WorldWideScience

Sample records for bacillus subtilis cells

  1. The Cell Wall of Bacillus subtilis

    NARCIS (Netherlands)

    Scheffers, Dirk-Jan; Graumann, Peter

    2012-01-01

    The cell wall of Bacillus subtilis is a rigid structure on the outside of the cell that forms the first barrier between the bacterium and the environment, and at the same time maintains cell shape and withstands the pressure generated by the cell’s turgor. In this chapter, the chemical composition

  2. Comparative genome analysis of Bacillus cereus group genomes withBacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iain; Sorokin, Alexei; Kapatral, Vinayak; Reznik, Gary; Bhattacharya, Anamitra; Mikhailova, Natalia; Burd, Henry; Joukov, Victor; Kaznadzey, Denis; Walunas, Theresa; D' Souza, Mark; Larsen, Niels; Pusch,Gordon; Liolios, Konstantinos; Grechkin, Yuri; Lapidus, Alla; Goltsman,Eugene; Chu, Lien; Fonstein, Michael; Ehrlich, S. Dusko; Overbeek, Ross; Kyrpides, Nikos; Ivanova, Natalia

    2005-09-14

    Genome features of the Bacillus cereus group genomes (representative strains of Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis sub spp israelensis) were analyzed and compared with the Bacillus subtilis genome. A core set of 1,381 protein families among the four Bacillus genomes, with an additional set of 933 families common to the B. cereus group, was identified. Differences in signal transduction pathways, membrane transporters, cell surface structures, cell wall, and S-layer proteins suggesting differences in their phenotype were identified. The B. cereus group has signal transduction systems including a tyrosine kinase related to two-component system histidine kinases from B. subtilis. A model for regulation of the stress responsive sigma factor sigmaB in the B. cereus group different from the well studied regulation in B. subtilis has been proposed. Despite a high degree of chromosomal synteny among these genomes, significant differences in cell wall and spore coat proteins that contribute to the survival and adaptation in specific hosts has been identified.

  3. Cell Physiology and Protein Secretion of Bacillus licheniformis Compared to Bacillus subtilis

    NARCIS (Netherlands)

    Voigt, Birgit; Antelmann, Haike; Albrecht, Dirk; Ehrenreich, Armin; Maurer, Karl-Heinz; Evers, Stefan; Gottschalk, Gerhard; van Dijl, Jan Maarten; Schweder, Thomas; Hecker, Michael

    2009-01-01

    The genome sequence of Bacillus subtilis was published in 1997 and since then many other bacterial genomes have been sequenced, among them Bacillus licheniformis in 2004. B. subtilis and B. licheniformis are closely related and feature similar saprophytic lifestyles in the soil. Both species can

  4. Damage effect of γ-rays on bacillus subtilis vegetative Cells

    International Nuclear Information System (INIS)

    Chen Xiaoming; Liu Fang; Zhang Jianguo; Yan Wanli; Zheng Chun; Li Xiaoyan

    2011-01-01

    In order to investigate the damage effects of γ-rays at cell and molecular level, Bacillus subtilis vegetative cells were irradiated by 60 Co γ-rays at different absorbed doses. The cell survival rate was examined with the standard plate-count method. The intracellular SOD activity was measured by SOD kit through xanthine oxidase method. DNA double-strand breaks were analyzed by pulsed-field gel electrophoresis (PFGE). The cell survival rate decreases when γ-rays dose increases. A clear relation could not be found between intracellular SOD activity and absorbed dose. The DNA release percentage value and break level value increase obviously with γ-rays dose. Cell survival rate is related to DNA double-strand breaks level. It can be concluded that γ-rays have obviously damage effect on Bacillus subtilis vegetative cell, and the damage effect changes with SOD activity and DSB. (authors)

  5. Characterization of high hydrostatic pressure-injured Bacillus subtilis cells.

    Science.gov (United States)

    Inaoka, Takashi; Kimura, Keitarou; Morimatsu, Kazuya; Yamamoto, Kazutaka

    2017-06-01

    High hydrostatic pressure (HHP) affects various cellular processes. Using a sporulation-deficient Bacillus subtilis strain, we characterized the properties of vegetative cells subjected to HHP. When stationary-phase cells were exposed to 250 MPa of HHP for 10 min at 25 °C, approximately 50% of cells were viable, although they exhibited a prolonged growth lag. The HHP-injured cells autolyzed in the presence of NaCl or KCl (at concentrations ≥100 mM). Superoxide dismutase slightly protected the viability of HHP-treated cells, whereas vegetative catalases had no effect. Thus, unlike HHP-injured Escherichia coli, oxidative stress only slightly affected vegetative B. subtilis subjected to HHP.

  6. Host organisms: Bacillus subtilis

    NARCIS (Netherlands)

    Hohman, Hans-Peter; van Dijl, Jan; Krishnappa, Laxmi; Pragai, Zoltan

    2016-01-01

    Bacillus subtilis and its close Bacillus relatives are important bacterial platforms for industrial production of enzymes and fine chemicals such as vitamin B2 and nucleotides. B. subtilis is an attractive bacterial organism for industrial use mainly because of its straightforward genetic

  7. Generation of multiple cell types in Bacillus subtilis.

    Science.gov (United States)

    Lopez, Daniel; Vlamakis, Hera; Kolter, Roberto

    2009-01-01

    Bacillus subtilis is a Gram-positive bacterium that is well known for its ability to differentiate into metabolically inactive spores that are highly resistant to environmental stresses. In fact, populations of genetically identical B. subtilis comprise numerous distinct cell types. In addition to spores, cells can become genetically competent, motile, produce extracellular matrix or degradative enzymes, or secrete toxins that allow them to cannibalize their neighbors. Many of the cell fates listed above appear to be mutually exclusive. In this review, we discuss how individual cells within a population control their gene expression to ensure that proper regulation of differentiation occurs. These different cell fates are regulated by an intricate network that relies primarily on the activity of three major transcriptional regulators: Spo0A, DegU, and ComK. While individual cells must choose distinct cell fates, the population as a whole exhibits a spectrum of phenotypes whose diversity may increase fitness.

  8. Influence of heterologous MreB proteins on cell morphology of Bacillus subtilis.

    Science.gov (United States)

    Schirner, Kathrin; Errington, Jeff

    2009-11-01

    The prokaryotic cytoskeletal protein MreB is thought to govern cell shape by positioning the cell wall synthetic apparatus at growth sites in the cell. In rod-shaped bacteria it forms helical filaments that run around the periphery of the rod during elongation. Gram-positive bacteria often contain more than one mreB gene. Bacillus subtilis has three mreB-like genes, mreB, mbl and mreBH, the first two of which have been shown to be essential under normal growth conditions. Expression of an mreB homologue from the closely related organism Bacillus licheniformis did not have any effect on cell growth or morphology. In contrast, expression of mreB from the phylogenetically more distant bacterium Clostridium perfringens produced shape defects and ultimately cell death, due to disruption of the endogenous MreB cytoskeleton. However, expression of either mreB(B. licheniformis) (mreB(Bl)) or mreB(C. perfringens) (mreB(Cp)) was sufficient to confer a rod shape to B. subtilis deleted for the three mreB isologues, supporting the idea that the three proteins have largely redundant functions in cell morphogenesis. Expression of mreBCD(Bl) could fully compensate for the loss of mreBCD in B. subtilis and led to the formation of rod-shaped cells. In contrast, expression of mreBCD(Cp) was not sufficient to confer a rod shape to B. subtilis Delta mreBCD, indicating that a complex of these three cell shape determinants is not enough for cell morphogenesis of B. subtilis.

  9. Autolysis of Escherichia coli and Bacillus subtilis cells in low gravity

    Science.gov (United States)

    Kacena, M. A.; Smith, E. E.; Todd, P.

    1999-01-01

    The role of gravity in the autolysis of Bacillus subtilis and Escherichia coli was studied by growing cells on Earth and in microgravity on Space Station Mir. Autolysis analysis was completed by examining the death phase or exponential decay of cells for approximately 4 months following the stationary phase. Consistent with published findings, the stationary-phase cell population was 170% and 90% higher in flight B. subtilis and E. coli cultures, respectively, than in ground cultures. Although both flight autolysis curves began at higher cell densities than control curves, the rate of autolysis in flight cultures was identical to that of their respective ground control rates.

