longer treatment time for complete disinfection than the cases of suspension of VRE. However, vanA was detected in all chlorinated suspensions of VRE, even in samples where no enterococcal colonies were present on the medium agar plate. The chlorine disinfection was not able to destroy antibiotic-resistance genes, though it can inactivate and decrease bacterial counts of antibiotic-resistant bacteria (ARB. Therefore, it was suggested that remaining ARB and/or antibiotic-resistance gene in inactivated bacterial cells after chlorine disinfection tank could be discharged into water environments.

  5. Bacterial Enzymes and Antibiotic Resistance- Oral Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Maltz, Lauren [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-25

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure of the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β-lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes.

  6. Influence of Chicken Manure Fertilization on Antibiotic-Resistant Bacteria in Soil and the Endophytic Bacteria of Pakchoi

    Directory of Open Access Journals (Sweden)

    Qingxiang Yang

    2016-06-01

    Full Text Available Animal manure is commonly used as fertilizer for agricultural crops worldwide, even though it is believed to contribute to the spread of antibiotic resistance from animal intestines to the soil environment. However, it is unclear whether and how there is any impact of manure fertilization on populations and community structure of antibiotic-resistant endophytic bacteria (AREB in plant tissues. To investigate the effect of manure and organic fertilizer on endophytic bacterial communities, pot experiments were performed with pakchoi grown with the following treatments: (1 non-treated; (2 chicken manure-treated and (3 organic fertilizer-treated. Manure or organic fertilizer significantly increased the abundances of total cultivable endophytic bacteria (TCEB and AREB in pakchoi, and the effect of chicken manure was greater than that of organic fertilizer. Further, 16S rDNA sequencing and the phylogenetic analysis indicated that chicken manure or organic fertilizer application increased the populations of multiple antibiotic-resistant bacteria (MARB in soil and multiple antibiotic-resistant endophytic bacteria (MAREB in pakchoi. The identical multiple antibiotic-resistant bacterial populations detected in chicken manure, manure- or organic fertilizer-amended soil and the vegetable endophytic system were Brevundimonas diminuta, Brachybacterium sp. and Bordetella sp., suggesting that MARB from manure could enter and colonize the vegetable tissues through manure fertilization. The fact that some human pathogens with multiple antibiotic resistance were detected in harvested vegetables after growing in manure-amended soil demonstrated a potential threat to human health.

  7. The dimerization domain in DapE enzymes is required for catalysis.

    Directory of Open Access Journals (Sweden)

    Boguslaw Nocek

    Full Text Available The emergence of antibiotic-resistant bacterial strains underscores the importance of identifying new drug targets and developing new antimicrobial compounds. Lysine and meso-diaminopimelic acid are essential for protein production and bacterial peptidoglycan cell wall remodeling and are synthesized in bacteria by enzymes encoded within dap operon. Therefore dap enzymes may serve as excellent targets for developing a new class of antimicrobial agents. The dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE converts N-succinyl-L,L-diaminopimelic acid to L,L-diaminopimelic acid and succinate. The enzyme is composed of catalytic and dimerization domains, and belongs to the M20 peptidase family. To understand the specific role of each domain of the enzyme we engineered dimerization domain deletion mutants of DapEs from Haemophilus influenzae and Vibrio cholerae, and characterized these proteins structurally and biochemically. No activity was observed for all deletion mutants. Structural comparisons of wild-type, inactive monomeric DapE enzymes with other M20 peptidases suggest that the dimerization domain is essential for DapE enzymatic activity. Structural analysis and molecular dynamics simulations indicate that removal of the dimerization domain increased the flexibility of a conserved active site loop that may provide critical interactions with the substrate.

  8. The dimerization domain in DapE enzymes is required for catalysis.

    Science.gov (United States)

    Nocek, Boguslaw; Starus, Anna; Makowska-Grzyska, Magdalena; Gutierrez, Blanca; Sanchez, Stephen; Jedrzejczak, Robert; Mack, Jamey C; Olsen, Kenneth W; Joachimiak, Andrzej; Holz, Richard C

    2014-01-01

    The emergence of antibiotic-resistant bacterial strains underscores the importance of identifying new drug targets and developing new antimicrobial compounds. Lysine and meso-diaminopimelic acid are essential for protein production and bacterial peptidoglycan cell wall remodeling and are synthesized in bacteria by enzymes encoded within dap operon. Therefore dap enzymes may serve as excellent targets for developing a new class of antimicrobial agents. The dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) converts N-succinyl-L,L-diaminopimelic acid to L,L-diaminopimelic acid and succinate. The enzyme is composed of catalytic and dimerization domains, and belongs to the M20 peptidase family. To understand the specific role of each domain of the enzyme we engineered dimerization domain deletion mutants of DapEs from Haemophilus influenzae and Vibrio cholerae, and characterized these proteins structurally and biochemically. No activity was observed for all deletion mutants. Structural comparisons of wild-type, inactive monomeric DapE enzymes with other M20 peptidases suggest that the dimerization domain is essential for DapE enzymatic activity. Structural analysis and molecular dynamics simulations indicate that removal of the dimerization domain increased the flexibility of a conserved active site loop that may provide critical interactions with the substrate.

  9. Coproduction of detergent compatible bacterial enzymes and stain removal evaluation.

    Science.gov (United States)

    Niyonzima, Francois N; More, Sunil S

    2015-10-01

    Most of the detergents that are presently produced contain the detergent compatible enzymes to improve and accelerate the washing performance by removing tough stains. The process is environment friendly as the use of enzymes in the detergent formulation reduces the utilization of toxic detergent constituents. The current trend is to use the detergent compatible enzymes that are active at low and ambient temperature in order to save energy and maintain fabric quality. As the detergent compatible bacterial enzymes are used together in the detergent formulation, it is important to co-produce the detergent enzymes in a single fermentation medium as the enzyme stability is assured, and production cost gets reduced enormously. The review reports on the production, purification, characterization and application of detergent compatible amylases, lipases, and proteases are available. However, there is no specific review or minireview on the concomitant production of detergent compatible amylases, lipases, and proteases. In this minireview, the coproduction of detergent compatible enzymes by bacterial species, enzyme stability towards detergents and detergent components, and stain release analysis were discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Therapeutic Potential of a Scorpion Venom-Derived Antimicrobial Peptide and Its Homologs Against Antibiotic-Resistant Gram-Positive Bacteria

    Directory of Open Access Journals (Sweden)

    Gaomin Liu

    2018-05-01

    Full Text Available The alarming rise in the prevalence of antibiotic resistance among pathogenic bacteria poses a unique challenge for the development of effective therapeutic agents. Antimicrobial peptides (AMPs have attracted a great deal of attention as a possible solution to the increasing problem of antibiotic-resistant bacteria. Marcin-18 was identified from the scorpion Mesobuthus martensii at both DNA and protein levels. The genomic sequence revealed that the marcin-18 coding gene contains a phase-I intron with a GT-AG splice junction located in the DNA region encoding the N-terminal part of signal peptide. The peptide marcin-18 was also isolated from scorpion venom. A protein sequence homology search revealed that marcin-18 shares extremely high sequence identity to the AMPs meucin-18 and megicin-18. In vitro, chemically synthetic marcin-18 and its homologs (meucin-18 and megicin-18 showed highly potent inhibitory activity against Gram-positive bacteria, including some clinical antibiotic-resistant strains. Importantly, in a mouse acute peritonitis model, these peptides significantly decreased the bacterial load in ascites and rescued nearly all mice heavily infected with clinical methicillin-resistant Staphylococcus aureus from lethal bacteremia. Peptides exerted antimicrobial activity via a bactericidal mechanism and killed bacteria through membrane disruption. Taken together, marcin-18 and its homologs have potential for development as therapeutic agents for treating antibiotic-resistant, Gram-positive bacterial infections.

  11. Antibiotic-Resistant Gonorrhea

    Science.gov (United States)

    ... Search Form Controls Cancel Submit Search the CDC Gonorrhea Note: Javascript is disabled or is not supported ... on Facebook Sexually Transmitted Diseases (STDs) Antibiotic-Resistant Gonorrhea Recommend on Facebook Tweet Share Compartir Low Resolution ...

  12. Antibacterial Efficacy of Lytic Bacteriophages against Antibiotic-Resistant Klebsiella Species

    Directory of Open Access Journals (Sweden)

    M. Khajeh Karamoddini

    2011-01-01

    Full Text Available Bacterial resistance to antibiotics is a leading and highly prevalent problem in the treatment of infectious diseases. Bacteriophages (phages appear to be effective and safe alternatives for the treatment of resistant infections because of their specificity for bacterial species and lack of infectivity in eukaryotic cells. The present study aimed to isolate bacteriophages against Klebsiella spp. and evaluate their efficacy against antibiotic-resistant species. Seventy-two antibiotic-resistant Klebsiella spp. were isolated from samples of patients who referred to the Ghaem Hospital (Mashhad, Iran. Lytic bacteriophages against Klebsiella spp. were isolated from wastewater of the septic tank of the same hospital. Bactericidal activity of phages against resistant Klebsiella spp. was tested in both liquid (tube method; after 1 and 24 h of incubation and solid (double-layer agar plate method; after 24 h of incubation phases. In each method, three different concentrations of bacteriophages (low: 107 PFU/mL were used. Bacteriophages showed promising bactericidal activity at all assessed concentrations, regardless of the test method and duration of incubation. Overall, bactericidal effects were augmented at higher concentrations. In the tube method, higher activity was observed after 24 h of incubation compared to the 1-h incubation. The bactericidal effects were also higher in the tube method compared to the double-layer agar plate method after 24 h of incubation. The findings of the present study suggest that bacteriophages possess effective bactericidal activity against resistant Klebsiella spp. These bactericidal activities are influenced by phage concentration, duration of incubation, and test method.

  13. Bioinformatic analysis reveals high diversity of bacterial genes for laccase-like enzymes.

    Directory of Open Access Journals (Sweden)

    Luka Ausec

    Full Text Available Fungal laccases have been used in various fields ranging from processes in wood and paper industries to environmental applications. Although a few bacterial laccases have been characterized in recent years, prokaryotes have largely been neglected as a source of novel enzymes, in part due to the lack of knowledge about the diversity and distribution of laccases within Bacteria. In this work genes for laccase-like enzymes were searched for in over 2,200 complete and draft bacterial genomes and four metagenomic datasets, using the custom profile Hidden Markov Models for two- and three-domain laccases. More than 1,200 putative genes for laccase-like enzymes were retrieved from chromosomes and plasmids of diverse bacteria. In 76% of the genes, signal peptides were predicted, indicating that these bacterial laccases may be exported from the cytoplasm, which contrasts with the current belief. Moreover, several examples of putatively horizontally transferred bacterial laccase genes were described. Many metagenomic sequences encoding fragments of laccase-like enzymes could not be phylogenetically assigned, indicating considerable novelty. Laccase-like genes were also found in anaerobic bacteria, autotrophs and alkaliphiles, thus opening new hypotheses regarding their ecological functions. Bacteria identified as carrying laccase genes represent potential sources for future biotechnological applications.

  14. Production of extremophilic bacterial cellulase enzymes in aspergillus niger.

    Energy Technology Data Exchange (ETDEWEB)

    Gladden, John Michael

    2013-09-01

    Enzymes can be used to catalyze a myriad of chemical reactions and are a cornerstone in the biotechnology industry. Enzymes have a wide range of uses, ranging from medicine with the production of pharmaceuticals to energy were they are applied to biofuel production. However, it is difficult to produce large quantities of enzymes, especially if they are non-native to the production host. Fortunately, filamentous fungi, such as Aspergillus niger, are broadly used in industry and show great potential for use a heterologous enzyme production hosts. Here, we present work outlining an effort to engineer A. niger to produce thermophilic bacterial cellulases relevant to lignocellulosic biofuel production.

  15. Inhibitors of the bacterial cell wall biosynthesis enzyme MurC.

    Science.gov (United States)

    Reck, F; Marmor, S; Fisher, S; Wuonola, M A

    2001-06-04

    A series of phosphinate transition-state analogues of the L-alanine adding enzyme (MurC) of bacterial peptidoglycan biosynthesis was prepared and tested as inhibitors of the Escherichia coli enzyme. Compound 4 was identified as a potent inhibitor of MurC from Escherichia coli with an IC(50) of 49nM.

  16. Persistence of bacterial proteolytic enzymes in lake ecosystems.

    Science.gov (United States)

    Kiersztyn, Bartosz; Siuda, Waldemar; Chróst, Ryszard J

    2012-04-01

    This study analyzes proteolytic enzyme persistence and the role of dead (or metabolically inactive) aquatic bacteria in organic matter cycling. Samples from four lakes of different trophic status were used. Irrespective of the trophic status of the examined lakes, bacterial aminopeptidases remained active even 72 h after the death of the bacteria that produced them. The total pool of proteolytic enzymes in natural lake water samples was also stable. We found that the rates of amino acid enzymatic release from proteinaceous matter added to preserved lake water sample were constant for at least 96 h (r(2)  = 0.99, n = 17, P ≤ 0.0001, V(max)  = 84.6 nM h(-1) ). We also observed that proteases built into bacterial cell debris fragments remained active for a long time, even after the total destruction of cells. Moreover, during 24 h of incubation time, about 20% of these enzymatically active fragments adsorbed onto natural seston particles, becoming a part of the 'attached enzymes system' that is regarded as the 'hot-spot' of protein degradation in aquatic ecosystems. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  17. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis.

    Science.gov (United States)

    Tacconelli, Evelina; Carrara, Elena; Savoldi, Alessia; Harbarth, Stephan; Mendelson, Marc; Monnet, Dominique L; Pulcini, Céline; Kahlmeter, Gunnar; Kluytmans, Jan; Carmeli, Yehuda; Ouellette, Marc; Outterson, Kevin; Patel, Jean; Cavaleri, Marco; Cox, Edward M; Houchens, Chris R; Grayson, M Lindsay; Hansen, Paul; Singh, Nalini; Theuretzbacher, Ursula; Magrini, Nicola

    2018-03-01

    The spread of antibiotic-resistant bacteria poses a substantial threat to morbidity and mortality worldwide. Due to its large public health and societal implications, multidrug-resistant tuberculosis has been long regarded by WHO as a global priority for investment in new drugs. In 2016, WHO was requested by member states to create a priority list of other antibiotic-resistant bacteria to support research and development of effective drugs. We used a multicriteria decision analysis method to prioritise antibiotic-resistant bacteria; this method involved the identification of relevant criteria to assess priority against which each antibiotic-resistant bacterium was rated. The final priority ranking of the antibiotic-resistant bacteria was established after a preference-based survey was used to obtain expert weighting of criteria. We selected 20 bacterial species with 25 patterns of acquired resistance and ten criteria to assess priority: mortality, health-care burden, community burden, prevalence of resistance, 10-year trend of resistance, transmissibility, preventability in the community setting, preventability in the health-care setting, treatability, and pipeline. We stratified the priority list into three tiers (critical, high, and medium priority), using the 33rd percentile of the bacterium's total scores as the cutoff. Critical-priority bacteria included carbapenem-resistant Acinetobacter baumannii and Pseudomonas aeruginosa, and carbapenem-resistant and third-generation cephalosporin-resistant Enterobacteriaceae. The highest ranked Gram-positive bacteria (high priority) were vancomycin-resistant Enterococcus faecium and meticillin-resistant Staphylococcus aureus. Of the bacteria typically responsible for community-acquired infections, clarithromycin-resistant Helicobacter pylori, and fluoroquinolone-resistant Campylobacter spp, Neisseria gonorrhoeae, and Salmonella typhi were included in the high-priority tier. Future development strategies should focus on

  18. Bactericidal effect of bovine lactoferrin, LFcin, LFampin and LFchimera on antibiotic-resistant Staphylococcus aureus and Escherichia coli.

    Science.gov (United States)

    Flores-Villaseñor, Héctor; Canizalez-Román, Adrian; Reyes-Lopez, Magda; Nazmi, Kamram; de la Garza, Mireya; Zazueta-Beltrán, Jorge; León-Sicairos, Nidia; Bolscher, Jan G M

    2010-06-01

    Increased prevalence of antibiotic-resistant bacteria has become a major threat to the health sector worldwide due to their virulence, limited therapeutic options and distribution in both hospital and community settings. Discovery and development of new agents to combat antibiotic-resistant bacteria is thus needed. This study therefore aimed to evaluate the ability of bovine lactoferrin (LF), peptides from two antimicrobial domains lactoferricin B (LFcin17-30) and lactoferrampin (LFampin265-284) and a chimeric construct (LFchimera) containing both peptides, as potential bactericidal agents against clinical isolates of antibiotic-resistant Staphylococcus aureus and Escherichia coli. Results in kinetics of growth show that LF chimera and peptides inhibited the growth of both bacterial species. By confocal microscopy and flow cytometry it was observed that LF and FITC-labeled peptides are able to interact with these bacteria and cause membrane permeabilization, as monitored by propidium iodide staining, these effects were decreased by preincubation with lipopolysaccharide in E. coli. By electron microscopy, a clear cellular damage was observed in bacteria after treatments with LFchimera and peptides, suggesting that interaction and membrane disruption are probably involved as a mechanism of action. In conclusion, results show that LFchimera, LF and peptides have potential as bactericidal agents in the antibiotic-resistant strains of S. aureus and E. coli and also the work strongly suggest that LFcin17-30 and LFampin265-284 acts synergistically with antibiotics against multidrug resistant EPEC and MRSA in vitro.

  19. Persistence of antibiotic-resistant and -sensitive Proteus mirabilis strains in the digestive tract of the housefly (Musca domestica) and green bottle flies (Calliphoridae).

    Science.gov (United States)

    Wei, Ting; Miyanaga, Kazuhiko; Tanji, Yasunori

    2014-10-01

    Synanthropic flies have been implicated in the rapid dissemination of antibiotic-resistant bacteria and resistance determinants in the biosphere. These flies stably harbor a considerable number of bacteria that exhibit resistance to various antibiotics, but the mechanisms underlying this phenomenon remain unclear. In this study, we investigated the persistence of antibiotic-resistant bacteria in the digestive tract of houseflies and green bottle flies, using Proteus mirabilis as a model microorganism. One resistant strain carried the blaTEM and aphA1 genes, and another carried a plasmid containing qnrD gene. Quantitative PCR and 454 pyrosequencing were used to monitor the relative abundance of the Proteus strains, as well as potential changes in the overall structure of the whole bacterial community incurred by the artificial induction of Proteus cultures. Both antibiotic-resistant and -sensitive P. mirabilis strains persisted in the fly digestive tract for at least 3 days, and there was no significant difference in the relative abundance of resistant and sensitive strains despite the lower growth rate of resistant strains when cultured in vitro. Therefore, conditions in the fly digestive tract may allow resistant strains to survive the competition with sensitive strains in the absence of antibiotic selective pressure. The composition of the fly-associated bacterial community changed over time, but the contribution of the artificially introduced P. mirabilis strains to these changes was not clear. In order to explain these changes, it will be necessary to obtain more information about bacterial interspecies antagonism in the fly digestive tract.

  20. Antibiotic-resistant Escherichia coli in migratory birds inhabiting remote Alaska

    Science.gov (United States)

    Ramey, Andy M.; Hernandez, Jorge; Tyrlöv, Veronica; Uher-Koch, Brian D.; Schmutz, Joel A.; Atterby, Clara; Järhult, Josef D.; Bonnedahl, Jonas

    2018-01-01

    We explored the abundance of antibiotic-resistant Escherichia coli among migratory birds at remote sites in Alaska and used a comparative approach to speculate on plausible explanations for differences in detection among species. At a remote island site, we detected antibiotic-resistant E. coli phenotypes in samples collected from glaucous-winged gulls (Larus glaucescens), a species often associated with foraging at landfills, but not in samples collected from black-legged kittiwakes (Rissa tridactyla), a more pelagic gull that typically inhabits remote areas year-round. We did not find evidence for antibiotic-resistant E. coli among 347 samples collected primarily from waterfowl at a second remote site in western Alaska. Our results provide evidence that glaucous-winged gulls may be more likely to be infected with antibiotic-resistant E. coli at remote breeding sites as compared to sympatric black-legged kittiwakes. This could be a function of the tendency of glaucous-winged gulls to forage at landfills where antibiotic-resistant bacterial infections may be acquired and subsequently dispersed. The low overall detection of antibiotic-resistant E. coli in migratory birds sampled at remote sites in Alaska is consistent with the premise that anthropogenic inputs into the local environment or the relative lack thereof influences the prevalence of antibiotic-resistant bacteria among birds inhabiting the area.

  1. Antibiotic-resistant bacteria in drinking water.

    Science.gov (United States)

    Armstrong, J L; Shigeno, D S; Calomiris, J J; Seidler, R J

    1981-08-01

    We analyzed drinking water from seven communities for multiply antibiotic-resistant (MAR) bacteria (bacteria resistant to two or more antibiotics) and screened the MAR bacterial isolates obtained against five antibiotics by replica plating. Overall, 33.9% of 2,653 standard plate count bacteria from treated drinking waters were MAR. Two different raw water supplies for two communities carried MAR standard plate count bacteria at frequencies of 20.4 and 18.6%, whereas 36.7 and 67.8% of the standard plate count populations from sites within the respective distribution systems were MAR. Isolate identification revealed that MAR gram-positive cocci (Staphylococcus) and MAR gram-negative, nonfermentative rods (Pseudomonas, Alcaligenes, Moraxella-like group M, and Acinetobacter) were more common in drinking waters than in untreated source waters. Site-to-site variations in generic types and differences in the incidences of MAR organisms indicated that shedding of MAR bacteria living in pipelines may have contributed to the MAR populations in tap water. We conclude that the treatment of raw water and its subsequent distribution select for standard plate count bacteria exhibiting the MAR phenotype.

  2. [Enzymes for disrupting bacterial communication, an alternative to antibiotics?

    Science.gov (United States)

    Rémy, B; Plener, L; Elias, M; Daudé, D; Chabrière, E

    2016-11-01

    Quorum sensing (QS) is used by bacteria to communicate and synchronize their actions according to the cell density. In this way, they produce and secrete in the surrounding environment small molecules dubbed autoinducers (AIs) that regulate the expression of certain genes. The phenotypic traits regulated by QS are diverse and include pathogenicity, biofilm formation or resistance to anti-microbial treatments. The strategy, aiming at disrupting QS, known as quorum quenching (QQ), has emerged to counteract bacterial virulence and involves QS-inhibitors (QSI) or QQ-enzymes degrading AIs. Differently from antibiotics, QQ aims at blocking cell signaling and does not alter bacterial survival. This considerably decreases the selection pressure as compared to bactericide treatments and may reduce the occurrence of resistance mechanisms. QQ-enzymes are particularly appealing as they may disrupt molecular QS-signal without entering the cell and in a catalytic way. This review covers several aspects of QQ-based medical applications and the potential subsequent emergence of resistance is discussed. Copyright © 2016 Académie Nationale de Pharmacie. All rights reserved.

  3. Bacterial community composition and extracellular enzyme activity in temperate streambed sediment during drying and rewetting.

    Directory of Open Access Journals (Sweden)

    Elisabeth Pohlon

    Full Text Available Droughts are among the most important disturbance events for stream ecosystems; they not only affect stream hydrology but also the stream biota. Although desiccation of streams is common in Mediterranean regions, phases of dryness in headwaters have been observed more often and for longer periods in extended temperate regions, including Central Europe, reflecting global climate change and enhanced water withdrawal. The effects of desiccation and rewetting on the bacterial community composition and extracellular enzyme activity, a key process in the carbon flow of streams and rivers, were investigated in a typical Central European stream, the Breitenbach (Hesse, Germany. Wet streambed sediment is an important habitat in streams. It was sampled and exposed in the laboratory to different drying scenarios (fast, intermediate, slow for 13 weeks, followed by rewetting of the sediment from the fast drying scenario via a sediment core perfusion technique for 2 weeks. Bacterial community structure was analyzed using CARD-FISH and TGGE, and extracellular enzyme activity was assessed using fluorogenic model substrates. During desiccation the bacterial community composition shifted toward composition in soil, exhibiting increasing proportions of Actinobacteria and Alphaproteobacteria and decreasing proportions of Bacteroidetes and Betaproteobacteria. Simultaneously the activities of extracellular enzymes decreased, most pronounced with aminopeptidases and less pronounced with enzymes involved in the degradation of polymeric carbohydrates. After rewetting, the general ecosystem functioning, with respect to extracellular enzyme activity, recovered after 10 to 14 days. However, the bacterial community composition had not yet achieved its original composition as in unaffected sediments within this time. Thus, whether the bacterial community eventually recovers completely after these events remains unknown. Perhaps this community undergoes permanent changes

  4. Genomics of antibiotic-resistance prediction in Pseudomonas aeruginosa.

    Science.gov (United States)

    Jeukens, Julie; Freschi, Luca; Kukavica-Ibrulj, Irena; Emond-Rheault, Jean-Guillaume; Tucker, Nicholas P; Levesque, Roger C

    2017-06-02

    Antibiotic resistance is a worldwide health issue spreading quickly among human and animal pathogens, as well as environmental bacteria. Misuse of antibiotics has an impact on the selection of resistant bacteria, thus contributing to an increase in the occurrence of resistant genotypes that emerge via spontaneous mutation or are acquired by horizontal gene transfer. There is a specific and urgent need not only to detect antimicrobial resistance but also to predict antibiotic resistance in silico. We now have the capability to sequence hundreds of bacterial genomes per week, including assembly and annotation. Novel and forthcoming bioinformatics tools can predict the resistome and the mobilome with a level of sophistication not previously possible. Coupled with bacterial strain collections and databases containing strain metadata, prediction of antibiotic resistance and the potential for virulence are moving rapidly toward a novel approach in molecular epidemiology. Here, we present a model system in antibiotic-resistance prediction, along with its promises and limitations. As it is commonly multidrug resistant, Pseudomonas aeruginosa causes infections that are often difficult to eradicate. We review novel approaches for genotype prediction of antibiotic resistance. We discuss the generation of microbial sequence data for real-time patient management and the prediction of antimicrobial resistance. © 2017 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.

  5. Antibiotic-resistant bacteria: a challenge for the food industry.

    Science.gov (United States)

    Capita, Rosa; Alonso-Calleja, Carlos

    2013-01-01

    Antibiotic-resistant bacteria were first described in the 1940s, but whereas new antibiotics were being discovered at a steady rate, the consequences of this phenomenon were slow to be appreciated. At present, the paucity of new antimicrobials coming into the market has led to the problem of antibiotic resistance fast escalating into a global health crisis. Although the selective pressure exerted by the use of antibiotics (particularly overuse or misuse) has been deemed the major factor in the emergence of bacterial resistance to these antimicrobials, concerns about the role of the food industry have been growing in recent years and have been raised at both national and international levels. The selective pressure exerted by the use of antibiotics (primary production) and biocides (e.g., disinfectants, food and feed preservatives, or decontaminants) is the main driving force behind the selection and spread of antimicrobial resistance throughout the food chain. Genetically modified (GM) crops with antibiotic resistance marker genes, microorganisms added intentionally to the food chain (probiotic or technological) with potentially transferable antimicrobial resistance genes, and food processing technologies used at sub-lethal doses (e.g., alternative non-thermal treatments) are also issues for concern. This paper presents the main trends in antibiotic resistance and antibiotic development in recent decades, as well as their economic and health consequences, current knowledge concerning the generation, dissemination, and mechanisms of antibacterial resistance, progress to date on the possible routes for emergence of resistance throughout the food chain and the role of foods as a vehicle for antibiotic-resistant bacteria. The main approaches to prevention and control of the development, selection, and spread of antibacterial resistance in the food industry are also addressed.

  6. The enzymes of bacterial census and censorship.

    Science.gov (United States)

    Fast, Walter; Tipton, Peter A

    2012-01-01

    N-Acyl-L-homoserine lactones (AHLs) are a major class of quorum-sensing signals used by Gram-negative bacteria to regulate gene expression in a population-dependent manner, thereby enabling group behavior. Enzymes capable of generating and catabolizing AHL signals are of significant interest for the study of microbial ecology and quorum-sensing pathways, for understanding the systems that bacteria have evolved to interact with small-molecule signals, and for their possible use in therapeutic and industrial applications. The recent structural and functional studies reviewed here provide a detailed insight into the chemistry and enzymology of bacterial communication. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Effect of long-term industrial waste effluent pollution on soil enzyme activities and bacterial community composition.

    Science.gov (United States)

    Subrahmanyam, Gangavarapu; Shen, Ju-Pei; Liu, Yu-Rong; Archana, Gattupalli; Zhang, Li-Mei

    2016-02-01

    Although numerous studies have addressed the influence of exogenous pollutants on microorganisms, the effect of long-term industrial waste effluent (IWE) pollution on the activity and diversity of soil bacteria was still unclear. Three soil samples characterized as uncontaminated (R1), moderately contaminated (R2), and highly contaminated (R3) receiving mixed organic and heavy metal pollutants for more than 20 years through IWE were collected along the Mahi River basin, Gujarat, western India. Basal soil respiration and in situ enzyme activities indicated an apparent deleterious effect of IWE on microbial activity and soil function. Community composition profiling of soil bacteria using 16S rRNA gene amplification and denaturing gradient gel electrophoresis (DGGE) method indicated an apparent bacterial community shift in the IWE-affected soils. Cloning and sequencing of DGGE bands revealed that the dominated bacterial phyla in polluted soil were affiliated with Firmicutes, Acidobacteria, and Actinobacteria, indicating that these bacterial phyla may have a high tolerance to pollutants. We suggested that specific bacterial phyla along with soil enzyme activities could be used as relevant biological indicators for long-term pollution assessment on soil quality. Graphical Abstract Bacterial community profiling and soil enzyme activities in long-term industrial waste effluent polluted soils.

  8. Structural Studies of Bacterial Enzymes and their Relation to Antibiotic Resistance Mechanisms - Final Paper

    Energy Technology Data Exchange (ETDEWEB)

    Maltz, Lauren [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-27

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure of the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β- lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes

  9. Bacterial and Fungal Proteolytic Enzymes: Production, Catalysis and Potential Applications.

    Science.gov (United States)

    da Silva, Ronivaldo Rodrigues

    2017-09-01

    Submerged and solid-state bioprocesses have been extensively explored worldwide and employed in a number of important studies dealing with microbial cultivation for the production of enzymes. The development of these production technologies has facilitated the generation of new enzyme-based products with applications in pharmaceuticals, food, bioactive peptides, and basic research studies, among others. The applicability of microorganisms in biotechnology is potentiated because of their various advantages, including large-scale production, short time of cultivation, and ease of handling. Currently, several studies are being conducted to search for new microbial peptidases with peculiar biochemical properties for industrial applications. Bioprospecting, being an important prerequisite for research and biotechnological development, is based on exploring the microbial diversity for enzyme production. Limited information is available on the production of specific proteolytic enzymes from bacterial and fungal species, especially on the subgroups threonine and glutamic peptidases, and the seventh catalytic type, nonhydrolytic asparagine peptide lyase. This gap in information motivated the present study about these unique biocatalysts. In this study, the biochemical and biotechnological aspects of the seven catalytic types of proteolytic enzymes, namely aspartyl, cysteine, serine, metallo, glutamic, and threonine peptidase, and asparagine peptide lyase, are summarized, with an emphasis on new studies, production, catalysis, and application of these enzymes.

  10. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria.

    Science.gov (United States)

    Yosef, Ido; Manor, Miriam; Kiro, Ruth; Qimron, Udi

    2015-06-09

    The increasing threat of pathogen resistance to antibiotics requires the development of novel antimicrobial strategies. Here we present a proof of concept for a genetic strategy that aims to sensitize bacteria to antibiotics and selectively kill antibiotic-resistant bacteria. We use temperate phages to deliver a functional clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) system into the genome of antibiotic-resistant bacteria. The delivered CRISPR-Cas system destroys both antibiotic resistance-conferring plasmids and genetically modified lytic phages. This linkage between antibiotic sensitization and protection from lytic phages is a key feature of the strategy. It allows programming of lytic phages to kill only antibiotic-resistant bacteria while protecting antibiotic-sensitized bacteria. Phages designed according to this strategy may be used on hospital surfaces and hand sanitizers to facilitate replacement of antibiotic-resistant pathogens with sensitive ones.

  11. Bacterial and fungal keratitis in Upper Egypt: In vitro screening of enzymes, toxins and antifungal activity

    Directory of Open Access Journals (Sweden)

    Abdullah A Gharamah

    2014-01-01

    Full Text Available Purpose: This work was conducted to study the ability of bacterial and fungal isolates from keratitis cases in Upper Egypt to produce enzymes, toxins, and to test the isolated fungal species sensitivity to some therapeutic agents. Materials and Methods: One hundred and fifteen patients clinically diagnosed to have microbial keratitis were investigated. From these cases, 37 bacterial isolates and 25 fungal isolates were screened for their ability to produce extra-cellular enzymes in solid media. In addition, the ability of fungal isolates to produce mycotoxins and their sensitivity to 4 antifungal agents were tested. Results: Protease, lipase, hemolysins, urease, phosphatase, and catalase were detected respectively in 48.65%, 37.84%, 59.46%, 43.24%, 67.57%, and 100% out of 37 bacterial isolates tested. Out of 25 fungal isolates tested during the present study, 80% were positive for protease, 84% for lipase and urease, 28% for blood hemolysis, and 100% for phosphatase and catalase enzymes. Thirteen fungal isolates were able to produce detectable amounts of 7 mycotoxins in culture medium (aflatoxins (B1, B2, G1, and G2, sterigmatocystin, fumagillin, diacetoxyscirpenol, zearalenone, T-2 toxin, and trichodermin. Among the antifungal agents tested in this study, terbinafine showed the highest effect against most isolates in vitro. Conclusion: In conclusion, the ability of bacterial and fungal isolates to produce extracellular enzymes and toxins may be aid in the invasion and destruction of eye tissues, which, in turn, lead to vision loss.

  12. Irrigation waters and pipe-based biofilms as sources for antibiotic-resistant bacteria

    Science.gov (United States)

    The presence of antibiotic-resistant bacteria in environmental surface waters has gained recent attention. Wastewater- and drinking water distribution systems are known to disseminate antibiotic-resistant bacteria, with the biofilms that form on the inner-surfaces of the pipeline as a hotspot for pr...

  13. A model of antibiotic-resistant bacterial epidemics in hospitals

    OpenAIRE

    Webb, Glenn F.; D'Agata, Erika M. C.; Magal, Pierre; Ruan, Shigui

    2005-01-01

    The emergence of drug-resistant strains of bacteria is an increasing threat to society, especially in hospital settings. Many antibiotics that were formerly effective in combating bacterial infections in hospital patients are no longer effective because of the evolution of resistant strains, which compromises medical care worldwide. In this article, we formulate a two-level population model to quantify key elements in nosocomial (hospital-acquired) infections. At the bacteria level, patients ...

  14. Inhibitor design strategy based on an enzyme structural flexibility: a case of bacterial MurD ligase.

    Science.gov (United States)

    Perdih, Andrej; Hrast, Martina; Barreteau, Hélène; Gobec, Stanislav; Wolber, Gerhard; Solmajer, Tom

    2014-05-27

    Increasing bacterial resistance to available antibiotics stimulated the discovery of novel efficacious antibacterial agents. The biosynthesis of the bacterial peptidoglycan, where the MurD enzyme is involved in the intracellular phase of the UDP-MurNAc-pentapeptide formation, represents a collection of highly selective targets for novel antibacterial drug design. In our previous computational studies, the C-terminal domain motion of the MurD ligase was investigated using Targeted Molecular Dynamic (TMD) simulation and the Off-Path Simulation (OPS) technique. In this study, we present a drug design strategy using multiple protein structures for the identification of novel MurD ligase inhibitors. Our main focus was the ATP-binding site of the MurD enzyme. In the first stage, three MurD protein conformations were selected based on the obtained OPS/TMD data as the initial criterion. Subsequently, a two-stage virtual screening approach was utilized combining derived structure-based pharmacophores with molecular docking calculations. Selected compounds were then assayed in the established enzyme binding assays, and compound 3 from the aminothiazole class was discovered to act as a dual MurC/MurD inhibitor in the micomolar range. A steady-state kinetic study was performed on the MurD enzyme to provide further information about the mechanistic aspects of its inhibition. In the final stage, all used conformations of the MurD enzyme with compound 3 were simulated in classical molecular dynamics (MD) simulations providing atomistic insights of the experimental results. Overall, the study depicts several challenges that need to be addressed when trying to hit a flexible moving target such as the presently studied bacterial MurD enzyme and show the possibilities of how computational tools can be proficiently used at all stages of the drug discovery process.

  15. Effect of neohesperidin dihydrochalcone on the activity and stability of alpha-amylase: a comparative study on bacterial, fungal, and mammalian enzymes.

    Science.gov (United States)

    Kashani-Amin, Elaheh; Ebrahim-Habibi, Azadeh; Larijani, Bagher; Moosavi-Movahedi, Ali Akbar

    2015-10-01

    Neohesperidin dihydrochalcone (NHDC) was recently introduced as an activator of mammalian alpha-amylase. In the current study, the effect of NHDC has been investigated on bacterial and fungal alpha-amylases. Enzyme assays and kinetic analysis demonstrated the capability of NHDC to significantly activate both tested alpha-amylases. The ligand activation pattern was found to be more similar between the fungal and mammalian enzyme in comparison with the bacterial one. Further, thermostability experiments indicated a stability increase in the presence of NHDC for the bacterial enzyme. In silico (docking) test locates a putative binding site for NHDC on alpha-amylase surface in domain B. This domain shows differences in various alpha-amylase types, and the different behavior of the ligand toward the studied enzymes may be attributed to this fact. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Prevalence, antibiotic-resistance properties and enterotoxin gene ...

    African Journals Online (AJOL)

    Prevalence, antibiotic-resistance properties and enterotoxin gene profile of Bacillus cereus strains isolated from milk-based baby foods. ... Conclusion: Considerable prevalence of resistant and toxigenic B. cereus and high consumption of milk-based infant foods in Iran, represent an important public health issue which ...

  17. Production of bacterial cellulose and enzyme from waste fiber sludge

    Science.gov (United States)

    2013-01-01

    Background Bacterial cellulose (BC) is a highly crystalline and mechanically stable nanopolymer, which has excellent potential as a material in many novel applications, especially if it can be produced in large amounts from an inexpensive feedstock. Waste fiber sludge, a residue with little or no value, originates from pulp mills and lignocellulosic biorefineries. A high cellulose and low lignin content contributes to making the fiber sludge suitable for bioconversion, even without a thermochemical pretreatment step. In this study, the possibility to combine production of BC and hydrolytic enzymes from fiber sludge was investigated. The BC was characterized using field-emission scanning electron microscopy and X-ray diffraction analysis, and its mechanical properties were investigated. Results Bacterial cellulose and enzymes were produced through sequential fermentations with the bacterium Gluconacetobacter xylinus and the filamentous fungus Trichoderma reesei. Fiber sludges from sulfate (SAFS) and sulfite (SIFS) processes were hydrolyzed enzymatically without prior thermochemical pretreatment and the resulting hydrolysates were used for BC production. The highest volumetric yields of BC from SAFS and SIFS were 11 and 10 g/L (DW), respectively. The BC yield on initial sugar in hydrolysate-based medium reached 0.3 g/g after seven days of cultivation. The tensile strength of wet BC from hydrolysate medium was about 0.04 MPa compared to about 0.03 MPa for BC from a glucose-based reference medium, while the crystallinity was slightly lower for BC from hydrolysate cultures. The spent hydrolysates were used for production of cellulase with T. reesei. The cellulase activity (CMCase activity) in spent SAFS and SIFS hydrolysates reached 5.2 U/mL (87 nkat/mL), which was similar to the activity level obtained in a reference medium containing equal amounts of reducing sugar. Conclusions It was shown that waste fiber sludge is a suitable raw material for production of

  18. Synergistic Antibacterial Effects of Chitosan-Caffeic Acid Conjugate against Antibiotic-Resistant Acne-Related Bacteria.

    Science.gov (United States)

    Kim, Ji-Hoon; Yu, Daeung; Eom, Sung-Hwan; Kim, Song-Hee; Oh, Junghwan; Jung, Won-Kyo; Kim, Young-Mog

    2017-06-08

    The object of this study was to discover an alternative therapeutic agent with fewer side effects against acne vulgaris, one of the most common skin diseases. Acne vulgaris is often associated with acne-related bacteria such as Propionibacterium acnes , Staphylococcus epidermidis , Staphylococcus aureus , and Pseudomonas aeruginosa . Some of these bacteria exhibit a resistance against commercial antibiotics that have been used in the treatment of acne vulgaris (tetracycline, erythromycin, and lincomycin). In the current study, we tested in vitro antibacterial effect of chitosan-phytochemical conjugates on acne-related bacteria. Three chitosan-phytochemical conjugates used in this study exhibited stronger antibacterial activity than that of chitosan (unmodified control). Chitosan-caffeic acid conjugate (CCA) showed the highest antibacterial effect on acne-related bacteria along with minimum inhibitory concentration (MIC; 8 to 256 μg/mL). Additionally, the MIC values of antibiotics against antibiotic-resistant P. acnes and P. aeruginosa strains were dramatically reduced in combination with CCA, suggesting that CCA would restore the antibacterial activity of the antibiotics. The analysis of fractional inhibitory concentration (FIC) indices clearly revealed a synergistic antibacterial effect of CCA with antibiotics. Thus, the median sum of FIC (∑FIC) values against the antibiotic-resistant bacterial strains ranged from 0.375 to 0.533 in the combination mode of CCA and antibiotics. The results of the present study suggested a potential possibility of chitosan-phytochemical conjugates in the control of infections related to acne vulgaris.

  19. Trade-offs with stability modulate innate and mutationally acquired drug-resistance in bacterial dihydrofolate reductase enzymes.

    Science.gov (United States)

    Matange, Nishad; Bodkhe, Swapnil; Patel, Maitri; Shah, Pooja

    2018-06-05

    Structural stability is a major constraint on the evolution of protein sequences. However, under strong directional selection, mutations that confer novel phenotypes but compromise structural stability of proteins may be permissible. During the evolution of antibiotic resistance, mutations that confer drug resistance often have pleiotropic effects on the structure and function of antibiotic-target proteins, usually essential metabolic enzymes. In this study, we show that trimethoprim-resistant alleles of dihydrofolate reductase from Escherichia coli (EcDHFR) harbouring the Trp30Gly, Trp30Arg or Trp30Cys mutations are significantly less stable than the wild type making them prone to aggregation and proteolysis. This destabilization is associated with lower expression level resulting in a fitness cost and negative epistasis with other TMP-resistant mutations in EcDHFR. Using structure-based mutational analysis we show that perturbation of critical stabilizing hydrophobic interactions in wild type EcDHFR enzyme explains the phenotypes of Trp30 mutants. Surprisingly, though crucial for the stability of EcDHFR, significant sequence variation is found at this site among bacterial DHFRs. Mutational and computational analyses in EcDHFR as well as in DHFR enzymes from Staphylococcus aureus and Mycobacterium tuberculosis demonstrate that natural variation at this site and its interacting hydrophobic residues, modulates TMP-resistance in other bacterial DHFRs as well, and may explain the different susceptibilities of bacterial pathogens to trimethoprim. Our study demonstrates that trade-offs between structural stability and function can influence innate drug resistance as well as the potential for mutationally acquired drug resistance of an enzyme. ©2018 The Author(s).

  20. Magnetically modified bacterial cellulose: A promising carrier for immobilization of affinity ligands, enzymes, and cells

    Energy Technology Data Exchange (ETDEWEB)

    Baldikova, Eva [Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Pospiskova, Kristyna [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71 Olomouc (Czech Republic); Ladakis, Dimitrios; Kookos, Ioannis K. [Department of Chemical Engineering, University of Patras, 26504 Patras, Rio (Greece); Koutinas, Apostolis A. [Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855 (Greece); Safarikova, Mirka [Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Safarik, Ivo, E-mail: safarik@nh.cas.cz [Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71 Olomouc (Czech Republic); Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic)

    2017-02-01

    Bacterial cellulose (BC) produced by Komagataeibacter sucrofermentans was magnetically modified using perchloric acid stabilized magnetic fluid. Magnetic bacterial cellulose (MBC) was used as a carrier for the immobilization of affinity ligands, enzymes and cells. MBC with immobilized reactive copper phthalocyanine dye was an efficient adsorbent for crystal violet removal; the maximum adsorption capacity was 388 mg/g. Kinetic and thermodynamic parameters were also determined. Model biocatalysts, namely bovine pancreas trypsin and Saccharomyces cerevisiae cells were immobilized on MBC using several strategies including adsorption with subsequent cross-linking with glutaraldehyde and covalent binding on previously activated MBC using sodium periodate or 1,4-butanediol diglycidyl ether. Immobilized yeast cells retained approximately 90% of their initial activity after 6 repeated cycles of sucrose solution hydrolysis. Trypsin covalently bound after MBC periodate activation was very stable during operational stability testing; it could be repeatedly used for ten cycles of low molecular weight substrate hydrolysis without loss of its initial activity. - Highlights: • Bacterial cellulose was magnetically modified with magnetic fluid. • Magnetic cellulose is an efficient carrier for affinity ligands. • Enzymes and cells can be efficiently immobilized to magnetic cellulose.

  1. Bacterial whole-cell biocatalysts by surface display of enzymes: toward industrial application.

    Science.gov (United States)

    Schüürmann, Jan; Quehl, Paul; Festel, Gunter; Jose, Joachim

    2014-10-01

    Despite the first report on the bacterial display of a recombinant peptide appeared almost 30 years ago, industrial application of cells with surface-displayed enzymes is still limited. To display an enzyme on the surface of a living cell bears several advantages. First of all, neither the substrate nor the product of the enzymatic reaction needs to cross a membrane barrier. Second, the enzyme being linked to the cell can be separated from the reaction mixture and hence the product by simple centrifugation. Transfer to a new substrate preparation results in multiple cycles of enzymatic conversion. Finally, the anchoring in a matrix, in this case, the cell envelope stabilizes the enzyme and makes it less accessible to proteolytic degradation and material adsorption resulting in continuous higher activities. These advantages in common need to balance some disadvantages before this application can be taken into account for industrial processes, e.g., the exclusion of the enzyme from the cellular metabolome and hence from redox factors or other co-factors that need to be supplied. Therefore, this digest describes the different systems in Gram-positive and Gram-negative bacteria that have been used for the surface display of enzymes so far and focuses on examples among these which are suitable for industrial purposes or for the production of valuable resources, not least in order to encourage a broader application of whole-cell biocatalysts with surface-displayed enzymes.

  2. Appendectomy as a Risk Factor for Bacteremic Biliary Tract Infection Caused by Antibiotic-Resistant Pathogens

    Directory of Open Access Journals (Sweden)

    Koki Kawanishi

    2017-01-01

    Full Text Available Background/Aims. Recent evidence has suggested that appendix plays a pivotal role in the development and preservation of intestinal immune system. The aim of this study is to examine whether prior appendectomy is associated with an increased risk for the development of antibiotic-resistant bacteria in bacteremia from biliary tract infection (BTI. Methods. Charts from 174 consecutive cases of bacteremia derived from BTI were retrospectively reviewed. Using multivariate analysis, independent risk factors for development of antibiotic-resistant bacteria were identified among the clinical parameters, including a history of appendectomy. Results. In total, 221 bacteria strains were identified from 174 BTI events. Of those, 42 antibiotic-resistant bacteria were identified in 34 patients. Multivariate analysis revealed that prior appendectomy (Odds ratio (OR, 3.02; 95% confidence interval (CI, 1.15–7.87; p=0.026, antibiotic use within the preceding three months (OR, 3.06; 95% CI, 1.26–7.64; p=0.013, and bilioenteric anastomosis or sphincterotomy (OR, 3.77; 95% CI, 1.51–9.66; p=0.0046 were independent risk factors for antibiotic-resistant bacteria. Conclusions. Prior appendectomy was an independent risk factor for the development of antibiotic-resistant bacteria in bacteremia from BTI.

  3. Prevalence of Antibiotic-resistance Enterobacteriaceae strains Isolated from Chicken Meat at Traditional Markets in Surabaya, Indonesia

    Science.gov (United States)

    Yulistiani, R.; Praseptiangga, D.; Supyani; Sudibya; Raharjo, D.; Shirakawa, T.

    2017-04-01

    Antibiotic resistance in bacteria from the family Enterobacteriaceae is an important indicator of the emergence of resistant bacterial strains in the community. This study investigated the prevalence of antibiotic-resistant Enterobacteriaceae isolated from chicken meat sold at traditional markets in Surabaya Indonesia. In all, 203 isolates (43 Salmonella spp., 53 Escherichia coli, 16 Shigella spp., 22 Citrobacter spp., 13 Klebsiella spp, 24 Proteus spp., 15 Yersinia spp., 7 Enterobacter spp., 6 Serratia spp., 3 Edwardsiella spp. were resistant to tetracycline (69.95 %), nalidixid acid (54.19 %), sulfamethoxazole/sulfamethizole (42.36 %), chloramphenicol (12.81%), cefoxitin (6.40 %), gentamicin (5.91 %). Tetracycline was the antimicrobial that showed the highest frequency of resistance among Salmonella, E. coli, Citrobacter, Proteus and Erdwardsiella isolates, and nalidixid acid was second frequency of resistance. Overall, 124 (61.08 %) out of 203 isolates demonstrated multidrug resistance to at least two unrelated antimicrobial agents. The high rate of antimicrobial resistance in bacterial isolates from chicken meat may have major implications for human and animal health with adverse economic implications.

  4. Dielectrophoretic assay of bacterial resistance to antibiotics

    International Nuclear Information System (INIS)

    Johari, Juliana; Huebner, Yvonne; Hull, Judith C; Dale, Jeremy W; Hughes, Michael P

    2003-01-01

    The dielectrophoretic collection spectra of antibiotic-sensitive and antibiotic-resistant strains of Staphylococcus epidermidis have been determined. These indicate that in the absence of antibiotic treatment there is a strong similarity between the dielectric properties of sensitive and resistant strains, and that there is a significant difference between the sensitive strains before and after treatment with the antibiotic streptomycin after 24 h exposure. This method offers possibilities for the assessment of bacterial resistance to antibiotics. (note)

  5. Antibiotic-Resistant Gram Negative Bacilli in Meals Delivered at a General Hospital, Italy

    Directory of Open Access Journals (Sweden)

    Maria Rosa Anna Plano

    2009-01-01

    Full Text Available This study aimed at detecting the presence of antibiotic-resistant Gram-negatives in samples of meals delivered at the University General Hospital of Palermo, Italy. Antibiotic resistant Gram negatives were isolated in July—September 2007 ffrom cold dishes and food contact surfaces and utensils. Bacterial strains were submitted to susceptibility test and subtyped by random amplification of polymorphic DNA (RAPD. Forty-six of 55 (83.6% food samples and 14 of 17 (82.3% environmental swabs were culture positive for Gram negative bacilli resistant to at least one group of antibacterial drugs. A total of 134 antibiotic resistant strains, 51 fermenters and 83 non-fermenters, were recovered. Fermenters and non-fermenters showed frequencies as high as 97.8% of resistance to two or more groups of antibiotics and non fermenters were 28.9% resistant to more than three groups. Molecular typing detected 34 different profiles among the fermenters and 68 among the non-fermenters. Antibiotic resistance was very common among both fermenters and non-fermenters. However, the wide heterogeneity of RAPD patterns seems to support a prominent role of cross-contamination rather than a clonal expansion of a few resistant isolates. A contribution of commensal Gram negatives colonizing foods to a common bacterial resistance pool should not been overlooked.

  6. Antibiotic-resistant gram negative bacilli in meals delivered at a general hospital, Italy.

    Science.gov (United States)

    Plano, Maria Rosa Anna; Di Noto, Anna Maria; Firenze, Alberto; Sciortino, Sonia; Mammina, Caterina

    2009-01-01

    This study aimed at detecting the presence of antibiotic-resistant Gram-negatives in samples of meals delivered at the University General Hospital of Palermo, Italy. Antibiotic resistant Gram negatives were isolated in July-September 2007 ffrom cold dishes and food contact surfaces and utensils. Bacterial strains were submitted to susceptibility test and subtyped by random amplification of polymorphic DNA (RAPD). Forty-six of 55 (83.6%) food samples and 14 of 17 (82.3%) environmental swabs were culture positive for Gram negative bacilli resistant to at least one group of antibacterial drugs. A total of 134 antibiotic resistant strains, 51 fermenters and 83 non-fermenters, were recovered. Fermenters and non-fermenters showed frequencies as high as 97.8% of resistance to two or more groups of antibiotics and non fermenters were 28.9% resistant to more than three groups. Molecular typing detected 34 different profiles among the fermenters and 68 among the non-fermenters. Antibiotic resistance was very common among both fermenters and non-fermenters. However, the wide heterogeneity of RAPD patterns seems to support a prominent role of cross-contamination rather than a clonal expansion of a few resistant isolates. A contribution of commensal Gram negatives colonizing foods to a common bacterial resistance pool should not been overlooked.

  7. Optimization of lag phase shapes the evolution of a bacterial enzyme.

    Science.gov (United States)

    Adkar, Bharat V; Manhart, Michael; Bhattacharyya, Sanchari; Tian, Jian; Musharbash, Michael; Shakhnovich, Eugene I

    2017-04-28

    Mutations provide the variation that drives evolution, yet their effects on fitness remain poorly understood. Here we explore how mutations in the essential enzyme adenylate kinase (Adk) of Escherichia coli affect multiple phases of population growth. We introduce a biophysical fitness landscape for these phases, showing how they depend on molecular and cellular properties of Adk. We find that Adk catalytic capacity in the cell (the product of activity and abundance) is the major determinant of mutational fitness effects. We show that bacterial lag times are at a well-defined optimum with respect to Adk's catalytic capacity, while exponential growth rates are only weakly affected by variation in Adk. Direct pairwise competitions between strains show how environmental conditions modulate the outcome of a competition where growth rates and lag times have a tradeoff, shedding light on the multidimensional nature of fitness and its importance in the evolutionary optimization of enzymes.

  8. Effect of biochar amendment on the control of soil sulfonamides, antibiotic-resistant bacteria, and gene enrichment in lettuce tissues.

    Science.gov (United States)

    Ye, Mao; Sun, Mingming; Feng, Yanfang; Wan, Jinzhong; Xie, Shanni; Tian, Da; Zhao, Yu; Wu, Jun; Hu, Feng; Li, Huixin; Jiang, Xin

    2016-05-15

    Considering the potential threat of vegetables growing in antibiotic-polluted soil with high abundance of antibiotic-resistant genes (ARGs) against human health through the food chain, it is thus urgent to develop novel control technology to ensure vegetable safety. In the present work, pot experiments were conducted in lettuce cultivation to assess the impedance effect of biochar amendment on soil sulfonamides (SAs), antibiotic-resistant bacteria (ARB), and ARG enrichment in lettuce tissues. After 100 days of cultivation, lettuce cultivation with biochar amendment exhibited the greatest soil SA dissipation as well as the significant improvement of lettuce growth indices, with residual soil SAs mainly existing as the tightly bound fraction. Moreover, the SA contents in roots and new/old leaves were reduced by one to two orders of magnitude compared to those without biochar amendment. In addition, isolate counts for SA-resistant bacterial endophytes in old leaves and sul gene abundances in roots and old leaves also decreased significantly after biochar application. However, neither SA resistant bacteria nor sul genes were detected in new leaves. It was the first study to demonstrate that biochar amendment can be a practical strategy to protect lettuce safety growing in SA-polluted soil with rich ARB and ARGs. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. The periplasmic enzyme, AnsB, of Shigella flexneri modulates bacterial adherence to host epithelial cells.

    Directory of Open Access Journals (Sweden)

    Divya T George

    Full Text Available S. flexneri strains, most frequently linked with endemic outbreaks of shigellosis, invade the colonic and rectal epithelium of their host and cause severe tissue damage. Here we have attempted to elucidate the contribution of the periplasmic enzyme, L-asparaginase (AnsB to the pathogenesis of S. flexneri. Using a reverse genetic approach we found that ansB mutants showed reduced adherence to epithelial cells in vitro and attenuation in two in vivo models of shigellosis, the Caenorhabditis elegans and the murine pulmonary model. To investigate how AnsB affects bacterial adherence, we compared the proteomes of the ansB mutant with its wild type parental strain using two dimensional differential in-gel electrophoresis and identified the outer membrane protein, OmpA as up-regulated in ansB mutant cells. Bacterial OmpA, is a prominent outer membrane protein whose activity has been found to be required for bacterial pathogenesis. Overexpression of OmpA in wild type S. flexneri serotype 3b resulted in decreasing the adherence of this virulent strain, suggesting that the up-regulation of OmpA in ansB mutants contributes to the reduced adherence of this mutant strain. The data presented here is the first report that links the metabolic enzyme AnsB to S. flexneri pathogenesis.

  10. Bioprospecting saline gradient of a Wildlife Sanctuary for bacterial diversity and antimicrobial activities.

    Science.gov (United States)

    DeLuca, Mara; King, Riley; Morsy, Mustafa

    2017-08-11

    Antibiotic-resistant bacteria are becoming a global crisis, causing death of thousands of people and significant economic impact. The discovery of novel antibiotics is crucial to saving lives and reducing healthcare costs. To address the antibiotic-resistant crisis, in collaboration the Small World Initiative, which aims to crowdsource novel antibiotic discovery, this study aimed to identify antimicrobial producing bacteria and bacterial diversity in the soil of the Stimpson Wildlife Sanctuary, an inland area with a soil salt gradient. Approximately 4500 bacterial colonies were screened for antimicrobial activity and roughly 100 bacteria were identified as antimicrobial producers, which belong to Entrococcaceae (74%), Yersiniaceae (19%), and unidentified families (7%). Several bacterial isolates showed production of broad spectrum inhibitory compounds, while others were more specific to certain pathogens. The data obtained from the current study provide a resource for further characterization of the soil bacteria with antimicrobial activity, with an aim to discover novel ones. The study showed no correlation between soil salt level and the presence of bacteria with antimicrobial activities. However, most of the identified antimicrobial producing bacteria do not belong to actinomycetes, the most common phyla of antibiotic producing bacteria and this could potentially lead to the discovery of novel antibiotics.

  11. Mathematical studies on nosocomial spread of antibiotic-resistant bacteria

    NARCIS (Netherlands)

    Gurieva, T.V.

    2017-01-01

    Infections with antibiotic-resistant bacteria are a worldwide problem in hospitals and their rates remain high in many countries despite efforts to reduce the rates. Infection prevention is complicated by asymptomatic carriers. Using mathematical modelling, different intervention strategies were

  12. In Silico Phylogenetic Analysis and Molecular Modelling Study of 2-Haloalkanoic Acid Dehalogenase Enzymes from Bacterial and Fungal Origin

    Directory of Open Access Journals (Sweden)

    Raghunath Satpathy

    2016-01-01

    Full Text Available 2-Haloalkanoic acid dehalogenase enzymes have broad range of applications, starting from bioremediation to chemical synthesis of useful compounds that are widely distributed in fungi and bacteria. In the present study, a total of 81 full-length protein sequences of 2-haloalkanoic acid dehalogenase from bacteria and fungi were retrieved from NCBI database. Sequence analysis such as multiple sequence alignment (MSA, conserved motif identification, computation of amino acid composition, and phylogenetic tree construction were performed on these primary sequences. From MSA analysis, it was observed that the sequences share conserved lysine (K and aspartate (D residues in them. Also, phylogenetic tree indicated a subcluster comprised of both fungal and bacterial species. Due to nonavailability of experimental 3D structure for fungal 2-haloalkanoic acid dehalogenase in the PDB, molecular modelling study was performed for both fungal and bacterial sources of enzymes present in the subcluster. Further structural analysis revealed a common evolutionary topology shared between both fungal and bacterial enzymes. Studies on the buried amino acids showed highly conserved Leu and Ser in the core, despite variation in their amino acid percentage. Additionally, a surface exposed tryptophan was conserved in all of these selected models.

  13. Bactericidal effect of bovine lactoferrin, LFcin, LFampin and LFchimera on antibiotic-resistant Staphylococcus aureus and Escherichia coli

    NARCIS (Netherlands)

    Flores-Villaseñor, H.; Canizalez-Román, A.; Reyes-Lopez, M.; Nazmi, K.; de la Garza, M.; Zazueta-Beltrán, J.; León-Sicairos, N.; Bolscher, J.G.M.

    2010-01-01

    Increased prevalence of antibiotic-resistant bacteria has become a major threat to the health sector worldwide due to their virulence, limited therapeutic options and distribution in both hospital and community settings. Discovery and development of new agents to combat antibiotic-resistant bacteria

  14. Biofilm-mediated Antibiotic-resistant Oral Bacterial Infections: Mechanism and Combat Strategies.

    Science.gov (United States)

    Kanwar, Indulata; Sah, Abhishek K; Suresh, Preeti K

    2017-01-01

    Oral diseases like dental caries and periodontal disease are directly associated with the capability of bacteria to form biofilm. Periodontal diseases have been associated to anaerobic Gram-negative bacteria forming a subgingival plaque (Porphyromonas gingivalis, Actinobacillus, Prevotella and Fusobacterium). Biofilm is a complex bacterial community that is highly resistant to antibiotics and human immunity. Biofilm communities are the causative agents of biological developments such as dental caries, periodontitis, peri-implantitis and causing periodontal tissue breakdown. The review recapitulates the latest advancements in treatment of clinical biofilm infections and scientific investigations, while these novel anti-biofilm strategies are still in nascent phases of development, efforts dedicated to these technologies could ultimately lead to anti-biofilm therapies that are superior to the current antibiotic treatment. This paper provides a review of the literature focusing on the studies on biofilm in the oral cavity, formation of dental plaque biofilm, drug resistance of bacterial biofilm and the antibiofilm approaches as biofilm preventive agents in dentistry, and their mechanism of biofilm inhibition. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Generating and Purifying Fab Fragments from Human and Mouse IgG Using the Bacterial Enzymes IdeS, SpeB and Kgp.

    Science.gov (United States)

    Sjögren, Jonathan; Andersson, Linda; Mejàre, Malin; Olsson, Fredrik

    2017-01-01

    Fab fragments are valuable research tools in various areas of science including applications in imaging, binding studies, removal of Fc-mediated effector functions, mass spectrometry, infection biology, and many others. The enzymatic tools for the generation of Fab fragments have been discovered through basic research within the field of molecular bacterial pathogenesis. Today, these enzymes are widely applied as research tools and in this chapter, we describe methodologies based on bacterial enzymes to generate Fab fragments from both human and mouse IgG. For all human IgG subclasses, the IdeS enzyme from Streptococcus pyogenes has been applied to generate F(ab')2 fragments that subsequently can be reduced under mild conditions to generate a homogenous pool of Fab' fragments. The enzyme Kgp from Porphyromonas gingivalis has been applied to generate intact Fab fragments from human IgG1 and the Fab fragments can be purified using a CH1-specific affinity resin. The SpeB protease, also from S. pyogenes, is able to digest mouse IgGs and has been applied to digest antibodies and Fab fragments can be purified on light chain affinity resins. In this chapter, we describe methodologies that can be used to obtain Fab fragments from human and mouse IgG using bacterial proteases.

  16. Prevalence of β-lactamase genes in domestic washing machines and dishwashers and the impact of laundering processes on antibiotic-resistant bacteria.

    Science.gov (United States)

    Rehberg, L; Frontzek, A; Melhus, Å; Bockmühl, D P

    2017-12-01

    To investigate the prevalence of β-lactamase genes in domestic washing machines and dishwashers, and the decontamination efficacy of laundering. For the first investigation, swab samples from washing machines (n = 29) and dishwashers (n = 24) were analysed by real-time quantitative PCR to detect genes encoding β-lactamases. To test the impact of laundering on resistant bacteria, cotton test swatches were artificially contaminated with susceptible and resistant strains of Pseudomonas aeruginosa, Klebsiella pneumoniae and Staphylococcus aureus within a second investigation. They were washed in a domestic washing machine with or without activated oxygen bleach (AOB)-containing detergent at 20-50°C. β-Lactamase genes (most commonly of the AmpC- and OXA-type) were detected in 79% of the washing machines and in 96% of the dishwashers and Pseudomonadaceae dominated the microbiota. The level of bacterial reduction after laundering was ≥80% for all Ps. aeruginosa and Kl. pneumoniae strains, while it was only 37-61% for the methicillin-resistant Staph. aureus outbreak strain. In general, the reduction was tendentially higher for susceptible bacteria than for the resistant outbreak strains, especially for Staph. aureus. β-Lactamase genes seem to be frequently present in domestic appliances and may pose a potential risk for cross-contamination and horizontal transfer of genes encoding resistance against clinically important β-lactams. In general, higher temperatures and the use of AOB can improve the reduction of antibiotic-resistant bacteria, including Staph. aureus which appears to be less susceptible to the decontamination effect of laundering. Data on the presence of antibiotic-resistant bacteria in the domestic environment are limited. This study suggests that β-lactamase genes in washing machines and dishwashers are frequent, and that antibiotic-resistant strains are generally more resistant to the used washing conditions. © 2017 The Society for

  17. Present and future etiological treatment of bacterial pneumonia 3. The antibacterial drugs under development

    Directory of Open Access Journals (Sweden)

    A.A. Abaturov

    2017-08-01

    Full Text Available The rapid spread of antibiotic-resistant bacterial strains necessitates the development of new antibacterial agents and a review of the guidelines for etiological treatment of bacterial infections, including pneumonia. Currently, new antibacterial agents are being developed that disrupt the biosynthesis of peptidoglycan, teichoic and lipoteichoic acids, and also block the attachment of virulent factors to the bacterial wall. New molecules of old classes of antibiotics and representatives of new classes of antibiotics with their targets (lipid II and III, teichoic and lipoteichoic acids, alanine racemase, and sortase A will become practical tools in clinical practice in the very near future. The goals and mechanisms of action of new antibacterial compounds predetermine their clinical prospects in future strategies for the treatment of infectious bacterial diseases.

  18. Antibiotic-resistant genes and antibiotic-resistant bacteria in the effluent of urban residential areas, hospitals, and a municipal wastewater treatment plant system.

    Science.gov (United States)

    Li, Jianan; Cheng, Weixiao; Xu, Like; Strong, P J; Chen, Hong

    2015-03-01

    In this study, we determined the abundance of 8 antibiotics (3 tetracyclines, 4 sulfonamides, and 1 trimethoprim), 12 antibiotic-resistant genes (10 tet, 2 sul), 4 antibiotic-resistant bacteria (tetracycline, sulfamethoxazole, and combined resistance), and class 1 integron integrase gene (intI1) in the effluent of residential areas, hospitals, and municipal wastewater treatment plant (WWTP) systems. The concentrations of total/individual targets (antibiotics, genes, and bacteria) varied remarkably among different samples, but the hospital samples generally had a lower abundance than the residential area samples. The WWTP demonstrated removal efficiencies of 50.8% tetracyclines, 66.8% sulfonamides, 0.5 logs to 2.5 logs tet genes, and less than 1 log of sul and intI1 genes, as well as 0.5 log to 1 log removal for target bacteria. Except for the total tetracycline concentration and the proportion of tetracycline-resistant bacteria (R (2) = 0.330, P antibiotics and the corresponding resistant bacteria (P > 0.05). In contrast, various relationships were identified between antibiotics and antibiotic resistance genes (P antibiotic-resistant bacteria (P < 0.01).

  19. Control of biofouling by xanthine oxidase on seawater reverse osmosis membranes from a desalination plant: enzyme production and screening of bacterial isolates from the full-scale plant.

    Science.gov (United States)

    Nagaraj, V; Skillman, L; Li, D; Xie, Z; Ho, G

    2017-07-01

    Control of biofouling on seawater reverse osmosis (SWRO) membranes is a major challenge as treatments can be expensive, damage the membrane material and often biocides do not remove the polymers in which bacteria are embedded. Biological control has been largely ignored for biofouling control. The objective of this study was to demonstrate the effectiveness of xanthine oxidase enzyme against complex fouling communities and then identify naturally occurring bacterial strains that produce the free radical generating enzyme. Initially, 64 bacterial strains were isolated from different locations of the Perth Seawater Desalination Plant. In our preceding study, 25/64 isolates were selected from the culture collection as models for biofouling studies, based on their prevalence in comparison to the genomic bacterial community. In this study, screening of these model strains was performed using a nitroblue tetrazolium assay in the presence of hypoxanthine as substrate. Enzyme activity was measured by absorbance. Nine of 25 strains tested positive for xanthine oxidase production, of which Exiguobacterium from sand filters and Microbacterium from RO membranes exhibited significant levels of enzyme production. Other genera that produced xanthine oxidase were Marinomonas, Pseudomonas, Bacillus, Pseudoalteromonas and Staphylococcus. Strain variations were observed between members of the genera Microbacterium and Bacillus. Xanthine oxidase, an oxidoreductase enzyme that generates reactive oxygen species, is endogenously produced by many bacterial species. In this study, production of the enzyme by bacterial isolates from a full-scale desalination plant was investigated for potential use as biological control of membrane fouling in seawater desalination. We have previously demonstrated that free radicals generated by a commercially available xanthine oxidase in the presence of a hypoxanthine substrate, effectively dispersed biofilm polysaccharides on industrially fouled membranes

  20. In vitro bactericidal activity of Jinghua Weikang Capsule and its individual herb Chenopodium ambrosioides L. against antibiotic-resistant Helicobacter pylori.

    Science.gov (United States)

    Liu, Wei; Liu, Yu; Zhang, Xue-Zhi; Li, Ning; Cheng, Hong

    2013-01-01

    To investigate the bactericidal effects of Jinghua Weikang Capsule and its major component Chenopodium ambrosioides L. on antibiotic-resistant Helicobacter pylori. Four clinical antibiotic-resistant H. pylori strains were isolated and incubated in liquid medium containing Jinghua Weikang Capsule or Chenopodium ambrosioides L. By means of time-kill curve method, the average colony counts and bactericidal rate were calculated at time points of 0, 4, 8 and 24 h after the incubation and the time-kill curves were charted. Both Jinghua Weikang Capsule and Chenopodium ambrosioides L. at a concentration of 0.64 g/L showed obvious bactericidal effect against antibiotic-resistant H. pylori after 4 h of incubation. Jinghua Weikang Capsule and Chenopodium ambrosioides L. are considered to be active against antibiotic-resistant H. pylori in vitro.

  1. Metal and antibiotic-resistance in psychrotrophic bacteria from Antarctic marine waters

    Digital Repository Service at National Institute of Oceanography (India)

    De; Nair, S.; LokaBharathi, P.A.; Chandramohan, D.

    In the wake of the findings that Antarctic krills concentrate heavy metals at ppm level, (Yamamoto et al., 1987), the Antarctic waters from the Indian side were examined for the incidence of metal and antibiotic-resistant bacteria during...

  2. Carbon nanotubes as in vivo bacterial probes.

    Science.gov (United States)

    Bardhan, Neelkanth M; Ghosh, Debadyuti; Belcher, Angela M

    2014-09-17

    With the rise in antibiotic-resistant infections, non-invasive sensing of infectious diseases is increasingly important. Optical imaging, although safer and simpler, is less developed than other modalities such as radioimaging, due to low availability of target-specific molecular probes. Here we report carbon nanotubes (SWNTs) as bacterial probes for fluorescence imaging of pathogenic infections. We demonstrate that SWNTs functionalized using M13 bacteriophage (M13-SWNT) can distinguish between F'-positive and F'-negative bacterial strains. Moreover, through one-step modification, we attach an anti-bacterial antibody on M13-SWNT, making it easily tunable for sensing specific F'-negative bacteria. We illustrate detection of Staphylococcus aureus intramuscular infections, with ~3.4 × enhancement in fluorescence intensity over background. SWNT imaging presents lower signal spread ~0.08 × and higher signal amplification ~1.4 × , compared with conventional dyes. We show the probe offers greater ~5.7 × enhancement in imaging of S. aureus infective endocarditis. These biologically functionalized, aqueous-dispersed, actively targeted, modularly tunable SWNT probes offer new avenues for exploration of deeply buried infections.

  3. Carbon nanotubes as in vivo bacterial probes

    Science.gov (United States)

    Bardhan, Neelkanth M.; Ghosh, Debadyuti; Belcher, Angela M.

    2014-09-01

    With the rise in antibiotic-resistant infections, non-invasive sensing of infectious diseases is increasingly important. Optical imaging, although safer and simpler, is less developed than other modalities such as radioimaging, due to low availability of target-specific molecular probes. Here we report carbon nanotubes (SWNTs) as bacterial probes for fluorescence imaging of pathogenic infections. We demonstrate that SWNTs functionalized using M13 bacteriophage (M13-SWNT) can distinguish between F‧-positive and F‧-negative bacterial strains. Moreover, through one-step modification, we attach an anti-bacterial antibody on M13-SWNT, making it easily tunable for sensing specific F‧-negative bacteria. We illustrate detection of Staphylococcus aureus intramuscular infections, with ~3.4 × enhancement in fluorescence intensity over background. SWNT imaging presents lower signal spread ~0.08 × and higher signal amplification ~1.4 × , compared with conventional dyes. We show the probe offers greater ~5.7 × enhancement in imaging of S. aureus infective endocarditis. These biologically functionalized, aqueous-dispersed, actively targeted, modularly tunable SWNT probes offer new avenues for exploration of deeply buried infections.

  4. The use of combined radiation methods for decreasing the bacterial dissemination of enzyme preparations

    International Nuclear Information System (INIS)

    Samojlenko, I.I.; Fedotov, N.S.; Tumanyan, M.A.; Korolev, N.I.

    1984-01-01

    A study was made on possibility of using ionizing radiation in combination with alternative magnetic field (AMF) and heating for decreasing the bacterial dissemination of proteolytic enzymes. Papain, trypsin, chymotrypsin and amylorysin (the preparation possessing proteolytic and amylolytic activities) were subjected to gamma irradiation at 10-25 kGy dose range, the effect of AMF with 750 oe and heating at 50 deg during 60 min. Model tests conducted with the use of Escherichia Coli cells and Bacillus anthracoides spores showed that survival rate of bacteria irradiated in protective medium was lower in the case of combined magnetoradiation and thermoradiation effect. The use of 10 kGy dose of ionizing radiation in combination with treatment in alternative magnetic field or with heating provided the required decrease of dissemination of irradiated enzyme samples with complete conservation of proteolytic activity by them

  5. Carriage of antibiotic-resistant enteric bacteria varies among sites in Galapagos reptiles.

    Science.gov (United States)

    Wheeler, Emily; Hong, Pei-Ying; Bedon, Lenin Cruz; Mackie, Roderick I

    2012-01-01

    Increased overlap between humans and wildlife populations has increased the risk for novel disease emergence. Detecting contacts with a high risk for transmission of pathogens requires the identification of dependable measures of microbial exchange. We evaluated antibiotic resistance as a molecular marker for the intensity of human-wildlife microbial connectivity in the Galápagos Islands. We isolated Escherichia coli and Salmonella enterica from the feces of land iguanas (Conolophus sp.), marine iguanas (Amblyrhynchus cristatus), giant tortoises (Geochelone nigra), and seawater, and tested these bacteria with the use of the disk diffusion method for resistance to 10 antibiotics. Antibiotic-resistant bacteria were found in reptile feces from two tourism sites (Isla Plaza Sur and La Galapaguera on Isla San Cristóbal) and from seawater close to a public use beach near Puerto Baquerizo Moreno on Isla San Cristóbal. No resistance was detected at two protected beaches on more isolated islands (El Miedo on Isla Santa Fe and Cape Douglas on Isla Fernandina) and at a coastal tourism site (La Lobería on Isla San Cristóbal). Eighteen E. coli isolates from three locations, all sites relatively proximate to a port town, were resistant to ampicillin, doxycycline, tetracycline, and trimethoprin/sulfamethoxazole. In contrast, only five S. enterica isolates showed a mild decrease in susceptibility to doxycycline and tetracycline from these same sites (i.e., an intermediate resistance phenotype), but no clinical resistance was detected in this bacterial species. These findings suggest that reptiles living in closer proximity to humans potentially have higher exposure to bacteria of human origin; however, it is not clear from this study to what extent this potential exposure translates to ongoing exchange of bacterial strains or genetic traits. Resistance patterns and bacterial exchange in this system warrant further investigation to understand better how human associations

  6. Identification of thermophilic bacterial strains producing thermotolerant hydrolytic enzymes from manure compost.

    Science.gov (United States)

    Charbonneau, David M; Meddeb-Mouelhi, Fatma; Boissinot, Maurice; Sirois, Marc; Beauregard, Marc

    2012-03-01

    Ten thermophilic bacterial strains were isolated from manure compost. Phylogenetic analysis based on 16S rRNA genes and biochemical characterization allowed identification of four different species belonging to four genera: Geobacillus thermodenitrificans, Bacillus smithii, Ureibacillus suwonensis and Aneurinibacillus thermoaerophilus. PCR-RFLP profiles of the 16S-ITS-23S rRNA region allowed us to distinguish two subgroups among the G. thermodenitrificans isolates. Isolates were screened for thermotolerant hydrolytic activities (60-65°C). Thermotolerant lipolytic activities were detected for G. thermodenitrificans, A. thermoaerophilus and B. smithii. Thermotolerant protease, α-amylase and xylanase activities were also observed in the G. thermodenitrificans group. These species represent a source of potential novel thermostable enzymes for industrial applications.

  7. Comparative genomics study for the identification of drug and vaccine targets in Staphylococcus aureus: MurA ligase enzyme as a proposed candidate.

    Science.gov (United States)

    Ghosh, Soma; Prava, Jyoti; Samal, Himanshu Bhusan; Suar, Mrutyunjay; Mahapatra, Rajani Kanta

    2014-06-01

    Now-a-days increasing emergence of antibiotic-resistant pathogenic microorganisms is one of the biggest challenges for management of disease. In the present study comparative genomics, metabolic pathways analysis and additional parameters were defined for the identification of 94 non-homologous essential proteins in Staphylococcus aureus genome. Further study prioritized 19 proteins as vaccine candidates where as druggability study reports 34 proteins suitable as drug targets. Enzymes from peptidoglycan biosynthesis, folate biosynthesis were identified as candidates for drug development. Furthermore, bacterial secretory proteins and few hypothetical proteins identified in our analysis fulfill the criteria of vaccine candidates. As a case study, we built a homology model of one of the potential drug target, MurA ligase, using MODELLER (9v12) software. The model has been further selected for in silico docking study with inhibitors from the DrugBank database. Results from this study could facilitate selection of proteins for entry into drug design and vaccine production pipelines. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Effect of biochar amendment on the control of soil sulfonamides, antibiotic-resistant bacteria, and gene enrichment in lettuce tissues

    International Nuclear Information System (INIS)

    Ye, Mao; Sun, Mingming; Feng, Yanfang; Wan, Jinzhong; Xie, Shanni; Tian, Da; Zhao, Yu; Wu, Jun; Hu, Feng; Li, Huixin; Jiang, Xin

    2016-01-01

    Highlights: • Biochar can prevent soil sulfonamides from accumulating in lettuce tissues. • ARB enrichment in lettuce tissues decreased significantly after biochar amendment. • Impedance effect of biochar addition on soil ARGs was also quite effective. • Biochar application can be a practical strategy to protect vegetable safety. - Abstract: Considering the potential threat of vegetables growing in antibiotic-polluted soil with high abundance of antibiotic-resistant genes (ARGs) against human health through the food chain, it is thus urgent to develop novel control technology to ensure vegetable safety. In the present work, pot experiments were conducted in lettuce cultivation to assess the impedance effect of biochar amendment on soil sulfonamides (SAs), antibiotic-resistant bacteria (ARB), and ARG enrichment in lettuce tissues. After 100 days of cultivation, lettuce cultivation with biochar amendment exhibited the greatest soil SA dissipation as well as the significant improvement of lettuce growth indices, with residual soil SAs mainly existing as the tightly bound fraction. Moreover, the SA contents in roots and new/old leaves were reduced by one to two orders of magnitude compared to those without biochar amendment. In addition, isolate counts for SA-resistant bacterial endophytes in old leaves and sul gene abundances in roots and old leaves also decreased significantly after biochar application. However, neither SA resistant bacteria nor sul genes were detected in new leaves. It was the first study to demonstrate that biochar amendment can be a practical strategy to protect lettuce safety growing in SA-polluted soil with rich ARB and ARGs.

  9. Antimicrobial properties of black grape (Vitis vinifera L.) peel extracts against antibiotic-resistant pathogenic bacteria and toxin producing molds.

    Science.gov (United States)

    Yadav, Devbrat; Kumar, Arvind; Kumar, Pramod; Mishra, Diwaker

    2015-01-01

    Black grape peel possesses a substantial amount of polyphenolic antimicrobial compounds that can be used for controlling the growth of pathogenic microorganisms. The purpose of this study was to assess antibacterial and antifungal activity of black grape peel extracts against antibiotic-resistant pathogenic bacteria and toxin producing molds, respectively. Peel of grape was subjected to polyphenolic extraction using different solvents viz., water, ethanol, acetone, and methanol. Antibiotic-resistant strains of Staphylococcus aureus, Enterococcus faecalis, Enterobacter aerogenes, Salmonella typhimurium, and Escherichia coli were screened for the antibacterial activity of different grape extracts. Antibacterial activity was analyzed using agar well diffusion method. Penicillium chrysogenum, Penicillium expansum, Aspergillus niger and Aspergillus versicolor were screened for the antifungal activity. Antifungal activity was determined by counting nongerminated spores in the presence of peel extracts. As compared to other solvent extracts, methanol extracts possessed high antibacterial and antifungal activity. S. typhimurium and E. coli showed complete resistance against antibacterial action at screened concentrations of grape peel extracts. Maximum zone of inhibition was found in case of S. aureus, i.e., 22 mm followed by E. faecalis and E. aerogenes, i.e., 18 and 21 mm, respectively, at 1080 mg tannic acid equivalent (TAE)/ml. The maximum and minimum percent of growth inhibition was shown by P. expansum and A. niger as 73% and 15% at 1080 TAE/ml concentration of grape peel extract, respectively. Except S. typhimurium and E. coli, growth of all bacterial and mold species were found to be significantly (P < 0.05) inhibited by all the solvent extracts.

