WorldWideScience

Sample records for bacteria revealsdifferent strategies

  1. The Evolution of Two-Component Systems in Bacteria RevealsDifferent Strategies for Niche Adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Alm, Eric; Huang, Katherine; Arkin, Adam

    2006-09-13

    Two-component systems including histidine protein kinasesrepresent the primary signal transduction paradigm in prokaryoticorganisms. To understand how these systems adapt to allow organisms todetect niche-specific signals, we analyzed the phylogenetic distributionof nearly 5000 histidine protein kinases from 207 sequenced prokaryoticgenomes. We found that many genomes carry a large repertoire of recentlyevolved signaling genes, which may reflect selective pressure to adapt tonew environmental conditions. Both lineage-specific gene family expansionand horizontal gene transfer play major roles in the introduction of newhistidine kinases into genomes; however, there are differences in howthese two evolutionary forces act. Genes imported via horizontal transferare more likely to retain their original functionality as inferred from asimilar complement of signaling domains, while gene family expansionaccompanied by domain shuffling appears to be a major source of novelgenetic diversity. Family expansion is the dominantsource of newhistidine kinase genes in the genomes most enriched in signalingproteins, and detailed analysis reveals that divergence in domainstructure and changes in expression patterns are hallmarks of recentexpansions. Finally, while these two modes of gene acquisition arewidespread across bacterial taxa, there are clear species-specificpreferences for which mode is used.

  2. Bacteria between protists and phages: from antipredation strategies to the evolution of pathogenicity.

    Science.gov (United States)

    Brüssow, Harald

    2007-08-01

    Bacteriophages and protists are major causes of bacterial mortality. Genomics suggests that phages evolved well before eukaryotic protists. Bacteria were thus initially only confronted with phage predators. When protists evolved, bacteria were caught between two types of predators. One successful antigrazing strategy of bacteria was the elaboration of toxins that would kill the grazer. The released cell content would feed bystander bacteria. I suggest here that, to fight grazing protists, bacteria teamed up with those phage predators that concluded at least a temporary truce with them in the form of lysogeny. Lysogeny was perhaps initially a resource management strategy of phages that could not maintain infection chains. Subsequently, lysogeny might have evolved into a bacterium-prophage coalition attacking protists, which became a food source for them. When protists evolved into multicellular animals, the lysogenic bacteria tracked their evolving food source. This hypothesis could explain why a frequent scheme of bacterial pathogenicity is the survival in phagocytes, why a significant fraction of bacterial pathogens have prophage-encoded virulence genes, and why some virulence factors of animal pathogens are active against unicellular eukaryotes. Bacterial pathogenicity might thus be one playing option of the stone-scissor-paper game played between phages-bacteria-protists, with humans getting into the crossfire.

  3. Current strategies for improving food bacteria

    NARCIS (Netherlands)

    Kuipers, O P; Buist, Girbe; Kok, Jan

    2000-01-01

    Novel concepts and methodologies are emerging that hold great promise for the directed improvement of food-related bacteria, specifically lactic acid bacteria. Also, the battle against food spoilage and pathogenic bacteria can now be fought more effectively. Here we describe recent advances in

  4. SOS, the formidable strategy of bacteria against aggressions.

    Science.gov (United States)

    Baharoglu, Zeynep; Mazel, Didier

    2014-11-01

    The presence of an abnormal amount of single-stranded DNA in the bacterial cell constitutes a genotoxic alarm signal that induces the SOS response, a broad regulatory network found in most bacterial species to address DNA damage. The aim of this review was to point out that beyond being a repair process, SOS induction leads to a very strong but transient response to genotoxic stress, during which bacteria can rearrange and mutate their genome, induce several phenotypic changes through differential regulation of genes, and sometimes acquire characteristics that potentiate bacterial survival and adaptation to changing environments. We review here the causes and consequences of SOS induction, but also how this response can be modulated under various circumstances and how it is connected to the network of other important stress responses. In the first section, we review articles describing the induction of the SOS response at the molecular level. The second section discusses consequences of this induction in terms of DNA repair, changes in the genome and gene expression, and sharing of genomic information, with their effects on the bacteria's life and evolution. The third section is about the fine tuning of this response to fit with the bacteria's 'needs'. Finally, we discuss recent findings linking the SOS response to other stress responses. Under these perspectives, SOS can be perceived as a powerful bacterial strategy against aggressions. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  5. Dual Recognition Strategy for Specific and Sensitive Detection of Bacteria Using Aptamer-Coated Magnetic Beads and Antibiotic-Capped Gold Nanoclusters.

    Science.gov (United States)

    Cheng, Dan; Yu, Mengqun; Fu, Fei; Han, Weiye; Li, Gan; Xie, Jianping; Song, Yang; Swihart, Mark T; Song, Erqun

    2016-01-05

    Food poisoning and infectious diseases caused by pathogenic bacteria such as Staphylococcus aureus (SA) are serious public health concerns. A method of specific, sensitive, and rapid detection of such bacteria is essential and important. This study presents a strategy that combines aptamer and antibiotic-based dual recognition units with magnetic enrichment and fluorescent detection to achieve specific and sensitive quantification of SA in authentic specimens and in the presence of much higher concentrations of other bacteria. Aptamer-coated magnetic beads (Apt-MB) were employed for specific capture of SA. Vancomycin-stabilized fluorescent gold nanoclusters (AuNCs@Van) were prepared by a simple one-step process and used for sensitive quantification of SA in the range of 32-10(8) cfu/mL with the detection limit of 16 cfu/mL via a fluorescence intensity measurement. And using this strategy, about 70 cfu/mL of SA in complex samples (containing 3 × 10(8) cfu/mL of other different contaminated bacteria) could be successfully detected. In comparison to prior studies, the developed strategy here not only simplifies the preparation procedure of the fluorescent probes (AuNCs@Van) to a great extent but also could sensitively quantify SA in the presence of much higher concentrations of other bacteria directly with good accuracy. Moreover, the aptamer and antibiotic used in this strategy are much less expensive and widely available compared to common-used antibodies, making it cost-effective. This general aptamer- and antibiotic-based dual recognition strategy, combined with magnetic enrichment and fluorescent detection of trace bacteria, shows great potential application in monitoring bacterial food contamination and infectious diseases.

  6. Exploring Post-Treatment Reversion of Antimicrobial Resistance in Enteric Bacteria of Food Animals as a Resistance Mitigation Strategy.

    Science.gov (United States)

    Volkova, Victoriya V; KuKanich, Butch; Riviere, Jim E

    2016-11-01

    Antimicrobial drug use in food animals is associated with an elevation in relative abundance of bacteria resistant to the drug among the animal enteric bacteria. Some of these bacteria are potential foodborne pathogens. Evidence suggests that at least in the enteric nontype-specific Escherichia coli, after treatment the resistance abundance reverts to the background pre-treatment levels, without further interventions. We hypothesize that it is possible to define the distribution of the time period after treatment within which resistance to the administered drug, and possibly other drugs in case of coselection, in fecal bacteria of the treated animals returns to the background pre-treatment levels. Furthermore, it is possible that a novel resistance mitigation strategy for microbiological food safety could be developed based on this resistance reversion phenomenon. The strategy would be conceptually similar to existing antimicrobial drug withdrawal periods, which is a well-established and accepted mitigation strategy for avoiding violative drug residues in the edible products from the treated animals. For developing resistance-relevant withdrawals, a mathematical framework can be used to join the necessary pharmacological, microbiological, and animal production components to project the distributions of the post-treatment resistance reversion periods in the production animal populations for major antimicrobial drug classes in use. The framework can also help guide design of empirical studies into the resistance-relevant withdrawal periods and development of mitigation approaches to reduce the treatment-associated elevation of resistance in animal enteric bacteria. We outline this framework, schematically and through exemplar equations, and how its components could be formulated.

  7. Metabolic strategies of beer spoilage lactic acid bacteria in beer.

    Science.gov (United States)

    Geissler, Andreas J; Behr, Jürgen; von Kamp, Kristina; Vogel, Rudi F

    2016-01-04

    Beer contains only limited amounts of readily fermentable carbohydrates and amino acids. Beer spoilage lactic acid bacteria (LAB) have to come up with metabolic strategies in order to deal with selective nutrient content, high energy demand of hop tolerance mechanisms and a low pH. The metabolism of 26 LAB strains of 6 species and varying spoilage potentialwas investigated in order to define and compare their metabolic capabilities using multivariate statistics and outline possible metabolic strategies. Metabolic capabilities of beer spoilage LAB regarding carbohydrate and amino acids did not correlate with spoilage potential, but with fermentation type (heterofermentative/homofermentative) and species. A shift to mixed acid fermentation by homofermentative (hof) Pediococcus claussenii and Lactobacillus backii was observed as a specific feature of their growth in beer. For heterofermentative (hef) LAB a mostly versatile carbohydrate metabolism could be demonstrated, supplementing the known relevance of organic acids for their growth in beer. For hef LAB a distinct amino acid metabolism, resulting in biogenic amine production, was observed, presumably contributing to energy supply and pH homeostasis.

  8. A great deal of evidence based on a great many instances

    DEFF Research Database (Denmark)

    Jensen, Kim Ebensgaard

    2017-01-01

    -based linguistics, such a claim would leave out informationpotentially useful to Danish learners of English. Drawing on principles fromconstruction grammar (e.g. Goldberg 1995; Croft 2001) and variationist cognitive sociolinguistics (Pütz et al. 2014), this paper presents a usage-based comparativecorpus study...... ofnouns. Moreover, variety-centered multidimensional scaling analyses andheatmaps indicate that the patterns of use of the constructions displayregister variation. In addition, a lexical richness analysis revealsdifferences in constructional productivity....

  9. MALDI-TOF MS Andromas strategy for the routine identification of bacteria, mycobacteria, yeasts, Aspergillus spp. and positive blood cultures.

    Science.gov (United States)

    Bille, E; Dauphin, B; Leto, J; Bougnoux, M-E; Beretti, J-L; Lotz, A; Suarez, S; Meyer, J; Join-Lambert, O; Descamps, P; Grall, N; Mory, F; Dubreuil, L; Berche, P; Nassif, X; Ferroni, A

    2012-11-01

    All organisms usually isolated in our laboratory are now routinely identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) using the Andromas software. The aim of this study was to describe the use of this strategy in a routine clinical microbiology laboratory. The microorganisms identified included bacteria, mycobacteria, yeasts and Aspergillus spp. isolated on solid media or extracted directly from blood cultures. MALDI-TOF MS was performed on 2665 bacteria isolated on solid media, corresponding to all bacteria isolated during this period except Escherichia coli grown on chromogenic media. All acquisitions were performed without extraction. After a single acquisition, 93.1% of bacteria grown on solid media were correctly identified. When the first acquisition was not contributory, a second acquisition was performed either the same day or the next day. After two acquisitions, the rate of bacteria identified increased to 99.2%. The failures reported on 21 strains were due to an unknown profile attributed to new species (9) or an insufficient quality of the spectrum (12). MALDI-TOF MS has been applied to 162 positive blood cultures. The identification rate was 91.4%. All mycobacteria isolated during this period (22) were correctly identified by MALDI-TOF MS without any extraction. For 96.3% and 92.2% of yeasts and Aspergillus spp., respectively, the identification was obtained with a single acquisition. After a second acquisition, the overall identification rate was 98.8% for yeasts (160/162) and 98.4% (63/64) for Aspergillus spp. In conclusion, the MALDI-TOF MS strategy used in this work allows a rapid and efficient identification of all microorganisms isolated routinely. © 2011 The Authors. Clinical Microbiology and Infection © 2011 European Society of Clinical Microbiology and Infectious Diseases.

  10. A Trojan-Horse Strategy Including a Bacterial Suicide Action for the Efficient Use of a Specific Gram-Positive Antibiotic on Gram-Negative Bacteria.

    Science.gov (United States)

    Schalk, Isabelle J

    2018-05-10

    In the alarming context of rising bacterial antibiotic resistance, there is an urgent need to discover new antibiotics or increase and/or enlarge the activity of those currently in use. The need for new antibiotics is even more urgent in the case of Gram-negative bacteria, such as Acinetobacter, Pseudomonas, and Enterobacteria, which have become resistant to many antibiotics and have an outer membrane with very low permeability to drugs. Vectorization of antibiotics using siderophores may be a solution to bypass such a bacterial wall: the drugs use the iron transporters of the outer membrane as gates to enter bacteria in a Trojan-horse strategy. Designing siderophore-antibiotics that can cross outer membranes has become almost routine, but their transport across the inner membrane is still a limiting step, as well as a strategy that allows dissociation of the antibiotic from the siderophore once inside the bacteria. Liu et al. ( J. Med. Chem. 2018 , DOI: 10.1021/acs.jmedchem.8b00218 ) report the synthesis of a siderophore-cephalosporin compound and demonstrate that β-lactams, such as cephalosporins, can serve as β-lactamase-triggered releasable linkers to allow intracellular delivery of Gram-positive antibiotics to Gram-negative bacteria.

  11. Antibiotics from predatory bacteria

    Directory of Open Access Journals (Sweden)

    Juliane Korp

    2016-03-01

    Full Text Available Bacteria, which prey on other microorganisms, are commonly found in the environment. While some of these organisms act as solitary hunters, others band together in large consortia before they attack their prey. Anecdotal reports suggest that bacteria practicing such a wolfpack strategy utilize antibiotics as predatory weapons. Consistent with this hypothesis, genome sequencing revealed that these micropredators possess impressive capacities for natural product biosynthesis. Here, we will present the results from recent chemical investigations of this bacterial group, compare the biosynthetic potential with that of non-predatory bacteria and discuss the link between predation and secondary metabolism.

  12. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria.

    Science.gov (United States)

    Yosef, Ido; Manor, Miriam; Kiro, Ruth; Qimron, Udi

    2015-06-09

    The increasing threat of pathogen resistance to antibiotics requires the development of novel antimicrobial strategies. Here we present a proof of concept for a genetic strategy that aims to sensitize bacteria to antibiotics and selectively kill antibiotic-resistant bacteria. We use temperate phages to deliver a functional clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) system into the genome of antibiotic-resistant bacteria. The delivered CRISPR-Cas system destroys both antibiotic resistance-conferring plasmids and genetically modified lytic phages. This linkage between antibiotic sensitization and protection from lytic phages is a key feature of the strategy. It allows programming of lytic phages to kill only antibiotic-resistant bacteria while protecting antibiotic-sensitized bacteria. Phages designed according to this strategy may be used on hospital surfaces and hand sanitizers to facilitate replacement of antibiotic-resistant pathogens with sensitive ones.

  13. Plant growth-promoting bacteria: mechanisms and applications.

    Science.gov (United States)

    Glick, Bernard R

    2012-01-01

    The worldwide increases in both environmental damage and human population pressure have the unfortunate consequence that global food production may soon become insufficient to feed all of the world's people. It is therefore essential that agricultural productivity be significantly increased within the next few decades. To this end, agricultural practice is moving toward a more sustainable and environmentally friendly approach. This includes both the increasing use of transgenic plants and plant growth-promoting bacteria as a part of mainstream agricultural practice. Here, a number of the mechanisms utilized by plant growth-promoting bacteria are discussed and considered. It is envisioned that in the not too distant future, plant growth-promoting bacteria (PGPB) will begin to replace the use of chemicals in agriculture, horticulture, silviculture, and environmental cleanup strategies. While there may not be one simple strategy that can effectively promote the growth of all plants under all conditions, some of the strategies that are discussed already show great promise.

  14. Plant Growth-Promoting Bacteria: Mechanisms and Applications

    Directory of Open Access Journals (Sweden)

    Bernard R. Glick

    2012-01-01

    Full Text Available The worldwide increases in both environmental damage and human population pressure have the unfortunate consequence that global food production may soon become insufficient to feed all of the world's people. It is therefore essential that agricultural productivity be significantly increased within the next few decades. To this end, agricultural practice is moving toward a more sustainable and environmentally friendly approach. This includes both the increasing use of transgenic plants and plant growth-promoting bacteria as a part of mainstream agricultural practice. Here, a number of the mechanisms utilized by plant growth-promoting bacteria are discussed and considered. It is envisioned that in the not too distant future, plant growth-promoting bacteria (PGPB will begin to replace the use of chemicals in agriculture, horticulture, silviculture, and environmental cleanup strategies. While there may not be one simple strategy that can effectively promote the growth of all plants under all conditions, some of the strategies that are discussed already show great promise.

  15. Deployable micro-traps to sequester motile bacteria

    Science.gov (United States)

    di Giacomo, Raffaele; Krödel, Sebastian; Maresca, Bruno; Benzoni, Patrizia; Rusconi, Roberto; Stocker, Roman; Daraio, Chiara

    2017-04-01

    The development of strategies to reduce the load of unwanted bacteria is a fundamental challenge in industrial processing, environmental sciences and medical applications. Here, we report a new method to sequester motile bacteria from a liquid, based on passive, deployable micro-traps that confine bacteria using micro-funnels that open into trapping chambers. Even in low concentrations, micro-traps afford a 70% reduction in the amount of bacteria in a liquid sample, with a potential to reach >90% as shown by modelling improved geometries. This work introduces a new approach to contain the growth of bacteria without chemical means, an advantage of particular importance given the alarming growth of pan-drug-resistant bacteria.

  16. Elucidation of bacteria found in car interiors and strategies to reduce the presence of potential pathogens

    Science.gov (United States)

    Stephenson, Rachel E.; Gutierrez, Daniel; Peters, Cindy; Nichols, Mark; Boles, Blaise R.

    2014-01-01

    The human microbiome is influenced by a number of factors, including environmental exposure to microbes. Because many humans spend a large amount of time in built environments, it can be expected that the microbial ecology of these environments will influence the human microbiome. In an attempt to further understand the microbial ecology of built environments, the microbiota of car interiors was analyzed using culture dependent and culture independent methods. While it was found that the number and type of bacteria varied widely among the cars and sites tested, Staphylococcus and Propionibacterium were nearly always the dominant genera found at the locations sampled. Because Staphylococcus is of particular concern to human health, the characteristics of this genus found in car interiors were investigated. Staphylococcus epidermidis, S. aureus, and S. warnerii were the most prevalent staphylococcal species found, and 22.6% of S. aureus strains isolated from shared community vehicles were resistant to methicillin. The reduction in the prevalence of pathogenic bacteria in cars by using silver-based antimicrobial surface coatings was also evaluated. Coatings containing 5% silver ion additives were applied to steering wheels, placed in cars for five months and were found to eliminate the presence of culturable pathogenic bacteria recovered from these sites relative to controls. Together, these results provide new insight into the microbiota found in an important built environment, the automobile, and potential strategies for controlling the presence of human pathogens. PMID:24564823

  17. Hydrocarbon degradation potentials of bacteria isolated from spent ...

    African Journals Online (AJOL)

    Hydrocarbon degradation potentials of bacteria isolated from spent lubricating oil contaminated soil. ... This study has shown that resident bacteria strains in lubricating oil contaminated soils have potential application in the bioremediation of oil polluted sites and enhance the possibility of developing models and strategies ...

  18. Evolutionary strategies of viruses, bacteria and archaea in hydrothermal vent ecosystems revealed through metagenomics.

    Directory of Open Access Journals (Sweden)

    Rika E Anderson

    Full Text Available The deep-sea hydrothermal vent habitat hosts a diverse community of archaea and bacteria that withstand extreme fluctuations in environmental conditions. Abundant viruses in these systems, a high proportion of which are lysogenic, must also withstand these environmental extremes. Here, we explore the evolutionary strategies of both microorganisms and viruses in hydrothermal systems through comparative analysis of a cellular and viral metagenome, collected by size fractionation of high temperature fluids from a diffuse flow hydrothermal vent. We detected a high enrichment of mobile elements and proviruses in the cellular fraction relative to microorganisms in other environments. We observed a relatively high abundance of genes related to energy metabolism as well as cofactors and vitamins in the viral fraction compared to the cellular fraction, which suggest encoding of auxiliary metabolic genes on viral genomes. Moreover, the observation of stronger purifying selection in the viral versus cellular gene pool suggests viral strategies that promote prolonged host integration. Our results demonstrate that there is great potential for hydrothermal vent viruses to integrate into hosts, facilitate horizontal gene transfer, and express or transfer genes that manipulate the hosts' functional capabilities.

  19. Evolutionary strategies of viruses, bacteria and archaea in hydrothermal vent ecosystems revealed through metagenomics.

    Science.gov (United States)

    Anderson, Rika E; Sogin, Mitchell L; Baross, John A

    2014-01-01

    The deep-sea hydrothermal vent habitat hosts a diverse community of archaea and bacteria that withstand extreme fluctuations in environmental conditions. Abundant viruses in these systems, a high proportion of which are lysogenic, must also withstand these environmental extremes. Here, we explore the evolutionary strategies of both microorganisms and viruses in hydrothermal systems through comparative analysis of a cellular and viral metagenome, collected by size fractionation of high temperature fluids from a diffuse flow hydrothermal vent. We detected a high enrichment of mobile elements and proviruses in the cellular fraction relative to microorganisms in other environments. We observed a relatively high abundance of genes related to energy metabolism as well as cofactors and vitamins in the viral fraction compared to the cellular fraction, which suggest encoding of auxiliary metabolic genes on viral genomes. Moreover, the observation of stronger purifying selection in the viral versus cellular gene pool suggests viral strategies that promote prolonged host integration. Our results demonstrate that there is great potential for hydrothermal vent viruses to integrate into hosts, facilitate horizontal gene transfer, and express or transfer genes that manipulate the hosts' functional capabilities.

  20. The fecal bacteria

    Science.gov (United States)

    Sadowsky, Michael J.; Whitman, Richard L.

    2011-01-01

    The Fecal Bacteria offers a balanced, integrated discussion of fecal bacteria and their presence and ecology in the intestinal tract of mammals, in the environment, and in the food supply. This volume covers their use in examining and assessing water quality in order to offer protection from illnesses related to swimming in or ingesting contaminated water, in addition to discussing their use in engineering considerations of water quality, modeling, monitoring, and regulations. Fecal bacteria are additionally used as indicators of contamination of ready-to-eat foods and fresh produce. The intestinal environment, the microbial community structure of the gut microbiota, and the physiology and genomics of this broad group of microorganisms are explored in the book. With contributions from an internationally recognized group of experts, the book integrates medicine, public health, environmental, and microbiological topics in order to provide a unique, holistic understanding of fecal bacteria. Moreover, it shows how the latest basic science and applied research findings are helping to solve problems and develop effective management strategies. For example, readers will discover how the latest tools and molecular approaches have led to our current understanding of fecal bacteria and enabled us to improve human health and water quality. The Fecal Bacteria is recommended for microbiologists, clinicians, animal scientists, engineers, environmental scientists, food safety experts, water quality managers, and students. It will help them better understand fecal bacteria and use their knowledge to protect human and environmental health. They can also apply many of the techniques and molecular tools discussed in this book to the study of a broad range of microorganisms in a variety of habitats.

  1. Distinct Osmoadaptation Strategies in the Strict Halophilic and Halotolerant Bacteria Isolated from Lunsu Salt Water Body of North West Himalayas.

    Science.gov (United States)

    Vaidya, Shivani; Dev, Kamal; Sourirajan, Anuradha

    2018-07-01

    Two strict halophilic bacterial strains, Halobacillus trueperi SS1, and Halobacillus trueperi SS3, and three halotolerant bacterial strains, Shewanella algae SS2, Halomonas venusta SS5, and Marinomonas sp. SS8 of Lunsu salt water body, Himachal Pradesh, India, were selected to study the mechanism of salt tolerance and the role of osmolytes therein. A combination of flame photometry, chromatographic and colorimetric assays was used to study the mechanism of salt tolerance in the selected strict halophilic and halotolerant bacterial strains. The strict halophiles and, one of the halotolerants, Marinomonas sp. SS8 were found to utilize both "salt-in strategy" and "accumulation of compatible solutes strategy" for osmoregulation in hypersaline conditions. On the contrary, the remaining two halotolerants used "accumulation of compatible solutes strategy" under saline stress and not the "salt-in strategy". The present study suggests towards distinct mechanisms of salt tolerance in the two classes, wherein strict halophiles accumulate compatible solutes as well as adopt salt-in strategy, while the halotolerant bacteria accumulate a range of compatible solutes, except Marinomonas sp. SS8, which utilizes both the strategies to combat salt stress.

  2. Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity.

    Science.gov (United States)

    Chen, Zhongyi; Guo, Lilu; Zhang, Yongqin; Walzem, Rosemary L; Pendergast, Julie S; Printz, Richard L; Morris, Lindsey C; Matafonova, Elena; Stien, Xavier; Kang, Li; Coulon, Denis; McGuinness, Owen P; Niswender, Kevin D; Davies, Sean S

    2014-08-01

    Metabolic disorders, including obesity, diabetes, and cardiovascular disease, are widespread in Westernized nations. Gut microbiota composition is a contributing factor to the susceptibility of an individual to the development of these disorders; therefore, altering a person's microbiota may ameliorate disease. One potential microbiome-altering strategy is the incorporation of modified bacteria that express therapeutic factors into the gut microbiota. For example, N-acylphosphatidylethanolamines (NAPEs) are precursors to the N-acylethanolamide (NAE) family of lipids, which are synthesized in the small intestine in response to feeding and reduce food intake and obesity. Here, we demonstrated that administration of engineered NAPE-expressing E. coli Nissle 1917 bacteria in drinking water for 8 weeks reduced the levels of obesity in mice fed a high-fat diet. Mice that received modified bacteria had dramatically lower food intake, adiposity, insulin resistance, and hepatosteatosis compared with mice receiving standard water or control bacteria. The protective effects conferred by NAPE-expressing bacteria persisted for at least 4 weeks after their removal from the drinking water. Moreover, administration of NAPE-expressing bacteria to TallyHo mice, a polygenic mouse model of obesity, inhibited weight gain. Our results demonstrate that incorporation of appropriately modified bacteria into the gut microbiota has potential as an effective strategy to inhibit the development of metabolic disorders.

  3. Single-Cell Analysis of Growth in Budding Yeast and Bacteria Reveals a Common Size Regulation Strategy.

    Science.gov (United States)

    Soifer, Ilya; Robert, Lydia; Amir, Ariel

    2016-02-08

    To maintain a constant cell size, dividing cells have to coordinate cell-cycle events with cell growth. This coordination has long been supposed to rely on the existence of size thresholds determining cell-cycle progression [1]. In budding yeast, size is controlled at the G1/S transition [2]. In agreement with this hypothesis, the size at birth influences the time spent in G1: smaller cells have a longer G1 period [3]. Nevertheless, even though cells born smaller have a longer G1, the compensation is imperfect and they still bud at smaller cell sizes. In bacteria, several recent studies have shown that the incremental model of size control, in which size is controlled by addition of a constant volume (in contrast to a size threshold), is able to quantitatively explain the experimental data on four different bacterial species [4-7]. Here, we report on experimental results for the budding yeast Saccharomyces cerevisiae, finding, surprisingly, that cell size control in this organism is very well described by the incremental model, suggesting a common strategy for cell size control with bacteria. Additionally, we argue that for S. cerevisiae the "volume increment" is not added from birth to division, but rather between two budding events. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. [Regulating acid stress resistance of lactic acid bacteria--a review].

    Science.gov (United States)

    Wu, Chongde; Huang, Jun; Zhou, Rongqing

    2014-07-04

    As cell factories, lactic acid bacteria are widely used in food, agriculture, pharmaceutical and other industries. Acid stress is one the important survival challenges encountered by lactic acid bacteria both in fermentation process and in the gastrointestinal tract. Recently, the development of systems biology and metabolic engineering brings unprecedented opportunity for further elucidating the acid tolerance mechanisms and improving the acid stress resistance of lactic acid bacteria. This review addresses physiological mechanisms of lactic acid bacteria during acid stress. Moreover, strategies to improve the acid stress resistance of lactic acid were proposed.

  5. The determination and arrangement of a combination of enzyme lactate dehydrogenase of bacteria Acinetobacter sp. as a device the identity important bacteria agent composts

    Science.gov (United States)

    Sukmawati, D.; Puspitaningrum, R.; Muzajjanah

    2017-07-01

    The number of garbage generated by the industry or society is a usual problem encountered by almost all urban centers, especially large cities such as Jakarta. Waste prevention strategy required quickly and accurately. One strategy for tackling the Junk was getting lactic acid-producing bacteria. It has been shown that lactic acid can increase the acceleration of organic matter such as an overhaul of lignin and cellulose as well as out causing toxic compounds arising from decay. This research will be conducted on the determination and characterization of the enzyme-producing compost bacteria LDH lactate dehydrogenase LDH - which in isolation from the garbage Landfill Rawasari. Methodology: Research carried out consists: isolation of lactic acid-producing bacteria; identification of microscopic, macroscopic and staining Gram; cellulose assay, and optimization of PCR conditions LDH enzymes producing bacteria. Isolation is performed by dilution method and the direct method. As many as 5-point sampling. Each stage is conducted from 10 grams of soil from the top surface of the compost. Isolation results obtained 100 isolate the bacteria. Base on the characteristic of macroscopic and microscopic observations retrieved 14 isolates of bacteria have shaped rods and brought forth a negative kind of Gram positive staining. Bacterial isolates with codes (BK1; BK3; BK4; BK5; BK6; BK7; BK8; BK9; BK10; BK11: BK12; BK 13). The potential bacteria with ability produce lactate dehydrogenase was BK1 and BK3. Base for analysis phylogenetic there was identification bacteria bak1 and bak3 where Acinetobacter sp.

  6. Threats and opportunities of plant pathogenic bacteria.

    Science.gov (United States)

    Tarkowski, Petr; Vereecke, Danny

    2014-01-01

    Plant pathogenic bacteria can have devastating effects on plant productivity and yield. Nevertheless, because these often soil-dwelling bacteria have evolved to interact with eukaryotes, they generally exhibit a strong adaptivity, a versatile metabolism, and ingenious mechanisms tailored to modify the development of their hosts. Consequently, besides being a threat for agricultural practices, phytopathogens may also represent opportunities for plant production or be useful for specific biotechnological applications. Here, we illustrate this idea by reviewing the pathogenic strategies and the (potential) uses of five very different (hemi)biotrophic plant pathogenic bacteria: Agrobacterium tumefaciens, A. rhizogenes, Rhodococcus fascians, scab-inducing Streptomyces spp., and Pseudomonas syringae. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. [Unique properties of highly radioresistant bacteria].

    Science.gov (United States)

    Romanovskaia, V A; Rokitko, P V; Malashenko, Iu R

    2000-01-01

    In connection with the Chernobyl Nuclear Power Plant (ChNPP) accident and the negative ecological after-effects for biota in this zone the interest has arisen to radioresistant bacteria, as to the most dynamic model of the given ecosystem, and to mechanisms which provide resistance of bacteria to ionizing radiation. The analysis of published data has shown that the radioresistant bacteria are not interrelated taxonomically and phylogenetically. The extreme radioresistant bacteria are represented by the Deinococcus species, which form a group phylogenetically close to the line Thermus-Meiothermus. Other radioresistant bacteria are the representatives of the genera Rubrobacter, Methylobacterium, Kocuria, Bacillus and some archebacteria. Data on natural habitats, of radioresistant bacteria are not numerous. In a number of cases it is difficult to distinguish their natural habitats, as they were isolated from the samples which were previously exposed to X-ray or gamma-irradiation, or from the ecosystems with the naturally raised radioactivity. To understand the strategy of survival of radioresistant bacteria, we briefly reviewed the mechanism of action of various species of radiation on cells and macromolecules; physiological signs of the cell damage caused by radiation; mechanisms eliminating (repairing) these damages. More details on mechanisms of the DNA repair in D. radiodurans are described. The extreme resistance of D. radiodurans to the DNA damaging factors is defined by 1) repair mechanisms which fundamentally differ from those in other procaryotes; 2) ability to increase the efficiency of a standard set of the DNA repairing proteins. Literary and own data on the effect of radiation on survival of various groups of bacteria in natural ecosystems are summarized. The ecological consequences of the ChNPP accident for soil bacteria in this region were estimated. The reduction of the number of soil bacteria and recession of microbial diversity under the effect of

  8. Non-anthocyanin polyphenolic transformation by native yeast and bacteria co-inoculation strategy during vinification.

    Science.gov (United States)

    Devi, Apramita; Archana, Kodira Muthanna; Bhavya, Panikuttria Kuttappa; Anu-Appaiah, Konerira Aiyappaa

    2018-02-01

    Co-inoculation has been adapted by many wine-producing countries because it enhances the success of malolactic fermentation and reduces the fermentation cost, as well as time. However, wine phenolics have been sparsely highlighted during co-inoculation, even though polyphenols are an important parameter affecting wine colour, astringency and aroma. In the present study, we investigated the impact of co-inoculation on non-anthocyanin polyphenol profile for two different grape varieties. Co-inoculation of native yeast strain (AAV2) along with Oenococcus oeni was adapted for Cabernet Sauvignon and Shiraz wine. It was observed that the co-inoculation had minimal yet significant impact on the phenolic composition of wines for both the grape varieties. Color loss, as well as fruity aroma development, was observed in co-inoculated wines. The wines were on a par with the commercial wine, as well as wines without malolactic fermentation, in terms of phenolic compounds and overall organoleptic acceptance. Principal component analysis and hierarchical cluster analysis further suggested that the varietal influence on phenolic composition was dominating compared to inoculation strategies. Among the varieties, the inoculation strategies have significantly influenced the Cabernet wines compared to Shiraz wines. The results of the present study demonstrate that the phenolic compounds are not drastically affected by metabolic activities of malolactic bacteria during co-inoculation and, hence, are equally suitable for wine fermentation. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Engineering nanoparticle-coated bacteria as oral DNA vaccines for cancer immunotherapy.

    Science.gov (United States)

    Hu, Qinglian; Wu, Min; Fang, Chun; Cheng, Changyong; Zhao, Mengmeng; Fang, Weihuan; Chu, Paul K; Ping, Yuan; Tang, Guping

    2015-04-08

    Live attenuated bacteria are of increasing importance in biotechnology and medicine in the emerging field of cancer immunotherapy. Oral DNA vaccination mediated by live attenuated bacteria often suffers from low infection efficiency due to various biological barriers during the infection process. To this end, we herein report, for the first time, a new strategy to engineer cationic nanoparticle-coated bacterial vectors that can efficiently deliver oral DNA vaccine for efficacious cancer immunotherapy. By coating live attenuated bacteria with synthetic nanoparticles self-assembled from cationic polymers and plasmid DNA, the protective nanoparticle coating layer is able to facilitate bacteria to effectively escape phagosomes, significantly enhance the acid tolerance of bacteria in stomach and intestines, and greatly promote dissemination of bacteria into blood circulation after oral administration. Most importantly, oral delivery of DNA vaccines encoding autologous vascular endothelial growth factor receptor 2 (VEGFR2) by this hybrid vector showed remarkable T cell activation and cytokine production. Successful inhibition of tumor growth was also achieved by efficient oral delivery of VEGFR2 with nanoparticle-coated bacterial vectors due to angiogenesis suppression in the tumor vasculature and tumor necrosis. This proof-of-concept work demonstrates that coating live bacterial cells with synthetic nanoparticles represents a promising strategy to engineer efficient and versatile DNA vaccines for the era of immunotherapy.

  10. Engineering strategies aimed at control of acidification rate of lactic acid bacteria

    DEFF Research Database (Denmark)

    Martinussen, Jan; Solem, Christian; Holm, Anders Koefoed

    2013-01-01

    The ability of lactic acid bacteria to produce lactic acid from various sugars plays an important role in food fermentations. Lactic acid is derived from pyruvate, the end product of glycolysis and thus a fast lactic acid production rate requires a high glycolytic flux. In addition to lactic acid......, alternative end products - ethanol, acetic acid and formic acid - are formed by many species. The central role of glycolysis in lactic acid bacteria has provoked numerous studies aiming at identifying potential bottleneck(s) since knowledge about flux control could be important not only for optimizing food...

  11. Antimicrobial Activity – The Most Important Property of Probiotic and Starter Lactic Acid Bacteria

    Directory of Open Access Journals (Sweden)

    Blaženka Kos

    2010-01-01

    Full Text Available The antimicrobial activity of industrially important lactic acid bacteria as starter cultures and probiotic bacteria is the main subject of this review. This activity has been attributed to the production of metabolites such as organic acids (lactic and acetic acid, hydrogen peroxide, ethanol, diacetyl, acetaldehyde, acetoine, carbon dioxide, reuterin, reutericyclin and bacteriocins. The potential of using bacteriocins of lactic acid bacteria, primarily used as biopreservatives, represents a perspective, alternative antimicrobial strategy for continuously increasing problem with antibiotic resistance. Another strategy in resolving this problem is an application of probiotics for different gastrointestinal and urogenital infection therapies.

  12. Resistance in bacteria of the food chain: epidemiology and control strategies

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Wegener, Henrik Caspar; Collignon, P.

    2008-01-01

    quantification of the transmission difficult. The exposure of humans to antimicrobial resistance from food animals can be controlled by either limiting the selective pressure from antimicrobial usage or by limiting the spread of the bacteria/genes. A number of control options are reviewed, including drug...... licensing, removing financial incentives, banning or restricting the use of certain drugs, altering prescribers behavior, improving animal health, improving hygiene and implementing microbial criteria for certain types of resistant pathogens for use in the control of trade of both food animals and food.......Bacteria have evolved multiple mechanisms for the efficient evolution and spread of antimicrobial resistance. Modern food production facilitates the emergence and spread of resistance through the intensive use of antimicrobial agents and international trade of both animals and food products...

  13. Visualizing aquatic bacteria by light and transmission electron microscopy.

    Science.gov (United States)

    Silva, Thiago P; Noyma, Natália P; Duque, Thabata L A; Gamalier, Juliana P; Vidal, Luciana O; Lobão, Lúcia M; Chiarini-Garcia, Hélio; Roland, Fábio; Melo, Rossana C N

    2014-01-01

    The understanding of the functional role of aquatic bacteria in microbial food webs is largely dependent on methods applied to the direct visualization and enumeration of these organisms. While the ultrastructure of aquatic bacteria is still poorly known, routine observation of aquatic bacteria by light microscopy requires staining with fluorochromes, followed by filtration and direct counting on filter surfaces. Here, we used a new strategy to visualize and enumerate aquatic bacteria by light microscopy. By spinning water samples from varied tropical ecosystems in a cytocentrifuge, we found that bacteria firmly adhere to regular slides, can be stained by fluorochoromes with no background formation and fast enumerated. Significant correlations were found between the cytocentrifugation and filter-based methods. Moreover, preparations through cytocentrifugation were more adequate for bacterial viability evaluation than filter-based preparations. Transmission electron microscopic analyses revealed a morphological diversity of bacteria with different internal and external structures, such as large variation in the cell envelope and capsule thickness, and presence or not of thylakoid membranes. Our results demonstrate that aquatic bacteria represent an ultrastructurally diverse population and open avenues for easy handling/quantification and better visualization of bacteria by light microscopy without the need of filter membranes.

  14. Chemical signaling between plants and plant-pathogenic bacteria.

    Science.gov (United States)

    Venturi, Vittorio; Fuqua, Clay

    2013-01-01

    Studies of chemical signaling between plants and bacteria in the past have been largely confined to two models: the rhizobial-legume symbiotic association and pathogenesis between agrobacteria and their host plants. Recent studies are beginning to provide evidence that many plant-associated bacteria undergo chemical signaling with the plant host via low-molecular-weight compounds. Plant-produced compounds interact with bacterial regulatory proteins that then affect gene expression. Similarly, bacterial quorum-sensing signals result in a range of functional responses in plants. This review attempts to highlight current knowledge in chemical signaling that takes place between pathogenic bacteria and plants. This chemical communication between plant and bacteria, also referred to as interkingdom signaling, will likely become a major research field in the future, as it allows the design of specific strategies to create plants that are resistant to plant pathogens.

  15. Vibrio bacteria in raw oysters: managing risks to human health.

    Science.gov (United States)

    Froelich, Brett A; Noble, Rachel T

    2016-03-05

    The human-pathogenic marine bacteria Vibrio vulnificus and V. parahaemolyticus are strongly correlated with water temperature, with concentrations increasing as waters warm seasonally. Both of these bacteria can be concentrated in filter-feeding shellfish, especially oysters. Because oysters are often consumed raw, this exposes people to large doses of potentially harmful bacteria. Various models are used to predict the abundance of these bacteria in oysters, which guide shellfish harvest policy meant to reduce human health risk. Vibrio abundance and behaviour varies from site to site, suggesting that location-specific studies are needed to establish targeted risk reduction strategies. Moreover, virulence potential, rather than simple abundance, should be also be included in future modeling efforts. © 2016 The Author(s).

  16. Interactions between the microbiota and pathogenic bacteria in the gut.

    Science.gov (United States)

    Bäumler, Andreas J; Sperandio, Vanessa

    2016-07-07

    The microbiome has an important role in human health. Changes in the microbiota can confer resistance to or promote infection by pathogenic bacteria. Antibiotics have a profound impact on the microbiota that alters the nutritional landscape of the gut and can lead to the expansion of pathogenic populations. Pathogenic bacteria exploit microbiota-derived sources of carbon and nitrogen as nutrients and regulatory signals to promote their own growth and virulence. By eliciting inflammation, these bacteria alter the intestinal environment and use unique systems for respiration and metal acquisition to drive their expansion. Unravelling the interactions between the microbiota, the host and pathogenic bacteria will produce strategies for manipulating the microbiota against infectious diseases.

  17. Interactions between the microbiota and pathogenic bacteria in the gut

    Science.gov (United States)

    Bäumler, Andreas J.; Sperandio, Vanessa

    2016-01-01

    The microbiome has an important role in human health. Changes in the microbiota can confer resistance to or promote infection by pathogenic bacteria. Antibiotics have a profound impact on the microbiota that alters the nutritional landscape of the gut and can lead to the expansion of pathogenic populations. Pathogenic bacteria exploit microbiota-derived sources of carbon and nitrogen as nutrients and regulatory signals to promote their own growth and virulence. By eliciting inflammation, these bacteria alter the intestinal environment and use unique systems for respiration and metal acquisition to drive their expansion. Unravelling the interactions between the microbiota, the host and pathogenic bacteria will produce strategies for manipulating the microbiota against infectious diseases. PMID:27383983

  18. Structural adaptations of octaheme nitrite reductases from haloalkaliphilic Thioalkalivibrio bacteria to alkaline pH and high salinity.

    Directory of Open Access Journals (Sweden)

    Anna Popinako

    Full Text Available Bacteria Tv. nitratireducens and Tv. paradoxus from soda lakes grow optimally in sodium carbonate/NaCl brines at pH range from 9.5 to 10 and salinity from 0.5 to 1.5 M Na+. Octaheme nitrite reductases (ONRs from haloalkaliphilic bacteria of genus Thioalkalivibrio are stable and active in a wide range of pH (up to 11 and salinity (up to 1 M NaCl. To establish adaptation mechanisms of ONRs from haloalkaliphilic bacteria a comparative analysis of amino acid sequences and structures of ONRs from haloalkaliphilic bacteria and their homologues from non-halophilic neutrophilic bacteria was performed. The following adaptation strategies were observed: (1 strategies specific for halophilic and alkaliphilic proteins (an increase in the number of aspartate and glutamate residues and a decrease in the number of lysine residues on the protein surface, (2 strategies specific for halophilic proteins (an increase in the arginine content and a decrease in the number of hydrophobic residues on the solvent-accessible protein surface, (3 strategies specific for alkaliphilic proteins (an increase in the area of intersubunit hydrophobic contacts. Unique adaptation mechanism inherent in the ONRs from bacteria of genus Thioalkalivibrio was revealed (an increase in the core in the number of tryptophan and phenylalanine residues, and an increase in the number of small side chain residues, such as alanine and valine, in the core.

  19. Novel Adaptive Bacteria Foraging Algorithms for Global Optimization

    Directory of Open Access Journals (Sweden)

    Ahmad N. K. Nasir

    2014-01-01

    Full Text Available This paper presents improved versions of bacterial foraging algorithm (BFA. The chemotaxis feature of bacteria through random motion is an effective strategy for exploring the optimum point in a search area. The selection of small step size value in the bacteria motion leads to high accuracy in the solution but it offers slow convergence. On the contrary, defining a large step size in the motion provides faster convergence but the bacteria will be unable to locate the optimum point hence reducing the fitness accuracy. In order to overcome such problems, novel linear and nonlinear mathematical relationships based on the index of iteration, index of bacteria, and fitness cost are adopted which can dynamically vary the step size of bacteria movement. The proposed algorithms are tested with several unimodal and multimodal benchmark functions in comparison with the original BFA. Moreover, the application of the proposed algorithms in modelling of a twin rotor system is presented. The results show that the proposed algorithms outperform the predecessor algorithm in all test functions and acquire better model for the twin rotor system.

  20. Draft Genome of Scalindua rubra, Obtained from the Interface Above the Discovery Deep Brine in the Red Sea, Sheds Light on Potential Salt Adaptation Strategies in Anammox Bacteria.

    Science.gov (United States)

    Speth, Daan R; Lagkouvardos, Ilias; Wang, Yong; Qian, Pei-Yuan; Dutilh, Bas E; Jetten, Mike S M

    2017-07-01

    Several recent studies have indicated that members of the phylum Planctomycetes are abundantly present at the brine-seawater interface (BSI) above multiple brine pools in the Red Sea. Planctomycetes include bacteria capable of anaerobic ammonium oxidation (anammox). Here, we investigated the possibility of anammox at BSI sites using metagenomic shotgun sequencing of DNA obtained from the BSI above the Discovery Deep brine pool. Analysis of sequencing reads matching the 16S rRNA and hzsA genes confirmed presence of anammox bacteria of the genus Scalindua. Phylogenetic analysis of the 16S rRNA gene indicated that this Scalindua sp. belongs to a distinct group, separate from the anammox bacteria in the seawater column, that contains mostly sequences retrieved from high-salt environments. Using coverage- and composition-based binning, we extracted and assembled the draft genome of the dominant anammox bacterium. Comparative genomic analysis indicated that this Scalindua species uses compatible solutes for osmoadaptation, in contrast to other marine anammox bacteria that likely use a salt-in strategy. We propose the name Candidatus Scalindua rubra for this novel species, alluding to its discovery in the Red Sea.

  1. Antibiotic effects against periodontal bacteria in organ cultured tissue.

    Science.gov (United States)

    Takeshita, Masaaki; Haraguchi, Akira; Miura, Mayumi; Hamachi, Takafumi; Fukuda, Takao; Sanui, Terukazu; Takano, Aiko; Nishimura, Fusanori

    2017-02-01

    Mechanical reduction of infectious bacteria by using physical instruments is considered the principal therapeutic strategy for periodontal disease; addition of antibiotics is adjunctive. However, local antibiotic treatment, combined with conventional mechanical debridement, has recently been shown to be more effective in periodontitis subjects with type 2 diabetes. This suggests that some bacteria may invade the inflamed inner gingival epithelium, and mechanical debridement alone will be unable to reduce these bacteria completely. Therefore, we tried to establish infected organ culture models that mimic the inner gingival epithelium and aimed to see the effects of antibiotics in these established models. Mouse dorsal skin epithelia were isolated, and periodontal bacteria were injected into the epithelia. Infected epithelia were incubated with test antibiotics, and colony-forming ability was evaluated. Results indicated that effective antibiotics differed according to injected bacteria and the bacterial combinations tested. Overall, in organ culture model, the combination of amoxicillin or cefdinir and metronidazole compensate for the effects of less effective bacterial combinations on each other. This in vitro study would suggest effective periodontal treatment regimens, especially for severe periodontitis.

  2. Mathematical studies on nosocomial spread of antibiotic-resistant bacteria

    NARCIS (Netherlands)

    Gurieva, T.V.

    2017-01-01

    Infections with antibiotic-resistant bacteria are a worldwide problem in hospitals and their rates remain high in many countries despite efforts to reduce the rates. Infection prevention is complicated by asymptomatic carriers. Using mathematical modelling, different intervention strategies were

  3. Anaerobic bacteria

    Science.gov (United States)

    Anaerobic bacteria are bacteria that do not live or grow when oxygen is present. In humans, these bacteria ... Brook I. Diseases caused by non-spore-forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman-Cecil ...

  4. Solar-panel and parasol strategies shape the proteorhodopsin distribution pattern in marine Flavobacteriia.

    Science.gov (United States)

    Kumagai, Yohei; Yoshizawa, Susumu; Nakajima, Yu; Watanabe, Mai; Fukunaga, Tsukasa; Ogura, Yoshitoshi; Hayashi, Tetsuya; Oshima, Kenshiro; Hattori, Masahira; Ikeuchi, Masahiko; Kogure, Kazuhiro; DeLong, Edward F; Iwasaki, Wataru

    2018-05-01

    Proteorhodopsin (PR) is a light-driven proton pump that is found in diverse bacteria and archaea species, and is widespread in marine microbial ecosystems. To date, many studies have suggested the advantage of PR for microorganisms in sunlit environments. The ecophysiological significance of PR is still not fully understood however, including the drivers of PR gene gain, retention, and loss in different marine microbial species. To explore this question we sequenced 21 marine Flavobacteriia genomes of polyphyletic origin, which encompassed both PR-possessing as well as PR-lacking strains. Here, we show that the possession or alternatively the lack of PR genes reflects one of two fundamental adaptive strategies in marine bacteria. Specifically, while PR-possessing bacteria utilize light energy ("solar-panel strategy"), PR-lacking bacteria exclusively possess UV-screening pigment synthesis genes to avoid UV damage and would adapt to microaerobic environment ("parasol strategy"), which also helps explain why PR-possessing bacteria have smaller genomes than those of PR-lacking bacteria. Collectively, our results highlight the different strategies of dealing with light, DNA repair, and oxygen availability that relate to the presence or absence of PR phototrophy.

  5. Controlling weeds with fungi, bacteria and viruses: a review

    Science.gov (United States)

    Harding, Dylan P.; Raizada, Manish N.

    2015-01-01

    Weeds are a nuisance in a variety of land uses. The increasing prevalence of both herbicide resistant weeds and bans on cosmetic pesticide use has created a strong impetus to develop novel strategies for controlling weeds. The application of bacteria, fungi and viruses to achieving this goal has received increasingly great attention over the last three decades. Proposed benefits to this strategy include reduced environmental impact, increased target specificity, reduced development costs compared to conventional herbicides and the identification of novel herbicidal mechanisms. This review focuses on examples from North America. Among fungi, the prominent genera to receive attention as bioherbicide candidates include Colletotrichum, Phoma, and Sclerotinia. Among bacteria, Xanthomonas and Pseudomonas share this distinction. The available reports on the application of viruses to controlling weeds are also reviewed. Focus is given to the phytotoxic mechanisms associated with bioherbicide candidates. Achieving consistent suppression of weeds in field conditions is a common challenge to this control strategy, as the efficacy of a bioherbicide candidate is generally more sensitive to environmental variation than a conventional herbicide. Common themes and lessons emerging from the available literature in regard to this challenge are presented. Additionally, future directions for this crop protection strategy are suggested. PMID:26379687

  6. A nanovehicle developed for treating deep-seated bacteria using low-dose X-ray.

    Science.gov (United States)

    Pan, Chien-Lin; Chen, Ming-Hong; Tung, Fu-I; Liu, Tse-Ying

    2017-01-01

    Many non-antibiotic strategies, such as photocatalysis and photodynamic therapy, have been proposed to inhibit and/or kill bacteria. However, these approaches still have drawbacks such as insufficient bacterial specificity and the limited penetration depth of ultraviolet and near-infrared light. To overcome these limitations, we developed a bacteria-specific anti-bacterial technique via using low-dose X-ray. Graphene oxide quantum dots (GQDs, a multifunctional vehicle) conjugated with vancomycin (Van, a bacteria-targeting ligand) were assembled with Protoporphyrin IX (PpIX, a photo/radiation sensitizer) to yield a novel Van-GQDs/PpIX complex that specifically attached to Escherichia coli and efficiently generated intracellular reactive oxygen species following X-ray activation. Delivery using GQDs increased the PpIX/Van ratio in the target bacterial cell, damaged bacterial cell wall, and enhanced X-ray-induced PpIX activation. Hence, this approach allowed for the use of a low-dose X-ray to efficiently activate the Van-GQDs/PpIX complex to exert its bactericidal effects on Escherichia coli without damaging normal cells. Furthermore, the E. coli did not develop resistance to the proposed approach for at least 7 rounds of repeated administration during one week. Thus, this proposed vehicle exhibiting bacteria-specific X-ray-triggered toxicity is a promising alternative to antibiotics for treating serious bacterial infections occurring in deep-seated tissues/organs (e.g., osteomyelitis and peritonitis). Administration of antibiotics is the most common treatment modality for bacterial infections. However, in some cases, patient attributes such as age, health, tolerance to antibiotics do not allow for the use of high-dose antibiotics. In addition, some bacteria develop resistance to antibiotics because of improper and long-term use of these agents. Therefore, non-antibiotic strategies to treat deeply situated bacterial infections, such as osteomyelitis, are urgently

  7. Rumen bacteria at work: bioaugmentation strategies to enhance biogas production from cow manure.

    Science.gov (United States)

    Ozbayram, E G; Akyol, Ç; Ince, B; Karakoç, C; Ince, O

    2018-02-01

    To investigate the effects of different bioaugmentation strategies for enhancing the biogas production from cow manure and evaluate microbial community patterns. Co-inoculation with cow rumen fluid and cow rumen-derived enriched microbial consortia was evaluated in anaerobic batch tests at 36°C and 41°C. Singular addition of both rumen fluid and enriched bioaugmentation culture had a promising enhancement on methane yields; however, the highest methane yield (311 ml CH 4 per gram VS at 41°C) was achieved when the anaerobic seed sludge was co-inoculated together with rumen fluid and enriched bioaugmentation culture. Bacterial community profiles were investigated by Ion PGM Platform, and specific lignocellulolytic bacteria dynamics in batch tests were assessed by qPCR. The temperature had minor effects on the abundance of bacterial community; in which Bacteroidetes and Firmicutes were the most abundant phyla in all digesters. Furthermore, Rikenellaceae, Clostridiaceae, Porphyromonadaceae, Bacteroidaceae and Ruminococcaceae played a crucial role during the anaerobic degradation of cow manure. There was an important impact of Firmicutes flavefaciens and Ruminococcus albus at 41°C, which in turn positively affected the methane production. The degree of enhancement in biogas production can be upgraded by the co-inoculation of rumen-derived bioaugmentation culture with anaerobic seed sludge with high methanogenic activity. A close look at the biotic interactions and their associations with abiotic factors might be valuable for evaluating rumen-related bioaugmentation applications. © 2017 The Society for Applied Microbiology.

  8. The seaweed holobiont: understanding seaweed-bacteria interactions.

    Science.gov (United States)

    Egan, Suhelen; Harder, Tilmann; Burke, Catherine; Steinberg, Peter; Kjelleberg, Staffan; Thomas, Torsten

    2013-05-01

    Seaweeds (macroalgae) form a diverse and ubiquitous group of photosynthetic organisms that play an essential role in aquatic ecosystems. These ecosystem engineers contribute significantly to global primary production and are the major habitat formers on rocky shores in temperate waters, providing food and shelter for aquatic life. Like other eukaryotic organisms, macroalgae harbor a rich diversity of associated microorganisms with functions related to host health and defense. In particular, epiphytic bacterial communities have been reported as essential for normal morphological development of the algal host, and bacteria with antifouling properties are thought to protect chemically undefended macroalgae from detrimental, secondary colonization by other microscopic and macroscopic epibiota. This tight relationship suggests that macroalgae and epiphytic bacteria interact as a unified functional entity or holobiont, analogous to the previously suggested relationship in corals. Moreover, given that the impact of diseases in marine ecosystems is apparently increasing, understanding the role of bacteria as saprophytes and pathogens in seaweed communities may have important implications for marine management strategies. This review reports on the recent advances in the understanding of macroalgal-bacterial interactions with reference to the diversity and functional role of epiphytic bacteria in maintaining algal health, highlighting the holobiont concept. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  9. Isolation and screening of lactic acid bacteria, Lactococcus lactis ...

    African Journals Online (AJOL)

    In aquaculture probiotic feeding could play a crucial role in developing microbial control strategies, since disease outbreaks are recognized as important constraints to aquaculture production and the fear of antibiotic resistance. In this study, lactic acid bacteria (LAB) strains from the intestinal tissue of African catfish Clarias ...

  10. Methods for baiting and enriching fungus-feeding (Mycophagous) rhizosphere bacteria

    NARCIS (Netherlands)

    Ballhausen, Max Bernhard; Veen, Van J.A.; Hundscheid, M.P.J.; Boer, De Wietse

    2015-01-01

    Mycophagous soil bacteria are able to obtain nutrients from living fungal hyphae. However, with exception of the soil bacterial genus Collimonas, occurrence of this feeding strategy has not been well examined. Evaluation of the importance of mycophagy in soil bacterial communities requires

  11. Strategies for removal of indicator pathogenic bacteria from commercial harvested shellfish

    OpenAIRE

    Jones, S; Howell, T; O'Neill, K; Langan, R

    1992-01-01

    The Great Bay/Piscataqua River Estuary in New Hampshire and Maine has an abundant oyster resource in sewage-contaminated water. The only approved area in the Maine portion of the Estuary is Spinney Creek, where fecal indicator bacteria are present at reduced levels and Vibrio vulnificus is absent. Spinney Creek Oyster Company (SCOC) of Eliot, Maine, operates relay lagoons and a depuration facility for oysters harvested commercially from restricted areas of the Salmon Falls River in Maine. Oys...

  12. Subversion of the cytoskeleton by intracellular bacteria: lessons from Listeria, Salmonella, and Vibrio

    Science.gov (United States)

    de Souza Santos, Marcela; Orth, Kim

    2018-01-01

    Summary Entry into host cells and intracellular persistence by invasive bacteria are tightly coupled to the ability of the bacterium to disrupt the eukaryotic cytoskeletal machinery. Herein we review the main strategies used by three intracellular pathogens to harness key modulators of the cytoskeleton. Two of these bacteria, namely Listeria monocytogenes and Salmonella enterica serovar Typhimurium, exhibit quite distinct intracellular lifestyles, and therefore, provide a comprehensive panel for the understanding of the intricate bacteria-cytoskeleton interplay during infections. The emerging intracellular pathogen Vibrio parahaemolyticus is depicted as a developing model for the uncovering of novel mechanisms used to hijack the cytoskeleton. PMID:25440316

  13. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review.

    Science.gov (United States)

    Numan, Muhammad; Bashir, Samina; Khan, Yasmin; Mumtaz, Roqayya; Shinwari, Zabta Khan; Khan, Abdul Latif; Khan, Ajmal; Al-Harrasi, Ahmed

    2018-04-01

    Approximately 5.2 billion hectare agriculture land are affected by erosion, salinity and soil degradation. Salinity stress has significantly affecting the fertile lands, and therefore possesses a huge impact on the agriculture and economy of a country. Salt stress has severe effects on the growth and development of plants as well as reducing its yield. Plants are inherently equipped with stress tolerance ability to responds the specific type of stress. Plants retained specific mechanisms for salt stress mitigation, such as hormonal stimulation, ion exchange, antioxidant enzymes and activation of signaling cascades on their metabolic and genetic frontiers that sooth the stressed condition. Additional to the plant inherent mechanisms, certain plant growth promoting bacteria (PGPB) also have specialized mechanism that play key role for salt stress tolerance and plant growth promotion. These bacteria triggers plants to produce different plant growth hormones like auxin, cytokinine and gibberellin as well as volatile organic compounds. These bacteria also produces growth regulators like siderophore, which fix nitrogen, solubilize organic and inorganic phosphate. Considering the importance of PGPB in compensation of salt tolerance in plants, the present study has reviewed the different aspect and mechanism of bacteria that play key role in promoting plants growth and yield. It can be concluded that PGPB can be used as a cost effective and economical tool for salinity tolerance and growth promotion in plants. Copyright © 2018 Elsevier GmbH. All rights reserved.

  14. Bacteria of Phlebotominae Sand Flies Collected in Western Iran

    Directory of Open Access Journals (Sweden)

    Somayeh Rafatbakhsh-Iran

    2015-08-01

    Full Text Available Microorganisms particularly bacteria presenting in insects such as Phlebotominae may play an important role in the epidemiology of human infectious disease. Nowadays, because of vector implications, the routine methods of controlling and spraying have no more beneficial effects on vectors and reservoirs. Little knows about the prevalence and diversity of sand fly bacteria. The main objective of this study was to determine the presence of bacteria of phlebotominae sand flies collected in Hamadan, west of Iran. This information is important in order to development of vector control strategies. The microbial flora of Phlebotomus papatasi and P. sergenti the main vector of Cutaneous Leishmaniasis in the old world, were investigated. We characterized 8 bacteria, including 5 Gram-negative bacteria: Acinetobacter lwoffii, Pseudomonas aeruginosa, Enterobacter cloacae, Edvardsiela sp. and Proteus mirabilis and Gram-positive bacteria: Bacillus subtilis, Staphylococcus saprophyticus and Micrococcus luteus. Our study provides some data on the microbiota diversity of field-collected sand flies for the first time in Hamadan. Our results indicate that there is a range of variation of aerobic bacteria inhabiting sand fly, which possibly reflect the ecological condition of the habitat where the fly breeds. Microbiota is increasingly regarded as an important factor for modulating vector competence in insect vectors. So, mirobiota can be effects on the biology of phlebotominae and their roles in the sandfly-Leishmania interaction. Further experiments are required to clearly delineate the vectorial role of sand flies. Because it is probable that in the future, factors such as environmental changes, migration and urbanization can ease the transmission of leishmaniasis in this area.

  15. Quantitative relationship between antibiotic exposure and the acquisition and transmission of resistance in bacteria in the laboratory

    NARCIS (Netherlands)

    Händel, N.

    2015-01-01

    The worldwide emergence and spread of antibiotic resistant bacteria represent a major threat to human health care as the chance of therapy failure and costs for treatment increase. To curb the continuous rise of drug resistant bacteria worldwide, new strategies are urgently needed that counteract

  16. Statistical signatures of a targeted search by bacteria

    Science.gov (United States)

    Jashnsaz, Hossein; Anderson, Gregory G.; Pressé, Steve

    2017-12-01

    Chemoattractant gradients are rarely well-controlled in nature and recent attention has turned to bacterial chemotaxis toward typical bacterial food sources such as food patches or even bacterial prey. In environments with localized food sources reminiscent of a bacterium’s natural habitat, striking phenomena—such as the volcano effect or banding—have been predicted or expected to emerge from chemotactic models. However, in practice, from limited bacterial trajectory data it is difficult to distinguish targeted searches from an untargeted search strategy for food sources. Here we use a theoretical model to identify statistical signatures of a targeted search toward point food sources, such as prey. Our model is constructed on the basis that bacteria use temporal comparisons to bias their random walk, exhibit finite memory and are subject to random (Brownian) motion as well as signaling noise. The advantage with using a stochastic model-based approach is that a stochastic model may be parametrized from individual stochastic bacterial trajectories but may then be used to generate a very large number of simulated trajectories to explore average behaviors obtained from stochastic search strategies. For example, our model predicts that a bacterium’s diffusion coefficient increases as it approaches the point source and that, in the presence of multiple sources, bacteria may take substantially longer to locate their first source giving the impression of an untargeted search strategy.

  17. Surface-enhanced Raman scattering detection of bacteria on microarrays at single cell levels using silver nanoparticles

    International Nuclear Information System (INIS)

    Zhou, Haibo; Yang, Danting; Mircescu, Nicoleta E.; Ivleva, Natalia P.; Schwarzmeier, Kathrin; Niessner, Reinhard; Haisch, Christoph; Wieser, Andreas; Schubert, Sören

    2015-01-01

    We describe a method for the synthesis of SERS-active silver nanoparticles (AgNPs) directly on the surface of bacteria (bacteria-AgNPs), specifically of E. coli cells. This straightforward strategy allows for the sensitive determination of bacteria on a microarray platform. Antibodies were used as selective receptors on the microarray surface. The Raman signal of bacteria-AgNPs is about 10 times higher than that obtained previously with microarrays based on mixing bacteria and AgNPs (bacteria+AgNPs). The optimum SERS enhancement of bacteria-AgNPs is obtained under 633-nm laser excitation, and this most likely is due to the plasmonic interaction of aggregated AgNPs. The method allows for an identification and quantification even of single E. coli bacteria. In our perception, this straightforward approach represents a most valuable tool for the detection of E. coli and, conceivably, of other bacteria, and thus has a large potential in environmental monitoring, medical diagnosis, and in food safety and quality control. (author)

  18. Tumour targeting with systemically administered bacteria.

    LENUS (Irish Health Repository)

    Morrissey, David

    2012-01-31

    Challenges for oncology practitioners and researchers include specific treatment and detection of tumours. The ideal anti-cancer therapy would selectively eradicate tumour cells, whilst minimising side effects to normal tissue. Bacteria have emerged as biological gene vectors with natural tumour specificity, capable of homing to tumours and replicating locally to high levels when systemically administered. This property enables targeting of both the primary tumour and secondary metastases. In the case of invasive pathogenic species, this targeting strategy can be used to deliver genes intracellularly for tumour cell expression, while non-invasive species transformed with plasmids suitable for bacterial expression of heterologous genes can secrete therapeutic proteins locally within the tumour environment (cell therapy approach). Many bacterial genera have been demonstrated to localise to and replicate to high levels within tumour tissue when intravenously (IV) administered in rodent models and reporter gene tagging of bacteria has permitted real-time visualisation of this phenomenon. Live imaging of tumour colonising bacteria also presents diagnostic potential for this approach. The nature of tumour selective bacterial colonisation appears to be tumour origin- and bacterial species- independent. While originally a correlation was drawn between anaerobic bacterial colonisation and the hypoxic nature of solid tumours, it is recently becoming apparent that other elements of the unique microenvironment within solid tumours, including aberrant neovasculature and local immune suppression, may be responsible. Here, we consider the pre-clinical data supporting the use of bacteria as a tumour-targeting tool, recent advances in the area, and future work required to develop it into a beneficial clinical tool.

  19. Bacteria versus selenium: A view from the inside out

    Science.gov (United States)

    Staicu, Lucian; Oremland, Ronald S.; Tobe, Ryuta; Mihara, Hisaaki

    2017-01-01

    Bacteria and selenium (Se) are closely interlinked as the element serves both essential nutrient requirements and energy generation functions. However, Se can also behave as a powerful toxicant for bacterial homeostasis. Conversely, bacteria play a tremendous role in the cycling of Se between different environmental compartments, and bacterial metabolism has been shown to participate to all valence state transformations undergone by Se in nature. Bacteria possess an extensive molecular repertoire for Se metabolism. At the end of the 1980s, a novel mode of anaerobic respiration based on Se oxyanions was experimentally documented for the first time. Following this discovery, specific enzymes capable of reducing Se oxyanions and harvesting energy were found in a number of anaerobic bacteria. The genes involved in the expression of these enzymes have later been identified and cloned. This iterative approach undertaken outside-in led to the understanding of the molecular mechanisms of Se transformations in bacteria. Based on the extensive knowledge accumulated over the years, we now have a full(er) view from the inside out, from DNA-encoding genes to enzymes and thermodynamics. Bacterial transformations of Se for assimilatory purposes have been the object of numerous studies predating the investigation of Se respiration. Remarkable contributions related to the understating of the molecular picture underlying seleno-amino acid biosynthesis are reviewed herein. Under certain circumstances, Se is a toxicant for bacterial metabolism and bacteria have evolved strategies to counteract this toxicity, most notably by the formation of elemental Se (nano)particles. Several biotechnological applications, such as the production of functional materials and the biofortification of crop species using Se-utilizing bacteria, are presented in this chapter.

  20. Resistance in bacteria of the food chain: epidemiology and control strategies

    DEFF Research Database (Denmark)

    Cavaco, Lina; Aarestrup, Frank Møller

    2013-01-01

    Antimicrobial agents are widely used for treatment of animals and humans as well as for production purposes in livestock production in several countries. This is exerting a major selective pressure on bacterial populations, and is selecting for populations resistant to the antimicrobials used....... The emergence and spread of resistant bacteria in the food chain is a major concern as food-producing animals may constitute a huge reservoir for antimicrobial resistance. Furthermore, food animals and food of animal origin is traded worldwide, which means that the occurrences of antimicrobial resistance...

  1. Modulation of host responses by oral commensal bacteria

    Directory of Open Access Journals (Sweden)

    Deirdre A. Devine

    2015-02-01

    Full Text Available Immunomodulatory commensal bacteria are proposed to be essential for maintaining healthy tissues, having multiple roles including priming immune responses to ensure rapid and efficient defences against pathogens. The default state of oral tissues, like the gut, is one of inflammation which may be balanced by regulatory mechanisms and the activities of anti-inflammatory resident bacteria that modulate Toll-like receptor (TLR signalling or NF-κB activation, or influence the development and activities of immune cells. However, the widespread ability of normal resident organisms to suppress inflammation could impose an unsustainable burden on the immune system and compromise responses to pathogens. Immunosuppressive resident bacteria have been isolated from the mouth and, for example, may constitute 30% of the resident streptococci in plaque or on the tongue. Their roles in oral health and dysbiosis remain to be determined. A wide range of bacterial components and/or products can mediate immunomodulatory activity, raising the possibility of development of alternative strategies for therapy and health promotion using probiotics, prebiotics, or commensal-derived immunomodulatory molecules.

