Sample records for bacillus subtilis spores

  1. Triple fixation of Bacillus subtilis dormant spores.

    Kozuka, S; Tochikubo, K


    A triple-fixation method with a sequential application of 5% glutaraldehyde, 1% osmium tetroxide, and 2% potassium permanganate gave superior preservation of the ultrastructure of Bacillus subtilis dormant spores with a thick spore coat.

  2. Bacillus subtilis Spore Inner Membrane Proteome.

    Zheng, Linli; Abhyankar, Wishwas; Ouwerling, Natasja; Dekker, Henk L; van Veen, Henk; van der Wel, Nicole N; Roseboom, Winfried; de Koning, Leo J; Brul, Stanley; de Koster, Chris G


    The endospore is the dormant form of Bacillus subtilis and many other Firmicutes. By sporulation, these spore formers can survive very harsh physical and chemical conditions. Yet, they need to go through germination to return to their growing form. The spore inner membrane (IM) has been shown to play an essential role in triggering the initiation of germination. In this study, we isolated the IM of bacterial spores, in parallel with the isolation of the membrane of vegetative cells. With the use of GeLC-MS/MS, over 900 proteins were identified from the B. subtilis spore IM preparations. By bioinformatics-based membrane protein predictions, ca. one-third could be predicted to be membrane-localized. A large number of unique proteins as well as proteins common to the two membrane proteomes were identified. In addition to previously known IM proteins, a number of IM proteins were newly identified, at least some of which are likely to provide new insights into IM physiology, unveiling proteins putatively involved in spore germination machinery and hence putative germination inhibition targets. PMID:26731423

  3. Environmental Persistence of Bacillus anthracis and Bacillus subtilis Spores

    Wood, Joseph P.; Meyer, Kathryn M.; Kelly, Thomas J.; Choi, Young W.; Rogers, James V.; Riggs, Karen B.; Willenberg, Zachary J.


    There is a lack of data for how the viability of biological agents may degrade over time in different environments. In this study, experiments were conducted to determine the persistence of Bacillus anthracis and Bacillus subtilis spores on outdoor materials with and without exposure to simulated sunlight, using ultraviolet (UV)-A/B radiation. Spores were inoculated onto glass, wood, concrete, and topsoil and recovered after periods of 2, 14, 28, and 56 days. Recovery and inactivation kinetics for the two species were assessed for each surface material and UV exposure condition. Results suggest that with exposure to UV, decay of spore viability for both Bacillus species occurs in two phases, with an initial rapid decay, followed by a slower inactivation period. The exception was with topsoil, in which there was minimal loss of spore viability in soil over 56 days, with or without UV exposure. The greatest loss in viable spore recovery occurred on glass with UV exposure, with nearly a four log10 reduction after just two days. In most cases, B. subtilis had a slower rate of decay than B. anthracis, although less B. subtilis was recovered initially. PMID:26372011

  4. Heat Resistance and Population Stability of Lyophilized Bacillus subtilis Spores

    Odlaug, Theron E.; Caputo, Ross A.; Graham, Gary S.


    Bacillus subtilis 5230 spores were lyophilized in 0.067 M phosphate buffer and stored at 2 to 8°C for 9 to 27 months. The lyophilized spores were reconstituted with buffer or 0.9% saline, and the heat resistance was determined in a thermoresistometer. Lyophilization had no effect on the heat resistance of the spores but did result in a slight decrease in population (≤0.3-logarithm reduction). The lyophilized spores maintained heat resistance and population levels over the test periods. The D-...

  5. Application of gaseous ozone for inactivation of Bacillus subtilis spores.

    Aydogan, Ahmet; Gurol, Mirat D


    The effectiveness of gaseous ozone (O3) as a disinfectant was tested on Bacillus subtilis spores, which share the same physiological characteristics as Bacillus anthracis spores that cause the anthrax disease. Spores dried on surfaces of different carrier material were exposed to O3 gas in the range of 500-5000 ppm and at relative humidity (RH) of 70-95%. Gaseous O3 was found to be very effective against the B. subtilis spores, and at O3 concentrations as low as 3 mg/L (1500 ppm), approximately 3-log inactivation was obtained within 4 hr of exposure. The inactivation curves consisted of a short lag phase followed by an exponential decrease in the number of surviving spores. Prehydration of the bacterial spores has eliminated the initial lag phase. The inactivation rate increased with increasing O3 concentration but not >3 mg/L. The inactivation rate also increased with increase in RH. Different survival curves were obtained for various surfaces used to carry spores. Inactivation rates of spores on glass, a vinyl floor tile, and office paper were nearly the same. Whereas cut pile carpet and hardwood flooring surfaces resulted in much lower inactivation rates, another type of carpet (loop pile) showed significant enhancement in the inactivation of the spores. PMID:16568801

  6. Sporicidal characteristics of heated dolomite powder against Bacillus subtilis spores.

    Yasue, Syogo; Sawai, Jun; Kikuchi, Mikio; Nakakuki, Takahito; Sano, Kazuo; Kikuchi, Takahide


    Dolomite is a double salt composed of calcium carbonate (CaCO3) and magnesium carbonate (MgCO3). The heat treatment of CaCO3 and MgCO3 respectively generates calcium oxide (CaO) and magnesium oxide (MgO), which have antimicrobial activity. In this study, heated dolomite powder (HDP) slurry was investigated for its sporicidal activity against Bacillus subtilis ATCC 6633 spores. The B. subtilis spores used in this study were not affected by acidic (pH 1) or alkaline (pH 13) conditions, indicating that they were highly resistant. However, dolomite powder heated to 1000℃ for 1 h could kill B. subtilis spores, even at pH 12.7. Sporicidal activity was only apparent when the dolomite powder was heated to 800℃ or higher, and sporicidal activity increased with increases in the heating temperature. This temperature corresponded to that of the generation of CaO. We determined that MgO did not contribute to the sporicidal activity of HDP. To elucidate the sporicidal mechanism of the HDP against B. subtilis spores, the generation of active oxygen from HDP slurry was examined by chemiluminescence analysis. The generation of active oxygen increased when the HDP slurry concentration rose. The results suggested that, in addition to its alkalinity, the active oxygen species generated from HDP were associated with sporicidal activity. PMID:25252642

  7. Inhibitory effect of novobiocin on ribonucleic acid synthesis during germination of Bacillus subtilis spores.

    Matsuda, M; Kameyama, T


    Novobiocin inhibited ribonculeic acid synthesis during germination of Bacillus subtilis spores. Transcription of certain kinds of genes probably required a preceding conformational change in deoxyribonucleic acid.

  8. Activity of essential oils against Bacillus subtilis spores.

    Lawrence, Hayley A; Palombo, Enzo A


    Alternative methods for controlling bacterial endospore contamination are desired in a range of industries and applications. Attention has recently turned to natural products, such as essential oils, which have sporicidal activity. In this study, a selection of essential oils was investigated to identify those with activity against Bacillus subtilis spores. Spores were exposed to thirteen essential oils, and surviving spores were enumerated. Cardamom, tea tree, and juniper leaf oils were the most effective, reducing the number of viable spores by 3 logs at concentrations above 1%. Sporicidal activity was enhanced at high temperatures (60 degrees C) or longer exposure times (up to one week). Gas chromatography-mass spectrometry analysis identified the components of the active essential oils. However, none of the major oil components exhibited equivalent activity to the whole oils. The fact that oil components, either alone or in combination, did not show the same level of sporicidal activity as the complete oils suggested that minor components may be involved, or that these act synergistically with major components. Scanning electron microscopy was used to examine spores after exposure to essential oils and suggested that leakage of spore contents was the likely mode of sporicidal action. Our data have shown that essential oils exert sporicidal activity and may be useful in applications where bacterial spore reduction is desired. PMID:20075624

  9. Tip-enhanced Raman scattering of bacillus subtilis spores

    Rusciano, G.; Zito, G.; Pesce, G.; Sasso, A.; Isticato, R.; Ricca, E.


    Understanding of the complex interactions of molecules at biological interfaces is a fundamental issue in biochemistry, biotechnology as well as biomedicine. A plethora of biological processes are ruled by the molecular texture of cellular membrane: cellular communications, drug transportations and cellular recognition are just a few examples of such chemically-mediated processes. Tip-Enhanced Raman Scattering (TERS) is a novel, Raman-based technique which is ideally suited for this purpose. TERS relies on the combination of scanning probe microscopy and Raman spectroscopy. The basic idea is the use of a metalled tip as a sort of optical nano-antenna, which gives place to SERS effect close to the tip end. Herein, we present the application of TERS to analyze the surface of Bacillus subtilis spores. The choice of this biological systems is related to the fact that a number of reasons support the use of spores as a mucosal delivery system. The remarkable and well-documented resistance of spores to various environmental and toxic effects make them clear potentials as a novel, surface-display system. Our experimental outcomes demonstrate that TERS is able to provide a nano-scale chemical imaging of spore surface. Moreover, we demonstrate that TERS allows differentiation between wilde-type spore and genetically modified strains. These results hold promise for the characterization and optimization of spore surface for drug-delivery applications.

  10. Vacuum-induced Mutations In Bacillus Subtilis Spores

    Munakata, N.; Maeda, M.; Hieda, K.

    During irradiation experiments with vacuum-UV radiation using synchrotron sources, we made unexpected observation that Bacillus subtilis spores of several recombination-deficient strains lost colony-forming ability by the exposure to high vacuum alone. Since this suggested the possible injury in spore DNA, we looked for mutation induction using the spores of strains HA101 (wild-type repair capability) and TKJ6312 (excision and spore repair deficient) that did not lose survivability. It was found that the frequency of nalidixic-acid resistant mutation increased several times in both of these strains by the exposure to high vacuum (10e-4 Pa after 24 hours). The analysis of sequence changes in gyrA gene showed that the majority of mutations carried a unique allele (gyrA12) of tandem double-base substitutions from CA to TT. The observation has been extended to rifampicin resistant mutations, the majority of that carried substitutions from CA to TT or AT in rpoB gene. On the other hand, when the spores of strains PS578 and PS2319 (obtained from P. Setlow) that are defective in a group of small acidic proteins (alpha/beta-type SASP) were similarly treated, none of the mutants analyzed carried such changes. This suggests that the unique mutations might be induced by the interaction of small acidic proteins with spore DNA under forced dehydration. The results indicate that extreme vacuum causes severe damage in spore DNA, and provide additional constraint to the long-term survival of bacterial spores in the space environment.

  11. Mutagenesis of Bacillus subtilis spores exposed to simulated space environment

    Munakata, N.; Natsume, T.; Takahashi, K.; Hieda, K.; Panitz, C.; Horneck, G.

    Bacterial spores can endure in a variety of extreme earthly environments. However, some conditions encountered during the space flight could be detrimental to DNA in the spore, delimiting the possibility of transpermia. We investigate the genetic consequences of the exposure to space environments in a series of preflight simulation project of EXPOSE. Using Bacillus subtilis spores of repair-proficient HA101 and repair-deficient TKJ6312 strains, the mutations conferring resistance to rifampicin were detected, isolated and sequenced. Most of the mutations were located in a N-terminal region of the rpoB gene encoding RNA polymerase beta-subunit. Among several potentially mutagenic factors, high vacuum, UV radiation, heat, and accelerated heavy ions induced mutations with varying efficiencies. A majority of mutations induced by vacuum exposure carried a tandem double-base change (CA to TT) at a unique sequence context of TCAGC. Results indicate that the vacuum and high temperature may act synergistically for the induction of mutations.

  12. Protective Role of Spore Structural Components in Determining Bacillus subtilis Spore Resistance to Simulated Mars Surface Conditions

    Moeller, Ralf; Schuerger, Andrew C.; Reitz, Günther; Nicholson, Wayne L.


    Spores of wild-type and mutant Bacillus subtilis strains lacking various structural components were exposed to simulated Martian atmospheric and UV irradiation conditions. Spore survival and mutagenesis were strongly dependent on the functionality of all of the structural components, with small acid-soluble spore proteins, coat layers, and dipicolinic acid as key protectants.

  13. Localization of the Cortex Lytic Enzyme CwlJ in Spores of Bacillus subtilis

    Bagyan, Irina; Setlow, Peter


    The enzyme CwlJ is involved in the depolymerization of cortex peptidoglycan during germination of spores of Bacillus subtilis. CwlJ with a C-terminal His tag was functional and was extracted from spores by procedures that remove spore coat proteins. However, this CwlJ was not extracted from disrupted spores by dilute buffer, high salt concentrations, Triton X-100, Ca2+-dipicolinic acid, dithiothreitol, or peptidoglycan digestion, disappeared during spore germination, and was not present in co...

  14. Detection of spore coat protein of Bacillus subtilis by immunological method

    The spore coat protein of Bacillus subtilis was separated, and the qualitative assay for the spore coat protein was made by use of the immunological technique. The immunological method was found to be useful for judging the maturation of spore coat in the course of sporulation. The spore coat protein antigen appeared at t2 stage of sporulation. The addition of rifampicin at the earlier stages of sporulation inhibited the increase in content of the spore coat antigen. (auth.)

  15. Detection of Anthrax Simulants with Microcalorimetric Spectroscopy: Bacillus subtilis and Bacillus cereus Spores

    Arakawa, Edward T.; Lavrik, Nickolay V.; Datskos, Panos G.


    Recent advances in the development of ultrasensitive micromechanical thermal detectors have led to the advent of novel subfemtojoule microcalorimetric spectroscopy (CalSpec). On the basis of principles of photothermal IR spectroscopy combined with efficient thermomechanical transduction, CalSpec provides acquisition of vibrational spectra of microscopic samples and absorbates. We use CalSpec as a method of identifying nanogram quantities of biological micro-organisms. Our studies focus on Bacillus subtilis and Bacillus cereus spores as simulants for Bacillus anthracis spores. Using CalSpec, we measured IR spectra of B. subtilis and B. cereus spores present on surfaces in nanogram quantities (approximately 100 -1000 spores). The spectra acquired in the wavelength range of 690 -4000 cm-1 (2.5 -14.5 μm) contain information-rich vibrational signatures that reflect the different ratios of biochemical makeup of the micro-organisms. The distinctive features in the spectra obtained for the two types of micro-organism can be used to distinguish between the spores of the Bacillus family. As compared with conventional IR and Fourier-transform IR microscopic spectroscopy techniques, the advantages of the present technique include significantly improved sensitivity (at least a full order of magnitude), absence of expensive IR detectors, and excellent potential for miniaturization.

  16. Live-imaging of Bacillus subtilis spore germination and outgrowth

    Pandey, R


    Spores of Gram-positive bacteria such as Bacillus and Clostridium cause huge economic losses to the food industry. In food products, spores survive under food preservation conditions and subsequent germination and outgrowth eventually causes food spoilage. Therefore efforts are being made to eliminate or inactivate these bacterial spores in foods. In this regard food industry uses different preservation methods such as thermal-treatment, weak acids, antimicrobial compounds etc. Complete therm...

  17. Effects of microbial loading and sporulation temperature on atmospheric plasma inactivation of Bacillus subtilis spores

    Deng, X. T.; Shi, J. J.; Shama, G.; Kong, M. G.


    Current inactivation studies of Bacillus subtilis spores using atmospheric-pressure glow discharges (APGD) do not consider two important factors, namely microbial loading at the surface of a substrate and sporulation temperature. Yet these are known to affect significantly microbial resistance to heat and hydrogen peroxide. This letter investigates effects of microbial loading and sporulation temperature on spore resistance to APGD. It is shown that microbial loading can lead to a stacking structure as a protective shield against APGD treatment and that high sporulation temperature increases spore resistance by altering core water content and cross-linked muramic acid content of B. subtilis spores.

  18. Comparative Study of Pressure-Induced Germination of Bacillus subtilis Spores at Low and High Pressures

    Wuytack, Elke Y.; Boven, Steven; Michiels, Chris W.


    We have studied pressure-induced germination of Bacillus subtilis spores at moderate (100 MPa) and high (500 to 600 MPa) pressures. Although we found comparable germination efficiencies under both conditions by using heat sensitivity as a criterion for germination, the sensitivity of pressure-germinated spores to some other agents was found to depend on the pressure used. Spores germinated at 100 MPa were more sensitive to pressure (>200 MPa), UV light, and hydrogen peroxide than were those g...

  19. Involvement of Coat Proteins in Bacillus subtilis Spore Germination in High-Salinity Environments

    Nagler, Katja; Setlow, Peter; Reineke, Kai; Driks, Adam; Moeller, Ralf


    The germination of spore-forming bacteria in high-salinity environments is of applied interest for food microbiology and soil ecology. It has previously been shown that high salt concentrations detrimentally affect Bacillus subtilis spore germination, rendering this process slower and less efficient. The mechanistic details of these salt effects, however, remained obscure. Since initiation of nutrient germination first requires germinant passage through the spores' protective integuments, the...

  20. Effect of sporulation conditions on the resistance of Bacillus subtilis spores to heat and high pressure.

    Nguyen Thi Minh, Hue; Durand, Alain; Loison, Pauline; Perrier-Cornet, Jean-Marie; Gervais, Patrick


    Bacillus subtilis(B. subtilis) cells were placed in various environmental conditions to study the effects of aeration, water activity of the medium, temperature, pH, and calcium content on spore formation and the resulting properties. Modification of the sporulation conditions lengthened the growth period of B. subtilis and its sporulation. In some cases, it reduced the final spore concentration. The sporulation conditions significantly affected the spore properties, including germination capacity and resistance to heat treatment in water (30 min at 97°C) or to high pressure (60 min at 350 MPa and 40°C). The relationship between the modifications of these spore properties and the change in the spore structure induced by different sporulation conditions is also considered. According to this study, sporulation conditions must be carefully taken into account during settling sterilization processes applied in the food industry. PMID:21380515

  1. Bacillus subtilis spores as vaccine adjuvants: further insights into the mechanisms of action.

    Renata Damásio de Souza

    Full Text Available Bacillus subtilis spores have received growing attention regarding potential biotechnological applications, including the use as probiotics and in vaccine formulations. B. subtilis spores have also been shown to behave as particulate vaccine adjuvants, promoting the increase of antibody responses after co-administration with antigens either admixed or adsorbed on the spore surface. In this study, we further evaluated the immune modulatory properties of B. subtilis spores using a recombinant HIV gag p24 protein as a model antigen. The adjuvant effects of B. subtilis spores were not affected by the genetic background of the mouse lineage and did not induce significant inflammatory or deleterious effects after parenteral administration. Our results demonstrated that co-administration, but not adsorption to the spore surface, enhanced the immunogenicity of that target antigen after subcutaneous administration to BALB/c and C57BL/6 mice. Spores promoted activation of antigen presenting cells as demonstrated by the upregulation of MHC and CD40 molecules and enhanced secretion of pro-inflammatory cytokines by murine dendritic cells. In addition, in vivo studies indicated a direct role of the innate immunity on the immunomodulatory properties of B. subtilis spores, as demonstrated by the lack of adjuvant effects on MyD88 and TLR2 knockout mouse strains.

  2. Effect of medium components and culture conditions in Bacillus subtilis EA-CB0575 spore production.

    Posada-Uribe, Luisa F; Romero-Tabarez, Magally; Villegas-Escobar, Valeska


    Bacillus subtilis spores have important biotechnological applications; however, achieving both, high spore cell densities and sporulation efficiencies in fermentation, is poorly reported. In this study, medium components and culture conditions were optimized with different statistical methods to increase spore production of the plant growth promoting rhizobacteria B. subtilis EA-CB0575. Key medium components were determined with Plackett-Burman (PB) design, and the optimum concentration levels of two components (glucose, MgSO4·7H2O) were optimized with a full factorial and central composite design, achieving 1.37 × 10(9) CFU/mL of spore cell density and 93.5 % of sporulation efficiency in shake flask. The optimized medium was used to determine the effect of culture conditions on spore production at bioreactor level, finding that maintaining pH control did not affect significantly spore production, while the interaction of agitation and aeration rates had a significant effect on spore cell density. The overall optimization generated a 17.2-fold increase in spore cell density (8.78 × 10(9) CFU/mL) and 1.9-fold increase in sporulation efficiency (94.2 %) compared to that of PB design. These results indicate the potential of B. subtilis EA-CB0575 to produce both, high spore cell densities and sporulation efficiencies, with very low nutrient requirements and short incubation period which can represent savings of process production. PMID:26135004

  3. CotC-CotU Heterodimerization during Assembly of the Bacillus subtilis Spore Coat▿

    Isticato, Rachele; Pelosi, Assunta; Zilhão, Rita, 1959-; Baccigalupi, Loredana; Henriques, Adriano O.; De Felice, Maurilio; Ricca, Ezio


    We report evidence that CotC and CotU, two previously identified components of the Bacillus subtilis spore coat, are produced concurrently in the mother cell chamber of the sporulating cell under the control of σK and GerE and immediately assembled around the forming spore. In the coat, the two proteins interact to form a coat component of 23 kDa. The CotU-CotC interaction was not detected in two heterologous hosts, suggesting that it occurs only in B. subtilis. Monomeric forms of both CotU a...

  4. Effect of ethanol perturbation on viscosity and permeability of an inner membrane in Bacillus subtilis spores.

    Loison, Pauline; Gervais, Patrick; Perrier-Cornet, Jean-Marie; Kuimova, Marina K


    In this work, we investigated how a combination of ethanol and high temperature (70°C), affect the properties of the inner membrane of Bacillus subtilis spores. We observed membrane permeabilization for ethanol concentrations ≥50%, as indicated by the staining of the spores' DNA by the cell impermeable dye Propidium Iodide. The loss of membrane integrity was also confirmed by a decrease in the peak corresponding to dipicolinic acid using infrared spectroscopy. Finally, the spore refractivity (as measured by phase contrast microscopy) was decreased after the ethanol-heat treatment, suggesting a partial rehydration of the protoplast. Previously we have used fluorescent lifetime imaging microscopy (FLIM) combined with the fluorescent molecular rotor Bodipy-C12 to study the microscopic viscosity in the inner membrane of B. subtilis spores, and showed that at normal conditions it is characterized by a very high viscosity. Here we demonstrate that the ethanol/high temperature treatment led to a decrease of the viscosity of the inner membrane, from 1000cP to 860cP for wild type spores at 50% of ethanol. Altogether, our present work confirms the deleterious effect of ethanol on the structure of B. subtilis spores, as well as demonstrates the ability of FLIM - Bodipy-C12 to measure changes in the microviscosity of the spores upon perturbation. PMID:27267704

  5. Modeling the inactivation of Bacillus subtilis spores by ethylene oxide processing

    Mendes, G. C.; Brandão, T. R. S.; Silva, C. L. M.


    Ethylene oxide is currently a dominant agent in medical device sterilization. This work intends to study the main effects and interactions of temperature, ethylene oxide concentration, and relative humidity on commercial spore strips of Bacillus subtilis, var. niger (ATCC 9372) inactivation, the most common microorganism used in controlling the efficacy of the process. Experiments were carried out using a full factorial experimental design at two levels (23 factorial design). Limit targ...

  6. Modelling the inactivation of Bacillus subtilis spores by ethylene oxide processing

    Mendes, G. C.; Brandão, T. R. S.; Silva, C. L. M.


    Ethylene oxide is currently a dominant agent in medical devices sterilization. This work intends to study the main effects and interactions of temperature (T), ethylene oxide (EO) concentration and relative humidity (RH) on commercial spore strips of Bacillus subtilis, var. niger (ATCC 9372) inactivation, the most common microorganism used in controlling the efficacy of the process. Experiments were carried out using a full factorial experimental design at two levels (23 factorial desig...

  7. The action of ionizing radiation on Bacillus subtilis spores in a dry and wet system

    The action of water in combination with ionizing radiation was examined using different strains of Bacillus subtilis spores. The parameter of the experiments was a modification of water content; maximal degree of desiccation was achieved by high vacuum. The Fricke-method for X-ray dosimetry was compared to the ionizing-chamber method. In the dry state spores of both wild and mutant strain appeared to be more sensitive than in the wet state. This contradicts to the opinion of dose enhancement by the indirect action of water. (orig.)

  8. Ultrastructural localization of dipicolinic acid in dormant spores of Bacillus subtilis by immunoelectron microscopy with colloidal gold particles.

    Kozuka, S; Yasuda, Y.; Tochikubo, K


    The localization of dipicolinic acid in dormant spores of Bacillus subtilis was examined by an immunoelectron microscopy method with colloidal gold-immunoglobulin G complex. The colloidal gold particles were distributed mainly in the core regions of dormant spores and were not observed in those of germinated or autoclaved spores. This result clearly demonstrates that dipicolinic acid is localized in the cores of dormant spores.

  9. Improvement of Biological Indicators by Uniformly Distributing Bacillus subtilis Spores in Monolayers To Evaluate Enhanced Spore Decontamination Technologies.

    Raguse, Marina; Fiebrandt, Marcel; Stapelmann, Katharina; Madela, Kazimierz; Laue, Michael; Lackmann, Jan-Wilm; Thwaite, Joanne E; Setlow, Peter; Awakowicz, Peter; Moeller, Ralf


    Novel decontamination technologies, including cold low-pressure plasma and blue light (400 nm), are promising alternatives to conventional surface decontamination methods. However, the standardization of the assessment of such sterilization processes remains to be accomplished. Bacterial endospores of the genera Bacillus and Geobacillus are frequently used as biological indicators (BIs) of sterility. Ensuring standardized and reproducible BIs for reliable testing procedures is a significant problem in industrial settings. In this study, an electrically driven spray deposition device was developed, allowing fast, reproducible, and homogeneous preparation of Bacillus subtilis 168 spore monolayers on glass surfaces. A detailed description of the structural design as well as the operating principle of the spraying device is given. The reproducible formation of spore monolayers of up to 5 × 10(7) spores per sample was verified by scanning electron microscopy. Surface inactivation studies revealed that monolayered spores were inactivated by UV-C (254 nm), low-pressure argon plasma (500 W, 10 Pa, 100 standard cubic cm per min), and blue light (400 nm) significantly faster than multilayered spores were. We have thus succeeded in the uniform preparation of reproducible, highly concentrated spore monolayers with the potential to generate BIs for a variety of nonpenetrating surface decontamination techniques. PMID:26801572

  10. Role of Dipicolinic Acid in Survival of Bacillus subtilis Spores Exposed to Artificial and Solar UV Radiation

    Slieman, Tony A.; Nicholson, Wayne L.


    Pyridine-2,6-dicarboxylic acid (dipicolinic acid [DPA]) constitutes approximately 10% of Bacillus subtilis spore dry weight and has been shown to play a significant role in the survival of B. subtilis spores exposed to wet heat and to 254-nm UV radiation in the laboratory. However, to date, no work has addressed the importance of DPA in the survival of spores exposed to environmentally relevant solar UV radiation. Air-dried films of spores containing DPA or lacking DPA due to a null mutation ...

  11. Investigating the thermodynamic stability of Bacillus subtilis spore-uranium(VI) adsorption though surface complexation modeling

    Harrold, Z.; Hertel, M.; Gorman-Lewis, D.


    Dissolved uranium speciation, mobility, and remediation are increasingly important topics given continued and potential uranium (U) release from mining operations and nuclear waste. Vegetative bacterial cell surfaces are known to adsorb uranium and may influence uranium speciation in the environment. Previous investigations regarding U(VI) adsorption to bacterial spores, a differentiated and dormant cell type with a tough proteinaceous coat, include U adsorption affinity and XAFS data. We investigated the thermodynamic stability of aerobic, pH dependent uranium adsorption to bacterial spore surfaces using purified Bacillus subtilis spores in solution with 5ppm uranium. Adsorption reversibility and kinetic experiments indicate that uranium does not precipitate over the duration of the experiments and equilibrium is reached within 20 minutes. Uranium-spore adsorption edges exhibited adsorption at all pH measured between 2 and 10. Maximum adsorption was achieved around pH 7 and decreased as pH increased above 7. We used surface complexation modeling (SCM) to quantify uranium adsorption based on balanced chemical equations and derive thermodynamic stability constants for discrete uranium-spore adsorption reactions. Site specific thermodynamic stability constants provide insight on interactions occurring between aqueous uranium species and spore surface ligands. The uranium adsorption data and SCM parameters described herein, also provide a basis for predicting the influence of bacterial spores on uranium speciation in natural systems and investigating their potential as biosorption agents in engineered systems.

  12. Disinfection and regrowth potential of bacillus subtilis spores by ozone, ultraviolet rays and gamma irradiation

    Kim, Hae Yeon; Lee, O Mi; Kim, Tae Hun; Lee, Myun Joo; Yu, Seung Ho [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)


    Chlorination has been the most commonly adopted disinfection process for the treatment of drinking water. However, Cryptosporidium parvum oocysts and Giardia lamblia cysts were not treated effectively by the common chlorine-based disinfectants. Additionally the regrowth of pathogenic microorganisms is associated with hygienic and aesthetic problems for the consumers of drinking water. Study on alternative disinfection processes such as ozone, UV-C, VUV and gamma irradiation were conducted. Bacillus subtilis spores have been used as a surrogate microorganism for Cryptosporidium parvum oocysts and Giardia lamblia cyst. Inactivation efficiency by ozone was from 30% to 96% within the range of 5 min to 120 min exposures. Inactivation efficiencies by UV-C and VUV were 95.18%, 95.07% at 30 sec, respectively. Inactivation efficiency at gamma irradiation dose of 2 kGy was 99.4%. Microbial regrowths after ozone, UV-C, VUV and gamma irradiation disinfections were also evaluated for 4 days. Bacillus subtilis spores after ozone treatment for 120 min exposure at the rate of 1.68 mg {center_dot} min{sup -1} showed 96.02% disinfection efficiency and significant microbial regrowth. Bacillus subtilis spores after UV-C (99.25% disinfection efficiency) and VUV (99.67% disinfection efficiency) treatments for 5 min showed gradual regrowth. However, inactivation efficiency of gamma irradiation at dose of 1 kGy was 98.8% and the disinfected sample showed no microbial regrowth for 4 days. Therefore, gamma irradiation is the most effective process for the disinfection of pathogenic microorganisms such as oocysts of protozoan parasites among four disinfection process.