  10. Effect of biochar amendment on the control of soil sulfonamides, antibiotic-resistant bacteria, and gene enrichment in lettuce tissues

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Mao [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Sun, Mingming [Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Feng, Yanfang, E-mail: fengyanfang@163.com [Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014 (China); Wan, Jinzhong [Nanjing Institute of Environmental Science, Ministry of Environmental Protection of China, Nanjing 210042 (China); Xie, Shanni; Tian, Da [Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Zhao, Yu [Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Wu, Jun; Hu, Feng; Li, Huixin [Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Jiang, Xin, E-mail: Jiangxin@issas.ac.cn [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)

    2016-05-15

    Highlights: • Biochar can prevent soil sulfonamides from accumulating in lettuce tissues. • ARB enrichment in lettuce tissues decreased significantly after biochar amendment. • Impedance effect of biochar addition on soil ARGs was also quite effective. • Biochar application can be a practical strategy to protect vegetable safety. - Abstract: Considering the potential threat of vegetables growing in antibiotic-polluted soil with high abundance of antibiotic-resistant genes (ARGs) against human health through the food chain, it is thus urgent to develop novel control technology to ensure vegetable safety. In the present work, pot experiments were conducted in lettuce cultivation to assess the impedance effect of biochar amendment on soil sulfonamides (SAs), antibiotic-resistant bacteria (ARB), and ARG enrichment in lettuce tissues. After 100 days of cultivation, lettuce cultivation with biochar amendment exhibited the greatest soil SA dissipation as well as the significant improvement of lettuce growth indices, with residual soil SAs mainly existing as the tightly bound fraction. Moreover, the SA contents in roots and new/old leaves were reduced by one to two orders of magnitude compared to those without biochar amendment. In addition, isolate counts for SA-resistant bacterial endophytes in old leaves and sul gene abundances in roots and old leaves also decreased significantly after biochar application. However, neither SA resistant bacteria nor sul genes were detected in new leaves. It was the first study to demonstrate that biochar amendment can be a practical strategy to protect lettuce safety growing in SA-polluted soil with rich ARB and ARGs.

  11. Evaluation of gastrointestinal bacterial population for the production of holocellulose enzymes for biomass deconstruction.

    Science.gov (United States)

    Asem, Dhaneshwaree; Leo, Vincent Vineeth; Passari, Ajit Kumar; Tonsing, Mary Vanlalhruaii; Joshi, J Beslin; Uthandi, Sivakumar; Hashem, Abeer; Abd Allah, Elsayed Fathi; Singh, Bhim Pratap

    2017-01-01

    The gastrointestinal (GI) habitat of ruminant and non-ruminant animals sustains a vast ensemble of microbes that are capable of utilizing lignocellulosic plant biomass. In this study, an indigenous swine (Zovawk) and a domesticated goat (Black Bengal) were investigated to isolate bacteria having plant biomass degrading enzymes. After screening and enzymatic quantification of eighty-one obtained bacterial isolates, Serratia rubidaea strain DBT4 and Aneurinibacillus aneurinilyticus strain DBT87 were revealed as the most potent strains, showing both cellulase and xylanase production. A biomass utilization study showed that submerged fermentation (SmF) of D2 (alkaline pretreated pulpy biomass) using strain DBT4 resulted in the most efficient biomass deconstruction with maximum xylanase (11.98 U/mL) and FPase (0.5 U/mL) activities (55°C, pH 8). The present study demonstrated that bacterial strains residing in the gastrointestinal region of non-ruminant swine are a promising source for lignocellulose degrading microorganisms that could be used for biomass conversion.

  12. Evaluation of gastrointestinal bacterial population for the production of holocellulose enzymes for biomass deconstruction.

    Directory of Open Access Journals (Sweden)

    Dhaneshwaree Asem

    Full Text Available The gastrointestinal (GI habitat of ruminant and non-ruminant animals sustains a vast ensemble of microbes that are capable of utilizing lignocellulosic plant biomass. In this study, an indigenous swine (Zovawk and a domesticated goat (Black Bengal were investigated to isolate bacteria having plant biomass degrading enzymes. After screening and enzymatic quantification of eighty-one obtained bacterial isolates, Serratia rubidaea strain DBT4 and Aneurinibacillus aneurinilyticus strain DBT87 were revealed as the most potent strains, showing both cellulase and xylanase production. A biomass utilization study showed that submerged fermentation (SmF of D2 (alkaline pretreated pulpy biomass using strain DBT4 resulted in the most efficient biomass deconstruction with maximum xylanase (11.98 U/mL and FPase (0.5 U/mL activities (55°C, pH 8. The present study demonstrated that bacterial strains residing in the gastrointestinal region of non-ruminant swine are a promising source for lignocellulose degrading microorganisms that could be used for biomass conversion.

  13. Chemopreventive effect of myrtenal on bacterial enzyme activity and the development of 1,2-dimethyl hydrazine-induced aberrant crypt foci in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Lokesh Kumar Booupathy

    2016-01-01

    Full Text Available Colon cancer remains as a serious health problem around the world despite advances in diagnosis and treatment. Dietary fibers are considered to reduce the risk of colon cancer as they are converted to short chain fatty acids by the presence of anaerobic bacteria in the intestine, but imbalanced diet and high fat consumption may promote tumor formation at different sites, including the large bowel via increased bacterial enzymes activity. The present study was conducted to characterize the inhibitory action of myrtenal on bacterial enzymes and aberrant crypt foci (ACF. Experimental colon carcinogenesis induced by 1,2-dimethylhydrazine is histologically, morphologically, and anatomically similar to human colonic epithelial neoplasm. Discrete microscopic mucosal lesions such as ACF and malignant tumors function as important biomarkers in the diagnosis of colon cancer. Methylene blue staining was carried out to visualize the impact of 1,2-dimethylhydrazine and myrtenal. Myrtenal-treated animals showed decreased levels of bacterial enzymes such as β-glucuronidase, β-glucosidase, and mucinase. Characteristic changes in the colon were noticed by inhibiting ACF formation in the colon. In conclusion, treatment with myrtenal provided altered pathophysiological condition in colon cancer-bearing animals with evidence of decreased crypt multiplicity and tumor progression.

  14. Tracking down antibiotic-resistant Pseudomonas aeruginosa isolates in a wastewater network.

    Directory of Open Access Journals (Sweden)

    Céline Slekovec

    Full Text Available The Pseudomonas aeruginosa-containing wastewater released by hospitals is treated by wastewater treatment plants (WWTPs, generating sludge, which is used as a fertilizer, and effluent, which is discharged into rivers. We evaluated the risk of dissemination of antibiotic-resistant P. aeruginosa (AR-PA from the hospital to the environment via the wastewater network. Over a 10-week period, we sampled weekly 11 points (hospital and urban wastewater, untreated and treated water, sludge of the wastewater network and the river upstream and downstream of the WWTP of a city in eastern France. We quantified the P. aeruginosa load by colony counting. We determined the susceptibility to 16 antibiotics of 225 isolates, which we sorted into three categories (wild-type, antibiotic-resistant and multidrug-resistant. Extended-spectrum β-lactamases (ESBLs and metallo-β-lactamases (MBLs were identified by gene sequencing. All non-wild-type isolates (n = 56 and a similar number of wild-type isolates (n = 54 were genotyped by pulsed-field gel electrophoresis and multilocus sequence typing. Almost all the samples (105/110, 95.5% contained P. aeruginosa, with high loads in hospital wastewater and sludge (≥3×10(6 CFU/l or/kg. Most of the multidrug-resistant isolates belonged to ST235, CC111 and ST395. They were found in hospital wastewater and some produced ESBLs such as PER-1 and MBLs such as IMP-29. The WWTP greatly reduced P. aeruginosa counts in effluent, but the P. aeruginosa load in the river was nonetheless higher downstream than upstream from the WWTP. We conclude that the antibiotic-resistant P. aeruginosa released by hospitals is found in the water downstream from the WWTP and in sludge, constituting a potential risk of environmental contamination.

  15. Highly sensitive bacterial susceptibility test against penicillin using parylene-matrix chip.

    Science.gov (United States)

    Park, Jong-Min; Kim, Jo-Il; Song, Hyun-Woo; Noh, Joo-Yoon; Kang, Min-Jung; Pyun, Jae-Chul

    2015-09-15

    This work presented a highly sensitive bacterial antibiotic susceptibility test through β-lactamase assay using Parylene-matrix chip. β-lactamases (EC 3.5.2.6) are an important family of enzymes that confer resistance to β-lactam antibiotics by catalyzing the hydrolysis of these antibiotics. Here we present a highly sensitive assay to quantitate β-lactamase-mediated hydrolysis of penicillin into penicilloic acid. Typically, MALDI-TOF mass spectrometry has been used to quantitate low molecular weight analytes and to discriminate them from noise peaks of matrix fragments that occur at low m/z ratios (m/ztest was carried out using Parylene-matrix chip and MALDI-TOF mass spectrometry. The Parylene-matrix chip was successfully used to quantitate penicillin (m/z: [PEN+H](+)=335.1 and [PEN+Na](+)=357.8) and penicilloic acid (m/z: [PA+H](+)=353.1) in a β-lactamase assay with minimal interference of low molecular weight noise peaks. The β-lactamase assay was carried out with an antibiotic-resistant E. coli strain and an antibiotic-susceptible E. coli strain, revealing that the minimum number of E. coli cells required to screen for antibiotic resistance was 1000 cells for the MALDI-TOF mass spectrometry/Parylene-matrix chip assay. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. An Amperometric Biosensor for the Determination of Bacterial Sepsis Biomarker, Secretory Phospholipase Group 2-IIA Using a Tri-Enzyme System

    Directory of Open Access Journals (Sweden)

    Nik Nurhanan Nik Mansor

    2018-02-01

    Full Text Available A tri-enzyme system consisting of choline kinase/choline oxidase/horseradish peroxidase was used in the rapid and specific determination of the biomarker for bacterial sepsis infection, secretory phospholipase Group 2-IIA (sPLA2-IIA. These enzymes were individually immobilized onto the acrylic microspheres via succinimide groups for the preparation of an electrochemical biosensor. The reaction of sPLA2-IIA with its substrate initiated a cascading enzymatic reaction in the tri-enzyme system that led to the final production of hydrogen peroxide, which presence was indicated by the redox characteristics of potassium ferricyanide, K3Fe(CN6. An amperometric biosensor based on enzyme conjugated acrylic microspheres and gold nanoparticles composite coated onto a carbon-paste screen printed electrode (SPE was fabricated and the current measurement was performed at a low potential of 0.20 V. This enzymatic biosensor gave a linear range 0.01–100 ng/mL (R2 = 0.98304 with a detection limit recorded at 5 × 10−3 ng/mL towards sPLA2-IIA. Moreover, the biosensor showed good reproducibility (relative standard deviation (RSD of 3.04% (n = 5. The biosensor response was reliable up to 25 days of storage at 4 °C. Analysis of human serum samples for sPLA2-IIA indicated that the biosensor has potential for rapid bacterial sepsis diagnosis in hospital emergency department.

  17. Gut Microbiome and Putative Resistome of Inca and Italian Nobility Mummies.

    Science.gov (United States)

    Santiago-Rodriguez, Tasha M; Fornaciari, Gino; Luciani, Stefania; Toranzos, Gary A; Marota, Isolina; Giuffra, Valentina; Cano, Raul J

    2017-11-07

    Little is still known about the microbiome resulting from the process of mummification of the human gut. In the present study, the gut microbiota, genes associated with metabolism, and putative resistome of Inca and Italian nobility mummies were characterized by using high-throughput sequencing. The Italian nobility mummies exhibited a higher bacterial diversity as compared to the Inca mummies when using 16S ribosomal (rRNA) gene amplicon sequencing, but both groups showed bacterial and fungal taxa when using shotgun metagenomic sequencing that may resemble both the thanatomicrobiome and extant human gut microbiomes. Identification of sequences associated with plants, animals, and carbohydrate-active enzymes (CAZymes) may provide further insights into the dietary habits of Inca and Italian nobility mummies. Putative antibiotic-resistance genes in the Inca and Italian nobility mummies support a human gut resistome prior to the antibiotic therapy era. The higher proportion of putative antibiotic-resistance genes in the Inca compared to Italian nobility mummies may support the hypotheses that a greater exposure to the environment may result in a greater acquisition of antibiotic-resistance genes. The present study adds knowledge of the microbiome resulting from the process of mummification of the human gut, insights of ancient dietary habits, and the preserved putative human gut resistome prior the antibiotic therapy era.

  18. Bacterial Glycosyltransferases: Challenges and opportunities of a highly diverse enzyme class toward tailoring natural products

    Directory of Open Access Journals (Sweden)

    Jochen eSchmid

    2016-02-01

    Full Text Available The enzyme subclass of glycosyltransferases (EC 2.4 currently comprises 97 families as specified by CAZy classification. One of their important roles is in the biosynthesis of disaccharides, oligosaccharides and polysaccharides by catalyzing the transfer of sugar moieties from activated donor molecules to other sugar molecules. In addition glycosyltransferases also catalyze the transfer of sugar moieties onto aglycons, which is of great relevance for the synthesis of many high value natural products. Bacterial glycosyltransferases show a higher sequence similarity in comparison to mammalian ones. Even when most glycosyltransferases are poorly explored, state of the art technologies, such as protein engineering, domain swapping or computational analysis strongly enhance our understanding and utilization of these very promising classes of proteins. This perspective article will focus on bacterial glycosyltransferases, especially on classification, screening and engineering strategies to alter substrate specificity. The future development in these fields as well as obstacles and challenges will be highlighted and discussed.

  19. Carriage of antibiotic-resistant pneumococci in a cohort of a daycare center

    Directory of Open Access Journals (Sweden)

    Gómez-Barreto Demóstenes

    2002-01-01

    Full Text Available Objective. To define epidemiologic relationships to determine the prevalence and potential risk factors for nasopharyngeal colonization by antibiotic-resistant pneumococci, their serotypes and their antibiotic susceptibility patterns in children attending a daycare center (DCC. Material and Methods. A prospective cohort study was conducted among children (n=53 attending the DCC at Hospital Infantil de México Federico Gómez, which is staffed by 20 employees. Patients were enrolled in the study during a two-year period from September 1997 to September 1999. All the participants were followed prospectively, swabbing them every four months. The strains recovered were typed and screened for susceptibility to several antibiotics. The daycare records were reviewed also. Odds ratios and fisher's exact test: or chi square test of significance were computed from contingency tables as appropriate. Exact 95% confidence intervals were computed for odds ratios. Data analysis was performed using Epi statistics program version 6.04 a. Results. Pneumococci were recovered from 45/53 of the infants at one or more visits. A total of 178 isolates were carried. The carriage rate was 47%. Only 7 adults acquired pneumococci during the study. Types 6,14,19 and 23 were prevalent and represented 77% of the total. Antibiotic-resistant strains were higher to penicillin and erythromycin. Conclusions. Children were frequent carriers of pneumococci, the rate of carriage was high in infancy and tended to decrease with age. The types commonly carried by children were the same as those causing invasive disease. There is a high proportion of carriers with antibiotic-resistant S. pneumoniae strains. Children who have had frequent antimicrobial courses are at particular risk.

  20. Partial Characterization of α-Galactosidic Activity from the Antarctic Bacterial Isolate, . LX-20 as a Potential Feed Enzyme Source

    Directory of Open Access Journals (Sweden)

    Inkyung Park

    2012-06-01

    Full Text Available An Antarctic bacterial isolate displaying extracellular α-galactosidic activity was named Paenibacillus sp. LX-20 based on 16S rRNA gene sequence analysis. Optimal activity for the LX-20 α-galactosidase occurred at pH 6.0–6.5 and 45°C. The enzyme immobilized on the smart polymer Eudragit L-100 retained 70% of its original activity after incubation for 30 min at 50°C, while the free enzyme retained 58% of activity. The enzyme had relatively high specificity for α-D-galactosides such as p-nitrophenyl-α-galactopyranoside, melibiose, raffinose and stachyose, and was resistant to some proteases such as trypsin, pancreatin and pronase. Enzyme activity was almost completely inhibited by Ag+, Hg2+, Cu2+, and sodium dodecyl sulfate, but activity was not affected by β-mercaptoethanol or EDTA. LX-20 α-galactosidase may be potentially useful as an additive for soybean processing in the feed industry.

  1. Modeling bacterial contamination of fuel ethanol fermentation.

    Science.gov (United States)

    Bischoff, Kenneth M; Liu, Siqing; Leathers, Timothy D; Worthington, Ronald E; Rich, Joseph O

    2009-05-01

    The emergence of antibiotic-resistant bacteria may limit the effectiveness of antibiotics to treat bacterial contamination in fuel ethanol plants, and therefore, new antibacterial intervention methods and tools to test their application are needed. Using shake-flask cultures of Saccharomyces cerevisiae grown on saccharified corn mash and strains of lactic acid bacteria isolated from a dry-grind ethanol facility, a simple model to simulate bacterial contamination and infection was developed. Challenging the model with 10(8) CFU/mL Lactobacillus fermentum decreased ethanol yield by 27% and increased residual glucose from 6.2 to 45.5 g/L. The magnitude of the effect was proportional to the initial bacterial load, with 10(5) CFU/mL L. fermentum still producing an 8% decrease in ethanol and a 3.2-fold increase in residual glucose. Infection was also dependent on the bacterial species used to challenge the fermentation, as neither L. delbrueckii ATCC 4797 nor L. amylovorus 0315-7B produced a significant decrease in ethanol when inoculated at a density of 10(8) CFU/mL. In the shake-flask model, treatment with 2 microg/mL virginiamycin mitigated the infection when challenged with a susceptible strain of L. fermentum (MIC for virginiamycin model may find application in developing new antibacterial agents and management practices for use in controlling contamination in the fuel ethanol industry. Copyright 2008 Wiley Periodicals, Inc.

  2. Emergence of antibiotic-resistant bacteria in patients with Fournier gangrene.

    Science.gov (United States)

    Lin, Wei-Ting; Chao, Chien-Ming; Lin, Hsin-Lan; Hung, Ming-Chran; Lai, Chih-Cheng

    2015-04-01

    This study was conducted to investigate the bacteriology and associated patterns of antibiotic resistance Fournier gangrene. Patients with Fournier's gangrene from 2008 to 2012 were identified from the computerized database in a medical center in southern Taiwan. The medical records of all patients with Fournier's gangrene were reviewed retrospectively. There were 61 microorganisms, including 60 bacteria and one Candida spp, isolated from clinical wound specimens from 32 patients. The most common isolates obtained were Streptococcus spp. (n=12), Peptoniphilus spp. (n=8), Staphylococcus aureus (n=7), Escherichia coli (n=7), and Klebsiella pneumoniae (n=7). Among 21 strains of gram-negative bacilli, five (23.8%) were resistant to fluoroquinolones, and three isolates were resistant to ceftriaxone. Two E. coli strains produced extended-spectrum beta-lactamase. Four of the seven S. aureus isolates were methicillin-resistant. Among 15 anaerobic isolates, nine (60%) were resistant to penicillin, and eight (53.3%) were resistant to clindamycin. Four (26.7%) isolates were resistant to metronidazole. The only independent risk factor associated with mortality was inappropriate initial antibiotic treatment (p=0.021). Antibiotic-resistant bacteria are emerging in the clinical setting of Fournier gangrene. Clinicians should use broad-spectrum antibiotics initially to cover possible antibiotic-resistant bacteria.

  3. Real-time detection of antibiotic activity by measuring nanometer-scale bacterial deformation

    Science.gov (United States)

    Iriya, Rafael; Syal, Karan; Jing, Wenwen; Mo, Manni; Yu, Hui; Haydel, Shelley E.; Wang, Shaopeng; Tao, Nongjian

    2017-12-01

    Diagnosing antibiotic-resistant bacteria currently requires sensitive detection of phenotypic changes associated with antibiotic action on bacteria. Here, we present an optical imaging-based approach to quantify bacterial membrane deformation as a phenotypic feature in real-time with a nanometer scale (˜9 nm) detection limit. Using this approach, we found two types of antibiotic-induced membrane deformations in different bacterial strains: polymyxin B induced relatively uniform spatial deformation of Escherichia coli O157:H7 cells leading to change in cellular volume and ampicillin-induced localized spatial deformation leading to the formation of bulges or protrusions on uropathogenic E. coli CFT073 cells. We anticipate that the approach will contribute to understanding of antibiotic phenotypic effects on bacteria with a potential for applications in rapid antibiotic susceptibility testing.

  4. Phage Therapy Is Effective in a Mouse Model of Bacterial Equine Keratitis.

    Science.gov (United States)

    Furusawa, Takaaki; Iwano, Hidetomo; Hiyashimizu, Yutaro; Matsubara, Kazuki; Higuchi, Hidetoshi; Nagahata, Hajime; Niwa, Hidekazu; Katayama, Yoshinari; Kinoshita, Yuta; Hagiwara, Katsuro; Iwasaki, Tomohito; Tanji, Yasunori; Yokota, Hiroshi; Tamura, Yutaka

    2016-09-01

    Bacterial keratitis of the horse is mainly caused by staphylococci, streptococci, and pseudomonads. Of these bacteria, Pseudomonas aeruginosa sometimes causes rapid corneal corruption and, in some cases, blindness. Antimicrobial resistance can make treatment very difficult. Therefore, new strategies to control bacterial infection are required. A bacteriophage (phage) is a virus that specifically infects and kills bacteria. Since phage often can lyse antibiotic-resistant bacteria because the killing mechanism is different, we examined the use of phage to treat horse bacterial keratitis. We isolated Myoviridae or Podoviridae phages, which together have a broad host range. They adsorb efficiently to host bacteria; more than 80% of the ΦR18 phage were adsorbed to host cells after 30 s. In our keratitis mouse model, the administration of phage within 3 h also could kill bacteria and suppress keratitis. A phage multiplicity of infection of 100 times the host bacterial number could kill host bacteria effectively. A cocktail of two phages suppressed bacteria in the keratitis model mouse. These data demonstrated that the phages in this study could completely prevent the keratitis caused by P. aeruginosa in a keratitis mouse model. Furthermore, these results suggest that phage may be a more effective prophylaxis for horse keratitis than the current preventive use of antibiotics. Such treatment may reduce the use of antibiotics and therefore antibiotic resistance. Further studies are required to assess phage therapy as a candidate for treatment of horse keratitis. Antibiotic-resistant bacteria are emerging all over the world. Bacteriophages have great potential for resolution of this problem. A bacteriophage, or phage, is a virus that infects bacteria specifically. As a novel therapeutic strategy against racehorse keratitis caused by Pseudomonas aeruginosa, we propose the application of phages for treatment. Phages isolated in this work had in vitro effectiveness for a broad

  5. Differentiation of ruminal bacterial species by enzyme-linked immunosorbent assay using egg yolk antibodies from immunized chicken hens.

    OpenAIRE

    Ricke, S C; Schaefer, D M; Cook, M E; Kang, K H

    1988-01-01

    Cross-reactivity among four species of ruminal bacteria was examined by using egg yolk antibodies from immunized Leghorn laying hens and an enzyme-linked-immunosorbent assay. The effects of the four species on the hens were compared on various days postimmunization. Hens injected with the same bacterial species had similar apparent antibody levels over the entire postimmunization period, but only Bacteroides ruminicola B1(4) and Selenomonas ruminantium D antigens elicited early increases in a...

  6. Detergent-compatible bacterial amylases.

    Science.gov (United States)

    Niyonzima, Francois N; More, Sunil S

    2014-10-01

    Proteases, lipases, amylases, and cellulases are enzymes used in detergent formulation to improve the detergency. The amylases are specifically supplemented to the detergent to digest starchy stains. Most of the solid and liquid detergents that are currently manufactured contain alkaline enzymes. The advantages of using alkaline enzymes in the detergent formulation are that they aid in removing tough stains and the process is environmentally friendly since they reduce the use of toxic detergent ingredients. Amylases active at low temperature are preferred as the energy consumption gets reduced, and the whole process becomes cost-effective. Most microbial alkaline amylases are used as detergent ingredients. Various reviews report on the production, purification, characterization, and application of amylases in different industry sectors, but there is no specific review on bacterial or fungal alkaline amylases or detergent-compatible amylases. In this mini-review, an overview on the production and property studies of the detergent bacterial amylases is given, and the stability and compatibility of the alkaline bacterial amylases in the presence of the detergents and the detergent components are highlighted.

  7. Gut Microbiome and Putative Resistome of Inca and Italian Nobility Mummies

    Directory of Open Access Journals (Sweden)

    Tasha M. Santiago-Rodriguez

    2017-11-01

    Full Text Available Little is still known about the microbiome resulting from the process of mummification of the human gut. In the present study, the gut microbiota, genes associated with metabolism, and putative resistome of Inca and Italian nobility mummies were characterized by using high-throughput sequencing. The Italian nobility mummies exhibited a higher bacterial diversity as compared to the Inca mummies when using 16S ribosomal (rRNA gene amplicon sequencing, but both groups showed bacterial and fungal taxa when using shotgun metagenomic sequencing that may resemble both the thanatomicrobiome and extant human gut microbiomes. Identification of sequences associated with plants, animals, and carbohydrate-active enzymes (CAZymes may provide further insights into the dietary habits of Inca and Italian nobility mummies. Putative antibiotic-resistance genes in the Inca and Italian nobility mummies support a human gut resistome prior to the antibiotic therapy era. The higher proportion of putative antibiotic-resistance genes in the Inca compared to Italian nobility mummies may support the hypotheses that a greater exposure to the environment may result in a greater acquisition of antibiotic-resistance genes. The present study adds knowledge of the microbiome resulting from the process of mummification of the human gut, insights of ancient dietary habits, and the preserved putative human gut resistome prior the antibiotic therapy era.

  8. Antimicrobial activity of Manuka honey against antibiotic-resistant strains of the cell wall-free bacteria Ureaplasma parvum and Ureaplasma urealyticum.

    Science.gov (United States)

    Hillitt, K L; Jenkins, R E; Spiller, O B; Beeton, M L

    2017-03-01

    The susceptibility of the cell wall-free bacterial pathogens Ureaplasma spp. to Manuka honey was examined. The minimum inhibitory concentration (MIC) of Manuka honey for four Ureaplasma urealyticum and four Ureaplasma parvum isolates was determined. Sensitivity to honey was also compared to clinical isolates with resistance to tetracycline, macrolide and fluoroquinolone antibiotics. Finally step-wise resistance training was utilized in an attempt to induce increased tolerance to honey. The MIC was dependent on the initial bacterial load with 7·5 and 18·0% w/v honey required to inhibit U. urealyticum at 1 and 10 6 colour changing units (CCU), respectively, and 4·8 and 15·3% w/v required to inhibit U. parvum at 1 and 10 6  CCU respectively. MIC values were consistently lower for U. parvum compared with U. urealyticum. Antimicrobial activity was seen against tetracycline-resistant, erythromycin-resistant and ciprofloxacin-resistant isolates at 10 5  CCU. No resistance to honey was observed with 50 consecutive challenges at increasing concentrations of honey. This is the first report of the antimicrobial activity of Manuka honey against a cell wall-free bacterial pathogen. The antimicrobial activity was retained against antibiotic-resistant strains and it was not possible to generate resistant mutants. Manuka honey is known to have a broad spectrum of antimicrobial activity, with the bacterial cell wall being suggested as a predominant site of action. This study has demonstrated that Manuka honey has activity against Ureaplasma spp., a genus of cell wall-free bacteria which are intrinsically resistant to many available antibiotics making treatment inherently difficult. This is the first report of the antimicrobial activity of Manuka honey against a bacterial pathogen, in the absence of a cell well and opens scope for the use of components of Manuka honey as a therapeutic among Ureaplasma infections. © 2016 The Society for Applied Microbiology.

  9. Frequency of β-lactamase enzyme and antibiogram pattern in bacterial flora isolated from staffs hands

    Directory of Open Access Journals (Sweden)

    Shilla Jalalpoor

    2011-12-01

    Full Text Available Background: β-lactamase is an enzyme that can inactivate β–Lactam family antibiotics. High prevalence of β-lactamase producer bacteria on the staff hands, due to antibiotic resistance and nosocomial infection in hospitalized patients. The objective of this study was to assess the frequency of β-lactamase positive bacteria and antibiogram pattern in bacterial flora isolated from staff hands of the Al-Zahra hospital in Isfahan.Materials and Method: This laboratory research was performed during of 2005-2007 in Al-Zahra hospital in Isfahan. According to statistical formula, we randomly selected 80 samples from staff hands. Staff hand samples collected with finger print method. Bacterial identification was performed with microbiological methods and β–lactamase production was performed with Acidometric method and antibiogram pattern was performed with Kirby Bauer method.Results: According to the acidometric test results of 80 isolated staff hands, 61.85% of strains produce β–lactamase. Staphylococcus spp., Bacillus spp. and Enterobacteriaceae were the most important producers respectively (70.83%, 64.72% and 50%. According to antibiogram test results, penicillin and vancomycin had the highest and lowest resistance. Conclusion: High frequency of β–lactamase in bacterial survey represents colonization of bacteria in staff hands; may be due to facility transmission β–lactamase plasmid genes in bacteria. We suggest better hand washing in hospitals and prescription of β–lactame antibiotics was based only on antibiogram results

  10. Differentiation between activity of digestive enzymes of Brachionus calyciflorus and extracellular enzymes of its epizooic bacteria

    Directory of Open Access Journals (Sweden)

    Wilko H. AHLRICHS

    2009-08-01

    Full Text Available The rotifer Brachionus calyciflorus was examined by scanning electron microscopy (SEM for surface-attached, i.e. epizootic, bacteria to ascertain their specific localization and thus find out if we could discern between rotifer and bacterial enzyme activity. The lorica of B. calyciflorus was colonized by one distinct type of bacteria, which originated from the algal culture used for rotifer feeding. The corona, posterior epidermis and foot of all inspected individuals were always without attached bacteria. The density of the attached bacteria was higher with the increasing age of B. calyciflorus: while young individuals were colonized by ~ tens of bacterial cells, older ones had on average hundreds to thousands of attached bacteria. We hypothesize that epizooic bacteria may produce the ectoenzymes phosphatases and β-N-acetylhexosaminidases on the lorica, but not on the corona of B. calyciflorus. Since enzyme activities of epizooic bacteria may influence the values and interpretation of bulk rotifer enzyme activities, we should take the bacterial contribution into account.

  11. Crystal structure analysis of a bacterial aryl acylamidase belonging to the amidase signature enzyme family

    International Nuclear Information System (INIS)

    Lee, Saeyoung; Park, Eun-Hye; Ko, Hyeok-Jin; Bang, Won Gi; Kim, Hye-Yeon; Kim, Kyoung Heon; Choi, In-Geol

    2015-01-01

    The atomic structure of a bacterial aryl acylamidase (EC 3.5.1.13; AAA) is reported and structural features are investigated to better understand the catalytic profile of this enzyme. Structures of AAA were determined in its native form and in complex with the analgesic acetanilide, p-acetaminophenol, at 1.70 Å and 1.73 Å resolutions, respectively. The overall structural fold of AAA was identified as an α/β fold class, exhibiting an open twisted β-sheet core surrounded by α-helices. The asymmetric unit contains one AAA molecule and the monomeric form is functionally active. The core structure enclosing the signature sequence region, including the canonical Ser-cisSer-Lys catalytic triad, is conserved in all members of the Amidase Signature enzyme family. The structure of AAA in a complex with its ligand reveals a unique organization in the substrate-binding pocket. The binding pocket consists of two loops (loop1 and loop2) in the amidase signature sequence and one helix (α10) in the non-amidase signature sequence. We identified two residues (Tyr"1"3"6 and Thr"3"3"0) that interact with the ligand via water molecules, and a hydrogen-bonding network that explains the catalytic affinity over various aryl acyl compounds. The optimum activity of AAA at pH > 10 suggests that the reaction mechanism employs Lys"8"4 as the catalytic base to polarize the Ser"1"8"7 nucleophile in the catalytic triad. - Highlights: • We determined the first structure of a bacterial aryl acylamidase (EC 3.5.1.13). • Structure revealed spatially distinct architecture of the substrate-binding pocket. • Hydrogen-bonding with Tyr"1"3"6 and Thr"3"3"0 mediates ligand-binding and substrate.

  12. Crystal structure analysis of a bacterial aryl acylamidase belonging to the amidase signature enzyme family

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Saeyoung; Park, Eun-Hye; Ko, Hyeok-Jin; Bang, Won Gi [Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-Dong, Seoungbuk-Gu, Seoul, 136-713 (Korea, Republic of); Kim, Hye-Yeon [Protein Structure Research Team, Korea Basic Science Institute, Ochang, Chungbuk, 363-883 (Korea, Republic of); Kim, Kyoung Heon [Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-Dong, Seoungbuk-Gu, Seoul, 136-713 (Korea, Republic of); Choi, In-Geol, E-mail: igchoi@korea.ac.kr [Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-Dong, Seoungbuk-Gu, Seoul, 136-713 (Korea, Republic of)

    2015-11-13

    The atomic structure of a bacterial aryl acylamidase (EC 3.5.1.13; AAA) is reported and structural features are investigated to better understand the catalytic profile of this enzyme. Structures of AAA were determined in its native form and in complex with the analgesic acetanilide, p-acetaminophenol, at 1.70 Å and 1.73 Å resolutions, respectively. The overall structural fold of AAA was identified as an α/β fold class, exhibiting an open twisted β-sheet core surrounded by α-helices. The asymmetric unit contains one AAA molecule and the monomeric form is functionally active. The core structure enclosing the signature sequence region, including the canonical Ser-cisSer-Lys catalytic triad, is conserved in all members of the Amidase Signature enzyme family. The structure of AAA in a complex with its ligand reveals a unique organization in the substrate-binding pocket. The binding pocket consists of two loops (loop1 and loop2) in the amidase signature sequence and one helix (α10) in the non-amidase signature sequence. We identified two residues (Tyr{sup 136} and Thr{sup 330}) that interact with the ligand via water molecules, and a hydrogen-bonding network that explains the catalytic affinity over various aryl acyl compounds. The optimum activity of AAA at pH > 10 suggests that the reaction mechanism employs Lys{sup 84} as the catalytic base to polarize the Ser{sup 187} nucleophile in the catalytic triad. - Highlights: • We determined the first structure of a bacterial aryl acylamidase (EC 3.5.1.13). • Structure revealed spatially distinct architecture of the substrate-binding pocket. • Hydrogen-bonding with Tyr{sup 136} and Thr{sup 330} mediates ligand-binding and substrate.

  13. Synthesis of Na-acetyl-ornithine and N-succinyl-diaminopimelic acid analogs as potential inhibitors of bacterial enzymes ArgE and DapE

    Czech Academy of Sciences Publication Activity Database

    Hlaváček, Jan; Pícha, Jan; Jiráček, Jiří; Vaněk, Václav; Gilner, D.; Slaninová, Jiřina; Fučík, Vladimír; Holz, R. C.

    2009-01-01

    Roč. 103, č. 11 (2009), s. 952-952 ISSN 0009-2770. [Pokroky v organické, bioorganické a farmaceutické chemii /44./. 27.11.2009-29.11.2009, Liblice] R&D Projects: GA AV ČR IAA400550614 Institutional research plan: CEZ:AV0Z40550506 Keywords : amino acid derivatives * bacterial enzymes * inhibition Subject RIV: CC - Organic Chemistry

  14. The use of 14C-FIAU to predict bacterial thymidine kinase presence: Implications for radiolabeled FIAU bacterial imaging

    International Nuclear Information System (INIS)

    Peterson, Kristin L.; Reid, William C.; Freeman, Alexandra F.; Holland, Steven M.; Pettigrew, Roderic I.; Gharib, Ahmed M.; Hammoud, Dima A.

    2013-01-01

    Currently available infectious disease imaging techniques cannot differentiate between infection and sterile inflammation or between different types of infections. Recently, radiolabeled FIAU was found to be a substrate for the thymidine kinase (TK) enzyme of multiple pathogenic bacteria, leading to its translational use in the imaging of bacterial infections. Patients with immunodeficiencies, however, are susceptible to a different group of pathogenic bacteria when compared to immunocompetent subjects. In this study, we wanted to predict the usefulness of radiolabeled FIAU in the detection of bacterial infections commonly occurring in patients with immunodeficiencies, in vitro, prior to attempting in vivo imaging with 124 I-FIAU-PET. Methods: We obtained representative strains of bacterial pathogens isolated from actual patients with genetic immunodeficiencies. We evaluated the bacterial susceptibility of different strains to the effect of incubation with FIAU, which would implicate the presence of the thymidine kinase (TK) enzyme. We also incubated the bacteria with 14 C-FIAU and consequently measured its rate of incorporation in the bacterial DNA using a liquid scintillation counter. Results: Unlike the other bacterial strains, the growth of Pseudomonas aeruginosa was not halted by FIAU at any concentration. All the tested clinical isolates demonstrated different levels of 14 C-FIAU uptake, except for P. aeruginosa. Conclusion: Radiolabeled FIAU has been successful in delineating bacterial infections, both in preclinical and pilot translational studies. In patients with immunodeficiencies, Pseudomonas infections are commonly encountered and are usually difficult to differentiate from fungal infections. The use of radiolabeled FIAU for in vivo imaging of those patients, however, would not be useful, considering the apparent lack of TK enzyme in Pseudomonas. One has to keep in mind that not all pathogenic bacteria possess the TK enzyme and as such will not all

  15. Reusing Treated Wastewater: Consideration of the Safety Aspects Associated with Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes

    KAUST Repository

    Hong, Pei-Ying; Julian, Timothy; Pype, Marie-Laure; Jiang, Sunny; Nelson, Kara; Graham, David; Pruden, Amy; Manaia, Cé lia

    2018-01-01

    As more countries engage in water reuse, either intended or de facto, there is an urgent need to more comprehensively evaluate resulting environmental and public health concerns. While antibiotic-resistant bacteria (ARB) and antibiotic resistance

  16. [Use of monoclonal antibodies against horse immunoglobulin in an enzyme immunoassay of bacterial toxins and anatoxins].

    Science.gov (United States)

    Burkin, M A; Gal'vidis, I A; Iakovleva, I V; Sviridov, V V

    2007-01-01

    Immunization of BALB/c mice by horse antiserum against diphtheria made it possible to obtain IgG1 monoclonal antibodies (MoAbs) 2B7E4 specific for light chains of horse immunoglobulin (Ig). Unlike commercial preparations of anti-horse immunoglobulin antibodies, which are specific for the whole Ig molecule or its Fc-fragment, the peroxidase (HRP) conjugate of the MoAb, 2B7E4-HRP did not interact with human, mouse, rabbit, and sheep Igs, or horse albumin. The conjugate obtained was used with MoAbs against bacterial toxins and commercial horse anatoxins, as a universal reagent in sandwich enzyme immunoassay (ELISA) for bacterial toxins and anatoxins. The detection sensitivity of diphtheria toxin/anatoxin equaled 0.0005 Lf/ml; tetanus toxin and anatoxin were detected with sensitivities of 20 LD50/ml and 0.005 UI/ml, respectively. A similar sandwich ELISA for botulinum anatoxins (group measurement) allowed types A, B, and E to be detected at 0.02, 0.002, and 0.001 UI/ml, respectively; selective measurement was only possible in the case of type E anatoxin (0.001 UI/ml).

  17. Zinc-Triggered Hydrogelation of Self-assembled Small Molecules to Inhibit Bacterial Growth

    Science.gov (United States)

    Xu, Chao; Cai, Yanbin; Ren, Chunhua; Gao, Jie; Hao, Jihui

    2015-01-01

    There is a significant need to develop antibacterial materials that could be applied locally and directly to the places surrounded by large amount of bacteria, in order to address the problems of bacterial antibiotic-resistance or irreversible biofilm formation. Hydrogels are thought to be suitable candidates due to their versatile applications in biomedical field. Among them, small molecular hydrogels have been paid lots of attention because they are easy to design and fabricate and often sensitive to external stimuli. Meanwhile, the antibacterial activity of metal ions are attracting more and more attention because resistance to them are not yet found within bacteria. We therefore designed the zinc ion binding peptide of Nap-GFFYGGGHGRGD, who can self-assemble into hydrogels after binds Zn2+ and inhibit the growth of bacteria due to the excellent antibacterial activity of Zn2+. Upon the addition of zinc ions, solutions containing Nap-GFFYGGGHGRGD transformed into supramolecular hydrogels composed of network of long nano-fibers. Bacterial tests revealed an antibacterial effect of the zinc triggered hydrogels on E. coli. The studied small molecular hydrogel shows great potential in locally addressing bacterial infections.

  18. Stimulation of host immune defenses by a small molecule protects C. elegans from bacterial infection.

    Science.gov (United States)

    Pukkila-Worley, Read; Feinbaum, Rhonda; Kirienko, Natalia V; Larkins-Ford, Jonah; Conery, Annie L; Ausubel, Frederick M

    2012-01-01

    The nematode Caenorhabditis elegans offers currently untapped potential for carrying out high-throughput, live-animal screens of low molecular weight compound libraries to identify molecules that target a variety of cellular processes. We previously used a bacterial infection assay in C. elegans to identify 119 compounds that affect host-microbe interactions among 37,214 tested. Here we show that one of these small molecules, RPW-24, protects C. elegans from bacterial infection by stimulating the host immune response of the nematode. Using transcriptome profiling, epistasis pathway analyses with C. elegans mutants, and an RNAi screen, we show that RPW-24 promotes resistance to Pseudomonas aeruginosa infection by inducing the transcription of a remarkably small number of C. elegans genes (∼1.3% of all genes) in a manner that partially depends on the evolutionarily-conserved p38 MAP kinase pathway and the transcription factor ATF-7. These data show that the immunostimulatory activity of RPW-24 is required for its efficacy and define a novel C. elegans-based strategy to identify compounds with activity against antibiotic-resistant bacterial pathogens.

  19. Stimulation of host immune defenses by a small molecule protects C. elegans from bacterial infection.

    Directory of Open Access Journals (Sweden)

    Read Pukkila-Worley

    Full Text Available The nematode Caenorhabditis elegans offers currently untapped potential for carrying out high-throughput, live-animal screens of low molecular weight compound libraries to identify molecules that target a variety of cellular processes. We previously used a bacterial infection assay in C. elegans to identify 119 compounds that affect host-microbe interactions among 37,214 tested. Here we show that one of these small molecules, RPW-24, protects C. elegans from bacterial infection by stimulating the host immune response of the nematode. Using transcriptome profiling, epistasis pathway analyses with C. elegans mutants, and an RNAi screen, we show that RPW-24 promotes resistance to Pseudomonas aeruginosa infection by inducing the transcription of a remarkably small number of C. elegans genes (∼1.3% of all genes in a manner that partially depends on the evolutionarily-conserved p38 MAP kinase pathway and the transcription factor ATF-7. These data show that the immunostimulatory activity of RPW-24 is required for its efficacy and define a novel C. elegans-based strategy to identify compounds with activity against antibiotic-resistant bacterial pathogens.

  20. Inactivation/reactivation of antibiotic-resistant bacteria by a novel UVA/LED/TiO2 system.

    Science.gov (United States)

    Xiong, Pei; Hu, Jiangyong

    2013-09-01

    In this study, an effective photocatalytic disinfection system was established using the newly emerged high power UVA/LED lamp. Crystallizing dish coated with TiO2 was prepared by 32-times impregnation-drying processes, and served as the supporting container for water samples. This study focused on the application of this UVA/LED system for the photocatalytic disinfection of selected antibiotic-resistant bacteria, Escherichia coli ATCC 700891. The disinfection performances were studied under various light intensities and illumination modes. Results show that higher light intensity could reach more significant inactivation of E. coli ATCC 700891. With the same UV dose, log-removal of antibiotic-resistant bacteria decreased with circle time in the studied range, while increased with duty circle. A "residual disinfecting effect" was found in the following dark period for bacteria collected at different phases of photocatalytic process. Residual disinfecting effect was found not significant for bacteria with 30 min periodic illumination. While residual disinfecting effect could kill almost all bacteria after 90 min UV periodic illumination within the following 240 min dark period. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Bacteriophages for detection of bacterial pathogens

    International Nuclear Information System (INIS)

    Kutateladze, M.

    2009-01-01

    The G. Eliava Institute of Bacteriophages, Microbiology and Virology (Tbilisi, Georgia) is one of the most famous institutions focused on bacteriophage research for the elaboration of appropriate phage methodologies for human and animal protection. The main direction of the institute is the study and production of bacteriophages against intestinal disorders (dysentery, typhoid, intesti) and purulent-septic infections (staphylococcus, streptococcus, pyophage, etc.). These preparations were successfully introduced during the Soviet era, and for decades were used throughout the former Soviet Union and in other Socialist countries for the treatment, prophylaxis, and diagnosis of various infectious diseases, including those caused by antibiotic-resistant bacterial strains. Bacteriophages were widely used for identifying and detecting infections caused by the most dangerous pathogens and causative agents of epidemiological outbreaks. The specific topic of this presentation is the phage typing of bacterial species, which can be an important method for epidemiological diagnostics. Together with different genetic methodologies - such as PCR-based methods, PFGE, plasmid fingerprinting, and ribosomal typing - phage typing is one method for identifying bacterial pathogens. The method has a high percentage of determination of phage types, high specificity of reaction, and is easy for interpretation and use by health workers. Phage typing was applied for inter-species differentiation of different species of Salmonella, S. typhi, Brucella spp, Staphylococcus aureus, E. col,i Clostridium deficile, Vibrio cholerae, Yersinia pestis, Yersinia enterocolitica, Lysteria monocytogenes, Clostridium perfringens, Clostridium tetani, plant pathogens, and other bacterial pathogens. In addition to addressing the utility and efficacy of phage typing, the paper will discuss the isolation and selection of diagnostic typing phages for interspecies differentiation of pathogens that is necessary

  2. 21 CFR 184.1150 - Bacterially-derived protease enzyme preparation.

    Science.gov (United States)

    2010-04-01

    ... filtrate resulting from a pure culture fermentation of a nonpathogenic and nontoxigenic strain of Bacillus subtilis or B. amyloliquefaciens. The preparation is characterized by the presence of the enzymes..._federal_regulations/ibr_locations.html. In addition, antibiotic activity is absent in the enzyme...

  3. Myroides odoratimimus Forms Structurally Complex and Inherently Antibiotic-Resistant Biofilm in a Wound-Like in vitro Model

    Directory of Open Access Journals (Sweden)

    Arianna Pompilio

    2017-12-01

    Full Text Available Myroides odoratimimus is an aerobic, non-fermenting Gram-negative multidrug-resistant bacterium widely distributed in nature that rarely causes infections in immunocompromised patients. We recently described in a diabetic patient a case of recurrent calcaneal ulcer infection caused by a M. odoratimimus strain showing potential for biofilm formation. For the first time, we therefore evaluated the ability of M. odoratimimus to form biofilm under different pH values and glucose concentrations using an in vitro “skin-like” model, and its susceptibility to levofloxacin, meropenem, and tigecycline. The expression of some antibiotic-resistance related genes was also monitored by RT-PCR during planktonic-to-biofilm transition. Our results indicated that M. odoratimimus can produce relevant amounts of biofilm biomass, in a time-dependent manner, especially at acidic pH and regardless of glucose concentration tested. The comparative analysis of MIC and MBC values between planktonic and sessile cells showed that resistance to antibiotics increased during the planktonic-to-biofilm transition. Viable cell count indicated that none of the tested antibiotics were able to completely eradicate preformed biofilms, although meropenem and levofloxacin were the most active causing a significant, dose-independent, reduction of biofilm's viability, as also confirmed by microscopic analysis. RT-PCR showed that antibiotic-resistance related gyrA and acrB genes are over-expressed during the transition from planktonic to sessile (biofilm lifestyle. Overall, our findings showed that M. odoratimimus can form relevant amounts of inherently antibiotic-resistant biofilm under conditions relevant to wound site, therefore suggesting a role in the pathogenesis of chronic ulcer infections.

  4. Evidence for a complex relationship between antibiotics and antibiotic-resistant Escherichia coli: from medical center patients to a receiving environment.

    Science.gov (United States)

    Oberlé, Kenny; Capdeville, Marion-Justine; Berthe, Thierry; Budzinski, Hélène; Petit, Fabienne

    2012-02-07

    The aim of this study was to investigate the relationship between antibiotics and antibiotic-resistant fecal bacteria (E. coli) in water along a medical center-wastewater treatment plant-river continuum (4 km). A multiresidue chemical analysis methodology, using solid phase extraction coupled with liquid chromatography tandem mass spectrometry, was performed to detect whether low levels of contamination by 34 antibiotics were related to antibiotic resistance of E. coli and antibiotic use. The contamination of water by antibiotics and antibiotic-resistant E. coli decreased along the continuum. Although amoxicillin was predominantly prescribed, only ofloxacin (1 ng·L(-1)) and sulfamethoxazole (4 ng·L(-1)) persisted in the river. At the retirement home, in the medical center, even though no tetracycline and sulfamethoxazole were consumed, the highest occurrences of antibiotic resistance were in classes of quinolones (42.0%), sulfonamides (24.0%), tetracyclines (38.0%), and penicillins (38.0%), mainly due to the presence of multiple antibiotic-resistance genes on class 1 integrons. Along the continuum, the occurrence of E. coli resistant to antibiotics and those carrying class 1 integrons decreased in water samples (p-value antibiotic compounds (ofloxacin, sulfamethoxazole) were found, but they did not correspond to the major resistances (tetracycline, amoxicillin) of E. coli.

  5. Effects of lead and zinc mining contamination on bacterial community diversity and enzyme activities of vicinal cropland.

    Science.gov (United States)

    Qu, Juanjuan; Ren, Guangming; Chen, Bao; Fan, Jinghua; E, Yong

    2011-11-01

    In the process of mining activity, many kinds of heavy metals enter into soils with dust, causing serious contamination to the environment. In this study, six soils were sampled from cropland at different distances from a lead/zinc mine in Heilongjiang Province, China. The total contents of lead and zinc in the vicinal cropland exceeded the third level of environmental quality standard for soil in China, which indicated that soils in this area were moderately contaminated. Bacterial community diversity and population were greatly decreased when the concentrations of lead and zinc were beyond 1,500 and 995 mg kg(-1), respectively, as analyzed by plate counting and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The bands of DGGE patterns varied with the degree of contamination. The activities of soil urease, phosphatase, and dehydrogenase were negatively correlated with the concentrations of lead and zinc. The highest inhibitory effect of heavy metals on soil enzyme activities was observed in urease. It was noted that PCR-DGGE patterns combined with soil enzyme activity analysis can be indices for the soil quality assessment by heavy metal contamination.

  6. Integrating rapid diagnostics and antimicrobial stewardship improves outcomes in patients with antibiotic-resistant Gram-negative bacteremia.

    Science.gov (United States)

    Perez, Katherine K; Olsen, Randall J; Musick, William L; Cernoch, Patricia L; Davis, James R; Peterson, Leif E; Musser, James M

    2014-09-01

    An intervention for Gram-negative bloodstream infections that integrated mass spectrometry technology for rapid diagnosis with antimicrobial stewardship oversight significantly improved patient outcomes and reduced hospital costs. As antibiotic resistance rates continue to grow at an alarming speed, the current study was undertaken to assess the impact of this intervention in a challenging patient population with bloodstream infections caused by antibiotic-resistant Gram-negative bacteria. A total of 153 patients with antibiotic-resistant Gram-negative bacteremia hospitalized prior to the study intervention were compared to 112 patients treated post-implementation. Outcomes assessed included time to optimal antibiotic therapy, time to active treatment when inactive, hospital and intensive care unit length of stay, all-cause 30-day mortality, and total hospital expenditures. Integrating rapid diagnostics with antimicrobial stewardship improved time to optimal antibiotic therapy (80.9 h in the pre-intervention period versus 23.2 h in the intervention period, P Gram-negatives. The intervention decreased hospital and intensive care unit length of stay, total hospital costs, and reduced all-cause 30-day mortality. Copyright © 2014. Published by Elsevier Ltd.

  7. Human exposure assessment to antibiotic-resistant Escherichia coli through drinking water.

    Science.gov (United States)

    O'Flaherty, E; Borrego, C M; Balcázar, J L; Cummins, E

    2018-03-01

    Antibiotic-resistant bacteria (ARB) are a potential threat to human health through drinking water with strong evidence of ARB presence in post treated tap water around the world. This study examines potential human exposure to antibiotic-resistant (AR) Escherichia coli (E. coli) through drinking water, the effect of different drinking water treatments on AR E. coli and the concentration of AR E. coli required in the source water for the EU Drinking Water Directive (DWD) (Council Directive 98/83/EC, 0CFU/100ml of E. coli in drinking water) to be exceeded. A number of scenarios were evaluated to examine different water treatment combinations and to reflect site specific conditions at a study site in Europe. A literature search was carried out to collate data on the effect of environmental conditions on AR E. coli, the effect of different water treatments on AR E. coli and typical human consumption levels of tap water. A human exposure assessment model was developed with probability distributions used to characterise uncertainty and variability in the input data. Overall results show the mean adult human exposure to AR E. coli from tap water consumption ranged between 3.44×10 -7 and 2.95×10 -1 cfu/day for the scenarios tested and varied depending on the water treatments used. The level of AR E. coli required in the source water pre-treatment to exceed the DWD varied between 1 and 5logcfu/ml, depending on the water treatments used. This can be used to set possible monitoring criteria in pre-treated water for potential ARB exposure in drinking water. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Enzymes activities involving bacterial cytochromes incorporated in clays

    International Nuclear Information System (INIS)

    Lojou, E.; Giudici-Orticoni, M.Th.; Bianco, P.

    2005-01-01

    With the development of bio electrochemistry, researches appeared on the enzymes immobilization at the surface of electrodes for the realization of bioreactors and bio sensors. One of the main challenges is the development of host matrix able to immobilize the protein material preserving its integrity. In this framework the authors developed graphite electrodes modified by clay films. These electrodes are examined for two enzyme reactions involving proteins of sulfate-reduction bacteria. Then in the framework of the hydrogen biological production and bioreactors for the environmental pollution de-pollution, the electrochemical behavior of the cytochrome c3 in two different clays deposed at the electrode is examined

  9. Toward repurposing ciclopirox as an antibiotic against drug-resistant Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae.

    Science.gov (United States)

    Carlson-Banning, Kimberly M; Chou, Andrew; Liu, Zhen; Hamill, Richard J; Song, Yongcheng; Zechiedrich, Lynn

    2013-01-01

    Antibiotic-resistant infections caused by gram-negative bacteria are a major healthcare concern. Repurposing drugs circumvents the time and money limitations associated with developing new antimicrobial agents needed to combat these antibiotic-resistant infections. Here we identified the off-patent antifungal agent, ciclopirox, as a candidate to repurpose for antibiotic use. To test the efficacy of ciclopirox against antibiotic-resistant pathogens, we used a curated collection of Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae clinical isolates that are representative of known antibiotic resistance phenotypes. We found that ciclopirox, at 5-15 µg/ml concentrations, inhibited bacterial growth regardless of the antibiotic resistance status. At these same concentrations, ciclopirox reduced growth of Pseudomonas aeruginosa clinical isolates, but some of these pathogens required higher ciclopirox concentrations to completely block growth. To determine how ciclopirox inhibits bacterial growth, we performed an overexpression screen in E. coli. This screen revealed that galE, which encodes UDP-glucose 4-epimerase, rescued bacterial growth at otherwise restrictive ciclopirox concentrations. We found that ciclopirox does not inhibit epimerization of UDP-galactose by purified E. coli GalE; however, ΔgalU, ΔgalE, ΔrfaI, or ΔrfaB mutant strains all have lower ciclopirox minimum inhibitory concentrations than the parent strain. The galU, galE, rfaI, and rfaB genes all encode enzymes that use UDP-galactose or UDP-glucose for galactose metabolism and lipopolysaccharide (LPS) biosynthesis. Indeed, we found that ciclopirox altered LPS composition of an E. coli clinical isolate. Taken together, our data demonstrate that ciclopirox affects galactose metabolism and LPS biosynthesis, two pathways important for bacterial growth and virulence. The lack of any reported fungal resistance to ciclopirox in over twenty years of use in the clinic, its excellent safety

  10. Dispersal of antibiotic-resistant high-risk clones by hospital networks : changing the patient direction can make all the difference

    NARCIS (Netherlands)

    Donker, T.; Wallinga, J.; Grundmann, H.

    Background: Patients who seek treatment in hospitals can introduce high-risk clones of hospital-acquired, antibiotic-resistant pathogens from previous admissions. In this manner, different healthcare institutions become linked epidemiologically. All links combined form the national patient referral

  11. Bacterial fatty acid metabolism in modern antibiotic discovery.

    Science.gov (United States)

    Yao, Jiangwei; Rock, Charles O

    2017-11-01

    Bacterial fatty acid synthesis is essential for many pathogens and different from the mammalian counterpart. These features make bacterial fatty acid synthesis a desirable target for antibiotic discovery. The structural divergence of the conserved enzymes and the presence of different isozymes catalyzing the same reactions in the pathway make bacterial fatty acid synthesis a narrow spectrum target rather than the traditional broad spectrum target. Furthermore, bacterial fatty acid synthesis inhibitors are single-targeting, rather than multi-targeting like traditional monotherapeutic, broad-spectrum antibiotics. The single-targeting nature of bacterial fatty acid synthesis inhibitors makes overcoming fast-developing, target-based resistance a necessary consideration for antibiotic development. Target-based resistance can be overcome through multi-targeting inhibitors, a cocktail of single-targeting inhibitors, or by making the single targeting inhibitor sufficiently high affinity through a pathogen selective approach such that target-based mutants are still susceptible to therapeutic concentrations of drug. Many of the pathogens requiring new antibiotic treatment options encode for essential bacterial fatty acid synthesis enzymes. This review will evaluate the most promising targets in bacterial fatty acid metabolism for antibiotic therapeutics development and review the potential and challenges in advancing each of these targets to the clinic and circumventing target-based resistance. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Characteristics and crystal structure of bacterial inosine-5'-monophosphate dehydrogenase.

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R.; Evans, G.; Rotella, F. J.; Westbrook, E. M.; Beno, D.; Huberman, E.; Joachimiak, A.; Collart, F. R.

    1999-01-01

    IMP dehydrogenase (IMPDH) is an essential enzyme that catalyzes the first step unique to GTP synthesis. To provide a basis for the evaluation of IMPDH inhibitors as antimicrobial agents, we have expressed and characterized IMPDH from the pathogenic bacterium Streptococcus pyogenes. Our results show that the biochemical and kinetic characteristics of S. pyogenes IMPDH are similar to other bacterial IMPDH enzymes. However, the lack of sensitivity to mycophenolic acid and the K{sub m} for NAD (1180 {mu}M) exemplify some of the differences between the bacterial and mammalian IMPDH enzymes, making it an attractive target for antimicrobial agents. To evaluate the basis for these differences, we determined the crystal structure of the bacterial enzyme at 1.9 {angstrom} with substrate bound in the catalytic site. The structure was determined using selenomethionine-substituted protein and multiwavelength anomalous (MAD) analysis of data obtained with synchrotron radiation from the undulator beamline (19ID) of the Structural Biology Center at Argonne's Advanced Photon Source. S. pyogenes IMPDH is a tetramer with its four subunits related by a crystallographic 4-fold axis. The protein is composed of two domains: a TIM barrel domain that embodies the catalytic framework and a cystathione {beta}-synthase (CBS) dimer domain of so far unknown function. Using information provided by sequence alignments and the crystal structure, we prepared several site-specific mutants to examine the role of various active site regions in catalysis. These variants implicate the active site flap as an essential catalytic element and indicate there are significant differences in the catalytic environment of bacterial and mammalian IMPDH enzymes. Comparison of the structure of bacterial IMPDH with the known partial structures from eukaryotic organisms will provide an explanation of their distinct properties and contribute to the design of specific bacterial IMPDH inhibitors.

  13. Interference in Bacterial Quorum Sensing: A Biopharmaceutical Perspective

    Directory of Open Access Journals (Sweden)

    Benjamin Rémy

    2018-03-01

    Full Text Available Numerous bacteria utilize molecular communication systems referred to as quorum sensing (QS to synchronize the expression of certain genes regulating, among other aspects, the expression of virulence factors and the synthesis of biofilm. To achieve this process, bacteria use signaling molecules, known as autoinducers (AIs, as chemical messengers to share information. Naturally occurring strategies that interfere with bacterial signaling have been extensively studied in recent years, examining their potential to control bacteria. To interfere with QS, bacteria use quorum sensing inhibitors (QSIs to block the action of AIs and quorum quenching (QQ enzymes to degrade signaling molecules. Recent studies have shown that these strategies are promising routes to decrease bacterial pathogenicity and decrease biofilms, potentially enhancing bacterial susceptibility to antimicrobial agents including antibiotics and bacteriophages. The efficacy of QSIs and QQ enzymes has been demonstrated in various animal models and are now considered in the development of new medical devices against bacterial infections, including dressings, and catheters for enlarging the therapeutic arsenal against bacteria.

  14. Identification of Manganese Superoxide Dismutase from Sphingobacterium sp. T2 as a Novel Bacterial Enzyme for Lignin Oxidation.

    Science.gov (United States)

    Rashid, Goran M M; Taylor, Charles R; Liu, Yangqingxue; Zhang, Xiaoyang; Rea, Dean; Fülöp, Vilmos; Bugg, Timothy D H

    2015-10-16

    The valorization of aromatic heteropolymer lignin is an important unsolved problem in the development of a biomass-based biorefinery, for which novel high-activity biocatalysts are needed. Sequencing of the genomic DNA of lignin-degrading bacterial strain Sphingobacterium sp. T2 revealed no matches to known lignin-degrading genes. Proteomic matches for two manganese superoxide dismutase proteins were found in partially purified extracellular fractions. Recombinant MnSOD1 and MnSOD2 were both found to show high activity for oxidation of Organosolv and Kraft lignin, and lignin model compounds, generating multiple oxidation products. Structure determination revealed that the products result from aryl-Cα and Cα-Cβ bond oxidative cleavage and O-demethylation. The crystal structure of MnSOD1 was determined to 1.35 Å resolution, revealing a typical MnSOD homodimer harboring a five-coordinate trigonal bipyramidal Mn(II) center ligated by three His, one Asp, and a water/hydroxide in each active site. We propose that the lignin oxidation reactivity of these enzymes is due to the production of a hydroxyl radical, a highly reactive oxidant. This is the first demonstration that MnSOD is a microbial lignin-oxidizing enzyme.

  15. Enzymes in Fermented Fish.

    Science.gov (United States)

    Giyatmi; Irianto, H E

    Fermented fish products are very popular particularly in Southeast Asian countries. These products have unique characteristics, especially in terms of aroma, flavor, and texture developing during fermentation process. Proteolytic enzymes have a main role in hydrolyzing protein into simpler compounds. Fermentation process of fish relies both on naturally occurring enzymes (in the muscle or the intestinal tract) as well as bacteria. Fermented fish products processed using the whole fish show a different characteristic compared to those prepared from headed and gutted fish. Endogenous enzymes like trypsin, chymotrypsin, elastase, and aminopeptidase are the most involved in the fermentation process. Muscle tissue enzymes like cathepsins, peptidases, transaminases, amidases, amino acid decarboxylases, glutamic dehydrogenases, and related enzymes may also play a role in fish fermentation. Due to the decreased bacterial number during fermentation, contribution of microbial enzymes to proteolysis may be expected prior to salting of fish. Commercial enzymes are supplemented during processing for specific purposes, such as quality improvement and process acceleration. In the case of fish sauce, efforts to accelerate fermentation process and to improve product quality have been studied by addition of enzymes such as papain, bromelain, trypsin, pepsin, and chymotrypsin. © 2017 Elsevier Inc. All rights reserved.

  16. Modification and Assembly of a Versatile Lactonase for Bacterial Quorum Quenching

    Directory of Open Access Journals (Sweden)

    Melissa K. Rhoads

    2018-02-01

    Full Text Available This work sets out to provide a self-assembled biopolymer capsule activated with a multi-functional enzyme for localized delivery. This enzyme, SsoPox, which is a lactonase and phosphotriesterase, provides a means of interrupting bacterial communication pathways that have been shown to mediate pathogenicity. Here we demonstrate the capability to express, purify and attach SsoPox to the natural biopolymer chitosan, preserving its activity to “neutralize” long-chain autoinducer-1 (AI-1 communication molecules. Attachment is shown via non-specific binding and by engineering tyrosine and glutamine affinity ‘tags’ at the C-terminus for covalent linkage. Subsequent degradation of AI-1, in this case N-(3-oxododecanoyl-l-homoserine lactone (OdDHL, serves to “quench” bacterial quorum sensing (QS, silencing intraspecies communication. By attaching enzymes to pH-responsive chitosan that, in turn, can be assembled into various forms, we demonstrate device-based flexibility for enzyme delivery. Specifically, we have assembled quorum-quenching capsules consisting of an alginate inner core and an enzyme “decorated” chitosan shell that are shown to preclude bacterial QS crosstalk, minimizing QS mediated behaviors.

  17. Thermophilic archaeal enzymes and applications in biocatalysis.

    Science.gov (United States)

    Littlechild, Jennifer A

    2011-01-01

    Thermophilic enzymes have advantages for their use in commercial applications and particularly for the production of chiral compounds to produce optically pure pharmaceuticals. They can be used as biocatalysts in the application of 'green chemistry'. The thermophilic archaea contain enzymes that have already been used in commercial applications such as the L-aminoacylase from Thermococcus litoralis for the resolution of amino acids and amino acid analogues. This enzyme differs from bacterial L-aminoacylases and has similarities to carboxypeptidases from other archaeal species. An amidase/γ-lactamase from Sulfolobus solfataricus has been used for the production of optically pure γ-lactam, the building block for antiviral carbocyclic nucleotides. This enzyme has similarities to the bacterial signature amidase family. An alcohol dehydrogenase from Aeropyrum pernix has been used for the production of optically pure alcohols and is related to the zinc-containing eukaryotic alcohol dehydrogenases. A transaminase and a dehalogenase from Sulfolobus species have also been studied. The archaeal transaminase is found in a pathway for serine synthesis which is found only in eukaryotes and not in bacteria. It can be used for the asymmetric synthesis of homochiral amines of high enantioselective purity. The L-2-haloacid dehalogenase has applications both in biocatalysis and in bioremediation. All of these enzymes have increased thermostability over their mesophilic counterparts.

  18. Cefditoren and ceftriaxone enhance complement-mediated immunity in the presence of specific antibodies against antibiotic-resistant pneumococcal strains.

    Directory of Open Access Journals (Sweden)

    Elisa Ramos-Sevillano

    Full Text Available BACKGROUND: Specific antibodies mediate humoral and cellular protection against invading pathogens such as Streptococcus pneumoniae by activating complement mediated immunity, promoting phagocytosis and stimulating bacterial clearance. The emergence of pneumococcal strains with high levels of antibiotic resistance is of great concern worldwide and a serious threat for public health. METHODOLOGY/PRINCIPAL FINDINGS: Flow cytometry was used to determine whether complement-mediated immunity against three antibiotic-resistant S. pneumoniae clinical isolates is enhanced in the presence of sub-inhibitory concentrations of cefditoren and ceftriaxone. The binding of acute phase proteins such as C-reactive protein and serum amyloid P component, and of complement component C1q, to pneumococci was enhanced in the presence of serum plus either of these antibiotics. Both antibiotics therefore trigger the activation of the classical complement pathway against S. pneumoniae. C3b deposition was also increased in the presence of specific anti-pneumococcal antibodies and sub-inhibitory concentrations of cefditoren and ceftriaxone confirming that the presence of these antibiotics enhances complement-mediated immunity to S. pneumoniae. CONCLUSIONS/SIGNIFICANCE: Using cefditoren and ceftriaxone to promote the binding of acute phase proteins and C1q to pneumococci, and to increase C3b deposition, when anti-pneumococcal antibodies are present, might help reduce the impact of antibiotic resistance in S. pneumoniae infections.

  19. Seasonal Variation in Soil Microbial Biomass, Bacterial Community Composition and Extracellular Enzyme Activity in Relation to Soil Respiration in a Northern Great Plains Grassland

    Science.gov (United States)

    Wilton, E.; Flanagan, L. B.

    2014-12-01

    Soil respiration rate is affected by seasonal changes in temperature and moisture, but is this a direct effect on soil metabolism or an indirect effect caused by changes in microbial biomass, bacterial community composition and substrate availability? In order to address this question, we compared continuous measurements of soil and plant CO2 exchange made with an automatic chamber system to analyses conducted on replicate soil samples collected on four dates during June-August. Microbial biomass was estimated from substrate-induced respiration rate, bacterial community composition was determined by 16S rRNA amplicon pyrosequencing, and β-1,4-N-acetylglucosaminidase (NAGase) and phenol oxidase enzyme activities were assayed fluorometrically or by absorbance measurements, respectively. Soil microbial biomass declined from June to August in strong correlation with a progressive decline in soil moisture during this time period. Soil bacterial species richness and alpha diversity showed no significant seasonal change. However, bacterial community composition showed a progressive shift over time as measured by Bray-Curtis dissimilarity. In particular, the change in community composition was associated with increasing relative abundance in the alpha and delta classes, and declining abundance of the beta and gamma classes of the Proteobacteria phylum during June-August. NAGase showed a progressive seasonal decline in potential activity that was correlated with microbial biomass and seasonal changes in soil moisture. In contrast, phenol oxidase showed highest potential activity in mid-July near the time of peak soil respiration and ecosystem photosynthesis, which may represent a time of high input of carbon exudates into the soil from plant roots. This input of exudates may stimulate the activity of phenol oxidase, a lignolytic enzyme involved in the breakdown of soil organic matter. These analyses indicated that seasonal change in soil respiration is a complex

  20. Toward a Metagenomic Understanding on the Bacterial Composition and Resistome in Hong Kong Banknotes.

    Science.gov (United States)

    Heshiki, Yoshitaro; Dissanayake, Thrimendra; Zheng, Tingting; Kang, Kang; Yueqiong, Ni; Xu, Zeling; Sarkar, Chinmoy; Woo, Patrick C Y; Chow, Billy K C; Baker, David; Yan, Aixin; Webster, Christopher J; Panagiotou, Gianni; Li, Jun

    2017-01-01

    Currency is possibly one of the main media transmitting pathogens and drug resistance due to its wide circulation in daily life. In this study, we made a comprehensive characterization of the bacterial community present on banknotes collected from different geographical regions of Hong Kong (HK) by performing in vitro characterization of the bacterial presence and resistome profile, as well as metagenomic analysis including microbial diversity, the prevalence of potential pathogens, the dissemination potential of antibiotic-resistance genes (ARGs), among others. When comparing the bacterial community of HK banknotes with other HK environmental samples, including water and marine sediment, we revealed that HK banknotes cover nearly 50% of total genera found in all the environmental samples, implying that banknotes harbor diverse bacteria originated from a variety of environments. Furthermore, the banknotes have higher abundance of potential pathogenic species (~5 times more) and ARGs (~5 times more) with higher dissemination potential (~48 times more) compared with other environmental samples. These findings unveiled the capabilities of this common medium of exchange to accommodate various bacteria, and transmit pathogens and antibiotic resistance. Furthermore, the observed independence of microbiome profile from the city's topological indices led us to formulate a hypothesis that due to their high circulation banknotes may harbor a homogenized microbiome.

  1. Bacterial quorum sensing and nitrogen cycling in rhizosphere soil

    Energy Technology Data Exchange (ETDEWEB)

    DeAngelis, K.M.; Lindow, S.E.; Firestone, M.K.

    2008-10-01

    Plant photosynthate fuels carbon-limited microbial growth and activity, resulting in increased rhizosphere nitrogen (N)-mineralization. Most soil organic N is macromolecular (chitin, protein, nucleotides); enzymatic depolymerization is likely rate-limiting for plant N accumulation. Analyzing Avena (wild oat) planted in microcosms containing sieved field soil, we observed increased rhizosphere chitinase and protease specific activities, bacterial cell densities, and dissolved organic nitrogen (DON) compared to bulk soil. Low-molecular weight DON (<3000 Da) was undetectable in bulk soil but comprised 15% of rhizosphere DON. Extracellular enzyme production in many bacteria requires quorum sensing (QS), cell-density dependent group behavior. Because proteobacteria are considered major rhizosphere colonizers, we assayed the proteobacterial QS signals acyl-homoserine lactones (AHLs), which were significantly increased in the rhizosphere. To investigate the linkage between soil signaling and N cycling, we characterized 533 bacterial isolates from Avena rhizosphere: 24% had chitinase or protease activity and AHL production; disruption of QS in 7 of 8 eight isolates disrupted enzyme activity. Many {alpha}-Proteobacteria were newly found with QS-controlled extracellular enzyme activity. Enhanced specific activities of N-cycling enzymes accompanied by bacterial density-dependent behaviors in rhizosphere soil gives rise to the hypothesis that QS could be a control point in the complex process of rhizosphere N-mineralization.

  2. Impact of manure fertilization on the abundance of antibiotic-resistant bacteria and frequency of detection of antibiotic resistance genes in soil and on vegetables at harvest.

    Science.gov (United States)

    Marti, Romain; Scott, Andrew; Tien, Yuan-Ching; Murray, Roger; Sabourin, Lyne; Zhang, Yun; Topp, Edward

    2013-09-01

    Consumption of vegetables represents a route of direct human exposure to bacteria found in soil. The present study evaluated the complement of bacteria resistant to various antibiotics on vegetables often eaten raw (tomato, cucumber, pepper, carrot, radish, lettuce) and how this might vary with growth in soil fertilized inorganically or with dairy or swine manure. Vegetables were sown into field plots immediately following fertilization and harvested when of marketable quality. Vegetable and soil samples were evaluated for viable antibiotic-resistant bacteria by plate count on Chromocult medium supplemented with antibiotics at clinical breakpoint concentrations. DNA was extracted from soil and vegetables and evaluated by PCR for the presence of 46 gene targets associated with plasmid incompatibility groups, integrons, or antibiotic resistance genes. Soil receiving manure was enriched in antibiotic-resistant bacteria and various antibiotic resistance determinants. There was no coherent corresponding increase in the abundance of antibiotic-resistant bacteria enumerated from any vegetable grown in manure-fertilized soil. Numerous antibiotic resistance determinants were detected in DNA extracted from vegetables grown in unmanured soil. A smaller number of determinants were additionally detected on vegetables grown only in manured and not in unmanured soil. Overall, consumption of raw vegetables represents a route of human exposure to antibiotic-resistant bacteria and resistance determinants naturally present in soil. However, the detection of some determinants on vegetables grown only in freshly manured soil reinforces the advisability of pretreating manure through composting or other stabilization processes or mandating offset times between manuring and harvesting vegetables for human consumption.

  3. Defense reactions of bean genotypes to bacterial pathogens in controlled conditions

    Science.gov (United States)

    Uysal, B.; Bastas, K. K.

    2018-03-01

    This study was focused on the role of antioxidant enzymes and total protein in imparting resistance against common bacterial blight caused by Xanthomonas axonopodis pv. phaseoli (Xap) and halo blight caused by Pseudomonas syringae pv. phaseolicola (Psp) in bean. Activities of Ascorbate peroxidase (APX), Catalase (CAT) and total protein were studied in resistant and susceptible bean genotypes. Five-day-old seedlings were inoculated with a bacterial suspension (108 CFU ml-1) and harvested at different time intervals (0, 12, 24 and 36 up to 72 h) under controlled growing conditions and assayed for antioxidant enzymes and total protein. Temporal increase of CAT, APX enzymes activities showed maximum activity at 12 h after both pathogens inoculation (hpi) in resistant cultivar, whereas in susceptible it increased at 72 h after both pathogens inoculation for CAT and 12, 24 h for APX enzymes. Maximum total protein activities were observed at 12 h and 24 h respectively after Xap, Psp inoculation (hpi) in resistant and maximum activities were observed at 24 h and 72 h respectively after Xap, Psp inoculation (hpi) in susceptible. Increase of antioxidant enzyme and total protein activities might be an important component in the defense strategy of resistance and susceptible bean genotypes against the bacterial infection. These findings suggest that disease protection is proportional to the amount of enhanced CAT, APX enzyme and total protein activity.

  4. Electrochemical Nanoparticle-Enzyme Sensors for Screening Bacterial Contamination in Drinking Water

    Science.gov (United States)

    Chen, Juhong; Jiang, Ziwen; Ackerman, Jonathan D.; Yazdani, Mahdieh; Hou, Singyuk

    2015-01-01

    Traditional plating and culturing methods used to quantify bacteria commonly require hours to days from sampling to results. We present here a simple, sensitive and rapid electrochemical method for bacteria detection in drinking water based on gold nanoparticle-enzyme complexes. The gold nanoparticles were functionalized with positively charged quaternary amine headgroups that could bind to enzymes through electrostatic interactions, resulting in inhibition of enzymatic activity. In the presence of bacteria, the nanoparticles released from the enzymes and preferentially bound to the bacteria, resulting in an increase in enzyme activity, releasing a redox-active phenol from the substrate. We employed this strategy for the electrochemical sensing of Escherichia coli and Staphylococcus aureus, resulting in a rapid detection (<1h) with high sensitivity (102 CFU·mL−1). PMID:26042607

  5. Comparative evaluation of Bacillus licheniformis 5A5 and Aloe variegata milk-clotting enzymes

    Directory of Open Access Journals (Sweden)

    S. A. Ahmed

    2012-03-01

    Full Text Available The properties of a milk clotting enzyme (MCE produced by bacteria (Bacillus licheniformis 5A5 were investigated and compared to those of rennet extracted from a plant (Aloe variegata. Production of MCE by B. licheniformis 5A5 was better in static than in shaken cultures. Maximum activity (98.3 and 160.3 U/ml of clotting was obtained at 75ºC and 80ºC with bacterial and plant rennet, respectively. In the absence of substrate, the clotting activity of Aloe MCE was found to be less sensitive to heat inactivation up to 80ºC for 75 min, retaining 63.8% of its activity, while bacterial MCE was completely inhibited. CaCl2 stimulated milk clotting activity (MCA up to 2% and 1.5% for bacterial and plant enzymes. NaCl inhibited MCA for both enzymes, even at low concentration (1%. Plant MCE was more sensitive to NaCl at 3% concentration it retained 30.2% of its activity, whereas bacterial MCE retained 64.1%. Increasing skim milk concentration caused a significant increase in MCA up to 6% for both enzymes. Mn2+ stimulated the activity of bacterial and plant enzymes to 158.6 and 177.9%, respectively. EDTA and PMSF increased the activity of plant MCE by 34.4 and 41.1%, respectively, which is higher than those for the bacterial MCE (19.1 and 20.9%. Some natural materials activated MCE, the highest activation of bacterial MCE (128.1% was obtained in the presence of Fenugreek (with acid extraction. However Lupine Giza 1 (with neutral extraction gave the highest activation of plant MCE (137.9%. All extracts from Neem plant increased MCA at range from 105.6% to 136.4%. Plant MCE exhibited much better stability when stored at room temperature (25-30ºC for 30 days, retaining 51.2% of its activity. Bacterial MCE was highly stabile when stored under freezing (-18ºC, retaining 100% of its activity after 30 days. Moreover, bacterial MCE was highly tolerant to repeated freezing and thawing without loss of activity for 8 months.

  6. Impact of Some Ecological Factors on Fecal Contamination of Drinking Water by Diarrheagenic Antibiotic-Resistant Escherichia coli in Zagazig City, Egypt

    Directory of Open Access Journals (Sweden)

    Ahmed Elsadek Fakhr

    2016-01-01

    Full Text Available Fecal contamination of drinking water is a major health problem which accounts for many cases of diarrhea mainly in infants and foreigners. This contamination is a complex interaction of many parameters. Antibiotic resistance among bacterial isolates complicates the problem. The study was done to identify fecal contamination of drinking water by Diarrheagenic Antibiotic-Resistant Escherichia coli in Zagazig city and to trace reasons for such contamination, three hundred potable water samples were investigated for E. coli existence. Locations of E. coli positive samples were investigated in relation to population density, water source, and type of water pipe. Sixteen E. coli strains were isolated. Antibiotic sensitivity was done and enterotoxigenic, enteropathogenic, and enterohaemorrhagic virulence genes were investigated by PCR. Probability of fecal contamination correlated with higher population density, with increased distance from Zagazig water plant, and with asbestos cement water pipes. Resistance to at least one antimicrobial drug was found in all isolates. Virulence genes were detected in a rate of 26.27%, 13.13%, 20%, 6.67%, and 33.33% for LT, ST, stx1, stx2, and eae genes, respectively. This relatively high frequency of fecal contamination points towards the high risk of developing diarrhea by antibiotic resistant DEC in low socioeconomic communities particularly with old fashion distribution systems.