  2. Production of Remedial Proteins through Genetically Modified Bacteria

    Directory of Open Access Journals (Sweden)

    Fatima Tariq

    2018-02-01

    Full Text Available Recombinant DNA technology has created biological organisms with advanced genetic sequences and has been extensively used to express multiple genes for therapeutic purposes when expressed in a suitable host. Microbial systems such as prokaryotic bacteria has been successfully utilized as a heterologous systems showing high therapeutic potency for various human diseases. Bioengineered bacteria have been successfully utilized for producing therapeutic proteins, treating infectious diseases, and disease arise due to increasing resistance to antibiotics. Prominently E. coli found to be the most widely used expression system for recombinant therapeutic protein production i.e. hormones, enzymes and antibodies. Besides E. coli, non-pathogenic lactic acid bacteria has also been considered as an excellent candidate for live mucosal vaccine. Likewise, S. typhimurium has been deployed as attenuated type of vaccination as well as in treatment strategy of various cancers due to its ability of wide progression in tumors. The present article is a summarized view of the main achievements and current developments in the field of recombinant therapeutics using bacterial strains focusing on their usability in therapeutics and future potential.

  3. Oral Anaerobic Bacteria in the Etiology of Ankylosing Spondylitis

    Directory of Open Access Journals (Sweden)

    Mesut Öğrendik

    2017-06-01

    Full Text Available Ankylosing spondylitis (AS is associated with periodontitis. Anti– Porphyromonas gingivalis and anti– Prevotella intermedia antibody titers were higher in patients with spondyloarthritis than in healthy people. Sulfasalazine is an effective antibiotic treatment for AS. Moxifloxacin and rifamycin were also found to be significantly effective. The etiology hypothesis suggests that oral anaerobic bacteria such as Porphyromonas spp and Prevotella spp contribute to the disease. These bacteria have been identified in AS, and we will discuss their pathogenic properties with respect to our knowledge of the disease. Periodontal pathogens are likely to be responsible for the development of AS in genetically susceptible individuals. This finding should guide the development of more comprehensive and efficacious treatment strategies for AS.

  4. Modes of action for biological control of Botrytis cinerea by antagonistic bacteria

    Directory of Open Access Journals (Sweden)

    Rana HAIDAR

    2017-01-01

    Full Text Available The role of beneficial bacteria in biocontrol of plant diseases, particularly those caused by the necrotrophic fungus Botrytis cinerea, has been investigated by testing many bacteria under laboratory and field conditions. Bacteria may protect plants against B. cinerea by direct antagonistic interactions between biocontrol agents and this pathogen, as well as indirect effects through the induction of host resistance. This review focuses on various bacteria that act as biological control agents (BCAs of B. cinerea and their associated mechanisms. The modes of action (MoAs include: i synthesis of anti-fungal metabolites, such as antibiotics, cell wall-degrading enzymes and volatile organic compounds (VOCs; ii competition for nutrients and/or a niche; and iii induction of host resistance. The challenge for development of BCAs is to reduce the variability of efficiency and to prove persistence under a large range of conditions. We discuss the advantages and drawbacks of MoA for future applications of bacteria in the field and in post-harvest storage, as well as combination of different MoAs as a strategy to achieve a more regular efficacy.

  5. Development of Electrochemical Biosensors for Ultrasensitive Detection of Bacteria in the Environment

    DEFF Research Database (Denmark)

    Fapyane, Deby

    2018-01-01

    to those conventional methods, are intensively studied. Biosensor technology is one of the strategies for rapid monitoring of pathogens such as bacteria, virus, and parasites in the environment. Among them, the electrochemical biosensor offers simple, rapid, cost-effective and possibility...... for ultrasensitive detection of bacterial cells, DNA and rRNA. Several key operational parameters were assessed such as the optimization of probe design and labeling molecules. Here, more specifically we used two novel labels for the development of the electrochemical biosensor for bacteria detection; cellulase...

  6. The inhibitory effects of free ammonia on ammonia oxidizing bacteria and nitrite oxidizing bacteria under anaerobic condition.

    Science.gov (United States)

    Qian, Wenting; Peng, Yongzhen; Li, Xiyao; Zhang, Qiong; Ma, Bin

    2017-11-01

    The free ammonia (FA) inhibition on ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) under anaerobic condition was investigated in this study. The results indicated that NOB was more sensitive to the FA anaerobic treatment than AOB. The FA anaerobic inhibition on nitrifier gradually heightened with the increase of FA concentration. Accompanied with FA concentration increase from 0 to 16.82mgNH 3 -N·L -1 (the highest concentration adopted in this study), the activity of AOB reduced by 15.9%, while NOB decreased by 29.2%. After FA anaerobic treatment, nitrite was accumulated during nitrification. However, the nitrite accumulation disappeared on the sixth cycle of activity recovery tests with excessive aeration. Based on this result, a novel strategy for achieving nitritation is proposed, which involves recirculating a portion of the activated sludge through a side-line sludge treatment unit, where the sludge is subjected to treatment with FA under anaerobic condition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. A direct pre-screen for marine bacteria producing compounds inhibiting quorum sensing reveals diverse planktonic bacteria that are bioactive.

    Science.gov (United States)

    Linthorne, Jamie S; Chang, Barbara J; Flematti, Gavin R; Ghisalberti, Emilio L; Sutton, David C

    2015-02-01

    A promising new strategy in antibacterial research is inhibition of the bacterial communication system termed quorum sensing. In this study, a novel and rapid pre-screening method was developed to detect the production of chemical inhibitors of this system (quorum-quenching compounds) by bacteria isolated from marine and estuarine waters. This method involves direct screening of mixed populations on an agar plate, facilitating specific isolation of bioactive colonies. The assay showed that between 4 and 46 % of culturable bacteria from various samples were bioactive, and of the 95 selectively isolated bacteria, 93.7 % inhibited Vibrio harveyi bioluminescence without inhibiting growth, indicating potential production of quorum-quenching compounds. Of the active isolates, 21 % showed further activity against quorum-sensing-regulated pigment production by Serratia marcescens. The majority of bioactive isolates were identified by 16S ribosomal DNA (rDNA) amplification and sequencing as belonging to the genera Vibrio and Pseudoalteromonas. Extracts of two strongly bioactive Pseudoalteromonas isolates (K1 and B2) were quantitatively assessed for inhibition of growth and quorum-sensing-regulated processes in V. harveyi, S. marcescens and Chromobacterium violaceum. Extracts of the isolates reduced V. harveyi bioluminescence by as much as 98 % and C. violaceum pigment production by 36 % at concentrations which had no adverse effect on growth. The activity found in the extracts indicated that the isolates may produce quorum-quenching compounds. This study further supports the suggestion that quorum quenching may be a common attribute among culturable planktonic marine and estuarine bacteria.

  8. Probiotic Bacteria Induce a ‘Glow of Health’

    Science.gov (United States)

    Smillie, Christopher; Varian, Bernard J.; Ibrahim, Yassin M.; Lakritz, Jessica R.; Alm, Eric J.; Erdman, Susan E.

    2013-01-01

    Radiant skin and hair are universally recognized as indications of good health. However, this ‘glow of health’ display remains poorly understood. We found that feeding of probiotic bacteria to aged mice induced integumentary changes mimicking peak health and reproductive fitness characteristic of much younger animals. Eating probiotic yogurt triggered epithelial follicular anagen-phase shift with sebocytogenesis resulting in thick lustrous fur due to a bacteria-triggered interleukin-10-dependent mechanism. Aged male animals eating probiotics exhibited increased subcuticular folliculogenesis, when compared with matched controls, yielding luxuriant fur only in probiotic-fed subjects. Female animals displayed probiotic-induced hyperacidity coinciding with shinier hair, a feature that also aligns with fertility in human females. Together these data provide insights into mammalian evolution and novel strategies for integumentary health. PMID:23342023

  9. Considering the Specific Impact of Harsh Conditions and Oil Weathering on Diversity, Adaptation, and Activity of Hydrocarbon-Degrading Bacteria in Strategies of Bioremediation of Harsh Oily-Polluted Soils

    Science.gov (United States)

    Al Disi, Zulfa; Jaoua, Samir; Al-Thani, Dhabia; Al-Meer, Saeed

    2017-01-01

    Weathering processes change properties and composition of spilled oil, representing the main reason of failure of bioaugmentation strategies. Our purpose was to investigate the metabolic adaptation of hydrocarbon-degrading bacteria at harsh conditions to be considered to overcome the limitations of bioaugmentation strategies at harsh conditions. Polluted soils, exposed for prolonged periods to weathered oil in harsh soils and weather conditions, were used. Two types of enrichment cultures were employed using 5% and 10% oil or diesel as sole carbon sources with varying the mineral nitrogen sources and C/N ratios. The most effective isolates were obtained based on growth, tolerance to toxicity, and removal efficiency of diesel hydrocarbons. Activities of the newly isolated bacteria, in relation to the microenvironment from where they were isoalted and their interaction with the weathered oil, showed individual specific ability to adapt when exposed to such factors, to acquire metabolic potentialities. Among 39 isolates, ten identified ones by 16S rDNA genes similarities, including special two Pseudomonas isolates and one Citrobacter isolate, showed particularity of shifting hydrocarbon-degrading ability from short chain n-alkanes (n-C12–n-C16) to longer chain n-alkanes (n-C21–n-C25) and vice versa by alternating nitrogen source compositions and C/N ratios. This is shown for the first time. PMID:28243605

  10. Considering the Specific Impact of Harsh Conditions and Oil Weathering on Diversity, Adaptation, and Activity of Hydrocarbon-Degrading Bacteria in Strategies of Bioremediation of Harsh Oily-Polluted Soils

    Directory of Open Access Journals (Sweden)

    Zulfa Al Disi

    2017-01-01

    Full Text Available Weathering processes change properties and composition of spilled oil, representing the main reason of failure of bioaugmentation strategies. Our purpose was to investigate the metabolic adaptation of hydrocarbon-degrading bacteria at harsh conditions to be considered to overcome the limitations of bioaugmentation strategies at harsh conditions. Polluted soils, exposed for prolonged periods to weathered oil in harsh soils and weather conditions, were used. Two types of enrichment cultures were employed using 5% and 10% oil or diesel as sole carbon sources with varying the mineral nitrogen sources and C/N ratios. The most effective isolates were obtained based on growth, tolerance to toxicity, and removal efficiency of diesel hydrocarbons. Activities of the newly isolated bacteria, in relation to the microenvironment from where they were isoalted and their interaction with the weathered oil, showed individual specific ability to adapt when exposed to such factors, to acquire metabolic potentialities. Among 39 isolates, ten identified ones by 16S rDNA genes similarities, including special two Pseudomonas isolates and one Citrobacter isolate, showed particularity of shifting hydrocarbon-degrading ability from short chain n-alkanes (n-C12–n-C16 to longer chain n-alkanes (n-C21–n-C25 and vice versa by alternating nitrogen source compositions and C/N ratios. This is shown for the first time.

  11. Antimicrobial Photodynamic Therapy to Kill Gram-negative Bacteria

    Science.gov (United States)

    Sperandio, Felipe F; Huang, Ying-Ying; Hamblin, Michael R

    2013-01-01

    Antimicrobial photodynamic therapy (PDT) or photodynamic inactivation (PDI) is a new promising strategy to eradicate pathogenic microorganisms such as Gram-positive and Gram-negative bacteria, yeasts and fungi. The search for new approaches that can kill bacteria but do not induce the appearance of undesired drug-resistant strains suggests that PDT may have advantages over traditional antibiotic therapy. PDT is a non-thermal photochemical reaction that involves the simultaneous presence of visible light, oxygen and a dye or photosensitizer (PS). Several PS have been studied for their ability to bind to bacteria and efficiently generate reactive oxygen species (ROS) upon photostimulation. ROS are formed through type I or II mechanisms and may inactivate several classes of microbial cells including Gram-negative bacteria such as Pseudomonas aeruginosa, which are typically characterized by an impermeable outer cell membrane that contains endotoxins and blocks antibiotics, dyes, and detergents, protecting the sensitive inner membrane and cell wall. This review covers significant peer-reviewed articles together with US and World patents that were filed within the past few years and that relate to the eradication of Gram-negative bacteria via PDI or PDT. It is organized mainly according to the nature of the PS involved and includes natural or synthetic food dyes; cationic dyes such as methylene blue and toluidine blue; tetrapyrrole derivatives such as phthalocyanines, chlorins, porphyrins, chlorophyll and bacteriochlorophyll derivatives; functionalized fullerenes; nanoparticles combined with different PS; other formulations designed to target PS to bacteria; photoactive materials and surfaces; conjugates between PS and polycationic polymers or antibodies; and permeabilizing agents such as EDTA, PMNP and CaCl2. The present review also covers the different laboratory animal models normally used to treat Gram-negative bacterial infections with antimicrobial PDT. PMID

  12. Marine Pseudomonas putida: a potential source of antimicrobial substances against antibiotic-resistant bacteria

    Directory of Open Access Journals (Sweden)

    Palloma Rodrigues Marinho

    2009-08-01

    Full Text Available Bacteria isolated from marine sponges found off the coast of Rio de Janeiro, Brazil, were screened for the production of antimicrobial substances. We report a new Pseudomonas putida strain (designated P. putida Mm3 isolated from the sponge Mycale microsigmatosa that produces a powerful antimicrobial substance active against multidrug-resistant bacteria. P. putida Mm3 was identified on the basis of 16S rRNA gene sequencing and phenotypic tests. Molecular typing for Mm3 was performed by RAPD-PCR and comparison of the results to other Pseudomonas strains. Our results contribute to the search for new antimicrobial agents, an important strategy for developing alternative therapies to treat infections caused by multidrug-resistant bacteria.

  13. Marine Pseudomonas putida: a potential source of antimicrobial substances against antibiotic-resistant bacteria.

    Science.gov (United States)

    Marinho, Palloma Rodrigues; Moreira, Ana Paula Barbosa; Pellegrino, Flávia Lúcia Piffano Costa; Muricy, Guilherme; Bastos, Maria do Carmo de Freire; Santos, Kátia Regina Netto dos; Giambiagi-deMarval, Marcia; Laport, Marinella Silva

    2009-08-01

    Bacteria isolated from marine sponges found off the coast of Rio de Janeiro, Brazil, were screened for the production of antimicrobial substances. We report a new Pseudomonas putida strain (designated P. putida Mm3) isolated from the sponge Mycale microsigmatosa that produces a powerful antimicrobial substance active against multidrug-resistant bacteria. P. putida Mm3 was identified on the basis of 16S rRNA gene sequencing and phenotypic tests. Molecular typing for Mm3 was performed by RAPD-PCR and comparison of the results to other Pseudomonas strains. Our results contribute to the search for new antimicrobial agents, an important strategy for developing alternative therapies to treat infections caused by multidrug-resistant bacteria.

  14. Metabolic engineering of lactic acid bacteria for the production of nutraceuticals

    NARCIS (Netherlands)

    Hugenholtz, J.; Sybesma, W.; Groot, M.N.; Wisselink, W.; Ladero, V.; Burgess, K.; Sinderen, van D.; Piard, J.C.; Eggink, G.; Smid, E.J.; Savoy, G.; Sesma, F.; Jansen, T.; Hols, P.; Kleerebezem, M.

    2002-01-01

    Lactic acid bacteria display a relatively simple and well-described metabolism where the sugar source is converted mainly to lactic acid. Here we will shortly describe metabolic engineering strategies on the level of sugar metabolism, that lead to either the efficient re-routing of the lactococcal

  15. Purification Techniques of Bacteriocins from Lactic Acid Bacteria and Other Gram-Positive Bacteria

    Science.gov (United States)

    Saavedra, Lucila; Sesma, Fernando

    The search for new antimicrobial peptides produced by lactic acid ­bacteria and other Gram-positive microorganisms has become an interesting field of research in the past decades. The fact that bacteriocins are active against numerous foodborne and human pathogens, are produced by generally regarded as safe (GRAS) microorganisms, and are readily degraded by proteolytic host systems makes them attractive candidates for biotechnological applications. However, before suggesting or choosing a new bacteriocin for future technology developments, it is necessary to elucidate its biochemical structure and its mode of action, which may be carried out once the bacteriocin is purified to homogeneity. This chapter focuses on describing the main strategies used for the purification of numerous bacteriocins.

  16. Control of Fusarium Wilt of Chili With Chitinolytic Bacteria

    Directory of Open Access Journals (Sweden)

    DWI SURYANTO

    2010-03-01

    Full Text Available Biological control of plant disease using antagonistic microorganism has been obtaining much attention and implemented for decades. One of the potential microorganisms used in this strategy is chitinolytic bacteria. Utilization of this bacteria ranges from cell life, enzymes, genes, or other metabolites. In this study, we examined the ability of chitinolytic bacteria as a biocontrol agent of Fusarium wilt of red chili (Capsicum annuum L. seedlings. The ability of chitinolytic bacteria to suppress the disease was evaluated by soaking red chili seeds in the bacterial isolates solution for 30 minutes prior seedling. Percentage of seedling of treated chili seed at end of study (4-weeks ranging from 46 to 82.14%. Relative reduction of the seedling damping-off was observed in all bacterial treatment ranged from 28.57 to 60.71%. Furthermore, manifestation of bacterial suppression to Fusarium wilt was also exhibited by increasing of seedling height (ranged from 7.33 to 7.87 cm compared to 6.88 cm and dry-weight (ranged from 2.7 to 4.3 mg compared to 2.3 mg. However, no significant effect was observed in leaf number. Then, from all chitinolytic isolates tested, BK08 was the most potential candidate for biological control agent of Fusarium wilt in chili seedling.

  17. MAGNETIC BACTERIA AND THEIR POTENTIAL APPLICATIONS: A REVIEW ARTICLE

    Directory of Open Access Journals (Sweden)

    Sara Rajab Eljmeli

    2017-03-01

    Full Text Available Introduction: This outline explores the scientific discovery concerning the magnetotactic bacteria (MTB. The results of the discovery are used in microbiology, mineralogy, limnology, physics, biophysics, chemistry, biochemistry, geology, crystallography, and astrobiology. Magnetosomes of the MTB are organized in linear chains and orient the cell body along geomagnetic field lines while flagella actively propel the cells, resulting in so-called magnetotaxis. Materials and Methods: The review article about the magnetotactic bacteria is a collection of many research papers from different institutes. The emerging important points about this review lie in: (1 any biological system is capable of producing magnetic biomaterials such as magnetite (Fe3O4 and gregite (Fe3S4; (2 the navigation of these nano-crystals in the biological system is interconnected with the Earth’s magnetic field. Results: The researchers involved in the study have shown that the magnetotactic bacteria do respond to a magnetic field. This makes them attractive for biomedical and industrial applications because of the availability of superior electromagnets, superconducting magnets and permanent magnet. Magnetic bacteria can also be used as a diagnostic tool in the detection of imperfections even at the nanoscale. Discussion and Conclusions: Although the importance of this issue is still limitedly used in medical area, more performance is necessary to explore the world of these bacteria that are candidate for new industry and new therapy strategies in biotechnology and medical fields.

  18. Social evolution in micro-organisms and a Trojan horse approach to medical intervention strategies.

    Science.gov (United States)

    Brown, Sam P; West, Stuart A; Diggle, Stephen P; Griffin, Ashleigh S

    2009-11-12

    Medical science is typically pitted against the evolutionary forces acting upon infective populations of bacteria. As an alternative strategy, we could exploit our growing understanding of population dynamics of social traits in bacteria to help treat bacterial disease. In particular, population dynamics of social traits could be exploited to introduce less virulent strains of bacteria, or medically beneficial alleles into infective populations. We discuss how bacterial strains adopting different social strategies can invade a population of cooperative wild-type, considering public good cheats, cheats carrying medically beneficial alleles (Trojan horses) and cheats carrying allelopathic traits (anti-competitor chemical bacteriocins or temperate bacteriophage viruses). We suggest that exploitation of the ability of cheats to invade cooperative, wild-type populations is a potential new strategy for treating bacterial disease.

  19. The role of anaerobic bacteria in the cystic fibrosis airway.

    Science.gov (United States)

    Sherrard, Laura J; Bell, Scott C; Tunney, Michael M

    2016-11-01

    Anaerobic bacteria are not only normal commensals, but are also considered opportunistic pathogens and have been identified as persistent members of the lower airway community in people with cystic fibrosis of all ages and stages of disease. Currently, the role of anaerobic bacteria in cystic fibrosis lower airway disease is not well understood. Therefore, this review describes the recent studies relating to the potential pathophysiological role(s) of anaerobes within the cystic fibrosis lungs. The most frequently identified anaerobic bacteria in the lower airways are common to both cystic fibrosis and healthy lungs. Studies have shown that in cystic fibrosis, the relative abundance of anaerobes fluctuates in the lower airways with reduced lung function and increased inflammation associated with a decreased anaerobic load. However, anaerobes found within the lower airways also produce virulence factors, may cause a host inflammatory response and interact synergistically with recognized pathogens. Anaerobic bacteria are potentially members of the airway microbiota in health but could also contribute to the pathogenesis of lower airway disease in cystic fibrosis via both direct and indirect mechanisms. A personalized treatment strategy that maintains a normal microbial community may be possible in the future.

  20. Effect of nematodes on rhizosphere colonization by seed-applied bacteria.

    Science.gov (United States)

    Knox, Oliver G G; Killham, Ken; Artz, Rebekka R E; Mullins, Chris; Wilson, Michael

    2004-08-01

    There is much interest in the use of seed-applied bacteria for biocontrol and biofertilization, and several commercial products are available. However, many attempts to use this strategy fail because the seed-applied bacteria do not colonize the rhizosphere. Mechanisms of rhizosphere colonization may involve active bacterial movement or passive transport by percolating water or plant roots. Transport by other soil biota is likely to occur, but this area has not been well studied. We hypothesized that interactions with soil nematodes may enhance colonization. To test this hypothesis, a series of microcosm experiments was carried out using two contrasting soils maintained under well-defined physical conditions where transport by mass water flow could not occur. Seed-applied Pseudomonas fluorescens SBW25 was capable of rhizosphere colonization at matric potentials of -10 and -40 kPa in soil without nematodes, but colonization levels were substantially increased by the presence of nematodes. Our results suggest that nematodes can have an important role in rhizosphere colonization by bacteria in soil.

  1. The friendly bacteria within us Commensal bacteria of the intestine ...

    Indian Academy of Sciences (India)

    Balance of bacterial species in the gut · Immunosensory detection of intestinal bacteria · Pathogenic bacteria release interleukin-8 from HT-29 cells · Lactobacillus GG prevents the IL-8 release in response to pathogens · Effect of probiotic bacteria on chemokine response of epithelia to pathogens · PCR array studies in colon ...

  2. Vapor-induced transfer of bacteria in the absence of mechanical disturbances

    International Nuclear Information System (INIS)

    Ayoub, G.M.; Dahdah, L.; Alameddine, I.; Malaeb, L.

    2014-01-01

    Graphical abstract: - Highlights: • Study is first to investigate the possibility of transfer of bacteria through vapor. • Bacteria exhibited transfer in the absence of mechanical disturbances in reactors. • Gram positive smaller bacteria transferred more than gram negative larger bacteria. • Transfer probability increases at optimal growth temperature of mesophilic bacteria. • Salinity lowers bacterial survival and has synergistic effect with temperature. - Abstract: Transfer of bacteria through water vapor generated at moderate temperatures (30–50 °C) in passive solar stills, has scarcely been reported. The objective of this research was to investigate whether bacteria in highly humid atmospheres can get transferred through water vapor in the absence of other transfer media to find their way to the distillate. To achieve this objective, passive solar reactors were chosen as the medium for experimentation, and distillation experiments were conducted by spiking a pure bacterial culture (Escherichia coli, Klebsiella pneumonia or Enterococcus faecalis) in low mineralized water vs. highly mineralized water in the dark under moderate temperatures ranges (30–35 °C, 40–45 °C and 50–55 °C). Results showed that bacteria indeed get transferred with the vapor in stills when not exposed to solar U.V. radiation. The trends observed were adequately explained by a zero-modified Hurdle–Poisson model. The numbers of cultivable bacterial colonies transferred were bacterial size, water type and temperature dependent with highest transfers occurring in E. faecalis > E. coli > K. pneumonia at the 40 °C range in low mineralized water. Proper management strategies are recommended to achieve complete disinfection in solar stills

  3. Quorum Quenching in Culturable Phyllosphere Bacteria from Tobacco

    Directory of Open Access Journals (Sweden)

    Guoqiang Zhuang

    2013-07-01

    Full Text Available Many Gram-negative plant pathogenic bacteria employ a N-acylhomoserine lactone (AHL-based quorum sensing (QS system to regulate their virulence traits. A sustainable biocontrol strategy has been developed using quorum quenching (QQ bacteria to interfere with QS and protect plants from pathogens. Here, the prevalence and the diversity of QQ strains inhabiting tobacco leaf surfaces were explored. A total of 1177 leaf-associated isolates were screened for their ability to disrupt AHL-mediated QS, using the biosensor Chromobacterium violaceum CV026. One hundred and sixty-eight strains (14% are capable of interfering with AHL activity. Among these, 106 strains (63% of the culturable quenchers can enzymatically degrade AHL molecules, while the remaining strains might use other QS inhibitors to interrupt the chemical communication. Moreover, almost 79% of the QQ strains capable of inactivating AHLs enzymatically have lactonase activity. Further phylogenetic analysis based on 16S rDNA revealed that the leaf-associated QQ bacteria can be classified as Bacillus sp., Acinetobacter sp., Lysinibacillus sp., Serratia sp., Pseudomonas sp., and Myroides sp. The naturally occurring diversity of bacterial quenchers might provide opportunities to use them as effective biocontrol reagents for suppressing plant pathogen in situ.

  4. Anti-Quorum Sensing Potential of Potato Rhizospheric Bacteria

    Directory of Open Access Journals (Sweden)

    Adeleh Sobhanipour

    2017-01-01

    Full Text Available The occurrence of antibiotic-resistant pathogenic bacteria is becoming a serious problem. The rise of multiresistance strains has forced the pharmaceutical industry to come up with new generation of more effective and potent antibiotics, therefore creating development of antivirulence compounds. Due to extensive usage of cell-to-cell bacterial communication (QS systems to monitor the production of virulence factors, disruption of QS system results in creation of a promising strategy for the control of bacterial infection. Numerous natural quorum quenching (QQ agents have been identified. In addition, many microorganisms are capable of producing smaller molecular QS inhibitors and/or macromolecular QQ enzymes. In present survey, anti QS activity of 1280 rhizosphere bacteria was assessed using the Pectobacterium carotovorum as AHL-donor and Chromobacterium violaceum CV026 as biosensor system. The results showed that 61 strains had highly AHL-degrading activity. Both Lux I and Lux R activity were affected by some isolates, suggesting that the rhizobacteria target both QS signal and receptor. These soil microorganisms with their anti-QS activity have the potential to be novel therapeutic agents for reducing virulence and pathogenicity of antibiotic resistant bacteria.

  5. The effects of bacteria on crystalline rock

    International Nuclear Information System (INIS)

    Brown, D.A.

    1994-01-01

    Many reactions involving inorganic minerals at water-rock interfaces have now been recognized to be bacterially mediated; these reactions could have a significant effect in the excavation of vaults for toxic and radioactive waste disposal. To investigate the role that bacteria play in the natural aqueous environment of crystalline rock the microbial growth factors of nutrition, energy and environment are described. Microbial activity has been investigated in Atomic Energy of Canada's Underground Research Laboratory (URL), situated in the Archean granitic Lac du Bonnet Batholith, Winnipeg, Manitoba. Faults, initiated in the Early Proterozoic, and later-formed fractures, provide ground-water pathways. Planktonic bacteria, free-swimming in the groundwater, have been observed in over 100 underground borehole samples. The number of bacteria varied from 10 3 to 10 5 mL -1 and appeared to decrease with depth and with increased salinity of the water. However, in the natural environment of deep (100-500 m) crystalline rocks, where nutrition is limited, formation of biofilms by sessile bacteria is a successful survival strategy. Natural biofilms at the URL and biofilms grown in bioreactors have been studied. The biofilms can accumulate different elements, depending upon the local environment. Precipitates of iron have been found in all the biofilms studied, where they are either passively accumulated or utilized as an energy source. Within the biofilm active and extensive biogeochemical immobilization of dissolved elements is controlled by distinct bacterial activities which are sufficiently discrete for hematite and siderite to be precipitated in close proximity

  6. Big bacteria

    DEFF Research Database (Denmark)

    Schulz, HN; Jørgensen, BB

    2001-01-01

    A small number of prokaryotic species have a unique physiology or ecology related to their development of unusually large size. The biomass of bacteria varies over more than 10 orders of magnitude, from the 0.2 mum wide nanobacteria to the largest cells of the colorless sulfur bacteria......, Thiomargarita namibiensis, with a diameter of 750 mum. All bacteria, including those that swim around in the environment, obtain their food molecules by molecular diffusion. Only the fastest and largest swimmers known, Thiovulum majus, are able to significantly increase their food supply by motility...... and by actively creating an advective flow through the entire population. Diffusion limitation generally restricts the maximal size of prokaryotic cells and provides a selective advantage for mum-sized cells at the normally low substrate concentrations in the environment. The largest heterotrophic bacteria...

  7. Alcoholic pancreatitis: A tale of spirits and bacteria

    OpenAIRE

    Vonlaufen, Alain; Spahr, Laurent; Apte, Minoti V; Frossard, Jean-Louis

    2014-01-01

    Alcohol is a major cause of chronic pancreatitis. About 5% of alcoholics will ever suffer from pancreatitis, suggesting that additional co-factors are required to trigger an overt disease. Experimental work has implicated lipopolysaccharide, from gut-derived bacteria, as a potential co-factor of alcoholic pancreatitis. This review discusses the effects of alcohol on the gut flora, the gut barrier, the liver-and the pancreas and proposes potential interventional strategies. A better understand...

  8. Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: A review.

    Science.gov (United States)

    Liu, Yu; Zhou, Haibo; Hu, Ziwei; Yu, Guangxia; Yang, Danting; Zhao, Jinshun

    2017-08-15

    Rapid, accurate detection of pathogen bacteria is a highly topical research area for the sake of food safety and public health. Surface-enhanced Raman scattering (SERS) is being considered as a powerful and attractive technique for pathogen bacteria detection, due to its sensitivity, high speed, comparatively low cost, multiplexing ability and portability. This contribution aims to give a comprehensive overview of SERS as a technique for rapid detection of pathogen bacteria based on label and label-free strategies. A brief tutorial on SERS is given first of all. Then we summarize the recent trends and developments of label and label-free based SERS applied to detection of pathogen bacteria, including the relatively complete interpretation of SERS spectra. In addition, multifunctional SERS platforms for pathogen bacteria in matrix are discussed as well. Furthermore, an outlook of the work done and a perspective on the future directions of SERS as a reliable tool for real-time pathogen bacteria detection are given. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Big bacteria

    DEFF Research Database (Denmark)

    Schulz, HN; Jørgensen, BB

    2001-01-01

    A small number of prokaryotic species have a unique physiology or ecology related to their development of unusually large size. The biomass of bacteria varies over more than 10 orders of magnitude, from the 0.2 mum wide nanobacteria to the largest cells of the colorless sulfur bacteria...... and by actively creating an advective flow through the entire population. Diffusion limitation generally restricts the maximal size of prokaryotic cells and provides a selective advantage for mum-sized cells at the normally low substrate concentrations in the environment. The largest heterotrophic bacteria......, the 80 x 600 mum large Epulopiscium sp. from the gut of tropical fish, are presumably living in a very nutrient-rich medium. Many large bacteria contain numerous inclusions in the cells that reduce the volume of active cytoplasm. The most striking examples of competitive advantage from large cell size...

  10. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis.

    Science.gov (United States)

    Tacconelli, Evelina; Carrara, Elena; Savoldi, Alessia; Harbarth, Stephan; Mendelson, Marc; Monnet, Dominique L; Pulcini, Céline; Kahlmeter, Gunnar; Kluytmans, Jan; Carmeli, Yehuda; Ouellette, Marc; Outterson, Kevin; Patel, Jean; Cavaleri, Marco; Cox, Edward M; Houchens, Chris R; Grayson, M Lindsay; Hansen, Paul; Singh, Nalini; Theuretzbacher, Ursula; Magrini, Nicola

    2018-03-01

    The spread of antibiotic-resistant bacteria poses a substantial threat to morbidity and mortality worldwide. Due to its large public health and societal implications, multidrug-resistant tuberculosis has been long regarded by WHO as a global priority for investment in new drugs. In 2016, WHO was requested by member states to create a priority list of other antibiotic-resistant bacteria to support research and development of effective drugs. We used a multicriteria decision analysis method to prioritise antibiotic-resistant bacteria; this method involved the identification of relevant criteria to assess priority against which each antibiotic-resistant bacterium was rated. The final priority ranking of the antibiotic-resistant bacteria was established after a preference-based survey was used to obtain expert weighting of criteria. We selected 20 bacterial species with 25 patterns of acquired resistance and ten criteria to assess priority: mortality, health-care burden, community burden, prevalence of resistance, 10-year trend of resistance, transmissibility, preventability in the community setting, preventability in the health-care setting, treatability, and pipeline. We stratified the priority list into three tiers (critical, high, and medium priority), using the 33rd percentile of the bacterium's total scores as the cutoff. Critical-priority bacteria included carbapenem-resistant Acinetobacter baumannii and Pseudomonas aeruginosa, and carbapenem-resistant and third-generation cephalosporin-resistant Enterobacteriaceae. The highest ranked Gram-positive bacteria (high priority) were vancomycin-resistant Enterococcus faecium and meticillin-resistant Staphylococcus aureus. Of the bacteria typically responsible for community-acquired infections, clarithromycin-resistant Helicobacter pylori, and fluoroquinolone-resistant Campylobacter spp, Neisseria gonorrhoeae, and Salmonella typhi were included in the high-priority tier. Future development strategies should focus on

  11. Microbial leaching of iron from pyrite by moderate thermophile chemolithotropic bacteria

    International Nuclear Information System (INIS)

    Ilyas, S.; Niazi, S.B.

    2007-01-01

    The present work was aimed at studying the bioleachability of iron from pyrite by the selected moderately thermophilic strains of acidophilic chemolithotrophic and acidophilic heterotrophic bacteria. These included Sulfobacillus thermosulfidooxidans (chemolithotroph) and an un-identified strain of acidophilic heterotroph (code 6A1TSB) isolated from local environments. As compared to inoculated flasks, dissolution of metal (due to acid leaching) was significantly low in the un-inoculated control flasks in all the experiments in ore. A decrease in the bioleaching activity was observed at the later stages of bioleaching of metal from ore. Among the strategies adopted to enhance the metal leaching rates, a mixed consortium of the metal adapted cultures of the above-mentioned bacteria was found to exhibit the maximum metal leaching efficiency. In all the flasks where high metal leaching rates were observed, concomitantly biomass production rates were also high indicating high growth rates. It showed that the metal bioleaching capability of the bacteria was associated with their growth. Pyrite contained 42% iron. (author)

  12. Phaeobacter inhibens as probiotic bacteria in non-axenic Artemia and algae cultures

    OpenAIRE

    Grotkjær, T.; Bentzon-Tilia, M.; D'Alvise, P.; Dierckens, K.; Bossier, P.; Gram, L.

    2016-01-01

    The growing aquaculture industry is in need for non-antibiotic based disease control strategies to reduce risk of bacteria developing and spreading antibiotic resistance. We have previously, in axenic model systems of live larval feed, demonstrated that bacteria from the Roseobacter clade can antagonize fish pathogens such as Vibrio anguillarum and Vibrio harveyi and that they can reduce larval mortality in challenge trials. However, in the aquaculture production, a natural microbiota is pres...

  13. Isolation of previously uncultured rumen bacteria by dilution to extinction using a new liquid culture medium.

    Science.gov (United States)

    Kenters, Nikki; Henderson, Gemma; Jeyanathan, Jeyamalar; Kittelmann, Sandra; Janssen, Peter H

    2011-01-01

    A new anaerobic medium that mimics the salts composition of rumen fluid was used in conjunction with a dilution method of liquid culture to isolate fermentative bacteria from the rumen of a grass-fed sheep. The aim was to inoculate a large number of culture tubes each with a mean of 97% sequence identity to genes of uncultured bacteria detected in various gastrointestinal environments. This strategy has therefore allowed us to cultivate many novel rumen bacteria, opening the way to overcoming the lack of cultures of many of the groups detected using cultivation-independent methods. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Effects of interactions of auxin-producing bacteria and bacterial-feeding nematodes on regulation of peanut growths.

    Science.gov (United States)

    Xu, Li; Xu, Wensi; Jiang, Ying; Hu, Feng; Li, Huixin

    2015-01-01

    The influences of an IAA (indole-3-acetic acid)-producing bacterium (Bacillus megaterium) and two bacterial-feeding nematodes (Cephalobus sp. or Mesorhabditis sp.) on the growth of peanut (Arachis hypogaea L. cv. Haihua 1) after various durations of time were investigated in natural soils. The addition of bacteria and nematodes and incubation time all significantly affected plant growth, plant root growth, plant nutrient concentrations, soil nutrient concentrations, soil microorganisms and soil auxin concentration. The addition of nematodes caused greater increases in these indices than those of bacteria, while the addition of the combination of bacteria and nematodes caused further increases. After 42-day growth, the increases in soil respiration differed between the additions of two kinds of nematodes because of differences in their life strategies. The effects of the bacteria and nematodes on the nutrient and hormone concentrations were responsible for the increases in plant growth. These results indicate the potential for promoting plant growth via the addition of nematodes and bacteria to soil.

  15. Structure and activity of lacustrine sediment bacteria involved in nutrient and iron cycles

    DEFF Research Database (Denmark)

    da Silva Martins, Gilberto Jorge; Terada, Akihiko; Ribeiro, Daniel C

    2011-01-01

    Knowledge of the bacterial community structure in sediments is essential to better design restoration strategies for eutrophied lakes. In this regard, the aim of this study was to quantify the abundance and activity of bacteria involved in nutrient and iron cycling in sediments from four Azorean...

  16. Carbon Capture and Storage (CCS): Risk assessment focused on marine bacteria.

    Science.gov (United States)

    Borrero-Santiago, A R; DelValls, T A; Riba, I

    2016-09-01

    Carbon capture and storage (CCS) is one of the options to mitigate the negative effects of the climate change. However, this strategy may have associated some risks such as CO2 leakages due to an escape from the reservoir. In this context, marine bacteria have been underestimated. In order to figure out the gaps and the lack of knowledge, this work summarizes different studies related to the potential effects on the marine bacteria associated with an acidification caused by a CO2 leak from CSS. An improved integrated model for risk assessment is suggested as a tool based on the rapid responses of bacterial community. Moreover, this contribution proposes a strategy for laboratory protocols using Pseudomona stanieri (CECT7202) as a case of study and analyzes the response of the strain under different CO2 conditions. Results showed significant differences (p≤0.05) under six diluted enriched medium and differences about the days in the exponential growth phase. Dilution 1:10 (Marine Broth 2216 with seawater) was selected as an appropriate growth medium for CO2 toxicity test in batch cultures. This work provide an essential and a complete tool to understand and develop a management strategy to improve future works related to possible effects produced by potential CO2 leaks. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Graphene-based wireless bacteria detection on tooth enamel

    Science.gov (United States)

    Mannoor, Manu S.; Tao, Hu; Clayton, Jefferson D.; Sengupta, Amartya; Kaplan, David L.; Naik, Rajesh R.; Verma, Naveen; Omenetto, Fiorenzo G.; McAlpine, Michael C.

    2012-03-01

    Direct interfacing of nanosensors onto biomaterials could impact health quality monitoring and adaptive threat detection. Graphene is capable of highly sensitive analyte detection due to its nanoscale nature. Here we show that graphene can be printed onto water-soluble silk. This in turn permits intimate biotransfer of graphene nanosensors onto biomaterials, including tooth enamel. The result is a fully biointerfaced sensing platform, which can be tuned to detect target analytes. For example, via self-assembly of antimicrobial peptides onto graphene, we show bioselective detection of bacteria at single-cell levels. Incorporation of a resonant coil eliminates the need for onboard power and external connections. Combining these elements yields two-tiered interfacing of peptide-graphene nanosensors with biomaterials. In particular, we demonstrate integration onto a tooth for remote monitoring of respiration and bacteria detection in saliva. Overall, this strategy of interfacing graphene nanosensors with biomaterials represents a versatile approach for ubiquitous detection of biochemical targets.

  18. Bacteria and lignin degradation

    Institute of Scientific and Technical Information of China (English)

    Jing LI; Hongli YUAN; Jinshui YANG

    2009-01-01

    Lignin is both the most abundant aromatic (phenolic) polymer and the second most abundant raw material.It is degraded and modified by bacteria in the natural world,and bacteria seem to play a leading role in decomposing lignin in aquatic ecosystems.Lignin-degrading bacteria approach the polymer by mechanisms such as tunneling,erosion,and cavitation.With the advantages of immense environmental adaptability and biochemical versatility,bacteria deserve to be studied for their ligninolytic potential.

  19. Characteristic sizes of life in the oceans - from bacteria to whales

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Berge, T.; Goncalves, R.

    2016-01-01

    -based scaling laws for resource acquisition, mobility, sensory range, and progeny size for all pelagic marine life, from bacteria to whales. Further, we review and develop simple theoretical arguments for observed scaling laws and the characteristic sizes of a change or breakdown of power laws. We divide life...... in the ocean into seven major realms based on trophic strategy, physiology, and life history strategy. Such a categorization represents a move away from a taxonomically oriented description toward a trait-based description of life in the oceans. Finally, we discuss life forms that transgress the simple size......-based rules and identify unanswered questions....

  20. New detection systems of bacteria using highly selective media designed by SMART: selective medium-design algorithm restricted by two constraints.

    Directory of Open Access Journals (Sweden)

    Takeshi Kawanishi

    Full Text Available Culturing is an indispensable technique in microbiological research, and culturing with selective media has played a crucial role in the detection of pathogenic microorganisms and the isolation of commercially useful microorganisms from environmental samples. Although numerous selective media have been developed in empirical studies, unintended microorganisms often grow on such media probably due to the enormous numbers of microorganisms in the environment. Here, we present a novel strategy for designing highly selective media based on two selective agents, a carbon source and antimicrobials. We named our strategy SMART for highly Selective Medium-design Algorithm Restricted by Two constraints. To test whether the SMART method is applicable to a wide range of microorganisms, we developed selective media for Burkholderia glumae, Acidovorax avenae, Pectobacterium carotovorum, Ralstonia solanacearum, and Xanthomonas campestris. The series of media developed by SMART specifically allowed growth of the targeted bacteria. Because these selective media exhibited high specificity for growth of the target bacteria compared to established selective media, we applied three notable detection technologies: paper-based, flow cytometry-based, and color change-based detection systems for target bacteria species. SMART facilitates not only the development of novel techniques for detecting specific bacteria, but also our understanding of the ecology and epidemiology of the targeted bacteria.

  1. Oxalic acid: a signal molecule for fungus-feeding bacteria of the genus Collimonas?

    NARCIS (Netherlands)

    Rudnick, M.B.; van Veen, J. A.; De Boer, Wietse

    2015-01-01

    Mycophagous (=fungus feeding) soil bacteria of the genus Collimonas have been shown to colonize and grow on hyphae of different fungal hosts as the only source of energy and carbon. The ability to exploit fungal nutrient resources might require a strategy for collimonads to sense fungi in the soil

  2. Quorum sensing communication between bacteria and human cells: signals, targets and functions

    Directory of Open Access Journals (Sweden)

    Angelika eHolm

    2014-06-01

    Full Text Available Both direct and long-range interactions between pathogenic Pseudomonas aeruginosa bacteria and their eukaryotic hosts are important in the outcome of infections. For cell-to-cell communication, these bacteria employ the quorum sensing (QS system to pass on information of the density of the bacterial population and collectively switch on virulence factor production, biofilm formation and resistance development. Thus, QS allows bacteria to behave as a community to perform tasks which would be impossible for individual cells, e.g. to overcome defense and immune systems and establish infections in higher organisms. This review highlights these aspects of QS and our own recent research on how P.aeruginosa communicates with human cells using the small QS signal molecules N-acyl homoserine lactones (AHL. We focus on how this conversation changes the behavior and function of neutrophils, macrophages and epithelial cells and on how the signaling machinery in human cells responsible for the recognition of AHL. Understanding the bacteria-host relationships at both cellular and molecular levels is essential for the identification of new targets and for the development of novel strategies to fight bacterial infections in the future.

  3. Patterns of bacteria-host associations suggest different ecological strategies between two reef building cold-water coral species

    Science.gov (United States)

    Meistertzheim, Anne.-Leila; Lartaud, Franck; Arnaud-Haond, Sophie; Kalenitchenko, Dimitri; Bessalam, Manon; Le Bris, Nadine; Galand, Pierre E.

    2016-08-01

    Cold-water corals (CWC) are main ecosystem engineers of the deep sea, and their reefs constitute hot-spots of biodiversity. However, their ecology remains poorly understood, particularly, the nature of the holobiont formed by corals with their associated bacterial communities. Here, we analyzed Madrepora oculata and Lophelia pertusa samples, collected from one location in a Mediterranean canyon in two different seasons (autumn and spring), in order to test for species specificity and temporal stability of the host-bacteria associations. The 16S rRNA sequencing revealed host-specific patterns of bacterial communities associated with L. pertusa and M. oculata, both in terms of community composition and diversity. All analyzed M. oculata polyps exhibited temporally and spatially similar bacterial communities dominated by haplotypes homologous to the known cnidarians-associated genus Endozoicomonas. In contrast, the bacterial communities associated with L. pertusa varied among polyps from the same colony, as well as among distinct colonies and between seasons. While the resilient consortium formed by M. oculata and its bacterial community fit the definition of holobiont, the versatility of the L. pertusa microbiome suggests that this association is more influenced by the environmental conditions or nutritional status. Our results thus highlight distinct host/microbes association strategies for these two closely related Scleractinians sharing the same habitat, suggesting distinct sensitivity to environmental change.

  4. Laser thermal ablation of multidrug-resistant bacteria using functionalized gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Mocan L

    2017-03-01

    Full Text Available Lucian Mocan,1,2 Flaviu A Tabaran,3 Teodora Mocan,2,4 Teodora Pop,5 Ofelia Mosteanu,5 Lucia Agoston-Coldea,6 Cristian T Matea,2 Diana Gonciar,2 Claudiu Zdrehus,1,2 Cornel Iancu1 13rd Department of General Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 2Department of Nanomedicine, “Octavian Fodor” Gastroenterology Institute, 3Department of Pathology, University of Agricultural Sciences and Veterinary Medicine, Faculty of Veterinary Medicine, 4Department of Physiology, 53rd Gastroenterology Department, 6Department of Internal Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania Abstract: The issue of multidrug resistance (MDR has become an increasing threat to public health. One alternative strategy against MDR bacteria would be to construct therapeutic vectors capable of physically damaging these microorganisms. Gold nanoparticles hold great promise for the development of such therapeutic agents, since the nanoparticles exhibit impressive properties, of which the most important is the ability to convert light into heat. This property has scientific significance since is exploited to develop nano-photothermal vectors to destroy bacteria at a molecular level. The present paper summarizes the latest advancements in the field of nanotargeted laser hyperthermia of MDR bacteria mediated by gold nanoparticles. Keywords: bacteria, photo-thermal ablation, gold nanoparticles, antibiotic resistance

  5. Protein aggregation in bacteria: the thin boundary between functionality and toxicity.

    Science.gov (United States)

    Bednarska, Natalia G; Schymkowitz, Joost; Rousseau, Frederic; Van Eldere, Johan

    2013-09-01

    Misfolding and aggregation of proteins have a negative impact on all living organisms. In recent years, aggregation has been studied in detail due to its involvement in neurodegenerative diseases, including Alzheimer's, Parkinson's and Huntington's diseases, and type II diabetes--all associated with accumulation of amyloid fibrils. This research highlighted the central importance of protein homeostasis, or proteostasis for short, defined as the cellular state in which the proteome is both stable and functional. It implicates an equilibrium between synthesis, folding, trafficking, aggregation, disaggregation and degradation. In accordance with the eukaryotic systems, it has been documented that protein aggregation also reduces fitness of bacterial cells, but although our understanding of the cellular protein quality control systems is perhaps most detailed in bacteria, the use of bacterial proteostasis as a drug target remains little explored. Here we describe protein aggregation as a normal physiological process and its role in bacterial virulence and we shed light on how bacteria defend themselves against the toxic threat of aggregates. We review the impact of aggregates on bacterial viability and look at the ways that bacteria use to maintain a balance between aggregation and functionality. The proteostasis in bacteria can be interrupted via overexpression of proteins, certain antibiotics such as aminoglycosides, as well as antimicrobial peptides--all leading to loss of cell viability. Therefore intracellular protein aggregation and disruption of proteostatic balance in bacteria open up another strategy that should be explored towards the discovery of new antimicrobials.

  6. Enteropathogenic Escherichia coli, Samonella, Shigella and Yersinia: cellular aspects of host-bacteria interactions in enteric diseases

    Directory of Open Access Journals (Sweden)

    Reis Roberta

    2010-07-01

    Full Text Available Abstract A successful infection of the human intestine by enteropathogenic bacteria depends on the ability of bacteria to attach and colonize the intestinal epithelium and, in some cases, to invade the host cell, survive intracellularly and disseminate from cell to cell. To accomplish these processes bacteria have evolved an arsenal of molecules that are mostly secreted by dedicated type III secretion systems, and that interact with the host, subverting normal cellular functions. Here we overview the most important molecular strategies developed by enteropathogenic Escherichia coli, Salmonella enterica, Shigella flexneri, and Yersinia enterocolitica to cause enteric infections. Despite having evolved different effectors, these four microorganisms share common host cellular targets.

  7. Treatment of high-salinity chemical wastewater by indigenous bacteria--bioaugmented contact oxidation.

    Science.gov (United States)

    Li, Qiang; Wang, Mengdi; Feng, Jun; Zhang, Wei; Wang, Yuanyuan; Gu, Yanyan; Song, Cunjiang; Wang, Shufang

    2013-09-01

    A 90 m(3) biological contact oxidation system in chemical factory was bioaugmented with three strains of indigenous salt-tolerant bacteria. These three strains were screened from contaminative soil in situ. Their activity of growth and degradation was investigated with lab-scale experiments. Their salt-tolerant mechanism was confirmed to be compatible-solutes strategy for moderately halophilic bacteria, with amino acid and betaine playing important roles. The running conditions of the system were recorded for 150 days. The indigenous bacteria had such high suitability that the reactor got steady rapidly and the removal of COD maintained above 90%. It was introduced that biofilm fragments in sedimentation tank were inversely flowed to each reaction tank, and quantitative PCR demonstrated that this process could successfully maintain the bacterial abundance in the reaction tanks. In addition, the T-RFLP revealed that bioaugmented strains dominated over others in the biofilm. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Coevolution with bacteria drives the evolution of aerobic fermentation in Lachancea kluyveri.

    Directory of Open Access Journals (Sweden)

    Nerve Zhou

    Full Text Available The Crabtree positive yeasts, such as Saccharomyces cerevisiae, prefer fermentation to respiration, even under fully aerobic conditions. The selective pressures that drove the evolution of this trait remain controversial because of the low ATP yield of fermentation compared to respiration. Here we propagate experimental populations of the weak-Crabtree yeast Lachancea kluyveri, in competitive co-culture with bacteria. We find that L. kluyveri adapts by producing quantities of ethanol lethal to bacteria and evolves several of the defining characteristics of Crabtree positive yeasts. We use precise quantitative analysis to show that the rate advantage of fermentation over aerobic respiration is insufficient to provide an overall growth advantage. Thus, the rapid consumption of glucose and the utilization of ethanol are essential for the success of the aerobic fermentation strategy. These results corroborate that selection derived from competition with bacteria could have provided the impetus for the evolution of the Crabtree positive trait.

  9. Superparamagnetic nickel colloidal nanocrystal clusters with antibacterial activity and bacteria binding ability

    Science.gov (United States)

    Peng, Bo; Zhang, Xinglin; Aarts, Dirk G. A. L.; Dullens, Roel P. A.

    2018-06-01

    Recent progress in synthetic nanotechnology and the ancient use of metals in food preservation and the antibacterial treatment of wounds have prompted the development of nanometallic materials for antimicrobial applications1-4. However, the materials designed so far do not simultaneously display antimicrobial activity and the capability of binding and capturing bacteria and spores. Here, we develop a one-step pyrolysis procedure to synthesize monodisperse superparamagnetic nickel colloidal nanocrystal clusters (SNCNCs), which show both antibacterial activity and the ability to bind Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria, as well as bacterial spores. The SNCNCs are formed from a rapid burst of nickel nanoparticles, which self-assemble slowly into clusters. The clusters can magnetically extract 99.99% of bacteria and spores and provide a promising approach for the removal of microbes, including hard-to-treat microorganisms. We believe that our work illustrates the exciting opportunities that nanotechnology offers for alternative antimicrobial strategies and other applications in microbiology.

  10. Modeling the fate and transport of bacteria in agricultural and pasture lands using APEX

    Science.gov (United States)

    The Agricultural Policy/Environmental eXtender (APEX) model is a whole farm to small watershed scale continuous simulation model developed for evaluating various land management strategies. The current version, APEX0806, does not have the modeling capacity for fecal indicator bacteria fate and trans...

  11. Bleach vs. Bacteria

    Science.gov (United States)

    ... Articles | Inside Life Science Home Page Bleach vs. Bacteria By Sharon Reynolds Posted April 2, 2014 Your ... hypochlorous acid to help kill invading microbes, including bacteria. Researchers funded by the National Institutes of Health ...

  12. Potential role of bacteria packaging by protozoa in the persistence and transmission of pathogenic bacteria

    OpenAIRE

    Denoncourt, Alix M.; Paquet, Valérie E.; Charette, Steve J.

    2014-01-01

    Many pathogenic bacteria live in close association with protozoa. These unicellular eukaryotic microorganisms are ubiquitous in various environments. A number of protozoa such as amoebae and ciliates ingest pathogenic bacteria, package them usually in membrane structures, and then release them into the environment. Packaged bacteria are more resistant to various stresses and are more apt to survive than free bacteria. New evidence indicates that protozoa and not bacteria control the packaging...

  13. Aging in bacteria, immortality or not-a critical review.

    Science.gov (United States)

    Gómez, José M G

    2010-12-01

    Bacteria were traditionally thought to have a symmetrical binary fission without a clear distinction between soma and germ-line, being thus considered as immortal biological entities. Yet it has been recently described that bacteria also undergo replicative aging (RA). That is, they exhibit finite replicative abilities under good conditions to growth. The apparently initial indistinguishability of sibling cells after cytokinesis is broken. After division, the daughter cell that inherits the "old" pole present in the "mother cell" progressively exhibits a decline in its proliferative capacity with increasing cell pole age. This is a clear hallmark and phenotypic manifestation of a bona fide RA phenomenon in toto. While the exact molecular mechanism(s) underlying to this lost of replicative potential are not yet fully understood, the "old pole cell" is considered as an aging parent that in a repeatedly manner is able to produce rejuvenated offspring which inherit a resetting of the biological clock. On the order hand, bacteria exhibit in addition to this "mandatory" RA the dubbed conditional senescence (CS). CS is defined as a decline in cellular viability observed in arrested-growing bacteria populations, a phenomenon apparently not related to RA under growing active conditions. To understand bacterial aging, it is necessary to put it within the sociality-multicellularity framework. This is a new conceptual paradigm that expresses the natural reality of the bacterial world. From this more ecological perspective these bacterial aging phenomena probably should represent an insurance/bethedging anticipative survival strategy. This is underpinned in a self-generation of an appropriate level of populational phenotypic diversity. That is, bacterial aging could be considered a communitarian adaptive response to cope with different environmental stresses and threats. I have highlighted the necessity to construct an integrative conceptual framework to achieve a unified view

  14. Bacteria-Mineral Interactions on the Surfaces of Metal-Resistant Bacteria

    International Nuclear Information System (INIS)

    Malkin, A.J.

    2010-01-01

    The extraordinary ability of indigenous microorganisms, like metal-resistant bacteria, for biotransformation of toxic compounds is of considerable interest for the emerging area of environmental bioremediation. However, the underlying mechanisms by which metal-resistant bacteria transform toxic compounds are currently unknown and await elucidation. The project's objective was to study stress-induced responses of metal-resistant bacteria to environmental changes and chemical stimulants. This project involved a multi-institutional collaboration of our LLNL group with the group of Dr. H.-Y. Holman (Lawrence Berkeley National Laboratory). In this project, we have utilized metal-resistant bacteria Arthrobacter oxydans as a model bacterial system. We have utilized atomic force microscopy (AFM) to visualize for the first time at the nanometer scale formation of stress-induced structures on bacterial surfaces in response to Cr (VI) exposure. We have demonstrated that structure, assembly, and composition of these stress-induced structures are dependent on Cr (VI) concentrations. Our AFM observations of the appearance and development of stress-induced layers on the surfaces of Arthrobacter oxydans bacteria exposed to Cr (VI) were confirmed by Dr. Holman's biochemical, electron microscopy, and synchrotron infrared spectromicroscopy studies. In general, in vitro imaging of live microbial and cellular systems represents one of the most challenging issues in application of AFM. Various approaches for immobilization of bacteria on the substrate for in vitro imaging were tested in this project. Imaging of live bacteria was achieved, however further optimization of experimental methods are needed for high-resolution visualization of the cellular environmental structural dynamics by AFM. This project enhanced the current insight into molecular architecture, structural and environmental variability of bacterial systems. The project partially funded research for two book chapters (1

  15. [Darwin and bacteria].

    Science.gov (United States)

    Ledermann D, Walter

    2009-02-01

    As in 2009 the scientific world celebrates two hundreds years from the birthday of Charles Darwin and one hundred and fifty from the publication of The Origin of Species, an analysis of his complete work is performed, looking for any mention of bacteria. But it seems that the great naturahst never took knowledge about its existence, something rather improbable in a time when the discovery of bacteria shook the medical world, or he deliberately ignored them, not finding a place for such microscopic beings into his theory of evolution. But the bacteria badly affected his familiar life, killing scarlet fever one of his children and worsening to death the evolution of tuberculosis of his favourite Annie. Darwin himself could suffer the sickness of Chagas, whose etiological agent has a similar level to bacteria in the scale of evolution.

  16. Design, characterization and applications of new ionic liquid matrices for multifunctional analysis of biomolecules: A novel strategy for pathogenic bacteria biosensing

    International Nuclear Information System (INIS)

    Abdelhamid, Hani Nasser; Khan, M Shahnawaz; Wu, Hui-Fen

    2014-01-01

    Highlights: • Design and characterize novel UV absorbed-ionic liquid matrices series. • Apply the new series for different analytes. • Introduce a novel methodology for pathogenic bacteria biosensing. • Tabulate the physical parameters of the new series. - Abstract: The design, preparation and performance for novel UV-light absorbing (room-temperature) ionic liquid matrices (UV-RTILMs) for matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) were reported. A series of UV-RTILMs was prepared by ultrasonication of equimolar of acid (mefenamic acid) and bases (aniline (ANI), pyridine (Pyr), dimethyl aniline (DMANI) and 2-methyl picoline (2-P)). The UV-RTILMs have not only significant absorbance at the desired wavelength (337 nm of the N 2 Laser), but also have available protons that can easily undergo proton transfer reactions to ionize the target molecules. The novel UV-RTILMs have the ability to ionize different and wide classes of compounds such as drugs, carbohydrate, and amino acids. The new UV-RTILMs series have been successfully and selectively applied for biosensing the lysates of pathogenic bacteria in the presence of the cell macromolecules. A new strategy for biosensing pathogens was presented via sensing the pathogens lysate in the cell suspension. The new materials can effectively detect the bacterial toxins without separation or any pretreatment. They offered excellent ionization of labile oligosaccharides with protonated peaks. They could significantly enhance the analyte signals, produce homogeneous spotting, reducing spot-to-spot variation, excellent vacuum stability, higher ion peak intensity, and wide application possibility. The physical parameters such as molar refractivity, molar volume, parachor, surface tension, density and polarizability were calculated and tabulated. The new UV-RTILMs could offer excellent reproducibility and great repeatability and they are promising matrices for wide applications on MALDI-MS

  17. Design, characterization and applications of new ionic liquid matrices for multifunctional analysis of biomolecules: A novel strategy for pathogenic bacteria biosensing

    Energy Technology Data Exchange (ETDEWEB)

    Abdelhamid, Hani Nasser [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan (China); Department of Chemistry, Assuit University, Assuit, 71515 (Egypt); Khan, M Shahnawaz [Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan (China); Wu, Hui-Fen, E-mail: hwu@faculty.nsysu.edu.tw [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan (China); School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 800, Taiwan (China); Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan (China); Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan (China); Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan (China)

    2014-05-01

    Highlights: • Design and characterize novel UV absorbed-ionic liquid matrices series. • Apply the new series for different analytes. • Introduce a novel methodology for pathogenic bacteria biosensing. • Tabulate the physical parameters of the new series. - Abstract: The design, preparation and performance for novel UV-light absorbing (room-temperature) ionic liquid matrices (UV-RTILMs) for matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) were reported. A series of UV-RTILMs was prepared by ultrasonication of equimolar of acid (mefenamic acid) and bases (aniline (ANI), pyridine (Pyr), dimethyl aniline (DMANI) and 2-methyl picoline (2-P)). The UV-RTILMs have not only significant absorbance at the desired wavelength (337 nm of the N{sub 2} Laser), but also have available protons that can easily undergo proton transfer reactions to ionize the target molecules. The novel UV-RTILMs have the ability to ionize different and wide classes of compounds such as drugs, carbohydrate, and amino acids. The new UV-RTILMs series have been successfully and selectively applied for biosensing the lysates of pathogenic bacteria in the presence of the cell macromolecules. A new strategy for biosensing pathogens was presented via sensing the pathogens lysate in the cell suspension. The new materials can effectively detect the bacterial toxins without separation or any pretreatment. They offered excellent ionization of labile oligosaccharides with protonated peaks. They could significantly enhance the analyte signals, produce homogeneous spotting, reducing spot-to-spot variation, excellent vacuum stability, higher ion peak intensity, and wide application possibility. The physical parameters such as molar refractivity, molar volume, parachor, surface tension, density and polarizability were calculated and tabulated. The new UV-RTILMs could offer excellent reproducibility and great repeatability and they are promising matrices for wide applications on MALDI-MS.

  18. Antibiotic resistance in bacteria associated with food animals: a United States perspective of livestock production.

    Science.gov (United States)

    Mathew, Alan G; Cissell, Robin; Liamthong, S

    2007-01-01

    The use of antimicrobial compounds in food animal production provides demonstrated benefits, including improved animal health, higher production and, in some cases, reduction in foodborne pathogens. However, use of antibiotics for agricultural purposes, particularly for growth enhancement, has come under much scrutiny, as it has been shown to contribute to the increased prevalence of antibiotic-resistant bacteria of human significance. The transfer of antibiotic resistance genes and selection for resistant bacteria can occur through a variety of mechanisms, which may not always be linked to specific antibiotic use. Prevalence data may provide some perspective on occurrence and changes in resistance over time; however, the reasons are diverse and complex. Much consideration has been given this issue on both domestic and international fronts, and various countries have enacted or are considering tighter restrictions or bans on some types of antibiotic use in food animal production. In some cases, banning the use of growth-promoting antibiotics appears to have resulted in decreases in prevalence of some drug resistant bacteria; however, subsequent increases in animal morbidity and mortality, particularly in young animals, have sometimes resulted in higher use of therapeutic antibiotics, which often come from drug families of greater relevance to human medicine. While it is clear that use of antibiotics can over time result in significant pools of resistance genes among bacteria, including human pathogens, the risk posed to humans by resistant organisms from farms and livestock has not been clearly defined. As livestock producers, animal health experts, the medical community, and government agencies consider effective strategies for control, it is critical that science-based information provide the basis for such considerations, and that the risks, benefits, and feasibility of such strategies are fully considered, so that human and animal health can be maintained while

  19. Potential role of bacteria packaging by protozoa in the persistence and transmission of pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Alix M Denoncourt

    2014-05-01

    Full Text Available Many pathogenic bacteria live in close association with protozoa. These unicellular eukaryotic microorganisms are ubiquitous in various environments. A number of protozoa such as amoebae and ciliates ingest pathogenic bacteria, package them usually in membrane structures, and then release them into the environment. Packaged bacteria are more resistant to various stresses and are more apt to survive than free bacteria. New evidence indicates that protozoa and not bacteria control the packaging process. It is possible that packaging is more common than suspected and may play a major role in the persistence and transmission of pathogenic bacteria. To confirm the role of packaging in the propagation of infections, it is vital that the molecular mechanisms governing the packaging of bacteria by protozoa be identified as well as elements related to the ecology of this process in order to determine whether packaging acts as a Trojan Horse.

  20. Subversion of inflammasome activation and pyroptosis by pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Larissa D Cunha

    2013-11-01

    Full Text Available Activation of the inflammasome occurs in response to a notably high number of pathogenic microbes and is a broad innate immune response that effectively contributes to restriction of pathogen replication and generation of adaptive immunity. Activation of these platforms leads to caspase-1- and/or caspase-11-dependent secretion of proteins, including cytokines, and induction of a specific form of cell death called pyroptosis, which directly or indirectly contribute for restriction of pathogen replication. Not surprisingly, bona fide intracellular pathogens developed strategies for manipulation of cell death to guarantee intracellular replication. In this sense, the remarkable advances in the knowledge of the inflammasome field have been accompanied by several reports characterizing the inhibition of this platform by several pathogenic bacteria. Herein, we review some processes used by pathogenic bacteria, including Yersinia spp., Pseudomonas aeruginosa, Vibrio parahaemolyticus, Chlamydia trachomatis, Francisella tularensis, Shigella flexneri, Legionella pneumophila and Coxiella burnetii to evade the activation of the inflammasome and the induction of pyroptosis.

  1. European multicenter study on antimicrobial resistance in bacteria isolated from companion animal urinary tract infections

    DEFF Research Database (Denmark)

    Marques, Cátia; Gama, Luís Telo; Belas, Adriana

    2016-01-01

    for fluoroquinolone-resistant Proteus spp. isolated from companion animals from Belgium. CONCLUSIONS: This work brings new insights into the current status of antimicrobial resistance in bacteria isolated from companion animals with UTI in Europe and reinforces the need for strategies aiming to reduce resistance....

  2. Lipopolysaccharides in diazotrophic bacteria.

    Science.gov (United States)

    Serrato, Rodrigo V

    2014-01-01

    Biological nitrogen fixation (BNF) is a process in which the atmospheric nitrogen (N2) is transformed into ammonia (NH3) by a select group of nitrogen-fixing organisms, or diazotrophic bacteria. In order to furnish the biologically useful nitrogen to plants, these bacteria must be in constant molecular communication with their host plants. Some of these molecular plant-microbe interactions are very specific, resulting in a symbiotic relationship between the diazotroph and the host. Others are found between associative diazotrophs and plants, resulting in plant infection and colonization of internal tissues. Independent of the type of ecological interaction, glycans, and glycoconjugates produced by these bacteria play an important role in the molecular communication prior and during colonization. Even though exopolysaccharides (EPS) and lipochitooligosaccharides (LCO) produced by diazotrophic bacteria and released onto the environment have their importance in the microbe-plant interaction, it is the lipopolysaccharides (LPS), anchored on the external membrane of these bacteria, that mediates the direct contact of the diazotroph with the host cells. These molecules are extremely variable among the several species of nitrogen fixing-bacteria, and there are evidences of the mechanisms of infection being closely related to their structure.

  3. Cable Bacteria in Freshwater Sediments

    DEFF Research Database (Denmark)

    Risgaard-Petersen, Nils; Kristiansen, Michael; Frederiksen, Rasmus

    2015-01-01

    In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable...... bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the freshwater stream Giber Å, Denmark, was incubated in the laboratory. After 2 weeks, pH signatures...... marine cable bacteria, with the genus Desulfobulbus as the closest cultured lineage. The results of the present study indicate that electric currents mediated by cable bacteria could be important for the biogeochemistry in many more environments than anticipated thus far and suggest a common evolutionary...

  4. Manipulation of Host Cholesterol by Obligate Intracellular Bacteria

    Directory of Open Access Journals (Sweden)

    Dhritiman Samanta

    2017-05-01

    Full Text Available Cholesterol is a multifunctional lipid that plays important metabolic and structural roles in the eukaryotic cell. Despite having diverse lifestyles, the obligate intracellular bacterial pathogens Chlamydia, Coxiella, Anaplasma, Ehrlichia, and Rickettsia all target cholesterol during host cell colonization as a potential source of membrane, as well as a means to manipulate host cell signaling and trafficking. To promote host cell entry, these pathogens utilize cholesterol-rich microdomains known as lipid rafts, which serve as organizational and functional platforms for host signaling pathways involved in phagocytosis. Once a pathogen gains entrance to the intracellular space, it can manipulate host cholesterol trafficking pathways to access nutrient-rich vesicles or acquire membrane components for the bacteria or bacteria-containing vacuole. To acquire cholesterol, these pathogens specifically target host cholesterol metabolism, uptake, efflux, and storage. In this review, we examine the strategies obligate intracellular bacterial pathogens employ to manipulate cholesterol during host cell colonization. Understanding how obligate intracellular pathogens target and use host cholesterol provides critical insight into the host-pathogen relationship.

  5. Use of a mixed culture strategy to isolate halophilic bacteria with antibacterial and cytotoxic activity from the Manaure solar saltern in Colombia.