  13. Disinfection and regrowth potential of bacillus subtilis spores by ozone, ultraviolet rays and gamma irradiation

    Chlorination has been the most commonly adopted disinfection process for the treatment of drinking water. However, Cryptosporidium parvum oocysts and Giardia lamblia cysts were not treated effectively by the common chlorine-based disinfectants. Additionally the regrowth of pathogenic microorganisms is associated with hygienic and aesthetic problems for the consumers of drinking water. Study on alternative disinfection processes such as ozone, UV-C, VUV and gamma irradiation were conducted. Bacillus subtilis spores have been used as a surrogate microorganism for Cryptosporidium parvum oocysts and Giardia lamblia cyst. Inactivation efficiency by ozone was from 30% to 96% within the range of 5 min to 120 min exposures. Inactivation efficiencies by UV-C and VUV were 95.18%, 95.07% at 30 sec, respectively. Inactivation efficiency at gamma irradiation dose of 2 kGy was 99.4%. Microbial regrowths after ozone, UV-C, VUV and gamma irradiation disinfections were also evaluated for 4 days. Bacillus subtilis spores after ozone treatment for 120 min exposure at the rate of 1.68 mg · min-1 showed 96.02% disinfection efficiency and significant microbial regrowth. Bacillus subtilis spores after UV-C (99.25% disinfection efficiency) and VUV (99.67% disinfection efficiency) treatments for 5 min showed gradual regrowth. However, inactivation efficiency of gamma irradiation at dose of 1 kGy was 98.8% and the disinfected sample showed no microbial regrowth for 4 days. Therefore, gamma irradiation is the most effective process for the disinfection of pathogenic microorganisms such as oocysts of protozoan parasites among four disinfection process

  14. Roles of Small, Acid-Soluble Spore Proteins and Core Water Content in Survival of Bacillus subtilis Spores Exposed to Environmental Solar UV Radiation▿

    Moeller, Ralf; Setlow, Peter; Reitz, Günther; Nicholson, Wayne L.


    Spores of Bacillus subtilis contain a number of small, acid-soluble spore proteins (SASP) which comprise up to 20% of total spore core protein. The multiple α/β-type SASP have been shown to confer resistance to UV radiation, heat, peroxides, and other sporicidal treatments. In this study, SASP-defective mutants of B. subtilis and spores deficient in dacB, a mutation leading to an increased core water content, were used to study the relative contributions of SASP and increased core water conte...

  15. Germination and inactivation of Bacillus subtilis spores induced by moderate hydrostatic pressure.

    Nguyen Thi Minh, Hue; Dantigny, Philippe; Perrier-Cornet, Jean-Marie; Gervais, Patrick


    In this study, we investigated the mechanisms of spore inactivation by high pressure at moderate temperatures to optimize the sterilization efficiency of high-pressure treatments. Bacillus subtilis spores were first subjected to different pressure treatments ranging from 90 to 550 MPa at 40°C, with holding times from 10 min to 4 h. These treatments alone caused slight inactivation, which was related to the pressure-induced germination of the spores. After these pressures treatments, the sensitivity of these processed spores to heat (80°C/10 min) or to high pressure (350 MPa/40°C/10 min) was tested to determine the pressure-induced germination rate and the advancement of the spores in the germination process. The subsequent heat or pressure treatments were applied immediately after decompression from the first pressure treatment or after a holding time at atmospheric pressure. As already known, the spore germination is more efficient at low pressure level than at high pressure level. Our results show that this low germination efficiency at high pressure seemed not to be related either to a lower induction or a difference in the induction mechanisms but rather to an inhibition of enzyme activities which are involved in germination process. In fact, high pressure was necessary and very efficient in inducing spore germination. However, it seemed to slow the enzymatic digestion of the cortex, which is required for germinated spores to be inactivated by pressure. Although these results indicate that high-pressure treatments are more efficient when the two treatments are combined, a small spore population still remained dormant and was not inactivated with any holding time or pressure level. PMID:20589839

  16. Small, acid-soluble proteins bound to DNA protect Bacillus subtilis spores from being killed by freeze-drying.

    Fairhead, H; Setlow, B; Waites, W M; Setlow, P


    Wild-type spores of Bacillus subtilis were resistant to eight cycles of freeze-drying, whereas about 90% of spores lacking the two major DNA-binding proteins (small, acid-soluble proteins alpha and beta) were killed by three to four cycles of freeze-dryings, with significant mutagenesis and DNA damage accompanying the killing. This role for alpha/beta-type small, acid-soluble proteins in spore resistance to freeze-drying may be important in spore survival in the environment.

  17. Inactivation, mutation induction and repair in Bacillus subtilis spores irradiated with heavy ions

    Horneck, G.; Bücker, H.

    Studies on the response of bacterial spores to accelerated heavy ions (HZE particles) help in understanding problems of space radiobiology and exobiology. Layers of spores of Bacillus subtilis strains, differing in repair capabilities, were irradiated with accelerated boron, carbon and neon ions of linear energy transfer (LET) values up to 14000 MeV cm2/g. Inactivation as measured by loss of colony forming ability and induction of mutations as measured by reversion to histidine prototrophy and resistance to 150 μg/ml sodium azide were tested, as well as the influence of repair processes on these effects. For inactivation, the cross-sectional values σ plotted as a function of LET follow a saturation curve. The plateau, which is reached around a LET of 2000 MeV cm2/g, occurs at 2.5 × 10-9 cm2, a value in good agreement with the dimensions of the spore protoplast. Lethal damage produced at LET values < 2000 MeV cm2/g is reparable. Recombination repair is more effective than excision repair. At higher LET values, lethal damage could not be reconstituted by the repair mechanisms studied. In addition, at these high LET values, the frequency of induced mutations was drastically decreased. The data support the assumption of at least two qualitatively different types of lesion, depending on the LET of the affecting heavy ion.

  18. Decontamination of Bacillus subtilis var.niger spores on selected surfaces by chlorine dioxide gas

    Yan-ju LI; Neng ZHU; Hai-quan JIA; Jin-hui WU; Ying YI; Jian-cheng QI


    Objective:Chlorine dioxide (CD) gas has been used as a fumigant in the disinfection of biosafety laboratories.In this study,some experiments were conducted to assess the inactivation of spores inoculated on six materials [stainless steel (SS),painted steel (PS),polyvinyl chlorid (PVC),polyurethane (PU),glass (GS),and cotton cloth (CC)] by CD gas.The main aims of the study were to determine the sporicidal efficacy of CD gas and the effect of prehumidification before decontamination on sporicidal efficacy.Methods:Material coupons (1.2 cm diameter of SS,PS,and PU; 1.0 cm×1.0 cm for PVC,GS,and CC) were contaminated with 10 μl of Bacillus subtilis var.niger(ATCC 9372) spore suspension in mixed organic burden and then dried in a biosafety cabinet for 12 h.The spores were recovered by soaking the coupons in 5 ml of extraction liquid for 1 h and then vortexing the liquid for 1 min.Results:The log reductions in spore numbers on inoculated test materials exposed to CD gas [0.080% (volume ratio,v/v) for 3 h]were in the range of from 1.80 to 6.64.Statistically significant differences were found in decontamination efficacies on test material coupons of SS,PS,PU,and CC between with and without a 1-h prehumidification treatment.With the extraction method,there were no statistically significant differences in the recovery ratios between the porous and non-porous materials.Conclusions:The results reported from this study could provide information for developing decontamination technology based on CD gas for targeting surface microbial contamination.

  19. Greater enhancement of Bacillus subtilis spore yields in submerged cultures by optimization of medium composition through statistical experimental designs.

    Chen, Zhen-Min; Li, Qing; Liu, Hua-Mei; Yu, Na; Xie, Tian-Jian; Yang, Ming-Yuan; Shen, Ping; Chen, Xiang-Dong


    Bacillus subtilis spore preparations are promising probiotics and biocontrol agents, which can be used in plants, animals, and humans. The aim of this work was to optimize the nutritional conditions using a statistical approach for the production of B. subtilis (WHK-Z12) spores. Our preliminary experiments show that corn starch, corn flour, and wheat bran were the best carbon sources. Using Plackett-Burman design, corn steep liquor, soybean flour, and yeast extract were found to be the best nitrogen source ingredients for enhancing spore production and were studied for further optimization using central composite design. The key medium components in our optimization medium were 16.18 g/l of corn steep liquor, 17.53 g/l of soybean flour, and 8.14 g/l of yeast extract. The improved medium produced spores as high as 1.52 +/- 0.06 x 10(10) spores/ml under flask cultivation conditions, and 1.56 +/- 0.07 x 10(10) spores/ml could be achieved in a 30-l fermenter after 40 h of cultivation. To the best of our knowledge, these results compared favorably to the documented spore yields produced by B. subtilis strains. PMID:19697022

  20. Adsorption of β-galactosidase of Alicyclobacillus acidocaldarius on wild type and mutants spores of Bacillus subtilis

    Sirec Teja


    Full Text Available Abstract Background The Bacillus subtilis spore has long been used as a surface display system with potential applications in a variety of fields ranging from mucosal vaccine delivery, bioremediation and biocatalyst development. More recently, a non-recombinant approach of spore display has been proposed and heterologous proteins adsorbed on the spore surface. We used the well-characterized β-galactosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius as a model to study enzyme adsorption, to analyze whether and how spore-adsorption affects the properties of the enzyme and to improve the efficiency of the process. Results We report that purified β-galactosidase molecules were adsorbed to purified spores of a wild type strain of B. subtilis retaining ca. 50% of their enzymatic activity. Optimal pH and temperature of the enzyme were not altered by the presence of the spore, that protected the adsorbed β-galactosidase from exposure to acidic pH conditions. A collection of mutant strains of B. subtilis lacking a single or several spore coat proteins was compared to the isogenic parental strain for the adsorption efficiency. Mutants with an altered outermost spore layer (crust were able to adsorb 60-80% of the enzyme, while mutants with a severely altered or totally lacking outer coat adsorbed 100% of the β-galactosidase molecules present in the adsorption reaction. Conclusion Our results indicate that the spore surface structures, the crust and the outer coat layer, have an negative effect on the adhesion of the β-galactosidase. Electrostatic forces, previously suggested as main determinants of spore adsorption, do not seem to play an essential role in the spore-β-galactosidase interaction. The analysis of mutants with altered spore surface has shown that the process of spore adsorption can be improved and has suggested that such improvement has to be based on a better understanding of the spore surface structure

  1. Characterization of heavy ion-induced damage in Bacillus subtilis spores and their global transcriptional response during spore germination. First results

    The proposed research project is aimed to provide new insights on the spore resistance to heavy ions and the effects on different linear energy transfer (LET)-charged HZE particles. With this project, spores of Bacillus subtilis 168, (wild-type and several selected DNA repair-deficient strains) were used for studying the microbial response heavy ions irradiation. DNA repair and mutation induction events were investigated be the determination of the spore survivability, behavior to selected antibiotics, spore-specific protection mechanisms after irradiation. The activation of DNA repair genes were detected during germination by using DNA microarrays. For studying the DNA repair of treated spores during germination an integrated systems approach was used, id est (i.e.) all experiments were performed in a combination of various biochemical and molecular biological methods to study the spore resistance to heavy ion bombardment. (author)

  2. Understanding of the importance of the spore coat structure and pigmentation in the Bacillus subtilis spore resistance to low-pressure plasma sterilization

    Raguse, Marina; Fiebrandt, Marcel; Denis, Benjamin; Stapelmann, Katharina; Eichenberger, Patrick; Driks, Adam; Eaton, Peter; Awakowicz, Peter; Moeller, Ralf


    Low-pressure plasmas have been evaluated for their potential in biomedical and defense purposes. The sterilizing effect of plasma can be attributed to several active agents, including (V)UV radiation, charged particles, radical species, neutral and excited atoms and molecules, and the electric field. Spores of Bacillus subtilis were used as a bioindicator and a genetic model system to study the sporicidal effects of low-pressure plasma decontamination. Wild-type spores, spores lacking the major protective coat layers (inner, outer, and crust), pigmentation-deficient spores or spore impaired in encasement (a late step in coat assembly) were systematically tested for their resistance to low-pressure argon, hydrogen, and oxygen plasmas with and without admixtures. We demonstrate that low-pressure plasma discharges of argon and oxygen discharges cause significant physical damage to spore surface structures as visualized by atomic force microscopy. Spore resistance to low-pressure plasma was primarily dependent on the presence of the inner, and outer spore coat layers as well as spore encasement, with minor or less importance of the crust and spore pigmentation, whereas spore inactivation itself was strongly influenced by the gas composition and operational settings.

  3. Live cell imaging of germination and outgrowth of individual bacillus subtilis spores; the effect of heat stress quantitatively analyzed with SporeTracker.

    Rachna Pandey

    Full Text Available Spore-forming bacteria are a special problem for the food industry as some of them are able to survive preservation processes. Bacillus spp. spores can remain in a dormant, stress resistant state for a long period of time. Vegetative cells are formed by germination of spores followed by a more extended outgrowth phase. Spore germination and outgrowth progression are often very heterogeneous and therefore, predictions of microbial stability of food products are exceedingly difficult. Mechanistic details of the cause of this heterogeneity are necessary. In order to examine spore heterogeneity we made a novel closed air-containing chamber for live imaging. This chamber was used to analyze Bacillus subtilis spore germination, outgrowth, as well as subsequent vegetative growth. Typically, we examined around 90 starting spores/cells for ≥4 hours per experiment. Image analysis with the purposely built program "SporeTracker" allows for automated data processing from germination to outgrowth and vegetative doubling. In order to check the efficiency of the chamber, growth and division of B. subtilis vegetative cells were monitored. The observed generation times of vegetative cells were comparable to those obtained in well-aerated shake flask cultures. The influence of a heat stress of 85°C for 10 min on germination, outgrowth, and subsequent vegetative growth was investigated in detail. Compared to control samples fewer spores germinated (41.1% less and fewer grew out (48.4% less after the treatment. The heat treatment had a significant influence on the average time to the start of germination (increased and the distribution and average of the duration of germination itself (increased. However, the distribution and the mean outgrowth time and the generation time of vegetative cells, emerging from untreated and thermally injured spores, were similar.

  4. Survivability of bare, individual Bacillus subtilis spores to high-velocity surface impact: Implications for microbial transfer through space

    Barney, Brandon L.; Pratt, Sara N.; Austin, Daniel E.


    Laboratory experiments show that endospores of Bacillus subtilis survive impact against a solid surface at velocities as high as 299 ±28 m/s. During impact, spores experience and survive accelerations of at least 1010 m/s2. The spores were introduced into a vacuum chamber using an electrospray source and accelerated to a narrow velocity distribution by entrainment in a differentially pumped gas flow. Different velocity ranges were studied by modifying the gas flow parameters. The spores were electrically charged, allowing direct measurement of the velocity of each spore as it passed through an image charge detector prior to surface impact. Spores impacted a glass surface and were collected for subsequent analysis by culturing. Most spores survived impact at all measured velocities. These experiments differ fundamentally from other studies that show either shock or impact survivability of bacteria embedded within or on the surface of a projectile. Bacteria in the present experiments undergo a single interaction with a solid surface at the full impact velocity, in the absence of any other effects such as cushioning due to microbe agglomerations, deceleration due to air or vapor, or transfer of impact shock through solid or liquid media. During these full-velocity impact events, the spores experience extremely high decelerations. This study is the first reported instance of accelerations of this magnitude experienced during a bacteria impact event. These results are discussed in the context of potential transfer of viable microbes in space and other scenarios involving surface impacts at high velocities.

  5. Characterization of heavy ion-induced damage in bacillus subtilis spores and their global transcriptional response during spore germination-role of B. subtilis's apurinic/apyrimidinic (AP) endonucleases in the resistance to heavy ion radiation

    The proposed research project is aimed to provide new insights on the spore resistance to heavy ions and the effects on different linear energy transfer (LET)-charged HZE particles. With this project, spores of Bacillus subtilis 168, (wild-type and several selected DNA repairdeficient strains) were used for studying the microbial response heavy ions irradiation. DNA repair capabilities were investigated be the determination of the spore survivability and spore-specific protection mechanisms after irradiation. The activation of DNA repair genes were detected during germination by using DNA microarrays. For studying the DNA repair of treated spores during germination an integrated systems approach was used, id est (i.e.) all experiments were performed in a combination of various biochemical and molecular biological methods to study the spore resistance to heavy ion bombardment. (author)

  6. Application of gaseous disinfectants ozone and chlorine dioxide for inactivation of Bacillus subtilis spores

    Aydogan, Ahmet


    A terrorist attack involving chemical and/or biological warfare agents is a growing possibility. Since anthrax is considered as an immediate public-health threat that can be created by a warfare agent, it is imperative to investigate the potential remediation technologies effective against this threat. In this study, the effectiveness of two gaseous disinfectants, ozone and chlorine dioxide, to inactivate B.subtilis spores - as surrogate to B.anthracis that can cause the infectious anthrax di...

  7. Gel-free proteomic identification of the Bacillus subtilis insoluble spore coat protein fraction

    Abhyankar, W.; Beek, A.T.; Dekker, H.; Kort, R.; Brul, S.; Koster, C.G. de


    Species from the genus Bacillus have the ability to form endospores, dormant cellular forms that are able to survive heat and acid preservation techniques commonly used in the food industry. Resistance characteristics of spores towards various environmental stresses are in part attributed to their c

  8. Comparative Study of Pressure- and Nutrient-Induced Germination of Bacillus subtilis Spores

    Wuytack, Elke Y.; Soons, Johan; Poschet, Filip; Michiels, Chris W.


    Germination experiments with specific germination mutants of Bacillus subtilis, including a newly isolated mutant affected in pressure-induced germination, suggest that a pressure of 100 MPa triggers the germination cascades that are induced by the nutrient germinant alanine (Ala) and by a mixture of asparagine, glucose, fructose, and potassium ions (AGFK), by activating the receptors for alanine and asparagine, GerA and GerB, respectively. As opposed to germination at 100 MPa, germination at...

  9. Bacillus subtilis spore survival and expression of germination-induced bioluminescence after prolonged incubation under simulated Mars atmospheric pressure and composition: implications for planetary protection and lithopanspermia

    Nicholson, Wayne L.; Schuerger, Andrew C.


    Bacterial endospores in the genus Bacillus are considered good models for studying interplanetary transfer of microbes by natural or human processes. Although spore survival during transfer itself has been the subject of considerable study, the fate of spores in extraterrestrial environments has received less attention. In this report we subjected spores of a strain of Bacillus subtilis, containing luciferase resulting from expression of an sspB-luxAB gene fusion, to simulated martian atmospheric pressure (7-18 mbar) and composition (100% CO(2)) for up to 19 days in a Mars simulation chamber. We report here that survival was similar between spores exposed to Earth conditions and spores exposed up to 19 days to simulated martian conditions. However, germination-induced bioluminescence was lower in spores exposed to simulated martian atmosphere, which suggests sublethal impairment of some endogenous spore germination processes.

  10. Multifactorial Resistance of Bacillus subtilis Spores to High-Energy Proton Radiation: Role of Spore Structural Components and the Homologous Recombination and Non-Homologous End Joining DNA Repair Pathways

    Moeller, Ralf; Reitz, Günther; Li, Zuofeng; Klein, Stuart; Nicholson, Wayne L.


    The space environment contains high-energy charged particles (e.g., protons, neutrons, electrons, α-particles, heavy ions) emitted by the Sun and galactic sources or trapped in the radiation belts. Protons constitute the majority (87%) of high-energy charged particles. Spores of Bacillus species are one of the model systems used for astro- and radiobiological studies. In this study, spores of different Bacillus subtilis strains were used to study the effects of high energetic proton irradiati...

  11. A Cumulative Spore Killing Approach: Synergistic Sporicidal Activity of Dilute Peracetic Acid and Ethanol at Low pH Against Clostridium difficile and Bacillus subtilis Spores.

    Nerandzic, Michelle M; Sankar C, Thriveen; Setlow, Peter; Donskey, Curtis J


    Background.  Alcohol-based hand sanitizers are the primary method of hand hygiene in healthcare settings, but they lack activity against bacterial spores produced by pathogens such as Clostridium difficile and Bacillus anthracis. We previously demonstrated that acidification of ethanol induced rapid sporicidal activity, resulting in ethanol formulations with pH 1.5-2 that were as effective as soap and water washing in reducing levels of C difficile spores on hands. We hypothesized that the addition of dilute peracetic acid (PAA) to acidified ethanol would enhance sporicidal activity while allowing elevation of the pH to a level likely to be well tolerated on skin (ie, >3). Methods.  We tested the efficacy of acidified ethanol solutions alone or in combination with PAA against C difficile and Bacillus subtilis spores in vitro and against nontoxigenic C difficile spores on hands of volunteers. Results.  Acidification of ethanol induced rapid sporicidal activity against C difficile and to a lesser extent B subtilis. The addition of dilute PAA to acidified ethanol resulted in synergistic enhancement of sporicidal activity in a dose-dependent fashion in vitro. On hands, the addition of 1200-2000 ppm PAA enhanced the effectiveness of acidified ethanol formulations, resulting in formulations with pH >3 that were as effective as soap and water washing. Conclusions.  Acidification and the addition of dilute PAA induced rapid sporicidal activity in ethanol. Our findings suggest that it may be feasible to develop effective sporicidal ethanol formulations that are safe and tolerable on skin. PMID:26885539

  12. Role of DNA Repair by Nonhomologous-End Joining in Bacillus subtilis Spore Resistance to Extreme Dryness, Mono- and Polychromatic UV, and Ionizing Radiation▿

    Moeller, Ralf; Stackebrandt, Erko; Reitz, Günther; Berger, Thomas; Rettberg, Petra; Doherty, Aidan J; Horneck, Gerda; Nicholson, Wayne L.


    The role of DNA repair by nonhomologous-end joining (NHEJ) in spore resistance to UV, ionizing radiation, and ultrahigh vacuum was studied in wild-type and DNA repair mutants (recA, splB, ykoU, ykoV, and ykoU ykoV mutants) of Bacillus subtilis. NHEJ-defective spores with mutations in ykoU, ykoV, and ykoU ykoV were significantly more sensitive to UV, ionizing radiation, and ultrahigh vacuum than wild-type spores, indicating that NHEJ provides an important pathway during spore germination for r...

  13. Taxonomy Icon Data: Bacillus subtilis [Taxonomy Icon

    Full Text Available Bacillus subtilis Bacillus subtilis Bacillus_subtilis_L.png Bacillus_subtilis_NL.png Bacillus..._subtilis_S.png Bacillus_subtilis_NS.png http://biosciencedbc.j...p/taxonomy_icon/icon.cgi?i=Bacillus+subtilis&t=S

  14. Multifactorial and microdosimetrical analysis of the biological influence of galactic cosmic rays on Bacillus subtilis spores in the biostack experiment

    In this paper a partial experiment is presented which has been performed during several years and several space flight missions. This experiment is part of a research program to study the radiation biological - and in particular the medical relevance of the 'hard' cosmic ray component. The identification of particles (Z, LET, E) was not hindered by the combination with biological objects and could be performed with sufficient accuracy. Refering to semi-empirical findings the distribution of LET values in the bacillus subtilis could be determined in agreement with other experimental results. The localisation and correlation of particle tracks with the individual cells of the target regions is significant. As a result the LET does not seem to be an important parameter for the biological activity within the parameter range studied here. The energy deposition in the spores by delta-electrons could be calculated on the basis of a microdosimetrical analysis. A more detailed analysis was essentially hampered by an insufficient accuracy for the measurement of the distance between particle tracks and the spores. Thus a dose-survival-curve could not be established. In spite of that the relative biological activity (RBW) has been estimated on the basis of density distributions. The failure of these experiments, a review of the relevant literature, and a detailed discussion contribute essentially to the problem of the existence of specific mechanisms for heavy ions and their radiation biological activity. According to the actual knowledge the existence of such a mechanism in addition to delta-electrons has to be considered as most probable. (orig./MG)

  15. Germination properties as marker events characterizing later stages of Bacillus subtilis spore formation.

    Dion, P; Mandelstam, J


    At various stages during spore formation sporangia were shocked by cold treatment or with toluene, and the germination requirements of the prespores were examined. Up to 5 h after induction of sporulation (t5) germination was spontaneous; i.e., it occurred without any added germinants. After t5, during stages V and VI, the capacity for spontaneous germination diminished progressively, and the spores acquired a need for externally added germinants. At t6 this need was satisfied by either L-ala...

  16. Effect Of Dose Rate Of Gamma Rays And Electron Beams Radiation On Bacillus Subtilis Spores In Various Conditions

    The investigation of the dose rate effect of gamma rays 60Co and electron beams radiations onto resistance of the bacteria spores has been observed. The objective of the research is to know the effect of radiation dose rates onto resistance of the bacteria spores. B. subtilis bacteria often contaminate the silk suture, human cardiac valve for the purposes of transplantation therapy and food material, so that it will be disadvantage to human health. Beside that the bacteria is well known as the most resistant to heat and ethylene oxide treatments, whereas sterilization by ethylene oxide will cause chemical residue on the sterilized materials. The bacteria spores in dry state, wet and frozen conditions in the aquadest, talc and peanut powder suspensions were irradiated with gamma rays at doses from 0 upto 10 kGy, with doses rates of 5 and 10 kGy/hrs. The sample of spores in dry and wet conditions were irradiated using electron beams at the same doses and dose rates were 5 mA/pass and 10 mA/pass. The spores of B. subtilis was cultured on Tryptone Soya Agar medium and incubated at of 32 n 2 oC for 3 days. The survival colonies were calculated and the obtained data was used to establish survival diagram in order to determine the D sub.10 value of spores. The results show that there is no difference relatively among D sub.10 values of bacteria spores irradiated in aquadest, talc or peanut powder suspensions. Nevertheless the D sub.10 (see table 1) of bacteria spores irradiated at 10 kGy/hrs gamma rays or 10 mA/pass electron beams is higher than that of at dose rate 5 kGy/hrs gamma rays or 5 mA/pass electron beams. It means that radiation at 5 kGy/hrs or 5 mA/pass is relatively more efficient than that at dose rates 10 kGy/hrs or 10 mA/pass in killing B. subtilis spores

  17. Uracil incorporation in the forespore and the mother cell during spore development in Bacillus subtilis

    The transcriptional activity of the two genomes of the sporangium during spore formation was determined by pulse-labeling bacteria with 3H-uracil at different times of sporulation and preparing them for high resolution autoradiography. The quantitative analysis of autoradiographs shows that uracile incorporation in the whole sporangium decreases considerably between stages II and IV. However, the variations of the transpcriptional activity are not identical in the mother cell and in the forespore. The one of the mother cell decreases rapidly between stages II and III and then remains stable until the end of stage IV, whereas that of the forespore which is low at stage II increases as the forespore grows ovoid and then quickly diminishes. It is very weak at the beginning of stage IV and negligible at the end of this stage. (orig.)

  18. Heat resistance of spore-forming microorganisms (Bacillus sporothermodurans, Bacillus subtilis and Geobacillus stearothermophilus) under isothermal and non-iiothermal conditions

    Gómez Jódar, Isabel


    [SPA]El principal género de microorganismos esporulados altamente resistentes al calor involucrados en el deterioro de alimentos es Bacillus. Este género causa problemas de no esterilidad en alimentos enlatados y reduce la vida comercial de muchos alimentos procesados. En este estudio se determinó la termorresistencia de Bacillus sporothermodurans IIC65, Bacillus subtilis IC9 y Geobacillus stearothermophilus T26 mediante un termorresistómetro Mastia (Conesa et al., 2009). Las determinaciones ...

  19. Interaction of antimicrobial cyclic lipopeptides from Bacillus subtilis influences their effect on spore germination and membrane permeability in fungal plant pathogens.

    Liu, Jiajie; Hagberg, Ingrid; Novitsky, Laura; Hadj-Moussa, Hanane; Avis, Tyler J


    Bacillus subtilis cyclic lipopeptides are known to have various antimicrobial effects including different types of interactions with the cell membranes of plant pathogenic fungi. The various spectra of activities of the three main lipopeptide families (fengycins, iturins, and surfactins) seem to be linked to their respective mechanisms of action on the fungal biomembrane. Few studies have shown the combined effect of more than one family of lipopeptides on fungal plant pathogens. In an effort to understand the effect of producing multiple lipopeptide families, sensitivity and membrane permeability of spores from four fungal plant pathogens (Alternaria solani, Fusarium sambucinum, Rhizopus stolonifer, and Verticillium dahliae) were assayed in response to lipopeptides, both individually and as combined treatments. Results showed that inhibition of spores was highly variable depending on the tested fungus-lipopeptide treatment. Results also showed that inhibition of the spores was closely associated with SYTOX stain absorption suggesting effects of efficient treatments on membrane permeability. Combined lipopeptide treatments revealed additive, synergistic or sometimes mutual inhibition of beneficial effects. PMID:25442289

  20. Resistance of Bacillus subtilis spores to 12C ion beams, stimulation of high-energy charged particles in space

    Zhang, Li; Dang, Bingrong; Li, Junxiong; Chen, Jinsong; Liu, Mei; Liu, Zhiheng; Zhang, Lixin

    To monitor the response of live microbes in space radiation environment with high-energy charged particles, we carry out ground stimulation radiation experiments. Spores of Bacillus (CGMCC 1.1849) species are one of the model systems used for astro- and radiobiological studies. (12) C ion beams served as stimulated space radiation from 5gry, 10gry, 20gry, 40gry, to 80gry at a rate of 15gry/min Death rates are measured and mutant strains are isolated. Five representative strains are analyzed for their corresponding gene sequences, protein sequences and gene expression index of DNA repair system gene recA and recO. The statistic results showed the strains resistance to (12) C ion beams radiation is partially due to the increase of gene expression index of recA and recO. In conclusion, our research provide a surrogate system to monitor the live microbial response in resistant to space radiation environment.