  7. Bacterial Cell Mechanics.

    Science.gov (United States)

    Auer, George K; Weibel, Douglas B

    2017-07-25

    Cellular mechanical properties play an integral role in bacterial survival and adaptation. Historically, the bacterial cell wall and, in particular, the layer of polymeric material called the peptidoglycan were the elements to which cell mechanics could be primarily attributed. Disrupting the biochemical machinery that assembles the peptidoglycan (e.g., using the β-lactam family of antibiotics) alters the structure of this material, leads to mechanical defects, and results in cell lysis. Decades after the discovery of peptidoglycan-synthesizing enzymes, the mechanisms that underlie their positioning and regulation are still not entirely understood. In addition, recent evidence suggests a diverse group of other biochemical elements influence bacterial cell mechanics, may be regulated by new cellular mechanisms, and may be triggered in different environmental contexts to enable cell adaptation and survival. This review summarizes the contributions that different biomolecular components of the cell wall (e.g., lipopolysaccharides, wall and lipoteichoic acids, lipid bilayers, peptidoglycan, and proteins) make to Gram-negative and Gram-positive bacterial cell mechanics. We discuss the contribution of individual proteins and macromolecular complexes in cell mechanics and the tools that make it possible to quantitatively decipher the biochemical machinery that contributes to bacterial cell mechanics. Advances in this area may provide insight into new biology and influence the development of antibacterial chemotherapies.

  8. Trafficking and processing of bacterial proteins by mammalian cells: Insights from chondroitinase ABC.

    Science.gov (United States)

    Muir, Elizabeth; Raza, Mansoor; Ellis, Clare; Burnside, Emily; Love, Fiona; Heller, Simon; Elliot, Matthew; Daniell, Esther; Dasgupta, Debayan; Alves, Nuno; Day, Priscilla; Fawcett, James; Keynes, Roger

    2017-01-01

    There is very little reported in the literature about the relationship between modifications of bacterial proteins and their secretion by mammalian cells that synthesize them. We previously reported that the secretion of the bacterial enzyme Chondroitinase ABC by mammalian cells requires the strategic removal of at least three N-glycosylation sites. The aim of this study was to determine if it is possible to enhance the efficacy of the enzyme as a treatment for spinal cord injury by increasing the quantity of enzyme secreted or by altering its cellular location. To determine if the efficiency of enzyme secretion could be further increased, cells were transfected with constructs encoding the gene for chondroitinase ABC modified for expression by mammalian cells; these contained additional modifications of strategic N-glycosylation sites or alternative signal sequences to direct secretion of the enzyme from the cells. We show that while removal of certain specific N-glycosylation sites enhances enzyme secretion, N-glycosylation of at least two other sites, N-856 and N-773, is essential for both production and secretion of active enzyme. Furthermore, we find that the signal sequence directing secretion also influences the quantity of enzyme secreted, and that this varies widely amongst the cell types tested. Last, we find that replacing the 3'UTR on the cDNA encoding Chondroitinase ABC with that of β-actin is sufficient to target the enzyme to the neuronal growth cone when transfected into neurons. This also enhances neurite outgrowth on an inhibitory substrate. Some intracellular trafficking pathways are adversely affected by cryptic signals present in the bacterial gene sequence, whilst unexpectedly others are required for efficient secretion of the enzyme. Furthermore, targeting chondroitinase to the neuronal growth cone promotes its ability to increase neurite outgrowth on an inhibitory substrate. These findings are timely in view of the renewed prospects for

  9. Trafficking and processing of bacterial proteins by mammalian cells: Insights from chondroitinase ABC.

    Directory of Open Access Journals (Sweden)

    Elizabeth Muir

    Full Text Available There is very little reported in the literature about the relationship between modifications of bacterial proteins and their secretion by mammalian cells that synthesize them. We previously reported that the secretion of the bacterial enzyme Chondroitinase ABC by mammalian cells requires the strategic removal of at least three N-glycosylation sites. The aim of this study was to determine if it is possible to enhance the efficacy of the enzyme as a treatment for spinal cord injury by increasing the quantity of enzyme secreted or by altering its cellular location.To determine if the efficiency of enzyme secretion could be further increased, cells were transfected with constructs encoding the gene for chondroitinase ABC modified for expression by mammalian cells; these contained additional modifications of strategic N-glycosylation sites or alternative signal sequences to direct secretion of the enzyme from the cells. We show that while removal of certain specific N-glycosylation sites enhances enzyme secretion, N-glycosylation of at least two other sites, N-856 and N-773, is essential for both production and secretion of active enzyme. Furthermore, we find that the signal sequence directing secretion also influences the quantity of enzyme secreted, and that this varies widely amongst the cell types tested. Last, we find that replacing the 3'UTR on the cDNA encoding Chondroitinase ABC with that of β-actin is sufficient to target the enzyme to the neuronal growth cone when transfected into neurons. This also enhances neurite outgrowth on an inhibitory substrate.Some intracellular trafficking pathways are adversely affected by cryptic signals present in the bacterial gene sequence, whilst unexpectedly others are required for efficient secretion of the enzyme. Furthermore, targeting chondroitinase to the neuronal growth cone promotes its ability to increase neurite outgrowth on an inhibitory substrate. These findings are timely in view of the renewed

  10. Phosphorylated hydroxyethylamines as novel inhibitors of the bacterial cell wall biosynthesis enzymes MurC to MurF.

    Science.gov (United States)

    Sova, Matej; Kovac, Andreja; Turk, Samo; Hrast, Martina; Blanot, Didier; Gobec, Stanislav

    2009-12-01

    Enzymes involved in the biosynthesis of bacterial peptidoglycan represent important targets for development of new antibacterial drugs. Among them, Mur ligases (MurC to MurF) catalyze the formation of the final cytoplasmic precursor UDP-N-acetylmuramyl-pentapeptide from UDP-N-acetylmuramic acid. We present the design, synthesis and biological evaluation of a series of phosphorylated hydroxyethylamines as new type of small-molecule inhibitors of Mur ligases. We show that the phosphate group attached to the hydroxyl moiety of the hydroxyethylamine core is essential for good inhibitory activity. The IC(50) values of these inhibitors were in the micromolar range, which makes them a promising starting point for the development of multiple inhibitors of Mur ligases as potential antibacterial agents. In addition, 1-(4-methoxyphenylsulfonamido)-3-morpholinopropan-2-yl dihydrogen phosphate 7a was discovered as one of the best inhibitors of MurE described so far.

  11. Enzymes in therapy of biofilm-related oral diseases.

    Science.gov (United States)

    Pleszczyńska, Małgorzata; Wiater, Adrian; Bachanek, Teresa; Szczodrak, Janusz

    2017-05-01

    Biofilm-related infections of the oral cavity, including dental caries and periodontitis, represent the most prevalent health problems. For years, the treatment thereof was largely based on antibacterial chemical agents. Recently, however, there has been growing interest in the application of more preventive and minimally invasive biotechnological methods. This review focuses on the potential applications of enzymes in the treatment and prevention of oral diseases. Dental plaque is a microbial community that develops on the tooth surface, embedded in a matrix of extracellular polymeric substances of bacterial and host origin. Both cariogenic microorganisms and the key components of oral biofilm matrix may be the targets of the enzymes. Oxidative salivary enzymes inhibit or limit the growth of oral pathogens, thereby supporting the natural host defense system; polysaccharide hydrolases (mutanases and dextranases) degrade important carbohydrate components of the biofilm matrix, whereas proteases disrupt bacterial adhesion to oral surfaces or affect cell-cell interactions. The efficiency of the enzymes in in vitro and in vivo studies, advantages and limitations, as well as future perspectives for improving the enzymatic strategy are discussed. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  12. Isolated Bacterial Spores at High-velocity Survive Surface Impacts in Vacuum

    Science.gov (United States)

    Austin, Daniel; Barney, Brandon

    We present experiments in which bacterial spores were found to survive being accelerated in vacuum to velocities in the range 30-120 m/s and impacted on a dense target. In these experiments, spores of Bacillus subtilis spores were charged using electrospray at atmospheric pressure, dried, and then introduced into high vacuum. Through choice of skimmers and beam tubes, different velocity ranges were achieved. An image-charge detector observed the charged spores, providing total charge and velocity. The spores then impacted a glass target within a collection vessel. After the experiment, the collection vessel contents were extracted and cultured. Several positive and negative controls were used, including the use of antibiotic-resistant spores and antibiotic-containing (rifampicin) agar for culturing. These impact velocities are of particular interest for possible transport of bacterial spores from Mars to Phobos, and may have implications for planetary protection in a Phobos sample return mission. In addition, bacteria may reach similar velocities during a spacecraft crash (e.g., within components, or from spacecraft to surface materials during impact, etc.), raising concerns about forward contamination. The velocities of interest to transport of life between planets (panspermia) are somewhat higher, but these results complement shock-based experiments and contribute to the general discussion of impact survivability of organisms.

  13. Sensitizing pathogens to antibiotics using the CRISPR-Cas system.

    Science.gov (United States)

    Goren, Moran; Yosef, Ido; Qimron, Udi

    2017-01-01

    The extensive use of antibiotics over the last century has resulted in a significant artificial selection pressure for antibiotic-resistant pathogens to evolve. Various strategies to fight these pathogens have been introduced including new antibiotics, naturally-derived enzymes/peptides that specifically target pathogens and bacteriophages that lyse these pathogens. A new tool has recently been introduced in the fight against drug-resistant pathogens-the prokaryotic defense mechanism-clustered regularly interspaced short palindromic repeats-CRISPR associated (CRISPR-Cas) system. The CRISPR-Cas system acts as a nuclease that can be guided to cleave any target DNA, allowing sophisticated, yet feasible, manipulations of pathogens. Here, we review pioneering studies that use the CRISPR-Cas system to specifically edit bacterial populations, eliminate their resistance genes and combine these two strategies in order to produce an artificial selection pressure for antibiotic-sensitive pathogens. We suggest that intelligent design of this system, along with efficient delivery tools into pathogens, may significantly reduce the threat of antibiotic-resistant pathogens. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The effect of new probiotic strain Lactobacillus plantarum on counts of coliforms, lactobacilli and bacterial enzyme activities in rats exposed to N,N-dimethylhydrazine (chemical carcinogen

    Directory of Open Access Journals (Sweden)

    Denisa Čokášová

    2012-01-01

    Full Text Available The aim of the present study was to evaluate the effect of the new probiotic strain Lactobacillus plantarum on chemically induced carcinogenesis in rats. Sprague dowley rats (n = 33 were divided into control and experimental groups and were fed a conventional laboratory diet. In the experimental group, rats were treated with the probiotic at the dose of 1 × 109 CFU (colony-forming units/ml. Two weeks after the beginning of the trial, N,N-dimethylhydrazine (chemical carcinogen injections were applied s.c. at the dose of 21 mg/kg b.w., 5 × weekly. At the end of the 8-month experimental period, faeces samples were taken from the rats and used for laboratory analysis. The counts of lactobacilli and coliforms and bacterial enzyme activity were determined. The probiotic strain L. plantarum as single species or in combination with oil (Lini oleum virginale decreased the count of total coliforms and increased lactobacilli in faeces of rats. Application of probiotic microorganisms significantly (P < 0.05 decreased the activities of bacterial enzymes (β-galactosidase and β-glucuronidase compared to the control group rats. The results of this study indicate that probiotic microorganisms could exert a preventive effect on colon carcinogenesis induced by N,N-dimethylhydrazine.

  15. STRUCTURAL ORGANIZATION OF BACTERIAL UREASES

    Directory of Open Access Journals (Sweden)

    Lisnyak YuV

    2016-09-01

    Full Text Available This brief review concerns the basic principles of structural organization of multi-subunit bacterial ureases and formation of their quaternary structure. Urease is a nickel-containing enzyme (urea amidohydrolase, ЕС 3.5.1.5 that catalyses the hydrolysis of urea to get ammonia and carbamate which then decomposes with water to get ammonia and carbon dioxide. Urease is produced by bacteria, fungi, yeast and plants. On the basis of similarities in amino acid sequences, ureases assumed to have a similar structure and conservative catalytic mechanism. Within past two decades bacterial ureases have gained much attention in research field as a virulence factor in human and animal infections. The first crystal structure of urease has been determined for that from Klebsiella aerogenes. The native enzyme consists of three subunits, UreA (α-chain, UreB (β-chain and UreC (γ-chain, and contains four structural domains: two in α-chain (α-domain 1 and α-domain-2, one in β- and one in γ-chain. These three chains form a T-shaped heterotrimer αβγ. Three αβγ heterotrimers form quaternary complex (αβγ3. In case of Helicobacter pilori, the analogous trimers of corresponding dimeric subunits (αβ3 form tetrameric structure ((αβ34 in which four trimers are situated at the vertexes of the regular triangle pyramid. Active center is located in α-domain 1 and contains two atoms of nickel coordinated by residues His134, His136, carboxylated Lys217, His 246, His272 and Asp360, as well as residues involved in binding (His219 and catalysis (His320. Active site is capped by a flap that controls substrate ingress to and product egress from the dinickel center. Urease requires accessory proteins (UreD, UreF, UreG and UreE for the correct assembly of their Ni-containing metallocenters. The accessory proteins UreD, UreF, and UreG sequentially bind to the apoprotein (UreABC3 to finally form (UreABC-UreDFG3 activation complex. UreE metallochaperone delivers

  16. Identification of Fic-1 as an enzyme that inhibits bacterial DNA replication by AMPylating GyrB, promoting filament formation.

    Science.gov (United States)

    Lu, Canhua; Nakayasu, Ernesto S; Zhang, Li-Qun; Luo, Zhao-Qing

    2016-01-26

    The morphology of bacterial cells is important for virulence, evasion of the host immune system, and coping with environmental stresses. The widely distributed Fic proteins (filamentation induced by cAMP) are annotated as proteins involved in cell division because of the presence of the HPFx[D/E]GN[G/K]R motif. We showed that the presence of Fic-1 from Pseudomonas fluorescens significantly reduced the yield of plasmid DNA when expressed in Escherichia coli or P. fluorescens. Fic-1 interacted with GyrB, a subunit of DNA gyrase, which is essential for bacterial DNA replication. Fic-1 catalyzed the AMPylation of GyrB at Tyr(109), a residue critical for binding ATP, and exhibited auto-AMPylation activity. Mutation of the Fic-1 auto-AMPylated site greatly reduced AMPylation activity toward itself and toward GyrB. Fic-1-dependent AMPylation of GyrB triggered the SOS response, indicative of DNA replication stress or DNA damage. Fic-1 also promoted the formation of elongated cells when the SOS response was blocked. We identified an α-inhibitor protein that we named anti-Fic-1 (AntF), encoded by a gene immediately upstream of Fic-1. AntF interacted with Fic-1, inhibited the AMPylation activity of Fic-1 for GyrB in vitro, and blocked Fic-1-mediated inhibition of DNA replication in bacteria, suggesting that Fic-1 and AntF comprise a toxin-antitoxin module. Our work establishes Fic-1 as an AMPylating enzyme that targets GyrB to inhibit DNA replication and may target other proteins to regulate bacterial morphology. Copyright © 2016, American Association for the Advancement of Science.

  17. EpideMiology and control measures of outBreaks due to Antibiotic-Resistant orGanisms in EurOpe (EMBARGO): a systematic review protocol

    NARCIS (Netherlands)

    Nithya, B.R.; Gladstone, B.P.; Rodriguez-Bano, J.; Sifakis, F.; Voss, A.; Carmeli, Y.; Burkert, F.R.; Gkolia, P.; Tacconelli, E.

    2017-01-01

    INTRODUCTION: Improving our understanding of outbreaks due to antibiotic-resistant bacteria (ARB) and their control is critical in the current public health scenario. The threat of outbreaks due to ARB requires multifaceted efforts. However, a global overview of epidemiological characteristics of

  18. Apyrase Elicits Host Antimicrobial Responses and Resolves Infection in Burns.

    Science.gov (United States)

    Bayliss, Jill M; Levi, Benjamin; Wu, Jianfeng; Wang, Stewart C; Su, Grace L; Xi, Chuanwu

    The authors previously reported that adenosine triphosphate (ATP) stimulates biofilm formation and removal of the ATP could reduce biofilm formation. The main objective of this study was to evaluate the effects of the ATP-hydrolyzing enzyme, apyrase, on control of Acinetabacter baumannii infection in the burn wound as well as to assess host skin antimicrobial responses. The authors found that apyrase stimulated nitric oxide formation at the wound site and reduced CD55 expression, thereby inducing the assembly of membrane attack complexes. Apyrase treatment nearly eradicated multidrug-resistant A. baumannii from burn wounds in the absence of antibiotics. Apyrase may be an effective therapy against antibiotic-resistant bacterial infections in burns.

  19. POTENTIAL USE OF AN EXTRACELLULAR ENZYME OF a-AMYLASE FROM INDIGENOUS INDONESIAN MESOPHILIC BACTERIA

    Directory of Open Access Journals (Sweden)

    Puji Lestari

    2013-04-01

    Full Text Available Amylase enzyme has a great significance for industrial usages in  Indonesia. However, this enzyme is still imported. The use of bacteria in biotechnological process of industrial products such as enzyme production has stimulated the exploration of extracellular amylase producing  bacteria. This study aimed to identify and analyze the potential use of amylolytic bacterial enzymes for hydrolyzing cassava starch. Two bacterial isolates, i.e. MII-10 and DKW-8 originated from Indonesia soil were identified based on their morphological, physiological and biochemical properties according to the standard protocol. The isolates were then  cultivated on fermentation medium and their growth pattern and  enzymatic assays were observed. The acetone-precipitated crude enzyme harvested based on predetermined cultivation time was used for  enzymatic hydrolysis product characterization on cassava starch using thin layer chromatography (TLC. The results showed that the mesophilicbacteria isolates (MII-10 and DKW-8 were belonged to Bacillus licheniformis. The maximum bacterial cell growth and enzyme activity were reached at 48 hours after incubation. The MII-10 isolate was found more stable than DKW-8 in producing amylase enzyme. Amylase produced by the MII-10 and DKW- 8 isolates was identified to be an endo-a-amylase as confirmed by oligosaccharides and dextrin of the random hydrolysisproducts. Relatively high dextrose equivalence (DE value of a-amylase of MII-10 (DE of 9.96 suggests that the enzyme is prospective for  saccharification of starchy material in glucose syrup industry.

  20. Investment in secreted enzymes during nutrient-limited growth is utility dependent.

    Science.gov (United States)

    Cezairliyan, Brent; Ausubel, Frederick M

    2017-09-12

    Pathogenic bacteria secrete toxins and degradative enzymes that facilitate their growth by liberating nutrients from the environment. To understand bacterial growth under nutrient-limited conditions, we studied resource allocation between cellular and secreted components by the pathogenic bacterium Pseudomonas aeruginosa during growth on a protein substrate that requires extracellular digestion by secreted proteases. We identified a quantitative relationship between the rate of increase of cellular biomass under nutrient-limiting growth conditions and the rate of increase in investment in secreted proteases. Production of secreted proteases is stimulated by secreted signals that convey information about the utility of secreted proteins during nutrient-limited growth. Growth modeling using this relationship recapitulated the observed kinetics of bacterial growth on a protein substrate. The proposed regulatory strategy suggests a rationale for quorum-sensing-dependent stimulation of the production of secreted enzymes whereby investment in secreted enzymes occurs in proportion to the utility they confer. Our model provides a framework that can be applied toward understanding bacterial growth in many environments where growth rate is limited by the availability of nutrients.

  1. Structure of the bacterial deacetylase LpxC bound to the nucleotide reaction product reveals mechanisms of oxyanion stabilization and proton transfer.

    Science.gov (United States)

    Clayton, Gina M; Klein, Daniel J; Rickert, Keith W; Patel, Sangita B; Kornienko, Maria; Zugay-Murphy, Joan; Reid, John C; Tummala, Srivanya; Sharma, Sujata; Singh, Sheo B; Miesel, Lynn; Lumb, Kevin J; Soisson, Stephen M

    2013-11-22

    The emergence of antibiotic-resistant strains of pathogenic bacteria is an increasing threat to global health that underscores an urgent need for an expanded antibacterial armamentarium. Gram-negative bacteria, such as Escherichia coli, have become increasingly important clinical pathogens with limited treatment options. This is due in part to their lipopolysaccharide (LPS) outer membrane components, which dually serve as endotoxins while also protecting Gram-negative bacteria from antibiotic entry. The LpxC enzyme catalyzes the committed step of LPS biosynthesis, making LpxC a promising target for new antibacterials. Here, we present the first structure of an LpxC enzyme in complex with the deacetylation reaction product, UDP-(3-O-(R-3-hydroxymyristoyl))-glucosamine. These studies provide valuable insight into recognition of substrates and products by LpxC and a platform for structure-guided drug discovery of broad spectrum Gram-negative antibiotics.

  2. Synergistic antimicrobial therapy using nanoparticles and antibiotics for the treatment of multidrug-resistant bacterial infection

    Science.gov (United States)

    Gupta, Akash; Saleh, Neveen M.; Das, Riddha; Landis, Ryan F.; Bigdeli, Arafeh; Motamedchaboki, Khatereh; Rosa Campos, Alexandre; Pomeroy, Kenneth; Mahmoudi, Morteza; Rotello, Vincent M.

    2017-06-01

    Infections caused by multidrug-resistant (MDR) bacteria pose a serious global burden of mortality, causing thousands of deaths each year. Antibiotic treatment of resistant infections further contributes to the rapidly increasing number of antibiotic-resistant species and strains. Synthetic macromolecules such as nanoparticles (NPs) exhibit broad-spectrum activity against MDR species, however lack of specificity towards bacteria relative to their mammalian hosts limits their widespread therapeutic application. Here, we demonstrate synergistic antimicrobial therapy using hydrophobically functionalized NPs and fluoroquinolone antibiotics for treatment of MDR bacterial strains. An 8-16-fold decrease in antibiotic dosage is achieved in presence of engineered NPs to combat MDR strains. This strategy demonstrates the potential of using NPs to ‘revive’ antibiotics that have been rendered ineffective due to the development of resistance by pathogenic bacteria.

  3. Microbial genetic engineering and enzyme technology

    Energy Technology Data Exchange (ETDEWEB)

    Hollenberg, C.P.; Sahm, H.

    1987-01-01

    In a series of up-to-date contributions BIOTEC 1 has experts discussing the current topics in microbial gene technology and enzyme technology and speculating on future developments. Bacterial and yeast systems for the production of interferons, growth hormone or viral antigenes are described as well as the impact of gene technology on plants. Exciting is the prospect of degrading toxic compounds in our environment by microorganisms tuned in the laboratory. Enzymes are the most effective catalysts we know. They exhibit a very high substrate- and stereospecificity. These properties make enzymes extremely attractive as industrial catalysts, leading to new production processes that are non-polluting and save both energy and raw materials. (orig.) With 135 figs., 36 tabs.

  4. Phage lytic enzymes: a history.

    Science.gov (United States)

    Trudil, David

    2015-02-01

    There are many recent studies regarding the efficacy of bacteriophage-related lytic enzymes: the enzymes of 'bacteria-eaters' or viruses that infect bacteria. By degrading the cell wall of the targeted bacteria, these lytic enzymes have been shown to efficiently lyse Gram-positive bacteria without affecting normal flora and non-related bacteria. Recent studies have suggested approaches for lysing Gram-negative bacteria as well (Briersa Y, et al., 2014). These enzymes include: phage-lysozyme, endolysin, lysozyme, lysin, phage lysin, phage lytic enzymes, phageassociated enzymes, enzybiotics, muralysin, muramidase, virolysin and designations such as Ply, PAE and others. Bacteriophages are viruses that kill bacteria, do not contribute to antimicrobial resistance, are easy to develop, inexpensive to manufacture and safe for humans, animals and the environment. The current focus on lytic enzymes has been on their use as anti-infectives in humans and more recently in agricultural research models. The initial translational application of lytic enzymes, however, was not associated with treating or preventing a specific disease but rather as an extraction method to be incorporated in a rapid bacterial detection assay (Bernstein D, 1997).The current review traces the translational history of phage lytic enzymes-from their initial discovery in 1986 for the rapid detection of group A streptococcus in clinical specimens to evolving applications in the detection and prevention of disease in humans and in agriculture.

  5. Isotope Effects Associated with N2O Production by Fungal and Bacterial Nitric Oxide Reductases: Implications for Enzyme Mechanisms

    Science.gov (United States)

    Hegg, E. L.; Yang, H.; Gandhi, H.; McQuarters, A.; Lehnert, N.; Ostrom, N. E.

    2014-12-01

    Nitrous oxide (N2O) is both a powerful greenhouse gas and a key participant in ozone destruction. Microbial activity accounts for over 70% of the N2O produced annually, and the atmospheric concentration of N2O continues to rise. Because the fungal and bacterial denitrification pathways are major contributors to microbial N2O production, understanding the mechanism by which NO is reduced to N2O will contribute to both N2O source tracing and quantification. Our strategy utilizes stable isotopes to probe the enzymatic mechanism of microbial N2O production. Although the use of stable isotopes to study enzyme mechanisms is not new, our approach is distinct in that we employ both measurements of isotopic preferences of purified enzyme and DFT calculations, thereby providing a synergistic combination of experimental and computational approaches. We analyzed δ18O, δ15Nα (central N atom in N2O), and δ15Nβ (terminal N atom) of N2O produced by purified fungal cytochrome P450 nitric oxide reductase (P450nor) from Histoplasma capsulatum as well as bacterial cytochrome c dependent nitric oxide reductase (cNOR) from Paracoccus denitrificans. P450nor exhibits an inverse kinetic isotope effect for Nβ (KIE = 0.9651) but a normal isotope effect for both Nα (KIE = 1.0127) and the oxygen atom (KIE = 1.0264). These results suggest a mechanism where NO binds to the ferric heme in the P450nor active site and becomes Nβ. Analysis of the NO-binding step indicated a greater difference in zero point energy in the transition state than the ground state, resulting in the inverse KIE observed for Nβ. Following protonation and rearrangement, it is speculated that this complex forms a FeIV-NHOH- species as a key intermediate. Our data are consistent with the second NO (which becomes Nα and O in the N2O product) attacking the FeIV-NHOH- species to generate a FeIII-N2O2H2 complex that enzymatically (as opposed to abiotically) breaks down to release N2O. Conversely, our preliminary data

  6. Discovery of enzymes for toluene synthesis from anoxic microbial communities

    DEFF Research Database (Denmark)

    Beller, Harry R.; Rodrigues, Andria V.; Zargar, Kamrun

    2018-01-01

    Microbial toluene biosynthesis was reported in anoxic lake sediments more than three decades ago, but the enzyme catalyzing this biochemically challenging reaction has never been identified. Here we report the toluene-producing enzyme PhdB, a glycyl radical enzyme of bacterial origin that catalyzes...... phenylacetate decarboxylation, and its cognate activating enzyme PhdA, a radical S-adenosylmethionine enzyme, discovered in two distinct anoxic microbial communities that produce toluene. The unconventional process of enzyme discovery from a complex microbial community (>300,000 genes), rather than from...... a microbial isolate, involved metagenomics- and metaproteomics-enabled biochemistry, as well as in vitro confirmation of activity with recombinant enzymes. This work expands the known catalytic range of glycyl radical enzymes (only seven reaction types had been characterized previously) and aromatic...

  7. Removal of bacterial contaminants and antibiotic resistance genes by conventional wastewater treatment processes in Saudi Arabia: Is the treated wastewater safe to reuse for agricultural irrigation?

    KAUST Repository

    Aljassim, Nada I.

    2015-04-01

    This study aims to assess the removal efficiency of microbial contaminants in a local wastewater treatment plant over the duration of one year, and to assess the microbial risk associated with reusing treated wastewater in agricultural irrigation. The treatment process achieved 3.5 logs removal of heterotrophic bacteria and up to 3.5 logs removal of fecal coliforms. The final chlorinated effluent had 1.8×102 MPN/100mL of fecal coliforms and fulfils the required quality for restricted irrigation. 16S rRNA gene-based high-throughput sequencing showed that several genera associated with opportunistic pathogens (e.g. Acinetobacter, Aeromonas, Arcobacter, Legionella, Mycobacterium, Neisseria, Pseudomonas and Streptococcus) were detected at relative abundance ranging from 0.014 to 21 % of the total microbial community in the influent. Among them, Pseudomonas spp. had the highest approximated cell number in the influent but decreased to less than 30 cells/100mL in both types of effluent. A culture-based approach further revealed that Pseudomonas aeruginosa was mainly found in the influent and non-chlorinated effluent but was replaced by other Pseudomonas spp. in the chlorinated effluent. Aeromonas hydrophila could still be recovered in the chlorinated effluent. Quantitative microbial risk assessment (QMRA) determined that only chlorinated effluent should be permitted for use in agricultural irrigation as it achieved an acceptable annual microbial risk lower than 10-4 arising from both P. aeruginosa and A. hydrophila. However, the proportion of bacterial isolates resistant to 6 types of antibiotics increased from 3.8% in the influent to 6.9% in the chlorinated effluent. Examples of these antibiotic-resistant isolates in the chlorinated effluent include Enterococcus and Enterobacter spp. Besides the presence of antibiotic-resistant bacterial isolates, tetracycline resistance genes tetO, tetQ, tetW, tetH, tetZ were also present at an average 2.5×102, 1.6×102, 4.4×102, 1

  8. Re-engineering of Bacterial Luciferase; For New Aspects of Bioluminescence.

    Science.gov (United States)

    Kim, Da-Som; Choi, Jeong-Ran; Ko, Jeong-Ae; Kim, Kangmin

    2018-01-01

    Bacterial luminescence is the end-product of biochemical reactions catalyzed by the luciferase enzyme. Nowadays, this fascinating phenomenon has been widely used as reporter and/or sensors to detect a variety of biological and environmental processes. The enhancement or diversification of the luciferase activities will increase the versatility of bacterial luminescence. Here, to establish the strategy for luciferase engineering, we summarized the identity and relevant roles of key amino acid residues modulating luciferase in Vibrio harveyi, a model luminous bacterium. The current opinions on crystal structures and the critical amino acid residues involved in the substrate binding sites and unstructured loop have been delineated. Based on these, the potential target residues and/or parameters for enzyme engineering were also suggested in limited scale. In conclusion, even though the accurate knowledge on the bacterial luciferase is yet to be reported, the structure-guided site-directed mutagenesis approaches targeting the regulatory amino acids will provide a useful platform to re-engineer the bacterial luciferase in the future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Decreased bacterial growth on titanium nanoscale topographies created by ion beam assisted evaporation

    Directory of Open Access Journals (Sweden)

    Stolzoff M

    2017-02-01

    Full Text Available Michelle Stolzoff,1 Jason E Burns,2 Arash Aslani,2 Eric J Tobin,2 Congtin Nguyen,1 Nicholas De La Torre,3 Negar H Golshan,3 Katherine S Ziemer,3 Thomas J Webster1,3,4 1Department of Bioengineering, Northeastern University, Boston, 2N2 Biomedical, Bedford, MA, 3Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 4Center of Excellence for Advanced Materials Research, University of King Abdulaziz, Jeddah, Saudi Arabia Abstract: Titanium is one of the most widely used materials for orthopedic implants, yet it has exhibited significant complications in the short and long term, largely resulting from poor cell–material interactions. Among these many modes of failure, bacterial infection at the site of implantation has become a greater concern with the rise of antibiotic-resistant bacteria. Nanostructured surfaces have been found to prevent bacterial colonization on many surfaces, including nanotextured titanium. In many cases, specific nanoscale roughness values and resulting surface energies have been considered to be “bactericidal”; here, we explore the use of ion beam evaporation as a novel technique to create nanoscale topographical features that can reduce bacterial density. Specifically, we investigated the relationship between the roughness and titanium nanofeature shapes and sizes, in which smaller, more regularly spaced nanofeatures (specifically 40–50 nm tall peaks spaced ~0.25 µm apart were found to have more effect than surfaces with high roughness values alone. Keywords: titanium, nanostructures, bacteria, bone ingrowth, surface roughness, IBAD 

  10. Self-assembling enzymes and the origins of the cytoskeleton

    Science.gov (United States)

    Barry, Rachael; Gitai, Zemer

    2011-01-01

    The bacterial cytoskeleton is composed of a complex and diverse group of proteins that self-assemble into linear filaments. These filaments support and organize cellular architecture and provide a dynamic network controlling transport and localization within the cell. Here, we review recent discoveries related to a newly appreciated class of self-assembling proteins that expand our view of the bacterial cytoskeleton and provide potential explanations for its evolutionary origins. Specifically, several types of metabolic enzymes can form structures similar to established cytoskeletal filaments and, in some cases, these structures have been repurposed for structural uses independent of their normal role. The behaviors of these enzymes suggest that some modern cytoskeletal proteins may have evolved from dual-role proteins with catalytic and structural functions. PMID:22014508

  11. 21 CFR 184.1148 - Bacterially-derived carbohydrase enzyme preparation.

    Science.gov (United States)

    2010-04-01

    ... Bacillus subtilis or B. amyloliquefaciens. The preparation is characterized by the presence of the enzymes.../code_of_federal_regulations/ibr_locations.html. In addition, antibiotic activity is absent in the... of antibiotic activity” in the Compendium of Food Additive Specifications, vol. 2, Joint FAO/WHO...

  12. Identification and structural analysis of an L-asparaginase enzyme from guinea pig with putative tumor cell killing properties.

    Science.gov (United States)

    Schalk, Amanda M; Nguyen, Hien-Anh; Rigouin, Coraline; Lavie, Arnon

    2014-11-28

    The initial observation that guinea pig serum kills lymphoma cells marks the serendipitous discovery of a new class of anti-cancer agents. The serum cell killing factor was shown to be an enzyme with L-asparaginase (ASNase) activity. As a direct result of this observation, several bacterial L-asparaginases were developed and are currently approved by the Food and Drug Administration for the treatment of the subset of hematological malignancies that are dependent on the extracellular pool of the amino acid asparagine. As drugs, these enzymes act to hydrolyze asparagine to aspartate, thereby starving the cancer cells of this amino acid. Prior to the work presented here, the precise identity of this guinea pig enzyme has not been reported in the peer-reviewed literature. We discovered that the guinea pig enzyme annotated as H0W0T5_CAVPO, which we refer to as gpASNase1, has the required low Km property consistent with that possessed by the cell-killing guinea pig serum enzyme. Elucidation of the ligand-free and aspartate complex gpASNase1 crystal structures allows a direct comparison with the bacterial enzymes and serves to explain the lack of L-glutaminase activity in the guinea pig enzyme. The structures were also used to generate a homology model for the human homolog hASNase1 and to help explain its vastly different kinetic properties compared with gpASNase1, despite a 70% sequence identity. Given that the bacterial enzymes frequently present immunogenic and other toxic side effects, this work suggests that gpASNase1 could be a promising alternative to these bacterial enzymes. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Effect of antibiotic stewardship on the incidence of infection and colonisation with antibiotic-resistant bacteria and Clostridium difficile infection: a systematic review and meta-analysis.

    Science.gov (United States)

    Baur, David; Gladstone, Beryl Primrose; Burkert, Francesco; Carrara, Elena; Foschi, Federico; Döbele, Stefanie; Tacconelli, Evelina

    2017-09-01

    Antibiotic stewardship programmes have been shown to reduce antibiotic use and hospital costs. We aimed to evaluate evidence of the effect of antibiotic stewardship on the incidence of infections and colonisation with antibiotic-resistant bacteria. For this systematic review and meta-analysis, we searched PubMed, the Cochrane Database of Systematic Reviews, the Cochrane Central Register of Controlled Trials, and Web of Science for studies published from Jan 1, 1960, to May 31, 2016, that analysed the effect of antibiotic stewardship programmes on the incidence of infection and colonisation with antibiotic-resistant bacteria and Clostridium difficile infections in hospital inpatients. Two authors independently assessed the eligibility of trials and extracted data. Studies involving long-term care facilities were excluded. The main outcomes were incidence ratios (IRs) of target infections and colonisation per 1000 patient-days before and after implementation of antibiotic stewardship. Meta-analyses were done with random-effect models and heterogeneity was calculated with the I 2 method. We included 32 studies in the meta-analysis, comprising 9 056 241 patient-days and 159 estimates of IRs. Antibiotic stewardship programmes reduced the incidence of infections and colonisation with multidrug-resistant Gram-negative bacteria (51% reduction; IR 0·49, 95% CI 0·35-0·68; pdifficile infections (32%; 0·68, 0·53-0·88; p=0·0029). Antibiotic stewardship programmes were more effective when implemented with infection control measures (IR 0·69, 0·54-0·88; p=0·0030), especially hand-hygiene interventions (0·34, 0·21-0·54; pinfections and colonisation with antibiotic-resistant bacteria and C difficile infections in hospital inpatients. These results provide stakeholders and policy makers with evidence for implementation of antibiotic stewardship interventions to reduce the burden of infections from antibiotic-resistant bacteria. German Center for Infection Research

  14. Antibody-Based Agents in the Management of Antibiotic-Resistant Staphylococcus aureus Diseases

    Science.gov (United States)

    Speziale, Pietro; Rindi, Simonetta

    2018-01-01

    Staphylococcus aureus is a human pathogen that can cause a wide spectrum of diseases, including sepsis, pneumonia, arthritis, and endocarditis. Ineffective treatment of a number of staphylococcal infections with antibiotics is due to the development and spread of antibiotic-resistant strains following decades of antibiotic usage. This has generated renewed interest within the scientific community in alternative therapeutic agents, such as anti-S. aureus antibodies. Although the role of antibodies in the management of S. aureus diseases is controversial, the success of this pathogen in neutralizing humoral immunity clearly indicates that antibodies offer the host extensive protection. In this review, we report an update on efforts to develop antibody-based agents, particularly monoclonal antibodies, and their therapeutic potential in the passive immunization approach to the treatment and prevention of S. aureus infections. PMID:29533985

  15. Evidence for the bacterial origin of genes encoding fermentation enzymes of the amitochondriate protozoan parasite Entamoeba histolytica.

    Science.gov (United States)

    Rosenthal, B; Mai, Z; Caplivski, D; Ghosh, S; de la Vega, H; Graf, T; Samuelson, J

    1997-06-01

    . histolytica ADHE to bacterial ADHE than to the G. lamblia ADHE. The 6-kDa FD of E. histolytica and G. lamblia were most similar to those of the archaebacterium Methanosarcina barkeri and the delta-purple bacterium Desulfovibrio desulfuricans, respectively, while the 12-kDa FD of the T. vaginalis hydrogenosome was most similar to the 12-kDa FD of gamma-purple bacterium Pseudomonas putida. E. histolytica genes (and probably G. lamblia genes) encoding fermentation enzymes therefore likely derive from bacteria by horizontal transfer, although it is not clear from which bacteria these amebic genes derive. These are the first nonorganellar fermentation enzymes of eukaryotes implicated to have derived from bacteria.

  16. Nanosilver-Silica Composite: Prolonged Antibacterial Effects and Bacterial Interaction Mechanisms for Wound Dressings.

    Science.gov (United States)

    Mosselhy, Dina A; Granbohm, Henrika; Hynönen, Ulla; Ge, Yanling; Palva, Airi; Nordström, Katrina; Hannula, Simo-Pekka

    2017-09-06

    Infected superficial wounds were traditionally controlled by topical antibiotics until the emergence of antibiotic-resistant bacteria. Silver (Ag) is a kernel for alternative antibacterial agents to fight this resistance quandary. The present study demonstrates a method for immobilizing small-sized (~5 nm) silver nanoparticles on silica matrix to form a nanosilver-silica (Ag-SiO₂) composite and shows the prolonged antibacterial effects of the composite in vitro. The composite exhibited a rapid initial Ag release after 24 h and a slower leaching after 48 and 72 h and was effective against both methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli ( E . coli ). Ultraviolet (UV)-irradiation was superior to filter-sterilization in retaining the antibacterial effects of the composite, through the higher remaining Ag concentration. A gauze, impregnated with the Ag-SiO₂ composite, showed higher antibacterial effects against MRSA and E . coli than a commercial Ag-containing dressing, indicating a potential for the management and infection control of superficial wounds. Transmission and scanning transmission electron microscope analyses of the composite-treated MRSA revealed an interaction of the released silver ions with the bacterial cytoplasmic constituents, causing ultimately the loss of bacterial membranes. The present results indicate that the Ag-SiO₂ composite, with prolonged antibacterial effects, is a promising candidate for wound dressing applications.

  17. Enzymatic removal and disinfection of bacterial biofilms

    DEFF Research Database (Denmark)

    Johansen, Charlotte; Falholt, Per; Gram, Lone

    1997-01-01

    -coated hydroxyapatite. The activity of enzymes against bacterial cells in biofilm was measured by fluorescence microscopy and an indirect conductance test in which evolution of carbon dioxide was measured. Glucose oxidase combined with lactoperoxidase was bactericidal against biofilm bacteria but did not remove...

  18. Rapid microbiological testing: monitoring the development of bacterial stress.

    Directory of Open Access Journals (Sweden)

    Boris Zavizion

    2010-10-01

    Full Text Available The ability to respond to adverse environments effectively along with the ability to reproduce are sine qua non conditions for all sustainable cellular forms of life. Given the availability of an appropriate sensing modality, the ubiquity and immediacy of the stress response could form the basis for a new approach for rapid biological testing. We have found that measuring the dielectric permittivity of a cellular suspension, an easily measurable electronic property, is an effective way to monitor the response of bacterial cells to adverse conditions continuously. The dielectric permittivity of susceptible and resistant strains of Escherichia coli and Staphylococcus aureus, treated with gentamicin and vancomycin, were measured directly using differential impedance sensing methods and expressed as the Normalized Impedance Response (NIR. These same strains were also heat-shocked and chemically stressed with Triton X-100 or H(2O(2. The NIR profiles obtained for antibiotic-treated susceptible organisms showed a strong and continuous decrease in value. In addition, the intensity of the NIR value decrease for susceptible cells varied in proportion to the amount of antibiotic added. Qualitatively similar profiles were found for the chemically treated and heat-shocked bacteria. In contrast, antibiotic-resistant cells showed no change in the NIR values in the presence of the drug to which it is resistant. The data presented here show that changes in the dielectric permittivity of a cell suspension are directly correlated with the development of a stress response as well as bacterial recovery from stressful conditions. The availability of a practical sensing modality capable of monitoring changes in the dielectric properties of stressed cells could have wide applications in areas ranging from the detection of bacterial infections in clinical specimens to antibiotic susceptibility testing and drug discovery.

  19. A New Pharmacological Agent (AKB-4924) Stabilizes Hypoxia Inducible Factor (HIF) and Increases Skin Innate Defenses Against Bacterial Infection

    Science.gov (United States)

    Okumura, Cheryl Y.M.; Hollands, Andrew; Tran, Dan N.; Olson, Joshua; Dahesh, Samira; von Köckritz-Blickwede, Maren; Thienphrapa, Wdee; Corle, Courtney; Jeung, Seung Nam; Kotsakis, Anna; Shalwitz, Robert A.; Johnson, Randall S.; Nizet, Victor

    2013-01-01

    Hypoxia inducible factor-1 (HIF-1) is a transcription factor that is a major regulator of energy homeostasis and cellular adaptation to low oxygen stress. HIF-1 is also activated in response to bacterial pathogens and supports the innate immune response of both phagocytes and keratinocytes. In this work, we show that a new pharmacological compound AKB-4924 (Akebia Therapeutics) increases HIF-1α levels and enhances the antibacterial activity of phagocytes and keratinocytes against both methicillin-sensitive and -resistant strains of Staphylococcus aureus in vitro. AKB-4924 is also effective in stimulating the killing capacity of keratinocytes against the important opportunistic skin pathogens Pseudomonas aeruginosa and Acinitobacter baumanii. The effect of AKB-4924 is mediated through the activity of host cells, as the compound exerts no direct antimicrobial activity. Administered locally as a single agent, AKB-4924 limits S. aureus proliferation and lesion formation in a mouse skin abscess model. This approach to pharmacologically boost the innate immune response via HIF-1 stabilization may serve as a useful adjunctive treatment for antibiotic-resistant bacterial infections. PMID:22371073

  20. Bacteriophage enzymes for the prevention and treatment of bacterial infections: Stability and stabilization of the enzyme lysing Streptococcus pyogenes cells

    Energy Technology Data Exchange (ETDEWEB)

    Klyachko, N. L.; Dmitrieva, N. F.; Eshchina, A. S.; Ignatenko, O. V.; Filatova, L. Y.; Rainina, Evguenia I.; Kazarov, A. K.; Levashov, A. V.

    2008-06-01

    Recombinant, phage associated lytic enzyme Ply C capable to lyse streptococci of groups A and C was stabilized in the variety of the micelles containing compositions to improve the stability of the enzyme for further application in medicine. It was shown that, in the micellar polyelectrolyte composition M16, the enzyme retained its activity for 2 months; while in a buffer solution under the same conditions ((pH 6.3, room temperature), it completely lost its activity in 2 days

  1. Classification of EC 3.1.1.3 bacterial true lipases using phylogenetic ...

    African Journals Online (AJOL)

    To obtain an overview of this industrially and very important class of enzymes and their characteristics, we collected and classified bacterial lipases sequences available from protein databases. Here we proposed an updated and revised classification of family I bacterial "true" lipases based mainly on a comparison of their ...

  2. Bacterial expression of human kynurenine 3-monooxygenase: Solubility, activity, purification☆

    Science.gov (United States)

    Wilson, K.; Mole, D.J.; Binnie, M.; Homer, N.Z.M.; Zheng, X.; Yard, B.A.; Iredale, J.P.; Auer, M.; Webster, S.P.

    2014-01-01

    Kynurenine 3-monooxygenase (KMO) is an enzyme central to the kynurenine pathway of tryptophan metabolism. KMO has been implicated as a therapeutic target in several disease states, including Huntington’s disease. Recombinant human KMO protein production is challenging due to the presence of transmembrane domains, which localise KMO to the outer mitochondrial membrane and render KMO insoluble in many in vitro expression systems. Efficient bacterial expression of human KMO would accelerate drug development of KMO inhibitors but until now this has not been achieved. Here we report the first successful bacterial (Escherichia coli) expression of active FLAG™-tagged human KMO enzyme expressed in the soluble fraction and progress towards its purification. PMID:24316190

  3. Mechanism of Excretion of a Bacterial Proteinase: Demonstration of Two Proteolytic Enzymes Produced by a Sarcina Strain (Coccus P)

    Energy Technology Data Exchange (ETDEWEB)

    SARNER, NITZA Z; BISSELL, MINA J; GIROLAMO, MARIO Di; GORINI, LUIGI

    1970-06-29

    A Sarcina strain (Coccus P) produces two proteolytic enzymes. One is found only extracellularly, is far more prevalent, and is actively excreted during exponential growth. It is the enzyme responsible for the known strong proteolytic activity of the cultures of this strain. A second protease is, however, produced which remains associated with the intact cells but is released by the protoplasts. The two enzymes appear unrelated in their derivation. Calcium ions play an essential role in preventing autodigestion of the excreted enzyme. Bacterial proteins are found outside the cell boundary as a consequence either of passive processes such as leakage or lysis or of active excretion. Under conditions in which leakage and lysis do not occur, as during exponential growth, the cell boundary is a barrier causing a complete separation of the bulk of the intracellular proteins from the one or very few extracellular proteins, with no trace of either type being detectable on the wrong side of the boundary. Since in bacteria there is no evidence of protein being produced other than internally, the separation into intraand extracellular proteins should occur after peptide chain formation. The question arises as to whether the structure of the cell boundary or that of the excreted proteins themselves determines this separation. Coccus P, a Sarcina closely related to Micrococcus lysodeikticus (3), produces an extracellular proteinase during the exponential phase of growth so that the process appears to be active excretion. The organism grows exponentially in a defined synthetic medium (12) to relatively high cell density (10{sup 9} cells/ml); therefore the mechanism of excretion can be studied over an extended period of time without the difficulties of changing growth rates. Coagulation of reconstituted skim milk provides a simple and sensitive assay for enzyme activity (I 1). The extracellular proteinase has also been purified and partially characterized (6-8). It has been shown

  4. Effects of bacterial inoculants and an enzyme on the fermentation ...

    African Journals Online (AJOL)

    ... the effects of bacterial inoculation and cellulase on the fermentation quality of ensiled whole-crop sweet sorghum (WCSS, Sorghum bicolor L. Moench). The WCSS (323 g dry matter (DM)/kg, 251 g water soluble carbohydrates (WSC)/kg DM, 43 g crude protein (CP)/kg DM and 439 g neutral detergent fibre (NDF)/kg DM) ...

  5. Future prospects of antibacterial metal nanoparticles as enzyme inhibitor

    International Nuclear Information System (INIS)

    Ahmed, Khan Behlol Ayaz; Raman, Thiagarajan; Veerappan, Anbazhagan

    2016-01-01

    Nanoparticles are being widely used as antibacterial agents with metal nanoparticles emerging as the most efficient antibacterial agents. There have been many studies which have reported the mechanism of antibacterial activity of nanoparticles on bacteria. In this review we aim to emphasize on all the possible mechanisms which are involved in the antibacterial activity of nanoparticles and also to understand their mode of action and role as bacterial enzyme inhibitor by comparing their antibacterial mechanism to that of antibiotics with enzyme inhibition as a major mechanism. With the emergence of widespread antibiotic resistance, nanoparticles offer a better alternative to our conventional arsenal of antibiotics. Once the biological safety of these nanoparticles is addressed, these nanoparticles can be of great medical importance in our fight against bacterial infections. - Highlights: • Mechanisms of antibiotics and metal nanoparticles resemble one another. • Bactericidal mechanisms of NPs are cell wall damage, and ROS generation. • Metal NPs inhibit membrane synthesis enzyme. • NPs can be used as antibacterial agents. • NP as antibacterial strategy important due to widespread antibiotic resistance

  6. Future prospects of antibacterial metal nanoparticles as enzyme inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Khan Behlol Ayaz; Raman, Thiagarajan, E-mail: raman@biotech.sastra.edu; Veerappan, Anbazhagan, E-mail: anbazhagan@scbt.sastra.edu

    2016-11-01

    Nanoparticles are being widely used as antibacterial agents with metal nanoparticles emerging as the most efficient antibacterial agents. There have been many studies which have reported the mechanism of antibacterial activity of nanoparticles on bacteria. In this review we aim to emphasize on all the possible mechanisms which are involved in the antibacterial activity of nanoparticles and also to understand their mode of action and role as bacterial enzyme inhibitor by comparing their antibacterial mechanism to that of antibiotics with enzyme inhibition as a major mechanism. With the emergence of widespread antibiotic resistance, nanoparticles offer a better alternative to our conventional arsenal of antibiotics. Once the biological safety of these nanoparticles is addressed, these nanoparticles can be of great medical importance in our fight against bacterial infections. - Highlights: • Mechanisms of antibiotics and metal nanoparticles resemble one another. • Bactericidal mechanisms of NPs are cell wall damage, and ROS generation. • Metal NPs inhibit membrane synthesis enzyme. • NPs can be used as antibacterial agents. • NP as antibacterial strategy important due to widespread antibiotic resistance.

  7. Effects of bacterial inoculation on the fermentation characteristics ...

    African Journals Online (AJOL)

    DNkosi

    2016-05-11

    May 11, 2016 ... The chopped forages were treated with or without the bacterial .... packed loosely in an open plastic jar, which was covered with two ..... be because LD inoculant contains enzymes that may be capable of degrading fibre.

  8. From bacterial to human dihydrouridine synthase: automated structure determination

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, Fiona, E-mail: fiona.whelan@york.ac.uk; Jenkins, Huw T., E-mail: fiona.whelan@york.ac.uk [The University of York, Heslington, York YO10 5DD (United Kingdom); Griffiths, Samuel C. [University of Oxford, Headington, Oxford OX3 7BN (United Kingdom); Byrne, Robert T. [Ludwig-Maximilians-University Munich, Feodor-Lynen-Strasse 25, 81377 Munich (Germany); Dodson, Eleanor J.; Antson, Alfred A., E-mail: fiona.whelan@york.ac.uk [The University of York, Heslington, York YO10 5DD (United Kingdom)

    2015-06-30

    The crystal structure of a human dihydrouridine synthase, an enzyme associated with lung cancer, with 18% sequence identity to a T. maritima enzyme, has been determined at 1.9 Å resolution by molecular replacement after extensive molecular remodelling of the template. The reduction of uridine to dihydrouridine at specific positions in tRNA is catalysed by dihydrouridine synthase (Dus) enzymes. Increased expression of human dihydrouridine synthase 2 (hDus2) has been linked to pulmonary carcinogenesis, while its knockdown decreased cancer cell line viability, suggesting that it may serve as a valuable target for therapeutic intervention. Here, the X-ray crystal structure of a construct of hDus2 encompassing the catalytic and tRNA-recognition domains (residues 1–340) determined at 1.9 Å resolution is presented. It is shown that the structure can be determined automatically by phenix.mr-rosetta starting from a bacterial Dus enzyme with only 18% sequence identity and a significantly divergent structure. The overall fold of the human Dus2 is similar to that of bacterial enzymes, but has a larger recognition domain and a unique three-stranded antiparallel β-sheet insertion into the catalytic domain that packs next to the recognition domain, contributing to domain–domain interactions. The structure may inform the development of novel therapeutic approaches in the fight against lung cancer.

  9. From bacterial to human dihydrouridine synthase: automated structure determination

    International Nuclear Information System (INIS)

    Whelan, Fiona; Jenkins, Huw T.; Griffiths, Samuel C.; Byrne, Robert T.; Dodson, Eleanor J.; Antson, Alfred A.

    2015-01-01

    The crystal structure of a human dihydrouridine synthase, an enzyme associated with lung cancer, with 18% sequence identity to a T. maritima enzyme, has been determined at 1.9 Å resolution by molecular replacement after extensive molecular remodelling of the template. The reduction of uridine to dihydrouridine at specific positions in tRNA is catalysed by dihydrouridine synthase (Dus) enzymes. Increased expression of human dihydrouridine synthase 2 (hDus2) has been linked to pulmonary carcinogenesis, while its knockdown decreased cancer cell line viability, suggesting that it may serve as a valuable target for therapeutic intervention. Here, the X-ray crystal structure of a construct of hDus2 encompassing the catalytic and tRNA-recognition domains (residues 1–340) determined at 1.9 Å resolution is presented. It is shown that the structure can be determined automatically by phenix.mr-rosetta starting from a bacterial Dus enzyme with only 18% sequence identity and a significantly divergent structure. The overall fold of the human Dus2 is similar to that of bacterial enzymes, but has a larger recognition domain and a unique three-stranded antiparallel β-sheet insertion into the catalytic domain that packs next to the recognition domain, contributing to domain–domain interactions. The structure may inform the development of novel therapeutic approaches in the fight against lung cancer

  10. Antimicrobial and biophysical properties of surfactant supplemented with an antimicrobial peptide for treatment of bacterial pneumonia.

    Science.gov (United States)

    Banaschewski, Brandon J H; Veldhuizen, Edwin J A; Keating, Eleonora; Haagsman, Henk P; Zuo, Yi Y; Yamashita, Cory M; Veldhuizen, Ruud A W

    2015-01-01

    Antibiotic-resistant bacterial infections represent an emerging health concern in clinical settings, and a lack of novel developments in the pharmaceutical pipeline is creating a "perfect storm" for multidrug-resistant bacterial infections. Antimicrobial peptides (AMPs) have been suggested as future therapeutics for these drug-resistant bacteria, since they have potent broad-spectrum activity, with little development of resistance. Due to the unique structure of the lung, bacterial pneumonia has the additional problem of delivering antimicrobials to the site of infection. One potential solution is coadministration of AMPs with exogenous surfactant, allowing for distribution of the peptides to distal airways and opening of collapsed lung regions. The objective of this study was to test various surfactant-AMP mixtures with regard to maintaining pulmonary surfactant biophysical properties and bactericidal functions. We compared the properties of four AMPs (CATH-1, CATH-2, CRAMP, and LL-37) suspended in bovine lipid-extract surfactant (BLES) by assessing surfactant-AMP mixture biophysical and antimicrobial functions. Antimicrobial activity was tested against methillicin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. All AMP/surfactant mixtures exhibited an increase of spreading compared to a BLES control. BLES+CATH-2 mixtures had no significantly different minimum surface tension versus the BLES control. Compared to the other cathelicidins, CATH-2 retained the most bactericidal activity in the presence of BLES. The BLES+CATH-2 mixture appears to be an optimal surfactant-AMP mixture based on in vitro assays. Future directions involve investigating the potential of this mixture in animal models of bacterial pneumonia. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Identification and isolation of bacteria containing OPH enzyme for biodegradation of organophosphorus pesticide diazinon from contaminated agricultural soil

    Directory of Open Access Journals (Sweden)

    Sara Mobarakpoor

    2015-04-01

    Full Text Available Background: Organophosphorus insecticide diazinon has been widely used in agriculture and has the ability to transfer and accumulate in soil, water and animal tissues, and to induce toxicity in plants, animals and humans. In humans, diazinon inhibits nerve transmission by inactivating acetylcholinesterase enzyme. The present study was carried out to identify bacteria containing OPH enzyme for biodegradation of diazinon from contaminated agricultural soil. Methods: In this study, 8 contaminated agricultural soil samples that were exposed to pesticides, especially diazinon in the last two decades, were collected from the farms of Hamedan province. After preparing the media, for isolation of several bacterial strains containing OPH enzyme that are capable of biodegrading organophosphorus pesticides by diazinon enzymatic hydrolysis, bacterial genomic DNA extraction, plasmid product sequencing, phylogenetic sequence processing and phylogenetic tree drawing were carried out. Results: Eight bacterial strains, capable of secreting OPH enzyme, were isolated from soil samples, one of which named BS-1 with 86% similarity to Bacillus safensis displayed the highest organophosphate-hydrolyzing capability and can be used as a source of carbon and phosphorus. Conclusion: It can be concluded that the isolated bacterial strain identified in this study with OPH enzyme secretion has the potential for biodegradation of organophosphorus pesticides, especially diazinon in invitro conditions. Also, further studies such as the environmental stability and interaction, production strategies, safety, cost-benefit, environmental destructive parameters, and, toxicological, genetic and biochemical aspects are recommended prior to the application of bacterial strains in the field-scale bioremediation.

  12. Immunological detection of enzymes for sulfate reduction in anaerobic methane-oxidizing consortia.

    Science.gov (United States)

    Milucka, Jana; Widdel, Friedrich; Shima, Seigo

    2013-05-01

    Anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) at marine gas seeps is performed by archaeal-bacterial consortia that have so far not been cultivated in axenic binary or pure cultures. Knowledge about possible biochemical reactions in AOM consortia is based on metagenomic retrieval of genes related to those in archaeal methanogenesis and bacterial sulfate reduction, and identification of a few catabolic enzymes in protein extracts. Whereas the possible enzyme for methane activation (a variant of methyl-coenzyme M reductase, Mcr) was shown to be harboured by the archaea, enzymes for sulfate activation and reduction have not been localized so far. We adopted a novel approach of fluorescent immunolabelling on semi-thin (0.3-0.5 μm) cryosections to localize two enzymes of the SR pathway, adenylyl : sulfate transferase (Sat; ATP sulfurylase) and dissimilatory sulfite reductase (Dsr) in microbial consortia from Black Sea methane seeps. Both Sat and Dsr were exclusively found in an abundant microbial morphotype (c. 50% of all cells), which was tentatively identified as Desulfosarcina/Desulfococcus-related bacteria. These results show that ANME-2 archaea in the Black Sea AOM consortia did not express bacterial enzymes of the canonical sulfate reduction pathway and thus, in contrast to previous suggestions, most likely cannot perform canonical sulfate reduction. Moreover, our results show that fluorescent immunolabelling on semi-thin cryosections which to our knowledge has been so far only applied on cell tissues, is a powerful tool for intracellular protein detection in natural microbial associations. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  13. Bacterial laccase: recent update on production, properties and industrial applications.

    Science.gov (United States)

    Chauhan, Prakram Singh; Goradia, Bindi; Saxena, Arunika

    2017-10-01

    Laccases (benzenediol: oxygen oxidoreductase, EC 1.10.3.2) are multi-copper enzymes which catalyze the oxidation of a wide range of phenolic and non-phenolic aromatic compounds in the presence or absence of a mediator. Till date, laccases have mostly been isolated from fungi and plants, whereas laccase from bacteria has not been well studied. Bacterial laccases have several unique properties that are not characteristics of fungal laccases such as stability at high temperature and high pH. Bacteria produce these enzymes either extracellularly or intracellularly and their activity is in a wide range of temperature and pH. It has application in pulp biobleaching, bioremediation, textile dye decolorization, pollutant degradation, biosensors, etc. Hence, comprehensive information including sources, production conditions, characterization, cloning and biotechnological applications is needed for the effective understanding and application of these enzymes at the industrial level. The present review provides exhaustive information of bacterial laccases reported till date.

  14. Discovery of antimicrobial compounds targeting bacterial type FAD synthetases.

    Science.gov (United States)

    Sebastián, María; Anoz-Carbonell, Ernesto; Gracia, Begoña; Cossio, Pilar; Aínsa, José Antonio; Lans, Isaías; Medina, Milagros

    2018-12-01

    The increase of bacterial strains resistant to most of the available antibiotics shows a need to explore novel antibacterial targets to discover antimicrobial drugs. Bifunctional bacterial FAD synthetases (FADSs) synthesise the flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). These cofactors act in vital processes as part of flavoproteins, making FADS an essential enzyme. Bacterial FADSs are potential antibacterial targets because of differences to mammalian enzymes, particularly at the FAD producing site. We have optimised an activity-based high throughput screening assay targeting Corynebacterium ammoniagenes FADS (CaFADS) that identifies inhibitors of its different activities. We selected the three best high-performing inhibitors of the FMN:adenylyltransferase activity (FMNAT) and studied their inhibition mechanisms and binding properties. The specificity of the CaFADS hits was evaluated by studying also their effect on the Streptococcus pneumoniae FADS activities, envisaging differences that can be used to discover species-specific antibacterial drugs. The antimicrobial effect of these compounds was also evaluated on C. ammoniagenes, S. pneumoniae, and Mycobacterium tuberculosis cultures, finding hits with favourable antimicrobial properties.

  15. Salmonella spp. and antibiotic-resistant strains in wild mammals and birds in north-western Italy from 2002 to 2010

    Directory of Open Access Journals (Sweden)

    Velca Botti

    2013-06-01

    Full Text Available Salmonella is an important zoonotic pathogen of economic importance. In Europe, salmonellosis is the second food-borne infection, in Italy, Salmonella is still the major cause of food-borne outbreaks. In Europe, there are many Salmonella surveillance plans on farmed animals, while Salmonella survey of wild animals is occasionally performed. The aim of this study was to investigate the presence of Salmonella including the antibiotic-resistant strains in wild animals. Between 2002 and 2010, 2,713 wild animals (canids, mustelids, birds, rodents, ungulates, were collected in north-western Italy and tested for Salmonella by classical microbiological culture method followed by serological and biochemical typing. One hundred and seventeen wild animals (63 canids, 25 mustelids, 24 birds, 5 ungulates were found positive for Salmonella (4.3%. One hundred and thirty strains, belonging to several serotypes were isolated, and S. Typhimurium was the most common serotype found. Antibiotic susceptibility was tested by disk-diffusion test on 88 strains. Almost all the analyzed strains (97.7% showed resistance/intermediate resistance to at least one class of antibiotics and the highest resistance values were observed for the tetracycline class. In conclusion, zoonotic and antibiotic-resistant serotypes were found in many species of wildlife.

  16. Directed evolution of enzymes using microfluidic chips

    Science.gov (United States)

    Pilát, Zdeněk.; Ježek, Jan; Šmatlo, Filip; Kaůka, Jan; Zemánek, Pavel

    2016-12-01

    Enzymes are highly versatile and ubiquitous biological catalysts. They can greatly accelerate large variety of reactions, while ensuring appropriate catalytic activity and high selectivity. These properties make enzymes attractive biocatalysts for a wide range of industrial and biomedical applications. Over the last two decades, directed evolution of enzymes has transformed the field of protein engineering. We have devised microfluidic systems for directed evolution of haloalkane dehalogenases in emulsion droplets. In such a device, individual bacterial cells producing mutated variants of the same enzyme are encapsulated in microdroplets and supplied with a substrate. The conversion of a substrate by the enzyme produced by a single bacterium changes the pH in the droplet which is signalized by pH dependent fluorescence probe. The droplets with the highest enzymatic activity can be separated directly on the chip by dielectrophoresis and the resultant cell lineage can be used for enzyme production or for further rounds of directed evolution. This platform is applicable for fast screening of large libraries in directed evolution experiments requiring mutagenesis at multiple sites of a protein structure.

  17. Comparison of the loads and antibiotic-resistance profiles of Enterococcus species from conventional and organic chicken carcasses in South Korea.

    Science.gov (United States)

    Kim, Y-J; Park, J-H; Seo, K-H

    2018-01-01

    Antibiotic-resistant bacteria in poultry meat are a threat to public health. In this study, we compared the Enterococcus spp. loads and antibiotic-resistance profiles between carcasses of conventionally and organically raised chickens. A total of 144 chicken carcasses (72 conventional and 72 organic) was collected from local retail markets in Seoul, South Korea. Overall, 77.7% (112 of 144; 75% conventional and 80% organic) of chicken carcasses were positive for Enterococcus. The mean loads of Enterococcus spp. were greater in conventional chicken carcasses, at 2.9 ± 0.4 log CFU/mL, than those in organic chicken carcasses, at 1.78 ± 0.3 log CFU/mL (p organic chicken carcasses) was randomly selected for further analysis. The predominant species was Enterococcus faecalis in both conventional and organic chicken carcasses (57.7 and 76.9%, respectively; P > 0.05). Rates of resistance to ciprofloxacin and erythromycin, which are used in veterinary medicine in South Korea, were significantly higher in conventional chicken carcasses than in organic chicken carcasses. However, we found no difference between the rates of resistance to antibiotics such as vancomycin and tigecycline, which were not registered for use in veterinary medicine in South Korea, of Enterococcus isolates from conventional and organic chicken carcasses. In addition, although multidrug resistant isolates were obtained from both types of chicken samples, the prevalence of samples positive for Enterococcus was significantly higher in conventional chicken carcasses than in organic chicken carcasses (P organic chicken carcasses. A high level of gentamicin resistance was observed in isolates from not only conventional (5.8%) but also organic chicken (1.9%) carcasses, with no significant difference in rates between them (P > 0.05). Despite this, our results suggest that organic food certification is effective in reducing fecal contamination and the burden of antibiotic-resistant Enterococcus spp. in

  18. Bacterial vaginosis in pregnant adolescents: proinflammatory cytokine and bacterial sialidase profile. Cross-sectional study

    Directory of Open Access Journals (Sweden)

    Carolina Sanitá Tafner Ferreira

    Full Text Available ABSTRACT CONTEXT AND OBJECTIVE: Bacterial vaginosis occurs frequently in pregnancy and increases susceptibility to sexually transmitted infections (STI. Considering that adolescents are disproportionally affected by STI, the aim of this study was to evaluate the cervicovaginal levels of interleukin (IL-1 beta, IL-6, IL-8 and bacterial sialidase in pregnant adolescents with bacterial vaginosis. DESIGN AND SETTING: Cross-sectional study at mother and child referral units in Belém, Pará, Brazil. METHODS: Vaginal samples from 168 pregnant adolescents enrolled were tested for trichomoniasis and candidiasis. Their vaginal microbiota was classified according to the Nugent criteria (1991 as normal, intermediate or bacterial vaginosis. Cervical infection due to Chlamydia trachomatisand Neisseria gonorrhoeae was also assessed. Cytokine and sialidase levels were measured, respectively, using enzyme-linked immunosorbent assays and MUAN conversion in cervicovaginal lavages. Forty-eight adolescents (28.6% were excluded because they tested positive for some of the infections investigated. The remaining 120 adolescents were grouped according to vaginal flora type: normal (n = 68 or bacterial vaginosis (n = 52. Their cytokine and sialidase levels were compared between the groups using the Mann-Whitney test (P < 0.05. RESULTS: The pregnant adolescents with bacterial vaginosis had higher levels of IL-1 beta, IL-6 and IL-8 (P < 0.05. Sialidase was solely detected in 35 adolescents (67.2% with bacterial vaginosis. CONCLUSIONS: Not only IL-1 beta and sialidase levels, but also IL-6 and IL-8 levels are higher in pregnant adolescents with bacterial vaginosis, thus indicating that this condition elicits a more pronounced inflammatory response in this population, which potentially increases vulnerability to STI acquisition.

  19. The effect of environmental factors and migration dynamics on the prevalence of antibiotic-resistant Escherichia coli in estuary environments

    OpenAIRE

    Na, Guangshui; Lu, Zihao; Gao, Hui; Zhang, Linxiao; Li, Qianwei; Li, Ruijing; Yang, Fan; Huo, Chuanlin; Yao, Ziwei

    2018-01-01

    Understanding the antibiotic resistance transmission mechanisms and migration dynamics of antibiotic-resistant bacteria (ARB) in the natural environment is critical given the increasing prevalence of antibiotic resistance. The aim of this study was to examine the fate of sulfonamide-resistant fecal bacteria (E. coli) in an estuary ecosystem and to explore the role and contribution of environmental factors in this process. The prevalence of sulfonamide-resistance status of E. coli was analyzed...

  20. Isolation and removal of proteolytic enzymes with magnetic cross-linked erythrocytes

    International Nuclear Information System (INIS)

    Safarik, I. Ivo; Safarikova, Mirka

    2001-01-01

    New magnetic adsorbents for batch isolation and removal of various proteolytic enzymes were prepared by glutaraldehyde cross-linking of bovine, porcine and human erythrocytes in the presence of fine magnetic particles. Trypsin, chymotrypsin, alkaline bacterial protease and proteases present in various commercial enzyme preparations were efficiently adsorbed on these adsorbents; on the contrary, proteins without proteolytic activity were not adsorbed

  1. Bacterial expression of human kynurenine 3-monooxygenase: solubility, activity, purification.

    Science.gov (United States)

    Wilson, K; Mole, D J; Binnie, M; Homer, N Z M; Zheng, X; Yard, B A; Iredale, J P; Auer, M; Webster, S P

    2014-03-01

    Kynurenine 3-monooxygenase (KMO) is an enzyme central to the kynurenine pathway of tryptophan metabolism. KMO has been implicated as a therapeutic target in several disease states, including Huntington's disease. Recombinant human KMO protein production is challenging due to the presence of transmembrane domains, which localise KMO to the outer mitochondrial membrane and render KMO insoluble in many in vitro expression systems. Efficient bacterial expression of human KMO would accelerate drug development of KMO inhibitors but until now this has not been achieved. Here we report the first successful bacterial (Escherichia coli) expression of active FLAG™-tagged human KMO enzyme expressed in the soluble fraction and progress towards its purification. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Extracellular proteolytic enzymes produced by human pathogenic Vibrio species

    Directory of Open Access Journals (Sweden)

    Shin-Ichi eMiyoshi

    2013-11-01

    Full Text Available Bacteria in the genus Vibrio produce extracellular proteolytic enzymes to obtain nutrients via digestion of various protein substrates. However, the enzymes secreted by human pathogenic species have been documented to modulate the bacterial virulence. Several species including Vibrio cholerae and V. vulnificus are known to produce thermolysin-like metalloproteases termed vibriolysin. The vibriolysin from V. vulnificus, a causative agent of serious systemic infection, is a major toxic factor eliciting the secondary skin damage characterized by formation of the hemorrhagic brae. The vibriolysin from intestinal pathogens may play indirect roles in pathogenicity because it can activate protein toxins and hemagglutinin by the limited proteolysis and can affect the bacterial attachment to or detachment from the intestinal surface by degradation of the mucus layer. Two species causing wound infections, V. alginolyticus and V. parahaemolyticus, produce another metalloproteases so-called collagenases. Although the detailed pathological roles have not been studied, the collagenase is potent to accelerate the bacterial dissemination through digestion of the protein components of the extracellular matrix. Some species produce cymotrypsin-like serine proteases, which may also affect the bacterial virulence potential. The intestinal pathogens produce sufficient amounts of the metalloprotease at the small intestinal temperature; however, the metalloprotease production by extra-intestinal pathogens is much higher around the body surface temperature. On the other hand, the serine protease is expressed only in the absence of the metalloprotease.

  3. A new pharmacological agent (AKB-4924) stabilizes hypoxia inducible factor-1 (HIF-1) and increases skin innate defenses against bacterial infection.

    Science.gov (United States)

    Okumura, Cheryl Y M; Hollands, Andrew; Tran, Dan N; Olson, Joshua; Dahesh, Samira; von Köckritz-Blickwede, Maren; Thienphrapa, Wdee; Corle, Courtney; Jeung, Seung Nam; Kotsakis, Anna; Shalwitz, Robert A; Johnson, Randall S; Nizet, Victor

    2012-09-01

    Hypoxia inducible factor-1 (HIF-1) is a transcription factor that is a major regulator of energy homeostasis and cellular adaptation to low oxygen stress. HIF-1 is also activated in response to bacterial pathogens and supports the innate immune response of both phagocytes and keratinocytes. In this work, we show that a new pharmacological compound AKB-4924 increases HIF-1 levels and enhances the antibacterial activity of phagocytes and keratinocytes against both methicillin-sensitive and methicillin-resistant strains of Staphylococcus aureus in vitro. AKB-4924 is also effective in stimulating the killing capacity of keratinocytes against the important opportunistic skin pathogens Pseudomonas aeruginosa and Acinetobacter baumanii. The effect of AKB-4924 is mediated through the activity of host cells, as the compound exerts no direct antimicrobial activity. Administered locally as a single agent, AKB-4924 limits S. aureus proliferation and lesion formation in a mouse skin abscess model. This approach to pharmacologically boost the innate immune response via HIF-1 stabilization may serve as a useful adjunctive treatment for antibiotic-resistant bacterial infections.

  4. Production of certain hydrolytic enzymes by psychrophilic bacteria from the Antarctic krill, zooplankton and seawater

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.

    of hydrolytic enzymes compared to those strains collected either from water or krill samples. Based on these results, the functional role of bacterial enzymes in relation to trophodynamics of euphausiids and their role in the post-harvest technology of krill...

  5. Enzymes from Higher Eukaryotes for Industrial Biocatalysis

    Directory of Open Access Journals (Sweden)

    Zhibin Liu

    2004-01-01

    Full Text Available The industrial production of fine chemicals, feed and food ingredients, pharmaceuticals, agrochemicals and their respective intermediates relies on an increasing application of biocatalysis, i.e. on enzyme or whole-cell catalyzed conversions of molecules. Simple procedures for discovery, cloning and over-expression as well as fast growth favour fungi, yeasts and especially bacteria as sources of biocatalysts. Higher eukaryotes also harbour an almost unlimited number of potential biocatalysts, although to date the limited supply of enzymes, the high heterogeneity of enzyme preparations and the hazard of infectious contaminants keep some interesting candidates out of reach for industrial bioprocesses. In the past only a few animal and plant enzymes from agricultural waste materials were employed in food processing. The use of bacterial expression strains or non-conventional yeasts for the heterologous production of efficient eukaryotic enzymes can overcome the bottleneck in enzyme supply and provide sufficient amounts of homogenous enzyme preparations for reliable and economically feasible applications at large scale. Ideal enzymatic processes represent an environmentally friendly, »near-to-completion« conversion of (mostly non-natural substrates to pure products. Recent developments demonstrate the commercial feasibility of large-scale biocatalytic processes employing enzymes from higher eukaryotes (e.g. plants, animals and also their usefulness in some small-scale industrial applications.

  6. Identification and Characterization of Novel Biocontrol Bacterial

    Directory of Open Access Journals (Sweden)

    Young Cheol Kim

    2014-09-01

    Full Text Available Because bacterial isolates from only a few genera have been developed commercially as biopesticides, discovery and characterization of novel bacterial strains will be a key to market expansion. Our previous screen using plant bioassays identified 24 novel biocontrol isolates representing 12 different genera. In this study, we characterized the 3 isolates showing the best biocontrol activities. The isolates were Pantoea dispersa WCU35, Proteus myxofaciens WCU244, and Exiguobacterium acetylicum WCU292 based on 16S rRNA sequence analysis. The isolates showed differential production of extracellular enzymes, antimicrobial activity against various fungal or bacterial plant pathogens, and induced systemic resistance activity against tomato gray mold disease caused by Botrytis cinerea. E. acetylicum WCU292 lacked strong in vitro antimicrobial activity against plant pathogens, but induced systemic resistance against tomato gray mold disease. These results confirm that the trait of biological control is found in a wide variety of bacterial genera

  7. Structure of a bacterial glycoside hydrolase family 63 enzyme in complex with its glycosynthase product, and insights into the substrate specificity.

    Science.gov (United States)

    Miyazaki, Takatsugu; Ichikawa, Megumi; Yokoi, Gaku; Kitaoka, Motomitsu; Mori, Haruhide; Kitano, Yoshikazu; Nishikawa, Atsushi; Tonozuka, Takashi

    2013-09-01

    Proteins belonging to glycoside hydrolase family 63 (GH63) are found in bacteria, archaea and eukaryotes. Although the eukaryotic GH63 proteins have been identified as processing α-glucosidase I, the substrate specificities of the bacterial and archaeal GH63 proteins are not clear. Here, we converted a bacterial GH63 enzyme, Escherichia coli YgjK, to a glycosynthase to probe its substrate specificity. Two mutants of YgjK (E727A and D324N) were constructed, and both mutants showed glycosynthase activity. The reactions of E727A with β-D-glucosyl fluoride and monosaccharides showed that the largest amount of glycosynthase product accumulated when galactose was employed as an acceptor molecule. The crystal structure of E727A complexed with the reaction product indicated that the disaccharide bound at the active site was 2-O-α-D-glucopyranosyl-α-D-galactopyranose (Glc12Gal). A comparison of the structures of E727A-Glc12Gal and D324N-melibiose showed that there were two main types of conformation: the open and closed forms. The structure of YgjK adopted the closed form when subsite -1 was occupied by glucose. These results suggest that sugars containing the Glc12Gal structure are the most likely candidates for natural substrates of YgjK. © 2013 FEBS.

  8. Breaking barriers: expansion of the use of endolysins as novel antibacterials against Gram-negative bacteria.

    Science.gov (United States)

    Briers, Yves; Lavigne, Rob

    2015-01-01

    The emergence and spread of antibiotic-resistant bacteria drives the search for novel classes of antibiotics to replenish our armamentarium against bacterial infections. This is particularly critical for Gram-negative pathogens, which are intrinsically resistant to many existing classes of antibiotics due to the presence of a protective outer membrane. In addition, the antibiotics development pipeline is mainly oriented to Gram-positive pathogens such as methicillin-resistant Staphylococcus aureus. A promising novel class of antibacterials is endolysins. These enzymes encoded by bacterial viruses hydrolyze the peptidoglycan layer with high efficiency, resulting in abrupt osmotic lysis and cell death. Their potential as novel antibacterials to treat Gram-positive bacteria has been extensively demonstrated; however, the Gram-negative outer membrane has presented a formidable barrier for the use of endolysins against Gram-negatives until recently. This review reports on the most recent advances in the development of endolysins to kill Gram-negative species with a special focus on endolysin-engineered Artilysins(®).

  9. Structure of a bacterial toxin-activating acyltransferase.

    Science.gov (United States)

    Greene, Nicholas P; Crow, Allister; Hughes, Colin; Koronakis, Vassilis

    2015-06-09

    Secreted pore-forming toxins of pathogenic Gram-negative bacteria such as Escherichia coli hemolysin (HlyA) insert into host-cell membranes to subvert signal transduction and induce apoptosis and cell lysis. Unusually, these toxins are synthesized in an inactive form that requires posttranslational activation in the bacterial cytosol. We have previously shown that the activation mechanism is an acylation event directed by a specialized acyl-transferase that uses acyl carrier protein (ACP) to covalently link fatty acids, via an amide bond, to specific internal lysine residues of the protoxin. We now reveal the 2.15-Å resolution X-ray structure of the 172-aa ApxC, a toxin-activating acyl-transferase (TAAT) from pathogenic Actinobacillus pleuropneumoniae. This determination shows that bacterial TAATs are a structurally homologous family that, despite indiscernible sequence similarity, form a distinct branch of the Gcn5-like N-acetyl transferase (GNAT) superfamily of enzymes that typically use acyl-CoA to modify diverse bacterial, archaeal, and eukaryotic substrates. A combination of structural analysis, small angle X-ray scattering, mutagenesis, and cross-linking defined the solution state of TAATs, with intermonomer interactions mediated by an N-terminal α-helix. Superposition of ApxC with substrate-bound GNATs, and assay of toxin activation and binding of acyl-ACP and protoxin peptide substrates by mutated ApxC variants, indicates the enzyme active site to be a deep surface groove.