    Science.gov (United States)

    Conde-Martínez, Natalia; Acosta-González, Alejandro; Díaz, Luis E; Tello, Edisson

    2017-12-08

    Water evaporation in solar salterns creates salinity gradients that promote the adaptation of microbial species to different salinities. This competitive habitat challenges the metabolic capabilities of microorganisms and promotes alterations in their production of secondary metabolites. Thus, solar salterns are a potentially important source of new natural products. In Colombia, the most important and representative solar saltern is located in Manaure (La Guajira) in the north of Colombia. The aim of this study was to develop an alternative screening strategy to select halophilic bacteria as producers of bioactive compounds from mixed microbial cultures rather than individual environmental isolates. Brine and sediment samples from different ponds (across a salinity gradient) were inoculated in seven different culture media to grow bacteria and archaea, allowing for a total of 40 different mixed cultures. An organic extract from each mixed culture was obtained and tested against multidrug resistant pathogens, including Klebsiella pneumoniae, vancomycin-resistant Enterococcus faecium, methicillin-resistant Staphylococcus aureus and Bacillus subtilis. In addition, the extracts were tested against two human cancer cell lines, cervical adenocarcinoma (SiHa) and lung carcinoma (A-549). Twenty-four of the forty extracts from mixed cultures obtained from brine and sediment samples from the Manaure solar saltern showed antibacterial activity against Bacillus subtilis. Two extracts, referred to as A1SM3-29 and A1SM3-36, were also active against a methicillin-resistant Staphylococcus aureus, with the latter extract also showing slight cytotoxic activity against the assayed human lung cancer cell line. From this mixed culture, nine isolates were cultivated, and their extracts were tested against the same pathogens, resulting in the identification of a Vibrio sp. strain (A1SM3-36-8) with antimicrobial activity that was similar to that observed for the mixed culture extract

  6. Constitutive and regulated expression vectors to construct polyphosphate deficient bacteria

    Directory of Open Access Journals (Sweden)

    Jerez Carlos A

    2009-03-01

    Full Text Available Abstract Background Inorganic polyphosphate (polyP, a polymer of tens or hundreds of phosphate residues linked by ATP-like bonds, is found in all organisms and performs a wide variety of functions. PolyP is synthesized in bacterial cells by the actions of polyphosphate kinases (PPK1 and PPK2 and degraded by an exopolyphosphatase (PPX. Bacterial cells with polyP deficiencies are impaired in many structural and important cellular functions such as motility, quorum sensing, biofilm formation and virulence. Knockout mutants of the ppk1 gene have been the most frequent strategy employed to generate polyP deficient cells. Results As an alternative method to construct polyP-deficient bacteria we developed constitutive and regulated broad-host-range vectors for depleting the cellular polyP content. This was achieved by the overexpression of yeast exopolyphosphatase (PPX1. Using this approach in a polyphosphate accumulating bacteria (Pseudomonas sp. B4, we were able to eliminate most of the cellular polyP (>95%. Furthermore, the effect of overexpression of PPX1 resembled the functional defects found in motility and biofilm formation in a ppk1 mutant from Pseudomonas aeruginosa PAO1. The plasmids constructed were also successfully replicated in other bacteria such as Escherichia coli, Burkholderia and Salmonella. Conclusion To deplete polyP contents in bacteria broad-host-range expression vectors can be used as an alternative and more efficient method compared with the deletion of ppk genes. It is of great importance to understand why polyP deficiency affects vital cellular processes in bacteria. The construction reported in this work will be of great relevance to study the role of polyP in microorganisms with non-sequenced genomes or those in which orthologs to ppk genes have not been identified.

  7. Consumer Exposure to Antimicrobial Resistant Bacteria From Food at Swiss Retail Level

    Directory of Open Access Journals (Sweden)

    Christoph Jans

    2018-03-01

    products featured a medium to high potential of AMR exposure for Gram-negative and Gram-positive foodborne pathogens and indicator bacteria. Food at retail, additional food categories including fermented and novel foods as well as technologically important bacteria and AMR genetics are recommended to be better integrated into systematic One Health AMR surveillance and mitigation strategies to close observed knowledge gaps and enable a comprehensive AMR risk assessment for consumers.

  8. Consumer Exposure to Antimicrobial Resistant Bacteria From Food at Swiss Retail Level

    Science.gov (United States)

    Jans, Christoph; Sarno, Eleonora; Collineau, Lucie; Meile, Leo; Stärk, Katharina D. C.; Stephan, Roger

    2018-01-01

    featured a medium to high potential of AMR exposure for Gram-negative and Gram-positive foodborne pathogens and indicator bacteria. Food at retail, additional food categories including fermented and novel foods as well as technologically important bacteria and AMR genetics are recommended to be better integrated into systematic One Health AMR surveillance and mitigation strategies to close observed knowledge gaps and enable a comprehensive AMR risk assessment for consumers. PMID:29559960

  9. Radiation-resistant asporogenic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Yano, K [Tokyo Univ. (Japan). Faculty of Agriculture

    1975-09-01

    This paper reports the biological and ecological examinations on the radiation-resistant asporogenic bacteria (mainly concerning Micrococcus radiodurans). Radiation-resistant asporogenic bacteria were isolated from the irradiated areas of the natural world as well as from the general areas and from the Rn waters in the Misasa hot spring. The acquiring of the tolerance to radiation in bacteria was also examined. In addition, the future problems of microbiological treatment with irradiation were mentioned.

  10. Radiation-resistant asporogenic bacteria

    International Nuclear Information System (INIS)

    Yano, Keiji

    1975-01-01

    This paper reports the biological and ecological examinations on the radiation-resistant asporogenic bacteria (mainly concerning Micrococcus radiodurans). Radiation-resistant asporogenic bacteria were isolated from the irradiated areas of the natural world as well as from the general areas and from the Rn waters in the Misasa hot spring. The acquiring of the tolerance to radiation in bacteria was also examined. In addition, the future problems of microbiological treatment with irradiation were mentioned. (Tsukamoto, Y.)

  11. Immunomodulatory properties of probiotic bacteria

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen

    2007-01-01

    Certain lactic acid bacteria (LAB) are part of the commensal intestinal flora and considered beneficial for health, as they compete with pathogens for adhesion sites in the intestine and ferment otherwise indigestible compounds. Another important property of these so-called probiotic bacteria...... with bacteria, and the cytokine pattern induced by specific bacteria resembled the pattern induced in MoDC, except for TNF-alpha and IL-6, which were induced in response to different bacteria in blood DC/monocytes and monocyte-derived DC. Autologous NK cells produced IFN-gamma when cultured with blood DC......, monocytes and monocyte-derived DC and IL-12-inducing bacteria, whereas only DC induced IFN-gamma production in allogeneic T cells. In vitro-generated DC is a commonly used model of tissue DC, but they differ in certain aspects from intestinal DC, which are in direct contact with the intestinal microbiota...

  12. Strategies for prevention and treatment of staphylococcal biofilms

    DEFF Research Database (Denmark)

    Meyer, Rikke Louise

    Biofilm formation by bacteria that colonize biomedical implants cause infections that cannot be eradicated by antibiotic therapy. Bacteria in biofilms are tolerant to every antibiotic known today, and this tolerance is partly due to their low metabolic activity, the occurrence of persister cells...... in biofilms. Innovative biomaterials may at best delay biofilm formation and an important question in this context is to understand how the material can contribute to more successful antibiotic treatment by not providing the cues that trigger the onset of antibiotic tolerance in the attached bacteria...... treatments that more effectively tackle biofilm infections. We have explored how the combination of antibiotic therapy with matrix-targeting enzymes can enhance the efficacy of antibiotics. The matrix composition is highly variable among different bacterial species, and this strategy will not produce a one...

  13. Lindane Bioremediation Capability of Bacteria Associated with the Demosponge Hymeniacidon perlevis

    Directory of Open Access Journals (Sweden)

    Stabili Loredana

    2017-04-01

    Full Text Available Lindane is an organochlorine pesticide belonging to persistent organic pollutants (POPs that has been widely used to treat agricultural pests. It is of particular concern because of its toxicity, persistence and tendency to bioaccumulate in terrestrial and aquatic ecosystems. In this context, we assessed the role of bacteria associated with the sponge Hymeniacidon perlevis in lindane degradation. Seven bacteria isolates were characterized and identified. These isolates showed a remarkable capacity to utilize lindane as a sole carbon source leading to a percentage of residual lindane ranging from 3% to 13% after 12 days of incubation with the pesticide. The lindane metabolite, 1,3–6-pentachloro-cyclohexene, was identified as result of lindane degradation and determined by gas chromatography–mass spectrometry (GC–MS. The bacteria capable of lindane degradation were identified on the basis of the phenotypic characterization by morphological, biochemical and cultural tests, completed with 16S rDNA sequence analysis, and assigned to Mameliella phaeodactyli, Pseudovibrio ascidiaceicola, Oceanicaulis stylophorae, Ruegeria atlantica and to three new uncharacterized species. The results obtained are a prelude to the development of future strategies for the in situ bioremediation of lindane.

  14. Properties and biotechnological applications of ice-binding proteins in bacteria.

    Science.gov (United States)

    Cid, Fernanda P; Rilling, Joaquín I; Graether, Steffen P; Bravo, Leon A; Mora, María de La Luz; Jorquera, Milko A

    2016-06-01

    Ice-binding proteins (IBPs), such as antifreeze proteins (AFPs) and ice-nucleating proteins (INPs), have been described in diverse cold-adapted organisms, and their potential applications in biotechnology have been recognized in various fields. Currently, both IBPs are being applied to biotechnological processes, primarily in medicine and the food industry. However, our knowledge regarding the diversity of bacterial IBPs is limited; few studies have purified and characterized AFPs and INPs from bacteria. Phenotypically verified IBPs have been described in members belonging to Gammaproteobacteria, Actinobacteria and Flavobacteriia classes, whereas putative IBPs have been found in Gammaproteobacteria, Alphaproteobacteria and Bacilli classes. Thus, the main goal of this minireview is to summarize the current information on bacterial IBPs and their application in biotechnology, emphasizing the potential application in less explored fields such as agriculture. Investigations have suggested the use of INP-producing bacteria antagonists and AFPs-producing bacteria (or their AFPs) as a very attractive strategy to prevent frost damages in crops. UniProt database analyses of reported IBPs (phenotypically verified) and putative IBPs also show the limited information available on bacterial IBPs and indicate that major studies are required. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Inhibition of various gram-positive and gram-negative bacteria growth on selenium nanoparticle coated paper towels.

    Science.gov (United States)

    Wang, Qi; Larese-Casanova, Philip; Webster, Thomas J

    2015-01-01

    There are wide spread bacterial contamination issues on various paper products, such as paper towels hanging in sink splash zones or those used to clean surfaces, filter papers used in water and air purifying systems, and wrappings used in the food industry; such contamination may lead to the potential spread of bacteria and consequent severe health concerns. In this study, selenium nanoparticles were coated on normal paper towel surfaces through a quick precipitation method, introducing antibacterial properties to the paper towels in a healthy way. Their effectiveness at preventing biofilm formation was tested in bacterial assays involving Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus epidermidis. The results showed significant and continuous bacteria inhibition with about a 90% reduction from 24 to 72 hours for gram-positive bacteria including S. aureus and S. epidermidis. The selenium coated paper towels also showed significant inhibition of gram-negative bacteria like P. aeruginosa and E. coli growth at about 57% and 84%, respectively, after 72 hours of treatment. Therefore, this study established a promising selenium-based antibacterial strategy to prevent bacterial growth on paper products, which may lead to the avoidance of bacteria spreading and consequent severe health concerns.

  16. Bacteria-surface interactions.

    Science.gov (United States)

    Tuson, Hannah H; Weibel, Douglas B

    2013-05-14

    The interaction of bacteria with surfaces has important implications in a range of areas, including bioenergy, biofouling, biofilm formation, and the infection of plants and animals. Many of the interactions of bacteria with surfaces produce changes in the expression of genes that influence cell morphology and behavior, including genes essential for motility and surface attachment. Despite the attention that these phenotypes have garnered, the bacterial systems used for sensing and responding to surfaces are still not well understood. An understanding of these mechanisms will guide the development of new classes of materials that inhibit and promote cell growth, and complement studies of the physiology of bacteria in contact with surfaces. Recent studies from a range of fields in science and engineering are poised to guide future investigations in this area. This review summarizes recent studies on bacteria-surface interactions, discusses mechanisms of surface sensing and consequences of cell attachment, provides an overview of surfaces that have been used in bacterial studies, and highlights unanswered questions in this field.

  17. Genomics of Probiotic Bacteria

    Science.gov (United States)

    O'Flaherty, Sarah; Goh, Yong Jun; Klaenhammer, Todd R.

    Probiotic bacteria from the Lactobacillus and Bifidobacterium species belong to the Firmicutes and the Actinobacteria phylum, respectively. Lactobacilli are members of the lactic acid bacteria (LAB) group, a broadly defined family of microorganisms that ferment various hexoses into primarily lactic acid. Lactobacilli are typically low G + C gram-positive species which are phylogenetically diverse, with over 100 species documented to date. Bifidobacteria are heterofermentative, high G + C content bacteria with about 30 species of bifidobacteria described to date.

  18. Nitrogen-fixing methane-utilizing bacteria

    NARCIS (Netherlands)

    Bont, de J.A.M.

    1976-01-01

    Methane occurs abundantly in nature. In the presence of oxygen this gas may be metabolized by bacteria that are able to use it as carbon and energy source. Several types of bacteria involved in the oxidation of methane have been described in literature. Methane-utilizing bacteria have in

  19. Pathogenic Assay of Probiotic Bacteria Producing Proteolytic Enzymes as Bioremediation Bacteria Against Vannamei Shrimp Larvae (Litopenaeus vannamei)

    OpenAIRE

    Wilis Ari Setyati; Muhammad Zainuddin; Person Pesona Renta

    2017-01-01

    Application of bacteria in bioremediation of shrimp culture ponds is one of the methods used to clean internal pollutants. This study aimed to evaluate the pathogenicity of extracellular proteolytic enzyme produced by the probiotic bacteria as bioremediation bacteria on vannamei shrimp larvae culture. There were five probiotic bacteria, which were successfully isolated from the sediments served as substrate in mangrove area. The isolated bacteria were coded in number as 13, 19, 30, 33, and 36...

  20. Granzyme B Disrupts Central Metabolism and Protein Synthesis in Bacteria to Promote an Immune Cell Death Program.

    Science.gov (United States)

    Dotiwala, Farokh; Sen Santara, Sumit; Binker-Cosen, Andres Ariel; Li, Bo; Chandrasekaran, Sriram; Lieberman, Judy

    2017-11-16

    Human cytotoxic lymphocytes kill intracellular microbes. The cytotoxic granule granzyme proteases released by cytotoxic lymphocytes trigger oxidative bacterial death by disrupting electron transport, generating superoxide anion and inactivating bacterial oxidative defenses. However, they also cause non-oxidative cell death because anaerobic bacteria are also killed. Here, we use differential proteomics to identify granzyme B substrates in three unrelated bacteria: Escherichia coli, Listeria monocytogenes, and Mycobacteria tuberculosis. Granzyme B cleaves a highly conserved set of proteins in all three bacteria, which function in vital biosynthetic and metabolic pathways that are critical for bacterial survival under diverse environmental conditions. Key proteins required for protein synthesis, folding, and degradation are also substrates, including multiple aminoacyl tRNA synthetases, ribosomal proteins, protein chaperones, and the Clp system. Because killer cells use a multipronged strategy to target vital pathways, bacteria may not easily become resistant to killer cell attack. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Growth and chemosensory behavior of sulfate-reducing bacteria in oxygen-sulfide gradients

    DEFF Research Database (Denmark)

    Sass, Andrea M.; Wieland, Andrea Eschemann; Kühl, Michael

    2002-01-01

    Growth and chemotactic behavior in oxic–anoxic gradients were studied with two freshwater and four marine strains of sulfate-reducing bacteria related to the genera Desulfovibrio, Desulfomicrobium or Desulfobulbus. Cells were grown in oxygen–sulfide counter-gradients within tubes filled with agar...... chemotactically to lactate, nitrate, sulfate and thiosulfate, and even sulfide functioned as an attractant. In oxic–anoxic gradients the bacteria moved away from high oxygen concentrations and formed bands at the outer edge of the oxic zone at low oxygen concentration (... to actively change the extension and slope of the gradients by oxygen reduction with lactate or even sulfide as electron donor. Generally, the chemotactic behavior was in agreement with a defense strategy that re-establishes anoxic conditions, thus promoting anaerobic growth and, in a natural community...

  2. Cadmium resistance of endophytic bacteria and rizosféricas bacteria isolated from Oriza sativa in Colombia

    Directory of Open Access Journals (Sweden)

    Nataly Ayubb T

    2017-12-01

    Full Text Available The present study had as objective to evaluate in vitro the resistance of endophytic bacteria and rizospheric bacteria to different concentrations of Cadmium.This bacteria were isolated fron different tissues of commercial rice varieties and from bacteria isolated from the rhizosphere in rice plantations of the Nechí (Antioquía and Achí (Bolivar.  Plant growth promotion was evaluated in vitro by nitrogen fixation, phosphate solubilization and siderophores production of endophytic bacteria. Of each tissue isolated from rice plants was carried out isolation in culture medium for endophytic bacteria, and the soil samples were serially diluted in peptone water. Each sample was determined the population density by counting in CFU / g of tissue and morphotypes were separated by shape, color, size and appearance in culture media. Significant differences were observed for density population of bacteria with respect to tissue, with higher values in root (4x1011 g/root, followed of the stem (3x1010g/etem, leaf (5x109 g/ leaf, flag leaf (3x109 g/ flag leaf and with less density in panicle (4x108 g/panicle. The results of the identification with kit API were confirmed the presence of endophytic bacteria Burkholderia cepaceae and rizospheric bacteria Pseudomona fluorescens With the ability to tolerate different concentrations of Cd, fix nitrogen, solubilize phosphates and produce siderophores.

  3. Application of immobilized synthetic anti-lipopolysaccharide peptides for the isolation and detection of bacteria.

    Science.gov (United States)

    Sandetskaya, N; Engelmann, B; Brandenburg, K; Kuhlmeier, D

    2015-08-01

    The molecular detection of microorganisms in liquid samples generally requires their enrichment or isolation. The aim of our study was to evaluate the capture and pre-concentration of bacteria by immobilized particular cationic antimicrobial peptides, called synthetic anti-lipopolysaccharide peptides (SALP). For the proof-of-concept and screening of different SALP, the peptides were covalently immobilized on glass slides, and the binding of bacteria was confirmed by microscopic examination of the slides or their scanning, in case of fluorescent bacterial cells. The most efficient SALP was further tethered to magnetic beads. SALP beads were used for the magnetic capture of Escherichia coli in liquid samples. The efficiency of this strategy was evaluated using polymerase chain reaction (PCR). Covalently immobilized SALP were capable of capturing bacteria in liquid samples. However, PCR was hampered by the unspecific binding of DNA to the positively charged peptide. We developed a method for DNA recovery by the enzymatic digestion of the peptide, which allowed for a successful PCR, though the method had its own adverse impact on the detection and, thus, did not allow for the reliable quantitative analysis of the pathogen enrichment. Immobilized SALP can be used as capture molecules for bacteria in liquid samples and can be recommended for the design of the assays or decontamination of the fluids. For the accurate subsequent detection of bacteria, DNA-independent methods should be used.

  4. Interactions of the cell-wall glycopolymers of lactic acid bacteria with their bacteriophages

    Directory of Open Access Journals (Sweden)

    Marie-Pierre eChapot-Chartier

    2014-05-01

    Full Text Available Lactic acid bacteria (LAB are Gram positive bacteria widely used in the production of fermented food in particular cheese and yoghurts. Bacteriophage infections during fermentation processes have been for many years a major industrial concern and have stimulated numerous research efforts. Better understanding of the molecular mechanisms of bacteriophage interactions with their host bacteria is required for the development of efficient strategies to fight against infections. The bacterial cell wall plays key roles in these interactions. First, bacteriophages must adsorb at the bacterial surface through specific interactions with receptors that are cell wall components. At next step, phages must overcome the barrier constituted by cell wall peptidoglycan to inject DNA inside bacterial cell. Also at the end of the infection cycle, phages synthesize endolysins able to hydrolyze peptidoglycan and lyse bacterial cells to release phage progeny. In the last decade, concomitant development of genomics and structural analysis of cell wall components allowed considerable advances in the knowledge of their structure and function in several model LAB. Here, we describe the present knowledge on the structure of the cell wall glycopolymers of the best characterized LAB emphasizing their structural variations and we present the available data regarding their role in bacteria-phage specific interactions at the different steps of the infection cycle.

  5. Simultaneous aptasensor for multiplex pathogenic bacteria detection based on multicolor upconversion nanoparticles labels.

    Science.gov (United States)

    Wu, Shijia; Duan, Nuo; Shi, Zhao; Fang, Congcong; Wang, Zhouping

    2014-03-18

    A highly sensitive and specific multiplex method for the simultaneous detection of three pathogenic bacteria was fabricated using multicolor upconversion nanoparticles (UCNPs) as luminescence labels coupled with aptamers as the molecular recognition elements. Multicolor UCNPs were synthesized via doping with various rare-earth ions to obtain well-separated emission peaks. The aptamer sequences were selected using the systematic evolution of ligands by exponential enrichment (SELEX) strategy for Staphylococcus aureus, Vibrio parahemolyticus, and Salmonella typhimurium. When applied in this method, aptamers can be used for the specific recognition of the bacteria from complex mixtures, including those found in real food matrixes. Aptamers and multicolor UCNPs were employed to selectively capture and simultaneously quantify the three target bacteria on the basis of the independent peaks. Under optimal conditions, the correlation between the concentration of three bacteria and the luminescence signal was found to be linear from 50-10(6) cfu mL(-1). Improved by the magnetic separation and concentration effect of Fe3O4 magnetic nanoparticles, the limits of detection of the developed method were found to be 25, 10, and 15 cfu mL(-1) for S. aureus, V. parahemolyticus, and S. typhimurium, respectively. The capability of the bioassay in real food samples was also investigated, and the results were consistent with experimental results obtained from plate-counting methods. This proposed method for the detection of various pathogenic bacteria based on multicolor UCNPs has great potential in the application of food safety and multiplex nanosensors.

  6. Revisiting life strategy concepts in environmental microbial ecology.

    Science.gov (United States)

    Ho, Adrian; Di Lonardo, D Paolo; Bodelier, Paul L E

    2017-03-01

    Microorganisms are physiologically diverse, possessing disparate genomic features and mechanisms for adaptation (functional traits), which reflect on their associated life strategies and determine at least to some extent their prevalence and distribution in the environment. Unlike animals and plants, there is an unprecedented diversity and intractable metabolic versatility among bacteria, making classification or grouping these microorganisms based on their functional traits as has been done in animal and plant ecology challenging. Nevertheless, based on representative pure cultures, microbial traits distinguishing different life strategies had been proposed, and had been the focus of previous reviews. In the environment, however, the vast majority of naturally occurring microorganisms have yet to be isolated, restricting the association of life strategies to broad phylogenetic groups and/or physiological characteristics. Here, we reviewed the literature to determine how microbial life strategy concepts (i.e. copio- and oligotrophic strategists, and competitor-stress tolerator-ruderals framework) are applied in complex microbial communities. Because of the scarcity of direct empirical evidence elucidating the associated life strategies in complex communities, we rely heavily on observational studies determining the response of microorganisms to (a)biotic cues (e.g. resource availability) to infer microbial life strategies. Although our focus is on the life strategies of bacteria, parallels were drawn from the fungal community. Our literature search showed inconsistency in the community response of proposed copiotrophic- and oligotrophic-associated microorganisms (phyla level) to changing environmental conditions. This suggests that tracking microorganisms at finer phylogenetic and taxonomic resolution (e.g. family level or lower) may be more effective to capture changes in community response and/or that edaphic factors exert a stronger effect in community response

  7. Anti-virulence approaches and novel peptidomimetics for combating resistant and biofilm associated bacteria

    DEFF Research Database (Denmark)

    Liu, Yang

    Anti-virulence approaches and novel peptidomimetics for combating resistant and biofilm associated bacteria The misuse and overuse of antibiotics has a broad impact on the environment. Antibiotic resistance has become a major threat for modern medical treatment of infectious diseases. There are m......Anti-virulence approaches and novel peptidomimetics for combating resistant and biofilm associated bacteria The misuse and overuse of antibiotics has a broad impact on the environment. Antibiotic resistance has become a major threat for modern medical treatment of infectious diseases...... consisting of microcolonies embedded in self-produced extracellular polymer substances (EPS). EPS can contribute to cell-cell adhesion and restrict antibiotic penetration. Biofilm cells show much greater resistance to stressful conditions than their free-living counterparts. Conventional treatment strategies...

  8. Method of Detecting Coliform Bacteria and Escherichia Coli Bacteria from Reflected Light

    Science.gov (United States)

    Vincent, Robert (Inventor)

    2013-01-01

    The present invention relates to a method of detecting coliform bacteria in water from reflected light and a method of detecting Eschericha Coli bacteria in water from reflected light, and also includes devices for the measurement, calculation and transmission of data relating to that method.

  9. Siderophore-drug complexes: potential medicinal applications of the 'Trojan horse' strategy.

    Science.gov (United States)

    Górska, Agnieszka; Sloderbach, Anna; Marszałł, Michał Piotr

    2014-09-01

    The ability of bacteria to develop resistance to antimicrobial agents poses problems in the treatment of numerous bacterial infections. One method to circumvent permeability-mediated drug resistance involves the employment of the 'Trojan horse' strategy. The Trojan horse concept involves the use of bacterial iron uptake systems to enter and kill bacteria. The siderophore-drug complex is recognized by specific siderophore receptors and is then actively transported across the outer membrane. The recently identified benefits of this strategy have led to the synthesis of a series of siderophore-based antibiotics. Several studies have shown that siderophore-drug conjugates make it possible to design antibiotics with improved cell transport and reduce the frequency of resistance mutants. Growing interest in siderophore-drug conjugates for the treatment of human diseases including iron overload, cancer, and malaria has driven the search for new siderophore-drug complexes. This strategy may have special importance for the development of iron oxide nanoparticle-based therapeutics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Motility of electric cable bacteria

    DEFF Research Database (Denmark)

    Bjerg, Jesper Tataru; Damgaard, Lars Riis; Holm, Simon Agner

    2016-01-01

    Cable bacteria are filamentous bacteria that electrically couple sulfide oxidation and oxygen reduction at centimeter distances, and observations in sediment environments have suggested that they are motile. By time-lapse microscopy, we found that cable bacteria used gliding motility on surfaces...... with a highly variable speed of 0.50.3 ms1 (meanstandard deviation) and time between reversals of 155108 s. They frequently moved forward in loops, and formation of twisted loops revealed helical rotation of the filaments. Cable bacteria responded to chemical gradients in their environment, and around the oxic......-anoxic interface, they curled and piled up, with straight parts connecting back to the source of sulfide. Thus, it appears that motility serves the cable bacteria in establishing and keeping optimal connections between their distant electron donor and acceptors in a dynamic sediment environment....

  11. Fermentation of D-Tagatose by Human Intestinal Bacteria and Dairy Lactic Acid Bacteria

    OpenAIRE

    Bertelsen, Hans; Andersen, Hans; Tvede, Michael

    2011-01-01

    A number of 174 normal or pathogenic human enteric bacteria and dairy lactic acid bacteria were screened for D-tagatose fermentation by incubation for 48 hours. Selection criteria for fermentation employed included a drop in pH below 5.5 and a distance to controls of more than 0.5. Only a few of the normal occurring enteric human bacteria were able to ferment D-tagatose, among those Enterococcus faecalis, Enterococcus faecium and Lactobacillus strains. D-Tagatose fermentation seems to be comm...

  12. METHODS FOR DETECTING BACTERIA USING POLYMER MATERIALS

    NARCIS (Netherlands)

    Van Grinsven Bart Robert, Nicolaas; Cleij, Thomas

    2017-01-01

    A method for characterizing bacteria includes passing a liquid containing an analyte comprising a first bacteria and a second bacteria over and in contact with a polymer material on a substrate. The polymer material is formulated to bind to the first bacteria, and the first bacteria binds to the

  13. Antimicrobial Potential of Bacteria Associated with Marine Sea Slugs from North Sulawesi, Indonesia

    Directory of Open Access Journals (Sweden)

    Nils Böhringer

    2017-06-01

    Full Text Available Nudibranchia, marine soft-bodied organisms, developed, due to the absence of a protective shell, different strategies to protect themselves against putative predators and fouling organisms. One strategy is to use chemical weapons to distract predators, as well as pathogenic microorganisms. Hence, these gastropods take advantage of the incorporation of chemical molecules. Thereby the original source of these natural products varies; it might be the food source, de novo synthesis from the sea slug, or biosynthesis by associated bacteria. These bioactive molecules applied by the slugs can become important drug leads for future medicinal drugs. To test the potential of the associated bacteria, the latter were isolated from their hosts, brought into culture and extracts were prepared and tested for antimicrobial activities. From 49 isolated bacterial strains 35 showed antibiotic activity. The most promising extracts were chosen for further testing against relevant pathogens. In that way three strains showing activity against methicillin resistant Staphylococcus aureus and one strain with activity against enterohemorrhagic Escherichia coli, respectively, were identified. The obtained results indicate that the sea slug associated microbiome is a promising source for bacterial strains, which hold the potential for the biotechnological production of antibiotics.

  14. Strategies for combating bacterial biofilm infections

    DEFF Research Database (Denmark)

    Wu, Hong; Moser, Claus Ernst; Wang, Heng-Zhuang

    2015-01-01

    Formation of biofilm is a survival strategy for bacteria and fungi to adapt to their living environment, especially in the hostile environment. Under the protection of biofilm, microbial cells in biofilm become tolerant and resistant to antibiotics and the immune responses, which increases the di.......International Journal of Oral Science advance online publication, 12 December 2014; doi:10.1038/ijos.2014.65....

  15. Mathematical model of rhamnolipid production using E.coli bacteria

    Science.gov (United States)

    Adham, Muhammad Fariduddin; Apri, Mochamad; Moeis, Maelita Ramdani

    2018-03-01

    Rhamnolipid is one of biosurfactants that is widely used in many industries. Despite its wide use, production of rhamnolipid usually involves a pathogen that may endanger our health. To tackle this issue, in iGEM (International Genetically Engineered Machine) competition 2015, our team engineered Escherichia coli (E.coli) to produce rhamnolipid. The bacteria were then put into medium containing glucose and lactose. It turned out that bacteria E. coli produced lower rhamnolipid than that by pseudomonas, therefore a good strategy is required to improve their productivity. We present a mathematical model to describe the production of rhamnolipid by the engineered E coli. Using bifurcation analysis, the equilibrium points of the model and their stabilities were analyzed as the amount of lactose was varied. We show that the system produces bistability behavior for some interval values of lactose. From this analysis we found that to guarantee a high production of rhamnolipid, a high level of lactose is required. To maintain the productivity, however, it is sufficient to maintain the lactose level above a certain threshold value.

  16. Solubilization of plutonium hydrous oxide by iron-reducing bacteria

    International Nuclear Information System (INIS)

    Rusin, P.A.; Quintana, L.; Brainard, J.R.; Strietelmeler, B.A.; Tait, C.D.; Ekberg, S.A.; Palmer, P.D.; Newton, T.W.; Clark, D.L.

    1994-01-01

    The removal of plutonium from soils id challenging because of its strong sorption to soils and limited solubility, Microbial reduction of metals is known to affect the speciation and solubility of sparingly soluble metals in the environment, notably iron and manganese. The similarity in reduction potential for α-FeOOH(s) and hydrous PuO 2 (s) suggests that iron-reducing bacteria may also reduce and solubilize plutonium. Bacillus strains were used to demonstrate that iron-reducing bacteria mediate the solubilization of hydrous PuO 2 (s) under anaerobic conditions. Up to ∼90% of the PuO 2 was biosolubilized in the presence of nitrilotriacetic acid (NTA) within 6-7 days. Biosolubilization occurred to a lesser extent (∼ 40%) in the absence of NTA. Little PuO 2 solubilization occurred in sterile culture media or in the presence of a non-iron-reducing Escherichia coli. These observations suggest a potentially attractive, environmentally benign strategy for the remediation of Pu-contaminated soils. 26 refs., 5 figs., 2 tabs

  17. Sulfur metabolism in phototrophic sulfur bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Dahl, Christiane

    2008-01-01

    Phototrophic sulfur bacteria are characterized by oxidizing various inorganic sulfur compounds for use as electron donors in carbon dioxide fixation during anoxygenic photosynthetic growth. These bacteria are divided into the purple sulfur bacteria (PSB) and the green sulfur bacteria (GSB......). They utilize various combinations of sulfide, elemental sulfur, and thiosulfate and sometimes also ferrous iron and hydrogen as electron donors. This review focuses on the dissimilatory and assimilatory metabolism of inorganic sulfur compounds in these bacteria and also briefly discusses these metabolisms...... in other types of anoxygenic phototrophic bacteria. The biochemistry and genetics of sulfur compound oxidation in PSB and GSB are described in detail. A variety of enzymes catalyzing sulfur oxidation reactions have been isolated from GSB and PSB (especially Allochromatium vinosum, a representative...

  18. Strategies for Pathogen Biocontrol Using Lactic Acid Bacteria and Their Metabolites: A Focus on Meat Ecosystems and Industrial Environments

    Directory of Open Access Journals (Sweden)

    Patricia Castellano

    2017-07-01

    Full Text Available The globalization of trade and lifestyle ensure that the factors responsible for the emergence of diseases are more present than ever. Despite biotechnology advancements, meat-based foods are still under scrutiny because of the presence of pathogens, which causes a loss of consumer confidence and consequently a fall in demand. In this context, Lactic Acid Bacteria (LAB as GRAS organisms offer an alternative for developing pathogen-free foods, particularly avoiding Listeria monocytogenes, with minimal processing and fewer additives while maintaining the foods’ sensorial characteristics. The use of LAB strains, enabling us to produce antimicrobial peptides (bacteriocins in addition to lactic acid, with an impact on quality and safety during fermentation, processing, and/or storage of meat and ready-to-eat (RTE meat products, constitutes a promising tool. A number of bacteriocin-based strategies including the use of bioprotective cultures, purified and/or semi-purified bacteriocins as well as their inclusion in varied packaging materials under different storage conditions, have been investigated. The application of bacteriocins as part of hurdle technology using non-thermal technologies was explored for the preservation of RTE meat products. Likewise, considering that food contamination with L. monocytogenes is a consequence of the post-processing manipulation of RTE foods, the role of bacteriocinogenic LAB in the control of biofilms formed on industrial surfaces is also discussed.

  19. Strategies for Pathogen Biocontrol Using Lactic Acid Bacteria and Their Metabolites: A Focus on Meat Ecosystems and Industrial Environments

    Science.gov (United States)

    Castellano, Patricia; Pérez Ibarreche, Mariana; Fontana, Cecilia; Vignolo, Graciela M.

    2017-01-01

    The globalization of trade and lifestyle ensure that the factors responsible for the emergence of diseases are more present than ever. Despite biotechnology advancements, meat-based foods are still under scrutiny because of the presence of pathogens, which causes a loss of consumer confidence and consequently a fall in demand. In this context, Lactic Acid Bacteria (LAB) as GRAS organisms offer an alternative for developing pathogen-free foods, particularly avoiding Listeria monocytogenes, with minimal processing and fewer additives while maintaining the foods’ sensorial characteristics. The use of LAB strains, enabling us to produce antimicrobial peptides (bacteriocins) in addition to lactic acid, with an impact on quality and safety during fermentation, processing, and/or storage of meat and ready-to-eat (RTE) meat products, constitutes a promising tool. A number of bacteriocin-based strategies including the use of bioprotective cultures, purified and/or semi-purified bacteriocins as well as their inclusion in varied packaging materials under different storage conditions, have been investigated. The application of bacteriocins as part of hurdle technology using non-thermal technologies was explored for the preservation of RTE meat products. Likewise, considering that food contamination with L. monocytogenes is a consequence of the post-processing manipulation of RTE foods, the role of bacteriocinogenic LAB in the control of biofilms formed on industrial surfaces is also discussed. PMID:28696370

  20. Ruminal tryptophan-utilizing bacteria degrade ergovaline from tall fescue seed extract.

    Science.gov (United States)

    Harlow, B E; Goodman, J P; Lynn, B C; Flythe, M D; Ji, H; Aiken, G E

    2017-02-01

    The objectives of this study were to evaluate degradation of ergovaline in a tall fescue [ (Schreb.) Darbysh.] seed extract by rumen microbiota ex vivo and to identify specific bacteria capable of ergovaline degradation in vitro. Rumen cell suspensions were prepared by harvesting rumen fluid from fistulated wether goats ( = 3), straining, and differential centrifugation. Suspensions were dispensed into anaerobic tubes with added Trypticase with or without extract (∼10 μg kg ergovaline). Suspensions were incubated for 48 h at 39°C. Samples were collected at 0, 24, and 48 h for ergovaline analysis and enumeration of hyper-ammonia producing (HAB) and tryptophan-utilizing bacteria. Ergovaline values were analyzed by repeated measures using the mixed procedure of SAS. Enumeration data were log transformed for statistical analysis. When suspensions were incubated with extract, 11 to 15% of ergovaline disappearance was observed over 48 h ( = 0.02). After 24 h, suspensions with added extract had 10-fold less HAB than controls ( = 0.04), but treatments were similar by 48 h ( = 1.00). However, after 24 h and 48 h, suspensions with extract had 10-fold more tryptophan-utilizing bacteria ( rumen pure cultures ( JB1, B159, HD4, B, F, MD1, SR) were evaluated for the ability to degrade ergovaline in vitro. Pure culture cell suspensions were incubated as described above and samples were taken at 0 and 48 h for ergovaline analysis. Data were analyzed using the ANOVA procedure of SAS. All HAB, including the isolates, tested degraded ergovaline (54 to 75%; bacteria tested did not degrade ergovaline. The results of this study indicate which rumen bacteria may play an important role in ergovaline degradation and that microbiological strategies for controlling their activity could have ramifications for fescue toxicosis and other forms of ergotism in ruminants.

  1. Isolation and Presumptive Identification of Adherent Epithelial Bacteria (“Epimural” Bacteria) from the Ovine Rumen Wall

    OpenAIRE

    Mead, Lorna J.; Jones, G. A.

    1981-01-01

    One hundred sixty-one strains of adherent bacteria were isolated under anaerobic conditions from four sites on the rumen epithelial surface of sheep fed hay or a hay-grain ration. Before isolation of bacteria, rumen tissue was washed six times in an anaerobic dilution solution, and viable bacteria suspended in the washings were counted. Calculation indicated that unattached bacteria would have been removed from the tissue by this procedure, but a slow and progressive release of attached bacte...

  2. Re-engineering bacteria for ethanol production

    Science.gov (United States)

    Yomano, Lorraine P; York, Sean W; Zhou, Shengde; Shanmugam, Keelnatham; Ingram, Lonnie O

    2014-05-06

    The invention provides recombinant bacteria, which comprise a full complement of heterologous ethanol production genes. Expression of the full complement of heterologous ethanol production genes causes the recombinant bacteria to produce ethanol as the primary fermentation product when grown in mineral salts medium, without the addition of complex nutrients. Methods for producing the recombinant bacteria and methods for producing ethanol using the recombinant bacteria are also disclosed.

  3. Oligotrophic bacteria isolated from clinical materials.

    OpenAIRE

    Tada, Y; Ihmori, M; Yamaguchi, J

    1995-01-01

    Oligotrophic bacteria (oligotrophs) are microorganisms that grow in extremely nutritionally deficient conditions in which the concentrations of organic substances are low. Many oligotrophic bacteria were isolated from clinical materials including urine, sputum, swabbings of the throat, vaginal discharges, and others. Seventy-seven strains of oligotrophic bacteria from 871 samples of clinical material were isolated. A relatively higher frequency of isolation of oligotrophic bacteria was shown ...

  4. Influence of natural substrates and co-occurring marine bacteria on the production of secondary metabolites by Photobacterium halotolerans

    DEFF Research Database (Denmark)

    Månsson, Maria; Giobergia, Sonia; Møller, Kirsten A.

    Genome sequences reveal that our current standard laboratory conditions only support a fraction of the potential secondary metabolism in bacteria. Thus, we must rethink cultivation, detection, and isolation strategies for bacterial secondary metabolites in order to explore the huge, so far...

  5. Seeing green bacteria in a new light: genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Bryant, Donald A

    2004-01-01

    Based upon their photosynthetic nature and the presence of a unique light-harvesting antenna structure, the chlorosome, the photosynthetic green bacteria are defined as a distinctive group in the Bacteria. However, members of the two taxa that comprise this group, the green sulfur bacteria...... (Chlorobi) and the filamentous anoxygenic phototrophic bacteria ("Chloroflexales"), are otherwise quite different, both physiologically and phylogenetically. This review summarizes how genome sequence information facilitated studies of the biosynthesis and function of the photosynthetic apparatus...... a and carotenoid biosynthesis enzymes, gene cluster analysis in Cfx. aurantiacus, and gene inactivation studies in Chl. tepidum. Based on these results, BChl a and BChl c biosynthesis is similar in the two organisms, whereas carotenoid biosynthesis differs significantly. In agreement with its facultative anaerobic...

  6. Quantification of Faecalibacterium prausnitzii- and Subdoligranulum variabile-like bacteria in the cecum of chickens by real-time PCR

    DEFF Research Database (Denmark)

    Lund, Marianne; Friis-Holm, Lotte Bjerrum; Pedersen, Karl

    2010-01-01

    The intestinal microbial community is playing an important role in health and production performance of chickens. To understand the effect on the intestinal microflora induced by various feeding strategies, feed additives, infections, and intestinal disorders, it is important to have methods......, and in hatcher material. Quantification of this group of F. prausnitzii-S. variabile-like bacteria has not been performed before by real-time PCR, but results confirm previous results obtained by cloning and sequencing showing that the F. prausnitzii-S. variabile-like group of bacteria constitutes a major...

  7. How honey kills bacteria

    NARCIS (Netherlands)

    Kwakman, Paulus H. S.; te Velde, Anje A.; de Boer, Leonie; Speijer, Dave; Vandenbroucke-Grauls, Christina M. J. E.; Zaat, Sebastian A. J.

    2010-01-01

    With the rise in prevalence of antibiotic-resistant bacteria, honey is increasingly valued for its antibacterial activity. To characterize all bactericidal factors in a medical-grade honey, we used a novel approach of successive neutralization of individual honey bactericidal factors. All bacteria

  8. Pathogenic Assay of Probiotic Bacteria Producing Proteolytic Enzymes as Bioremediation Bacteria Against Vannamei Shrimp Larvae (Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    Wilis Ari Setyati

    2017-06-01

    Full Text Available Application of bacteria in bioremediation of shrimp culture ponds is one of the methods used to clean internal pollutants. This study aimed to evaluate the pathogenicity of extracellular proteolytic enzyme produced by the probiotic bacteria as bioremediation bacteria on vannamei shrimp larvae culture. There were five probiotic bacteria, which were successfully isolated from the sediments served as substrate in mangrove area. The isolated bacteria were coded in number as 13, 19, 30, 33, and 36. Pathogenic bacteria Vibrio harveyi was used as positive control. Pathogenic assay was carried out in two different bacterial concentrations, i.e. 10⁸ and 10⁶ cells.mL-1. The results showed that the lowest survival rate (SR of shrimp larvae in positive control V. harveyi was 53 and 65%. Whereas isolates with the highest SR value (100% were obtained from bacteria coded as 13 and 30. Isolates no. 19, 33 and 36 had SR of more than 90%. Total plate count (TPC data showed that the bacteria increased significantly at the end of the study with an average increase value of 24%. The smallest TPC value was shown by bacterial isolate no. 19, while the largest was obtained from the isolate no. 13. These results suggest that all probiotic bacteria were not pathogenic to the vannamei shrimp larvae.   Keywords: aquaculture, shrimp, bioremediation, pathogenesis, vibrio.

  9. Metabolic and process engineering for biodesulfurization in Gram-negative bacteria.

    Science.gov (United States)

    Martínez, I; El-Said Mohamed, M; Santos, V E; García, J L; García-Ochoa, F; Díaz, E

    2017-11-20

    Microbial desulfurization or biodesulfurization (BDS) is an attractive low-cost and environmentally friendly complementary technology to the hydrotreating chemical process based on the potential of certain bacteria to specifically remove sulfur from S-heterocyclic compounds of crude fuels that are recalcitrant to the chemical treatments. The 4S or Dsz sulfur specific pathway for dibenzothiophene (DBT) and alkyl-substituted DBTs, widely used as model S-heterocyclic compounds, has been extensively studied at the physiological, biochemical and genetic levels mainly in Gram-positive bacteria. Nevertheless, several Gram-negative bacteria have been also used in BDS because they are endowed with some properties, e.g., broad metabolic versatility and easy genetic and genomic manipulation, that make them suitable chassis for systems metabolic engineering strategies. A high number of recombinant bacteria, many of which are Pseudomonas strains, have been constructed to overcome the major bottlenecks of the desulfurization process, i.e., expression of the dsz operon, activity of the Dsz enzymes, retro-inhibition of the Dsz pathway, availability of reducing power, uptake-secretion of substrate and intermediates, tolerance to organic solvents and metals, and other host-specific limitations. However, to attain a BDS process with industrial applicability, it is necessary to apply all the knowledge and advances achieved at the genetic and metabolic levels to the process engineering level, i.e., kinetic modelling, scale-up of biphasic systems, enhancing mass transfer rates, biocatalyst separation, etc. The production of high-added value products derived from the organosulfur material present in oil can be regarded also as an economically viable process that has barely begun to be explored. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Vapor-induced transfer of bacteria in the absence of mechanical disturbances

    KAUST Repository

    Ayoub, George M.

    2014-09-01

    Transfer of bacteria through water vapor generated at moderate temperatures (30-50. °C) in passive solar stills, has scarcely been reported. The objective of this research was to investigate whether bacteria in highly humid atmospheres can get transferred through water vapor in the absence of other transfer media to find their way to the distillate. To achieve this objective, passive solar reactors were chosen as the medium for experimentation, and distillation experiments were conducted by spiking a pure bacterial culture (Escherichia coli, Klebsiella pneumonia or Enterococcus faecalis) in low mineralized water vs. highly mineralized water in the dark under moderate temperatures ranges (30-35. °C, 40-45. °C and 50-55. °C). Results showed that bacteria indeed get transferred with the vapor in stills when not exposed to solar U.V. radiation. The trends observed were adequately explained by a zero-modified Hurdle-Poisson model. The numbers of cultivable bacterial colonies transferred were bacterial size, water type and temperature dependent with highest transfers occurring in E. faecalis>. E. coli>. K. pneumonia at the 40. °C range in low mineralized water. Proper management strategies are recommended to achieve complete disinfection in solar stills. © 2014 Elsevier B.V.

  11. Identification of New Aflatoxin B1-Degrading Bacteria from Iran

    Directory of Open Access Journals (Sweden)

    Fahimeh Sangi

    2018-04-01

    Full Text Available Background: Aflatoxin B1 (AFB1 is a mutagenic and carcinogenic compound mainly produced by the Aspergillus parasiticus, A. flavus, A. nomius, A. tamari, and A. pseudotamarii. AFB1 biodegradation is the most important strategy for reducing AFB1 in plant tissues. Bacteria can deactivate and biodegrade AFB1 for effective detoxification of contaminated products. The present study investigated the efficiency of AFB1 degradation by soil bacteria from the Southern Khorasan Province in Eastern Iran by thin-layer and high-performance liquid chromatography during 2014–2015. Methods: DNA was extracted from AFB1-degrading isolates by the cetyltrimethylammonium bromide method and the 16S rRNA gene was amplified with the 27f and 1492r general bacterial primers and the sequences were used to identify the isolates based on their similarity to Gene Bank sequences of known bacterial species. Results: We isolated five strains from four species of AFB1-degrading bacteria from Birjand plain, including Bacillus pumilus, two isolates of Ochrobactrum pseudogrigonens, Pseudomonas aeruginosa, and Enterobacter cloace, which had AFB1-degrading activities of 88%, 78%, 61%, 58%, and 51%, respectively. Conclusion: We provide the first demonstration of AFB1 degradation by B. pumilus in from Iran and the first report identifying O. pseudogrigonens and E. cloace species as having AFB1-degrading activity.

  12. Effect of air pollution on the total bacteria and pathogenic bacteria in different sizes of particulate matter.

    Science.gov (United States)

    Liu, Huan; Zhang, Xu; Zhang, Hao; Yao, Xiangwu; Zhou, Meng; Wang, Jiaqi; He, Zhanfei; Zhang, Huihui; Lou, Liping; Mao, Weihua; Zheng, Ping; Hu, Baolan

    2018-02-01

    In recent years, air pollution events have occurred frequently in China during the winter. Most studies have focused on the physical and chemical composition of polluted air. Some studies have examined the bacterial bioaerosols both indoors and outdoors. But few studies have focused on the relationship between air pollution and bacteria, especially pathogenic bacteria. Airborne PM samples with different diameters and different air quality index values were collected in Hangzhou, China from December 2014 to January 2015. High-throughput sequencing of 16S rRNA was used to categorize the airborne bacteria. Based on the NCBI database, the "Human Pathogen Database" was established, which is related to human health. Among all the PM samples, the diversity and concentration of total bacteria were lowest in the moderately or heavily polluted air. However, in the PM2.5 and PM10 samples, the relative abundances of pathogenic bacteria were highest in the heavily and moderately polluted air respectively. Considering the PM samples with different particle sizes, the diversities of total bacteria and the proportion of pathogenic bacteria in the PM10 samples were different from those in the PM2.5 and TSP samples. The composition of PM samples with different sizes range may be responsible for the variances. The relative humidity, carbon monoxide and ozone concentrations were the main factors, which affected the diversity of total bacteria and the proportion of pathogenic bacteria. Among the different environmental samples, the compositions of the total bacteria were very similar in all the airborne PM samples, but different from those in the water, surface soil, and ground dust samples. Which may be attributed to that the long-distance transport of the airflow may influence the composition of the airborne bacteria. This study of the pathogenic bacteria in airborne PM samples can provide a reference for environmental and public health researchers. Copyright © 2017 Elsevier Ltd

  13. [Bacterial biofilms as a natural form of existence of bacteria in the environment and host organism].

    Science.gov (United States)

    Romanova, Iu M; Gintsburg, A L

    2011-01-01

    Advances in microscopic analysis and molecular genetics research methods promoted the acquisition of evidence that natural bacteria populations exist predominately as substrate attached biofilms. Bacteria in biofilms are able to exchange signals and display coordinated activity that is inherent to multicellular organisms. Formation of biofilm communities turned out to be one of the main survival strategies of bacteria in their ecological niche. Bacteria in attached condition in biofilm are protected from the environmental damaging factors and effects of antibacterial substances in the environment and host organism during infection. According to contemporary conception, biofilm is a continuous layer of bacterial cells that are attached to a surface and each other, and contained in a biopolymer matrix. Such bacterial communities may be composed of bacteria of one or several species, and composed of actively functioning cells as well as latent and uncultured forms. Particular attention has recently been paid to the role of biofilms in the environment and host organism. Microorganisms form biofilm on any biotic and abiotic surfaces which creates serious problems in medicine and various areas of economic activity. Currently, it is established that biofilms are one of the pathogenetic factors of chronic inflection process formation. The review presents data on ubiquity of bacteria existence as biofilms, contemporary methods of microbial community analysis, structural-functional features of bacterial biofilms. Particular attention is paid to the role of biofilm in chronic infection process formation, heightened resistance to antibiotics of bacteria in biofilms and possible mechanisms of resistance. Screening approaches for agents against biofilms in chronic infections are discussed.

  14. Beer spoilage bacteria and hop resistance

    NARCIS (Netherlands)

    Sakamoto, K; Konings, WN

    2003-01-01

    For brewing industry, beer spoilage bacteria have been problematic for centuries. They include some lactic acid bacteria such as Lactobacillus brevis, Lactobacillus lindneri and Pediococcus damnosus, and some Gram-negative bacteria such as Pectinatus cerevisiiphilus, Pectinatus frisingensis and

  15. Interventional strategies and current clinical experience with carbapenemase-producing Gram-negative bacteria.

    Science.gov (United States)

    Akova, M; Daikos, G L; Tzouvelekis, L; Carmeli, Y

    2012-05-01

    The wide dissemination of carbapenemase-producing Gram-negatives (CPGNs), including enterobacterial species and non-fermenters, has caused a public health crisis of global dimensions. These organisms cause serious infections in hospitalized patients, and are associated with increased mortality. Cross-transmission is common, and outbreaks may occur in healthcare facilities where the infection control practices are inadequate. CPGNs exhibit extensive drug-resistant phenotypes, complicate therapy, and limit treatment options. Systematic data on therapy are limited. However, regimens combining two or more active agents seem to be more efficacious than monotherapy in carbapenemase-producing Klebsiella pneumoniae infections. Strict infection control measures, including active surveillance for timely detection of colonized patients, separation of carriers from non-carriers, and contact precautions, are of utmost importance, and may be the only effective way of preventing the introduction and transmission of these bacteria in healthcare settings. © 2012 The Authors. Clinical Microbiology and Infection © 2012 European Society of Clinical Microbiology and Infectious Diseases.

  16. Human body may produce bacteria.

    Science.gov (United States)

    Salerian, Alen J

    2017-06-01

    "Human body may produce bacteria" proposes that human body may produce bacteria and represent an independent source of infections contrary to the current paradigm of infectious disorders proposed by Louis Pasteur in 1880. The following observations are consistent with this hypothesis: A. Bidirectional transformations of both living and nonliving things have been commonly observed in nature. B. Complex multicellular organisms harbor the necessary properties to produce bacteria (water, nitrogen and oxygen). C. Physical laws suggest any previously observed phenomenon or action will occur again (life began on earth; a non living thing). D. Animal muscle cells may generate energy (fermentation). E. Sterilized food products (i.e. boiled eggs), may produce bacteria and fungus under special conditions and without any exposure to foreign living cells. "Human body may produce bacteria" may challenge the current medical paradigm that views human infectious disorders as the exclusive causative byproducts of invading foreign cells. It may also introduce new avenues to treat infectious disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Draft genome sequence and annotation of Lactobacillus acetotolerans BM-LA14527, a beer-spoilage bacteria.

    Science.gov (United States)

    Liu, Junyan; Li, Lin; Peters, Brian M; Li, Bing; Deng, Yang; Xu, Zhenbo; Shirtliff, Mark E

    2016-09-01

    Lactobacillus acetotolerans is a hard-to-culture beer-spoilage bacterium capable of entering into the viable putative nonculturable (VPNC) state. As part of an initial strategy to investigate the phenotypic behavior of L. acetotolerans, draft genome sequencing was performed. Results demonstrated a total of 1824 predicted annotated genes, with several potential VPNC- and beer-spoilage-associated genes identified. Importantly, this is the first genome sequence of L. acetotolerans as beer-spoilage bacteria and it may aid in further analysis of L. acetotolerans and other beer-spoilage bacteria, with direct implications for food safety control in the beer brewing industry. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Effects of Ethanolic Ferolagu angulata Extract on Pathogenic Gastrointestinal Bacteria and Probiotic Bacteria in Skimmed Milk Medium

    Directory of Open Access Journals (Sweden)

    Reza Naghiha

    2016-12-01

    Full Text Available Background:    Due to excessive consumption of synthetic drugs, drug resistance rate of pathogenic bacteria is increasing and there is an ever-increasing need to find new safe compounds to tackle this problem. This study was conducted to investigate the consequences of chavill extract on the growth and viability of gastrointestinal pathogenic bacterium and probiotics bacteria. Methods:    The experiment contained three levels of the chavill extract concentrations (0, 1 and 3% which were added to the milk free fat in accompany with three probiotic bacteria (Lactobacillus acidophilus, Lactobacillus casei and lactobacillus plantaram and a pathogenic gastrointestinal bacterium (Salmonella typhimurium. Bacterial inoculums (1×107 CFU/ml with different concentrations of chavill extract were added to skimmed milk medium and bacteria growth were enumerated. Results:  The concentration of 1% chavill extract significantly increased the total count of probiotic bacteria compared to the control group, while the number of pathogenic bacteria was decreased. At 3% chavill extract the growth of Lactobacillus acidophilus and Lactobacillus plantaram were increased. On the other hand, it prevented the growth of Salmonella typhimurium Conclusion:   Chavill extracts would play as an alternative to antibiotics in pharmacological studies to decreases harmful bacteria and increase probiotic bacteria.

  19. Genomic and evolutionary comparisons of diazotrophic and pathogenic bacteria of the order Rhizobiales

    Directory of Open Access Journals (Sweden)

    Vasconcelos Ana

    2010-02-01

    Full Text Available Abstract Background Species belonging to the Rhizobiales are intriguing and extensively researched for including both bacteria with the ability to fix nitrogen when in symbiosis with leguminous plants and pathogenic bacteria to animals and plants. Similarities between the strategies adopted by pathogenic and symbiotic Rhizobiales have been described, as well as high variability related to events of horizontal gene transfer. Although it is well known that chromosomal rearrangements, mutations and horizontal gene transfer influence the dynamics of bacterial genomes, in Rhizobiales, the scenario that determine pathogenic or symbiotic lifestyle are not clear and there are very few studies of comparative genomic between these classes of prokaryotic microorganisms trying to delineate the evolutionary characterization of symbiosis and pathogenesis. Results Non-symbiotic nitrogen-fixing bacteria and bacteria involved in bioremediation closer to symbionts and pathogens in study may assist in the origin and ancestry genes and the gene flow occurring in Rhizobiales. The genomic comparisons of 19 species of Rhizobiales, including nitrogen-fixing, bioremediators and pathogens resulted in 33 common clusters to biological nitrogen fixation and pathogenesis, 15 clusters exclusive to all nitrogen-fixing bacteria and bacteria involved in bioremediation, 13 clusters found in only some nitrogen-fixing and bioremediation bacteria, 01 cluster exclusive to some symbionts, and 01 cluster found only in some pathogens analyzed. In BBH performed to all strains studied, 77 common genes were obtained, 17 of which were related to biological nitrogen fixation and pathogenesis. Phylogenetic reconstructions for Fix, Nif, Nod, Vir, and Trb showed possible horizontal gene transfer events, grouping species of different phenotypes. Conclusions The presence of symbiotic and virulence genes in both pathogens and symbionts does not seem to be the only determinant factor for lifestyle

  20. Genomic and evolutionary comparisons of diazotrophic and pathogenic bacteria of the order Rhizobiales.

    Science.gov (United States)

    Carvalho, Fabíola M; Souza, Rangel C; Barcellos, Fernando G; Hungria, Mariangela; Vasconcelos, Ana Tereza R

    2010-02-08

    Species belonging to the Rhizobiales are intriguing and extensively researched for including both bacteria with the ability to fix nitrogen when in symbiosis with leguminous plants and pathogenic bacteria to animals and plants. Similarities between the strategies adopted by pathogenic and symbiotic Rhizobiales have been described, as well as high variability related to events of horizontal gene transfer. Although it is well known that chromosomal rearrangements, mutations and horizontal gene transfer influence the dynamics of bacterial genomes, in Rhizobiales, the scenario that determine pathogenic or symbiotic lifestyle are not clear and there are very few studies of comparative genomic between these classes of prokaryotic microorganisms trying to delineate the evolutionary characterization of symbiosis and pathogenesis. Non-symbiotic nitrogen-fixing bacteria and bacteria involved in bioremediation closer to symbionts and pathogens in study may assist in the origin and ancestry genes and the gene flow occurring in Rhizobiales. The genomic comparisons of 19 species of Rhizobiales, including nitrogen-fixing, bioremediators and pathogens resulted in 33 common clusters to biological nitrogen fixation and pathogenesis, 15 clusters exclusive to all nitrogen-fixing bacteria and bacteria involved in bioremediation, 13 clusters found in only some nitrogen-fixing and bioremediation bacteria, 01 cluster exclusive to some symbionts, and 01 cluster found only in some pathogens analyzed. In BBH performed to all strains studied, 77 common genes were obtained, 17 of which were related to biological nitrogen fixation and pathogenesis. Phylogenetic reconstructions for Fix, Nif, Nod, Vir, and Trb showed possible horizontal gene transfer events, grouping species of different phenotypes. The presence of symbiotic and virulence genes in both pathogens and symbionts does not seem to be the only determinant factor for lifestyle evolution in these microorganisms, although they may act in

  1. Acetic Acid Bacteria as Symbionts of Insects

    KAUST Repository

    Crotti, Elena; Chouaia, Bessem; Alma, Alberto; Favia, Guido; Bandi, Claudio; Bourtzis, Kostas; Daffonchio, Daniele

    2016-01-01

    Acetic acid bacteria (AAB) are being increasingly described as associating with different insect species that rely on sugar-based diets. AAB have been found in several insect orders, among them Diptera, Hemiptera, and Hymenoptera, including several vectors of plant, animal, and human diseases. AAB have been shown to associate with the epithelia of different organs of the host, they are able to move within the insect’s body and to be transmitted horizontally and vertically. Here, we review the ecology of AAB and examine their relationships with different insect models including mosquitoes, leafhoppers, and honey bees. We also discuss the potential use of AAB in symbiont-based control strategies, such as “Trojan-horse” agents, to block the transmission of vector-borne diseases.

  2. Acetic Acid Bacteria as Symbionts of Insects

    KAUST Repository

    Crotti, Elena

    2016-06-14

    Acetic acid bacteria (AAB) are being increasingly described as associating with different insect species that rely on sugar-based diets. AAB have been found in several insect orders, among them Diptera, Hemiptera, and Hymenoptera, including several vectors of plant, animal, and human diseases. AAB have been shown to associate with the epithelia of different organs of the host, they are able to move within the insect’s body and to be transmitted horizontally and vertically. Here, we review the ecology of AAB and examine their relationships with different insect models including mosquitoes, leafhoppers, and honey bees. We also discuss the potential use of AAB in symbiont-based control strategies, such as “Trojan-horse” agents, to block the transmission of vector-borne diseases.

  3. Anaerobic ammonium-oxidizing bacteria gain antibiotic resistance during long-term acclimatization.

    Science.gov (United States)

    Zhang, Zheng-Zhe; Zhang, Qian-Qian; Guo, Qiong; Chen, Qian-Qian; Jiang, Xiao-Yan; Jin, Ren-Cun

    2015-09-01

    Three broad-spectrum antibiotics, amoxicillin (AMX), florfenicol (FF) and sulfamethazine (SMZ), that inhibit bacteria via different target sites, were selected to evaluate the acute toxicity and long-term effects on anaerobic ammonium oxidation (anammox) granules. The specific anammox activity (SAA) levels reduced by approximately half within the first 3 days in the presence of antibiotics but no nitrite accumulation was observed in continuous-flow experiments. However, the SAA levels and heme c content gradually recovered as the antibiotic concentrations increased. Extracellular polymeric substances (EPS) analysis suggested that anaerobic ammonium-oxidizing bacteria gradually developed a better survival strategy during long-term acclimatization, which reduced the antibiotic stress via increased EPS secretion that provided a protective 'cocoon.' In terms of nitrogen removal efficiency, anammox granules could resist 60 mg-AMX L(-1), 10 mg-FF L(-1) and 100 mg-SMZ L(-1). This study supported the feasibility of using anammox granules to treat antibiotic-containing wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Bactericide for sulfate-reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Shklyar, T F; Anoshina, G M; Blokhin, V Ye; Kisarrev, Ye L; Novikovsa, G M

    1981-01-01

    The aim of the invention is to find a bactericide for sulfate-reducing bacteria of oil fields in Western Siberia in order to suppress the biocorrosive activity on oil industry equipment. This goal is achieved by using M-nitroacetanylide as the bactericide of sulfate-reducing bacteria. This agent suppresses the activity of a stored culture of sulfate-reducing bacteria that comes from industrial waste waters injection wells of the Smotlor oil field.

  5. Mycorrhiza helper bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Deveau, Aurelie [French National Insitute for Agricultural Research (INRA); Labbe, Jessy [ORNL

    2016-10-01

    This chapter focuses on the Mycorrhiza Helper Bacteria (MHB), a generic name given to bacteria which stimulate the formation of mycorrhizal symbiosis. By extension, some bacterial strains that positively impact the functioning of mycorrhizal symbiosis are also called MHB. These bacteria have applicative interests, as they indirectly improve the health and growth of tree seedlings. MHB are not restricted to a specific type of ecosystem, but are rather generalist in the way that they associate with both herbaceous and woody mycorrhizal plants from boreal, temperate, arid and tropical ecosystems. However, understanding the molecular mechanisms and their specificities will help us to know more about the ecology of the MHB. The process of acquisition varies between fungal species; while ectomycorrhizal fungi most probably recurrently acquire them from the environment, the association between bacterial endosymbionts and Glomeromycota probably dates back to very ancient times, and has since been vertically transmitted.

  6. Antibacterial activity of Pinus elliottii against anaerobic bacteria present in primary endodontic infections.

    Science.gov (United States)

    Caetano da Silva, Sandro Donizete; Mendes de Souza, Maria Gorete; Oliveira Cardoso, Miguel Jorge; da Silva Moraes, Thais; Ambrósio, Sérgio Ricardo; Sola Veneziani, Rodrigo Cássio; Martins, Carlos Henrique G

    2014-12-01

    activity revealed significant results--MICB50 lay between 7.8 and 62.5 μg/mL, and dehydroabietic acid prevented all the evaluated bacteria from forming a biofilm. Hence, the chemical constituents of P. elliottii are promising biomolecules to develop novel therapeutic strategies to fight against endodontic infections. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Horizontal gene transfer between bacteria.

    Science.gov (United States)

    Heuer, Holger; Smalla, Kornelia

    2007-01-01

    Horizontal gene transfer (HGT) refers to the acquisition of foreign genes by organisms. The occurrence of HGT among bacteria in the environment is assumed to have implications in the risk assessment of genetically modified bacteria which are released into the environment. First, introduced genetic sequences from a genetically modified bacterium could be transferred to indigenous micro-organisms and alter their genome and subsequently their ecological niche. Second, the genetically modified bacterium released into the environment might capture mobile genetic elements (MGE) from indigenous micro-organisms which could extend its ecological potential. Thus, for a risk assessment it is important to understand the extent of HGT and genome plasticity of bacteria in the environment. This review summarizes the present state of knowledge on HGT between bacteria as a crucial mechanism contributing to bacterial adaptability and diversity. In view of the use of GM crops and microbes in agricultural settings, in this mini-review we focus particularly on the presence and role of MGE in soil and plant-associated bacteria and the factors affecting gene transfer.

  8. Bacteria vs. bacteriophages: parallel evolution of immune arsenals

    Directory of Open Access Journals (Sweden)

    Muhammad Abu Bakr Shabbir

    2016-08-01

    Full Text Available Bacteriophages are the most common entities on earth and represent a constant challenge to bacterial populations. To fend off bacteriophage infection, bacteria evolved immune systems to avert phage adsorption and block invader DNA entry. They developed restriction-modification systems and mechanisms to abort infection and interfere with virion assembly, as well as newly recognized clustered regularly interspaced short palindromic repeats (CRISPR. In response to bacterial immune systems, bacteriophages synchronously evolved resistance mechanisms, such as the anti-CRISPR systems to counterattack bacterial CRISPR-cas systems, in a continuing evolutionary arms race between virus and host. In turn, it is fundamental to the survival of the bacterial cell to evolve a system to combat bacteriophage immune strategies.

  9. Tissue repair in myxobacteria: A cooperative strategy to heal cellular damage.

    Science.gov (United States)

    Vassallo, Christopher N; Wall, Daniel

    2016-04-01

    Damage repair is a fundamental requirement of all life as organisms find themselves in challenging and fluctuating environments. In particular, damage to the barrier between an organism and its environment (e.g. skin, plasma membrane, bacterial cell envelope) is frequent because these organs/organelles directly interact with the external world. Here, we discuss the general strategies that bacteria use to cope with damage to their cell envelope and their repair limits. We then describe a novel damage-coping mechanism used by multicellular myxobacteria. We propose that cell-cell transfer of membrane material within a population serves as a wound-healing strategy and provide evidence for its utility. We suggest that--similar to how tissues in eukaryotes have evolved cooperative methods of damage repair--so too have some bacteria that live a multicellular lifestyle. © 2016 WILEY Periodicals, Inc.

  10. Screening and characterization of phosphate solubilizing bacteria from isolate of thermophilic bacteria

    Science.gov (United States)

    Yulianti, Evy; Rakhmawati, Anna

    2017-08-01

    The aims of this study were to select bacteria that has the ability to dissolve phosphate from thermophilic bacteria isolates after the Merapi eruption. Five isolates of selected bacteria was characterized and continued with identification. Selection was done by using a pikovskaya selective medium. Bacterial isolates were grown in selective medium and incubated for 48 hours at temperature of 55 ° C. Characterization was done by looking at the cell and colony morphology, physiological and biochemical properties. Identification was done with the Profile Matching method based on the reference genus Oscillospira traced through Bergey's Manual of Determinative Bacteriology. Dendogram was created based on similarity index SSM. The results showed there were 14 isolates of bacteria that were able to dissolve phosphate indicated by a clear zone surrounding the bacterial colony on selective media. Five isolates were selected with the largest clear zone. Isolates D79, D92, D110a, D135 and D75 have different characters. The result of phenotypic characters identification with Genus Oscillospira profile has a percentage of 100% similarity to isolate D92 and D110a; 92.31% for isolates D79, and 84.6% for isolates D75 and D135. Dendogram generated from average linkage algorithm / UPGMA using the Simple Matching Coefficient (SSM) algorithms showed, isolate thermophilic bacteria D75 and D135 are combined together to form cluster 1. D110a and D92 form a sub cluster A. Sub cluster A and D79 form cluster 2

  11. COMPETITION BETWEEN ANOXYGENIC PHOTOTROPHIC BACTERIA AND COLORLESS SULFUR BACTERIA IN A MICROBIAL MAT

    NARCIS (Netherlands)

    VISSCHER, PT; VANDENENDE, FP; SCHAUB, BEM; VANGEMERDEN, H

    The populations of chemolithoautotrophic (colorless) sulfur bacteria and anoxygenic phototrophic bacteria were enumerated in a marine microbial mat. The highest population densities were found in the 0-5 mm layer of the mat: 2.0 X 10(9) cells CM-3 sediment, and 4.0 X 10(7) cells cm-3 sediment for

  12. Quorum sensing in gram-negative bacteria

    DEFF Research Database (Denmark)

    Wu, H.; Song, Z.J.; Høiby, N.