  1. Physical interaction and assembly of Bacillus subtilis spore coat proteins CotE and CotZ studied by atomic force microscopy.

    Liu, Huiqing; Qiao, Haiyan; Krajcikova, Daniela; Zhang, Zhe; Wang, Hongda; Barak, Imrich; Tang, Jilin


    The spore of Bacillus subtilis, a dormant type of cell, is surrounded by a complex multilayered protein structure known as the coat. It is composed of over 70 proteins and essential for the spore to withstand extreme environmental conditions and allow germination under favorable conditions. However, understanding how the properties of the coat arise from the interactions among all these proteins is an important challenge. Moreover, many specific protein-protein interactions among the coat proteins are crucial for coat assembly. In this study, atomic force microscopy (AFM) based single molecule force spectroscopy (SMFS) was applied to investigate the interaction as a dynamic process between two morphogenetic coat proteins, CotE and CotZ. The unbinding force and kinetic parameters characterizing the interaction between CotE and CotZ were obtained. It is found that there is a strong affinity between CotE and CotZ. Furthermore, the assembly behaviors of CotE and CotZ, individually or in combination, were studied by AFM at solid-liquid interfaces. Our results revealed that CotE-CotZ assembly is dependent on their molar ratios and the interaction between CotE and CotZ involves in the CotE-CotZ assembly. PMID:27320701

  2. Base substitution spectra of nalidixylate resistant mutations induced by monochromatic soft X and 60Co γ-rays in bacillus subtilis spores

    Bacillus subtilis spores were exposed to three types of photons, monochromatic soft X-rays with the energy corresponding to the absorption peak of phosphorus K-shell electron (2,153 eV) and with the slightly lower energy (2,147 eV), and 60Co γ-rays. From the irradiated spores, 233 mutants exhibiting nalidixic acid resistance were isolated, and together with 94 spontaneous mutants, the sequence changes in the 5'-terminal region of the gyrA gene coding for DNA gyrase subunit A were determined. Among eighteen alleles of the gyrA mutations, eight were single-base substitutions, nine were tandem double-base substitutions, and one was a double substitution skipping a middle base pair. About 6% of the radiation-induced mutations were tandem double-base substitutions, whereas none was observed among the spontaneous ones. Among spontaneous mutations, A:T and G:C pairs were equally subjected to mutations, whereas the substitutions from G:C pairs and those to A:T pairs predominated among those induced with soft X-rays. The peak-energy X-rays were more effective in killing and causing mutations than the low-energy X-rays, however, there seemed no base-change events uniquely attributable to phosphorus K-shell absorption. (author)

  3. Essential Bacillus subtilis genes

    Kobayashi, K.; Ehrlich, S.D.; Albertini, A.;


    To estimate the minimal gene set required to sustain bacterial life in nutritious conditions, we carried out a systematic inactivation of Bacillus subtilis genes. Among approximate to4,100 genes of the organism, only 192 were shown to be indispensable by this or previous work. Another 79 genes were...... predicted to be essential. The vast majority of essential genes were categorized in relatively few domains of cell metabolism, with about half involved in information processing, one-fifth involved in the synthesis of cell envelope and the determination of cell shape and division, and one-tenth related to...... cell energetics. Only 4% of essential genes encode unknown functions. Most essential genes are present throughout a wide range of Bacteria, and almost 70% can also be found in Archaea and Eucarya. However, essential genes related to cell envelope, shape, division, and respiration tend to be lost from...

  4. Effect of individual or combined treatment by γ-irradiation or temperature (high or low) on bacillus subtilis spores and its application for sterilization of ground beef

    The combination of two lethal agents such as irradiation and temperature (high or sub zero) resulted in synergistic death or B. subtilis spores (as indicated by decrease in the thermal D-value). The extent of this synergism in killing a spore population depended mainly on the sequence on application of the two physical agents. Irradiation-temperature (high or sub zero) sequence killed more but injured less B. subtilis spores than temperature irradiation sequence or irradiation and temperature applied separately. Storage at -200C killed more spores than storage at -20C if carried after irradiation, while the reverse was true of storage was prior irradiation. An irradiation dose of 8 KGY followed by thermal exposure to 700C for 1 hr is suggested for the sterilization of ground beef. Irradiation induced certain quantitative changes on the amino-N, protein-N, RNA and DNA of the first subcultures of irradiated spores with stimulatory effect at low irradiation doses and inhibitory effect at the high irradiation doses. This might explain the increased sensitivity of irradiated spores to subsequent exposure to unfavourable temperature (high or sub zero). Exposure of B. subtilis spore to 700C induced a stimulation in the amino- and protein-N of the resulting cells while exposure to 800C resulted in a significant decrease in the amino-N. The protein-N remained more or less the same

  5. Fast Neutron Radiation Effects on Bacillus Subtili

    CHEN Xiaoming; REN Zhenglong; ZHANG Jianguo; ZHENG Chun; TAN Bisheng; YANG Chengde; CHU Shijin


    To examine the sterilizing effect and mechanism of neutron radiation, Bacillus sub-tilis vat. niger, strain (ATCC 9372) spores were irradiated with the fast neutron from the Chinese fast burst reactor Ⅱ(CFBR-Ⅱ). The plate-count results indicated that the D10 value was 384.6 Gy with a neutron radiation dose rate of 7.4 Gy/min. The rudimental catalase activity of the spores declined obviously with the increase in the radiation dose. Meanwhile, under the scanning electron microscope, no visible influence of the neutron radiation on the spore configuration was detected even if the dose was increased to 4 kGy. The content and distribution of DNA double-strand breaks induced by neutron radiation at different doses were measured and quantified by pulsed-field gel electrophoresis (PFGE). Further analysis of the DNA release percentage (PR), the DNA breakage level (L), and the average molecular weight, indicated that DNA fragments were obvi-ously distributed around the 5 kb regions at different radiation doses, which suggests that some points in the DNA molecule were sensitive to neutron radiation. Both PR and L varied regularly to some extent with the increase in radiation dose. Thus neutron radiation has a high sterilization power, and can induce falling enzyme activity and DNA breakage in Bacillus subtilis spores

  6. Bacillus subtilis Deoxyribonucleic Acid Gyrase

    Sugino, A; Bott, K F


    Bacillus subtilis 168 was shown to contain a deoxyribonucleic acid (DNA) gyrase activity which closely resembled those of the enzymes isolated from Escherichia coli and Micrococcus luteus in its enzymatic requirements, substrate specificity, and sensitivity to several antibiotics. The enzyme was purified from the wild type and nalidixic acid-resistant and novobiocin-resistant mutants of B. subtilis and was functionally characterized in vitro. The genetic loci nalA and novA but not novB were s...

  7. A method for the determination of bacterial spore DNA content based on isotopic labelling, spore germination and diphenylamine assay; ploidy of spores of several Bacillus species

    A reliable method for measuring the spore DNA content, based on radioactive DNA labelling, spore germination in absence of DNA replication and diphenylamine assay, was developed. The accuracy of the method, within 10 - 15%, is adequate for determining the number of chromosomes per spore, provided that the genome size is known. B subtilis spores were shown to be invariably monogenomic, while those of larger bacilli Bacillus megaterium, Bacillus cereus and Bacillus thuringiensis, often, if not invariably, contain two genomes. Attempts to modify the spore DNA content of B subtilis by altering the richness of the sporulation medium, the sporulation conditions (liquid or solid medium), or by mutation, were apparently unsuccessful. An increase of spore size with medium richness, not accompanied by an increase in DNA content, was observed. The implication of the apparently species-specific spore ploidy and the influence of the sporulation conditions on spore size and shape are discussed

  8. Flow-cytometric Analysis of Bacillus anthracis Spores

    D. V. Kamboj


    Full Text Available Flow-cytometric technique has been established as a powerful tool for detection andidentification of microbiological agents. Unambiguous and rapid detection of Bacillus anthracisspores has been reported using immunoglobulin G-fluorescein isothiocyanate conjugate againstlive spores. In addition to the high sensitivity, the present technique could differentiate betweenspores of closely related species, eg, Bacillus cereus and Bacillus subtilis using fluorescenceintensity. The technique can be used for detection of live as well as inactivated spores makingit more congenial for screening of suspected samples of bioterrorism.

  9. Esterilização por óxido de etileno: I. Influência do meio de esporulação na resistência dos esporos de Bacillus subtilis var. niger Ethylene oxide sterilization: I. The influence of sporulation medium in the resistance of the spores of Bacillus subtilis var. niger

    Terezinha de Jesus A. Pinto


    Full Text Available Tendo por meta a padronização das variáveis influenciando a resistência de esporos empregados no controle do processo esterilizante por óxido de etileno, foram obtidos esporos de Bacillus subtilis var. niger, em meio sólido e líquido sintético de esporulação. Tais esporos, após padronização quantitativa dos 12 lotes obtidos, foram submetidos a exposições subletais como bioindicadores, tendo o papel como suporte. Construiu-se, então, a curva de letalidade característica de cada lote. A análise estatística empregada não evidenciou diferenças entre resistência dos 10 lotes obtidos em meio sólido e os 2 em meio líquido sintético, ressaltando-se a vantagem quanto ao rendimento que caracterizou a primeira metodologia.Some elements influencing the resistance of spores used in ethylene oxide sterilization process control are standardized. Spores of Bacillus subtilis var. niger were produced in chemically defined liquid and solid sporulation media to a total of 12 lots; after standardization of the number of spores, they were challenged by sub-lethal cycles, followed by a lethality study. According to the statistical model applied, there were no differences between the resistance of spores produced in chemically defined liquid and those produced in solid sporulation media. The advantage of the solid sporulation media consists in the larger production of spores.

  10. Molecular physiology of weak organic acid stress in Bacillus subtilis

    Brul, S.; Beilen, van, J.W.A.


    The mechanism by which weak organic acid (WOA) preservatives inhibit growth of microorganisms may differ between different WOAs and these differences are not well understood. The aim of this thesis has been to obtain a better understanding of the mode of action of these preservatives by which they inhibit the growth of spore-forming bacteria (more specifically Bacillus subtilis).

  11. Hydrazine vapor inactivates Bacillus spores

    Schubert, Wayne W.; Engler, Diane L.; Beaudet, Robert A.


    NASA policy restricts the total number of bacterial spores that can remain on a spacecraft traveling to any planetary body which might harbor life or have evidence of past life. Hydrazine, N2H4, is commonly used as a propellant on spacecraft. Hydrazine as a liquid is known to inactivate bacterial spores. We have now verified that hydrazine vapor also inactivates bacterial spores. After Bacillus atrophaeus ATCC 9372 spores deposited on stainless steel coupons were exposed to saturated hydrazine vapor in closed containers, the spores were recovered from the coupons, serially diluted, pour plated and the surviving bacterial colonies were counted. The exposure times required to reduce the spore population by a factor of ten, known as the D-value, were 4.70 ± 0.50 h at 25 °C and 2.85 ± 0.13 h at 35 °C. These inactivation rates are short enough to ensure that the bioburden of the surfaces and volumes would be negligible after prolonged exposure to hydrazine vapor. Thus, all the propellant tubing and internal tank surfaces exposed to hydrazine vapor do not contribute to the total spore count.

  12. Use of alternative carrier materials in AOAC Official Method 2008.05, efficacy of liquid sporicides against spores of Bacillus subtilis on a hard, nonporous surface, quantitative three-step method.

    Tomasino, Stephen F; Rastogi, Vipin K; Wallace, Lalena; Smith, Lisa S; Hamilton, Martin A; Pines, Rebecca M


    The quantitative Three-Step Method (TSM) for testing the efficacy of liquid sporicides against spores of Bacillus subtilis on a hard, nonporous surface (glass) was adopted as AOAC Official Method 2008.05 in May 2008. The TSM uses 5 x 5 x 1 mm coupons (carriers) upon which spores have been inoculated and which are introduced into liquid sporicidal agent contained in a microcentrifuge tube. Following exposure of inoculated carriers and neutralization, spores are removed from carriers in three fractions (gentle washing, fraction A; sonication, fraction B; and gentle agitation, fraction C). Liquid from each fraction is serially diluted and plated on a recovery medium for spore enumeration. The counts are summed over the three fractions to provide the density (viable spores per carrier), which is log10-transformed to arrive at the log density. The log reduction is calculated by subtracting the mean log density for treated carriers from the mean log density for control carriers. This paper presents a single-laboratory investigation conducted to evaluate the applicability of using two porous carrier materials (ceramic tile and untreated pine wood) and one alternative nonporous material (stainless steel). Glass carriers were included in the study as the reference material. Inoculated carriers were evaluated against three commercially available liquid sporicides (sodium hypochlorite, a combination of peracetic acid and hydrogen peroxide, and glutaraldehyde), each at two levels of presumed efficacy (medium and high) to provide data for assessing the responsiveness of the TSM. Three coupons of each material were evaluated across three replications at each level; three replications of a control were required. Even though all carriers were inoculated with approximately the same number of spores, the observed counts of recovered spores were consistently higher for the nonporous carriers. For control carriers, the mean log densities for the four materials ranged from 6.63 for

  13. Bacillus subtilis FZB24® Affects Flower Quantity and Quality of Saffron (Crocus sativus)

    Sharaf-Eldin, Mahmoud; Elkholy, Shereen; Fernández, José-Antonio; Junge, Helmut; Cheetham, Ronald; Guardiola, José; Weathers, Pamela


    The effect of Bacillus subtilis FZB24® on saffron (Crocus sativus L.) was studied using saffron corms from Spain and the powdered form of B. subtilis FZB24®. Corms were soaked in water or in B. subtilis FZB24 spore solution for 15min before sowing. Some corms were further soil drenched with the spore solution 6, 10 or 14 weeks after sowing. Growth and saffron stigma chemical composition were measured. Compared to untreated controls, application of B. subtilis FZB24 significantly increased lea...

  14. Dosimetria esporular: Bacillus subtilis TKJ6312 como biossensor de radiação solar biologicamente ativa Spore dosimetry: Bacillus subtilis TKJ6312 as biosensor of biologically effective solar radiation

    Marcelo Barcellos da Rosa


    Full Text Available Since 2000, spore dosimetry and spectral photometry have been performed in parallel at the Southern Space Observatory, São Martinho da Serra (Southern Brazil. A comparative study involving data from Punta Arenas - Chile (53.2º S, São Martinho da Serra (29.5º S, Padang - Indonesia (0.9ºS, Brussels - Belgium (50.9º N and Kiyotake - Japan (31.9º N from 2000 to 2006 is presented. The Spore Inactivation Doses presented the higher values in summer (973 ± 73 for Punta Arenas and 4,369 ± 202 for São Martinho da Serra, as well 1,402 ± 170 and 3,400 ± 1,674 for Brussels and Kiyotake, respectively. The simplicity, robustness and high resistance of bacterial spores makes the biosensor an potential biological tool for UV-B monitoring.

  15. Bacillus subtilis deoxyribonuclease activity specific for single-stranded deoxyribonucleic acid: cellular site and variations during germination and sporulation.

    Cobianchi, F; Attolini, C; Falaschi, A; Ciarrocchi, G


    The endonuclease of Bacillus subtilis specific for single-stranded deoxyribonucleic acid is absent in spores, appears during germination only after the start of deoxyribonucleic acid synthesis, and is located almost exclusively in the periplasm.

  16. Regulation of Growth of the Mother Cell and Chromosome Replication during Sporulation of Bacillus subtilis

    Xenopoulos, Panagiotis; Piggot, Patrick J.


    During spore formation, Bacillus subtilis divides asymmetrically, resulting in two cells with different fates. Immediately after division, the transcription factor σF becomes active in the smaller prespore, followed by activation of σE in the larger mother cell. We recently showed that a delay in σE activation resulted in the novel phenotype of two spores (twins) forming within the same mother cell. Mother cells bearing twins are substantially longer than mother cells with single spores. Here...

  17. Role of GerD in Germination of Bacillus subtilis Spores▿

    Pelczar, Patricia L.; Igarashi, Takao; Setlow, Barbara; Setlow, Peter


    Spores of a Bacillus subtilis strain with a gerD deletion mutation (ΔgerD) responded much slower than wild-type spores to nutrient germinants, although they did ultimately germinate, outgrow, and form colonies. Spores lacking GerD and nutrient germinant receptors also germinated slowly with nutrients, as did ΔgerD spores in which nutrient receptors were overexpressed. The germination defect of ΔgerD spores was not suppressed by many changes in the sporulation or germination conditions. Germin...

  18. Exposure of DNA and Bacillus subtilis spores to simulated martian environments: use of quantitative PCR (qPCR) to measure inactivation rates of DNA to function as a template molecule.

    Fajardo-Cavazos, Patricia; Schuerger, Andrew C; Nicholson, Wayne L


    Several NASA and ESA missions are planned for the next decade to investigate the possibility of present or past life on Mars. Evidence of extraterrestrial life will likely rely on the detection of biomolecules, which highlights the importance of preventing forward contamination not only with viable microorganisms but also with biomolecules that could compromise the validity of life-detection experiments. The designation of DNA as a high-priority biosignature makes it necessary to evaluate its persistence in extraterrestrial environments and the effects of those conditions on its biological activity. We exposed DNA deposited on spacecraft-qualified aluminum coupons to a simulated martian environment for periods ranging from 1 minute to 1 hour and measured its ability to function as a template for replication in a quantitative polymerase chain reaction (qPCR) assay. We found that inactivation of naked DNA or DNA extracted from exposed spores of Bacillus subtilis followed a multiphasic UV-dose response and that a fraction of DNA molecules retained functionality after 60 minutes of exposure to simulated full-spectrum solar radiation in martian atmospheric conditions. The results indicate that forward-contaminant DNA could persist for considerable periods of time at the martian surface. PMID:20528195

  19. Comparative genome analysis of Bacillus cereus group genomes withBacillus subtilis

    Anderson, Iain; Sorokin, Alexei; Kapatral, Vinayak; Reznik, Gary; Bhattacharya, Anamitra; Mikhailova, Natalia; Burd, Henry; Joukov, Victor; Kaznadzey, Denis; Walunas, Theresa; D' Souza, Mark; Larsen, Niels; Pusch,Gordon; Liolios, Konstantinos; Grechkin, Yuri; Lapidus, Alla; Goltsman,Eugene; Chu, Lien; Fonstein, Michael; Ehrlich, S. Dusko; Overbeek, Ross; Kyrpides, Nikos; Ivanova, Natalia


    Genome features of the Bacillus cereus group genomes (representative strains of Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis sub spp israelensis) were analyzed and compared with the Bacillus subtilis genome. A core set of 1,381 protein families among the four Bacillus genomes, with an additional set of 933 families common to the B. cereus group, was identified. Differences in signal transduction pathways, membrane transporters, cell surface structures, cell wall, and S-layer proteins suggesting differences in their phenotype were identified. The B. cereus group has signal transduction systems including a tyrosine kinase related to two-component system histidine kinases from B. subtilis. A model for regulation of the stress responsive sigma factor sigmaB in the B. cereus group different from the well studied regulation in B. subtilis has been proposed. Despite a high degree of chromosomal synteny among these genomes, significant differences in cell wall and spore coat proteins that contribute to the survival and adaptation in specific hosts has been identified.

  20. Gas discharge plasmas are effective in inactivating Bacillus and Clostridium spores.

    Tseng, Shawn; Abramzon, Nina; Jackson, James O; Lin, Wei-Jen


    Bacterial spores are the most resistant form of life and have been a major threat to public health and food safety. Nonthermal atmospheric gas discharge plasma is a novel sterilization method that leaves no chemical residue. In our study, a helium radio-frequency cold plasma jet was used to examine its sporicidal effect on selected strains of Bacillus and Clostridium. The species tested included Bacillus subtilis, Bacillus stearothermophilus, Clostridium sporogenes, Clostridium perfringens, Clostridium difficile, and Clostridium botulinum type A and type E. The plasmas were effective in inactivating selected Bacillus and Clostridia spores with D values (decimal reduction time) ranging from 2 to 8 min. Among all spores tested, C. botulinum type A and C. sporogenes were significantly more resistant to plasma inactivation than other species. Observations by phase contrast microscopy showed that B. subtilis spores were severely damaged by plasmas and the majority of the treated spores were unable to initiate the germination process. There was no detectable fragmentation of the DNA when the spores were treated for up to 20 min. The release of dipicolinic acid was observed almost immediately after the plasma treatment, indicating the spore envelope damage could occur quickly resulting in dipicolinic acid release and the reduction of spore resistance. PMID:22075631

  1. Quantitative immunofluorescence studies of the serology of Bacillus anthracis spores.

    Phillips, A. P.; Martin, K L


    A fluorescein-conjugated antibody against formalin-inactivated spores of Bacillus anthracis Vollum reacted only weakly with a variety of Bacillus species in microfluorometric immunofluorescence assays. A conjugated antibody against spores of B. anthracis Sterne showed little affinity for spores of several B. anthracis isolates including B. anthracis Vollum, indicating that more than one anthrax spore serotype exists.

  2. Inactivation of Spores of Bacillus anthracis Sterne, Bacillus cereus, and Bacillus thuringiensis subsp. israelensis by Chlorination

    Rice, E W; Adcock, N. J.; Sivaganesan, M; Rose, L. J.


    Three species of Bacillus were evaluated as potential surrogates for Bacillus anthracis for determining the sporicidal activity of chlorination as commonly used in drinking water treatment. Spores of Bacillus thuringiensis subsp. israelensis were found to be an appropriate surrogate for spores of B. anthracis for use in chlorine inactivation studies.

  3. Protein-Tyrosine Phosphorylation in Bacillus subtilis

    Mijakovic, Ivan; Petranovic, Dina; Bottini, N.; Deutscher, J.; Jensen, Peter Ruhdal


    phosphorylation, indicating that this post-translational modifi cation could regulate physiological processes ranging from stress response and exopolysaccharide synthesis to DNA metabolism. Some interesting work in this fi eld was done in Bacillus subtilis , and we here present the current state of knowledge on...

  4. Complete Genome of Bacillus subtilis Myophage Grass

    Miller, Stanton Y.; Colquhoun, Jennifer M.; Perl, Abbey L.; Chamakura, Karthik R.; Kuty Everett, Gabriel F.


    Bacillus subtilis is a ubiquitous Gram-positive model organism. Here, we describe the complete genome of B. subtilus myophage Grass. Aside from genes encoding core proteins pertinent to the life cycle of the phage, Grass has several interesting features, including an FtsK/SpoIIIE protein.

  5. 利用枯草芽孢衣壳蛋白表面展示β-半乳糖苷酶%Functional Display of β-galactosidase on the Spore Surface of Bacillus subtilis Using Spore Coat Protein as Anchor Motif

    王贺; 杨瑞金; 华霄; 赵伟; 张文斌


    分别将枯草芽孢杆菌(Bacillussubtilis 168)芽孢衣壳蛋白CotB、CotC、CotG和CotX的启动子和编码序列与来自嗜热脂肪芽孢杆菌(BacillusstearothermophilusIAMll001)的β-半乳糖苷酶基因bgaB进行重组,构建融合表达cotB—bgaB、eotC—bgaB、eotG—bgaB和eotX—bgaB的整合型重组质粒。将4种重组质粒分别转入枯草芽孢杆菌Bacillussubtilis168(trp。),获得了能在芽孢表面展示的重组菌株PB701、PB702、PB703和PB704。经Westernblot检测,4种重组菌株均表达了预期分子量的融合蛋白,初步表明β-半乳糖苷酶被锚定在重组菌株的芽孢表面。以oNPG为底物测定4种重组菌株芽孢表面展示β-半乳糖苷酶的水解能力,得到的酶活分别为0.14、0.06、0.22和0.20U/mL。%In this work, we developed an efficient spore display system that a model protein β-galactosidase was anchored on the spore surface of Bacillus subtilis 168 based on the use of spore coat proteins. The PCR-amplifying cotB, cotC, cotG and cotX were ligated with pMD-19T and digested with XbaI and KpnI, and then subcloned into vector pJS700a previously digested with the same two restriction enzymes, finally resulted in the plasmids pJSB, pJSC, pJSG and pJSX. To construct the gene fusions, the bgaB from Bacillus stearothermophilus IAMll001 was cloned into the KpnI and EcoRI sites of plasmid pJSB, pJSC, pJS G and pJSX to generate generating the plasmids pJSBB, pJSCB, pJSGB and pJSXB,respectively After linearization with BgllI restriction endonuclease, the four re- combinant integrative plasmids were transformed into B. subtilis 168 to yield the recombinant strain PB701, PB702, PB703 and PB704,respectively. Results from Western blot analysis showed that the fusion protein was immobilized on the spore surface. Using oNPG as substrate, the enzyme activity of spore-displaying β-galactosidase was assayed and they were 0.14, 0.06, 0.22 and 0.20 U/mL for PB701, PB702, PB

  6. Localization of the Germination Protein GerD to the Inner Membrane in Bacillus subtilis Spores▿

    Pelczar, Patricia L.; Setlow, Peter


    GerD of Bacillus subtilis is a protein essential for normal spore germination with either l-alanine or a mixture of l-asparagine, d-glucose, d-fructose, and potassium ions. GerD's amino acid sequence suggests that it may be a lipoprotein, indicating a likely location in a membrane. Location in the spore's outer membrane seems unlikely, since removal of this membrane does not result in a gerD spore germination phenotype, suggesting that GerD is likely in the spore's inner membrane. In order to...

  7. Selectivity in protein degradation during sporulation of Bacillus subtilis

    The breakdown of cellular protein was investigated in Bacillus subtilis ATCC 6051 labeled with glycine-2-3H or L-phenylalanine-U-14C at the different stages of vegetative growth and sporulation. The growth of the culture was determined by measuring optical density at 660 nm. The heat-resistant spores were scored by plating after heating at 80 deg C for 10 minutes. A question whether the turnover of glycine-labeled protein is similar to that of phenylalanine-labeled protein was experimentally studied. The patterns obtained with the glycine-labeled protein were different from those of phenylalanine-labeled protein. This was not multiple turnover. The cellular protein which was labeled with glycine at an early stage of sporulation showed rapid degradation, but the degradation of the protein labeled with glycine at later stages did not occur at all. Another question whether the labeled glycine incorporated into cells at the different stages of growth and sporulation was present in the spore coat fraction of matured spores was studied. Experiment demonstrated that the glycine incorporated into cells at the late sporulation stage was mainly utilized for the biosynthesis of the spore coat protein. These data suggest that the spore coat protein which contains relatively large amount of glycine is rarely subject to further degradation. (Iwakiri, K.)

  8. Scientific Opinion on the safety and efficacy of Bacillus subtilis PB6 (Bacillus subtilis) as a feed additive for laying hens and minor poultry species for laying

    EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP)


    Bacillus subtilis PB6 is the trade name for a feed additive based on viable spores of a strain of Bacillus subtilis. This species is considered by EFSA to be suitable for the qualified presumption of safety approach to safety assessment. This approach requires the identity of the active agent to be established and the absence of toxigenic potential and resistance to antibiotics of human or veterinary clinical significance to be demonstrated. No evidence of toxigenic potential or of resistance...

  9. Proteins that interact with GTP during sporulation of Bacillus subtilis

    During sporulation of Bacillus subtilis, several proteins were shown to interact with GTP in specific ways. UV light was used to cross-link [α-32P]GTP to proteins in cell extracts at different stages of growth. After electrophoresis, 11 bands of radioactivity were found in vegetative cells, 4 more appeared during sporulation, and only 9 remained in mature spores. Based on the labeling pattern with or without UV light to cross-link either [α-32P]GTP or [γ-32P]GTP, 11 bands of radioactivity were apparent guanine nucleotide-binding proteins, and 5 bands appeared to be phosphorylated and/or guanylated. Similar results were found with Bacillus megaterium. Assuming the GTP might be a type of signal for sporulation, it could interact with and regulate proteins by at least three mechanisms

  10. Protein-Tyrosine Phosphorylation in Bacillus subtilis

    Mijakovic, Ivan; Petranovic, Dina; Bottini, N.;


    phosphorylation, indicating that this post-translational modifi cation could regulate physiological processes ranging from stress response and exopolysaccharide synthesis to DNA metabolism. Some interesting work in this fi eld was done in Bacillus subtilis , and we here present the current state of knowledge on...... protein-tyrosine phosphorylation in this gram-positive model organism. With its two kinases, two kinase modulators, three phosphatases and at least four different tyrosine-phosphorylated substrates, B. subtilis is the bacterium with the highest number of presently known participants in the global network...

  11. Development of bioprocesses for the production of a biological indicator for sterilization processes from Bacillus atrophaeus spores

    Sella, Sandra Regina Barroso Ruiz


    Abstract: The genus Bacillus includes a great diversity of industrially important strains, including Bacillus atrophaeus (formerly Bacillus subtilis var. niger). This spore-forming bacterium has been established as industrial bacteria in the production of biological sterilization indicators, in studies of biodefense and astrobiology methods, and as potential adjuvants or vehicles for vaccines, among other applications. Two novels, cost-effective B. atrophaeus Sterilization Bioindicator System...