  10. A mechanism for cell cycle regulation of sporulation initiation in Bacillus subtilis

    NARCIS (Netherlands)

    Veening, Jan-Willem; Murray, Heath; Errington, Jeff

    2009-01-01

    Coordination of DNA replication with cellular development is a crucial problem in most living organisms. Bacillus subtilis cells switch from vegetative growth to sporulation when starved. Sporulation normally occurs in cells that have stopped replicating DNA and have two completed chromosomes: one

  11. PRODUKSI ANTIBIOTIKA OLEH Bacillus subtilis M10 DALAM MEDIA UREA-SORBITOL

    Directory of Open Access Journals (Sweden)

    Supartono Supartono

    2012-04-01

    Full Text Available PRODUCTION OF ANTIBIOTICS BY Bacillus subtilis M10 IN UREA-SORBITOL MEDIUM. Infection diseases still become the main health problems that suffered by people in Indonesia. Besides, there were many pathogen bacteria found to be resistant to the some antibiotics. Therefore, the efforts to get a new antibiotic require to be done continuously. A new local strain of Bacillus subtilis BAC4 has been known producing an antibiotic that inhibit Serratia marcescens ATCC 27117 growth. To make efficient the local strain, mutation on Bacillus subtilis BAC4 was done by using acridine orange and a mutant cell of Bacillus subtilis M10 that overproduction for producing antibiotic was obtained. Nevertheless, the production kinetics of antibiotic by this mutant has not been reported. The objective of this research was to study the production kinetics of antibiotic by Bacillus subtilis M10 mutant. The production of antibiotic was conducted using batch fermentation and antibiotic assay was performed with agar absorption method using Serratia marcescens ATCC 27117 as bacteria assay. Research result provided that Bacillus subtilis M10 mutant with overproduction of antibiotic produced an antibiotic since 8th hour’s fermentation and optimum of it production was at 14th hours after inoculation.  Penyakit infeksi masih menjadi masalah yang utama diderita oleh masyarakat Indonesia. Di samping itu, banyak bakteri patogen yang ditemukan resisten terhadap beberapa antibiotika. Oleh karena itu, upaya-upaya untuk mendapatkan antibiotika baru perlu dilakukan secara terus-menerus. Suatu galur lokal baru Bacillus subtilis BAC4 teridentifikasi memproduksi senyawa antibiotika yang menghambat pertumbuhan Serratia marcescens ATCC27117. Untuk memberdayakan galur tersebut, terhadap Bacillus subtilis BAC4 dilakukan mutasi dengan larutan akridin oranye dan diperoleh mutan Bacillus subtilis M10 yang memproduksi antibiotika berlebihan. Namun, kinetika produksi antibiotika oleh Bacillus

  12. Investigation of biosurfactant production by Bacillus pumilus 1529 and Bacillus subtilis WPI

    Directory of Open Access Journals (Sweden)

    shila khajavi shojaei

    2016-06-01

    Full Text Available Introduction: Biosurfactants are unique amphipathic molecules with extensive application in removing organic and metal contaminants. The purpose of this study was to investigate production of biosurfactant and determine optimal conditions to produce biosurfactant by Bacillus pumilus 1529 and Bacillus subtilis WPI. Materials and methods: In this study, effect of carbon source, temperature and incubation time on biosurfactant production was evaluated. Hemolytic activity, emulsification activity, oil spreading, drop collapse, cell hydrophobicity and measurement of surface tension were used to detect biosurfactant production. Then, according to the results, the optimal conditions for biosurfactant production by and Bacillus subtilis WPI was determined. Results: In this study, both bacteria were able to produce biosurfactant at an acceptable level. Glucose, kerosene, sugarcane molasses and phenanthrene used as a sole carbon source and energy for the mentioned bacteria. Bacillus subtilis WPI produced maximum biosurfactant in the medium containing kerosene and reduced surface tension of the medium to 33.1 mN/m after 156 hours of the cultivation at 37°C. Also, the highest surface tension reduction by Bacillus pumilus 1529 occurred in the medium containing sugarcane molasses and reduce the surface tension of culture medium after 156 hours at 37°C from 50.4 to 28.83 mN/m. Discussion and conclusion: Bacillus pumilus 1529 and Bacillus subtilis WPI had high potential in production of biosurfactant and degradation of petroleum hydrocarbons and Phenanthrene. Therefore, it could be said that these bacteria had a great potential for applications in bioremediation and other environmental process.

  13. A LuxS-Dependent Cell-to-Cell Language Regulates Social Behavior and Development in Bacillus subtilis

    OpenAIRE

    Lombardía, Esteban; Rovetto, Adrián J.; Arabolaza, Ana L.; Grau, Roberto R.

    2006-01-01

    Cell-to-cell communication in bacteria is mediated by quorum-sensing systems (QSS) that produce chemical signal molecules called autoinducers (AI). In particular, LuxS/AI-2-dependent QSS has been proposed to act as a universal lexicon that mediates intra- and interspecific bacterial behavior. Here we report that the model organism Bacillus subtilis operates a luxS-dependent QSS that regulates its morphogenesis and social behavior. We demonstrated that B. subtilis luxS is a growth-phase-regula...

  14. Bioaccumulation of copper, zinc, cadmium and lead by Bacillus sp., Bacillus cereus, Bacillus sphaericus and Bacillus subtilis Bioacumulação de cobre, zinco, cádmio e chumbo por Bacillus sp., Bacillus cereus, Bacillus sphaericus e Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Antonio Carlos Augusto da Costa

    2001-03-01

    Full Text Available This work presents some results on the use of microbes from the genus Bacillus for uptake of cadmium, zinc, copper and lead ions. Maximum copper bioaccumulations were 5.6 mol/g biomass for B. sphaericus, 5.9 mol/g biomass for B. cereus and B. subtilis, and 6.4 mol/g biomass for Bacillus sp. Maximum zinc bioaccumulations were 4.3 mol/g biomass for B. sphaericus, 4.6 mol/g biomass for B. cereus, 4.8 mol/g biomass for Bacillus sp. and 5.0 mol/g biomass for B. subtilis. Maximum cadmium bioaccumulations were 8.0 mol/g biomass for B. cereus, 9.5 mol/g biomass for B. subtilis, 10.8 mol/g biomass for Bacillus sp. and 11.8 mol/g biomass for B. sphaericus. Maximum lead biomaccumulations were 0.7 mol/g biomass for B. sphaericus, 1.1 mol/g biomass for B. cereus, 1.4 mol/g biomass for Bacillus sp. and 1.8 mol/g biomass for B. subtilis. The different Bacillus strains tested presented distinct uptake capacities, and the best results were obtained for B. subtilis and B. cereus.Este trabalho apresenta resultados de acumulação dos íons metálicos cádmio, zinco, cobre e chumbo por bactérias do gênero Bacillus. A bioacumulação máxima de cobre foi 5,6 mol/g biomassa para B. sphaericus, 5,9 mol/g biomassa para B. cereus e B. subtilis, e 6,4 mol/g biomassa para Bacillus sp.. A bioacumulação máxima de zinco foi 4,3 mol/g biomassa para B. sphaericus, 4,6 mol/g biomassa para B. cereus, 4,8 mol/g biomassa para Bacillus sp. e 5,0 mol/g biomassa para B. subtilis. A bioacumulação máxima de cádmio foi 8,0 mol/g biomassa para B. cereus, 9,5 mol/g biomassa para B. subtilis, 10,8 mol/g biomassa para Bacillus sp. e 11,8 mol/g biomassa para B. sphaericus. A bioacumulação máxima de chumbo foi 0,7 mol/g biomassa para B. sphaericus, 1,1 mol/g biomassa para B. cereus, 1,4 mol/g biomassa para Bacillus sp. e 1,8 mol/g biomassa para B. subtilis. As distintas linhagens de Bacillus testadas apresentaram variáveis capacidades de carregamento de íons metálicos, sendo os

  15. Pirated Siderophores Promote Sporulation in Bacillus subtilis.

    Science.gov (United States)