  10. Bacterial Toxins for Oncoleaking Suicidal Cancer Gene Therapy.

    Science.gov (United States)

    Pahle, Jessica; Walther, Wolfgang

    For suicide gene therapy, initially prodrug-converting enzymes (gene-directed enzyme-producing therapy, GDEPT) were employed to intracellularly metabolize non-toxic prodrugs into toxic compounds, leading to the effective suicidal killing of the transfected tumor cells. In this regard, the suicide gene therapy has demonstrated its potential for efficient tumor eradication. Numerous suicide genes of viral or bacterial origin were isolated, characterized, and extensively tested in vitro and in vivo, demonstrating their therapeutic potential even in clinical trials to treat cancers of different entities. Apart from this, growing efforts are made to generate more targeted and more effective suicide gene systems for cancer gene therapy. In this regard, bacterial toxins are an alternative to the classical GDEPT strategy, which add to the broad spectrum of different suicide approaches. In this context, lytic bacterial toxins, such as streptolysin O (SLO) or the claudin-targeted Clostridium perfringens enterotoxin (CPE) represent attractive new types of suicide oncoleaking genes. They permit as pore-forming proteins rapid and also selective toxicity toward a broad range of cancers. In this chapter, we describe the generation and use of SLO as well as of CPE-based gene therapies for the effective tumor cell eradication as promising, novel suicide gene approach particularly for treatment of therapy refractory tumors.

  11. Discovery of a Bacterial 5-Methylcytosine Deaminase

    Science.gov (United States)

    2015-01-01

    5-Methylcytosine is found in all domains of life, but the bacterial cytosine deaminase from Escherichia coli (CodA) will not accept 5-methylcytosine as a substrate. Since significant amounts of 5-methylcytosine are produced in both prokaryotes and eukaryotes, this compound must eventually be catabolized and the fragments recycled by enzymes that have yet to be identified. We therefore initiated a comprehensive phylogenetic screen for enzymes that may be capable of deaminating 5-methylcytosine to thymine. From a systematic analysis of sequence homologues of CodA from thousands of bacterial species, we identified putative cytosine deaminases where a “discriminating” residue in the active site, corresponding to Asp-314 in CodA from E. coli, was no longer conserved. Representative examples from Klebsiella pneumoniae (locus tag: Kpn00632), Rhodobacter sphaeroides (locus tag: Rsp0341), and Corynebacterium glutamicum (locus tag: NCgl0075) were demonstrated to efficiently deaminate 5-methylcytosine to thymine with values of kcat/Km of 1.4 × 105, 2.9 × 104, and 1.1 × 103 M–1 s–1, respectively. These three enzymes also catalyze the deamination of 5-fluorocytosine to 5-fluorouracil with values of kcat/Km of 1.2 × 105, 6.8 × 104, and 2.0 × 102 M–1 s–1, respectively. The three-dimensional structure of Kpn00632 was determined by X-ray diffraction methods with 5-methylcytosine (PDB id: 4R85), 5-fluorocytosine (PDB id: 4R88), and phosphonocytosine (PDB id: 4R7W) bound in the active site. When thymine auxotrophs of E. coli express these enzymes, they are capable of growth in media lacking thymine when supplemented with 5-methylcytosine. Expression of these enzymes in E. coli is toxic in the presence of 5-fluorocytosine, due to the efficient transformation to 5-fluorouracil. PMID:25384249

  12. Acinetobacter calcoaceticus CSY-P13 Mitigates Stress of Ferulic and p-Hydroxybenzoic Acids in Cucumber by Affecting Antioxidant Enzyme Activity and Soil Bacterial Community

    Directory of Open Access Journals (Sweden)

    Fenghui Wu

    2018-06-01

    Full Text Available Ferulic acid (FA and p-hydroxybenzoic acid (PHBA are main phenolic compounds accumulated in rhizosphere of continuously cropped cucumber, causing stress in plants. Microbial degradation of a mixture of FA and PHBA is not well understood in soil. We isolated a strain CSY-P13 of Acinetobacter calcoaceticus, inoculated it into soil to protect cucumber from FA and PHBA stress, and explored a mechanism underlying the protection. CSY-P13 effectively degraded a mixture of FA and PHBA in culture solution under conditions of 39.37°C, pH 6.97, and 21.59 g L-1 potassium dihydrogen phosphate, giving rise to 4-vinyl guaiacol, vanillin, vanillic acid, and protocatechuic acid. During FA and PHBA degradation, activities of superoxide dismutase (SOD, catalase, ascorbate peroxidase, and dehydroascorbate reductase in CSY-P13 were induced. Inoculated into cucumber-planted soil containing 220 μg g-1 mixture of FA and PHBA, CSY-P13 degraded FA and PHBA in soil, increased plant height, and decreased malonaldehyde, superoxide radical, and hydrogen peroxide levels in leaves. CSY-P13 also enhanced SOD, guaiacol peroxidase, catalase, glutathione peroxidase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase activities; increased ascorbate and glutathione contents; and elevated transcript levels of copper/zinc SOD, manganese SOD, and catalase in leaves under FA and PHBA. Moreover, CSY-P13 increased phosphatase, catalase, urease, and sucrase activities and changed bacterial richness, diversity, and community composition by high throughput sequencing in cucumber-planted soil supplemented with the mixture of FA and PHBA. So CSY-P13 degrades the mixture of FA and PHBA in soil and mitigates stress from the two phenolic compounds in cucumber by activating antioxidant enzymes, changing soil bacterial community, and inducing soil enzymes.

  13. Glycoside hydrolase activities of thermophilic bacterial consortia adapted to switchgrass.

    Science.gov (United States)

    Gladden, John M; Allgaier, Martin; Miller, Christopher S; Hazen, Terry C; VanderGheynst, Jean S; Hugenholtz, Philip; Simmons, Blake A; Singer, Steven W

    2011-08-15

    Industrial-scale biofuel production requires robust enzymatic cocktails to produce fermentable sugars from lignocellulosic biomass. Thermophilic bacterial consortia are a potential source of cellulases and hemicellulases adapted to harsher reaction conditions than commercial fungal enzymes. Compost-derived microbial consortia were adapted to switchgrass at 60°C to develop thermophilic biomass-degrading consortia for detailed studies. Microbial community analysis using small-subunit rRNA gene amplicon pyrosequencing and short-read metagenomic sequencing demonstrated that thermophilic adaptation to switchgrass resulted in low-diversity bacterial consortia with a high abundance of bacteria related to thermophilic paenibacilli, Rhodothermus marinus, and Thermus thermophilus. At lower abundance, thermophilic Chloroflexi and an uncultivated lineage of the Gemmatimonadetes phylum were observed. Supernatants isolated from these consortia had high levels of xylanase and endoglucanase activities. Compared to commercial enzyme preparations, the endoglucanase enzymes had a higher thermotolerance and were more stable in the presence of 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]), an ionic liquid used for biomass pretreatment. The supernatants were used to saccharify [C2mim][OAc]-pretreated switchgrass at elevated temperatures (up to 80°C), demonstrating that these consortia are an excellent source of enzymes for the development of enzymatic cocktails tailored to more extreme reaction conditions.

  14. Impact of Bee Venom Enzymes on Diseases and Immune Responses.

    Science.gov (United States)

    Hossen, Md Sakib; Shapla, Ummay Mahfuza; Gan, Siew Hua; Khalil, Md Ibrahim

    2016-12-27

    Bee venom (BV) is used to treat many diseases and exhibits anti-inflammatory, anti-bacterial, antimutagenic, radioprotective, anti-nociceptive immunity promoting, hepatocyte protective and anti-cancer activity. According to the literature, BV contains several enzymes, including phospholipase A2 (PLA2), phospholipase B, hyaluronidase, acid phosphatase and α-glucosidase. Recent studies have also reported the detection of different classes of enzymes in BV, including esterases, proteases and peptidases, protease inhibitors and other important enzymes involved in carbohydrate metabolism. Nevertheless, the physiochemical properties and functions of each enzyme class and their mechanisms remain unclear. Various pharmacotherapeutic effects of some of the BV enzymes have been reported in several studies. At present, ongoing research aims to characterize each enzyme and elucidate their specific biological roles. This review gathers all the current knowledge on BV enzymes and their specific mechanisms in regulating various immune responses and physiological changes to provide a basis for future therapies for various diseases.

  15. Impact of Bee Venom Enzymes on Diseases and Immune Responses

    Directory of Open Access Journals (Sweden)

    Md. Sakib Hossen

    2016-12-01

    Full Text Available Bee venom (BV is used to treat many diseases and exhibits anti-inflammatory, anti-bacterial, antimutagenic, radioprotective, anti-nociceptive immunity promoting, hepatocyte protective and anti-cancer activity. According to the literature, BV contains several enzymes, including phospholipase A2 (PLA2, phospholipase B, hyaluronidase, acid phosphatase and α-glucosidase. Recent studies have also reported the detection of different classes of enzymes in BV, including esterases, proteases and peptidases, protease inhibitors and other important enzymes involved in carbohydrate metabolism. Nevertheless, the physiochemical properties and functions of each enzyme class and their mechanisms remain unclear. Various pharmacotherapeutic effects of some of the BV enzymes have been reported in several studies. At present, ongoing research aims to characterize each enzyme and elucidate their specific biological roles. This review gathers all the current knowledge on BV enzymes and their specific mechanisms in regulating various immune responses and physiological changes to provide a basis for future therapies for various diseases.

  16. Release of bacterial alkaline phosphatase in the rumen of cattle fed a feedlot bloat-provoking diet or a hay diet.

    Science.gov (United States)

    Cheng, K J; Hironaka, R; Costerton, J W

    1976-05-01

    Alkaline phosphatase (APase) was present in the bovine rumen in both cell-free and cell-associated states and levels of the enzyme varied with dietary regime. Reaction product deposition showed that the enzyme was associated with the mixed bacterial population. No enzyme was observed to be associated with protozoa. Trace activity of APase was also detected in the saliva. The presence of large amounts of APase in cell-free rumen fluid of cattle fed fine concentrate feed is believed to be due, in part, to the breakage of bacterial cells that occurs in the rumen.

  17. The analysis of the antibiotic resistome offers new opportunities for therapeutic intervention.

    Science.gov (United States)

    Corona, Fernando; Blanco, Paula; Alcalde-Rico, Manuel; Hernando-Amado, Sara; Lira, Felipe; Bernardini, Alejandra; Sánchez, María B; Martínez, José L

    2016-06-01

    Most efforts in the development of antimicrobials have focused on the screening of lethal targets. Nevertheless, the constant expansion of antimicrobial resistance makes the antibiotic resistance determinants themselves suitable targets for finding inhibitors to be used in combination with antibiotics. Among them, inhibitors of antibiotic inactivating enzymes and of multidrug efflux pumps are suitable candidates for improving the efficacy of antibiotics. In addition, the application of systems biology tools is helping to understand the changes in bacterial physiology associated to the acquisition of resistance, including the increased susceptibility to other antibiotics displayed by some antibiotic-resistant mutants. This information is useful for implementing novel strategies based in metabolic interventions or combination of antibiotics for improving the efficacy of antibacterial therapy.

  18. Review of moxifloxacin hydrochloride ophthalmic solution in the treatment of bacterial eye infections

    Directory of Open Access Journals (Sweden)

    Darlene Miller

    2008-03-01

    Full Text Available Darlene MillerAbrams Ocular Microbiology Laboratory, Bascom Palmer Eye Institute, Anne Bates Leach Eye Hospital, Miller School of Medicine-University of Miami, FL, USAAbstract: Moxifloxacin hydrochloride ophthalmic solution 0.5% (Vigamox® is the ocular formulation/adaptation of moxifloxacin. Moxifloxacin is a broad spectrum 8-methoxyfluoroquinolone which terminates bacterial growth by binding to DNA gyrase (topoisomerase II and topoisomerase IV, essential bacterial enzymes involved in the replication, translation, repair and recombination of deoxyribonucleic acid. Affinity for both enzymes improves potency and reduces the probability of selecting resistant bacterial subpopulations. Vigamox is a bactericidal, concentration dependent, anti-infective. It is preservative free, and well tolerated with minimal ocular side effects. It provides increased penetration into ocular tissues and fluids with improved activity against Streptococci and Staphylococci species and moderate to excellent activity against clinically relevant, gram- negative ocular pathogens.Keywords: moxifloxacin, vigamox, pharmacodynamic indices, minimal inhibitory concentrations

  19. Structure, inhibition, and regulation of essential lipid A enzymes.

    Science.gov (United States)

    Zhou, Pei; Zhao, Jinshi

    2017-11-01

    The Raetz pathway of lipid A biosynthesis plays a vital role in the survival and fitness of Gram-negative bacteria. Research efforts in the past three decades have identified individual enzymes of the pathway and have provided a mechanistic understanding of the action and regulation of these enzymes at the molecular level. This article reviews the discovery, biochemical and structural characterization, and regulation of the essential lipid A enzymes, as well as continued efforts to develop novel antibiotics against Gram-negative pathogens by targeting lipid A biosynthesis. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Calcium and Magnesium Ions Are Membrane-Active against Stationary-Phase Staphylococcus aureus with High Specificity

    Science.gov (United States)

    Xie, Yuntao; Yang, Lihua

    2016-02-01

    Staphylococcus aureus (S. aureus) is notorious for its ability to acquire antibiotic-resistance, and antibiotic-resistant S. aureus has become a wide-spread cause of high mortality rate. Novel antimicrobials capable of eradicating S. aureus cells including antibiotic-resistant ones are thus highly desired. Membrane-active bactericides and species-specific antimicrobials are two promising sources of novel anti-infective agents for fighting against bacterial antibiotic-resistance. We herein show that Ca2+ and Mg2+, two alkaline-earth-metal ions physiologically essential for diverse living organisms, both disrupt model S. aureus membranes and kill stationary-phase S. aureus cells, indicative of membrane-activity. In contrast to S. aureus, Escherichia coli and Bacillus subtilis exhibit unaffected survival after similar treatment with these two cations, indicative of species-specific activity against S. aureus. Moreover, neither Ca2+ nor Mg2+ lyses mouse red blood cells, indicative of hemo-compatibility. This works suggests that Ca2+ and Mg2+ may have implications in targeted eradication of S. aureus pathogen including the antibiotic-resistant ones.

  1. Effect of an organic acids based feed additive and enrofloxacin on the prevalence of antibiotic-resistant E. coli in cecum of broilers.

    Science.gov (United States)

    Roth, Nataliya; Mayrhofer, Sigrid; Gierus, Martin; Weingut, Christine; Schwarz, Christiane; Doupovec, Barbara; Berrios, Roger; Domig, Konrad J

    2017-09-01

    Increasing antibiotic resistance is a major public health concern. Fluoroquinolones are used to treat and prevent poultry diseases worldwide. Fluoroquinolone resistance rates are high in their countries of use. The aim of this study was to evaluate the effect of an acids-based feed additive, as well as fluoroquinolone antibiotics, on the prevalence of antibiotic-resistant E. coli. A total of 480 broiler chickens (Ross 308) were randomly assigned to 3 treatments: a control group receiving a basal diet; a group receiving a feed additive (FA) based on formic acid, acetic acid and propionic acid; and an antibiotic enrofloxacin (AB) group given the same diet, but supplemented with enrofloxacin in water. A pooled fecal sample of one-day-old chicks was collected upon arrival at the experimental farm. On d 17 and d 38 of the trial, cecal samples from each of the 8 pens were taken, and the count of E. coli and antibiotic-resistant E. coli was determined.The results of the present study show a high prevalence of antibiotic-resistant E. coli in one-day-old chicks. Supplementation of the diet with FA and treatment of broilers with AB did not have a significant influence on the total number of E. coli in the cecal content on d 17 and d 38 of the trial. Supplementation with FA contributed to better growth performance and to a significant decrease (P ≤ 0.05) in E. coli resistant to ampicillin and tetracycline compared to the control and AB groups, as well as to a decrease (P ≤ 0.05) in sulfamethoxazole and ciprofloxacin-resistant E. coli compared to the AB group. Treatment with AB increased (P ≤ 0.05) the average daily weight compared to the control group and increased (P ≤ 0.05) the number of E. coli resistant to ciprofloxacin, streptomycin, sulfamethoxazole and tetracycline; it also decreased (P ≤ 0.05) the number of E. coli resistant to cefotaxime and extended spectrum beta-lactamase- (ESBL-) producing E. coli in the ceca of broilers. © 2017 Poultry Science

  2. Bacterial degradation of monocyclic aromatic amines

    Directory of Open Access Journals (Sweden)

    Pankaj Kumar Arora

    2015-08-01

    Full Text Available Aromatic amines are an important group of industrial chemicals, which are widely used for manufacturing of dyes, pesticides, drugs, pigments, and other industrial products. These compounds have been considered highly toxic to human beings due to their carcinogenic nature. Three groups of aromatic amines have been recognized: monocyclic, polycyclic and heterocyclic aromatic amines. Bacterial degradation of several monocyclic aromatic compounds has been studied in a variety of bacteria, which utilizes monocyclic aromatic amines as their sole source of carbon and energy. Several degradation pathways have been proposed and the related enzymes and genes have also been characterized. Many reviews have been reviewed toxicity of monocyclic aromatic amines; however, there is lack of review on biodegradation of monocyclic aromatic amines. The aim of this review is to summarize bacterial degradation of monocyclic aromatic amines. This review will increase our current understanding of biochemical and molecular basis of bacterial degradation of monocyclic aromatic amines.

  3. Bacterial charity work leads to population-wide resistance.

    Science.gov (United States)

    Lee, Henry H; Molla, Michael N; Cantor, Charles R; Collins, James J

    2010-09-02

    Bacteria show remarkable adaptability in the face of antibiotic therapeutics. Resistance alleles in drug target-specific sites and general stress responses have been identified in individual end-point isolates. Less is known, however, about the population dynamics during the development of antibiotic-resistant strains. Here we follow a continuous culture of Escherichia coli facing increasing levels of antibiotic and show that the vast majority of isolates are less resistant than the population as a whole. We find that the few highly resistant mutants improve the survival of the population's less resistant constituents, in part by producing indole, a signalling molecule generated by actively growing, unstressed cells. We show, through transcriptional profiling, that indole serves to turn on drug efflux pumps and oxidative-stress protective mechanisms. The indole production comes at a fitness cost to the highly resistant isolates, and whole-genome sequencing reveals that this bacterial altruism is made possible by drug-resistance mutations unrelated to indole production. This work establishes a population-based resistance mechanism constituting a form of kin selection whereby a small number of resistant mutants can, at some cost to themselves, provide protection to other, more vulnerable, cells, enhancing the survival capacity of the overall population in stressful environments.

  4. A novel whole-bacterial enzyme linked-immunosorbant assay to quantify Chlamydia trachomatis specific antibodies reveals distinct differences between systemic and genital compartments.

    Directory of Open Access Journals (Sweden)

    Hannah L Albritton

    Full Text Available Chlamydia trachomatis (CT is the leading sexually transmitted bacterial infection. The continued global burden of CT infection strongly predicates the need for a vaccine to supplement current chlamydial control programs. The correlates of protection against CT are currently unknown, but they must be carefully defined to guide vaccine design. The localized nature of chlamydial infection in columnar epithelial cells of the genital tract necessitates investigation of immunity at the site of infection. The purpose of this study was to develop a sensitive whole bacterial enzyme-linked immunosorbent assay (ELISA to quantify and compare CT-specific IgG and IgA in sera and genital secretions from CT-infected women. To achieve this, elementary bodies (EBs from two of the most common genital serovars (D and E were attached to poly-L-lysine-coated microtiter plates with glutaraldehyde. EB attachment and integrity were verified by the presence of outer membrane antigens and the absence of bacterial cytoplasmic antigens. EB-specific IgG and IgA standards were developed by pooling sera with high titers of CT-specific antibodies from infected women. Serum, endocervical and vaginal secretions, and endocervical cytobrush specimens from CT-infected women were used to quantify CT-specific IgG and IgA which were then normalized to total IgG and IgA, respectively. Analyses of paired serum and genital samples revealed significantly higher proportions of EB-specific antibodies in genital secretions compared to sera. Cervical and vaginal secretions and cytobrush specimens had similar proportions of EB-specific antibodies, suggesting any one of these genital sampling techniques could be used to quantify CT-specific antibodies when appropriate normalization methodologies are implemented. Overall, these results illustrate the need to investigate genital tract CT antibody responses, and our assay provides a useful quantitative tool to assess natural immunity in defined

  5. Bacterial and fungal endophthalmitis in upper Egypt: related species and risk factors.

    Science.gov (United States)

    Gharamah, A A; Moharram, A M; Ismail, M A; Al-Hussaini, A K

    2012-08-01

    To study risk factors, contributing factors of bacterial and fungal endophthalmitis in Upper Egypt, test the isolated species sensitive to some therapeutic agents, and to investigate the air-borne bacteria and fungi in opthalmology operating rooms. Thirty one cases of endophthalmitis were clinically diagnosed and microbiologically studied. Indoor air-borne bacteria and fungi inside four air-conditioned operating rooms in the Ophthalmology Department at Assiut University Hospitals were also investigated. The isolated microbes from endophthalmitis cases were tested for their ability to produce some extracellular enzymes including protease, lipase, urease, phosphatase and catalase. Also the ability of 5 fungal isolates from endophthalmitis origin to produce mycotoxins and their sensitivity to some therapeutic agents were studied. Results showed that bacteria and fungi were responsihle for infection in 10 and 6 cases of endophthalmitis, respectively and only 2 cases produced a mixture of bacteria and fungi. Trauma was the most prevalent risk factor of endophthalmitis where 58.1% of the 31 cases were due to trauma. In ophthalmology operating rooms, different bacterial and fungal species were isolated. 8 bacterial and 5 fungal isolates showed their ability to produce enzymes while only 3 fungal isolates were able to produce mycotoxins. Terbinafine showed the highest effect against most isolates in vitro. The ability of bacterial and fungal isolates to produce extracellular enzymes and mycotoxins may be aid in the invasion and destruction of eye tissues. Microbial contamination of operating rooms with air-borne bacteria and fungi in the present work may be a source of postoperative endophthalmitis.

  6. Time-dependent effect of graphene on the structure, abundance, and function of the soil bacterial community.

    Science.gov (United States)

    Ren, Wenjie; Ren, Gaidi; Teng, Ying; Li, Zhengao; Li, Lina

    2015-10-30

    The increased application of graphene raises concerns about its environmental impact, but little information is available on the effect of graphene on the soil microbial community. This study evaluated the impact of graphene on the structure, abundance and function of the soil bacterial community based on quantitative real-time polymerase chain reaction (qPCR), pyrosequencing and soil enzyme activities. The results show that the enzyme activities of dehydrogenase and fluorescein diacetate (FDA) esterase and the biomass of the bacterial populations were transiently promoted by the presence of graphene after 4 days of exposure, but these parameters recovered completely after 21 days. Pyrosequencing analysis suggested a significant shift in some bacterial populations after 4 days, and the shift became weaker or disappeared as the exposure time increased to 60 days. During the entire exposure process, the majority of bacterial phylotypes remained unaffected. Some bacterial populations involved in nitrogen biogeochemical cycles and the degradation of organic compounds can be affected by the presence of graphene. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Sequence-Specific Targeting of Bacterial Resistance Genes Increases Antibiotic Efficacy

    Science.gov (United States)

    Wong, Michael; Daly, Seth M.; Greenberg, David E.; Toprak, Erdal

    2016-01-01

    The lack of effective and well-tolerated therapies against antibiotic-resistant bacteria is a global public health problem leading to prolonged treatment and increased mortality. To improve the efficacy of existing antibiotic compounds, we introduce a new method for strategically inducing antibiotic hypersensitivity in pathogenic bacteria. Following the systematic verification that the AcrAB-TolC efflux system is one of the major determinants of the intrinsic antibiotic resistance levels in Escherichia coli, we have developed a short antisense oligomer designed to inhibit the expression of acrA and increase antibiotic susceptibility in E. coli. By employing this strategy, we can inhibit E. coli growth using 2- to 40-fold lower antibiotic doses, depending on the antibiotic compound utilized. The sensitizing effect of the antisense oligomer is highly specific to the targeted gene’s sequence, which is conserved in several bacterial genera, and the oligomer does not have any detectable toxicity against human cells. Finally, we demonstrate that antisense oligomers improve the efficacy of antibiotic combinations, allowing the combined use of even antagonistic antibiotic pairs that are typically not favored due to their reduced activities. PMID:27631336

  8. Acetobacter turbidans α-Amino Acid Ester Hydrolase. How a Single Mutation Improves an Antibiotic-Producing Enzyme

    NARCIS (Netherlands)

    Barends, Thomas R.M.; Polderman-Tijmes, Jolanda J.; Jekel, Peter A.; Williams, Christopher; Wybenga, Gjalt; Janssen, Dick B.; Dijkstra, Bauke W.

    2006-01-01

    The α-amino acid ester hydrolase (AEH) from Acetobacter turbidans is a bacterial enzyme catalyzing the hydrolysis and synthesis of β-lactam antibiotics. The crystal structures of the native enzyme, both unliganded and in complex with the hydrolysis product D-phenylglycine are reported, as well as

  9. Yield of ethanol from enzyme-hydrolyzed yam (Dioscorea rotundata ...

    African Journals Online (AJOL)

    Fresh whole yam tubers and cocoyam corms were separately processed into flours by washing, peeling, blanching, slicing,drying and milling. The flours were enzyme-hydrolyzed by mixing 500g of flour with 2Lof water followed by treatment with a combination of bacterial alpha amylase, limit dextrinase and fungal alpha ...

  10. Highlights of the DNA cutters: a short history of the restriction enzymes.

    Science.gov (United States)

    Loenen, Wil A M; Dryden, David T F; Raleigh, Elisabeth A; Wilson, Geoffrey G; Murray, Noreen E

    2014-01-01

    In the early 1950's, 'host-controlled variation in bacterial viruses' was reported as a non-hereditary phenomenon: one cycle of viral growth on certain bacterial hosts affected the ability of progeny virus to grow on other hosts by either restricting or enlarging their host range. Unlike mutation, this change was reversible, and one cycle of growth in the previous host returned the virus to its original form. These simple observations heralded the discovery of the endonuclease and methyltransferase activities of what are now termed Type I, II, III and IV DNA restriction-modification systems. The Type II restriction enzymes (e.g. EcoRI) gave rise to recombinant DNA technology that has transformed molecular biology and medicine. This review traces the discovery of restriction enzymes and their continuing impact on molecular biology and medicine.

  11. Molecular screening of antibiotic-resistant determinants among ...

    African Journals Online (AJOL)

    In Nigeria, increase in bacterial resistance has been phenotypically established but due to high cost, few molecular studies ... ocomial opportunistic infections such as urinary tract .... Twelve (20%) of these MDR isolates were from children.

  12. Structural and dynamic requirements for optimal activity of the essential bacterial enzyme dihydrodipicolinate synthase.

    Directory of Open Access Journals (Sweden)

    C F Reboul

    Full Text Available Dihydrodipicolinate synthase (DHDPS is an essential enzyme involved in the lysine biosynthesis pathway. DHDPS from E. coli is a homotetramer consisting of a 'dimer of dimers', with the catalytic residues found at the tight-dimer interface. Crystallographic and biophysical evidence suggest that the dimers associate to stabilise the active site configuration, and mutation of a central dimer-dimer interface residue destabilises the tetramer, thus increasing the flexibility and reducing catalytic efficiency and substrate specificity. This has led to the hypothesis that the tetramer evolved to optimise the dynamics within the tight-dimer. In order to gain insights into DHDPS flexibility and its relationship to quaternary structure and function, we performed comparative Molecular Dynamics simulation studies of native tetrameric and dimeric forms of DHDPS from E. coli and also the native dimeric form from methicillin-resistant Staphylococcus aureus (MRSA. These reveal a striking contrast between the dynamics of tetrameric and dimeric forms. Whereas the E. coli DHDPS tetramer is relatively rigid, both the E. coli and MRSA DHDPS dimers display high flexibility, resulting in monomer reorientation within the dimer and increased flexibility at the tight-dimer interface. The mutant E. coli DHDPS dimer exhibits disorder within its active site with deformation of critical catalytic residues and removal of key hydrogen bonds that render it inactive, whereas the similarly flexible MRSA DHDPS dimer maintains its catalytic geometry and is thus fully functional. Our data support the hypothesis that in both bacterial species optimal activity is achieved by fine tuning protein dynamics in different ways: E. coli DHDPS buttresses together two dimers, whereas MRSA dampens the motion using an extended tight-dimer interface.

  13. Importance of Soil Amendments: Survival of Bacterial Pathogens in Manure and Compost Used as Organic Fertilizers.

    Science.gov (United States)

    Sharma, Manan; Reynnells, Russell

    2016-08-01

    Biological soil amendments (BSAs) such as manure and compost are frequently used as organic fertilizers to improve the physical and chemical properties of soils. However, BSAs have been known to be a reservoir for enteric bacterial pathogens such as enterohemorrhagic Escherichia coli (EHEC), Salmonella spp., and Listeria spp. There are numerous mechanisms by which manure may transfer pathogens to growing fruits and vegetables, and several outbreaks of infections have been linked to manure-related contamination of leafy greens. In the United States several commodity-specific guidelines and current and proposed federal rules exist to provide guidance on the application of BSAs as fertilizers to soils, some of which require an interval between the application of manure to soils and the harvest of fruits and vegetables. This review examines the survival, persistence, and regrowth/resuscitation of bacterial pathogens in manure, biosolids, and composts. Moisture, along with climate and the physicochemical properties of soil, manure, or compost, plays a significant role in the ability of pathogens to persist and resuscitate in amended soils. Adaptation of enteric bacterial pathogens to the nonhost environment of soils may also extend their persistence in manure- or compost-amended soils. The presence of antibiotic-resistance genes in soils may also be increased by manure application. Overall, BSAs applied as fertilizers to soils can support the survival and regrowth of pathogens. BSAs should be handled and applied in a manner that reduces the prevalence of pathogens in soils and the likelihood of transfer of food-borne pathogens to fruits and vegetables. This review will focus on two BSAs-raw manure and composted manure (and other feedstocks)-and predominantly on the survival of enteric bacterial pathogens in BSAs as applied to soils as organic fertilizers.

  14. Phage Therapy -- Everything Old Is New again

    Directory of Open Access Journals (Sweden)

    Andrew M Kropinski

    2006-01-01

    Full Text Available The study of bacterial viruses (bacteriophages or phages proved pivotal in the nascence of the disciplines of molecular biology and microbial genetics, providing important information on the central processes of the bacterial cell (DNA replication, transcription and translation and on how DNA can be transferred from one cell to another. As a result of the pioneering genetics studies and modern genomics, it is now known that phages have contributed to the evolution of the microbial cell and to its pathogenic potential. Because of their ability to transmit genes, phages have been exploited to develop cloning vector systems. They also provide a plethora of enzymes for the modern molecular biologist. Until the introduction of antibiotics, phages were used to treat bacterial infections (with variable success. Western science is now having to re-evaluate the application of phage therapy -- a therapeutic modality that never went out of vogue in Eastern Europe -- because of the emergence of an alarming number of antibiotic-resistant bacteria. The present article introduces the reader to phage biology, and the benefits and pitfalls of phage therapy in humans and animals.

  15. Use and improvement of microbial redox enzymes for environmental purposes

    Directory of Open Access Journals (Sweden)

    Ballesteros Antonio

    2004-08-01

    Full Text Available Abstract Industrial development may result in the increase of environmental risks. The enzymatic transformation of polluting compounds to less toxic or even innocuous products is an alternative to their complete removal. In this regard, a number of different redox enzymes are able to transform a wide variety of toxic pollutants, such as polynuclear aromatic hydrocarbons, phenols, azo dyes, heavy metals, etc. Here, novel information on chromate reductases, enzymes that carry out the reduction of highly toxic Cr(VI to the less toxic insoluble Cr(III, is discussed. In addition, the properties and application of bacterial and eukaryotic proteins (lignin-modifying enzymes, peroxidases and cytochromes useful in environmental enzymology is also discussed.

  16. Escherichia coli Phosphoenolpyruvate-Dependent Phosphotransferase System. Functional Asymmetry in Enzyme I Subunits Demonstrated by Reaction with 3-Bromopyruvate

    NARCIS (Netherlands)

    Hoeve-Duurkens, Ria ten; Robillard, George T.

    1984-01-01

    In the bacterial phosphoenolpyruvate-dependent sugar transport systems, enzyme I (EI) is responsible for the initial reaction step which is the transfer of the phosphoryl group from phosphoenolpyruvate to a cytoplasmic phosphocarrier protein (HPr). The inactivation of enzyme I by the substrate

  17. The Disruptive Effect of Lysozyme on the Bacterial Cell Wall Explored by an "In-Silico" Structural Outlook

    Science.gov (United States)

    Primo, Emiliano D.; Otero, Lisandro H.; Ruiz, Francisco; Klinke, Sebastián; Giordano, Walter

    2018-01-01

    The bacterial cell wall, a structural unit of peptidoglycan polymer comprised of glycan strands consisting of a repeating disaccharide motif [N-acetylglucosamine (NAG) and N-acetylmuramylpentapeptide (NAM pentapeptide)], encases bacteria and provides structural integrity and protection. Lysozymes are enzymes that break down the bacterial cell wall…

  18. The Enzyme Function Initiative†

    Science.gov (United States)

    Gerlt, John A.; Allen, Karen N.; Almo, Steven C.; Armstrong, Richard N.; Babbitt, Patricia C.; Cronan, John E.; Dunaway-Mariano, Debra; Imker, Heidi J.; Jacobson, Matthew P.; Minor, Wladek; Poulter, C. Dale; Raushel, Frank M.; Sali, Andrej; Shoichet, Brian K.; Sweedler, Jonathan V.

    2011-01-01

    The Enzyme Function Initiative (EFI) was recently established to address the challenge of assigning reliable functions to enzymes discovered in bacterial genome projects; in this Current Topic we review the structure and operations of the EFI. The EFI includes the Superfamily/Genome, Protein, Structure, Computation, and Data/Dissemination Cores that provide the infrastructure for reliably predicting the in vitro functions of unknown enzymes. The initial targets for functional assignment are selected from five functionally diverse superfamilies (amidohydrolase, enolase, glutathione transferase, haloalkanoic acid dehalogenase, and isoprenoid synthase), with five superfamily-specific Bridging Projects experimentally testing the predicted in vitro enzymatic activities. The EFI also includes the Microbiology Core that evaluates the in vivo context of in vitro enzymatic functions and confirms the functional predictions of the EFI. The deliverables of the EFI to the scientific community include: 1) development of a large-scale, multidisciplinary sequence/structure-based strategy for functional assignment of unknown enzymes discovered in genome projects (target selection, protein production, structure determination, computation, experimental enzymology, microbiology, and structure-based annotation); 2) dissemination of the strategy to the community via publications, collaborations, workshops, and symposia; 3) computational and bioinformatic tools for using the strategy; 4) provision of experimental protocols and/or reagents for enzyme production and characterization; and 5) dissemination of data via the EFI’s website, enzymefunction.org. The realization of multidisciplinary strategies for functional assignment will begin to define the full metabolic diversity that exists in nature and will impact basic biochemical and evolutionary understanding, as well as a wide range of applications of central importance to industrial, medicinal and pharmaceutical efforts. PMID

  19. The Enzyme Function Initiative.

    Science.gov (United States)

    Gerlt, John A; Allen, Karen N; Almo, Steven C; Armstrong, Richard N; Babbitt, Patricia C; Cronan, John E; Dunaway-Mariano, Debra; Imker, Heidi J; Jacobson, Matthew P; Minor, Wladek; Poulter, C Dale; Raushel, Frank M; Sali, Andrej; Shoichet, Brian K; Sweedler, Jonathan V

    2011-11-22

    The Enzyme Function Initiative (EFI) was recently established to address the challenge of assigning reliable functions to enzymes discovered in bacterial genome projects; in this Current Topic, we review the structure and operations of the EFI. The EFI includes the Superfamily/Genome, Protein, Structure, Computation, and Data/Dissemination Cores that provide the infrastructure for reliably predicting the in vitro functions of unknown enzymes. The initial targets for functional assignment are selected from five functionally diverse superfamilies (amidohydrolase, enolase, glutathione transferase, haloalkanoic acid dehalogenase, and isoprenoid synthase), with five superfamily specific Bridging Projects experimentally testing the predicted in vitro enzymatic activities. The EFI also includes the Microbiology Core that evaluates the in vivo context of in vitro enzymatic functions and confirms the functional predictions of the EFI. The deliverables of the EFI to the scientific community include (1) development of a large-scale, multidisciplinary sequence/structure-based strategy for functional assignment of unknown enzymes discovered in genome projects (target selection, protein production, structure determination, computation, experimental enzymology, microbiology, and structure-based annotation), (2) dissemination of the strategy to the community via publications, collaborations, workshops, and symposia, (3) computational and bioinformatic tools for using the strategy, (4) provision of experimental protocols and/or reagents for enzyme production and characterization, and (5) dissemination of data via the EFI's Website, http://enzymefunction.org. The realization of multidisciplinary strategies for functional assignment will begin to define the full metabolic diversity that exists in nature and will impact basic biochemical and evolutionary understanding, as well as a wide range of applications of central importance to industrial, medicinal, and pharmaceutical efforts.

  20. Bacteriological profile and antimicrobial susceptibility patterns of ...

    African Journals Online (AJOL)

    Bacterial identification and antimicrobial susceptibility patterns were ... setting and there are antibiotic-resistant uropathogens among the studied population. ... used antibiotics must be a continuous process so as to provide physicians with up ...

  1. Inhibited Bacterial Adhesion and Biofilm Formation on Quaternized Chitosan-Loaded Titania Nanotubes with Various Diameters

    Directory of Open Access Journals (Sweden)

    Wen-tao Lin

    2016-03-01

    Full Text Available Titania nanotube-based local drug delivery is an attractive strategy for combating implant-associated infection. In our previous study, we demonstrated that the gentamicin-loaded nanotubes could dramatically inhibit bacterial adhesion and biofilm formation on implant surfaces. Considering the overuse of antibiotics may lead to the evolution of antibiotic-resistant bacteria, we synthesized a new quaternized chitosan derivative (hydroxypropyltrimethyl ammonium chloride chitosan, HACC with a 27% degree of substitution (DS; referred to as 27% HACC that had a strong antibacterial activity and simultaneously good biocompatibility with osteogenic cells. Titania nanotubes with various diameters (80, 120, 160, and 200 nm and 200 nm length were loaded with 2 mg of HACC using a lyophilization method and vacuum drying. Two standard strain, methicillin-resistant Staphylococcus aureus (American Type Culture Collection 43300 and Staphylococcus epidermidis (American Type Culture Collection 35984, and two clinical isolates, S. aureus 376 and S. epidermidis 389, were selected to investigate the bacterial adhesion at 6 h and biofilm formation at 24, 48, and 72 h on the HACC-loaded nanotubes (NT-H using the spread plate method, confocal laser scanning microscopy (CLSM, and scanning electron microscopy (SEM. Smooth titanium (Smooth Ti was also investigated and compared. We found that NT-H could significantly inhibit bacterial adhesion and biofilm formation on its surface compared with Smooth Ti, and the NT-H with 160 nm and 200 nm diameters had stronger antibacterial activity because of the extended HACC release time of NT-H with larger diameters. Therefore, NT-H can significantly improve the antibacterial ability of orthopedic implants and provide a promising strategy to prevent implant-associated infections.

  2. Chemical composition and antibacterial activity of Lavandula coronopifolia essential oil against antibiotic-resistant bacteria.

    Science.gov (United States)

    Ait Said, L; Zahlane, K; Ghalbane, I; El Messoussi, S; Romane, A; Cavaleiro, C; Salgueiro, L

    2015-01-01

    The aim of this study was to analyse the composition of the essential oil (EO) of Lavandula coronopifolia from Morocco and to evaluate its in vitro antibacterial activity against antibiotic-resistant bacteria isolated from clinical infections. The antimicrobial activity was assessed by a broth micro-well dilution method using multiresistant clinical isolates of 11 pathogenic bacteria: Klebsiella pneumoniae subsp. pneumoniae, Klebsiella ornithinolytica, Escherichia coli, Enterobacter cloacae, Enterobacter aerogenes, Providencia rettgeri, Citrobacter freundii, Hafnia alvei, Salmonella spp., Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus. The main compounds of the oil were carvacrol (48.9%), E-caryophyllene (10.8%) and caryophyllene oxide (7.7%). The oil showed activity against all tested strains with minimal inhibitory concentration (MIC) values ranging between 1% and 4%. For most of the strains, the MIC value was equivalent to the minimal bactericidal concentration value, indicating a clear bactericidal effect of L. coronopifolia EO.

  3. Demodex-associated bacterial proteins induce neutrophil activation.

    LENUS (Irish Health Repository)

    2012-02-01

    Background: Patients with rosacea demonstrate a higher density of Demodex mites in their skin than controls. A bacterium isolated from a Demodex mite from a patient with papulopustular rosacea (PPR) was previously shown to provoke an immune response in patients with PPR or ocular rosacea thus suggesting a possible role for bacterial proteins in the etiology of this condition. Objectives: To examine the response of neutrophils to proteins derived from a bacterium isolated from a Demodex mite. Methods: Bacterial cells were lysed and proteins were partially purified by AKTA-FPLC. Isolated neutrophils were exposed to bacterial proteins and monitored for alterations in migration, degranulation and cytokine production. Results: Neutrophils exposed to proteins from Bacillus cells demonstrated increased levels of migration and elevated release of MMP-9, an enzyme known to degrade collagen and cathelicidin, an antimicrobial peptide. In addition neutrophils exposed to the bacterial proteins demonstrated elevated rates of Il-8 and TNF-alpha production. Conclusions: Proteins produced by a bacterium isolated from a Demodex mite have the ability to increase the migration, degranulation and cytokine production abilities of neutrophils. These results suggest that bacteria may play a role in the inflammatory erythema associated with rosacea.

  4. A nanobody:GFP bacterial platform that enables functional enzyme display and easy quantification of display capacity.

    Science.gov (United States)

    Wendel, Sofie; Fischer, Emil C; Martínez, Virginia; Seppälä, Susanna; Nørholm, Morten H H

    2016-05-03

    Bacterial surface display is an attractive technique for the production of cell-anchored, functional proteins and engineering of whole-cell catalysts. Although various outer membrane proteins have been used for surface display, an easy and versatile high-throughput-compatible assay for evaluating and developing surface display systems is missing. Using a single domain antibody (also called nanobody) with high affinity for green fluorescent protein (GFP), we constructed a system that allows for fast, fluorescence-based detection of displayed proteins. The outer membrane hybrid protein LppOmpA and the autotransporter C-IgAP exposed the nanobody on the surface of Escherichia coli with very different efficiency. Both anchors were capable of functionally displaying the enzyme Chitinase A as a fusion with the nanobody, and this considerably increased expression levels compared to displaying the nanobody alone. We used flow cytometry to analyse display capability on single-cell versus population level and found that the signal peptide of the anchor has great effect on display efficiency. We have developed an inexpensive and easy read-out assay for surface display using nanobody:GFP interactions. The assay is compatible with the most common fluorescence detection methods, including multi-well plate whole-cell fluorescence detection, SDS-PAGE in-gel fluorescence, microscopy and flow cytometry. We anticipate that the platform will facilitate future in-depth studies on the mechanism of protein transport to the surface of living cells, as well as the optimisation of applications in industrial biotech.

  5. On enzyme kinetic parameters modification of gamma irradiation

    International Nuclear Information System (INIS)

    Ferdes, O.S.; Ferdes, M.; Turcu, G.R.

    1993-01-01

    To elucidate the molecular mechanisms of gamma-ray action on biomolecules there were investigated the modifications in activity and other kinetic parameters for some enzymes irradiated in pure dry state at relative high doses. There were considered bacterial and fungal α-amylases, glucoamylase and Mucor sp. protease irradiated by a 60 Co gamma-ray source in the dose range 1.0-30.0 kGy, at different dose-rates between 0.5-2.0 kGy/h, at room temperature. Considering the enzyme inactivation in this dose range, the dose-effect relationships have an expected form and depend on the irradiation conditions but not significantly on the dose rate. The catalytic properties of enzymes were modified by irradiation. By usual methods it is evidenced a direct correlation between the enzymatic activities, Michaelis-Menten constant, K m , reaction velocities, v, and the irradiation dose. These experimental findings can support a self-consistent theoretical approach on biophysical radiation action on biological active molecules like enzymes. At the same time, some enzyme behaviour to irradiation could be considered like a good biological indicator of radiation response. (Author) 4 Figs., 19 Refs

  6. Recent Advances in Marine Enzymes for Biotechnological Processes.

    Science.gov (United States)

    Lima, R N; Porto, A L M

    In the last decade, new trends in the food and pharmaceutical industries have increased concern for the quality and safety of products. The use of biocatalytic processes using marine enzymes has become an important and useful natural product for biotechnological applications. Bioprocesses using biocatalysts like marine enzymes (fungi, bacteria, plants, animals, algae, etc.) offer hyperthermostability, salt tolerance, barophilicity, cold adaptability, chemoselectivity, regioselectivity, and stereoselectivity. Currently, enzymatic methods are used to produce a large variety of products that humans consume, and the specific nature of the enzymes including processing under mild pH and temperature conditions result in fewer unwanted side-effects and by-products. This offers high selectivity in industrial processes. The marine habitat has been become increasingly studied because it represents a huge source potential biocatalysts. Enzymes include oxidoreductases, hydrolases, transferases, isomerases, ligases, and lyases that can be used in food and pharmaceutical applications. Finally, recent advances in biotechnological processes using enzymes of marine organisms (bacterial, fungi, algal, and sponges) are described and also our work on marine organisms from South America, especially marine-derived fungi and bacteria involved in biotransformations and biodegradation of organic compounds. © 2016 Elsevier Inc. All rights reserved.

  7. Structural Characterisation of FabG from Yersinia pestis, a Key Component of Bacterial Fatty Acid Synthesis.

    Science.gov (United States)

    Nanson, Jeffrey D; Forwood, Jade K

    2015-01-01

    Ketoacyl-acyl carrier protein reductases (FabG) are ubiquitously expressed enzymes that catalyse the reduction of acyl carrier protein (ACP) linked thioesters within the bacterial type II fatty acid synthesis (FASII) pathway. The products of these enzymes, saturated and unsaturated fatty acids, are essential components of the bacterial cell envelope. The FASII reductase enoyl-ACP reductase (FabI) has been the focus of numerous drug discovery efforts, some of which have led to clinical trials, yet few studies have focused on FabG. Like FabI, FabG appears to be essential for survival in many bacteria, similarly indicating the potential of this enzyme as a drug target. FabG enzymes are members of the short-chain alcohol dehydrogenase/reductase (SDR) family, and like other SDRs, exhibit highly conserved secondary and tertiary structures, and contain a number of conserved sequence motifs. Here we describe the crystal structures of FabG from Yersinia pestis (YpFabG), the causative agent of bubonic, pneumonic, and septicaemic plague, and three human pandemics. Y. pestis remains endemic in many parts of North America, South America, Southeast Asia, and Africa, and a threat to human health. YpFabG shares a high degree of structural similarity with bacterial homologues, and the ketoreductase domain of the mammalian fatty acid synthase from both Homo sapiens and Sus scrofa. Structural characterisation of YpFabG, and comparison with other bacterial FabGs and the mammalian fatty acid synthase, provides a strong platform for virtual screening of potential inhibitors, rational drug design, and the development of new antimicrobial agents to combat Y. pestis infections.

  8. Structural Characterisation of FabG from Yersinia pestis, a Key Component of Bacterial Fatty Acid Synthesis.

    Directory of Open Access Journals (Sweden)

    Jeffrey D Nanson

    Full Text Available Ketoacyl-acyl carrier protein reductases (FabG are ubiquitously expressed enzymes that catalyse the reduction of acyl carrier protein (ACP linked thioesters within the bacterial type II fatty acid synthesis (FASII pathway. The products of these enzymes, saturated and unsaturated fatty acids, are essential components of the bacterial cell envelope. The FASII reductase enoyl-ACP reductase (FabI has been the focus of numerous drug discovery efforts, some of which have led to clinical trials, yet few studies have focused on FabG. Like FabI, FabG appears to be essential for survival in many bacteria, similarly indicating the potential of this enzyme as a drug target. FabG enzymes are members of the short-chain alcohol dehydrogenase/reductase (SDR family, and like other SDRs, exhibit highly conserved secondary and tertiary structures, and contain a number of conserved sequence motifs. Here we describe the crystal structures of FabG from Yersinia pestis (YpFabG, the causative agent of bubonic, pneumonic, and septicaemic plague, and three human pandemics. Y. pestis remains endemic in many parts of North America, South America, Southeast Asia, and Africa, and a threat to human health. YpFabG shares a high degree of structural similarity with bacterial homologues, and the ketoreductase domain of the mammalian fatty acid synthase from both Homo sapiens and Sus scrofa. Structural characterisation of YpFabG, and comparison with other bacterial FabGs and the mammalian fatty acid synthase, provides a strong platform for virtual screening of potential inhibitors, rational drug design, and the development of new antimicrobial agents to combat Y. pestis infections.

  9. Enzyme-mediated bacterial biodegradation of an azo dye (C.I. Acid blue 113): reuse of treated dye wastewater in post-tanning operations.

    Science.gov (United States)

    Senthilvelan, T; Kanagaraj, J; Panda, R C

    2014-11-01

    "Dyeing" is a common practice used to color the hides during the post-tanning operations in leather processing generating plenty of wastewater. The waste stream containing dye as pollutant is severely harmful to living beings. An azo dye (C.I. Acid Blue 113) has been biodegraded effectively by bacterial culture mediated with azoreductase enzyme to reduce the pollution load in the present investigation. The maximum rate of dye degradation was found to be 96 ± 4 and 92 ± 4 % for the initial concentrations of 100 and 200 mg/l, respectively. The enzyme activity was measured using NADH as a substrate. Fourier transform infrared spectroscopy (FT-IR) analysis was confirmed that the transformation of azo linkage could be transformed into N2 or NH3 or incorporated into complete biomass. Breaking down of dye molecules to various metabolites (such as aniline, naphthalene-1,4-diamine, 3-aminobenzenesulfonic acid, naphthalene-1-sulfonic acid, 8-aminonaphthalene-1-sulfonic acid, 5,8-diaminonaphthalene-1-sulfonic acid) was confirmed by gas chromatography and mass spectra (GC-MS) and mass (electrospray ionization (ESI)) spectra analysis. The treated wastewater could be reused for dyeing operation in the leather processing, and the properties of produced leather were evaluated by conventional methods that revealed to have improved dye penetration into the grain layer of experimental leather sample and resulted in high levelness of dyeing, which helps to obtain the desired smoothness and soft leather properties.

  10. Mur Ligase Inhibitors as Anti-bacterials: A Comprehensive Review.

    Science.gov (United States)

    Sangshetti, Jaiprakash N; Joshi, Suyog S; Patil, Rajendra H; Moloney, Mark G; Shinde, Devanand B

    2017-01-01

    Exploring a new target for antibacterial drug discovery has gained much attention because of the emergence of Multidrug Resistance (MDR) strains of bacteria. To overcome this problem the development of novel antibacterial was considered as highest priority task and was one of the biggest challenge since multiple factors were involved. The bacterial peptidoglycan biosynthetic pathway has been well documented in the last few years and has been found to be imperative source for the development of novel antibacterial agents with high target specificity as they are essential for bacterial survival and have no homologs in humans. We have therefore reviewed the process of peptidoglycan biosynthesis which involves various steps like formation of UDP-Nacetylglucosamine (GlcNAc), UDP-N-acetylmuramic acid (MurNAc) and lipid intermediates (Lipid I and Lipid II) which are controlled by various enzymes like GlmS, GlmM, GlmU enzyme, followed by Mur Ligases (MurAMurF) and finally by MraY and MurG respectively. These four amide ligases MurC-MurF can be used as the source for the development of novel multi-target antibacterial agents as they shared and conserved amino acid regions, catalytic mechanisms and structural features. This review begins with the need for novel antibacterial agents and challenges in their development even after the development of bacterial genomic studies. An overview of the peptidoglycan monomer formation, as a source of disparity in this process is presented, followed by detailed discussion of structural and functional aspects of all Mur enzymes and different chemical classes of their inhibitors along with their SAR studies and inhibitory potential. This review finally emphasizes on different patents and novel Mur inhibitors in the development phase. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Molecular screening of antibiotic-resistant determinants among ...

    African Journals Online (AJOL)

    Background: Globally, and particularly in developing countries, the menace of anti-microbial resistance is an accelerating problem. In Nigeria, increase in bacterial resistance has been phenotypically established but due to high cost, few molecular studies have been reported. Objectives: This study screened for presence of ...

  12. Biochemical Characterization of a Family 15 Carbohydrate Esterase from a Bacterial Marine Arctic Metagenome.

    Directory of Open Access Journals (Sweden)

    Concetta De Santi

    Full Text Available The glucuronoyl esterase enzymes of wood-degrading fungi (Carbohydrate Esterase family 15; CE15 form part of the hemicellulolytic and cellulolytic enzyme systems that break down plant biomass, and have possible applications in biotechnology. Homologous enzymes are predicted in the genomes of several bacteria, however these have been much less studied than their fungal counterparts. Here we describe the recombinant production and biochemical characterization of a bacterial CE15 enzyme denoted MZ0003, which was identified by in silico screening of a prokaryotic metagenome library derived from marine Arctic sediment. MZ0003 has high similarity to several uncharacterized gene products of polysaccharide-degrading bacterial species, and phylogenetic analysis indicates a deep evolutionary split between these CE15s and fungal homologs.MZ0003 appears to differ from previously-studied CE15s in some aspects. Some glucuronoyl esterase activity could be measured by qualitative thin-layer chromatography which confirms its assignment as a CE15, however MZ0003 can also hydrolyze a range of other esters, including p-nitrophenyl acetate, which is not acted upon by some fungal homologs. The structure of MZ0003 also appears to differ as it is predicted to have several large loop regions that are absent in previously studied CE15s, and a combination of homology-based modelling and site-directed mutagenesis indicate its catalytic residues deviate from the conserved Ser-His-Glu triad of many fungal CE15s. Taken together, these results indicate that potentially unexplored diversity exists among bacterial CE15s, and this may be accessed by investigation of the microbial metagenome. The combination of low activity on typical glucuronoyl esterase substrates, and the lack of glucuronic acid esters in the marine environment suggest that the physiological substrate of MZ0003 and its homologs is likely to be different from that of related fungal enzymes.

  13. MECHANISM OF ACTION OF ANTIBIOTICS WHICH INHIBIT SYNTHESIS OF BACTERIAL CELL WALL

    Directory of Open Access Journals (Sweden)

    Indira Mujezinović

    2013-03-01

    Full Text Available Bacterial cell possess a cell wall, which is a main difference from mammalian cells. Its basic function is to provide the strength of bacteria, keeps its shape and provides an unusually high internal osmotic pressure. Synthesis of (construction of bacterial cell wall occurs in at least three phases. All of these three phases can be influence by a variety of antibiotics in way to inhibit its synthesis. The most important drugs that act in this manner are ß-lactam antibiotics (penicillins, cephalosporins, cephamycins and other ß-lactams. They interfere with the synthesis of the bacterial cell wall peptidoglycan. After attachment to penicillin binding proteins (PBP on bacteria, they inhibit the transpeptidation enzyme that cross-links the peptide chain attached to the backbone of the peptidoglycan. The final bactericidal event is the inactivation of an inhibitor of autolytic enzymes in the cell wall, wich leads to lysis of the bacteria. Vancomycin inhibits the release of the building block unit from the carrier, thus preventing its addition to the growing end of the peptidoglycan. Cycloserine, which is a structural analogue of D-alanine, prevents the addition of the two terminal alanine residue to the initial tripeptide side-chain on N-acetylmuramic acid by competitive inhibition. Bacitracin interferes with the regeneration of the lipid carrier by blocking its dephosphorylation. Key words: bacterial cell wall, paptidoglycan, antibiotics, ß-lactams

  14. Angiotensin-converting enzyme inhibitor treatment and the development of urinary tract infection

    NARCIS (Netherlands)

    Pouwels, Koen; Visser, Sipke; Bos, Jens; Hak, Eelko

    2013-01-01

    Background: Angiotensin-converting enzyme inhibitors (ACEi) can reduce the urine output, especially when treatment is started. Since bacterial clearance from the urinary tract is dependent on the urine output, it was hypothesized that ACEi may also increase the risk of urinary tract infections

  15. The hemicellulolytic enzyme arsenal of Thermobacillus xylanilyticus depends on the composition of biomass used for growth

    Directory of Open Access Journals (Sweden)

    Rakotoarivonina Harivony

    2012-12-01

    Full Text Available Abstract Background Thermobacillus xylanilyticus is a thermophilic and highly xylanolytic bacterium. It produces robust and stable enzymes, including glycoside hydrolases and esterases, which are of special interest for the development of integrated biorefineries. To investigate the strategies used by T. xylanilyticus to fractionate plant cell walls, two agricultural by-products, wheat bran and straw (which differ in their chemical composition and tissue organization, were used in this study and compared with glucose and xylans. The ability of T. xylanilyticus to grow on these substrates was studied. When the bacteria used lignocellulosic biomass, the production of enzymes was evaluated and correlated with the initial composition of the biomass, as well as with the evolution of any residues during growth. Results Our results showed that T. xylanilyticus is not only able to use glucose and xylans as primary carbon sources but can also use wheat bran and straw. The chemical compositions of both lignocellulosic substrates were modified by T. xylanilyticus after growth. The bacteria were able to consume 49% and 20% of the total carbohydrates in bran and straw, respectively, after 24 h of growth. The phenolic and acetyl ester contents of these substrates were also altered. Bacterial growth on both lignocellulosic biomasses induced hemicellulolytic enzyme production, and xylanase was the primary enzyme secreted. Debranching activities were differentially produced, as esterase activities were more important to bacterial cultures grown on wheat straw; arabinofuranosidase production was significantly higher in bacterial cultures grown on wheat bran. Conclusion This study provides insight into the ability of T. xylanilyticus to grow on abundant agricultural by-products, which are inexpensive carbon sources for enzyme production. The composition of the biomass upon which the bacteria grew influenced their growth, and differences in the biomass provided

  16. Antibiotic-resistant fecal bacteria, antibiotics, and mercury in surface waters of Oakland County, Michigan, 2005-2006

    Science.gov (United States)

    Fogarty, Lisa R.; Duris, Joseph W.; Crowley, Suzanne L.; Hardigan, Nicole

    2007-01-01

    Water samples collected from 20 stream sites in Oakland and Macomb Counties, Mich., were analyzed to learn more about the occurrence of cephalosporin-resistant Escherichia coli (E. coli) and vancomycin-resistant enterococci (VRE) and the co-occurrence of antibiotics and mercury in area streams. Fecal indicator bacteria concentrations exceeded the Michigan recreational water-quality standard of 300 E. coli colony forming units (CFU) per 100 milliliters of water in 19 of 35 stream-water samples collected in Oakland County. A gene commonly associated with enterococci from humans was detected in samples from Paint Creek at Rochester and Evans Ditch at Southfield, indicating that human fecal waste is a possible source of fecal contamination at these sites. E. coli resistant to the cephalosporin antibiotics (cefoxitin and/ or ceftriaxone) were found at all sites on at least one occasion. The highest percentages of E. coli isolates resistant to cefoxitin and ceftriaxone were 71 percent (Clinton River at Auburn Hills) and 19 percent (Sashabaw Creek near Drayton Plains), respectively. Cephalosporin-resistant E. coli was detected more frequently in samples from intensively urbanized or industrialized areas than in samples from less urbanized areas. VRE were not detected in any sample collected in this study. Multiple antibiotics (azithromycin, erythromycin, ofloxacin, sulfamethoxazole, and trimethoprim) were detected in water samples from the Clinton River at Auburn Hills, and tylosin (an antibiotic used in veterinary medicine and livestock production that belongs to the macrolide group, along with erythromycin) was detected in one water sample from Paint Creek at Rochester. Concentrations of total mercury were as high as 19.8 nanograms per liter (Evans Ditch at Southfield). There was no relation among percentage of antibiotic-resistant bacteria and measured concentrations of antibiotics or mercury in the water. Genetic elements capable of exchanging multiple antibiotic-resistance

  17. Metabolic Compensation of Fitness Costs Is a General Outcome for Antibiotic-Resistant Pseudomonas aeruginosa Mutants Overexpressing Efflux Pumps.

    Science.gov (United States)

    Olivares Pacheco, Jorge; Alvarez-Ortega, Carolina; Alcalde Rico, Manuel; Martínez, José Luis

    2017-07-25

    proposed in the belief that they will reduce the persistence and spread of resistance among bacterial pathogens. Unfortunately, trials testing this possibility have frequently failed, indicating that resistant microorganisms are not always outcompeted by susceptible ones. Indeed, some mutations do not result in a fitness cost, and in case they do, the cost may be compensated for by a secondary mutation. Here we describe an alternative nonmutational mechanism for compensating for fitness costs, which consists of the metabolic rewiring of resistant mutants. Deciphering the mechanisms involved in the compensation of fitness costs of antibiotic-resistant mutants may help in the development of drugs that will reduce the persistence of resistance by increasing said costs. Copyright © 2017 Olivares Pacheco et al.

  18. Community dynamics and glycoside hydrolase activities of thermophilic bacterial consortia adapted to switchgrass

    Energy Technology Data Exchange (ETDEWEB)

    Gladden, J.M.; Allgaier, M.; Miller, C.S.; Hazen, T.C.; VanderGheynst, J.S.; Hugenholtz, P.; Simmons, B.A.; Singer, S.W.

    2011-05-01

    Industrial-scale biofuel production requires robust enzymatic cocktails to produce fermentable sugars from lignocellulosic biomass. Thermophilic bacterial consortia are a potential source of cellulases and hemicellulases adapted to harsher reaction conditions than commercial fungal enzymes. Compost-derived microbial consortia were adapted to switchgrass at 60 C to develop thermophilic biomass-degrading consortia for detailed studies. Microbial community analysis using small-subunit rRNA gene amplicon pyrosequencing and short-read metagenomic sequencing demonstrated that thermophilic adaptation to switchgrass resulted in low-diversity bacterial consortia with a high abundance of bacteria related to thermophilic paenibacilli, Rhodothermus marinus, and Thermus thermophilus. At lower abundance, thermophilic Chloroflexi and an uncultivated lineage of the Gemmatimonadetes phylum were observed. Supernatants isolated from these consortia had high levels of xylanase and endoglucanase activities. Compared to commercial enzyme preparations, the endoglucanase enzymes had a higher thermotolerance and were more stable in the presence of 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]), an ionic liquid used for biomass pretreatment. The supernatants were used to saccharify [C2mim][OAc]-pretreated switchgrass at elevated temperatures (up to 80 C), demonstrating that these consortia are an excellent source of enzymes for the development of enzymatic cocktails tailored to more extreme reaction conditions.

  19. Incorporation of fungal cellulases in bacterial minicellulosomes yields viable, synergistically acting celluloytic complexes

    NARCIS (Netherlands)

    Mingardon, F.; Chanal, A.; Lopez Contreras, A.M.; Dray, C.; Bayer, E.A.; Fierobe, H.P.

    2007-01-01

    Artificial designer minicellulosomes comprise a chimeric scaffoldin that displays an optional cellulose-binding module (CBM) and bacterial cohesins from divergent species which bind strongly to enzymes engineered to bear complementary dockerins. Incorporation of cellulosomal cellulases from

  20. Extracellular Lipase and Protease Production from a Model Drinking Water Bacterial Community Is Functionally Robust to Absence of Individual Members.

    Directory of Open Access Journals (Sweden)

    Graham G Willsey

    Full Text Available Bacteria secrete enzymes into the extracellular space to hydrolyze macromolecules into constituents that can be imported for microbial nutrition. In bacterial communities, these enzymes and their resultant products can be modeled as community property. Our goal was to investigate the impact of individual community member absence on the resulting community production of exoenzymes (extracellular enzymes involved in lipid and protein hydrolysis. Our model community contained nine bacteria isolated from the potable water system of the International Space Station. Bacteria were grown in static conditions individually, all together, or in all combinations of eight species and exoproduct production was measured by colorimetric or fluorometric reagents to assess short chain and long chain lipases, choline-specific phospholipases C, and proteases. The exoenzyme production of each species grown alone varied widely, however, the enzyme activity levels of the mixed communities were functionally robust to absence of any single species, with the exception of phospholipase C production in one community. For phospholipase C, absence of Chryseobacterium gleum led to increased choline-specific phospholipase C production, correlated with increased growth of Burkholderia cepacia and Sphingomonas sanguinis. Because each individual species produced different enzyme activity levels in isolation, we calculated an expected activity value for each bacterial mixture using input levels or known final composition. This analysis suggested that robustness of each exoenzyme activity is not solely mediated by community composition, but possibly influenced by bacterial communication, which is known to regulate such pathways in many bacteria. We conclude that in this simplified model of a drinking water bacterial community, community structure imposes constraints on production and/or secretion of exoenzymes to generate a level appropriate to exploit a given nutrient environment.

  1. Structural Variation in Bacterial Glyoxalase I Enzymes: Investigation of the Metalloenzyme Glyoxalase I from Clostridium acetobutylicum

    Energy Technology Data Exchange (ETDEWEB)

    Suttisansanee U.; Swaminathan S.; Lau, K.; Lagishetty, S.; Rao, K. N.; Sauder, J. M.; Burley, S. K.; Honek, J. F.

    2011-11-04

    The glyoxalase system catalyzes the conversion of toxic, metabolically produced {alpha}-ketoaldehydes, such as methylglyoxal, into their corresponding nontoxic 2-hydroxycarboxylic acids, leading to detoxification of these cellular metabolites. Previous studies on the first enzyme in the glyoxalase system, glyoxalase I (GlxI), from yeast, protozoa, animals, humans, plants, and Gram-negative bacteria, have suggested two metal activation classes, Zn{sup 2+} and non-Zn{sup 2+} activation. Here, we report a biochemical and structural investigation of the GlxI from Clostridium acetobutylicum, which is the first GlxI enzyme from Gram-positive bacteria that has been fully characterized as to its three-dimensional structure and its detailed metal specificity. It is a Ni{sup 2+}/Co{sup 2+}-activated enzyme, in which the active site geometry forms an octahedral coordination with one metal atom, two water molecules, and four metal-binding ligands, although its inactive Zn{sup 2+}-bound form possesses a trigonal bipyramidal geometry with only one water molecule liganded to the metal center. This enzyme also possesses a unique dimeric molecular structure. Unlike other small homodimeric GlxI where two active sites are located at the dimeric interface, the C. acetobutylicum dimeric GlxI enzyme also forms two active sites but each within single subunits. Interestingly, even though this enzyme possesses a different dimeric structure from previously studied GlxI, its metal activation characteristics are consistent with properties of other GlxI. These findings indicate that metal activation profiles in this class of enzyme hold true across diverse quaternary structure arrangements.

  2. Kisameet Glacial Clay: an Unexpected Source of Bacterial Diversity.

    Science.gov (United States)

    Svensson, Sarah L; Behroozian, Shekooh; Xu, Wanjing; Surette, Michael G; Li, Loretta; Davies, Julian

    2017-05-23

    Widespread antibiotic resistance among bacterial pathogens is providing the impetus to explore novel sources of antimicrobial agents. Recently, the potent antibacterial activity of certain clay minerals has stimulated scientific interest in these materials. One such example is Kisameet glacial clay (KC), an antibacterial clay from a deposit on the central coast of British Columbia, Canada. However, our understanding of the active principles of these complex natural substances is incomplete. Like soils, clays may possess complex mixtures of bacterial taxa, including the Actinobacteria , a clade known to be rich in antibiotic-producing organisms. Here, we present the first characterization of both the microbial and geochemical characteristics of a glacial clay deposit. KC harbors surprising bacterial species richness, with at least three distinct community types. We show that the deposit has clines of inorganic elements that can be leached by pH, which may be drivers of community structure. We also note the prevalence of Gallionellaceae in samples recovered near the surface, as well as taxa that include medically or economically important bacteria such as Actinomycetes and Paenibacillus These results provide insight into the microbial taxa that may be the source of KC antibacterial activity and suggest that natural clays may be rich sources of microbial and molecular diversity. IMPORTANCE Identifying and characterizing the resident microbial populations (bacteria, viruses, protozoa, and fungi) is key to understanding the ecology, chemistry, and homeostasis of virtually all sites on Earth. The Kisameet Bay deposit in British Columbia, Canada, holds a novel glacial clay with a history of medicinal use by local indigenous people. We previously showed that it has potent activity against a variety of antibiotic-resistant bacteria, suggesting it could complement our dwindling arsenal of antibiotics. Here, we have characterized the microbiome of this deposit to gain insight

  3. DomSign: a top-down annotation pipeline to enlarge enzyme space in the protein universe.

    Science.gov (United States)

    Wang, Tianmin; Mori, Hiroshi; Zhang, Chong; Kurokawa, Ken; Xing, Xin-Hui; Yamada, Takuji

    2015-03-21

    Computational predictions of catalytic function are vital for in-depth understanding of enzymes. Because several novel approaches performing better than the common BLAST tool are rarely applied in research, we hypothesized that there is a large gap between the number of known annotated enzymes and the actual number in the protein universe, which significantly limits our ability to extract additional biologically relevant functional information from the available sequencing data. To reliably expand the enzyme space, we developed DomSign, a highly accurate domain signature-based enzyme functional prediction tool to assign Enzyme Commission (EC) digits. DomSign is a top-down prediction engine that yields results comparable, or superior, to those from many benchmark EC number prediction tools, including BLASTP, when a homolog with an identity >30% is not available in the database. Performance tests showed that DomSign is a highly reliable enzyme EC number annotation tool. After multiple tests, the accuracy is thought to be greater than 90%. Thus, DomSign can be applied to large-scale datasets, with the goal of expanding the enzyme space with high fidelity. Using DomSign, we successfully increased the percentage of EC-tagged enzymes from 12% to 30% in UniProt-TrEMBL. In the Kyoto Encyclopedia of Genes and Genomes bacterial database, the percentage of EC-tagged enzymes for each bacterial genome could be increased from 26.0% to 33.2% on average. Metagenomic mining was also efficient, as exemplified by the application of DomSign to the Human Microbiome Project dataset, recovering nearly one million new EC-labeled enzymes. Our results offer preliminarily confirmation of the existence of the hypothesized huge number of "hidden enzymes" in the protein universe, the identification of which could substantially further our understanding of the metabolisms of diverse organisms and also facilitate bioengineering by providing a richer enzyme resource. Furthermore, our results

  4. A growing family: the expanding universe of the bacterial cytoskeleton.

    Science.gov (United States)

    Ingerson-Mahar, Michael; Gitai, Zemer

    2012-01-01

    Cytoskeletal proteins are important mediators of cellular organization in both eukaryotes and bacteria. In the past, cytoskeletal studies have largely focused on three major cytoskeletal families, namely the eukaryotic actin, tubulin, and intermediate filament (IF) proteins and their bacterial homologs MreB, FtsZ, and crescentin. However, mounting evidence suggests that these proteins represent only the tip of the iceberg, as the cellular cytoskeletal network is far more complex. In bacteria, each of MreB, FtsZ, and crescentin represents only one member of large families of diverse homologs. There are also newly identified bacterial cytoskeletal proteins with no eukaryotic homologs, such as WACA proteins and bactofilins. Furthermore, there are universally conserved proteins, such as the metabolic enzyme CtpS, that assemble into filamentous structures that can be repurposed for structural cytoskeletal functions. Recent studies have also identified an increasing number of eukaryotic cytoskeletal proteins that are unrelated to actin, tubulin, and IFs, such that expanding our understanding of cytoskeletal proteins is advancing the understanding of the cell biology of all organisms. Here, we summarize the recent explosion in the identification of new members of the bacterial cytoskeleton and describe a hypothesis for the evolution of the cytoskeleton from self-assembling enzymes. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  5. Phosphoenolpyruvate-dependent protein kinase enzyme I of Streptococcus faecalis: purification and properties of the enzyme and characterization of its active center

    International Nuclear Information System (INIS)

    Alpert, C.A.; Frank, R.; Stueber, K.D.; Deutscher, J.; Hengstenberg, W.

    1985-01-01

    Enzyme I, the phosphoenolpyruvate:protein phosphotransferase (EC 2.7.3.9), which is part of the bacterial phosphoenolpyruvate-(PEP) dependent phosphotransferase system, has been purified from Streptococcus faecalis by using a large-scale preparation. Size exclusion chromatography revealed a molecular weight of 140,000. On sodium dodecyl sulfate gels, enzyme I gave one band with a molecular weight of 70,000, indicating that enzyme I consists of two identical subunits. The first 59 amino acids of the amino-terminal part of the protein have been sequenced. It showed some similarities with enzyme I of Salmonella typhimurium. The active center of enzyme I has also been determined. After phosphorylation with [ 32 P]PEP, the enzyme was cleaved by using different proteases. Labeled peptides were isolated by high-performance liquid chromatography on a reversed-phase column. The amino acid composition or amino acid sequence of the peptides has been determined. The largest labeled peptide was obtained with Lys-C protease and had the following sequence: -Ala-Phe-Val-Thr-Asp-Ile-Gly- Gly-Arg-Thr-Ser-His*-Ser-Ala-Ile-Met-Ala-Arg-Ser-Leu-Glu-Ile-Pro-Ala- Ile-Val-Gly-Thr-Lys-. It has previously been shown that the phosphoryl group is bound to the N-3 position of a histidyl residue in phosphorylated enzyme I. The single His in position 12 of the above peptide must therefore carry the phosphoryl group

  6. Spatial distribution of enzyme driven reactions at micro-scales

    Science.gov (United States)

    Kandeler, Ellen; Boeddinghaus, Runa; Nassal, Dinah; Preusser, Sebastian; Marhan, Sven; Poll, Christian

    2017-04-01

    Studies of microbial biogeography can often provide key insights into the physiologies, environmental tolerances, and ecological strategies of soil microorganisms that dominate in natural environments. In comparison with aquatic systems, soils are particularly heterogeneous. Soil heterogeneity results from the interaction of a hierarchical series of interrelated variables that fluctuate at many different spatial and temporal scales. Whereas spatial dependence of chemical and physical soil properties is well known at scales ranging from decimetres to several hundred metres, the spatial structure of soil enzymes is less clear. Previous work has primarily focused on spatial heterogeneity at a single analytical scale using the distribution of individual cells, specific types of organisms or collective parameters such as bacterial abundance or total microbial biomass. There are fewer studies that have considered variations in community function and soil enzyme activities. This presentation will give an overview about recent studies focusing on spatial pattern of different soil enzymes in the terrestrial environment. Whereas zymography allows the visualization of enzyme pattern in the close vicinity of roots, micro-sampling strategies followed by MUF analyses clarify micro-scale pattern of enzymes associated to specific microhabitats (micro-aggregates, organo-mineral complexes, subsoil compartments).

  7. Bacterial succession and metabolite changes during flax (Linum usitatissimum L.) retting with Bacillus cereus HDYM-02.

    Science.gov (United States)

    Zhao, Dan; Liu, Pengfei; Pan, Chao; Du, Renpeng; Ping, Wenxiang; Ge, Jingping

    2016-09-02

    High-throughput sequencing and GC-MS (gas chromatography-mass spectrometry) were jointly used to reveal the bacterial succession and metabolite changes during flax (Linum usitatissimum L.) retting. The inoculation of Bacillus cereus HDYM-02 decreased bacterial richness and diversity. This inoculum led to the replacement of Enterobacteriaceae by Bacillaceae. The level of aerobic Pseudomonadaceae (mainly Azotobacter) and anaerobic Clostridiaceae_1 gradually increased and decreased, respectively. Following the addition of B. cereus HDYM-02, the dominant groups were all degumming enzyme producers or have been proven to be involved in microbial retting throughout the entire retting period. These results could be verified by the metabolite changes, either degumming enzymes or their catalytic products galacturonic acid and reducing sugars. The GC-MS data showed a clear separation between flax retting with and without B. cereus HDYM-02, particularly within the first 72 h. These findings reveal the important bacterial groups that are involved in fiber retting and will facilitate improvements in the retting process.

  8. Long-time follow-up study of localized gastric mucosa-associated lymphoid tissue (MALT) lymphoma and the clinical features of antibiotic-resistant cases of gastric MALT lymphoma

    International Nuclear Information System (INIS)

    Akamatsu, Taiji; Sano, Kenji; Suzawa, Ken-ichi; Kaneko, Yasunori; Shikama, Naoto; Ota, Hiroyoshi; Miyabayashi, Hideharu

    2007-01-01

    To clarify the clinical features of gastric mucosa-associated lymphoid tissue (MALT) lymphoma (GML) with persistent lymphoma after eradication therapy of Helicobacter pylori (H. pylori), and the outcome of long-time follow-up study after treatment against GML, seventy-six patients with localized GML were studied. The median follow-up period was 44.4 months. Thirty-eight of 49 patients (77.6%) with H. pylori-positive GML had been cured of GML by antibiotic therapy alone. On the other hand, none of 13 patients with H. pylori-negative GML had been cured by antibiotic therapy (77.6% vs 0%, p<0.001). ''H. pylori-negative'' is one of the clinical features of antibiotic-resistant cases with GML. There was no significant difference in sex, age, stage, endoscopic finding, depth, and affected region between the two groups of cured and persistent GML with H. pylori infection. Twenty-two of 29 patients (75.6%) with antibiotic-resistant or H. pylori-negative cases of GML had been cured by 30 Gy radiation therapy. Low-dose radiation was thought to be a useful therapeutic procedure as a second line treatment'' of localized GML. (author)

  9. Effects Of Palm Oil Mill Effluents (Pome) On Soil Bacterial Flora And ...

    African Journals Online (AJOL)

    Sandy loam soil in Egbema, Rivers State was impacted with POME at different levels and analyzed for bacteriological quality and soil enzyme activities. Light application caused significant increase in total heterotrophic, phosphate solibilizing, nitrifying and lipolytic bacterial counts while heavy application caused a decrease ...

  10. Recombinant Endolysins as Potential Therapeutics against Antibiotic-Resistant Staphylococcus aureus: Current Status of Research and Novel Delivery Strategies.

    Science.gov (United States)

    Haddad Kashani, Hamed; Schmelcher, Mathias; Sabzalipoor, Hamed; Seyed Hosseini, Elahe; Moniri, Rezvan

    2018-01-01

    Staphylococcus aureus is one of the most common pathogens of humans and animals, where it frequently colonizes skin and mucosal membranes. It is of major clinical importance as a nosocomial pathogen and causative agent of a wide array of diseases. Multidrug-resistant strains have become increasingly prevalent and represent a leading cause of morbidity and mortality. For this reason, novel strategies to combat multidrug-resistant pathogens are urgently needed. Bacteriophage-derived enzymes, so-called endolysins, and other peptidoglycan hydrolases with the ability to disrupt cell walls represent possible alternatives to conventional antibiotics. These lytic enzymes confer a high degree of host specificity and could potentially replace or be utilized in combination with antibiotics, with the aim to specifically treat infections caused by Gram-positive drug-resistant bacterial pathogens such as methicillin-resistant S. aureus . LysK is one of the best-characterized endolysins with activity against multiple staphylococcal species. Various approaches to further enhance the antibacterial efficacy and applicability of endolysins have been demonstrated. These approaches include the construction of recombinant endolysin derivatives and the development of novel delivery strategies for various applications, such as the production of endolysins in lactic acid bacteria and their conjugation to nanoparticles. These novel strategies are a major focus of this review. Copyright © 2017 American Society for Microbiology.

  11. Enzymes produced by halotolerant spore-forming gram-positive bacterial strains isolated from a resting habitat (Restinga de Jurubatiba) in Rio de Janeiro, Brazil: focus on proteases.

    Science.gov (United States)

    D Santos, Anderson Fragoso; Pacheco, Clarissa Almeida; Valle, Roberta D Santos; Seldin, Lucy; D Santos, André Luis Souza

    2014-12-01

    The screening for hydrolases-producing, halotolerant, and spore-forming gram-positive bacteria from the root, rhizosphere, and non-rhizosphere soil of Blutaparon portulacoides, a plant found in the Restinga de Jurubatiba located at the northern region of Rio de Janeiro State, Brazil, resulted in the isolation of 22 strains. These strains were identified as Halobacillus blutaparonensis (n = 2), Oceanobacillus picturae (n = 5), and Oceanobacillus iheyensis (n = 15), and all showed the ability to produce different extracellular enzymes. A total of 20 isolates (90.9 %) showed activity for protease, 5 (22.7 %) for phytase, 3 (13.6 %) for cellulase, and 2 (9.1 %) for amylase. Some bacterial strains were capable of producing three (13.6 %) or two (9.1 %) distinct hydrolytic enzymes. However, no bacterial strain with ability to produce esterase and DNase was observed. The isolate designated M9, belonging to the species H. blutaparonensis, was the best producer of protease and also yielded amylase and phytase. This strain was chosen for further studies regarding its protease activity. The M9 strain produced similar amounts of protease when grown either without or with different NaCl concentrations (from 0.5 to 10 %). A simple inspection of the cell-free culture supernatant by gelatin-sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed the presence of three major alkaline proteases of 40, 50, and 70 kDa, which were fully inhibited by phenylmethylsulfonyl fluoride (PMSF) and tosyl-L-phenylalanine chloromethyl ketone (TPCK) (two classical serine protease inhibitors). The secreted proteases were detected in a wide range of temperature (from 4 to 45 °C) and their hydrolytic activities were stimulated by NaCl (up to 10 %). The serine proteases produced by the M9 strain cleaved gelatin, casein, albumin, and hemoglobin, however, in different extensions. Collectively, these results suggest the potential use of the M9 strain in biotechnological

  12. A multifaceted 'omics' approach for addressing the challenge of antimicrobial resistance

    NARCIS (Netherlands)

    Cohen, Asi; Bont, LJ; Engelhard, Dan; Moore, Edward; Fernandez, David; Kreisberg-Greenblatt, Racheli; Oved, Kfir; Eden, Eran; Hays, John P.