    2004-01-01

    Bacteria can communicate with each other by means of signal molecules to coordinate the behavior of the entire community, and the mechanism is referred to as quorum sensing (QS). Signal systems enable bacteria to sense the size of their densities by monitoring the concentration of the signal...... molecules. Among Gram-negative bacteria N-acyl-L-homoserine lactone (acyl-HSL)-dependent quorum sensing systems are particularly widespread. These systems are used to coordinate expression of phenotypes that are fundamental to the interaction of bacteria with each other and with their environment...

  13. Social and Economic Aspects of the Transmission of Pathogenic Bacteria between Wildlife and Food Animals: A Thematic Analysis of Published Research Knowledge.

    Science.gov (United States)

    Fournier, A; Young, I; Rajić, A; Greig, J; LeJeune, J

    2015-09-01

    Wildlife is a known reservoir of pathogenic bacteria, including Mycobacterium bovis and Brucella spp. Transmission of these pathogens between wildlife and food animals can lead to damaging impacts on the agri-food industry and public health. Several international case studies have highlighted the complex and cross-sectoral challenges involved in preventing and managing these potential transmission risks. The objective of our study was to develop a better understanding of the socio-economic aspects of the transmission of pathogenic bacteria between wildlife and food animals to support more effective and sustainable risk mitigation strategies. We conducted qualitative thematic analysis on a purposive sample of 30/141 articles identified in a complementary scoping review of the literature in this area and identified two key themes. The first related to the framing of this issue as a 'wicked problem' that depends on a complex interaction of social factors and risk perceptions, governance and public policy, and economic implications. The second theme consisted of promising approaches and strategies to prevent and mitigate the potential risks from transmission of pathogenic bacteria between wildlife and food animals. These included participatory, collaborative and multidisciplinary decision-making approaches and the proactive incorporation of credible scientific evidence and local contextual factors into solutions. The integration of these approaches to address 'wicked problems' in this field may assist stakeholders and decision-makers in improving the acceptability and sustainability of future strategies to reduce the transmission of pathogenic bacteria between wildlife and food animals. © 2015 Zoonoses and Public Health © 2015 Her Majesty the Queen in Right of Canada Reproduced with the permission of the Minister of the Public Health Agency of Canada.

  14. Genetic tools for the investigation of Roseobacter clade bacteria

    Directory of Open Access Journals (Sweden)

    Tielen Petra

    2009-12-01

    Full Text Available Abstract Background The Roseobacter clade represents one of the most abundant, metabolically versatile and ecologically important bacterial groups found in marine habitats. A detailed molecular investigation of the regulatory and metabolic networks of these organisms is currently limited for many strains by missing suitable genetic tools. Results Conjugation and electroporation methods for the efficient and stable genetic transformation of selected Roseobacter clade bacteria including Dinoroseobacter shibae, Oceanibulbus indolifex, Phaeobacter gallaeciensis, Phaeobacter inhibens, Roseobacter denitrificans and Roseobacter litoralis were tested. For this purpose an antibiotic resistance screening was performed and suitable genetic markers were selected. Based on these transformation protocols stably maintained plasmids were identified. A plasmid encoded oxygen-independent fluorescent system was established using the flavin mononucleotide-based fluorescent protein FbFP. Finally, a chromosomal gene knockout strategy was successfully employed for the inactivation of the anaerobic metabolism regulatory gene dnr from D. shibae DFL12T. Conclusion A genetic toolbox for members of the Roseobacter clade was established. This provides a solid methodical basis for the detailed elucidation of gene regulatory and metabolic networks underlying the ecological success of this group of marine bacteria.

  15. Adhesion Properties of Lactic Acid Bacteria on Intestinal Mucin

    Directory of Open Access Journals (Sweden)

    Keita Nishiyama

    2016-09-01

    Full Text Available Lactic acid bacteria (LAB are Gram-positive bacteria that are natural inhabitants of the gastrointestinal (GI tracts of mammals, including humans. Since Mechnikov first proposed that yogurt could prevent intestinal putrefaction and aging, the beneficial effects of LAB have been widely demonstrated. The region between the duodenum and the terminal of the ileum is the primary region colonized by LAB, particularly the Lactobacillus species, and this region is covered by a mucus layer composed mainly of mucin-type glycoproteins. The mucus layer plays a role in protecting the intestinal epithelial cells against damage, but is also considered to be critical for the adhesion of Lactobacillus in the GI tract. Consequently, the adhesion exhibited by lactobacilli on mucin has attracted attention as one of the critical factors contributing to the persistent beneficial effects of Lactobacillus in a constantly changing intestinal environment. Thus, understanding the interactions between Lactobacillus and mucin is crucial for elucidating the survival strategies of LAB in the GI tract. This review highlights the properties of the interactions between Lactobacillus and mucin, while concomitantly considering the structure of the GI tract from a histochemical perspective.

  16. Modeling how soluble microbial products (SMP) support heterotrophic bacteria in autotroph-based biofilms

    DEFF Research Database (Denmark)

    Merkey, Brian; Rittmann, Bruce E.; Chopp, David L.

    2009-01-01

    . In this paper, we develop and use a mathematical model to describe a model biofilm system that includes autotrophic and heterotrophic bacteria and the key products produced by the bacteria. The model combines the methods of earlier multi-species models with a multi-component biofilm model in order to explore...... the interaction between species via exchange of soluble microbial products (SMP). We show that multiple parameter sets are able to describe the findings of experimental studies, and that heterotrophs growing on autotrophically produced SMP may pursue either r- or K-strategies to sustain themselves when SMP...... is their only substrate. We also show that heterotrophs can colonize some distance from the autotrophs and still be sustained by autotrophically produced SMP. This work defines the feasible range of parameters for utilization of SMP by heterotrophs and the nature of the interactions between autotrophs...

  17. Endospore-forming bacteria as an indicator of pollution in sediments of Lake Geneva

    Directory of Open Access Journals (Sweden)

    Bueche M.

    2013-04-01

    Full Text Available Treated wastewater and runoff-water is released by the outlet of the sewage treatment plant of Vidy (Lausanne directly into the Lake of Geneva via a pipe located 300m from the shore. Even if this water is properly treated with modern technologies, we can observe an accumulation of micro pollutants into the sediments, and particularly heavy-metals. The main objective of this project is to investigate how these elevated concentrations of heavy metals affect both abundance and diversity of prokaryotes in the sediments. A special emphasis was given to endospore-forming bacteria, which could use sporulation as a survival strategy to resist in highly contaminated areas. This study could have implications both for understanding the role of endospore-forming bacteria in the environment as well as in terms of improving the bioremediation processes.

  18. Identifying the major bacteria causing intramammary infections in individual milk samples of sheep and goats using traditional bacteria culturing and real-time polymerase chain reaction.

    Science.gov (United States)

    Rovai, M; Caja, G; Salama, A A K; Jubert, A; Lázaro, B; Lázaro, M; Leitner, G

    2014-09-01

    Use of DNA-based methods, such as real-time PCR, has increased the sensitivity and shortened the time for bacterial identification, compared with traditional bacteriology; however, results should be interpreted carefully because a positive PCR result does not necessarily mean that an infection exists. One hundred eight lactating dairy ewes (56 Manchega and 52 Lacaune) and 24 Murciano-Granadina dairy goats were used for identifying the main bacteria causing intramammary infections (IMI) using traditional bacterial culturing and real-time PCR and their effects on milk performance. Udder-half milk samples were taken for bacterial culturing and somatic cell count (SCC) 3 times throughout lactation. Intramammary infections were assessed based on bacteria isolated in ≥2 samplings accompanied by increased SCC. Prevalence of subclinical IMI was 42.9% in Manchega and 50.0% in Lacaune ewes and 41.7% in goats, with the estimated milk yield loss being 13.1, 17.9, and 18.0%, respectively. According to bacteriology results, 87% of the identified single bacteria species (with more than 3 colonies/plate) or culture-negative growth were identical throughout samplings, which agreed 98.9% with the PCR results. Nevertheless, the study emphasized that 1 sampling may not be sufficient to determine IMI and, therefore, other inflammatory responses such as increased SCC should be monitored to identify true infections. Moreover, when PCR methodology is used, aseptic and precise milk sampling procedures are key for avoiding false-positive amplifications. In conclusion, both PCR and bacterial culture methods proved to have similar accuracy for identifying infective bacteria in sheep and goats. The final choice will depend on their response time and cost analysis, according to the requirements and farm management strategy. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Interactions between Bacteria and Bile Salts in the Gastrointestinal and Hepatobiliary Tracts

    Directory of Open Access Journals (Sweden)

    Verónica Urdaneta

    2017-10-01

    Full Text Available Bile salts and bacteria have intricate relationships. The composition of the intestinal pool of bile salts is shaped by bacterial metabolism. In turn, bile salts play a role in intestinal homeostasis by controlling the size and the composition of the intestinal microbiota. As a consequence, alteration of the microbiome–bile salt homeostasis can play a role in hepatic and gastrointestinal pathological conditions. Intestinal bacteria use bile salts as environmental signals and in certain cases as nutrients and electron acceptors. However, bile salts are antibacterial compounds that disrupt bacterial membranes, denature proteins, chelate iron and calcium, cause oxidative damage to DNA, and control the expression of eukaryotic genes involved in host defense and immunity. Bacterial species adapted to the mammalian gut are able to endure the antibacterial activities of bile salts by multiple physiological adjustments that include remodeling of the cell envelope and activation of efflux systems and stress responses. Resistance to bile salts permits that certain bile-resistant pathogens can colonize the hepatobiliary tract, and an outstanding example is the chronic infection of the gall bladder by Salmonella enterica. A better understanding of the interactions between bacteria and bile salts may inspire novel therapeutic strategies for gastrointestinal and hepatobiliary diseases that involve microbiome alteration, as well as novel schemes against bacterial infections.

  20. Laser-Based Identification of Pathogenic Bacteria

    Science.gov (United States)

    Rehse, Steven J.

    2009-01-01

    Bacteria are ubiquitous in our world. From our homes, to our work environment, to our own bodies, bacteria are the omnipresent although often unobserved companions to human life. Physicists are typically untroubled professionally by the presence of these bacteria, as their study usually falls safely outside the realm of our typical domain. In the…

  1. Mimicking Seawater For Culturing Marine Bacteria

    DEFF Research Database (Denmark)

    Rygaard, Anita Mac; Sonnenschein, Eva; Gram, Lone

    2015-01-01

    Only about 1% of marine bacteria have been brought into culture using traditional techniques. The purpose of this study was to investigate if mimicking the natural bacterial environment can increase culturability.We used marine substrates containing defined algal polymers or gellan gum as solidif......Only about 1% of marine bacteria have been brought into culture using traditional techniques. The purpose of this study was to investigate if mimicking the natural bacterial environment can increase culturability.We used marine substrates containing defined algal polymers or gellan gum...... as solidifying agents, and enumerated bacteria from seawater and algal exudates. We tested if culturability could be influenced by addition of quorum sensing signals (AHLs). All plates were incubated at 15°C. Bacterial counts (CFU/g) from algal exudates from brown algae were highest on media containing algal...... polymers. In general, bacteria isolated from algal exudates preferred more rich media than bacteria isolated from seawater. Overall, culturability ranged from 0.01 to 0.8% as compared to total cell count. Substitution of agar with gellan gum increased the culturability of seawater bacteria approximately...

  2. Antibiotic-resistant bacteria in drinking water.

    Science.gov (United States)

    Armstrong, J L; Shigeno, D S; Calomiris, J J; Seidler, R J

    1981-08-01

    We analyzed drinking water from seven communities for multiply antibiotic-resistant (MAR) bacteria (bacteria resistant to two or more antibiotics) and screened the MAR bacterial isolates obtained against five antibiotics by replica plating. Overall, 33.9% of 2,653 standard plate count bacteria from treated drinking waters were MAR. Two different raw water supplies for two communities carried MAR standard plate count bacteria at frequencies of 20.4 and 18.6%, whereas 36.7 and 67.8% of the standard plate count populations from sites within the respective distribution systems were MAR. Isolate identification revealed that MAR gram-positive cocci (Staphylococcus) and MAR gram-negative, nonfermentative rods (Pseudomonas, Alcaligenes, Moraxella-like group M, and Acinetobacter) were more common in drinking waters than in untreated source waters. Site-to-site variations in generic types and differences in the incidences of MAR organisms indicated that shedding of MAR bacteria living in pipelines may have contributed to the MAR populations in tap water. We conclude that the treatment of raw water and its subsequent distribution select for standard plate count bacteria exhibiting the MAR phenotype.

  3. Bacteria isolated from bats inhibit the growth of Pseudogymnoascus destructans, the causative agent of white-nose syndrome.

    Science.gov (United States)

    Hoyt, Joseph R; Cheng, Tina L; Langwig, Kate E; Hee, Mallory M; Frick, Winifred F; Kilpatrick, A Marm

    2015-01-01

    Emerging infectious diseases are a key threat to wildlife. Several fungal skin pathogens have recently emerged and caused widespread mortality in several vertebrate groups, including amphibians, bats, rattlesnakes and humans. White-nose syndrome, caused by the fungal skin pathogen Pseudogymnoascus destructans, threatens several hibernating bat species with extinction and there are few effective treatment strategies. The skin microbiome is increasingly understood to play a large role in determining disease outcome. We isolated bacteria from the skin of four bat species, and co-cultured these isolates with P. destructans to identify bacteria that might inhibit or kill P. destructans. We then conducted two reciprocal challenge experiments in vitro with six bacterial isolates (all in the genus Pseudomonas) to quantify the effect of these bacteria on the growth of P. destructans. All six Pseudomonas isolates significantly inhibited growth of P. destructans compared to non-inhibitory control bacteria, and two isolates performed significantly better than others in suppressing P. destructans growth for at least 35 days. In both challenge experiments, the extent of suppression of P. destructans growth was dependent on the initial concentration of P. destructans and the initial concentration of the bacterial isolate. These results show that bacteria found naturally occurring on bats can inhibit the growth of P. destructans in vitro and should be studied further as a possible probiotic to protect bats from white-nose syndrome. In addition, the presence of these bacteria may influence disease outcomes among individuals, populations, and species.

  4. Bacteria isolated from bats inhibit the growth of Pseudogymnoascus destructans, the causative agent of white-nose syndrome.

    Directory of Open Access Journals (Sweden)

    Joseph R Hoyt

    Full Text Available Emerging infectious diseases are a key threat to wildlife. Several fungal skin pathogens have recently emerged and caused widespread mortality in several vertebrate groups, including amphibians, bats, rattlesnakes and humans. White-nose syndrome, caused by the fungal skin pathogen Pseudogymnoascus destructans, threatens several hibernating bat species with extinction and there are few effective treatment strategies. The skin microbiome is increasingly understood to play a large role in determining disease outcome. We isolated bacteria from the skin of four bat species, and co-cultured these isolates with P. destructans to identify bacteria that might inhibit or kill P. destructans. We then conducted two reciprocal challenge experiments in vitro with six bacterial isolates (all in the genus Pseudomonas to quantify the effect of these bacteria on the growth of P. destructans. All six Pseudomonas isolates significantly inhibited growth of P. destructans compared to non-inhibitory control bacteria, and two isolates performed significantly better than others in suppressing P. destructans growth for at least 35 days. In both challenge experiments, the extent of suppression of P. destructans growth was dependent on the initial concentration of P. destructans and the initial concentration of the bacterial isolate. These results show that bacteria found naturally occurring on bats can inhibit the growth of P. destructans in vitro and should be studied further as a possible probiotic to protect bats from white-nose syndrome. In addition, the presence of these bacteria may influence disease outcomes among individuals, populations, and species.

  5. Extracellular deoxyribonuclease production by periodontal bacteria.

    Science.gov (United States)

    Palmer, L J; Chapple, I L C; Wright, H J; Roberts, A; Cooper, P R

    2012-08-01

    Whilst certain bacteria have long been known to secrete extracellular deoxyribonuclease (DNase), the purpose in microbial physiology was unclear. Recently, however, this enzyme has been demonstrated to confer enhanced virulence, enabling bacteria to evade the host's immune defence of extruded DNA/chromatin filaments, termed neutrophil extracellular traps (NETs). As NETs have recently been identified in infected periodontal tissue, the aim of this study was to screen periodontal bacteria for extracellular DNase activity. To determine whether DNase activity was membrane bound or secreted, 34 periodontal bacteria were cultured in broth and on agar plates. Pelleted bacteria and supernatants from broth cultures were analysed for their ability to degrade DNA, with relative activity levels determined using an agarose gel electrophoresis assay. Following culture on DNA-supplemented agar, expression was determined by the presence of a zone of hydrolysis and DNase activity related to colony size. Twenty-seven bacteria, including red and orange complex members Porphyromonas gingivalis, Tannerella forsythia, Fusobacterium nucleatum, Parvimonas micra, Prevotella intermedia, Streptococcus constellatus, Campylobacter rectus and Prevotella nigrescens, were observed to express extracellular DNase activity. Differences in DNase activity were noted, however, when bacteria were assayed in different culture states. Analysis of the activity of secreted DNase from bacterial broth cultures confirmed their ability to degrade NETs. The present study demonstrates, for the first time, that DNase activity is a relatively common property of bacteria associated with advanced periodontal disease. Further work is required to determine the importance of this bacterial DNase activity in the pathogenesis of periodontitis. © 2011 John Wiley & Sons A/S.

  6. Contribution of midgut bacteria to blood digestion and egg production in aedes aegypti (diptera: culicidae (L.

    Directory of Open Access Journals (Sweden)

    Pimenta Paulo FP

    2011-06-01

    Full Text Available Abstract Background The insect gut harbors a variety of microorganisms that probably exceed the number of cells in insects themselves. These microorganisms can live and multiply in the insect, contributing to digestion, nutrition, and development of their host. Recent studies have shown that midgut bacteria appear to strengthen the mosquito's immune system and indirectly enhance protection from invading pathogens. Nevertheless, the physiological significance of these bacteria for mosquitoes has not been established to date. In this study, oral administration of antibiotics was employed in order to examine the contribution of gut bacteria to blood digestion and fecundity in Aedes aegypti. Results The antibiotics carbenicillin, tetracycline, spectinomycin, gentamycin and kanamycin, were individually offered to female mosquitoes. Treatment of female mosquitoes with antibiotics affected the lysis of red blood cells (RBCs, retarded the digestion of blood proteins and reduced egg production. In addition, antibiotics did not affect the survival of mosquitoes. Mosquito fertility was restored in the second gonotrophic cycle after suspension of the antibiotic treatment, showing that the negative effects of antibiotics in blood digestion and egg production in the first gonotrophic cycle were reversible. Conclusions The reduction of bacteria affected RBC lysis, subsequently retarded protein digestion, deprived mosquito from essential nutrients and, finally, oocyte maturation was affected, resulting in the production of fewer viable eggs. These results indicate that Ae. aegypti and its midgut bacteria work in synergism to digest a blood meal. Our findings open new possibilities to investigate Ae. aegypti-associated bacteria as targets for mosquito control strategies.

  7. BioNLP Shared Task--The Bacteria Track.

    Science.gov (United States)

    Bossy, Robert; Jourde, Julien; Manine, Alain-Pierre; Veber, Philippe; Alphonse, Erick; van de Guchte, Maarten; Bessières, Philippe; Nédellec, Claire

    2012-06-26

    We present the BioNLP 2011 Shared Task Bacteria Track, the first Information Extraction challenge entirely dedicated to bacteria. It includes three tasks that cover different levels of biological knowledge. The Bacteria Gene Renaming supporting task is aimed at extracting gene renaming and gene name synonymy in PubMed abstracts. The Bacteria Gene Interaction is a gene/protein interaction extraction task from individual sentences. The interactions have been categorized into ten different sub-types, thus giving a detailed account of genetic regulations at the molecular level. Finally, the Bacteria Biotopes task focuses on the localization and environment of bacteria mentioned in textbook articles. We describe the process of creation for the three corpora, including document acquisition and manual annotation, as well as the metrics used to evaluate the participants' submissions. Three teams submitted to the Bacteria Gene Renaming task; the best team achieved an F-score of 87%. For the Bacteria Gene Interaction task, the only participant's score had reached a global F-score of 77%, although the system efficiency varies significantly from one sub-type to another. Three teams submitted to the Bacteria Biotopes task with very different approaches; the best team achieved an F-score of 45%. However, the detailed study of the participating systems efficiency reveals the strengths and weaknesses of each participating system. The three tasks of the Bacteria Track offer participants a chance to address a wide range of issues in Information Extraction, including entity recognition, semantic typing and coreference resolution. We found common trends in the most efficient systems: the systematic use of syntactic dependencies and machine learning. Nevertheless, the originality of the Bacteria Biotopes task encouraged the use of interesting novel methods and techniques, such as term compositionality, scopes wider than the sentence.

  8. The Microworld of Marine-Bacteria

    DEFF Research Database (Denmark)

    JØRGENSEN, BB

    1995-01-01

    Microsensor studies show that the marine environment in the size scale of bacteria is physically and chemically very different from the macroenvironment. The microbial world of the sediment-water interface is thus dominated by water viscosity and steep diffusion gradients. Because of the diverse...... metabolism types, bacteria in the mostly anoxic sea floor play an important role in the major element cycles of the ocean. The communities of giant, filamentous sulfur bacteria that live in the deep-sea hydrothermal vents or along the Pacific coast of South America are presented here as examples....

  9. Magnetotactic bacteria at the geomagnetic equator

    International Nuclear Information System (INIS)

    Frankel, R.B.; Blakemore, R.P.; Araujo, F.F.T. de; Esquivel, D.M.S.; Danon, J.

    1981-01-01

    Magnetotatic bacteria are observed in freshwater and marine sediments of Fortaleza, Brazil, situated close to the geomagnetic equator. Both South-seeking and North-seeking bacteria are present in roughly equal numbers in the same samples. This observation is consistent with the hypothesis that the vertical component of the geomagnetic field selects the predominant polarity type among magnetotactic bacteria in natural environments. (Author) [pt

  10. The Effect of Bacteria Penetration on Chalk Permeability

    DEFF Research Database (Denmark)

    Halim, Amalia Yunita; Shapiro, Alexander; Nielsen, Sidsel Marie

    number of B. licheniformis was detected on the effluent compared with P. putida. However, in the experiment with B. licheniformis mainly spores were detected in the effluent. The core permeability decreased rapidly during injection of bacteria and a starvation period of 12 days did not allow......Bacteria selective plugging is one of the mechanisms through which microorganisms can be applied for enhanced oil recovery. Bacteria can plug the water-bearing zones of a reservoir, thus altering the flow paths and improving sweep efficiency. It is known that the bacteria can penetrate deeply...... into reservoirs, however, a complete understanding of the penetration behavior of bacteria is lacking, especially in chalk formations where the pore throat sizes are almost comparable with the sizes of bacteria vegetative cells. This study investigates the penetration of bacteria into chalk. Two bacteria types...

  11. Structure, Biology, and Therapeutic Application of Toxin-Antitoxin Systems in Pathogenic Bacteria.

    Science.gov (United States)

    Lee, Ki-Young; Lee, Bong-Jin

    2016-10-22

    Bacterial toxin-antitoxin (TA) systems have received increasing attention for their diverse identities, structures, and functional implications in cell cycle arrest and survival against environmental stresses such as nutrient deficiency, antibiotic treatments, and immune system attacks. In this review, we describe the biological functions and the auto-regulatory mechanisms of six different types of TA systems, among which the type II TA system has been most extensively studied. The functions of type II toxins include mRNA/tRNA cleavage, gyrase/ribosome poison, and protein phosphorylation, which can be neutralized by their cognate antitoxins. We mainly explore the similar but divergent structures of type II TA proteins from 12 important pathogenic bacteria, including various aspects of protein-protein interactions. Accumulating knowledge about the structure-function correlation of TA systems from pathogenic bacteria has facilitated a novel strategy to develop antibiotic drugs that target specific pathogens. These molecules could increase the intrinsic activity of the toxin by artificially interfering with the intermolecular network of the TA systems.

  12. Bioenergetics of photoheterotrophic bacteria in the oceans.

    Science.gov (United States)

    Kirchman, David L; Hanson, Thomas E

    2013-04-01

    Photoheterotrophic microbes, such as proteorhodopsin (PR)-based phototrophic (PRP) and aerobic anoxygenic phototrophic (AAP) bacteria, are well known to be abundant in the oceans, potentially playing unique roles in biogeochemical cycles. However, the contribution of phototrophy to the energy requirements of these bacteria has not been quantitatively examined to date. To better understand the implications of photoheterophy in the oceans, we calculated energy benefits and costs of phototrophy and compared net benefits with maintenance costs. Benefits depend on the number of photosynthetic units (PSUs), absorption cross-section area of each PSU as function of wavelength, the in situ light quality, and the energy yield per absorbed photon. For costs we considered the energy required for the synthesis of pigments, amino acids and proteins in each PSU. Our calculations indicate that AAP bacteria harvest more light energy than do PRP bacteria, but the costs of phototrophy are much higher for AAP bacteria. Still, the net energy gained by AAP bacteria is often sufficient to meet maintenance costs, while that is not the case for PRP bacteria except with high light intensities and large numbers of proteorhodopsin molecules per cell. The low costs and simplicity of PR-based phototrophy explain the high abundance of proteorhodopsin genes in the oceans. However, even for AAP bacteria, the net energy yield of phototrophy is apparently too low to influence the distribution of photoheterotrophic bacteria among various marine systems. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  13. Ecophysiology of the Anammox Bacteria

    NARCIS (Netherlands)

    Kartal, M.B.

    2008-01-01

    Anaerobic ammonium oxidizing (anammox) bacteria oxidize ammonium to dinitrogen gas with nitrite as the electron acceptor. These bacteria are the key players in the global nitrogen cycle, responsible for the most of nitrogen production in natural ecosystems. The anammox process is also a

  14. Impact of Matric Potential and Pore Size Distribution on Growth Dynamics of Filamentous and Non-Filamentous Soil Bacteria

    NARCIS (Netherlands)

    Wolf, A.B.; Vos, de M.; Boer, de W.; Kowalchuk, G.A.

    2013-01-01

    The filamentous growth form is an important strategy for soil microbes to bridge air-filled pores in unsaturated soils. In particular, fungi perform better than bacteria in soils during drought, a property that has been ascribed to the hyphal growth form of fungi. However, it is unknown if, and to

  15. Impact of matric potential and pore size distribution on growth dynamics of filamentous and non-filamentous soil bacteria

    NARCIS (Netherlands)

    Wolf, A.B.; Vos, M.; De Boer, W.; Kowalchuk, G.A.

    2013-01-01

    The filamentous growth form is an important strategy for soil microbes to bridge air-filled pores in unsaturated soils. In particular, fungi perform better than bacteria in soils during drought, a property that has been ascribed to the hyphal growth form of fungi. However, it is unknown if, and to

  16. Zero waste machine coolant management strategy at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Carlson, B.; Algarra, F.; Wilburn, D.

    1998-01-01

    Machine coolants are used in machining equipment including lathes, grinders, saws and drills. The purpose of coolants is to wash away machinery debris in the form of metal fines, lubricate, and disperse heat between the part and the machine tool. An effective coolant prolongs tool life and protects against part rejection, commonly due to scoring or scorching. Traditionally, coolants have a very short effective life in the machine, often times being disposed of as frequently as once per week. The cause of coolant degradation is primarily due to the effects of bacteria, which thrive in the organic rich coolant environment. Bacteria in this environment reproduce at a logarithmic rate, destroying the coolant desirable aspects and causing potential worker health risks associated with the use of biocides to control the bacteria. The strategy described in this paper has effectively controlled bacterial activity without the use of biocides, avoided disposal of a hazardous waste, and has extended coolant life indefinitely. The Machine Coolant Management Strategy employed a combination of filtration, heavy lubricating oil removal, and aeration, which maintained the coolant peak performance without the use of biocides. In FY96, the Laboratory generated and disposed of 19,880 kg of coolants from 9 separate sites at a cost of $145K. The single largest generator was the main machine shop producing an average 14,000 kg annually. However, in FY97, the waste generation for the main machine shop dropped to 4,000 kg after the implementation of the zero waste strategy. It is expected that this value will be further reduced in FY98

  17. Electron transport chains of lactic acid bacteria

    NARCIS (Netherlands)

    Brooijmans, R.J.W.

    2008-01-01

    Lactic acid bacteria are generally considered facultative anaerobic obligate fermentative bacteria. They are unable to synthesize heme. Some lactic acid bacteria are unable to form menaquinone as well. Both these components are cofactors of respiratory (electron transport) chains of prokaryotic

  18. Highly Efficient Malolactic Fermentation of Red Wine Using Encapsulated Bacteria in a Robust Biocomposite of Silica-Alginate.

    Science.gov (United States)

    Simó, Guillermo; Vila-Crespo, Josefina; Fernández-Fernández, Encarnación; Ruipérez, Violeta; Rodríguez-Nogales, José Manuel

    2017-06-28

    Bacteria encapsulation to develop malolactic fermentation emerges as a biotechnological strategy that provides significant advantages over the use of free cells. Two encapsulation methods have been proposed embedding Oenococcus oeni, (i) interpenetrated polymer networks of silica and Ca-alginate and (ii) Ca-alginate capsules coated with hydrolyzed 3-aminopropyltriethoxysilane (hAPTES). On the basis of our results, only the first method was suitable for bacteria encapsulation. The optimized silica-alginate capsules exhibited a negligible bacteria release and an increase of 328% and 65% in L-malic acid consumption and mechanical robustness, respectively, compared to untreated alginate capsules. Moreover, studies of capsule stability at different pH and ethanol concentrations in water solutions and in wine indicated a better behavior of silica-alginate capsules than untreated ones. The inclusion of silicates and colloidal silica in alginate capsules containing O. oeni improved markedly their capacity to deplete the levels of L-malic acid in red wines and their mechanical robustness and stability.

  19. Bacterial strategies of resistance to antimicrobial peptides.

    Science.gov (United States)

    Joo, Hwang-Soo; Fu, Chih-Iung; Otto, Michael

    2016-05-26

    Antimicrobial peptides (AMPs) are a key component of the host's innate immune system, targeting invasive and colonizing bacteria. For successful survival and colonization of the host, bacteria have a series of mechanisms to interfere with AMP activity, and AMP resistance is intimately connected with the virulence potential of bacterial pathogens. In particular, because AMPs are considered as potential novel antimicrobial drugs, it is vital to understand bacterial AMP resistance mechanisms. This review gives a comparative overview of Gram-positive and Gram-negative bacterial strategies of resistance to various AMPs, such as repulsion or sequestration by bacterial surface structures, alteration of membrane charge or fluidity, degradation and removal by efflux pumps.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. © 2016 The Author(s).

  20. Antibacterial Activities of Endophytic Bacteria Isolated from Taxus brevifolia Against Foodborne Pathogenic Bacteria.

    Science.gov (United States)

    Islam, Nurul; Choi, Jaehyuk; Baek, Kwang-Hyun

    2018-05-01

    Endophytes are a potential source of novel bioactive compounds with medicinal properties. In this study, 41 endophytic bacteria (EB) were isolated from tissues of a medicinally important plant Taxus brevifolia (Pacific yew). The objective was to screen all the EB isolates for their antibacterial effects against five foodborne pathogenic bacteria: Bacillus cereus ATCC10876, Staphylococcus aureus ATCC12600, Listeria monocytogenes ATCC19115, Escherichia coli ATCC43890, and Salmonella Typhimurium ATCC19585. Among the EB isolates, T. brevifolia seed (TbS)-8, T. brevifolia fleshy part of fruit (TbFl)-10, T. brevifolia leaf (TbL)-22, TbS-29, and TbL-34 exerted significant antibacterial activity against the tested foodborne pathogens. Especially TbFl-10 showed the highest antibacterial activity against all the tested bacteria and was identified as Paenibacillus kribbensis (Pk). Furthermore, an ethyl acetate extract of Pk-TbFl-10 possessed antibacterial activities against the tested five foodborne pathogenic bacteria, with zones of inhibition from 15.71 ± 2.85 to 13.01 ± 2.12 mm. Scanning electron microscopy analysis revealed ruptured, lysed, shrunk, and swollen cells of all the tested foodborne pathogens treated with the ethyl acetate extract of Pk-TbFl-10, suggesting that a metabolite(s) of Pk-TbFl-10 penetrates the cell membrane and causes cell lysis leading to cell death. Our results indicate that Pk-TbFl-10 isolated from T. brevifolia can serve as a novel source of natural antibacterial agents against foodborne pathogenic bacteria, with potential applications in the pharmaceutical industry.

  1. Money and transmission of bacteria.

    NARCIS (Netherlands)

    Gedik, H.; Voss, T.A.; Voss, A.

    2013-01-01

    Money is one of the most frequently passed items in the world. The aim of this study was to ascertain the survival status of bacteria including Staphylococcus aureus, Escherichia coli, and Vancomycin- Resistant Enterococci (VRE) on banknotes from different countries and the transmission of bacteria

  2. Review on SERS of Bacteria

    Directory of Open Access Journals (Sweden)

    Pamela A. Mosier-Boss

    2017-11-01

    Full Text Available Surface enhanced Raman spectroscopy (SERS has been widely used for chemical detection. Moreover, the inherent richness of the spectral data has made SERS attractive for use in detecting biological materials, including bacteria. This review discusses methods that have been used to obtain SERS spectra of bacteria. The kinds of SERS substrates employed to obtain SERS spectra are discussed as well as how bacteria interact with silver and gold nanoparticles. The roll of capping agents on Ag/Au NPs in obtaining SERS spectra is examined as well as the interpretation of the spectral data.

  3. Using Fluorescent Viruses for Detecting Bacteria in Water

    Science.gov (United States)

    Tabacco, Mary Beth; Qian, Xiaohua; Russo, Jaimie A.

    2009-01-01

    A method of detecting water-borne pathogenic bacteria is based partly on established molecular-recognition and fluorescent-labeling concepts, according to which bacteria of a species of interest are labeled with fluorescent reporter molecules and the bacteria can then be detected by fluorescence spectroscopy. The novelty of the present method lies in the use of bacteriophages (viruses that infect bacteria) to deliver the fluorescent reporter molecules to the bacteria of the species of interest.

  4. Screening and biological characteristics of fufenozide degrading bacteria

    Science.gov (United States)

    Xu, Chenhao; Gong, Mingfu; Guan, Qinlan; Deng, Xia; Deng, Hongyan; Huang, Jiao

    2018-04-01

    Fufenozide was a novel pesticide for the control of Lepidoptera pests, which was highly toxic to silkworm. Fufenozide-contaminated soil samples were collected and the bacteria that degrade fufenozide were isolated and screened by selective medium. The colony characteristics, cell characteristics and degradation characteristics in different concentrations fufenozide of the fufenozide degrading bacteria were studied. The results indicated that seven strains of fufenozide degradeing bacteria, named as DDH01, DDH03, DDH04, DDH04, DDH05, DDH07 and DDH07 respectively, were isolated from soil contaminated with fufenozide. DDH01, DDH02, DDH04 and DDH05 of seven fufenozide degrading bacteria, was gram-positive bacteria, and DDH03, DDH06 and DDH07 was gram-negative bacteria. All of seven strains of fufenozide degrading bacteria were not spores, weeks flagella, rod-shaped bacteria. DDH06 and DDH07 had capsules, and the remaining five strains had not capsule. The colonies formed by seven strains of fufenozide degradation bacteria on beef extract peptone medium plate were milky white colonies with irregular edges, thinner lawn, smaller colony with smooth surface. The growth of 7 strains of fufenozide degradation bacteria was significantly affected by the concentration of fufenozide, All of 7 strains grown in the range from 0.00025 g/mL to 1 g/mL of 10% fufenozide suspension. DDH2 was the best among the 7 strains of fufenozide degrading bacteria grown in 10% fufenozide suspension medium.

  5. HYDROCARBON-DEGRADING BACTERIA AND SURFACTANT ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R; Topher Berry, T; Grazyna A. Plaza, G; jacek Wypych, j

    2006-08-15

    Fate of benzene ethylbenzene toluene xylenes (BTEX) compounds through biodegradation was investigated using two different bacteria, Ralstonia picketti (BP-20) and Alcaligenes piechaudii (CZOR L-1B). These bacteria were isolated from extremely polluted petroleum hydrocarbon contaminated soils. PCR and Fatty Acid Methyl Ester (FAME) were used to identify the isolates. Biodegradation was measured using each organism individually and in combination. Both bacteria were shown to degrade each of the BTEX compounds. Alcaligenes piechaudii biodegraded BTEXs more efficiently while mixed with BP-20 and individually. Biosurfactant production was observed by culture techniques. In addition 3-hydroxy fatty acids, important in biosurfactant production, was observed by FAME analysis. In the all experiments toluene and m+p- xylenes were better growth substrates for both bacteria than the other BTEX compounds. In addition, the test results indicate that the bacteria could contribute to bioremediation of aromatic hydrocarbons (BTEX) pollution increase biodegradation through the action by biosurfactants.

  6. Acetic acid bacteria: A group of bacteria with versatile biotechnological applications.

    Science.gov (United States)

    Saichana, Natsaran; Matsushita, Kazunobu; Adachi, Osao; Frébort, Ivo; Frebortova, Jitka

    2015-11-01

    Acetic acid bacteria are gram-negative obligate aerobic bacteria assigned to the family Acetobacteraceae of Alphaproteobacteria. They are members of the genera Acetobacter, Gluconobacter, Gluconacetobacter, Acidomonas, Asaia, Kozakia, Swaminathania, Saccharibacter, Neoasaia, Granulibacter, Tanticharoenia, Ameyamaea, Neokomagataea, and Komagataeibacter. Many strains of Acetobacter and Komagataeibacter have been known to possess high acetic acid fermentation ability as well as the acetic acid and ethanol resistance, which are considered to be useful features for industrial production of acetic acid and vinegar, the commercial product. On the other hand, Gluconobacter strains have the ability to perform oxidative fermentation of various sugars, sugar alcohols, and sugar acids leading to the formation of several valuable products. Thermotolerant strains of acetic acid bacteria were isolated in order to serve as the new strains of choice for industrial fermentations, in which the cooling costs for maintaining optimum growth and production temperature in the fermentation vessels could be significantly reduced. Genetic modifications by adaptation and genetic engineering were also applied to improve their properties, such as productivity and heat resistance. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Human Gut-Derived Commensal Bacteria Suppress CNS Inflammatory and Demyelinating Disease.

    Science.gov (United States)

    Mangalam, Ashutosh; Shahi, Shailesh K; Luckey, David; Karau, Melissa; Marietta, Eric; Luo, Ningling; Choung, Rok Seon; Ju, Josephine; Sompallae, Ramakrishna; Gibson-Corley, Katherine; Patel, Robin; Rodriguez, Moses; David, Chella; Taneja, Veena; Murray, Joseph

    2017-08-08

    The human gut is colonized by a large number of microorganisms (∼10 13 bacteria) that support various physiologic functions. A perturbation in the healthy gut microbiome might lead to the development of inflammatory diseases, such as multiple sclerosis (MS). Therefore, gut commensals might provide promising therapeutic options for treating MS and other diseases. We report the identification of human gut-derived commensal bacteria, Prevotella histicola, which can suppress experimental autoimmune encephalomyelitis (EAE) in a human leukocyte antigen (HLA) class II transgenic mouse model. P. histicola suppresses disease through the modulation of systemic immune responses. P. histicola challenge led to a decrease in pro-inflammatory Th1 and Th17 cells and an increase in the frequencies of CD4 + FoxP3 + regulatory T cells, tolerogenic dendritic cells, and suppressive macrophages. Our study provides evidence that the administration of gut commensals may regulate a systemic immune response and may, therefore, have a possible role in treatment strategies for MS. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Combination Therapy Strategy of Quorum Quenching Enzyme and Quorum Sensing Inhibitor in Suppressing Multiple Quorum Sensing Pathways of P. aeruginosa

    DEFF Research Database (Denmark)

    Fong, July; Zhang, Chaodong; Yang, Renliang

    2018-01-01

    The threat of antibiotic resistant bacteria has called for alternative antimicrobial strategies that would mitigate the increase of classical resistance mechanism. Many bacteria employ quorum sensing (QS) to govern the production of virulence factors and formation of drug-resistant biofilms. Targ...

  9. Isolation of butanol- and isobutanol-tolerant bacteria and physiological characterization of their butanol tolerance.

    Science.gov (United States)

    Kanno, Manabu; Katayama, Taiki; Tamaki, Hideyuki; Mitani, Yasuo; Meng, Xian-Ying; Hori, Tomoyuki; Narihiro, Takashi; Morita, Naoki; Hoshino, Tamotsu; Yumoto, Isao; Kimura, Nobutada; Hanada, Satoshi; Kamagata, Yoichi

    2013-11-01

    Despite their importance as a biofuel production platform, only a very limited number of butanol-tolerant bacteria have been identified thus far. Here, we extensively explored butanol- and isobutanol-tolerant bacteria from various environmental samples. A total of 16 aerobic and anaerobic bacteria that could tolerate greater than 2.0% (vol/vol) butanol and isobutanol were isolated. A 16S rRNA gene sequencing analysis revealed that the isolates were phylogenetically distributed over at least nine genera: Bacillus, Lysinibacillus, Rummeliibacillus, Brevibacillus, Coprothermobacter, Caloribacterium, Enterococcus, Hydrogenoanaerobacterium, and Cellulosimicrobium, within the phyla Firmicutes and Actinobacteria. Ten of the isolates were phylogenetically distinct from previously identified butanol-tolerant bacteria. Two relatively highly butanol-tolerant strains CM4A (aerobe) and GK12 (obligate anaerobe) were characterized further. Both strains changed their membrane fatty acid composition in response to butanol exposure, i.e., CM4A and GK12 exhibited increased saturated and cyclopropane fatty acids (CFAs) and long-chain fatty acids, respectively, which may serve to maintain membrane fluidity. The gene (cfa) encoding CFA synthase was cloned from strain CM4A and expressed in Escherichia coli. The recombinant E. coli showed relatively higher butanol and isobutanol tolerance than E. coli without the cfa gene, suggesting that cfa can confer solvent tolerance. The exposure of strain GK12 to butanol by consecutive passages even enhanced the growth rate, indicating that yet-unknown mechanisms may also contribute to solvent tolerance. Taken together, the results demonstrate that a wide variety of butanol- and isobutanol-tolerant bacteria that can grow in 2.0% butanol exist in the environment and have various strategies to maintain structural integrity against detrimental solvents.

  10. Bacteria-mediated bisphenol A degradation.

    Science.gov (United States)

    Zhang, Weiwei; Yin, Kun; Chen, Lingxin

    2013-07-01

    Bisphenol A (BPA) is an important monomer in the manufacture of polycarbonate plastics, food cans, and other daily used chemicals. Daily and worldwide usage of BPA and BPA-contained products led to its ubiquitous distribution in water, sediment/soil, and atmosphere. Moreover, BPA has been identified as an environmental endocrine disruptor for its estrogenic and genotoxic activity. Thus, BPA contamination in the environment is an increasingly worldwide concern, and methods to efficiently remove BPA from the environment are urgently recommended. Although many factors affect the fate of BPA in the environment, BPA degradation is mainly depended on the metabolism of bacteria. Many BPA-degrading bacteria have been identified from water, sediment/soil, and wastewater treatment plants. Metabolic pathways of BPA degradation in specific bacterial strains were proposed, based on the metabolic intermediates detected during the degradation process. In this review, the BPA-degrading bacteria were summarized, and the (proposed) BPA degradation pathway mediated by bacteria were referred.

  11. In vitro model of production of antibodies; a new approach to reveal the presence of key bacteria in polymicrobial environments.

    Science.gov (United States)

    Wu, Chongcong; Nakka, Sravya; Mansouri, Sepahdar; Bengtsson, Torbjörn; Nayeri, Tayeb; Nayeri, Fariba

    2016-09-09

    There is a rapid emergence of multiple resistant gram-negative bacteria due to overuse of antibiotics in the treatment of infections. Biofilms consist of polymicrobial communities that survive the host's defense system. The key bacteria in biofilms are slow growing and support an attachment and rapid growth of other microorganisms. Current antimicrobial strategies often fail due to poor diagnosis of key pathogens in biofilms. The study aims to develop anti-bacterial human antibodies in vitro from patients who had recently undergone a systemic infection by pathogenic bacteria and to use these antibodies as a tool for detecting bacteria in biofilms. Lymphocytes were separated from whole blood of patients (n = 10) and stimulated with heat-killed bacteria to produce antibodies in vitro. The specificity of antibodies in recognizing the bacteria against which they were directed was evaluated by surface plasmon resonance system (SPR) and electron microscopy. The ulcer secretions from patients with chronic and acute leg ulcers and healthy controls were analyzed by the SPR system and the results were compared with culture studies. The produced antibodies recognized bacteria with high sensitivity (SPR). The antibodies against Enterococcus fecalis bound specifically to the microorganism in a bacterial co-culture that was visualized by electron microscopy. In the present work, a method for producing specific antibodies against bacteria is introduced to recognize bacterial components in body fluids of patients suffering from pathogenic biofilms. This diagnostic technique may be most useful in clinical microbiology and in the choice of antibiotics in the treatment of serious infections.

  12. Bacteria in atmospheric waters: Detection, characteristics and implications

    Science.gov (United States)

    Hu, Wei; Niu, Hongya; Murata, Kotaro; Wu, Zhijun; Hu, Min; Kojima, Tomoko; Zhang, Daizhou

    2018-04-01

    In this review paper, we synthesize the current knowledges about bacteria in atmospheric waters, e.g., cloud, fog, rain, and snow, most of which were obtained very recently. First, we briefly describe the importance of bacteria in atmospheric waters, i.e., the essentiality of studying bacteria in atmospheric waters in understanding aerosol-cloud-precipitation-climate interactions in the Earth system. Next, approaches to collect atmospheric water samples for the detection of bacteria and methods to identify the bacteria are summarized and compared. Then the available data on the abundance, viability and community composition of bacteria in atmospheric waters are summarized. The average bacterial concentration in cloud water was usually on the order 104-105 cells mL-1, while that in precipitation on the order 103-104 cells mL-1. Most of the bacteria were viable or metabolically active. Their community composition was highly diverse and differed at various sites. Factors potentially influencing the bacteria, e.g., air pollution levels and sources, meteorological conditions, seasonal effect, and physicochemical properties of atmospheric waters, are described. After that, the implications of bacteria present in atmospheric waters, including their effect on nucleation in clouds, atmospheric chemistry, ecosystems and public health, are briefly discussed. Finally, based on the current knowledges on bacteria in atmospheric waters, which in fact remains largely unknown, we give perspectives that should be paid attention to in future studies.

  13. Primordial-like enzymes from bacteria with reduced genomes.

    Science.gov (United States)

    Ferla, Matteo P; Brewster, Jodi L; Hall, Kelsi R; Evans, Gary B; Patrick, Wayne M

    2017-08-01

    The first cells probably possessed rudimentary metabolic networks, built using a handful of multifunctional enzymes. The promiscuous activities of modern enzymes are often assumed to be relics of this primordial era; however, by definition these activities are no longer physiological. There are many fewer examples of enzymes using a single active site to catalyze multiple physiologically-relevant reactions. Previously, we characterized the promiscuous alanine racemase (ALR) activity of Escherichia coli cystathionine β-lyase (CBL). Now we have discovered that several bacteria with reduced genomes lack alr, but contain metC (encoding CBL). We characterized the CBL enzymes from three of these: Pelagibacter ubique, the Wolbachia endosymbiont of Drosophila melanogaster (wMel) and Thermotoga maritima. Each is a multifunctional CBL/ALR. However, we also show that CBL activity is no longer required in these bacteria. Instead, the wMel and T. maritima enzymes are physiologically bi-functional alanine/glutamate racemases. They are not highly active, but they are clearly sufficient. Given the abundance of the microorganisms using them, we suggest that much of the planet's biochemistry is carried out by enzymes that are quite different from the highly-active exemplars usually found in textbooks. Instead, primordial-like enzymes may be an essential part of the adaptive strategy associated with streamlining. © 2017 The Authors. Molecular Microbiology Published by John Wiley & Sons Ltd.

  14. Magnetic Bacteria.

    Science.gov (United States)

    Nelson, Jane Bray; Nelson, Jim

    1992-01-01

    Describes the history of Richard Blakemore's discovery of magnetotaxic organisms. Discusses possible reasons why the magnetic response in bacteria developed. Proposes research experiments integrating biology and physics in which students investigate problems using cultures of magnetotaxic organisms. (MDH)

  15. Ecology of mycophagous collimonas bacteria in soil

    NARCIS (Netherlands)

    Höppener-Ogawa, Sachie

    2008-01-01

    Bacteria belonging to the genus Collimonas consist of soil bacteria that can grow at expense of living fungal hyphae i.e. they are mycophagous. This PhD studies deals with the ecology of mycophagous bacteria in soil using collimonads as model organisms. Collimonads were found to be widely

  16. Desiccation: An environmental and food industry stress that bacteria commonly face.

    Science.gov (United States)

    Esbelin, Julia; Santos, Tiago; Hébraud, Michel

    2018-02-01

    Water is essential for all living organisms, for animals as well as for plants and micro-organisms. For these latter, the presence of water or a humid environment with a high air relative humidity (RH) is necessary for their survival and growth. Thus, variations in the availability of water or in the air relative humidity constitute widespread environmental stresses which challenge microorganisms, and especially bacteria. Indeed, in their direct environment, bacteria are often faced with conditions that remove cell-bound water through air-drying of the atmosphere. Bacterial cells are subject to daily or seasonal environmental variations, sometimes going through periods of severe desiccation. This is also the case in the food industry, where air dehumidification treatments are applied after the daily cleaning-disinfection procedures. In plants producing low-water activity products, it is also usual to significantly reduce or eliminate water usage. Periodic desiccation exposure affects bacteria viability and so they require strategies to persist. Negative effects of desiccation are wide ranging and include direct cellular damage but also changes in the biochemical and biophysical properties of cells for which planktonic cells are more exposed than cells in biofilm. Understanding the mechanisms of desiccation adaptation and tolerance has a biological and biotechnological interest. This review gives an overview of the factors influencing desiccation tolerance and the biological mechanisms involved in this stress response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Elevated Rate of Genome Rearrangements in Radiation-Resistant Bacteria.

    Science.gov (United States)

    Repar, Jelena; Supek, Fran; Klanjscek, Tin; Warnecke, Tobias; Zahradka, Ksenija; Zahradka, Davor

    2017-04-01

    A number of bacterial, archaeal, and eukaryotic species are known for their resistance to ionizing radiation. One of the challenges these species face is a potent environmental source of DNA double-strand breaks, potential drivers of genome structure evolution. Efficient and accurate DNA double-strand break repair systems have been demonstrated in several unrelated radiation-resistant species and are putative adaptations to the DNA damaging environment. Such adaptations are expected to compensate for the genome-destabilizing effect of environmental DNA damage and may be expected to result in a more conserved gene order in radiation-resistant species. However, here we show that rates of genome rearrangements, measured as loss of gene order conservation with time, are higher in radiation-resistant species in multiple, phylogenetically independent groups of bacteria. Comparison of indicators of selection for genome organization between radiation-resistant and phylogenetically matched, nonresistant species argues against tolerance to disruption of genome structure as a strategy for radiation resistance. Interestingly, an important mechanism affecting genome rearrangements in prokaryotes, the symmetrical inversions around the origin of DNA replication, shapes genome structure of both radiation-resistant and nonresistant species. In conclusion, the opposing effects of environmental DNA damage and DNA repair result in elevated rates of genome rearrangements in radiation-resistant bacteria. Copyright © 2017 Repar et al.

  18. Comprehensive analysis of polyamine transport and biosynthesis in the dominant human gut bacteria: Potential presence of novel polyamine metabolism and transport genes.

    Science.gov (United States)

    Sugiyama, Yuta; Nara, Misaki; Sakanaka, Mikiyasu; Gotoh, Aina; Kitakata, Aya; Okuda, Shujiro; Kurihara, Shin

    2017-12-01

    Recent studies have reported that polyamines in the colonic lumen might affect animal health and these polyamines are thought to be produced by gut bacteria. In the present study, we measured the concentrations of three polyamines (putrescine, spermidine, and spermine) in cells and culture supernatants of 32 dominant human gut bacterial species in their growing and stationary phases. Combining polyamine concentration analysis in culture supernatant and cells with available genomic information showed that novel polyamine biosynthetic proteins and transporters were present in dominant human gut bacteria. Based on these findings, we suggested strategies for optimizing polyamine concentrations in the human colonic lumen via regulation of genes responsible for polyamine biosynthesis and transport in the dominant human gut bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Fourier transform-infrared spectroscopic methods for microbial ecology: analysis of bacteria, bacteria-polymer mixtures and biofilms

    Science.gov (United States)

    Nichols, P. D.; Henson, J. M.; Guckert, J. B.; Nivens, D. E.; White, D. C.

    1985-01-01

    Fourier transform-infrared (FT-IR) spectroscopy has been used to rapidly and nondestructively analyze bacteria, bacteria-polymer mixtures, digester samples and microbial biofilms. Diffuse reflectance FT-IR (DRIFT) analysis of freeze-dried, powdered samples offered a means of obtaining structural information. The bacteria examined were divided into two groups. The first group was characterized by a dominant amide I band and the second group of organisms displayed an additional strong carbonyl stretch at approximately 1740 cm-1. The differences illustrated by the subtraction spectra obtained for microbes of the two groups suggest that FT-IR spectroscopy can be utilized to recognize differences in microbial community structure. Calculation of specific band ratios has enabled the composition of bacteria and extracellular or intracellular storage product polymer mixtures to be determined for bacteria-gum arabic (amide I/carbohydrate C-O approximately 1150 cm-1) and bacteria-poly-beta-hydroxybutyrate (amide I/carbonyl approximately 1740 cm-1). The key band ratios correlate with the compositions of the material and provide useful information for the application of FT-IR spectroscopy to environmental biofilm samples and for distinguishing bacteria grown under differing nutrient conditions. DRIFT spectra have been obtained for biofilms produced by Vibrio natriegens on stainless steel disks. Between 48 and 144 h, an increase in bands at approximately 1440 and 1090 cm-1 was seen in FT-IR spectra of the V. natriegens biofilm. DRIFT spectra of mixed culture effluents of anaerobic digesters show differences induced by shifts in input feedstocks. The use of flow-through attenuated total reflectance has permitted in situ real-time changes in biofilm formation to be monitored and provides a powerful tool for understanding the interactions within adherent microbial consortia.

  20. [Distribution of Pathogenic Bacteria and Its Influence on Expression of BCL-2 and BAX Protein after HSCT in the Patients with Hematological Malignancies].

    Science.gov (United States)

    Su, Gui-Ping; Dai, Yan; Huang, Lai-Quan; Jiang, Yi-Zhi; Geng, Liang-Quan; Ding, Kai-Yang; Huang, Dong-Ping

    2016-06-01

    To investigate the distribution of pathogenic bacteria in the patients with hematologic malignancies received hematopoietic stem cell transplantation (HSCT) and its influence on the expression of BCL-2 and BAX proteins. The clinical data of 64 patients with malignant lymphoma (ML) received auto-HSCT from January 2011 to December 2015 in our hospital were analyzed. On basis of post-treansplant infection, the patients were divided into infection group (36 cases) and non-infection group (28 cases). The distribution of pathogenic bacteria in 2 groups was identified, the T lymphocyte subsets of peripheral blood, expression level of apoptotic proteins and C-reaction protein (CRP) in 2 group were detected. Thirty-six strains of pathogenic bacteria were isolated from 36 case of hematological malignancy after HSCT, including 24 strains of Gram-negative bacteria (66.67%) with predominamce of klebsiella pneumoniae (19.44%). The periperal blood CD4+ (t=2.637, Ppathogenic bacteria infecting ML patients after HSCT were mainly Gram-negative bacteria. The post-transplant infection can promote the expression up-regulation of related inflammatory factors and apoptotic proteins. The pathogens may be involved in cell apoptisis that provides a new strategy to treat the hematologic malignancies.

  1. Emerging role of bacteria in oral carcinogenesis: a review with special reference to perio-pathogenic bacteria.

    Science.gov (United States)

    Perera, Manosha; Al-Hebshi, Nezar Noor; Speicher, David J; Perera, Irosha; Johnson, Newell W

    2016-01-01

    Oral cancer, primarily oral squamous cell carcinoma (OSCC), continues to be a major global health problem with high incidence and low survival rates. While the major risk factors for this malignancy, mostly lifestyle related, have been identified, around 15% of oral cancer cases remain unexplained. In light of evidence implicating bacteria in the aetiology of some cancer types, several epidemiological studies have been conducted in the last decade, employing methodologies ranging from traditional culture techniques to 16S rRNA metagenomics, to assess the possible role of bacteria in OSCC. While these studies have demonstrated differences in microbial composition between cancerous and healthy tissues, they have failed to agree on specific bacteria or patterns of oral microbial dysbiosis to implicate in OSCC. On the contrary, some oral taxa, particularly Porphyromonas gingivalis and Fusobacterium nucleatum, show strong oral carcinogenic potential in vitro and in animal studies. Bacteria are thought to contribute to oral carcinogenesis via inhibition of apoptosis, activation of cell proliferation, promotion of cellular invasion, induction of chronic inflammation, and production of carcinogens. This narrative review provides a critical analysis of and an update on the association between bacteria and oral carcinogenesis and the possible mechanisms underlying it.

  2. Cultivable bacteria populations associated with leaves of banana and plantain plants and their antagonistic activity against Mycosphaerella fijiensis.

    Science.gov (United States)

    Ceballos, Isabel; Mosquera, Sandra; Angulo, Mónica; Mira, John J; Argel, Luz Edith; Uribe-Velez, Daniel; Romero-Tabarez, Magally; Orduz-Peralta, Sergio; Villegas, Valeska

    2012-10-01

    Mycosphaerella fijiensis is the etiological agent of Black Sigatoka, a fungal disease that affects production of banana and plantain crops in tropical regions. The sizes of cultivable epiphytic and endophytic bacterial populations, aerobic endospore forming bacteria (AEFB), and antagonist bacteria against M. fijiensis isolated from three Musa spp. cultivars from Urabá (Colombia) were studied, in order to find a suitable screening strategy to isolate antagonistic bacteria. Most of the variability found in the epiphytic and endophytic bacterial community sizes among fruit trees was explained by the cultivar differences. We found population sizes ranging from 1.25 × 10(3) to 9.64 × 10(5) CFU/g of fresh leaf and found that 44 % of total cultivable bacteria belong to the AEFB group. We isolated 648 AEFB from three different cultivars and assessed their antagonistic activity against M. fijiensis using the cell-free supernatant obtained from bacterial liquid cultures in three different in vitro assays. Five percent of those bacteria showed higher percent inhibition than the positive control Bacillus subtilis UA321 has (percent inhibition = 84 ± 5) in the screening phase. Therefore, they were selected as antagonistic bacteria against the pathogen. The strains with the highest percentage of antagonism were found in older leaves for the three cultivars, given support to recommend this group of leaves for future samplings. Some of these isolated bacteria affected the mycelium and ascospores morphology of the fungus. They also presented in vitro characteristics related to a successful colonization of the phylloplane such as indolic compounds, surfactant production, and biofilm formation, which makes them possible, potential candidates as biological control agents.

  3. Lipopolysaccharides in diazotrophic bacteria

    OpenAIRE

    Serrato, Rodrigo V.

    2014-01-01

    Biological nitrogen fixation (BNF) is a process in which the atmospheric nitrogen (N2) is transformed into ammonia (NH3) by a select group of nitrogen-fixing organisms, or diazotrophic bacteria. In order to furnish the biologically useful nitrogen to plants, these bacteria must be in constant molecular communication with their host plants. Some of these molecular plant-microbe interactions are very specific, resulting in a symbiotic relationship between the diazotroph and the host. Others are...

  4. Coryneform bacteria associated with canine otitis externa

    DEFF Research Database (Denmark)

    Aalbæk, Bent; Bemis, David A.; Schjærff, Mette

    2010-01-01

    This study aims to investigate the occurrence of coryneform bacteria in canine otitis externa. A combined case series and case-control study was carried out to improve the current knowledge on frequency and clinical significance of coryneform bacteria in samples from canine otitis externa. A total...... of 16 cases of otitis externa with involvement of coryneform bacteria were recorded at two referral veterinary hospitals in Denmark and the US, respectively. Coryneform bacteria were identified by partial 16S rRNA gene sequencing. Corynebacterium auriscanis was the most common coryneform species (10...... cases). Small colony variants of this species were also observed. Other coryneform isolates were identified as Corynebacterium amycolatum (3 cases), Corynebacterium freneyi (2 cases) and an Arcanobacterium-like species (1 case). The coryneform bacteria were in all cases isolated together with other...

  5. Bacteria modulate the degree of amphimix of their symbiotic entomopathogenic nematodes (Heterohabditis spp) in response to nutritional stress

    Science.gov (United States)

    Rincones, Johana; Mauléon, Hervé; Jaffe, Klaus

    2001-06-01

    Facultatively sexual entomopathogenic nematodes are a promising model for the experimental study of the adaptive values of sex. Our experiments in the laboratory showed that entomopathogenic nematodes display at least two different strategies in regulating the degree of amphimix as a response to nutritional stress. One strategy promotes the production of males, amphimix and the genetic variability of the offspring, improving the chances for a successful new adaptation. Another strategy increases the production of hermaphrodites at the expense of males, increasing the total number of reproductive individuals and thus the total number of offspring produced. Surprisingly, the strategy used depends upon the strain of symbiotic bacteria the nematodes are growing. The relevance of the results, in helping to discriminate between rival theories for the evolutionary maintenance of sex, is discussed.

  6. Stress Physiology of Lactic Acid Bacteria

    Science.gov (United States)

    Papadimitriou, Konstantinos; Alegría, Ángel; Bron, Peter A.; de Angelis, Maria; Gobbetti, Marco; Kleerebezem, Michiel; Lemos, José A.; Linares, Daniel M.; Ross, Paul; Stanton, Catherine; Turroni, Francesca; van Sinderen, Douwe; Varmanen, Pekka; Ventura, Marco; Zúñiga, Manuel; Tsakalidou, Effie

    2016-01-01

    SUMMARY Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the “stressome” of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance. PMID:27466284

  7. Bacteria classification using Cyranose 320 electronic nose

    Directory of Open Access Journals (Sweden)

    Gardner Julian W

    2002-10-01

    Full Text Available Abstract Background An electronic nose (e-nose, the Cyrano Sciences' Cyranose 320, comprising an array of thirty-two polymer carbon black composite sensors has been used to identify six species of bacteria responsible for eye infections when present at a range of concentrations in saline solutions. Readings were taken from the headspace of the samples by manually introducing the portable e-nose system into a sterile glass containing a fixed volume of bacteria in suspension. Gathered data were a very complex mixture of different chemical compounds. Method Linear Principal Component Analysis (PCA method was able to classify four classes of bacteria out of six classes though in reality other two classes were not better evident from PCA analysis and we got 74% classification accuracy from PCA. An innovative data clustering approach was investigated for these bacteria data by combining the 3-dimensional scatter plot, Fuzzy C Means (FCM and Self Organizing Map (SOM network. Using these three data clustering algorithms simultaneously better 'classification' of six eye bacteria classes were represented. Then three supervised classifiers, namely Multi Layer Perceptron (MLP, Probabilistic Neural network (PNN and Radial basis function network (RBF, were used to classify the six bacteria classes. Results A [6 × 1] SOM network gave 96% accuracy for bacteria classification which was best accuracy. A comparative evaluation of the classifiers was conducted for this application. The best results suggest that we are able to predict six classes of bacteria with up to 98% accuracy with the application of the RBF network. Conclusion This type of bacteria data analysis and feature extraction is very difficult. But we can conclude that this combined use of three nonlinear methods can solve the feature extraction problem with very complex data and enhance the performance of Cyranose 320.

  8. Communication among Oral Bacteria

    Science.gov (United States)

    Kolenbrander, Paul E.; Andersen, Roxanna N.; Blehert, David S.; Egland, Paul G.; Foster, Jamie S.; Palmer, Robert J.

    2002-01-01

    Human oral bacteria interact with their environment by attaching to surfaces and establishing mixed-species communities. As each bacterial cell attaches, it forms a new surface to which other cells can adhere. Adherence and community development are spatiotemporal; such order requires communication. The discovery of soluble signals, such as autoinducer-2, that may be exchanged within multispecies communities to convey information between organisms has emerged as a new research direction. Direct-contact signals, such as adhesins and receptors, that elicit changes in gene expression after cell-cell contact and biofilm growth are also an active research area. Considering that the majority of oral bacteria are organized in dense three-dimensional biofilms on teeth, confocal microscopy and fluorescently labeled probes provide valuable approaches for investigating the architecture of these organized communities in situ. Oral biofilms are readily accessible to microbiologists and are excellent model systems for studies of microbial communication. One attractive model system is a saliva-coated flowcell with oral bacterial biofilms growing on saliva as the sole nutrient source; an intergeneric mutualism is discussed. Several oral bacterial species are amenable to genetic manipulation for molecular characterization of communication both among bacteria and between bacteria and the host. A successful search for genes critical for mixed-species community organization will be accomplished only when it is conducted with mixed-species communities. PMID:12209001

  9. Automated radiometric detection of bacteria

    International Nuclear Information System (INIS)

    Waters, J.R.

    1974-01-01

    A new radiometric method called BACTEC, used for the detection of bacteria in cultures or in supposedly sterile samples, was discussed from the standpoint of methodology, both automated and semi-automated. Some of the results obtained so far were reported and some future applications and development possibilities were described. In this new method, the test sample is incubated in a sealed vial with a liquid culture medium containing a 14 C-labeled substrate. If bacteria are present, they break down the substrate, producing 14 CO 2 which is periodically extracted from the vial as a gas and is tested for radioactivity. If this gaseous radioactivity exceeds a threshold level, it is evidence of bacterial presence and growth in the test vial. The first application was for the detection of bacteria in the blood cultures of hospital patients. Data were presented showing typical results. Also discussed were future applications, such as rapid screening for bacteria in urine industrial sterility testing and the disposal of used 14 C substrates. (Mukohata, S.)

  10. Interactions among sulfide-oxidizing bacteria

    Science.gov (United States)

    Poplawski, R.

    1985-01-01

    The responses of different phototrophic bacteria in a competitive experimental system are studied, one in which primary factors such as H2S or light limited photometabolism. Two different types of bacteria shared one limited source of sulfide under specific conditions of light. The selection of a purple and a green sulfur bacteria and the cyanobacterium was based on their physiological similarity and also on the fact that they occur together in microbial mats. They all share anoxygenic photosynthesis, and are thus probably part of an evolutionary continuum of phototrophic organisms that runs from, strictly anaerobic physiology to the ability of some cyanobacteria to shift between anoxygenic bacterial style photosynthesis and the oxygenic kind typical of eukaryotes.

  11. Reactivity of the Bacteria-Water Interface: Linking Nutrient Availability to Bacteria-Metal Interactions

    Science.gov (United States)

    Fowle, D. A.; Daughney, C. J.; Riley, J. L.

    2002-12-01

    Identifying and quantifying the controls on metal mobilities in geologic systems is critical in order to understand processes such as global element cycling, metal transport in near-surface water-rock systems, sedimentary diagenesis, and mineral formation. Bacteria are ubiquitous in near-surface water-rock systems, and numerous laboratory and field studies have demonstrated that bacteria can facilitate the formation and dissolution of minerals, and enhance or inhibit contaminant transport. However, despite the growing evidence that bacteria play a key role in many geologic processes in low temperature systems, our understanding of the influence of the local nutrient dynamics of the system of interest on bacteria-metal interactions is limited. Here we present data demonstrating the effectiveness of coupling laboratory experiments with geochemical modeling to isolate the effect of nutrient availability on bacterially mediated proton and metal adsorption reactions. Experimental studies of metal-bacteria interactions were conducted in batch reactors as a function of pH, and solid-solute interactions after growth in a variety of defined and undefined media. Media nutrient composition (C,N,P) was quantified before and after harvesting the cells. Surface complexation models (SCM) for the adsorption reactions were developed by combining sorption data with the results of acid-base titrations, and in some cases zeta potential titrations of the bacterial surface. Our results indicate a clear change in both buffering potential and metal binding capacity of the cell walls of Bacillus subtilis as a function of initial media conditions. Combining current studies with our past studies on the effects of growth phase and others work on temperature dependence on metal adsorption we hope to develop a holistic surface complexation model for quantifying bacterial effects on metal mass transfer in many geologic systems.

  12. Influence of irradiation of bacteria on their thermoresistance

    International Nuclear Information System (INIS)

    Szulc, M.; Stefaniakowa, A.; Tropilo, J.; Stanczak, B.; Peconek, J.; Mierzewska, H.; Bielecka, J.