    Grandchamp, Gabrielle M; Caro, Lews; Shank, Elizabeth A

    2017-05-15

    In microbial communities, bacteria chemically and physically interact with one another. Some of these interactions are mediated by secreted specialized metabolites that act as either intraspecies or interspecies signals to alter gene expression and to change cell physiology. Bacillus subtilis is a well-characterized soil microbe that can differentiate into multiple cell types, including metabolically dormant endospores. We were interested in identifying microbial interactions that affected sporulation in B. subtilis Using a fluorescent transcriptional reporter, we observed that coculturing B. subtilis with Escherichia coli promoted sporulation gene expression via a secreted metabolite. To identify the active compound, we screened the E. coli Keio Collection and identified the sporulation-accelerating cue as the siderophore enterobactin. B. subtilis has multiple iron acquisition systems that are used to take up the B. subtilis- produced siderophore bacillibactin, as well as to pirate exogenous siderophores such as enterobactin. While B. subtilis uses a single substrate binding protein (FeuA) to take up both bacillibactin and enterobactin, we discovered that it requires two distinct genes to sporulate in response to these siderophores (the esterase gene besA for bacillibactin and a putative esterase gene, ybbA , for enterobactin). In addition, we found that siderophores from a variety of other microbial species also promote sporulation in B. subtilis Our results thus demonstrate that siderophores can act not only as bacterial iron acquisition systems but also as interspecies cues that alter cellular development and accelerate sporulation in B. subtilis IMPORTANCE While much is known about the genetic regulation of Bacillus subtilis sporulation, little is understood about how other bacteria influence this process. This work describes an interaction between Escherichia coli and B. subtilis that accelerates sporulation in B. subtilis The interaction is mediated by the E

  16. ZnO Nanoparticles Affect Bacillus subtilis Cell Growth and Biofilm Formation.

    Directory of Open Access Journals (Sweden)

    Yi-Huang Hsueh

    Full Text Available Zinc oxide nanoparticles (ZnO NPs are an important antimicrobial additive in many industrial applications. However, mass-produced ZnO NPs are ultimately disposed of in the environment, which can threaten soil-dwelling microorganisms that play important roles in biodegradation, nutrient recycling, plant protection, and ecological balance. This study sought to understand how ZnO NPs affect Bacillus subtilis, a plant-beneficial bacterium ubiquitously found in soil. The impact of ZnO NPs on B. subtilis growth, FtsZ ring formation, cytosolic protein activity, and biofilm formation were assessed, and our results show that B. subtilis growth is inhibited by high concentrations of ZnO NPs (≥ 50 ppm, with cells exhibiting a prolonged lag phase and delayed medial FtsZ ring formation. RedoxSensor and Phag-GFP fluorescence data further show that at ZnO-NP concentrations above 50 ppm, B. subtilis reductase activity, membrane stability, and protein expression all decrease. SDS-PAGE Stains-All staining results and FT-IR data further demonstrate that ZnO NPs negatively affect exopolysaccharide production. Moreover, it was found that B. subtilis biofilm surface structures became smooth under ZnO-NP concentrations of only 5-10 ppm, with concentrations ≤ 25 ppm significantly reducing biofilm formation activity. XANES and EXAFS spectra analysis further confirmed the presence of ZnO in co-cultured B. subtilis cells, which suggests penetration of cell membranes by either ZnO NPs or toxic Zn+ ions from ionized ZnO NPs, the latter of which may be deionized to ZnO within bacterial cells. Together, these results demonstrate that ZnO NPs can affect B. subtilis viability through the inhibition of cell growth, cytosolic protein expression, and biofilm formation, and suggest that future ZnO-NP waste management strategies would do well to mitigate the potential environmental impact engendered by the disposal of these nanoparticles.

  17. Molecular mechanisms involved in Bacillus subtilis biofilm formation

    Science.gov (United States)

    Mielich-Süss, Benjamin; Lopez, Daniel

    2014-01-01

    Summary Biofilms are the predominant lifestyle of bacteria in natural environments, and they severely impact our societies in many different fashions. Therefore, biofilm formation is a topic of growing interest in microbiology, and different bacterial models are currently studied to better understand the molecular strategies that bacteria undergo to build biofilms. Among those, biofilms of the soil-dwelling bacterium Bacillus subtilis are commonly used for this purpose. Bacillus subtilis biofilms show remarkable architectural features that are a consequence of sophisticated programs of cellular specialization and cell-cell communication within the community. Many laboratories are trying to unravel the biological role of the morphological features of biofilms, as well as exploring the molecular basis underlying cellular differentiation. In this review, we present a general perspective of the current state of knowledge of biofilm formation in B. subtilis. In particular, a special emphasis is placed on summarizing the most recent discoveries in the field and integrating them into the general view of these truly sophisticated microbial communities. PMID:24909922

  18. Screen for agents that induce autolysis in Bacillus subtilis.

    Science.gov (United States)

    Lacriola, Christopher J; Falk, Shaun P; Weisblum, Bernard

    2013-01-01

    The growing prevalence of antibiotic-resistant infections underscores the need to discover new antibiotics and to use them with maximum effectiveness. In response to these needs, we describe a screening protocol for the discovery of autolysis-inducing agents that uses two Bacillus subtilis reporter strains, SH-536 and BAU-102. To screen chemical libraries, autolysis-inducing agents were first identified with a BAU-102-based screen and then subdivided with SH-536 into two major groups: those that induce autolysis by their direct action on the cell membrane and those that induce autolysis secondary to inhibition of cell wall synthesis. SH-536 distinguishes between the two groups of autolysis-inducing agents by synthesizing and then releasing β-galactosidase (β-Gal) in late stationary phase at a time that cells have nearly stopped growing and are therefore tolerant of cell wall synthesis inhibitors. Four hits, named compound 2, compound 3, compound 5, and compound 24, obtained previously as inducers of autolysis by screening a 10,080-compound discovery library with BAU-102, were probed with SH-536 and found to release β-Gal, indicating that their mode of action was to permeabilize the B. subtilis cell membrane. The four primary hits inhibited growth in Staphylococcus aureus, Enterococcus faecium, Bacillus subtilis, and Bacillus anthracis, with MICs in the 12.5- to 25-μg/ml (20 to 60 μM) range. The four primary hits were further used to probe B. subtilis, and their action was partially characterized with respect to the dependence of induced autolysis on specific autolysins.

  19. Sigma factors, asymmetry, and the determination of cell fate in Bacillus subtilis.

    OpenAIRE

    Lewis, P J; Partridge, S R; Errington, J

    1994-01-01

    Soon after the initiation of sporulation, Bacillus subtilis divides asymmetrically to produce sister cells that have very different developmental fates. Recently, it has been proposed that the differential gene expression which begins soon after this division is due to cell-specific activation of the transcription factors sigma F and sigma E in the prespore and the mother cell, respectively. We describe the use of a method for the localization of gene expression in individual sporulating cell...

  20. Biodegradation of naphthalene and phenanthren by Bacillus subtilis 3KP

    Science.gov (United States)

    Ni'matuzahroh, Trikurniadewi, N.; Pramadita, A. R. A.; Pratiwi, I. A.; Salamun, Fatimah, Sumarsih, Sri

    2017-06-01

    The purposes of this research were to know growth response, degradation ability, and uptake mechanism of naphthalene and phenanthrene by Bacillus subtilis 3KP. Bacillus subtilis 3KP was grown on Mineral Synthetic (MS) medium with addition of 1% yeast extract and naphthalene and phenanthrene respectively 200 ppm in different cultures. Bacillus subtilis 3KP growth response was monitored by Total Plate Count (TPC) method, the degradation ability was monitored by UV-Vis spectrophotometer, and the uptake mechanism of hydrocarbon was monitored by emulsification activity, decrease of surface tension, and activity of Bacterial Adherence to Hydrocarbon (BATH). Bacillus subtilis 3KP was able to grow and show biphasic growth pattern on both of substrates. Naphthalene and phenanthrene were used as a carbon source for Bacillus subtilis 3KP growth that indicated by the reduction of substrate concomitant with the growth. At room temperature conditions (± 30°C) and 90 rpm of agitation for 7 days, Bacillus subtilis 3KP could degrade naphthalene in the amount of 70.5% and phenanthrene in the amount of 24.8%. Based on the analysis of UV-Vis spectrophotometer, three metabolites, 1-hydroxy-2-naphthoic acid, salicylic acid, and pyrocatechol were found in both cultures. The metabolite identification became basis of propose degradation pathway of naphthalene and phenanthrene by Bacillus subtilis 3KP. The results of hydrocarbon uptake mechanism test show that Bacillus subtilis 3KP used all of the mechanism to degrade naphthalene and phenanthrene.

  1. The comparative investigation of gene mutation induction in Bacillus subtilis and Escherichia coli cells after irradiation by different LET radiation

    International Nuclear Information System (INIS)

    Borejko, A.V.; Bulah, A.P.

    2005-01-01

    The data of mutagenetic action of ionizing radiation with different physical characteristics on bacterial cells with various genotypes are presented. It was shown that regularities of inducible mutagenesis in Bacillus subtilis and E. coli are consimilar. The dose-response dependence for both types of cells is described by the linear-quadratic function. The RBE on LET relationship has a local maximum at 20 keV/μm. The crucial role in inducible mutagenesis in E. coli and Bacillus subtilis cells is played by the error-prone SOS-repair

  2. Mutagenic action of radiation with different LET on Bacillus subtilis cells

    International Nuclear Information System (INIS)

    Borejko, A.V.; Krasavin, E.A.