    2015-01-01

    The inappropriate use of antibiotics has severe global health and economic consequences, including the emergence of antibiotic-resistant bacteria. A major driver of antibiotic misuse is the inability to accurately distinguish between bacterial and viral infections based on currently available

  13. An Automated Pipeline for Engineering Many-Enzyme Pathways: Computational Sequence Design, Pathway Expression-Flux Mapping, and Scalable Pathway Optimization.

    Science.gov (United States)

    Halper, Sean M; Cetnar, Daniel P; Salis, Howard M

    2018-01-01

    Engineering many-enzyme metabolic pathways suffers from the design curse of dimensionality. There are an astronomical number of synonymous DNA sequence choices, though relatively few will express an evolutionary robust, maximally productive pathway without metabolic bottlenecks. To solve this challenge, we have developed an integrated, automated computational-experimental pipeline that identifies a pathway's optimal DNA sequence without high-throughput screening or many cycles of design-build-test. The first step applies our Operon Calculator algorithm to design a host-specific evolutionary robust bacterial operon sequence with maximally tunable enzyme expression levels. The second step applies our RBS Library Calculator algorithm to systematically vary enzyme expression levels with the smallest-sized library. After characterizing a small number of constructed pathway variants, measurements are supplied to our Pathway Map Calculator algorithm, which then parameterizes a kinetic metabolic model that ultimately predicts the pathway's optimal enzyme expression levels and DNA sequences. Altogether, our algorithms provide the ability to efficiently map the pathway's sequence-expression-activity space and predict DNA sequences with desired metabolic fluxes. Here, we provide a step-by-step guide to applying the Pathway Optimization Pipeline on a desired multi-enzyme pathway in a bacterial host.

  14. Pyrosequencing Reveals Soil Enzyme Activities and Bacterial Communities Impacted by Graphene and Its Oxides.

    Science.gov (United States)

    Rong, Yan; Wang, Yi; Guan, Yina; Ma, Jiangtao; Cai, Zhiqiang; Yang, Guanghua; Zhao, Xiyue

    2017-10-25

    Graphene (GN) and graphene oxides (GOs) are novel carbon nanomaterial; they have been attracting much attention because of their excellent properties and are widely applied in many areas, including energy, electronics, biomedicine, environmental science, etc. With industrial production and consumption of GN/GO, they will inevitably enter the soil and water environments. GN/GO may directly cause certain harm to microorganisms and lead to ecological and environmental risks. GOs are GN derivatives with abundant oxygen-containing functional groups in their graphitic backbone. The structure and chemistry of GN show obvious differences compared to those of GO, which lead to the different environmental behaviors. In this study, four different types of soil (S1-S4) were employed to investigate the effect of GN and GO on soil enzymatic activity, microbial population, and bacterial community through pyrosequencing of 16S rRNA gene amplicons. The results showed that soil enzyme activity (invertase, protease, catalase, and urease) and microbial population (bacteria, actinomycetes, and fungi) changed after GN/GO release into soils. Soil microbial community species are more rich, and the diversity also increases after GO/GN application. The phylum of Proteobacteria increased at 90 days after treatment (DAT) after GN/GO application. The phylum of Chloroflexi occurred after GN application at 90 DAT in S1 soil and reached 4.6%. Proteobacteria was the most abundant phylum in S2, S3, and S4 soils; it ranged from 43.6 to 71.4% in S2 soil, from 45.6 to 73.7% in S3 soil, and from 38.1 to 56.7% in S4 soil. The most abundant genera were Bacillus (37.5-47.0%) and Lactococcus (28.0-39.0%) in S1 soil, Lysobacter and Flavobacterium in S2 soil, Pedobacter in S3 soil, and Massilia in S4 soil. The effect of GN and GO on the soil microbial community is time-dependent, and there are no significant differences between the samples at 10 and 90 DAT.

  15. Modifications Caused by Enzyme-Retting and Their Effect on Composite Performance

    Directory of Open Access Journals (Sweden)

    Jonn A. Foulk

    2011-01-01

    Full Text Available Bethune seed flax was collected from Canada with seed removed using a stripper header and straw pulled and left in field for several weeks. Unretted straw was decorticated providing a coarse fiber bundle feedstock for enzyme treatments. Enzyme treatments using a bacterial pectinolytic enzyme with lyase activity were conducted in lab-scale reactors. Four fiber specimens were created: no retting, minimal retting, moderate retting, and full retting. Fiber characterization tests: strength, elongation, diameter, metal content, wax content, and pH were conducted with significant differences between fibers. Thermosetting vinyl ester resin was used to produce composite panels via vacuum-assisted infusion. Composite performance was evaluated using fiber bundle pull-out, tensile, impact, and interlaminar shear tests. Composite tests indicate that composite panels are largely unchanged among fiber samples. Variation in composite performance might not be realized due to poor interfacial bonding being of larger impact than the more subtle changes incurred by the enzyme treatment.

  16. Fire blight resistance in wild accessions of Malus sieversii

    Science.gov (United States)

    Fire blight (Erwinia amylovora) is a devastating bacterial disease in apple that results in severe economic losses. Epidemics are becoming more common as susceptible cultivars and rootstocks are being planted, and control is becoming more difficult as antibiotic-resistant strains develop. Resistan...

  17. The impact of fecal sample processing on prevalence estimates for antibiotic-resistant Escherichia coli.

    Science.gov (United States)

    Omulo, Sylvia; Lofgren, Eric T; Mugoh, Maina; Alando, Moshe; Obiya, Joshua; Kipyegon, Korir; Kikwai, Gilbert; Gumbi, Wilson; Kariuki, Samuel; Call, Douglas R

    2017-05-01

    Investigators often rely on studies of Escherichia coli to characterize the burden of antibiotic resistance in a clinical or community setting. To determine if prevalence estimates for antibiotic resistance are sensitive to sample handling and interpretive criteria, we collected presumptive E. coli isolates (24 or 95 per stool sample) from a community in an urban informal settlement in Kenya. Isolates were tested for susceptibility to nine antibiotics using agar breakpoint assays and results were analyzed using generalized linear mixed models. We observed a 0.1). Prevalence estimates did not differ for five distinct E. coli colony morphologies on MacConkey agar plates (P>0.2). Successive re-plating of samples for up to five consecutive days had little to no impact on prevalence estimates. Finally, culturing E. coli under different conditions (with 5% CO 2 or micro-aerobic) did not affect estimates of prevalence. For the conditions tested in these experiments, minor modifications in sample processing protocols are unlikely to bias estimates of the prevalence of antibiotic-resistance for fecal E. coli. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The role and regulation of catalase in respiratory tract opportunistic bacterial pathogens.

    Science.gov (United States)

    Eason, Mia M; Fan, Xin

    2014-09-01

    Respiratory tract bacterial pathogens are the etiologic agents of a variety of illnesses. The ability of these bacteria to cause disease is imparted through survival within the host and avoidance of pathogen clearance by the immune system. Respiratory tract pathogens are continually bombarded by reactive oxygen species (ROS), which may be produced by competing bacteria, normal metabolic function, or host immunological responses. In order to survive and proliferate, bacteria have adapted defense mechanisms to circumvent the effects of ROS. Bacteria employ the use of anti-oxidant enzymes, catalases and catalase-peroxidases, to relieve the effects of the oxidative stressors to which they are continually exposed. The decomposition of ROS has been shown to provide favorable conditions in which respiratory tract opportunistic bacterial pathogens such as Haemophilus influenzae, Mycobacterium tuberculosis, Legionella pneumophila, and Neisseria meningitidis are able to withstand exposure to highly reactive molecules and yet survive. Bacteria possessing mutations in the catalase gene have a decreased survival rate, yet may be able to compensate for the lack of catalatic activity if peroxidatic activity is present. An incomplete knowledge of the mechanisms by which catalase and catalase-peroxidases are regulated still persists, however, in some bacterial species, a regulatory factor known as OxyR has been shown to either up-regulate or down-regulate catalase gene expression. Yet, more research is still needed to increase the knowledge base in relation to this enzyme class. As with this review, we focus on major respiratory tract opportunistic bacterial pathogens in order to elucidate the function and regulation of catalases. The importance of the research could lead to the development of novel treatments against respiratory bacterial infections. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Cues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental Gram-negative bacteria.

    OpenAIRE

    Seitz Patrick; Blokesch Melanie

    2013-01-01

    Bacterial genomics is flourishing, as whole-genome sequencing has become affordable, readily available, and rapid. As a result, it has become clear how frequently horizontal gene transfer (HGT) occurs in bacteria. The potential implications are highly significant because HGT contributes to several processes, including the spread of antibiotic-resistance cassettes, the distribution of toxin-encoding phages, and the transfer of pathogenicity islands. Three modes of HGT are recognized in bacteri...

  20. Corruption of innate immunity by bacterial proteases.

    Science.gov (United States)

    Potempa, Jan; Pike, Robert N

    2009-01-01

    The innate immune system of the human body has developed numerous mechanisms to control endogenous and exogenous bacteria and thus prevent infections by these microorganisms. These mechanisms range from physical barriers such as the skin or mucosal epithelium to a sophisticated array of molecules and cells that function to suppress or prevent bacterial infection. Many bacteria express a variety of proteases, ranging from non-specific and powerful enzymes that degrade many proteins involved in innate immunity to proteases that are extremely precise and specific in their mode of action. Here we have assembled a comprehensive picture of how bacterial proteases affect the host's innate immune system to gain advantage and cause infection. This picture is far from being complete since the numbers of mechanisms utilized are as astonishing as they are diverse, ranging from degradation of molecules vital to innate immune mechanisms to subversion of the mechanisms to allow the bacterium to hide from the system or take advantage of it. It is vital that such mechanisms are elucidated to allow strategies to be developed to aid the innate immune system in controlling bacterial infections.

  1. The Glycosyltransferases of LPS Core: A Review of Four Heptosyltransferase Enzymes in Context

    Directory of Open Access Journals (Sweden)

    Joy M. Cote

    2017-10-01

    Full Text Available Bacterial antibiotic resistance is a rapidly expanding problem in the world today. Functionalization of the outer membrane of Gram-negative bacteria provides protection from extracellular antimicrobials, and serves as an innate resistance mechanism. Lipopolysaccharides (LPS are a major cell-surface component of Gram-negative bacteria that contribute to protecting the bacterium from extracellular threats. LPS is biosynthesized by the sequential addition of sugar moieties by a number of glycosyltransferases (GTs. Heptosyltransferases catalyze the addition of multiple heptose sugars to form the core region of LPS; there are at most four heptosyltransferases found in all Gram-negative bacteria. The most studied of the four is HepI. Cells deficient in HepI display a truncated LPS on their cell surface, causing them to be more susceptible to hydrophobic antibiotics. HepI–IV are all structurally similar members of the GT-B structural family, a class of enzymes that have been found to be highly dynamic. Understanding conformational changes of heptosyltransferases are important to efficiently inhibiting them, but also contributing to the understanding of all GT-B enzymes. Finding new and smarter methods to inhibit bacterial growth is crucial, and the Heptosyltransferases may provide an important model for how to inhibit many GT-B enzymes.

  2. Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem.

    Science.gov (United States)

    Hao, Yi; Ma, Chuanxin; Zhang, Zetian; Song, Youhong; Cao, Weidong; Guo, Jing; Zhou, Guopeng; Rui, Yukui; Liu, Liming; Xing, Baoshan

    2018-01-01

    The aim of this study was to compare the toxicity effects of carbon nanomaterials (CNMs), namely fullerene (C 60 ), reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs), on a mini-ecosystem of rice grown in a loamy potted soil. We measured plant physiological and biochemical parameters and examined bacterial community composition in the CNMs-treated plant-soil system. After 30 days of exposure, all the three CNMs negatively affected the shoot height and root length of rice, significantly decreased root cortical cells diameter and resulted in shrinkage and deformation of cells, regardless of exposure doses (50 or 500 mg/kg). Additionally, at the high exposure dose of CNM, the concentrations of four phytohormones, including auxin, indoleacetic acid, brassinosteroid and gibberellin acid 4 in rice roots significantly increased as compared to the control. At the high exposure dose of MWCNTs and C 60 , activities of the antioxidant enzymes superoxide dismutase (SOD) and peroxidase (POD) in roots increased significantly. High-throughput sequencing showed that three typical CNMs had little effect on shifting the predominant soil bacterial species, but the presence of CNMs significantly altered the composition of the bacterial community. Our results indicate that different CNMs indeed resulted in environmental toxicity to rice and soil bacterial community in the rhizosphere and suggest that CNMs themselves and their incorporated products should be reasonably used to control their release/discharge into the environment to prevent their toxic effects on living organisms and the potential risks to food safety. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Increasing antibiotic resistance in preservative-tolerant bacterial strains isolated from cosmetic products.

    Science.gov (United States)

    Orús, Pilar; Gomez-Perez, Laura; Leranoz, Sonia; Berlanga, Mercedes

    2015-03-01

    To ensure the microbiological quality, consumer safety and organoleptic properties of cosmetic products, manufacturers need to comply with defined standards using several preservatives and disinfectants. A drawback regarding the use of these preservatives is the possibility of generating cross-insusceptibility to other disinfectants or preservatives, as well as cross resistance to antibiotics. Therefore, the objective of this study was to understand the adaptive mechanisms of Enterobacter gergoviae, Pseudomonas putida and Burkholderia cepacia that are involved in recurrent contamination in cosmetic products containing preservatives. Diminished susceptibility to formaldehyde-donors was detected in isolates but not to other preservatives commonly used in the cosmetics industry, although increasing resistance to different antibiotics (β-lactams, quinolones, rifampicin, and tetracycline) was demonstrated in these strains when compared with the wild-type strain. The outer membrane protein modifications and efflux mechanism activities responsible for the resistance trait were evaluated. The development of antibiotic-resistant microorganisms due to the selective pressure from preservatives included in cosmetic products could be a risk for the emergence and spread of bacterial resistance in the environment. Nevertheless, the large contribution of disinfection and preservation cannot be denied in cosmetic products. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  4. Disinfectant and antibiotic activities: a comparative analysis in Brazilian hospital bacterial isolates

    Directory of Open Access Journals (Sweden)

    Guimarães Márcia Aparecida

    2000-01-01

    Full Text Available Nosocomial infections are an important cause of morbidity and mortality all over the world. It has been shown that appropriate environmental hygienic and disinfection practices can be very helpful to hospital infection control. The purpose of this study was to evaluate the bactericidal activity of some disinfectants against antibiotic-susceptible and antibiotic-resistant hospital bacterial isolates. The susceptibility of 27 clinical isolates to disinfectants and antibiotics was determined by the Association of Official Analytical Chemist?s (AOAC Use-Dilution method and by the Kirby-Bauer method, respectively. All strains tested were susceptible to sodium hypochlorite, glutaraldehyde and to the association quaternary ammonium - formaldehyde - ethyl alcohol disinfectants. However, the susceptibility of strains to phenol and to one quaternary ammonium compound was variable. Among twenty-one antibiotic-multiresistant strains (methicillin-resistant staphylococci, Enterococcus spp, Pseudomonas aeruginosa, Klebsiella pneumoniae, Proteus mirabilis, Enterobacter cloacae, Serratia marcescens and Escherichia coli eleven (52% and eight (38% strains were resistant to the quaternary ammonium and phenol compounds, respectively. Among six isolates that demonstrated susceptibility to antibiotics (staphylococci, Enterococcus spp, P. mirabilis, E. cloacae and E. coli two strains (33% showed resistance to these disinfectants. The results demonstrated the lack of correlation between antibiotic-susceptibility and susceptibility to disinfectants in hospital strains.

  5. Crystal Structures of the Helicobacter pylori MTAN Enzyme Reveal Specific Interactions between S-Adenosylhomocysteine and the 5'-Alkylthio Binding Subsite

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Vidhi [Univ. of Toledo, OH (United States); Ronning, Donald R. [Univ. of Toledo, OH (United States)

    2012-11-13

    The bacterial 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) enzyme is a multifunctional enzyme that catalyzes the hydrolysis of the N-ribosidic bond of at least four different adenosine-based metabolites: S-adenosylhomocysteine (SAH), 5'-methylthioadenosine (MTA), 5'-deoxyadenosine (5'-DOA), and 6-amino-6-deoxyfutalosine. These activities place the enzyme at the hub of seven fundamental bacterial metabolic pathways: S-adenosylmethionine (SAM) utilization, polyamine biosynthesis, the purine salvage pathway, the methionine salvage pathway, the SAM radical pathways, autoinducer-2 biosynthesis, and menaquinone biosynthesis. The last pathway makes MTAN essential for Helicobacter pylori viability. Although structures of various bacterial and plant MTANs have been described, the interactions between the homocysteine moiety of SAH and the 5'-alkylthiol binding site of MTAN have never been resolved. We have determined crystal structures of an inactive mutant form of H. pylori MTAN bound to MTA and SAH to 1.63 and 1.20 Å, respectively. The active form of MTAN was also crystallized in the presence of SAH, allowing the determination of the structure of a ternary enzyme–product complex resolved at 1.50 Å. These structures identify interactions between the homocysteine moiety and the 5'-alkylthiol binding site of the enzyme. This information can be leveraged for the development of species-specific MTAN inhibitors that prevent the growth of H. pylori.

  6. Hfq stimulates the activity of the CCA-adding enzyme

    Directory of Open Access Journals (Sweden)

    Betat Heike

    2007-10-01

    Full Text Available Abstract Background The bacterial Sm-like protein Hfq is known as an important regulator involved in many reactions of RNA metabolism. A prominent function of Hfq is the stimulation of RNA polyadenylation catalyzed by E. coli poly(A polymerase I (PAP. As a member of the nucleotidyltransferase superfamily, this enzyme shares a high sequence similarity with an other representative of this family, the tRNA nucleotidyltransferase that synthesizes the 3'-terminal sequence C-C-A to all tRNAs (CCA-adding enzyme. Therefore, it was assumed that Hfq might not only influence the poly(A polymerase in its specific activity, but also other, similar enzymes like the CCA-adding enzyme. Results Based on the close evolutionary relation of these two nucleotidyltransferases, it was tested whether Hfq is a specific modulator acting exclusively on PAP or whether it also influences the activity of the CCA-adding enzyme. The obtained data indicate that the reaction catalyzed by this enzyme is substantially accelerated in the presence of Hfq. Furthermore, Hfq binds specifically to tRNA transcripts, which seems to be the prerequisite for the observed effect on CCA-addition. Conclusion The increase of the CCA-addition in the presence of Hfq suggests that this protein acts as a stimulating factor not only for PAP, but also for the CCA-adding enzyme. In both cases, Hfq interacts with RNA substrates, while a direct binding to the corresponding enzymes was not demonstrated up to now (although experimental data indicate a possible interaction of PAP and Hfq. So far, the basic principle of these stimulatory effects is not clear yet. In case of the CCA-adding enzyme, however, the presented data indicate that the complex between Hfq and tRNA substrate might enhance the product release from the enzyme.

  7. Hydrolytic enzyme activity enhanced by Barium supplementation

    Directory of Open Access Journals (Sweden)

    Camilo Muñoz

    2016-10-01

    Full Text Available Hydrolysis of polymers is a first and often limiting step during the degradation of plant residues. Plant biomass is generally a major component of waste residues and a major renewable resource to obtain a variety of secondary products including biofuels. Improving the performance of enzymatic hydrolysis of plant material with minimum costs and limiting the use of additional microbial biomass or hydrolytic enzymes directly influences competitiveness of these green biotechnological processes. In this study, we cloned and expressed a cellulase and two esterases recovered from environmental thermophilic soil bacterial communities and characterize their optimum activity conditions including the effect of several metal ions. Results showed that supplementing these hydrolytic reactions with Barium increases the activity of these extracellular hydrolytic enzymes. This observation represents a simple but major improvement to enhance the efficiency and competitiveness of this process within an increasingly important biotechnological sector.

  8. Evaluation of fungal laccase immobilized on natural nanostructured bacterial cellulose

    Directory of Open Access Journals (Sweden)

    Lin eChen

    2015-11-01

    Full Text Available The aim of this work was to assess the possibility of using native bacterial nanocellulose (BC as a carrier for laccase immobilization. BC was synthesized by Gluconacetobacter xylinus, which was statically cultivated in a mannitol-based medium and was freeze-dried to form BC sponge after purification. For the first time, fungal laccase from Trametes versicolor was immobilized on the native nanofibril network-structured BC sponge through physical adsorption and cross-linking with glutaraldehyde. The properties including morphologic and structural features of the BC as well as the immobilized enzyme were thoroughly investigated. It was found that enzyme immobilized by cross-linking exhibited broader pH operation range of high catalytic activity as well as higher running stability compared to free and adsorbed enzyme. Using ABTS as substrate, the optimum pH value was 3.5 for the adsorption-immobilized laccase and 4.0 for the crosslinking-immobilized laccase. The immobilized enzyme retained 69% of the original activity after being recycled 7 times. Novel applications of the BC-immobilized enzyme tentatively include active packaging, construction of biosensors, and establishment of bioreactors.

  9. Perceived Barriers and Opportunities to the Linkage of Research ...

    African Journals Online (AJOL)

    Unknown User

    treatment for many urinary tract infections, antibiotic-resistant strains of bacterial species commonly ... isolates were resistant to aminopenicillins (ampicillin and amoxicillin) and to trimethoprim- sulfamethoxazole ...... study was an indication that carbapenems resistance is yet to be fully established in species of the family of ...

  10. Sequencing Batch Reactor and Bacterial Community in Aerobic Granular Sludge for Wastewater Treatment of Noodle-Manufacturing Sector

    Directory of Open Access Journals (Sweden)

    Tang Thi Chinh

    2018-03-01

    Full Text Available The sequencing batch reactor (SBR has been increasingly applied in the control of high organic wastewater. In this study, SBR with aerobic granular sludge was used for wastewater treatment in a noodle-manufacturing village in Vietnam. The results showed that after two months of operation, the chemical oxygen demand, total nitrogen and total phosphorous removal efficiency of aerobic granular SBR reached 92%, 83% and 75%, respectively. Bacterial diversity and bacterial community in wastewater treatment were examined using Illumina Miseq sequencing to amplify the V3-V4 regions of the 16S rRNA gene. A high diversity of bacteria was observed in the activated sludge, with more than 400 bacterial genera and 700 species. The predominant genus was Lactococcus (21.35% mainly containing Lactococcus chungangensis species. Predicted functional analysis showed a high representation of genes involved in membrane transport (12.217%, amino acid metabolism (10.067%, and carbohydrate metabolism (9.597%. Genes responsible for starch and sucrose metabolism accounted for 0.57% of the total reads and the composition of starch hydrolytic enzymes including α-amylase, starch phosphorylase, glucoamylase, pullulanase, α-galactosidase, β-galactosidase, α-glucosidase, β-glucosidase, and 1,4-α-glucan branching enzyme. The presence of these enzymes in the SBR system may improve the removal of starch pollutants in wastewater.

  11. Bacillus sp. JR3 esterase LipJ: A new mesophilic enzyme showing traces of a thermophilic past.

    Directory of Open Access Journals (Sweden)

    Judit Ribera

    Full Text Available A search for extremophile enzymes from ancient volcanic soils in El Hierro Island (Canary Islands, Spain allowed isolation of a microbial sporulated strain collection from which several enzymatic activities were tested. Isolates were obtained after sample cultivation under several conditions of nutrient contents and temperature. Among the bacterial isolates, supernatants from the strain designated JR3 displayed high esterase activity at temperatures ranging from 30 to 100°C, suggesting the presence of at least a hyper-thermophilic extracellular lipase. Sequence alignment of known thermophilic lipases allowed design of degenerated consensus primers for amplification and cloning of the corresponding lipase, named LipJ. However, the cloned enzyme displayed maximum activity at 30°C and pH 7, showing a different profile from that observed in supernatants of the parental strain. Sequence analysis of the cloned protein showed a pentapeptide motif -GHSMG- distinct from that of thermophilic lipases, and much closer to that of esterases. Nevertheless, the 3D structural model of LipJ displayed the same folding as that of thermophilic lipases, suggesting a common evolutionary origin. A phylogenetic study confirmed this possibility, positioning LipJ as a new member of the thermophilic family of bacterial lipases I.5. However, LipJ clusters in a clade close but separated from that of Geobacillus sp. thermophilic lipases. Comprehensive analysis of the cloned enzyme suggests a common origin of LipJ and other bacterial thermophilic lipases, and highlights the most probable divergent evolutionary pathway followed by LipJ, which during the harsh past times would have probably been a thermophilic enzyme, having lost these properties when the environment changed to more benign conditions.

  12. Bacillus sp. JR3 esterase LipJ: A new mesophilic enzyme showing traces of a thermophilic past.

    Science.gov (United States)

    Ribera, Judit; Estupiñán, Mónica; Fuentes, Alba; Fillat, Amanda; Martínez, Josefina; Diaz, Pilar

    2017-01-01

    A search for extremophile enzymes from ancient volcanic soils in El Hierro Island (Canary Islands, Spain) allowed isolation of a microbial sporulated strain collection from which several enzymatic activities were tested. Isolates were obtained after sample cultivation under several conditions of nutrient contents and temperature. Among the bacterial isolates, supernatants from the strain designated JR3 displayed high esterase activity at temperatures ranging from 30 to 100°C, suggesting the presence of at least a hyper-thermophilic extracellular lipase. Sequence alignment of known thermophilic lipases allowed design of degenerated consensus primers for amplification and cloning of the corresponding lipase, named LipJ. However, the cloned enzyme displayed maximum activity at 30°C and pH 7, showing a different profile from that observed in supernatants of the parental strain. Sequence analysis of the cloned protein showed a pentapeptide motif -GHSMG- distinct from that of thermophilic lipases, and much closer to that of esterases. Nevertheless, the 3D structural model of LipJ displayed the same folding as that of thermophilic lipases, suggesting a common evolutionary origin. A phylogenetic study confirmed this possibility, positioning LipJ as a new member of the thermophilic family of bacterial lipases I.5. However, LipJ clusters in a clade close but separated from that of Geobacillus sp. thermophilic lipases. Comprehensive analysis of the cloned enzyme suggests a common origin of LipJ and other bacterial thermophilic lipases, and highlights the most probable divergent evolutionary pathway followed by LipJ, which during the harsh past times would have probably been a thermophilic enzyme, having lost these properties when the environment changed to more benign conditions.

  13. Biosurfactant and enzyme mediated crude oil degradation by Pseudomonas stutzeri NA3 and Acinetobacter baumannii MN3.

    Science.gov (United States)

    Parthipan, Punniyakotti; Elumalai, Punniyakotti; Sathishkumar, Kuppusamy; Sabarinathan, Devaraj; Murugan, Kadarkarai; Benelli, Giovanni; Rajasekar, Aruliah

    2017-10-01

    The present study focuses on the optimization of biosurfactant (BS) production using two potential biosurfactant producer Pseudomonas stutzeri NA3 and Acinetobacter baumannii MN3 and role of enzymes in the biodegradation of crude oil. The optimal conditions for P. stutzeri NA3 and A. baumannii MN3 for biodegradation were pH of 8 and 7; temperature of 30 and 40 °C, respectively. P. stutzeri NA3 and A. baumannii MN3 produced 3.81 and 4.68 g/L of BS, respectively. Gas chromatography mass spectrometry confirmed that BS was mainly composed of fatty acids. Furthermore, the role of the degradative enzymes, alkane hydroxylase, alcohol dehydrogenase and laccase on biodegradation of crude oil are explained. Maximum biodegradation efficiency (BE) was recorded for mixed consortia (86%) followed by strain P. stutzeri NA3 (84%). Both bacterial strains were found to be vigorous biodegraders of crude oil than other biosurfactant-producing bacteria due to their enzyme production capabilities and our results suggests that the bacterial isolates can be used for effective degradation of crude oil within short time periods.

  14. Bacterial Peptide Deformylase Inhibition of Tetrazole-Substituted Biaryl Acid Analogs: Synthesis, Biological Evaluations, and Molecular Docking Study.

    Science.gov (United States)

    Khan, Firoz A Kalam; Patil, Rajendra H; Patil, Manjiri; Arote, Rohidas; Shinde, Devanand B; Sangshetti, Jaiprakash N

    2016-12-01

    The synthesis and screening of tetrazole-substituted biaryl acid analogs 7a-l as bacterial peptide deformylase (PDF) enzyme inhibitors is reported. The compounds 7e (IC 50 value = 5.50 μM) and 7g (IC 50 value = 7.25 μM) showed good PDF inhibition activity. The compounds 7e (MIC range = 10.75-11.66 μg/mL) and 7g (MIC range = 8.91-12.83 μg/mL) also showed potent antibacterial activity when compared with the standard ciprofloxacin (MIC range = 25-50 μg/mL). Thus, the active derivatives were not only potent PDF enzyme inhibitors but also efficient antibacterial agents. In order to gain more insight into the binding mode of the compounds with the PDF enzyme, the most active compounds 7e and 7g, the moderately active compound 7k, and the least active compound 7h were docked against the PDF enzyme of Escherichia coli. The docking study of the most active compounds 7e and 7g against the PDF enzyme exhibited good binding properties. Hence, we believe our synthesized compounds 7a-l could serve as reservoir for bacterial PDF inhibitor development. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Isolasi, Seleksi Dan Opttmasi Produksi Protease Daribeberapaisolat Bakteri*(isolation, Selection and Optimalization of Protease Production of Some Bacterial Isolates)

    OpenAIRE

    Naiola, Elidar; Widhyastuti, Nunuk

    2002-01-01

    Thirty-seven out of sixty-one bacterial isolates from various sources of samples were screened for protease production. The isolate of ISO PL3 could produce the highest enzyme activity, and it was used as a standard bacterial strain in this observation. For any reason,we implemented ISO PL2 to study the optimum condition for producing bacterial protease. Result shows that the maximum protease activity was obtained in a medium containing 100 gram of rice brand in a liter tofu liquid waste. The...

  16. EFFECT OF MARINATION WITH PROTEOLYTIC ENZYMES ON QUALITY OF BEEF MUSCLE

    Directory of Open Access Journals (Sweden)

    Daniela Istrati

    2012-03-01

    Full Text Available During storage and thermal treatment meat suffers a number of biochemical and physical-chemical changes in the substrate protein, changes that take place with varying intensity depending on the method of preservation utilized and temperature of thermal treatment applied. Application of different treatments aimed to influence the proteolytic activity as is the case of enzymatic tenderization of beef.Improving the meat tenderness with proteolytic enzymes is promising, but current legislation restricting the use of proteolytic enzymes from bacterial origin and recommended tenderizers salts containing papain, ficin and bromelain. Recent research revealed that meat marinating before grilling results in a reduction of heterocyclic amine content after thermal treatment. Also, the addition of fruit pulp, garlic or other spices contributes to decreased production of heterocyclic amines because of their antioxidant activity. In the present study was aimed influence of exogenous proteolytic enzymes on adult beef tenderness. To increase the tenderness of adult beef were used exogenous enzymes preparations (papain and bromelain and natural sources of enzymes using pineapple and papaya fruit. It was intended to establish the correlation between enzymatic activity of enzymes used in the study, the processing technology and changes in the physical-chemical and biochemical characteristics that occur during storage in refrigerated conditions (evolution of the rigidity index and water holding capacity, cooking losses and cooking yield of the samples injected/marinated with enzymes.

  17. Crystal Structures of the SpoIID Lytic Transglycosylases Essential for Bacterial Sporulation.

    Science.gov (United States)

    Nocadello, Salvatore; Minasov, George; Shuvalova, Ludmilla S; Dubrovska, Ievgeniia; Sabini, Elisabetta; Anderson, Wayne F

    2016-07-15

    Bacterial spores are the most resistant form of life known on Earth and represent a serious problem for (i) bioterrorism attack, (ii) horizontal transmission of microbial pathogens in the community, and (iii) persistence in patients and in a nosocomial environment. Stage II sporulation protein D (SpoIID) is a lytic transglycosylase (LT) essential for sporulation. The LT superfamily is a potential drug target because it is active in essential bacterial processes involving the peptidoglycan, which is unique to bacteria. However, the absence of structural information for the sporulation-specific LT enzymes has hindered mechanistic understanding of SpoIID. Here, we report the first crystal structures with and without ligands of the SpoIID family from two community relevant spore-forming pathogens, Bacillus anthracis and Clostridium difficile. The structures allow us to visualize the overall architecture, characterize the substrate recognition model, identify critical residues, and provide the structural basis for catalysis by this new family of enzymes. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. (Oreochromis mossambicus) collected from water bodies impacted ...

    Indian Academy of Sciences (India)

    Tilapia thrives well inenvironments polluted by urban waste, which invariably contain antibiotic-resistant bacteria and antibiotic resistance genes(ARGs). Thus, Tilapia surviving in such polluted environments may serve as a potential source for dissemination of ARGs.To investigate this, we isolated bacterial strains from gut ...

  19. Anti-Quorum Sensing Potential of Potato Rhizospheric Bacteria

    Directory of Open Access Journals (Sweden)

    Adeleh Sobhanipour

    2017-01-01

    Full Text Available The occurrence of antibiotic-resistant pathogenic bacteria is becoming a serious problem. The rise of multiresistance strains has forced the pharmaceutical industry to come up with new generation of more effective and potent antibiotics, therefore creating development of antivirulence compounds. Due to extensive usage of cell-to-cell bacterial communication (QS systems to monitor the production of virulence factors, disruption of QS system results in creation of a promising strategy for the control of bacterial infection. Numerous natural quorum quenching (QQ agents have been identified. In addition, many microorganisms are capable of producing smaller molecular QS inhibitors and/or macromolecular QQ enzymes. In present survey, anti QS activity of 1280 rhizosphere bacteria was assessed using the Pectobacterium carotovorum as AHL-donor and Chromobacterium violaceum CV026 as biosensor system. The results showed that 61 strains had highly AHL-degrading activity. Both Lux I and Lux R activity were affected by some isolates, suggesting that the rhizobacteria target both QS signal and receptor. These soil microorganisms with their anti-QS activity have the potential to be novel therapeutic agents for reducing virulence and pathogenicity of antibiotic resistant bacteria.

  20. Bacterial Effectors and Their Functions in the Ubiquitin-Proteasome System: Insight from the Modes of Substrate Recognition

    Directory of Open Access Journals (Sweden)

    Minsoo Kim

    2014-08-01

    Full Text Available Protein ubiquitination plays indispensable roles in the regulation of cell homeostasis and pathogenesis of neoplastic, infectious, and neurodegenerative diseases. Given the importance of this modification, it is to be expected that several pathogenic bacteria have developed the ability to utilize the host ubiquitin system for their own benefit. Modulation of the host ubiquitin system by bacterial effector proteins inhibits innate immune responses and hijacks central signaling pathways. Bacterial effectors mimic enzymes of the host ubiquitin system, but may or may not be structurally similar to the mammalian enzymes. Other effectors bind and modify components of the host ubiquitin system, and some are themselves subject to ubiquitination. This review will describe recent findings, based on structural analyses, regarding how pathogens use post-translational modifications of proteins to establish an infection.

  1. Bacterial effectors and their functions in the ubiquitin-proteasome system: insight from the modes of substrate recognition.

    Science.gov (United States)

    Kim, Minsoo; Otsubo, Ryota; Morikawa, Hanako; Nishide, Akira; Takagi, Kenji; Sasakawa, Chihiro; Mizushima, Tsunehiro

    2014-08-18

    Protein ubiquitination plays indispensable roles in the regulation of cell homeostasis and pathogenesis of neoplastic, infectious, and neurodegenerative diseases. Given the importance of this modification, it is to be expected that several pathogenic bacteria have developed the ability to utilize the host ubiquitin system for their own benefit. Modulation of the host ubiquitin system by bacterial effector proteins inhibits innate immune responses and hijacks central signaling pathways. Bacterial effectors mimic enzymes of the host ubiquitin system, but may or may not be structurally similar to the mammalian enzymes. Other effectors bind and modify components of the host ubiquitin system, and some are themselves subject to ubiquitination. This review will describe recent findings, based on structural analyses, regarding how pathogens use post-translational modifications of proteins to establish an infection.

  2. Functional Metagenomics: Construction and High-Throughput Screening of Fosmid Libraries for Discovery of Novel Carbohydrate-Active Enzymes.

    Science.gov (United States)

    Ufarté, Lisa; Bozonnet, Sophie; Laville, Elisabeth; Cecchini, Davide A; Pizzut-Serin, Sandra; Jacquiod, Samuel; Demanèche, Sandrine; Simonet, Pascal; Franqueville, Laure; Veronese, Gabrielle Potocki

    2016-01-01

    Activity-based metagenomics is one of the most efficient approaches to boost the discovery of novel biocatalysts from the huge reservoir of uncultivated bacteria. In this chapter, we describe a highly generic procedure of metagenomic library construction and high-throughput screening for carbohydrate-active enzymes. Applicable to any bacterial ecosystem, it enables the swift identification of functional enzymes that are highly efficient, alone or acting in synergy, to break down polysaccharides and oligosaccharides.

  3. Substrate-Wrapped, Single-Walled Carbon Nanotube Probes for Hydrolytic Enzyme Characterization.

    Science.gov (United States)

    Kallmyer, Nathaniel E; Musielewicz, Joseph; Sutter, Joel; Reuel, Nigel F

    2018-04-17

    Hydrolytic enzymes are a topic of continual study and improvement due to their industrial impact and biological implications; however, the ability to measure the activity of these enzymes, especially in high-throughput assays, is limited to an established, few enzymes and often involves the measurement of secondary byproducts or the design of a complex degradation probe. Herein, a versatile single-walled carbon nanotube (SWNT)-based biosensor that is straightforward to produce and measure is described. The hydrolytic enzyme substrate is rendered as an amphiphilic polymer, which is then used to solubilize the hydrophobic nanotubes. When the target enzyme degrades the wrapping, the SWNT fluorescent signal is quenched due to increased solvent accessibility and aggregation, allowing quantitative measurement of hydrolytic enzyme activity. Using (6,5) chiral SWNT suspended with polypeptides and polysaccharides, turnover frequencies are estimated for cellulase, pectinase, and bacterial protease. Responses are recorded for concentrations as low as 5 fM using a well-characterized protease, Proteinase K. An established trypsin-based plate reader assay is used to compare this nanotube probe assay with standard techniques. Furthermore, the effect of freeze-thaw cycles and elevated temperature on enzyme activity is measured, suggesting freezing to have minimal impact even after 10 cycles and heating to be detrimental above 60 °C. Finally, rapid optimization of enzyme operating conditions is demonstrated by generating a response surface of cellulase activity with respect to temperature and pH to determine optimal conditions within 2 h of serial scans.

  4. Characterisation of the first enzymes committed to lysine biosynthesis in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Michael D W Griffin

    Full Text Available In plants, the lysine biosynthetic pathway is an attractive target for both the development of herbicides and increasing the nutritional value of crops given that lysine is a limiting amino acid in cereals. Dihydrodipicolinate synthase (DHDPS and dihydrodipicolinate reductase (DHDPR catalyse the first two committed steps of lysine biosynthesis. Here, we carry out for the first time a comprehensive characterisation of the structure and activity of both DHDPS and DHDPR from Arabidopsis thaliana. The A. thaliana DHDPS enzyme (At-DHDPS2 has similar activity to the bacterial form of the enzyme, but is more strongly allosterically inhibited by (S-lysine. Structural studies of At-DHDPS2 show (S-lysine bound at a cleft between two monomers, highlighting the allosteric site; however, unlike previous studies, binding is not accompanied by conformational changes, suggesting that binding may cause changes in protein dynamics rather than large conformation changes. DHDPR from A. thaliana (At-DHDPR2 has similar specificity for both NADH and NADPH during catalysis, and has tighter binding of substrate than has previously been reported. While all known bacterial DHDPR enzymes have a tetrameric structure, analytical ultracentrifugation, and scattering data unequivocally show that At-DHDPR2 exists as a dimer in solution. The exact arrangement of the dimeric protein is as yet unknown, but ab initio modelling of x-ray scattering data is consistent with an elongated structure in solution, which does not correspond to any of the possible dimeric pairings observed in the X-ray crystal structure of DHDPR from other organisms. This increased knowledge of the structure and function of plant lysine biosynthetic enzymes will aid future work aimed at improving primary production.

  5. Role of the chronic bacterial infection in urinary bladder carcinogenesis

    International Nuclear Information System (INIS)

    Higgy, N.A.

    1985-01-01

    The purpose of this thesis was to determine whether or not bacterial infection of the urinary bladder had a role in urinary bladder carcinogenesis. To investigate this proposition, four separate studies were conducted. The first study developed an experimental animal model where bacterial infection of the urinary bladder could be introduced and maintained for a period in excess of one year. The method of infection, inoculation of bacteria (Escherichia coli type 04) subserosally into the vesical wall, successfully caused persistent infection in the majority of animals. In the second study the temporal effects of bacterial infection on the induction of urothelial ornithine decarboxylase (ODC) and 3 H-thymidine uptake and DNA synthesis were examined. Bacterial infection of the urinary bladder induced urothelial ODC with a peak in enzyme activity 6 hr after infection. 3 H-Thymidine uptake and DNA synthesis peaked 48 hr after infection and coincided with the urothelial hyperplasia that occurred in response to the infection. In the third study the specific bladder carcinogen N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) was given to rats concurrent with the urinary bacterial infection. In the fourth study rats were administered sodium nitrate and either dibutylamine or piperazine in the drinking water. The infected group developed bladder tumors while none were detected in the non-infected rats. From these studies it may be concluded that bacterial infection may have a significant role in the process of urinary bladder carcinogenesis

  6. Heavy metal pollution exerts reduction/adaptation in the diversity and enzyme expression profile of heterotrophic bacteria in Cochin estuary, India

    Energy Technology Data Exchange (ETDEWEB)

    Jose, Jiya; Giridhar, Rajesh; Anas, Abdulaziz [National Institute of Oceanography (CSIR), Regional Centre, PB 1913, Cochin, Kerala 682018 (India); Loka Bharathi, P.A. [National Institute of Oceanography (CSIR), Dona Paula, Goa 403004 (India); Nair, Shanta, E-mail: shanta@nio.org [National Institute of Oceanography (CSIR), Dona Paula, Goa 403004 (India)

    2011-10-15

    Over the past three decades heavy metal pollution has increased substantially in Cochin estuary, south west coast of India. Here we studied the distribution, diversity and enzyme expression profile of culturable microbial population along a pollution gradient. The distribution of resistance against 5 mM concentration of Zn, Co, Ni and Cu was observed among 90-100% of bacterial isolates retrieved from highly polluted Eloor, whereas it was less than 40% in Vypin and Munambam. Similarly, there was a difference in the distribution and diversity of bacterial phyla with predominance of Proteobacteria in Eloor and Firmicutes in Munambam and Vypin. We observed that 75-100% of the organisms retrieved from Eloor had low levels of expression for hydrolytic enzyme. In conclusion, the heavy metal pollution in Cochin estuary brought in reduction/adaptation in the distribution, diversity and enzyme expression profile of bacteria, which may impart adverse impacts on ecosystem functioning. - Highlights: > Substantial proliferation of heavy metal pollution in Cochin estuary. > 90-100% of bacteria were resistant against heavy metals. > Proteobacteria dominated in the hot spot sites. > Low Enzyme expression profile among microorganisms in hot spot sites. - Heavy metal pollution exerts pressure on the diversity and enzyme expression profile of estuarine bacteria.

  7. THE TOXIC DINOFLAGELLATE GYMNODINIUM CATENATUM (DINOPHYCEAE) REQUIRES MARINE BACTERIA FOR GROWTH(1).

    Science.gov (United States)

    Bolch, Christopher J S; Subramanian, Thaila A; Green, David H

    2011-10-01

    Interactions with the bacterial community are increasingly considered to have a significant influence on marine phytoplankton populations. Here we used a simplified dinoflagellate-bacterium experimental culture model to conclusively demonstrate that the toxic dinoflagellate Gymnodinium catenatum H. W. Graham requires growth-stimulatory marine bacteria for postgermination survival and growth, from the point of resting cyst germination through to vegetative growth at bloom concentrations (10(3)  cells · mL(-1) ). Cysts of G. catenatum were germinated and grown in unibacterial coculture with antibiotic-resistant or antibiotic-sensitive Marinobacter sp. DG879 or Brachybacterium sp., and with mixtures of these two bacteria. Addition of antibiotics to cultures grown with antibiotic-sensitive strains of bacteria resulted in death of the dinoflagellate culture, whereas cultures grown with antibiotic-resistant bacteria survived antibiotic addition and continued to grow beyond the 21 d experiment. Removal of either bacterial type from mixed-bacterial dinoflagellate cultures (using an antibiotic) resulted in cessation of dinoflagellate growth until bacterial concentration recovered to preaddition concentrations, suggesting that the bacterial growth factors are used for dinoflagellate growth or are labile. Examination of published reports of axenic dinoflagellate culture indicate that a requirement for bacteria is not universal among dinoflagellates, but rather that species may vary in their relative reliance on, and relationship with, the bacterial community. The experimental model approach described here solves a number of inherent and logical problems plaguing studies of algal-bacterium interactions and provides a flexible and tractable tool that can be extended to examine bacterial interactions with other phytoplankton species. © 2011 Phycological Society of America.

  8. Detoxification of organophosphate nerve agents by bacterial phosphotriesterase

    International Nuclear Information System (INIS)

    Ghanem, Eman; Raushel, Frank M.

    2005-01-01

    Organophosphates have been widely used as insecticides and chemical warfare agents. The health risks associated with these agents have necessitated the need for better detoxification and bioremediation tools. Bacterial enzymes capable of hydrolyzing the lethal organophosphate nerve agents are of special interest. Phosphotriesterase (PTE) isolated from the soil bacteria Pseudomonas diminuta displays a significant rate enhancement and substrate promiscuity for the hydrolysis of organophosphate triesters. Directed evolution and rational redesign of the active site of PTE have led to the identification of new variants with enhanced catalytic efficiency and stereoselectivity toward the hydrolysis of organophosphate neurotoxins. PTE has been utilized to protect against organophosphate poisoning in vivo. Biotechnological applications of PTE for detection and decontamination of insecticides and chemical warfare agents are developing into useful tools. In this review, the catalytic properties and potential applications of this remarkable enzyme are discussed

  9. A model of extracellular enzymes in free-living microbes: which strategy pays off?

    Science.gov (United States)

    Traving, Sachia J; Thygesen, Uffe H; Riemann, Lasse; Stedmon, Colin A

    2015-11-01

    An initial modeling approach was applied to analyze how a single, nonmotile, free-living, heterotrophic bacterial cell may optimize the deployment of its extracellular enzymes. Free-living cells live in a dilute and complex substrate field, and to gain enough substrate, their extracellular enzymes must be utilized efficiently. The model revealed that surface-attached and free enzymes generate unique enzyme and substrate fields, and each deployment strategy has distinctive advantages. For a solitary cell, surface-attached enzymes are suggested to be the most cost-efficient strategy. This strategy entails potential substrates being reduced to very low concentrations. Free enzymes, on the other hand, generate a radically different substrate field, which suggests significant benefits for the strategy if free cells engage in social foraging or experience high substrate concentrations. Swimming has a slight positive effect for the attached-enzyme strategy, while the effect is negative for the free-enzyme strategy. The results of this study suggest that specific dissolved organic compounds in the ocean likely persist below a threshold concentration impervious to biological utilization. This could help explain the persistence and apparent refractory state of oceanic dissolved organic matter (DOM). Microbial extracellular enzyme strategies, therefore, have important implications for larger-scale processes, such as shaping the role of DOM in ocean carbon sequestration. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Application of alkaline thermo-stable lipase(s) enzyme produced from irradiated microbial isolate in the field of detergent technology

    International Nuclear Information System (INIS)

    Ahmed, O.E.A.M.S

    2010-01-01

    Due to continuous demand for manufacture of high quality, low coast industrial detergents containing lipolytic enzymes and due to continuous accumulation of enviro-agro-industrial wastes which are good and suitable conditions for growth and reproduction of pathogenic microorganisms, our study aims at isolating thermoalkalophilic lipase producer microorganisms from enviro-agro-industrial wastes and selection of the most potent isolate for studying physiological conditions controlling enzyme formation also purification characterization and some applications on purified and crude enzyme as bio-detergent. Some environmental and industrial wastes were collected from different places. The industrial wastes include, cotton seed, soyabean, sun flower, lin seed and olive oil wastes. Environmental wastes include poultry and fish wastes, all these wastes were dried at 70 degree C, grounded and used for isolation of microorganisms and lipase(s) production.Nine thermoalkalophilic bacterial isolates were isolated from enviro-agro-industrial wastes at ph 11.5 and 70 degree C. They were purified and screening for their ability of thermoalkalo-stable lipase(s) formation, this is followed by examining the effect of different nutritional media and exposure of bacterial isolates to different doses of gamma irradiation and the influence of these radiation on lipase(s) productivity by these isolates. From the results it was found that.1- The most potent lipase(s) forming bacterial isolates were isolates number B 2 and B 3 which cultivated on medium A amended with fish-wastes as being the best nutritional medium for enzyme formation. 2-Bacterial isolate B 2 finally was selected as being the most potent lipase(s) forming bacterial isolate cultivated on fish-wastes and yeast extract (in tap water) and identified according to key's of Bergey Manual of Systematic Bacteriology (1984) as being Bacillus brevis B 2 .The optimum culture conditions for maximum biosynthesis of extracellular lipase

  11. Bacterial contribution to iodine volatilization in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Amachi, S; Kasahara, M; Fujii, T [Chiba Univ., Dept. of Bioresources Chemistry, Matsudo, Chiba (Japan); Muramatsu, Y [National Inst. of Radiological Sciences, Chiba (Japan)

    2003-09-01

    The roles of microorganisms in iodine volatilization from the environment were studied. More than 100 bacterial strains were isolated from various environments such as soils, seawater and marine sediments, and were examined their capacities for volatilizing iodine. Approximately 40% of these bacteria showed significant capacities for volatilizing iodine. Gas chromatographic determinations revealed that the chemical species of gaseous iodine is methyl iodide (CH{sub 3}I). Phylogenetic analysis based on 16S ribosomal DNA showed that these 'iodine-volatilizing bacteria' are widely distributed through the bacterial domain. The iodide-methylating reaction was mediated by an enzyme protein with S-adenosyl-L-methionine (SAM) as the methyl donor. We then estimated bacterial contribution to iodine volatilization from soils. Iodine in soils was volatilized mainly as CH{sub 3}I. CH{sub 3}I emission was enhanced in the presence of glucose or yeast extract, but was inhibited by autoclaving of soils. Little CH{sub 3}I was produced under anaerobic conditions. Furthermore, the addition of streptomycin and tetracycline, antibiotics which inhibit bacterial growth, strongly inhibited CH{sub 3}I emission, while a fungal inhibitor cycloheximide caused little effect. These results suggest that iodine in soils is volatilized as CH{sub 3}I mainly by the action of aerobic soil bacteria. Similar experiment was carried out by using sea water samples. The emission of iodine from sea waters occurred biologically, and bacterial (and also other microbial) contribution was confirmed. Our results suggest that iodine is methylated and volatilized into the atmosphere as a result of bacterial activities. Since bacteria are so abundant and widespread in the environments, they may significantly contribute to global iodine volatilization. This indicates that if {sup 129}I would be released from nuclear facilities, weapons testing or ground storage of nuclear wastes, the pathway of volatilization by

  12. Enzymatic Reductive Dehalogenation Controls the Biosynthesis of Marine Bacterial Pyrroles.

    Science.gov (United States)

    El Gamal, Abrahim; Agarwal, Vinayak; Rahman, Imran; Moore, Bradley S

    2016-10-12

    Enzymes capable of performing dehalogenating reactions have attracted tremendous contemporary attention due to their potential application in the bioremediation of anthropogenic polyhalogenated persistent organic pollutants. Nature, in particular the marine environment, is also a prolific source of polyhalogenated organic natural products. The study of the biosynthesis of these natural products has furnished a diverse array of halogenation biocatalysts, but thus far no examples of dehalogenating enzymes have been reported from a secondary metabolic pathway. Here we show that the penultimate step in the biosynthesis of the highly brominated marine bacterial product pentabromopseudilin is catalyzed by an unusual debrominase Bmp8 that utilizes a redox thiol mechanism to remove the C-2 bromine atom of 2,3,4,5-tetrabromopyrrole to facilitate oxidative coupling to 2,4-dibromophenol. To the best of our knowledge, Bmp8 is first example of a dehalogenating enzyme from the established genetic and biochemical context of a natural product biosynthetic pathway.

  13. Pyruvate cycle increases aminoglycoside efficacy and provides respiratory energy in bacteria.

    Science.gov (United States)

    Su, Yu-Bin; Peng, Bo; Li, Hui; Cheng, Zhi-Xue; Zhang, Tian-Tuo; Zhu, Jia-Xin; Li, Dan; Li, Min-Yi; Ye, Jin-Zhou; Du, Chao-Chao; Zhang, Song; Zhao, Xian-Liang; Yang, Man-Jun; Peng, Xuan-Xian

    2018-02-13

    The emergence and ongoing spread of multidrug-resistant bacteria puts humans and other species at risk for potentially lethal infections. Thus, novel antibiotics or alternative approaches are needed to target drug-resistant bacteria, and metabolic modulation has been documented to improve antibiotic efficacy, but the relevant metabolic mechanisms require more studies. Here, we show that glutamate potentiates aminoglycoside antibiotics, resulting in improved elimination of antibiotic-resistant pathogens. When exploring the metabolic flux of glutamate, it was found that the enzymes that link the phosphoenolpyruvate (PEP)-pyruvate-AcCoA pathway to the TCA cycle were key players in this increased efficacy. Together, the PEP-pyruvate-AcCoA pathway and TCA cycle can be considered the pyruvate cycle (P cycle). Our results show that inhibition or gene depletion of the enzymes in the P cycle shut down the TCA cycle even in the presence of excess carbon sources, and that the P cycle operates routinely as a general mechanism for energy production and regulation in Escherichia coli and Edwardsiella tarda These findings address metabolic mechanisms of metabolite-induced potentiation and fundamental questions about bacterial biochemistry and energy metabolism.

  14. Enzymes in cleaning products: an overview of toxicological properties and risk assessment/management.

    Science.gov (United States)

    Basketter, David; Berg, Ninna; Broekhuizen, Cees; Fieldsend, Mark; Kirkwood, Sheila; Kluin, Cornelia; Mathieu, Sophie; Rodriguez, Carlos

    2012-10-01

    Enzymes used in cleaning products have an excellent safety profile, with little ability to cause adverse responses in humans. For acute toxicity, genotoxicity, sub-acute and repeated dose toxicity, enzymes are unremarkable. Reproductive toxicity and carcinogenicity are also not endpoints of concern. Exceptions are the ability of some proteases to produce irritating effects at high concentrations and more importantly, the intrinsic potential of these bacterial/fungal proteins to act as respiratory sensitizers. It is a reasonable assumption that the majority of enzyme proteins possess this hazard. However, methods for characterising the respiratory sensitisation hazard of enzymes are lacking and the information required for risk assessment and risk management, although sufficient, remains limited. Previously, most data was generated in animal models and in in vitro immunoassays that assess immunological cross-reactivity. Nevertheless, by the establishment of strict limits on airborne exposure (based on a defined minimal effect limit of 60ng active enzyme protein/m(3)) and air and health monitoring, occupational safety can be assured. Similarly, by ensuring that airborne exposure is kept similarly low, coupled with knowledge of the fate of these enzymes on skin and fabrics, it has proven possible to establish a long history of safe consumer use of enzyme containing products. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Isolation and enzyme bioprospection of endophytic bacteria associated with plants of Brazilian mangrove ecosystem.

    Science.gov (United States)

    Castro, Renata A; Quecine, Maria Carolina; Lacava, Paulo T; Batista, Bruna D; Luvizotto, Danice M; Marcon, Joelma; Ferreira, Anderson; Melo, Itamar S; Azevedo, João L

    2014-01-01

    The mangrove ecosystem is a coastal tropical biome located in the transition zone between land and sea that is characterized by periodic flooding, which confers unique and specific environmental conditions on this biome. In these ecosystems, the vegetation is dominated by a particular group of plant species that provide a unique environment harboring diverse groups of microorganisms, including the endophytic microorganisms that are the focus of this study. Because of their intimate association with plants, endophytic microorganisms could be explored for biotechnologically significant products, such as enzymes, proteins, antibiotics and others. Here, we isolated endophytic microorganisms from two mangrove species, Rhizophora mangle and Avicennia nitida, that are found in streams in two mangrove systems in Bertioga and Cananéia, Brazil. Bacillus was the most frequently isolated genus, comprising 42% of the species isolated from Cananéia and 28% of the species from Bertioga. However, other common endophytic genera such as Pantoea, Curtobacterium and Enterobacter were also found. After identifying the isolates, the bacterial communities were evaluated for enzyme production. Protease activity was observed in 75% of the isolates, while endoglucanase activity occurred in 62% of the isolates. Bacillus showed the highest activity rates for amylase and esterase and endoglucanase. To our knowledge, this is the first reported diversity analysis performed on endophytic bacteria obtained from the branches of mangrove trees and the first overview of the specific enzymes produced by different bacterial genera. This work contributes to our knowledge of the microorganisms and enzymes present in mangrove ecosystems.

  16. A Ten-Week Biochemistry Lab Project Studying Wild-Type and Mutant Bacterial Alkaline Phosphatase

    Science.gov (United States)

    Witherow, D. Scott

    2016-01-01

    This work describes a 10-week laboratory project studying wild-type and mutant bacterial alkaline phosphatase, in which students purify, quantitate, and perform kinetic assays on wild-type and selected mutants of the enzyme. Students also perform plasmid DNA purification, digestion, and gel analysis. In addition to simply learning important…

  17. The Carboxysome and Other Bacterial Microcompartments

    Energy Technology Data Exchange (ETDEWEB)

    Kerfeld, Cheryl A.; Greenleaf, William B.; Kinney, James N.

    2010-06-23

    - Carboxysomes are part of the carbon concentrating mechanism in cyanobacteria and chemoautotrophs. - Carboxysomes are a subclass of bacterial microcompartments (BMCs); BMCs can encapsulate a range of metabolic processes. - Like some viral particles, the carboxysome can be modeled as an icosahedron-in its case, having 4,000-5,000 hexameric shell subunits and 12 surface pentamers to generate curvature. - The threefold axis of symmetry of the CsoS1D protein in carboxysomes forms a pore that can open and close, allowing for selective diffusion. - Genetic modules encoding BMC shell proteins and the enzymes that they encapsulate are horizontally transferable, suggesting they enable bacteria to adapt to diverse environments.

  18. Characterization of Cellulolytic Bacterial Cultures Grown in Different Substrates

    Directory of Open Access Journals (Sweden)

    Mohamed Idris Alshelmani

    2013-01-01

    Full Text Available Nine aerobic cellulolytic bacterial cultures were obtained from the Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Culture (DSMZ and the American Type Culture Collection (ATCC. The objectives of this study were to characterize the cellulolytic bacteria and to determine the optimum moisture ratio required for solid state fermentation (SSF of palm kernel cake (PKC. The bacteria cultures were grown on reconstituted nutrient broth, incubated at 30∘C and agitated at 200 rpm. Carboxymethyl cellulase, xylanase, and mannanase activities were determined using different substrates and after SSF of PKC. The SSF was conducted for 4 and 7 days with inoculum size of 10% (v/w on different PKC concentration-to-moisture ratios: 1 : 0.2, 1 : 0.3, 1 : 0.4, and 1 : 0.5. Results showed that Bacillus amyloliquefaciens 1067 DSMZ, Bacillus megaterium 9885 ATCC, Paenibacillus curdlanolyticus 10248 DSMZ, and Paenibacillus polymyxa 842 ATCC produced higher enzyme activities as compared to other bacterial cultures grown on different substrates. The cultures mentioned above also produced higher enzyme activities when they were incubated under SSF using PKC as a substrate in different PKC-to-moisture ratios after 4 days of incubation, indicating that these cellulolytic bacteria can be used to degrade and improve the nutrient quality of PKC.

  19. What is the main driver of ageing in long-lived winter honeybees: antioxidant enzymes, innate immunity, or vitellogenin?

    Science.gov (United States)

    Aurori, Cristian M; Buttstedt, Anja; Dezmirean, Daniel S; Mărghitaş, Liviu A; Moritz, Robin F A; Erler, Silvio

    2014-06-01

    To date five different theories compete in explaining the biological mechanisms of senescence or ageing in invertebrates. Physiological, genetical, and environmental mechanisms form the image of ageing in individuals and groups. Social insects, especially the honeybee Apis mellifera, present exceptional model systems to study developmentally related ageing. The extremely high phenotypic plasticity for life expectancy resulting from the female caste system provides a most useful system to study open questions with respect to ageing. Here, we used long-lived winter worker honeybees and measured transcriptional changes of 14 antioxidative enzyme, immunity, and ageing-related (insulin/insulin-like growth factor signaling pathway) genes at two time points during hibernation. Additionally, worker bees were challenged with a bacterial infection to test ageing- and infection-associated immunity changes. Gene expression levels for each group of target genes revealed that ageing had a much higher impact than the bacterial challenge, notably for immunity-related genes. Antimicrobial peptide and antioxidative enzyme genes were significantly upregulated in aged worker honeybees independent of bacterial infections. The known ageing markers vitellogenin and IlP-1 were opposed regulated with decreasing vitellogenin levels during ageing. The increased antioxidative enzyme and antimicrobial peptide gene expression may contribute to a retardation of senescence in long-lived hibernating worker honeybees. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Angiotensin-converting enzyme inhibitor treatment and the development of urinary tract infections : a prescription sequence symmetry analysis

    NARCIS (Netherlands)

    Pouwels, Koen B; Visser, Sipke T; Bos, H Jens; Hak, Eelko

    2013-01-01

    BACKGROUND: Angiotensin-converting enzyme inhibitors (ACEi) can reduce urine output, especially when treatment is first started. Since bacterial clearance from the urinary tract is dependent on urine output, it was hypothesized that ACEi may also increase the risk of urinary tract infections (UTIs).

  1. An Overview of the Bacterial Carbonic Anhydrases

    Directory of Open Access Journals (Sweden)

    Claudiu T. Supuran

    2017-11-01

    Full Text Available Bacteria encode carbonic anhydrases (CAs, EC 4.2.1.1 belonging to three different genetic families, the α-, β-, and γ-classes. By equilibrating CO2 and bicarbonate, these metalloenzymes interfere with pH regulation and other crucial physiological processes of these organisms. The detailed investigations of many such enzymes from pathogenic and non-pathogenic bacteria afford the opportunity to design both novel therapeutic agents, as well as biomimetic processes, for example, for CO2 capture. Investigation of bacterial CA inhibitors and activators may be relevant for finding antibiotics with a new mechanism of action.

  2. Analysis of bacterial genetic diversity in biofloc by using ARDRA 16S-rRNA gene

    Directory of Open Access Journals (Sweden)

    , Widanarni

    2015-05-01

    Full Text Available ABSTRACT This study aimed to analyze the genetic diversity of bacteria associated in bioflocs using 16S-rRNA polymerase chain reaction (PCR with ARDRA technique. A total of 38 dominant bacterial isolates was obtained from bioflocs samples and of these isolates, 16S-rRNA gene was then isolated and amplified using PCR. The 16S-rRNA gene of the isolates was then cut using HaeIII (5’-GG↓CC and HhaI (5’-GCG↓C restriction enzymes resulting an ARDRA pattern which was further used as the binary data for the construction of phylogenetics tree that was used to estimate the group of bacteria. The result with HaeIII cut restriction enzyme from biofloc-associated bacteria gave 11 ARDRA patterns, while with the restriction enzyme HhaI gave eight ARDRA patterns. Phylogenetics of bacterial populations from biofloc-based cultivation system water consisted of at least 13 different bacterial species. Result of sequencing from two gene sample 16S-rRNA were identified as Microbacterium foliorumand and Pseudomonas putida. Keywords: bacterial diversity, ARDRA, biofloc, phylogeny  ABSTRAK Penelitian ini bertujuan untuk menganalisis keragaman genetika bakteri bioflok menggunakan metode polymerase chain reaction (PCR 16S-rRNA dengan teknik ARDRA. Sebanyak 38 isolat bakteri dominan yang diperoleh diamplifikasi gen 16S-rRNAnya dengan PCR, kemudian dipotong dengan enzim restriksi HaeIII (5’-GG↓CC dan HhaI (5’-GCG↓C. Pola ARDRA ini dijadikan data biner sebagai input untuk konstruksi pohon filogenetika yang dapat digunakan untuk memerkirakan jenis bakteri yang ada. Gen 16S-rRNA hasil PCR setelah dipotong dengan enzim restriksi HaeIII didapatkan 11 pola ARDRA, sedangkan dengan enzim restriksi HhaI menghasilkan delapan pola ARDRA. Berdasarkan pohon filogenetika, diketahui populasi bakteri pada air sistem budidaya bioflok sedikitnya terdiri atas 13 jenis bakteri. Berdasarkan sekuensing dari dua sampel gen 16S-rRNA teridentifikasi jenis bakteri Microbacterium

  3. Evaluation of Lysis Methods for the Extraction of Bacterial DNA for Analysis of the Vaginal Microbiota.

    Science.gov (United States)

    Gill, Christina; van de Wijgert, Janneke H H M; Blow, Frances; Darby, Alistair C

    2016-01-01

    Recent studies on the vaginal microbiota have employed molecular techniques such as 16S rRNA gene sequencing to describe the bacterial community as a whole. These techniques require the lysis of bacterial cells to release DNA before purification and PCR amplification of the 16S rRNA gene. Currently, methods for the lysis of bacterial cells are not standardised and there is potential for introducing bias into the results if some bacterial species are lysed less efficiently than others. This study aimed to compare the results of vaginal microbiota profiling using four different pretreatment methods for the lysis of bacterial samples (30 min of lysis with lysozyme, 16 hours of lysis with lysozyme, 60 min of lysis with a mixture of lysozyme, mutanolysin and lysostaphin and 30 min of lysis with lysozyme followed by bead beating) prior to chemical and enzyme-based DNA extraction with a commercial kit. After extraction, DNA yield did not significantly differ between methods with the exception of lysis with lysozyme combined with bead beating which produced significantly lower yields when compared to lysis with the enzyme cocktail or 30 min lysis with lysozyme only. However, this did not result in a statistically significant difference in the observed alpha diversity of samples. The beta diversity (Bray-Curtis dissimilarity) between different lysis methods was statistically significantly different, but this difference was small compared to differences between samples, and did not affect the grouping of samples with similar vaginal bacterial community structure by hierarchical clustering. An understanding of how laboratory methods affect the results of microbiota studies is vital in order to accurately interpret the results and make valid comparisons between studies. Our results indicate that the choice of lysis method does not prevent the detection of effects relating to the type of vaginal bacterial community one of the main outcome measures of epidemiological studies

  4. Evaluation of Lysis Methods for the Extraction of Bacterial DNA for Analysis of the Vaginal Microbiota.

    Directory of Open Access Journals (Sweden)

    Christina Gill

    Full Text Available Recent studies on the vaginal microbiota have employed molecular techniques such as 16S rRNA gene sequencing to describe the bacterial community as a whole. These techniques require the lysis of bacterial cells to release DNA before purification and PCR amplification of the 16S rRNA gene. Currently, methods for the lysis of bacterial cells are not standardised and there is potential for introducing bias into the results if some bacterial species are lysed less efficiently than others. This study aimed to compare the results of vaginal microbiota profiling using four different pretreatment methods for the lysis of bacterial samples (30 min of lysis with lysozyme, 16 hours of lysis with lysozyme, 60 min of lysis with a mixture of lysozyme, mutanolysin and lysostaphin and 30 min of lysis with lysozyme followed by bead beating prior to chemical and enzyme-based DNA extraction with a commercial kit.After extraction, DNA yield did not significantly differ between methods with the exception of lysis with lysozyme combined with bead beating which produced significantly lower yields when compared to lysis with the enzyme cocktail or 30 min lysis with lysozyme only. However, this did not result in a statistically significant difference in the observed alpha diversity of samples. The beta diversity (Bray-Curtis dissimilarity between different lysis methods was statistically significantly different, but this difference was small compared to differences between samples, and did not affect the grouping of samples with similar vaginal bacterial community structure by hierarchical clustering.An understanding of how laboratory methods affect the results of microbiota studies is vital in order to accurately interpret the results and make valid comparisons between studies. Our results indicate that the choice of lysis method does not prevent the detection of effects relating to the type of vaginal bacterial community one of the main outcome measures of

  5. Biotechnological Applications of Marine Enzymes From Algae, Bacteria, Fungi, and Sponges.

    Science.gov (United States)

    Parte, S; Sirisha, V L; D'Souza, J S

    Diversity is the hallmark of all life forms that inhabit the soil, air, water, and land. All these habitats pose their unique inherent challenges so as to breed the "fittest" creatures. Similarly, the biodiversity from the marine ecosystem has evolved unique properties due to challenging environment. These challenges include permafrost regions to hydrothermal vents, oceanic trenches to abyssal plains, fluctuating saline conditions, pH, temperature, light, atmospheric pressure, and the availability of nutrients. Oceans occupy 75% of the earth's surface and harbor most ancient and diverse forms of organisms (algae, bacteria, fungi, sponges, etc.), serving as an excellent source of natural bioactive molecules, novel therapeutic compounds, and enzymes. In this chapter, we introduce enzyme technology, its current state of the art, unique enzyme properties, and the biocatalytic potential of marine algal, bacterial, fungal, and sponge enzymes that have indeed boosted the Marine Biotechnology Industry. Researchers began exploring marine enzymes, and today they are preferred over the chemical catalysts for biotechnological applications and functions, encompassing various sectors, namely, domestic, industrial, commercial, and healthcare. Next, we summarize the plausible pros and cons: the challenges encountered in the process of discovery of the potent compounds and bioactive metabolites such as biocatalysts/enzymes of biomedical, therapeutic, biotechnological, and industrial significance. The field of Marine Enzyme Technology has recently assumed importance, and if it receives further boost, it could successfully substitute other chemical sources of enzymes useful for industrial and commercial purposes and may prove as a beneficial and ecofriendly option. With appropriate directions and encouragement, marine enzyme technology can sustain the rising demand for enzyme production while maintaining the ecological balance, provided any undesired exploitation of the marine

  6. Crystallization and X-ray diffraction studies of a complete bacterial fatty-acid synthase type I

    International Nuclear Information System (INIS)

    Enderle, Mathias; McCarthy, Andrew; Paithankar, Karthik Shivaji; Grininger, Martin

    2015-01-01

    Bacterial and fungal type I fatty-acid synthases (FAS I) are evolutionarily connected, as bacterial FAS I is considered to be the ancestor of fungal FAS I. In this work, the production, crystallization and X-ray diffraction data analysis of a bacterial FAS I are reported. While a deep understanding of the fungal and mammalian multi-enzyme type I fatty-acid synthases (FAS I) has been achieved in recent years, the bacterial FAS I family, which is narrowly distributed within the Actinomycetales genera Mycobacterium, Corynebacterium and Nocardia, is still poorly understood. This is of particular relevance for two reasons: (i) although homologous to fungal FAS I, cryo-electron microscopic studies have shown that bacterial FAS I has unique structural and functional properties, and (ii) M. tuberculosis FAS I is a drug target for the therapeutic treatment of tuberculosis (TB) and therefore is of extraordinary importance as a drug target. Crystals of FAS I from C. efficiens, a homologue of M. tuberculosis FAS I, were produced and diffracted X-rays to about 4.5 Å resolution

  7. Crystallization and X-ray diffraction studies of a complete bacterial fatty-acid synthase type I

    Energy Technology Data Exchange (ETDEWEB)

    Enderle, Mathias [Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main (Germany); Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried (Germany); McCarthy, Andrew [EMBL Grenoble, 71 Avenue des Martyrs, 38042 Grenoble CEDEX 9 (France); Paithankar, Karthik Shivaji, E-mail: paithankar@em.uni-frankfurt.de [Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main (Germany); Grininger, Martin, E-mail: paithankar@em.uni-frankfurt.de [Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main (Germany); Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried (Germany)

    2015-10-23

    Bacterial and fungal type I fatty-acid synthases (FAS I) are evolutionarily connected, as bacterial FAS I is considered to be the ancestor of fungal FAS I. In this work, the production, crystallization and X-ray diffraction data analysis of a bacterial FAS I are reported. While a deep understanding of the fungal and mammalian multi-enzyme type I fatty-acid synthases (FAS I) has been achieved in recent years, the bacterial FAS I family, which is narrowly distributed within the Actinomycetales genera Mycobacterium, Corynebacterium and Nocardia, is still poorly understood. This is of particular relevance for two reasons: (i) although homologous to fungal FAS I, cryo-electron microscopic studies have shown that bacterial FAS I has unique structural and functional properties, and (ii) M. tuberculosis FAS I is a drug target for the therapeutic treatment of tuberculosis (TB) and therefore is of extraordinary importance as a drug target. Crystals of FAS I from C. efficiens, a homologue of M. tuberculosis FAS I, were produced and diffracted X-rays to about 4.5 Å resolution.

  8. Novel approaches to developing new antibiotics for bacterial infections

    OpenAIRE

    Coates, A R M; Hu, Y

    2007-01-01

    Antibiotics are an essential part of modern medicine. The emergence of antibiotic-resistant mutants among bacteria is seemingly inevitable, and results, within a few decades, in decreased efficacy and withdrawal of the antibiotic from widespread usage. The traditional answer to this problem has been to introduce new antibiotics that kill the resistant mutants. Unfortunately, after more than 50 years of success, the pharmaceutical industry is now producing too few antibiotics, particularly aga...

  9. Fate and effects of veterinary antibiotics in soil.

    Science.gov (United States)

    Jechalke, Sven; Heuer, Holger; Siemens, Jan; Amelung, Wulf; Smalla, Kornelia

    2014-09-01

    Large amounts of veterinary antibiotics are applied worldwide to farm animals and reach agricultural fields by manure fertilization, where they might lead to an increased abundance and transferability of antibiotic-resistance determinants. In this review we discuss recent advances, limitations, and research needs in determining the fate of veterinary antibiotics and resistant bacteria applied with manure to soil, and their effects on the structure and function of soil microbial communities in bulk soils and the rhizosphere. The increased abundance and mobilization of antibiotic-resistance genes (ARGs) might contribute to the emergence of multi-resistant human pathogens that increasingly threaten the successful antibiotic treatment of bacterial infections. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. The Membrane Steps of Bacterial Cell Wall Synthesis as Antibiotic Targets

    Directory of Open Access Journals (Sweden)

    Yao Liu

    2016-08-01

    Full Text Available Peptidoglycan is the major component of the cell envelope of virtually all bacteria. It has structural roles and acts as a selective sieve for molecules from the outer environment. Peptidoglycan synthesis is therefore one of the most important biogenesis pathways in bacteria and has been studied extensively over the last twenty years. The pathway starts in the cytoplasm, continues in the cytoplasmic membrane and finishes in the periplasmic space, where the precursor is polymerized into the peptidoglycan layer. A number of proteins involved in this pathway, such as the Mur enzymes and the penicillin binding proteins (PBPs, have been studied and regarded as good targets for antibiotics. The present review focuses on the membrane steps of peptidoglycan synthesis that involve two enzymes, MraY and MurG, the inhibitors of these enzymes and the inhibition mechanisms. We also discuss the challenges of targeting these two cytoplasmic membrane (associated proteins in bacterial cells and the perspectives on how to overcome the issues.

  11. Inhibition of bacterial conjugation by phage M13 and its protein g3p: quantitative analysis and model.

    Directory of Open Access Journals (Sweden)

    Abraham Lin

    Full Text Available Conjugation is the main mode of horizontal gene transfer that spreads antibiotic resistance among bacteria. Strategies for inhibiting conjugation may be useful for preserving the effectiveness of antibiotics and preventing the emergence of bacterial strains with multiple resistances. Filamentous bacteriophages were first observed to inhibit conjugation several decades ago. Here we investigate the mechanism of inhibition and find that the primary effect on conjugation is occlusion of the conjugative pilus by phage particles. This interaction is mediated primarily by phage coat protein g3p, and exogenous addition of the soluble fragment of g3p inhibited conjugation at low nanomolar concentrations. Our data are quantitatively consistent with a simple model in which association between the pili and phage particles or g3p prevents transmission of an F plasmid encoding tetracycline resistance. We also observe a decrease in the donor ability of infected cells, which is quantitatively consistent with a reduction in pili elaboration. Since many antibiotic-resistance factors confer susceptibility to phage infection through expression of conjugative pili (the receptor for filamentous phage, these results suggest that phage may be a source of soluble proteins that slow the spread of antibiotic resistance genes.

  12. Proteolysis produced within biofilms of bacterial isolates from raw milk tankers.

    Science.gov (United States)

    Teh, Koon Hoong; Flint, Steve; Palmer, Jon; Andrewes, Paul; Bremer, Phil; Lindsay, Denise

    2012-06-15

    In this study, six bacterial isolates that produced thermo-resistant enzymes isolated from the internal surfaces of raw milk tankers were evaluated for their ability to produce proteolysis within either single culture biofilms or co-culture biofilms. Biofilms were formed in an in vitro model system that simulated the upper internal surface of a raw milk tanker during a typical summer's day of milk collection in New Zealand. The bacterial isolates were further evaluated for their ability to form biofilms at 25, 30 and 37°C. Mutual and competitive effects were observed in some of the co-culture biofilms, with all isolates being able to form biofilms in either single culture or co-culture at the three temperatures. The proteolysis was also evaluated in both biofilms and corresponding planktonic cultures. The proteolysis per cell decreased as the temperature of incubation (20-37°C) increased. Furthermore, mutualistic interactions in terms of proteolysis were observed when cultures were grown as co-culture biofilms. This is the first study to show that proteolytic enzymes can be produced in biofilms on the internal surfaces of raw milk tankers. This has important implications for the cleaning and the temperature control of raw milk transport tankers. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. MurD enzymes: some recent developments.

    Science.gov (United States)

    Šink, Roman; Barreteau, Hélène; Patin, Delphine; Mengin-Lecreulx, Dominique; Gobec, Stanislav; Blanot, Didier

    2013-12-01

    The synthesis of the peptide stem of bacterial peptidoglycan involves four enzymes, the Mur ligases (MurC, D, E and F). Among them, MurD is responsible for the ATP-dependent addition of d-glutamic acid to UDP-MurNAc-l-Ala, a reaction which involves acyl-phosphate and tetrahedral intermediates. Like most enzymes of peptidoglycan biosynthesis, MurD constitutes an attractive target for the design and synthesis of new antibacterial agents. Escherichia coli MurD has been the first Mur ligase for which the tridimensional (3D) structure was solved. Thereafter, several co-crystal structures with different ligands or inhibitors were released. In the present review, we will deal with work performed on substrate specificity, reaction mechanism and 3D structure of E. coli MurD. Then, a part of the review will be devoted to recent work on MurD orthologs from species other than E. coli and to cellular organization of Mur ligases and in vivo regulation of the MurD activity. Finally, we will review the different classes of MurD inhibitors that have been designed and assayed to date with the hope of obtaining new antibacterial compounds.

  14. Anti-bacterial activity of Achatina CRP and its mechanism of action.

    Science.gov (United States)

    Mukherjee, Sandip; Barman, Soma; Mandal, Narayan Chandra; Bhattacharya, Shelley

    2014-07-01

    The physiological role of C-reactive protein (CRP), the classical acute-phase protein, is not well documented, despite many reports on biological effects of CRP in vitro and in model systems in vivo. It has been suggested that CRP protects mice against lethal toxicity of bacterial infections by implementing immunological responses. In Achatina fulica CRP is a constitutive multifunctional protein in haemolymph and considered responsible for their survival in the environment for millions of years. The efficacy of Achatina CRP (ACRP) was tested against both Salmonella typhimurium and Bacillus subtilis infections in mice where endogenous CRP level is negligible even after inflammatory stimulus. Further, growth curves of the bacteria revealed that ACRP (50 microg/mL) is bacteriostatic against gram negative salmonellae and bactericidal against gram positive bacilli. ACRP induced energy crises in bacterial cells, inhibited key carbohydrate metabolic enzymes such as phosphofructokinase in glycolysis, isocitrate dehydrogenase in TCA cycle, isocitrate lyase in glyoxylate cycle and fructose-1,6-bisphosphatase in gluconeogenesis. ACRP disturbed the homeostasis of cellular redox potential as well as reduced glutathione status, which is accompanied by an enhanced rate of lipid peroxidation. Annexin V-Cy3/CFDA dual staining clearly showed ACRP induced apoptosis-like death in bacterial cell population. Moreover, immunoblot analyses also indicated apoptosis-like death in ACRP treated bacterial cells, where activation of poly (ADP-ribose) polymerase-1 (PARP) and caspase-3 was noteworthy. It is concluded that metabolic impairment by ACRP in bacterial cells is primarily due to generation of reactive oxygen species and ACRP induced anti-bacterial effect is mediated by metabolic impairment leading to apoptosis-like death in bacterial cells.