  12. Cannibalism stress response in Bacillus subtilis.

    Höfler, Carolin; Heckmann, Judith; Fritsch, Anne; Popp, Philipp; Gebhard, Susanne; Fritz, Georg; Mascher, Thorsten


    When faced with carbon source limitation, the Gram-positive soil organism Bacillus subtilis initiates a survival strategy called sporulation, which leads to the formation of highly resistant endospores that allow B. subtilis to survive even long periods of starvation. In order to avoid commitment to this energy-demanding and irreversible process, B. subtilis employs another strategy called 'cannibalism' to delay sporulation as long as possible. Cannibalism involves the production and secretion of two cannibalism toxins, sporulation delaying protein (SDP) and sporulation killing factor (SKF), which are able to lyse sensitive siblings. The lysed cells are thought to then provide nutrients for the cannibals to slow down or even prevent them from entering sporulation. In this study, we uncovered the role of the cell envelope stress response (CESR), especially the Bce-like antimicrobial peptide detoxification modules, in the cannibalism stress response during the stationary phase. SDP and SKF specifically induce Bce-like systems and some extracytoplasmic function σ factors in stationary-phase cultures, but only the latter provide some degree of protection. A full Bce response is only triggered by mature toxins, and not by toxin precursors. Our study provides insights into the close relationship between stationary-phase survival and the CESR of B. subtilis. PMID:26364265

  13. Comparison of different Bacillus subtilis expression systems.

    Vavrová, Ludmila; Muchová, Katarína; Barák, Imrich


    Bacillus subtilis is considered to have great potential as a host for the production and secretion of recombinant proteins. Many different expression systems have been developed for B. subtilis. Here we compare two widely used expression systems, the IPTG-inducible derivative of spac system (hyper-spank) and the xylose-inducible (xyl) to the SURE (subtilin-regulated gene expression) system. Western blot analysis of the membrane protein SpoIISA together with its protein partner SpoIISB showed that the highest expression level of this complex is obtained using the SURE system. Measurement of β-galactosidase activities of the promoter-lacZ fusions in individual expression systems confirmed that the P(spaS) promoter of the SURE system is the strongest of those compared, although the induction/repression ratio reached only 1.84. Based on these results, we conclude that the SURE system is the most efficient of these three B. subtilis expression systems in terms of the amount of expressed product. Remarkably, the yield of the SpoIISA-SpoIISB complex obtained from B. subtilis was comparable to that normally obtained from the Escherichia coli arabinose-inducible expression system. PMID:20863884

  14. Hyaluronic Acid Production in Bacillus subtilis

    Widner, Bill; Behr, Régine; Von Dollen, Steve; Tang, Maria; Heu, Tia; Sloma, Alan; Sternberg, Dave; DeAngelis, Paul L; Paul H. Weigel; Brown, Steve


    The hasA gene from Streptococcus equisimilis, which encodes the enzyme hyaluronan synthase, has been expressed in Bacillus subtilis, resulting in the production of hyaluronic acid (HA) in the 1-MDa range. Artificial operons were assembled and tested, all of which contain the hasA gene along with one or more genes encoding enzymes involved in the synthesis of the UDP-precursor sugars that are required for HA synthesis. It was determined that the production of UDP-glucuronic acid is limiting in...

  15. Bacillus subtilis pur operon expression and regulation.

    Ebbole, D J; Zalkin, H


    The Bacillus subtilis pur operon is a 12-gene cluster, purEKB-purC(orf)QLF-purMNH(J)-purD, organized in groups of overlapping coding units separated by intercistronic gaps. Translational fusions of Escherichia coli lacZ were constructed to purE, purC, and purM, the first gene of each group. Analyses of gene fusions integrated into the chromosomal pur operon exclude the possibility of internal promoters in intercistronic regions and support the view that transcription is from the single sigma ...

  16. Bacillus subtilis regulatory protein GerE

    Ducros, V M A; Brannigan, J.A.; Lewis, R J; Wilkinson, A.J.


    GerE is the latest-acting of a series of factors which regulate gene expression in the mother cell during sporulation in Bacillus. The gene encoding GerE has been cloned from B. subtilis and overexpressed in Escherichia coli. Purified GerE has been crystallized by the hanging-drop vapour-diffusion method using polyethylene glycol as a precipitant. The small plate-like crystals belong to the monoclinic space group C2 and diffract beyond 2.2 Angstrom resolution with a synchrotron radiation X-ra...

  17. Bacillus subtilis as potential producer for polyhydroxyalkanoates

    Patel Sanjay KS


    Full Text Available Abstract Polyhydroxyalkanoates (PHAs are biodegradable polymers produced by microbes to overcome environmental stress. Commercial production of PHAs is limited by the high cost of production compared to conventional plastics. Another hindrance is the brittle nature and low strength of polyhydroxybutyrate (PHB, the most widely studied PHA. The needs are to produce PHAs, which have better elastomeric properties suitable for biomedical applications, preferably from inexpensive renewable sources to reduce cost. Certain unique properties of Bacillus subtilis such as lack of the toxic lipo-polysaccharides, expression of self-lysing genes on completion of PHA biosynthetic process – for easy and timely recovery, usage of biowastes as feed enable it to compete as potential candidate for commercial production of PHA.

  18. Isolation and Characterization of Phages Infecting Bacillus subtilis

    Anna Krasowska


    Full Text Available Bacteriophages have been suggested as an alternative approach to reduce the amount of pathogens in various applications. Bacteriophages of various specificity and virulence were isolated as a means of controlling food-borne pathogens. We studied the interaction of bacteriophages with Bacillus species, which are very often persistent in industrial applications such as food production due to their antibiotic resistance and spore formation. A comparative study using electron microscopy, PFGE, and SDS-PAGE as well as determination of host range, pH and temperature resistance, adsorption rate, latent time, and phage burst size was performed on three phages of the Myoviridae family and one phage of the Siphoviridae family which infected Bacillus subtilis strains. The phages are morphologically different and characterized by icosahedral heads and contractile (SIOΦ, SUBω, and SPOσ phages or noncontractile (ARπ phage tails. The genomes of SIOΦ and SUBω are composed of 154 kb. The capsid of SIOΦ is composed of four proteins. Bacteriophages SPOσ and ARπ have genome sizes of 25 kbp and 40 kbp, respectively. Both phages as well as SUBω phage have 14 proteins in their capsids. Phages SIOΦ and SPOσ are resistant to high temperatures and to the acid (4.0 and alkaline (9.0 and 10.0 pH.

  19. Esterilização por óxido de etileno: I. Influência do meio de esporulação na resistência dos esporos de Bacillus subtilis var. niger Ethylene oxide sterilization: I. The influence of sporulation medium in the resistance of the spores of Bacillus subtilis var. niger

    Terezinha de Jesus A. Pinto; Takako Saito


    Tendo por meta a padronização das variáveis influenciando a resistência de esporos empregados no controle do processo esterilizante por óxido de etileno, foram obtidos esporos de Bacillus subtilis var. niger, em meio sólido e líquido sintético de esporulação. Tais esporos, após padronização quantitativa dos 12 lotes obtidos, foram submetidos a exposições subletais como bioindicadores, tendo o papel como suporte. Construiu-se, então, a curva de letalidade característica de cada lote. A análise...

  20. Differentiation between spores of Bacillus anthracis and Bacillus cereus by a quantitative immunofluorescence technique.

    Phillips, A. P.; Martin, K L; Broster, M G


    A quantitative immunofluorescence assay based on fiber optic microscopy was used to measure the reaction of formalized spores of Bacillus anthracis and Bacillus cereus isolates with fluorescein conjugates prepared by hyperimmunization with B. anthracis Vollum spores. The spores of 11 of the 20 B. cereus strains reacted with the anti-anthrax conjugate to such an extent that they were indistinguishable from the spores of the several B. anthracis isolates tested. However, absorption of the conju...

  1. Pseudosecretion of Escherichia coli chloramphenicol acetyltransferase by Bacillus subtilis.

    Le Grice, S F; Gentz, R; Bannwarth, W; Kocher, H. P.


    Bacillus subtilis harboring the vector 25RBSII secrets an Escherichia coli-derived chloramphenicol acetyltransferase into culture supernatants. The secreted enzyme lacks 18 amino acids; these are removed externally rather than during secretion.

  2. Two Genes Encoding Uracil Phosphoribosyltransferase Are Present in Bacillus subtilis

    Martinussen, Jan; Glaser, Philippe; Andersen, Paal S.;


    Uracil phosphoribosyltransferase (UPRTase) catalyzes the key reaction in the salvage of uracil in many microorganisms. Surprisingly, two genes encoding UPRTase activity were cloned from Bacillus subtilis by complementation of an Escherichia coli mutant. The genes were sequenced, and the putative...

  3. Selection of Bacillus subtilis mutants impaired in ammonia assimilation.

    Dean, D R; Aronson, A I


    The selection of Bacillus subtilis mutants capable of using D-histidine to fulfill a requirement for L-histidine resulted in mutants with either no glutamate synthase activity or increased amounts of an altered glutamine synthetase.

  4. Water surface tension modulates the swarming mechanics of Bacillus subtilis

    Ke, Wan-Ju; Hsueh, Yi-Huang; Cheng, Yu-Chieh; Wu, Chih-Ching; Liu, Shih-Tung


    Many Bacillus subtilis strains swarm, often forming colonies with tendrils on agar medium. It is known that B. subtilis swarming requires flagella and a biosurfactant, surfactin. In this study, we find that water surface tension plays a role in swarming dynamics. B. subtilis colonies were found to contain water, and when a low amount of surfactin is produced, the water surface tension of the colony restricts expansion, causing bacterial density to rise. The increased density induces a quorum ...

  5. Expression of UGA-Containing Mycoplasma Genes in Bacillus subtilis

    Kannan, T. R.; Baseman, Joel B.


    We used Bacillus subtilis to express UGA-containing Mycoplasma genes encoding the P30 adhesin (one UGA) of Mycoplasma pneumoniae and methionine sulfoxide reductase (two UGAs) of Mycoplasma genitalium. Due to natural UGA suppression, these Mycoplasma genes were expressed as full-length protein products, but at relatively low efficiency, in recombinant wild-type Bacillus. The B. subtilis-expressed Mycoplasma proteins appeared as single bands and not as multiple bands compared to expression in r...

  6. Draft Genome Sequence of Bacillus subtilis strain KATMIRA1933

    Karlyshev, Andrey V.; Melnikov, Vyacheslav G.; Chikindas, Michael L.


    In this report, we present a draft sequence of Bacillus subtilis KATMIRA1933. Previous studies demonstrated probiotic properties of this strain partially attributed to production of an antibacterial compound, subtilosin. Comparative analysis of this strain’s genome with that of a commercial probiotic strain, B. subtilis Natto, is presented.

  7. Transformation of Bacillus subtilis by single-stranded plasmid DNA.

    Rudolph, C F; Schmidt, B J; Saunders, C W


    The single-stranded form of a pE194-based plasmid transformed Bacillus subtilis protoplasts at least as efficiently as did the double-stranded plasmid, but the single-stranded form did not detectably transform B. subtilis competent cells.

  8. Comparative genome analysis of Bacillus cereus group genomes with Bacillus subtilis

    Anderson, Iain; Sorokin, Alexei; Kapatral, Vinayak; Reznik, Gary; Bhattacharya, Anamitra; Mikhailova, Natalia; Burd, Henry; Joukov, Victor; Kaznadzey, Denis; Walunas, Theresa; D'Souza, Mark; Larsen, Niels; Pusch, Gordon; Liolios, Konstantinos; Grechkin, Yuri


    Genome features of the Bacillus cereus group genomes (representative strains of Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis sub spp israelensis) were analyzed and compared with the Bacillus subtilis genome. A core set of 1,381 protein families among the four Bacillus genomes, with an additional set of 933 families common to the B. cereus group, was identified. Differences in signal transduction pathways, membrane transporters, cell surface structures, cell wall, and S-...

  9. Genome sequence of Bacillus subtilis subsp. spizizenii gtP20b, isolated from the Indian ocean.

    Fan, Longjiang; Bo, Shiping; Chen, Huan; Ye, Wanzhi; Kleinschmidt, Katrin; Baumann, Heike I; Imhoff, Johannes F; Kleine, Michael; Cai, Daguang


    Bacillus subtilis is an aerobic spore-forming Gram-positive bacterium that is a model organism and of great industrial significance as the source of diverse novel functional molecules. Here we present, to our knowledge, the first genome sequence of Bacillus subtilis strain gtP20b isolated from the marine environment. A subset of candidate genes and gene clusters were identified, which are potentially involved in production of diverse functional molecules, like novel ribosomal and nonribosomal antimicrobial peptides. The genome sequence described in this paper is due to its high strain specificity of great importance for basic as well as applied researches on marine organisms. PMID:21183663

  10. Natural Dissemination of Bacillus anthracis Spores in Northern Canada

    Dragon, D C; Bader, D. E.; Mitchell, J.; Woollen, N.


    Soil samples were collected from around fresh and year-old bison carcasses and areas not associated with known carcasses in Wood Buffalo National Park during an active anthrax outbreak in the summer of 2001. Sample selection with a grid provided the most complete coverage of a site. Soil samples were screened for viable Bacillus anthracis spores via selective culture, phenotypic analysis, and PCR. Bacillus anthracis spores were isolated from 28.4% of the samples. The highest concentrations of...

  11. The Silicon Layer Supports Acid Resistance of Bacillus cereus Spores

    Hirota, Ryuichi; Hata, Yumehiro; Ikeda, Takeshi; Ishida, Takenori; Kuroda, Akio


    Silicon (Si) is considered to be a “quasiessential” element for most living organisms. However, silicate uptake in bacteria and its physiological functions have remained obscure. We observed that Si is deposited in a spore coat layer of nanometer-sized particles in Bacillus cereus and that the Si layer enhances acid resistance. The novel acid resistance of the spore mediated by Si encapsulation was also observed in other Bacillus strains, representing a general adaptation enhancing survival u...

  12. Adhesion of B. subtilis spores and vegetative cells onto stainless steel--DLVO theories and AFM spectroscopy.

    Harimawan, Ardiyan; Zhong, Shaoping; Lim, Chwee-Teck; Ting, Yen-Peng


    Interactions between the bacterium Bacillus subtilis (either as vegetative cells or as spores) and stainless steel 316 (SS-316) surfaces were quantified using the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory and extended DLVO (xDLVO) approach in conjunction with live force spectroscopy using an Atomic Force Microscope (AFM). The xDLVO approach accounts for acid-base (polar) interactions that are not considered in the classical DLVO theory. AFM results revealed that spores manifested stronger attraction interactions to stainless steel compared to their vegetative cells counterparts due to lower energy barrier as predicted by both the theoretical approaches as well as the higher hydrophobicity on the spore surfaces. Both DLVO and xDLVO theories predict that vegetative cells manifest weaker attachment on the surfaces compared to spores. Results of AFM force measurement corroborate these findings; spores recorded significantly higher adhesion force (2.92±0.4 nN) compared to vegetative cells (0.65±0.2 nN). The adhesion of spores presents greater challenges in biofilm control owing to its stronger attachment and persistence when the spores are formed under adverse environmental conditions. PMID:23777862

  13. Dynamics of Aerial Tower Formation in Bacillus subtilis Biofilms

    Sinha, Naveen; Seminara, Agnese; Wilking, James; Brenner, Michael; Weitz, Dave


    Biofilms are highly-organized colonies of bacteria that form on surfaces. These colonies form sophisticated structures which make them robust and difficult to remove from environments such as catheters, where they pose serious infection problems. Previous work has shown that sub-mm sized aerial towers form on the surface of Bacillus subtilis colony biofilms. Spore-formation is located preferentially at the tops of these towers, known as fruiting bodies, which aid in the dispersal and propagation of the colony to new sites. The formation of towers is strongly affected by the quorum-sensing molecule surfactin and the cannibalism pathway of the bacteria. In the present work, we use confocal fluorescence microscopy to study the development of individual fruiting bodies, allowing us to visualize the time-dependent spatial distribution of matrix-forming and sporulating bacteria within the towers. With this information, we investigate the physical mechanisms, such as surface tension and polymer concentration gradients, that drive the formation of these structures.

  14. Direct investigation of viscosity of an atypical inner membrane of Bacillus spores: a molecular rotor/FLIM study.

    Loison, Pauline; Hosny, Neveen A; Gervais, Patrick; Champion, Dominique; Kuimova, Marina K; Perrier-Cornet, Jean-Marie


    We utilize the fluorescent molecular rotor Bodipy-C12 to investigate the viscoelastic properties of hydrophobic layers of bacterial spores Bacillus subtilis. The molecular rotor shows a marked increase in fluorescence lifetime, from 0.3 to 4ns, upon viscosity increase from 1 to 1500cP and can be incorporated into the hydrophobic layers within the spores from dormant state through to germination. We use fluorescence lifetime imaging microscopy to visualize the viscosity inside different compartments of the bacterial spore in order to investigate the inner membrane and relate its compaction to the extreme resistance observed during exposure of spores to toxic chemicals. We demonstrate that the bacterial spores possess an inner membrane that is characterized by a very high viscosity, exceeding 1000cP, where the lipid bilayer is likely in a gel state. We also show that this membrane evolves during germination to reach a viscosity value close to that of a vegetative cell membrane, ca. 600cP. The present study demonstrates quantitative imaging of the microscopic viscosity in hydrophobic layers of bacterial spores Bacillus subtilis and shows the potential for further investigation of spore membranes under environmental stress. PMID:23831602

  15. Bacillus atrophaeus Outer Spore Coat Assembly and Ultrastructure

    Plomp, M; Leighton, T J; Wheeler, K E; Pitesky, M E; Malkin, A J


    Our previous atomic force microscopy (AFM) studies successfully visualized native Bacillus atrophaeus spore coat ultrastructure and surface morphology. We have shown that the outer spore coat surface is formed by a crystalline array of {approx}11 nm thick rodlets, having a periodicity of {approx}8 nm. We present here further AFM ultrastructural investigations of air-dried and fully hydrated spore surface architecture. In the rodlet layer, planar and point defects, as well as domain boundaries, similar to those described for inorganic and macromolecular crystals, were identified. For several Bacillus species, rodlet structure assembly and architectural variation appear to be a consequence of species-specific nucleation and crystallization mechanisms that regulate the formation of the outer spore coat. We propose a unifying mechanism for nucleation and self-assembly of this crystalline layer on the outer spore coat surface.

  16. Genetic transformation of Bacillus strains close to bacillus subtilis and isolated from the soil

    Chromosomal and plasmid transformation was found in five out of 118 Bacillus strains, close or identical to Bacillus subtilis, and isolated from soil in Moscow or in the Moscow district. The efficiency of transformation in these strains was lower than that in derivatives of Bac. subtilis strain 168. In these strains the ability to undergo transformation was dependent on the rate of sporulation and the presence of restrictases. As in the case of Bac. subtilis 168 the strains isolated may be used as models in genetic transformation studies on Bac. subtilis

  17. 40 CFR 180.1128 - Bacillus subtilis MBI 600; exemption from the requirement of a tolerance.


    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus subtilis MBI 600; exemption... FOOD Exemptions From Tolerances § 180.1128 Bacillus subtilis MBI 600; exemption from the requirement of... biofungicide Bacillus subtilis MBI 600 in or on all food commodities, including residues resulting from...

  18. Characterization of an L-arabinose isomerase from Bacillus subtilis

    Kim, Jin-Ha; Prabhu, Ponnandy; Jeya, Marimuthu;


    An isolated gene from Bacillus subtilis str. 168 encoding a putative isomerase was proposed as an L-arabinose isomerase (L-AI), cloned into Escherichia coli, and its nucleotide sequence was determined. DNA sequence analysis revealed an open reading frame of 1,491 bp, capable of encoding a polypep......An isolated gene from Bacillus subtilis str. 168 encoding a putative isomerase was proposed as an L-arabinose isomerase (L-AI), cloned into Escherichia coli, and its nucleotide sequence was determined. DNA sequence analysis revealed an open reading frame of 1,491 bp, capable of encoding...

  19. Enhancement of Cellulase Production by Cellulomonas Fimi and Bacillus Subtilis

    Two bacterial strains identified as Cellulomonas fimi and Baciliius subtilus are cosidered as highly active cellulytic bacteria. Trials for maximizing the cellulolytic activites of the two strains were conducted. A maximum cellulase production was achieved at 1 and 1.5%carboxy methyl cellulose as carbon source, sodium nitrate and yeast as nitrogen source for Cellulomonas fimi and Bacillus subtilis, respectively. Incubation temprature at 30 and 45 degree C, ph at 6 and 7 achieved the highest activity of cellulase for Cellulomonas fimi and bacillus subtilis, respectively

  20. Growth and sporulation of Bacillus subtilis under microgravity (7-IML-1)

    Mennigmann, Horst-Dieter


    The experiment was aimed at measuring the growth and sporulation of Bacillus subtilis under microgravity. The hardware for the experiment consists of a culture chamber (15 ml) made from titanium and closed by a membrane permeable for gases but not for water. Two variants of this basic structure were built which fit into the standard Biorack container types 1 and 2 respectively. Growth of the bacteria will be monitored by continuously measuring the optical density with a built-in miniaturized photometer. Other parameters (viability, sporulation, fine structure, size distribution of cells and spores, growth kinetics, etc.) will be measured on the fixed samples and on those where metabolism was temporarily halted, respectively.

  1. N-terminal amino acid sequence of Bacillus licheniformis alpha-amylase: comparison with Bacillus amyloliquefaciens and Bacillus subtilis Enzymes.

    Kuhn, H; Fietzek, P P; Lampen, J. O.


    The thermostable, liquefying alpha-amylase from Bacillus licheniformis was immunologically cross-reactive with the thermolabile, liquefying alpha-amylase from Bacillus amyloliquefaciens. Their N-terminal amino acid sequences showed extensive homology with each other, but not with the saccharifying alpha-amylases of Bacillus subtilis.

  2. Transformation of Bacillus Subtilis with cloned thymidylate synthetases

    Rubin, Edward M.


    Bacillus subtilis carries two genes, thyA and thyB, each encoding different protein products, with thymidylate synthetase (TSase) activity. Either of these genes alone is sufficient for thymidine independence in B. subtilis. In addition there exist two B. subtilis temperate bacteriophages which upon infection of thymine requiring auxotrophs results in conversion of the organism to thymine independence. Chimeric plasmids selected for Thy/sup +/ transforming activity in E. coli were constructed and then used as a source of defined highly enriched DNA with which to transform competent B. subtilis. These plasmids were studied for their: (1) abiility to transform B. subtilis to thymine independence; (2) site of integration within the B. subtilis chromosome upon transformation; (3) phenotype of Thy/sup +/ plasmid generated transformants; and (4) nucleotide sequence homology among the cloned DNA fragments conferring thymine independence. Plasmids containing the two bacteriophage thy genes displayed the phenotype associated with thyA, whereas the plasmids containing the cloned B. subtilis chromosomal genes displayed the phenotype associated with thyB. Utilizing similar technology, the ability of an entirely foreign hybred bacterial plasmiid to transform B. subtilis was examined. In this case the gene from E. coli encoding thymidylate synthetase was cloned in the plasmid pBR322. The resulting chimeric plasmid was effective in transforming both E. coli and B. subtilis to thymine prototrophy. Uncloned linear E. coli chromosomal DNA was unable to transform thymine requiring strains of B. subtilis to thymine independence. Although the Thy/sup +/ transformants of E. coli contained plasmid DNA, the Thy/sup +/ transformants derived from the transformation of B. subtilis did not contain detectable extrachromosomal DNA. Instead the DNA from the chimeric plasmid was integrated into the chromosome of B. subtilis. (ERB)

  3. Impact of Serine/Threonine Protein Kinases on the Regulation of Sporulation in Bacillus subtilis

    Pompeo, Frédérique; Foulquier, Elodie; Galinier, Anne


    Bacteria possess many kinases that catalyze phosphorylation of proteins on diverse amino acids including arginine, cysteine, histidine, aspartate, serine, threonine, and tyrosine. These protein kinases regulate different physiological processes in response to environmental modifications. For example, in response to nutritional stresses, the Gram-positive bacterium Bacillus subtilis can differentiate into an endospore; the initiation of sporulation is controlled by the master regulator Spo0A, which is activated by phosphorylation. Spo0A phosphorylation is carried out by a multi-component phosphorelay system. These phosphorylation events on histidine and aspartate residues are labile, highly dynamic and permit a temporal control of the sporulation initiation decision. More recently, another kind of phosphorylation, more stable yet still dynamic, on serine or threonine residues, was proposed to play a role in spore maintenance and spore revival. Kinases that perform these phosphorylation events mainly belong to the Hanks family and could regulate spore dormancy and spore germination. The aim of this mini review is to focus on the regulation of sporulation in B. subtilis by these serine and threonine phosphorylation events and the kinases catalyzing them. PMID:27148245

  4. Molecular Cloning and Nucleotide Sequence of the Superoxide Dismutase Gene and Characterization of Its Product from Bacillus subtilis

    Inaoka, Takashi; MATSUMURA, Yoshinobu; TSUCHIDO, Tetsuaki


    Bacillus subtilis was found to possess one detectable superoxide dismutase (Sod) in both vegetative cells and spores. The Sod activity in vegetative cells was maximal at stationary phase. Manganese was necessary to sustain Sod activity at stationary phase, but paraquat, a superoxide generator, did not induce the expression of Sod. The specific activity of purified Sod was approximately 2,600 U/mg of protein, and the enzyme was a homodimer protein with a molecular mass of approximately 25,000 ...

  5. Decontamination Options for Drinking Water Contaminated with Bacillus anthracis Spores

    Raber, E; Burklund, A


    Five parameters were evaluated with surrogates of Bacillus anthracis spores to determine effective decontamination options for use in a contaminated drinking water supply. The parameters were: (1) type of Bacillus spore surrogate (B. thuringiensis or B. atrophaeus); (2) spore concentration in suspension (10{sup 2} to 10{sup 6} spores/ml); (3) chemical characteristics of decontaminant [sodium dicholor-s-triazinetrione dihydrate (Dichlor), hydrogen peroxide, potassium peroxymonosulfate (Oxone), sodium hypochlorite, and VirkonS{reg_sign}]; (4) decontaminant concentration (0.01% to 5%); and (5) decontaminant exposure time (10 min to 24 hr). Results from 162 suspension tests with appropriate controls are reported. Hydrogen peroxide at a concentration of 5%, and Dichlor and sodium hypochlorite at a concentration of 2%, were effective at spore inactivation regardless of spore type tested, spore exposure time, or spore concentration evaluated. This is the first reported study of Dichlor as an effective decontaminant for B. anthracis spore surrogates. Dichlor's desirable characteristics of high oxidation potential, high level of free chlorine, and more neutral pH than that of other oxidizers evaluated appear to make it an excellent alternative. All three oxidizers were effective against B. atrophaeus spores in meeting EPA's biocide standard of greater than a 6 log kill after a 10-minute exposure time and at lower concentrations than typically reported for biocide use. Solutions of 5% VirkonS{reg_sign} and Oxone were less effective decontaminants than other options evaluated in this study and did not meet the EPA's efficacy standard for biocides. Differences in methods and procedures reported by other investigators make quantitative comparisons among studies difficult.

  6. Sigma A recognition sites in the Bacillus subtilis genome

    Jarmer, Hanne Østergaard; Larsen, Thomas Schou; Krogh, Anders Stærmose;


    A hidden Markov model of sigma (A) RNA polymerase cofactor recognition sites in Bacillus subtilis, containing either the common or the extended -10 motifs, has been constructed based on experimentally verified sigma (A) recognition sites. This work suggests that more information exists at the ini...

  7. A New Saponin Transformed from Ginsenoside Rhl by Bacillus subtilis

    Guo Hong LI; Yue Mao SHEN; Ke Qin ZHANG


    A novel saponin was isolated from the transformed products of ginsenoside Rh1 by Bacillus subtilis. It's structure was determined to be 3-O-β-D-glucopyranosyl-6-O-β-D-glucopyranosyl-20 (S)-protopanaxatriol on the basis of the spectral data.

  8. The transcriptionally active regions in the genome of Bacillus subtilis

    Rasmussen, Simon; Nielsen, Henrik Bjørn; Jarmer, Hanne Østergaard


    The majority of all genes have so far been identified and annotated systematically through in silico gene finding. Here we report the finding of 3662 strand-specific transcriptionally active regions (TARs) in the genome of Bacillus subtilis by the use of tiling arrays. We have measured the genome...

  9. Sigma A recognition sites in the Bacillus subtilis genome

    Jarmer, Hanne Østergaard; Larsen, Thomas Schou; Krogh, Anders Stærmose; Saxild, Hans Henrik; Brunak, Søren; Knudsen, Steen


    A hidden Markov model of sigma (A) RNA polymerase cofactor recognition sites in Bacillus subtilis, containing either the common or the extended -10 motifs, has been constructed based on experimentally verified sigma (A) recognition sites. This work suggests that more information exists at the...