    1979-01-01

    The influence of x-radiation on thermoresistance of bacteria was determined. The studies were carried out on: E. coli, Pr. vulgaris, S. typhimurium, Staph. aureus and Str. faecalis. The bacteria were irradiated in PBS (physiological buffer solution) and in broth (containing about 1% of protein) with x-rays at radium absorbed doses of 100, 1000, 5000 and 10 000, which was followed immediately by heating at temperatures causing death of part of the bacteria. The results obtained indicate that irradiation of bacteria with small x-ray doses distinctly decreases their thermoresistance. Synergetic action of irradiation and heating of bacteria was observed, increasing with increased irradiation dose. The greatest changes of thermoresistance occurred with Pr. vulgaris, the smallest with S. typhimurium. Thermoresistance of bacteria decreased more strongly on their irradiation in protein-free medium (PBS). (author)

  13. Hyphae colonizing bacteria associated with Penicillium bilaii

    DEFF Research Database (Denmark)

    Ghodsalavi, Behnoushsadat

    shown that mycorrhizal helper bacteria presenting in mycorrhizal fungi could stimulate fungal growth, promote establishment of root-fungus symbiosis and enhance plant production. But it is unknown if the comparable relationship exist between the non-mycorrhizal fungus P. bilaii and its hyphae associated...... bacteria. In the current PhD thesis, we assumed that hyphae-associated microbiome of P. bilaii might harbor helper bacteria with ability to improve fungal growth and P solubilization performance. Therefore, we aimed to isolate bacteria associated with the P. bilaii hyphae and identify the fungal growth...... stimulating bacteria with the perspective of promoting efficiency of Jumpstart in soil – plant system. For this purpose, most of the work within the current project was carried out by development of suitable model systems by mimicking the natural soil habitat to reach to the reliable performance in soil...

  14. Bacteria Culture Test: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... this page: https://medlineplus.gov/labtests/bacteriaculturetest.html Bacteria Culture Test To use the sharing features on this page, please enable JavaScript. What is a Bacteria Culture Test? Bacteria are a large group of ...

  15. Low Prevalence of Carbapenem-Resistant Bacteria in River Water: Resistance Is Mostly Related to Intrinsic Mechanisms.

    Science.gov (United States)

    Tacão, Marta; Correia, António; Henriques, Isabel S

    2015-10-01

    Carbapenems are last-resort antibiotics to handle serious infections caused by multiresistant bacteria. The incidence of resistance to these antibiotics has been increasing and new resistance mechanisms have emerged. The dissemination of carbapenem resistance in the environment has been overlooked. The main goal of this research was to assess the prevalence and diversity of carbapenem-resistant bacteria in riverine ecosystems. The presence of frequently reported carbapenemase-encoding genes was inspected. The proportion of imipenem-resistant bacteria was on average 2.24 CFU/ml. Imipenem-resistant strains (n=110) were identified as Pseudomonas spp., Stenotrophomonas maltophilia, Aeromonas spp., Chromobacterium haemolyticum, Shewanella xiamenensis, and members of Enterobacteriaceae. Carbapenem-resistant bacteria were highly resistant to other beta-lactams such as quinolones, aminoglycosides, chloramphenicol, tetracyclines, and sulfamethoxazole/trimethoprim. Carbapenem resistance was mostly associated with intrinsically resistant bacteria. As intrinsic resistance mechanisms, we have identified the blaCphA gene in 77.3% of Aeromonas spp., blaL1 in all S. maltophilia, and blaOXA-48-like in all S. xiamenensis. As acquired resistance mechanisms, we have detected the blaVIM-2 gene in six Pseudomonas spp. (5.45%). Integrons with gene cassettes encoding resistance to aminoglycosides (aacA and aacC genes), trimethoprim (dfrB1b), and carbapenems (blaVIM-2) were found in Pseudomonas spp. Results suggest that carbapenem resistance dissemination in riverine ecosystems is still at an early stage. Nevertheless, monitoring these aquatic compartments for the presence of resistance genes and its host organisms is essential to outline strategies to minimize resistance dissemination.

  16. Intermittent Aeration Suppresses Nitrite-Oxidizing Bacteria in Membrane-Aerated Biofilms: A Model-Based Explanation

    DEFF Research Database (Denmark)

    Ma, Yunjie; Domingo Felez, Carlos; Plósz, Benedek G.

    2017-01-01

    . On the basis of dissolved oxygen (DO), ammonium, nitrite, and nitrate profiles within the biofilm and in the bulk, a 1-dimensional nitrifying biofilm model was developed and calibrated. The model was utilized to explore the potential mechanisms of NOB suppression associated with intermittent aeration...... nitritation, strategies to suppress nitrite-oxidizing bacteria (NOB) are needed, which are ideally grounded on an understanding of underlying mechanisms. In this study, a nitrifying MABR was operated under intermittent aeration. During eight months of operation, AOB dominated, while NOB were suppressed...... during intermittent aeration was mostly explained by periodic inhibition caused by free ammonia due to periodic transient pH upshifts. Dissolved oxygen limitation did not govern NOB suppression. Different intermittent aeration strategies were then evaluated for nitritation success in intermittently...

  17. The Potential of Indigenous Bacteria for Removing Cadmium from Industrial Wastewater in Lawang, East Java

    OpenAIRE

    Agung Pambudiono; Endang Suarsini; Mohamad Amin

    2018-01-01

    Heavy metals have been used in various areas around the world especially in the industrial sector. Heavy metals contamination is very dangerous for ecosystem because of its toxicity for some organisms. Cadmium (Cd) is a dangerous metal pollutant that can cause remarkable diverse of toxic effects, in particular for humans and animals. The use of bacteria as bioremediation agents has been widely studied because more efficient, less cost, and environmentally friendly strategy. This present study...

  18. Chemically enhanced sunlight for killing bacteria

    International Nuclear Information System (INIS)

    Block, S.S.; Goswami, D.Y.

    1995-01-01

    Solar ultraviolet (UV) photocatalyzed oxidation of chemicals with titanium dioxide (TiO 2 ) has received considerable attention. Much less recognized, however, is the ability of the same system to destroy bacteria. This study examined this phenomenon and the conditions that affect it. Bacteria in aqueous solution were given solar exposure with titanium dioxide and their survival with time was determined. Lamps with a predominantly solar ultraviolet spectrum were also used in the experiments. Without exposure to UV light, TiO 2 had no deleterious effect on the bacteria. However, several common bacteria on solar exposure in the presence of TiO 2 were killed in just a few minutes, whereas without TiO 2 it took over an hour to destroy them. A concentration of 0.01% TiO 2 was most effective in killing bacteria and 10-fold concentrations lower or higher were successively less effective. Inorganic and organic compounds in solution, even in small amounts, interfered with the efficiency of killing. Alkaline solution also reduced the bactericidal activity. Circulation and agitation provided by stirring to keep the TiO 2 particles suspended reduced the time necessary to kill the bacteria. Time-intensity curves for killing bacteria were the same general shape with or without TiO 2 , indicating that TiO 2 served merely as a catalyst to increase the rate of the reaction but that the mechanism of action was not changed. The shape of the curves show that the organisms are sensitized with a minimum intensity of radiation and that an increase doesn't greatly increase the rate of kill. Below this critical intensity, however, the time required for killing markedly increases as the intensity is decreased

  19. Molecular analysis of deep subsurface bacteria

    International Nuclear Information System (INIS)

    Jimenez Baez, L.E.

    1989-09-01

    Deep sediments samples from site C10a, in Appleton, and sites, P24, P28, and P29, at the Savannah River Site (SRS), near Aiken, South Carolina were studied to determine their microbial community composition, DNA homology and mol %G+C. Different geological formations with great variability in hydrogeological parameters were found across the depth profile. Phenotypic identification of deep subsurface bacteria underestimated the bacterial diversity at the three SRS sites, since bacteria with the same phenotype have different DNA composition and less than 70% DNA homology. Total DNA hybridization and mol %G+C analysis of deep sediment bacterial isolates suggested that each formation is comprised of different microbial communities. Depositional environment was more important than site and geological formation on the DNA relatedness between deep subsurface bacteria, since more 70% of bacteria with 20% or more of DNA homology came from the same depositional environments. Based on phenotypic and genotypic tests Pseudomonas spp. and Acinetobacter spp.-like bacteria were identified in 85 million years old sediments. This suggests that these microbial communities might have been adapted during a long period of time to the environmental conditions of the deep subsurface

  20. Overlapping riboflavin supply pathways in bacteria.

    Science.gov (United States)

    García-Angulo, Víctor Antonio

    2017-03-01

    Riboflavin derivatives are essential cofactors for a myriad of flavoproteins. In bacteria, flavins importance extends beyond their role as intracellular protein cofactors, as secreted flavins are a key metabolite in a variety of physiological processes. Bacteria obtain riboflavin through the endogenous riboflavin biosynthetic pathway (RBP) or by the use of importer proteins. Bacteria frequently encode multiple paralogs of the RBP enzymes and as for other micronutrient supply pathways, biosynthesis and uptake functions largely coexist. It is proposed that bacteria shut down biosynthesis and would rather uptake riboflavin when the vitamin is environmentally available. Recently, the overlap of riboflavin provisioning elements has gained attention and the functions of duplicated paralogs of RBP enzymes started to be addressed. Results point towards the existence of a modular structure in the bacterial riboflavin supply pathways. Such structure uses subsets of RBP genes to supply riboflavin for specific functions. Given the importance of riboflavin in intra and extracellular bacterial physiology, this complex array of riboflavin provision pathways may have developed to contend with the various riboflavin requirements. In riboflavin-prototrophic bacteria, riboflavin transporters could represent a module for riboflavin provision for particular, yet unidentified processes, rather than substituting for the RBP as usually assumed.

  1. Quorum quenching bacteria can be used to inhibit the biofouling of reverse osmosis membranes.

    Science.gov (United States)

    Oh, Hyun-Suk; Tan, Chuan Hao; Low, Jiun Hui; Rzechowicz, Miles; Siddiqui, Muhammad Faisal; Winters, Harvey; Kjelleberg, Staffan; Fane, Anthony G; Rice, Scott A

    2017-04-01

    Over the last few decades, significant efforts have concentrated on mitigating biofouling in reverse osmosis (RO) systems, with a focus on non-toxic and sustainable strategies. Here, we explored the potential of applying quorum quenching (QQ) bacteria to control biofouling in a laboratory-scale RO system. For these experiments, Pantoea stewartii was used as a model biofilm forming organism because it was previously shown to be a relevant wastewater isolate that also forms biofilms in a quorum sensing (QS) dependent fashion. A recombinant Escherichia coli strain, which can produce a QQ enzyme, was first tested in batch biofilm assays and significantly reduced biofilm formation by P. stewartii. Subsequently, RO membranes were fouled with P. stewartii and the QQ bacterium was introduced into the RO system using two different strategies, direct injection and immobilization within a cartridge microfilter. When the QQ bacterial cells were directly injected into the system, N-acylhomoserine lactone signals were degraded, resulting in the reduction of biofouling. Similarly, the QQ bacteria controlled biofouling when immobilized within a microfilter placed downstream of the RO module to remove QS signals circulating in the system. These results demonstrate the proof-of-principle that QQ can be applied to control biofouling of RO membranes and may be applicable for use in full-scale plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Effect of leukocyte hydrolases on bacteria

    International Nuclear Information System (INIS)

    Cohen, D.; Michel, J.; Ferne, M.; Bergner-Rabinowitz, S.; Ginsburg, I.

    1979-01-01

    Leukocyte extracts, trypsin, and lysozyme are all capable of releasing the bulk of the LPS from S. typhi, S. typhimurium, and E. coli. Bacteria which have been killed by heat, ultraviolet irradiation, or by a variety of metabolic inhibitors and antibiotics which affect protein, DNA, RNA, and cell wall synthesis no longer yield soluble LPS following treatment with the releasing agents. On the other hand, bacteria which are resistant to certain of the antibiotics yield nearly the full amount of soluble LPS following treatment, suggesting that certain heatabile endogenous metabolic pathways collaborate with the releasing agents in the release of LPS from the bacteria. It is suggested that some of the beneficial effects of antibiotics on infections with gram-negative bacteria may be the prevention of massive release of endotoxin by leukocyte enzymes in inflammatory sites

  3. Bacteria abundance and diversity of different life stages of Plutella xylostella (Lepidoptera: Plutellidae), revealed by bacteria culture-dependent and PCR-DGGE methods.

    Science.gov (United States)

    Lin, Xiao-Li; Pan, Qin-Jian; Tian, Hong-Gang; Douglas, Angela E; Liu, Tong-Xian

    2015-03-01

    Microbial abundance and diversity of different life stages (fourth instar larvae, pupae and adults) of the diamondback moth, Plutella xylostella L., collected from field and reared in laboratory, were investigated using bacteria culture-dependent method and PCR-DGGE analysis based on the sequence of bacteria 16S rRNA V3 region gene. A large quantity of bacteria was found in all life stages of P. xylostella. Field population had higher quantity of bacteria than laboratory population, and larval gut had higher quantity than pupae and adults. Culturable bacteria differed in different life stages of P. xylostella. Twenty-five different bacterial strains were identified in total, among them 20 strains were presented in larval gut, only 8 strains in pupae and 14 strains in adults were detected. Firmicutes bacteria, Bacillus sp., were the most dominant species in every life stage. 15 distinct bands were obtained from DGGE electrophoresis gel. The sequences blasted in GenBank database showed these bacteria belonged to six different genera. Phylogenetic analysis showed the sequences of the bacteria belonged to the Actinobacteri, Proteobacteria and Firmicutes. Serratia sp. in Proteobacteria was the most abundant species in larval gut. In pupae, unculturable bacteria were the most dominant species, and unculturable bacteria and Serratia sp. were the most dominant species in adults. Our study suggested that a combination of molecular and traditional culturing methods can be effectively used to analyze and to determine the diversity of gut microflora. These known bacteria may play important roles in development of P. xylostella. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  4. Identification of phosphate solubilizing bacteria in a Andisol of Colombian coffee region

    Directory of Open Access Journals (Sweden)

    Carlos Adolfo Cisneros Rojas

    2017-01-01

    Full Text Available Phosphorus is an essential nutrient for coffee growing, however, in Colombia most of the soils have low concentrations of this element. A strategy to supply the demand is the use of phosphate solubilizing microorganisms (PSM, in that order, 26 rhizospheric bacteria of Typic melanudans soil of Cajibío (Cauca, Colombia were isolated, in three agroecosystems: coffee at full sun exposure, coffee with shade and relic secondary forest, evaluating the phosphate solubilizing efficiency (PSE for Ca-P, Al-P, Fe-P in the solid and liquid Pikovskaya media. It showed the following solubilization sequence: Ca-P> Al-P> Fe-P. Two isolated bacteria were identified by DNA extraction and analysis of the 16S rRNA gene as Kocuria sp, and Bacillus subtilis. Later, using HPLC were identified organic acids present in the three phosphorus sources as: citric, gluconic, D- and L-malic, D- and L-lactic acid with higher presence in Ca-P-Kocuria sp. Strong acidification was observed for Fe-P and Al-P in all conditions.

  5. Labelling of bacteria with indium chelates

    International Nuclear Information System (INIS)

    Kleinert, P.; Pfister, W.; Endert, G.; Sproessig, M.

    1985-01-01

    The indium chelates were prepared by reaction of radioactive indiumchloride with 10 μg oxine, 15 μg tropolone and 3 mg acetylacetone, resp. The formed chelates have been incubated with 10 9 germs/ml for 5 minutes, with labelling outputs from 90 to 95%. Both gram-positive (Streptococcus, Staphylococcus) and gram-negative bacteria (Escherichia coli) can be labelled. The reproductive capacity of the bacteria was not impaired. The application of indium labelled bacteria allows to show the distribution of microorganisms within the living organism and to investigate problems of bacterial adherence. (author)

  6. Exogenous transglutaminase improves multiple-stress tolerance in Lactococcus lactis and other lactic acid bacteria with glutamine and lysine in the cell wall.

    Science.gov (United States)

    Li, Yu; Kan, Zhipeng; You, Yuanli; Gao, Xueling; Wang, Zhigeng; Fu, Ruiyan

    2015-12-01

    To increase the resistance of ingested bacteria to multiple environmental stresses, the role of transglutaminase in Lactococcus lactis and possible mechanisms of action were explored. L. lactis grown with transglutaminase exhibited significantly higher resistance to bile salts, stimulated gastric juice, antibiotics, NaCl, and cold stress compared to the control (cultured without transglutaminase), with no negative influence on cell growth. Transmission electron microscopy revealed that the cell walls of L. lactis cultured with 9 U transglutaminase/ml were approx. 1.9-times thicker than the control. Further analysis demonstrated that the multi-resistant phenotype was strain-specific; that is, it occurred in bacteria with the presence of glutamine and lysine in the peptidoglycan. Supplementation of culture media with transglutaminase is an effective, simple, and inexpensive strategy to protect specific ingested bacteria against multiple environmental challenges.

  7. Molecular detection of six (endo-) symbiotic bacteria in Belgian mosquitoes: first step towards the selection of appropriate paratransgenesis candidates.

    Science.gov (United States)

    Raharimalala, Fara Nantenaina; Boukraa, S; Bawin, T; Boyer, S; Francis, F

    2016-04-01

    Actually, the use of symbiotic bacteria is one of alternative solution to avoid vector resistance to pesticides. In Belgium, among 31 identified mosquito species, 10 were considered as potential vectors. Given to introduction risks of arbovirosis, the purpose of this study was to investigate the presence of symbiosis bacteria in potential mosquito vectors. Eleven species caught from 12 sites in Belgium were used: Culex pipiens s.l., Culex torrentium, Culex hortensis, Anopheles claviger, Anopheles maculipennis s.l., Anopheles plumbeus, Culiseta annulata, Ochlerotatus geniculatus, Ochlerotatus dorsalis, Aedes albopictus, and Coquillettidia richiardii. Six genera of symbiotic bacteria were screened: Wolbachia sp., Comamonas sp, Delftia sp., Pseudomonas sp., Acinetobacter sp., and Asaia sp. A total of 173 mosquito individuals (144 larvae and 29 adults) were used for the polymerase chain reaction screening. Wolbachia was not found in any Anopheles species nor Cx. torrentium. A total absence of Comamonas and Delftia was observed in all species. Acinetobacter, Pseudomonas, and Asaia were found in most of species with a high prevalence for Pseudomonas. These results were discussed to develop potential strategy and exploit the variable occurrence of symbiotic bacteria to focus on them to propose biological ways of mosquito control.

  8. Laminar flow assisted anisotropic bacteria absorption for chemotaxis delivery of bacteria-attached microparticle

    Science.gov (United States)

    Huh, Keon; Oh, Darong; Son, Seok Young; Yoo, Hyung Jung; Song, Byeonghwa; Cho, Dong-il Dan; Seo, Jong-Mo; Kim, Sung Jae

    2016-12-01

    The concepts of microrobots has been drawn significant attentions recently since its unprecedented applicability in nanotechnology and biomedical field. Bacteria attached microparticles presented in this work are one of pioneering microrobot technology for self-propulsion or producing kinetic energy from ambient for their motions. Microfluidic device, especially utilizing laminar flow characteristics, were employed for anisotropic attachment of Salmonella typhimurium flagellated chemotactic bacteria to 30 um × 30 um and 50 um × 50 um microparticles that made of biodegradable polymer. Any toxic chemicals or harmful treatments were excluded during the attachment process and it finished within 100 s for the anisotropic attachment. The attachments were directly confirmed by fluorescent intensity changes and SEM visualization. Chemotaxis motions were tracked using aspartate and the maximum velocity of the bacteria-attached microrobot was measured to be 5 um/s which is comparable to prior state of art technologies. This reusable and scalable method could play a key role in chemotaxis delivery of functional microparticles such as drug delivery system.

  9. [Application of anaerobic bacteria detection in oral and maxillofacial infection].

    Science.gov (United States)

    Bao, Zhen-ying; Lin, Qin; Meng, Yan-hong; He, Chun; Su, Jia-zeng; Peng, Xin

    2016-02-18

    To investigate the distribution and drug resistance of anaerobic bacteria in the patients with oral and maxillofacial infection. Aerobic and anaerobic bacteria cultures from 61 specimens of pus from the patients with oral and maxillofacial infection in the Department of Oral and Maxillofacial Surgery, Peking University School of Stomatology were identified. The culture type was evaluated by API 20A kit and drug resistance test was performed by Etest method. The clinical data and antibacterial agents for the treatment of the 61 cases were collected, and the final outcomes were recorded. The bacteria cultures were isolated from all the specimens, with aerobic bacteria only in 6 cases (9.8%), anaerobic bacteria only in 7 cases (11.5%), and both aerobic and anaerobic bacteria in 48 cases (78.7%). There were 55 infected cases (90.2%) with anaerobic bacteria, and 81 anaerobic bacteria stains were isolated. The highest bacteria isolation rate of Gram positive anaerobic bacteria could be found in Peptostreptococcus, Bifidobacterium and Pemphigus propionibacterium. No cefoxitin, amoxicillin/carat acid resistant strain was detected in the above three Gram positive anaerobic bacteria. The highest bacteria isolation rate of Gram negative anaerobic bacteria could be detected in Porphyromonas and Prevotella. No metronidazole, cefoxitin, amoxicillin/carat acid resistant strain was found in the two Gram negative anaerobic bacteria. In the study, 48 patients with oral and maxillofacial infection were treated according to the results of drug resistance testing, and the clinical cure rate was 81.3%. Mixed aerobic and anaerobic bacteria cultures are very common in most oral and maxillofacial infection patients. Anaerobic bacteria culture and drug resistance testing play an important role in clinical treatment.

  10. Review on Nano SeleniumProduced by Bacteria

    Directory of Open Access Journals (Sweden)

    LI Ji-xiang

    2014-12-01

    Full Text Available Selenium (Se is a kind of essential trace element for people and animal, while ionic state of selenium is toxic with high concentrations and will cause the selenium pollution. Nano-selenium is stable, nontoxic with higher biological activity. Application of bacteria reducing selenite or selenate to biological nano-selenium has great potential in selenium pollution control and nano-selenium production. This review summarizes the research progress of the red elemental nano-selenium reduced by bacteria including characteristics and application of nano-selenium, effects of carbon and nitrogen source, oxygen, temperature and pH in bacteria nano-selenium production, and molecular mechanisms of nano-selenium reduced by bacteria.

  11. Differential staining of bacteria: acid fast stain.

    Science.gov (United States)

    Reynolds, Jackie; Moyes, Rita B; Breakwell, Donald P

    2009-11-01

    Acid-fastness is an uncommon characteristic shared by the genera Mycobacterium (Section 10A) and Nocardia. Because of this feature, this stain is extremely helpful in identification of these bacteria. Although Gram positive, acid-fast bacteria do not take the crystal violet into the wall well, appearing very light purple rather than the deep purple of normal Gram-positive bacteria. (c) 2009 by John Wiley & Sons, Inc.

  12. Transformation of gram positive bacteria by sonoporation

    Science.gov (United States)

    Yang, Yunfeng; Li, Yongchao

    2014-03-11

    The present invention provides a sonoporation-based method that can be universally applied for delivery of compounds into Gram positive bacteria. Gram positive bacteria which can be transformed by sonoporation include, for example, Bacillus, Streptococcus, Acetobacterium, and Clostridium. Compounds which can be delivered into Gram positive bacteria via sonoporation include nucleic acids (DNA or RNA), proteins, lipids, carbohydrates, viruses, small organic and inorganic molecules, and nano-particles.

  13. Identification of Bacteria and the Effect on Compressive Strength of Concrete

    Directory of Open Access Journals (Sweden)

    Anneza L. H.

    2016-01-01

    Full Text Available This paper presents the species of bacteria used in this study as well as the effect of the bacteria on compressive strength of bioconcrete. Bioconcrete is not only more environmentally friendly but it is easy to procure. The objective of this research is to identify the ureolytic bacteria and sulphate reduction bacteria that have been isolated and further use the bacteria in concrete to determine the effect of bacteria on compressive strength. Identification of bacteria is conducted through Polymerase chain reaction (PCR method and DNA sequencing. The DNA of the bacteria was run through BLAST algorithm to determine the bacterial species.The bacteria were added into the concrete mix as a partial replacement of water. 3% of water is replaced by ureolytic bacteria and 5% of water is replaced by sulphate reduction bacteria. After running BLAST algorithm the bacteria were identified as Enterococcus faecalis (ureolytic bacteria and Bacillus sp (sulphate reduction bacteria. The result of the compressive strength for control is 36.0 Mpa. Partial replacement of 3% water by ureolytic bacteria has strength of 38.2Mpa while partial replacement of 5% of water by sulphate reduction bacteria has strength of 42.5Mpa. The significant increase of compressive strength with the addition of bacteria shows that bacteria play a significant role in the improvement of compressive strength.

  14. Multi-Disciplinary Antimicrobial Strategies for Improving Orthopaedic Implants to Prevent Prosthetic Joint Infections in Hip and Knee

    Science.gov (United States)

    Getzlaf, Matthew A.; Lewallen, Eric A.; Kremers, Hilal M.; Jones, Dakota L.; Bonin, Carolina A.; Dudakovic, Amel; Thaler, Roman; Cohen, Robert C.; Lewallen, David G.; van Wijnen, Andre J.

    2016-01-01

    Like any foreign object, orthopaedic implants are susceptible to infection when introduced into the human body. Without additional preventative measures, the absolute number of annual prosthetic joint infections will continue to rise, and may exceed the capacity of health care systems in the near future. Bacteria are difficult to eradicate from synovial joints due to their exceptionally diverse taxonomy, complex mechanistic attachment capabilities, and tendency to evolve antibiotic resistance. When a primary orthopaedic implant fails from prosthetic joint infection, surgeons are generally challenged by limited options for intervention. In this review, we highlight the etiology and taxonomic groupings of bacteria known to cause prosthetic joint infections, and examine their key mechanisms of attachment. We propose that antimicrobial strategies should focus on the most harmful bacteria taxa within the context of occurrence, taxonomic diversity, adhesion mechanisms, and implant design. Patient-specific identification of organisms that cause prosthetic joint infections will permit assessment of their biological vulnerabilities. The latter can be targeted using a range of antimicrobial techniques that exploit different colonization mechanisms including implant surface attachment, biofilm formation, and/or hematogenous recruitment. We anticipate that customized strategies for each patient, joint, and prosthetic component will be most effective at reducing prosthetic joint infections, including those caused by antibiotic-resistant and polymicrobial bacteria. PMID:26449208

  15. NREL Scientists Model Methane-Eating Bacteria | News | NREL

    Science.gov (United States)

    Scientists Model Methane-Eating Bacteria News Release: NREL Scientists Model Methane-Eating Bacteria February 13, 2018 Nature is full of surprises - not to mention solutions. A research team ) recently explored the possibilities provided by the natural world by researching how the bacteria

  16. Characterization of (per)chlorate-reducing bacteria

    NARCIS (Netherlands)

    Wolterink, A.F.W.M.

    2004-01-01

    Some bacteria can use (per)chlorateas terminal electron acceptor for growth. These bacteria convert perchlorate via chlorate and chlorite into chloride and molecular oxygen. Oxygen formation in microbial respiration is unique. In this study two chlorate-reducing strains

  17. Fuzzy species among recombinogenic bacteria

    Directory of Open Access Journals (Sweden)

    Fraser Christophe

    2005-03-01

    Full Text Available Abstract Background It is a matter of ongoing debate whether a universal species concept is possible for bacteria. Indeed, it is not clear whether closely related isolates of bacteria typically form discrete genotypic clusters that can be assigned as species. The most challenging test of whether species can be clearly delineated is provided by analysis of large populations of closely-related, highly recombinogenic, bacteria that colonise the same body site. We have used concatenated sequences of seven house-keeping loci from 770 strains of 11 named Neisseria species, and phylogenetic trees, to investigate whether genotypic clusters can be resolved among these recombinogenic bacteria and, if so, the extent to which they correspond to named species. Results Alleles at individual loci were widely distributed among the named species but this distorting effect of recombination was largely buffered by using concatenated sequences, which resolved clusters corresponding to the three species most numerous in the sample, N. meningitidis, N. lactamica and N. gonorrhoeae. A few isolates arose from the branch that separated N. meningitidis from N. lactamica leading us to describe these species as 'fuzzy'. Conclusion A multilocus approach using large samples of closely related isolates delineates species even in the highly recombinogenic human Neisseria where individual loci are inadequate for the task. This approach should be applied by taxonomists to large samples of other groups of closely-related bacteria, and especially to those where species delineation has historically been difficult, to determine whether genotypic clusters can be delineated, and to guide the definition of species.

  18. Antibacterial activity of silver-killed bacteria: the "zombies" effect

    Science.gov (United States)

    Wakshlak, Racheli Ben-Knaz; Pedahzur, Rami; Avnir, David

    2015-04-01

    We report a previously unrecognized mechanism for the prolonged action of biocidal agents, which we denote as the zombies effect: biocidally-killed bacteria are capable of killing living bacteria. The concept is demonstrated by first killing Pseudomonas aeruginosa PAO1 with silver nitrate and then challenging, with the dead bacteria, a viable culture of the same bacterium: Efficient antibacterial activity of the killed bacteria is observed. A mechanism is suggested in terms of the action of the dead bacteria as a reservoir of silver, which, due to Le-Chatelier's principle, is re-targeted to the living bacteria. Langmuirian behavior, as well as deviations from it, support the proposed mechanism.

  19. Genomics of lactic acid bacteria: Current status and potential applications.

    Science.gov (United States)

    Wu, Chongde; Huang, Jun; Zhou, Rongqing

    2017-08-01

    Lactic acid bacteria (LAB) are widely used for the production of a variety of foods and feed raw materials where they contribute to flavor and texture of the fermented products. In addition, specific LAB strains are considered as probiotic due to their health-promoting effects in consumers. Recently, the genome sequencing of LAB is booming and the increased amount of published genomics data brings unprecedented opportunity for us to reveal the important traits of LAB. This review describes the recent progress on LAB genomics and special emphasis is placed on understanding the industry-related physiological features based on genomics analysis. Moreover, strategies to engineer metabolic capacity and stress tolerance of LAB with improved industrial performance are also discussed.

  20. Gastric spiral bacteria in small felids.

    Science.gov (United States)

    Kinsel, M J; Kovarik, P; Murnane, R D

    1998-06-01

    Nine small cats, including one bobcat (Felis rufus), one Pallas cat (F. manul), one Canada lynx (F. lynx canadensis), two fishing cats (F. viverrina), two margays (F. wiedii), and two sand cats (F. margarita), necropsied between June 1995 and March 1997 had large numbers of gastric spiral bacteria, whereas five large cats, including one African lion (Panthera leo), two snow leopards (P. uncia), one Siberian tiger (P. tigris altaica), and one jaguar (P. onca), necropsied during the same period had none. All of the spiral organisms from the nine small cats were histologically and ultrastructurally similar. Histologically, the spiral bacteria were 5-14 microm long with five to nine coils per organism and were located both extracellularly within gastric glands and surface mucus, and intracellularly in parietal cells. Spiral bacteria in gastric mucosal scrapings from the Canada lynx, one fishing cat, and the two sand cats were gram negative and had corkscrewlike to tumbling motility when viewed with phase contrast microscopy. The bacteria were 0.5-0.7 microm wide, with a periodicity of 0.65-1.1 microm in all cats. Bipolar sheathed flagella were occasionally observed, and no periplasmic fibrils were seen. The bacteria were extracellular in parietal cell canaliculi and intracellular within parietal cells. Culture of mucosal scrapings from the Canada lynx and sand cats was unsuccessful. Based on morphology, motility, and cellular tropism, the bacteria were probably Helicobacter-like organisms. Although the two margays had moderate lymphoplasmacytic gastritis, the other cats lacked or had only mild gastric lymphoid infiltrates, suggesting that these organisms are either commensals or opportunistic pathogens.

  1. Catabolism of lysine by mixed rumen bacteria

    International Nuclear Information System (INIS)

    Onodera, Ryoji; Kandatsu, Makoto.

    1975-01-01

    Metabolites arising from the catabolism of lysine by the mixed rumen bacteria were chromatographically examined by using radioactive lysine. After 6 hr incubation, 241 nmole/ml of lysine was decomposed to give ether-soluble substances and CO 2 by the bacteria and 90 nmole/ml of lysine was incorporated unchanged into the bacteria. delta-Aminovalerate, cadaverine or pipecolate did not seem to be produced from lysine even after incubation of the bacteria with addition of those three amino compounds to trap besides lysine and radioactive lysine. Most of the ether-soluble substances produced from radioactive lysine was volatile fatty acids (VFAs). Fractionation of VFAs revealed that the peaks of butyric and acetic acids coincided with the strong radioactive peaks. Small amounts of radioactivities were detected in propionic acid peak and a peak assumed to be caproic acid. The rumen bacteria appeared to decompose much larger amounts of lysine than the rumen ciliate protozoa did. (auth.)

  2. Biodiversity of Bacteria Isolated from Different Soils

    Directory of Open Access Journals (Sweden)

    Fatma YAMAN

    2017-01-01

    Full Text Available The aim of this study was to determine the biodiversity of PHB producing bacteria isolated from soils where fruit and vegetable are cultivated (onion, grape, olive, mulberry and plum in Aydın providence. Morphological, cultural, biochemical, and molecular methods were used for bacteria identification. These isolated bacteria were identified by 16S rRNA sequencing and using BLAST. The following bacteria Bacillus thuringiensis (6, Bacillus cereus (8, Bacillus anthrachis (1, Bacillus circulans (1, Bacillus weihenstephanensis (1, Pseudomonas putida (1, Azotobacter chroococcum (1, Brevibacterium frigoritolerans (1, Burkholderia sp. (1, Staphylococcus epidermidis (1, Streptomyces exfoliatus (1, Variovorax paradoxus (1 were found. The Maximum Likelihood method was used to produce a molecular phylogenetic analysis and a phylogenetic tree was constructed. These bacteria can produce polyhydroxybutyrate (PHB which is an organic polymer with commercial potential as a biodegradable thermoplastic. PHB can be used instead of petrol derivated non-degradable plastics. For this reason, PHB producing microorganisms are substantial in industry.

  3. Probiotic bacteria: selective enumeration and survival in dairy foods.

    Science.gov (United States)

    Shah, N P

    2000-04-01

    A number of health benefits have been claimed for probiotic bacteria such as Lactobacillus acidophilus, Bifidobacterium spp., and Lactobacillus casei. Because of the potential health benefits, these organisms are increasingly incorporated into dairy foods. However, studies have shown low viability of probiotics in market preparations. In order to assess viability of probiotic bacteria, it is important to have a working method for selective enumeration of these probiotic bacteria. Viability of probiotic bacteria is important in order to provide health benefits. Viability of probiotic bacteria can be improved by appropriate selection of acid and bile resistant strains, use of oxygen impermeable containers, two-step fermentation, micro-encapsulation, stress adaptation, incorporation of micronutrients such as peptides and amino acids and by sonication of yogurt bacteria. This review will cover selective enumeration and survival of probiotic bacteria in dairy foods.

  4. Seed-vectored endophytic bacteria modulate development of rice seedlings.

    Science.gov (United States)

    Verma, S K; Kingsley, K; Irizarry, I; Bergen, M; Kharwar, R N; White, J F

    2017-06-01

    The aim of the present study was to evaluate the effects of the removal of indigenous bacteria from rice seeds on seedling growth and development. Here we report the presence of three indigenous endophytic bacteria in rice seeds that play important roles in modulating seedling development (shoot and root lengths, and formation of root hairs and secondary roots) and defence against pathogens. Seed-associated bacteria were removed using surface sterilization with NaOCl (bleach) followed by antibiotic treatment. When bacteria were absent, growth of seedlings in terms of root hair development and overall seedling size was less than that of seedlings that contained bacteria. Reactive oxygen staining of seedlings showed that endophytic bacteria became intracellular in root parenchyma cells and root hairs. Roots containing endophytic bacteria were seen to stain densely for reactive oxygen, while roots free of bacteria stained lightly for reactive oxygen. Bacteria were isolated and identified as Enterobacter asburiae (VWB1), Pantoea dispersa (VWB2) and Pseudomonas putida (VWB3) by 16S rDNA sequencing. Bacteria were found to produce indole acetic acid (auxins), inhibited the pathogen Fusarium oxysporum and solubilized phosphate. Reinoculation of bacteria onto seedlings derived from surface-disinfected rice and Bermuda grass seeds significantly restored seedling growth and development. Rice seeds harbour indigenous bacterial endophytes that greatly influence seedling growth and development, including root and shoot lengths, root hair formation and disease susceptibility of rice seedlings. This study shows that seeds of rice naturally harbour bacterial endophytes that play key roles in modulation of seedling development. © 2017 The Society for Applied Microbiology.

  5. Bacteria and plutonium in marine environments

    International Nuclear Information System (INIS)

    Carey, A.E.; Bowen, V.T.

    1978-01-01

    Microbes are important in geochemical cycling of many elements. Recent reports emphasize biogenous particulates and bacterial exometabolites as controlling oceanic distribution of plutonium. Bacteria perform oxidation/reduction reactions on metals such as mercury, nickel, lead, copper, and cadmium. Redox transformations or uptake of Pu by marine bacteria may well proceed by similar mechanisms. Profiles of water samples and sediment cores were obtained along the continental shelf off Nova Scotia and in the Gulf of St. Lawrence. Profiles of water samples, and sediment cores were obtained. Epifluorescent microscopy was used to view bacteria (from water or sediment) after concentration on membrane filters and staining with acridine orange. Radiochemical analyses measured Pu in sediments and water samples. Studies of 237 Pu uptake used a strain of Leucothrix mucor isolated from a macroalga. Enumeration shows bacteria to range 10 4 to 10 5 cells/ml in seawater or 10 7 to 10 8 cells/gram of sediment. These numbers are related to the levels and distrbution of Pu in the samples. In cultures of L. mucor amended with Pu atom concentrations approximating those present in open ocean environments, bacterial cells concentrated 237 Pu slower and to lower levels than did clay minerals, glass beads, or phytoplankton. These data further clarify the role of marine bacteria in Pu biogeochemistry

  6. Combined use of alkane-degrading and plant growth-promoting bacteria enhanced phytoremediation of diesel contaminated soil.

    Science.gov (United States)

    Tara, Nain; Afzal, Muhammad; Ansari, Tariq M; Tahseen, Razia; Iqbal, Samina; Khan, Qaiser M

    2014-01-01

    Inoculation of plants with pollutant-degrading and plant growth-promoting microorganisms is a simple strategy to enhance phytoremediation activity. The objective of this study was to determine the effect of inoculation of different bacterial strains, possessing alkane-degradation and 1-amino-cyclopropane-1 -carboxylic acid (ACC) deaminase activity, on plant growth and phytoremediation activity. Carpet grass (Axonopus affinis) was planted in soil spiked with diesel (1% w/w) for 90 days and inoculated with different bacterial strains, Pseudomonas sp. ITRH25, Pantoea sp. BTRH79 and Burkholderia sp. PsJN, individually and in combination. Generally, bacterial application increased total numbers of culturable hydrocarbon-degrading bacteria in the rhizosphere ofcarpet grass, plant biomass production, hydrocarbon degradation and reduced genotoxicity. Bacterial strains possessing different beneficial traits affect plant growth and phytoremediation activity in different ways. Maximum bacterial population, plant biomass production and hydrocarbon degradation were achieved when carpet grass was inoculated with a consortium of three strains. Enhanced plant biomass production and hydrocarbon degradation were associated with increased numbers of culturable hydrocarbon-degrading bacteria in the rhizosphere of carpet grass. The present study revealed that the combined use of different bacterial strains, exhibiting different beneficial traits, is a highly effective strategy to improve plant growth and phytoremediation activity.

  7. Patterns and sources of fecal coliform bacteria in three streams in Virginia, 1999-2000

    Science.gov (United States)

    Hyer, Kenneth; Moyer, Douglas

    2003-01-01

    (maximum observed concentration of 290,000 colonies/100 milliliters (col/100mL) could occur along the entire length of each stream, and that the samples collected at the downstream monitoring station of each stream were generally representative of the entire upstream reach. Seasonal patterns were observed in the base-flow fecal coliform concentrations of all streams; concentrations were typically highest in the summer and lowest in the winter. Fecal coliform concentrations were lowest during periods of base flow (typically 200?2,000 col/100mL) and increased by 3?4 orders of magnitude during storm events (as high as 700,000 col/100mL). Multiple linear regression models were developed to predict fecal coliform concentrations as a function of streamflow and other water-quality parameters. The source tracking technique provided identification of bacteria contributions from diverse sources that included (but were not limited to) humans, cattle, poultry, horses, dogs, cats, geese, ducks, raccoons, and deer. Seasonal patterns were observed in the contributions of cattle and poultry sources. There were relations between the identified sources of fecal coliform bacteria and the land-use practices within each watershed. There were only minor differences in the distribution of bacteria sources between low-flow periods and high-flow periods. A coupled approach that utilized both a large available source library and a smaller, location-specific source library provided the most success in identifying the unknown E. coli isolates. BST data should provide valuable support and guidance for producing more defendable and scientifically rigorous watershed models. Incorporation of these bacteria-source data into watershed management strategies also should result in the selection of more efficient source-reduction scenarios for improving water quality.

  8. Assessment on Bacteria in the Heavy Metal Bioremediation

    International Nuclear Information System (INIS)

    Mohamad Romizan Osman; Mohamad Romizan Osman; Azman Azid; Kamaruzzaman Yunus; Ahmad Dasuki Mustafa; Mohammad Azizi Amran; Fazureen Azaman; Zarizal Suhaili; Yahya Abu Bakar; Syahrir Farihan Mohamed Zainuddin

    2015-01-01

    The aim of this study was to identify and verify the potential bacteria as the bioremediation agent. It involved bacteria isolation, identification through Gram staining, analytical profile index (API) test and determine bioremediation activities by using inductively coupled plasma mass spectrometry (ICPMS). The soil and water sample were collected from downstream of Galing River, Kuantan Malaysia. Based on phenotypic identification and biochemical analysis, the bacteria present at the vicinity area are possibility of Myroides spp. and Micrococcus spp. These bacteria were proven as bioremediation agent based on the ICPMS result. The result 1 ppm of Zink (Zn), Lead (Pb), Arsenic (As), Selenium (Se), Cadmium (Cd), Manganese (Mn), and Indium (In) dwindled after the bacteria inoculated and incubated for seven days in mixture of base salt media (BSM) with the heavy metal elements. Therefore, this proves that the bacteria which are present at downstream of Galing River, Kuantan Malaysia are significant to help us in the bioremediation activity to decrease the heavy metal pollution in the environment. (author)

  9. Dual-Recognition Förster Resonance Energy Transfer Based Platform for One-Step Sensitive Detection of Pathogenic Bacteria Using Fluorescent Vancomycin-Gold Nanoclusters and Aptamer-Gold Nanoparticles.

    Science.gov (United States)

    Yu, Mengqun; Wang, Hong; Fu, Fei; Li, Linyao; Li, Jing; Li, Gan; Song, Yang; Swihart, Mark T; Song, Erqun

    2017-04-04

    The effective monitoring, identification, and quantification of pathogenic bacteria is essential for addressing serious public health issues. In this study, we present a universal and facile one-step strategy for sensitive and selective detection of pathogenic bacteria using a dual-molecular affinity-based Förster (fluorescence) resonance energy transfer (FRET) platform based on the recognition of bacterial cell walls by antibiotic and aptamer molecules, respectively. As a proof of concept, Vancomycin (Van) and a nucleic acid aptamer were employed in a model dual-recognition scheme for detecting Staphylococcus aureus (Staph. aureus). Within 30 min, by using Van-functionalized gold nanoclusters and aptamer-modified gold nanoparticles as the energy donor and acceptor, respectively, the FRET signal shows a linear variation with the concentration of Staph. aureus in the range from 20 to 10 8 cfu/mL with a detection limit of 10 cfu/mL. Other nontarget bacteria showed negative results, demonstrating the good specificity of the approach. When employed to assay Staph. aureus in real samples, the dual-recognition FRET strategy showed recoveries from 99.00% to the 109.75% with relative standard derivations (RSDs) less than 4%. This establishes a universal detection platform for sensitive, specific, and simple pathogenic bacteria detection, which could have great impact in the fields of food/public safety monitoring and infectious disease diagnosis.

  10. Bacteria-based concrete: from concept to market

    Science.gov (United States)

    Wiktor, V.; Jonkers, H. M.

    2016-08-01

    The concept of self-healing concrete—a concrete which can autonomously repair itself after crack formation, with no or limited human intervention—has received a lot of attention over the past 10 years as it could help structures to last longer and at a lower maintenance cost. This paper gives an overview on the key aspects and recent advances in the development of the bacteria-based self-healing concrete developed at the University of Technology of Delft (The Netherlands). Research started with the screening and selection of concrete compatible bacteria and nutrients. Several types of encapsulated bacteria and nutrients have been developed and tested. The functionality of these healing agents was demonstrated by showing metabolic activity of activated bacterial spores by oxygen consumption measurements and by regain of material functionality in form of regain of water tightness. Besides development of bacteria-based self-healing concrete, a bacteria-based repair mortar and liquid system were developed for the treatment of aged concrete structures. Field trials have been carried out with either type of bacteria-based systems and the promising results have led to a spinoff company Basilisk Self-Healing Concrete with the aim to further develop these systems and bring them to the market.

  11. Rapid diagnostics of the bacteria in air

    Energy Technology Data Exchange (ETDEWEB)

    Belov Nikolai, N. [ATECH KFT, Budapest (Hungary)

    2000-07-01

    Presence of the bacteria and viruses in the air is great problem now. Terrorists are going to use the bacteria weapon. Now biotechnology provides very cheap equipment ({approx} $500) for modification of the bacteria sorts. It may be used for receiving of new variants of the bacteriological weapon. And presence of one small bacteria aerosol generator in the international airport during several days will start the dangerous epidemic incidence the entire world. From another side - poor countries with hot and wet weather are continuously producing new and new dangerous bacteria. Every year epidemic waves of influence are going from China, India or Africa. And once up a time it will be epidemic explosive with fast lethal finish. Methods of estimation of the bio-aerosols in Air of City are very poor. Standard Bio-aerosol sampler has two conflicting demands. From one side the bio-sampler needs in great air volume of sample with great efficiency of separation of aerosol particles from measured air. From another side all selected particles needs in great care. This demand carried out from method of measurement of bacteria in sample by counting of colonies that grew from bacteria on nutrient media after incubation time. It is a problem to prevent bacterial flora from death during collecting aerosol sample. This time of growth and counting of colony is so long that result of this measurement will be unusable if it will be terrorist action of start of bacteriological was. Here presented new methods for fast diagnostics of the bacteria in the air. It consists from 4 general parts: (1) Micro-droplet method for diagnostics of biological active substances in aerosol sample. This method allows to control the bio-particle position on the plate, to use series of biochemistry species for analytical reaction for this small bio-particle. Small volume of biochemical reaction reduces noise. This method provides extremely high sensitivity for discovering of biological material. (2

  12. Anti-bacteria effect of active ingredients of siraitia grosvenorii on the spoilage bacteria isolated from sauced pork head meat

    Science.gov (United States)

    Li, X.; Xu, L. Y.; Cui, Y. Q.; Pang, M. X.; Wang, F.; Qi, J. H.

    2018-01-01

    Extraction and anti-bacteria effect of active ingredients of Siraitia grosvenorii were studied in this paper. Extraction combined with ultrasonic was adopted. The optimum extraction condition was determined by single factor test; the anti-bacteria effect of active ingredients and minimum inhibitory concentration (MIC) were valued by Oxford-cup method. The results indicated that optimum extraction condition of active ingredients extracted from Siraitia grosvenorii were described as follows: ethanol concentrations of sixty-five percent and twenty minutes with ultrasonic assisted extraction; the active ingredients of Siraitia grosvenorii had anti-bacteria effect on Staphylococcus epidermidis, Proteus vulgaris, Bacillus sp, Serratia sp and MIC was 0.125g/mL, 0.0625g/mL, 0.125g/mL and 0.125g/mL. The active constituent of Siraitia grosvenorii has obvious anti-bacteria effect on the spoilage bacteria isolated from Sauced pork head meat and can be used as a new natural food preservation to prolong the shelf-life of Low-temperature meat products.

  13. Rapid methods for detection of bacteria

    DEFF Research Database (Denmark)

    Corfitzen, Charlotte B.; Andersen, B.Ø.; Miller, M.

    2006-01-01

    Traditional methods for detection of bacteria in drinking water e.g. Heterotrophic Plate Counts (HPC) or Most Probable Number (MNP) take 48-72 hours to give the result. New rapid methods for detection of bacteria are needed to protect the consumers against contaminations. Two rapid methods...

  14. State of the art review of biofuels production from lignocellulose by thermophilic bacteria.

    Science.gov (United States)

    Jiang, Yujia; Xin, Fengxue; Lu, Jiasheng; Dong, Weiliang; Zhang, Wenming; Zhang, Min; Wu, Hao; Ma, Jiangfeng; Jiang, Min

    2017-12-01

    Biofuels, including ethanol and butanol, are mainly produced by mesophilic solventogenic yeasts and Clostridium species. However, these microorganisms cannot directly utilize lignocellulosic materials, which are abundant, renewable and non-compete with human demand. More recently, thermophilic bacteria show great potential for biofuels production, which could efficiently degrade lignocellulose through the cost effective consolidated bioprocessing. Especially, it could avoid contamination in the whole process owing to its relatively high fermentation temperature. However, wild types thermophiles generally produce low levels of biofuels, hindering their large scale production. This review comprehensively summarizes the state of the art development of biofuels production by reported thermophilic microorganisms, and also concludes strategies to improve biofuels production including the metabolic pathways construction, co-culturing systems and biofuels tolerance. In addition, strategies to further improve butanol production are proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Diffusible signal factor-dependent quorum sensing in pathogenic bacteria and its exploitation for disease control.

    Science.gov (United States)

    Dow, J M

    2017-01-01

    Cell-to-cell signals of the diffusible signal factor (DSF) family are cis-2-unsaturated fatty acids of differing chain length and branching pattern. DSF signalling has been described in diverse bacteria to include plant and human pathogens where it acts to regulate functions such as biofilm formation, antibiotic tolerance and the production of virulence factors. DSF family signals can also participate in interspecies signalling with other bacteria and interkingdom signalling such as with the yeast Candida albicans. Interference with DSF signalling may afford new opportunities for the control of bacterial disease. Such strategies will depend in part on detailed knowledge of the molecular mechanisms underlying the processes of signal synthesis, perception and turnover. Here, I review both recent progress in understanding DSF signalling at the molecular level and prospects for translating this knowledge into approaches for disease control. © 2016 The Society for Applied Microbiology.

  16. Isolation and characterization of feather degrading bacteria from ...

    African Journals Online (AJOL)

    This study is aimed at isolating and characterizing new culturable feather degrading bacteria from soils of the University of Mauritius Farm. Bacteria that were isolated were tested for their capability to grow on feather meal agar (FMA). Proteolytic bacteria were tested for feather degradation and were further identified ...

  17. Bacteria associated with cultures of psathyrella atroumbonata (Pleger)

    African Journals Online (AJOL)

    These bacteria include Bacillus licheniformis, Bacillus subtilis, Leuconostoc mesenteroides, Pseudomonas aeruginosa, Bacillus cereus and Staphylococcus aureus. The average bacteria count was 1.0 x 106 cfu/ml and these bacteria grew within pH range of 5.0 and 9.0. the optimum temperature range of growth lied ...

  18. Thymidine kinase diversity in bacteria

    DEFF Research Database (Denmark)

    Sandrini, Michael; Clausen, A.R.; Munch-Petersen, B.

    2006-01-01

    Thymidine kinases (TKs) appear to be almost ubiquitous and are found in nearly all prokaryotes, eukaryotes, and several viruses. They are the key enzymes in thymidine salvage and activation of several anti-cancer and antiviral drugs. We show that bacterial TKs can be subdivided into 2 groups. The....... The TKs from Gram-positive bacteria are more closely related to the eukaryotic TK1 enzymes than are TKs from Gram-negative bacteria....

  19. Characterization of Bacteria Associated with Pinewood Nematode Bursaphelenchus xylophilus

    Science.gov (United States)

    Vicente, Claudia S. L.; Nascimento, Francisco; Espada, Margarida; Barbosa, Pedro; Mota, Manuel; Glick, Bernard R.; Oliveira, Solange

    2012-01-01

    Pine wilt disease (PWD) is a complex disease integrating three major agents: the pathogenic agent, the pinewood nematode Bursaphelenchus xylophilus; the insect-vector Monochamus spp.; and the host pine tree, Pinus sp. Since the early 80's, the notion that another pathogenic agent, namely bacteria, may play a role in PWD has been gaining traction, however the role of bacteria in PWD is still unknown. The present work supports the possibility that some B. xylophilus-associated bacteria may play a significant role in the development of this disease. This is inferred as a consequence of: (i) the phenotypic characterization of a collection of 35 isolates of B. xylophilus-associated bacteria, in different tests broadly used to test plant pathogenic and plant growth promoting bacteria, and (ii) greenhouse experiments that infer the pathogenicity of these bacteria in maritime pine, Pinus pinaster. The results illustrate the presence of a heterogeneous microbial community associated with B. xylophilus and the traits exhibited by at least, some of these bacteria, appear to be related to PWD symptoms. The inoculation of four specific B. xylophilus-associated bacteria isolates in P. pinaster seedlings resulted in the development of some PWD symptoms suggesting that these bacteria likely play an active role with B. xylophilus in PWD. PMID:23091599

  20. Heavy Metal Resistance Strategies of Acidophilic Bacteria and Their Acquisition: Importance for Biomining and Bioremediation

    Directory of Open Access Journals (Sweden)

    Claudio A Navarro

    2013-01-01

    Full Text Available Microbial solubilizing of metals in acid environments is successfully used in industrial bioleaching of ores or biomining to extract metals such as copper, gold, uranium and others. This is done mainly by acidophilic and other microorganisms that mobilize metals and generate acid mine drainage or AMD, causing serious environmental problems. However, bioremediation or removal of the toxic metals from contaminated soils can be achieved by using the specific properties of the acidophilic microorganisms interacting with these elements. These bacteria resist high levels of metals by using a few "canonical" systems such as active efflux or trapping of the metal ions by metal chaperones. Nonetheless, gene duplications, the presence of genomic islands, the existence of additional mechanisms such as passive instruments for pH and cation homeostasis in acidophiles and an inorganic polyphosphate-driven metal resistance mechanism have also been proposed. Horizontal gene transfer in environmental microorganisms present in natural ecosystems is considered to be an important mechanism in their adaptive evolution. This process is carried out by different mobile genetic elements, including genomic islands (GI, which increase the adaptability and versatility of the microorganism. This mini-review also describes the possible role of GIs in metal resistance of some environmental microorganisms of importance in biomining and bioremediation of metal polluted environments such as Thiomonas arsenitoxydans, a moderate acidophilic microorganism, Acidithiobacillus caldus and Acidithiobacillus ferrooxidans strains ATCC 23270 and ATCC 53993, all extreme acidophiles able to tolerate exceptionally high levels of heavy metals. Some of these bacteria contain variable numbers of GIs, most of which code for high numbers of genes related to metal resistance. In some cases there is an apparent correlation between the number of metal resistance genes and the metal tolerance of each

  1. Identification of Lactic Acid Bacteria and Propionic Acid Bacteria using FTIR Spectroscopy and Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Beata Nalepa

    2012-01-01

    Full Text Available In the present study, lactic acid bacteria and propionic acid bacteria have been identified at the genus level with the use of artificial neural networks (ANNs and Fourier transform infrared spectroscopy (FTIR. Bacterial strains of the genera Lactobacillus, Lactococcus, Leuconostoc, Streptococcus and Propionibacterium were analyzed since they deliver health benefits and are routinely used in the food processing industry. The correctness of bacterial identification by ANNs and FTIR was evaluated at two stages. At first stage, ANNs were tested based on the spectra of 66 reference bacterial strains. At second stage, the evaluation involved 286 spectra of bacterial strains isolated from food products, deposited in our laboratory collection, and identified by genus-specific PCR. ANNs were developed based on the spectra and their first derivatives. The most satisfactory results were reported for the probabilistic neural network, which was built using a combination of W5W4W3 spectral ranges. This network correctly identified the genus of 95 % of the lactic acid bacteria and propionic acid bacteria strains analyzed.

  2. HCN Producing Bacteria Enable Sensing Of Non-Bioavailable Hg Species by the Whole Cell Biosensor

    Science.gov (United States)

    Horvat, M.; Rijavec, T.; Koron, N.; Lapanje, A.

    2015-12-01

    Bacteria play an important role in Hg transformation reactions. The production of cyanide (HCN) and other secondary metabolites seems to be key elements involved in these transformations. Current hypotheses link the role of HCN production to growth inhibition of nonHCN producing competitor organisms (role of an antimicrobial agent). Our past investigations showed that HCN production did not correlate with antimicrobial activity and since pK value of HCN is very high (pK = 9,21), it can be expected that most of the produced HCN is removed from the microenvironment. This way, the expected inhibitory concentrations can hardly be reached. Accordingly, we proposed a new concept, where the ability of complexation of transient metals by HCN served as a regulation process for the accessibility of micro-elements. In our study, we focused on the presence of HCN producing bacteria and carried it out in the Hg contaminated environment connected to the Idrija Mercury Mine, Slovenia. We characterised the isolates according to the presence of Hg resistance (HgR), level of HCN production and genetic similarities. In laboratory setups, using our merR whole cell based biosensor, we determined the transformation of low bioavailable Hg0 and HgS forms into bioavailable Hg by these HCN producing bacteria. We observed that HgR strains producing HCN had the highest impact on increased Hg bioavailability. In the proposed ecological strategy HgR HCN producing bacteria increase their competitive edge over non-HgR competitors through the increase of Hg toxicity. Due to their activity, Hg is made available to other organisms as well and thus enters into the ecosystem. Finally, using some of the characteristics of bacteria (e.g. Hg resistance genetic elements), we developed a fully automated sensing approach, combining biosensorics and mechatronics, to measure the bioavailability of Hg in situ.

  3. Invasion of Eukaryotic Cells by Legionella Pneumophila: A Common Strategy for all Hosts?

    Directory of Open Access Journals (Sweden)

    Paul S Hoffman

    1997-01-01

    Full Text Available Legionella pneumophila is an environmental micro-organism capable of producing an acute lobar pneumonia, commonly referred to as Legionnaires’ disease, in susceptible humans. Legionellae are ubiquitous in aquatic environments, where they survive in biofilms or intracellularly in various protozoans. Susceptible humans become infected by breathing aerosols laden with the bacteria. The target cell for human infection is the alveolar macrophage, in which the bacteria abrogate phagolysosomal fusion. The remarkable ability of L pneumophila to infect a wide range of eukaryotic cells suggests a common strategy that exploits very fundamental cellular processes. The bacteria enter host cells via coiling phagocytosis and quickly subvert organelle trafficking events, leading to formation of a replicative phagosome in which the bacteria multiply. Vegetative growth continues for 8 to 10 h, after which the bacteria develop into a short, highly motile form called the ‘mature form’. The mature form exhibits a thickening of the cell wall, stains red with the Gimenez stain, and is between 10 and 100 times more infectious than agar-grown bacteria. Following host cell lysis, the released bacteria infect other host cells, in which the mature form differentiates into a Gimenez-negative vegetative form, and the cycle begins anew. Virulence of L pneumophila is considered to be multifactorial, and there is growing evidence for both stage specific and sequential gene expression. Thus, L pneumophila may be a good model system for dissecting events associated with the host-parasite interactions.

  4. Rock-degrading endophytic bacteria in cacti

    Science.gov (United States)

    M. Esther Puente; Ching Y. Li; Yoav Bashan

    2009-01-01

    A plant-bacterium association of the cardon cactus (Pachycereus pringlei) and endophytic bacteria promotes establishment of seedlings and growth on igneous rocks without soil. These bacteria weather several rock types and minerals, unbind significant amounts of useful minerals for plants from the rocks, fix in vitro N2. produce...

  5. Rapid separation of bacteria from blood - Chemical aspects.

    Science.gov (United States)

    Alizadeh, Mahsa; Wood, Ryan L; Buchanan, Clara M; Bledsoe, Colin G; Wood, Madison E; McClellan, Daniel S; Blanco, Rae; Ravsten, Tanner V; Husseini, Ghaleb A; Hickey, Caroline L; Robison, Richard A; Pitt, William G

    2017-06-01

    To rapidly diagnose infectious organisms causing blood sepsis, bacteria must be rapidly separated from blood, a very difficult process considering that concentrations of bacteria are many orders of magnitude lower than concentrations of blood cells. We have successfully separated bacteria from red and white blood cells using a sedimentation process in which the separation is driven by differences in density and size. Seven mL of whole human blood spiked with bacteria is placed in a 12-cm hollow disk and spun at 3000rpm for 1min. The red and white cells sediment more than 30-fold faster than bacteria, leaving much of the bacteria in the plasma. When the disk is slowly decelerated, the plasma flows to a collection site and the red and white cells are trapped in the disk. Analysis of the recovered plasma shows that about 36% of the bacteria is recovered in the plasma. The plasma is not perfectly clear of red blood cells, but about 94% have been removed. This paper describes the effects of various chemical aspects of this process, including the influence of anticoagulant chemistry on the separation efficiency and the use of wetting agents and platelet aggregators that may influence the bacterial recovery. In a clinical scenario, the recovered bacteria can be subsequently analyzed to determine their species and resistance to various antibiotics. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Biome-scale nitrogen fixation strategies selected by climatic constraints on nitrogen cycle.

    Science.gov (United States)

    Sheffer, Efrat; Batterman, Sarah A; Levin, Simon A; Hedin, Lars O

    2015-11-23

    Dinitrogen fixation by plants (in symbiosis with root bacteria) is a major source of new nitrogen for land ecosystems(1). A long-standing puzzle(2) is that trees capable of nitrogen fixation are abundant in nitrogen-rich tropical forests, but absent or restricted to early successional stages in nitrogen-poor extra-tropical forests. This biome-scale pattern presents an evolutionary paradox(3), given that the physiological cost(4) of nitrogen fixation predicts the opposite pattern: fixers should be out-competed by non-fixers in nitrogen-rich conditions, but competitively superior in nitrogen-poor soils. Here we evaluate whether this paradox can be explained by the existence of different fixation strategies in tropical versus extra-tropical trees: facultative fixers (capable of downregulating fixation(5,6) by sanctioning mutualistic bacteria(7)) are common in the tropics, whereas obligate fixers (less able to downregulate fixation) dominate at higher latitudes. Using a game-theoretic approach, we assess the ecological and evolutionary conditions under which these fixation strategies emerge, and examine their dependence on climate-driven differences in the nitrogen cycle. We show that in the tropics, transient soil nitrogen deficits following disturbance and rapid tree growth favour a facultative strategy and the coexistence of fixers and non-fixers. In contrast, sustained nitrogen deficits following disturbance in extra-tropical forests favour an obligate fixation strategy, and cause fixers to be excluded in late successional stages. We conclude that biome-scale differences in the abundance of nitrogen fixers can be explained by the interaction between individual plant strategies and climatic constraints on the nitrogen cycle over evolutionary time.

  7. Effects of symbiotic bacteria on chemical sensitivity of Daphnia magna.

    Science.gov (United States)

    Manakul, Patcharaporn; Peerakietkhajorn, Saranya; Matsuura, Tomoaki; Kato, Yasuhiko; Watanabe, Hajime

    2017-07-01

    The crustacean zooplankton Daphnia magna has been widely used for chemical toxicity tests. Although abiotic factors have been well documented in ecotoxicological test protocols, biotic factors that may affect the sensitivity to chemical compounds remain limited. Recently, we identified symbiotic bacteria that are critical for the growth and reproduction of D. magna. The presence of symbiotic bacteria on Daphnia raised the question as to whether these bacteria have a positive or negative effect on toxicity tests. In order to evaluate the effects of symbiotic bacteria on toxicity tests, bacteria-free Daphnia were prepared, and their chemical sensitivities were compared with that of Daphnia with symbiotic bacteria based on an acute immobilization test. The Daphnia with symbiotic bacteria showed higher chemical resistance to nonylphenol, fenoxycarb, and pentachlorophenol than bacteria-free Daphnia. These results suggested potential roles of symbiotic bacteria in the chemical resistance of its host Daphnia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Comparative genomics of the lactic acid bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Makarova, K.; Slesarev, A.; Wolf, Y.; Sorokin, A.; Mirkin, B.; Koonin, E.; Pavlov, A.; Pavlova, N.; Karamychev, V.; Polouchine, N.; Shakhova, V.; Grigoriev, I.; Lou, Y.; Rokhsar, D.; Lucas, S.; Huang, K.; Goodstein, D. M.; Hawkins, T.; Plengvidhya, V.; Welker, D.; Hughes, J.; Goh, Y.; Benson, A.; Baldwin, K.; Lee, J. -H.; Diaz-Muniz, I.; Dosti, B.; Smeianov, V; Wechter, W.; Barabote, R.; Lorca, G.; Altermann, E.; Barrangou, R.; Ganesan, B.; Xie, Y.; Rawsthorne, H.; Tamir, D.; Parker, C.; Breidt, F.; Broadbent, J.; Hutkins, R.; O' Sullivan, D.; Steele, J.; Unlu, G.; Saier, M.; Klaenhammer, T.; Richardson, P.; Kozyavkin, S.; Weimer, B.; Mills, D.

    2006-06-01

    Lactic acid-producing bacteria are associated with various plant and animal niches and play a key role in the production of fermented foods and beverages. We report nine genome sequences representing the phylogenetic and functional diversity of these bacteria. The small genomes of lactic acid bacteria encode a broad repertoire of transporters for efficient carbon and nitrogen acquisition from the nutritionally rich environments they inhabit and reflect a limited range of biosynthetic capabilities that indicate both prototrophic and auxotrophic strains. Phylogenetic analyses, comparison of gene content across the group, and reconstruction of ancestral gene sets indicate a combination of extensive gene loss and key gene acquisitions via horizontal gene transfer during the coevolution of lactic acid bacteria with their habitats.

  9. Chitin Degradation In Marine Bacteria

    DEFF Research Database (Denmark)

    Paulsen, Sara; Machado, Henrique; Gram, Lone

    2015-01-01

    Introduction: Chitin is the most abundant polymer in the marine environment and the second most abundant in nature. Chitin does not accumulate on the ocean floor, because of microbial breakdown. Chitin degrading bacteria could have potential in the utilization of chitin as a renewable carbon...... and nitrogen source in the fermentation industry.Methods: Here, whole genome sequenced marine bacteria were screened for chitin degradation using phenotypic and in silico analyses.Results: The in silico analyses revealed the presence of three to nine chitinases in each strain, however the number of chitinases...... chitin regulatory system.Conclusions: This study has provided insight into the ecology of chitin degradation in marine bacteria. It also served as a basis for choosing a more efficient chitin degrading production strain e.g. for the use of chitin waste for large-scale fermentations....

  10. Mortality of fecal bacteria in seawater

    International Nuclear Information System (INIS)

    Garcia-Lara, J.; Menon, P.; Servais, P.; Billen, G.

    1991-01-01

    The authors propose a method for determining the mortality rate for allochthonous bacteria released in aquatic environments without interference due to the loss of culturability in specific culture media. This method consists of following the disappearance of radioactivity from the trichloracetic acid-insoluble fraction in water samples to which [ 3 H]thymidine-prelabeled allochthonous bacteria have been added. In coastal seawater, they found that the actual rate of disappearance of fecal bacteria was 1 order of magnitude lower than the rate of loss of culturability on specific media. Minor adaptation of the procedure may facilitate assessment of the effect of protozoan grazing and bacteriophage lysis on the overall bacterial mortality rate

  11. Beer spoilage bacteria and hop resistance.

    Science.gov (United States)

    Sakamoto, Kanta; Konings, Wil N

    2003-12-31

    For brewing industry, beer spoilage bacteria have been problematic for centuries. They include some lactic acid bacteria such as Lactobacillus brevis, Lactobacillus lindneri and Pediococcus damnosus, and some Gram-negative bacteria such as Pectinatus cerevisiiphilus, Pectinatus frisingensis and Megasphaera cerevisiae. They can spoil beer by turbidity, acidity and the production of unfavorable smell such as diacetyl or hydrogen sulfide. For the microbiological control, many advanced biotechnological techniques such as immunoassay and polymerase chain reaction (PCR) have been applied in place of the conventional and time-consuming method of incubation on culture media. Subsequently, a method is needed to determine whether the detected bacterium is capable of growing in beer or not. In lactic acid bacteria, hop resistance is crucial for their ability to grow in beer. Hop compounds, mainly iso-alpha-acids in beer, have antibacterial activity against Gram-positive bacteria. They act as ionophores which dissipate the pH gradient across the cytoplasmic membrane and reduce the proton motive force (pmf). Consequently, the pmf-dependent nutrient uptake is hampered, resulting in cell death. The hop-resistance mechanisms in lactic acid bacteria have been investigated. HorA was found to excrete hop compounds in an ATP-dependent manner from the cell membrane to outer medium. Additionally, increased proton pumping by the membrane bound H(+)-ATPase contributes to hop resistance. To energize such ATP-dependent transporters hop-resistant cells contain larger ATP pools than hop-sensitive cells. Furthermore, a pmf-dependent hop transporter was recently presented. Understanding the hop-resistance mechanisms has enabled the development of rapid methods to discriminate beer spoilage strains from nonspoilers. The horA-PCR method has been applied for bacterial control in breweries. Also, a discrimination method was developed based on ATP pool measurement in lactobacillus cells. However

  12. Inhibitory effect of bacteriocin-producing lactic acid bacteria against histamine-forming bacteria isolated from Myeolchi-jeot

    Directory of Open Access Journals (Sweden)

    Eun-Seo Lim

    2016-12-01

    Full Text Available Abstract The objectives of this study were to identify the histamine-forming bacteria and bacteriocin- producing lactic acid bacteria (LAB isolated from Myeolchi-jeot according to sequence analysis of the 16S rRNA gene, to evaluate the inhibitory effects of the bacteriocin on the growth and histamine accumulation of histamine-forming bacteria, and to assess the physico-chemical properties of the bacteriocin. Based on 16S rRNA gene sequences, histamine-forming bacteria were identified as Bacillus licheniformis MCH01, Serratia marcescens MCH02, Staphylococcus xylosus MCH03, Aeromonas hydrophila MCH04, and Morganella morganii MCH05. The five LAB strains identified as Pediococcus acidilactici MCL11, Leuconostoc mesenteroides MCL12, Enterococcus faecium MCL13, Lactobacillus sakei MCL14, and Lactobacillus acidophilus MCL15 were found to produce an antibacterial compound with inhibitory activity against the tested histamine-producing bacteria. The inhibitory activity of these bacteriocins obtained from the five LAB remained stable after incubation at pH 4.0–8.0 and heating for 10 min at 80 °C; however, the bacteriocin activity was destroyed after treatment with papain, pepsin, proteinase K, α-chymotrypsin, or trypsin. Meanwhile, these bacteriocins produced by the tested LAB strains also exhibited histamine-degradation ability. Therefore, these antimicrobial substances may play a role in inhibiting histamine formation in the fermented fish products and preventing seafood-related food-borne disease caused by bacterially generated histamine.