  15. Evolutionary history, structural features and biochemical diversity of the NlpC/P60 superfamily of enzymes.

    Science.gov (United States)

    Anantharaman, Vivek; Aravind, L

    2003-01-01

    Peptidoglycan is hydrolyzed by a diverse set of enzymes during bacterial growth, development and cell division. The N1pC/P60 proteins define a family of cell-wall peptidases that are widely represented in various bacterial lineages. Currently characterized members are known to hydrolyze D-gamma-glutamyl-meso-diaminopimelate or N-acetylmuramate-L-alanine linkages. Detailed analysis of the N1pC/P60 peptidases showed that these proteins define a large superfamily encompassing several diverse groups of proteins. In addition to the well characterized P60-like proteins, this superfamily includes the AcmB/LytN and YaeF/YiiX families of bacterial proteins, the amidase domain of bacterial and kinetoplastid glutathionylspermidine synthases (GSPSs), and several proteins from eukaryotes, phages, poxviruses, positive-strand RNA viruses, and certain archaea. The eukaryotic members include lecithin retinol acyltransferase (LRAT), nematode developmental regulator Egl-26, and candidate tumor suppressor H-rev107. These eukaryotic proteins, along with the bacterial YaeF/poxviral G6R family, show a circular permutation of the catalytic domain. We identified three conserved residues, namely a cysteine, a histidine and a polar residue, that are involved in the catalytic activities of this superfamily. Evolutionary analysis of this superfamily shows that it comprises four major families, with diverse domain architectures in each of them. Several related, but distinct, catalytic activities, such as murein degradation, acyl transfer and amide hydrolysis, have emerged in the N1pC/P60 superfamily. The three conserved catalytic residues of this superfamily are shown to be equivalent to the catalytic triad of the papain-like thiol peptidases. The predicted structural features indicate that the N1pC/P60 enzymes contain a fold similar to the papain-like peptidases, transglutaminases and arylamine acetyltransferases.

  16. Assessment of hemolytic activity, enzyme production and bacteriocin characterization of Bacillus subtilis LR1 isolated from the gastrointestinal tract of fish.

    Science.gov (United States)

    Banerjee, Goutam; Nandi, Ankita; Ray, Arun Kumar

    2017-01-01

    In the present investigation, probiotic potential (antagonistic activity, enzyme production, hemolytic activity, biosafety, antibiotic sensitivity and bile tolerance level) of Bacillus subtilis LR1 was evaluated. Bacteriocin produced by the bacterial strain B. subtilis LR1 isolated from the gastrointestinal tract of Labeo rohita was purified and characterized. The molecular weight of the purified bacteriocin was ~50 kDa in 12 % Native PAGE and showed inhibitory activity against four fish pathogens such as Bacillus mycoides, Aeromonas salmonicida, Pseudomonas fluorescens and Aeromonas hydrophila. The purified bacteriocin was maximally active at temperature 40 °C and pH 7.0, while none of the tested surfactants affect the bacteriocin activity. Extracellular enzyme activity of the selected bacterial strain was also evaluated. Amylase activity was estimated to be highest (38.23 ± 1.15 µg of maltose liberated mg -1  protein ml -1 of culture filtrate) followed by cellulase and protease activity. The selected bacterium was sensitive to most of the antibiotics used in this experiment, can tolerate 0.25 % bile salt and non-hemolytic in nature. Finally, the efficiency of the proposed probiotic candidate was evaluated in in vivo condition. It was detected that the bacterial strain can effectively reduce bacterial pathogenicity in Indian major carps.

  17. Substrate specificity of low-molecular mass bacterial DD-peptidases.

    Science.gov (United States)

    Nemmara, Venkatesh V; Dzhekieva, Liudmila; Sarkar, Kumar Subarno; Adediran, S A; Duez, Colette; Nicholas, Robert A; Pratt, R F

    2011-11-22

    The bacterial DD-peptidases or penicillin-binding proteins (PBPs) catalyze the formation and regulation of cross-links in peptidoglycan biosynthesis. They are classified into two groups, the high-molecular mass (HMM) and low-molecular mass (LMM) enzymes. The latter group, which is subdivided into classes A-C (LMMA, -B, and -C, respectively), is believed to catalyze DD-carboxypeptidase and endopeptidase reactions in vivo. To date, the specificity of their reactions with particular elements of peptidoglycan structure has not, in general, been defined. This paper describes the steady-state kinetics of hydrolysis of a series of specific peptidoglycan-mimetic peptides, representing various elements of stem peptide structure, catalyzed by a range of LMM PBPs (the LMMA enzymes, Escherichia coli PBP5, Neisseria gonorrhoeae PBP4, and Streptococcus pneumoniae PBP3, and the LMMC enzymes, the Actinomadura R39 dd-peptidase, Bacillus subtilis PBP4a, and N. gonorrhoeae PBP3). The R39 enzyme (LMMC), like the previously studied Streptomyces R61 DD-peptidase (LMMB), specifically and rapidly hydrolyzes stem peptide fragments with a free N-terminus. In accord with this result, the crystal structures of the R61 and R39 enzymes display a binding site specific to the stem peptide N-terminus. These are water-soluble enzymes, however, with no known specific function in vivo. On the other hand, soluble versions of the remaining enzymes of those noted above, all of which are likely to be membrane-bound and/or associated in vivo and have been assigned particular roles in cell wall biosynthesis and maintenance, show little or no specificity for peptides containing elements of peptidoglycan structure. Peptidoglycan-mimetic boronate transition-state analogues do inhibit these enzymes but display notable specificity only for the LMMC enzymes, where, unlike peptide substrates, they may be able to effectively induce a specific active site structure. The manner in which LMMA (and HMM) DD

  18. The Transmissibility of Antibiotic-Resistant Enterobacteriaceae in Intensive Care Units

    NARCIS (Netherlands)

    Gurieva, Tanya; Dautzenberg, Mirjam J D; Gniadkowski, Marek; Derde, Lennie P G; Bonten, Marc J M; Bootsma, Martin C J

    2018-01-01

    Background: The global emergence of infections caused by Enterobacteriaceae resistant to expanded-spectrum cephalosporins (ESCs) in intensive care units (ICUs) is, at least partly, driven by cross-transmission. Yet, individual transmission capacities of bacterial species have not been quantified.

  19. The transmissibility of antibiotic-resistant Enterobacteriaceae in Intensive Care Units

    NARCIS (Netherlands)

    Gurieva, Tanya; Dautzenberg, Mirjam J D; Gniadkowski, Marek; Derde, Lennie P G; Bonten, Marc J M; Bootsma, Martin C J|info:eu-repo/dai/nl/304830305

    2017-01-01

    Background: The global emergence of infections caused by Enterobacteriaceae resistant to expanded-spectrum cephalosporins (ESCs) in intensive care units (ICUs) is, at least partly, driven by cross-transmission. Yet, individual transmission capacities of bacterial species have not been quantified.

  20. Formation of Chromophoric Dissolved Organic Matter by Bacterial Degradation of Phytoplankton-Derived Aggregates

    Directory of Open Access Journals (Sweden)

    Joanna D. Kinsey

    2018-01-01

    Full Text Available Organic matter produced and released by phytoplankton during growth is processed by heterotrophic bacterial communities that transform dissolved organic matter into biomass and recycle inorganic nutrients, fueling microbial food web interactions. Bacterial transformation of phytoplankton-derived organic matter also plays a poorly known role in the formation of chromophoric dissolved organic matter (CDOM which is ubiquitous in the ocean. Despite the importance of organic matter cycling, growth of phytoplankton and activities of heterotrophic bacterial communities are rarely measured in concert. To investigate CDOM formation mediated by microbial processing of phytoplankton-derived aggregates, we conducted growth experiments with non-axenic monocultures of three diatoms (Skeletonema grethae, Leptocylindrus hargravesii, Coscinodiscus sp. and one haptophyte (Phaeocystis globosa. Phytoplankton biomass, carbon concentrations, CDOM and base-extracted particulate organic matter (BEPOM fluorescence, along with bacterial abundance and hydrolytic enzyme activities (α-glucosidase, β-glucosidase, leucine-aminopeptidase were measured during exponential growth and stationary phase (~3–6 weeks and following 6 weeks of degradation. Incubations were performed in rotating glass bottles to keep cells suspended, promoting cell coagulation and, thus, formation of macroscopic aggregates (marine snow, more similar to surface ocean processes. Maximum carbon concentrations, enzyme activities, and BEPOM fluorescence occurred during stationary phase. Net DOC concentrations (0.19–0.46 mg C L−1 increased on the same order as open ocean concentrations. CDOM fluorescence was dominated by protein-like signals that increased throughout growth and degradation becoming increasingly humic-like, implying the production of more complex molecules from planktonic-precursors mediated by microbial processing. Our experimental results suggest that at least a portion of open

  1. Influence of the enzyme dissimilatory sulfite reductase on stable isotope fractionation during sulfate reduction

    Science.gov (United States)

    Mangalo, Muna; Einsiedl, Florian; Meckenstock, Rainer U.; Stichler, Willibald

    2008-03-01

    The stable isotopes of sulfate are often used as a tool to assess bacterial sulfate reduction on the macro scale. However, the mechanisms of stable isotope fractionation of sulfur and oxygen at the enzymatic level are not yet fully understood. In batch experiments with water enriched in 18O we investigated the effect of different nitrite concentrations on sulfur isotope fractionation by Desulfovibrio desulfuricans. With increasing nitrite concentrations, we found sulfur isotope enrichment factors ranging from -11.2 ± 1.8‰ to -22.5 ± 3.2‰. Furthermore, the δ18O values in the remaining sulfate increased from approximately 50-120‰ when 18O-enriched water was supplied. Since 18O-exchange with ambient water does not take place in sulfate, but rather in intermediates of the sulfate reduction pathway (e.g. SO32-), we suggest that nitrite affects the steady-state concentration and the extent of reoxidation of the metabolic intermediate sulfite to sulfate during sulfate reduction. Given that nitrite is known to inhibit the production of the enzyme dissimilatory sulfite reductase, our results suggest that the activity of the dissimilatory sulfite reductase regulates the kinetic isotope fractionation of sulfur and oxygen during bacterial sulfate reduction. Our novel results also imply that isotope fractionation during bacterial sulfate reduction strongly depends on the cell internal enzymatic regulation rather than on the physico-chemical features of the individual enzymes.

  2. Oxygen isotopic fractionation during bacterial sulfate reduction

    Science.gov (United States)

    Balci, N.; Turchyn, A. V.; Lyons, T.; Bruchert, V.; Schrag, D. P.; Wall, J.

    2006-12-01

    Sulfur isotope fractionation during bacterial sulfate reduction (BSR) is understood to depend on a variety of environmental parameters, such as sulfate concentration, temperature, cell specific sulfate reduction rates, and the carbon substrate. What controls oxygen isotope fractionation during BSR is less well understood. Some studies have suggested that carbon substrate is important, whereas others concluded that there is a stoichiometric relationship between the fractionations of sulfur and oxygen during BSR. Studies of oxygen fractionation are complicated by isotopic equilibration between sulfur intermediates, particularly sulfite, and water. This process can modify the isotopic composition of the extracellular sulfate pool (δ18OSO4 ). Given this, the challenge is to distinguish between this isotopic equilibration and fractionations linked to the kinetic effects of the intercellular enzymes and the incorporation of sulfate into the bacterial cell. The δ18OSO4 , in concert with the sulfur isotope composition of sulfate (δ34SSO4), could be a powerful tool for understanding the pathways and environmental controls of BSR in natural systems. We will present δ18OSO4 data measured from batch culture growth of 14 different species of sulfate reducing bacteria for which sulfur isotope data were previously published. A general observation is that δ18OSO4 shows little isotopic change (kinetic effect during BSR and/or equilibration between sulfur intermediates and the isotopically light water (~-5‰) of the growth medium. Our present batch culture data do not allow us to convincingly isolate the magnitude and the controlling parameters of the kinetic isotope effect for oxygen. However, ongoing growth of mutant bacteria missing enzymes critical in the different steps of BSR may assist in this mission.

  3. The predominant molecular state of bound enzyme determines the strength and type of product inhibition in the hydrolysis of recalcitrant polysaccharides by processive enzymes.

    Science.gov (United States)

    Kuusk, Silja; Sørlie, Morten; Väljamäe, Priit

    2015-05-01

    Processive enzymes are major components of the efficient enzyme systems that are responsible for the degradation of the recalcitrant polysaccharides cellulose and chitin. Despite intensive research, there is no consensus on which step is rate-limiting for these enzymes. Here, we performed a comparative study of two well characterized enzymes, the cellobiohydrolase Cel7A from Hypocrea jecorina and the chitinase ChiA from Serratia marcescens. Both enzymes were inhibited by their disaccharide product, namely chitobiose for ChiA and cellobiose for Cel7A. The products behaved as noncompetitive inhibitors according to studies using the (14)C-labeled crystalline polymeric substrates (14)C chitin nanowhiskers and (14)C-labeled bacterial microcrystalline cellulose for ChiA and Cel7A, respectively. The resulting observed Ki (obs) values were 0.45 ± 0.08 mm for ChiA and 0.17 ± 0.02 mm for Cel7A. However, in contrast to ChiA, the Ki (obs) of Cel7A was an order of magnitude higher than the true Ki value governed by the thermodynamic stability of the enzyme-inhibitor complex. Theoretical analysis of product inhibition suggested that the inhibition strength and pattern can be accounted for by assuming different rate-limiting steps for ChiA and Cel7A. Measuring the population of enzymes whose active site was occupied by a polymer chain revealed that Cel7A was bound predominantly via its active site. Conversely, the active-site-mediated binding of ChiA was slow, and most ChiA exhibited a free active site, even when the substrate concentration was saturating for the activity. Collectively, our data suggest that complexation with the polymer chain is rate-limiting for ChiA, whereas Cel7A is limited by dissociation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Benzene-1,3-dicarboxylic acid 2,5-dimethylpyrrole derivatives as multiple inhibitors of bacterial Mur ligases (MurC-MurF).

    Science.gov (United States)

    Perdih, Andrej; Hrast, Martina; Barreteau, Hélène; Gobec, Stanislav; Wolber, Gerhard; Solmajer, Tom

    2014-08-01

    Enzymes catalyzing the biosynthesis of bacterial peptidoglycan represent traditionally a collection of highly selective targets for novel antibacterial drug design. Four members of the bacterial Mur ligase family-MurC, MurD, MurE and MurF-are involved in the intracellular steps of peptidoglycan biosynthesis, catalyzing the synthesis of the peptide moiety of the Park's nucleotide. In our previous virtual screening campaign, a chemical class of benzene-1,3-dicarboxylic acid 2,5-dimethylpyrrole derivatives exhibiting dual MurD/MurE inhibition properties was discovered. In the present study we further investigated this class of compounds by performing inhibition assays on all four Mur ligases (MurC-MurF). Furthermore, molecular dynamics (MD) simulation studies of one of the initially discovered compound 1 were performed to explore its geometry as well as its energetic behavior based on the Linear Interaction Energy (LIE) method. Further in silico virtual screening (VS) experiments based on the parent active compound 1 were conducted to optimize the discovered series. Selected hits were assayed against all Escherichia coli MurC-MurF enzymes in biochemical inhibition assays and molecules 10-14 containing benzene-1,3-dicarboxylic acid 2,5-dimethylpyrrole coupled with five member-ring rhodanine moiety were found to be multiple inhibitors of the whole MurC-MurF cascade of bacterial enzymes in the micromolar range. Steady-state kinetics studies suggested this class to act as competitive inhibitors of the MurD enzyme towards d-Glu. These compounds represent novel valuable starting point in the development of novel antibacterial agents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Magnetically modified bacterial cellulose: A promising carrier for immobilization of affinity ligands, enzymes, and cells

    Czech Academy of Sciences Publication Activity Database

    Baldíková, E.; Pospíšková, K.; Ladakis, D.; Kookos, I.K.; Koutinas, A.A.; Šafaříková, Miroslava; Šafařík, Ivo

    2017-01-01

    Roč. 71, February (2017), s. 214-221 ISSN 0928-4931 Institutional support: RVO:60077344 Keywords : bacterial cellulose * Komagataeibacter sucrofermentans * copper phthalocyanine * crystal violet * yeast cells * trypsin Subject RIV: EI - Biotechnology ; Bionics OBOR OECD: Bioproducts (products that are manufactured using biological material as feedstock) biomaterials, bioplastics, biofuels, bioderived bulk and fine chemicals, bio-derived novel materials Impact factor: 4.164, year: 2016

  6. Factors influencing ruminal bacterial community diversity and composition and microbial fibrolytic enzyme abundance in lactating dairy cows with a focus on the role of active dry yeast.

    Science.gov (United States)

    AlZahal, Ousama; Li, Fuyong; Guan, Le Luo; Walker, Nicola D; McBride, Brian W

    2017-06-01

    and solids than control samples. This increase with ADY was paralleled by a reduction in prominent Prevotella OTU. Metatranscriptomic profiling of rumen microbiome conducted on random samples from the HG phase showed that ADY increased the abundance of the cellulase endo-β-1,4-glucanase and had a tendency to increase the hemicellulase α-glucuronidase. In conclusion, the shift from high forage to HG and sampling location had a more significant influence on ruminal bacterial community abundance and structure compared with ADY. However, evidence suggested that ADY can increase the abundance of some dominant anaerobic OTU belonging to F. succinogenes and phylum SR1. Further, microbial mRNA-based evidence suggested that ADY can increase the abundance of a specific microbial fibrolytic enzymes. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  7. Systems biology of bacterial nitrogen fixation: High-throughput technology and its integrative description with constraint-based modeling

    Directory of Open Access Journals (Sweden)

    Resendis-Antonio Osbaldo

    2011-07-01

    Full Text Available Abstract Background Bacterial nitrogen fixation is the biological process by which atmospheric nitrogen is uptaken by bacteroids located in plant root nodules and converted into ammonium through the enzymatic activity of nitrogenase. In practice, this biological process serves as a natural form of fertilization and its optimization has significant implications in sustainable agricultural programs. Currently, the advent of high-throughput technology supplies with valuable data that contribute to understanding the metabolic activity during bacterial nitrogen fixation. This undertaking is not trivial, and the development of computational methods useful in accomplishing an integrative, descriptive and predictive framework is a crucial issue to decoding the principles that regulated the metabolic activity of this biological process. Results In this work we present a systems biology description of the metabolic activity in bacterial nitrogen fixation. This was accomplished by an integrative analysis involving high-throughput data and constraint-based modeling to characterize the metabolic activity in Rhizobium etli bacteroids located at the root nodules of Phaseolus vulgaris (bean plant. Proteome and transcriptome technologies led us to identify 415 proteins and 689 up-regulated genes that orchestrate this biological process. Taking into account these data, we: 1 extended the metabolic reconstruction reported for R. etli; 2 simulated the metabolic activity during symbiotic nitrogen fixation; and 3 evaluated the in silico results in terms of bacteria phenotype. Notably, constraint-based modeling simulated nitrogen fixation activity in such a way that 76.83% of the enzymes and 69.48% of the genes were experimentally justified. Finally, to further assess the predictive scope of the computational model, gene deletion analysis was carried out on nine metabolic enzymes. Our model concluded that an altered metabolic activity on these enzymes induced

  8. Mitochondrial localization of the mevalonate pathway enzyme 3-Hydroxy-3-methyl-glutaryl-CoA reductase in the Trypanosomatidae

    DEFF Research Database (Denmark)

    Pena Diaz, Javier; Montalvetti, Andrea; Flores, Carmen-Lisset

    2004-01-01

    3-Hydroxy-3-methyl-glutaryl-CoA reductase (HMGR) is a key enzyme in the sterol biosynthesis pathway, but its subcellular distribution in the Trypanosomatidae family is somewhat controversial. Trypanosoma cruzi and Leishmania HMGRs are closely related in their catalytic domains to bacterial and eu...

  9. Targeting Bacterial Dsb Proteins for the Development of Anti-Virulence Agents

    Directory of Open Access Journals (Sweden)

    Roxanne P. Smith

    2016-07-01

    Full Text Available Recent years have witnessed a dramatic increase in bacterial antimicrobial resistance and a decline in the development of novel antibiotics. New therapeutic strategies are urgently needed to combat the growing threat posed by multidrug resistant bacterial infections. The Dsb disulfide bond forming pathways are potential targets for the development of antimicrobial agents because they play a central role in bacterial pathogenesis. In particular, the DsbA/DsbB system catalyses disulfide bond formation in a wide array of virulence factors, which are essential for many pathogens to establish infections and cause disease. These redox enzymes are well placed as antimicrobial targets because they are taxonomically widespread, share low sequence identity with human proteins, and many years of basic research have provided a deep molecular understanding of these systems in bacteria. In this review, we discuss disulfide bond catalytic pathways in bacteria and their significance in pathogenesis. We also review the use of different approaches to develop inhibitors against Dsb proteins as potential anti-virulence agents, including fragment-based drug discovery, high-throughput screening and other structure-based drug discovery methods.

  10. Calcined Eggshell Waste for Mitigating Soil Antibiotic-Resistant Bacteria/Antibiotic Resistance Gene Dissemination and Accumulation in Bell Pepper.

    Science.gov (United States)

    Ye, Mao; Sun, Mingming; Feng, Yanfang; Li, Xu; Schwab, Arthur P; Wan, Jinzhong; Liu, Manqiang; Tian, Da; Liu, Kuan; Wu, Jun; Jiang, Xin

    2016-07-13

    The combined accumulation of antibiotics, heavy metals, antibiotic-resistant bacteria (ARB)/antibiotic resistance genes (ARGs) in vegetables has become a new threat to human health. This is the first study to investigate the feasibility of calcined eggshells modified by aluminum sulfate as novel agricultural wastes to impede mixed contaminants from transferring to bell pepper (Capsicum annuum L.). In this work, calcined eggshell amendment mitigated mixed pollutant accumulation in bell pepper significantly, enhanced the dissipation of soil tetracycline, sulfadiazine, roxithromycin, and chloramphenicol, decreased the water-soluble fractions of antibiotics, and declined the diversity of ARB/ARGs inside the vegetable. Moreover, quantitative polymerase chain reaction analysis detected that ARG levels in the bell pepper fruits significantly decreased to 10(-10) copies/16S copies, indicating limited risk of ARGs transferring along the food chain. Furthermore, the restoration of soil microbial biological function suggests that calcined eggshell is an environmentally friendly amendment to control the dissemination of soil ARB/ARGs in the soil-vegetable system.

  11. An improved plating assay for determination of phage titer

    African Journals Online (AJOL)

    RACHEL

    antibiotics to control bacterial infections in swine (Thacker,. 2014). Phage therapy is re-valued by researchers to combat the growing menace of antibiotic-resistant infections (Torres-Barceló and Hochberg, 2016). Determination of phage titer in a sample is a key step in the study of the phage involved. It is very important to.

  12. Bacterial microcompartments as metabolic modules for plant synthetic biology.

    Science.gov (United States)

    Gonzalez-Esquer, C Raul; Newnham, Sarah E; Kerfeld, Cheryl A

    2016-07-01

    Bacterial microcompartments (BMCs) are megadalton-sized protein assemblies that enclose segments of metabolic pathways within cells. They increase the catalytic efficiency of the encapsulated enzymes while sequestering volatile or toxic intermediates from the bulk cytosol. The first BMCs discovered were the carboxysomes of cyanobacteria. Carboxysomes compartmentalize the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) with carbonic anhydrase. They enhance the carboxylase activity of RuBisCO by increasing the local concentration of CO2 in the vicinity of the enzyme's active site. As a metabolic module for carbon fixation, carboxysomes could be transferred to eukaryotic organisms (e.g. plants) to increase photosynthetic efficiency. Within the scope of synthetic biology, carboxysomes and other BMCs hold even greater potential when considered a source of building blocks for the development of nanoreactors or three-dimensional scaffolds to increase the efficiency of either native or heterologously expressed enzymes. The carboxysome serves as an ideal model system for testing approaches to engineering BMCs because their expression in cyanobacteria provides a sensitive screen for form (appearance of polyhedral bodies) and function (ability to grow on air). We recount recent progress in the re-engineering of the carboxysome shell and core to offer a conceptual framework for the development of BMC-based architectures for applications in plant synthetic biology. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  13. Cysteamine-mediated clearance of antibiotic-resistant pathogens in human cystic fibrosis macrophages.

    Directory of Open Access Journals (Sweden)

    Chandra L Shrestha

    Full Text Available Members of the Burkholderia cepacia complex are virulent, multi-drug resistant pathogens that survive and replicate intracellularly in patients with cystic fibrosis (CF. We have discovered that B. cenocepacia cannot be cleared from CF macrophages due to defective autophagy, causing continued systemic inflammation and infection. Defective autophagy in CF is mediated through constitutive reactive oxygen species (ROS activation of transglutaminase-2 (TG2, which causes the sequestration (accumulation of essential autophagy initiating proteins. Cysteamine is a TG2 inhibitor and proteostasis regulator with the potential to restore autophagy. Therefore, we sought to examine the impact of cysteamine on CF macrophage autophagy and bacterial killing. Human peripheral blood monocyte-derived macrophages (MDMs and alveolar macrophages were isolated from CF and non-CF donors. Macrophages were infected with clinical isolates of relevant CF pathogens. Cysteamine caused direct bacterial growth killing of live B. cenocepacia, B. multivorans, P. aeruginosa and MRSA in the absence of cells. Additionally, B. cenocepacia, B. multivorans, and P. aeruginosa invasion were significantly decreased in CF MDMs treated with cysteamine. Finally, cysteamine decreased TG2, p62, and beclin-1 accumulation in CF, leading to increased Burkholderia uptake into autophagosomes, increased macrophage CFTR expression, and decreased ROS and IL-1β production. Cysteamine has direct anti-bacterial growth killing and improves human CF macrophage autophagy resulting in increased macrophage-mediated bacterial clearance, decreased inflammation, and reduced constitutive ROS production. Thus, cysteamine may be an effective adjunct to antibiotic regimens in CF.

  14. Dynamic Changes in Bacterial Population and Corresponding Exoenzyme Activity in Response to a Tropical Phytoplankton Bloom Chattonella marina

    Directory of Open Access Journals (Sweden)

    Anit M. Thomas

    2014-01-01

    Full Text Available The raphidophyte Chattonella marina (Subrahmanyan Hara & Chihara bloom which causes lethal effects on marine ecosystem has been reported intermittently from Indian waters. In the present study, periodic samplings were made in a Chattonella marina bloom area, off Mahe, on 27 and 29 October and 1 November 2011 (in different phases of the bloom to assess the associated bacterial population and their exoenzyme activity. Microbial community composition of Chattonella marina bloom revealed a twentyfold increase in bacterial load over the nonbloom area. The bacterial genera, Micrococcus, Flavobacterium, Vibrio, and Pseudomonas, increased significantly during the declining phase of the bloom. An assessment of the extracellular enzyme production also showed a marked increase in percentage of bacterial strains, potent in protease production, suggesting the possible role of proteolytic bacteria in bloom crash. This study reveals the bacterial community succession during the bloom and indicates that bacteria play an important role in bloom regulation.

  15. How Nature Morphs Peptide Scaffolds into Antibiotics

    Science.gov (United States)

    Nolan, Elizabeth M.; Walsh, Christopher T.

    2010-01-01

    The conventional notion that peptides are poor candidates for orally available drugs because of protease-sensitive peptide bonds, intrinsic hydrophilicity, and ionic charges contrasts with the diversity of antibiotic natural products with peptide-based frameworks that are synthesized and utilized by Nature. Several of these antibiotics, including penicillin and vancomycin, are employed to treat bacterial infections in humans and have been best-selling therapeutics for decades. Others might provide new platforms for the design of novel therapeutics to combat emerging antibiotic-resistant bacterial pathogens. PMID:19058272

  16. Identification of Pectin Degrading Enzymes Secreted by Xanthomonas oryzae pv. oryzae and Determination of Their Role in Virulence on Rice

    OpenAIRE

    Tayi, Lavanya; Maku, Roshan V.; Patel, Hitendra Kumar; Sonti, Ramesh V.

    2016-01-01

    Xanthomonas oryzae pv.oryzae (Xoo) causes the serious bacterial blight disease of rice. Xoo secretes a repertoire of plant cell wall degrading enzymes (CWDEs) like cellulases, xylanases, esterases etc., which act on various components of the rice cell wall. The major cellulases and xylanases secreted by Xoo have been identified and their role in virulence has been determined. In this study, we have identified some of the pectin degrading enzymes of Xoo and assessed their role in virulence. Bi...

  17. Thermus Thermophilus as a Model System for the Study of Ribosomal Antibiotic Resistance

    Science.gov (United States)

    Gregory, Steven T.

    2018-03-01

    Ribosomes are the intracellular ribonucleoprotein machines responsible for the translation of mRNA sequence into protein sequence. As an essential cell component, the ribosome is the target of numerous antibiotics that bind to critical functional sites to impair protein synthesis. Mutations causing resistance to antibiotics arise in antibiotic binding sites, and an understanding of the basis of resistance will be an essential component of efforts to develop new antibiotics by rational drug design. We have identified a number of antibiotic-resistance mutations in ribosomal genes of the thermophilic bacterium Thermus thermophilus. This species offers two primary advantages for examining the structural basis of antibiotic-resistance, in particular, its potential for genetic manipulation and the suitability of its ribosomes for analysis by X-ray crystallography. Mutations we have identified in this organism are in many instances identical to those found in other bacterial species, including important pathogens, a result of the extreme conservation of ribosome functional sites. Here I summarize the advantages of this organism as a model system to study antibiotic-resistance mechanisms at the molecular level.

  18. Computational Analysis of Uncharacterized Proteins of Environmental Bacterial Genome

    Science.gov (United States)

    Coxe, K. J.; Kumar, M.

    2017-12-01

    Betaproteobacteria strain CB is a gram-negative bacterium in the phylum Proteobacteria and are found naturally in soil and water. In this complex environment, bacteria play a key role in efficiently eliminating the organic material and other pollutants from wastewater. To investigate the process of pollutant removal from wastewater using bacteria, it is important to characterize the proteins encoded by the bacterial genome. Our study combines a number of bioinformatics tools to predict the function of unassigned proteins in the bacterial genome. The genome of Betaproteobacteria strain CB contains 2,112 proteins in which function of 508 proteins are unknown, termed as uncharacterized proteins (UPs). The localization of the UPs with in the cell was determined and the structure of 38 UPs was accurately predicted. These UPs were predicted to belong to various classes of proteins such as enzymes, transporters, binding proteins, signal peptides, transmembrane proteins and other proteins. The outcome of this work will help better understand wastewater treatment mechanism.

  19. Bacterial Cell Enlargement Requires Control of Cell Wall Stiffness Mediated by Peptidoglycan Hydrolases.

    Science.gov (United States)

    Wheeler, Richard; Turner, Robert D; Bailey, Richard G; Salamaga, Bartłomiej; Mesnage, Stéphane; Mohamad, Sharifah A S; Hayhurst, Emma J; Horsburgh, Malcolm; Hobbs, Jamie K; Foster, Simon J

    2015-07-28

    Most bacterial cells are enclosed in a single macromolecule of the cell wall polymer, peptidoglycan, which is required for shape determination and maintenance of viability, while peptidoglycan biosynthesis is an important antibiotic target. It is hypothesized that cellular enlargement requires regional expansion of the cell wall through coordinated insertion and hydrolysis of peptidoglycan. Here, a group of (apparent glucosaminidase) peptidoglycan hydrolases are identified that are together required for cell enlargement and correct cellular morphology of Staphylococcus aureus, demonstrating the overall importance of this enzyme activity. These are Atl, SagA, ScaH, and SagB. The major advance here is the explanation of the observed morphological defects in terms of the mechanical and biochemical properties of peptidoglycan. It was shown that cells lacking groups of these hydrolases have increased surface stiffness and, in the absence of SagB, substantially increased glycan chain length. This indicates that, beyond their established roles (for example in cell separation), some hydrolases enable cellular enlargement by making peptidoglycan easier to stretch, providing the first direct evidence demonstrating that cellular enlargement occurs via modulation of the mechanical properties of peptidoglycan. Understanding bacterial growth and division is a fundamental problem, and knowledge in this area underlies the treatment of many infectious diseases. Almost all bacteria are surrounded by a macromolecule of peptidoglycan that encloses the cell and maintains shape, and bacterial cells must increase the size of this molecule in order to enlarge themselves. This requires not only the insertion of new peptidoglycan monomers, a process targeted by antibiotics, including penicillin, but also breakage of existing bonds, a potentially hazardous activity for the cell. Using Staphylococcus aureus, we have identified a set of enzymes that are critical for cellular enlargement. We

  20. Multidrug-Resistant Enterococcal Infections: New Compounds, Novel Antimicrobial Therapies?

    Science.gov (United States)

    van Harten, Roel M; Willems, Rob J L; Martin, Nathaniel I; Hendrickx, Antoni P A

    2017-06-01

    Over the past two decades infections due to antibiotic-resistant bacteria have escalated world-wide, affecting patient morbidity, mortality, and health care costs. Among these bacteria, Enterococcus faecium and Enterococcus faecalis represent opportunistic nosocomial pathogens that cause difficult-to-treat infections because of intrinsic and acquired resistance to a plethora of antibiotics. In recent years, a number of novel antimicrobial compound classes have been discovered and developed that target Gram-positive bacteria, including E. faecium and E. faecalis. These new antibacterial agents include teixobactin (targeting lipid II and lipid III), lipopeptides derived from nisin (targeting lipid II), dimeric vancomycin analogues (targeting lipid II), sortase transpeptidase inhibitors (targeting the sortase enzyme), alanine racemase inhibitors, lipoteichoic acid synthesis inhibitors (targeting LtaS), various oxazolidinones (targeting the bacterial ribosome), and tarocins (interfering with teichoic acid biosynthesis). The targets of these novel compounds and mode of action make them very promising for further antimicrobial drug development and future treatment of Gram-positive bacterial infections. Here we review current knowledge of the most favorable anti-enterococcal compounds along with their implicated modes of action and efficacy in animal models to project their possible future use in the clinical setting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Discovery of new enzymes and metabolic pathways using structure and genome context

    Science.gov (United States)

    Zhao, Suwen; Kumar, Ritesh; Sakai, Ayano; Vetting, Matthew W.; Wood, B. McKay; Brown, Shoshana; Bonanno, Jeffery B.; Hillerich, Brandan S.; Seidel, Ronald D.; Babbitt, Patricia C.; Almo, Steven C.; Sweedler, Jonathan V.; Gerlt, John A.; Cronan, John E.; Jacobson, Matthew P.

    2014-01-01

    Assigning valid functions to proteins identified in genome projects is challenging, with over-prediction and database annotation errors major concerns1. We, and others2, are developing computation-guided strategies for functional discovery using “metabolite docking” to experimentally derived3 or homology-based4 three-dimensional structures. Bacterial metabolic pathways often are encoded by “genome neighborhoods” (gene clusters and/or operons), which can provide important clues for functional assignment. We recently demonstrated the synergy of docking and pathway context by “predicting” the intermediates in the glycolytic pathway in E. coli5. Metabolite docking to multiple binding proteins/enzymes in the same pathway increases the reliability of in silico predictions of substrate specificities because the pathway intermediates are structurally similar. We report that structure-guided approaches for predicting the substrate specificities of several enzymes encoded by a bacterial gene cluster allowed i) the correct prediction of the in vitro activity of a structurally characterized enzyme of unknown function (PDB 2PMQ), 2-epimerization of trans-4-hydroxy-L-proline betaine (tHyp-B) and cis-4-hydroxy-D-proline betaine (cHyp-B), and ii) the correct identification of the catabolic pathway in which Hyp-B 2-epimerase participates. The substrate-liganded pose predicted by virtual library screening (docking) was confirmed experimentally. The enzymatic activities in the predicted pathway were confirmed by in vitro assays and genetic analyses; the intermediates were identified by metabolomics; and repression of the genes encoding the pathway by high salt was established by transcriptomics, confirming the osmolyte role of tHyp-B. This study establishes the utility of structure-guide functional predictions to enable the discovery of new metabolic pathways. PMID:24056934

  2. Overcoming the current deadlock in antibiotic research.

    Science.gov (United States)

    Schäberle, Till F; Hack, Ingrid M

    2014-04-01

    Antibiotic-resistant bacteria are on the rise, making it harder to treat bacterial infections. The situation is aggravated by the shrinking of the antibiotic development pipeline. To finance urgently needed incentives for antibiotic research, creative financing solutions are needed. Public-private partnerships (PPPs) are a successful model for moving forward. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Non-bacterial etiologies of diarrheal diseases in Afghanistan.

    Science.gov (United States)

    Elyan, Diaa; Wasfy, Momtaz; El Mohammady, Hanan; Hassan, Khaled; Monestersky, Jesse; Noormal, Bashir; Oyofo, Buhari

    2014-08-01

    Microbial diarrheal diseases are one of the leading causes of child morbidity and mortality in developing countries. This study aimed to identify the main causes of non-bacterial diarrhea in Afghanistan. A total of 699 stools were collected from children aged under 5 years who presented with diarrhea at Indira Gandhi and Kandahar hospitals. Frozen aliquots were preserved for screening against rotavirus, astrovirus, adenovirus, norovirus, Cryptosporidium and Giardia, when bacterial cultures tested negative. Tests were performed at the hospitals after laboratory staff were trained and provided with enzyme-immunoassays and equipment. Results were confirmed at the U.S. Naval Medical Research Unit No. 3, Cairo, Egypt. Of the samples tested, 71.9% (503/699) were infected with one or more pathogens. However, the majority (85.8%; 432/503) showed single infections: rotavirus (72.2%; 329/432), Cryptosporidium (14.1%; 61/432), Giardia (5.1%; 22/432), astrovirus (2.3%; 10/432), adenovirus (1.6%; 7/432) and norovirus (0.7%; 3/432). The remaining 14% (71/503) showed mixed infections of the tested pathogens. Non-bacterial pathogens were identified that could enable health officials to adopt more effective treatment and control measures for diarrhea in Afghanistan. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  4. Synthesis of poly(3-hydroxybutyrate using enzymes Azospirillum brasilense in vitro

    Directory of Open Access Journals (Sweden)

    Soheila Abbasi

    2017-06-01

    Full Text Available Introduction:Polyhydroxyalkaniates (PHAS are bacterial polymers that are formed as naturally occurring storage polyesters by a wide range of microorganisms usually under unbalanced growth conditions. Mechanical properties of PHAS make them suitable replacements for petrochemically produced bulk plastics (polyethylene, polypropylene etc., but in contrast to these commodity plastics PHA are completely degradable to carbon dioxide and water through natural microbiological mineralization. PHAS can be produced by biotechnological processes under controlled conditions. Polyhydroxybotyric acid (PHB was the first of thePHAS discovered and is the most abundant polyester found in bacteria. Materials and methods: First, a rich bacterial suspension prepared from poly(3-hydroxybutyrate, then the cells were broken down and ensure the absence of live cells.The cell free enzymes were added to M9 medium.Then the sample turbidity was measured at a wavelength of 600 nm and incubated at 30°C and centrifiuged at 120rpm. Next, the amount of PHB as well as solution turbidity were measured and compared with control. The physical and chemical analyzes of extracted PHB samples such as UV absorbtion, FTIR, HPLC and HNMR assesed and compared with standard sample. Results: In twelve days this experiment was conducted, from the third day, the amount of polyhydroxybutyrate was measurable and the highest polyhydroxybutyrate was gained on the tenth day. The level of PHB was constant. Moreover, the level of glucose was decreased gradually till the tenth day. By Physico-chemical analysis, production of polyhydroxybutyrate was approved. Discussion and conclusion: In this experiment, the reaction efficiency was 37.5 percent. Probably the rest of glucose could be changed to other intermediate compounds by other enzymes in the sample.Therefore, by purification of the enzyme, usage of specific substrate and optimization of conditions outside the cell could help the production of

  5. Plant Growth Promotion and Suppression of Bacterial Leaf Blight in Rice by Inoculated Bacteria.

    Directory of Open Access Journals (Sweden)

    Sumera Yasmin

    Full Text Available The present study was conducted to evaluate the potential of rice rhizosphere associated antagonistic bacteria for growth promotion and disease suppression of bacterial leaf blight (BLB. A total of 811 rhizospheric bacteria were isolated and screened against 3 prevalent strains of BLB pathogen Xanthomonas oryzae pv. oryzae (Xoo of which five antagonistic bacteria, i.e., Pseudomonas spp. E227, E233, Rh323, Serratia sp. Rh269 and Bacillus sp. Rh219 showed antagonistic potential (zone of inhibition 1-19 mm. Production of siderophores was found to be the common biocontrol determinant and all the strains solubilized inorganic phosphate (82-116 μg mL-1 and produced indole acetic acid (0.48-1.85 mg L-1 in vitro. All antagonistic bacteria were non-pathogenic to rice, and their co-inoculation significantly improved plant health in terms of reduced diseased leaf area (80%, improved shoot length (31%, root length (41% and plant dry weight (60% as compared to infected control plants. Furthermore, under pathogen pressure, bacterial inoculation resulted in increased activity of defense related enzymes including phenylalanine ammonia-lyase and polyphenol oxidase, along with 86% increase in peroxidase and 53% increase in catalase enzyme activities in plants inoculated with Pseudomonas sp. Rh323 as well as co-inoculated plants. Bacterial strains showed good colonization potential in the rice rhizosphere up to 21 days after seed inoculation. Application of bacterial consortia in the field resulted in an increase of 31% in grain yield and 10% in straw yield over non-inoculated plots. Although, yield increase was statistically non-significant but was accomplished with overall saving of 20% chemical fertilizers. The study showed that Pseudomonas sp. Rh323 can be used to develop dual-purpose inoculum which can serve not only to suppress BLB but also to promote plant growth in rice.

  6. Bystander or No Bystander for Gene Directed Enzyme Prodrug Therapy

    Directory of Open Access Journals (Sweden)

    Adam V. Patterson

    2009-11-01

    Full Text Available Gene directed enzyme prodrug therapy (GDEPT of cancer aims to improve the selectivity of chemotherapy by gene transfer, thus enabling target cells to convert nontoxic prodrugs to cytotoxic drugs. A zone of cell kill around gene-modified cells due to transfer of toxic metabolites, known as the bystander effect, leads to tumour regression. Here we discuss the implications of either striving for a strong bystander effect to overcome poor gene transfer, or avoiding the bystander effect to reduce potential systemic effects, with the aid of three successful GDEPT systems. This review concentrates on bystander effects and drug development with regard to these enzyme prodrug combinations, namely herpes simplex virus thymidine kinase (HSV-TK with ganciclovir (GCV, cytosine deaminase (CD from bacteria or yeast with 5-fluorocytodine (5-FC, and bacterial nitroreductase (NfsB with 5-(azaridin-1-yl-2,4-dinitrobenzamide (CB1954, and their respective derivatives.

  7. Assaying Oxidative Coupling Activity of CYP450 Enzymes.

    Science.gov (United States)

    Agarwal, Vinayak

    2018-01-01

    Cytochrome P450 (CYP450) enzymes are ubiquitous catalysts in natural product biosynthetic schemes where they catalyze numerous different transformations using radical intermediates. In this protocol, we describe procedures to assay the activity of a marine bacterial CYP450 enzyme Bmp7 which catalyzes the oxidative radical coupling of polyhalogenated aromatic substrates. The broad substrate tolerance of Bmp7, together with rearrangements of the aryl radical intermediates leads to a large number of products to be generated by the enzymatic action of Bmp7. The complexity of the product pool generated by Bmp7 thus presents an analytical challenge for structural elucidation. To address this challenge, we describe mass spectrometry-based procedures to provide structural insights into aryl crosslinked products generated by Bmp7, which can complement subsequent spectroscopic experiments. Using the procedures described here, for the first time, we show that Bmp7 can efficiently accept polychlorinated aryl substrates, in addition to the physiological polybrominated substrates for the biosynthesis of polyhalogenated marine natural products. © 2018 Elsevier Inc. All rights reserved.

  8. Structure-based redesign of lysostaphin yields potent antistaphylococcal enzymes that evade immune cell surveillance

    Directory of Open Access Journals (Sweden)

    Kristina Blazanovic

    Full Text Available Staphylococcus aureus infections exert a tremendous burden on the health-care system, and the threat of drug-resistant strains continues to grow. The bacteriolytic enzyme lysostaphin is a potent antistaphylococcal agent with proven efficacy against both drug-sensitive and drug-resistant strains; however, the enzyme's own bacterial origins cause undesirable immunogenicity and pose a barrier to clinical translation. Here, we deimmunized lysostaphin using a computationally guided process that optimizes sets of mutations to delete immunogenic T cell epitopes without disrupting protein function. In vitro analyses showed the methods to be both efficient and effective, producing seven different deimmunized designs exhibiting high function and reduced immunogenic potential. Two deimmunized candidates elicited greatly suppressed proliferative responses in splenocytes from humanized mice, while at the same time the variants maintained wild-type efficacy in a staphylococcal pneumonia model. Overall, the deimmunized enzymes represent promising leads in the battle against S. aureus.

  9. Antibiotic resistance of Streptococcus pneumoniae in children with acute otitis media treatment failure.

    Science.gov (United States)

    Zielnik-Jurkiewicz, Beata; Bielicka, Anna

    2015-12-01

    The emergence of antibiotic-resistant bacteria is a major cause of treatment failure in children with acute otitis media (AOM). This study aimed to analyze the types of bacterial strains in fluid isolated from the middle ear of children with AOM who did not respond to oral antibiotic treatment. We also determined the antibiotic resistance of the most frequently isolated bacterial strain (Streptococcus pneumoniae) found in these children. This was a prospective study of 157 children with AOM aged from 6 months to 7 years admitted due to unsuccessful oral antibiotic treatment. All children underwent a myringotomy, and samples of the middle ear fluid were collected for bacteriological examination. Positive bacterial cultures were obtained in 104 patients (66.2%), with Streptococcus pneumoniae (39.69%), Haemophilus influenzae (16.03%) Staphylococcus aureus (16.03%), Staphylococcus haemolyticus (6.9%) and Streptococcus pyogenes (5.34%) found most frequently. The majority (65.4%) of S. pneumoniae strains were penicillin-intermediate-resistant or penicillin-resistant, and 67.2% strains of S. pneumoniae were multidrug-resistant. We identified S. pneumoniae as the most frequently isolated pathogen from the middle ear in children with AOM treatment failure and determined that the majority of strains were antibiotic-resistant. We propose that the microbiological identification of bacterial strains and their degree of antibiotic resistance should be performed prior to therapy in order to choose the most appropriate antibiotic therapy for children with AOM treatment failure. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. PhAP protease from Pseudoalteromonas haloplanktis TAC125: Gene cloning, recombinant production in E. coli and enzyme characterization

    Science.gov (United States)

    de Pascale, D.; Giuliani, M.; De Santi, C.; Bergamasco, N.; Amoresano, A.; Carpentieri, A.; Parrilli, E.; Tutino, M. L.

    2010-08-01

    Cold-adapted proteases have been found to be the dominant activity throughout the cold marine environment, indicating their importance in bacterial acquisition of nitrogen-rich complex organic compounds. However, few extracellular proteases from marine organisms have been characterized so far, and the mechanisms that enable their activity in situ are still largely unknown. Aside from their ecological importance and use as model enzyme for structure/function investigations, cold-active proteolytic enzymes offer great potential for biotechnological applications. Our studies on cold adapted proteases were performed on exo-enzyme produced by the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. By applying a proteomic approach, we identified several proteolytic activities from its culture supernatant. PhAP protease was selected for further investigations. The encoding gene was cloned and the protein was recombinantly produced in E. coli cells. The homogeneous product was biochemically characterised and it turned out that the enzyme is a Zn-dependent aminopeptidase, with an activity dependence from assay temperature typical of psychrophilic enzymes.

  11. Decreased expression of LamB and Odp1 complex is crucial for antibiotic resistance in Escherichia coli.

    Science.gov (United States)

    Lin, Xiang-min; Yang, Man-jun; Li, Hui; Wang, Chao; Peng, Xuan-Xian

    2014-02-26

    We previously revealed a negative regulation of LamB in chlortetracycline-resistant Escherichia coli strain. In the present study, we first showed that the negative regulation, which was characterized by decreased abundance of LamB with elevated growth of its gene-deleted mutant in medium with antibiotics, was a general response in resistance to different classes of antibiotics using 2-DE based proteomics or/and genetically gene-deletion mutant of LamB. Then, we revealed the interaction of LamB and Odp1 which catalyzes the overall conversion of pyruvate to acetyl-CoA and CO2, and found the decrease of the complex in antibiotic-resistant strains with a minimum inhibitory concentration dose-dependent manner. Further spectrofluorometry assay indicated that LamB served as a porin to influx an antibiotic. Finally, we showed that the decreased expression of LamB and Odp1 was detected in almost of all 34 multidrug-resistant strains, which suggested that LamB and Odp1 were biomarkers for identification of antibiotic-resistant E. coli. Our results indicated that the interaction of an outer membrane protein with an energy metabolic enzyme constructed an efficient pathway to resist antibiotics. These findings provide novel insights into the mechanisms of antibiotic resistance. Our data indicate that the negative regulation by LamB is widely detected in antibiotic-resistant E. coli. LamB serves as a porin to influx an antibiotic and is interacted with Odp1. The complex decreases in antibiotic-resistant strains with a MIC dose-dependent manner. Our findings indicate that interaction of outer membrane protein with energy metabolic enzyme constructs an efficient pathway to resist antibiotics and provides novel insights into the mechanisms of antibiotic resistance. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Dissociation of Tissue Destruction and Bacterial Expansion during Bubonic Plague.

    Directory of Open Access Journals (Sweden)

    Françoise Guinet

    2015-10-01

    Full Text Available Activation and/or recruitment of the host plasmin, a fibrinolytic enzyme also active on extracellular matrix components, is a common invasive strategy of bacterial pathogens. Yersinia pestis, the bubonic plague agent, expresses the multifunctional surface protease Pla, which activates plasmin and inactivates fibrinolysis inhibitors. Pla is encoded by the pPla plasmid. Following intradermal inoculation, Y. pestis has the capacity to multiply in and cause destruction of the lymph node (LN draining the entry site. The closely related, pPla-negative, Y. pseudotuberculosis species lacks this capacity. We hypothesized that tissue damage and bacterial multiplication occurring in the LN during bubonic plague were linked and both driven by pPla. Using a set of pPla-positive and pPla-negative Y. pestis and Y. pseudotuberculosis strains in a mouse model of intradermal injection, we found that pPla is not required for bacterial translocation to the LN. We also observed that a pPla-cured Y. pestis caused the same extensive histological lesions as the wild type strain. Furthermore, the Y. pseudotuberculosis histological pattern, characterized by infectious foci limited by inflammatory cell infiltrates with normal tissue density and follicular organization, was unchanged after introduction of pPla. However, the presence of pPla enabled Y. pseudotuberculosis to increase its bacterial load up to that of Y. pestis. Similarly, lack of pPla strongly reduced Y. pestis titers in LNs of infected mice. This pPla-mediated enhancing effect on bacterial load was directly dependent on the proteolytic activity of Pla. Immunohistochemistry of Pla-negative Y. pestis-infected LNs revealed extensive bacterial lysis, unlike the numerous, apparently intact, microorganisms seen in wild type Y. pestis-infected preparations. Therefore, our study demonstrates that tissue destruction and bacterial survival/multiplication are dissociated in the bubo and that the primary action of Pla

  13. The Role of Biotin in Bacterial Physiology and Virulence: a Novel Antibiotic Target for Mycobacterium tuberculosis.

    Science.gov (United States)

    Salaemae, Wanisa; Booker, Grant W; Polyak, Steven W

    2016-04-01

    Biotin is an essential cofactor for enzymes present in key metabolic pathways such as fatty acid biosynthesis, replenishment of the tricarboxylic acid cycle, and amino acid metabolism. Biotin is synthesized de novo in microorganisms, plants, and fungi, but this metabolic activity is absent in mammals, making biotin biosynthesis an attractive target for antibiotic discovery. In particular, biotin biosynthesis plays important metabolic roles as the sole source of biotin in all stages of the Mycobacterium tuberculosis life cycle due to the lack of a transporter for scavenging exogenous biotin. Biotin is intimately associated with lipid synthesis where the products form key components of the mycobacterial cell membrane that are critical for bacterial survival and pathogenesis. In this review we discuss the central role of biotin in bacterial physiology and highlight studies that demonstrate the importance of its biosynthesis for virulence. The structural biology of the known biotin synthetic enzymes is described alongside studies using structure-guided design, phenotypic screening, and fragment-based approaches to drug discovery as routes to new antituberculosis agents.

  14. Enzyme

    Science.gov (United States)

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  15. Potential antibacterial activity of some Saudi Arabia honey

    Directory of Open Access Journals (Sweden)

    Ahmed G. Hegazi

    2017-02-01

    Full Text Available Aim: The aim of this study was to investigate the potential antibacterial activity of some Saudi Arabia honey against selected bacterial strains of medical importance. Materials and Methods: A total of 10 Saudi Arabia honey used to evaluate their antimicrobial activity against some antibiotic-resistant pathogenic bacterial strains. The bacterial strains were Staphylococcus aureus, Streptococcus pyogenes, Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa. Results: The antibacterial activity of Saudi honey against five bacterial strains showed different levels of inhibition according to the type of honey. The overall results showed that the potential activity was differing according to the pathogen and honey type. Conclusion: It could be concluded that the Saudi honey inhibit the growth of bacterial strains and that honey can be used as complementary antimicrobial agent against selected pathogenic bacteria.

  16. Factors shaping bacterial phylogenetic and functional diversity in coastal waters of the NW Mediterranean Sea

    Science.gov (United States)

    Boras, Julia A.; Vaqué, Dolors; Maynou, Francesc; Sà, Elisabet L.; Weinbauer, Markus G.; Sala, Maria Montserrat

    2015-03-01

    To evaluate the main factors shaping bacterioplankton phylogenetic and functional diversity in marine coastal waters, we carried out a two-year study based on a monthly sampling in Blanes Bay (NW Mediterranean). We expected the key factors driving bacterial diversity to be (1) temperature and nutrient concentration, together with chlorophyll a concentration as an indicator of phytoplankton biomass and, hence, a carbon source for bacteria (here called bottom-up factors), and (2) top-down pressure (virus- and protist-mediated mortality of bacteria). Phylogenetic diversity was analyzed by denaturing gradient gel electrophoresis (DGGE) of 16S rRNA. Functional diversity was assessed by using monomeric carbon sources in Biolog EcoPlates and by determining the activity of six extracellular enzymes. Our results indicate that the bacterial phylogenetic and functional diversity in this coastal system is shaped mainly by bottom-up factors. A dendrogram analysis of the DGGE banding patterns revealed three main sample clusters. Two clusters differed significantly in temperature, nitrate and chlorophyll a concentration, and the third was characterized by the highest losses of bacterial production due to viral lysis detected over the whole study period. Protistan grazing had no effect on bacterial functional diversity, since there were no correlations between protist-mediated mortality (PMM) and extracellular enzyme activities, and utilization of only two out of the 31 carbon sources (N-acetyl-D-glucosamine and α-cyclodextrin) was correlated with PMM. In contrast, virus-mediated mortality correlated with changes in the percentage of use of four carbon sources, and also with specific leu-aminopeptidase and β-glucosidase activity. This suggests that viral lysate provides a pool of labile carbon sources, presumably including amino acids and glucose, which may inhibit proteolytic and glucosidic activity. Our results indicate that bottom-up factors play a more important role than

  17. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment

    Science.gov (United States)

    Davin-Regli, Anne; Pagès, Jean-Marie

    2015-01-01

    Enterobacter aerogenes and E. cloacae have been reported as important opportunistic and multiresistant bacterial pathogens for humans during the last three decades in hospital wards. These Gram-negative bacteria have been largely described during several outbreaks of hospital-acquired infections in Europe and particularly in France. The dissemination of Enterobacter sp. is associated with the presence of redundant regulatory cascades that efficiently control the membrane permeability ensuring the bacterial protection and the expression of detoxifying enzymes involved in antibiotic degradation/inactivation. In addition, these bacterial species are able to acquire numerous genetic mobile elements that strongly contribute to antibiotic resistance. Moreover, this particular fitness help them to colonize several environments and hosts and rapidly and efficiently adapt their metabolism and physiology to external conditions and environmental stresses. Enterobacter is a versatile bacterium able to promptly respond to the antibiotic treatment in the colonized patient. The balance of the prevalence, E. aerogenes versus E. cloacae, in the reported hospital infections during the last period, questions about the horizontal transmission of mobile elements containing antibiotic resistance genes, e.g., the efficacy of the exchange of resistance genes Klebsiella pneumoniae to Enterobacter sp. It is also important to mention the possible role of antibiotic use in the treatment of bacterial infectious diseases in this E. aerogenes/E. cloacae evolution. PMID:26042091

  18. Quorum sensing Inhibitors as anti-pathogenic drugs

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bovbjerg; Givskov, Michael Christian

    2006-01-01

    as well as elevated tolerance to the activity of the innate immune system. Gram-negative bacteria commonly use N-acyl homoserine lactones (AHL) as QS signal molecules. The use of signal molecule based drugs to attenuate bacterial pathogenecity rather than bacterial growth is attractive for several reasons......, particularly considering the emergence of increasingly antibiotic-resistant bacteria. Compounds capable of this type of interference have been termed anti-pathogenic drugs. A large variety of synthetic AHL analogues and natural products libraries have been screened and a number of QS inhibitors (QSI) have been...

  19. Structure-activity relationships of new cyanothiophene inhibitors of the essential peptidoglycan biosynthesis enzyme MurF.

    Science.gov (United States)

    Hrast, Martina; Turk, Samo; Sosič, Izidor; Knez, Damijan; Randall, Christopher P; Barreteau, Hélène; Contreras-Martel, Carlos; Dessen, Andréa; O'Neill, Alex J; Mengin-Lecreulx, Dominique; Blanot, Didier; Gobec, Stanislav

    2013-08-01

    Peptidoglycan is an essential component of the bacterial cell wall, and enzymes involved in its biosynthesis represent validated targets for antibacterial drug discovery. MurF catalyzes the final intracellular peptidoglycan biosynthesis step: the addition of D-Ala-D-Ala to the nucleotide precursor UDP-MurNAc-L-Ala-γ-D-Glu-meso-DAP (or L-Lys). As MurF has no human counterpart, it represents an attractive target for the development of new antibacterial drugs. Using recently published cyanothiophene inhibitors of MurF from Streptococcus pneumoniae as a starting point, we designed and synthesized a series of structurally related derivatives and investigated their inhibition of MurF enzymes from different bacterial species. Systematic structural modifications of the parent compounds resulted in a series of nanomolar inhibitors of MurF from S. pneumoniae and micromolar inhibitors of MurF from Escherichia coli and Staphylococcus aureus. Some of the inhibitors also show antibacterial activity against S. pneumoniae R6. These findings, together with two new co-crystal structures, represent an excellent starting point for further optimization toward effective novel antibacterials. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  20. Transgenic plants producing the bacterial pheromone N-acyl-homoserine lactone exhibit enhanced resistance to the bacterial phytopathogen Erwinia carotovora.

    Science.gov (United States)

    Mäe, A; Montesano, M; Koiv, V; Palva, E T

    2001-09-01

    Bacterial pheromones, mainly different homoserine lactones, are central to a number of bacterial signaling processes, including those involved in plant pathogenicity. We previously demonstrated that N-oxoacyl-homoserine lactone (OHL) is essential for quorum sensing in the soft-rot phytopathogen Erwinia carotovora. In this pathogen, OHL controls the coordinate activation of genes encoding the main virulence determinants, extracellular plant cell wall degrading enzymes (PCWDEs), in a cell density-dependent manner. We suggest that E. carotovora employ quorum sensing to avoid the premature production of PCWDEs and subsequent activation of plant defense responses. To test whether modulating this sensory system would affect the outcome of a plant-pathogen interaction, we generated transgenic tobacco, producing OHL. This was accomplished by ectopic expression in tobacco of the E. carotovora gene expI, which is responsible for OHL biosynthesis. We show that expI-positive transgenic tobacco lines produced the active pheromone and partially complemented the avirulent phenotype of expI mutants. The OHL-producing tobacco lines exhibited enhanced resistance to infection by wild-type E. carotovora. The results were confirmed by exogenous addition of OHL to wild-type plants, which also resulted in increased resistance to E. carotovora.

  1. Phenotypic and genotypic bacterial antimicrobial resistance in liquid pig manure is variously associated with contents of tetracyclines and sulfonamides.

    Science.gov (United States)

    Hölzel, C S; Harms, K S; Küchenhoff, H; Kunz, A; Müller, C; Meyer, K; Schwaiger, K; Bauer, J

    2010-05-01

    Antibiotic residues as well as antibiotic-resistant bacteria in environmental samples might pose a risk to human health. This study aimed to investigate the association between antibiotic residues and bacterial antimicrobial resistance in liquid pig manure used as fertilizer. Concentrations of tetracyclines (TETs) and sulfonamides (SULs) were determined by liquid chromatography-mass spectrometry in 305 pig manure samples; antibiotic contents were correlated to the phenotypic resistance of Escherichia coli (n = 613) and enterococci (n = 564) towards up to 24 antibiotics. In 121 samples, the concentration of the TET resistance genes tet(M), tet(O) and tet(B) was quantified by real-time-PCR. TETs were found in 54% of the samples. The median sum concentration of all investigated TETs in the positive samples was 0.73 mg kg(-1). SULs were found with a similar frequency (51%) and a median sum concentration of 0.15 mg kg(-1) in the positive samples. Associated with the detection of TETs and/or SULs, resistance rates were significantly elevated for several substances - some of them not used in farm animals, e.g. chloramphenicol and synercid. In addition, multiresistant isolates were found more often in samples containing antibiotics. Analysis of the resistance genes tet(M) and tet(O) already showed a significant increase in their concentrations - but not in tet(B) - in the lowest range of total TET concentration. Mean tet(M) concentrations increased by the factor of 4.5 in the TET concentration range of 0.1-1 mg kg(-1), compared to negative manure samples. Antibiotic contamination of manure seems to be associated with a variety of changes in bacterial resistance, calling for a prudent use of antibiotics in farm animals. This study provides an interdisciplinary approach to assess antimicrobial resistance by combining the microbiological analysis of bacterial resistance with high quality chemical analysis of antibiotic residues in a representative number of environmental

  2. Bacterial prostatitis.

    Science.gov (United States)

    Gill, Bradley C; Shoskes, Daniel A

    2016-02-01

    The review provides the infectious disease community with a urologic perspective on bacterial prostatitis. Specifically, the article briefly reviews the categorization of prostatitis by type and provides a distillation of new findings published on bacterial prostatitis over the past year. It also highlights key points from the established literature. Cross-sectional prostate imaging is becoming more common and may lead to more incidental diagnoses of acute bacterial prostatitis. As drug resistance remains problematic in this condition, the reemergence of older antibiotics such as fosfomycin, has proven beneficial. With regard to chronic bacterial prostatitis, no clear clinical risk factors emerged in a large epidemiological study. However, bacterial biofilm formation has been associated with more severe cases. Surgery has a limited role in bacterial prostatitis and should be reserved for draining of a prostatic abscess or the removal of infected prostatic stones. Prostatitis remains a common and bothersome clinical condition. Antibiotic therapy remains the basis of treatment for both acute and chronic bacterial prostatitis. Further research into improving prostatitis treatment is indicated.

  3. The Natural Antimicrobial Enzyme Lysozyme is Up-Regulated in Gastrointestinal Inflammatory Conditions

    Directory of Open Access Journals (Sweden)

    Carlos A. Rubio

    2014-01-01

    Full Text Available The cells that line the mucosa of the human gastrointestinal tract (GI, that is, oral cavity, oesophagus, stomach, small intestine, large intestine, and rectum are constantly challenged by adverse micro-environmental factors, such as different pH, enzymes, and bacterial flora. With exception of the oral cavity, these microenvironments also contain remnant cocktails of secreted enzymes and bacteria from upper organs along the tract. The density of the GI bacteria varies, from 103/mL near the gastric outlet, to 1010/mL at the ileocecal valve, to 1011 to 1012/mL in the colon. The total microbial population (ca. 1014 exceeds the total number of cells in the tract. It is, therefore, remarkable that despite the prima facie inauspicious mixture of harmful secretions and bacteria, the normal GI mucosa retains a healthy state of cell renewal. To counteract the hostile microenvironment, the GI epithelia react by speeding cell exfoliation (the GI mucosa has a turnover time of two to three days, by increasing peristalsis, by eliminating bacteria through secretion of plasma cell-immunoglobulins and by increasing production of natural antibacterial compounds, such as defensin-5 and lysozyme. Only recently, lysozyme was found up-regulated in Barrett’s oesophagitis, chronic gastritis, gluten-induced atrophic duodenitis (coeliac disease, collagenous colitis, lymphocytic colitis, and Crohn’s colitis. This up-regulation is a response directed to the special types of bacteria recently detected in these diseases. The aim of lysozyme up-regulation is to protect individual mucosal segments to chronic inflammation. The molecular mechanisms connected to the crosstalk between the intraluminal bacterial flora and the production of lysozyme released by the GI mucosae, are discussed. Bacterial resistance continues to exhaust our supply of commercial antibiotics. The potential use of lysozyme to treat infectious diseases is receiving much attention.

  4. Identifying essential genes in bacterial metabolic networks with machine learning methods

    Science.gov (United States)

    2010-01-01

    Background Identifying essential genes in bacteria supports to identify potential drug targets and an understanding of minimal requirements for a synthetic cell. However, experimentally assaying the essentiality of their coding genes is resource intensive and not feasible for all bacterial organisms, in particular if they are infective. Results We developed a machine learning technique to identify essential genes using the experimental data of genome-wide knock-out screens from one bacterial organism to infer essential genes of another related bacterial organism. We used a broad variety of topological features, sequence characteristics and co-expression properties potentially associated with essentiality, such as flux deviations, centrality, codon frequencies of the sequences, co-regulation and phyletic retention. An organism-wise cross-validation on bacterial species yielded reliable results with good accuracies (area under the receiver-operator-curve of 75% - 81%). Finally, it was applied to drug target predictions for Salmonella typhimurium. We compared our predictions to the viability of experimental knock-outs of S. typhimurium and identified 35 enzymes, which are highly relevant to be considered as potential drug targets. Specifically, we detected promising drug targets in the non-mevalonate pathway. Conclusions Using elaborated features characterizing network topology, sequence information and microarray data enables to predict essential genes from a bacterial reference organism to a related query organism without any knowledge about the essentiality of genes of the query organism. In general, such a method is beneficial for inferring drug targets when experimental data about genome-wide knockout screens is not available for the investigated organism. PMID:20438628

  5. Inhibitors of bacterial N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) and demonstration of in vitro antimicrobial activity.

    Science.gov (United States)

    Gillner, Danuta; Armoush, Nicola; Holz, Richard C; Becker, Daniel P

    2009-11-15

    The dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) is a critical bacterial enzyme for the construction of the bacterial cell wall. A screen biased toward compounds containing zinc-binding groups (ZBG's) including thiols, carboxylic acids, boronic acids, phosphonates and hydroxamates has delivered a number of micromolar inhibitors of DapE from Haemophilus influenzae, including the low micromolar inhibitor L-captopril (IC(50)=3.3 microM, K(i)=1.8 microM). In vitro antimicrobial activity was demonstrated for L-captopril against Escherichia coli.

  6. The disruptive effect of lysozyme on the bacterial cell wall explored by an in-silico structural outlook.

    Science.gov (United States)

    Primo, Emiliano D; Otero, Lisandro H; Ruiz, Francisco; Klinke, Sebastián; Giordano, Walter

    2018-01-01

    The bacterial cell wall, a structural unit of peptidoglycan polymer comprised of glycan strands consisting of a repeating disaccharide motif [N-acetylglucosamine (NAG) and N-acetylmuramylpentapeptide (NAM pentapeptide)], encases bacteria and provides structural integrity and protection. Lysozymes are enzymes that break down the bacterial cell wall and disrupt the bacterial life cycle by cleaving the linkage between the NAG and NAM carbohydrates. Lab exercises focused on the effects of lysozyme on the bacterial cell wall are frequently incorporated in biochemistry classes designed for undergraduate students in diverse fields as biology, microbiology, chemistry, agronomy, medicine, and veterinary medicine. Such exercises typically do not include structural data. We describe here a sequence of computer tasks designed to illustrate and reinforce both physiological and structural concepts involved in lysozyme effects on the bacterial cell-wall structure. This lab class usually lasts 3.5 hours. First, the instructor presents introductory concepts of the bacterial cell wall and the effect of lysozyme on its structure. Then, students are taught to use computer modeling to visualize the three-dimensional structure of a lysozyme in complex with bacterial cell-wall fragments. Finally, the lysozyme inhibitory effect on a bacterial culture is optionally proposed as a simple microbiological assay. The computer lab exercises described here give students a realistic understanding of the disruptive effect of lysozymes on the bacterial cell wall, a crucial component in bacterial survival. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(1):83-90, 2018. © 2017 The International Union of Biochemistry and Molecular Biology.

  7. Effect of bacterial or porcine lipase with low- or high-fat diets on nutrient absorption in pancreatic-insufficient dogs.

    Science.gov (United States)

    Suzuki, A; Mizumoto, A; Rerknimitr, R; Sarr, M G; DiMango, E P

    1999-02-01

    Treatment of human exocrine pancreatic insufficiency is suboptimal. This study assessed the effects of bacterial lipase, porcine lipase, and diets on carbohydrate, fat, and protein absorption in pancreatic-insufficient dogs. Dogs were given bacterial or porcine lipase and 3 diets: a 48% carbohydrate, 27% fat, and 25% protein standard diet; a high-carbohydrate, low-fat, and low-protein diet; or a low-carbohydrate, high-fat, and high-protein diet (66%/18%/16% and 21%/43%/36% calories). With the standard diet, coefficient of fat absorption increased dose-dependently with both lipases (P vs. low-fat and -protein diet). There were no interactions among carbohydrate, fat, and protein absorption. Correcting steatorrhea requires 75 times more porcine than bacterial lipase (18 vs. 240 mg). High-fat and high-protein diets optimize fat absorption with both enzymes. High-fat diets with bacterial or porcine lipase should be evaluated in humans with pancreatic steatorrhea.

  8. Bacterial diversity and reductive dehalogenase redundancy in a 1,2-dichloroethane-degrading bacterial consortium enriched from a contaminated aquifer

    Directory of Open Access Journals (Sweden)

    Wittebolle Lieven

    2010-02-01

    Full Text Available Abstract Background Bacteria possess a reservoir of metabolic functionalities ready to be exploited for multiple purposes. The use of microorganisms to clean up xenobiotics from polluted ecosystems (e.g. soil and water represents an eco-sustainable and powerful alternative to traditional remediation processes. Recent developments in molecular-biology-based techniques have led to rapid and accurate strategies for monitoring and identification of bacteria and catabolic genes involved in the degradation of xenobiotics, key processes to follow up the activities in situ. Results We report the characterization of the response of an enriched bacterial community of a 1,2-dichloroethane (1,2-DCA contaminated aquifer to the spiking with 5 mM lactate as electron donor in microcosm studies. After 15 days of incubation, the microbial community structure was analyzed. The bacterial 16S rRNA gene clone library showed that the most represented phylogenetic group within the consortium was affiliated with the phylum Firmicutes. Among them, known degraders of chlorinated compounds were identified. A reductive dehalogenase genes clone library showed that the community held four phylogenetically-distinct catalytic enzymes, all conserving signature residues previously shown to be linked to 1,2-DCA dehalogenation. Conclusions The overall data indicate that the enriched bacterial consortium shares the metabolic functionality between different members of the microbial community and is characterized by a high functional redundancy. These are fundamental features for the maintenance of the community's functionality, especially under stress conditions and suggest the feasibility of a bioremediation treatment with a potential prompt dehalogenation and a process stability over time.

  9. Novel Bacterial Proteins and Lipids Reveal the Diversity of Triterpenoid Biomarker Synthesis

    Science.gov (United States)

    Wei, J. H.; Banta, A. B.; Gill, C. C. C.; Giner, J. L.; Welander, P. V.

    2017-12-01

    Lipids preserved in sediments and rocks function as organic biomarkers providing evidence for the types of organisms that lived in ancient environments. We use a combined approach utilizing comparative genomics, molecular biology, and lipid analysis to discover novel cyclic triteprenoid lipids and their biosynthetic pathways in bacteria. Here, we present two cases of bacterial synthesis of pentacylic triterpenols previously thought to be indicative of eukaryotes, which address current incongruities in the fossil record. Cyclic triterpenoid lipids, such as hopanoids and sterols, are generally associated with bacteria and eukaryotes, respectively. The pentacyclic triterpenoid tetrahymanol, first discovered in the ciliate Tetrahymena pyriformis, and its diagenetic product gammacerane, have been previously interpreted as markers for eukaryotes and linked to water column stratification. Yet the occurrence of tetrahymanol in bacteria implies our knowledge of extant tetrahymanol producers is not complete. Through comparative genomics we identified a new gene required for tetrahymanol synthesis in the bacterium Methylomicrobium alcaliphilum. This gene encodes a novel enzyme, Tetrahymanol synthase (THS), that synthesizes tetrahymanol from the hopanoid diploptene demonstrating a pathway for tetrahymanol production in bacteria distinct from that in eukaryotes. We bionformatically identified THS homologs in 104 bacterial genomes and 472 metagenomes, implying a great diversity of tetrahymanol producers. Lipids of the arborane class, such as iso-arborinol, are commonly found in modern angiosperms. Arobranes are synthesized by the enzyme oxidosqualene cyclase (OSC), which in plants can form both tetra and pentacyclic molecules. While bacteria are known to produce tetracyclic sterol compounds, bacterial synthesis of pentacyclic arborane class triterpenols of this class were previously undiscovered. We have identified a bacterium, Eudoraea adriatica, whose OSC synthesizes

  10. Insights into Substrate Specificity of NlpC/P60 Cell Wall Hydrolases Containing Bacterial SH3 Domains

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qingping; Mengin-Lecreulx, Dominique; Liu, Xueqian W.; Patin, Delphine; Farr, Carol L.; Grant, Joanna C.; Chiu, Hsiu-Ju; Jaroszewski, Lukasz; Knuth, Mark W.; Godzik, Adam; Lesley, Scott A.; Elsliger, Marc-André; Deacon, Ashley M.; Wilson, Ian A.

    2015-09-15

    ABSTRACT

    Bacterial SH3 (SH3b) domains are commonly fused with papain-like Nlp/P60 cell wall hydrolase domains. To understand how the modular architecture of SH3b and NlpC/P60 affects the activity of the catalytic domain, three putative NlpC/P60 cell wall hydrolases were biochemically and structurally characterized. These enzymes all have γ-d-Glu-A2pm (A2pm is diaminopimelic acid) cysteine amidase (ordl-endopeptidase) activities but with different substrate specificities. One enzyme is a cell wall lysin that cleaves peptidoglycan (PG), while the other two are cell wall recycling enzymes that only cleave stem peptides with an N-terminall-Ala. Their crystal structures revealed a highly conserved structure consisting of two SH3b domains and a C-terminal NlpC/P60 catalytic domain, despite very low sequence identity. Interestingly, loops from the first SH3b domain dock into the ends of the active site groove of the catalytic domain, remodel the substrate binding site, and modulate substrate specificity. Two amino acid differences at the domain interface alter the substrate binding specificity in favor of stem peptides in recycling enzymes, whereas the SH3b domain may extend the peptidoglycan binding surface in the cell wall lysins. Remarkably, the cell wall lysin can be converted into a recycling enzyme with a single mutation.

    IMPORTANCEPeptidoglycan is a meshlike polymer that envelops the bacterial plasma membrane and bestows structural integrity. Cell wall lysins and recycling enzymes are part of a set of lytic enzymes that target covalent bonds connecting the amino acid and amino sugar building blocks of the PG network. These hydrolases are involved in processes such as cell growth and division, autolysis, invasion, and PG turnover and recycling. To avoid cleavage of unintended substrates, these enzymes have very selective substrate specificities. Our biochemical and structural

  11. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    , which influence the transition from a planktonic lifestyle to a sessile lifestyle, have been studied. Protein conditioning film formation was found to influence bacterial adhesion and subsequent biofilm formation considerable, and an aqueous extract of fish muscle tissue was shown to significantly...... tract to the microbial flocs in waste water treatment facilities. Microbial biofilms may however also cause a wide range of industrial and medical problems, and have been implicated in a wide range of persistent infectious diseases, including implantassociated microbial infections. Bacterial adhesion...... is the first committing step in biofilm formation, and has therefore been intensely scrutinized. Much however, still remains elusive. Bacterial adhesion is a highly complex process, which is influenced by a variety of factors. In this thesis, a range of physico-chemical, molecular and environmental parameters...

  12. Intrinsic factors of Peltigera lichens influence the structure of the associated soil bacterial microbiota.

    Science.gov (United States)

    Leiva, Diego; Clavero-León, Claudia; Carú, Margarita; Orlando, Julieta

    2016-11-01

    Definition of lichens has evolved from bi(tri)partite associations to multi-species symbioses, where bacteria would play essential roles. Besides, although soil bacterial communities are known to be affected by edaphic factors, when lichens grow upon them these could become less preponderant. We hypothesized that the structure of both the lichen microbiota and the microbiota in the soil underneath lichens is shaped by lichen intrinsic and extrinsic factors. In this work, intrinsic factors corresponded to mycobiont and cyanobiont identities of Peltigera lichens, metabolite diversity and phenoloxidase activity and extrinsic factors involved the site of the forest where lichens grow. Likewise, the genetic and metabolic structure of the lichen and soil bacterial communities were analyzed by fingerprinting. Among the results, metabolite diversity was inversely related to the genetic structure of bacterial communities of lichens and soils, highlighting the far-reaching effect of these substances; while phenoloxidase activity was inversely related to the metabolic structure only of the lichen bacterial microbiota, presuming a more limited effect of the products of these enzymes. Soil bacterial microbiota was different depending on the site and, strikingly, according to the cyanobiont present in the lichen over them, which could indicate an influence of the photobiont metabolism on the availability of soil nutrients. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Enzyme-ligand interactions that drive active site rearrangements in the Helicobacter pylori 5´-methylthioadenosine/S-adenosylhomocysteine nucleosidase

    Energy Technology Data Exchange (ETDEWEB)

    Ronning, Donald R; Iacopelli, Natalie M; Mishra, Vidhi [Toledo

    2012-03-15

    The bacterial enzyme 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) plays a central role in three essential metabolic pathways in bacteria: methionine salvage, purine salvage, and polyamine biosynthesis. Recently, its role in the pathway that leads to the production of autoinducer II, an important component in quorum-sensing, has garnered much interest. Because of this variety of roles, MTAN is an attractive target for developing new classes of inhibitors that influence bacterial virulence and biofilm formation. To gain insight toward the development of new classes of MTAN inhibitors, the interactions between the Helicobacter pylori-encoded MTAN and its substrates and substrate analogs were probed using X-ray crystallography. The structures of MTAN, an MTAN-Formycin A complex, and an adenine bound form were solved by molecular replacement and refined to 1.7, 1.8, and 1.6 Å, respectively. The ribose-binding site in the MTAN and MTAN-adenine cocrystal structures contain a tris[hydroxymethyl]aminomethane molecule that stabilizes the closed form of the enzyme and displaces a nucleophilic water molecule necessary for catalysis. This research gives insight to the interactions between MTAN and bound ligands that promote closing of the enzyme active site and highlights the potential for designing new classes of MTAN inhibitors using a link/grow or ligand assembly development strategy based on the described H. pylori MTAN crystal structures.

  14. Bacterial selection for biological control of plant disease: criterion determination and validation

    Directory of Open Access Journals (Sweden)

    Monalize Salete Mota

    Full Text Available Abstract This study aimed to evaluate the biocontrol potential of bacteria isolated from different plant species and soils. The production of compounds related to phytopathogen biocontrol and/or promotion of plant growth in bacterial isolates was evaluated by measuring the production of antimicrobial compounds (ammonia and antibiosis and hydrolytic enzymes (amylases, lipases, proteases, and chitinases and phosphate solubilization. Of the 1219 bacterial isolates, 92% produced one or more of the eight compounds evaluated, but only 1% of the isolates produced all the compounds. Proteolytic activity was most frequently observed among the bacterial isolates. Among the compounds which often determine the success of biocontrol, 43% produced compounds which inhibit mycelial growth of Monilinia fructicola, but only 11% hydrolyzed chitin. Bacteria from different plant species (rhizosphere or phylloplane exhibited differences in the ability to produce the compounds evaluated. Most bacterial isolates with biocontrol potential were isolated from rhizospheric soil. The most efficient bacteria (producing at least five compounds related to phytopathogen biocontrol and/or plant growth, 86 in total, were evaluated for their biocontrol potential by observing their ability to kill juvenile Mesocriconema xenoplax. Thus, we clearly observed that bacteria that produced more compounds related to phytopathogen biocontrol and/or plant growth had a higher efficacy for nematode biocontrol, which validated the selection strategy used.