    1996-01-01

    The induction of the his - →his + mutants in vegetative and spores of Bacillus subtilis wild type cells irradiated with γ-rays and helium ions (LET=20-80 keV/μm has been investigated. It was shown that the dose dependence of the mutation induction in vegetative cells is described by a linear-quadratic function of dose in case of both γ-rays and helium ions. RBE (LET) dependence on the mutagenic assay is shifted at the low region of LET. (author). 11 refs., 4 figs

  3. Cell envelope stress response in cell wall-deficient L-forms of Bacillus subtilis.

    Science.gov (United States)

    Wolf, Diana; Domínguez-Cuevas, Patricia; Daniel, Richard A; Mascher, Thorsten

    2012-11-01

    L-forms are cell wall-deficient bacteria that can grow and proliferate in osmotically stabilizing media. Recently, a strain of the Gram-positive model bacterium Bacillus subtilis was constructed that allowed controlled switching between rod-shaped wild-type cells and corresponding L-forms. Both states can be stably maintained under suitable culture conditions. Because of the absence of a cell wall, L-forms are known to be insensitive to β-lactam antibiotics, but reports on the susceptibility of L-forms to other antibiotics that interfere with membrane-anchored steps of cell wall biosynthesis are sparse, conflicting, and strongly influenced by strain background and method of L-form generation. Here we investigated the response of B. subtilis to the presence of cell envelope antibiotics, with regard to both antibiotic resistance and the induction of the known LiaRS- and BceRS-dependent cell envelope stress biosensors. Our results show that B. subtilis L-forms are resistant to antibiotics that interfere with the bactoprenol cycle, such as bacitracin, vancomycin, and mersacidin, but are hypersensitive to nisin and daptomycin, which both affect membrane integrity. Moreover, we established a lacZ-based reporter gene assay for L-forms and provide evidence that LiaRS senses its inducers indirectly (damage sensing), while the Bce module detects its inducers directly (drug sensing).

  4. Effect of Bacillus subtilis on Granite Weathering: A Laboratory Experiment

    Science.gov (United States)

    Song, W.; Ogawa, N.; Oguchi, C. T.; Hatta, T.; Matsukura, Y.

    2006-12-01

    We performed a comparative experiment to investigate how the ubiquitous soil bacterium Bacillus subtilis weathers granite and which granite-forming minerals weather more rapidly via biological processes. Batch type experiments (granite specimen in a 500 ml solution including NaCl, glucose, yeast extract and bacteria Bacillus subtilis at 27°E C) were carried out for 30 days. Granite surfaces were observed by SEM before and after the experiment. Bacillus subtilis had a strong influence on granite weathering by forming pits. There were 2.4 times as many pits and micropores were 2.3 times wider in granite exposed to Bacillus subtilis when compared with bacteria-free samples. Bacillus subtilis appear to preferentially select an optimum place to adhere to the mineral and dissolve essential elements from the mineral to live. Plagioclase was more vulnerable to bacterial weathering than biotite among the granite composing minerals.

  5. Not so simple, not so subtle: the interspecies competition between Bacillus simplex and Bacillus subtilis and its impact on the evolution of biofilms

    Science.gov (United States)

    Rosenberg, Gili; Steinberg, Nitai; Oppenheimer-Shaanan, Yaara; Olender, Tsvia; Doron, Shany; Ben-Ari, Julius; Sirota-Madi, Alexandra; Bloom-Ackermann, Zohar; Kolodkin-Gal, Ilana

    2016-01-01

    Bacillus subtilis biofilms have a fundamental role in shaping the soil ecosystem. During this process, they unavoidably interact with neighbour bacterial species. We studied the interspecies interactions between biofilms of the soil-residing bacteria B. subtilis and related Bacillus species. We found that proximity between the biofilms triggered recruitment of motile B. subtilis cells, which engulfed the competing Bacillus simplex colony. Upon interaction, B. subtilis secreted surfactin and cannibalism toxins, at concentrations that were inert to B. subtilis itself, which eliminated the B. simplex colony, as well as colonies of Bacillus toyonensis. Surfactin toxicity was correlated with the presence of short carbon-tail length isomers, and synergistic with the cannibalism toxins. Importantly, during biofilm development and interspecies interactions a subpopulation in B. subtilis biofilm lost its native plasmid, leading to increased virulence against the competing Bacillus species. Overall, these findings indicate that genetic programs and traits that have little effect on biofilm development when each species is grown in isolation have a dramatic impact when different bacterial species interact. PMID:28721238

  6. Phosphatases modulate the bistable sporulation gene expression pattern in Bacillus subtilis

    NARCIS (Netherlands)

    Veening, JW; Hamoen, LW; Kuipers, OP

    Spore formation in the Gram- positive bacterium Bacillus subtilis is a last resort adaptive response to starvation. To initiate sporulation, the key regulator in this process, Spo0A, needs to be activated by the so-called phosphorelay. Within a sporulating culture of B. subtilis, some cells initiate

  7. Differential actions of chlorhexidine on the cell wall of Bacillus subtilis and Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Hon-Yeung Cheung

    Full Text Available Chlorhexidine is a chlorinated phenolic disinfectant used commonly in mouthwash for its action against bacteria. However, a comparative study of the action of chlorhexidine on the cell morphology of gram-positive and gram-negative bacteria is lacking. In this study, the actions of chlorhexidine on the cell morphology were identified with the aids of electron microscopy. After exposure to chlorhexidine, numerous spots of indentation on the cell wall were found in both Bacillus subtilis and Escherichia coli. The number of indentation spots increased with time of incubation and increasing chlorhexidine concentration. Interestingly, the dented spots found in B. subtilis appeared mainly at the hemispherical caps of the cells, while in E. coli the dented spots were found all over the cells. After being exposed to chlorhexidine for a prolonged period, leakage of cellular contents and subsequent ghost cells were observed, especially from B subtilis. By using 2-D gel/MS-MS analysis, five proteins related to purine nucleoside interconversion and metabolism were preferentially induced in the cell wall of E. coli, while three proteins related to stress response and four others in amino acid biosynthesis were up-regulated in the cell wall materials of B. subtilis. The localized morphological damages together with the biochemical and protein analysis of the chlorhexidine-treated cells suggest that chlorhexidine may act on the differentially distributed lipids in the cell membranes/wall of B. subtilis and E. coli.

  8. Effect of Bacillus subtilis natto on growth performance in Muscovy ducks

    Directory of Open Access Journals (Sweden)

    T Sheng-Qiu

    2013-09-01

    Full Text Available The aim of the present study was to determine whether dietary Bacillus subtilis natto could affect growth performance of Muscovy ducks. A total of 120 hundred Muscovy ducks at the age of 1 day were randomly assigned to four groups (30 Muscovy ducks/group, and fed with diets supplemented with 0% (control group, 0.1%, 0.2%, and 0.4% Bacillus subtilis natto, respectively during the 6-week feeding period. Weight gain, feed intake and feed conversion efficiency of Muscovy ducks were significantly improved by the dietary addition of Bacillus subtilis natto, and the results were more significant in 0.4% dietary Bacillus subtilis natto treatment group; Also, Bacillus subtilis natto reduced Escherichia coli and Salmonella colonies, and increased lactobacilli population in the ileum and the cecum. Biochemical parameters, including total protein, GOT (glutamic oxaloacetic transaminase, GPT (glutamic pyruvic transaminase, AKP (alkaline phosphatase, triiodothyronine (T3 and tetraiodothyronine (T4 contents (pBacillus subtilis natto was added to the diets (p0.05. The results of the present study indicate that diets with 0.4% Bacillus subtilis natto improved the growth performance of Muscovy ducks by increasing the absorption of protein, simulating hormone secretion, suppressing harmful microflora, and improving the duodenal structure and immune functions of Muscovy ducks. It is suggested that Bacillus subtilis natto is a potential candidate to be used use as a probiotic to improve the growth performance of Muscovy ducks.

  9. Evidence for differentiation of cell wall poles in Bacillus subtilis

    International Nuclear Information System (INIS)

    Sonnenfeld, E.M.