  10. Architecture and High-Resolution Structure of Bacillus thuringiensis and Bacillus cereus Spore Coat Surfaces

    Plomp, M; Leighton, T; Wheeler, K; Malkin, A


    We have utilized atomic force microscopy (AFM) to visualize the native surface topology and ultrastructure of Bacillus thuringiensis and Bacillus cereus spores in water and in air. AFM was able to resolve the nanostructure of the exosporium and three distinctive classes of appendages. Removal of the exosporium exposed either a hexagonal honeycomb layer (B. thuringiensis) or a rodlet outer spore coat layer (B. cereus). Removal of the rodlet structure from B. cereus spores revealed an underlying honeycomb layer similar to that observed with B. thuringiensis spores. The periodicity of the rodlet structure on the outer spore coat of B. cereus was {approx}8 nm, and the length of the rodlets was limited to the cross-patched domain structure of this layer to {approx}200 nm. The lattice constant of the honeycomb structures was {approx}9 nm for both B. cereus and B. thuringiensis spores. Both honeycomb structures were composed of multiple, disoriented domains with distinct boundaries. Our results demonstrate that variations in storage and preparation procedures result in architectural changes in individual spore surfaces, which establish AFM as a useful tool for evaluation of preparation and processing ''fingerprints'' of bacterial spores. These results establish that high-resolution AFM has the capacity to reveal species-specific assembly and nanometer scale structure of spore surfaces. These species-specific spore surface structural variations are correlated with sequence divergences in a spore core structural protein SspE.

  11. Incorporation of glycine and serine into sporulating cells of Bacillus subtilis

    The changes during growth and sporulation in activities of cells of Bacillus subtilis to incorporate various amino acids were investigated with wild-type strain and its asporogenous mutant. In the case of wild type strain the uptake of valine, phenylalanine, and proline was largest during the logarithmic growth period. The uptake of these amino acids decreased rapidly during the early stationary phase. The uptake of valine and cysteine increased again to some extent just prior to the forespore stage. The uptake of glycine and serine, however, was largest at the forespore stage at which the formation of spore coat took place. From these observed phenomena it was assumed that the remarkable incorporation of glycine and serine into the wild type strain during sporulation was closely related to the formation of spore coat. (auth.)

  12. Phylogeny and Molecular Taxonomy of the Bacillus subtilis species Complex and the Description of Bacillus subtilis subsp. inaquosorum subsp. nov

    The Bacillus subtilis species complex is a tight assemblage of closely related species. For many years, it has been recognized that these species cannot be differentiated on the basis of phenotypic characteristics. Recently, it has been shown that phylogenetic analysis of the 16S ribosomal RNA gen...

  13. Comparison of hand hygiene procedures for removing Bacillus cereus spores.

    Sasahara, Teppei; Hayashi, Shunji; Hosoda, Kouichi; Morisawa, Yuji; Hirai, Yoshikazu


    Bacillus cereus is a spore-forming bacterium. B. cereus occasionally causes nosocomial infections, in which hand contamination with the spores plays an important role. Therefore, hand hygiene is the most important practice for controlling nosocomial B. cereus infections. This study aimed to determine the appropriate hand hygiene procedure for removing B. cereus spores. Thirty volunteers' hands were experimentally contaminated with B. cereus spores, after which they performed 6 different hand hygiene procedures. We compared the efficacy of the procedures in removing the spores from hands. The alcohol-based hand-rubbing procedures scarcely removed them. The soap washing procedures reduced the number of spores by more than 2 log10. Extending the washing time increased the spore-removing efficacy of the washing procedures. There was no significant difference in efficacy between the use of plain soap and antiseptic soap. Handwashing with soap is appropriate for removing B. cereus spores from hands. Alcohol-based hand-rubbing is not effective. PMID:25252644

  14. Bacillus anthracis Spore Surface Protein BclA Mediates Complement Factor H Binding to Spores and Promotes Spore Persistence.

    Wang, Yanyu; Jenkins, Sarah A; Gu, Chunfang; Shree, Ankita; Martinez-Moczygemba, Margarita; Herold, Jennifer; Botto, Marina; Wetsel, Rick A; Xu, Yi


    Spores of Bacillus anthracis, the causative agent of anthrax, are known to persist in the host lungs for prolonged periods of time, however the underlying mechanism is poorly understood. In this study, we demonstrated that BclA, a major surface protein of B. anthracis spores, mediated direct binding of complement factor H (CFH) to spores. The surface bound CFH retained its regulatory cofactor activity resulting in C3 degradation and inhibition of downstream complement activation. By comparing results from wild type C57BL/6 mice and complement deficient mice, we further showed that BclA significantly contributed to spore persistence in the mouse lungs and dampened antibody responses to spores in a complement C3-dependent manner. In addition, prior exposure to BclA deletion spores (ΔbclA) provided significant protection against lethal challenges by B. anthracis, whereas the isogenic parent spores did not, indicating that BclA may also impair protective immunity. These results describe for the first time an immune inhibition mechanism of B. anthracis mediated by BclA and CFH that promotes spore persistence in vivo. The findings also suggested an important role of complement in persistent infections and thus have broad implications. PMID:27304426

  15. Bacillus anthracis Spore Surface Protein BclA Mediates Complement Factor H Binding to Spores and Promotes Spore Persistence.

    Yanyu Wang


    Full Text Available Spores of Bacillus anthracis, the causative agent of anthrax, are known to persist in the host lungs for prolonged periods of time, however the underlying mechanism is poorly understood. In this study, we demonstrated that BclA, a major surface protein of B. anthracis spores, mediated direct binding of complement factor H (CFH to spores. The surface bound CFH retained its regulatory cofactor activity resulting in C3 degradation and inhibition of downstream complement activation. By comparing results from wild type C57BL/6 mice and complement deficient mice, we further showed that BclA significantly contributed to spore persistence in the mouse lungs and dampened antibody responses to spores in a complement C3-dependent manner. In addition, prior exposure to BclA deletion spores (ΔbclA provided significant protection against lethal challenges by B. anthracis, whereas the isogenic parent spores did not, indicating that BclA may also impair protective immunity. These results describe for the first time an immune inhibition mechanism of B. anthracis mediated by BclA and CFH that promotes spore persistence in vivo. The findings also suggested an important role of complement in persistent infections and thus have broad implications.

  16. Decolorization of Distillery Effluent by Thermotolerant Bacillus subtilis

    Soni Tiwari


    Full Text Available Problem statement: Ethanol production from sugarcane molasses generate large volume of effluent containing high Biological Oxygen Demand (BOD and Chemical Oxygen Demand (COD along with melanoidin, a color compound generally produced by Millard reaction. Melanodin is a recalcitrant compound degraded by specific microorganisms having ability to produce mono and di-oxygenases peroxidases, phenoxidases and laccases, are mainly responsible for degradation of complex aromatic hydrocarbons like color compound. These compounds causes several toxic effects on living system, therefore may be treated before disposal. Approach: The purpose of this study was to isolate a potential thermotolerant melanoidin decolorizing bacterium from natural resources for treatment of distillery effluent at industrial level. Results: Total 10 isolates were screened on solid medium containing molasses pigments. Three potential melanoidin decolorizing thermotolerant bacterial isolates identified as Bacillus subtilis, Bacillus cereus and Pseudomonas sp. were further optimized for decolorization at different physico-chemical and nutritional level. Out of these three, Bacillus subtilis showed maximum decolorization (85% at 45°C using (w/v 0.1%, glucose; 0.1%, peptone; 0.05%, MgSO4; 0.01%, KH2PO4; pH-6.0 within 24h of incubation under static condition. Conclusion/Recommendations: The strain of Bacillus subtilis can tolerate higher temperature and required very less carbon (0.1%, w/v and nitrogen sources (0.1%, w/v in submerged fermentation. It can be utilized for melanoidin decolorization of distillery effluent at industrial scale.

  17. Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system

    Zhang, Kang; Duan, Xuguo; Wu, Jing


    Bacillus subtilis ATCC 6051a is an undomesticated strain used in the industrial production of enzymes. Because it is poorly transformable, genetic manipulation in this strain requires a highly efficient genome editing method. In this study, a Streptococcus pyogenes CRISPR/Cas9 system consisting of an all-in-one knockout plasmid containing a target-specific guide RNA, cas9, and a homologous repair template was established for highly efficient gene disruption in B. subtilis ATCC 6051a. With an efficiency of 33% to 53%, this system was used to disrupt the srfC, spoIIAC, nprE, aprE and amyE genes of B. subtilis ATCC 6051a, which hamper its use in industrial fermentation. Compared with B. subtilis ATCC 6051a, the final mutant, BS5 (ΔsrfC, ΔspoIIAC, ΔnprE, ΔaprE, ΔamyE), produces much less foam during fermentation, displays greater resistant to spore formation, and secretes 2.5-fold more β-cyclodextrin glycosyltransferase into the fermentation medium. Thus, the CRISPR/Cas9 system proved to be a powerful tool for targeted genome editing in an industrially relevant, poorly transformable strain. PMID:27305971

  18. Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system.

    Zhang, Kang; Duan, Xuguo; Wu, Jing


    Bacillus subtilis ATCC 6051a is an undomesticated strain used in the industrial production of enzymes. Because it is poorly transformable, genetic manipulation in this strain requires a highly efficient genome editing method. In this study, a Streptococcus pyogenes CRISPR/Cas9 system consisting of an all-in-one knockout plasmid containing a target-specific guide RNA, cas9, and a homologous repair template was established for highly efficient gene disruption in B. subtilis ATCC 6051a. With an efficiency of 33% to 53%, this system was used to disrupt the srfC, spoIIAC, nprE, aprE and amyE genes of B. subtilis ATCC 6051a, which hamper its use in industrial fermentation. Compared with B. subtilis ATCC 6051a, the final mutant, BS5 (ΔsrfC, ΔspoIIAC, ΔnprE, ΔaprE, ΔamyE), produces much less foam during fermentation, displays greater resistant to spore formation, and secretes 2.5-fold more β-cyclodextrin glycosyltransferase into the fermentation medium. Thus, the CRISPR/Cas9 system proved to be a powerful tool for targeted genome editing in an industrially relevant, poorly transformable strain. PMID:27305971

  19. Multigeneration Cross-Contamination of Mail with Bacillus anthracis Spores.

    Jason Edmonds

    Full Text Available The release of biological agents, including those which could be used in biowarfare or bioterrorism in large urban areas, has been a concern for governments for nearly three decades. Previous incidents from Sverdlosk and the postal anthrax attack of 2001 have raised questions on the mechanism of spread of Bacillus anthracis spores as an aerosol or contaminant. Prior studies have demonstrated that Bacillus atrophaeus is easily transferred through simulated mail handing, but no reports have demonstrated this ability with Bacillus anthracis spores, which have morphological differences that may affect adhesion properties between spore and formite. In this study, equipment developed to simulate interactions across three generations of envelopes subjected to tumbling and mixing was used to evaluate the potential for cross-contamination of B. anthracis spores in simulated mail handling. In these experiments, we found that the potential for cross-contamination through letter tumbling from one generation to the next varied between generations while the presence of a fluidizer had no statistical impact on the transfer of material. Likewise, the presence or absence of a fluidizer had no statistically significant impact on cross-contamination levels or reaerosolization from letter opening.

  20. Multigeneration Cross-Contamination of Mail with Bacillus anthracis Spores.

    Edmonds, Jason; Lindquist, H D Alan; Sabol, Jonathan; Martinez, Kenneth; Shadomy, Sean; Cymet, Tyler; Emanuel, Peter


    The release of biological agents, including those which could be used in biowarfare or bioterrorism in large urban areas, has been a concern for governments for nearly three decades. Previous incidents from Sverdlosk and the postal anthrax attack of 2001 have raised questions on the mechanism of spread of Bacillus anthracis spores as an aerosol or contaminant. Prior studies have demonstrated that Bacillus atrophaeus is easily transferred through simulated mail handing, but no reports have demonstrated this ability with Bacillus anthracis spores, which have morphological differences that may affect adhesion properties between spore and formite. In this study, equipment developed to simulate interactions across three generations of envelopes subjected to tumbling and mixing was used to evaluate the potential for cross-contamination of B. anthracis spores in simulated mail handling. In these experiments, we found that the potential for cross-contamination through letter tumbling from one generation to the next varied between generations while the presence of a fluidizer had no statistical impact on the transfer of material. Likewise, the presence or absence of a fluidizer had no statistically significant impact on cross-contamination levels or reaerosolization from letter opening. PMID:27123934

  1. [The flotation characteristics of Bacillus cells and spores].

    Stabnikova, E V; Gregirchak, N N; Taranenko, T O


    Variations in hydrophobicity of the surface of bacillary cells and their capacity to flotation in the process of batch cultivation have been studied. It is shown that hydrophobicity of the cell surface increases in the course of batch cultivation of Bacillus thuringiensis, B. licheniformis and B. megaterium. Hydrophobicity of spores of the mentioned cultures is considerably higher than that of the vegetative cells. The increase of hydrophobicity of bacillary cells positively correlated with their capacity to flotation. That is why the use of flotation for the age fractionation of bacillary cells is possible: spores are concentrated in the foam while vegetative cells remain in the culture liquid. PMID:1779906

  2. Bacillus subtilis Hfq: A role in chemotaxis and motility



    Hfq is a global post-transcriptional regulator that modulates the translation and stability of target mRNAs and therebyregulates pleiotropic functions, such as growth, stress, virulence and motility, in many Gram-negative bacteria.However, comparatively little is known about the regulation and function(s) of Hfq in Gram-positive bacteria.Recently, in Bacillus subtilis, a role for Hfq in stationary phase survival has been suggested, although the possibilityof Hfq having an additional role(s) cannot be ruled out. In this study we show that an ortholog of Hfq in B. subtilis isregulated by the stress sigma factor, σB, in addition to the stationary phase sigma factor, σH. We further demonstratethat Hfq positively regulates the expression of flagellum and chemotaxis genes (fla/che) that control chemotaxis andmotility, thus assigning a new function for Hfq in B. subtilis.

  3. Enhanced hydrocarbon biodegradation by a newly isolated bacillus subtilis strain

    The relation between hydrocarbon degradation and biosurfactant (rhamnolipid) production by a new bacillus subtilis 22BN strain was investigated. The strain was isolated for its capacity to utilize n-hexadecane and naphthalene and at the same time to produce surface-active compound at high concentrations (1.5 - 2.0 g l-1). Biosurfactant production was detected by surface tension lowering and emulsifying activity. The strain is a good degrader of both hydrocarbons used with degradability of 98.3 ± 1% and 75 ± 2% for n-hexadecane and naphthalene, respectively. Measurement of cell hydrophobicity showed that the combination of slightly soluble substrate and rhamnolipid developed higher hydrophobicity correlated with increased utilization of both hydrocarbon substrates. To our knowledge, this is the first report of bacillus subtilis strain that degrades hydrophobic compounds and at the same time produces rhamnolipid biosurfactant. (orig.)

  4. Structure-function correlation in glycine oxidase from Bacillus subtilis

    Mörtl, Mario; Diederichs, Kay; Welte, Wolfram; Molla, Gianluca; Motteran, Laura; Andriolo, Gabriella; Pilone, Mirella S.; Pollegioni, Loredano


    Structure-function relationships of the flavoprotein glycine oxidase (GO), which was recently proposed as the first enzyme in the biosynthesis of thiamine in Bacillus subtilis, has been investigated by a combination of structural and functional studies. The structure of the GO-glycolate complex was determined at 1.8 Å, a resolution at which a sketch of the residues involved in FAD binding and in substrate interaction can be depicted. GO can be considered a member of the amine oxidase class ...

  5. Maltose- und Maltodextrin-Verwertung in Bacillus subtilis

    Schönert, Stefan


    In seinem natürlichen Habitat findet das Gram - positive Bodenbakterium Bacillus subtilis hauptsächlich polymere Zuckerformen als Kohlenstoffquelle vor, die aus den von anderen Organismen synthetisierten Speicherstoffen, z.B. Stärke und Glykogen, stammen. Jedoch müssen diese Polysaccharide zuerst extrazellulär zu Maltose und Maltodextrinen hydrolysiert werden, bevor sie aufgenommen werden können.Im Gegensatz zu der sehr gut untersuchten Maltose - und Maltodextrin - Aufnahme in Escherichia col...

  6. Use of bacillus subtilis strains to inhibit postharvest pathogenic fungi

    An isolate (87) of the bacillus subtilis strains isolated from cold stored citrus fruit 13 proved to inhibit the growth in vitro of the penicillium italicum used in the experiment (from 50.6% to 92.2%) and to inhibit botrytis cinerea (from 65.3% to 95.9%). A further test, superimposing on plates containing PDA strains Nos. 13, 173, and 160, totally inhibited the fungi. Tested in vivo on artificially bruised oranges, they significantly inhibited two fungi

  7. Extracellular and membrane-bound proteases from Bacillus subtilis.

    Mäntsälä, P; Zalkin, H


    Bacillus subtilis YY88 synthesizes increased amounts of extracellular and membrane-bound proteases. More than 99% of the extracellular protease activity is accounted for by an alkaline serine protease and a neutral metalloprotease. An esterase having low protease activity accounts for less than 1% of the secreted protease. These enzymes were purified to homogeneity. Molecular weights of approximately 28,500 and 39,500 were determined for the alkaline and neutral proteases, respectively. The e...

  8. High-Resolution Spore Coat Architecture and Assembly of Bacillus Spores

    Malkin, A J; Elhadj, S; Plomp, M


    Elucidating the molecular architecture of bacterial and cellular surfaces and its structural dynamics is essential to understanding mechanisms of pathogenesis, immune response, physicochemical interactions, environmental resistance, and provide the means for identifying spore formulation and processing attributes. I will discuss the application of in vitro atomic force microscopy (AFM) for studies of high-resolution coat architecture and assembly of several Bacillus spore species. We have demonstrated that bacterial spore coat structures are phylogenetically and growth medium determined. We have proposed that strikingly different species-dependent coat structures of bacterial spore species are a consequence of sporulation media-dependent nucleation and crystallization mechanisms that regulate the assembly of the outer spore coat. Spore coat layers were found to exhibit screw dislocations and two-dimensional nuclei typically observed on inorganic and macromolecular crystals. This presents the first case of non-mineral crystal growth patterns being revealed for a biological organism, which provides an unexpected example of nature exploiting fundamental materials science mechanisms for the morphogenetic control of biological ultrastructures. We have discovered and validated, distinctive formulation-specific high-resolution structural spore coat and dimensional signatures of B. anthracis spores (Sterne strain) grown in different formulation condition. We further demonstrated that measurement of the dimensional characteristics of B. anthracis spores provides formulation classification and sample matching with high sensitivity and specificity. I will present data on the development of an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures on the B. anthracis surfaces. These studies demonstrate that AFM can probe microbial surface architecture, environmental dynamics and the life cycle of bacterial and cellular systems at near

  9. Cytokine Response to Infection with Bacillus anthracis Spores

    Pickering, Alison K.; Osorio, Manuel; Lee, Gloria M.; Grippe, Vanessa K.; Bray, Mechelle; Merkel, Tod J.


    Bacillus anthracis, the etiological agent of anthrax, is a gram-positive, spore-forming bacterium. The inhalational form of anthrax is the most severe and is associated with rapid progression of the disease and the outcome is frequently fatal. Transfer from the respiratory epithelium to regional lymph nodes appears to be an essential early step in the establishment of infection. This transfer is believed to occur by means of carriage within alveolar macrophages following phagocytosis. Therefo...

  10. Production of Bioactive Compounds by Bacillus subtilis against Sclerotium rolfsii

    Nalisha, I.


    Full Text Available This study aims to investigate the characteristic of bioactive compound produced by Bacillus subtilis against Sclerotium rolfsii and the influence of additive supplements on the antagonistic activity of B. subtilis. The fact that B. subtilis produced an antifungal substance which has inhibitory effect on wide range of fungi, including S. rolfsii, is well known. To learn the effect of pH, temperature and light condition on the production of antifungal compound, B. subtilis was inoculated in Potato Dextrose Broth at various initial pH, temperatures and light conditions, respectively. This antagonist was found to produce antifungal compound that stable at 80C with 58.3 % inhibition on S. rolfsii. The activity was constant within a wide range of pH (3–11. However, treatment with pH11 lead to higher antifungal activity (31.57 % inhibition and it was also found to produce substance that can endure dark condition (46.24 % inhibition with fungicidal effect on S. rolfsii. A series of experiments also been carried out to enhance the antifungal production by supplementing different carbon source preparation into bacterial liquid culture. B. subtilis were grown in minimal medium containing 1 % of oil palm root, Ganoderma lucidum or chitin, respectively prior to bioassay. Crude culture from oil palm root supplemented culture shown significantly reduction in S. rolfsii growth compared to other carbon source crude culture or the antagonism alone, suggesting that this approach may provide improved biocontrol efficiency.

  11. Regulation of Polyglutamic Acid Synthesis by Glutamate in Bacillus licheniformis and Bacillus subtilis

    Kambourova, Margarita; Tangney, Martin; Priest, Fergus G.


    The synthesis of polyglutamic acid (PGA) was repressed by exogenous glutamate in strains of Bacillus licheniformis but not in strains of Bacillus subtilis, indicating a clear difference in the regulation of synthesis of capsular slime in these two species. Although extracellular γ-glutamyltranspeptidase (GGT) activity was always present in PGA-producing cultures of B. licheniformis under various growth conditions, there was no correlation between the quantity of PGA and enzyme activity. Moreo...

  12. Investigation of biosurfactant production by Bacillus pumilus 1529 and Bacillus subtilis WPI

    shila khajavi shojaei


    Full Text Available Introduction: Biosurfactants are unique amphipathic molecules with extensive application in removing organic and metal contaminants. The purpose of this study was to investigate production of biosurfactant and determine optimal conditions to produce biosurfactant by Bacillus pumilus 1529 and Bacillus subtilis WPI. Materials and methods: In this study, effect of carbon source, temperature and incubation time on biosurfactant production was evaluated. Hemolytic activity, emulsification activity, oil spreading, drop collapse, cell hydrophobicity and measurement of surface tension were used to detect biosurfactant production. Then, according to the results, the optimal conditions for biosurfactant production by and Bacillus subtilis WPI was determined. Results: In this study, both bacteria were able to produce biosurfactant at an acceptable level. Glucose, kerosene, sugarcane molasses and phenanthrene used as a sole carbon source and energy for the mentioned bacteria. Bacillus subtilis WPI produced maximum biosurfactant in the medium containing kerosene and reduced surface tension of the medium to 33.1 mN/m after 156 hours of the cultivation at 37°C. Also, the highest surface tension reduction by Bacillus pumilus 1529 occurred in the medium containing sugarcane molasses and reduce the surface tension of culture medium after 156 hours at 37°C from 50.4 to 28.83 mN/m. Discussion and conclusion: Bacillus pumilus 1529 and Bacillus subtilis WPI had high potential in production of biosurfactant and degradation of petroleum hydrocarbons and Phenanthrene. Therefore, it could be said that these bacteria had a great potential for applications in bioremediation and other environmental process.

  13. Homolactic fermentation from glucose and cellobiose using Bacillus subtilis

    Martinez Alfredo


    Full Text Available Abstract Backgroung Biodegradable plastics can be made from polylactate, which is a polymer made from lactic acid. This compound can be produced from renewable resources as substrates using microorganisms. Bacillus subtilis is a Gram-positive bacterium recognized as a GRAS microorganism (generally regarded as safe by the FDA. B. subtilis produces and secretes different kind of enzymes, such as proteases, cellulases, xylanases and amylases to utilize carbon sources more complex than the monosaccharides present in the environment. Thus, B. subtilis could be potentially used to hydrolyze carbohydrate polymers contained in lignocellulosic biomass to produce chemical commodities. Enzymatic hydrolysis of the cellulosic fraction of agroindustrial wastes produces cellobiose and a lower amount of glucose. Under aerobic conditions, B. subtilis grows using cellobiose as substrate. Results In this study, we proved that under non-aerated conditions, B. subtilis ferments cellobiose to produce L-lactate with 82% of the theoretical yield, and with a specific rate of L-lactate production similar to that one obtained fermenting glucose. Under fermentative conditions in a complex media supplemented with glucose, B. subtilis produces L-lactate and a low amount of 2,3-butanediol. To increase the L-lactate production of this organism, we generated the B subtilis CH1 alsS- strain that lacks the ability to synthesize 2,3-butanediol. Inactivation of this pathway, that competed for pyruvate availability, let a 15% increase in L-lactate yield from glucose compared with the parental strain. CH1 alsS- fermented 5 and 10% of glucose to completion in mineral medium supplemented with yeast extract in four and nine days, respectively. CH1 alsS- produced 105 g/L of L-lactate in this last medium supplemented with 10% of glucose. The L-lactate yield was up to 95% using mineral media, and the optical purity of L-lactate was of 99.5% since B. subtilis has only one gene (lctE that

  14. Regulation of proteolysis in Bacillus subtilis: effects of calcium ions and energy poisons

    Bacillus subtilis cells carry out extensive intracellular proteolysis (k = 0.15-0.23/h) during sporulation. Protein degradation was measured in cells growing in chemically defined sporulation medium, by following the release of [14C]-leucine from the cells during spore formation. Sodium arsenate, carbonyl cyanide 3-chlorophenyl hydrazone, and sodium azide strongly inhibited proteolysis without altering cell viability greatly, which suggested that bulk proteolysis in B. subtilis is energy dependent. The authors have tested the hypothesis that the energy requirement may be for pumping in Ca2+. When [Ca2+] was -6, rates of proteolysis in sporulating cells were reduced 4-8 times that in cells in calcium ion- sufficient medium. Further, omission of Ca2+ from the medium prevented the increase in the activity of the major intracellular serine protease. However, the presence of energy poisons in the media at levels which inhibited proteolysis, had no detectable effect on the uptake of by cells [45Ca]. The authors concluded that B. subtilis cells required both metabolic energy and calcium ions for normal proteolysis

  15. Unlocking the Sporicidal Potential of Ethanol: Induced Sporicidal Activity of Ethanol against Clostridium difficile and Bacillus Spores under Altered Physical and Chemical Conditions.

    Michelle M Nerandzic

    Full Text Available Due to their efficacy and convenience, alcohol-based hand sanitizers have been widely adopted as the primary method of hand hygiene in healthcare settings. However, alcohols lack activity against bacterial spores produced by pathogens such as Clostridium difficile and Bacillus anthracis. We hypothesized that sporicidal activity could be induced in alcohols through alteration of physical or chemical conditions that have been shown to degrade or allow penetration of spore coats.Acidification, alkalinization, and heating of ethanol induced rapid sporicidal activity against C. difficile, and to a lesser extent Bacillus thuringiensis and Bacillus subtilis. The sporicidal activity of acidified ethanol was enhanced by increasing ionic strength and mild elevations in temperature. On skin, sporicidal ethanol formulations were as effective as soap and water hand washing in reducing levels of C. difficile spores.These findings demonstrate that novel ethanol-based sporicidal hand hygiene formulations can be developed through alteration of physical and chemical conditions.

  16. Suppression of Magnaporthe oryzae and interaction between Bacillus subtilis and rice plants in the control of rice blast.

    Sha, Yuexia; Wang, Qi; Li, Yan


    Magnaporthe oryzae, the causative pathogen of rice blast, has caused extensive losses to rice cultivation worldwide. Strains of the bacterium Bacillus subtilis have been used as biocontrol agents against rice blast. However, little has been reported about the interaction between B. subtilis and the rice plant and its mechanism of action. Here, the colonization process and induced disease resistance by B. subtilis SYX04 and SYX20 in rice plants was examined. Strains of B. subtilis labeled with green fluorescent protein reached population of more than 5 × 10(6) CFU/g after 20 days on mature rice leaves and were detected after 3 days on newly grown leaves. Results showed that SYX04 and SYX20 not only inhibited spore germination, germ tube length, and appressorial formation but also caused a series of alterations in the structures of hyphae and conidia. The cell walls and membrane structures of the fungus showed ultrastructural abnormalities, which became severely degraded as observed through scanning electron microscopy and transmission electron microscopy. The mixture of both B. subtilis and M. oryzae resulted in enhanced activity of peroxidase, and polyphenol oxidase while there was significantly more superoxide dismutase activity in plants that had been sprayed with B. subtilis alone. The present study suggests that colonized SYX04 and SYX20 strains protected rice plants and exhibited antifungal activity and induced systemic resistance, thus indicating their potential biological control agents. PMID:27536521

  17. Prodigiosin Induces Autolysins in Actively Grown Bacillus subtilis Cells.

    Danevčič, Tjaša; Borić Vezjak, Maja; Tabor, Maja; Zorec, Maša; Stopar, David


    Prodigiosin produced by marine bacterium Vibrio ruber DSM 14379 exhibits a potent antimicrobial activity against a broad range of Gram positive and Gram negative bacteria. The mechanism of prodigiosin antimicrobial action, however, is not known. In this work, the effect of prodigiosin on Bacillus subtilis growth, cell membrane leakage, and induction of autolysins was studied. Treating B. subtilis with prodigiosin resulted in rapid decline of optical density and increased cell membrane leakage measured by β-galactosidase activity. Cell lysis was initiated immediately after treatment with prodigiosin in the middle exponential phase and was completed within 2 h. Lytic activity of prodigiosin in mutant strains with impaired autolysin genes lytABCD decreased for 80% compared to the wild type strain, while in lytABCDEF mutant strain prodigiosin had no bacteriolytic but only bacteriostatic effect. Fast prodigiosin lytic activity on individual B. subtilis cells was confirmed by a modified comet assay. The results indicate that prodigiosin autolysin induction in B. subtilis is growth phase dependent. PMID:26858704

  18. Complexity in regulation of tryptophan biosynthesis in Bacillus subtilis.

    Gollnick, Paul; Babitzke, Paul; Antson, Alfred; Yanofsky, Charles


    Bacillus subtilis uses novel regulatory mechanisms in controlling expression of its genes of tryptophan synthesis and transport. These mechanisms respond to changes in the intracellular concentrations of free tryptophan and uncharged tRNA(Trp). The major B. subtilis protein that regulates tryptophan biosynthesis is the tryptophan-activated RNA-binding attenuation protein, TRAP. TRAP is a ring-shaped molecule composed of 11 identical subunits. Active TRAP binds to unique RNA segments containing multiple trinucleotide (NAG) repeats. Binding regulates both transcription termination and translation in the trp operon, and translation of other coding regions relevant to tryptophan metabolism. When there is a deficiency of charged tRNA(Trp), B. subtilis forms an anti-TRAP protein, AT. AT antagonizes TRAP function, thereby increasing expression of all the genes regulated by TRAP. Thus B. subtilis and Escherichia coli respond to identical regulatory signals, tryptophan and uncharged tRNA(Trp), yet they employ different mechanisms in regulating trp gene expression. PMID:16285852

  19. A part toolbox to tune genetic expression in Bacillus subtilis.

    Guiziou, Sarah; Sauveplane, Vincent; Chang, Hung-Ju; Clerté, Caroline; Declerck, Nathalie; Jules, Matthieu; Bonnet, Jerome


    Libraries of well-characterised components regulating gene expression levels are essential to many synthetic biology applications. While widely available for the Gram-negative model bacterium Escherichia coli, such libraries are lacking for the Gram-positive model Bacillus subtilis, a key organism for basic research and biotechnological applications. Here, we engineered a genetic toolbox comprising libraries of promoters, Ribosome Binding Sites (RBS), and protein degradation tags to precisely tune gene expression in B. subtilis We first designed a modular Expression Operating Unit (EOU) facilitating parts assembly and modifications and providing a standard genetic context for gene circuits implementation. We then selected native, constitutive promoters of B. subtilis and efficient RBS sequences from which we engineered three promoters and three RBS sequence libraries exhibiting ∼14 000-fold dynamic range in gene expression levels. We also designed a collection of SsrA proteolysis tags of variable strength. Finally, by using fluorescence fluctuation methods coupled with two-photon microscopy, we quantified the absolute concentration of GFP in a subset of strains from the library. Our complete promoters and RBS sequences library comprising over 135 constructs enables tuning of GFP concentration over five orders of magnitude, from 0.05 to 700 μM. This toolbox of regulatory components will support many research and engineering applications in B. subtilis. PMID:27402159

  20. Complete Genome Sequence of Bacillus subtilis Strain CU1050, Which Is Sensitive to Phage SPβ

    Johnson, Christopher M.; Grossman, Alan D.