  15. Ecotoxicological effects of decabromodiphenyl ether and cadmium contamination on soil microbes and enzymes.

    Science.gov (United States)

    Zhang, Wei; Zhang, Meng; An, Shuai; Xiong, Bang; Li, Hui; Cui, Changzheng; Lin, Kuangfei

    2012-08-01

    The ecotoxicological effects of decabromodiphenyl ether (BDE209) and cadmium (Cd) contamination on soil culturable microbial population, enzyme activity and bacterial community structure were investigated. Results of the indoor incubation test runs performed on many series of control and contaminated soil samples have demonstrated some notable toxic effects due to long term exposure to either or both contaminants. The two contaminants produced notable yet different toxic effects on the test microbes; the population of the exposed species generally declined according to certain dose-response relationships. The soil culturable microbial population and enzyme activity data show that the sensitivity to one or both contaminants followed the order of: bacteria>fungi>actinomycete and urease>saccharase, respectively. The interaction between BDE209 and Cd was dependent on both the exposure dose and time and that the joint toxic effects were synergistic, antagonistic or additive. The PCR-DGGE analysis data of species composition and richness suggest the synergistic combined effects on bacterial community structure during the 30d exposure. Pseudomonas tuomuerensis strain CCM 7280 and Pseudomonas alcaliphila strain AL15-21 were enriched, indicating these species might be major functional populations and highly tolerant. Such observations have provided the useful information of potential ecotoxicological effects of BDE209 and Cd contamination in the environment. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Heterologous Expression of Secreted Bacterial BPP and HAP Phytases in Plants Stimulates Arabidopsis thaliana Growth on Phytate

    Directory of Open Access Journals (Sweden)

    Lia R. Valeeva

    2018-02-01

    Full Text Available Phytases are specialized phosphatases capable of releasing inorganic phosphate from myo-inositol hexakisphosphate (phytate, which is highly abundant in many soils. As inorganic phosphorus reserves decrease over time in many agricultural soils, genetic manipulation of plants to enable secretion of potent phytases into the rhizosphere has been proposed as a promising approach to improve plant phosphorus nutrition. Several families of biotechnologically important phytases have been discovered and characterized, but little data are available on which phytase families can offer the most benefits toward improving plant phosphorus intake. We have developed transgenic Arabidopsis thaliana plants expressing bacterial phytases PaPhyC (HAP family of phytases and 168phyA (BPP family under the control of root-specific inducible promoter Pht1;2. The effects of each phytase expression on growth, morphology and inorganic phosphorus accumulation in plants grown on phytate hydroponically or in perlite as the only source of phosphorus were investigated. The most enzymatic activity for both phytases was detected in cell wall-bound fractions of roots, indicating that these enzymes were efficiently secreted. Expression of both bacterial phytases in roots improved plant growth on phytate and resulted in larger rosette leaf area and diameter, higher phosphorus content and increased shoot dry weight, implying that these plants were indeed capable of utilizing phytate as the source of phosphorus for growth and development. When grown on phytate the HAP-type phytase outperformed its BPP-type counterpart for plant biomass production, though this effect was only observed in hydroponic conditions and not in perlite. Furthermore, we found no evidence of adverse side effects of microbial phytase expression in A. thaliana on plant physiology and seed germination. Our data highlight important functional differences between these members of bacterial phytase families and indicate

  17. Heterologous Expression of Secreted Bacterial BPP and HAP Phytases in Plants Stimulates Arabidopsis thaliana Growth on Phytate.

    Science.gov (United States)

    Valeeva, Lia R; Nyamsuren, Chuluuntsetseg; Sharipova, Margarita R; Shakirov, Eugene V

    2018-01-01

    Phytases are specialized phosphatases capable of releasing inorganic phosphate from myo -inositol hexakisphosphate (phytate), which is highly abundant in many soils. As inorganic phosphorus reserves decrease over time in many agricultural soils, genetic manipulation of plants to enable secretion of potent phytases into the rhizosphere has been proposed as a promising approach to improve plant phosphorus nutrition. Several families of biotechnologically important phytases have been discovered and characterized, but little data are available on which phytase families can offer the most benefits toward improving plant phosphorus intake. We have developed transgenic Arabidopsis thaliana plants expressing bacterial phytases PaPhyC (HAP family of phytases) and 168phyA (BPP family) under the control of root-specific inducible promoter Pht1;2 . The effects of each phytase expression on growth, morphology and inorganic phosphorus accumulation in plants grown on phytate hydroponically or in perlite as the only source of phosphorus were investigated. The most enzymatic activity for both phytases was detected in cell wall-bound fractions of roots, indicating that these enzymes were efficiently secreted. Expression of both bacterial phytases in roots improved plant growth on phytate and resulted in larger rosette leaf area and diameter, higher phosphorus content and increased shoot dry weight, implying that these plants were indeed capable of utilizing phytate as the source of phosphorus for growth and development. When grown on phytate the HAP-type phytase outperformed its BPP-type counterpart for plant biomass production, though this effect was only observed in hydroponic conditions and not in perlite. Furthermore, we found no evidence of adverse side effects of microbial phytase expression in A. thaliana on plant physiology and seed germination. Our data highlight important functional differences between these members of bacterial phytase families and indicate that future

  18. Heterologous Expression of Secreted Bacterial BPP and HAP Phytases in Plants Stimulates Arabidopsis thaliana Growth on Phytate

    Science.gov (United States)

    Valeeva, Lia R.; Nyamsuren, Chuluuntsetseg; Sharipova, Margarita R.; Shakirov, Eugene V.

    2018-01-01

    Phytases are specialized phosphatases capable of releasing inorganic phosphate from myo-inositol hexakisphosphate (phytate), which is highly abundant in many soils. As inorganic phosphorus reserves decrease over time in many agricultural soils, genetic manipulation of plants to enable secretion of potent phytases into the rhizosphere has been proposed as a promising approach to improve plant phosphorus nutrition. Several families of biotechnologically important phytases have been discovered and characterized, but little data are available on which phytase families can offer the most benefits toward improving plant phosphorus intake. We have developed transgenic Arabidopsis thaliana plants expressing bacterial phytases PaPhyC (HAP family of phytases) and 168phyA (BPP family) under the control of root-specific inducible promoter Pht1;2. The effects of each phytase expression on growth, morphology and inorganic phosphorus accumulation in plants grown on phytate hydroponically or in perlite as the only source of phosphorus were investigated. The most enzymatic activity for both phytases was detected in cell wall-bound fractions of roots, indicating that these enzymes were efficiently secreted. Expression of both bacterial phytases in roots improved plant growth on phytate and resulted in larger rosette leaf area and diameter, higher phosphorus content and increased shoot dry weight, implying that these plants were indeed capable of utilizing phytate as the source of phosphorus for growth and development. When grown on phytate the HAP-type phytase outperformed its BPP-type counterpart for plant biomass production, though this effect was only observed in hydroponic conditions and not in perlite. Furthermore, we found no evidence of adverse side effects of microbial phytase expression in A. thaliana on plant physiology and seed germination. Our data highlight important functional differences between these members of bacterial phytase families and indicate that future crop

  19. Enzyme Informatics

    Science.gov (United States)

    Alderson, Rosanna G.; Ferrari, Luna De; Mavridis, Lazaros; McDonagh, James L.; Mitchell, John B. O.; Nath, Neetika

    2012-01-01

    Over the last 50 years, sequencing, structural biology and bioinformatics have completely revolutionised biomolecular science, with millions of sequences and tens of thousands of three dimensional structures becoming available. The bioinformatics of enzymes is well served by, mostly free, online databases. BRENDA describes the chemistry, substrate specificity, kinetics, preparation and biological sources of enzymes, while KEGG is valuable for understanding enzymes and metabolic pathways. EzCatDB, SFLD and MACiE are key repositories for data on the chemical mechanisms by which enzymes operate. At the current rate of genome sequencing and manual annotation, human curation will never finish the functional annotation of the ever-expanding list of known enzymes. Hence there is an increasing need for automated annotation, though it is not yet widespread for enzyme data. In contrast, functional ontologies such as the Gene Ontology already profit from automation. Despite our growing understanding of enzyme structure and dynamics, we are only beginning to be able to design novel enzymes. One can now begin to trace the functional evolution of enzymes using phylogenetics. The ability of enzymes to perform secondary functions, albeit relatively inefficiently, gives clues as to how enzyme function evolves. Substrate promiscuity in enzymes is one example of imperfect specificity in protein-ligand interactions. Similarly, most drugs bind to more than one protein target. This may sometimes result in helpful polypharmacology as a drug modulates plural targets, but also often leads to adverse side-effects. Many cheminformatics approaches can be used to model the interactions between druglike molecules and proteins in silico. We can even use quantum chemical techniques like DFT and QM/MM to compute the structural and energetic course of enzyme catalysed chemical reaction mechanisms, including a full description of bond making and breaking. PMID:23116471

  20. Combination of selected enzymes with cetyltrimethylammonium bromide in biofilm inactivation, removal and regrowth

    KAUST Repository

    Araujo, Paula Alexandra Da Silva; Machado, Idalina; Meireles, Ana; Leiknes, TorOve; Mergulhã o, Filipe; Melo, Luí s F.; Simõ es, Manuel

    2017-01-01

    Enzymes are considered an innovative and environmentally friendly approach for biofilm control due to their lytic and dispersal activities. In this study, four enzymes (β-glucanase, α-amylase, lipase and protease) were tested separately and in combination with the quaternary ammonium compound cetyltrimethylammonium bromide (CTAB) to control flow-generated biofilms of Pseudomonas fluorescens. The four enzymes caused modest reduction of biofilm colony forming units (CFU). Protease, β-glucanase and α-amylase also caused modest biofilm removal. CTAB combined with either β-glucanase or α-amylase increased biofilm removal. Its combination with either β-glucanase or protease increased CFU reduction. However, CTAB−protease combination was antagonist in biofilm removal. Long-term effects in biofilm mass reduction were observed after protease exposure. In contrast, biofilms treated with β-glucanase were able to regrowth significantly after exposure. Moreover, short-term respirometry tests with planktonic cells were performed to understand the effects of enzymes and their combination with CTAB on P. fluorescens viability. Protease and lipase demonstrated antimicrobial action, while α-amylase increased bacterial metabolic activity. The combination of CTAB with either protease or α-amylase was antagonistic, decreasing the antimicrobial action of CTAB. The overall results demonstrate a modest effect of the selected enzymes in biofilm control, either when applied alone or each one in combination with CTAB. Total biofilm removal or CFU reduction was not achieved and, in some cases, the use of enzymes antagonized the effects of CTAB. The results also propose that complementary tests, to characterize biofilm integrity and microbial viability, are required when someone is trying to assess the role of novel biocide - enzyme mixtures for effective biofilm control.

  1. Combination of selected enzymes with cetyltrimethylammonium bromide in biofilm inactivation, removal and regrowth

    KAUST Repository

    Araujo, Paula Alexandra Da Silva

    2017-03-01

    Enzymes are considered an innovative and environmentally friendly approach for biofilm control due to their lytic and dispersal activities. In this study, four enzymes (β-glucanase, α-amylase, lipase and protease) were tested separately and in combination with the quaternary ammonium compound cetyltrimethylammonium bromide (CTAB) to control flow-generated biofilms of Pseudomonas fluorescens. The four enzymes caused modest reduction of biofilm colony forming units (CFU). Protease, β-glucanase and α-amylase also caused modest biofilm removal. CTAB combined with either β-glucanase or α-amylase increased biofilm removal. Its combination with either β-glucanase or protease increased CFU reduction. However, CTAB−protease combination was antagonist in biofilm removal. Long-term effects in biofilm mass reduction were observed after protease exposure. In contrast, biofilms treated with β-glucanase were able to regrowth significantly after exposure. Moreover, short-term respirometry tests with planktonic cells were performed to understand the effects of enzymes and their combination with CTAB on P. fluorescens viability. Protease and lipase demonstrated antimicrobial action, while α-amylase increased bacterial metabolic activity. The combination of CTAB with either protease or α-amylase was antagonistic, decreasing the antimicrobial action of CTAB. The overall results demonstrate a modest effect of the selected enzymes in biofilm control, either when applied alone or each one in combination with CTAB. Total biofilm removal or CFU reduction was not achieved and, in some cases, the use of enzymes antagonized the effects of CTAB. The results also propose that complementary tests, to characterize biofilm integrity and microbial viability, are required when someone is trying to assess the role of novel biocide - enzyme mixtures for effective biofilm control.

  2. Alginate-modifying enzymes: Biological roles and biotechnological uses

    Directory of Open Access Journals (Sweden)

    Helga eErtesvåg

    2015-05-01

    Full Text Available Alginate denotes a group of industrially important 1-4-linked biopolymers composed of the C-5-epimers β-D-mannuronic acid (M and α-L-guluronic acid (G. The polysaccharide is manufactured from brown algae where it constitutes the main structural cell wall polymer. The physical properties of a given alginate molecule, e.g. gel-strength, water-binding capacity, viscosity and biocompatibility, are determined by polymer length, the relative amount and distribution of G residues and the acetyl content, all of which are controlled by alginate modifying enzymes. Alginate has also been isolated from some bacteria belonging to the genera Pseudomonas and Azotobacter, and bacterially synthesized alginate may be O-acetylated at O-2 and/or O-3. Initially, alginate is synthesized as polymannuronic acid, and some M residues are subsequently epimerized to G residues. In bacteria a mannuronan C-5-epimerase (AlgG and an alginate acetylase (AlgX are integral parts of the protein complex necessary for alginate polymerisation and export. All alginate-producing bacteria use periplasmic alginate lyases to remove alginate molecules aberrantly released to the periplasm. Alginate lyases are also produced by organisms that utilize alginate as carbon source. Most alginate-producing organisms encode more than one mannuronan C-5 epimerase, each introducing its specific pattern of G residues. Acetylation protects against further epimerization and from most alginate lyases. One enzyme with alginate deacetylase activity from Pseudomonas syringae has been reported. Functional and structural studies reveal that alginate lyases and epimerases have related enzyme mechanisms and catalytic sites. Alginate lyases are now utilized as tools for alginate characterization. Secreted epimerases have been shown to function well in vitro, and have been engineered further in order to obtain enzymes that can provide alginates with new and desired properties for use in medical and

  3. The role of antimicrobial peptides in animal defenses

    Science.gov (United States)

    Hancock, Robert E. W.; Scott, Monisha G.

    2000-08-01

    It is becoming clear that the cationic antimicrobial peptides are an important component of the innate defenses of all species of life. Such peptides can be constitutively expressed or induced by bacteria or their products. The best peptides have good activities vs. a broad range of bacterial strains, including antibiotic-resistant isolates. They kill very rapidly, do not easily select resistant mutants, are synergistic with conventional antibiotics, other peptides, and lysozyme, and are able to kill bacteria in animal models. It is known that bacterial infections, especially when treated with antibiotics, can lead to the release of bacterial products such as lipopolysaccharide (LPS) and lipoteichoic acid, resulting in potentially lethal sepsis. In contrast to antibiotics, the peptides actually prevent cytokine induction by bacterial products in tissue culture and human blood, and they block the onset of sepsis in mouse models of endotoxemia. Consistent with this, transcriptional gene array experiments using a macrophage cell line demonstrated that a model peptide, CEMA, blocks the expression of many genes whose transcription was induced by LPS. The peptides do this in part by blocking LPS interaction with the serum protein LBP. In addition, CEMA itself has a direct effect on macrophage gene expression. Because cationic antimicrobial peptides are induced by LPS and are able to dampen the septic response of animal cells to LPS, we propose that, in addition to their role in direct and lysozyme-assisted killing of microbes, they have a role in feedback regulation of cytokine responses. We are currently developing variant peptides as therapeutics against antibiotic-resistant infections.

  4. The role of bacterial antizyme: From an inhibitory protein to AtoC transcriptional regulator

    Directory of Open Access Journals (Sweden)

    Kyriakidis Dimitrios A

    2004-06-01

    Full Text Available Abstract This review considers the role of bacterial antizyme in the regulation of polyamine biosynthesis and gives new perspectives on the involvement of antizyme in other significant cellular mechanisms. Antizyme is a protein molecule induced by the end product of the enzymic reaction that it inhibits, in a non-competitive manner. The bacterial ornithine decarboxylase is regulated by nucleotides, phosphorylation and antizyme. The inhibition of ornithine decarboxylase by antizyme can be relieved to different degrees by DNA or by a variety of synthetic nucleic acid polymers, attributed to a specific interaction between nucleic acid and antizyme. Recently, this interplay between bacterial antizyme and nucleic acid was determined by discerning an additional function to antizyme that proved to be the atoC gene product, encoding the response regulator of the bacterial two-component system AtoS-AtoC. The gene located just upstream of atoC encodes the sensor kinase, named AtoS, that modulates AtoC activity. AtoC regulates expression of atoDAEB operon which is involved in short-chain fatty acid metabolism. Antizyme is thus referred to as AtoC, functioning both as a post-translational and transcriptional regulator. Also, the AtoS-AtoC signal transduction system in E. coli has a positive regulatory role on poly-(R-3-hydroxybutyrate biosynthesis. The properties and gene structural similarities of antizymes from different organisms were compared. It was revealed that conserved domains are present mostly in the C-domain of all antizymes. BLAST analysis of the E. coli antizyme protein (AtoC showed similarities around 69–58% among proteobacteria, g-proteobacteria, enterobacteria and the thermophilic bacterium Thermus thermophilus. A working hypothesis is proposed for the metabolic role of antizyme (AtoC describing the significant biological implications of this protein molecule. Whether antizymes exist to other enzymes in different tissues, meeting the

  5. An enzyme-catalyzed multistep DNA refolding mechanism in hairpin telomere formation.

    Directory of Open Access Journals (Sweden)

    Ke Shi

    Full Text Available Hairpin telomeres of bacterial linear chromosomes are generated by a DNA cutting-rejoining enzyme protelomerase. Protelomerase resolves a concatenated dimer of chromosomes as the last step of chromosome replication, converting a palindromic DNA sequence at the junctions between chromosomes into covalently closed hairpins. The mechanism by which protelomerase transforms a duplex DNA substrate into the hairpin telomeres remains largely unknown. We report here a series of crystal structures of the protelomerase TelA bound to DNA that represent distinct stages along the reaction pathway. The structures suggest that TelA converts a linear duplex substrate into hairpin turns via a transient strand-refolding intermediate that involves DNA-base flipping and wobble base-pairs. The extremely compact di-nucleotide hairpin structure of the product is fully stabilized by TelA prior to strand ligation, which drives the reaction to completion. The enzyme-catalyzed, multistep strand refolding is a novel mechanism in DNA rearrangement reactions.

  6. Stable Isotope Fractionation Caused by Glycyl Radical Enzymes during Bacterial Degradation of Aromatic Compounds

    Science.gov (United States)

    Morasch, Barbara; Richnow, Hans H.; Vieth, Andrea; Schink, Bernhard; Meckenstock, Rainer U.

    2004-01-01

    Stable isotope fractionation was studied during the degradation of m-xylene, o-xylene, m-cresol, and p-cresol with two pure cultures of sulfate-reducing bacteria. Degradation of all four compounds is initiated by a fumarate addition reaction by a glycyl radical enzyme, analogous to the well-studied benzylsuccinate synthase reaction in toluene degradation. The extent of stable carbon isotope fractionation caused by these radical-type reactions was between enrichment factors (ɛ) of −1.5 and −3.9‰, which is in the same order of magnitude as data provided before for anaerobic toluene degradation. Based on our results, an analysis of isotope fractionation should be applicable for the evaluation of in situ bioremediation of all contaminants degraded by glycyl radical enzyme mechanisms that are smaller than 14 carbon atoms. In order to compare carbon isotope fractionations upon the degradation of various substrates whose numbers of carbon atoms differ, intrinsic ɛ (ɛintrinsic) were calculated. A comparison of ɛintrinsic at the single carbon atoms of the molecule where the benzylsuccinate synthase reaction took place with compound-specific ɛ elucidated that both varied on average to the same extent. Despite variations during the degradation of different substrates, the range of ɛ found for glycyl radical reactions was reasonably narrow to propose that rough estimates of biodegradation in situ might be given by using an average ɛ if no fractionation factor is available for single compounds. PMID:15128554

  7. Characterization of Bacterial and Fungal Community Dynamics by High-Throughput Sequencing (HTS Metabarcoding during Flax Dew-Retting

    Directory of Open Access Journals (Sweden)

    Christophe Djemiel

    2017-10-01

    Full Text Available Flax dew-retting is a key step in the industrial extraction of fibers from flax stems and is dependent upon the production of a battery of hydrolytic enzymes produced by micro-organisms during this process. To explore the diversity and dynamics of bacterial and fungal communities involved in this process we applied a high-throughput sequencing (HTS DNA metabarcoding approach (16S rRNA/ITS region, Illumina Miseq on plant and soil samples obtained over a period of 7 weeks in July and August 2014. Twenty-three bacterial and six fungal phyla were identified in soil samples and 11 bacterial and four fungal phyla in plant samples. Dominant phyla were Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes (bacteria and Ascomycota, Basidiomycota, and Zygomycota (fungi all of which have been previously associated with flax dew-retting except for Bacteroidetes and Basidiomycota that were identified for the first time. Rare phyla also identified for the first time in this process included Acidobacteria, CKC4, Chlorobi, Fibrobacteres, Gemmatimonadetes, Nitrospirae and TM6 (bacteria, and Chytridiomycota (fungi. No differences in microbial communities and colonization dynamics were observed between early and standard flax harvests. In contrast, the common agricultural practice of swath turning affects both bacterial and fungal community membership and structure in straw samples and may contribute to a more uniform retting. Prediction of community function using PICRUSt indicated the presence of a large collection of potential bacterial enzymes capable of hydrolyzing backbones and side-chains of cell wall polysaccharides. Assignment of functional guild (functional group using FUNGuild software highlighted a change from parasitic to saprophytic trophic modes in fungi during retting. This work provides the first exhaustive description of the microbial communities involved in flax dew-retting and will provide a valuable benchmark in future studies aiming

  8. Interconnected microbiomes and resistomes in low-income human habitats

    OpenAIRE

    Pehrsson, Erica C.; Tsukayama, Pablo; Patel, Sanket; Mej?a-Bautista, Melissa; Sosa-Soto, Giordano; Navarrete, Karla M.; Calderon, Maritza; Cabrera, Lilia; Hoyos-Arango, William; Bertoli, M. Teresita; Berg, Douglas E.; Gilman, Robert H.; Dantas, Gautam

    2016-01-01

    Summary Antibiotic-resistant infections annually claim hundreds of thousands of lives worldwide. This problem is exacerbated by resistance gene exchange between pathogens and benign microbes from diverse habitats. Mapping resistance gene dissemination between humans and their environment is a public health priority. We characterized the bacterial community structure and resistance exchange networks of hundreds of interconnected human fecal and environmental samples from two low-income Latin A...

  9. Genes as early responders regulate quorum-sensing and control bacterial cooperation in Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Kelei Zhao

    Full Text Available Quorum-sensing (QS allows bacterial communication to coordinate the production of extracellular products essential for population fitness at higher cell densities. It has been generally accepted that a significant time duration is required to reach appropriate cell density to activate the relevant quiescent genes encoding these costly but beneficial public goods. Which regulatory genes are involved and how these genes control bacterial communication at the early phases are largely un-explored. By determining time-dependent expression of QS-related genes of the opportunistic pathogen Pseudomonas aerugionsa, we show that the induction of social cooperation could be critically influenced by environmental factors to optimize the density of population. In particular, small regulatory RNAs (RsmY and RsmZ serving as early responders, can promote the expression of dependent genes (e.g. lasR to boost the synthesis of intracellular enzymes and coordinate instant cooperative behavior in bacterial cells. These early responders, acting as a rheostat to finely modulate bacterial cooperation, which may be quickly activated under environment threats, but peter off when critical QS dependent genes are fully functional for cooperation. Our findings suggest that RsmY and RsmZ critically control the timing and levels of public goods production, which may have implications in sociomicrobiology and infection control.

  10. Bacterial Artificial Chromosome Mutagenesis Using Recombineering

    Directory of Open Access Journals (Sweden)

    Kumaran Narayanan

    2011-01-01

    Full Text Available Gene expression from bacterial artificial chromosome (BAC clones has been demonstrated to facilitate physiologically relevant levels compared to viral and nonviral cDNA vectors. BACs are large enough to transfer intact genes in their native chromosomal setting together with flanking regulatory elements to provide all the signals for correct spatiotemporal gene expression. Until recently, the use of BACs for functional studies has been limited because their large size has inherently presented a major obstacle for introducing modifications using conventional genetic engineering strategies. The development of in vivo homologous recombination strategies based on recombineering in E. coli has helped resolve this problem by enabling facile engineering of high molecular weight BAC DNA without dependence on suitably placed restriction enzymes or cloning steps. These techniques have considerably expanded the possibilities for studying functional genetics using BACs in vitro and in vivo.

  11. Quorum Quenching Agents: Resources for Antivirulence Therapy

    Directory of Open Access Journals (Sweden)

    Kaihao Tang

    2014-05-01

    Full Text Available The continuing emergence of antibiotic-resistant pathogens is a concern to human health and highlights the urgent need for the development of alternative therapeutic strategies. Quorum sensing (QS regulates virulence in many bacterial pathogens, and thus, is a promising target for antivirulence therapy which may inhibit virulence instead of cell growth and division. This means that there is little selective pressure for the evolution of resistance. Many natural quorum quenching (QQ agents have been identified. Moreover, it has been shown that many microorganisms are capable of producing small molecular QS inhibitors and/or macromolecular QQ enzymes, which could be regarded as a strategy for bacteria to gain benefits in competitive environments. More than 30 species of marine QQ bacteria have been identified thus far, but only a few of them have been intensively studied. Recent studies indicate that an enormous number of QQ microorganisms are undiscovered in the highly diverse marine environments, and these marine microorganism-derived QQ agents may be valuable resources for antivirulence therapy.

  12. Nitrile hydratase of Rhodococcus erythropolis: characterization of the enzyme and the use of whole cells for biotransformation of nitriles.

    Science.gov (United States)

    Kamble, Ashwini L; Banoth, Linga; Meena, Vachan Singh; Singh, Amit; Chisti, Yusuf; Banerjee, U C

    2013-08-01

    The intracellular cobalt-type nitrile hydratase was purified from the bacterium Rhodococcuserythropolis. The pure enzyme consisted of two subunits of 29 and 30 kDa. The molecular weight of the native enzyme was estimated to be 65 kDa. At 25 °C the enzyme had a half-life of 25 h. The Michaelis-Menten constants K m and v max for the enzyme were 0.624 mM and 5.12 μmol/min/mg, respectively, using 3-cyanopyridine as the substrate. The enzyme-containing freely-suspended bacterial cells and the cells immobilized within alginate beads were evaluated for converting the various nitriles to amides. In a packed bed reactor, alginate beads (2 % alginate; 3 mm bead diameter) containing 200 mg/mL of cells, achieved a conversion of >90 % for benzonitrile and 4-cyanopyridine in 38 h (25 °C, pH 7.0) at a feed substrate concentration of 100 mM. The beads could be reused for up to six reaction cycles.

  13. Antibiotic-Resistant Infections and Treatment Challenges in the Immunocompromised Host.

    Science.gov (United States)

    Dumford, Donald M; Skalweit, Marion

    2016-06-01

    This article reviews antibiotic resistance and treatment of bacterial infections in the growing number of patients who are immunocompromised: solid organ transplant recipients, the neutropenic host, and persons with human immunodeficiency virus and AIDS. Specific mechanisms of resistance in both gram-negative and gram-positive bacteria, as well as newer treatment options are addressed elsewhere, and are only briefly discussed in the context of the immunocompromised host. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Halophilic Bacteria of Lunsu Produce an Array of Industrially Important Enzymes with Salt Tolerant Activity

    Directory of Open Access Journals (Sweden)

    Sonika Gupta

    2016-01-01

    Full Text Available The halophilic bacterial isolates SS1, SS2, SS3, SS5, and SS8 were characterized for production of industrially important enzymes like amylase, protease, lipase, and glutaminase. Halophilic bacterial isolates SS1 and SS3 exhibited salt dependent extracellular amylase and protease activities. Both the halophilic isolates SS1 and SS3 exhibited maximum amylase and protease activities in the presence of 1.5 and 1.0 M NaCl, respectively, with the optimum pH 8 and temperature 40°C. SS2 showed maximum extracellular protease and lipase activities in the presence of 0.75 M NaCl, at optimum pH of 7, and temperature 37°C. The glutaminase activity of SS3 increased with increase in concentration of NaCl up to 2.5 M. The optimum pH and temperature for L-glutaminase activity of SS3 was 8 and 40°C, respectively. The combined hydrolytic activities of these halophilic bacterial isolates can be used for bioconversion of organic materials to useful products.

  15. Halophilic Bacteria of Lunsu Produce an Array of Industrially Important Enzymes with Salt Tolerant Activity.

    Science.gov (United States)

    Gupta, Sonika; Sharma, Parul; Dev, Kamal; Sourirajan, Anuradha

    2016-01-01

    The halophilic bacterial isolates SS1, SS2, SS3, SS5, and SS8 were characterized for production of industrially important enzymes like amylase, protease, lipase, and glutaminase. Halophilic bacterial isolates SS1 and SS3 exhibited salt dependent extracellular amylase and protease activities. Both the halophilic isolates SS1 and SS3 exhibited maximum amylase and protease activities in the presence of 1.5 and 1.0 M NaCl, respectively, with the optimum pH 8 and temperature 40°C. SS2 showed maximum extracellular protease and lipase activities in the presence of 0.75 M NaCl, at optimum pH of 7, and temperature 37°C. The glutaminase activity of SS3 increased with increase in concentration of NaCl up to 2.5 M. The optimum pH and temperature for L-glutaminase activity of SS3 was 8 and 40°C, respectively. The combined hydrolytic activities of these halophilic bacterial isolates can be used for bioconversion of organic materials to useful products.

  16. Exposure to and colonisation by antibiotic-resistant E. coli in UK coastal water users: Environmental surveillance, exposure assessment, and epidemiological study (Beach Bum Survey).

    Science.gov (United States)

    Leonard, Anne F C; Zhang, Lihong; Balfour, Andrew J; Garside, Ruth; Hawkey, Peter M; Murray, Aimee K; Ukoumunne, Obioha C; Gaze, William H

    2018-05-01

    Antibiotic-resistant bacteria (ARB) present a global public health problem. With numbers of community-acquired resistant infections increasing, understanding the mechanisms by which people are exposed to and colonised by ARB can help inform effective strategies to prevent their spread. The role natural environments play in this is poorly understood. This is the first study to combine surveillance of ARB in bathing waters, human exposure estimates and association between exposure and colonisation by ARB in water users. 97 bathing water samples from England and Wales were analysed for the proportion of E. coli harbouring bla CTX-M . These data were used to estimate the likelihood of water users ingesting bla CTX-M -bearing E. coli. Having identified surfers as being at risk of exposure to ARB, a cross-sectional study was conducted. Regular surfers and non-surfers were recruited to assess whether there is an association between surfing and gut colonisation by bla CTX-M- bearing E. coli. 11 of 97 bathing waters sampled were found to contain bla CTX-M -bearing E. coli. While the percentage of bla CTX-M -bearing E. coli in bathing waters was low (0.07%), water users are at risk of ingesting these ARB. It is estimated that over 2.5 million water sports sessions occurred in 2015 resulting in the ingestion of at least one bla CTX-M -bearing E. coli. In the epidemiological survey, 9/143 (6.3%) surfers were colonised by bla CTX-M -bearing E. coli, as compared to 2/130 (1.5%) of non-surfers (risk ratio=4.09, 95% CI 1.02 to 16.4, p=0.046). Surfers are at risk of exposure to and colonisation by clinically important antibiotic-resistant E. coli in coastal waters. Further research must be done on the role natural environments play in the transmission of ARB. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. A Single Enzyme Transforms a Carboxylic Acid into a Nitrile through an Amide Intermediate.

    Science.gov (United States)

    Nelp, Micah T; Bandarian, Vahe

    2015-09-01

    The biosynthesis of nitriles is known to occur through specialized pathways involving multiple enzymes; however, in bacterial and archeal biosynthesis of 7-deazapurines, a single enzyme, ToyM, catalyzes the conversion of the carboxylic acid containing 7-carboxy-7-deazaguanine (CDG) into its corresponding nitrile, 7-cyano-7-deazaguanine (preQ0 ). The mechanism of this unusual direct transformation was shown to proceed via the adenylation of CDG, which activates it to form the newly discovered amide intermediate 7-amido-7-deazaguanine (ADG). This is subsequently dehydrated to form the nitrile in a process that consumes a second equivalent of ATP. The authentic amide intermediate is shown to be chemically and kinetically competent. The ability of ToyM to activate two different substrates, an acid and an amide, accounts for this unprecedented one-enzyme catalysis of nitrile synthesis, and the differential rates of these two half reactions suggest that this catalytic ability is derived from an amide synthetase that gained a new function. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Carnivorous Nutrition in Pitcher Plants (Nepenthes spp.) via an Unusual Complement of Endogenous Enzymes.

    Science.gov (United States)

    Lee, Linda; Zhang, Ye; Ozar, Brittany; Sensen, Christoph W; Schriemer, David C

    2016-09-02

    Plants belonging to the genus Nepenthes are carnivorous, using specialized pitfall traps called "pitchers" that attract, capture, and digest insects as a primary source of nutrients. We have used RNA sequencing to generate a cDNA library from the Nepenthes pitchers and applied it to mass spectrometry-based identification of the enzymes secreted into the pitcher fluid using a nonspecific digestion strategy superior to trypsin in this application. This first complete catalog of the pitcher fluid subproteome includes enzymes across a variety of functional classes. The most abundant proteins present in the secreted fluid are proteases, nucleases, peroxidases, chitinases, a phosphatase, and a glucanase. Nitrogen recovery involves a particularly rich complement of proteases. In addition to the two expected aspartic proteases, we discovered three novel nepenthensins, two prolyl endopeptidases that we name neprosins, and a putative serine carboxypeptidase. Additional proteins identified are relevant to pathogen-defense and secretion mechanisms. The full complement of acid-stable enzymes discovered in this study suggests that carnivory in the genus Nepenthes can be sustained by plant-based mechanisms alone and does not absolutely require bacterial symbiosis.

  19. Exploring the potential of fungal-bacterial consortium for low-cost biodegradation and detoxification of textile effluent

    Directory of Open Access Journals (Sweden)

    Lade Harshad

    2016-12-01

    Full Text Available In the present study, the enrichment and isolation of textile effluent decolorizing bacteria were carried out in wheat bran (WB medium. The isolated bacterium Providencia rettgeri strain HSL1 was then tested for decolorization of textile effluent in consortium with a dyestuff degrading fungus Aspergillus ochraceus NCIM 1146. Decolorization study suggests that A. ochraceus NCIM 1146 and P. rettgeri strain HSL1 alone re moves only 6 and 32% of textile effluent American Dye Manufacturing Institute respectively in 30 h at 30 ±0.2°C of microaerophilic incubation, while the fungal-bacterial consortium does 92% ADMI removal within the same time period. The fungal-bacterial consortium exhibited enhanced decolorization rate due to the induction in activities of catalytic enzymes laccase (196%, lignin peroxidase (77%, azoreductase (80% and NADH-DCIP reductase (84%. The HPLC analysis confirmed the biodegradation of textile effluent into various metabolites. Detoxification studies of textile effluent before and after treatment with fungal-bacterial consortium revealed reduced toxicity of degradation metabolites. The efficient degradation and detoxification by fungal-bacterial consortium pre-grown in agricultural based medium thus suggest a promising approach in designing low-cost treatment technologies for textile effluent.

  20. Chemical Pretreatment-Independent Saccharifications of Xylan and Cellulose of Rice Straw by Bacterial Weak Lignin-Binding Xylanolytic and Cellulolytic Enzymes.

    Science.gov (United States)

    Teeravivattanakit, Thitiporn; Baramee, Sirilak; Phitsuwan, Paripok; Sornyotha, Somphit; Waeonukul, Rattiya; Pason, Patthra; Tachaapaikoon, Chakrit; Poomputsa, Kanokwan; Kosugi, Akihiko; Sakka, Kazuo; Ratanakhanokchai, Khanok

    2017-11-15

    Complete utilization of carbohydrate fractions is one of the prerequisites for obtaining economically favorable lignocellulosic biomass conversion. This study shows that xylan in untreated rice straw was saccharified to xylose in one step without chemical pretreatment, yielding 58.2% of the theoretically maximum value by Paenibacillus curdlanolyticus B-6 PcAxy43A, a weak lignin-binding trifunctional xylanolytic enzyme, endoxylanase/β-xylosidase/arabinoxylan arabinofuranohydrolase. Moreover, xylose yield from untreated rice straw was enhanced to 78.9% by adding endoxylanases PcXyn10C and PcXyn11A from the same bacterium, resulting in improvement of cellulose accessibility to cellulolytic enzyme. After autoclaving the xylanolytic enzyme-treated rice straw, it was subjected to subsequent saccharification by a combination of the Clostridium thermocellum endoglucanase CtCel9R and Thermoanaerobacter brockii β-glucosidase TbCglT, yielding 88.5% of the maximum glucose yield, which was higher than the glucose yield obtained from ammonia-treated rice straw saccharification (59.6%). Moreover, this work presents a new environment-friendly xylanolytic enzyme pretreatment for beneficial hydrolysis of xylan in various agricultural residues, such as rice straw and corn hull. It not only could improve cellulose saccharification but also produced xylose, leading to an improvement of the overall fermentable sugar yields without chemical pretreatment. IMPORTANCE Ongoing research is focused on improving "green" pretreatment technologies in order to reduce energy demands and environmental impact and to develop an economically feasible biorefinery. The present study showed that PcAxy43A, a weak lignin-binding trifunctional xylanolytic enzyme, endoxylanase/β-xylosidase/arabinoxylan arabinofuranohydrolase from P. curdlanolyticus B-6, was capable of conversion of xylan in lignocellulosic biomass such as untreated rice straw to xylose in one step without chemical pretreatment. It

  1. Pancreatic Enzymes

    Science.gov (United States)

    ... Contact Us DONATE NOW GENERAL DONATION PURPLESTRIDE Pancreatic enzymes Home Facing Pancreatic Cancer Living with Pancreatic Cancer ... and see a registered dietitian. What are pancreatic enzymes? Pancreatic enzymes help break down fats, proteins and ...

  2. [Bacterial prostatitis and prostatic fibrosis: modern view on the treatment and prophylaxis].

    Science.gov (United States)

    Zaitsev, A V; Pushkar, D Yu; Khodyreva, L A; Dudareva, A A

    2016-08-01

    Treatments of chronic bacterial prostatitis (CP) remain difficult problem. Bacterial prostatitis is a disease entity diagnosed clinically and by evidence of inflammation and infection localized to the prostate. Risk factors for UTI in men include urological interventions, such as transrectal prostate biopsy. Ensuing infections after prostate biopsy, such as UTI and bacterial prostatitis, are increasing due to increasing rates of fluoroquinolone resistance. The increasing global antibiotic resistance also significantly affects management of UTI in men, and therefore calls for alternative strategies. Prostatic inflammation has been suggested to contribute to the etiology of lower urinary tract symptoms (LUTS) by inducing fibrosis. Several studies have shown that prostatic fibrosis is strongly associated with impaired urethral function and LUTS severity. Fibrosis resulting from excessive deposition of collagen is traditionally recognized as a progressive irreversible condition and an end stage of inflammatory diseases; however, there is compelling evidence in both animal and human studies to support that the development of fibrosis could potentially be a reversible process. Prostate inflammation may induce fibrotic changes in periurethral prostatic tissues, promote urethral stiffness and LUTS. Patients experiencing CP and prostate-related LUTS could benefit from anti-inflammatory therapies, especially used in combination with the currently prescribed enzyme treatment with Longidase. Treatment results showed that longidase is highly effective in bacterial and abacterial CP. Longidase addition to standard therapeutic methods significantly reduced the disease symptoms and regression of inflammatory-proliferative alterations in the prostate.

  3. Mining and polishing of the treasure trove in the bacterial genus streptomyces.

    Science.gov (United States)

    Horinouchi, Sueharu

    2007-02-01

    The complex morphogenesis of the bacterial genus Streptomyces has made this genus a model prokaryote for study of multicellular differentiation, and its ability to produce a wide variety of secondary metabolites has made it an excellent supplier of biologically active substances, including antibiotics. This review summarizes our study of these two characteristics of Streptomyces, focusing on the A-factor regulatory cascade and work derived from the A-factor study. A microbial hormone, A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone), triggers morphological differentiation and secondary metabolism in Streptomyces griseus. The key steps in the A-factor regulatory cascade, including afsA, encoding the key enzyme for A-factor biosynthesis, arpA, encoding the A-factor receptor, and adpA, encoding a transcriptional activator, are elucidated. The target genes of the regulatory cascade include genes of various functions required for morphological development and secondary metabolite formation. The biosynthesis gene clusters for grixazone and hexahydroxyperylenequinone are examples. The former contains the enzymes for novel benzene ring formation and phenoxazinone formation, and the latter contains enzymes belonging to a type III polyketide synthase and a cytochrome P-450. Enzymes of various catalytic functions in Streptomyces are useful as members of an artificial gene cluster constructed in Escherichia coli for fermentative production of plant-specific flavonoids, including isoflavones and unnatural compounds.

  4. A novel analytical method for D-glucosamine quantification and its application in the analysis of chitosan degradation by a minimal enzyme cocktail

    DEFF Research Database (Denmark)

    Mekasha, Sophanit; Toupalová, Hana; Linggadjaja, Eka

    2016-01-01

    Enzymatic depolymerization of chitosan, a β-(1,4)-linked polycationic polysaccharide composed of D-glucosamine (GlcN) and N-acetyl-D-glucosamine (GlcNAc) provides a possible route to the exploitation of chitin-rich biomass. Complete conversion of chitosan to mono-sugars requires the synergistic...... action of endo- and exo- chitosanases. In the present study we have developed an efficient and cost-effective chitosan-degrading enzyme cocktail containing only two enzymes, an endo-attacking bacterial chitosanase, ScCsn46A, from Streptomyces coelicolor, and an exo-attacking glucosamine specific β...

  5. Antibiotic-resistant bacteria: prevalence in food and inactivation by food-compatible compounds and plant extracts.

    Science.gov (United States)

    Friedman, Mendel

    2015-04-22

    Foodborne antibiotic-resistant pathogenic bacteria such as Campylobacter jejuni, Bacillus cereus, Clostridium perfringens, Escherichia coli, Salmonella enterica, Staphylococcus aureus, Vibrio cholerae, and Vibrio parahemolyticus can adversely affect animal and human health, but a better understanding of the factors involved in their pathogenesis is needed. To help meet this need, this overview surveys and interprets much of our current knowledge of antibiotic (multidrug)-resistant bacteria in the food chain and the implications for microbial food safety and animal and human health. Topics covered include the origin and prevalence of resistant bacteria in the food chain (dairy, meat, poultry, seafood, and herbal products, produce, and eggs), their inactivation by different classes of compounds and plant extracts and by the use of chlorine and physicochemical methods (heat, UV light, pulsed electric fields, and high pressure), the synergistic antimicrobial effects of combinations of natural antimicrobials with medicinal antibiotics, and mechanisms of antimicrobial activities and resistant effects. Possible areas for future research are suggested. Plant-derived and other safe natural antimicrobial compounds have the potential to control the prevalence of both susceptible and resistant pathogens in various environments. The collated information and suggested research will hopefully contribute to a better understanding of approaches that could be used to minimize the presence of resistant pathogens in animal feed and human food, thus reducing adverse effects, improving microbial food safety, and helping to prevent or treat animal and human infections.

  6. Increments and duplication events of enzymes and transcription factors influence metabolic and regulatory diversity in prokaryotes.

    Directory of Open Access Journals (Sweden)

    Mario Alberto Martínez-Núñez

    Full Text Available In this work, the content of enzymes and DNA-binding transcription factors (TFs in 794 non-redundant prokaryotic genomes was evaluated. The identification of enzymes was based on annotations deposited in the KEGG database as well as in databases of functional domains (COG and PFAM and structural domains (Superfamily. For identifications of the TFs, hidden Markov profiles were constructed based on well-known transcriptional regulatory families. From these analyses, we obtained diverse and interesting results, such as the negative rate of incremental changes in the number of detected enzymes with respect to the genome size. On the contrary, for TFs the rate incremented as the complexity of genome increased. This inverse related performance shapes the diversity of metabolic and regulatory networks and impacts the availability of enzymes and TFs. Furthermore, the intersection of the derivatives between enzymes and TFs was identified at 9,659 genes, after this point, the regulatory complexity grows faster than metabolic complexity. In addition, TFs have a low number of duplications, in contrast to the apparent high number of duplications associated with enzymes. Despite the greater number of duplicated enzymes versus TFs, the increment by which duplicates appear is higher in TFs. A lower proportion of enzymes among archaeal genomes (22% than in the bacterial ones (27% was also found. This low proportion might be compensated by the interconnection between the metabolic pathways in Archaea. A similar proportion was also found for the archaeal TFs, for which the formation of regulatory complexes has been proposed. Finally, an enrichment of multifunctional enzymes in Bacteria, as a mechanism of ecological adaptation, was detected.

  7. Impact of fertilizing with raw or anaerobically digested sewage sludge on the abundance of antibiotic-resistant coliforms, antibiotic resistance genes, and pathogenic bacteria in soil and on vegetables at harvest.

    Science.gov (United States)

    Rahube, Teddie O; Marti, Romain; Scott, Andrew; Tien, Yuan-Ching; Murray, Roger; Sabourin, Lyne; Zhang, Yun; Duenk, Peter; Lapen, David R; Topp, Edward

    2014-11-01

    The consumption of crops fertilized with human waste represents a potential route of exposure to antibiotic-resistant fecal bacteria. The present study evaluated the abundance of bacteria and antibiotic resistance genes by using both culture-dependent and molecular methods. Various vegetables (lettuce, carrots, radish, and tomatoes) were sown into field plots fertilized inorganically or with class B biosolids or untreated municipal sewage sludge and harvested when of marketable quality. Analysis of viable pathogenic bacteria or antibiotic-resistant coliform bacteria by plate counts did not reveal significant treatment effects of fertilization with class B biosolids or untreated sewage sludge on the vegetables. Numerous targeted genes associated with antibiotic resistance and mobile genetic elements were detected by PCR in soil and on vegetables at harvest from plots that received no organic amendment. However, in the season of application, vegetables harvested from plots treated with either material carried gene targets not detected in the absence of amendment. Several gene targets evaluated by using quantitative PCR (qPCR) were considerably more abundant on vegetables harvested from sewage sludge-treated plots than on vegetables from control plots in the season of application, whereas vegetables harvested the following year revealed no treatment effect. Overall, the results of the present study suggest that producing vegetable crops in ground fertilized with human waste without appropriate delay or pretreatment will result in an additional burden of antibiotic resistance genes on harvested crops. Managing human exposure to antibiotic resistance genes carried in human waste must be undertaken through judicious agricultural practice. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  8. Molecular interaction of the first 3 enzymes of the de novo pyrimidine biosynthetic pathway of Trypanosoma cruzi

    International Nuclear Information System (INIS)

    Nara, Takeshi; Hashimoto, Muneaki; Hirawake, Hiroko; Liao, Chien-Wei; Fukai, Yoshihisa; Suzuki, Shigeo; Tsubouchi, Akiko; Morales, Jorge; Takamiya, Shinzaburo; Fujimura, Tsutomu; Taka, Hikari; Mineki, Reiko; Fan, Chia-Kwung; Inaoka, Daniel Ken; Inoue, Masayuki; Tanaka, Akiko; Harada, Shigeharu; Kita, Kiyoshi

    2012-01-01

    Highlights: ► An Escherichia coli strain co-expressing CPSII, ATC, and DHO of Trypanosoma cruzi was constructed. ► Molecular interactions between CPSII, ATC, and DHO of T. cruzi were demonstrated. ► CPSII bound with both ATC and DHO. ► ATC bound with both CPSII and DHO. ► A functional tri-enzyme complex might precede the establishment of the fused enzyme. -- Abstract: The first 3 reaction steps of the de novo pyrimidine biosynthetic pathway are catalyzed by carbamoyl-phosphate synthetase II (CPSII), aspartate transcarbamoylase (ATC), and dihydroorotase (DHO), respectively. In eukaryotes, these enzymes are structurally classified into 2 types: (1) a CPSII-DHO-ATC fusion enzyme (CAD) found in animals, fungi, and amoebozoa, and (2) stand-alone enzymes found in plants and the protist groups. In the present study, we demonstrate direct intermolecular interactions between CPSII, ATC, and DHO of the parasitic protist Trypanosoma cruzi, which is the causative agent of Chagas disease. The 3 enzymes were expressed in a bacterial expression system and their interactions were examined. Immunoprecipitation using an antibody specific for each enzyme coupled with Western blotting-based detection using antibodies for the counterpart enzymes showed co-precipitation of all 3 enzymes. From an evolutionary viewpoint, the formation of a functional tri-enzyme complex may have preceded—and led to—gene fusion to produce the CAD protein. This is the first report to demonstrate the structural basis of these 3 enzymes as a model of CAD. Moreover, in conjunction with the essentiality of de novo pyrimidine biosynthesis in the parasite, our findings provide a rationale for new strategies for developing drugs for Chagas disease, which target the intermolecular interactions of these 3 enzymes.

  9. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution.

    Science.gov (United States)

    Janusz, Grzegorz; Pawlik, Anna; Sulej, Justyna; Swiderska-Burek, Urszula; Jarosz-Wilkolazka, Anna; Paszczynski, Andrzej

    2017-11-01

    Extensive research efforts have been dedicated to describing degradation of wood, which is a complex process; hence, microorganisms have evolved different enzymatic and non-enzymatic strategies to utilize this plentiful plant material. This review describes a number of fungal and bacterial organisms which have developed both competitive and mutualistic strategies for the decomposition of wood and to thrive in different ecological niches. Through the analysis of the enzymatic machinery engaged in wood degradation, it was possible to elucidate different strategies of wood decomposition which often depend on ecological niches inhabited by given organism. Moreover, a detailed description of low molecular weight compounds is presented, which gives these organisms not only an advantage in wood degradation processes, but seems rather to be a new evolutionatory alternative to enzymatic combustion. Through analysis of genomics and secretomic data, it was possible to underline the probable importance of certain wood-degrading enzymes produced by different fungal organisms, potentially giving them advantage in their ecological niches. The paper highlights different fungal strategies of wood degradation, which possibly correlates to the number of genes coding for secretory enzymes. Furthermore, investigation of the evolution of wood-degrading organisms has been described. © FEMS 2017.

  10. Amyloid-linked cellular toxicity triggered by bacterial inclusion bodies

    International Nuclear Information System (INIS)

    Gonzalez-Montalban, Nuria; Villaverde, Antonio; Aris, Anna

    2007-01-01

    The aggregation of proteins in the form of amyloid fibrils and plaques is the characteristic feature of some pathological conditions ranging from neurodegenerative disorders to systemic amyloidoses. The mechanisms by which the aggregation processes result in cell damage are under intense investigation but recent data indicate that prefibrillar aggregates are the most proximate mediators of toxicity rather than mature fibrils. Since it has been shown that prefibrillar forms of the nondisease-related misfolded proteins are highly toxic to cultured mammalian cells we have studied the cytoxicity associated to bacterial inclusion bodies that have been recently described as protein deposits presenting amyloid-like structures. We have proved that bacterial inclusion bodies composed by a misfolding-prone β-galactosidase fusion protein are clearly toxic for mammalian cells but the β-galactosidase wild type enzyme forming more structured thermal aggregates does not impair cell viability, despite it also binds and enter into the cells. These results are in the line that the most cytotoxic aggregates are early prefibrilar assemblies but discard the hypothesis that the membrane destabilization is Key event to subsequent disruption of cellular processes, such as ion balance, oxidative state and the eventually cell death

  11. Effect of diluting starch mixtures with bacterial amylase on the heat treatment of the grain

    Energy Technology Data Exchange (ETDEWEB)

    Ustinikov, B A; Gromov, S I; Poluyanova, M T

    1971-01-01

    A higher yield of alcohol can be obtained from finely ground grain by diluting the mixtures prior to boiling down with amylolyic enzymes or acids, using thermophilic bacteria. Bacterium diastaticus can withstand temperature as high as 90 to 95/sup 0/C. Experiments are described for studying the effect of time and temperature of boiling on ground grain of different particle size, and of preliminary dilution of the mashes with bacterial amylase. The particle sizes used in the experiment were 0.7 to 1, 1.5 to 2 and 2.5 to 3 mm. The 40 g samples were diluted with 140 ml water and 2 vol % liquid bacterial diastaticus culture with an activity of 160 units/100 ml. 40 minutes on a water bath caused gelation of the starch. Following this treatment, the samples were autoclaved for 10 to 120 minutes at 133, 141, 151 and 158/sup 0/C. Results, expressed in graph form, show that addition of bacterial amylase enabled the grain mash boiling period to be shortened.

  12. Virtual screening for potential inhibitors of bacterial MurC and MurD ligases.

    Science.gov (United States)

    Tomašić, Tihomir; Kovač, Andreja; Klebe, Gerhard; Blanot, Didier; Gobec, Stanislav; Kikelj, Danijel; Mašič, Lucija Peterlin

    2012-03-01

    Mur ligases are bacterial enzymes involved in the cytoplasmic steps of peptidoglycan biosynthesis and are viable targets for antibacterial drug discovery. We have performed virtual screening for potential ATP-competitive inhibitors targeting MurC and MurD ligases, using a protocol of consecutive hierarchical filters. Selected compounds were evaluated for inhibition of MurC and MurD ligases, and weak inhibitors possessing dual inhibitory activity have been identified. These compounds represent new scaffolds for further optimisation towards multiple Mur ligase inhibitors with improved inhibitory potency.

  13. Use of the Antimicrobial Peptide Sublancin with Combined Antibacterial and Immunomodulatory Activities To Protect against Methicillin-Resistant Staphylococcus aureus Infection in Mice.

    Science.gov (United States)

    Wang, Shuai; Wang, Qingwei; Zeng, Xiangfang; Ye, Qianhong; Huang, Shuo; Yu, Haitao; Yang, Tianren; Qiao, Shiyan

    2017-10-04

    Methicillin-resistant Staphylococcus aureus (MRSA) is the major pathogen causing serious hospital infections worldwide. With the emergence and rapid spread of drug-resistant bacteria, there is extraordinary interest in antimicrobial peptides (AMPs) as promising candidates for the treatment of antibiotic-resistant bacterial infections. Sublancin, a glycosylated AMP produced by Bacillus subtilis 168, has been reported to possess protective activity against bacterial infection. This study was performed to evaluate the efficacy of sublancin in the prevention of MRSA ATCC43300 intraperitoneal infection in mice. We determined that sublancin had a minimal inhibitory concentration of 15 μM against MRSA ATCC43300. The antimicrobial action of sublancin involved the destruction of the bacterial cell wall. Dosing of mice with sublancin greatly alleviated (p resistant infections and sepsis.

  14. Measuring the Enzyme Activity of Arabidopsis Deubiquitylating Enzymes.

    Science.gov (United States)

    Kalinowska, Kamila; Nagel, Marie-Kristin; Isono, Erika

    2016-01-01

    Deubiquitylating enzymes, or DUBs, are important regulators of ubiquitin homeostasis and substrate stability, though the molecular mechanisms of most of the DUBs in plants are not yet understood. As different ubiquitin chain types are implicated in different biological pathways, it is important to analyze the enzyme characteristic for studying a DUB. Quantitative analysis of DUB activity is also important to determine enzyme kinetics and the influence of DUB binding proteins on the enzyme activity. Here, we show methods to analyze DUB activity using immunodetection, Coomassie Brilliant Blue staining, and fluorescence measurement that can be useful for understanding the basic characteristic of DUBs.

  15. GEN1 from a thermophilic fungus is functionally closely similar to non-eukaryotic junction-resolving enzymes.

    Science.gov (United States)

    Freeman, Alasdair D J; Liu, Yijin; Déclais, Anne-Cécile; Gartner, Anton; Lilley, David M J

    2014-12-12

    Processing of Holliday junctions is essential in recombination. We have identified the gene for the junction-resolving enzyme GEN1 from the thermophilic fungus Chaetomium thermophilum and expressed the N-terminal 487-amino-acid section. The protein is a nuclease that is highly selective for four-way DNA junctions, cleaving 1nt 3' to the point of strand exchange on two strands symmetrically disposed about a diagonal axis. CtGEN1 binds to DNA junctions as a discrete homodimer with nanomolar affinity. Analysis of the kinetics of cruciform cleavage shows that cleavage of the second strand occurs an order of magnitude faster than the first cleavage so as to generate a productive resolution event. All these properties are closely similar to those described for bacterial, phage and mitochondrial junction-resolving enzymes. CtGEN1 is also similar in properties to the human enzyme but lacks the problems with aggregation that currently prevent detailed analysis of the latter protein. CtGEN1 is thus an excellent enzyme with which to engage in biophysical and structural analysis of eukaryotic GEN1. Copyright © 2014. Published by Elsevier Ltd.

  16. Tank bromeliad water: similar or distinct environments for research of bacterial bioactives?

    Science.gov (United States)

    Carmo, F L; Santos, H F; Peixoto, R S; Rosado, A S; Araujo, F V

    2014-01-01

    The Atlantic Rainforest does not have a uniform physiognomy, its relief determines different environmental conditions that define the composition of its flora and fauna. Within this ecosystem, bromeliads that form tanks with their leaves hold water reservoirs throughout the year, maintaining complex food chains, based mainly on autotrophic and heterotrophic bacteria. Some works concluded that the water held by tank bromeliads concentrate the microbial diversity of their ecosystem. To investigate the bacterial diversity and the potential biotechnology of these ecosystems, tank bromeliads of the Neoregelia cruenta species from the Atlantic Rainforest in Brazil were used as models for this research. Bacteria isolated from these models were tested for production of bioactive compounds. DGGE of the water held by tank bromeliads was performed in different seasons, locations and sun exposure to verify whether these environmental factors affect bacterial communities. The DGGE bands profile showed no grouping of bacterial community by the environmental factors tested. Most of the isolates demonstrated promising activities in the tests performed. Collectively, these results suggest that tank bromeliads of the N. cruenta species provide important habitats for a diverse microbial community, suggesting that each tank forms a distinct micro-habitat. These tanks can be considered excellent sources for the search for new enzymes and/or new bioactive composites of microbial origin.

  17. Linezolid-induced lactic acidosis: the thin line between bacterial and mitochondrial ribosomes.

    Science.gov (United States)

    Santini, Alessandro; Ronchi, Dario; Garbellini, Manuela; Piga, Daniela; Protti, Alessandro

    2017-07-01

    Linezolid inhibits bacterial growth by targeting bacterial ribosomes and by interfering with bacterial protein synthesis. Lactic acidosis is a rare, but potentially lethal, side effect of linezolid. Areas covered: The pathogenesis of linezolid-induced lactic acidosis is reviewed with special emphasis on aspects relevant to the recognition, prevention and treatment of the syndrome. Expert opinion: Linezolid-induced lactic acidosis reflects the untoward interaction between the drug and mitochondrial ribosomes. The inhibition of mitochondrial protein synthesis diminishes the respiratory chain enzyme content and thus limits aerobic energy production. As a result, anaerobic glycolysis and lactate generation accelerate independently from tissue hypoxia. In the absence of any confirmatory test, linezolid-induced lactic acidosis should be suspected only after exclusion of other, more common, causes of lactic acidosis such as hypoxemia, anemia or low cardiac output. Normal-to-high whole-body oxygen delivery, high venous oxygen saturation and lack of response to interventions that effectively increase tissue oxygen provision all suggest a primary defect in oxygen use at the mitochondrial level. During prolonged therapy with linezolid, blood drug and lactate levels should be regularly monitored. The current standard-of-care treatment of linezolid-induced lactic acidosis consists of drug withdrawal to reverse mitochondrial intoxication and intercurrent life support.

  18. Bacterial mycophagy: definition and diagnosis of a unique bacterial-fungal interaction

    NARCIS (Netherlands)

    Leveau, J.H.J.; Preston, G.M.

    2008-01-01

    This review analyses the phenomenon of bacterial mycophagy, which we define as a set of phenotypic behaviours that enable bacteria to obtain nutrients from living fungi and thus allow the conversion of fungal into bacterial biomass. We recognize three types of bacterial strategies to derive

  19. Bacterial production of the biodegradable plastics polyhydroxyalkanoates.

    Science.gov (United States)

    Urtuvia, Viviana; Villegas, Pamela; González, Myriam; Seeger, Michael

    2014-09-01

    Petroleum-based plastics constitute a major environmental problem due to their low biodegradability and accumulation in various environments. Therefore, searching for novel biodegradable plastics is of increasing interest. Microbial polyesters known as polyhydroxyalkanoates (PHAs) are biodegradable plastics. Life cycle assessment indicates that PHB is more beneficial than petroleum-based plastics. In this report, bacterial production of PHAs and their industrial applications are reviewed and the synthesis of PHAs in Burkholderia xenovorans LB400 is described. PHAs are synthesized by a large number of microorganisms during unbalanced nutritional conditions. These polymers are accumulated as carbon and energy reserve in discrete granules in the bacterial cytoplasm. 3-hydroxybutyrate and 3-hydroxyvalerate are two main PHA units among 150 monomers that have been reported. B. xenovorans LB400 is a model bacterium for the degradation of polychlorobiphenyls and a wide range of aromatic compounds. A bioinformatic analysis of LB400 genome indicated the presence of pha genes encoding enzymes of pathways for PHA synthesis. This study showed that B. xenovorans LB400 synthesize PHAs under nutrient limitation. Staining with Sudan Black B indicated the production of PHAs by B. xenovorans LB400 colonies. The PHAs produced were characterized by GC-MS. Diverse substrates for the production of PHAs in strain LB400 were analyzed. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Conserved water molecules in bacterial serine hydroxymethyltransferases.

    Science.gov (United States)

    Milano, Teresa; Di Salvo, Martino Luigi; Angelaccio, Sebastiana; Pascarella, Stefano

    2015-10-01

    Water molecules occurring in the interior of protein structures often are endowed with key structural and functional roles. We report the results of a systematic analysis of conserved water molecules in bacterial serine hydroxymethyltransferases (SHMTs). SHMTs are an important group of pyridoxal-5'-phosphate-dependent enzymes that catalyze the reversible conversion of l-serine and tetrahydropteroylglutamate to glycine and 5,10-methylenetetrahydropteroylglutamate. The approach utilized in this study relies on two programs, ProACT2 and WatCH. The first software is able to categorize water molecules in a protein crystallographic structure as buried, positioned in clefts or at the surface. The other program finds, in a set of superposed homologous proteins, water molecules that occur approximately in equivalent position in each of the considered structures. These groups of molecules are referred to as 'clusters' and represent structurally conserved water molecules. Several conserved clusters of buried or cleft water molecules were found in the set of 11 bacterial SHMTs we took into account for this work. The majority of these clusters were not described previously. Possible structural and functional roles for the conserved water molecules are envisaged. This work provides a map of the conserved water molecules helpful for deciphering SHMT mechanism and for rational design of molecular engineering experiments. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Effects of dietary protein levels and 2-methylbutyrate on ruminal fermentation, nutrient degradability, bacterial populations and urinary purine derivatives in Simmental steers.

    Science.gov (United States)

    Wang, C; Liu, Q; Guo, G; Huo, W J; Pei, C X; Zhang, S L; Yang, W Z

    2018-06-01

    The objective of this study was to evaluate the effects of dietary crude protein (CP) levels and 2-methylbutyrate (MB) supplementation on ruminal fermentation, bacterial populations, microbial enzyme activity and urinary excretion of purine derivatives (PD) in Simmental steers. Eight ruminally cannulated Simmental steers, averaging 18 months of age and 465 ± 8.6 kg of body weight (BW), were used in a replicated 4 × 4 Latin square design by a 2 × 2 factorial arrangement. Low protein (98.5 g CP/kg dry matter [LP] or high protein (128.7 g CP/kg dry matter [HP]) diets were fed with MB supplementation (0 g [MB-] or 16.8 g steer -1  day -1 [MB+]). Steers were fed a total mixed ration with dietary corn straw to concentrate ratio of 50:50 (dry matter [DM] basis). The CP × MB interaction was observed for ruminal total VFA, molar proportions of acetate and propionate, acetate to propionate ratio, ammonia-N, effective degradability of neutral detergent fibre (NDF) and CP, microbial enzyme activity, bacterial populations and total PD excretion (p Ruminal pH decreased (p ruminal total VFA concentration increased (p Ruminal ammonia-N content increased (p = .034) with increasing dietary CP level, but decreased (p = .012) with MB supplementation. The effective degradability of NDF and CP increased (p ruminal fermentation, nutrient degradability, microbial enzyme activity, ruminal bacterial populations and microbial protein synthesis improved with increasing dietary CP level or MB supplementation in steers. © 2017 Blackwell Verlag GmbH.

  2. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes.

    Science.gov (United States)

    Wei, Hui; Wang, Erkang

    2013-07-21

    Over the past few decades, researchers have established artificial enzymes as highly stable and low-cost alternatives to natural enzymes in a wide range of applications. A variety of materials including cyclodextrins, metal complexes, porphyrins, polymers, dendrimers and biomolecules have been extensively explored to mimic the structures and functions of naturally occurring enzymes. Recently, some nanomaterials have been found to exhibit unexpected enzyme-like activities, and great advances have been made in this area due to the tremendous progress in nano-research and the unique characteristics of nanomaterials. To highlight the progress in the field of nanomaterial-based artificial enzymes (nanozymes), this review discusses various nanomaterials that have been explored to mimic different kinds of enzymes. We cover their kinetics, mechanisms and applications in numerous fields, from biosensing and immunoassays, to stem cell growth and pollutant removal. We also summarize several approaches to tune the activities of nanozymes. Finally, we make comparisons between nanozymes and other catalytic materials (other artificial enzymes, natural enzymes, organic catalysts and nanomaterial-based catalysts) and address the current challenges and future directions (302 references).

  3. Proteomic analysis of enzyme production by Bacillus licheniformis using different feather wastes as the sole fermentation media.

    Science.gov (United States)

    Parrado, J; Rodriguez-Morgado, B; Tejada, M; Hernandez, T; Garcia, C

    2014-04-10

    This study evaluates the use of different types of feathers as fermentation media for enzyme production. Bacillus licheniformis was grown on the feathers, which lead to total biodegradation due to bacterial enzymatic hydrolytic excretion. B. licheniformis excretes protease and lipase activity, with feather concentration being the main parameter controlling their generation. Using a proteomic approach, the proteins excreted during fermentation were identified, and the influence of the chemical composition of the feathers on protein secretion was tested. The identified proteins are hydrolytic enzymes such as keratinase, gamma-glutamyltranspeptidase, chitosanases, and glicosidases. The diversity of proteins is related to the chemical complexity of the feathers. Understanding the composition of a hydrolytic system, when B. licheniformis is cultured on different feathers, may assist in utilizing such a system for producing different hydrolytic enzymes. The data indicate that proteomics can be a valuable tool for describing the physiological state of B. licheniformis cell populations growing on different wastes. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Biochemical characterization of enzyme fidelity of influenza A virus RNA polymerase complex.

    Directory of Open Access Journals (Sweden)

    Shilpa Aggarwal

    2010-04-01

    Full Text Available It is widely accepted that the highly error prone replication process of influenza A virus (IAV, together with viral genome assortment, facilitates the efficient evolutionary capacity of IAV. Therefore, it has been logically assumed that the enzyme responsible for viral RNA replication process, influenza virus type A RNA polymerase (IAV Pol, is a highly error-prone polymerase which provides the genomic mutations necessary for viral evolution and host adaptation. Importantly, however, the actual enzyme fidelity of IAV RNA polymerase has never been characterized.Here we established new biochemical assay conditions that enabled us to assess both polymerase activity with physiological NTP pools and enzyme fidelity of IAV Pol. We report that IAV Pol displays highly active RNA-dependent RNA polymerase activity at unbiased physiological NTP substrate concentrations. With this robust enzyme activity, for the first time, we were able to compare the enzyme fidelity of IAV Pol complex with that of bacterial phage T7 RNA polymerase and the reverse transcriptases (RT of human immunodeficiency virus (HIV-1 and murine leukemia virus (MuLV, which are known to be low and high fidelity enzymes, respectively. We observed that IAV Pol displayed significantly higher fidelity than HIV-1 RT and T7 RNA polymerase and equivalent or higher fidelity than MuLV RT. In addition, the IAV Pol complex showed increased fidelity at lower temperatures. Moreover, upon replacement of Mg(++ with Mn(++, IAV Pol displayed increased polymerase activity, but with significantly reduced processivity, and misincorporation was slightly elevated in the presence of Mn(++. Finally, when the IAV nucleoprotein (NP was included in the reactions, the IAV Pol complex exhibited enhanced polymerase activity with increased fidelity.Our study indicates that IAV Pol is a high fidelity enzyme. We envision that the high fidelity nature of IAV Pol may be important to counter-balance the multiple rounds of

  5. Vital Signs: Preventing Antibiotic-Resistant Infections in Hospitals - United States, 2014.

    Science.gov (United States)

    Weiner, Lindsey M; Fridkin, Scott K; Aponte-Torres, Zuleika; Avery, Lacey; Coffin, Nicole; Dudeck, Margaret A; Edwards, Jonathan R; Jernigan, John A; Konnor, Rebecca; Soe, Minn M; Peterson, Kelly; McDonald, L Clifford

    2016-03-11

    Health care-associated antibiotic-resistant (AR) infections increase patient morbidity and mortality and might be impossible to successfully treat with any antibiotic. CDC assessed health care-associated infections (HAI), including Clostridium difficile infections (CDI), and the role of six AR bacteria of highest concern nationwide in several types of health care facilities. During 2014, approximately 4,000 short-term acute care hospitals, 501 long-term acute care hospitals, and 1,135 inpatient rehabilitation facilities in all 50 states reported data on specific infections to the National Healthcare Safety Network. National standardized infection ratios and their percentage reduction from a baseline year for each HAI type, by facility type, were calculated. The proportions of AR pathogens and HAIs caused by any of six resistant bacteria highlighted by CDC in 2013 as urgent or serious threats were determined. In 2014, the reductions in incidence in short-term acute care hospitals and long-term acute care hospitals were 50% and 9%, respectively, for central line-associated bloodstream infection; 0% (short-term acute care hospitals), 11% (long-term acute care hospitals), and 14% (inpatient rehabilitation facilities) for catheter-associated urinary tract infection; 17% (short-term acute care hospitals) for surgical site infection, and 8% (short-term acute care hospitals) for CDI. Combining HAIs other than CDI across all settings, 47.9% of Staphylococcus aureus isolates were methicillin resistant, 29.5% of enterococci were vancomycin-resistant, 17.8% of Enterobacteriaceae were extended-spectrum beta-lactamase phenotype, 3.6% of Enterobacteriaceae were carbapenem resistant, 15.9% of Pseudomonas aeruginosa isolates were multidrug resistant, and 52.6% of Acinetobacter species were multidrug resistant. The likelihood of HAIs caused by any of the six resistant bacteria ranged from 12% in inpatient rehabilitation facilities to 29% in long-term acute care hospitals. Although

  6. Bacterial meningitis

    NARCIS (Netherlands)

    Roos, Karen L.; van de Beek, Diederik

    2010-01-01

    Bacterial meningitis is a neurological emergency. Empiric antimicrobial and adjunctive therapy should be initiated as soon as a single set of blood cultures has been obtained. Clinical signs suggestive of bacterial meningitis include fever, headache, meningismus, vomiting, photophobia, and an

  7. [Advances on enzymes and enzyme inhibitors research based on microfluidic devices].

    Science.gov (United States)

    Hou, Feng-Hua; Ye, Jian-Qing; Chen, Zuan-Guang; Cheng, Zhi-Yi

    2010-06-01

    With the continuous development in microfluidic fabrication technology, microfluidic analysis has evolved from a concept to one of research frontiers in last twenty years. The research of enzymes and enzyme inhibitors based on microfluidic devices has also made great progress. Microfluidic technology improved greatly the analytical performance of the research of enzymes and enzyme inhibitors by reducing the consumption of reagents, decreasing the analysis time, and developing automation. This review focuses on the development and classification of enzymes and enzyme inhibitors research based on microfluidic devices.

  8. Production by Tobacco Transplastomic Plants of Recombinant Fungal and Bacterial Cell-Wall Degrading Enzymes to Be Used for Cellulosic Biomass Saccharification.

    Science.gov (United States)

    Longoni, Paolo; Leelavathi, Sadhu; Doria, Enrico; Reddy, Vanga Siva; Cella, Rino

    2015-01-01

    Biofuels from renewable plant biomass are gaining momentum due to climate change related to atmospheric CO2 increase. However, the production cost of enzymes required for cellulosic biomass saccharification is a major limiting step in this process. Low-cost production of large amounts of recombinant enzymes by transgenic plants was proposed as an alternative to the conventional microbial based fermentation. A number of studies have shown that chloroplast-based gene expression offers several advantages over nuclear transformation due to efficient transcription and translation systems and high copy number of the transgene. In this study, we expressed in tobacco chloroplasts microbial genes encoding five cellulases and a polygalacturonase. Leaf extracts containing the recombinant enzymes showed the ability to degrade various cell-wall components under different conditions, singly and in combinations. In addition, our group also tested a previously described thermostable xylanase in combination with a cellulase and a polygalacturonase to study the cumulative effect on the depolymerization of a complex plant substrate. Our results demonstrate the feasibility of using transplastomic tobacco leaf extracts to convert cell-wall polysaccharides into reducing sugars, fulfilling a major prerequisite of large scale availability of a variety of cell-wall degrading enzymes for biofuel industry.

  9. Intestinal ischemia-reperfusion injury augments intestinal mucosal injury and bacterial translocation in jaundiced rats.

    Science.gov (United States)

    Yüksek, Yunus Nadi; Kologlu, Murat; Daglar, Gül; Doganay, Mutlu; Dolapci, Istar; Bilgihan, Ayse; Dolapçi, Mete; Kama, Nuri Aydin

    2004-01-01

    The aim of this study was to evaluate local effects and degree of bacterial translocation related with intestinal ischemia-reperfusion injury in a rat obstructive jaundice model. Thirty adult Sprague-Dawley rats (200-250 g) were divided into three groups; including Group 1 (jaundice group), Group 2 (jaundice-ischemia group) and Group 3 (ischemia group). All rats had 2 laparotomies. After experimental interventions, tissue samples for translocation; liver and ileum samples for histopathological examination, 25 cm of small intestine for mucosal myeloperoxidase and malondialdehyde levels and blood samples for biochemical analysis were obtained. Jaundiced rats had increased liver enzyme levels and total and direct bilirubin levels (p<0.05). Intestinal mucosal myeloperoxidase and malondialdehyde levels were found to be high in intestinal ischemia-reperfusion groups (p<0.05). Intestinal mucosal damage was more severe in rats with intestinal ischemia-reperfusion after bile duct ligation (p<0.05). Degree of bacterial translocation was also found to be significantly high in these rats (p<0.05). Intestinal mucosa is disturbed more severely in obstructive jaundice with the development of ischemia and reperfusion. Development of intestinal ischemia-reperfusion in obstructive jaundice increases bacterial translocation.

  10. Nutritional and fermentation parameters of Xaraés grass silage produced with bacterial additive

    Directory of Open Access Journals (Sweden)

    Erickson Tiago Pinheiro da Silva

    2014-07-01

    Full Text Available The use of bacterial additives in forage silages with low content of dry matter prevents undesirable fermentation and reduces losses by gases (PG and effluents (PE during the ensiling process. This study aimed to evaluate the fermentation parameters, chemical composition and in vitro digestibility of silage of Urochloa brizantha cv. Xaraés produced with bacterial additive. The inoculant contained the following strains: Propionibacterium acidipropionici + Lactobacillus plantarum; Lactobacillus buchnari; Propionibacterium acipropionici + commercial enzymes and Lactobacillus plantarum and Pediococcus pentosaccus, at 0, 25, 50, 75, 100, and 125% of the recommended level for sugarcane (2 g ton-1. The experiment was a completely randomized design with four replications, and six levels of inoculant (0, 25, 50, 75, 100, and 125%. There was a quadratic relationship between the inoculant addition and the levels of pH, PE, DMIVD, NDF, ADF and LIG of the silage. PG and MM increased linearly with the addition of inoculant. The N-NH3, DM, CP, CEL, HEM and EE were not affected by the inoculant. Bacterial additive at 50% provided increased DMIVD. Appropriate values were found for pH and NH3.

  11. Direct comparison of enzyme histochemical and immunohistochemical methods to localize an enzyme

    NARCIS (Netherlands)

    van Noorden, Cornelis J. F.

    2002-01-01

    Immunohistochemical localization of enzymes is compared directly with localization of enzyme activity with (catalytic) enzyme histochemical methods. The two approaches demonstrate principally different aspects of an enzyme. The immunohistochemical method localizes the enzyme protein whether it is

  12. Bacterial production, glucosidase activity and particle-associated carbohydrates in Dona Paula bay, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Bhaskar, P.V.; Bhosle, N.B.

    theaquaticenvironmentcontributingupto80%ofthedissolvedand 5–25% of the particulate organic carbon (Decho,1990; Benner et al., 1992; Biersmith and Benner, 1998). Although free and combined amino acids are the most preferred carbon and nitrogen source 1. Introduction... of bulk bacterial biomass and enzyme activity is varyingly attributed to particle-associated bacteria and free-living bacteria (Palumbo et al., 1984; Griffith et al., 1990; Karner and Herndl,1992; Bidle and Fletcher,1995). The enzymatic breakdown...

  13. Endophytic bacterial diversity in banana 'Prata Anã' (Musa spp. roots

    Directory of Open Access Journals (Sweden)

    Suzane A. Souza

    2013-01-01

    Full Text Available The genetic diversity of endophytic bacteria in banana 'Prata Anã' roots was characterized. Two hundred and one endophytic bacteria were isolated, 151 of which were classified as Gram-positive and 50 as Gram-negative. No hypersensitivity response was observed in any of the isolates. The rep-PCR technique generated different molecular profiles for each primer set (REP, ERIC and BOX. Fifty readable loci were obtained and all of the fragments were polymorphic. Amplified ribosomal DNA restriction analysis (ARDRA of the isolates based on cleavage with four restriction enzymes yielded 45 polymorphic bands and no monomorphic bands. PCR amplified the nifH gene in 24 isolates. 16S rDNA sequencing of the 201 bacterial isolates yielded 102 high-quality sequences. Sequence analyses revealed that the isolates were distributed among ten bacterial genera (Agrobacterium, Aneurinibacillus, Bacillus, Enterobacter, Klebsiella, Lysinibacillus, Micrococcus, Paenibacillus, Rhizobium and Sporolactobacillus and included 15 species. The greatest number of isolates belonged to the genus Bacillus. The bacteria identified in this study may be involved in promoting growth, phosphate solubilization, biological control and nitrogen fixation in bananas.

  14. High inorganic triphosphatase activities in bacteria and mammalian cells: identification of the enzymes involved.

    Directory of Open Access Journals (Sweden)

    Gregory Kohn

    Full Text Available BACKGROUND: We recently characterized a specific inorganic triphosphatase (PPPase from Nitrosomonas europaea. This enzyme belongs to the CYTH superfamily of proteins. Many bacterial members of this family are annotated as predicted adenylate cyclases, because one of the founding members is CyaB adenylate cyclase from A. hydrophila. The aim of the present study is to determine whether other members of the CYTH protein family also have a PPPase activity, if there are PPPase activities in animal tissues and what enzymes are responsible for these activities. METHODOLOGY/PRINCIPAL FINDINGS: Recombinant enzymes were expressed and purified as GST- or His-tagged fusion proteins and the enzyme activities were determined by measuring the release of inorganic phosphate. We show that the hitherto uncharacterized E. coli CYTH protein ygiF is a specific PPPase, but it contributes only marginally to the total PPPase activity in this organism, where the main enzyme responsible for hydrolysis of inorganic triphosphate (PPP(i is inorganic pyrophosphatase. We further show that CyaB hydrolyzes PPP(i but this activity is low compared to its adenylate cyclase activity. Finally we demonstrate a high PPPase activity in mammalian and quail tissue, particularly in the brain. We show that this activity is mainly due to Prune, an exopolyphosphatase overexpressed in metastatic tumors where it promotes cell motility. CONCLUSIONS AND GENERAL SIGNIFICANCE: We show for the first time that PPPase activities are widespread in bacteria and animals. We identified the enzymes responsible for these activities but we were unable to detect significant amounts of PPP(i in E. coli or brain extracts using ion chromatography and capillary electrophoresis. The role of these enzymes may be to hydrolyze PPP(i, which could be cytotoxic because of its high affinity for Ca(2+, thereby interfering with Ca(2+ signaling.

  15. Systematic Review: Impact of point sources on antibiotic-resistant bacteria in the natural environment.

    Science.gov (United States)

    Bueno, I; Williams-Nguyen, J; Hwang, H; Sargeant, J M; Nault, A J; Singer, R S

    2018-02-01

    Point sources such as wastewater treatment plants and agricultural facilities may have a role in the dissemination of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARG). To analyse the evidence for increases in ARB in the natural environment associated with these point sources of ARB and ARG, we conducted a systematic review. We evaluated 5,247 records retrieved through database searches, including both studies that ascertained ARG and ARB outcomes. All studies were subjected to a screening process to assess relevance to the question and methodology to address our review question. A risk of bias assessment was conducted upon the final pool of studies included in the review. This article summarizes the evidence only for those studies with ARB outcomes (n = 47). Thirty-five studies were at high (n = 11) or at unclear (n = 24) risk of bias in the estimation of source effects due to lack of information and/or failure to control for confounders. Statistical analysis was used in ten studies, of which one assessed the effect of multiple sources using modelling approaches; none reported effect measures. Most studies reported higher ARB prevalence or concentration downstream/near the source. However, this evidence was primarily descriptive and it could not be concluded that there is a clear impact of point sources on increases in ARB in the environment. To quantify increases in ARB in the environment due to specific point sources, there is a need for studies that stress study design, control of biases and analytical tools to provide effect measure estimates. © 2017 Blackwell Verlag GmbH.