    1985-01-01

    Previous data have suggested that the chromosome of Bacillus subtilis was found to the cell surface at polar regions. A significant corollary of DNA attachment to cell poles is the role of the cell wall in chromosome segregation. This project was mainly concerned with visualizing the DNA-cell wall association through autoradiography. The origin and terminus of replication were labelled with ( 3 H)-thymidine using a temperature-sensitive DNA initiation mutant. It was found that most of the radioactivity was associated with cell poles. Ultrastructural analyses of cell walls stained with dilute cationized ferritin showed that the polar area contained a site of dense electronegativity. It is not immediately apparent why cell wall poles would contain an area with a high concentration of negative charge. This finding may be related to the cell pole functioning as the site of chromosome attachment. An additional observation encountered in this study was that cell wall exhibited asymmetry with regard to negative charge, the outside surface being more electronegative than the inside. A significant consequence of this finding is that both teichoic acid and muramyl peptides are situated perpendicularly to the cell surface. This favored arrangement may facilitate cell separation during the division process due to opposition of like charges at septa. The results of this work provide further convincing evidence that the cell wall of B. subtilis is differentiated

  10. The impact of manganese on biofilm development of Bacillus subtilis

    NARCIS (Netherlands)

    Mhatre, Eisha; Troszok, Agnieszka; Gallegos-Monterrosa, Ramses; Lindstädt, Stefanie; Hölscher, Theresa; Kuipers, Oscar P.; Kovács, Ákos T.

    2016-01-01

    Bacterial biofilms are dynamic and structurally complex communities, involving cell-to-cell interactions. In recent years, various environmental signals were identified that induce the complex biofilm development of the Gram-positive bacterium Bacillus subtilis. These signaling molecules are often

  11. Crystallization and preliminary X-ray diffraction analysis of YisP protein from Bacillus subtilis subsp. subtilis strain 168

    International Nuclear Information System (INIS)

    Hu, Yumei; Jia, Shiru; Ren, Feifei; Huang, Chun-Hsiang; Ko, Tzu-Ping; Mitchell, Douglas A.; Guo, Rey-Ting; Zheng, Yingying

    2012-01-01

    A bacteria biofilm formation involved enzyme, BsYisP, from Bacillus subtilis subsp. subtilis strain 168, was crystallized and diffracted to 1.92 Å. YisP is an enzyme involved in the pathway of biofilm formation in bacteria and is predicted to possess squalene synthase activity. A BlastP search using the YisP protein sequence from Bacillus subtilis subsp. subtilis strain 168 shows that it shares 23% identity with the dehydrosqualene synthase from Staphylococcus aureus. The YisP from B. subtilis 168 was expressed in Escherichia coli and the recombinant protein was purified and crystallized. The crystals, which belong to the orthorhombic space group P2 1 2 1 2 1 , with unit-cell parameters a = 43.966, b = 77.576, c = 91.378 Å, were obtained by the sitting-drop vapour-diffusion method and diffracted to 1.92 Å resolution. Structure determination using MAD and MIR methods is in progress

  12. Extracellular signaling and multicellularity in Bacillus subtilis.

    Science.gov (United States)

    Shank, Elizabeth Anne; Kolter, Roberto

    2011-12-01

    Bacillus subtilis regulates its ability to differentiate into distinct, co-existing cell types in response to extracellular signaling molecules produced either by itself, or present in its environment. The production of molecules by B. subtilis cells, as well as their response to these signals, is not uniform across the population. There is specificity and heterogeneity both within genetically identical populations as well as at the strain-level and species-level. This review will discuss how extracellular signaling compounds influence B. subtilis multicellularity with regard to matrix-producing cannibal differentiation, germination, and swarming behavior, as well as the specificity of the quorum-sensing peptides ComX and CSF. It will also highlight how imaging mass spectrometry can aid in identifying signaling compounds and contribute to our understanding of the functional relationship between such compounds and multicellular behavior. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Intracellular Biosynthesis of Fluorescent CdSe Quantum Dots in Bacillus subtilis: A Strategy to Construct Signaling Bacterial Probes for Visually Detecting Interaction Between Bacillus subtilis and Staphylococcus aureus.

    Science.gov (United States)

    Yan, Zheng-Yu; Ai, Xiao-Xia; Su, Yi-Long; Liu, Xin-Ying; Shan, Xiao-Hui; Wu, Sheng-Mei

    2016-02-01

    In this work, fluorescent Bacillus subtilis (B. subtilis) cells were developed as probes for imaging applications and to explore behaviorial interaction between B. subtilis and Staphylococcus aureus (S. aureus). A novel biological strategy of coupling intracellular biochemical reactions for controllable biosynthesis of CdSe quantum dots by living B. subtilis cells was demonstrated, through which highly luminant and photostable fluorescent B. subtilis cells were achieved with good uniformity. With the help of the obtained fluorescent B. subtilis cells probes, S. aureus cells responded to co-cultured B. subtilis and to aggregate. The degree of aggregation was calculated and nonlinearly fitted to a polynomial model. Systematic investigations of their interactions implied that B. subtilis cells inhibit the growth of neighboring S. aureus cells, and this inhibition was affected by both the growth stage and the amount of surrounding B. subtilis cells. Compared to traditional methods of studying bacterial interaction between two species, such as solid culture medium colony observation and imaging mass spectrometry detection, the procedures were more simple, vivid, and photostable due to the efficient fluorescence intralabeling with less influence on the cells' surface, which might provide a new paradigm for future visualization of microbial behavior.

  14. A model of cell-wall dynamics during sporulation in Bacillus subtilis

    Science.gov (United States)

    Yap, Li-Wei; Endres, Robert G.

    To survive starvation, Bacillus subtilis forms durable spores. After asymmetric cell division, the septum grows around the forespore in a process called engulfment, but the mechanism of force generation is unknown. Here, we derived a novel biophysical model for the dynamics of cell-wall remodeling during engulfment based on a balancing of dissipative, active, and mechanical forces. By plotting phase diagrams, we predict that sporulation is promoted by a line tension from the attachment of the septum to the outer cell wall, as well as by an imbalance in turgor pressures in the mother-cell and forespore compartments. We also predict that significant mother-cell growth hinders engulfment. Hence, relatively simple physical principles may guide this complex biological process.

  15. The Comparative Investigation of Gene Mutation Induction in {\\it Bacillus subtilis} and {\\it Escherichia coli} Cells after Irradiation by Different LET Radiation

    CERN Document Server

    Boreyko, A V

    2005-01-01

    The data of mutagenic action of ionizing radiation with different physical characteristics on bacterial cells with various genotypes are presented. It was shown that regularities of inducible mutagenesis in {\\it Bacillus subtilis} and {\\it E.coli} are consimilar. The dose-response dependence for both types of cells is described by the linear-quadratic function. The RBE on LET relationship has a local maximum at 20 keV/$\\mu $m. The crucial role in inducible mutagenesis in {\\it E.coli} and {\\it Bacillus subtilis} cells is played by the error-prone $SOS$-repair.

  16. Genetic transformation of Bacillus strains close to bacillus subtilis and isolated from the soil

    International Nuclear Information System (INIS)

    Van, C.K.; Kuzin, Yu.Yu.; Kozlovskii, Yu.E.; Prozorov, A.A.

    1986-01-01

    Chromosomal and plasmid transformation was found in five out of 118 Bacillus strains, close or identical to Bacillus subtilis, and isolated from soil in Moscow or in the Moscow district. The efficiency of transformation in these strains was lower than that in derivatives of Bac. subtilis strain 168. In these strains the ability to undergo transformation was dependent on the rate of sporulation and the presence of restrictases. As in the case of Bac. subtilis 168 the strains isolated may be used as models in genetic transformation studies on Bac. subtilis

  17. Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) Applied to Quantitative Proteomics of Bacillus subtilis

    DEFF Research Database (Denmark)

    Soufi, Boumediene; Kumar, C.; Gnad, F.

    2010-01-01

    We applied stable isotope labeling by amino acids in cell culture (SILAC) to large-scale quantitative proteomics analyses of the model bacterium Bacillus subtilis in two physiological conditions: growth on succinate and growth under phosphate starvation. Using a B. subtilis strain auxotrophic...... of the most comprehensive quantitative proteomics studies in bacteria, covering more than 75% of the B. subtilis genes expressed in the log phase of growth. Furthermore, we detect and quantify dynamics of 35 Ser/Thr/Tyr phosphorylation sites under growth on succinate, and 10 phosphorylation sites under...

  18. Genetic or chemical protease inhibition causes significant changes in the Bacillus subtilis exoproteome

    NARCIS (Netherlands)

    Westers, Lidia; Westers, Helga; Zanen, Geeske; Antelmann, Haike; Hecker, Michael; Noone, David; Devine, Kevin M.; van Dijl, Jan Maarten; Quax, Wim J.