    The Gram-positive bacterium Bacillus subtilis is used as a model organism to study cellular and molecular processes. Here, we announce the complete genomic sequence of B. subtilis strain CU1050, derived from B. subtilis strain 168. CU1050 has historically been used to study suppressor mutations and phage biology, especially the lysogenic phage SPβ.

  1. A Bacillus subtilis dipeptide transport system expressed early during sporulation.

    Mathiopoulos, C; Mueller, J P; Slack, F J; Murphy, C G; Patankar, S; Bukusoglu, G; Sonenshein, A L


    Two previously identified Bacillus subtilis DNA segments, dciA and dciB, whose transcripts accumulate very rapidly after induction of sporulation, were found in the same 6.2 kb transcription unit, now known as the dciA operon. Analysis of the sequence of the dciA operon showed that its putative products are homologous to bacterial peptide transport systems. The product of the fifth gene, DciAE, is similar to peptide-binding proteins from Escherichia coli and Salmonella typhimurium (DppA and OppA) and B. subtilis (OppA). A null mutation in dciAE abolished the ability of a proline auxotroph to grow in a medium containing the dipeptide Pro-Gly as sole proline source, suggesting that the dciA operon encodes a dipeptide transport system. PMID:1766370

  2. Regulation of the anaerobic metabolism in Bacillus subtilis.

    Härtig, Elisabeth; Jahn, Dieter


    The Gram-positive soil bacterium Bacillus subtilis encounters changing environmental conditions in its habitat. The access to oxygen determines the mode of energy generation. A complex regulatory network is employed to switch from oxygen respiration to nitrate respiration and various fermentative processes. During adaptation, oxygen depletion is sensed by the [4Fe-4S](2+) cluster containing Fnr and the two-component regulatory system ResDE consisting of the membrane-bound histidine kinase ResE and the cytoplasmic ResD regulator. Nitric oxide is the signal recognized by NsrR. Acetate formation and decreasing pH are measured via AlsR. Finally, Rex is responding to changes in the cellular NAD(+)/NADH ration. The fine-tuned interplay of these regulators at approximately 400 target gene promoters ensures efficient adaptation of the B. subtilis physiology. PMID:23046954

  3. Stoichiometric growth model for riboflavin-producing Bacillus subtilis.

    Dauner, M; Sauer, U


    Rate equations for measured extracellular rates and macromolecular composition data were combined with a stoichiometric model to describe riboflavin production with an industrial Bacillus subtilis strain using errors in variables regression analysis. On the basis of this combined stoichiometric growth model, we explored the topological features of the B. subtilis metabolic reaction network that was assembled from a large amount of literature. More specifically, we simulated maximum theoretical yields of biomass and riboflavin, including the associated flux regimes. Based on the developed model, the importance of experimental data on building block requirements for maximum yield and flux calculations were investigated. These analyses clearly show that verification of macromolecular composition data is important for optimum flux calculations. PMID:11505383

  4. Adhesion of Spores of Bacillus thuringiensis on a Planar Surface

    Chung, Eunhyea [Georgia Institute of Technology; Kweon, Hyojin [Georgia Institute of Technology; Yiacoumi, Sotira [Georgia Institute of Technology; Lee, Ida [University of Tennessee, Knoxville (UTK); Joy, David Charles [ORNL; Palumbo, Anthony Vito [ORNL; Tsouris, Costas [ORNL


    Adhesion of spores of Bacillus thuringiensis (Bt) and spherical silica particles on surfaces was experimentally and theoretically investigated in this study. Topography analysis via atomic force microscopy (AFM) and electron microscopy indicates that Bt spores are rod shaped, {approx}1.3 {mu}m in length and {approx}0.8 {mu}m in diameter. The adhesion force of Bt spores and silica particles on gold-coated glass was measured at various relative humidity (RH) levels by AFM. It was expected that the adhesion force would vary with RH because the individual force components contributing to the adhesion force depend on RH. The adhesion force between a particle and a planar surface in atmospheric environments was modeled as the contribution of three major force components: capillary, van der Waals, and electrostatic interaction forces. Adhesion force measurements for Bt spore (silica particle) and the gold surface system were comparable with calculations. Modeling results show that there is a critical RH value, which depends on the hydrophobicity of the materials involved, below which the water meniscus does not form and the contribution of the capillary force is zero. As RH increases, the van der Waals force decreases while the capillary force increases to a maximum value.

  5. Quantitative Analysis of Spatial-Temporal Correlations during Germination of Spores of Bacillus Species ▿

    Zhang, JinQiao; Garner, Will; Setlow, Peter; Yu, Ji


    Bacteria of Bacillus species sporulate upon starvation, and the resultant dormant spores germinate when the environment appears likely to allow the resumption of vegetative growth. Normally, the rates of germination of individual spores in populations are very heterogeneous, and the current work has investigated whether spore-to-spore communication enhances the synchronicity of germination. In order to do this work, time-lapse optical images of thousands of individual spores were captured dur...

  6. Unhairing animal hides using probiotic Bacteria bacillus subtilis

    Данилкович, Анатолій Григорович; Гвоздяк, Петро Ілліч; Романюк, Оксана Олександрівна; Ковтуненко, Ольга Василівна


    The most efficient technology of processing natural raw materials into skin and fur is the use of enzyme products for soaking and liming processes. Therefore, the use of bacterial products, which produce enzymes of various functional effects, is considered to be very promising for the above mentioned processes.Soaking and liming of flint-dried rabbit hides were carried out using probiotic bacreria Bacillus subtilis on 4 samples in a laboratory centrifuge at soaking temperature 36-38°С and wor...

  7. Hyper production of alkaline protease by mutagenized bacillus subtilis

    The purpose of this work was to augment the alkaline protease production from Bacillus subtilis by using chemical mutagen (MMS) and UV mutagenesis. A number of mutants were isolated which produce high levels of extra cellular proteases. Analysis of culture supernatants of these mutants had shown that the total amounts of proteolysis activity were increased from 1 to 2 fold over the wild strain. Clones showing promote response were further characterized by analyzing different parameters; like of Temperature, pH substrate concentration and incubation period, to study the activity of protease enzyme. (author)

  8. Cosegregation of cell wall and DNA in Bacillus subtilis.

    Schlaeppi, J M; Karamata, D


    Cosegregation of cell wall and DNA of a lysis-negative mutant of Bacillus subtilis was examined by continuously labeling (i) cell wall, (ii) DNA, and (iii) both cell wall and DNA. After four to five generations of chase in liquid media it was found by light microscope autoradiography that the numbers of wall segregation units per cell are 29 and 9 in rich and minimal medium, respectively. Under the same conditions the numbers of segregation units of DNA were almost 50% lower: 15 and 5, respec...

  9. Identifying experimental surrogates for Bacillus anthracis spores: a review

    Greenberg David L


    Full Text Available Abstract Bacillus anthracis, the causative agent of anthrax, is a proven biological weapon. In order to study this threat, a number of experimental surrogates have been used over the past 70 years. However, not all surrogates are appropriate for B. anthracis, especially when investigating transport, fate and survival. Although B. atrophaeus has been widely used as a B. anthracis surrogate, the two species do not always behave identically in transport and survival models. Therefore, we devised a scheme to identify a more appropriate surrogate for B. anthracis. Our selection criteria included risk of use (pathogenicity, phylogenetic relationship, morphology and comparative survivability when challenged with biocides. Although our knowledge of certain parameters remains incomplete, especially with regards to comparisons of spore longevity under natural conditions, we found that B. thuringiensis provided the best overall fit as a non-pathogenic surrogate for B. anthracis. Thus, we suggest focusing on this surrogate in future experiments of spore fate and transport modelling.

  10. Transfer of Bacillus cereus spores from packaging paper into food.

    Ekman, Jaakko; Tsitko, Irina; Weber, Assi; Nielsen-LeRoux, Christina; Lereclus, Didier; Salkinoja-Salonen, Mirja


    Food packaging papers are not sterile, as the manufacturing is an open process, and the raw materials contain bacteria. We modeled the potential transfer of the Bacillus cereus spores from packaging paper to food by using a green fluorescent protein-expressing construct of Bacillus thuringiensis Bt 407Cry(-) [pHT315Omega(papha3-gfp)], abbreviated BT-1. Paper (260 g m(-2)) containing BT-1 was manufactured with equipment that allowed fiber formation similar to that of full-scale manufactured paper. BT-1 adhered to pulp during papermaking and survived similar to an authentic B. cereus. Rice and chocolate were exposed to the BT-1-containing paper for 10 or 30 days at 40 or 20 degrees C at relative air humidity of 10 to 60%. The majority of the spores remained immobilized inside the fiber web; only 0.001 to 0.03% transferred to the foods. This amount is low compared with the process hygiene criteria and densities commonly found in food, and it does not endanger food safety. To measure this, we introduced BT-1 spores into the paper in densities of 100 to 1,000 times higher than the amounts of the B. cereus group bacteria found in commercial paper. Of BT-1 spores, 0.03 to 0.1% transferred from the paper to fresh agar surface within 5 min of contact, which is more than to food during 10 to 30 days of exposure. The findings indicate that transfer from paper to dry food is restricted to those microbes that are exposed on the paper surface and readily detectable with a contact agar method. PMID:19903384

  11. Isolation and characterization of protease from Bacillus subtilis 1012M15



    Full Text Available A local strain of Bacillus sp. BAC4, is known to produce penicillin G acylase (PGA enzyme with relatively high activity. This strain secretes the PGA into the culture medium. However, it has been reported that PGA activity fall and rise during culture, and the activity plummets during storege at –200C, which probably due to usage protease activity of Bacillus sp. BAC4. To study the possible use of Bacillus subtilis 1012M15 as a host cell for cloning the pga gene from Bacillus sp. BAC4, the protease activity of Bacillus subtilis 1012M15 were studied. Protease activity was determined by Horikoshi method. In this experiment, maximum protease activity in Bacillus subtilis 1012M15 culture was obsereved after 8 hours. At this optimum condition, protease activity of Bacillus sp. BAC4 is five time higher than that of Bacillus subtilis 1012M15. This situation promised the possible usage of Bacillus subtilis 1012M15 as a host cell for pga expression. For protease characterization, the bacterial culture had been separated from the cell debris by centrifugation. The filtrate was concentrated by freeze drying, fractionated by ammonium sulphate, dialyzed in selovan tube, and then fractionated by ion exchance chromatography employing DEAE-cellulose. The five peaks resulted indicated the presence of five protease. Based on inhibitor and activator influence analysis, it could be concluded that proteases from Bacillus subtilis 1012M15 contained of serin protease as well as metalloprotease and serin protease mixture.

  12. Peptidoglycan hydrolysis is required for assembly and activity of the transenvelope secretion complex during sporulation in Bacillus subtilis

    Rodrigues, Christopher D. A.; Marquis, Kathleen A.; Meisner, Jeffrey; Rudner, David Z.


    Sporulating Bacillus subtilis cells assemble a transenvelope secretion complex that connects the mother cell and developing spore. The forespore protein SpoIIQ and the mother-cell protein SpoIIIAH interact across the double membrane septum and are thought to assemble into a channel that serves as the basement layer of this specialized secretion system. SpoIIQ is absolutely required to recruit SpoIIIAH to the sporulation septum on the mother-cell side, however the mechanism by which SpoIIQ is ...

  13. Characterization of dacC, which encodes a new low-molecular-weight penicillin-binding protein in Bacillus subtilis

    Pedersen, Lotte Bang; Murray, T; Popham, D L;


    The pbp gene (renamed dacC), identified by the Bacillus subtilis genome sequencing project, encodes a putative 491-residue protein with sequence homology to low-molecular-weight penicillin-binding proteins. Use of a transcriptional dacC-lacZ fusion revealed that dacC expression (i) is initiated at...... sporulated identically to wild-type cells, and dacC and wild-type spores had the same heat resistance, cortex structure, and germination and outgrowth kinetics. Expression of dacC in Escherichia coli showed that this gene encodes an approximately 59-kDa membrane-associated penicillin-binding protein which is...

  14. SpoIIB Localizes to Active Sites of Septal Biogenesis and Spatially Regulates Septal Thinning during Engulfment in Bacillus subtilis

    Perez, Ana R.; Abanes-De Mello, Angelica; Pogliano, Kit


    A key step in the Bacillus subtilis spore formation pathway is the engulfment of the forespore by the mother cell, a phagocytosis-like process normally accompanied by the loss of peptidoglycan within the sporulation septum. We have reinvestigated the role of SpoIIB in engulfment by using the fluorescent membrane stain FM 4-64 and deconvolution microscopy. We have found that spoIIB mutant sporangia display a transient engulfment defect in which the forespore pushes through the septum and bulge...

  15. Isolation of a New Mexican Strain of Bacillus subtilis with Antifungal and Antibacterial Activities

    M. G. L. Basurto-Cadena; M. Vázquez-Arista; García-Jiménez, J.; Salcedo-Hernández, R.; Bideshi, D. K.; Barboza-Corona, J. E.


    Although several strains of B. subtilis with antifungal activity have been isolated worldwide, to date there are no published reports regarding the isolation of a native B. subtilis strain from strawberry plants in Mexico. A native bacterium (Bacillus subtilis 21) demonstrated in vitro antagonistic activity against different plant pathogenic fungi. Under greenhouse conditions, it was shown that plants infected with Rhizoctonia solani and Fusarium verticillioides and treated with B. subtilis 2...

  16. Simple, fast and high‐efficiency transformation system for directed evolution of cellulase in Bacillus subtilis

    Zhang, Xiao‐Zhou; Zhang, Y.‐H. Percival


    Summary Bacillus subtilis can serve as a powerful platform for directed evolution, especially for secretory enzymes. However, cloning and transformation of a DNA mutant library in B. subtilis are not as easy as they are in Escherichia coli. For direct transformation of B. subtilis, here we developed a new protocol based on supercompetent cells prepared from the recombinant B. subtilis strain SCK6 and multimeric plasmids. This new protocol is simple (restriction enzyme‐, phosphatase‐ and ligas...

  17. DNA shuttling between plasmid vectors and a genome vector: systematic conversion and preservation of DNA libraries using the Bacillus subtilis genome (BGM) vector.

    Kaneko, Shinya; Akioka, Manami; Tsuge, Kenji; Itaya, Mitsuhiro


    The combined use of the contemporary vector systems, the bacterial artificial chromosome (BAC) vector and the Bacillus subtilis genome (BGM) vector, makes possible the handling of giant-length DNA (above 100 kb). Our newly constructed BGM vector efficiently integrated DNA prepared in the BAC vector. A BAC library comprised of 18 independent clones prepared from mitochondrial DNA (mtDNA) of Arabidopsis thaliana was converted to a parallel BGM library using the new BGM vector. The effectiveness of the combined use of the vector systems was confirmed by the stable recovery of all 18 DNAs as BAC clones from the respective BGM clones. We show that DNA in BGM was stably preserved at room temperature after spore formation of the host B.subtilis. Rapid and stable shuttling between Escherichiacoli and the B. subtilis host, combined with spore-mediated DNA storage, may facilitate the long-term and low-cost preservation and the transportation of DNA resources. PMID:15913652


    Supartono Supartono


    Full Text Available PRODUCTION OF ANTIBIOTICS BY Bacillus subtilis M10 IN UREA-SORBITOL MEDIUM. Infection diseases still become the main health problems that suffered by people in Indonesia. Besides, there were many pathogen bacteria found to be resistant to the some antibiotics. Therefore, the efforts to get a new antibiotic require to be done continuously. A new local strain of Bacillus subtilis BAC4 has been known producing an antibiotic that inhibit Serratia marcescens ATCC 27117 growth. To make efficient the local strain, mutation on Bacillus subtilis BAC4 was done by using acridine orange and a mutant cell of Bacillus subtilis M10 that overproduction for producing antibiotic was obtained. Nevertheless, the production kinetics of antibiotic by this mutant has not been reported. The objective of this research was to study the production kinetics of antibiotic by Bacillus subtilis M10 mutant. The production of antibiotic was conducted using batch fermentation and antibiotic assay was performed with agar absorption method using Serratia marcescens ATCC 27117 as bacteria assay. Research result provided that Bacillus subtilis M10 mutant with overproduction of antibiotic produced an antibiotic since 8th hour’s fermentation and optimum of it production was at 14th hours after inoculation.  Penyakit infeksi masih menjadi masalah yang utama diderita oleh masyarakat Indonesia. Di samping itu, banyak bakteri patogen yang ditemukan resisten terhadap beberapa antibiotika. Oleh karena itu, upaya-upaya untuk mendapatkan antibiotika baru perlu dilakukan secara terus-menerus. Suatu galur lokal baru Bacillus subtilis BAC4 teridentifikasi memproduksi senyawa antibiotika yang menghambat pertumbuhan Serratia marcescens ATCC27117. Untuk memberdayakan galur tersebut, terhadap Bacillus subtilis BAC4 dilakukan mutasi dengan larutan akridin oranye dan diperoleh mutan Bacillus subtilis M10 yang memproduksi antibiotika berlebihan. Namun, kinetika produksi antibiotika oleh Bacillus

  19. Initiation of decay of Bacillus subtilis trp leader RNA.

    Deikus, Gintaras; Bechhofer, David H


    Transcription termination in the leader region of the Bacillus subtilis trp operon is regulated by binding of the 11-mer TRAP complex to nascent trp RNA, which results in formation of a terminator structure. Rapid decay of trp leader RNA, which is required to release the TRAP complex and maintain a sufficient supply of free TRAP, is mediated by polynucleotide phosphorylase (PNPase). Using purified B. subtilis PNPase, we showed that, when TRAP was present, PNPase binding to the 3' end of trp leader RNA and PNPase digestion of trp leader RNA from the 3' end were inefficient. These results suggested that initiation of trp leader RNA may begin with an endonuclease cleavage upstream of the transcription terminator structure. Such cleavage was observed in vivo. Mutagenesis of nucleotides at the cleavage site abolished processing and resulted in a 4-fold increase in trp leader RNA half-life. This is the first mapping of a decay-initiating endonuclease cleavage site on a native B. subtilis RNA. PMID:17507374

  20. Enhancement of Biocontrol Activities and Cyclic Lipopeptides Production by Chemical Mutagenesis of Bacillus subtilis XF-1, a Biocontrol Agent of Plasmodiophora brassicae and Fusarium solani

    Li, Xing-Yu; Yang, Jing-Jing; Mao, Zi-Chao; Ho, Hon-Hing; Wu, Yi-Xing; He, Yue-qiu


    Bacillus subtilis XF-1 has been used as a biocontrol agent of clubroot disease of crucifers infected by Plasmodiophora brassicae, an obligate pathogen. In order to maximize the growth inhibition of the pathogen, random mutagenesis using N-methyl-N′-nitro-N-nitrosoguanidine was applied to strain XF-1. The efficacy of 226 selected mutants was assessed against the growth of an indicator fungal pathogen: Fusarium solani using agar plate assay and the disruptive effects on the resting spores of P....

  1. Inactivation of E. coli and B. subtilis spores in ozonized cassava starch

    Emanuele Oliveira Cerqueira Amorim


    Full Text Available In the present study, the efficacy of ozone inactivation of B. subtilis spores and E. coli in cassava starch was evaluated. Cassava starch with 18 and 30% moisture content was processed with ozone at concentrations of 40-118 ppm and exposure times of 15-120 minutes. The processing at 113 ppm/120 minutes (maximum exposure level to ozone evaluated at 18% of moisture content did not cause significant reduction of B. subtilis spores and caused the reduction of only 2 decimal of E. coli. On the other hand, when the ozonation process was carried out for 120 minutes at 30% of moisture content, 3.6 decimal reduction of B. subtilis was achieved at 40 ppm of ozone and total B. subtilis load reduction (>5 log cycles was observed at 118 ppm of ozone. Similarly, total E. coli load reduction (>7 log cycles was achieved at 40 ppm of ozone exposure for 60 minutes. Therefore, the results indicate that the ozone efficacy against microorganisms in cassava starch was mainly dependent on the sample moisture content and to ozone concentration and exposure time. Moreover, it was observed that ozone is a promising technology to reduce microbial counts in dried food.

  2. Quantum dot incorporated Bacillus spore as nanosensor for viral infection.

    Zhang, Xinya; Zhou, Qian; Shen, Zhongfeng; Li, Zheng; Fei, Ruihua; Ji, Eoon Hye; Hu, Shen; Hu, Yonggang


    In this paper, we report a high-throughput biological method to prepare spore-based monodisperse microparticles (SMMs) and then form the nanocomposites of CdTe quantum dot (QD)-loaded SMMs by utilizing the endogenous functional groups from Bacillus spores. The SMMs and QD-incorporated spore microspheres (QDSMs) were characterized by using transmission electron microscopy, high-resolution transmission electron microscopy, fluorescence microscopy, fluorescence and UV-visible absorption spectroscopy, zeta potential analysis, Fourier-transform infrared spectroscopy, potentiometric titrations, X-ray photo-electron spectroscopy. The thermodynamics of QD/SMM interaction and antigen/QDSM interaction was also investigated by isothermal titration microcalorimetry (ITC). Fluorescent QDSMs coded either with a single luminescence color or with multiple colors of controlled emission intensity ratios were obtained. Green QDSMs were used as a model system to detect porcine parvovirus antibody in swine sera via flow cytometry, and the results demonstrated a great potential of QDSMs in high-throughput immunoassays. Due to the advantages such as simplicity, low cost, high throughput and eco-friendliness, our developed platform may find wide applications in disease detection, food safety evaluation and environmental assessment. PMID:26190468

  3. Isolation and Identification of the Antimicrobial Substance Produced by Bacillus subtilis fmbR%Bacillus subtilis fmbR抗菌物质的分离和鉴定

    别小妹; 陆兆新; 吕凤霞; 赵海珍; 杨胜远; 孙力军


    [目的]对Bacillus subtilis fmbR产生的抗菌物质进行分离和鉴定研究,以确定抗菌物质的组成和结构.[方法]采用HPLC和TLC层析对Bacillus subtilis fmbR抗菌物质进行分离纯化,通过ESI-MS和MALDI-MS分析对抗菌物质的组成和结构进行初步鉴定.[结果]HPLC层析表明了Bacillus subtilis fmbR抗菌物质含有保留时间与surfactin相似的成分.TLC层析和原位酸解证明了Bacillus subtilis fmbR抗菌物质含有闭合肽键类的物质,其中之一为相对迁移率Rf与标样surfactin相近的组分.采用ESI-MS分析检测到Bacillus subtilis fmbR抗菌物质含有分子量与surfactinA相同的m/z1009.1、m/z1023.2 和m/z1037.0等3种同系物;通过MALDI-MS分析获得[M+H]+为m/z 3403.95抗菌物质,该物质分子量与Bacillus subtilis 168产生的细菌素subtilosin的m/z3403.3 相同.[结论]Bacillus subtilis fmbR抗菌物质由C13~C15的3种surfactinA同系物和一种羊毛硫抗生素subtilosin组成.

  4. A microbial transformation using Bacillus subtilis B7-S to produce natural vanillin from ferulic acid

    Peng Chen; Lei Yan; Zhengrong Wu; Suyue Li; Zhongtian Bai; Xiaojuan Yan; Ningbo Wang; Ning Liang; Hongyu Li


    Bacillus subtilis strain B7-S screened from18 strains is an aerobic, endospore-forming, model organism of Gram-positive bacteria which is capable to form vanillin during ferulic acid bioconversion. The bioconversion of ferulic acid to vanillin by Bacillus subtilis B7-S (B. subtilis B7-S) was investigated. Based on our results, the optimum bioconversion conditions for the production of vanillin by B. subtilis B7-S can be summarized as follows: temperature 35 °C; initial pH 9.0; inoculum volume...

  5. NanoSIMS analysis of Bacillus spores for forensics

    Weber, P K; Davisson, M L; Velsko, S P


    The threat associated with the potential use of radiological, nuclear, chemical and biological materials in terrorist acts has resulted in new fields of forensic science requiring the application of state-of-the-science analytical techniques. Since the anthrax letter attacks in the United States in the fall of 2001, there has been increased interest in physical and chemical characterization of bacterial spores. While molecular methods are powerful tools for identifying genetic differences, other methods may be able to differentiate genetically identical samples based on physical and chemical properties, as well as provide complimentary information, such as methods of production and approximate date of production. Microanalysis has the potential to contribute significantly to microbial forensics. Bacillus spores are highly structured, consisting of a core, cortex, coat, and in some species, an exosporium. This structure provides a template for constraining elemental abundance differences at the nanometer scale. The primary controls on the distribution of major elements in spores are likely structural and physiological. For example, P and Ca are known to be abundant in the spore core because that is where P-rich nucleic acids and Cadipicolinic acid are located, respectively. Trace elements are known to bind to the spore coat but the controls on these elements are less well understood. Elemental distributions and abundances may be directly related to spore production, purification and stabilization methodologies, which are of particular interest for forensic investigation. To this end, we are developing a high-resolution secondary ion mass spectrometry method using a Cameca NanoSIMS 50 to study the distribution and abundance of trace elements in bacterial spores. In this presentation we will review and compare methods for preparing and analyzing samples, as well as review results on the distribution and abundance of elements in bacterial spores. We use NanoSIMS to

  6. Unusual Biosynthesis and Structure of Locillomycins from Bacillus subtilis 916

    Luo, Chuping; Liu, Xuehui; Zhou, Xian; Guo, Junyao; Truong, John; Wang, Xiaoyu; Zhou, Huafei


    Three families of Bacillus cyclic lipopeptides—surfactins, iturins, and fengycins—have well-recognized potential uses in biotechnology and biopharmaceutical applications. This study outlines the isolation and characterization of locillomycins, a novel family of cyclic lipopeptides produced by Bacillus subtilis 916. Elucidation of the locillomycin structure revealed several molecular features not observed in other Bacillus lipopeptides, including a unique nonapeptide sequence and macrocyclization. Locillomycins are active against bacteria and viruses. Biochemical analysis and gene deletion studies have supported the assignment of a 38-kb gene cluster as the locillomycin biosynthetic gene cluster. Interestingly, this gene cluster encodes 4 proteins (LocA, LocB, LocC, and LocD) that form a hexamodular nonribosomal peptide synthetase to biosynthesize cyclic nonapeptides. Genome analysis and the chemical structures of the end products indicated that the biosynthetic pathway exhibits two distinct features: (i) a nonlinear hexamodular assembly line, with three modules in the middle utilized twice and the first and last two modules used only once and (ii) several domains that are skipped or optionally selected. PMID:26162886

  7. Isolation and characterization of radioresistant mutants in Bacillus subtilis and Bacillus thuringiensis

    Vegetative cells of Bac. thuringiensis var. galleriae (the wild-type strain 351) are much more sensitive to lethal effects of UV light and 60Co-γ-rays than those of Bac. subtilis (the wild-type strain 168). This difference is less pronounced for spores of these strains. By means of repeated γ-irradiation-regrowth cycles radioresistant mutants Bac. thuringiensis Gamsup(r) 14 and Bac. subtilis Gamsup(r) 9 were selected. The vegetative cells of these mutants are correspondingly 19 times and 3.9 times more resistant to lethal effects of γ-radiation than the cells of the parental strains. The resistance of the Gamsup(r) mutant cells to lethal effects of UV light and H2O2 is also increased. The spores of the Gamsup(r) 14 mutant are 1.5-1.7 times more resistant to γ-radiation and UV light than the wild-type spores. The radioresistant mutants and the parental strains do not vary in their capacity for host-cell reactivation of UV- or γ-irradiated phages Tg13 and 105

  8. Purification and characterization of a novel antifungal protein from Bacillus subtilis strain B29"

    Jing LI; Qian YANG; Li-hua ZHAO; Shu-mei ZHANG; Yu-xia WANG; Xiao-yu ZHAO


    An antifungal protein was isolated from a culture of Bacillus subtilis strain B29. The isolation procedure comprised ion exchange chromatography on diethylaminoethyl (DEAE)-52 cellulose and gel filtration chromatography on Bio-Gel P-100.The protein was absorbed on DEAE-cellulose and Bio-Gel P-100. The purified antifungal fraction was designated as B29I, with a molecular mass of 42.3 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), pl value 5.69 by isoelectric focusing (IEF)-PAGE, and 97.81% purity by high performance liquid chromatography (HPLC). B29I exhibited in-hibitory activity on mycelial growth in Fusarium oxysporum, Rhizoctonia solani, Fusarium moniliforme, and Sclerotinia scle-rotiorum. The 50% inhibitory concentrations (IC50) of its antifungal activity toward Fusarium oxysporum and Rhizoctonia solani were 45 and 112 μmol/L, respectively. B291 also demonstrated an inhibitory effect on conidial spore germination of Fusarium oxysporum and suppression of germ-tube elongation, and induced distortion, tumescence, and rupture of a portion of the germi-nated spores.