  16. In-vitro analysis of APA microcapsules for oral delivery of live bacterial cells.

    Science.gov (United States)

    Chen, H; Ouyang, W; Jones, M; Haque, T; Lawuyi, B; Prakash, S

    2005-08-01

    Oral administration of microcapsules containing live bacterial cells has potential as an alternative therapy for several diseases. This article evaluates the suitability of the alginate-poly-L-lysine-alginate (APA) microcapsules for oral delivery of live bacterial cells, in-vitro, using a dynamic simulated human gastro-intestinal (GI) model. Results showed that the APA microcapsules were morphologically stable in the simulated stomach conditions, but did not retain their structural integrity after a 3-day exposure in simulated human GI media. The microbial populations of the tested bacterial cells and the activities of the tested enzymes in the simulated human GI suspension were not substantially altered by the presence of the APA microcapsules, suggesting that there were no significant adverse effects of oral administration of the APA microcapsules on the flora of the human gastrointestinal tract. When the APA microcapsules containing Lactobacillus plantarum 80 (LP80) were challenged in the simulated gastric medium (pH = 2.0), 80.0% of the encapsulated cells remained viable after a 5-min incubation; however, the viability decreased considerably (8.3%) after 15 min and dropped to 2.6% after 30 min and lower than 0.2% after 60 min, indicating the limitations of the currently obtainable APA membrane for oral delivery of live bacteria. Further in-vivo studies are required before conclusions can be made concerning the inadequacy of APA microcapsules for oral delivery of live bacterial cells.

  17. A ten-week biochemistry lab project studying wild-type and mutant bacterial alkaline phosphatase.

    Science.gov (United States)

    Witherow, D Scott

    2016-11-12

    This work describes a 10-week laboratory project studying wild-type and mutant bacterial alkaline phosphatase, in which students purify, quantitate, and perform kinetic assays on wild-type and selected mutants of the enzyme. Students also perform plasmid DNA purification, digestion, and gel analysis. In addition to simply learning important techniques, students acquire novel biochemical data in their kinetic analysis of mutant enzymes. The experiments are designed to build on students' work from week to week in a way that requires them to apply quantitative analysis and reasoning skills, reinforcing traditional textbook biochemical concepts. Students are assessed through lab reports focused on journal style writing, quantitative and conceptual question sheets, and traditional exams. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(6):555-564, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  18. Functional and phylogenetic evidence of a bacterial origin for the first enzyme in sphingolipid biosynthesis in a phylum of eukaryotic protozoan parasites.

    Science.gov (United States)

    Mina, John G; Thye, Julie K; Alqaisi, Amjed Q I; Bird, Louise E; Dods, Robert H; Grøftehauge, Morten K; Mosely, Jackie A; Pratt, Steven; Shams-Eldin, Hosam; Schwarz, Ralph T; Pohl, Ehmke; Denny, Paul W

    2017-07-21

    Toxoplasma gondii is an obligate, intracellular eukaryotic apicomplexan protozoan parasite that can cause fetal damage and abortion in both animals and humans. Sphingolipids are essential and ubiquitous components of eukaryotic membranes that are both synthesized and scavenged by the Apicomplexa. Here we report the identification, isolation, and analyses of the Toxoplasma serine palmitoyltransferase, an enzyme catalyzing the first and rate-limiting step in sphingolipid biosynthesis: the condensation of serine and palmitoyl-CoA. In all eukaryotes analyzed to date, serine palmitoyltransferase is a highly conserved heterodimeric enzyme complex. However, biochemical and structural analyses demonstrated the apicomplexan orthologue to be a functional, homodimeric serine palmitoyltransferase localized to the endoplasmic reticulum. Furthermore, phylogenetic studies indicated that it was evolutionarily related to the prokaryotic serine palmitoyltransferase, identified in the Sphingomonadaceae as a soluble homodimeric enzyme. Therefore this enzyme, conserved throughout the Apicomplexa, is likely to have been obtained via lateral gene transfer from a prokaryote. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Computational enzyme design: transitioning from catalytic proteins to enzymes.

    Science.gov (United States)

    Mak, Wai Shun; Siegel, Justin B

    2014-08-01

    The widespread interest in enzymes stem from their ability to catalyze chemical reactions under mild and ecologically friendly conditions with unparalleled catalytic proficiencies. While thousands of naturally occurring enzymes have been identified and characterized, there are still numerous important applications for which there are no biological catalysts capable of performing the desired chemical transformation. In order to engineer enzymes for which there is no natural starting point, efforts using a combination of quantum chemistry and force-field based protein molecular modeling have led to the design of novel proteins capable of catalyzing chemical reactions not catalyzed by naturally occurring enzymes. Here we discuss the current status and potential avenues to pursue as the field of computational enzyme design moves forward. Published by Elsevier Ltd.

  20. The Effect of Long-Term Continuous Cropping of Black Pepper on Soil Bacterial Communities as Determined by 454 Pyrosequencing

    Science.gov (United States)

    Xiong, Wu; Li, Zhigang; Liu, Hongjun; Xue, Chao; Zhang, Ruifu; Wu, Huasong; Li, Rong; Shen, Qirong

    2015-01-01

    In the present study, 3 replanted black pepper orchards with continuously cropping histories for 10, 21, and 55 years in tropical China, were selected for investigating the effect of monoculture on soil physiochemical properties, enzyme activities, bacterial abundance, and bacterial community structures. Results showed long-term continuous cropping led to a significant decline in soil pH, organic matter contents, enzymatic activities, and resulted in a decrease in soil bacterial abundance. 454 pyrosequencing analysis of 16S rRNA genes revealed that the Acidobacteria and Proteobacteria were the main phyla in the replanted black pepper orchard soils, comprising up to 73.82% of the total sequences; the relative abundances of Bacteroidetes and Firmicutes phyla decreased with long-term continuous cropping; and at genus level, the Pseudomonas abundance significantly depleted after 21 years continuous cropping. In addition, bacterial diversity significantly decreased after 55 years black pepper continuous cropping; obvious variations for community structures across the 3 time-scale replanted black pepper orchards were observed, suggesting monoculture duration was the major determinant for bacterial community structure. Overall, continuous cropping during black pepper cultivation led to a significant decline in soil pH, organic matter contents, enzymatic activities, resulted a decrease in soil bacterial abundance, and altered soil microbial community membership and structure, which in turn resulted in black pepper poor growth in the continuous cropping system. PMID:26317364

  1. Structures of the multicomponent Rieske non-heme iron toluene 2, 3-dioxygenase enzyme system

    Energy Technology Data Exchange (ETDEWEB)

    Friemann, Rosmarie [Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, 751 24 Uppsala (Sweden); Lee, Kyoung [Department of Microbiology, Changwon National University, Changwon, Kyoungnam 641-773 (Korea, Republic of); Department of Microbiology, The University of Iowa, Iowa City, Iowa 52242 (United States); Brown, Eric N. [Department of Biochemistry, The University of Iowa, Iowa City, Iowa 52242 (United States); Gibson, David T. [Department of Microbiology, The University of Iowa, Iowa City, Iowa 52242 (United States); Eklund, Hans [Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, 751 24 Uppsala (Sweden); Ramaswamy, S., E-mail: s-ramaswamy@uiowa.edu [Department of Biochemistry, The University of Iowa, Iowa City, Iowa 52242 (United States); Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, 751 24 Uppsala (Sweden)

    2009-01-01

    The crystal structures of the three-component toluene 2, 3-dioxygenase system provide a model for electron transfer among bacterial Rieske non-heme iron dioxygenases. Bacterial Rieske non-heme iron oxygenases catalyze the initial hydroxylation of aromatic hydrocarbon substrates. The structures of all three components of one such system, the toluene 2, 3-dioxygenase system, have now been determined. This system consists of a reductase, a ferredoxin and a terminal dioxygenase. The dioxygenase, which was cocrystallized with toluene, is a heterohexamer containing a catalytic and a structural subunit. The catalytic subunit contains a Rieske [2Fe–2S] cluster and mononuclear iron at the active site. This iron is not strongly bound and is easily removed during enzyme purification. The structures of the enzyme with and without mononuclear iron demonstrate that part of the structure is flexible in the absence of iron. The orientation of the toluene substrate in the active site is consistent with the regiospecificity of oxygen incorporation seen in the product formed. The ferredoxin is Rieske type and contains a [2Fe–2S] cluster close to the protein surface. The reductase belongs to the glutathione reductase family of flavoenzymes and consists of three domains: an FAD-binding domain, an NADH-binding domain and a C-terminal domain. A model for electron transfer from NADH via FAD in the reductase and the ferredoxin to the terminal active-site mononuclear iron of the dioxygenase is proposed.

  2. Synthesis and Antibacterial Evaluation of Novel 3-Substituted Ocotillol-Type Derivatives as Leads

    Directory of Open Access Journals (Sweden)

    Yi Bi

    2017-04-01

    Full Text Available Due to the rapidly growing bacterial antibiotic-resistance and the scarcity of novel agents in development, bacterial infection is still a global problem. Therefore, new types of antibacterial agents, which are effective both alone and in combination with traditional antibiotics, are urgently needed. In this paper, a series of antibacterial ocotillol-type C-24 epimers modified from natural 20(S-protopanaxadiol were synthesized and evaluated for their antibacterial activity. According to the screening results of Gram-positive bacteria (B. subtilis 168 and MRSA USA300 and Gram-negative bacteria (P. aer PAO1 and A. baum ATCC19606 in vitro, the derivatives exhibited good antibacterial activity, particularly against Gram-positive bacteria with an minimum inhibitory concentrations (MIC value of 2–16 µg/mL. The subsequent synergistic antibacterial assay showed that derivatives 5c and 6c enhanced the susceptibility of B. subtilis 168 and MRSA USA300 to chloramphenicol (CHL and kanamycin (KAN (FICI < 0.5. Our data showed that ocotillol-type derivatives with long-chain amino acid substituents at C-3 were good leads against antibiotic-resistant pathogens MRSA USA300, which could improve the ability of KAN and CHL to exhibit antibacterial activity at much lower concentrations with reduced toxicity.

  3. Characterization of Enzymatic Activity of MlrB and MlrC Proteins Involved in Bacterial Degradation of Cyanotoxins Microcystins.

    Science.gov (United States)

    Dziga, Dariusz; Zielinska, Gabriela; Wladyka, Benedykt; Bochenska, Oliwia; Maksylewicz, Anna; Strzalka, Wojciech; Meriluoto, Jussi

    2016-03-16

    Bacterial degradation of toxic microcystins produced by cyanobacteria is a common phenomenon. However, our understanding of the mechanisms of these processes is rudimentary. In this paper several novel discoveries regarding the action of the enzymes of the mlr cluster responsible for microcystin biodegradation are presented using recombinant proteins. In particular, the predicted active sites of the recombinant MlrB and MlrC were analyzed using functional enzymes and their inactive muteins. A new degradation intermediate, a hexapeptide derived from linearized microcystins by MlrC, was discovered. Furthermore, the involvement of MlrA and MlrB in further degradation of the hexapeptides was confirmed and a corrected biochemical pathway of microcystin biodegradation has been proposed.

  4. Characterization of Enzymatic Activity of MlrB and MlrC Proteins Involved in Bacterial Degradation of Cyanotoxins Microcystins

    Directory of Open Access Journals (Sweden)

    Dariusz Dziga

    2016-03-01

    Full Text Available Bacterial degradation of toxic microcystins produced by cyanobacteria is a common phenomenon. However, our understanding of the mechanisms of these processes is rudimentary. In this paper several novel discoveries regarding the action of the enzymes of the mlr cluster responsible for microcystin biodegradation are presented using recombinant proteins. In particular, the predicted active sites of the recombinant MlrB and MlrC were analyzed using functional enzymes and their inactive muteins. A new degradation intermediate, a hexapeptide derived from linearized microcystins by MlrC, was discovered. Furthermore, the involvement of MlrA and MlrB in further degradation of the hexapeptides was confirmed and a corrected biochemical pathway of microcystin biodegradation has been proposed.

  5. Biodegradation of Palm Kernel Cake by Cellulolytic and Hemicellulolytic Bacterial Cultures through Solid State Fermentation

    Directory of Open Access Journals (Sweden)

    Mohamed Idris Alshelmani

    2014-01-01

    Full Text Available Four cellulolytic and hemicellulolytic bacterial cultures were purchased from the Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Culture (DSMZ and the American Type Culture Collection (ATCC. Two experiments were conducted; the objective of the first experiment was to determine the optimum time period required for solid state fermentation (SSF of palm kernel cake (PKC, whereas the objective of the second experiment was to investigate the effect of combinations of these cellulolytic and hemicellulolytic bacteria on the nutritive quality of the PKC. In the first experiment, the SSF was lasted for 12 days with inoculum size of 10% (v/w on different PKC to moisture ratios. In the second experiment, fifteen combinations were created among the four microbes with one untreated PKC as a control. The SSF lasted for 9 days, and the samples were autoclaved, dried, and analyzed for proximate analysis. Results showed that bacterial cultures produced high enzymes activities at the 4th day of SSF, whereas their abilities to produce enzymes tended to be decreased to reach zero at the 8th day of SSF. Findings in the second experiment showed that hemicellulose and cellulose was significantly P<0.05 decreased, whereas the amount of reducing sugars were significantly P<0.05 increased in the fermented PKC (FPKC compared with untreated PKC.

  6. Removal of bacterial cells, antibiotic resistance genes and integrase genes by on-site hospital wastewater treatment plants: surveillance of treated hospital effluent quality

    KAUST Repository

    Timraz, Kenda Hussain Hassan; Xiong, Yanghui; Al Qarni, Hamed; Hong, Pei-Ying

    2016-01-01

    This study aims to evaluate the removal efficiency of microbial contaminants, including total cell counts, antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs, e.g. tetO, tetZ, sul1 and sul2) and integrase genes (e.g. intl1

  7. The putative endoglucanase PcGH61D from Phanerochaete chrysosporium is a metal-dependent oxidative enzyme that cleaves cellulose.

    Directory of Open Access Journals (Sweden)

    Bjørge Westereng

    Full Text Available Many fungi growing on plant biomass produce proteins currently classified as glycoside hydrolase family 61 (GH61, some of which are known to act synergistically with cellulases. In this study we show that PcGH61D, the gene product of an open reading frame in the genome of Phanerochaete chrysosporium, is an enzyme that cleaves cellulose using a metal-dependent oxidative mechanism that leads to generation of aldonic acids. The activity of this enzyme and its beneficial effect on the efficiency of classical cellulases are stimulated by the presence of electron donors. Experiments with reduced cellulose confirmed the oxidative nature of the reaction catalyzed by PcGH61D and indicated that the enzyme may be capable of penetrating into the substrate. Considering the abundance of GH61-encoding genes in fungi and genes encoding their functional bacterial homologues currently classified as carbohydrate binding modules family 33 (CBM33, this enzyme activity is likely to turn out as a major determinant of microbial biomass-degrading efficiency.

  8. Microbiological studies on drugs and their raw materials, 4. Sterilization of microbial contaminants in enzyme powder by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, T; Yoshida, Y; Demura, H; Yanagita, T [Toyama Univ. (Japan). Faculty of Pharmaceutical Sciences; Meiwa, M

    1978-04-01

    The decimal reduction dose of ..gamma..-ray on freeze-dried clean Escherichia coli (E. coli) cells and Bacillus subtilis spores was about 7 x 10/sup 4/ rad and it was about three times higher than that on E. coli cells suspended in saline. E. coli cells contained in Takadiastase or trypsin powder showed quite the same susceptibility of ..gamma..-irradiation as they were present cleanly. These enzyme activities were not impaired at all even at the dose of 2 x 10/sup 5/ rad. When these enzyme powders containing E. coli cells were stored under varied atmospheric relative humidity, the deleterious effect of ..gamma..-ray on bacterial cells was highly enhanced in those samples stored under more than 80.5% relative humidities. The additions of excipients, such as glucose and lactose, and of a protectant, L-cysteine, to the bacteria-containing dry enzyme powder did not show any sign of either enhancement or retardation of ..gamma..-ray action on enzyme and bacteria. Based on these observations, the utilizability of radiosterilization on biological medicaments is discussed.

  9. Construction of Double Right-Border Binary Vector Carrying Non-Host Gene Rxol Resistant to Bacterial Leaf Streak of Rice

    Institute of Scientific and Technical Information of China (English)

    Xu Mei-rong; XIA Zhi-hui; ZHAI Wen-xue; XU Jian-long; ZHOU Yong-li; LI Zhi-kang

    2008-01-01

    Rxol cloned from maize is a non-host gene resistant to bacterial leaf streak of rice. pCAMBIA1305-1 with Rxol was digested with Sca Ⅰ and NgoM Ⅳ and the double right-border binary vector pMNDRBBin6 was digested with Hpa Ⅰ and Xma Ⅰ.pMNDRBBin6 carrying the gene Rxol was acquired by ligation of blunt-end and cohesive end. The results of PCR, restriction enzyme analysis and sequencing indicated that the Rxol gene had been cloned into pMNDRBBin6. This double right-border binary vector,named as pMNDRBBin6-Rxol, will play a role in breeding marker-free plants resistant to bacterial leaf streak of rice by genetic transformation.

  10. Stabilization of enzymes in ionic liquids via modification of enzyme charge.

    Science.gov (United States)

    Nordwald, Erik M; Kaar, Joel L

    2013-09-01

    Due to the propensity of ionic liquids (ILs) to inactivate enzymes, the development of strategies to improve enzyme utility in these solvents is critical to fully exploit ILs for biocatalysis. We have developed a strategy to broadly improve enzyme utility in ILs based on elucidating the effect of charge modifications on the function of enzymes in IL environments. Results of stability studies in aqueous-IL mixtures indicated a clear connection between the ratio of enzyme-containing positive-to-negative sites and enzyme stability in ILs. Stability studies of the effect of [BMIM][Cl] and [EMIM][EtSO4 ] on chymotrypsin specifically found an optimum ratio of positively-charged amine-to-negatively-charged acid groups (0.39). At this ratio, the half-life of chymotrypsin was increased 1.6- and 4.3-fold relative to wild-type chymotrypsin in [BMIM][Cl] and [EMIM][EtSO4 ], respectively. The half-lives of lipase and papain were similarly increased as much as 4.0 and 2.4-fold, respectively, in [BMIM][Cl] by modifying the ratio of positive-to-negative sites of each enzyme. More generally, the results of stability studies found that modifications that reduce the ratio of enzyme-containing positive-to-negative sites improve enzyme stability in ILs. Understanding the impact of charge modification on enzyme stability in ILs may ultimately be exploited to rationally engineer enzymes for improved function in IL environments. Copyright © 2013 Wiley Periodicals, Inc.

  11. Soil bacterial and fungal diversity differently correlated with soil biochemistry in alpine grassland ecosystems in response to environmental changes

    Science.gov (United States)

    Zhang, Yong; Dong, Shikui; Gao, Qingzhu; Liu, Shiliang; Ganjurjav, Hasbagan; Wang, Xuexia; Su, Xukun; Wu, Xiaoyu

    2017-03-01

    To understand effects of soil microbes on soil biochemistry in alpine grassland ecosystems under environmental changes, we explored relationships between soil microbial diversity and soil total nitrogen, organic carbon, available nitrogen and phosphorus, soil microbial biomass and soil enzyme activities in alpine meadow, alpine steppe and cultivated grassland on the Qinghai-Tibetan plateau under three-year warming, enhanced precipitation and yak overgrazing. Soil total nitrogen, organic carbon and NH4-N were little affected by overgrazing, warming or enhanced precipitation in three types of alpine grasslands. Soil microbial biomass carbon and phosphorus along with the sucrase and phosphatase activities were generally stable under different treatments. Soil NO3-N, available phosphorus, urease activity and microbial biomass nitrogen were increased by overgrazing in the cultivated grassland. Soil bacterial diversity was positively correlated with, while soil fungal diversity negatively with soil microbial biomass and enzyme activities. Soil bacterial diversity was negatively correlated with, while soil fungal diversity positively with soil available nutrients. Our findings indicated soil bacteria and fungi played different roles in affecting soil nutrients and microbiological activities that might provide an important implication to understand why soil biochemistry was generally stable under environmental changes in alpine grassland ecosystems.

  12. Methyl-hydroxylamine as an efficacious antibacterial agent that targets the ribonucleotide reductase enzyme.

    Directory of Open Access Journals (Sweden)

    Esther Julián

    Full Text Available The emergence of multidrug-resistant bacteria has encouraged vigorous efforts to develop antimicrobial agents with new mechanisms of action. Ribonucleotide reductase (RNR is a key enzyme in DNA replication that acts by converting ribonucleotides into the corresponding deoxyribonucleotides, which are the building blocks of DNA replication and repair. RNR has been extensively studied as an ideal target for DNA inhibition, and several drugs that are already available on the market are used for anticancer and antiviral activity. However, the high toxicity of these current drugs to eukaryotic cells does not permit their use as antibacterial agents. Here, we present a radical scavenger compound that inhibited bacterial RNR, and the compound's activity as an antibacterial agent together with its toxicity in eukaryotic cells were evaluated. First, the efficacy of N-methyl-hydroxylamine (M-HA in inhibiting the growth of different Gram-positive and Gram-negative bacteria was demonstrated, and no effect on eukaryotic cells was observed. M-HA showed remarkable efficacy against Mycobacterium bovis BCG and Pseudomonas aeruginosa. Thus, given the M-HA activity against these two bacteria, our results showed that M-HA has intracellular antimycobacterial activity against BCG-infected macrophages, and it is efficacious in partially disassembling and inhibiting the further formation of P. aeruginosa biofilms. Furthermore, M-HA and ciprofloxacin showed a synergistic effect that caused a massive reduction in a P. aeruginosa biofilm. Overall, our results suggest the vast potential of M-HA as an antibacterial agent, which acts by specifically targeting a bacterial RNR enzyme.

  13. Methyl-hydroxylamine as an efficacious antibacterial agent that targets the ribonucleotide reductase enzyme.

    Science.gov (United States)

    Julián, Esther; Baelo, Aida; Gavaldà, Joan; Torrents, Eduard

    2015-01-01

    The emergence of multidrug-resistant bacteria has encouraged vigorous efforts to develop antimicrobial agents with new mechanisms of action. Ribonucleotide reductase (RNR) is a key enzyme in DNA replication that acts by converting ribonucleotides into the corresponding deoxyribonucleotides, which are the building blocks of DNA replication and repair. RNR has been extensively studied as an ideal target for DNA inhibition, and several drugs that are already available on the market are used for anticancer and antiviral activity. However, the high toxicity of these current drugs to eukaryotic cells does not permit their use as antibacterial agents. Here, we present a radical scavenger compound that inhibited bacterial RNR, and the compound's activity as an antibacterial agent together with its toxicity in eukaryotic cells were evaluated. First, the efficacy of N-methyl-hydroxylamine (M-HA) in inhibiting the growth of different Gram-positive and Gram-negative bacteria was demonstrated, and no effect on eukaryotic cells was observed. M-HA showed remarkable efficacy against Mycobacterium bovis BCG and Pseudomonas aeruginosa. Thus, given the M-HA activity against these two bacteria, our results showed that M-HA has intracellular antimycobacterial activity against BCG-infected macrophages, and it is efficacious in partially disassembling and inhibiting the further formation of P. aeruginosa biofilms. Furthermore, M-HA and ciprofloxacin showed a synergistic effect that caused a massive reduction in a P. aeruginosa biofilm. Overall, our results suggest the vast potential of M-HA as an antibacterial agent, which acts by specifically targeting a bacterial RNR enzyme.

  14. Production by Tobacco Transplastomic Plants of Recombinant Fungal and Bacterial Cell-Wall Degrading Enzymes to Be Used for Cellulosic Biomass Saccharification

    Directory of Open Access Journals (Sweden)

    Paolo Longoni

    2015-01-01

    Full Text Available Biofuels from renewable plant biomass are gaining momentum due to climate change related to atmospheric CO2 increase. However, the production cost of enzymes required for cellulosic biomass saccharification is a major limiting step in this process. Low-cost production of large amounts of recombinant enzymes by transgenic plants was proposed as an alternative to the conventional microbial based fermentation. A number of studies have shown that chloroplast-based gene expression offers several advantages over nuclear transformation due to efficient transcription and translation systems and high copy number of the transgene. In this study, we expressed in tobacco chloroplasts microbial genes encoding five cellulases and a polygalacturonase. Leaf extracts containing the recombinant enzymes showed the ability to degrade various cell-wall components under different conditions, singly and in combinations. In addition, our group also tested a previously described thermostable xylanase in combination with a cellulase and a polygalacturonase to study the cumulative effect on the depolymerization of a complex plant substrate. Our results demonstrate the feasibility of using transplastomic tobacco leaf extracts to convert cell-wall polysaccharides into reducing sugars, fulfilling a major prerequisite of large scale availability of a variety of cell-wall degrading enzymes for biofuel industry.

  15. [Diversity and enzyme-producing activity of culturable halophilic bacteria in Daishan Saltern of East China].

    Science.gov (United States)

    Yang, Dan-Dan; Li, Qian; Huang, Jing-Jing; Chen, Min

    2012-11-01

    Soil and saline water samples were collected from the Daishan Saltern of East China, and the halophilic bacteria were isolated and cultured by using selective media, aimed to investigate the diversity and enzyme-producing activity of culturable halophilic bacteria in saltern environment. A total of 181 strains were isolated by culture-dependent method. Specific primers were used to amplify the 16S rRNA gene of bacteria and archaea. The operation taxonomy units (OTUs) were determined by ARDRA method, and the representative strain of each OTU was sequenced. The phylogenetic position of all the isolated strains was determined by 16S rRNA sequencing. The results showed that the isolated 181 strains displayed 21 operational taxonomic units (OTUs), of which, 12 OTUs belonged to halophilic bacteria, and the others belonged to halophilic archaea. Phylogenetic analysis indicated that there were 7 genera presented among the halophilic bacteria group, and 4 genera presented among the halophilic archaea group. The dominant halophilic strains were of Halomonas and Haloarcula, with 46.8% in halophilic bacteria and 49.1% in halophilic archaea group, respectively. Enzyme-producing analysis indicated that most strains displayed enzyme-producing activity, including the activities of producing amylase, proteinase and lipase, and the dominant strains capable of enzyme-producing were of Haloarcula. Our results showed that in the environment of Daishan Saltern, there existed a higher diversity of halophilic bacteria, being a source sink for screening enzyme-producing bacterial strains.

  16. Artificial Enzymes, "Chemzymes"

    DEFF Research Database (Denmark)

    Bjerre, Jeannette; Rousseau, Cyril Andre Raphaël; Pedersen, Lavinia Georgeta M

    2008-01-01

    Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models that successf......Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models...... that successfully perform Michaelis-Menten catalysis under enzymatic conditions (i.e., aqueous medium, neutral pH, ambient temperature) and for those that do, very high rate accelerations are seldomly seen. This review will provide a brief summary of the recent developments in artificial enzymes, so called...... "Chemzymes", based on cyclodextrins and other molecules. Only the chemzymes that have shown enzyme-like activity that has been quantified by different methods will be mentioned. This review will summarize the work done in the field of artificial glycosidases, oxidases, epoxidases, and esterases, as well...

  17. Structural and Functional Adaptation of Vancomycin Resistance VanT Serine Racemases.

    Science.gov (United States)

    Meziane-Cherif, Djalal; Stogios, Peter J; Evdokimova, Elena; Egorova, Olga; Savchenko, Alexei; Courvalin, Patrice

    2015-08-11

    Vancomycin resistance in Gram-positive bacteria results from the replacement of the D-alanyl-D-alanine target of peptidoglycan precursors with D-alanyl-D-lactate or D-alanyl-D-serine (D-Ala-D-Ser), to which vancomycin has low binding affinity. VanT is one of the proteins required for the production of D-Ala-D-Ser-terminating precursors by converting L-Ser to D-Ser. VanT is composed of two domains, an N-terminal membrane-bound domain, likely involved in L-Ser uptake, and a C-terminal cytoplasmic catalytic domain which is related to bacterial alanine racemases. To gain insight into the molecular function of VanT, the crystal structure of the catalytic domain of VanTG from VanG-type resistant Enterococcus faecalis BM4518 was determined. The structure showed significant similarity to type III pyridoxal 5'-phosphate (PLP)-dependent alanine racemases, which are essential for peptidoglycan synthesis. Comparative structural analysis between VanTG and alanine racemases as well as site-directed mutagenesis identified three specific active site positions centered around Asn696 which are responsible for the L-amino acid specificity. This analysis also suggested that VanT racemases evolved from regular alanine racemases by acquiring additional selectivity toward serine while preserving that for alanine. The 4-fold-lower relative catalytic efficiency of VanTG against L-Ser versus L-Ala implied that this enzyme relies on its membrane-bound domain for L-Ser transport to increase the overall rate of d-Ser production. These findings illustrate how vancomycin pressure selected for molecular adaptation of a housekeeping enzyme to a bifunctional enzyme to allow for peptidoglycan remodeling, a strategy increasingly observed in antibiotic-resistant bacteria. Vancomycin is one of the drugs of last resort against Gram-positive antibiotic-resistant pathogens. However, bacteria have evolved a sophisticated mechanism which remodels the drug target, the D-alanine ending precursors in cell wall

  18. Biochemical Characterization of Mycobacterium tuberculosis DNA Repair Enzymes – Nfo, XthA and Nei2

    Directory of Open Access Journals (Sweden)

    Sailau Abeldenov

    2014-01-01

    Full Text Available Introduction: Tuberculosis (TB is a human disease caused by Mycobacterium tuberculosis (Mtb. Treatment of TB requires long-term courses of multi-drug therapies to eliminate subpopulations of bacteria, which sometimes persist against antibiotics. Therefore, understanding of the mechanism of Mtb antibiotic-resistance is extremely important. During infection, Mtb overcomes a variety of body defense mechanisms, including treatment with the reactive species of oxygen and nitrogen. The bases in DNA molecule are susceptible to the damages caused by reactive forms of intermediate compounds of oxygen and nitrogen. Most of this damage is repaired by the base excision repair (BER pathway. In this study, we aimed to biochemically characterize three Mtb DNA repair enzymes of BER pathway. Methods: XthA, nfo, and nei genes were identified in mycobacteria by homology search of genomic sequences available in the GenBank database. We used standard methods of genetic engineering  to clone and sequence Mtb genes, which coded Nfo, XthA and Nei2 repair enzymes. The protein products of Mtb genes were expressed and purified in Escherichia coli using affinity tags. The enzymatic activity of purified Nfo, XthA, and Nei2 proteins were measured using radioactively labeled DNA substrates containing various modified residues. Results: The genes end (Rv0670, xthA (Rv0427c, and nei (Rv3297 were PCR amplified using genomic DNA of Mtb H37Rv with primers that contain specific restriction sites. The amplified products were inserted into pET28c(+ expression vector in such a way that the recombinant proteins contain C-terminal histidine tags. The plasmid constructs were verified by sequencing and then transformed into the Escherichia coli BL21 (DE3 strain. Purification of recombinant proteins was performed using Ni2+ ions immobilized affinity column, coupled with the fast performance liquid chromatography machine AKTA. Identification of the isolated proteins was performed by

  19. The Effects of Chinese Herbal Medicines on the Quorum Sensing-Regulated Virulence in Pseudomonas aeruginosa PAO1

    OpenAIRE

    Yee Meng Chong; Kah Yan How; Wai Fong Yin; Kok Gan Chan

    2018-01-01

    The quorum sensing (QS) system has been used by many opportunistic pathogenic bacteria to coordinate their virulence determinants in relation to cell-population density. As antibiotic-resistant bacteria are on the rise, interference with QS has been regarded as a novel way to control bacterial infections. As such, many plant-based natural products have been widely explored for their therapeutic roles. These natural products may contain anti-QS compounds that could block QS signals generation ...

  20. Bacterial lung abscess

    International Nuclear Information System (INIS)

    Groskin, S.A.; Panicek, D.M.; Ewing, D.K.; Rivera, F.; Math, K.; Teixeira, J.; Heitzman, E.R.

    1987-01-01

    A retrospective review of patients with bacterial lung abscess was carried out. Demographic, clinical, and radiographical features of this patient group are compared with similar data from patients with empyema and/or cavitated lung carcinoma; differential diagnostic points are stressed. The entity of radiographically occult lung abscess is discussed. Complications associated with bacterial lung abscess are discussed. Current therapeutic options and treatment philosophy for patients with bacterial lung abscess are noted

  1. Bacterial growth on macrophyte leachate and fate of bacterial production

    International Nuclear Information System (INIS)

    Findlay, S.; Carlough, L.; Crocker, M.T.; Gill, H.K.; Meyer, J.L.; Smith, P.J.

    1986-01-01

    The role bacteria play in transferring organic carbon to other trophic levels in aquatic ecosystems depends on the efficiency with which they convert dissolved organic [ 14 C]-labelled carbon into bacterial biomass and on the ability of consumers to graze bacteria. The authors have measured the conversion efficiency for bacteria growing on macrophyte-derived dissolved organic carbon and estimated the amount of bacterial production removed by grazing. Bacteria converted this DOC into new tissue with an efficiency of 53%, substantially higher than the apparent conversion efficiency of macrophyte-derived particulate organic carbon or other types of DOC. Two estimates of grazing indicate that the decline in bacterial numbers after the bloom was probably due to grazing by flagellates. These results show the significance of the bacterial link between DOC and other trophic levels

  2. Final Report - Molecular Mechanisms of Bacterial Mercury Transformation - UCSF

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Susan M. [UCSF

    2014-04-24

    The bacterial mercury resistance (mer) operon functions in Hg biogeochemistry and bioremediation by converting reactive inorganic Hg(II) and organic [RHg(II)]1+ mercurials to relatively inert monoatomic mercury vapor, Hg(0). Its genes regulate operon expression (MerR, MerD, MerOP), import Hg(II) (MerT, MerP, and MerC), and demethylate (MerB) and reduce (MerA) mercurials. We focus on how these components interact with each other and with the host cell to allow cells to survive and detoxify Hg compounds. Understanding how this ubiquitous detoxification system fits into the biology and ecology of its bacterial host is essential to guide interventions that support and enhance Hg remediation. In the current overall project we focused on two aspects of this system: (1) investigations of the energetics of Hg(II)-ligand binding interactions, and (2) both experimental and computational approaches to investigating the molecular mechanisms of Hg(II) acquisition by MerA and intramolecular transfer of Hg(II) prior to reduction within the MerA enzyme active site. Computational work was led by Prof. Jeremy Smith and took place at the University of Tennessee, while experimental work on MerA was led by Prof. Susan Miller and took place at the University of California San Francisco.

  3. The ApaH-like phosphatase TbALPH1 is the major mRNA decapping enzyme of trypanosomes.

    Directory of Open Access Journals (Sweden)

    Susanne Kramer

    2017-06-01

    Full Text Available 5'-3' decay is the major mRNA decay pathway in many eukaryotes, including trypanosomes. After deadenylation, mRNAs are decapped by the nudix hydrolase DCP2 of the decapping complex and finally degraded by the 5'-3' exoribonuclease. Uniquely, trypanosomes lack homologues to all subunits of the decapping complex, while deadenylation and 5'-3' degradation are conserved. Here, I show that the parasites use an ApaH-like phosphatase (ALPH1 as their major mRNA decapping enzyme. The protein was recently identified as a novel trypanosome stress granule protein and as involved in mRNA binding. A fraction of ALPH1 co-localises exclusively with the trypanosome 5'-3' exoribonuclease XRNA to a special granule at the posterior pole of the cell, indicating a connection between the two enzymes. RNAi depletion of ALPH1 is lethal and causes a massive increase in total mRNAs that are deadenylated, but have not yet started 5'-3' decay. These data suggest that ALPH1 acts downstream of deadenylation and upstream of mRNA degradation, consistent with a function in mRNA decapping. In vitro experiments show that recombinant, N-terminally truncated ALHP1 protein, but not a catalytically inactive mutant, sensitises the capped trypanosome spliced leader RNA to yeast Xrn1, but only if an RNA 5' polyphosphatase is included. This indicates that the decapping mechanism of ALPH1 differs from the decapping mechanism of Dcp2 by leaving more than one phosphate group at the mRNA's 5' end. This is the first reported function of a eukaryotic ApaH-like phosphatase, a bacterial-derived class of enzymes present in all phylogenetic super-groups of the eukaryotic kingdom. The substrates of eukaryotic ApaH-like phosphatases are unknown. However, the substrate of the related bacterial enzyme ApaH, diadenosine tetraphosphate, is highly reminiscent of a eukaryotic mRNA cap.

  4. Screening of SDS-degrading bacteria from car wash wastewater and study of the alkylsulfatase enzyme activity.

    Science.gov (United States)

    Shahbazi, Razieh; Kasra-Kermanshahi, Roha; Gharavi, Sara; Moosavi-Nejad, Zahra; Borzooee, Faezeh

    2013-06-01

    Sodium dodecyl sulfate (SDS) is one of the main surfactant components in detergents and cosmetics, used in high amounts as a detergent in products such as shampoos, car wash soap and toothpaste. Therefore, its bioremediation by suitable microorganisms is important. Alkylsulfatase is an enzyme that hydrolyses sulfate -ester bonds to give inorganic sulfate and alcohol. The purpose of this study was to isolate SDS-degrading bacteria from Tehran city car wash wastewater, study bacterial alkylsulfatase enzyme activity and identify the alkylsulfatase enzyme coding gene. Screening of SDS-degrading bacteria was carried out on basal salt medium containing SDS as the sole source of carbon. Amount of SDS degraded was assayed by methylene blue active substance (MBAS). Identification of the sdsA gene was carried by PCR and subsequent sequencing of the 16S rDNA gene and biochemical tests identified Pseudomonas aeruginosa. This bacterium is able to degrade 84% of SDS after four days incubation. Bacteria isolated from car wash wastewater were shown to carry the sdsA gene (670bp) and the alkylsulfatase enzyme specific activity expressed from this gene was determined to be 24.3 unit/mg. The results presented in this research indicate that Pseudomonas aeruginosa is a suitable candidate for SDS biodegradation.

  5. Crystallographic Study of Peptidoglycan Biosynthesis Enzyme MurD: Domain Movement Revisited.

    Directory of Open Access Journals (Sweden)

    Roman Šink

    Full Text Available The biosynthetic pathway of peptidoglycan, an essential component of bacterial cell wall, is a well-recognized target for antibiotic development. Peptidoglycan precursors are synthesized in the bacterial cytosol by various enzymes including the ATP-hydrolyzing Mur ligases, which catalyze the stepwise addition of amino acids to a UDP-MurNAc precursor to yield UDP-MurNAc-pentapeptide. MurD catalyzes the addition of D-glutamic acid to UDP-MurNAc-L-Ala in the presence of ATP; structural and biochemical studies have suggested the binding of the substrates with an ordered kinetic mechanism in which ligand binding inevitably closes the active site. In this work, we challenge this assumption by reporting the crystal structures of intermediate forms of MurD either in the absence of ligands or in the presence of small molecules. A detailed analysis provides insight into the events that lead to the closure of MurD and reveals that minor structural modifications contribute to major overall conformation alterations. These novel insights will be instrumental in the development of new potential antibiotics designed to target the peptidoglycan biosynthetic pathway.

  6. BACTERIAL CONSORTIUM

    Directory of Open Access Journals (Sweden)

    Payel Sarkar

    2013-01-01

    Full Text Available Petroleum aromatic hydrocarbons like benzen e, toluene, ethyl benzene and xylene, together known as BTEX, has almost the same chemical structure. These aromatic hydrocarbons are released as pollutants in th e environment. This work was taken up to develop a solvent tolerant bacterial cons ortium that could degrade BTEX compounds as they all share a common chemical structure. We have isolated almost 60 different types of bacterial strains from different petroleum contaminated sites. Of these 60 bacterial strains almost 20 microorganisms were screene d on the basis of capability to tolerate high concentration of BTEX. Ten differe nt consortia were prepared and the compatibility of the bacterial strains within the consortia was checked by gram staining and BTEX tolerance level. Four successful mi crobial consortia were selected in which all the bacterial strains concomitantly grew in presence of high concentration of BTEX (10% of toluene, 10% of benzene 5% ethyl benzene and 1% xylene. Consortium #2 showed the highest growth rate in pr esence of BTEX. Degradation of BTEX by consortium #2 was monitored for 5 days by gradual decrease in the volume of the solvents. The maximum reduction observed wa s 85% in 5 days. Gas chromatography results also reveal that could completely degrade benzene and ethyl benzene within 48 hours. Almost 90% degradation of toluene and xylene in 48 hours was exhibited by consortium #2. It could also tolerate and degrade many industrial solvents such as chloroform, DMSO, acetonitrile having a wide range of log P values (0.03–3.1. Degradation of aromatic hydrocarbon like BTEX by a solvent tolerant bacterial consortium is greatly significant as it could degrade high concentration of pollutants compared to a bacterium and also reduces the time span of degradation.

  7. Enzyme detection by microfluidics

    DEFF Research Database (Denmark)

    2013-01-01

    Microfluidic-implemented methods of detecting an enzyme, in particular a DNA-modifying enzyme, are provided, as well as methods for detecting a cell, or a microorganism expressing said enzyme. The enzyme is detected by providing a nucleic acid substrate, which is specifically targeted...... by that enzyme...

  8. Competitive binding of polyethyleneimine-coated gold nanoparticles to enzymes and bacteria: a key mechanism for low-level colorimetric detection of gram-positive and gram-negative bacteria

    International Nuclear Information System (INIS)

    Thiramanas, Raweewan; Laocharoensuk, Rawiwan

    2016-01-01

    The article describes a simple and rapid method for colorimetric detection of bacteria. It is based on competitive binding of positively charged polyethyleneimine-coated gold nanoparticles (PEI-AuNPs) to negatively charged enzymes and bacteria. The PEI-AuNPs are electrostatically attracted by both the bacterial surface and the enzyme β-galactosidase (β-Gal). Binding to the latter results in the inhibition of enzyme activity. However, in the presence of a large number of bacteria, the PEI-AuNPs preferentially bind to bacteria. Hence, the enzyme will not be inhibited and its activity can be colorimetrically determined via hydrolysis of the chromogenic substrate chlorophenol red β-D-galactopyranoside (CPRG). The detection limit of this assay is as low as 10 cfu·mL −1 , and the linear range extends from 10 6 to 10 8 cfu·mL −1 . The assay is applicable to both Gram-negative (such as enterotoxigenic Escherichia coli; ETEC) and Gram-positive (Staphylococcus aureus; S. aureus) bacteria. Results are obtained within 10 min using an optical reader, and within 2–3 h by bare-eye detection. The method was applied to the identification of ETEC contamination at a level of 10 cfu·mL −1 in spiked drinking water. Given its low detection limit and rapidity (sample preconcentration is not required), this method holds great promise for on-site detection of total bacterial contamination. (author)

  9. Aquaculture can promote the presence and spread of antibiotic-resistant Enterococci in marine sediments.

    Directory of Open Access Journals (Sweden)

    Andrea Di Cesare

    Full Text Available Aquaculture is an expanding activity worldwide. However its rapid growth can affect the aquatic environment through release of large amounts of chemicals, including antibiotics. Moreover, the presence of organic matter and bacteria of different origin can favor gene transfer and recombination. Whereas the consequences of such activities on environmental microbiota are well explored, little is known of their effects on allochthonous and potentially pathogenic bacteria, such as enterococci. Sediments from three sampling stations (two inside and one outside collected in a fish farm in the Adriatic Sea were examined for enterococcal abundance and antibiotic resistance traits using the membrane filter technique and an improved quantitative PCR. Strains were tested for susceptibility to tetracycline, erythromycin, ampicillin and gentamicin; samples were directly screened for selected tetracycline [tet(M, tet(L, tet(O] and macrolide [erm(A, erm(B and mef] resistance genes by newly-developed multiplex PCRs. The abundance of benthic enterococci was higher inside than outside the farm. All isolates were susceptible to the four antimicrobials tested, although direct PCR evidenced tet(M and tet(L in sediment samples from all stations. Direct multiplex PCR of sediment samples cultured in rich broth supplemented with antibiotic (tetracycline, erythromycin, ampicillin or gentamicin highlighted changes in resistance gene profiles, with amplification of previously undetected tet(O, erm(B and mef genes and an increase in benthic enterococcal abundance after incubation in the presence of ampicillin and gentamicin. Despite being limited to a single farm, these data indicate that aquaculture may influence the abundance and spread of benthic enterococci and that farm sediments can be reservoirs of dormant antibiotic-resistant bacteria, including enterococci, which can rapidly revive in presence of new inputs of organic matter. This reservoir may constitute an

  10. Endophytic bacterial effects on seed germination and mobilization of reserves in ammodendron biofolium

    International Nuclear Information System (INIS)

    Zhu, Y.; She, X.P.

    2017-01-01

    The main aim of this study was to analyze the mobilization of storage reserves during seed germination of Ammodendron bifolium by host plant-endophytic bacteria interaction and to determine the contribution of endophytic bacteria in plant establishment. The seeds were inoculated with three different endophytic bacteria from A. bifolium, Staphylococcus sp. AY3, Kocuria sp. AY9 and Bacillus sp. AG18, and they were germinated in the dark. Fresh weight changes and early seedling growth were assessed, and the content of storage compounds was quantified using biochemical assays in all germinated and non-germinated seeds. To understand the mechanism promoting seed germination, the activities of extracellular enzymes of bacterial isolates were also analyzed by the plate assay method. The results showed that treatment with endophytic bacteria accelerated seed germination; promoted further water absorption and radicle growth; and also promoted degradation of sucrose, protein and lipids during the germination process. At the same time, our results also showed that strain AG18 was able to produce protease and amylase, strain AY9 had only amylase activity, and strain AY3 had no extracellular enzyme activity. In summary, our current study showed that (i) endophytic bacteria improved seed germination and post-germination seedling growth of A. bifolium; (ii) inoculation with endophytic bacteria could promote storage reserve mobilization during or following germination; (iii) the degradation of protein, lipids and sucrose could provide essential energy for post-germination growth; and (iv) three bacterial isolates might have different action mechanisms on seed germination. (author)

  11. Bacterial surface adaptation

    Science.gov (United States)

    Utada, Andrew

    2014-03-01

    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. These crucial early stages of biofilm formation are at present poorly understood. By adapting methods from soft matter physics, we dissect bacterial social behavior at the single cell level for several prototypical bacterial species, including Pseudomonas aeruginosa and Vibrio cholerae.

  12. Identification, expression, and characterization of a novel bacterial RGI Lyase enzyme for the production of bio-functional fibers

    DEFF Research Database (Denmark)

    da Silva, Ines Isabel Cardoso Rodrigues; Larsen, Dorte Møller; Meyer, Anne S.

    2011-01-01

    A gene encoding a putative rhamnogalacturonan I (RGI) Lyase (EC 4.2.2.-) from Bacillus licheniformis (DSM13) was selected after a homology search and phylogenetic analysis and optimized with respect to codon usage. The designed gene was transformed into Pichia pastoris and the enzyme was produced...

  13. Structure of the Bacillus anthracis dTDP- L -rhamnose-biosynthetic enzyme glucose-1-phosphate thymidylyltransferase (RfbA)

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, Jackson; Lee, Jesi; Halavaty, Andrei S.; Minasov, George; Anderson, Wayne F.; Kuhn, Misty L. (NWU); (SFSU)

    2017-10-30

    L-Rhamnose is a ubiquitous bacterial cell-wall component. The biosynthetic pathway for its precursor dTDP-L-rhamnose is not present in humans, which makes the enzymes of the pathway potential drug targets. In this study, the three-dimensional structure of the first protein of this pathway, glucose-1-phosphate thymidylyltransferase (RfbA), fromBacillus anthraciswas determined. In other organisms this enzyme is referred to as RmlA. RfbA was co-crystallized with the products of the enzymatic reaction, dTDP-α-D-glucose and pyrophosphate, and its structure was determined at 2.3 Å resolution. This is the first reported thymidylyltransferase structure from a Gram-positive bacterium. RfbA shares overall structural characteristics with known RmlA homologs. However, RfbA exhibits a shorter sequence at its C-terminus, which results in the absence of three α-helices involved in allosteric site formation. Consequently, RfbA was observed to exhibit a quaternary structure that is unique among currently reported glucose-1-phosphate thymidylyltransferase bacterial homologs. These structural analyses suggest that RfbA may not be allosterically regulated in some organisms and is structurally distinct from other RmlA homologs.

  14. The genes and enzymes of sucrose metabolism in moderately thermophilic methanotroph Methylocaldum szegediense O12.

    Science.gov (United States)

    But, Sergey Y; Solntseva, Natalia P; Egorova, Svetlana V; Mustakhimov, Ildar I; Khmelenina, Valentina N; Reshetnikov, Alexander; Trotsenko, Yuri A

    2018-05-01

    Four enzymes involved in sucrose metabolism: sucrose phosphate synthase (Sps), sucrose phosphate phosphatase (Spp), sucrose synthase (Sus) and fructokinase (FruK), were obtained as his-tagged proteins from the moderately thermophilic methanotroph Methylocaldum szegediense O12. Sps, Spp, FruK and Sus demonstrated biochemical properties similar to those of other bacterial counterparts, but the translated amino acid sequences of Sps and Spp displayed high divergence from the respective microbial enzymes. The Sus of M. szegediense O12 catalyzed the reversible reaction of sucrose cleavage in the presence of ADP or UDP and preferred ADP as a substrate, thus implying a connection between sucrose and glycogen metabolism. Sus-like genes were found only in a few methanotrophs, whereas amylosucrase was generally used in sucrose cleavage in this group of bacteria. Like other microbial fructokinases, FruK of M. szegediense O12 showed a high specificity to fructose.

  15. In vitro and in vivo evaluation of [18F]ciprofloxacin for the imaging of bacterial infections with PET

    International Nuclear Information System (INIS)

    Langer, Oliver; Brunner, Martin; Zeitlinger, Markus; Mueller, Ulrich; Lackner, Edith; Joukhadar, Christian; Mueller, Markus; Ziegler, Sophie; Minar, Erich; Dobrozemsky, Georg; Mitterhauser, Markus; Wadsak, Wolfgang; Dudczak, Robert; Kletter, Kurt

    2005-01-01

    The suitability of the 18 F-labelled fluoroquinolone antibiotic ciprofloxacin ([ 18 F]ciprofloxacin) for imaging of bacterial infections with positron emission tomography (PET) was assessed in vitro and in vivo. For the in vitro experiments, suspensions of various E. colistrains were incubated with different concentrations of [ 18 F]ciprofloxacin (0.01-5.0 μg/ml) and radioactivity retention was measured in a gamma counter. For the in vivo experiments, 725 ± 9 MBq [ 18 F]ciprofloxacin was injected intravenously into four patients with microbiologically proven bacterial soft tissue infections of the lower extremities and time-radioactivity curves were recorded in infected and uninfected tissue for 5 h after tracer injection. Binding of [ 18 F]ciprofloxacin to bacterial cells was rapid, non-saturable and readily reversible. Moreover, bacterial binding of the agent was similar in ciprofloxacin-resistant and ciprofloxacin-susceptible clinical isolates. These findings suggest that non-specific binding rather than specific binding to bacterial type II topoisomerase enzymes is the predominant mechanism of bacterial retention of the radiotracer. PET studies in the four patients with microbiologically proven bacterial soft tissue infections demonstrated locally increased radioactivity uptake in infected tissue, with peak ratios between infected and uninfected tissue ranging from 1.8 to 5.5. Radioactivity was not retained in infected tissue and appeared to wash out with a similar elimination half-life as in uninfected tissue, suggesting that the kinetics of [ 18 F]ciprofloxacin in infected tissue are governed by increased blood flow and vascular permeability due to local infection rather than by a binding process. Taken together, our results indicate that [ 18 F]ciprofloxacin is not suited as a bacteria-specific infection imaging agent for PET. (orig.)

  16. 7 CFR 58.436 - Rennet, pepsin, other milk clotting enzymes and flavor enzymes.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Rennet, pepsin, other milk clotting enzymes and flavor enzymes. 58.436 Section 58.436 Agriculture Regulations of the Department of Agriculture (Continued... clotting enzymes and flavor enzymes. Enzyme preparations used in the manufacture of cheese shall be safe...

  17. Elevated Liver Enzymes

    Science.gov (United States)

    Symptoms Elevated liver enzymes By Mayo Clinic Staff Elevated liver enzymes may indicate inflammation or damage to cells in the liver. Inflamed or ... than normal amounts of certain chemicals, including liver enzymes, into the bloodstream, which can result in elevated ...

  18. Stability of Enzymes in Granular Enzyme Products for Laundry Detergents

    DEFF Research Database (Denmark)

    Biran, Suzan; Bach, Poul; Simonsen, Ole

    Enzymes have long been of interest to the detergent industry due to their ability to improve the cleaning efficiency of synthetic detergents, contribute to shortening washing times, and reduce energy and water consumption, provision of environmentally friendlier wash water effluents and fabric care....... However, incorporating enzymes in detergent formulations gives rise to numerous practical problems due to their incompatibility with and stability against various detergent components. In powdered detergent formulations, these issues can be partly overcome by physically isolating the enzymes in separate...... particles. However, enzymes may loose a significant part of their activity over a time period of several weeks. Possible causes of inactivation of enzymes in a granule may be related to the release of hydrogen peroxide from the bleaching chemicals in a moisture-containing atmosphere, humidity, autolysis...

  19. Characterization of transgenic tobacco plants containing bacterial bphC gene and study of their phytoremediation ability.

    Science.gov (United States)

    Viktorovtá, Jitka; Novakova, Martina; Trbolova, Ladislava; Vrchotova, Blanka; Lovecka, Petra; Mackova, Martina; Macek, Tomas

    2014-01-01

    Genetically modified plants can serve as an efficient tool for remediation of diverse dangerous pollutants of the environment such as pesticides, heavy metals, explosives and persistent organic compounds. Transgenic lines of Nicotiana tabacum containing bacterial bphC gene from the degradation pathway of polychlorinated biphenyls (PCBs) were tested. The product of the bphC gene - enzyme 2,3-dihydroxybiphenyl-1,2-dioxygenase is responsible for cleaving of the biphenyl ring. The presence of bphC gene in transgenic plants was detected on DNA, RNA and protein level. The expression of the bphC/His gene was verified afterpurification of the enzyme from plants by affinity chromatography followed by a Western blot and immunochemical assay. The enzyme activity of isolated protein was detected. Efficient transformation of 2,3-DHB by transgenic plants was achieved and the lines also exhibited high production of biomass. The transgenic plants were more tolerant to the commercial PCBs mixture Delor 103 than non-transgenic tobacco. And finally, the higher decrease of total PCB content and especially congener 28 in real contaminated soil from a dumpsite was determined after cultivation of transgenic plant in comparison with nontransgenic tobacco. The substrate specificity of transgenic plants was the same as substrate specificity of BphC enzyme.

  20. Enzymes catalyzing pre-hydrolysis facilitated the anaerobic fermentation of waste activated sludge with acidogenic and microbiological perspectives.

    Science.gov (United States)

    Xin, Xiaodong; He, Junguo; Li, Lin; Qiu, Wei

    2018-02-01

    This study investigated acidogenic and microbiological perspectives in the anaerobic fermentation (AF) of waste activated sludge (WAS) pre-hydrolyzed by enzymes catalysis. The enzymes catalysis boosted WAS biodegradability dramatically with nearly 8500 mg/L soluble chemical oxygen demand (SCOD) increase just within 4 h. The volatile fatty acids (VFAs) in the acidogenesis were accumulated effectively with over 3200 mg COD/L in 12 d, which reached 0.687 kWh/kg VSS electricity conversion efficiency (2.5 times higher than the control test). The fermentation process favored the compression of fermentative sludge with the distribution spread index (DSI) rising. The core populations of bacteria and archaea shifting enlarged the dissimilarity of communities at different fermentation stages. Increase of community diversity contributed to VFAs accumulation stability. Moreover, the intermediate bacterial community evenness favored VFAs accumulation potentially. The enzymes catalysis might be a promising solution for strengthening VFAs accumulation in the WAS fermentation with boosting the electricity conversion potential. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Bacterial Protein-Tyrosine Kinases

    DEFF Research Database (Denmark)

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten

    2010-01-01

    in exopolysaccharide production, virulence, DNA metabolism, stress response and other key functions of the bacterial cell. BY-kinases act through autophosphorylation (mainly in exopolysaccharide production) and phosphorylation of other proteins, which have in most cases been shown to be activated by tyrosine......Bacteria and Eukarya share essentially the same family of protein-serine/threonine kinases, also known as the Hanks-type kinases. However, when it comes to protein-tyrosine phosphorylation, bacteria seem to have gone their own way. Bacterial protein-tyrosine kinases (BY-kinases) are bacterial...... and highlighted their importance in bacterial physiology. Having no orthologues in Eukarya, BY-kinases are receiving a growing attention from the biomedical field, since they represent a particularly promising target for anti-bacterial drug design....

  2. Bacterial diversity and community along the succession of biological soil crusts in the Gurbantunggut Desert, Northern China.

    Science.gov (United States)

    Zhang, Bingchang; Kong, Weidong; Wu, Nan; Zhang, Yuanming

    2016-06-01

    Biological soil crusts (BSCs) are common and play critical roles in semi-arid and arid ecosystems. Bacteria, as an important community in BSCs, play critical roles in biochemical processes. However, how bacterial diversity and community change in different successional stages of BSCs is still unknown. We used 454 pyrosequencing of 16S rRNA to investigate the bacterial composition and community, and the relationships between bacterial composition and environmental factors were also explored. In different successional stages of BSCs, the number of bacteria operational taxonomic units (OTUs) detected in each sample ranged from 2572 to 3157. Proteobacteria, Cyanobacteria, Bacteroidetes were dominant in BSCs, followed by Firmicutes, Acidobacteria, and Actinobacteria. At the successional stages of BSCs, bacterial communities, OTU composition and their relative abundance notably differentiated, and Cyanobacteria, especially Microcoleus vaginatus, dominated algal crust and lichen crust, and were the main C-fixing bacteria in BSCs. Proteobacteria and Bacteroidetes increased with the development of BSCs. OTUs related to Planomicrobium Chinese, Desulfobulbus sp., Desulfomicrobium sp., Arthrobacter sp., and Ahhaerbacter sp. showed higher relative abundance in bare sand than other successional stages of BSCs, while relative abundance of Sphingomonas sp. Niastella sp., Pedobacter, Candidatus solobacter, and Streptophyta increased with the development of BSCs. In successional stages of BSCs, bacterial OTUs composition demonstrated strong correlations with soil nutrients, soil salts, and soil enzymes. Additionally, variation of bacterial composition led to different ecological function. In bare sand, some species were related with mineral metabolism or promoting plant growth, and in algal crust and lichen crust, C-fixing bacteria increased and accumulated C to the desert soil. In later developed stage of BSCs, bacteria related with decomposition of organic matter, such as

  3. Enzyme structure, enzyme function and allozyme diversity in ...

    African Journals Online (AJOL)

    In estimates of population genetic diversity based on allozyme heterozygosity, some enzymes are regularly more variable than others. Evolutionary theory suggests that functionally less important molecules, or parts of molecules, evolve more rapidly than more important ones; the latter enzymes should then theoretically be ...

  4. Differentiation of bacterial and non-bacterial community-acquired pneumonia by thin-section computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Isao [Department of Respiratory Medicine, Kurashiki Central Hospital, 1-1-1 Miwa, Kurashiki 710-8602 (Japan); Department of Respiratory Medicine, Kyoto University, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507 (Japan)], E-mail: isaoito@kuhp.kyoto-u.ac.jp; Ishida, Tadashi [Department of Respiratory Medicine, Kurashiki Central Hospital, 1-1-1 Miwa, Kurashiki 710-8602 (Japan)], E-mail: ishidat@kchnet.or.jp; Togashi, Kaori [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507 (Japan)], E-mail: ktogashi@kuhp.kyoto-u.ac.jp; Niimi, Akio [Department of Respiratory Medicine, Kyoto University, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507 (Japan)], E-mail: niimi@kuhp.kyoto-u.ac.jp; Koyama, Hiroshi [General Internal Medicine, National Hospital Organization Kyoto Medical Center, 1-1 Fukakusa-Mukohatacho, Fushimi-ku, Kyoto 612-8555 (Japan)], E-mail: hkoyama-kyt@umin.ac.jp; Ishimori, Takayoshi [Department of Radiology, Kurashiki Central Hospital, 1-1-1 Miwa, Kurashiki 710-8602 (Japan)], E-mail: ti10794@kchnet.or.jp; Kobayashi, Hisataka [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507 (Japan); Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Room 1B40, MSC1088, 10 Center Drive, Bethesda, MD 20892-1088 (United States)], E-mail: kobayash@mail.nih.gov; Mishima, Michiaki [Department of Respiratory Medicine, Kyoto University, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507 (Japan)], E-mail: mishima@kuhp.kyoto-u.ac.jp

    2009-12-15

    Background and objective: The management of community-acquired pneumonia (CAP) depends, in part, on the identification of the causative agents. The objective of this study was to determine the potential of thin-section computed tomography (CT) in differentiating bacterial and non-bacterial pneumonia. Patients and methods: Thin-section CT studies were prospectively examined in hospitalized CAP patients within 2 days of admission, followed by retrospective assessment by two pulmonary radiologists. Thin-section CT findings on the pneumonias caused by each pathogen were examined, and two types of pneumonias were compared. Using multivariate logistic regression analyses, receiver operating characteristic (ROC) curves were produced. Results: Among 183 CAP episodes (181 patients, 125 men and 56 women, mean age {+-} S.D.: 61.1 {+-} 19.7) examined by thin-section CT, the etiologies of 125 were confirmed (94 bacterial pneumonia and 31 non-bacterial pneumonia). Centrilobular nodules were specific for non-bacterial pneumonia and airspace nodules were specific for bacterial pneumonia (specificities of 89% and 94%, respectively) when located in the outer lung areas. When centrilobular nodules were the principal finding, they were specific but lacked sensitivity for non-bacterial pneumonia (specificity 98% and sensitivity 23%). To distinguish the two types of pneumonias, centrilobular nodules, airspace nodules and lobular shadows were found to be important by multivariate analyses. ROC curve analysis discriminated bacterial pneumonia from non-bacterial pneumonia among patients without underlying lung diseases, yielding an optimal point with sensitivity and specificity of 86% and 79%, respectively, but was less effective when all patients were analyzed together (70% and 84%, respectively). Conclusion: Thin-section CT examination was applied for the differentiation of bacterial and non-bacterial pneumonias. Though showing some potential, this examination at the present time would

  5. Differentiation of bacterial and non-bacterial community-acquired pneumonia by thin-section computed tomography

    International Nuclear Information System (INIS)

    Ito, Isao; Ishida, Tadashi; Togashi, Kaori; Niimi, Akio; Koyama, Hiroshi; Ishimori, Takayoshi; Kobayashi, Hisataka; Mishima, Michiaki

    2009-01-01

    Background and objective: The management of community-acquired pneumonia (CAP) depends, in part, on the identification of the causative agents. The objective of this study was to determine the potential of thin-section computed tomography (CT) in differentiating bacterial and non-bacterial pneumonia. Patients and methods: Thin-section CT studies were prospectively examined in hospitalized CAP patients within 2 days of admission, followed by retrospective assessment by two pulmonary radiologists. Thin-section CT findings on the pneumonias caused by each pathogen were examined, and two types of pneumonias were compared. Using multivariate logistic regression analyses, receiver operating characteristic (ROC) curves were produced. Results: Among 183 CAP episodes (181 patients, 125 men and 56 women, mean age ± S.D.: 61.1 ± 19.7) examined by thin-section CT, the etiologies of 125 were confirmed (94 bacterial pneumonia and 31 non-bacterial pneumonia). Centrilobular nodules were specific for non-bacterial pneumonia and airspace nodules were specific for bacterial pneumonia (specificities of 89% and 94%, respectively) when located in the outer lung areas. When centrilobular nodules were the principal finding, they were specific but lacked sensitivity for non-bacterial pneumonia (specificity 98% and sensitivity 23%). To distinguish the two types of pneumonias, centrilobular nodules, airspace nodules and lobular shadows were found to be important by multivariate analyses. ROC curve analysis discriminated bacterial pneumonia from non-bacterial pneumonia among patients without underlying lung diseases, yielding an optimal point with sensitivity and specificity of 86% and 79%, respectively, but was less effective when all patients were analyzed together (70% and 84%, respectively). Conclusion: Thin-section CT examination was applied for the differentiation of bacterial and non-bacterial pneumonias. Though showing some potential, this examination at the present time would not

  6. Bacterial Prostatitis: Bacterial Virulence, Clinical Outcomes, and New Directions.

    Science.gov (United States)

    Krieger, John N; Thumbikat, Praveen

    2016-02-01

    Four prostatitis syndromes are recognized clinically: acute bacterial prostatitis, chronic bacterial prostatitis, chronic prostatitis/chronic pelvic pain syndrome, and asymptomatic prostatitis. Because Escherichia coli represents the most common cause of bacterial prostatitis, we investigated the importance of bacterial virulence factors and antimicrobial resistance in E. coli strains causing prostatitis and the potential association of these characteristics with clinical outcomes. A structured literature review revealed that we have limited understanding of the virulence-associated characteristics of E. coli causing acute prostatitis. Therefore, we completed a comprehensive microbiological and molecular investigation of a unique strain collection isolated from healthy young men. We also considered new data from an animal model system suggesting certain E. coli might prove important in the etiology of chronic prostatitis/chronic pelvic pain syndrome. Our human data suggest that E. coli needs multiple pathogenicity-associated traits to overcome anatomic and immune responses in healthy young men without urological risk factors. The phylogenetic background and accumulation of an exceptional repertoire of extraintestinal pathogenic virulence-associated genes indicate that these E. coli strains belong to a highly virulent subset of uropathogenic variants. In contrast, antibiotic resistance confers little added advantage to E. coli strains in these healthy outpatients. Our animal model data also suggest that certain pathogenic E. coli may be important in the etiology of chronic prostatitis/chronic pelvic pain syndrome through mechanisms that are dependent on the host genetic background and the virulence of the bacterial strain.

  7. Clinical and microbiological characteristics of spontaneous acute prostatitis and transrectal prostate biopsy-related acute prostatitis: Is transrectal prostate biopsy-related acute prostatitis a distinct acute prostatitis category?

    Science.gov (United States)

    Kim, Jong Wook; Oh, Mi Mi; Bae, Jae Hyun; Kang, Seok Ho; Park, Hong Seok; Moon, Du Geon

    2015-06-01

    This study aimed to compare the clinical and microbiological characteristics between acute bacterial prostatitis and transrectal biopsy-related acute prostatitis. We retrospectively reviewed the records of 135 patients hospitalized for acute prostatitis in three urological centers between 2004 and 2013. Acute bacterial prostatitis was diagnosed according to typical symptoms, findings of physical examination, and laboratory test results. Clinical variables, laboratory test results, and anti-microbial susceptibility results were reviewed. Patients were classified into the spontaneous acute prostatitis group (S-ABP) or biopsy-related acute prostatitis (Bx-ABP) for comparison of their clinical, laboratory, and microbiological findings. The mean age of all patients was 61.7 ± 12.9 years. Compared with S-ABP patients, Bx-ABP patients were significantly older, had larger prostate volumes, higher PSA values, higher peak fever temperatures, and higher incidence of septicemia and antibiotic-resistant bacteria. Overall, of the 135 patients, 57.8% had positive bacterial urine and/or blood cultures. Bx-ABP patients had a higher incidence of bacterial (urine and/or blood) positive cultures compared to S-ABP patients (66.7% versus 55.6%). Escherichia coli was the predominant organism in both groups, but it was more common in Bx-ABP (88.9%) than in S-ABP (66.7%). Extended spectrum beta-lactamase -producing bacteria accounted for 64.7% of culture-positive patients in the Bx-ABP group compared to 13.3% in the S-ABP group. Bx-ABP patients showed a higher incidence of septicemia and antibiotic-resistant bacteria than S-ABP patients. These results have important implications for the management and antimicrobial treatment of Bx-ABP, which may well deserve to be considered a distinct prostatitis category. Copyright © 2015 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  8. Dynamic laser speckle to detect motile bacterial response of Pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Sendra, H; Murialdo, S; Passoni, L

    2007-01-01

    This proposal deals with the technique for detection of motile response of Pseudomonas aeruginosa using dynamic laser speckle or biospeckle as an alternative method. The study of bacterial displacement plays an essential role in biocatalysts processes and biodegradation. Hence, some biodegrading enzymes are benign catalytic that could be used for the production of industrially useful compounds as well as in wastewater treatments. This work presents an experimental set up and a computational process using frame sequences of dynamic laser speckle as a novel application. The objective was the detection of different levels of motility in bacteria. The encouraging results were achieved through a direct and non invasive observation method of the phenomenon

  9. Urinary tract infections in children.

    Science.gov (United States)

    Sedberry-Ross, Sherry; Pohl, Hans G

    2008-03-01

    Urinary tract infections can be a significant source of morbidity in the pediatric population. The mainstay of evaluating urinary tract infections in children has been physical examination, urinalysis and culture, and renal and bladder sonography and contrast cystography. However, novel clinical paradigms now consider the importance of various risk factors, such as bacterial virulence and antibiotic-resistance patterns, elimination disorders, and the role of innate immunity and inflammation in determining the likelihood of renal cortical scarring.

  10. Quorum-Sensing Blockade As A Strategy for Enhancing Host Defences Against Bacterial Pathogens

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Givskov, Michael Christian

    2007-01-01

    Conventional antibiotics target the growth and the basal life processes of bacteria leading to growth arrest and cell death. The selective force that is inherently linked to this mode of action eventually selects out antibiotic-resistant variants. The most obvious alternative to antibiotic...... rise to a new 'drug target rush'. Recently, QS has been shown to be involved in the development of tolerance to various antimicrobial treatments and immune modulation. The regulation of virulence via QS confers a strategic advantage over host defences. Consequently, a drug capable of blocking QS...

  11. Quorum-sensing blockade as a strategy for enhancing host defences against bacterial pathogens

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Givskov, Michael Christian

    2007-01-01

    Conventional antibiotics target the growth and the basal life processes of bacteria leading to growth arrest and cell death. The selective force that is inherently linked to this mode of action eventually selects out antibiotic-resistant variants. The most obvious alternative to antibiotic...... rise to a new 'drug target rush'. Recently, QS has been shown to be involved in the development of tolerance to various antimicrobial treatments and immune modulation. The regulation of virulence via QS confers a strategic advantage over host defences. Consequently, a drug capable of blocking QS...

  12. A new antibiotic with potent activity targets MscL.

    Science.gov (United States)

    Iscla, Irene; Wray, Robin; Blount, Paul; Larkins-Ford, Jonah; Conery, Annie L; Ausubel, Frederick M; Ramu, Soumya; Kavanagh, Angela; Huang, Johnny X; Blaskovich, Mark A; Cooper, Matthew A; Obregon-Henao, Andres; Orme, Ian; Tjandra, Edwin S; Stroeher, Uwe H; Brown, Melissa H; Macardle, Cindy; van Holst, Nick; Ling Tong, Chee; Slattery, Ashley D; Gibson, Christopher T; Raston, Colin L; Boulos, Ramiz A

    2015-07-01

    The growing problem of antibiotic-resistant bacteria is a major threat to human health. Paradoxically, new antibiotic discovery is declining, with most of the recently approved antibiotics corresponding to new uses for old antibiotics or structurally similar derivatives of known antibiotics. We used an in silico approach to design a new class of nontoxic antimicrobials for the bacteria-specific mechanosensitive ion channel of large conductance, MscL. One antimicrobial of this class, compound 10, is effective against methicillin-resistant Staphylococcus aureus with no cytotoxicity in human cell lines at the therapeutic concentrations. As predicted from in silico modeling, we show that the mechanism of action of compound 10 is at least partly dependent on interactions with MscL. Moreover we show that compound 10 cured a methicillin-resistant S. aureus infection in the model nematode Caenorhabditis elegans. Our work shows that compound 10, and other drugs that target MscL, are potentially important therapeutics against antibiotic-resistant bacterial infections.

  13. Reusing Treated Wastewater: Consideration of the Safety Aspects Associated with Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes

    Directory of Open Access Journals (Sweden)

    Pei-Ying Hong

    2018-02-01

    Full Text Available As more countries engage in water reuse, either intended or de facto, there is an urgent need to more comprehensively evaluate resulting environmental and public health concerns. While antibiotic-resistant bacteria (ARB and antibiotic resistance genes (ARGs are increasingly coming under the spotlight, as emerging contaminants, existing water reuse regulations and guidelines do not adequately address these concerns. This perspectives paper seeks to frame the various challenges that need to be resolved to identify meaningful and realistic target types and levels of antibiotic resistance benchmarks for water reuse. First, there is the need for standardized and agreed-upon methodologies to identify and quantify ARB and ARGs. Second, even if methodologies are available, identifying which ARB and ARGs to monitor that would best relate to the occurrence of disease burden remains unknown. Third, a framework tailored to assessing the risks associated with ARB and ARGs during reuse is urgently needed. Fourth, similar to protecting drinking water sources, strategies to prevent dissemination of ARB and ARGs via wastewater treatment and reuse are required to ensure that appropriate barriers are emplaced. Finally, current wastewater treatment technologies could benefit from modification or retrofit to more effectively remove ARB and ARGs while also producing a high quality product for water and resource recovery. This perspectives paper highlights the need to consider ARB and ARGs when evaluating the overall safety aspects of water reuse and ways by which this may be accomplished.

  14. Reusing Treated Wastewater: Consideration of the Safety Aspects Associated with Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes

    KAUST Repository

    Hong, Pei-Ying

    2018-02-27

    As more countries engage in water reuse, either intended or de facto, there is an urgent need to more comprehensively evaluate resulting environmental and public health concerns. While antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are increasingly coming under the spotlight, as emerging contaminants, existing water reuse regulations and guidelines do not adequately address these concerns. This perspectives paper seeks to frame the various challenges that need to be resolved to identify meaningful and realistic target types and levels of antibiotic resistance benchmarks for water reuse. First, there is the need for standardized and agreed-upon methodologies to identify and quantify ARB and ARGs. Second, even if methodologies are available, identifying which ARB and ARGs to monitor that would best relate to the occurrence of disease burden remains unknown. Third, a framework tailored to assessing the risks associated with ARB and ARGs during reuse is urgently needed. Fourth, similar to protecting drinking water sources, strategies to prevent dissemination of ARB and ARGs via wastewater treatment and reuse are required to ensure that appropriate barriers are emplaced. Finally, current wastewater treatment technologies could benefit from modification or retrofit to more effectively remove ARB and ARGs while also producing a high quality product for water and resource recovery. This perspectives paper highlights the need to consider ARB and ARGs when evaluating the overall safety aspects of water reuse and ways by which this may be accomplished.

  15. Immobilized enzymes: understanding enzyme - surface interactions at the molecular level.

    Science.gov (United States)

    Hoarau, Marie; Badieyan, Somayesadat; Marsh, E Neil G

    2017-11-22

    Enzymes immobilized on solid supports have important and industrial and medical applications. However, their uses are limited by the significant reductions in activity and stability that often accompany the immobilization process. Here we review recent advances in our understanding of the molecular level interactions between proteins and supporting surfaces that contribute to changes in stability and activity. This understanding has been facilitated by the application of various surface-sensitive spectroscopic techniques that allow the structure and orientation of enzymes at the solid/liquid interface to be probed, often with monolayer sensitivity. An appreciation of the molecular interactions between enzyme and surface support has allowed the surface chemistry and method of enzyme attachement to be fine-tuned such that activity and stability can be greatly enhanced. These advances suggest that a much wider variety of enzymes may eventually be amenable to immobilization as green catalysts.

  16. Identification of novel bacterial histidine biosynthesis inhibitors using docking, ensemble rescoring, and whole-cell assays

    DEFF Research Database (Denmark)

    Henriksen, Signe Teuber; Liu, J.; Estiu, G.

    2010-01-01

    histidine biosynthesis pathway, which is predicted to be essential for bacterial biomass productions. Virtual screening of a library of similar to 10(6) compounds identified 49 potential inhibitors of three enzymes of this pathway. Eighteen representative compounds were directly tested on three S. aureus......-and two Escherichia coli strains in standard disk inhibition assays. Thirteen compounds are inhibitors of some or all of the S. aureus strains, while 14 compounds weakly inhibit growth in one or both E. coli strains. The high hit rate obtained from a fast virtual screen demonstrates the applicability...

  17. Bacterial Cell Wall Precursor Phosphatase Assays Using Thin-layer Chromatography (TLC) and High Pressure Liquid Chromatography (HPLC).

    Science.gov (United States)

    Pazos, Manuel; Otten, Christian; Vollmer, Waldemar

    2018-03-20

    Peptidoglycan encases the bacterial cytoplasmic membrane to protect the cell from lysis due to the turgor. The final steps of peptidoglycan synthesis require a membrane-anchored substrate called lipid II, in which the peptidoglycan subunit is linked to the carrier lipid undecaprenol via a pyrophosphate moiety. Lipid II is the target of glycopeptide antibiotics and several antimicrobial peptides, and is degraded by 'attacking' enzymes involved in bacterial competition to induce lysis. Here we describe two protocols using thin-layer chromatography (TLC) and high pressure liquid chromatography (HPLC), respectively, to assay the digestion of lipid II by phosphatases such as Colicin M or the LXG toxin protein TelC from Streptococcus intermedius . The TLC method can also monitor the digestion of undecaprenyl (pyro)phosphate, whereas the HPLC method allows to separate the di-, mono- or unphosphorylated disaccharide pentapeptide products of lipid II.

  18. Exceptional case of bone resorption in an osteo-odonto-keratoprosthesis. A scanning electron microscopy and X-ray microanalysis study

    Energy Technology Data Exchange (ETDEWEB)

    Caiazza, S.; Falcinelli, G.; Pintucci, S. (Istituto Superiore di Sanita, Rome (Italy))

    1990-01-01

    This article reports the findings of investigations on an osteo-odonto-keratoprosthesis in an eye that was enucleated owing to severe complications 12 years after implantation. Scanning electron microscopy and electron probe X-ray microanalysis showed extensive resorption of the bone that was used as a supporting element in the kind of transcorneal prosthesis developed by Strampelli. The destructive process, in addition to surgical trauma, has been associated with the early and recurrent bacterial infections relating to the presence of Staphylococcus epidermidis. The need to control the occurrence of primary bacterial infections in traumatized tissues during operations as well as further infectious situations, given the enhanced antibiotic-resistence of bacteria, is emphasized.

  19. Exceptional case of bone resorption in an osteo-odonto-keratoprosthesis. A scanning electron microscopy and X-ray microanalysis study

    International Nuclear Information System (INIS)

    Caiazza, S.; Falcinelli, G.; Pintucci, S.

    1990-01-01

    This article reports the findings of investigations on an osteo-odonto-keratoprosthesis in an eye that was enucleated owing to severe complications 12 years after implantation. Scanning electron microscopy and electron probe X-ray microanalysis showed extensive resorption of the bone that was used as a supporting element in the kind of transcorneal prosthesis developed by Strampelli. The destructive process, in addition to surgical trauma, has been associated with the early and recurrent bacterial infections relating to the presence of Staphylococcus epidermidis. The need to control the occurrence of primary bacterial infections in traumatized tissues during operations as well as further infectious situations, given the enhanced antibiotic-resistence of bacteria, is emphasized

  20. Multifaceted roles of metabolic enzymes of the Paracoccidioides species complex

    Directory of Open Access Journals (Sweden)

    Caroline Maria Marcos

    2014-12-01

    Full Text Available Paracoccidioides species are dimorphic fungi, and are the etiologic agents of paracoccidioidomycosis (PCM, a serious disease of multiple organs. The large number of tissues colonized by this fungus suggests the presence of a variety of surface molecules involved in adhesion. A surprising finding is that the majority of enzymes in the glycolytic pathway, tricarboxylic acid (TCA cycle and glyoxylate cycle in Paracoccidioides spp. has adhesive properties that aid in the interaction with the host extracellular matrix, and so act as ‘moonlighting’ proteins. Moonlighting proteins have multiple functions and add another dimension to cellular complexity, while benefiting cells in several ways. This phenomenon occurs in both eukaryotes and prokaryotes. For example, moonlighting proteins from the glycolytic pathway or TCA cycle can play roles in bacterial pathogens, either by acting as proteins secreted in a conventional pathway or not and/or as cell surface component that facilitate adhesion or adherence . This review outlines the multifuncionality exposed by a variety of Paracoccidioides spp. enzymes including aconitase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, isocitrate lyase, malate synthase, triose phosphate isomerase, fumarase and enolase. The roles that moonlighting activities play in the virulence characteristics of this fungus and several other human pathogens during their interactions with the host are discussed.