    Bacillus subtilis is a prolific producer of enzymes and biopharmaceuticals. However, the susceptibility of heterologous proteins to degradation by (extracellular) proteases is a major limitation for use of B. subtilis as a protein cell factory. An increase in protein production levels has previously

  19. Cannibalism enhances biofilm development in Bacillus subtilis.

    Science.gov (United States)

    López, Daniel; Vlamakis, Hera; Losick, Richard; Kolter, Roberto

    2009-11-01

    Cannibalism is a mechanism to delay sporulation in Bacillus subtilis. Cannibal cells express the skf and sdp toxin systems to lyse a fraction of their sensitive siblings. The lysed cells release nutrients that serve to feed the community, effectively delaying spore formation. Here we provide evidence that the subpopulation of cells that differentiates into cannibals is the same subpopulation that produces the extracellular matrix that holds cells together in biofilms. Cannibalism and matrix formation are both triggered in response to the signalling molecule surfactin. Nutrients released by the cannibalized cells are preferentially used by matrix-producing cells, as they are the only cells expressing resistance to the Skf and Sdp toxins. As a result this subpopulation increases in number and matrix production is enhanced when cannibalism toxins are produced. The cannibal/matrix-producing subpopulation is also generated in response to antimicrobials produced by other microorganisms and may thus constitute a defense mechanism to protect B. subtilis from the action of antibiotics in natural settings.

  20. Mutagenic action of radiation with different LET on Bacillus subtilis cells

    International Nuclear Information System (INIS)

    edinennyj Inst. Yadernykh Issledovanij, Dubna (Russian Federation))" data-affiliation=" (Obedinennyj Inst. Yadernykh Issledovanij, Dubna (Russian Federation))" >Borejko, A.V.; edinennyj Inst. Yadernykh Issledovanij, Dubna (Russian Federation))" data-affiliation=" (Obedinennyj Inst. Yadernykh Issledovanij, Dubna (Russian Federation))" >Krasavin, E.A.

    1997-01-01

    The induction of the his - -> his + mutants in vegetative and spores of Bacillus subtilis wild type cells irradiated with γ-rays and helium ions (LET = 20-80 keV/μm) has been investigated. It was shown that the dose dependence of the mutation induction in vegetative cells is described by a linear-quadratic function of dose in case of both γ-rays and helium ions. RBE (LET) dependencies on the lethal and mutagenic effect of radiation have a local maximum. The maximum of RBE (LET) dependence on the mutagenic assay is shifted at the low region of LET in comparison with the lethal effect of irradiation. (author)

  1. The Regularities of Mutagenic Action of gamma-Radiation on Vegetative Bacillus subtilis Cells with Different Repair Genotype

    CERN Document Server

    Boreyko, A V; Krasavin, E A

    2000-01-01

    The regularities of induction of his^-\\to his^+ mutations in vegetative Bacillus subtilis cells with different repair capacity after gamma-irradiation have been studied. The wild type cells, polA1, recE4, recA, recP, add5, recH were used in experiments. It was shown that radiation-induced mutagenesis is determined by a repair genotype of cells. The blocking of different reparation genes is reflected on mutagenesis ratio by the various ways. A frequency of induction mutations in polA strain is higher than in wild type cells and it is characterized by the linearly-quadratic dose curve. The different rec^- strains that belong to various epistatic groups reveal an unequal mutation induction. The add5 and recP strains are characterized by the high-level induction mutations in contrast with the wild type cells. The mutagenesis in recE and recH strains, on the contrary, sharply reduces. The different influence of rec genes inhering to various epistatic groups on mutagenesis in Bacillus subtilis cells probably reflec...

  2. The regularities of mutagenic action of γ-radiation on vegetative Bacillus subtilis cells with different repair genotype

    International Nuclear Information System (INIS)

    Borejko, A.V.; Bulakh, A.P.; Krasavin, E.A.

    2000-01-01

    The regularities of induction of his - →his + mutations in vegetative Bacillus subtilis cells with different repair capacity after γ-irradiation have been studied. The wild type cells, polAl, recE4, recA, recP, add5, recH were used in experiments. It was shown that radiation-induced mutagenesis is determined by a repair genotype of cells. The blocking of different reparation genes is reflected on mutagenesis ratio by various ways. A frequency of induction mutations in polA strain is higher than in wild type cells and it is characterized by the linearly-quadratic dose curve. The different rec - strains that belong to various epistatic groups reveal an unequal mutation induction. The add5 and recP strains are characterized by the high-level induction mutations in contrast with the wild type cells. The mutagenesis in recE and recH strains, on the contrary, sharply reduces. The different influence of rec genes inhering to various epistatic groups on mutagenesis in Bacillus subtilis cells probably reflects the complex organization of their SOS repair system. (author)

  3. Ecology and genomics of Bacillus subtilis.

    Science.gov (United States)

    Earl, Ashlee M; Losick, Richard; Kolter, Roberto

    2008-06-01

    Bacillus subtilis is a remarkably diverse bacterial species that is capable of growth within many environments. Recent microarray-based comparative genomic analyses have revealed that members of this species also exhibit considerable genomic diversity. The identification of strain-specific genes might explain how B. subtilis has become so broadly adapted. The goal of identifying ecologically adaptive genes could soon be realized with the imminent release of several new B. subtilis genome sequences. As we embark upon this exciting new era of B. subtilis comparative genomics we review what is currently known about the ecology and evolution of this species.

  4. Bacillus subtilis genome diversity.

    Science.gov (United States)

    Earl, Ashlee M; Losick, Richard; Kolter, Roberto

    2007-02-01

    Microarray-based comparative genomic hybridization (M-CGH) is a powerful method for rapidly identifying regions of genome diversity among closely related organisms. We used M-CGH to examine the genome diversity of 17 strains belonging to the nonpathogenic species Bacillus subtilis. Our M-CGH results indicate that there is considerable genetic heterogeneity among members of this species; nearly one-third of Bsu168-specific genes exhibited variability, as measured by the microarray hybridization intensities. The variable loci include those encoding proteins involved in antibiotic production, cell wall synthesis, sporulation, and germination. The diversity in these genes may reflect this organism's ability to survive in diverse natural settings.

  5. Essential Bacillus subtilis genes

    DEFF Research Database (Denmark)

    Kobayashi, K.; Ehrlich, S.D.; Albertini, A.

    2003-01-01

    To estimate the minimal gene set required to sustain bacterial life in nutritious conditions, we carried out a systematic inactivation of Bacillus subtilis genes. Among approximate to4,100 genes of the organism, only 192 were shown to be indispensable by this or previous work. Another 79 genes were...... predicted to be essential. The vast majority of essential genes were categorized in relatively few domains of cell metabolism, with about half involved in information processing, one-fifth involved in the synthesis of cell envelope and the determination of cell shape and division, and one-tenth related...... to cell energetics. Only 4% of essential genes encode unknown functions. Most essential genes are present throughout a wide range of Bacteria, and almost 70% can also be found in Archaea and Eucarya. However, essential genes related to cell envelope, shape, division, and respiration tend to be lost from...

  6. Recent progress in Bacillus subtilis spore-surface display: concept, progress, and future.

    Science.gov (United States)

    Wang, He; Wang, Yunxiang; Yang, Ruijin

    2017-02-01

    With the increased knowledge on spore structure and advances in biotechnology engineering, the newly developed spore-surface display system confers several inherent advantages over other microbial cell-surface display systems including enhanced stability and high safety. Bacillus subtilis is the most commonly used Bacillus species for spore-surface display. The expression of heterologous antigen or protein on the surface of B. subtilis spores has now been practiced for over a decade with noteworthy success. As an update and supplement to other previous reviews, we comprehensively summarize recent studies in the B. subtilis spore-surface display technique. We focus on its benefits as well as the critical factors affecting its display efficiency and offer suggestions for the future success of this field.

  7. Bacillus subtilis and surfactin inhibit the transmissible gastroenteritis virus from entering the intestinal epithelial cells.