  9. Global network reorganization during dynamic adaptations of Bacillus subtilis metabolism

    Buescher, Joerg Martin; Liebermeister, Wolfram; Jules, Matthieu;


    known transcription regulation network. Interactions across multiple levels of regulation were involved in adaptive changes that could also be achieved by controlling single genes. Our analysis suggests that global trade-offs and evolutionary constraints provide incentives to favor complex control......Adaptation of cells to environmental changes requires dynamic interactions between metabolic and regulatory networks, but studies typically address only one or a few layers of regulation. For nutritional shifts between two preferred carbon sources of Bacillus subtilis, we combined statistical and...... model-based data analyses of dynamic transcript, protein, and metabolite abundances and promoter activities. Adaptation to malate was rapid and primarily controlled posttranscriptionally compared with the slow, mainly transcriptionally controlled adaptation to glucose that entailed nearly half of the...

  10. Antifungal efficiency of a lipopeptide biosurfactant derived from Bacillus subtilis SPB1 versus the phytopathogenic fungus, Fusarium solani.

    Mnif, Ines; Hammami, Ines; Triki, Mohamed Ali; Azabou, Manel Cheffi; Ellouze-Chaabouni, Semia; Ghribi, Dhouha


    Bacillus subtilis SPB1 lipopeptides were evaluated as a natural antifungal agent against Fusarium solani infestation. In vitro antifungal assay showed a minimal inhibitory concentration of about 3 mg/ml with a fungicidal mode of action. In fact, treatment of F. solani by SPB1 lipopeptides generated excessive lyses of the mycelium and caused polynucleation and destruction of the related spores together with a total inhibition of spore production. Furthermore, an inhibition of germination potency accompanied with a high spore blowing was observed. Moreover, in order to be applied in agricultural field, in vivo antifungal activity was proved against the dry rot potato tubers caused by F. solani. Preventive treatment appeared as the most promising as after 20 days of fungi inoculation, rot invasion was reduced by almost 78%, in comparison to that of non-treated one. When treating infected tomato plants, disease symptoms were reduced by almost 100% when applying the curative method. Results of this study are very promising as it enables the use of the crude lipopeptide preparation of B. subtilis SPB1 as a potent natural fungicide that could effectively control the infection of F. solani in tomato and potato tubers at a concentration similar to the commercial fungicide hymexazol and therefore prevent the damage of olive tree. PMID:26178831

  11. Fitness Trade-Offs in Competence Differentiation of Bacillus subtilis

    Yüksel, Melih; Power, Jeffrey J.; Ribbe, Jan; Volkmann, Thorsten; Maier, Berenike


    In the stationary phase, Bacillus subtilis differentiates stochastically and transiently into the state of competence for transformation (K-state). The latter is associated with growth arrest, and it is unclear how the ability to develop competence is stably maintained, despite its cost. To quantify the effect differentiation has on the competitive fitness of B. subtilis, we characterized the competition dynamics between strains with different probabilities of entering the K-state. The relative fitness decreased with increasing differentiation probability both during the stationary phase and during outgrowth. When exposed to antibiotics inhibiting cell wall synthesis, transcription, and translation, cells that differentiated into the K-state showed a selective advantage compared to differentiation-deficient bacteria; this benefit did not require transformation. Although beneficial, the K-state was not induced by sub-MIC concentrations of antibiotics. Increasing the differentiation probability beyond the wt level did not significantly affect the competition dynamics with transient antibiotic exposure. We conclude that the competition dynamics are very sensitive to the fraction of competent cells under benign conditions but less sensitive during antibiotic exposure, supporting the picture of stochastic differentiation as a fitness trade-off. PMID:27375604

  12. Fitness Trade-Offs in Competence Differentiation of Bacillus subtilis.

    Yüksel, Melih; Power, Jeffrey J; Ribbe, Jan; Volkmann, Thorsten; Maier, Berenike


    In the stationary phase, Bacillus subtilis differentiates stochastically and transiently into the state of competence for transformation (K-state). The latter is associated with growth arrest, and it is unclear how the ability to develop competence is stably maintained, despite its cost. To quantify the effect differentiation has on the competitive fitness of B. subtilis, we characterized the competition dynamics between strains with different probabilities of entering the K-state. The relative fitness decreased with increasing differentiation probability both during the stationary phase and during outgrowth. When exposed to antibiotics inhibiting cell wall synthesis, transcription, and translation, cells that differentiated into the K-state showed a selective advantage compared to differentiation-deficient bacteria; this benefit did not require transformation. Although beneficial, the K-state was not induced by sub-MIC concentrations of antibiotics. Increasing the differentiation probability beyond the wt level did not significantly affect the competition dynamics with transient antibiotic exposure. We conclude that the competition dynamics are very sensitive to the fraction of competent cells under benign conditions but less sensitive during antibiotic exposure, supporting the picture of stochastic differentiation as a fitness trade-off. PMID:27375604

  13. Inactivation of Bacillus Subtilis by Atomic Oxygen Radical Anion

    LI Longchun; WANG Lian; YU Zhou; LV Xuanzhong; LI Quanxin


    UAtomic oxygen radical anion (O- ) is one of the most active oxygen species, and has extremely high oxidation ability toward small-molecules of hydrocarbons. However, to our knowledge, little is known about the effects of O- on cells of micro-organisms. This work showed that O- could quickly react with the Bacillus subtilis cells and seriously damage the cell walls a s well as their other contents, leading to a fast and irreversible inactivation. SEM micrographs revealed that the cell structures were dramatically destroyed by their exposure to O-. The inactivation efficiencies of B. subtilis depend on the O-- intensity, the initial population of cells and the treatment temperature, but not on the pH in the range of our investigation. For a cell concentration of 106 cfu/ml, the number of survived cells dropped from 106 cfu/ml to 103 cfu/ml after about five-minute irradiation by an O- flux in an intensity of 233 nA/cm2 under a dry argon environment (30 ℃, 1 atm, exposed size: 1.8 cm2). The inactivation mechanism of micro-organisms induced by O- is also discussed.

  14. Fitness trade-offs in competence differentiation of Bacillus subtilis

    Melih Yüksel


    Full Text Available In the stationary phase, Bacillus subtilis differentiates stochastically and transiently into the state of competence for transformation (K-state. The latter is associated with growth arrest, and it is unclear how the ability to develop competence is stably maintained, despite its cost. To quantify the effect differentiation has on the competitive fitness of B. subtilis, we characterized the competition dynamics between strains with different probabilities of entering the K-state. The relative fitness decreased with increasing differentiation probability both during the stationary phase and during outgrowth. When exposed to antibiotics inhibiting cell wall synthesis, transcription, and translation, cells that differentiated into the K-state showed a selective advantage compared to differentiation-deficient bacteria; this benefit did not require transformation. Although beneficial, the K-state was not induced by sub-MIC concentrations of antibiotics. Increasing the differentiation probability beyond the wt level did not significantly affect the competition dynamics with transient antibiotic exposure. We conclude that the competition dynamics are very sensitive to the fraction of competent cells under benign conditions but less sensitive during antibiotic exposure, supporting the picture of stochastic differentiation as a fitness trade-off.

  15. Surfactin production enhances the level of cardiolipin in the cytoplasmic membrane of Bacillus subtilis

    Seydlová, G.; Fišer, R.; Čabala, R.; Kozlík, P.; Svobodová, J.; Pátek, Miroslav


    Roč. 1828, č. 11 (2013), s. 2370-2378. ISSN 0005-2736 Institutional support: RVO:61388971 Keywords : Surfactin * Bacillus subtilis * Membrane Subject RIV: EE - Microbiology, Virology Impact factor: 3.431, year: 2013

  16. Regiospecific Addition of Uracil to Acrylates Catalyzed by Alkaline Protease from Bacillus subtilis

    Ying CAI; Jian Yi WU; Na WANG; Xiao Feng SUN; Xian Fu LIN


    Michael addition reactions of uracil to acrylates were catalyzed by an alkaline protease from Bacillus subtilis in dimethyl sulfoxide at 55 ℃ for 72 h. The adducts were determined by TLC, IR and 1H NMR.

  17. The comER Gene Plays an Important Role in Biofilm Formation and Sporulation in both Bacillus subtilis and Bacillus cereus

    Yan, Fang; Yu, Yiyang; Wang, Luyao; Luo, Yuming; Guo, Jian-hua; Chai, Yunrong


    Bacteria adopt alternative cell fates during development. In Bacillus subtilis, the transition from planktonic growth to biofilm formation and sporulation is controlled by a complex regulatory circuit, in which the most important event is activation of Spo0A, a transcription factor and a master regulator for genes involved in both biofilm formation and sporulation. In B. cereus, the regulatory pathway controlling biofilm formation and cell differentiation is much less clear. In this study, we show that a novel gene, comER, plays a significant role in biofilm formation as well as sporulation in both B. subtilis and B. cereus. Mutations in the comER gene result in defects in biofilm formation and a delay in spore formation in the two Bacillus species. Our evidence supports the idea that comER may be part of the regulatory circuit that controls Spo0A activation. comER likely acts upstream of sda, a gene encoding a small checkpoint protein for both sporulation and biofilm formation, by blocking the phosphor-relay and thereby Spo0A activation. In summary, our studies outlined a conserved, positive role for comER, a gene whose function was previously uncharacterized, in the regulation of biofilm formation and sporulation in the two Bacillus species. PMID:27446060

  18. Effect of decoyinine on the regulation of alpha-amylase synthesis in Bacillus subtilis.

    Nicholson, W L; Chambliss, G H


    Decoyinine, an inhibitor of GMP synthetase, allows sporulation in Bacillus subtilis to initiate and proceed under otherwise catabolite-repressing conditions. The effect of decoyinine on alpha-amylase synthesis in B. subtilis, an event which exhibits regulatory features resembling sporulation initiation, was examined. Decoyinine did not overcome catabolite repression of alpha-amylase synthesis in a wild-type strain of B. subtilis but did cause premature and enhanced synthesis in a mutant strai...

  19. Production, purification, and characterization of a-amylase by Bacillus subtilis and its mutant derivates

    DEMİRKAN, Elif


    The effects of various carbon and nitrogen sources on production of a-amylase by Bacillus subtilis and its mutant derivates were investigated. The maximum production of a-amylase by all strains was obtained in the presence of mesoinositol as the carbon source. There was no more significant increase in enzyme yield in the case of the supplementation of nitrogen sources, whereas malt extract and tryptone were preferred nitrogen sources for amylase production by Bacillus subtilis and mutant U 2-...

  20. [Cloning the alpha-amylase gene of Streptococcus bovis and its expression in Bacillus subtilis cells].

    Iakorski, P; Kuntsova, M M; Loseva, E F; Khasanov, F K


    The gene coding for alpha-amylase from the ruminant bacterium Streptococcus bovis was cloned on the plasmid pMX39 in Bacillus subtilis cells. An alpha-amylase positive colony was isolated in the initial screening of 3900 colonies on the medium containing insoluble starch. The size of the insert was approximately 2.8 kb. The recombinant plasmid was stably maintained in Bacillus subtilis cells under the nonselective conditions. PMID:1944323

  1. Non-functional expression of Escherichia coli signal peptidase I in Bacillus subtilis

    van Dijl, J M; de Jong, A; Smith, H; Bron, S; Venema, G


    The Escherichia coli lep gene, encoding signal peptidase I (SPase I) was provided with Bacillus subtilis transcription/translation signals and expressed in this organism. When present on a low-copy-number plasmid, the amount of E. coli SPase I produced (per mg cell protein) in B. subtilis was half t

  2. Identification of a sporulation locus in cloned Bacillus subtilis deoxyribonucleic acid.

    Moran, C P; Losick, R; Sonenshein, A L


    A cloned deoxyribonucleic acid from the purA-cysA region of the Bacillus subtilis chromosome was shown to contain the spoVC locus, a gene whose product is required for sporulation. This is the first demonstration of a spo locus in cloned B. subtilis deoxyribonucleic acid.

  3. Metabolic protein interactions in Bacillus subtilis studied at the single cell level

    Detert Oude Weme, Ruud Gerardus Johannes


    We have investigated protein-protein interactions in live Bacillus subtilis cells (a bacterium). B. subtilis’ natural habitat is the soil and the roots of plants, but also the human microbiota. B. subtilis is used worldwide as a model organism. Unlike eukaryotic cells, bacteria do not have organelle

  4. Transfection of Bacillus subtilis protoplasts by bacteriophage phi do7 DNA.

    Perkins, J B; Dean, D H


    DNA from the Bacillus subtilis temperate bacteriophage phi do7 was found to efficiently transfect B. subtilis protoplasts; protoplast transfection was more efficient than competent cell transfection by a magnitude of 10(3). Unlike competent cell transfection, protoplast transfection did not require primary recombination, suggesting that phi do7 DNA enters the protoplast as double-stranded molecules.

  5. The studies on radiation mutation breeding of Bacillus subtilis with high-yield of amylase

    The mutagenesis effects on the yield of amylase have been investigated with Bacillus subtilis irradiated by γ-rays and fast neutrons in once or twice irradiation at various dose rates and total irradiation doses. Several parameters such as flat transparent circle, colony diameter, transparent circle diameter and the ratio of flat transparent circle to colony diameter (HC) are used to estimate the radiation mutation of Bacillus subtilis. A series of results has been obtained as (1) Irradiation both with neutrons and γ-rays could make Bacillus subtilis mutationed to produce high-yield amylase effectively. (2) The average colony diameter of Bacillus subtilis irradiated by γ-rays or fast neutrons is smaller than that of control group at various total doses and dose rates. And their colony diameter becomes smaller slightly with the increment of γ-rays irradiation dose. (3) After the second neutrons irradiation, the values of average colony diameter, the biggest colony diameter, average transparent circle diameter and the biggest transparent circle diameter of all mutationed Bacillus subtilis exceed that of original strains greatly. (4) Three kinds of mutationed Bacillus subtilis strains with high-yield amylase have been screened out, in which two strains can produce high-yield amylase steadily after 15 times breeding. Their biggest colony diameter, the biggest transparent circle diameter and the biggest HC value are up to 8.32 mm, 22.38 mm and 5.39 respectively. (authors)

  6. Complete Genome Sequences of Bacillus subtilis subsp. subtilis Laboratory Strains JH642 (AG174) and AG1839

    Smith, Janet L.; Goldberg, Jonathan M.; Grossman, Alan D.


    The Gram-positive bacterium Bacillus subtilis is widely used for studies of cellular and molecular processes. We announce the complete genomic sequences of strain AG174, our stock of the commonly used strain JH642, and strain AG1839, a derivative that contains a mutation in the replication initiation gene dnaB and a linked Tn917.

  7. Expression, purification, and characterization of a thermophilic neutral protease from Bacillus stearothermophilus in Bacillus subtilis


    The gene coding for a thermophilic neutral protease from Bacillus stearothermophilus was expressed in Bacillus subtilis DB104, under the control of the sacB gene promoter. This was followed by either the native signal peptide sequence of this protease or the signal peptide sequence of the sacB gene. The protease was purified 3.8-fold, with a specific activity of 16530 U mg-1. As analyzed by SDS-PAGE, the molecular mass of the expressed protease was about 35 kDa, and the optimal temperature and pH of the protease were 65℃ and 7.5, respectively. Moreover, it still had about 80% activity after 1 h reaction at 65 ℃ .

  8. Expression, purification, and characterization of a thermophilic neutral protease from Bacillus stearothermophilus in Bacillus subtilis


    The gene coding for a thermophilic neutral protease from Bacillus stearothermophilus was expressed in Bacillus subtilis DB104, under the control of the sacB gene promoter. This was followed by either the native signal peptide sequence of this protease or the signal peptide sequence of the sacB gene. The protease was purified 3.8-fold, with a specific activity of 16530 U mg-1. As analyzed by SDS-PAGE, the molecular mass of the expressed protease was about 35 kDa, and the optimal temperature and pH of the protease were 65℃ and 7.5, respectively. Moreover, it still had about 80% activity after 1 h reaction at 65℃.

  9. Physical Characteristics of Spores of Food-Associated Isolates of the Bacillus cereus Group ▿

    Ankolekar, Chandrakant; Labbé, Ronald G.


    All 47 food-borne isolates of Bacillus cereus sensu stricto, as well as 10 of 12 food-borne, enterotoxigenic isolates of Bacillus thuringiensis, possessed appendages. Spores were moderately to highly hydrophobic, and each had a net negative charge. These characteristics indicate that spores of food-associated B. thuringiensis and not only B. cereus sensu stricto have high potential to adhere to inert surfaces.

  10. The search and identification of the new immunodiagnostic targets of bacillus anthracis spore

    Spores of Bacillus anthracis have been used as bio warfare agent to bio terrorize purposes. As efficiency of anti-epidemic measures included urgent prevention and treatment is determined by terms within which the bio agent is identified. Direct and rapid spore detection by antibodies based detection system is very attractive alternative to current PCR-based assays or routine phenotyping which are the most accurate but are also complex, time-consumption and expensive. The main difficulty with respect to such kind of anthrax spores detection is a cross-reaction with spores of closely related bacteria. For development of species-specific antibodies to anthrax spores recombinant scFvs or hybridoma technique were used. In both case surface spore antigens contained species-specific epitopes are need. Among exosporium proteins only ExsF(BxpB), ExsK and SoaA are specific to B.cereus group. On the surface of B. anthracis spores, a unique tetrasaccharides containing an novel monosaccharide - anthrose, was discovered. It was shown that anthrose can be serving as species-specific target for B. anthracis spores detection. We have revealed that EA1 isolated from spore of Russians strain STI-1 contain carbohydrate which formed species-specific epitopes and determine immunogenicity of this antigen. Antibodies to this antigen specifically recognized the surface target of B. anthracis spores and do not reacted with others Bacillus spore. Based on these antibodies we developed the test-systems in different formats for rapid direct detection and identification of B. anthracis spores. The results of trial these test-systems with using more than 50 different Bacillus strains were indicated that carbohydrate of EA1 isolated from spore is effective immunodiagnostic target for anthrax spores bio detection.(author)

  11. Role of enzymes of homologous recombination in illegitimate plasmid recombination in Bacillus subtilis

    Meima, R; Haijema, BJ; Haan, GJ; Venema, G; Bron, S


    The structural stability of plasmid pGP1, which encodes a fusion between the penicillinase gene (penP) of Bacillus licheniformis and the Escherichia coli lacZ gene, was investigated in Bacillus subtilis strains expressing mutated subunits of the ATP-dependent nuclease, AddAB, and strains lacking the

  12. The expression of a plasmid-specified exported protein causes structural plasmid instability in Bacillus subtilis

    Cordes, C.; Meima, R; Twiest, B; Kazemier, B; Venema, G; vanDijl, JM; Bron, S


    The rolling-circle plasmid pGP1 was used to study the effects of the expression of a plasmid-specified exported protein on structural plasmid stability in Bacillus subtilis. pGP1 contains a fusion between the Bacillus licheniformis penP gene, encoding a C-terminally truncated penicillinase, and the

  13. Structural and Functional Analysis of the GerD Spore Germination Protein of Bacillus Species

    Li, Yunfeng; Jin, Kai; Ghosh, Sonali; Devarakonda, Parvathimadhavi; Carlson, Kristina; Davis, Andrew; Stewart, Kerry-Ann V.; Cammett, Elizabeth; Rossi, Patricia Pelczar; Setlow, Barbara; Lu, Min; Setlow, Peter; Hao, Bing


    Spore germination in Bacillus species represents an excellent model system with which to study the molecular mechanisms underlying the nutritional control of growth and development. Binding of specific chemical nutrients to their cognate receptors located in the spore inner membrane triggers the germination process that leads to a resumption of metabolism in spore outgrowth. Recent studies suggest that the inner membrane GerD lipoprotein plays a critical role in the receptor-mediated activati...

  14. PCR Assay To Detect Bacillus anthracis Spores in Heat-Treated Specimens

    Fasanella, A.; Losito, S.; Adone, R.; Ciuchini, F.; Trotta, T.; Altamura, S. A.; D. Chiocco; Ippolito, G


    Recent interest in anthrax is due to its potential use in bioterrorism and as a biowarfare agent against civilian populations. The development of rapid and sensitive techniques to detect anthrax spores in suspicious specimens is the most important aim for public health. With a view to preventing exposure of laboratory workers to viable Bacillus anthracis spores, this study evaluated the suitability of PCR assays for detecting anthrax spores previously inactivated at 121°C for 45 min. The resu...

  15. Nonribosomal Peptide Synthase Gene Clusters for Lipopeptide Biosynthesis in Bacillus subtilis 916 and Their Phenotypic Functions

    Luo, Chuping; Liu, Xuehui; Zhou, Huafei; Wang, Xiaoyu; Chen, Zhiyi


    Bacillus cyclic lipopeptides (LPs) have been well studied for their phytopathogen-antagonistic activities. Recently, research has shown that these LPs also contribute to the phenotypic features of Bacillus strains, such as hemolytic activity, swarming motility, biofilm formation, and colony morphology. Bacillus subtilis 916 not only coproduces the three families of well-known LPs, i.e., surfactins, bacillomycin Ls (iturin family), and fengycins, but also produces a new family of LP called loc...

  16. Regulation of the tryptophan biosynthetic genes in Bacillus halodurans: common elements but different strategies than those used by Bacillus subtilis.

    Szigeti, Reka; Milescu, Mirela; Gollnick, Paul


    In Bacillus subtilis, an RNA binding protein called TRAP regulates both transcription and translation of the tryptophan biosynthetic genes. Bacillus halodurans is an alkaliphilic Bacillus species that grows at high pHs. Previous studies of this bacterium have focused on mechanisms of adaptation for growth in alkaline environments. We have characterized the regulation of the tryptophan biosynthetic genes in B. halodurans and compared it to that in B. subtilis. B. halodurans encodes a TRAP protein with 71% sequence identity to the B. subtilis protein. Expression of anthranilate synthetase, the first enzyme in the pathway to tryptophan, is regulated significantly less in B. halodurans than in B. subtilis. Examination of the control of the B. halodurans trpEDCFBA operon both in vivo and in vitro shows that only transcription is regulated, whereas in B. subtilis both transcription of the operon and translation of trpE are controlled. The attenuation mechanism that controls transcription in B. halodurans is similar to that in B. subtilis, but there are some differences in the predicted RNA secondary structures in the B. halodurans trp leader region, including the presence of a potential anti-antiterminator structure. Translation of trpG, which is within the folate operon in both bacilli, is regulated similarly in the two species. PMID:14729709

  17. Biocalcifying Bacillus subtilis cells effectively consolidate deteriorated Globigerina limestone.

    Micallef, Roderick; Vella, Daniel; Sinagra, Emmanuel; Zammit, Gabrielle


    Microbially induced calcite precipitation occurs naturally on ancient limestone surfaces in Maltese hypogea. We exploited this phenomenon and treated deteriorated limestone with biocalcifying bacteria. The limestone was subjected to various mechanical and physical tests to present a statistically robust data set to prove that treatment was indeed effective. Bacillus subtilis conferred uniform bioconsolidation to a depth of 30 mm. Drilling resistance values were similar to those obtained for freshly quarried limestone (9 N) and increased up to 15 N. Treatment resulted in a high resistance to salt deterioration and a slow rate of water absorption. The overall percentage porosity of treated limestone varied by ±6 %, thus the pore network was preserved. We report an eco-friendly treatment that closely resembles the mineral composition of limestone and that penetrates into the porous structure without affecting the limestones' natural properties. The treatment is of industrial relevance since it compares well with stone consolidants available commercially. PMID:27072564

  18. Nutrient depletion in Bacillus subtilis biofilms triggers matrix production

    Many types of bacteria form colonies that grow into physically robust and strongly adhesive aggregates known as biofilms. A distinguishing characteristic of bacterial biofilms is an extracellular polymeric substance (EPS) matrix that encases the cells and provides physical integrity to the colony. The EPS matrix consists of a large amount of polysaccharide, as well as protein filaments, DNA and degraded cellular materials. The genetic pathways that control the transformation of a colony into a biofilm have been widely studied, and yield a spatiotemporal heterogeneity in EPS production. Spatial gradients in metabolites parallel this heterogeneity in EPS, but nutrient concentration as an underlying physiological initiator of EPS production has not been explored. Here, we study the role of nutrient depletion in EPS production in Bacillus subtilis biofilms. By monitoring simultaneously biofilm size and matrix production, we find that EPS production increases at a critical colony thickness that depends on the initial amount of carbon sources in the medium. Through studies of individual cells in liquid culture we find that EPS production can be triggered at the single-cell level by reducing nutrient concentration. To connect the single-cell assays with conditions in the biofilm, we calculate carbon concentration with a model for the reaction and diffusion of nutrients in the biofilm. This model predicts the relationship between the initial concentration of carbon and the thickness of the colony at the point of internal nutrient deprivation. (paper)

  19. Transcriptional regulation of a Bacillus subtilis dipeptide transport operon.

    Slack, F J; Mueller, J P; Strauch, M A; Mathiopoulos, C; Sonenshein, A L


    The Bacillus subtilis dciA operon, which encodes a dipeptide transport system, was induced rapidly by several conditions that caused the cells to enter stationary phase and initiate sporulation. The in vivo start point of transcription was mapped precisely and shown to correspond to a site of transcription initiation in vitro by the major vegetative form of RNA polymerase. Post-exponential expression was prevented by a mutation in the spo0A gene (whose product is a known regulator of early sporulation genes) but was restored in a spo0A abrB double mutant. This implicated AbrB, another known regulator, as a repressor of dciA. In fact, purified AbrB protein bound to a portion of the dciA promoter region, protecting it against DNase I digestion. Expression of dciA in growing cells was also repressed independently by glucose and by a mixture of amino acids; neither of these effects was mediated by AbrB. PMID:1766371

  20. Identification of Bacillus subtilis genes expressed early during sporulation.

    Mathiopoulos, C; Sonenshein, A L


    Labelled cDNA transcribed in vitro from early-sporulation RNA was enriched for sporulation-specific sequences by subtractive hybridization to an excess of vegetative RNA and used to probe libraries of Bacillus subtilis chromosomal DNA. From the initial collection of clones that coded for RNAs transcribed preferentially during sporulation, several were subcloned and studied in more detail. It was found that two clones contained sequences (dciA and dciB) that had an undetectable level of transcription during vegetative growth but had transcripts that started to appear no later than eight minutes after induction of sporulation. A third DNA segment (dciC) was expressed at a low level in vegetative cells and increased within four minutes after induction of sporulation. The effects of spoO mutations, i.e. mutations that prevent cells from reaching stage I of the sporulation process, were tested. Induction of the dciA and dciB transcripts was significantly reduced in strains carrying mutations in the spoOA and spoOH genes but not in a spoOB mutant strain. In addition, a product of the abrB locus, a locus in which mutations are known to partially overcome the pleiotropic effect of spoOA and spoOB mutations, seemed to be required for dciA and dciB expression. PMID:2481799

  1. Novel methyl transfer during chemotaxis in Bacillus subtilis

    If Bacillus subtilis is incubated in radioactive methionine in the absence of protein synthesis, the methyl-accepting chemotaxis proteins (MCPs) become radioactively methylated. If the bacteria are further incubated in excess nonradioactive methionine (cold-chased) and then given the attractant aspartate, the MCPs lose about half of their radioactivity due to turnover, in which lower specific activity methyl groups from S-adenosylmethionine (AdoMet) replace higher specific activity ones. Due to the cold-chase, the specific activity of the AdoMet pool is reduced at least 2-fold. If, later, the attractant is removed, higher specific activity methyl groups return to the MCPs. Thus, there must exist an unidentified methyl carrier than can reversibly receive methyl groups from the MCPs. In a similar experiment, labeled cells were transferred to a flow cell and exposed to addition and removal of attractant and of repellent. All four kinds of stimuli were found to cause methanol production. Bacterial with maximally labeled MCPs were exposed to many cycles of addition and removal of attractant; the maximum amount of radioactive methanol was evolved on the third, not the first, cycle. This result suggests that there is a precursor-product relationship between methyl groups on the MCPs and on the unidentified carrier, which might be the direct source of methanol. However, since no methanol was produced when a methyltransferase mutant, whose MCPs were unmethylated, was exposed to addition and removal of attractant or repellent, the methanol must ultimately derive from methylated MCPs