  13. Inhibition of Fungal Pathogens across Genotypes and Temperatures by Amphibian Skin Bacteria

    Directory of Open Access Journals (Sweden)

    Carly R. Muletz-Wolz

    2017-08-01

    Full Text Available Symbiotic bacteria may dampen the impacts of infectious diseases on hosts by inhibiting pathogen growth. However, our understanding of the generality of pathogen inhibition by different bacterial taxa across pathogen genotypes and environmental conditions is limited. Bacterial inhibitory properties are of particular interest for the amphibian-killing fungal pathogens (Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans, for which probiotic applications as conservation strategies have been proposed. We quantified the inhibition strength of five putatively B. dendrobatidis-inhibitory bacteria isolated from woodland salamander skin against six Batrachochytrium genotypes at two temperatures (12 and 18°C. We selected six genotypes from across the Batrachochytrium phylogeny: B. salamandrivorans, B. dendrobatidis-Brazil and four genotypes of the B. dendrobatidis Global Panzootic Lineage (GPL1: JEL647, JEL404; GPL2: SRS810, JEL423. We performed 96-well plate challenge assays in a full factorial design. We detected a Batrachochytrium genotype by temperature interaction on bacterial inhibition score for all bacteria, indicating that bacteria vary in ability to inhibit Batrachochytrium depending on pathogen genotype and temperature. Acinetobacter rhizosphaerae moderately inhibited B. salamandrivorans at both temperatures (μ = 46–53%, but not any B. dendrobatidis genotypes. Chryseobacterium sp. inhibited three Batrachochytrium genotypes at both temperatures (μ = 5–71%. Pseudomonas sp. strain 1 inhibited all Batrachochytrium genotypes at 12°C and four Batrachochytrium genotypes at 18°C (μ = 5–100%. Pseudomonas sp. strain 2 and Stenotrophomonas sp. moderately to strongly inhibited all six Batrachochytrium genotypes at both temperatures (μ = 57–100%. All bacteria consistently inhibited B. salamandrivorans. Using cluster analysis of inhibition scores, we found that more closely related Batrachochytrium genotypes grouped together

  14. Anaerobic bacteria that dechlorinate perchloroethene.

    Science.gov (United States)

    Fathepure, B Z; Nengu, J P; Boyd, S A

    1987-01-01

    In this study, we identified specific cultures of anaerobic bacteria that dechlorinate perchlorethene (PCE). The bacteria that significantly dechlorinated PCE were strain DCB-1, an obligate anaerobe previously shown to dechlorinate chlorobenzoate, and two strains of Methanosarcina. The rate of PCE dechlorination by DCB-1 compared favorably with reported rates of trichloroethene bio-oxidation by methanotrophs. Even higher PCE dechlorination rates were achieved when DCB-1 was grown in a methanogenic consortium. PMID:3426224

  15. Modulation of immune homeostasis by commensal bacteria

    Science.gov (United States)

    Ivanov, Ivaylo I.; Littman, Dan R.

    2011-01-01

    Intestinal bacteria form a resident community that has co-evolved with the mammalian host. In addition to playing important roles in digestion and harvesting energy, commensal bacteria are crucial for the proper functioning of mucosal immune defenses. Most of these functions have been attributed to the presence of large numbers of “innocuous” resident bacteria that dilute or occupy niches for intestinal pathogens or induce innate immune responses that sequester bacteria in the lumen, thus quenching excessive activation of the mucosal immune system. However it has recently become obvious that commensal bacteria are not simply beneficial bystanders, but are important modulators of intestinal immune homeostasis and that the composition of the microbiota is a major factor in pre-determining the type and robustness of mucosal immune responses. Here we review specific examples of individual members of the microbiota that modify innate and adaptive immune responses, and we focus on potential mechanisms by which such species-specific signals are generated and transmitted to the host immune system. PMID:21215684

  16. Uptake of americium-241 by algae and bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Geisy, J P; Paine, D

    1978-01-01

    Algae and bacteria are important factors in the transport and mobilization of elements in the biosphere. These factors may be involved in trophic biomagnification, resulting in a potential human hazard or environmental degradation. Although americium, one of the most toxic elements known, is not required for plant growth, it may be concentrated by algae and bacteria. Therefore, the availability of americium-241 to algae and bacteria was studied to determine their role in the ultimate fate of this element released into the environment. Both algae and bacteria concentrated americium-241 to a high degree, making them important parts of the biomagnification process. The ability to concentrate americium-241 makes algae and bacteria potentially significant factors in cycling this element in the water column. (4 graphs, numerous references, 3 tables)

  17. High motility reduces grazing mortality of planktonic bacteria

    DEFF Research Database (Denmark)

    Matz, Carsten; Jurgens, K.

    2005-01-01

    We tested the impact of bacterial swimming speed on the survival of planktonic bacteria in the presence of protozoan grazers. Grazing experiments with three common bacterivorous nanoflagellates revealed low clearance rates for highly motile bacteria. High-resolution video microscopy demonstrated...... size revealed highest grazing losses for moderately motile bacteria with a cell size between 0.2 and 0.4 mum(3). Grazing mortality was lowest for cells of >0.5 mum(3) and small, highly motile bacteria. Survival efficiencies of >95% for the ultramicrobacterial isolate CP-1 (less than or equal to0.1 mum......(3), >50 mum s(-1)) illustrated the combined protective action of small cell size and high motility. Our findings suggest that motility has an important adaptive function in the survival of planktonic bacteria during protozoan grazing....

  18. Thermophilic Sulfate-Reducing Bacteria in Cold Marine Sediment

    DEFF Research Database (Denmark)

    ISAKSEN, MF; BAK, F.; JØRGENSEN, BB

    1994-01-01

    sulfate-reducing bacteria was detected. Time course experiments showed constant sulfate reduction rates at 4 degrees C and 30 degrees C, whereas the activity at 60 degrees C increased exponentially after a lag period of one day. Thermophilic, endospore-forming sulfate-reducing bacteria, designated strain...... C to search for presence of psychrophilic, mesophilic and thermophilic sulfate-reducing bacteria. Detectable activity was initially only in the mesophilic range, but after a lag phase sulfate reduction by thermophilic sulfate-reducing bacteria were observed. No distinct activity of psychrophilic...... P60, were isolated and characterized as Desulfotomaculum kuznetsovii. The temperature response of growth and respiration of strain P60 agreed well with the measured sulfate reduction at 50 degrees-70 degrees C. Bacteria similar to strain P60 could thus be responsible for the measured thermophilic...

  19. Thermophilic Sulfate-Reducing Bacteria in Cold Marine Sediment

    DEFF Research Database (Denmark)

    ISAKSEN, MF; BAK, F.; JØRGENSEN, BB

    1994-01-01

    C to search for presence of psychrophilic, mesophilic and thermophilic sulfate-reducing bacteria. Detectable activity was initially only in the mesophilic range, but after a lag phase sulfate reduction by thermophilic sulfate-reducing bacteria were observed. No distinct activity of psychrophilic...... sulfate-reducing bacteria was detected. Time course experiments showed constant sulfate reduction rates at 4 degrees C and 30 degrees C, whereas the activity at 60 degrees C increased exponentially after a lag period of one day. Thermophilic, endospore-forming sulfate-reducing bacteria, designated strain...... P60, were isolated and characterized as Desulfotomaculum kuznetsovii. The temperature response of growth and respiration of strain P60 agreed well with the measured sulfate reduction at 50 degrees-70 degrees C. Bacteria similar to strain P60 could thus be responsible for the measured thermophilic...

  20. Microfluidic Transducer for Detecting Nanomechanical Movements of Bacteria

    Science.gov (United States)

    Kara, Vural; Ekinci, Kamil

    2017-11-01

    Various nanomechanical movements of bacteria are currently being explored as an indication of bacterial viability. Most notably, these movements have been observed to subside rapidly and dramatically when the bacteria are exposed to an effective antibiotic. This suggests that monitoring bacterial movements, if performed with high fidelity, can offer a path to various clinical microbiological applications, including antibiotic susceptibility tests. Here, we introduce a robust and sensitive microfluidic transduction technique for detecting the nanomechanical movements of bacteria. The technique is based on measuring the electrical fluctuations in a microchannel which the bacteria populate. These electrical fluctuations are caused by the swimming of motile, planktonic bacteria and random oscillations of surface-immobilized bacteria. The technique provides enough sensitivity to detect even the slightest movements of a single cell and lends itself to smooth integration with other microfluidic methods and devices; it may eventually be used for rapid antibiotic susceptibility testing. We acknowledge support from Boston University Office of Technology Development, Boston University College of Engineering, NIH (1R03AI126168-01) and The Wallace H. Coulter Foundation.

  1. Mobilizable genomic islands, different strategies for the dissemination of multidrug resistance and other adaptive traits

    NARCIS (Netherlands)

    Carraro, N.; Rivard, N.; Burrus, V.; Ceccarelli, Daniela

    2017-01-01

    Mobile genetic elements are near ubiquitous DNA segments that revealed a surprising variety of strategies for their propagation among prokaryotes and between eukaryotes. In bacteria, conjugative elements were shown to be key drivers of evolution and adaptation by efficiently disseminating genes

  2. Exogenous fatty acid metabolism in bacteria.

    Science.gov (United States)

    Yao, Jiangwei; Rock, Charles O

    2017-10-01

    Bacterial type II fatty acid synthesis (FASII) is a target for novel antibiotic development. All bacteria encode for mechanisms to incorporate exogenous fatty acids, and some bacteria can use exogenous fatty acids to bypass FASII inhibition. Bacteria encode three different mechanisms for activating exogenous fatty acids for incorporation into phospholipid synthesis. Exogenous fatty acids are converted into acyl-CoA in Gammaproteobacteria such as E. coli. Acyl-CoA molecules constitute a separate pool from endogenously synthesized acyl-ACP. Acyl-CoA can be used for phospholipid synthesis or broken down by β-oxidation, but cannot be used for lipopolysaccharide synthesis. Exogenous fatty acids are converted into acyl-ACP in some Gram-negative bacteria. The resulting acyl-ACP undergoes the same fates as endogenously synthesized acyl-ACP. Exogenous fatty acids are converted into acyl-phosphates in Gram-positive bacteria, and can be used for phospholipid synthesis or become acyl-ACP. Only the order Lactobacillales can use exogenous fatty acids to bypass FASII inhibition. FASII shuts down completely in presence of exogenous fatty acids in Lactobacillales, allowing Lactobacillales to synthesize phospholipids entirely from exogenous fatty acids. Inhibition of FASII cannot be bypassed in other bacteria because FASII is only partially down-regulated in presence of exogenous fatty acid or FASII is required to synthesize essential metabolites such as β-hydroxyacyl-ACP. Certain selective pressures such as FASII inhibition or growth in biofilms can select for naturally occurring one step mutations that attenuate endogenous fatty acid synthesis. Although attempts have been made to estimate the natural prevalence of these mutants, culture-independent metagenomic methods would provide a better estimate. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  3. Ecological strategies shapes the insurance potential of biodiversity

    Directory of Open Access Journals (Sweden)

    Miguel eMatias

    2013-01-01

    Full Text Available Biodiversity is thought to provide insurance for ecosystem functioning under heterogeneous environments, however, such insurance potential is under serious threat following unprecedented loss of biodiversity. One of the key mechanism underlying ecological insurance is that niche differentiation allows asynchronous responses to fluctuating environments; although, the role of different ecological strategies (e.g. specialists vs generalists has yet to be formally evaluated. We combine here a simple model and experimental study to illustrate how different specialization-performance strategies shape the biodiversity-insurance relationship. We assembled microcosm of generalists and specialist bacteria over a gradient of salinity and found that, bacterial communities made up of generalists were more productive and more stable over time under environmental fluctuations. We argue that beyond species richness itself, it is essential to incorporate the distribution of ecological strategies across relevant environmental gradients as predictors of the insurance potential of biodiversity in natural ecosystems.

  4. Sensitivity of certain bacteria to antibiotics and irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Harsojo,; Andini, L S; Siagian, E G; Lina, M R; Zuleiha, S [National Atomic Energy Agency, Jakarta (Indonesia). Pasar Djumat Research Centre

    1981-07-01

    An experiment has been conducted to find vegetative forms of certain bacteria in Indonesia which are resistant to irradiation, the resistance of which will be compared to that of known radioresistant bacteria micrococcus radiodurans. To inactivate the vegetative forms of resistant bacteria to irradiation high doses are needed, while for storage purposes lower doses change the physical and chemical properties of the stored commodity are preferred. For this purpose the bacteria were irradiated in aerobic condition with gamma radiation doses of 0.1, 0.2 and 0.3 kGy, or treated with antibiotics e.g. tetracycline HCl or chloramphenicol with concentrations of 0.1, 0.2 and 0.3 ..mu..g/ml respectively. The results indicated that doses of 0.2 kGy and 0.1 ..mu..g/ml reduced the ability of the bacteria for multiplication.

  5. Elaboration of highly hydrophobic polymeric surface — a potential strategy to reduce the adhesion of pathogenic bacteria?

    Energy Technology Data Exchange (ETDEWEB)

    Poncin-Epaillard, F., E-mail: fabienne.poncin-epaillard@univ-lemans.fr [Institut des Molécules et Matériaux du Mans (IMMM), département Polymères, Colloïdes et Interfaces, UMR CNRS 6283 Université LUNAM, av. O. Messiaen, 72085 Le Mans (France); Herry, J.M. [INRA-AgroParisTech, UMR 1319 MICALIS, équipe B2HM, 25 avenue de la République, 91300 Massy (France); Marmey, P.; Legeay, G. [CTTM, 20 rue Thalès de Milet 72000 Le Mans (France); Debarnot, D. [Institut des Molécules et Matériaux du Mans (IMMM), département Polymères, Colloïdes et Interfaces, UMR CNRS 6283 Université LUNAM, av. O. Messiaen, 72085 Le Mans (France); Bellon-Fontaine, M.N. [INRA-AgroParisTech, UMR 1319 MICALIS, équipe B2HM, 25 avenue de la République, 91300 Massy (France)

    2013-04-01

    Different polymeric surfaces have been modified in order to reach a high hydrophobic character, indeed the superhydrophobicity property. For this purpose, polypropylene and polystyrene have been treated by RF or μwaves CF{sub 4} plasma with different volumes, the results were compared according to the density of injected power. The effect of pretreatment such as mechanical abrasion or plasma activation was also studied. The modified surfaces were shown as hydrophobic, or even superhydrophobic depending of defects density. They were characterized by measurement of wettability and roughness at different scales, i.e. macroscopic, mesoscopic and atomic. It has been shown that a homogeneous surface at the macroscopic scale could be heterogeneous at lower mesoscopic scale. This was associated with the crystallinity of the material. The bioadhesion tests were performed with Gram positive and negative pathogenic strains: Listeria monocytogenes, Pseudomonas aeruginosa and Hafnia alvei. They have demonstrated an antibacterial efficiency of very hydrophobic and amorphous PS treated for all strains tested and a strain-dependent efficiency with modified PP surface being very heterogeneous at the mesoscopic scale. Thus, these biological results pointed out not only the respective role of the surface chemistry and topography in bacterial adhesion, but also the dependence on the peaks and valley distribution at bacteria dimension scale. Highlights: ► Simple, eco-friendly modification of polymers leading to highly hydrophobic property ► Plasma treatment inducing surface fluorination and roughness ► Study of non-adhesion of different types of bacteria onto such polymeric surfaces ► Dependence of their non-adhesion on surface topography whatever their characteristics.

  6. Anti-bacteria Effect of Active Ingredients of Cacumen Platycladi on the Spoilage Bacteria of Sauced Pork Head Meat

    Science.gov (United States)

    Li, Xiao; Xu, Lingyi; Cui, Yuqian; Pang, Meixia; Wang, Fang; Qi, Jinghua

    2017-12-01

    Extraction and anti-bacteria effect of active ingredients of Cacumen Platycladi were studied in this paper. Extraction combined with ultrasonic was adopted. The optimum extraction condition was determined by single factor test; the anti-bacteria effect of active ingredients and minimum inhibitory concentration(MIC) were valued by Oxford-cup method. The results indicated that kaempferol was the active ingredients of Cacumen Platycladi whose optimum extraction condition for ethanol concentrations were sixty-five percent and twenty minutes with ultrasonic assisted extraction.; the active ingredients of Cacumen Platycladi had anti-bacteria effect on Staphylococcus, Proteus, Bacillus, Serratia and MIC was 0.5 g/mL,0.5 g/mL,0.0313 g/mL and 0.0625 g/mL. The active constituent of Cacumen Platycladi is kaempferol which has obvious anti-bacteria effect and can be used to prolong the shelf-life of Low-temperature meat products.

  7. Behavior of plutonium interacting with bentonite and sulfate-reducing anaerobic bacteria

    International Nuclear Information System (INIS)

    Kudo, A.; Zheng, J.; Cayer, I.; Fujikawa, Y.; Yoshikawa, H.; Ito, M.

    1997-01-01

    The interactions between sulfate reducing anaerobic bacteria and plutonium, with or without bentonite present, were investigated using distribution coefficients [Kd (ml/g)] as an index of the radionuclide behavior. Plutonium Kds for living bacteria varied within a large range, from 1,804 to 112,952, depending on the pH, while the Kds ranged from 1,180 to 5,931 for dead bacteria. In general, living bacteria had higher plutonium Kds than dead bacteria. Furthermore, the higher Kd values of 39,677 to 106,915 for living bacteria were obtained for a pH range between 6.83 and 8.25, while no visible pH effect was observed for dead bacteria. These Kd values were obtained using tracers for both 236 Pu and 239 Pu, which can check the experimental procedures and mass balance. Another comparison was conducted for plutonium Kd values of mixtures of living bacteria with bentonite and sterilized bacteria with bentonite. The range of Kd values for the non-sterilized bacteria with bentonite were 1,194 to 83,648 while Kd values for the sterilized bacteria with bentonite were from 624 to 17,236. Again, the Kd values for the living bacteria with bentonite were higher than those of sterilized bacteria with bentonite. In other words, the presence of living anaerobic bacteria with bentonite increased, by roughly 50 times, the Kd values of 239 Pu when compared to the mixture of dead bacteria with bentonite. The results indicate that the effects of anaerobic bacteria within the engineered barrier system (in this case bentonite) will play a significant role in the behavior of plutonium in geologic repositories

  8. Multiresistant Bacteria Isolated from Chicken Meat in Austria

    Directory of Open Access Journals (Sweden)

    Gernot Zarfel

    2014-12-01

    Full Text Available Multidrug resistant bacteria (MDR bacteria, such as extended spectrum beta-lactamase (ESBL Enterobacteriaceae, methicillin resistant Staphylococcus aureus (MRSA, and vancomycin-resistant Enterococci (VRE, pose a challenge to the human health care system. In recent years, these MDR bacteria have been detected increasingly outside the hospital environment. Also the contamination of food with MDR bacteria, particularly of meat and meat products, is a concern. The aim of the study was to evaluate the occurrence of MDR bacteria in chicken meat on the Austrian market. For this study, 50 chicken meat samples were analysed. All samples originated from chickens slaughtered in Austrian slaughterhouses and were marked as produced in Austria. Samples were analysed for the presence of ESBL Enterobacteriaceae, methicillin resistant Staphylococci and VRE. Resistance genes of the isolated bacteria were characterised by PCR and sequencing. In the present study 26 ESBL producing E. coli, five mecA gene harbouring Staphylococci (but no MRSA, and four VRE were detected in chicken meat samples of Austrian origin. In 24 (48% of the samples no ESBL Enterobacteriaceae, MRSA, methicillin resistant coagulase negative Staphylococcus (MRCNS or VRE could be detected. None of the samples contained all three types of investigated multiresistant bacteria. In concordance to previous studies, CTX-M-1 and SHV-12 were the dominant ESBL genes.

  9. Pu sorption to activated conglomerate anaerobic bacteria

    International Nuclear Information System (INIS)

    Sasaki, Takayuki; Kudo, Akira

    2001-01-01

    The sorption of Pu to the anaerobic bacteria activated under specific conditions of temperature, pH and depleted nutrients after long dormant period was investigated. After 4 h at neutral pH, the distribution coefficient (K d ) between bacteria and aqueous phase at 308 and 278 K had around 10 3 to 10 4 . After over 5 days, however, the K d at only 308 K had increased to over 10 5 . Sterilized (dead) and dormant anaerobic bacteria adsorbed Pu to the same extent. (author)

  10. The effect of lactic acid bacteria on cocoa bean fermentation.

    Science.gov (United States)

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham

    2015-07-16

    Cocoa beans (Theobroma cacao L.) are the raw material for chocolate production. Fermentation of cocoa pulp by microorganisms is crucial for developing chocolate flavor precursors. Yeasts conduct an alcoholic fermentation within the bean pulp that is essential for the production of good quality beans, giving typical chocolate characters. However, the roles of bacteria such as lactic acid bacteria and acetic acid bacteria in contributing to the quality of cocoa bean and chocolate are not fully understood. Using controlled laboratory fermentations, this study investigated the contribution of lactic acid bacteria to cocoa bean fermentation. Cocoa beans were fermented under conditions where the growth of lactic acid bacteria was restricted by the use of nisin and lysozyme. The resultant microbial ecology, chemistry and chocolate quality of beans from these fermentations were compared with those of indigenous (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii, Kluyveromyces marxianus and Saccharomyces cerevisiae, the lactic acid bacteria Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in control fermentations. In fermentations with the presence of nisin and lysozyme, the same species of yeasts and acetic acid bacteria grew but the growth of lactic acid bacteria was prevented or restricted. These beans underwent characteristic alcoholic fermentation where the utilization of sugars and the production of ethanol, organic acids and volatile compounds in the bean pulp and nibs were similar for beans fermented in the presence of lactic acid bacteria. Lactic acid was produced during both fermentations but more so when lactic acid bacteria grew. Beans fermented in the presence or absence of lactic acid bacteria were fully fermented, had similar shell weights and gave acceptable chocolates with no differences

  11. Antimicrobial Use for and Resistance of Zoonotic Bacteria Recovered from Nonhuman Primates.

    Science.gov (United States)

    Kim, Jeffrey; Coble, Dondrae J; Salyards, Gregory W; Bower, Julie K; Rinaldi, William J; Plauche, Gail B; Habing, Gregory G

    2017-02-01

    As a growing threat to human and animal health, antimicrobial resistance (AMR) has become a central public-health topic. Largescale surveillance systems, such as the National Antimicrobial Resistance Monitoring System (NARMS), are now established to monitor and provide guidance regarding AMR, but comprehensive literature on AMR among NHP is sparse. This study provides data regarding current antimicrobial use strategies and the prevalence of AMR in zoonotic bacteria recovered from NHP within biomedical research institutions. We focused on 4 enteric bacteria: Shigella flexneri, Yersinia enterocolitica, Y. pseudotuberculosis, and Campylobacter jejuni. Fifteen veterinarians, 7 biomedical research institutions, and 4 diagnostic laboratories participated, providing susceptibility test results from January 2012 through April 2015. Veterinarians primarily treated cases caused by S. flexneri, Y. enterocolitica, and Y. pseudotuberculosis with enrofloxacin but treated C. jejuni cases with azithromycin and tylosin. All isolates were susceptible to the associated primary antimicrobial but often showed resistance to others. Specifically, S. flexneri isolates frequently were resistant to erythromycin (87.5%), doxycycline (73.7%), and tetracycline (38.3%); Y. enterocolitica isolates to ampicillin (100%) and cefazolin (93.6%); and C. jejuni isolates to methicillin (99.5%) and cephalothin (97.5%). None of the 58 Y. pseudotuber-culosis isolates was resistant to any tested antimicrobial. Notably, resistance patterns were not shared between this study's NHP isolates and human isolates presented by NARMS. Our findings indicate that zoonotic bacteria from NHP diagnostic samples are broadly susceptible to the antimicrobials used to treat the clinical infections. These results can help veterinarians ensure effective antimicrobial therapy and protect staff by minimizing occupational risk.

  12. The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass.

    Science.gov (United States)

    Maki, Miranda; Leung, Kam Tin; Qin, Wensheng

    2009-07-29

    Lignocellulosic biomass is a renewable and abundant resource with great potential for bioconversion to value-added bioproducts. However, the biorefining process remains economically unfeasible due to a lack of biocatalysts that can overcome costly hurdles such as cooling from high temperature, pumping of oxygen/stirring, and, neutralization from acidic or basic pH. The extreme environmental resistance of bacteria permits screening and isolation of novel cellulases to help overcome these challenges. Rapid, efficient cellulase screening techniques, using cellulase assays and metagenomic libraries, are a must. Rare cellulases with activities on soluble and crystalline cellulose have been isolated from strains of Paenibacillus and Bacillus and shown to have high thermostability and/or activity over a wide pH spectrum. While novel cellulases from strains like Cellulomonas flavigena and Terendinibacter turnerae, produce multifunctional cellulases with broader substrate utilization. These enzymes offer a framework for enhancement of cellulases including: specific activity, thermalstability, or end-product inhibition. In addition, anaerobic bacteria like the clostridia offer potential due to species capable of producing compound multienzyme complexes called cellulosomes. Cellulosomes provide synergy and close proximity of enzymes to substrate, increasing activity towards crystalline cellulose. This has lead to the construction of designer cellulosomes enhanced for specific substrate activity. Furthermore, cellulosome-producing Clostridium thermocellum and its ability to ferment sugars to ethanol; its amenability to co-culture and, recent advances in genetic engineering, offer a promising future in biofuels. The exploitation of bacteria in the search for improved enzymes or strategies provides a means to upgrade feasibility for lignocellulosic biomass conversion, ultimately providing means to a 'greener' technology.

  13. Comparative Genomics of Green Sulfur Bacteria

    DEFF Research Database (Denmark)

    Ussery, David; Davenport, C; Tümmler, B

    2010-01-01

    Eleven completely sequenced Chlorobi genomes were compared in oligonucleotide usage, gene contents, and synteny. The green sulfur bacteria (GSB) are equipped with a core genome that sustains their anoxygenic phototrophic lifestyle by photosynthesis, sulfur oxidation, and CO(2) fixation. Whole...... weight of 10(6), and are probably instrumental for the bacteria to generate their own intimate (micro)environment....

  14. Isolation of radiation-resistant bacteria without exposure to irradiation

    International Nuclear Information System (INIS)

    Sanders, S.W.; Maxcy, R.B.

    1979-01-01

    Resistance to desiccation was utilized in the selection of highly radiation-resistant asporogenous bacteria from nonirradiated sources. A bacterial suspension in phosphate buffer was dried in a thin film at 25 0 C and 33% relative humidity. Storage under these conditions for 15 days or more reduced the number of radiation-sensitive bacteria. Further selection for radiation-resistant bacteria was obtained by irradiation of bacteria on velveteen in the replication process, therby avoiding the toxic effect of irradiated media. The similarity of radiation resistance and identifying characteristics in irradiated and non-irradiated isolates should allay some concerns that highly radiation-resistance bacteria have been permanently altered by radiation selection

  15. Design, characterization and applications of new ionic liquid matrices for multifunctional analysis of biomolecules: a novel strategy for pathogenic bacteria biosensing.

    Science.gov (United States)

    Abdelhamid, Hani Nasser; Khan, M Shahnawaz; Wu, Hui-Fen

    2014-05-01

    The design, preparation and performance for novel UV-light absorbing (room-temperature) ionic liquid matrices (UV-RTILMs) for matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) were reported. A series of UV-RTILMs was prepared by ultrasonication of equimolar of acid (mefenamic acid) and bases (aniline (ANI), pyridine (Pyr), dimethyl aniline (DMANI) and 2-methyl picoline (2-P)). The UV-RTILMs have not only significant absorbance at the desired wavelength (337 nm of the N2 Laser), but also have available protons that can easily undergo proton transfer reactions to ionize the target molecules. The novel UV-RTILMs have the ability to ionize different and wide classes of compounds such as drugs, carbohydrate, and amino acids. The new UV-RTILMs series have been successfully and selectively applied for biosensing the lysates of pathogenic bacteria in the presence of the cell macromolecules. A new strategy for biosensing pathogens was presented via sensing the pathogens lysate in the cell suspension. The new materials can effectively detect the bacterial toxins without separation or any pretreatment. They offered excellent ionization of labile oligosaccharides with protonated peaks. They could significantly enhance the analyte signals, produce homogeneous spotting, reducing spot-to-spot variation, excellent vacuum stability, higher ion peak intensity, and wide application possibility. The physical parameters such as molar refractivity, molar volume, parachor, surface tension, density and polarizability were calculated and tabulated. The new UV-RTILMs could offer excellent reproducibility and great repeatability and they are promising matrices for wide applications on MALDI-MS. Copyright © 2014. Published by Elsevier B.V.

  16. Do Bacteria Age?

    Indian Academy of Sciences (India)

    Bacteria are thought to be examples of organisms that do not age. They divide by .... carry genetic material to the next generation through the process of reproduction; they are also .... molecules, and modified proteins. This report revealed that ...

  17. Strategies to increase the hygienic and economic value of fresh fish: Biopreservation using lactic acid bacteria of marine origin.

    Science.gov (United States)

    Gómez-Sala, Beatriz; Herranz, Carmen; Díaz-Freitas, Belén; Hernández, Pablo E; Sala, Ana; Cintas, Luis M

    2016-04-16

    In this work we describe the development of a biopreservation strategy for fresh fish based on the use of bacteriocinogenic LAB of marine origin. For this purpose, two multibacteriocinogenic LAB strains, Lactobacillus curvatus BCS35 and Enterococcus faecium BNM58, previously isolated from fish and fish products were selected owing to their capability to inhibit the growth of several fish-spoilage and food-borne pathogenic bacteria. Two commercially important fish species were chosen, young hake (Merluccius merluccius) and megrim (Lepidorhombus boscii), and the specimens were acquired at the Marín (Pontevedra, Spain) retail fish market, after one night in the chilled hold of a near-shore fishing vessel. The biopreservation potential and the application strategies of these two LAB strains were first tested at a laboratory scale, where several batches of fresh fish were inoculated with: (i) the multibacteriocinogenic LAB culture(s) as protective culture(s); and/or (ii) their cell-free culture supernatant(s) as food ingredient(s), and (iii) the lyophilized bacteriocin preparation(s) as lyophilized food ingredient(s). All batches were stored in polystyrene boxes, permanently filled with ice at 0-2 °C, for 14 days. Microbiological analyses, as well as sensorial analyses, were carried out during the biopreservation trials. Subsequently, Lb. curvatus BCS35 was selected to up-scale the trials, and combinations of the three application methods were assayed. For this purpose, this strain was grown in a semi-industrial scale fermentor (150l) in modified MRS broth, and three batches of fresh fish were inoculated with the protective culture and/or food ingredient, and stored on ice in a chilled chamber at 0-2 °C at the Marín retail fish market for 14 days. Microbiological analyses were carried out during the storage period, showing that when Lb. curvatus BCS35 culture or the corresponding cell-free culture supernatant was used as protective culture or food ingredient

  18. Magnetosome chain superstructure in uncultured magnetotactic bacteria

    International Nuclear Information System (INIS)

    Abraçado, Leida G; Farina, Marcos; Abreu, Fernanda; Keim, Carolina N; Lins, Ulysses; Campos, Andrea P C

    2010-01-01

    Magnetotactic bacteria produce magnetosomes, which are magnetic particles enveloped by biological membranes, in a highly controlled mineralization process. Magnetosomes are used to navigate in magnetic fields by a phenomenon called magnetotaxis. Two levels of organization and control are recognized in magnetosomes. First, magnetotactic bacteria create a spatially distinct environment within vesicles defined by their membranes. In the vesicles, the bacteria control the size, composition and purity of the mineral content of the magnetic particles. Unique crystal morphologies are produced in magnetosomes as a consequence of this bacterial control. Second, magnetotactic bacteria organize the magnetosomes in chains within the cell body. It has been shown in a particular case that the chains are positioned within the cell body in specific locations defined by filamentous cytoskeleton elements. Here, we describe an additional level of organization of the magnetosome chains in uncultured magnetotactic cocci found in marine and freshwater sediments. Electron microscopy analysis of the magnetosome chains using a goniometer showed that the magnetic crystals in both types of bacteria are not oriented at random along the crystal chain. Instead, the magnetosomes have specific orientations relative to the other magnetosomes in the chain. Each crystal is rotated either 60°, 180° or 300° relative to their neighbors along the chain axis, causing the overlapping of the (1 1 1) and (1-bar 1-bar 1-bar) capping faces of neighboring crystals. We suggest that genetic determinants that are not present or active in bacteria with magnetosomes randomly rotated within a chain must be present in bacteria that organize magnetosomes so precisely. This particular organization may also be used as an indicative biosignature of magnetosomes in the study of magnetofossils in the cases where this symmetry is observed

  19. Platelets and infections—complex interactions with bacteria

    Directory of Open Access Journals (Sweden)

    Hind eHAMZEH-COGNASSE

    2015-02-01

    Full Text Available Platelets can be considered sentinels of vascular system due to their high number in the circulation and to the range of functional immunoreceptors they express. Platelets express a wide range of potential bacterial receptors, including complement receptors, FcγRII, Toll-Like Receptors but also integrins conventionally described in the hemostatic response, such as GPIIb-IIIa or GPIb. Bacteria bind these receptors either directly, or indirectly via fibrinogen, fibronectin, the first complement C1q, the von Willebrand Factor, etc. The fate of platelet bound bacteria is questioned. Several studies reported the ability of activated platelets to internalize bacteria such as Staphylococcus aureus or Porphyromonas gingivalis, though there is no clue on what happens thereafter. Are they sheltered from the immune system in the cytoplasm of platelets or are they lysed? Indeed, while the presence of phagolysosome has not been demonstrated in platelets, they contain antimicrobial peptides that were shown to be efficient on S. aureus. Besides, the fact that bacteria can bind to platelets via receptors involved in hemostasis suggests that they may induce aggregation; this has indeed been described for Streptococcus sanguinis, S. epidermidis or C. pneumoniae. On the other hand, platelets are able to display an inflammatory response to an infectious triggering. We, and others, have shown that platelet release soluble immunomodulatory factors upon stimulation by bacterial components. Moreover, interactions between bacteria and platelets are not limited to only these two partners. Indeed, platelets are also essential for the formation of Neutrophil Extracellular Traps by neutrophils, resulting in bacterial clearance by trapping bacteria and concentrating antibacterial factors but in enhancing thrombosis. In conclusion, the platelet-bacteria interplay is a complex game; its fine analysis is complicated by the fact that the inflammatory component adds to the

  20. Nanotextile membranes for bacteria Escherichia coli capturing

    Directory of Open Access Journals (Sweden)

    Jaroslav Lev

    2010-01-01

    Full Text Available The article describes an experimental study dealing with the possibility of nanotextile materials usa­ge for microbiologically contaminated water filtration. The aim of the study is to verify filtration ability of different nanotextile materials and evaluate the possibilities of practical usage. Good detention ability of these materials in the air filtration is the presumption for nanotextile to be used for bacteria filtration from a liquid. High nanotextile porosity with the nanotextile pores dimensions smaller than a bacteria size predicates the possibility of a successful usage of these materials. For the experiment were used materials made from electrospinning nanofibres under the label PA612, PUR1, PUR2 s PUR3 on the supporting unwoven textiles (viscose and PP. As a model simulation of the microbial contamination, bacteria Escherichia coli was chosen. Contaminated water was filtered during the overpressure activity of 105Pa on the input side of the filter from the mentioned material. After three-day incubation on the nutrient medium, cultures found in the samples before and after filtration were compared. In the filtrated water, bacteria E. coli were indicated, which did not verify the theoretical presumptions about an absolut bacteria detention. However, used materials caught at least 94% of bacteria in case of material PUR1 and up to 99,996% in case of material PUR2. These results predict the possibility of producing effective nanotextile filters for microbiologically contaminated water filtration.Recommendation: For the production of materials with better filtrating qualities, experiments need to be done, enabling better understanding of the bacteria detention mechanisms on the nanotextile material, and parameters of the used materials that influence the filtrating abilities need to be verified.

  1. [Spectrum and susceptibility of preoperative conjunctival bacteria].

    Science.gov (United States)

    Fernández-Rubio, M E; Cuesta-Rodríguez, T; Urcelay-Segura, J L; Cortés-Valdés, C

    2013-12-01

    To describe the conjunctival bacterial spectrum of our patients undergoing intraocular surgery and their antibiotic sensitivity during the study period. A retrospective study of preoperative conjunctival culture of patients consecutively scheduled for intraocular surgery from 21 February 2011 to 1 April 2013. Specimens were directly seeded onto blood-agar and MacConkey-agar (aerobiosis incubation, 2 days), and on chocolate-agar (6% CO2 incubation, 7 days). The identified bacteria were divided into 3 groups according to their origin; the bacteria susceptibility tests were performed on those more pathogenic and on some of the less pathogenic when more than 5 colonies were isolated. The sensitivity of the exigent growing bacteria was obtained with disk diffusion technique, and for of the non-exigent bacteria by determining their minimum inhibitory concentration. The Epidat 3.1 program was used for statistical calculations. A total of 13,203 bacteria were identified in 6,051 cultures, with 88.7% being typical colonizers of conjunctiva (group 1), 8.8% typical of airways (group 2), and the remaining 2.5% of undetermined origin (group 3). 530 cultures (8.8%) were sterile. The sensitivity of group 1 was: 99% vancomycin, 95% rifampicin, 87% chloramphenicol, 76% tetracycline. Levels of co-trimoxazole, aminoglycosides, quinolones, β-lactams and macrolides decreased since 2007. The group 2 was very sensitive to chloramphenicol, cefuroxime, rifampicin, ciprofloxacin and amoxicillin/clavulanate. In group 3, to levofloxacin 93%, ciprofloxacin 89%, tobramycin 76%, but ceftazidime 53% and cefuroxime 29% decreased. None of the tested antibiotics could eradicate all possible conjunctival bacteria. Bacteria living permanently on the conjunctiva (group 1) have achieved higher resistance than the eventual colonizers. Copyright © 2013 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  2. High-Level Culturability of Epiphytic Bacteria and Frequency of Biosurfactant Producers on Leaves

    Science.gov (United States)

    Burch, Adrien Y.; Do, Paulina T.; Sbodio, Adrian; Suslow, Trevor V.

    2016-01-01

    both culture-dependent and culture-independent methods. Biosurfactant production was much more frequently observed in cultured communities on leaves than in other nearby habitats, such as soil and water, suggesting that this trait is important to life on a leaf by altering either the leaf itself or the interaction of bacteria with water. While pseudomonads were the most common biosurfactant producers isolated, this habitat also selects for taxa, such as Chryseobacterium, for which this trait was previously unrecognized. The finding that most epiphytic bacterial taxa were culturable validates strategies using more classical culturing methodologies for their study in this habitat. PMID:27474719

  3. RNases and Helicases in Gram-Positive Bacteria.

    Science.gov (United States)

    Durand, Sylvain; Condon, Ciaran

    2018-04-01

    RNases are key enzymes involved in RNA maturation and degradation. Although they play a crucial role in all domains of life, bacteria, archaea, and eukaryotes have evolved with their own sets of RNases and proteins modulating their activities. In bacteria, these enzymes allow modulation of gene expression to adapt to rapidly changing environments. Today, >20 RNases have been identified in both Escherichia coli and Bacillus subtilis , the paradigms of the Gram-negative and Gram-positive bacteria, respectively. However, only a handful of these enzymes are common to these two organisms and some of them are essential to only one. Moreover, although sets of RNases can be very similar in closely related bacteria such as the Firmicutes Staphylococcus aureus and B. subtilis , the relative importance of individual enzymes in posttranscriptional regulation in these organisms varies. In this review, we detail the role of the main RNases involved in RNA maturation and degradation in Gram-positive bacteria, with an emphasis on the roles of RNase J1, RNase III, and RNase Y. We also discuss how other proteins such as helicases can modulate the RNA-degradation activities of these enzymes.

  4. Using Bacteria to Store Renewable Energy (Text Version) | News | NREL

    Science.gov (United States)

    Using Bacteria to Store Renewable Energy (Text Version) Using Bacteria to Store Renewable Energy is a text version of the video entitled "Using Bacteria to Store Renewable Energy." ; Bacteria from some of the Earth's harshest environments now have a new home at NREL. [A natural spring has

  5. Filamentous phages of Ralstonia solanacearum: double-edged swords for pathogenic bacteria.

    Science.gov (United States)

    Yamada, Takashi

    2013-01-01

    Some phages from genus Inovirus use host or bacteriophage-encoded site-specific integrases or recombinases establish a prophage state. During integration or excision, a superinfective form can be produced. The three states (free, prophage, and superinfective) of such phages exert different effects on host bacterial phenotypes. In Ralstonia solanacearum, the causative agent of bacterial wilt disease of crops, the bacterial virulence can be positively or negatively affected by filamentous phages, depending on their state. The presence or absence of a repressor gene in the phage genome may be responsible for the host phenotypic differences (virulent or avirulent) caused by phage infection. This strategy of virulence control may be widespread among filamentous phages that infect pathogenic bacteria of plants.

  6. Electron microscopic examination of uncultured soil-dwelling bacteria.

    Science.gov (United States)

    Amako, Kazunobu; Takade, Akemi; Taniai, Hiroaki; Yoshida, Shin-ichi

    2008-05-01

    Bacteria living in soil collected from a rice paddy in Fukuoka, Japan, were examined by electron microscopy using a freeze-substitution fixation method. Most of the observed bacteria could be categorized, based on the structure of the cell envelope and overall morphology, into one of five groups: (i) bacterial spore; (ii) Gram-positive type; (iii) Gram-negative type; (iv) Mycobacterium like; and (v) Archaea like. However, a few of the bacteria could not be readily categorized into one of these groups because they had unique cell wall structures, basically resembling those of Gram-negative bacteria, but with the layer corresponding to the peptidoglycan layer in Gram-negative bacteria being extremely thick, like that of the cortex of a bacterial spore. The characteristic morphological features found in many of these uncultured, soil-dwelling cells were the nucleoid being in a condensed state and the cytoplasm being shrunken. We were able to produce similar morphologies in vitro using a Salmonella sp. by culturing under low-temperature, low-nutrient conditions, similar to those found in some natural environments. These unusual morphologies are therefore hypothesized to be characteristic of bacteria in resting or dormant stages.

  7. Roseobacter-clade bacteria as probiotics in marine larvaeculture

    DEFF Research Database (Denmark)

    Grotkjær, Torben

    Disease caused by fish pathogenic bacteria can cause large scale crashes in marine fish larval rearing units. One of the biggest challenges for aquaculture is the management of these bacterial outbreaks. Vaccines can be admitted to fish but only the juvenile and the adult fish because they need...... to have a mature immune system. This means that the larvae of the fish, until they are 2-3 weeks old are more prone to bacterial infections. A short term solution is antibiotics but this leaves way for the selection for antibiotic resistance among the pathogenic bacteria, which again can be transferred...... to human pathogens. Alternatives are therefore needed and one could be the use of probiotic bacteria. Marine bacteria from the Roseobacter clade (Phaeobacter inhibens) have shown great potential as probiotic bacteria, and we have hypothesized that they could be used to antagonize pathogenic fish...

  8. AZF Microdeletions in Human Semen Infected with Bacteria

    Directory of Open Access Journals (Sweden)

    Hayfa H Hassani

    2011-11-01

    Full Text Available Bacterial infections are associated with infertility in men. This study was aimed to investigate microdeletions on Yq chromosome in semen infected with bacteria by using bacteriological, biochemical, and serological assays. The investigation showed that 107 of 300 (84.80% semen samples collected from infertile men with primary or secondary infertility were infected with different species of bacteria. Chlamydia trachomatis and Neisseria gonorrheae were the most frequently diagnosed bacteria in the infected semen samples. The percentages of infections of semen samples with C. trachomatis and N. gonorrhea were 42.31% and 35.28% respectively. Genomic DNA from each semen sample infected with predominant bacteria was analyzed for AZF deletions by using multiplex PCR. Different patterns of AZF microdeletions were obtained. It can be concluded that sexually transmitted bacteria may contribute in microdeletions of Yq chromosome by indirectly producing reactive oxygen species and causing gene defect in AZF regions.

  9. New Insight on the Response of Bacteria to Fluoride

    OpenAIRE

    Breaker, R.R.

    2012-01-01

    Fluoride has been used for decades to prevent caries and it is well established that this anion can inhibit the growth of bacteria. However, the precise effects that fluoride has on bacteria and the mechanisms that bacteria use to overcome fluoride toxicity have largely remained unexplored. Recently, my laboratory reported the discovery of biological systems that bacteria use to sense fluoride and reduce fluoride toxicity. These sensors and their associated genes are very widespread in biolog...

  10. Antagonistic activity of isolated lactic acid bacteria from Pliek U against gram-negative bacteria Escherichia coli ATCC 25922

    Science.gov (United States)

    Kiti, A. A.; Jamilah, I.; Rusmarilin, H.

    2017-09-01

    Lactic acid bacteria (LAB) is one group of microbes that has many benefits, notably in food and health industries sector. LAB plays an important role in food fermentation and it has bacteriostatic effect against the growth of pathogenic microorganisms. The research related LAB continued to be done to increase the diversity of potential isolates derived from nature which is indigenous bacteria for biotechnological purposes. This study was aimed to isolate and characterize LAB derived from pliek u sample and to examine the potency to inhibits Escherichia coli ATCC 25922 bacteria growth. A total of 5 isolates were isolated and based on morphological and physiological characteristics of the fifth bacteria, they are allegedly belonging to the genus Bacillus. Result of antagonistic test showed that the five isolates could inhibits the growth of E. coli ATCC 25922. The highest inhibition zone is 8.5 mm was shown by isolates NQ2, while the lowest inhibition is 1.5 mm was shown by isolates NQ3.

  11. Methylotrophic bacteria in sustainable agriculture.

    Science.gov (United States)

    Kumar, Manish; Tomar, Rajesh Singh; Lade, Harshad; Paul, Diby

    2016-07-01

    Excessive use of chemical fertilizers to increase production from available land has resulted in deterioration of soil quality. To prevent further soil deterioration, the use of methylotrophic bacteria that have the ability to colonize different habitats, including soil, sediment, water, and both epiphytes and endophytes as host plants, has been suggested for sustainable agriculture. Methylotrophic bacteria are known to play a significant role in the biogeochemical cycle in soil ecosystems, ultimately fortifying plants and sustaining agriculture. Methylotrophs also improve air quality by using volatile organic compounds such as dichloromethane, formaldehyde, methanol, and formic acid. Additionally, methylotrophs are involved in phosphorous, nitrogen, and carbon cycling and can help reduce global warming. In this review, different aspects of the interaction between methylotrophs and host plants are discussed, including the role of methylotrophs in phosphorus acquisition, nitrogen fixation, phytohormone production, iron chelation, and plant growth promotion, and co-inoculation of these bacteria as biofertilizers for viable agriculture practices.

  12. Re-sensitizing drug-resistant bacteria to antibiotics by designing Antisense Therapeutics

    Science.gov (United States)

    Courtney, Colleen; Chatterjee, Anushree

    2014-03-01

    ``Super-bugs'' or ``multi-drug resistant organisms'' are a serious international health problem, with devastating consequences to patient health care. The Center for Disease Control has identified antibiotic resistance as one of the world's most pressing public health problems as a significant fraction of bacterial infections contracted are drug resistant. Typically, antibiotic resistance is encoded by ``resistance-genes'' which express proteins that carryout the resistance causing functions inside the bacterium. We present a RNA based therapeutic strategy for designing antimicrobials capable of re-sensitizing resistant bacteria to antibiotics by targeting labile regions of messenger RNAs encoding for resistance-causing proteins. We perform in silico RNA secondary structure modeling to identify labile target regions in an mRNA of interest. A synthetic biology approach is then used to administer antisense nucleic acids to our model system of ampicillin resistant Escherichia coli. Our results show a prolonged lag phase and decrease in viability of drug-resistant E. colitreated with antisense molecules. The antisense strategy can be applied to alter expression of other genes in antibiotic resistance pathways or other pathways of interest.

  13. Monitoring of airborne bacteria and aerosols in different wards of hospitals - Particle counting usefulness in investigation of airborne bacteria.

    Science.gov (United States)

    Mirhoseini, Seyed Hamed; Nikaeen, Mahnaz; Khanahmd, Hossein; Hatamzadeh, Maryam; Hassanzadeh, Akbar

    2015-01-01

    The presence of airborne bacteria in hospital environments is of great concern because of their potential role as a source of hospital-acquired infections (HAI). The aim of this study was the determination and comparison of the concentration of airborne bacteria in different wards of four educational hospitals, and evaluation of whether particle counting could be predictive of airborne bacterial concentration in different wards of a hospital. The study was performed in an operating theatre (OT), intensive care unit (ICU), surgery ward (SW) and internal medicine (IM) ward of four educational hospitals in Isfahan, Iran. A total of 80 samples were analyzed for the presence of airborne bacteria and particle levels. The average level of bacteria ranged from 75-1194 CFU/m (3) . Mean particle levels were higher than class 100,000 cleanrooms in all wards. A significant correlation was observed between the numbers of 1-5 µm particles and levels of airborne bacteria in operating theatres and ICUs. The results showed that factors which may influence the airborne bacterial level in hospital environments should be properly managed to minimize the risk of HAIs especially in operating theaters. Microbial air contamination of hospital settings should be performed by the monitoring of airborne bacteria, but particle counting could be considered as a good operative method for the continuous monitoring of air quality in operating theaters and ICUs where higher risks of infection are suspected.

  14. Simultaneous transcriptional profiling of bacteria and their host cells.

    Directory of Open Access Journals (Sweden)

    Michael S Humphrys

    Full Text Available We developed an RNA-Seq-based method to simultaneously capture prokaryotic and eukaryotic expression profiles of cells infected with intracellular bacteria. As proof of principle, this method was applied to Chlamydia trachomatis-infected epithelial cell monolayers in vitro, successfully obtaining transcriptomes of both C. trachomatis and the host cells at 1 and 24 hours post-infection. Chlamydiae are obligate intracellular bacterial pathogens that cause a range of mammalian diseases. In humans chlamydiae are responsible for the most common sexually transmitted bacterial infections and trachoma (infectious blindness. Disease arises by adverse host inflammatory reactions that induce tissue damage & scarring. However, little is known about the mechanisms underlying these outcomes. Chlamydia are genetically intractable as replication outside of the host cell is not yet possible and there are no practical tools for routine genetic manipulation, making genome-scale approaches critical. The early timeframe of infection is poorly understood and the host transcriptional response to chlamydial infection is not well defined. Our simultaneous RNA-Seq method was applied to a simplified in vitro model of chlamydial infection. We discovered a possible chlamydial strategy for early iron acquisition, putative immune dampening effects of chlamydial infection on the host cell, and present a hypothesis for Chlamydia-induced fibrotic scarring through runaway positive feedback loops. In general, simultaneous RNA-Seq helps to reveal the complex interplay between invading bacterial pathogens and their host mammalian cells and is immediately applicable to any bacteria/host cell interaction.

  15. Potential strategies for the eradication of multidrug-resistant Gram-negative bacterial infections.

    Science.gov (United States)

    Huwaitat, Rawan; McCloskey, Alice P; Gilmore, Brendan F; Laverty, Garry

    2016-07-01

    Antimicrobial resistance is one of the leading threats to society. The increasing burden of multidrug-resistant Gram-negative infection is particularly concerning as such bacteria are demonstrating resistance to nearly all currently licensed therapies. Various strategies have been hypothesized to treat multidrug-resistant Gram-negative infections including: targeting the Gram-negative outer membrane; neutralization of lipopolysaccharide; inhibition of bacterial efflux pumps and prevention of protein folding. Silver and silver nanoparticles, fusogenic liposomes and nanotubes are potential strategies for extending the activity of licensed, Gram-positive selective, antibiotics to Gram-negatives. This may serve as a strategy to fill the current void in pharmaceutical development in the short term. This review outlines the most promising strategies that could be implemented to solve the threat of multidrug-resistant Gram-negative infections.

  16. Transmission of nephridial bacteria of the earthworm Eisenia fetida.

    Science.gov (United States)

    Davidson, Seana K; Stahl, David A

    2006-01-01

    The lumbricid earthworms (annelid family Lumbricidae) harbor gram-negative bacteria in their excretory organs, the nephridia. Comparative 16S rRNA gene sequencing of bacteria associated with the nephridia of several earthworm species has shown that each species of worm harbors a distinct bacterial species and that the bacteria from different species form a monophyletic cluster within the genus Acidovorax, suggesting that there is a specific association resulting from radiation from a common bacterial ancestor. Previous microscopy and culture studies revealed the presence of bacteria within the egg capsules and on the surface of embryos but did not demonstrate that the bacteria within the egg capsule were the same bacteria that colonized the nephridia. We present evidence, based on curing experiments, in situ hybridizations with Acidovorax-specific probes, and 16S rRNA gene sequence analysis, that the egg capsules contain high numbers of the bacterial symbiont and that juveniles are colonized during development within the egg capsule. Studies exposing aposymbiotic hatchlings to colonized adults and their bedding material suggested that juvenile earthworms do not readily acquire bacteria from the soil after hatching but must be colonized during development by bacteria deposited in the egg capsule. Whether this is due to the developmental stage of the host or the physiological state of the symbiont remains to be investigated.

  17. Effect of radiation on activity of sulphate reducing bacteria

    International Nuclear Information System (INIS)

    Agaev, N.M.; Smorodin, A.E.; Gusejnov, M.M.

    1985-01-01

    The effect of γ-radiation on activity of sulphate reducing bacteria has been studied. Concentration of biogenic hydrogen, generated in the medium, is the main criterion, characterizing corrosion activity of the bacteria studied. The developed method of suppression of active development of sulfate reducing bacteria considerably reduces, and at lethal doses of γ-radiation eliminates altogether the bacteria activity and formation of the main corrosion agent-hydrogen sulphide-in the medium and that, in its turn, liquidates hydrogen sulphide corrosion

  18. Rumen bacteria

    International Nuclear Information System (INIS)

    McSweeney, C.S.; Denman, S.E.; Mackie, R.I.

    2005-01-01

    The rumen is the most extensively studied gut community and is characterized by its high population density, wide diversity and complexity of interactions. This complex, mixed microbial culture is comprised of prokaryote organisms including methane-producing archaebacteria, eukaryote organisms, such as ciliate and flagellate protozoa, anaerobic phycomycete fungi and bacteriophage. Bacteria are predominant (up to 10 11 viable cells per g comprising 200 species) but a variety of ciliate protozoa occur widely (10 4 -10 6 /g distributed over 25 genera). The anaerobic fungi are also widely distributed (zoospore population densities of 10 2 -10 4 /g distributed over 5 genera). The occurrence of bacteriophage is well documented (10 7 -10 9 particles/g). This section focuses primarily on the widely used methods for the cultivation and the enumeration of rumen microbes, especially bacteria, which grow under anaerobic conditions. Methods that can be used to measure hydrolytic enzymes (cellulases, xylanases, amylases and proteinases) are also described, along with cell harvesting and fractionation procedures. Brief reference is also made to fungi and protozoa, but detailed explanations for culturing and enumerating these microbes is presented in Chapters 2.4 and 2.5

  19. Acanthamoeba feature a unique backpacking strategy to trap and feed on Listeria monocytogenes and other motile bacteria

    DEFF Research Database (Denmark)

    Doyscher, Dominik; Fieseler, Lars; Dons, Lone Elisabet

    2013-01-01

    Despite its prominent role as an intracellular human pathogen, Listeria monocytogenes normally features a saprophytic lifestyle, and shares many environmental habitats with predatory protozoa. Earlier studies claimed that Acanthamoeba may act as environmental reservoirs for L.?monocytogenes, wher......Despite its prominent role as an intracellular human pathogen, Listeria monocytogenes normally features a saprophytic lifestyle, and shares many environmental habitats with predatory protozoa. Earlier studies claimed that Acanthamoeba may act as environmental reservoirs for L.......?monocytogenes, whereas others failed to confirm this hypothesis. Our findings support the latter and provide clear evidence that L.?monocytogenes is unable to persist in Acanthamoeba castellanii and A.?polyphaga. Instead, external Listeria cells are rapidly immobilized on the surface of Acanthamoeba trophozoites......-lapse microscopy revealed that shortly after the bacteria are collected, the amoeba can change direction of movement, phagocytose the backpack and continue to repeat the process. The phenomenon was also observed with avirulent L.?monocytogenes mutants, non-pathogenic Listeria, and other motile bacteria, indicating...

  20. Methods and Techniques of Sampling, Culturing and Identifying of Subsurface Bacteria

    International Nuclear Information System (INIS)

    Lee, Seung Yeop; Baik, Min Hoon

    2010-11-01

    This report described sampling, culturing and identifying of KURT underground bacteria, which existed as iron-, manganese-, and sulfate-reducing bacteria. The methods of culturing and media preparation were different by bacteria species affecting bacteria growth-rates. It will be possible for the cultured bacteria to be used for various applied experiments and researches in the future

  1. Encapsulation of bacteria and viruses in electrospun nanofibres

    International Nuclear Information System (INIS)

    Salalha, W; Kuhn, J; Dror, Y; Zussman, E

    2006-01-01

    Bacteria and viruses were encapsulated in electrospun polymer nanofibres. The bacteria and viruses were suspended in a solution of poly(vinyl alcohol) (PVA) in water and subjected to an electrostatic field of the order of 1 kV cm -1 . Encapsulated bacteria in this work (Escherichia coli, Staphylococcus albus) and bacterial viruses (T7, T4, λ) managed to survive the electrospinning process while maintaining their viability at fairly high levels. Subsequently the bacteria and viruses remain viable during three months at -20 and -55 deg. C without a further decrease in number. The present results demonstrate the potential of the electrospinning process for the encapsulation and immobilization of living biological material

  2. Why bacteria matter in animal development and evolution.

    Science.gov (United States)

    Fraune, Sebastian; Bosch, Thomas C G

    2010-07-01

    While largely studied because of their harmful effects on human health, there is growing appreciation that bacteria are important partners for invertebrates and vertebrates, including man. Epithelia in metazoans do not only select their microbiota; a coevolved consortium of microbes enables both invertebrates and vertebrates to expand the range of diet supply, to shape the complex immune system and to control pathogenic bacteria. Microbes in zebrafish and mice regulate gut epithelial homeostasis. In a squid, microbes control the development of the symbiotic light organ. These discoveries point to a key role for bacteria in any metazoan existence, and imply that beneficial bacteria-host interactions should be considered an integral part of development and evolution.

  3. Use of Endophytic and Rhizosphere Bacteria To Improve Phytoremediation of Arsenic-Contaminated Industrial Soils by Autochthonous Betula celtiberica.

    Science.gov (United States)

    Mesa, Victoria; Navazas, Alejandro; González-Gil, Ricardo; González, Aida; Weyens, Nele; Lauga, Béatrice; Gallego, Jose Luis R; Sánchez, Jesús; Peláez, Ana Isabel

    2017-04-15

    The aim of this study was to investigate the potential of indigenous arsenic-tolerant bacteria to enhance arsenic phytoremediation by the autochthonous pseudometallophyte Betula celtiberica The first goal was to perform an initial analysis of the entire rhizosphere and endophytic bacterial communities of the above-named accumulator plant, including the cultivable bacterial species. B. celtiberica 's microbiome was dominated by taxa related to Flavobacteriales , Burkholderiales , and Pseudomonadales , especially the Pseudomonas and Flavobacterium genera. A total of 54 cultivable rhizobacteria and 41 root endophytes, mainly affiliated with the phyla Proteobacteria , Bacteroidetes , Firmicutes , and Actinobacteria , were isolated and characterized with respect to several potentially useful features for metal plant accumulation, such as the ability to promote plant growth, metal chelation, and/or mitigation of heavy-metal stress. Seven bacterial isolates were further selected and tested for in vitro accumulation of arsenic in plants; four of them were finally assayed in field-scale bioaugmentation experiments. The exposure to arsenic in vitro caused an increase in the total nonprotein thiol compound content in roots, suggesting a detoxification mechanism through phytochelatin complexation. In the contaminated field, the siderophore and indole-3-acetic acid producers of the endophytic bacterial consortium enhanced arsenic accumulation in the leaves and roots of Betula celtiberica , whereas the rhizosphere isolate Ensifer adhaerens strain 91R mainly promoted plant growth. Field experimentation showed that additional factors, such as soil arsenic content and pH, influenced arsenic uptake in the plant, attesting to the relevance of field conditions in the success of phytoextraction strategies. IMPORTANCE Microorganisms and plants have developed several ways of dealing with arsenic, allowing them to resist and metabolize this metalloid. These properties form the basis of

  4. Quantification and Qualification of Bacteria Trapped in Chewed Gum

    NARCIS (Netherlands)

    Wessel, Stefan W.; van der Mei, Henny C.; Morando, David; Slomp, Anje M.; van de Belt-Gritter, Betsy; Maitra, Amarnath; Busscher, Henk J.

    2015-01-01

    Chewing of gum contributes to the maintenance of oral health. Many oral diseases, including caries and periodontal disease, are caused by bacteria. However, it is unknown whether chewing of gum can remove bacteria from the oral cavity. Here, we hypothesize that chewing of gum can trap bacteria and

  5. Bacteria associated with contamination of ready-to-eat (RTE ...

    African Journals Online (AJOL)

    The bacteria associated with contamination of ready-to-eat (RTE) cooked rice in Lagos, Nigeria were studied using standard microbiological methods. The objective of this study was to investigate the distribution of pathogenic bacteria recovered from RTE cooked rice in Lagos, assess bacteria load in the contaminated RTE ...

  6. Biological hydrogen production from biomass by thermophilic bacteria

    International Nuclear Information System (INIS)

    Claassen, P.A.M.; Mars, A.E.; Budde, M.A.W.; Lai, M.; de Vrije, T.; van Niel, E.W.J.

    2006-01-01

    To meet the reduction of the emission of CO 2 imposed by the Kyoto protocol, hydrogen should be produced from renewable primary energy. Besides the indirect production of hydrogen by electrolysis using electricity from renewable resources, such as sunlight, wind and hydropower, hydrogen can be directly produced from biomass. At present, there are two strategies for the production of hydrogen from biomass: the thermochemical technology, such as gasification, and the biotechnological approach using micro-organisms. Biological hydrogen production delivers clean hydrogen with an environmental-friendly technology and is very suitable for the conversion of wet biomass in small-scale applications, thus having a high chance of becoming an economically feasible technology. Many micro-organisms are able to produce hydrogen from mono- and disaccharides, starch and (hemi)cellulose under anaerobic conditions. The anaerobic production of hydrogen is a common phenomenon, occurring during the process of anaerobic digestion. Here, hydrogen producing micro-organisms are in syn-trophy with methanogenic bacteria which consume the hydrogen as soon as it is produced. In this way, hydrogen production remains obscure and methane is the end-product. By uncoupling hydrogen production from methane production, hydrogen becomes available for recovery and exploitation. This study describes the use of extreme thermophilic bacteria, selected because of a higher hydrogen production efficiency as compared to mesophilic bacteria, for the production of hydrogen from renewable resources. As feedstock energy crops like Miscanthus and Sorghum bicolor and waste streams like domestic organic waste, paper sludge and potato steam peels were used. The feedstock was pretreated and/or enzymatically hydrolyzed prior to fermentation to make a fermentable substrate. Hydrogen production by Caldicellulosiruptor saccharolyticus, Thermotoga elfii and T. neapolitana on all substrates was observed. Nutrient

  7. 3D printing of bacteria into functional complex materials.

    Science.gov (United States)

    Schaffner, Manuel; Rühs, Patrick A; Coulter, Fergal; Kilcher, Samuel; Studart, André R

    2017-12-01

    Despite recent advances to control the spatial composition and dynamic functionalities of bacteria embedded in materials, bacterial localization into complex three-dimensional (3D) geometries remains a major challenge. We demonstrate a 3D printing approach to create bacteria-derived functional materials by combining the natural diverse metabolism of bacteria with the shape design freedom of additive manufacturing. To achieve this, we embedded bacteria in a biocompatible and functionalized 3D printing ink and printed two types of "living materials" capable of degrading pollutants and of producing medically relevant bacterial cellulose. With this versatile bacteria-printing platform, complex materials displaying spatially specific compositions, geometry, and properties not accessed by standard technologies can be assembled from bottom up for new biotechnological and biomedical applications.

  8. [Teichoic acids from lactic acid bacteria].

    Science.gov (United States)

    Livins'ka, O P; Harmasheva, I L; Kovalenko, N K

    2012-01-01

    The current view of the structural diversity of teichoic acids and their involvement in the biological activity of lactobacilli has been reviewed. The mechanisms of effects of probiotic lactic acid bacteria, in particular adhesive and immunostimulating functions have been described. The prospects of the use of structure data of teichoic acid in the assessment of intraspecific diversity of lactic acid bacteria have been also reflected.

  9. Phytoremediation of Metal Contaminated Soil Using Willow: Exploiting Plant-Associated Bacteria to Improve Biomass Production and Metal Uptake.

    Science.gov (United States)

    Janssen, Jolien; Weyens, Nele; Croes, Sarah; Beckers, Bram; Meiresonne, Linda; Van Peteghem, Pierre; Carleer, Robert; Vangronsveld, Jaco

    2015-01-01

    Short rotation coppice (SRC) of willow and poplar is proposed for economic valorization and concurrently as remediation strategy for metal contaminated land in northeast-Belgium. However, metal phytoextraction appears insufficient to effectuate rapid reduction of soil metal contents. To increase both biomass production and metal accumulation of SRC, two strategies are proposed: (i) in situ selection of the best performing clones and (ii) bioaugmentation of these clones with beneficial plant-associated bacteria. Based on field data, two experimental willow clones, a Salix viminalis and a Salix alba x alba clone, were selected. Compared to the best performing commercial clones, considerable increases in stem metal extraction were achieved (up to 74% for Cd and 91% for Zn). From the selected clones, plant-associated bacteria were isolated and identified. All strains were subsequently screened for their plant growth-promoting and metal uptake enhancing traits. Five strains were selected for a greenhouse inoculation experiment with the selected clones planted in Cd-Zn-Pb contaminated soil. Extraction potential tended to increase after inoculation of S. viminalis plants with a Rahnella sp. strain due to a significantly increased twig biomass. However, although bacterial strains showing beneficial traits in vitro were used for inoculation, increments in extraction potential were not always observed.

  10. Use of thermophilic bacteria for bioremediation of petroleum contaminants

    International Nuclear Information System (INIS)

    Al-Maghrabi, I.M.A.; Bin Aqil, A.O.; Chaalal, O.; Islam, M.R.

    1999-01-01

    Several strains of thermophilic bacteria were isolated from the environment of the United Arab Emirates. These bacteria show extraordinary resistance to heat and have their maximum growth rate around 60--80 C. This article investigates the potential of using these facultative bacteria for both in situ and ex situ bioremediation of petroleum contaminants. In a series of batch experiments, bacterial growth was observed using a computer image analyzer following a recently developed technique. These experiments showed clearly that the growth rate is enhanced in the presence of crude oil. This is coupled with a rapid degradation of the crude oil. These bacteria were found to be ideal for breaking down long-chain organic molecules at a temperature of 40 C, which is the typical ambient temperature of the Persian Gulf region. The same strains of bacteria are also capable of surviving in the presence of the saline environment that can prevail in both sea water and reservoir connate water. This observation prompted further investigation into the applicability of the bacteria in microbial enhanced oil recovery. In the United Arab Emirates, the reservoirs are typically at a temperature of around 85 C. Finally, the performance of the bacteria is tested in a newly developed bioreactor that uses continuous aeration through a transverse slotted pipe. This reactor also uses mixing without damaging the filamentous bacteria. In this process, the mechanisms of bioremediation are identified

  11. The aerobic activity of metronidazole against anaerobic bacteria.

    Science.gov (United States)

    Dione, Niokhor; Khelaifia, Saber; Lagier, Jean-Christophe; Raoult, Didier

    2015-05-01

    Recently, the aerobic growth of strictly anaerobic bacteria was demonstrated using antioxidants. Metronidazole is frequently used to treat infections caused by anaerobic bacteria; however, to date its antibacterial activity was only tested in anaerobic conditions. Here we aerobically tested using antioxidants the in vitro activities of metronidazole, gentamicin, doxycycline and imipenem against 10 common anaerobic and aerobic bacteria. In vitro susceptibility testing was performed by the disk diffusion method, and minimum inhibitory concentrations (MICs) were determined by Etest. Aerobic culture of the bacteria was performed at 37°C using Schaedler agar medium supplemented with 1mg/mL ascorbic acid and 0.1mg/mL glutathione; the pH was adjusted to 7.2 by 10M KOH. Growth of anaerobic bacteria cultured aerobically using antioxidants was inhibited by metronidazole after 72h of incubation at 37°C, with a mean inhibition diameter of 37.76mm and an MIC of 1μg/mL; however, strains remained non-sensitive to gentamicin. No growth inhibition of aerobic bacteria was observed after 24h of incubation at 37°C with metronidazole; however, inhibition was observed with doxycycline and imipenem used as controls. These results indicate that bacterial sensitivity to metronidazole is not related to the oxygen tension but is a result of the sensitivity of the micro-organism. In future, both culture and antibiotic susceptibility testing of strictly anaerobic bacteria will be performed in an aerobic atmosphere using antioxidants in clinical microbiology laboratories. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  12. Bacteria-mediated arsenic oxidation and reduction in the growth media of arsenic hyperaccumulator Pteris vittata.