    Science.gov (United States)

    Wang, Xiaoqing; Hu, Weiwei; Zhu, Liqi; Yang, Qian

    2017-04-28

    Intestinal epithelial cells are the targets for transmissible gastroenteritis (TGE) virus (TGEV) infection. It is urgent to develop a novel candidate against TGEV entry. Bacillus subtilis is a probiotic with excellent anti-microorganism properties and one of its secretions, surfactin, has been regarded as a versatile weapon for most plant pathogens, especially for the enveloped virus. We demonstrate for the first time that B. subtilis OKB105 and its surfactin can effectively inhibit one animal coronavirus, TGEV, entering the intestinal porcine epithelial cell line (IPEC-J2). Then, several different experiments were performed to seek the might mechanisms. The plaque assays showed that surfactant could reduce the plaque generation of TGEV in a dose-dependent manner. Meanwhile, after incubation with TGEV for 1.5 h, B. subtilis could attach TGEV particles to their surface so that the number of virus to bind to the host cells was declined. Furthermore, our data showed that the inhibition of B. subtilis was closely related to the competition with TGEV for the viral entry receptors, including epidermal growth factor receptor (EGFR) and aminopeptidase N (APN) protein. In addition, Western blotting and apoptosis analysis indicated that B. subtilis could enhance the resistance of IPEC-J2 cells by up-regulating the expression of toll-like receptor (TLR)-6 and reducing the percentage of apoptotic cells. Taken together, our results suggest that B. subtilis OKB105 and its surfactin can antagonize TGEV entry in vitro and may serve as promising new candidates for TGEV prevention. © 2017 The Author(s).

  8. Global network reorganization during dynamic adaptations of Bacillus subtilis metabolism

    DEFF Research Database (Denmark)

    Buescher, Joerg Martin; Liebermeister, Wolfram; Jules, Matthieu

    2012-01-01

    Adaptation of cells to environmental changes requires dynamic interactions between metabolic and regulatory networks, but studies typically address only one or a few layers of regulation. For nutritional shifts between two preferred carbon sources of Bacillus subtilis, we combined statistical...

  9. Plant methyl salicylate induces defense responses in the rhizobacterium Bacillus subtilis.

    Science.gov (United States)

    Kobayashi, Kazuo

    2015-04-01

    Bacillus subtilis is a rhizobacterium that promotes plant growth and health. Cultivation of B. subtilis with an uprooted weed on solid medium produced pleat-like architectures on colonies near the plant. To test whether plants emit signals that affect B. subtilis colony morphology, we examined the effect of plant-related compounds on colony morphology. Bacillus subtilis formed mucoid colonies specifically in response to methyl salicylate, which is a plant-defense signal released in response to pathogen infection. Methyl salicylate induced mucoid colony formation by stimulating poly-γ-glutamic acid biosynthesis, which formed enclosing capsules that protected the cells from exposure to antimicrobial compounds. Poly-γ-glutamic acid synthesis depended on the DegS-DegU two-component regulatory system, which activated DegSU-dependent gene transcription in response to methyl salicylate. Bacillus subtilis did not induce plant methyl salicylate production, indicating that the most probable source of methyl salicylate in the rhizosphere is pathogen-infected plants. Methyl salicylate induced B. subtilis biosynthesis of the antibiotics bacilysin and fengycin, the latter of which exhibited inhibitory activity against the plant pathogenic fungus Fusarium oxysporum. We propose that B. subtilis may sense plants under pathogen attack via methyl salicylate, and express defense responses that protect both B. subtilis and host plants in the rhizosphere. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Heat and UV light resistance of vegetative cells and spores of Bacillus subtilis rec-mutants

    International Nuclear Information System (INIS)

    Hanlin, J.H.; Lombardi, S.J.; Slepecky, R.A.

    1985-01-01

    The heat and UV light resistance of spores and vegetative cells of Bacillus subtilis BD170 (rec+) were greater than those of B. subtilis BD224 (recE4). Strain BD170 can repair DNA whereas BD224 is repair deficient due to the presence of the recE4 allele. Spores of a GSY Rec+ strain were more heat resistant than spores of GSY Rec- and Uvr- mutants. The overall level of heat and UV light resistance attained by spores may in part be determined by their ability to repair deoxyribonucleic acid after exposure to these two physical mutagens

  11. Inhibition of Cell Differentiation in Bacillus subtilis by Pseudomonas protegens

    Science.gov (United States)

    Powers, Matthew J.; Sanabria-Valentín, Edgardo; Bowers, Albert A.

    2015-01-01

    ABSTRACT Interspecies interactions have been described for numerous bacterial systems, leading to the identification of chemical compounds that impact bacterial physiology and differentiation for processes such as biofilm formation. Here, we identified soil microbes that inhibit biofilm formation and sporulation in the common soil bacterium Bacillus subtilis. We did so by creating a reporter strain that fluoresces when the transcription of a biofilm-specific gene is repressed. Using this reporter in a coculture screen, we identified Pseudomonas putida and Pseudomonas protegens as bacteria that secrete compounds that inhibit biofilm gene expression in B. subtilis. The active compound produced by P. protegens was identified as the antibiotic and antifungal molecule 2,4-diacetylphloroglucinol (DAPG). Colonies of B. subtilis grown adjacent to a DAPG-producing P. protegens strain had altered colony morphologies relative to B. subtilis colonies grown next to a DAPG-null P. protegens strain (phlD strain). Using a subinhibitory concentration of purified DAPG in a pellicle assay, we saw that biofilm-specific gene transcription was delayed relative to transcription in untreated samples. These transcriptional changes also corresponded to phenotypic alterations: both biofilm biomass and spore formation were reduced in B. subtilis liquid cultures treated with subinhibitory concentrations of DAPG. Our results add DAPG to the growing list of antibiotics that impact bacterial development and physiology at subinhibitory concentrations. These findings also demonstrate the utility of using coculture as a means to uncover chemically mediated interspecies interactions between bacteria. IMPORTANCE Biofilms are communities of bacteria adhered to surfaces by an extracellular matrix; such biofilms can have important effects in both clinical and agricultural settings. To identify chemical compounds that inhibited biofilm formation, we used a fluorescent reporter to screen for bacteria that

  12. Type I signal peptidases of Bacillus subtilis

    NARCIS (Netherlands)

    Tjalsma, Harold; Bolhuis, Albert; Bron, Sierd; Jongbloed, Jan; Meijer, Wilfried J.J.; Noback, Michiel; van Roosmalen, Maarten; Venema, Gerhardus; van Dijl, Jan Maarten; Hopsu Havu, VK; Jarvinen, M; Kirschke, H

    1997-01-01

    Bacillus subtilis contains at least three chromosomally-encoded type I signal peptidases (SPases; SipS, SipT, and SipU), which remove signal peptides from secretory proteins. In addition, certain B. subtilis (natto) strains contain plasmid-encoded type I SPases (SipP). The known type I SPases from

  13. Nuclear and cell division in Bacillus subtilis. Antibiotic-induced morphological changes

    NARCIS (Netherlands)

    van Iterson, W.; Aten, J. A.

    1976-01-01

    Incubation of Bacillus subtilis after outgrowth from spores in the presence of four different antibiotics in two different concentrations, showed that septation can occur without termination of nuclear division. Septation is then only partially uncoupled from the normal division cycle. Observations

  14. Engineering genome-reduced Bacillus subtilis for acetoin production from xylose.

    Science.gov (United States)

    Yan, Panpan; Wu, Yuanqing; Yang, Li; Wang, Zhiwen; Chen, Tao

    2018-02-01

    To investigate the capacity of a genome-reduced Bacillus subtilis strain as chassis cell for acetoin production from xylose. To endow the genome-reduced Bacillus subtilis strain BSK814 with the ability to utilize xylose, we inserted a native xyl operon into its genome and deleted the araR gene. The resulting strain BSK814A2 produced 2.94 g acetoin/l from 10 g xylose/l, which was 39% higher than control strain BSK19A2. The deletion of the bdhA and acoA genes further improved xylose utilization efficiency and increased acetoin production to 3.71 g/l in BSK814A4. Finally, BSK814A4 produced up to 23.3 g acetoin/l from 50 g xylose/l, with a yield of 0.46 g/g xylose. Both the titer and yield were 39% higher than those of control strain BSK19A4. As a chassis cell, genome-reduced B. subtilis showed significantly improved capacity for the production of the overflow product acetoin from xylose compared with wild-type strain.

  15. Genomic comparisons of two Bacillus subtilis biocontrol strains with different modes of actions

    Science.gov (United States)

    Bacillus subtilis strains AS 43.3 and OH131.1 were isolated from wheat anthers and shown to be efficacious in managing Fusarium head blight in greenhouse and some field trials. Chemical analysis of the cell-free culture supernatant identified B. subtilis strain AS 43.3 to be a potent producer of the...

  16. Regulation of Growth of the Mother Cell and Chromosome Replication during Sporulation of Bacillus subtilis

    OpenAIRE

    Xenopoulos, Panagiotis; Piggot, Patrick J.