  2. A Low Dimensional Approximation For Competence In Bacillus Subtilis.

    Nguyen, An; Prugel-Bennett, Adam; Dasmahapatra, Srinandan


    The behaviour of a high dimensional stochastic system described by a chemical master equation (CME) depends on many parameters, rendering explicit simulation an inefficient method for exploring the properties of such models. Capturing their behaviour by low-dimensional models makes analysis of system behaviour tractable. In this paper, we present low dimensional models for the noise-induced excitable dynamics in Bacillus subtilis, whereby a key protein ComK, which drives a complex chain of reactions leading to bacterial competence, gets expressed rapidly in large quantities (competent state) before subsiding to low levels of expression (vegetative state). These rapid reactions suggest the application of an adiabatic approximation of the dynamics of the regulatory model that, however, lead to competence durations that are incorrect by a factor of 2. We apply a modified version of an iterative functional procedure that faithfully approximates the time-course of the trajectories in terms of a two-dimensional model involving proteins ComK and ComS. Furthermore, in order to describe the bimodal bivariate marginal probability distribution obtained from the Gillespie simulations of the CME, we introduce a tunable multiplicative noise term in a two-dimensional Langevin model whose stationary state is described by the time-independent solution of the corresponding Fokker-Planck equation. PMID:27045827

  3. Probing phenotypic growth in expanding Bacillus subtilis biofilms.

    Wang, Xiaoling; Koehler, Stephan A; Wilking, James N; Sinha, Naveen N; Cabeen, Matthew T; Srinivasan, Siddarth; Seminara, Agnese; Rubinstein, Shmuel; Sun, Qingping; Brenner, Michael P; Weitz, David A


    We develop an optical imaging technique for spatially and temporally tracking biofilm growth and the distribution of the main phenotypes of a Bacillus subtilis strain with a triple-fluorescent reporter for motility, matrix production, and sporulation. We develop a calibration procedure for determining the biofilm thickness from the transmission images, which is based on Beer-Lambert's law and involves cross-sectioning of biofilms. To obtain the phenotype distribution, we assume a linear relationship between the number of cells and their fluorescence and determine the best combination of calibration coefficients that matches the total number of cells for all three phenotypes and with the total number of cells from the transmission images. Based on this analysis, we resolve the composition of the biofilm in terms of motile, matrix-producing, sporulating cells and low-fluorescent materials which includes matrix and cells that are dead or have low fluorescent gene expression. We take advantage of the circular growth to make kymograph plots of all three phenotypes and the dominant phenotype in terms of radial distance and time. To visualize the nonlocal character of biofilm growth, we also make kymographs using the local colonization time. Our technique is suitable for real-time, noninvasive, quantitative studies of the growth and phenotype distribution of biofilms which are either exposed to different conditions such as biocides, nutrient depletion, dehydration, or waste accumulation. PMID:27003268

  4. Screening of Bacillus subtilis transposon mutants with altered riboflavin production.

    Tännler, Simon; Zamboni, Nicola; Kiraly, Csilla; Aymerich, Stéphane; Sauer, Uwe


    To identify novel targets for metabolic engineering of riboflavin production, we generated about 10,000 random, transposon-tagged mutants of an industrial, riboflavin-producing strain of Bacillus subtilis. Process-relevant screening conditions were established by developing a 96-deep-well plate method with raffinose as the carbon source, which mimics, to some extent, carbon limitation in fed batch cultures. Screening in raffinose and complex LB medium identified more efficiently riboflavin overproducing and underproducing mutants, respectively. As expected for a "loss of function" analysis, most identified mutants were underproducers. Insertion mutants in two genes with yet unknown function, however, were found to attain significantly improved riboflavin titers and yields. These genes and possibly further ones that are related to them are promising candidates for metabolic engineering. While causal links to riboflavin production were not obvious for most underproducers, we demonstrated for the gluconeogenic glyceraldehyde-3-phosphate dehydrogenase GapB how a novel, non-obvious metabolic engineering strategy can be derived from such underproduction mutations. Specifically, we improved riboflavin production on various substrates significantly by deregulating expression of the gluconeogenic genes gapB and pckA through knockout of their genetic repressor CcpN. This improvement was also verified under the more process-relevant conditions of a glucose-limited fed-batch culture. PMID:18582593

  5. Loop grafting of Bacillus subtilis lipase A: inversion of enantioselectivity.

    Boersma, Ykelien L; Pijning, Tjaard; Bosma, Margriet S; van der Sloot, Almer M; Godinho, Luís F; Dröge, Melloney J; Winter, Remko T; van Pouderoyen, Gertie; Dijkstra, Bauke W; Quax, Wim J


    Lipases are successfully applied in enantioselective biocatalysis. Most lipases contain a lid domain controlling access to the active site, but Bacillus subtilis Lipase A (LipA) is a notable exception: its active site is solvent exposed. To improve the enantioselectivity of LipA in the kinetic resolution of 1,2-O-isopropylidene-sn-glycerol (IPG) esters, we replaced a loop near the active-site entrance by longer loops originating from Fusarium solani cutinase and Penicillium purpurogenum acetylxylan esterase, thereby aiming to increase the interaction surface for the substrate. The resulting loop hybrids showed enantioselectivities inverted toward the desired enantiomer of IPG. The acetylxylan esterase-derived variant showed an inversion in enantiomeric excess (ee) from -12.9% to +6.0%, whereas the cutinase-derived variant was improved to an ee of +26.5%. The enantioselectivity of the cutinase-derived variant was further improved by directed evolution to an ee of +57.4%. PMID:18721749

  6. Tryptophan provision by dietary supplementation of a Bacillus subtilis mutant strain in piglets

    Torres-Pitarch, A; Nielsen, B.; Canibe, Nuria;


    Supplementing Bacillus (B.) subtilis mutants selected to overproduce a specific amino acid (AA) may be an alternative method to provide essential AA in pig diets. Two experiments on a B. subtilis strain selected to overproduce Trp were conducted using 8-kg pigs fed Trp-deficient diets for 20 d. B....... subtilis were supplied in a low or high dose in Experiments 1 and 2, respectively. The Trp-deficient diet (0.15 SID Trp:Lys) reduced (p < .05) both gain and feed intake of piglets compared to the positive control diet (0.17 SID Trp:Lys). Supplementation of the B. subtilis strain was not able to...... counterbalance the Trp deficiency in any of the two experiments. No effect of B. subtilis supplementation to piglet diets was observed on the plasma AA profile. In conclusion, this mutant strain of B. subtilis was not able to compensate a Trp deficiency in the tested doses....

  7. Antifungal activity of Bacillus subtilis 355 against wood-surface contaminant fungi.

    Feio, Sonia Savluchinske; Barbosa, Ana; Cabrita, Manuela; Nunes, Lina; Esteves, Alexandra; Roseiro, José Carlos; Curto, Maria João Marcelo


    A strain of Bacillus subtilis was examined for antifungal activity against phytopathogenic and wood-surface contaminant fungi. The bacterium was grown in five culture media with different incubation times in order to study cell development, sporulation, and the production of metabolites with antifungal activity. The anti-sapstain and anti-mould activity of the bacterium grown in yeast extract glucose broth (YGB) medium in wood was also evaluated. In YGB, the bacterium inhibited the growth of several fungi and displayed a broader spectrum of activity than in the other media tested. A relationship between bacterial spore production and the formation of metabolites with antifungal activity was detected. YGB medium displayed effective control in wood block tests. YGB medium was extracted with solvents of increasing polarity and the dry residues were applied to silicagel plates, resolved with the appropriate solvent and sprayed with different solutions, detecting the presence, of amines, and higher alcohols. The bioautographic method revealed the presence of at least two active compounds against the blue-stain fungus Cladosporium cucumerinum. PMID:15197600

  8. Inactivation of E. coli, B. subtilis spores, and MS2, T4, and T7 phage using UV/H2O2 advanced oxidation

    The goal of this study was to evaluate the potential of an advanced oxidation process (AOP) for microbiocidal and virucidal inactivation. The viruses chosen for this study were bacteriophage MS2, T4, and T7. In addition, Bacillus subtilis spores and Escherichia coli were studied. By using H2O2 in the presence of filtered ultraviolet (UV) irradiation (UV/H2O2) to generate wavelengths above 295 nm, the direct UV photolysis disinfection mechanism was minimized, while disinfection by H2O2 was also negligible. Virus T4 and E. coli in phosphate buffered saline (PBS) were sensitive to >295 nm filtered UV irradiation (without H2O2), while MS2 was very resistant. Addition of H2O2 at 25 mg/l in the presence of filtered UV irradiation over a 15 min reaction time did not result in any additional disinfection of virus T4, while an additional one log inactivation for T7 and 2.5 logs for MS2 were obtained. With E. coli, only a slight additional effect was observed when H2O2 was added. B. subtilis spores did not show any inactivation at any of the conditions used in this study. The OH radical exposure (CT value) was calculated to present the relationship between the hydroxyl radical dose and microbial inactivation

  9. ABILITY OF BACTERIAL CONSORTIUM: Bacillus coagulans, Bacilus licheniformis, Bacillus pumilus, Bacillus subtilis, Nitrosomonas sp. and Pseudomonas putida IN BIOREMEDIATION OF WASTE WATER IN CISIRUNG WASTE WATER TREATMENT PLANT

    Ratu SAFITRI; Bambang PRIADIE; Mia MIRANTI; Arum Widi ASTUTI


    This study was conducted in order to determine the ability of bacterial consortium: Bacillus coagulans, Bacilus licheniformis, Bacillus pumilus, Bacillus subtilis, Nitrosomonas sp., and Pseudomonas putida in bioremediation of wastewater origin Cisirung WWTP. This study uses an experimental method completely randomized design (CRD), which consists of two treatment factors (8x8 factorial design). The first factor is a consortium of bacteria (K), consisting of 8 level factors (k1, k2, k3, k4, k5...




    Although it has never been reported that Bacillus subtilis is capable of accumulating glycogen, we have isolated a region from the chromosome of B. subtilis containing a glycogen operon. The operon is located directly downstream from trnB, which maps at 275 degrees on the B. subtilis chromosome. It

  11. A non-destructive method for characterizing phenotypes and growth of a Bacillus subtilis biofilm using fluorescence microscopy

    Koehler, Stephan; Wang, Xiaoling; Wilking, James; Weitz, Dave


    We develop an imaging technique for characterizing growth of biofilms using a triple fluorescent labeled strain for the three main phenotypes of a Bacillus subtilis biofilm on an agar substrate. We find that the biofilm does not flow across the substrate and thus growth is due to colonization at the periphery and thickening of the interior regions. We obtain local height and its composition of the three main phenotypes, which are motile, matrix-producing and sporulating, as well as the non-fluorescent material, which can be spores, dormant or dead cells or extracellular matrix. This technique is suitable for the study of biofilm growth and inhibition for different conditions such as biocides or bioremediation.

  12. Effect of Riboflavin Operon Dosage on Riboflavin Productivity in Bacillus Subtilis

    CHEN Tao; CHEN Xun; WANG Jingyu; ZHAO Xueming


    After deregulating the purine and riboflavin synthesis in the Gram-positive bacterium Bacillus subtilis,it is critical to amplify riboflavin operon with appropriate dosage in the host strain for remarkable increase of riboflavin production.Bacillus subtilis RH13, a riboflavin-producing strain, was selected as host strain in the construction of engineering strains by protoplast fusion. The integrative plasmid pRB63 and autonomous plasmid pRB49, pRB62 containing riboflavin operon of B.subtilis 24 were constructed and transformed into the host strain respectively. Increasing one operon copy in B.subtilis RH13 results in about 0.4 g/L improvement in riboflavin yield and the appropriate number of operon copies was about 7-8. Amplifying more riboflavin operons is of no use for further improvement of yield of riboflavin. Furthermore, excessive operon dosage results in metabolic unbalance and is fatal to the host cells producing riboflavin.

  13. Enhancement of extracellular expression of Bacillus naganoensis pullulanase from recombinant Bacillus subtilis: Effects of promoter and host.

    Song, Wan; Nie, Yao; Mu, Xiao Qing; Xu, Yan


    Pullulanase plays an important role in industrial applications of starch processing. However, extracellular production of pullulanase from recombinant Bacillus subtilis is yet limited due to the issues on regulatory elements of B. subtilis expression system. In this study, the gene encoding B. naganoensis pullulanase (PUL) was expressed in B. subtilis WB800 under the promoter PHpaII in the shuttle vector pMA0911. The extracellular activity of expressed pullulanase was 3.9 U ml(-1) from the recombinant B. subtilis WB800/pMA0911-PHpaII-pul. To further enhance the yield of PUL, the promoter PHpaII in pMA0911 was replaced by a stronger constitutive promoter P43. Then the activity was increased to 8.7 U ml(-1) from the recombinant B. subtilis WB800/pMA0911-P43-pul. Effect of host on pullulanase expression was further investigated by comparison between B. subtilis WB600 and B. subtilis WB800. In addition to the available B. subtilis WB800 recombinants, the constructed plasmids pMA0911-PHpaII-pul and pMA0911-P43-pul were transformed into B. subtilis WB600, respectively. Consequently, the extracellular production of PUL was significantly enhanced by B. subtilis WB600/pMA0911-P43-pul, resulting in the extracellular pullulanase activity of 24.5 U ml(-1). Therefore, promoter and host had an impact on pullulanase expression and their optimization would be useful to improve heterologous protein expression in B. subtilis. PMID:27109467

  14. Anthrax Toxins in Context of Bacillus anthracis Spores and Spore Germination

    Cote, Christopher K.; Susan L. Welkos


    The interaction of anthrax toxin or toxin components with B. anthracis spores has been demonstrated. Germinating spores can produce significant amounts of toxin components very soon after the initiation of germination. In this review, we will summarize the work performed that has led to our understanding of toxin and spore interactions and discuss the complexities associated with these interactions.

  15. Biological control of Colletotrichum panacicola on Panax ginseng by Bacillus subtilis HK-CSM-1

    Ryu, Hojin; Park, Hoon; Suh, Dong-Sang; Jung, Gun Ho; Park, Kyungseok; Lee, Byung Dae


    Background Biological control of plant pathogens using benign or beneficial microorganisms as antagonistic agents is currently considered to be an important component of integrated pest management in agricultural crops. In this study, we evaluated the potential of Bacillus subtilis strain HK-CSM-1 as a biological control agent against Colletotrichum panacicola. Methods The potential of B. subtilis HK-CSM-1 as a biological control agent for ginseng anthracnose was assessed. C. panacicola was i...

  16. Biocontrol of Rhizoctonia solani Damping-Off of Tomato with Bacillus subtilis RB14

    Asaka, O.; Shoda, M


    Bacillus subtilis RB14, which showed antibiotic activities against several phytopathogens in vitro by producing the antibiotics iturin A and surfactin, was subjected to a pot test to investigate its ability to suppress damping-off of tomato seedlings caused by Rhizoctonia solani. To facilitate recovery from soil, B. subtilis RB14-C, a spontaneous streptomycin-resistant mutant of RB14, was used. Damping-off was suppressed when the culture broth, cell suspension, or cell-free culture broth of R...

  17. Levan from Bacillus subtilis Natto: its effects in normal and in streptozotocin-diabetic rats

    Fernando Cesar Bazani Cabral de Melo; Cássia Thaïs Bussamra Viera Zaia; Maria Antonia Pedrine Colabone Celligoi


    Levan is an exopolysaccharide of fructose primarily linked by β-(2→6) glycosidic bonds with some β-(2→1) branched chains. Due to its chemical properties, levan has possible applications in both the food and pharmaceutical industries. Bacillus subtilis is a promising industrial levan producer, as it ferments sucrose and has a high levan-formation capacity. A new strain of B. subtilis was recently isolated from Japanese food natto, and it has produced levan in large quanti...

  18. Intrinsic Levanase Activity of Bacillus subtilis 168 Levansucrase (SacB)

    Méndez-Lorenzo, Luz; Jaime R Porras-Domínguez; Raga-Carbajal, Enrique; Olvera, Clarita; Rodríguez-Alegría, Maria Elena; Carrillo-Nava, Ernesto; Costas, Miguel; López Munguía, Agustín


    Levansucrase catalyzes the synthesis of fructose polymers through the transfer of fructosyl units from sucrose to a growing fructan chain. Levanase activity of Bacillus subtilis levansucrase has been described since the very first publications dealing with the mechanism of levan synthesis. However, there is a lack of qualitative and quantitative evidence regarding the importance of the intrinsic levan hydrolysis of B. subtilis levansucrase and its role in the levan synthesis process. Particul...

  19. Amino acid efflux in response to chemotactic and osmotic signals in Bacillus subtilis.

    Wong, L S; Johnson, M. S.; Sandberg, L. B.; Taylor, B L


    We observed a large efflux of nonvolatile radioactivity from Bacillus subtilis in response to the addition of 31 mM butyrate or the withdrawal of 0.1 M aspartate in a flow assay. The major nonvolatile components effluxed were methionine, proline, histidine, and lysine. In studies of the release of volatile radioactivity in chemotaxis by B. subtilis cells that had been labeled with [3H]methionine, the breakdown of methionine to methanethiol can contribute substantially to the volatile radioact...

  20. Methodological approaches to help unravel the intracellular metabolome of Bacillus subtilis

    Meyer, Hanna; Weidmann, Hendrikje; Lalk, Michael


    Background Bacillus subtilis (B. subtilis) has become widely accepted as a model organism for studies on Gram-positive bacteria. A deeper insight into the physiology of this prokaryote requires advanced studies of its metabolism. To provide a reliable basis for metabolome investigations, a validated experimental protocol is needed since the quality of the analytical sample and the final data are strongly affected by the sampling steps. To ensure that the sample analyzed precisely reflects the...

  1. Effects of Bacillus subtilis natto and Different Components in Culture on Rumen Fermentation and Rumen Functional Bacteria In Vitro.

    Sun, Peng; Li, Jinan; Bu, Dengpan; Nan, Xuemei; Du, Hong


    This study was to investigate the effects of live or autoclaved Bacillus subtilis natto, their fermented products and media on rumen fermentation and rumen functional bacteria in vitro. Rumen fluid from three multiparous lactating Holstein cows was combined and transferred into serum bottles after diluted. Fifteen serum bottles were divided into five treatments, which were designed as following: CTR (the fermentation of 0.5 g TMR and ruminal fluids from dairy cows), LBS (CTR plus a minimum of 10(11) cfu live Bacillus subtilis natto), ABS (CTR plus a minimum of 10(11) cfu autoclaved Bacillus subtilis natto), BSC (CTR plus 1 ml Bacillus subtilis natto fermentation products without bacteria), and BSM (CTR plus 1 ml liquid fermentation medium). When separated from the culture, live Bacillus subtilis natto individually increased the concentrations of ammonia-N (P production (P probiotic in dairy ration. PMID:26821238

  2. Atmospheric pressure-thermal desorption (AP-TD)/electrospray ionization-mass spectrometry for the rapid analysis of Bacillus spores.

    Basile, Franco; Zhang, Shaofeng; Shin, Yong-Seung; Drolet, Barbara


    A technique is described where an atmospheric pressure-thermal desorption (AP-TD) device and electrospray ionization (ESI)-mass spectrometry (MS) are coupled and used for the rapid analysis of Bacillus subtilis spores in complex matrices. The resulting AP-TD/ESI-MS technique combines the generation of volatile compounds and/or pyrolysis products with soft-ionization MS detection. In the AP-TD/ESI-MS approach, an electrospray solvent plume was used as the ionization vehicle of thermally desorbed neutrals at atmospheric pressure prior to mass spectrometric analysis using a quadrupole ion trap mass spectrometer. The approach is quantitative with the volatile standard dimethyl methylphosphonate (DMMP) and with the use of an internal standard (diethyl methylphosphonate, DEMP). A linear response was obtained as tested in the 1-50 ppm range (R(2) = 0.991) with a standard error of the estimate of 0.193 (0.9% RSD, n = 5). Bacterial spores were detected by performing pyrolysis in situ methylation with the reagent tetramethylammonium hydroxide (TMAH) for the detection of the bacterial spore biomarker dipicolinic acid (DPA) as the dimethylated derivative (2Me-DPA). This approach allowed spore detection even in the presence of growth media in crude lyophilized samples. Repetitive analyses could be performed with a duty cycle of less than 5 min total analysis time (including sample loading, heating and data acquisition). This strategy proved successful over other direct ambient MS approaches like DESI-MS and AP-TD/ESI-MS without the in situ derivatization step to detect the dipicolinic acid biomarker from spores. A detection limit for the dimethylated DPA biomarker was estimated at 1 ppm (equivalent to 0.01 mug of DPA deposited in the thermal desorption tube), which corresponded to a calculated detection limit of 10(5) spores deposited or 0.1% by weight spore composition in solid samples (assuming a 1 mg sample size). The AP-TD/ESI source used in conjunction with the in situ

  3. Evaluation of surface sampling method performance for Bacillus Spores on clean and dirty outdoor surfaces.

    Wilson, Mollye C.; Einfeld, Wayne; Boucher, Raymond M.; Brown, Gary Stephen; Tezak, Matthew Stephen


    Recovery of Bacillus atrophaeous spores from grime-treated and clean surfaces was measured in a controlled chamber study to assess sampling method performance. Outdoor surfaces investigated by wipe and vacuum sampling methods included stainless steel, glass, marble and concrete. Bacillus atrophaeous spores were used as a surrogate for Bacillus anthracis spores in this study designed to assess whether grime-coated surfaces significantly affected surface sampling method performance when compared to clean surfaces. A series of chamber tests were carried out in which known amounts of spores were allowed to gravitationally settle onto both clean and dirty surfaces. Reference coupons were co-located with test coupons in all chamber experiments to provide a quantitative measure of initial surface concentrations of spores on all surfaces, thereby allowing sampling recovery calculations. Results from these tests, carried out under both low and high humidity conditions, show that spore recovery from grime-coated surfaces is the same as or better than spore recovery from clean surfaces. Statistically significant differences between method performance for grime-coated and clean surfaces were observed in only about half of the chamber tests conducted.

  4. Integrative bacterial artificial chromosomes for DNA integration into the Bacillus subtilis chromosome.

    Juhas, Mario; Ajioka, James W


    Bacillus subtilis is a well-characterized model bacterium frequently used for a number of biotechnology and synthetic biology applications. Novel strategies combining the advantages of B. subtilis with the DNA assembly and editing tools of Escherichia coli are crucial for B. subtilis engineering efforts. We combined Gibson Assembly and λ red recombineering in E. coli with RecA-mediated homologous recombination in B. subtilis for bacterial artificial chromosome-mediated DNA integration into the well-characterized amyE target locus of the B. subtilis chromosome. The engineered integrative bacterial artificial chromosome iBAC(cav) can accept any DNA fragment for integration into B. subtilis chromosome and allows rapid selection of transformants by B. subtilis-specific antibiotic resistance and the yellow fluorescent protein (mVenus) expression. We used the developed iBAC(cav)-mediated system to integrate 10kb DNA fragment from E. coli K12 MG1655 into B. subtilis chromosome. iBAC(cav)-mediated chromosomal integration approach will facilitate rational design of synthetic biology applications in B. subtilis. PMID:27033694

  5. Menaquinone and iron are essential for complex colony development in Bacillus subtilis.

    Gidi Pelchovich

    Full Text Available Cells of undomesticated species of Bacillus subtilis frequently form complex colonies during spreading on agar surfaces. Given that menaquinone is involved in another form of coordinated behavior, namely, sporulation, we looked for a possible role for menaquinone in complex colony development (CCD in the B. subtilis strain NCIB 3610. Here we show that inhibition of menaquinone biosynthesis in B. subtilis indeed abolished its ability to develop complex colonies. Additionally some mutations of B. subtilis which confer defective CCD could be suppressed by menaquinone derivatives. Several such mutants mapped to the dhb operon encoding the genes responsible for the biosynthesis of the iron siderophore, bacillibactin. Our results demonstrate that both menaquinone and iron are essential for CCD in B. subtilis.

  6. Spores

    A spore is a cell that certain fungi, plants (moss, ferns), and bacteria produce. Spores are involved in reproduction. Certain bacteria make spores as a way to defend themselves. These spores have thick walls. They can resist high temperatures, ...

  7. In vitro characterization of the Bacillus subtilis protein tyrosine phosphatase YwqE

    Mijakovic, Ivan; Musumeci, Lucia; Tautz, Lutz;


    Both gram-negative and gram-positive bacteria possess protein tyrosine phosphatases (PTPs) with a catalytic Cys residue. In addition, many gram-positive bacteria have acquired a new family of PTPs, whose first characterized member was CpsB from Streptococcus pneumoniae. Bacillus subtilis contains......, we characterize YwqE, compare the activities of the three B. subtilis PTPs (YwqE, YwlE, and YfkJ), and demonstrate that the two B. subtilis class II PTPs do not dephosphorylate the physiological substrates of YwqE....

  8. Antagonistic and Inhibitory Effect of Bacillus subtilis Against Certain Plant Pathogenic Fungi, I

    S. M. Matar


    Full Text Available The antagonistic and inhibitory activity of fourteen Bacillus subtilis isolates (B1 to B14 obtained from different Egyptian sites, were tested against six fungal isolates belonging to four different genera, Rhizoctonia solani, Helminthosporium spp., Alternaria spp. and Fusarium oxysporum. Cultural, morphological and physiological characteristics of these isolates were found to be identical to Bacillus subtilis. When the fourteen B. subtilis isolates were tested as biological control agents for their antagonistic effect on the in vitro growth of the fungal isolates, four B. subtilis isolates B1, B4, B7, B8 had more antagonistic effect on all fungal isolates. Supernatant of B. subtilis isolate B7 had antagonistic effect on 6 fungal isolates but it was more effective on Helminthosporium spp., Alternaria spp. and F. oxysporum. B. subtilis as well as, isolate B7 showed effectiveness in reducing disease incidence and severity levels of tomato plants when added to the F. oxysporum and R. solani-infested soil. Also, it stimulated the growth of tomato plants compared to the other. HPLC analysis of the HCl precipitate of B. subtilis isolate B7 culture supernatant revealed that an identical pattern of five peaks to that of a purified preparation of iturin A was obtained.

  9. Bioaccumulation of copper, zinc, cadmium and lead by Bacillus sp., Bacillus cereus, Bacillus sphaericus and Bacillus subtilis Bioacumulação de cobre, zinco, cádmio e chumbo por Bacillus sp., Bacillus cereus, Bacillus sphaericus e Bacillus subtilis

    Antonio Carlos Augusto da Costa


    Full Text Available This work presents some results on the use of microbes from the genus Bacillus for uptake of cadmium, zinc, copper and lead ions. Maximum copper bioaccumulations were 5.6 mol/g biomass for B. sphaericus, 5.9 mol/g biomass for B. cereus and B. subtilis, and 6.4 mol/g biomass for Bacillus sp. Maximum zinc bioaccumulations were 4.3 mol/g biomass for B. sphaericus, 4.6 mol/g biomass for B. cereus, 4.8 mol/g biomass for Bacillus sp. and 5.0 mol/g biomass for B. subtilis. Maximum cadmium bioaccumulations were 8.0 mol/g biomass for B. cereus, 9.5 mol/g biomass for B. subtilis, 10.8 mol/g biomass for Bacillus sp. and 11.8 mol/g biomass for B. sphaericus. Maximum lead biomaccumulations were 0.7 mol/g biomass for B. sphaericus, 1.1 mol/g biomass for B. cereus, 1.4 mol/g biomass for Bacillus sp. and 1.8 mol/g biomass for B. subtilis. The different Bacillus strains tested presented distinct uptake capacities, and the best results were obtained for B. subtilis and B. cereus.Este trabalho apresenta resultados de acumulação dos íons metálicos cádmio, zinco, cobre e chumbo por bactérias do gênero Bacillus. A bioacumulação máxima de cobre foi 5,6 mol/g biomassa para B. sphaericus, 5,9 mol/g biomassa para B. cereus e B. subtilis, e 6,4 mol/g biomassa para Bacillus sp.. A bioacumulação máxima de zinco foi 4,3 mol/g biomassa para B. sphaericus, 4,6 mol/g biomassa para B. cereus, 4,8 mol/g biomassa para Bacillus sp. e 5,0 mol/g biomassa para B. subtilis. A bioacumulação máxima de cádmio foi 8,0 mol/g biomassa para B. cereus, 9,5 mol/g biomassa para B. subtilis, 10,8 mol/g biomassa para Bacillus sp. e 11,8 mol/g biomassa para B. sphaericus. A bioacumulação máxima de chumbo foi 0,7 mol/g biomassa para B. sphaericus, 1,1 mol/g biomassa para B. cereus, 1,4 mol/g biomassa para Bacillus sp. e 1,8 mol/g biomassa para B. subtilis. As distintas linhagens de Bacillus testadas apresentaram variáveis capacidades de carregamento de íons metálicos, sendo os

  10. Biocontrol of Soil Fungi in Tomato with Microencapsulates Containing Bacillus subtilis

    Marcela H. Suarez; Francisco D. Hernandez-Castillo; Gabriel Gallegos-Morales; R. H. Lira-Saldivar; Raul Rodriguez-Herrera; Aguilar, Cristobal N.


    Problem statement: An option to reduce pollution by synthetic agro-chemical in root plant disease management is the use of antagonist rhizobacteria belonging to Bacillus genus, because their inhibitory properties, stimulation of plant growth and crop yield increase. Approach: This study was carried out in order to evaluate if Bacillus subtilis strains could play an antagonists role of plant pathogens and if they can be microencapsulated inside a biopolymer matrix. It was adapted an equipment ...