    Science.gov (United States)

    Wang, Xin; Rathinasabapathi, Bala; de Oliveira, Letuzia Maria; Guilherme, Luiz R G; Ma, Lena Q

    2012-10-16

    Microbes play an important role in arsenic transformation and cycling in the environment. Microbial arsenic oxidation and reduction were demonstrated in the growth media of arsenic hyperaccumulator Pteris vittata L. All arsenite (AsIII) at 0.1 mM in the media was oxidized after 48 h incubation. Oxidation was largely inhibited by antibiotics, indicating that bacteria played a dominant role. To identify AsIII oxidizing bacteria, degenerate primers were used to amplify ∼500 bp of the AsIII oxidase gene aioA (aroA) using DNA extracted from the media. One aioA (aroA)-like sequence (MG-1, tentatively identified as Acinetobacter sp.) was amplified, exhibiting 82% and 91% identity in terms of gene and deduced protein sequence to those from Acinetobacter sp. 33. In addition, four bacterial strains with different arsenic tolerance were isolated and identified as Comamonas sp.C-1, Flavobacterium sp. C-2, Staphylococcus sp. C-3, and Pseudomonas sp. C-4 using carbon utilization, fatty acid profiles, and/or sequencing 16s rRNA gene. These isolates exhibited dual capacity for both AsV reduction and AsIII oxidation under ambient conditions. Arsenic-resistant bacteria with strong AsIII oxidizing ability may have potential to improve bioremediation of AsIII-contaminated water using P. vittata and/or other biochemical strategies.

  13. Effects of ionizing radiation on bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Suhadi, F [National Atomic Energy Agency, Jakarta (Indonesia). Pasar Djumat Research Centre

    1976-10-01

    The differences of radiosensitivities among bacteria in addition to the dependence upon the species or strains also depends on the environmental condition during irradiation (temperature, medium, the presence of protective or sensitizing agents, the gas phase or atmosphere, and water activity, or degree of hydration) and on the effects of the environmental condition before and after irradiation treatment (temperature of incubation, age of culture and growth medium). In general, spores are more resistant to radiation than vegetatic bacteria, with the exception that a few cocci are the most radiation resistant bacteria (Micrococcus and Streptococcus). The application of ionizing radiation in the fields of microbiology supports the radiation sterilization of medical and pharmaceutical products. In addition, microbiological aspects of food preservation, especially radurization, radicidation, and immunization studies by using irradiated microorganisms, are also important.

  14. Lethal photosensitization of biofilm-grown bacteria

    Science.gov (United States)

    Wilson, Michael

    1997-12-01

    Antibacterial agents are increasingly being used for the prophylaxis and treatment of oral diseases. As these agents can be rendered ineffective by resistance development in the target organisms there is a need to develop alternative antimicrobial approaches. Light-activated antimicrobial agents release singlet oxygen and free radicals which can kill adjacent bacteria and a wide range of cariogenic and periodontopathogenic bacteria has been shown to be susceptible to such agents. In the oral cavity these organisms are present as biofilms (dental plaques) which are less susceptible to traditional antimicrobial agents than bacterial suspensions. The results of these studies have shown that biofilm-grown oral bacteria are also susceptible to lethal photosensitization although the light energy doses required are grater than those needed to kill the organisms when they are grown as aqueous suspensions.

  15. Analyzing Arthropods for the Presence of Bacteria

    OpenAIRE

    Andrews, Elizabeth S.

    2013-01-01

    Bacteria within arthropods can be identified using culture-independent methods. This unit describes protocols for surface sterilization of arthropods, DNA extraction of whole bodies and tissues, touchdown PCR amplification using 16S rDNA general bacteria primers and profiling the bacterial community using denaturing gradient gel electrophoresis.

  16. Isolation and characterization of autotrophic, hydrogen-utilizing, perchlorate-reducing bacteria.

    Science.gov (United States)

    Shrout, Joshua D; Scheetz, Todd E; Casavant, Thomas L; Parkin, Gene F

    2005-04-01

    Recent studies have shown that perchlorate (ClO(4) (-)) can be degraded by some pure-culture and mixed-culture bacteria with the addition of hydrogen. This paper describes the isolation of two hydrogen-utilizing perchlorate-degrading bacteria capable of using inorganic carbon for growth. These autotrophic bacteria are within the genus Dechloromonas and are the first Dechloromonas species that are microaerophilic and incapable of growth at atmospheric oxygen concentrations. Dechloromonas sp. JDS5 and Dechloromonas sp. JDS6 are the first perchlorate-degrading autotrophs isolated from a perchlorate-contaminated site. Measured hydrogen thresholds were higher than for other environmentally significant, hydrogen-utilizing, anaerobic bacteria (e.g., halorespirers). The chlorite dismutase activity of these bacteria was greater for autotrophically grown cells than for cells grown heterotrophically on lactate. These bacteria used fumarate as an alternate electron acceptor, which is the first report of growth on an organic electron acceptor by perchlorate-reducing bacteria.

  17. Antibiotic-producing bacteria from stag beetle mycangia.

    Science.gov (United States)

    Miyashita, Atsushi; Hirai, Yuuki; Sekimizu, Kazuhisa; Kaito, Chikara

    2015-02-01

    The search for new antibiotics or antifungal agents is crucial for the chemotherapies of infectious diseases. The limited resource of soil bacteria makes it difficult to discover such new drug candidate. We, therefore, focused on another bacterial resource than soil bacteria, the microbial flora of insect species. In the present study, we isolated 40 strains of bacteria and fungi from the mycangia of three species of stag beetle, Dorcus hopei binodulosus, Dorcus rectus, and Dorcus titanus pilifer. We identified those species with their ribosomal DNA sequences, and revealed that Klebsiella spp. are the most frequent symbiont in the stag beetle mycangia. We examined whether these microorganisms produce antibiotics against a Gram-negative bacterium, Escherichia coli, a Gram-positive bacterium, Staphylococcus aureus, or a fungus, Cryptococcus neoformans. Culture supernatants from 33, 29, or 18 strains showed antimicrobial activity against E. coli, S. aureus, or C. neoformans, respectively. These findings suggest that bacteria present in the mycangia of stag beetles are useful resources for screening novel antibiotics.

  18. Bile anaerobic bacteria detection and antibiotic susceptibility in patients with gallstone.

    Science.gov (United States)

    Lu, Yun; Xiang, Ting-Hai; Shi, Jing-Sen; Zhang, Bing-Yuan

    2003-08-01

    To detect bile anaerobic bacteria and antibiotic susceptibility in 59 patients with gallstones who had had cholecystectomy. BACT/ALERT 120 microbe detection system and SCEPTOR microbe detection system were used to detect bile anaerobic bacteria, antibiotic susceptibility. The ratio of anaerobic bacteria to the patients examined was 52.5% (31/59). Obligate anaerobe bile culture showed positive results in 4 patients. B. fragilis (37.8%) was the major type of anaerobic bacteria in bile. Most (81.8%) of anaerobic bacteria were sensitive to metronidazole, and imipenem was suitable for beta-lactamase bacteria. Culture of anaerobic bacteria in logarithmic phase can improve the positive rate of the culture. There are some relations between anaerobic infection and gallstone formation.

  19. Screening identification of aerobic denitrification bacteria with high soil desalinization capacity

    Science.gov (United States)

    Jin, H.; Chen, H.; Jin, H.; Qian, Y.; Zhang, K.

    2017-08-01

    In order to study the mechanism of bacteria used in the saline soil remediation process, the aerobic denitrification bacteria were isolated from an agricultural greenhouse soil in a farm in East China’s Zhejiang Province. The identification, nitrogen reducing characteristics and the denitrification effect of bacteria from different soils at various locations were investigated. The results showed that the NO3- removal rate was 91% with bacteria from the greenhouse soil under aerobic conditions in 52 h, and the bacteria were identified as Gram-positive Castellaniella denitrification bacteria.

  20. Working with bacteria and putting bacteria to work: The biopolitics of synthetic biology for energy in the United Kingdom.

    Science.gov (United States)

    McLeod, Carmen; Nerlich, Brigitte; Mohr, Alison

    2017-08-01

    The UK government has made significant investment into so called 'fourth-generation' biofuel technologies. These biofuels are based on engineering the metabolic pathways of bacteria in order to create products compatible with existing infrastructure. Bacteria play an important role in what is promoted as a potentially new biological industrial revolution, which could address some of the negative environmental legacies of the last. This article presents results from ethnographic research with synthetic biologists who are challenged with balancing the curiosity-driven and intrinsically fulfilling scientific task of working with bacteria, alongside the policy-driven task of putting bacteria to work for extrinsic economic gains. In addition, the scientists also have to balance these demands with a new research governance framework, Responsible Research and Innovation, which envisions technoscientific innovation will be responsive to societal concerns and work in collaboration with stakeholders and members of the public. Major themes emerging from the ethnographic research revolve around stewardship, care, responsibility and agency. An overall conflict surfaces between individual agents assuming responsibility for 'stewarding' bacteria, against funding systems and structures imposing responsibility for economic growth. We discuss these findings against the theoretical backdrop of a new concept of 'energopolitics' and an anthropology of ethics and responsibility.

  1. DEVELOPMENT OF TOFU PRODUCTION METHOD WITH PROBIOTIC BACTERIA ADDITION

    Directory of Open Access Journals (Sweden)

    Dorota Zielińska

    2015-06-01

    Full Text Available The aim of the study was to develop a production method for tofu with probiotic bacteria under laboratory conditions. The works included: selection of a strain and tofu production conditions, and a storage test of the manufactured product. It was concluded that the sensory quality of tofu with the addition of different probiotic cultures did not differ significantly (p>0.01, depending on used strains and their mixtures, and the sample quality was comparable to the commercial product. It was observed that the number of Lactobacillus bacteria in study samples was the factor determining the palatability of tofu (r= 0.75. On the other hand, the sensory quality of products was significantly affected by the production method of tofu with the addition of probiotic bacteria. It was concluded that the formation of curds from soy beverage by the addition of CaSO4, followed by inoculation with Lactobacillus casei ŁOCK 0900 at the amount of 9.26 log CFU/g and incubation at temp. of 37C for 2h as well as for 20h are methods recommended for production tofu with regard to sensory qualities of the final product among all tested methods. The number of lactic acid bacteria in studied tofu samples was maintained at the high level (109-1010 CFU/g, and the number of Bifidobacterium animalis ssp lactis BB-12 bacteria did not exceed 103 CFU/g, whereas the number of Lactobacillus bacteria was equal to 108-109 CFU/g. For the period of 15 days of storage of tofu with probiotic bacteria at the temperature of 4C the number of lactic acid bacteria was maintained at the constant level of approx. 109 CFU/g. It was concluded that it is possible to produce tofu with probiotic bacteria that has acceptable sensory characteristics and a high number of lactic acid bacteria, therefore the product could be considered as a functional one.

  2. Bacteria associated with oak and ash on a TCE-contaminated site: characterization of isolates with potential to avoid evapotranspiration of TCE.

    Science.gov (United States)

    Weyens, Nele; Taghavi, Safiyh; Barac, Tanja; van der Lelie, Daniel; Boulet, Jana; Artois, Tom; Carleer, Robert; Vangronsveld, Jaco

    2009-11-01

    was evaporating through the leaves to the atmosphere. The characterization of the isolates obtained in this study shows that the bacterial community associated with Oak and Ash on a TCE-contaminated site, was strongly enriched with TCE-tolerant strains. However, this was not sufficient to degrade all TCE before it reaches the leaves. A possible strategy to overcome this evapotranspiration to the atmosphere is to enrich the plant-associated TCE-degrading bacteria by in situ inoculation with endophytic strains capable of degrading TCE.

  3. Antioxidant and Antimicrobial Potential of the Bifurcaria bifurcata Epiphytic Bacteria

    Directory of Open Access Journals (Sweden)

    André Horta

    2014-03-01

    Full Text Available Surface-associated marine bacteria are an interesting source of new secondary metabolites. The aim of this study was the isolation and identification of epiphytic bacteria from the marine brown alga, Bifurcaria bifurcata, and the evaluation of the antioxidant and antimicrobial activity of bacteria extracts. The identification of epiphytic bacteria was determined by 16S rRNA gene sequencing. Bacteria extracts were obtained with methanol and dichloromethane (1:1 extraction. The antioxidant activity of extracts was performed by quantification of total phenolic content (TPC, 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging activity and oxygen radical absorbance capacity (ORAC. Antimicrobial activities were evaluated against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Salmonella enteritidis, Staphylococcus aureus, Saccharomyces cerevisiae and Candida albicans. A total of 39 Bifurcaria bifurcata-associated bacteria were isolated and 33 were identified as Vibrio sp. (48.72%, Alteromonas sp. (12.82%, Shewanella sp. (12.26%, Serratia sp. (2.56%, Citricoccus sp. (2.56%, Cellulophaga sp. (2.56%, Ruegeria sp. (2.56% and Staphylococcus sp. (2.56%. Six (15.38% of the 39 bacteria Bifurcaria bifurcata-associated bacteria presented less than a 90% Basic Local Alignment Search Tool (BLAST match, and some of those could be new. The highest antioxidant activity and antimicrobial activity (against B. subtilis was exhibited by strain 16 (Shewanella sp.. Several strains also presented high antimicrobial activity against S. aureus, mainly belonging to Alteromonas sp. and Vibrio sp. There were no positive results against fungi and Gram-negative bacteria. Bifurcaria bifurcata epiphytic bacteria were revealed to be excellent sources of natural antioxidant and antimicrobial compounds.

  4. Antioxidant and antimicrobial potential of the Bifurcaria bifurcata epiphytic bacteria.

    Science.gov (United States)

    Horta, André; Pinteus, Susete; Alves, Celso; Fino, Nádia; Silva, Joana; Fernandez, Sara; Rodrigues, Américo; Pedrosa, Rui

    2014-03-24

    Surface-associated marine bacteria are an interesting source of new secondary metabolites. The aim of this study was the isolation and identification of epiphytic bacteria from the marine brown alga, Bifurcaria bifurcata, and the evaluation of the antioxidant and antimicrobial activity of bacteria extracts. The identification of epiphytic bacteria was determined by 16S rRNA gene sequencing. Bacteria extracts were obtained with methanol and dichloromethane (1:1) extraction. The antioxidant activity of extracts was performed by quantification of total phenolic content (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and oxygen radical absorbance capacity (ORAC). Antimicrobial activities were evaluated against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Salmonella enteritidis, Staphylococcus aureus, Saccharomyces cerevisiae and Candida albicans. A total of 39 Bifurcaria bifurcata-associated bacteria were isolated and 33 were identified as Vibrio sp. (48.72%), Alteromonas sp. (12.82%), Shewanella sp. (12.26%), Serratia sp. (2.56%), Citricoccus sp. (2.56%), Cellulophaga sp. (2.56%), Ruegeria sp. (2.56%) and Staphylococcus sp. (2.56%). Six (15.38%) of the 39 bacteria Bifurcaria bifurcata-associated bacteria presented less than a 90% Basic Local Alignment Search Tool (BLAST) match, and some of those could be new. The highest antioxidant activity and antimicrobial activity (against B. subtilis) was exhibited by strain 16 (Shewanella sp.). Several strains also presented high antimicrobial activity against S. aureus, mainly belonging to Alteromonas sp. and Vibrio sp. There were no positive results against fungi and Gram-negative bacteria. Bifurcaria bifurcata epiphytic bacteria were revealed to be excellent sources of natural antioxidant and antimicrobial compounds.

  5. Transitions in optimal adaptive strategies for populations in fluctuating environments

    Science.gov (United States)

    Mayer, Andreas; Mora, Thierry; Rivoire, Olivier; Walczak, Aleksandra M.

    2017-09-01

    Biological populations are subject to fluctuating environmental conditions. Different adaptive strategies can allow them to cope with these fluctuations: specialization to one particular environmental condition, adoption of a generalist phenotype that compromises between conditions, or population-wise diversification (bet hedging). Which strategy provides the largest selective advantage in the long run depends on the range of accessible phenotypes and the statistics of the environmental fluctuations. Here, we analyze this problem in a simple mathematical model of population growth. First, we review and extend a graphical method to identify the nature of the optimal strategy when the environmental fluctuations are uncorrelated. Temporal correlations in environmental fluctuations open up new strategies that rely on memory but are mathematically challenging to study: We present analytical results to address this challenge. We illustrate our general approach by analyzing optimal adaptive strategies in the presence of trade-offs that constrain the range of accessible phenotypes. Our results extend several previous studies and have applications to a variety of biological phenomena, from antibiotic resistance in bacteria to immune responses in vertebrates.

  6. A porous silicon optical microcavity for sensitive bacteria detection

    International Nuclear Information System (INIS)

    Li Sha; Huang Jianfeng; Cai Lintao

    2011-01-01

    A porous silicon microcavity (PSM) is highly sensitive to subtle interface changes due to its high surface area, capillary condensation ability and a narrow resonance peak (∼10 nm). Based on the well-defined optical properties of a PSM, we successfully fabricated a bacteria detection chip for molecular or subcellular analysis by surface modification using undecylenic acid (UA), and the specific recognition binding of vancomycin to the D-alanyl-D-alanine of bacteria. The red shift of the PSM resonance peak showed a good linear relationship with bacteria concentration ranging from 100 to 1000 bacteria ml -1 at the level of relative standard deviation of 0.994 and detection limit of 20 bacteria ml -1 . The resulting PSM sensors demonstrated high sensitivity, good reproducibility, fast response and low cost for biosensing.

  7. A porous silicon optical microcavity for sensitive bacteria detection

    Science.gov (United States)

    Li, Sha; Huang, Jianfeng; Cai, Lintao

    2011-10-01

    A porous silicon microcavity (PSM) is highly sensitive to subtle interface changes due to its high surface area, capillary condensation ability and a narrow resonance peak (~10 nm). Based on the well-defined optical properties of a PSM, we successfully fabricated a bacteria detection chip for molecular or subcellular analysis by surface modification using undecylenic acid (UA), and the specific recognition binding of vancomycin to the D-alanyl-D-alanine of bacteria. The red shift of the PSM resonance peak showed a good linear relationship with bacteria concentration ranging from 100 to 1000 bacteria ml - 1 at the level of relative standard deviation of 0.994 and detection limit of 20 bacteria ml - 1. The resulting PSM sensors demonstrated high sensitivity, good reproducibility, fast response and low cost for biosensing.

  8. A porous silicon optical microcavity for sensitive bacteria detection

    Energy Technology Data Exchange (ETDEWEB)

    Li Sha; Huang Jianfeng; Cai Lintao, E-mail: lt.cai@siat.ac.cn [CAS Key Lab of Health Informatics, Shenzhen Key Laboratory of Cancer Nanotechnology, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055 (China)

    2011-10-21

    A porous silicon microcavity (PSM) is highly sensitive to subtle interface changes due to its high surface area, capillary condensation ability and a narrow resonance peak ({approx}10 nm). Based on the well-defined optical properties of a PSM, we successfully fabricated a bacteria detection chip for molecular or subcellular analysis by surface modification using undecylenic acid (UA), and the specific recognition binding of vancomycin to the D-alanyl-D-alanine of bacteria. The red shift of the PSM resonance peak showed a good linear relationship with bacteria concentration ranging from 100 to 1000 bacteria ml{sup -1} at the level of relative standard deviation of 0.994 and detection limit of 20 bacteria ml{sup -1}. The resulting PSM sensors demonstrated high sensitivity, good reproducibility, fast response and low cost for biosensing.

  9. Physiological and genetics studies of highly radiation-resistant bacteria

    International Nuclear Information System (INIS)

    Keller, L.C.

    1981-01-01

    The phenomenon of radiation resistance was studied using micrococci and Moraxella-Acinetobacter capable of surviving very high doses of gamma radiation which were isolated from foods. Physiological age, or growth phase, was found to be an important factor in making comparisons of radiation-resistance among different bacteria and their mutants. Radiation-resistant bacteria were highly resistant to the lethal effect of nitrosoguanidine used for mutagenesis. Studies of relative resistance of radiation-resistant bacteria, radiation-sensitive mutants, and nonradiation-resistant bacteria to killing by different chemical mutagens did not reveal a correlation between the traits of radiation resistance and mutagen resistance among different strains. Comparisons of plasmid profiles of radiation-resistant bacteria and selected radiation-sensitive mutants suggested the possibility that plasmids may carry genes involved in radiation resistance

  10. Stalking Antibiotic-Resistant Bacteria in Common Vegetables

    Science.gov (United States)

    Brock, David; Boeke, Caroline; Josowitz, Rebecca; Loya, Katherine

    2004-01-01

    The study developed a simple experimental protocol for studying antibiotic resistant bacteria that will allow students to determine the proportion of such bacteria found on common fruit and vegetable crops. This protocol can open up the world of environmental science and show how human behavior can dramatically alter ecosystems.

  11. Cloning of affecting pyruvate decarboxylase gene in the production bioethanol of agricultural waste in the E.coli bacteria

    Directory of Open Access Journals (Sweden)

    Masome Zeinali

    2016-09-01

    Full Text Available Introduction: Ethanol made by a biomass is one of the useful strategies in terms of economic and environmental and as a clean and safe energy to replace fossil fuels considered and examined. Materials and methods: In this study, key enzyme in the production of ethanol (Pyruvate decarboxylase from Zymomonas mobilis bacteria was isolated and cloned at E. coli bacteria by freeze and thaw method. For gene cloning, we used specific primers of pdc and PCR reaction and then pdc gene isolated and pET 28a plasmid double digested with (Sal I and Xho I enzymes. Digestion Products were ligated by T4 DNA ligase in 16 °C for 16 hours. Results: Results of bacteria culture showed that a few colonies containing pET 28a plasmid could grow. Result of colony pcr of pdc gene with specific primers revealed 1700 bp bands in 1% agarose gel electrophoresis. The results of PCR with T7 promotor forward primer and pdc revers primer have proved the accurate direction of integration of pdc gene into plasmid and revealed 1885 bp band. Double digestion of recombinant plasmid with SalI and XhoI enzymes revealed same bands. Finally, RT showed the expected band of 1700 bp that implies the desired gene expression in the samples. Discussion and conclusion: Due to the increased production of ethanol via pyruvate decarboxylase gene cloning in expression plasmids with a strong promoter upstream of the cloning site can conclude that, pyruvate decarboxylase cloning as a key gene would be useful and according to beneficial properties of E. coli bacteria, transfering the gene to bacteria appears to be reasonable.

  12. Effect of ionizing radiation on the antigenic composition of typhoid bacteria

    International Nuclear Information System (INIS)

    Sinilova, N.G.; Nikolaeva, L.A.; Tumanyan, M.A.

    1978-01-01

    Changes in the antigenic composition of typhoid bacteria occurring during the exposure of microbial suspension to different doses of gamma radiation ( 60 Co) ranging between 0.5 and 3.0 Mrad were studied. Immunoelectrophoresis in agar was used to determine the antigenic composition of different samples of irradiated bacteria. The antigenic composition of bacteria irradiated with doses up to 2.5 Mrad was found to be similar to that of non-irradiated bacteria. Antigens demonstrated by means of Vi, H and O antisera are preserved in these bacteria. However, all irradiated bacteria in general slightly differ from non-irradiated bacteria; this is manifest in a different configuration and position of the precipitation lines in the cathodic part of the immunophoreograms. The content of the component migrating rapidly towards the cathode, evidently the O antigen in the R form, in the irradiated bacteria increases with the dose of radiation. No new serologically active substances, non-existent in non-irradiated bacteria, were found to appear in the process of irradiation. (author)

  13. Reducing gas content of coal deposits by means of bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Godlewska-Lipowa, A A; Kozlowski, B

    1981-07-01

    This paper discusses the results of experiments carried out in Poland under laboratory conditions on efficiency of methane control using bacteria from Methanosarcina and Methanomonas groups. Malashenko and Whittenburry culture mediums were used. Bacteria growth in an atmosphere of air and methane (48.2%, 8.6% and 5.21%) was observed. Temperature ranged from 19 to 20 C. Investigations show that the bacteria are characterized by high oxidation activity. Depending on methane concentration in the air the bacteria consume from 75% to 100% of methane during biosynthesis. The bacteria reduce methane and oxygen content and increase carbon dioxide content in the air. Using bacteria methane concentration in the air was reduced from 48.2% to 12.3%, from 8.6% to 0.0% and from 5.21% to 0.01%. (7 refs.) (In Polish)

  14. [Effects of transgenic Bt + CpTI cotton on rhizosphere bacteria and ammonia oxidizing bacteria population].

    Science.gov (United States)

    Dong, Lianhua; Meng, Ying; Wang, Jing

    2014-03-04

    The effect of transgenic cotton on the rhizosphere bacteria can be important to the risk assessment for the genetically modified crops. We studied the rhizosphere microbial community with cultivating genetically modified cotton. The effects of transgenic Bt + CpTI Cotton (SGK321) and its receptor cotton (SY321) on rhizosphere total bacteria and ammonia oxidizing bacteria population size were studied by using droplet digital PCR. We collected rhizosphere soil before cotton planting and along with the cotton growth stage (squaring stage, flowering stage, belling stage and boll opening stage). There was no significant change on the total bacterial population between the transgenic cotton and the receptor cotton along with the growth stage. However, the abundance of ammonia oxidizing bacteria (AOB) in both type of cottons showed significant difference between different growth stages, and the variation tendency was different. In squaring stage, the numbers of AOB in rhizosphere of SY321 and SGK321 increased 4 and 2 times, respectively. In flowering stage, AOB number in rhizosphere of SY321 significantly decreased to be 5.96 x 10(5) copies/g dry soil, however, that of SGK321 increased to be 1.25 x 10(6) copies/g dry soil. In belling stage, AOB number of SY321 greatly increased to be 1.49 x 10(6) copies/g dry soil, but no significant change was observed for AOB number of SGK321. In boll opening stage, both AOB number of SY321 and SGK321 clearly decreased and they were significantly different from each other. Compared to the non-genetically modified cotton, the change in abundance of ammonia oxidizing bacteria was slightly smooth in the transgenic cotton. Not only the cotton growth stage but also the cotton type caused this difference. The transgenic cotton can slow down the speed of ammonia transformation through impacting the number of AOB, which is advantageous for plant growth.

  15. Biodegradation of dispersed marine fuel oil in sediment under engineered pre-spill application strategy

    International Nuclear Information System (INIS)

    Hua, J.

    2006-01-01

    Biodegradation of marine fuel oil was studied by monitoring changes in residual oil and populations of microorganisms in marine sediments. Biodegradation rates for dispersant and soap water were 2.09 and 2.27 g/kg per day, respectively, under pre-application strategy, suggesting that the strategy may promote MFO dispersion and provide with sufficient source of food. The effect of temperature on the effectiveness of pre-application strategy is particularly obvious for the growth of fungi and Pseudomonas maltophilia. The effect of pre-application of soap water on the tolerance of aerobic bacteria, Escherichia coli, and P. maltophilia, was gradually diminished within 25-33 days. (author)

  16. Functional role of bacteria from invasive Phragmites australis in promotion of host growth

    Science.gov (United States)

    Soares, M. A.; Li, H-Y; Kowalski, Kurt P.; Bergen, M.; Torres, M. S.; White, J. F.

    2016-01-01

    We hypothesize that bacterial endophytes may enhance the competitiveness and invasiveness of Phragmites australis. To evaluate this hypothesis, endophytic bacteria were isolated from P. australis. The majority of the shoot meristem isolates represent species from phyla Firmicutes, Proteobacteria, and Actinobacteria. We chose one species from each phylum to characterize further and to conduct growth promotion experiments in Phragmites. Bacteria tested include Bacillus amyloliquefaciens A9a, Achromobacter spanius B1, and Microbacterium oxydans B2. Isolates were characterized for known growth promotional traits, including indole acetic acid (IAA) production, secretion of hydrolytic enzymes, phosphate solubilization, and antibiosis activity. Potentially defensive antimicrobial lipopeptides were assayed for through application of co-culturing experiments and mass spectrometer analysis. B. amyloliquefaciens A9a and M. oxydans B2 produced IAA. B. amyloliquefaciens A9a secreted antifungal lipopeptides. Capability to promote growth of P. australis under low nitrogen conditions was evaluated in greenhouse experiments. All three isolates were found to increase the growth of P. australis under low soil nitrogen conditions and showed increased absorption of isotopic nitrogen into plants. This suggests that the Phragmites microbes we evaluated most likely promote growth of Phragmites by enhanced scavenging of nitrogenous compounds from the rhizosphere and transfer to host roots. Collectively, our results support the hypothesis that endophytic bacteria play a role in enhancing growth of P. australis in natural populations. Gaining a better understanding of the precise contributions and mechanisms of endophytes in enabling P. australis to develop high densities rapidly could lead to new symbiosis-based strategies for management and control of the host.

  17. Bioremediation of copper-contaminated soils by bacteria.

    Science.gov (United States)

    Cornu, Jean-Yves; Huguenot, David; Jézéquel, Karine; Lollier, Marc; Lebeau, Thierry

    2017-02-01

    Although copper (Cu) is an essential micronutrient for all living organisms, it can be toxic at low concentrations. Its beneficial effects are therefore only observed for a narrow range of concentrations. Anthropogenic activities such as fungicide spraying and mining have resulted in the Cu contamination of environmental compartments (soil, water and sediment) at levels sometimes exceeding the toxicity threshold. This review focuses on the bioremediation of copper-contaminated soils. The mechanisms by which microorganisms, and in particular bacteria, can mobilize or immobilize Cu in soils are described and the corresponding bioremediation strategies-of varying levels of maturity-are addressed: (i) bioleaching as a process for the ex situ recovery of Cu from Cu-bearing solids, (ii) bioimmobilization to limit the in situ leaching of Cu into groundwater and (iii) bioaugmentation-assisted phytoextraction as an innovative process for in situ enhancement of Cu removal from soil. For each application, the specific conditions required to achieve the desired effect and the practical methods for control of the microbial processes were specified.

  18. Bactericidal effects of antibiotics on slowly growing and nongrowing bacteria.

    OpenAIRE

    Eng, R H; Padberg, F T; Smith, S M; Tan, E N; Cherubin, C E

    1991-01-01

    Antimicrobial agents are most often tested against bacteria in the log phase of multiplication to produce the maximum bactericidal effect. In an infection, bacteria may multiply less optimally. We examined the effects of several classes of antimicrobial agents to determine their actions on gram-positive and gram-negative bacteria during nongrowing and slowly growing phases. Only ciprofloxacin and ofloxacin exhibited bactericidal activity against nongrowing gram-negative bacteria, and no antib...

  19. Bacteria Isolated from Post-Partum Infections

    Directory of Open Access Journals (Sweden)

    Nahid Arianpour

    2009-06-01

    Full Text Available Objective: This study was undertaken with an aim to determine bacterial species involved in post partum infections and also their abundance in patients admitted to at Khanevadeh hospital. In this study out of three different kinds of postpartum infections (i.e. genital, breast and urinary tract, only genital infection is considered.Materials and Methods: Post partum infection among 6077 patients (inpatients and re-admitted patients of Khanevadeh hospital from 2003 till 2008 was studied in this descriptive study. Samples were collected from patients for laboratory diagnosis to find out the causative organisms.Results: Follow up of mothers after delivery revealed 7.59% (461 patients had post partum infection, out of which 1.03% (63 patients were re-hospitalized. Infection was more often among younger mothers. Bacteria isolated and identified were both aerobic and anaerobic cocci and bacilli, majority of which were normal flora of the site of infection. Though, some pathogenic bacteria like Staphylococcus aureus, Neisseria gonorrhea, Chlamydia trachomatis,were also the causative agents. The commonest infection was infection at the site of episiotomy. Conclusion: Puerperal infection was detected in of 7.59% mothers. Bacteria isolated were both aerobic and anaerobic cocci and bacilli, majority of which were normal flora. However; some pathogenic bacteria were isolated.

  20. Luminous bacteria cultured from fish guts in the Gulf of Oman.

    Science.gov (United States)

    Makemson, J C; Hermosa, G V

    1999-01-01

    The incidence of culturable luminous bacteria in Omani market fish guts was correlated to habitat type amongst 109 species of fish. Isolated representative luminous bacteria were compared to known species using the Biolog system (95 traits/isolate) and cluster analysis, which showed that the main taxa present in fish guts were clades related to Vibrio harveyi and Photobacterium species with sporadic incidence of P. phosphoreum. The luminous isolates from gut of the slip-mouth (barred pony fish), Leiognathus fasciatus, were mainly a type related to Photobacterium but phenotypically different from known species. These luminous gut bacteria were identical with the bacteria in the light organ, indicating that the light organ supplies a significant quantity of luminous bacteria to the gut. In many of the fish that lack light organs, luminous bacteria were also the dominant bacterial type in the gut, while in some others luminous bacteria were encountered sporadically and at low densities, reflecting the incidence of culturable luminous bacteria in seawater. Pelagic fish contained the highest incidence of culturable luminous bacteria and reef-associated fish the lowest. No correlation was found between the incidence of culturable luminous bacteria and the degree to which fish produce a melanin-covered gut. Copyright 1999 John Wiley & Sons, Ltd.

  1. Quorum Sensing and the Use of Quorum Quenchers as Natural Biocides to Inhibit Sulfate-Reducing Bacteria

    KAUST Repository

    Scarascia, Giantommaso; Wang, Tiannyu; Hong, Pei-Ying

    2016-01-01

    Sulfate-reducing bacteria (SRB) are one of the main protagonist groups of biocorrosion in the seawater environment. Given their principal role in biocorrosion, it remains a crucial task to develop strategies to reduce the abundance of SRBs. Conventional approaches include the use of biocides and antibiotics, which can impose health, safety, and environmental concerns. This review examines an alternative approach to this problem. This is achieved by reviewing the role of quorum sensing (QS) in SRB populations and its impact on the biofilm formation process. Genome databases of SRBs are mined to look for putative QS systems and homologous protein sequences representative of autoinducer receptors or synthases. Subsequently, this review puts forward the potential use of quorum quenchers as natural biocides against SRBs and outlines the potential strategies for the implementation of this approach.

  2. Quorum Sensing and the Use of Quorum Quenchers as Natural Biocides to Inhibit Sulfate-Reducing Bacteria

    KAUST Repository

    Scarascia, Giantommaso

    2016-12-15

    Sulfate-reducing bacteria (SRB) are one of the main protagonist groups of biocorrosion in the seawater environment. Given their principal role in biocorrosion, it remains a crucial task to develop strategies to reduce the abundance of SRBs. Conventional approaches include the use of biocides and antibiotics, which can impose health, safety, and environmental concerns. This review examines an alternative approach to this problem. This is achieved by reviewing the role of quorum sensing (QS) in SRB populations and its impact on the biofilm formation process. Genome databases of SRBs are mined to look for putative QS systems and homologous protein sequences representative of autoinducer receptors or synthases. Subsequently, this review puts forward the potential use of quorum quenchers as natural biocides against SRBs and outlines the potential strategies for the implementation of this approach.

  3. Investigation of IR absorption spectra of oral cavity bacteria

    Science.gov (United States)

    Belikov, Andrei V.; Altshuler, Gregory B.; Moroz, Boris T.; Pavlovskaya, Irina V.

    1996-12-01

    The results of comparative investigation for IR and visual absorption spectra of oral cavity bacteria are represented by this paper. There are also shown the main differences in absorption spectra of such pure bacteria cultures as : E- coli, Candida, Staph, Epidermidis, and absorption spectra of bacteria colonies cultured in tooth root canals suspected to harbour several endodontical problems. The results of experimental research targeted to investigate an effect of such combined YAG:Nd and YAG:Cr; Tm; Ho laser parameters like: wavelength, energy density, average power and etc., to oral cavity bacteria deactivation are given finally.

  4. Oh What a Tangled Biofilm Web Bacteria Weave

    Science.gov (United States)

    ... Home Page Oh What a Tangled Biofilm Web Bacteria Weave By Elia Ben-Ari Posted May 1, ... a suitable surface, some water and nutrients, and bacteria will likely put down stakes and form biofilms. ...

  5. Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria

    DEFF Research Database (Denmark)

    Halling-Sørensen, B.; Sengeløv, G.; Tjørnelund, J.

    2002-01-01

    Tetracyclines used in veterinary therapy invariably will find their way as parent compound and degradation products to the agricultural field. Major degradation products formed due to the limited stability of parent tetracyclines (tetracycline, chlortetracycline, and oxytetracycline) in aqueous...... at the same concentration level as tetracycline, chlortetracycline, and oxytetracycline on both the sludge and the tetracycline-sensitive soil bacteria. Further, both 5a,6-anhydrotetracychne and 5a,6-anhydrochlortetracycline had potency on tetracycline-resistant bacteria supporting a mode of action different...

  6. Anaerobic bacteria in the gut of terrestrial isopod Crustacean Porcellio scaber.

    Science.gov (United States)

    Kostanjsek, R; Lapanje, A; Rupnik, M; Strus, J; Drobne, D; Avgustin, G

    2004-01-01

    Anaerobic bacteria from Porcellio scaber hindgut were identified and, subsequently, isolated using molecular approach. Phylogenetic affiliation of bacteria associated with the hindgut wall was determined by analysis of bacterial 16S rRNA gene sequences which were retrieved directly from washed hindguts of P. scaber. Sequences from bacteria related to obligate anaerobic bacteria from genera Bacteroides and Enterococcus were retrieved, as well as sequences from 'A1 subcluster' of the wall-less mollicutes. Bacteria from the genus Desulfotomaculum were isolated from gut wall and cultivated under anaerobic conditions. In contrast to previous reports which suggested the absence of anaerobic bacteria in the isopod digestive system due to short retention time of the food in the tube-like hindgut, frequent renewal of the gut cuticle during the moulting process, and unsuccessful attempts to isolate anaerobic bacteria from this environment our results indicate the presence of resident anaerobic bacteria in the gut of P. scaber, in spite of apparently unsuitable, i.e. predominantly oxic, conditions.

  7. Nitrogen acquisition in Agave tequilana from degradation of endophytic bacteria.

    Science.gov (United States)

    Beltran-Garcia, Miguel J; White, James F; Prado, Fernanda M; Prieto, Katia R; Yamaguchi, Lydia F; Torres, Monica S; Kato, Massuo J; Medeiros, Marisa H G; Di Mascio, Paolo

    2014-11-06

    Plants form symbiotic associations with endophytic bacteria within tissues of leaves, stems, and roots. It is unclear whether or how plants obtain nitrogen from these endophytic bacteria. Here we present evidence showing nitrogen flow from endophytic bacteria to plants in a process that appears to involve oxidative degradation of bacteria. In our experiments we employed Agave tequilana and its seed-transmitted endophyte Bacillus tequilensis to elucidate organic nitrogen transfer from (15)N-labeled bacteria to plants. Bacillus tequilensis cells grown in a minimal medium with (15)NH4Cl as the nitrogen source were watered onto plants growing in sand. We traced incorporation of (15)N into tryptophan, deoxynucleosides and pheophytin derived from chlorophyll a. Probes for hydrogen peroxide show its presence during degradation of bacteria in plant tissues, supporting involvement of reactive oxygen in the degradation process. In another experiment to assess nitrogen absorbed as a result of endophytic colonization of plants we demonstrated that endophytic bacteria potentially transfer more nitrogen to plants and stimulate greater biomass in plants than heat-killed bacteria that do not colonize plants but instead degrade in the soil. Findings presented here support the hypothesis that some plants under nutrient limitation may degrade and obtain nitrogen from endophytic microbes.

  8. The effects of deuterium-depleted water on bacteria

    International Nuclear Information System (INIS)

    Butnaru, Gallia; Jurca, Elena M.; Titescu, Gh.; Stefanescu, I.

    2000-01-01

    Due to their adaptability the bacteria are ubiquitous, occurring in a large variety of habitats. Most of them are saprotrophs or parasites. Bacteria are agents causing many diseases in animals and humans. The main purpose of this work was to reveal the deuterium-depleted water bactericidal effect. Nonpathogenic Gram-positive (Bacillus subtilis and Bacillus cereus) and pathogenic Gram-negative (Agrobacterium tumefaciens, Erwinia amylovora and Escherichia coli) bacteria were used. The variant deuterium depleted (DDW) eater was compared with distilled water eater one. The diffusometric method was found the proper way of investigation. The bacteria culture was developed in Petri dishes (diam = 70 mm) at a temperature of 25 deg. C. After 24 h, 48 h and 72 h the clear area was measured. The clear area was one in which the bacteria were killed. The surface was determined by the area of the small disc on the filter paper. The statistical data were determined by variance analysis. The results pointed out a large response to DDW presence. The data were classified in: 1. without response when no clear area occurred; - 2. with response when a clear area of under 5 mm 2 occurred; - 3. strong response when the clear area was higher than 10 mm 2 . The Gram-positive and Gram-negative bacteria behaviours were not in correlation with the DDW bactericidal effect. The Bacillus cereus and Escherichia coli were scored as without response and we presume that they were very tolerant. No clear area was induced by DDW. Bacillus subtilis and Erwinia amylovora showed weak response. After 24 h the killed bacteria were extended on the same area, namely, 2.89 mm 2 . Even if the DDW effect seems to be small it was significantly in comparison with the control case (s d = 2.78 mm 2 > 0.1). After 48 h and 72 h the clear surface remained the same. The Agrobacterium tumefaciens' response was very strong. The bacteria were killed on 22.50 mm 2 after 24 h and on 26.95 mm 2 after 48 h, being very

  9. Leucine incorporation by aerobic anoxygenic phototrophic bacteria in the Delaware estuary

    Science.gov (United States)

    Stegman, Monica R; Cottrell, Matthew T; Kirchman, David L

    2014-01-01

    Aerobic anoxygenic phototrophic (AAP) bacteria are well known to be abundant in estuaries, coastal regions and in the open ocean, but little is known about their activity in any aquatic ecosystem. To explore the activity of AAP bacteria in the Delaware estuary and coastal waters, single-cell 3H-leucine incorporation by these bacteria was examined with a new approach that combines infrared epifluorescence microscopy and microautoradiography. The approach was used on samples from the Delaware coast from August through December and on transects through the Delaware estuary in August and November 2011. The percent of active AAP bacteria was up to twofold higher than the percentage of active cells in the rest of the bacterial community in the estuary. Likewise, the silver grain area around active AAP bacteria in microautoradiography preparations was larger than the area around cells in the rest of the bacterial community, indicating higher rates of leucine consumption by AAP bacteria. The cell size of AAP bacteria was 50% bigger than the size of other bacteria, about the same difference on average as measured for activity. The abundance of AAP bacteria was negatively correlated and their activity positively correlated with light availability in the water column, although light did not affect 3H-leucine incorporation in light–dark experiments. Our results suggest that AAP bacteria are bigger and more active than other bacteria, and likely contribute more to organic carbon fluxes than indicated by their abundance. PMID:24824666

  10. Leucine incorporation by aerobic anoxygenic phototrophic bacteria in the Delaware estuary.

    Science.gov (United States)

    Stegman, Monica R; Cottrell, Matthew T; Kirchman, David L

    2014-11-01

    Aerobic anoxygenic phototrophic (AAP) bacteria are well known to be abundant in estuaries, coastal regions and in the open ocean, but little is known about their activity in any aquatic ecosystem. To explore the activity of AAP bacteria in the Delaware estuary and coastal waters, single-cell (3)H-leucine incorporation by these bacteria was examined with a new approach that combines infrared epifluorescence microscopy and microautoradiography. The approach was used on samples from the Delaware coast from August through December and on transects through the Delaware estuary in August and November 2011. The percent of active AAP bacteria was up to twofold higher than the percentage of active cells in the rest of the bacterial community in the estuary. Likewise, the silver grain area around active AAP bacteria in microautoradiography preparations was larger than the area around cells in the rest of the bacterial community, indicating higher rates of leucine consumption by AAP bacteria. The cell size of AAP bacteria was 50% bigger than the size of other bacteria, about the same difference on average as measured for activity. The abundance of AAP bacteria was negatively correlated and their activity positively correlated with light availability in the water column, although light did not affect (3)H-leucine incorporation in light-dark experiments. Our results suggest that AAP bacteria are bigger and more active than other bacteria, and likely contribute more to organic carbon fluxes than indicated by their abundance.

  11. Colonization of the oral cavity by probiotic bacteria.

    Science.gov (United States)

    Ravn, I; Dige, I; Meyer, R L; Nyvad, B

    2012-01-01

    The aim of this study was to investigate if three probiotic bacteria present in the milk product Cultura Dofilus® naturell could be detected in saliva and on oral mucosal surfaces, and if they colonized dental surfaces in situ in 8 caries-inactive individuals after 8 daily exposures to the milk product for up to 3 days. Bacteria were identified by fluorescence in situ hybridization and confocal laser scanning microscopy. While probiotic bacteria were present sporadically in the oral cavity on mucosal surfaces and in saliva after 3 days of frequent use of the probiotic milk, they were not detected on dental surfaces. Probiotic bacteria may thus contribute to general oral health, but their potential role in biofilm-induced dental diseases remains unclear. Copyright © 2012 S. Karger AG, Basel.

  12. Co-existence of Anaerobic Ammonium Oxidation Bacteria and Denitrifying Anaerobic Methane Oxidation Bacteria in Sewage Sludge: Community Diversity and Seasonal Dynamics.

    Science.gov (United States)

    Xu, Sai; Lu, Wenjing; Mustafa, Muhammad Farooq; Caicedo, Luis Miguel; Guo, Hanwen; Fu, Xindi; Wang, Hongtao

    2017-11-01

    Anaerobic ammonium oxidation (ANAMMOX) and denitrifying anaerobic methane oxidation (DAMO) have been recently discovered as relevant processes in the carbon and nitrogen cycles of wastewater treatment plants. In this study, the seasonal dynamics of ANAMMOX and DAMO bacterial community structures and their abundance in sewage sludge collected from wastewater treatment plants were analysed. Results indicated that ANAMMOX and DAMO bacteria co-existed in sewage sludge in different seasons and their abundance was positively correlated (P bacteria in autumn and winter indicated that these seasons were the preferred time to favour the growth of ANAMMOX and DAMO bacteria. The community structure of ANNAMOX and DAMO bacteria could also shift with seasonal changes. The "Candidatus Brocadia" genus of ANAMMOX bacteria was mainly recovered in spring and summer, and an unknown cluster was primarily detected in autumn and winter. Similar patterns of seasonal variation in the community structure of DAMO bacteria were also observed. Group B was the dominant in spring and summer, whereas in autumn and winter, group A and group B presented almost the same proportion. The redundancy analysis revealed that pH and nitrate were the most significant factors affecting community structures of these two groups (P < 0.01). This study reported the diversity of ANAMMOX and DAMO in wastewater treatment plants that may be the basis for new nitrogen removal technologies.

  13. Bioaccumulation and chemical modification of Tc by soil bacteria

    International Nuclear Information System (INIS)

    Henrot, J.

    1989-01-01

    Bioaccumulation and chemical modification of pertechnetate (TcO 4 -) by aerobically and anaerobically grown soil bacteria and by pure cultures of sulfate-reducing bacteria (Desulfovibrio sp.) were studied to gain insight on the possible mechanisms by which bacteria can affect the solubility of Tc in soil. Aerobically grown bacteria had no apparent effect on TcO 4 -; they did not accumulate Tc nor modify its chemical form. Anaerobically grown bacteria exhibited high bioaccumulation and reduced TcO 4 -, enabling its association with organics of the growth medium. Reduction was a metabolic process and not merely the result of reducing conditions in the growth medium. Association of Tc with bacterial polysaccharides was observed only in cultures of anaerobic bacteria. Sulfate-reducing bacteria efficiently removed Tc from solution and promoted its association with organics. Up to 70% of the total Tc in the growth medium was bioaccumulated and/or precipitated. The remaining Tc in soluble form was entirely associated with organics. Pertechnetate was not reduced by the same mechanism as dissimilatory sulfate reduction, but rather by some reducing agent released in the growth medium. A calculation of the amount of Tc that could be associated with the bacterial biomass present in soil demonstrates that high concentration ratios in cultures do not necessarily imply that bioaccumulation is an important mechanism for long-term retention of Tc in soil

  14. Antioxidant and Antimicrobial Potential of the Bifurcaria bifurcata Epiphytic Bacteria

    OpenAIRE

    Horta, André; Pinteus, Susete; Alves, Celso; Fino, Nádia; Silva, Joana; Fernandez, Sara; Rodrigues, Américo; Pedrosa, Rui

    2014-01-01

    This article belongs to the Special Issue Selected Papers from the 14th International Symposium on Marine Natural Products Surface-associated marine bacteria are an interesting source of new secondary metabolites. The aim of this study was the isolation and identification of epiphytic bacteria from the marine brown alga, Bifurcaria bifurcata, and the evaluation of the antioxidant and antimicrobial activity of bacteria extracts. The identification of epiphytic bacteria was determined by 16S...

  15. Social Behaviour in Bacteria

    Indian Academy of Sciences (India)

    Administrator

    the recipient. • Social behaviours can be categorized according to the fitness ... is actually the flagella of symbiotic spirochete bacteria that helps it to swim around .... Normal population. Responsive switching. (Environmental stress). Stochastic.

  16. Ammonia production by human faecal bacteria, and the enumeration, isolation and characterization of bacteria capable of growth on peptides and amino acids

    Directory of Open Access Journals (Sweden)

    Richardson Anthony J

    2013-01-01

    Full Text Available Abstract Background The products of protein breakdown in the human colon are considered to be detrimental to gut health. Amino acid catabolism leads to the formation of sulfides, phenolic compounds and amines, which are inflammatory and/or precursors to the formation of carcinogens, including N-nitroso compounds. The aim of this study was to investigate the kinetics of protein breakdown and the bacterial species involved. Results Casein, pancreatic casein hydrolysate (mainly short-chain peptides or amino acids were incubated in vitro with suspensions of faecal bacteria from 3 omnivorous and 3 vegetarian human donors. Results from the two donor groups were similar. Ammonia production was highest from peptides, followed by casein and amino acids, which were similar. The amino acids metabolized most extensively were Asp, Ser, Lys and Glu. Monensin inhibited the rate of ammonia production from amino acids by 60% (P = 0.001, indicating the involvement of Gram-positive bacteria. Enrichment cultures were carried out to investigate if, by analogy with the rumen, there was a significant population of asaccharolytic, obligately amino acid-fermenting bacteria (‘hyper-ammonia-producing’ bacteria; HAP in the colon. Numbers of bacteria capable of growth on peptides or amino acids alone averaged 3.5% of the total viable count, somewhat higher than the rumen. None of these were HAP, however. The species enriched included Clostridium spp., one of which was C. perfringens, Enterococcus, Shigella and Escherichia coli. Conclusions Protein fermentation by human faecal bacteria in the absence of sugars not only leads to the formation of hazardous metabolic products, but also to the possible proliferation of harmful bacteria. The kinetics of protein metabolism were similar to the rumen, but HAP bacteria were not found.

  17. Bacteria Associated with Fresh Tilapia Fish (Oreochromis niloticus ...

    African Journals Online (AJOL)

    acer

    Keywords: Bacteria, Tilapia fish and Sokoto central market. INTRODUCTION ... The bacteria are transmitted by fish that have made contact ... with which a product spoils is also related to the .... Base on the percentage frequency of occurance ,.

  18. [Screening endophytic bacteria against plant-parasitic nematodes].

    Science.gov (United States)

    Peng, Shuang; Yan, Shuzhen; Chen, Shuanglin

    2011-03-01

    Plant-parasite nematode is one of the most important pathogens in plant. Our objective is to screen endophytic bacteria against plant-parasitic nematodes from plant. Endophytic bacteria were isolated and screened by testing their metabolite against Bursaphelenchus xylophilus in vitro. Those strains inhibiting B. xylophilus were selected to culture in liquid medium and fermentation conditions were optimized by orthogonal test. The stability of the antinematode substances was evaluated by various. In addition, four strains were identified by 16SrDNA sequence analysis. In total 13 strains of endophytic bacteria secreting antinematode metabolite were isolated from 6 species of plant. The supernatant of the fermentation broth of these endophytic bacteria gave 100% mortality of nematodes after treated as the follows: 1 ml each was mixed with 0.2 ml of the suspension of nematodes (2000 nematodes/ml) then incubated at 250C for 24 h, some of which could led to leakage or dissolution of nematodes. Among them, four strains, BCM2, SZ5, CCM7 and DP1, showed stronger activity than others. The supernatants diluted three times also gave not less than 95% mortality after 24 h treatment, and those from DP1 and SZ5 even gave 100% mortality. The fermentation conditions of the four strains were optimized and the antinematode activity grew up four times after optimization. The antinematode substances of these strains were found stable when treated with protease or heating or stored at 4 degrees C after 100 days, while instable when treated with acid or alkali. DP1 and CCM7 were identified to be Bacillus subtilis, while SZ5 and BCM2 to be Bacillus cereus. Endophytic bacteria secreting antinematode metabolite were found in economic crops. The metabolite of some strains showed strong and stable antinematode activity. Our results indicate the real potential of biocontrol by endophytic bacteria.

  19. Pepsin homologues in bacteria

    Directory of Open Access Journals (Sweden)

    Bateman Alex

    2009-09-01

    Full Text Available Abstract Background Peptidase family A1, to which pepsin belongs, had been assumed to be restricted to eukaryotes. The tertiary structure of pepsin shows two lobes with similar folds and it has been suggested that the gene has arisen from an ancient duplication and fusion event. The only sequence similarity between the lobes is restricted to the motif around the active site aspartate and a hydrophobic-hydrophobic-Gly motif. Together, these contribute to an essential structural feature known as a psi-loop. There is one such psi-loop in each lobe, and so each lobe presents an active Asp. The human immunodeficiency virus peptidase, retropepsin, from peptidase family A2 also has a similar fold but consists of one lobe only and has to dimerize to be active. All known members of family A1 show the bilobed structure, but it is unclear if the ancestor of family A1 was similar to an A2 peptidase, or if the ancestral retropepsin was derived from a half-pepsin gene. The presence of a pepsin homologue in a prokaryote might give insights into the evolution of the pepsin family. Results Homologues of the aspartic peptidase pepsin have been found in the completed genomic sequences from seven species of bacteria. The bacterial homologues, unlike those from eukaryotes, do not possess signal peptides, and would therefore be intracellular acting at neutral pH. The bacterial homologues have Thr218 replaced by Asp, a change which in renin has been shown to confer activity at neutral pH. No pepsin homologues could be detected in any archaean genome. Conclusion The peptidase family A1 is found in some species of bacteria as well as eukaryotes. The bacterial homologues fall into two groups, one from oceanic bacteria and one from plant symbionts. The bacterial homologues are all predicted to be intracellular proteins, unlike the eukaryotic enzymes. The bacterial homologues are bilobed like pepsin, implying that if no horizontal gene transfer has occurred the duplication

  20. PCR detection and identification of histamine-forming bacteria in filleted tuna fish samples.

    Science.gov (United States)

    Ferrario, Chiara; Pegollo, Chiara; Ricci, Giovanni; Borgo, Francesca; Fortina, M Grazia

    2012-02-01

    Total of 14 filleted yellowfin tuna fish (Thunnus albacares) sold in wholesale fish market and supermarkets in Milan, Italy, were purchased and tested to determine microbial count, histamine level, histamine-forming bacteria, and their ability to produce histamine in culture broth. Although histamine level was less than 10 ppm, many samples showed high total viable bacterial and enterobacterial counts that reached dangerous levels after temperature abuse for short periods of time. A PCR assay targeting a 709-bp fragment of the histidine decarboxylase gene (hdc) revealed that 30.5% of the 141 enteric bacteria isolated from samples were positive and potentially able to produce histamine. The hdc positive strains were mainly isolated from fish bought at wholesale fish market, where we observed several possible risk factors, such as handling in poor and non-refrigerated conditions during fillet preparation. These positive strains were identified as Citrobacter koseri/Enterobacter spp. and Morganella morganii, by 16S/23S rRNA internal transcribed spacer amplification and 16S rRNA sequence analysis. The strains showed a variable ability of histamine production, with Morganella morganii being the most active histamine-producing species. A direct DNA extraction from fish and a PCR targeting the hdc gene showed a high degree of concordance with the results obtained through microbiological and chemical analyses, and could aid in the prompt detection of potentially contaminated fish products, before histamine accumulates. The use of methods for the early and rapid detection of bacteria producing biogenic amines is important for preventing accumulation of these toxic substances in food products. In this study, we used a molecular approach for the detection of histamine-forming bacteria in fish. PCR-based methods require expensive equipment and a high degree of training for the user, but are fast (marketing and can be used in the investigation of risk reduction strategies.

  1. The growth of bacteria on organic compounds in drinking water

    NARCIS (Netherlands)

    Kooij, van der D.

    1984-01-01

    Growth ("regrowth") of bacteria In drinking water distribution systems results in a deterioration of the water quality. Regrowth of chemoheterotrophic bacteria depends on the presence of organic. compounds that serve as a nutrient source for these bacteria. A batch-culture technique was

  2. Potency of Amylase-producing Bacteria and Optimization Amylase Activities

    Science.gov (United States)

    Indriati, G.; Megahati, R. R. P.; Rosba, E.

    2018-04-01

    Enzymes are capable to act as biocatalyst for a wide variety of chemical reactions. Amylase have potential biotechnological applications in a wide range of industrial processes and account for nearly 30% of the world’s enzyme market. Amylase are extracellular enzymes that catalyze the hydrolysis of internal α-1,4-glycosidic linkages in starch to dextrin, and other small carbohydrate molecules constituted of glucose units. Although enzymes are produced from animal and plant sources, the microbial sources are generally the most suitable for commercial applications. Bacteria from hot springs is widely used as a source of various enzymes, such as amylase. But the amount of amylase-producing bacteria is still very limited. Therefore it is necessary to search sources of amylase-producing bacteria new, such as from hot springs Pariangan. The purpose of this study was to isolation of amylase-producing bacteria from Pariangan hot spring, West Sumatera and amylase activity optimization. The results were obtained 12 isolates of thermophilic bacteria and 5 isolates of amyalse-producing bacteria with the largest amylolytic index of 3.38 mm. The highest amylase activity was obtained at 50°C and pH 7.5.

  3. Interaction of neptunium with humic acid and anaerobic bacteria

    International Nuclear Information System (INIS)

    Kubota, Takumi; Sasaki, Takayuki; Kudo, Akira

    2002-01-01

    Humic acid and bacteria play an important role in the migration of radionuclides in groundwaters. The interaction of neptunium with humic acid and anaerobic bacteria has been investigated by liquid/liquid and solid/liquid extraction systems. For liquid/liquid extraction, the apparent complex formation constant, β α was obtained from the distribution between two phases of neptunium. For solid/liquid extraction, the ratio of sorption to bacteria, K d , was measured. K d of humic acid can be evaluated from β α . The large value of β α and K d means strong interaction of neptunium with organisms. In order to examine the effect of the nature of organism on interaction, the interaction with humic acid was compared to that with non-sterilized or sterilized mixed anaerobic bacteria. The value of β α of humate depended on neptunium ion concentration as well as pH, which showed the effect of polyelectrolyte properties and heterogeneous composition of humic acid. The comparison of interaction with humic acid and bacteria indicated that the K d value of humic acid was larger than that of bacteria and more strongly depend on pH. (author)

  4. Occurrence and distribution of nitrogen-scavenging bacteria in marine environment

    OpenAIRE

    Sugahara, Isao; Kimura, Toshio; Hayashi, Koichiro

    1987-01-01

    The occurrence and distribution nitrogen-scavenging bacteria in the water of coastal and oceanic of Japan were studied during the Seisui-Maru cruises from 1986 to 1987. Nitroben-scavenging bacteria in the water usually occurred at the level of 10-104 cfu/ml.This value was almost comparable to that of aerobic heterotrophic bacteria. It seems that nitrogen-scavenging bacteria play an important role in the efficient uptake of low levels of nitrogenous compounds in marine enviroment.

  5. Innovation in microbiome-based strategies for promoting metabolic health.

    Science.gov (United States)

    Romaní-Pérez, Marina; Agusti, Ana; Sanz, Yolanda

    2017-11-01

    Update on the development of microbiome-based interventions and dietary supplements to combat obesity and related comorbidities, which are leading causes of global mortality. The role of intestinal dysbiosis, partly resulting from unhealthy diets, in the development of obesity and metabolic disorders, is well documented by recent translational research. Human experimental trials with whole-faecal transplants are ongoing, and their results will be crucial as proof of concept that interventions intended to modulate the microbiome composition and function could be alternatives for the management of obesity and related comorbidities. Potential next-generation probiotic bacteria (Akkermansia, Bacteroides spp., Eubacterium halli) and microbiota-derived molecules (e.g. membrane proteins, short-chain fatty acids) are being evaluated in preclinical and clinical trials to promote the development of innovative dietary supplements. The fact that live or inactivated bacteria and their products can regulate pathways that increase energy expenditure, and reduce energy intake, and absorption and systemic inflammation make them attractive research targets from a nutritional and clinical perspective. Understanding which are the beneficial bacteria and their bioactive products is helping us to envisage innovative microbiome-based dietary interventions to tackle obesity. Advances will likely result from future refinements of these strategies according to the individual's microbiome configuration and its particular response to interventions, thereby progressing towards personalized nutrition.

  6. [Analysis of Pathogenic Bacteria in Reclaimed Water and Impact of UV Disinfection on the Removal of Pathogenic Bacteria].

    Science.gov (United States)

    Jing, Ming; Wang, Lei

    2016-02-15

    In the study, 454-pyrosequencing technology was employed to investigate the species of pathogenic bacteria and the proportion of each pathogen in secondary effluent. Culture-based, qPCR and Q-RT-PCR methods were employed to analyze the removal of indicator (E. coli) and pathogen (Salmonella and Mycobacterium) by ultraviolet (UV) disinfection at a dose of 60 mJ x Cm(-2). The results showed that 11 kinds of pathogenic bacteria were found and the most abundant potentially pathogenic bacteria in the secondary effluent were affiliated with the genera of Clostridium (2.96%), Arcobacter (0.82%) and Mycobacterium (0.36%). 99.9% of culturable E. coli and Salmonella were removed by UV disinfection (60 mJ x cm(-2), however, less than 90% of culturable Mycobacterium were removed. The removal efficiencies of viable E. coli, Salmonella and Mycobacterium were low. Q-RT-PCR seemed to be a promising method for evaluating viable microorganisms in samples. Besides, pathogenic bacteria entered into VBNC state at a UV dose of 60 mJ x cm(-2). Other advanced treatment processes were needed to ensure safe utilization of reclaimed water.

  7. High resistance of some oligotrophic bacteria to ionizing radiation

    International Nuclear Information System (INIS)

    Nikitin, D.I.; Tashtemirova, M.A.; Pitryuk, I.A.; Sorokin, V.V.; Oranskaya, M.S.; Nikitin, L.E.

    1994-01-01

    The resistance of seven cultures of eutrophic and oligotrophic bacteria to gamma radiation (at doses up to 360 Gy) was investigated. The bacteria under study were divided into three groups according to their survival ability after irradiation. Methylobacterium organophilum and open-quotes Pedodermatophilus halotoleransclose quotes (LD 50 = 270 Gy) were highly tolerant. By their tolerance, these organisms approached Deinococcus radiodurans. Aquatic ring-shaped (toroidal) bacteria Flectobacillus major and open-quotes Arcocella aquaticaclose quotes (LD 5 = 173 and 210 Gy, respectively) were moderately tolerant. Eutrophic Pseudomonas fluorescens and Escherichia coli (LD 50 = 43 and 38 Gy, respectively) were the most sensitive. X-ray microanalysis showed that in tolerant bacteria the intracellular content of potassium increased and the content of calcium decreased after irradiation. No changes in the element composition of the eutrophic bacterium E. coli were detected. Possible mechanisms of the resistance of oligotrophic bacteria to gamma radiation are discussed

  8. Bacterias halotolerantes/alcalofilas productoras de acido indol acético (AIA asociadas a Arthrospira platensis (Cyanophyceae

    Directory of Open Access Journals (Sweden)

    Liliana Cecilia Gómez Gómez

    2012-07-01

    , alkalophilic and IAA producer.  The findings allow suggest a beneficial interaction between A. platensis and their associated bacteria, maybe as evolutionary strategy of cooperation to grow and develop in  hypersaline environments. Key words: Bacillus okhensis, Exiguobacterium aurantiacum, Halomonas sp., Indibacter alkaliphilus.Xanthomonas sp.

  9. PHYLOGENETIC ANALYSIS AND AUTECOLOGY OF SPORE-FORMING BACTERIA FROM HYPERSALINE ENVIRONMENTS.

    Science.gov (United States)

    Gladka, G V; Romanovskaya, V A; Tashyreva, H O; Tashyrev, O B

    2015-01-01

    Multi-resistant to extreme factors spore-forming bacteria of Bacillus genus are isolated from hypersaline environments of the Crimea (Ukraine) and the Dead Sea (Israel). Phylogenetic analysis showed distinction of dominating extremophilic culturable species in studied regions. In Crimean environments they are B. mojavensis and B. simplex, in the Dead Sea ecosystem--B. subtilis subsp. spizizenii, B. subtilis subsp. subtilis, B. licheniformis and B. simplex. Isolates are simultaneously halotolerant and resistant to UV radiation. Strains isolated from the Dead Sea and the Crimea environments were resistant to UV: LD90 and LD99.99 made 100-170 J/m2 and 750-1500 J/m2 respectively. Spores showed higher UV-resistance (LD99.99-2500 J/m2) than the vegetative cells. However the number of spores made 0.02-0.007% of the whole cell population, and should not significantly affect the UV LD99.99 value. Isolates of both environments were halotolerant in the range of 0.1-10% NaCl and thermotolerant in the range of 20-50 °C, and didn't grow at 15 °C. Survival strategy of spore-forming bacteria from hypersaline environments under high UV radiation level can be performed by spore formation which minimize cell damage as well as efficient DNA-repair systems that remove damages.

  10. Copper tolerance and virulence in bacteria

    Science.gov (United States)

    Ladomersky, Erik; Petris, Michael J.

    2015-01-01

    Copper (Cu) is an essential trace element for all aerobic organisms. It functions as a cofactor in enzymes that catalyze a wide variety of redox reactions due to its ability to cycle between two oxidation states, Cu(I) and Cu(II). This same redox property of copper has the potential to cause toxicity if copper homeostasis is not maintained. Studies suggest that the toxic properties of copper are harnessed by the innate immune system of the host to kill bacteria. To counter such defenses, bacteria rely on copper tolerance genes for virulence within the host. These discoveries suggest bacterial copper intoxication is a component of host nutritional immunity, thus expanding our knowledge of the roles of copper in biology. This review summarizes our current understanding of copper tolerance in bacteria, and the extent to which these pathways contribute to bacterial virulence within the host. PMID:25652326

  11. In vitro antifungal activity of bacteria against Mycosphaerella fijiensis mediated by diffused and volatile metabolites

    Directory of Open Access Journals (Sweden)

    Mileidy Cruz-Martín

    2012-07-01

    Full Text Available Antagonistic microorganisms do not have a unique mode of action. Multiplicity of these is an important feature for selection as biological control agents. Black Sigatoka is considered the foliar disease with most economic impact for the banana industry worldwide. New strategies to control it are required to reduce the use of fungicides. That is why an increasing interest to find biological alternatives, such as the use of antagonistic bacteria, has risen. Assays wer e carr ied ou t to determine whether in v it r o ant if ungal ac ti vity of 20 bacterial str ai ns against My cosphaer ella fijiensis was caused by metabolites diffused into the culture medium or volatile. Results demonstrated that 80.0% of bacterial strains tested showed in vitro antifungal activity by diffused metabolites in the culture medium and 60.0% by producing volatile metabolites. The 55.0% of strains showed both mechanisms. This feature makes these bacteria the best candidate for its selection as biological control agent. Keywords: antagonistic, biocontrol, volatile compounds, diffused metabolites.

  12. Antibiotic Resistant Bacteria And Their Associated Resistance Genes in a Conventional Municipal Wastewater Treatment Plant

    KAUST Repository

    Aljassim, Nada I.

    2013-12-01

    With water scarcity as a pressing issue in Saudi Arabia and other Middle Eastern countries, the treatment and reuse of municipal wastewater is increasingly being used as an alternative water source to supplement country water needs. Standards are in place to ensure a safe treated wastewater quality, however they do not regulate pathogenic bacteria and emerging contaminants. Information is lacking on the levels of risk to public health associated with these factors, the efficiency of conventional treatment strategies in removing them, and on wastewater treatment in Saudi Arabia in general. In this study, a municipal wastewater treatment plant in Saudi Arabia is investigated to assess the efficiency of conventional treatment in meeting regulations and removing pathogens and emerging contaminants. The study found pathogenic bacterial genera, antibiotic resistance genes and antibiotic resistant bacteria, many of which were multi-resistant in plant discharges. It was found that although the treatments are able to meet traditional quality guidelines, there remains a risk from the discussed contaminants with wastewater reuse. A deeper understanding of this risk, and suggestions for more thorough guidelines and monitoring are needed.

  13. [Methanotrophic bacteria of acid sphagnum bogs].

    Science.gov (United States)

    Dedysh, S N

    2002-01-01

    Acid sphagnum bogs cover a considerable part of the territory of Russia and are an important natural source of biogenic methane, which is formed in their anaerobic layers. A considerable portion of this methane is consumed in the aerobic part of the bog profile by acidophilic methanotrophic bacteria, which comprise the methane filter of sphagnum bogs and decrease CH4 emission to the atmosphere. For a long time, these bacteria escaped isolation, which became possible only after the elucidation of the optimal conditions of their functioning in situ: pH 4.5 to 5.5; temperature, from 15 to 20 degrees C; and low salt concentration in the solution. Reproduction of these conditions and rejection of earlier used media with a high content of biogenic elements allowed methanotrophic bacteria of two new genera and species--Methylocella palustris and Methylocapsa acidophila--to be isolated from the peat of sphagnum bogs of the northern part of European Russia and West Siberia. These bacteria are well adapted to the conditions in cold, acid, oligotrophic sphagnum bogs. They grow in a pH range of 4.2-7.5 with an optimum at 5.0-5.5, prefer moderate temperatures (15-25 degrees C) and media with a low content of mineral salts (200-500 mg/l), and are capable of active nitrogen fixation. Design of fluorescently labeled 16S rRNA-targeted oligonucleotide probes for the detection of Methylocella palustris and Methylocapsa acidophila and their application to the analysis of sphagnum peat samples showed that these bacteria represent dominant populations of methanotrophs with a density of 10(5)-10(6) cells/g peat. In addition to Methylocella and Methylocapsa populations, one more abundant population of methanotrophs was revealed (10(6) cells/g peat), which were phylogenetically close to the genus Methylocystis.

  14. Anaerobic bacteria in wastewater treatment plant.

    Science.gov (United States)

    Cyprowski, Marcin; Stobnicka-Kupiec, Agata; Ławniczek-Wałczyk, Anna; Bakal-Kijek, Aleksandra; Gołofit-Szymczak, Małgorzata; Górny, Rafał L

    2018-03-28

    The objective of this study was to assess exposure to anaerobic bacteria released into air from sewage and sludge at workplaces from a wastewater treatment plant (WWTP). Samples of both sewage and sludge were collected at six sampling points and bioaerosol samples were additionally collected (with the use of a 6-stage Andersen impactor) at ten workplaces covering different stages of the technological process. Qualitative identification of all isolated strains was performed using the biochemical API 20A test. Additionally, the determination of Clostridium pathogens was carried out using 16S rRNA gene sequence analysis. The average concentration of anaerobic bacteria in the sewage samples was 5.49 × 10 4 CFU/mL (GSD = 85.4) and in sludge-1.42 × 10 6 CFU/g (GSD = 5.1). In turn, the average airborne bacterial concentration was at the level of 50 CFU/m 3 (GSD = 5.83) and the highest bacterial contamination (4.06 × 10 3  CFU/m 3 ) was found in winter at the bar screens. In total, 16 bacterial species were determined, from which the predominant strains belonged to Actinomyces, Bifidobacterium, Clostridium, Propionibacterium and Peptostreptococcus genera. The analysis revealed that mechanical treatment processes were responsible for a substantial emission of anaerobic bacteria into the air. In both the sewage and air samples, Clostridium perfringens pathogen was identified. Anaerobic bacteria were widely present both in the sewage and in the air at workplaces from the WWTP, especially when the technological process was performed in closed spaces. Anaerobic bacteria formed small aggregates with both wastewater droplets and dust particles of sewage sludge origin and as such may be responsible for adverse health outcomes in exposed workers.

  15. Discrimination of Four Marine Biofilm-Forming Bacteria by LC-MS Metabolomics and Influence of Culture Parameters.

    Science.gov (United States)

    Favre, Laurie; Ortalo-Magné, Annick; Greff, Stéphane; Pérez, Thierry; Thomas, Olivier P; Martin, Jean-Charles; Culioli, Gérald

    2017-05-05

    Most marine bacteria can form biofilms, and they are the main components of biofilms observed on marine surfaces. Biofilms constitute a widespread life strategy, as growing in such structures offers many important biological benefits. The molecular compounds expressed in biofilms and, more generally, the metabolomes of marine bacteria remain poorly studied. In this context, a nontargeted LC-MS metabolomics approach of marine biofilm-forming bacterial strains was developed. Four marine bacteria, Persicivirga (Nonlabens) mediterranea TC4 and TC7, Pseudoalteromonas lipolytica TC8, and Shewanella sp. TC11, were used as model organisms. The main objective was to search for some strain-specific bacterial metabolites and to determine how culture parameters (culture medium, growth phase, and mode of culture) may affect the cellular metabolism of each strain and thus the global interstrain metabolic discrimination. LC-MS profiling and statistical partial least-squares discriminant analyses showed that the four strains could be differentiated at the species level whatever the medium, the growth phase, or the mode of culture (planktonic vs biofilm). A MS/MS molecular network was subsequently built and allowed the identification of putative bacterial biomarkers. TC8 was discriminated by a series of ornithine lipids, while the P. mediterranea strains produced hydroxylated ornithine and glycine lipids. Among the P. mediterranea strains, TC7 extracts were distinguished by the occurrence of diamine derivatives, such as putrescine amides.

  16. NC10 bacteria in marine oxygen minimum zones

    DEFF Research Database (Denmark)

    Padilla, Cory C; Bristow, Laura A; Sarode, Neha

    2016-01-01

    Bacteria of the NC10 phylum link anaerobic methane oxidation to nitrite denitrification through a unique O2-producing intra-aerobic methanotrophy pathway. A niche for NC10 in the pelagic ocean has not been confirmed. We show that NC10 bacteria are present and transcriptionally active in oceanic....... rRNA and mRNA transcripts assignable to NC10 peaked within the OMZ and included genes of the putative nitrite-dependent intra-aerobic pathway, with high representation of transcripts containing the unique motif structure of the nitric oxide (NO) reductase of NC10 bacteria, hypothesized...

  17. CcpA-dependent carbon catabolite repression in bacteria

    NARCIS (Netherlands)

    Warner, JB; Lolkema, JS; Warner, Jessica B.

    2003-01-01

    Carbon catabolite repression (CCR) by transcriptional regulators follows different mechanisms in gram-positive and gram-negative bacteria. In gram-positive bacteria, CcpA-dependent CCR is mediated by phosphorylation of the phosphoenolpyruvate:sugar phosphotransferase system intermediate HPr at a

  18. Antimicrobial properties of probiotic bacteria from various sources

    African Journals Online (AJOL)

    OKEREKE HOPE C

    2012-05-15

    May 15, 2012 ... The lactic acid bacteria (LAB), a component of several fermented foods including ... lactic acid bacteria grown in MRS broth for 20 to 24 h using centrifugation .... vacuum packed chill-stored meat has potential application for ...

  19. The Potential of Indigenous Bacteria for Removing Cadmium from Industrial Wastewater in Lawang, East Java

    Directory of Open Access Journals (Sweden)

    Agung Pambudiono

    2018-01-01

    Full Text Available Heavy metals have been used in various areas around the world especially in the industrial sector. Heavy metals contamination is very dangerous for ecosystem because of its toxicity for some organisms. Cadmium (Cd is a dangerous metal pollutant that can cause remarkable diverse of toxic effects, in particular for humans and animals. The use of bacteria as bioremediation agents has been widely studied because more efficient, less cost, and environmentally friendly strategy. This present study aimed to isolate and identify Cd-resistant bacteria from the industrial disposal site. Wastewater samples were collected from disposal site of agar flour industry in Lawang Malang, East Java. The collected wastewater effluent was analyzed for physicochemical properties. Isolation of Cd-resistant bacteria was carried out using serial dilution. Bacterial isolates were observed and tested for their effects on the content of Cd. The content of Cd was tested daily using Atomic Absorption Spectroscopy (AAS for seven consecutive days. Data was analyzed using one-way ANOVA (p < 0.05 and Tukey test. Characterization of potential bacterium was performed using bacterial identification kit. Four bacteria isolates have been successfully isolated from the wastewater sample. There was a statistically significant difference between groups as determined by one-way ANOVA (F = 1229.62, p = 0.00. A Tukey post hoc test revealed that all conditions are significantly different from each other. The content of Cd in wastewater sample was statistically significantly lower after taking the A isolate (3.39 mg/L, p = 0.00, B Isolate (1.47 mg/L, p = 0.00, C Isolate (1.15 mg/L, p = 0.00, and D isolate (1.95 mg/L, p = 0.00 compared to the control treatment (5.11 mg/L, p = 0.00. Two of the most potential isolates identified as Pseudomonas flourescens (C isolate and Enterobacter agglomerans (B isolate.

  20. Start-Up and Aeration Strategies for a Completely Autotrophic Nitrogen Removal Process in an SBR

    Directory of Open Access Journals (Sweden)

    Xiaoling Zhang

    2017-01-01

    Full Text Available The start-up and performance of the completely autotrophic nitrogen removal via nitrite (CANON process were examined in a sequencing batch reactor (SBR with intermittent aeration. Initially, partial nitrification was established, and then the DO concentration was lowered further, surplus water in the SBR with high nitrite was replaced with tap water, and continuous aeration mode was turned into intermittent aeration mode, while the removal of total nitrogen was still weak. However, the total nitrogen (TN removal efficiency and nitrogen removal loading reached 83.07% and 0.422 kgN/(m3·d, respectively, 14 days after inoculating 0.15 g of CANON biofilm biomass into the SBR. The aggregates formed in SBR were the mixture of activated sludge and granular sludge; the volume ratio of floc and granular sludge was 7 : 3. DNA analysis showed that Planctomycetes-like anammox bacteria and Nitrosomonas-like aerobic ammonium oxidization bacteria were dominant bacteria in the reactor. The influence of aeration strategies on CANON process was investigated using batch tests. The result showed that the strategy of alternating aeration (1 h and nonaeration (1 h was optimum, which can obtain almost the same TN removal efficiency as continuous aeration while reducing the energy consumption, inhibiting the activity of NOB, and enhancing the activity of AAOB.

  1. Epithermal neutron activation analysis of CR(VI)-reducer basalt-inhabiting bacteria

    International Nuclear Information System (INIS)

    Tsibakhashvili, N.Ya.; Kalabegishvili, T.L.; Murusidze, I.G.; Mosulishvili, L.M.; Frontas'eva, M.V.; Kirkesali, E.I.; Aksenova, N.G.; Holman, H.Y.

    2005-01-01

    Epithermal neutron activation analysis (ENAA) has been applied to studying elemental composition of Cr(VI)-reducer bacteria isolated from polluted basalts from the Republic of Georgia. Cr(VI)-reducing ability of the bacteria was examined by electron spin resonance (ESR) demonstrating that the bacteria differ in the rates of Cr(VI) reduction. A well-pronounced correlation between the ability of the bacteria to accumulate Cr(VI) and their ability to reduce Cr(V) to Cr(III) observed in our experiments is discussed. Elemental analysis of these bacteria also revealed that basalt-inhabiting bacteria are distinguished by relative contents of essential elements such as K, Na, Mg, Fe, Mn, Zn, and Co. A high rate of Cr(III) formation correlates with a high concentration of Co in the bacterium. ENAA detected some similarity in the elemental composition of the bacteria. The relatively high contents of Fe detected in the bacteria (140-340 μg/g of dry weight) indicate bacterial adaptation to the environmental conditions typical of the basalts. The concentrations of at least 12-19 different elements ranging from major- to ultratrace ones were determined in each type of bacteria simultaneously. The range of concentrations spans over 8 orders of magnitude

  2. Identification of marine methanol-utilizing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, M; Iwaki, H; Kouno, K; Inui, T

    1980-01-01

    A taxonomical study of 65 marine methanol-utilizing bacteria is described. They were Gram-negative, non-spore-forming rods with a polar flagellum and had marine bacterial properties and required vitamin B/sub 12/ for growth. All of them assimilated fructose in addition to C/sub 1/-compounds and produced acid oxidatively from fructose. Twenty-four strains assimilated only C/sub 1/-compounds. They were resistant to penicillin, oxytetracycline and 0/129 substance (Vibrio stat), and tolerant to 12% NaCl. Guanine-cytosine contents of deoxyribonucleic acid in typical strains fell in the range of 43.8 to 47.6%. Other morphological and physiological properties were almost the same as those of terrestrial methanol-utilizers. Bacteria in the first group (41 strains) were facultative methylotrophs and were divided into three subgroups by the assimilation of methylated amines, that is, subgroup I (30 strains) assimilated mono-, di- and tri-methylamine, subgroup II (9 strains) assimilated only mono-methylamine, the bacteria of subgroups I and II were named Alteromonas thalassomethanolica sp. nov. and subgroup III (2 strains) did not assimilate methylated amines, and was tentatively assigned as Alteromonas sp. The second group of bacteria (24 strains) was obligate methylotrophs, named Methylomonas thalassica sp. nov. and was divided into subgroup IV (15 strains) which assimilated mono-, di and tri-methylamine and subgroup V (9 strains) which assimilated mono-methylamine.

  3. Developing new bacteria subroutines in the SWAT model

    Science.gov (United States)

    Fecal bacteria observations from four different sites in Korea and the US demonstrate seasonal variability, showing a significant relationship with temperature (Figure 1); fecal indicator bacteria (FIB) concentrations are relatively higher in summer and lower in winter , including Stillwater river (...

  4. Release of Antibiotic Resistant Bacteria by a Waste Treatment Plant from Romania.

    Science.gov (United States)

    Lupan, Iulia; Carpa, Rahela; Oltean, Andreea; Kelemen, Beatrice Simona; Popescu, Octavian

    2017-09-27

    The occurrence and spread of bacterial antibiotic resistance are subjects of great interest, and the role of wastewater treatment plants has been attracting particular interest. These stations are a reservoir of bacteria, have a large range of organic and inorganic substances, and the amount of bacteria released into the environment is very high. The main purpose of the present study was to assess the removal degree of bacteria with resistance to antibiotics and identify the contribution of a wastewater treatment plant to the microbiota of Someşul Mic river water in Cluj county. The resistance to sulfamethoxazole and tetracycline and some of their representative resistance genes: sul1, tet(O), and tet(W) were assessed in this study. The results obtained showed that bacteria resistant to sulphonamides were more abundant than those resistant to tetracycline. The concentration of bacteria with antibiotic resistance changed after the treatment, namely, bacteria resistant to sulfamethoxazole. The removal of all bacteria and antibiotic-resistant bacteria was 98-99% and the degree of removal of bacteria resistant to tetracycline was higher than the bacteria resistant to sulfamethoxazole compared to total bacteria. The wastewater treatment plant not only contributed to elevating ARG concentrations, it also enhanced the possibility of horizontal gene transfer (HGT) by increasing the abundance of the intI1 gene. Even though the treatment process reduced the concentration of bacteria by two orders of magnitude, the wastewater treatment plant in Cluj-Napoca contributed to an increase in antibiotic-resistant bacteria concentrations up to 10 km downstream of its discharge in Someşul Mic river.

  5. Coevolution of CRISPR bacteria and phage in 2 dimensions

    Science.gov (United States)

    Han, Pu; Deem, Michael

    2014-03-01

    CRISPR (cluster regularly interspaced short palindromic repeats) is a newly discovered adaptive, heritable immune system of prokaryotes. It can prevent infection of prokaryotes by phage. Most bacteria and almost all archae have CRISPR. The CRISPR system incorporates short nucleotide sequences from viruses. These incorporated sequences provide a historical record of the host and predator coevolution. We simulate the coevolution of bacteria and phage in 2 dimensions. Each phage has multiple proto-spacers that the bacteria can incorporate. Each bacterium can store multiple spacers in its CRISPR. Phages can escape recognition by the CRISPR system via point mutation or recombination. We will discuss the different evolutionary consequences of point mutation or recombination on the coevolution of bacteria and phage. We will also discuss an intriguing ``dynamic phase transition'' in the number of phage as a function of time and mutation rate. We will show that due to the arm race between phages and bacteria, the frequency of spacers and proto-spacers in a population can oscillate quite rapidly.

  6. Active targeting of tumor cells using light emitting bacteria

    International Nuclear Information System (INIS)

    Moon, Sung Min; Min, Jung Joon; Hong, Yeong Jin; Kim, Hyun Ju; Le, Uuenchi N.; Rhee, Joon Haeng; Song, Ho Chun; Heo, Young Jun; Bom, Hee Seung; Choy, Hyon E

    2004-01-01

    The presence of bacteria and viruses in human tumors has been recognized for more than 50 years. Today, with the discovery of bacterial strains that specifically target tumors, and aided by genomic sequencing and genetic engineering, there is new interest in the use of bacteria as tumor vectors. Here, we show that bacteria injected intravenously into live animals entered and replicated in solid tumors and metastases using the novel imaging technology of biophotonics. Bioluminescence operon (LuxCDABE) or fluorescence protein, GFP) has been cloned into pUC19 plasmid to engineer pUC19lux or pUC19gfp. Engineered plasmid was transformed into different kinds of wild type (MG1655) or mutant E. coli (DH5, ppGpp, fnr, purE, crpA, flagella, etc.) strains to construct light emitting bacteria. Xenograft tumor model has been established using CT26 colon cancer cell line. Light emitting bacteria was injected via tail vein into tumor bearing mouse. In vivo bioluminescence imaging has been done after 20 min to 14 days of bacterial injection. We observed localization of tumors by light-emitting E. coli in tumor (CT-26) bearing mice. We confirmed the presence of light-emitting bacteria under the fluorescence microscope with E. coli expressing GFP. Althoug varying mutants strain with deficient invading function has been found in tumor tissues, mutant strains of movement (flagella) couldn't show any light signal from the tumor tissue under the cooled CCD camera, indicating bacteria may actively target the tumor cells. Based on their 'tumor-finding' nature, bacteria may be designed to carry multiple genes or drugs for detection and treatment of cancer, such as prodrug-converting enzymes, toxins, angiogenesis inhibitors and cytokines

  7. Impact of matric potential and pore size distribution on growth dynamics of filamentous and non-filamentous soil bacteria.

    Science.gov (United States)

    Wolf, Alexandra B; Vos, Michiel; de Boer, Wietse; Kowalchuk, George A

    2013-01-01

    The filamentous growth form is an important strategy for soil microbes to bridge air-filled pores in unsaturated soils. In particular, fungi perform better than bacteria in soils during drought, a property that has been ascribed to the hyphal growth form of fungi. However, it is unknown if, and to what extent, filamentous bacteria may also display similar advantages over non-filamentous bacteria in soils with low hydraulic connectivity. In addition to allowing for microbial interactions and competition across connected micro-sites, water films also facilitate the motility of non-filamentous bacteria. To examine these issues, we constructed and characterized a series of quartz sand microcosms differing in matric potential and pore size distribution and, consequently, in connection of micro-habitats via water films. Our sand microcosms were used to examine the individual and competitive responses of a filamentous bacterium (Streptomyces atratus) and a motile rod-shaped bacterium (Bacillus weihenstephanensis) to differences in pore sizes and matric potential. The Bacillus strain had an initial advantage in all sand microcosms, which could be attributed to its faster growth rate. At later stages of the incubation, Streptomyces became dominant in microcosms with low connectivity (coarse pores and dry conditions). These data, combined with information on bacterial motility (expansion potential) across a range of pore-size and moisture conditions, suggest that, like their much larger fungal counterparts, filamentous bacteria also use this growth form to facilitate growth and expansion under conditions of low hydraulic conductivity. The sand microcosm system developed and used in this study allowed for precise manipulation of hydraulic properties and pore size distribution, thereby providing a useful approach for future examinations of how these properties influence the composition, diversity and function of soil-borne microbial communities.

  8. Impact of matric potential and pore size distribution on growth dynamics of filamentous and non-filamentous soil bacteria.

    Directory of Open Access Journals (Sweden)

    Alexandra B Wolf

    Full Text Available The filamentous growth form is an important strategy for soil microbes to bridge air-filled pores in unsaturated soils. In particular, fungi perform better than bacteria in soils during drought, a property that has been ascribed to the hyphal growth form of fungi. However, it is unknown if, and to what extent, filamentous bacteria may also display similar advantages over non-filamentous bacteria in soils with low hydraulic connectivity. In addition to allowing for microbial interactions and competition across connected micro-sites, water films also facilitate the motility of non-filamentous bacteria. To examine these issues, we constructed and characterized a series of quartz sand microcosms differing in matric potential and pore size distribution and, consequently, in connection of micro-habitats via water films. Our sand microcosms were used to examine the individual and competitive responses of a filamentous bacterium (Streptomyces atratus and a motile rod-shaped bacterium (Bacillus weihenstephanensis to differences in pore sizes and matric potential. The Bacillus strain had an initial advantage in all sand microcosms, which could be attributed to its faster growth rate. At later stages of the incubation, Streptomyces became dominant in microcosms with low connectivity (coarse pores and dry conditions. These data, combined with information on bacterial motility (expansion potential across a range of pore-size and moisture conditions, suggest that, like their much larger fungal counterparts, filamentous bacteria also use this growth form to facilitate growth and expansion under conditions of low hydraulic conductivity. The sand microcosm system developed and used in this study allowed for precise manipulation of hydraulic properties and pore size distribution, thereby providing a useful approach for future examinations of how these properties influence the composition, diversity and function of soil-borne microbial communities.

  9. Resuscitation effects of catalase on airborne bacteria.

    OpenAIRE

    Marthi, B; Shaffer, B T; Lighthart, B; Ganio, L

    1991-01-01

    Catalase incorporation into enumeration media caused a significant increase (greater than 63%) in the colony-forming abilities of airborne bacteria. Incubation for 30 to 60 min of airborne bacteria in collection fluid containing catalase caused a greater than 95% increase in colony-forming ability. However, catalase did not have any effects on enumeration at high relative humidities (80 to 90%).

  10. Thermophilic, lignocellulolytic bacteria for ethanol production: current state and perspectives

    DEFF Research Database (Denmark)

    Chang, Tinghong; Yao, Shuo

    2011-01-01

    of cellulolytic and saccharolytic thermophilic bacteria for lignocellulosic ethanol production because of their unique properties. First of all, thermophilic bacteria possess unique cellulolytic and hemicellulolytic systems and are considered as potential sources of highly active and thermostable enzymes...... for efficient biomass hydrolysis. Secondly, thermophilic bacteria ferment a broad range of carbohydrates into ethanol, and some of them display potential for ethanologenic fermentation at high yield. Thirdly, the establishment of the genetic tools for thermophilic bacteria has allowed metabolic engineering......, in particular with emphasis on improving ethanol yield, and this facilitates their employment for ethanol production. Finally, different processes for second-generation ethanol production based on thermophilic bacteria have been proposed with the aim to achieve cost-competitive processes. However, thermophilic...

  11. Elective culture of bacteria used in bioleaching on pyrrhotite

    Institute of Scientific and Technical Information of China (English)

    邱冠周; 覃文庆; 蓝卓越; 黎维中

    2003-01-01

    Elective culture of bacteria on pyrrhotite was researched, and the selected bacteria were tested on bi-oleaching of marmatite and zinc sulfide ore. The results show that the microorganism cultured on pyrrhotite with va-rious S/Fe ratios is a mixed culture of thiobacillus ferrooxidans and thiobacillus thiooxidans, of which the integral ac-tivity and the oxidation capability of Fe2+ and S are enhanced. With the high Fe and low S content of pyrrhotite, the oxida-tion capacity of ferrous ion is improved; on the contrary, the oxidation capacity of sulfur is advanced. The bioleaching ca-pacity of bacteria cultured on marmatite is better than that of the bacteria cultivated by conventional methods.

  12. Extracellular communication in bacteria

    DEFF Research Database (Denmark)

    Chhabra, S.R.; Philipp, B.; Eberl, L.

    2005-01-01

    molecules, in different Gram-positive and Gram-negative bacteria they control pathogenicity, secondary metabolite production, biofilm differentiation, DNA transfer and bioluminescence. The development of biosensors for the detection of these signal molecules has greatly facilitated their subsequent chemical...

  13. Disinfection of bacteria attached to granular activated carbon.

    Science.gov (United States)

    LeChevallier, M W; Hassenauer, T S; Camper, A K; McFeters, G A

    1984-01-01

    Heterotrophic plate count bacteria, coliform organisms, and pathogenic microorganisms attached to granular activated carbon particles were examined for their susceptibility to chlorine disinfection. When these bacteria were grown on carbon particles and then disinfected with 2.0 mg of chlorine per liter (1.4 to 1.6 mg of free chlorine residual per liter after 1 h) for 1 h, no significant decrease in viable counts was observed. Washed cells attached to the surface of granular activated carbon particles showed similar resistance to chlorine, but a progressive increase in sublethal injury was found. Observations made by scanning electron microscope indicated that granular activated carbon was colonized by bacteria which grow in cracks and crevices and are coated by an extracellular slime layer. These data suggest a possible mechanism by which treatment and disinfection barriers can be penetrated and pathogenic bacteria may enter drinking water supplies. Images PMID:6508306

  14. Motility of magnetotactic bacteria/MTB to Geomagnetic fields

    Science.gov (United States)

    Hidajatullah-Maksoed, Fatahillah

    2016-03-01

    Bacteria with motility directed by a local geomagnetic fields have been observed in marine sediments'' discussed by R. Blakemore, 1975. Magnetotactic bacteria/MTB discovered in 1963 by Salvatore Bellini. For ``off-axis electron holography in the transmission electron microscope was used to correlates the physical & magnetic microstructure of magnetite nanocrystals in magnetotactic bacteria'' sought ``single-domain magnetite in hemopelagic sediments'' from JF Stolz. Otherwise, for potential source of bioproducts- product meant from result to multiplier -of magnetotactic bacteria[ACV Araujo, et.al, 2014 ] of marine drugs retrieved the `measurement of cellular chemotaxis with ECIS/Taxis, from KM Pietrosimone, 2012, whereas after ``earth magnetic field role on small living models'' are other interpretation of ``taxis'' as a movement of a cell instead usual ``tax'' for yew's taxus cuspidate, hired car & taxes in financial realms. Acknowledgements to HE. Mr. H. TUK SETYOHADI, Jl. Sriwijaya Raya 3, South-Jakarta, INDONESIA.

  15. Marine echinoderms as reservoirs of antimicrobial resistant bacteria

    Directory of Open Access Journals (Sweden)

    Catarina Marinho

    2014-06-01

    Full Text Available Echinoderms are benthic animals that play an important ecological role in marine communities occupying diverse trophic levels in the marine food chains. The majority of echinoderms feed on small particles of edible matter, although they can eat many kinds of food (Clark, 1968. Although, some echinoderms species has been facing an emerging demand for human consumption, particularly in Asian and Mediterranean cuisine, where these animals can be eaten raw (Kelly, 2005; Micael et al., 2009. Echinoderms own an innate immune mechanism that allows them to defend themselves from high concentrations of bacteria, viruses and fungus they are often exposed, on marine sediment (Janeway and Medzhitov, 1998, Cooper, 2003. The most frequent genera of gut bacteria in echinoderms are Vibrio, Pseudomonas, Flavobacterium, and Aeromonas; nevertheless Enterococcus spp. and Escherichia coli are also present (Harris, 1993; Marinho et al., 2013. Moreover, fecal resistant bacteria found in the aquatic environment might represent an index of marine pollution (Foti et al., 2009, Kummerer, 2009. Several studies had been lead in order to identify environmental reservoirs for antibiotic-resistant bacteria in populations of fish, echinoderms and marine mammals, and they all support the thesis that these animals may serve as reservoirs since they had acquired resistant microbial species (Johnson et al., 1998, Marinho et al., 2013, Miranda and Zemelman, 2001. However, to our knowledge, there are only available in bibliography one study of antimicrobial resistant bacteria isolated from marine echinoderms (Marinho et al., 2013, which stats that their provenience in this environment is still unclear. Antimicrobial resistance outcomes from the intensive use of antimicrobial drugs in human activities associated with various mechanisms for bacteria genetic transfer (Barbosa and Levy, 2000, Coque et al., 2008. Antibiotic-resistant bacteria enter into water environments where they are

  16. Fecal indicator bacteria at Havana Bay

    International Nuclear Information System (INIS)

    Lopez Perez, Lisse; Gomez D'Angelo, Yamiris; Beltran Gonzalez, Jesus; Alvarez Valiente, Reinaldo

    2013-01-01

    Aims: Fecal indicator bacteria concentrations were evaluated in Havana Bay. Methods: Concentrations of traditional fecal indicator bacteria were calculated between April 2010 and February 2011, by MPN methods. Concentrations of thermo tolerant coliform (CTT), Escherichia coli, fecal streptococci (EF), intestinal enterococci (ENT) in seawater, and Clostridium perfringens in sediment surface, were determined. Results: CTT and E. coli levels were far above Cuban water quality standard for indirect contact with water, showing the negative influence of sewage and rivers on the bay. The EF and ENT were measured during sewage spills at the discharge site and they were suitable indicators of fecal contamination, but these indicators didn't show the same behavior in other selected sites. This result comes from its well-known inactivation by solar light in tropical zones and the presumable presence of humid acids in the waters of the bay. Conclusion: Fecal indicator bacteria and its statistical relationships reflect recent and chronic fecal contamination at the bay and near shores.

  17. Alkaline phosphatase activity of rumen bacteria.

    Science.gov (United States)

    Cheng, K J; Costerton, J W

    1977-11-01

    Of the 54 strains of rumen bacteria examined for alkaline phosphatase (APase) production, 9 of 33 gram-negative strains and none of 21 gram-positive strains produced the enzyme. The APase of the cells of the three strains of Bacteroides ruminicola that produced significant amounts of the enzyme was located in the periplasmic area of the cell envelope, whereas the enzyme was located in the strains of Selenomonas ruminantium and Succinivibrio dextrinosolvens was associated with the outer membrane. The localization of APase production in the cells of natural populations of rumen bacteria from hay-fed sheep was accomplished by reaction product deposition, and both the proportion of APase-producing bacteria and the location of the enzyme in the cell envelope of the producing cells could be determined. We suggest that this procedure is useful in detecting shifts in the bacterial population and the release of cell-bound APase that accompany feedlot bloat and other sequelae of dietary manipulation in ruminants.

  18. Topological Defects in a Living Nematic Ensnare Swimming Bacteria

    Science.gov (United States)

    Genkin, Mikhail M.; Sokolov, Andrey; Lavrentovich, Oleg D.; Aranson, Igor S.

    2017-01-01

    Active matter exemplified by suspensions of motile bacteria or synthetic self-propelled particles exhibits a remarkable propensity to self-organization and collective motion. The local input of energy and simple particle interactions often lead to complex emergent behavior manifested by the formation of macroscopic vortices and coherent structures with long-range order. A realization of an active system has been conceived by combining swimming bacteria and a lyotropic liquid crystal. Here, by coupling the well-established and validated model of nematic liquid crystals with the bacterial dynamics, we develop a computational model describing intricate properties of such a living nematic. In faithful agreement with the experiment, the model reproduces the onset of periodic undulation of the director and consequent proliferation of topological defects with the increase in bacterial concentration. It yields a testable prediction on the accumulation of bacteria in the cores of +1 /2 topological defects and depletion of bacteria in the cores of -1 /2 defects. Our dedicated experiment on motile bacteria suspended in a freestanding liquid crystalline film fully confirms this prediction. Our findings suggest novel approaches for trapping and transport of bacteria and synthetic swimmers in anisotropic liquids and extend a scope of tools to control and manipulate microscopic objects in active matter.

  19. Neutrophil evasion strategies by Streptococcus pneumoniae and Staphylococcus aureus.

    Science.gov (United States)

    Lewis, Megan L; Surewaard, Bas G J

    2018-03-01

    Humans are well equipped to defend themselves against bacteria. The innate immune system employs diverse mechanisms to recognize, control and initiate a response that can destroy millions of different microbes. Microbes that evade the sophisticated innate immune system are able to escape detection and could become pathogens. The pathogens Streptococcus pneumoniae and Staphylococcus aureus are particularly successful due to the development of a wide variety of virulence strategies for bacterial pathogenesis and they invest significant efforts towards mechanisms that allow for neutrophil evasion. Neutrophils are a primary cellular defense and can rapidly kill invading microbes, which is an indispensable function for maintaining host health. This review compares the key features of Streptococcus pneumoniae and Staphylococcus aureus in epidemiology, with a specific focus on virulence mechanisms utilized to evade neutrophils in bacterial pathogenesis. It is important to understand the complex interactions between pathogenic bacteria and neutrophils so that we can disrupt the ability of pathogens to cause disease.

  20. Low field orientation magnetic separation methods for magnetotactic bacteria

    International Nuclear Information System (INIS)

    Moeschler, F.D.

    1999-01-01

    Microbial biomineralisation of iron often results in a biomass that is magnetic and can be separated from water systems by the application of a magnetic field. Magnetotactic bacteria form magnetic membrane bound crystals within their structure, generally of magnetite. In nature, this enables magnetotactic bacteria to orientate themselves with respect to the local geomagnetic field. The bacteria then migrate with flagellar driven motion towards their preferred environment. This property has been harnessed to produce a process in which metal loaded magnetotactic bacteria can be recovered from a waste stream. This process is known as orientation magnetic separation. Several methods exist which permit the unique magnetic properties of individual magnetotactic bacteria to be studied, such as U-turn analysis, transmission electron microscopy and single wire cell studies. In this work an extension of U-turn analysis was developed. The bacteria were rendered non-motile by the addition of specific metal ions and the resulting 'flip time' which occurs during a field reversal enabled the magnetic moment of individual bacteria to be determined. This method proved to be much faster and more accurate than previous methods. For a successful process to be developed, large scale culturing of magnetotactic bacteria is required Experiments showed that culture vessel geometry was an important factor for high-density growth. Despite intensive studies reproducible culturing at volumes exceeding one litre was not achieved. This work showed that numerous metal ions rendered magnetotactic bacteria non-motile at concentrations below 10 ppm. Sequential adaptation raised typical levels to in excess of 100 ppm for a number of ions. such as zinc and tin. However, specific ions. such as copper or nickel, remained motility inhibiting at lower concentrations. To achieve separation using orientation magnetic separation, motile, field susceptible MTB are required. Despite successful adaptation, the

  1. Antimicrobial resistance of zoonotic and commensal bacteria in Europe: the missing link between consumption and resistance in veterinary medicine.

    Science.gov (United States)

    Garcia-Migura, Lourdes; Hendriksen, Rene S; Fraile, Lorenzo; Aarestrup, Frank M

    2014-05-14

    The emergence of resistance in food animals has been associated to the consumption of antimicrobials in veterinary medicine. Consequently, monitoring programs have been designed to monitor the occurrence of antimicrobial resistant bacteria. This study analyses the amount of antimicrobial agents used in nine European countries from 2005 to 2011, and compares by univariate analysis the correlations between consumptions of each of the following antimicrobial classes; tetracycline, penicillins, cephalosporins, quinolones and macrolides. An overview of resistance in zoonotic and commensal bacteria in Europe focusing on Salmonella, Escherichia coli, Campylobacter sp. and Enterococcus sp., during the same period of time based on monitoring programs is also assessed. With the exception of cephalosporins, linear regressions showed strong positive associations between the consumption of the four different antimicrobial classes. Substantial differences between countries were observed in the amount of antimicrobials used to produce 1 kg of meat. Moreover, large variations in proportions of resistant bacteria were reported by the different countries, suggesting differences in veterinary practice. Despite the withdrawn of a specific antimicrobial from "on farm" use, persistence over the years of bacteria resistant to this particular antimicrobial agent, was still observed. There were also differences in trends of resistance associated to specific animal species. In order to correlate the use of antimicrobial agents to the presence of resistance, surveillance of antimicrobial consumption by animal species should be established. Subsequently, intervention strategies could be designed to minimize the occurrence of resistance. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Quorum Sensing and the Use of Quorum Quenchers as Natural Biocides to Inhibit Sulfate-Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Giantommaso Scarascia

    2016-12-01

    Full Text Available Sulfate-reducing bacteria (SRB are one of the main protagonist groups of biocorrosion in the seawater environment. Given their principal role in biocorrosion, it remains a crucial task to develop strategies to reduce the abundance of SRBs. Conventional approaches include the use of biocides and antibiotics, which can impose health, safety, and environmental concerns. This review examines an alternative approach to this problem. This is achieved by reviewing the role of quorum sensing (QS in SRB populations and its impact on the biofilm formation process. Genome databases of SRBs are mined to look for putative QS systems and homologous protein sequences representative of autoinducer receptors or synthases. Subsequently, this review puts forward the potential use of quorum quenchers as natural biocides against SRBs and outlines the potential strategies for the implementation of this approach.

  3. A study on the radionuclide transport by bacteria in geologic media

    International Nuclear Information System (INIS)

    Han, Byoung Sub

    1997-02-01

    The purpose of this paper is to provide a methodology to develop a predictive model based on a conceptual three phase system and to investigate the influence of bacteria and their generation on the transport of radionuclide in porous and fractured media. The mass balance for bacteria, substrate and radionuclide were formulated. To illustrate the model simply, an equilibrium condition was assumed to partition the substrate, bacteria and radionuclide concentrations between the solid soil matrix, aqueous phase, rock matrix and bacterial surface. From the numerical calculation of the radionuclide transport in the presence of bacteria, it was found that the growth of bacteria and supplied primary substrate as limiting or stimulating growth factor of bacteria are the most important factors of the radionuclide transport. We also found that, depend on the transport of bacteria the temporal and spatial distribution of radionuclide concentration was significantly altered. The model proposed in this study will improve the evaluation of the role of the bacteria in the transport of radionuclide in groundwater systems. Furthermore, this model would be usefully utilized in analyzing the important role of colloidal particulate on the overall performance of radioactive waste safety

  4. Biochanin A improves fiber fermentation by cellulolytic bacteria

    Science.gov (United States)

    The objective was to determine the effect of the isoflavone biochanin A (BCA) on rumen cellulolytic bacteria and consequent fermentative activity. When bovine microbial rumen cell suspensions (n = 3) were incubated (24 h, 39 °C) with ground hay, cellulolytic bacteria proliferated, short chain fatty...

  5. Antimicrobial resistance in aerobic bacteria isolated from oral ...

    African Journals Online (AJOL)

    ... varied antimicrobial susceptibility patterns. The oral cavities of hunting dogs are laden with multi-drug resistant bacteria of significant public health importance that could be transferred to humans through contaminated hunted games and bite wound. Keywords: Aerobic bacteria, Antimicrobial resistance, Dogs, Oral cavity, ...

  6. Screening of endophytic plant growth-promoting bacteria isolated ...

    African Journals Online (AJOL)

    Probiotic bacteria, inhabiting the endosphere of plants, presents a major opportunity to develop cheap and eco-friendly alternatives to synthetic agrochemicals. Using standard microbiological procedures, culturable bacteria were isolated from the endosphere (root, stem and leaf) of two Nigerian rice varieties (Ofada and ITA ...

  7. Transmission of Nephridial Bacteria of the Earthworm Eisenia fetida

    OpenAIRE

    Davidson, Seana K.; Stahl, David A.

    2006-01-01

    The lumbricid earthworms (annelid family Lumbricidae) harbor gram-negative bacteria in their excretory organs, the nephridia. Comparative 16S rRNA gene sequencing of bacteria associated with the nephridia of several earthworm species has shown that each species of worm harbors a distinct bacterial species and that the bacteria from different species form a monophyletic cluster within the genus Acidovorax, suggesting that there is a specific association resulting from radiation from a common b...

  8. Tolerance of anaerobic bacteria to chlorinated solvents.

    Science.gov (United States)

    Koenig, Joanna C; Groissmeier, Kathrin D; Manefield, Mike J

    2014-01-01

    The aim of this research was to evaluate the effects of four chlorinated aliphatic hydrocarbons (CAHs), perchloroethene (PCE), carbon tetrachloride (CT), chloroform (CF) and 1,2-dichloroethane (1,2-DCA), on the growth of eight anaerobic bacteria: four fermentative species (Escherichia coli, Klebsiella sp., Clostridium sp. and Paenibacillus sp.) and four respiring species (Pseudomonas aeruginosa, Geobacter sulfurreducens, Shewanella oneidensis and Desulfovibrio vulgaris). Effective concentrations of solvents which inhibited growth rates by 50% (EC50) were determined. The octanol-water partition coefficient or log Po/w of a CAH proved a generally satisfactory measure of its toxicity. Most species tolerated approximately 3-fold and 10-fold higher concentrations of the two relatively more polar CAHs CF and 1,2-DCA, respectively, than the two relatively less polar compounds PCE and CT. EC50 values correlated well with growth rates observed in solvent-free cultures, with fast-growing organisms displaying higher tolerance levels. Overall, fermentative bacteria were more tolerant to CAHs than respiring species, with iron- and sulfate-reducing bacteria in particular appearing highly sensitive to CAHs. These data extend the current understanding of the impact of CAHs on a range of anaerobic bacteria, which will benefit the field of bioremediation.

  9. Diversity of root nodule bacteria from leguminous crops

    Directory of Open Access Journals (Sweden)

    Agrawal Pooja

    2016-01-01

    Full Text Available In the present study, a total of 353 nodule-associated bacteria were isolated from 220 legume plant samples belonging to Cicer arietinum (85, Glycine max (74, Vigna radiata (21 and Cajanus cajan (40. A total of 224 bacteria were identified as fast-growing Rhizobium spp. on the basis of differential staining (Gram staining and carbol fuchsin staining and biochemical tests. All the isolates were tested for indole acetic acid production (IAA, phosphate solubilization and siderophore production on plate assay. To examine the effect of volatile organic metabolites (VOM and water soluble soil components (WSSC on nodule bacteria, culture conditions were optimized by observing the effects of various parameters such as pH, salt content and temperatures on the growth of bacteria. Selected rhizobia were subjected to random amplified polymorphic DNA (RAPD and amplified ribosomal DNA restriction analysis (ARDRA analysis to identify their species. On the basis of RAPD and ARDRA, 10 isolates were identified as Rhizobium meliloti. In this study, Rhizobium GO4, G16, G20, G77, S43, S81, M07, M37, A15 and A55 were observed as the best candidates among the tested bacteria and can be further used as potent bioinoculants.

  10. Anaerobic Ammonium-Oxidizing Bacteria in Cow Manure Composting.

    Science.gov (United States)

    Wang, Tingting; Cheng, Lijun; Zhang, Wenhao; Xu, Xiuhong; Meng, Qingxin; Sun, Xuewei; Liu, Huajing; Li, Hongtao; Sun, Yu

    2017-07-28

    Composting is widely used to transform waste into valuable agricultural organic fertilizer. Anaerobic ammonium-oxidizing (anammox) bacteria play an important role in the global nitrogen cycle, but their role in composting remains poorly understood. In the present study, the community structure, diversity, and abundance of anammox bacteria were analyzed using cloning and sequencing methods by targeting the 16S rRNA gene and the hydrazine oxidase gene ( hzo ) in samples isolated from compost produced from cow manure and rice straw. A total of 25 operational taxonomic units were classified based on 16S rRNA gene clone libraries, and 14 operational taxonomic units were classified based on hzo gene clone libraries. The phylogenetic tree analysis of the 16S rRNA gene and deduced HZO protein sequences from the corresponding encoding genes indicated that the majority of the obtained clones were related to the known anammox bacteria Candidatus "Brocadia," Candidatus "Kuenenia," and Candidatus "Scalindua." The abundances of anammox bacteria were determined by quantitative PCR, and between 2.13 × 10 5 and 1.15 × 10 6 16S rRNA gene copies per gram of compost were found. This study provides the first demonstration of the existence of anammox bacteria with limited diversity in cow manure composting.

  11. Symbiotic Bacteria Enable Olive Fly Larvae to Overcome Host Defenses

    International Nuclear Information System (INIS)

    Ben-Yosef, Michael; Yuval, Boaz; Pasternak, Zohar; Jurkevitch, Edouard

    2016-01-01

    Ripe fruit offer readily available nutrients for many animals, including fruit fly larvae (Diptera: Tephritidae) and their associated rot-inducing bacteria. Yet, during most of their ontogeny, fruit remain chemically defended and effectively suppress herbivores and pathogens by high levels of secondary metabolites. Olive flies (Bactrocera oleae) are uniquely able to develop in unripe olives. Unlike other frugivorous tephritids, the larvae maintain bacteria confined within their midgut caeca. We examined the interaction between larvae, their associated bacteria, and fruit chemical defence, hypothesizing that bacterial contribution to larval development is contingent on the phenology of fruit defensive chemistry. We demonstrate that larvae require their natural complement of bacteria (Candidatus Erwinia dacicola: Enterobacteriaceae) in order to develop in unripe olives. Conversely, when feeding on ripe fruit, larval development proceeds independently of these bacteria. Our experiments suggest that bacteria counteract the inhibitory effect of oleuropein—the principal phenolic glycoside in unripe olives. In light of these results, we suggest that the unique symbiosis in olive flies, compared with other frugivorous tephritids, is understood by considering the relationship between the fly, bacteria and fruit chemistry. When applied in an evolutionary context, this approach may also point out the forces which shaped symbioses across the Tephritidae. (author)

  12. Phylogenetic diversity of bacteria associated with toxic and non-toxic ...

    African Journals Online (AJOL)

    Phylogenetic diversity of bacteria associated with toxic and non-toxic strains of Alexandrium minutum. L Palacios, B Reguera, J Franco, I Marín. Abstract. Marine planktonic dinoflagellates are usually associated with bacteria, some of which seem to have a symbiotic relation with the dinoflagellate cells. The role of bacteria in ...

  13. Frequency of Resistance and Susceptible Bacteria Isolated from Houseflies

    Directory of Open Access Journals (Sweden)

    B Davari

    2010-12-01

    Conclusion: Houseflies collected from hospitals and slaughterhouse may be involved in the spread of drug resistant bacteria and may increase the potential of human exposure to drug resistant bacteria.

  14. Detection of Sulphate-Reducing Bacteria and Others Cultivable Facultative Bacteria in Dental Tissues

    Directory of Open Access Journals (Sweden)

    Lúcio de Souza Gonçalves

    2014-01-01

    Full Text Available Aim: To detect for the presence of sulphate-reducing bacteria (SRB and evaluate the possible association between SRB and cultivable facultative bacterial of oral sites with different periodontal conditions. Methods: The study was carried out on 9 samples from different oral sites in 8 patients (two samples were collected from the same patient. Material was collected using modified Postgate E culture medium, indicated for the growth and isolation of SRB. In addition, a reducing solution for anaerobic bacteria was used as a transport solution for facultative bacteria and identified by polymerase chain reaction amplification (PCR and sequencing of the 16S rRNA gene. Results: SRB was found in 3 patient samples: the first in a root fragment, the second in a root fragment and a healthy tooth with vertical bone loss and a mobility degree of 3; and the third in a healthy tooth extracted for orthodontic treatment. In the final patient, the cultivable facultative species Lactobacillus casei was identified. Other facultative bacterial species were identified in patient 5 (Kurthia Gibsonii and patient 7 (Pseudomonas aeruginosa. Conclusions: The detection of SRB in different dental tissues with distinct periodontal features demonstrated that new studies need to be developed in order to determine the true role of SRB in the oral microbiota. In addition, it was possible to verify the presence of Lactobacillus casei together with SRB in one sample.

  15. Bacteria, some permanent tenants Space Station; Bacteria, unos inquilinos permanentes de la estacion espacial

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, B.

    2015-07-01

    Vacuum cleaners to operate the vacuum or rags with ethanol they are the products of cleaning of the astronauts. Is there tight spaces fully sterilized? It seems not, even in the Space Station International (ISS). When it comes to bacteria, they are able to travel more than 400 kilometers housed in costumes, bodies and interior of the astronauts themselves and settle in a enclosed space where-unlike in a {sup c}leanroom 'terrestre- the air is not recycled. A NASA study has found an abundance of bacteria 'opportunists' which, although harmless on Earth, they might derivasen cause infections in inflammations or skin irritations. Not forgetting those fungi that could damage or affect the infrastructure equipment space. (Author)

  16. Marine snow, organic solute plumes, and optimal chemosensory behavior of bacteria

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Jackson, G.A.

    2001-01-01

    Leaking organic solutes form an elongated plume in the wake of a sinking aggregate. These solutes may both be assimilated by suspended bacteria and guide bacteria with chemokinetic swimming behavior toward the aggregate. We used modifications of previously published models of the flow and concent......Leaking organic solutes form an elongated plume in the wake of a sinking aggregate. These solutes may both be assimilated by suspended bacteria and guide bacteria with chemokinetic swimming behavior toward the aggregate. We used modifications of previously published models of the flow...... behavior was used to examine the potential contribution of aggregate-generated solute plumes for water column bacteria] production. Despite occupying only a small volume fraction, the plumes may provide important growth habitats for free bacteria and account for a significant proportion of water column...

  17. Determination of Ammonia Oxidizing Bacteria and Nitrate Oxidizing Bacteria in Wastewater and Bioreactors

    Science.gov (United States)

    Francis, Somilez Asya

    2014-01-01

    The process of water purification has many different physical, chemical, and biological processes. One part of the biological process is the task of ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB). Both play critical roles in the treatment of wastewater by oxidizing toxic compounds. The broad term is nitrification, a naturally occurring process that is carried out by AOB and NOB by using oxidation to convert ammonia to nitrite and nitrite to nitrate. To monitor this biological activity, bacterial staining was performed on wastewater contained in inoculum tanks and biofilm samples from bioreactors. Using microscopy and qPCR, the purpose of this experiment was to determine if the population of AOB and NOB in wastewater and membrane bioreactors changed depending on temperature and hibernation conditions to determine the optimal parameters for AOB/NOB culture to effectively clean wastewater.

  18. Sulphur oxidising bacteria in mangrove ecosystem: A review ...

    African Journals Online (AJOL)

    Sulphur-oxidizing bacteria such as photoautotrophs, chemolithotrophs and heterotrophs play an important role in the mangrove environment for the oxidation of the toxic sulphide produced by sulphur reducing bacteria and act as a key driving force behind all sulphur transformations in the mangrove ecosystem which is ...

  19. unanswerable questions just as interesting as unculturable bacteria!

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. UNANSWERABLE QUESTIONS JUST AS INTERESTING AS UNCULTURABLE BACTERIA! How can landmark research be done in a college? What is the need to isolate novel bacteria when the ones already isolated are not completely studied? How can one do ...

  20. Anti-fungal properties of chitinolytic dune soil bacteria

    NARCIS (Netherlands)

    De Boer, W.; Klein Gunnewiek, P.J.A.; Lafeber, P.; Janse, J.H.; Spit, B.E.; Woldendorp, J.W.

    1998-01-01

    Anti-fungal properties of chitinolytic soil bacteria may enable them to compete successfully for chitin with fungi. Additionally, the production of chitinase may be part of a lytic system that enables the bacteria to use living hyphae rather than chitin as the actual growth substrate, since chitin

  1. Lactic Acid Bacteria Differentially Activate Natural Killer Cells

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Christensen, Hanne Risager; Frøkiær, Hanne

    antigen presenting cells and T-cells. Bacteria translocating across the gastrointestinal mucosa are presumed to gain access to NK cell compartments, as consumption of certain strains of lactic acid bacteria has been shown to increase in vivo NK cytotoxic activity. On-going research in our lab aims...

  2. Damage mechanisms of pathogenic bacteria in drinking water ...

    African Journals Online (AJOL)

    This study aimed at elucidating the inactivation mechanisms of pathogenic bacteria in drinking water during chlorine and solar disinfection using a simple plating method. The well-known bacterial model Escherichia coli was used as pathogenic bacteria for the experiments. The damage mechanisms of E. coli were ...

  3. [Bacteriophages in the battle against multidrug resistant bacteria

    NARCIS (Netherlands)

    Meer, J.W.M. van der; Vandenbroucke-Grauls, C.

    2018-01-01

    Bacteriophages are viruses that infect bacteria. They are highly specific for a bacterial species. The so-called 'lytic phages' can lyse bacteria when they infect them; these phages can be used to treat bacterial infections. Despite a century of experience with phage therapy, the evidence for

  4. EFFECT OF SODIUM PHOSPHATES ON SELECTED FOOD GRADE BACTERIA

    Directory of Open Access Journals (Sweden)

    Stanislav Kráčmar

    2011-04-01

    Full Text Available The aim of this study was to examine the inhibitory effect in vitro of selected sodium phosphates (under the corporate names Hexa 68, Hexa 70, Trikrystal, FST, Pyro 52, KPS, Didi on selected gram-positive and gram-negative bacteria. Seven different concentrations of each phosphate were used. Sensitivity of the bacterial strains to phosphates was observed in broth supplemented with salts. In vitro was showed a negative effect of various phosphates on growth of selected gram-positive bacteria. Orthophosphates and diphosphates (pyrophosphates did not have significant inhibitory effect on tested bacteria at neutral pH. With the exception of phosphate Trikrystal has not been found in vitro significant inhibitory effects on gram-negative bacteria.doi:10.5219/141

  5. Expulsion of swimming bacteria by a circular flow

    Science.gov (United States)

    Sokolov, Andrey; Aronson, Igor

    Macroscopic shear flow alters swimming trajectories in a highly nontrivial way and results in dramatic reduction of viscosity and heterogeneous bacterial distributions. We report on experimental and theoretical studies of rapid expulsion of microswimmers, such as motile bacteria, by a circular flow created by a rotating microparticle. We observed a formation of a macroscopic depletion area in a high-shear region, in the vicinity of a microparticle. The rapid migration of bacteria from the shear-rich area is caused by a circular structure of the flow rather than intrinsic random fluctuations of bacteria orientations, in stark contrast to planar shear flow. Our mathematical model revealed that expulsion is a combined effect of motility and alignment by a vortical flow. Our findings offer a novel approach for manipulation of motile microorganisms and shed new light on bacteria-flow interactions. Was supported by the US DOE, Office of Basic Energy Sciences, Division of Materials Science And Engineering, under Contract No. DE AC02-06CH11357.

  6. CRISPR-Cas Technologies and Applications in Food Bacteria.

    Science.gov (United States)

    Stout, Emily; Klaenhammer, Todd; Barrangou, Rodolphe

    2017-02-28

    Clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins form adaptive immune systems that occur in many bacteria and most archaea. In addition to protecting bacteria from phages and other invasive mobile genetic elements, CRISPR-Cas molecular machines can be repurposed as tool kits for applications relevant to the food industry. A primary concern of the food industry has long been the proper management of food-related bacteria, with a focus on both enhancing the outcomes of beneficial microorganisms such as starter cultures and probiotics and limiting the presence of detrimental organisms such as pathogens and spoilage microorganisms. This review introduces CRISPR-Cas as a novel set of technologies to manage food bacteria and offers insights into CRISPR-Cas biology. It primarily focuses on the applications of CRISPR-Cas systems and tools in starter cultures and probiotics, encompassing strain-typing, phage resistance, plasmid vaccination, genome editing, and antimicrobial activity.

  7. Interactions between ammonia and nitrite oxidizing bacteria in co-cultures: Is there evidence for mutualism, commensalism, or competition?

    Energy Technology Data Exchange (ETDEWEB)

    Sayavedra-Soto, Luis [Oregon State Univ., Corvallis, OR (United States); Arp, Daniel [Oregon State Univ., Corvallis, OR (United States)

    2017-08-01

    Nitrification is a two-step environmental microbial process in the nitrogen cycle in which ammonia is oxidized to nitrate. Ammonia-oxidizing bacteria and archaea oxidize ammonia to nitrite and nitrite is oxidized to nitrate by nitrite-oxidizing bacteria. These microorganisms, which likely act in concert in a microbial community, play critical roles in the movement of inorganic N in soils, sediments and waters and are essential to the balance of the nitrogen cycle. Anthropogenic activity has altered the balance of the nitrogen cycle through agriculture practices and organic waste byproducts. Through their influence on available N for plant growth, nitrifying microorganisms influence plant productivity for food and fiber production and the associated carbon sequestration. N Fertilizer production, primarily as ammonia, requires large inputs of natural gas and hydrogen. In croplands fertilized with ammonia-based fertilizers, nitrifiers contribute to the mobilization of this N by producing nitrate (NO3-), wasting the energy used in the production and application of ammonia-based fertilizer. The resulting nitrate is readily leached from these soils, oxidized to gaseous N oxides (greenhouse gases), and denitrified to N2 (which is no longer available as a plant N source). Still, ammonia oxidizers are beneficial in the treatment of wastewater and they also show potential to contribute to microbial bioremediation strategies for clean up of environments contaminated with chlorinated hydrocarbons. Mitigation of the negative effects and exploitation of the beneficial effects of nitrifiers will be facilitated by a systems-level understanding of the interactions of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria with the environment and with each other.

  8. Comparison of operating strategies for increased biogas production from thin stillage.

    Science.gov (United States)

    Moestedt, Jan; Nordell, Erik; Schnürer, Anna

    2014-04-10

    The effect of increasing organic loading rate (OLR) and simultaneously decreasing hydraulic retention time (HRT) during anaerobic digestion of sulphur- and nitrogen-rich thin stillage was investigated during operation of continuously stirred tank laboratory reactors at two different temperatures. The operating strategies and substrate were set in order to mimic an existing full-scale commercial biogas plant in Sweden. The reactors were operated for 554-570 days with a substrate mixture of thin stillage and milled grain, resulting in high ammonium concentrations (>4.5gL(-1)). Initially, one reactor was operated at 38°C, as in the full-scale plant, while in the experimental reactor the temperature was raised to 44°C. Both reactors were then subjected to increasing OLR (from 3.2 to 6.0gVSL(-1)d(-1)) and simultaneously decreasing HRT (from 45 to 24 days) to evaluate the effects of these operational strategies on process stability, hydrogen sulphide levels and microbial composition. The results showed that operation at 44°C was the most successful strategy, resulting in up to 22% higher methane yield compared with the mesophilic reactor, despite higher free ammonia concentration. Furthermore, kinetic studies revealed higher biogas production rate at 44°C compared with 38°C, while the level of hydrogen sulphide was not affected. Quantitative PCR analysis of the microbiological population showed that methanogenic archaea and syntrophic acetate-oxidising bacteria had responded to the new process temperature while sulphate-reducing bacteria were only marginally affected by the temperature-change. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Motuporamine Derivatives as Antimicrobial Agents and Antibiotic Enhancers against Resistant Gram-Negative Bacteria.

    Science.gov (United States)

    Borselli, Diane; Blanchet, Marine; Bolla, Jean-Michel; Muth, Aaron; Skruber, Kristen; Phanstiel, Otto; Brunel, Jean Michel

    2017-02-01

    Dihydromotuporamine C and its derivatives were evaluated for their in vitro antimicrobial activities and antibiotic enhancement properties against Gram-negative bacteria and clinical isolates. The mechanism of action of one of these derivatives, MOTU-N44, was investigated against Enterobacter aerogenes by using fluorescent dyes to evaluate outer-membrane depolarization and permeabilization. Its efficiency correlated with inhibition of dye transport, thus suggesting that these molecules inhibit drug transporters by de-energization of the efflux pump rather than by direct interaction of the molecule with the pump. This suggests that depowering the efflux pump provides another strategy to address antibiotic resistance. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  10. Protein-Injection Machines in Bacteria.

    Science.gov (United States)

    Galán, Jorge E; Waksman, Gabriel

    2018-03-08

    Many bacteria have evolved specialized nanomachines with the remarkable ability to inject multiple bacterially encoded effector proteins into eukaryotic or prokaryotic cells. Known as type III, type IV, and type VI secretion systems, these machines play a central role in the pathogenic or symbiotic interactions between multiple bacteria and their eukaryotic hosts, or in the establishment of bacterial communities in a diversity of environments. Here we focus on recent progress elucidating the structure and assembly pathways of these machines. As many of the interactions shaped by these machines are of medical importance, they provide an opportunity to develop novel therapeutic approaches to combat important human diseases. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Epithermal Neutron Activation Analysis (ENAA) of Cr(VI)-reducer Basalt-inhabiting Bacteria

    CERN Document Server

    Tsibakhashvili, N Ya; Kirkesali, E I; Aksenova, N G; Kalabegishvili, T L; Murusidze, I G; Mosulishvili, L M; Holman, H Y N

    2005-01-01

    Epithermal neutron activation analysis (ENAA) has been applied to studying elemental composition of Cr(VI)-reducer bacteria isolated from polluted basalts from the Republic of Georgia. Cr(VI)-reducing ability of the bacteria was examined by electron spin resonance (ESR) demonstrating that the bacteria differ in the rates of Cr(VI) reduction. A well-pronounced correlation between the ability of the bacteria to accumulate Cr(V) and their ability to reduce Cr(V) to Cr(III) observed in our experiments is discussed. Elemental analysis of these bacteria also revealed that basalt-inhabiting bacteria are distinguished by relative contents of essential elements such as K, Na, Mg, Fe, Mn, Zn, and Co. A high rate of Cr(III) formation correlates with a high concentration of Co in the bacterium. ENAA detected some similarity in the elemental composition of the bacteria. The relatively high contents of Fe detected in the bacteria (140-340 $\\mu $g/g of dry weight) indicate bacterial adaptation to the environmental condition...

  12. Electron Transfer Strategies Regulate Carbonate Mineral and Micropore Formation.

    Science.gov (United States)

    Zeng, Zhirui; Tice, Michael M

    2018-01-01

    Some microbial carbonates are robust biosignatures due to their distinct morphologies and compositions. However, whether carbonates induced by microbial iron reduction have such features is unknown. Iron-reducing bacteria use various strategies to transfer electrons to iron oxide minerals (e.g., membrane-bound enzymes, soluble electron shuttles, nanowires, as well as different mechanisms for moving over or attaching to mineral surfaces). This diversity has the potential to create mineral biosignatures through manipulating the microenvironments in which carbonate precipitation occurs. We used Shewanella oneidensis MR-1, Geothrix fermentans, and Geobacter metallireducens GS-15, representing three different strategies, to reduce solid ferric hydroxide in order to evaluate their influence on carbonate and micropore formation (micro-size porosity in mineral rocks). Our results indicate that electron transfer strategies determined the morphology (rhombohedral, spherical, or long-chained) of precipitated calcium-rich siderite by controlling the level of carbonate saturation and the location of carbonate formation. Remarkably, electron transfer strategies also produced distinctive cell-shaped micropores in both carbonate and hydroxide minerals, thus producing suites of features that could potentially serve as biosignatures recording information about the sizes, shapes, and physiologies of iron-reducing organisms. Key Words: Microbial iron reduction-Micropore-Electron transfer strategies-Microbial carbonate. Astrobiology 18, 28-36.

  13. Towards lactic acid bacteria-based biorefineries.

    Science.gov (United States)

    Mazzoli, Roberto; Bosco, Francesca; Mizrahi, Itzhak; Bayer, Edward A; Pessione, Enrica

    2014-11-15

    Lactic acid bacteria (LAB) have long been used in industrial applications mainly as starters for food fermentation or as biocontrol agents or as probiotics. However, LAB possess several characteristics that render them among the most promising candidates for use in future biorefineries in converting plant-derived biomass-either from dedicated crops or from municipal/industrial solid wastes-into biofuels and high value-added products. Lactic acid, their main fermentation product, is an attractive building block extensively used by the chemical industry, owing to the potential for production of polylactides as biodegradable and biocompatible plastic alternative to polymers derived from petrochemicals. LA is but one of many high-value compounds which can be produced by LAB fermentation, which also include biofuels such as ethanol and butanol, biodegradable plastic polymers, exopolysaccharides, antimicrobial agents, health-promoting substances and nutraceuticals. Furthermore, several LAB strains have ascertained probiotic properties, and their biomass can be considered a high-value product. The present contribution aims to provide an extensive overview of the main industrial applications of LAB and future perspectives concerning their utilization in biorefineries. Strategies will be described in detail for developing LAB strains with broader substrate metabolic capacity for fermentation of cheaper biomass. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Non-thermal plasma mills bacteria: Scanning electron microscopy observations

    International Nuclear Information System (INIS)

    Lunov, O.; Churpita, O.; Zablotskii, V.; Jäger, A.; Dejneka, A.; Deyneka, I. G.; Meshkovskii, I. K.; Syková, E.; Kubinová, Š.

    2015-01-01

    Non-thermal plasmas hold great promise for a variety of biomedical applications. To ensure safe clinical application of plasma, a rigorous analysis of plasma-induced effects on cell functions is required. Yet mechanisms of bacteria deactivation by non-thermal plasma remain largely unknown. We therefore analyzed the influence of low-temperature atmospheric plasma on Gram-positive and Gram-negative bacteria. Using scanning electron microscopy, we demonstrate that both Gram-positive and Gram-negative bacteria strains in a minute were completely destroyed by helium plasma. In contrast, mesenchymal stem cells (MSCs) were not affected by the same treatment. Furthermore, histopathological analysis of hematoxylin and eosin–stained rat skin sections from plasma–treated animals did not reveal any abnormalities in comparison to control ones. We discuss possible physical mechanisms leading to the shred of bacteria under non-thermal plasma irradiation. Our findings disclose how helium plasma destroys bacteria and demonstrates the safe use of plasma treatment for MSCs and skin cells, highlighting the favorability of plasma applications for chronic wound therapy

  15. Corrosion of candidate container materials by Yucca Mountain bacteria

    International Nuclear Information System (INIS)

    Horn, J; Jones, D; Lian, T; Martin, S; Rivera, A

    1999-01-01

    Several candidate container materials have been studied in modified Yucca Mountain (YM) ground water in the presence or absence of YM bacteria. YM bacteria increased corrosion rates by 5-6 fold in UNS G10200 carbon steel, and nearly 100-fold in UNS NO4400 Ni-Cu alloy. YM bacteria caused microbiologically influenced corrosion (MIC) through de-alloying or Ni-depletion of Ni-Cu alloy as evidenced by scanning electronic microscopy (SEM) and inductively coupled plasma spectroscopy (ICP) analysis. MIC rates of more corrosion-resistant alloys such as UNS NO6022 Ni-Cr- MO-W alloy, UN's NO6625 Ni-Cr-Mo alloy, and UNS S30400 stainless steel were measured below 0.05 umyr, however YM bacteria affected depletion of Cr and Fe relative to Ni in these materials. The chemical change on the metal surface caused by depletion was characterized in anodic polarization behavior. The anodic polarization behavior of depleted Ni-based alloys was similar to that of pure Ni. Key words: MIC, container materials, YM bacteria, de-alloying, Ni-depletion, Cr-depletion, polarization resistance, anodic polarization,

  16. Cultivation, detection, and ecophysiology of anaerobic ammonium-oxidizing bacteria.

    Science.gov (United States)

    Kartal, Boran; Geerts, Wim; Jetten, Mike S M

    2011-01-01

    Anaerobic ammonium-oxidizing (anammox) bacteria oxidize ammonium with nitrite under anoxic conditions. The anammox process is currently used to remove ammonium from wastewater and contributes significantly to the loss of fixed nitrogen from the oceans. In this chapter, we focus on the ecophysiology of anammox bacteria and describe new methodologies to grow these microorganisms. Now, it is possible to enrich anammox bacteria up to 95% with a membrane bioreactor that removes forces of selection for fast settling aggregates and facilitates the growth of planktonic cells. The biomass from this system has a high anaerobic ammonium oxidation rate (50 fmol NH(4)(+) · cell(-1) day(-1)) and is suitable for many ecophysiological and molecular experiments. A high throughput Percoll density gradient centrifugation protocol may be applied on this biomass for further enrichment (>99.5%) of anammox bacteria. Furthermore, we provide an up-to-date list of commonly used primers and introduce protocols for quantification and detection of functional genes of anammox bacteria in their natural environment. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Wastewater nutrient removal in a mixed microalgae-bacteria culture: effect of light and temperature on the microalgae-bacteria competition.

    Science.gov (United States)

    González-Camejo, J; Barat, R; Pachés, M; Murgui, M; Seco, A; Ferrer, J

    2018-02-01

    The aim of this study was to evaluate the effect of light intensity and temperature on nutrient removal and biomass productivity in a microalgae-bacteria culture and their effects on the microalgae-bacteria competition. Three experiments were carried out at constant temperature and various light intensities: 40, 85 and 125 µE m -2  s -1 . Other two experiments were carried out at variable temperatures: 23 ± 2°C and 28 ± 2°C at light intensity of 85 and 125 µE m -2  s -1 , respectively. The photobioreactor was fed by the effluent from an anaerobic membrane bioreactor. High nitrogen and phosphorus removal efficiencies (about 99%) were achieved under the following operating conditions: 85-125 µE m -2  s -1 and 22 ± 1°C. In the microalgae-bacteria culture studied, increasing light intensity favoured microalgae growth and limited the nitrification process. However, a non-graduated temperature increase (up to 32°C) under the light intensities studied caused the proliferation of nitrifying bacteria and the nitrite and nitrate accumulation. Hence, light intensity and temperature are key parameters in the control of the microalgae-bacteria competition. Biomass productivity significantly increased with light intensity, reaching 50.5 ± 9.6, 80.3 ± 6.5 and 94.3 ± 7.9 mgVSS L -1  d -1 for a light intensity of 40, 85 and 125 µE m -2  s -1 , respectively.

  18. PATHOGENICITY OF BIOFILM BACTERIA

    Science.gov (United States)

    There is a paucity of information concerning any link between the microorganisms commonly found in biofilms of drinking water systems and their impacts on human health. For bacteria, culture-based techniques detect only a limited number of the total microorganisms associated wit...

  19. Removal of crude petroleum hydrocarbons by heterotrophic bacteria ...

    African Journals Online (AJOL)

    Nitrogenous fertilizer (NPK) plant effluents from NAFCON were used in amending plots of land experimentally polluted with crude oil. Counts of heterotrophic bacteria (THBC) and fungi (TF), and of petroleum utilizing bacteria (PUB) and fungi (PUF) were monitored during an 8 weeks period. Counts obtained showed that ...

  20. Differential staining of bacteria: gram stain.

    Science.gov (United States)

    Moyes, Rita B; Reynolds, Jackie; Breakwell, Donald P

    2009-11-01

    In 1884, Hans Christian Gram, a Danish doctor, developed a differential staining technique that is still the cornerstone of bacterial identification and taxonomic division. This multistep, sequential staining protocol separates bacteria into four groups based on cell morphology and cell wall structure: Gram-positive cocci, Gram-negative cocci, Gram-positive rods, and Gram-negative rods. The Gram stain is useful for assessing bacterial contamination of tissue culture samples or for examining the Gram stain status and morphological features of bacteria isolated from mixed or isolated bacterial cultures. (c) 2009 by John Wiley & Sons, Inc.