    2011-01-01

    During spore formation, Bacillus subtilis divides asymmetrically, resulting in two cells with different fates. Immediately after division, the transcription factor σF becomes active in the smaller prespore, followed by activation of σE in the larger mother cell. We recently showed that a delay in σE activation resulted in the novel phenotype of two spores (twins) forming within the same mother cell. Mother cells bearing twins are substantially longer than mother cells with single spores. Here...

  17. Production of milk-clotting enzyme by Bacillus subtilis B1 from wheat ...

    African Journals Online (AJOL)

    Three strains, Bacillus subtilis B1, B. subtilis B18 and Bacillus thuringiensis B12, were screened from wheat bran to produce milk-clotting enzyme. Among them, B. subtilis B1 exhibited considerable milkclotting activity with low proteolytic activity. After response surface methodology optimization, milkclotting activity was ...

  18. Study on enhancement protease-producing of Bacillus subtilis by combining ribosome engineering and gamma irradiation

    International Nuclear Information System (INIS)

    Tran Bang Diep; Nguyen Thi Thom; Hoang Dang Sang; Nguyen Van Binh; Tran Xuan An; Hoang Phuong Thao; Pham Duy Duong; Tran Minh Quynh; Ta Bich Thuan; Vo Thi Thuong Lan

    2017-01-01

    Bacillus subtilis B5, Bacillus subtilis H12 and Bacillus subtilis VI are high protease-producing bacteria selected from various domestic laboratories. The suspensions in logarithmic growth phase and nutrient agar plates inoculated these bacteria were irradiated at dose ranging 0-3000 Gy under gamma Cobalt-60 source at Hanoi Irradiation Center. In both cases of irradiation treatment, the viability of Bacillus subtilis strains was much affected by gamma radiation and the survival rate of bacteria decreases with the increasing dose. The rate of high protease-producing mutation in three kinds of Bacillus strains seems to be greater at the dose range of 700-1500 Gy, at which the survival cells of bacteria was reduced by 3-4 log unit. In this study, the effect of gamma irradiation at different doses to mutation frequency of antibiotic resistance (rifampicin 0.2 µg/ml and streptomycin 20 µg/ml) of Bacillus subtilis strains is also investigated. The results show that the mutation frequency of antibiotic resistance was improved significantly by radiation treatment. The frequency of rifampicin-resistance reached the highest value at dose of 2000 Gy, 0.93-5.46x10 3 times higher than the frequency of spontaneous mutation. On the other hand, the highest streptomycin mutation frequency was obtained by irradiation at 1000 Gy. After the first screening, 82 potential 0.2 µg/ml rifampicin-resistant and 25 potential 20 µg/ml streptomycin-resistant colonies with higher production of protease than original strain were selected from the irradiated Bacillus subtilis B5 and H12. In the subsequent screening, some mutants having 2-2.5 times higher of protease activity than that of parent strain were obtained by using the culture medium containing incrementally higher antibiotic concentrations. The results of PCR, cloning and sequencing techniques proved that the antibiotic-resistance of Bacillus subtilis due to mutate in rpoB gene involved in these bacteria’s protease synthesis

  19. Towards a complete proteome of Bacillus subtilis : cytosolic, cell wall-associated and extracellular proteins

    NARCIS (Netherlands)

    Antelmann, Haike; van Dijl, Jan Maarten; Hecker, Michael

    2003-01-01

    Bacillus subtilis is widely regarded as a model organism for the functional genome analysis of Gram-positive bacteria. This is based on two factors: first, the genome sequence that predicts about 4100 open reading frames was completed in 1997 (1) and second, B. subtilis strain 168 is highly amenable

  20. Construction of acetoin high-producing Bacillus subtilis strain

    Directory of Open Access Journals (Sweden)

    Yanjun Tian

    2016-07-01

    Full Text Available This paper describes the construction and selection of a high-producing mutant, Bacillus subtilis HB-32, with enhanced acetoin yield and productivity. The mutant was obtained by the protoplast fusion of a Bacillus subtilis mutant TH-49 (Val− producing acetoin and Bacillus licheniformis AD-30 producing α-acetolactate decarboxylase, with the fusogen polyethylene glycol and after the regeneration and selection, etc. of the fusant. The acetoin production reached 49.64 g/L, which is an increase of 61.8% compared to that of B. subtilis strain TH-49. Random amplified polymorphic DNA analysis was performed to determine the mutagenic and protoplast fusion effects and the genomic changes in the acetoin high-producing strain compared to the parent strains at the molecular level. The constructed strain was shown to be promising for large-scale acetoin production. Future studies should focus on the application of the mutant strain in practice.

  1. [Sporulation or competence development? A genetic regulatory network model of cell-fate determination in Bacillus subtilis].

    Science.gov (United States)

    Lu, Zhenghui; Zhou, Yuling; Zhang, Xiaozhou; Zhang, Guimin

    2015-11-01

    Bacillus subtilis is a generally recognized as safe (GRAS) strain that has been widely used in industries including fodder, food, and biological control. In addition, B. subtilis expression system also plays a significant role in the production of industrial enzymes. However, its application is limited by its low sporulation frequency and transformation efficiency. Immense studies have been done on interpreting the molecular mechanisms of sporulation and competence development, whereas only few of them were focused on improving sporulation frequency and transformation efficiency of B. subtilis by genetic modification. The main challenge is that sporulation and competence development, as the two major developmental events in the stationary phase of B. subtilis, are regulated by the complicated intracellular genetic regulatory systems. In addition, mutual regulatory mechanisms also exist in these two developmental events. With the development of genetic and metabolic engineering, constructing genetic regulatory networks is currently one of the most attractive research fields, together with the genetic information of cell growth, metabolism, and development, to guide the industrial application. In this review, the mechanisms of sporulation and competence development of B. subtilis, their interactions, and the genetic regulation of cell growth were interpreted. In addition, the roles of these regulatory networks in guiding basic and applied research of B. subtilis and its related species were discussed.

  2. Evaluation of in situ valine production by Bacillus subtilis in young pigs.

    Science.gov (United States)

    Nørgaard, J V; Canibe, N; Soumeh, E A; Jensen, B B; Nielsen, B; Derkx, P; Cantor, M D; Blaabjerg, K; Poulsen, H D

    2016-11-01

    Mutants of Bacillus subtilis can be developed to overproduce Val in vitro. It was hypothesized that addition of Bacillus subtilis mutants to pig diets can be a strategy to supply the animal with Val. The objective was to investigate the effect of Bacillus subtilis mutants on growth performance and blood amino acid (AA) concentrations when fed to piglets. Experiment 1 included 18 pigs (15.0±1.1 kg) fed one of three diets containing either 0.63 or 0.69 standardized ileal digestible (SID) Val : Lys, or 0.63 SID Val : Lys supplemented with a Bacillus subtilis mutant (mutant 1). Blood samples were obtained 0.5 h before feeding and at 1, 2, 3, 4, 5 and 6 h after feeding and analyzed for AAs. In Experiment 2, 80 piglets (9.1±1.1 kg) were fed one of four diets containing 0.63 or 0.67 SID Val : Lys, or 0.63 SID Val : Lys supplemented with another Bacillus subtilis mutant (mutant 2) or its parent wild type. Average daily feed intake, daily weight gain and feed conversion ratio were measured on days 7, 14 and 21. On day 17, blood samples were taken and analyzed for AAs. On days 24 to 26, six pigs from each dietary treatment were fitted with a permanent jugular vein catheter, and blood samples were taken for AA analysis 0.5 h before feeding and at 1, 2, 3, 4, 5 and 6 h after feeding. In experiment 1, Bacillus subtilis mutant 1 tended (PBacillus subtilis mutant 2 and the wild type did not result in a growth performance different from the negative and positive controls. In conclusion, results obtained with the mutant strains of Bacillus subtilis were not better than results obtained with the wild-type strain, and for both strains, the results were not different than the negative control.

  3. Evaluation of in situ valine production by Bacillus subtilis in young pigs

    DEFF Research Database (Denmark)

    Nørgaard, Jan Værum; Canibe, Nuria; Assadi Soumeh, Elham

    2016-01-01

    Mutants of Bacillus subtilis can be developed to overproduce Val in vitro. It was hypothesized that addition of Bacillus subtilis mutants to pig diets can be a strategy to supply the animal with Val. The objective was to investigate the effect of Bacillus subtilis mutants on growth performance...... and blood amino acid (AA) concentrations when fed to piglets. Experiment 1 included 18 pigs (15.0±1.1 kg) fed one of three diets containing either 0.63 or 0.69 standardized ileal digestible (SID) Val : Lys, or 0.63 SID Val : Lys supplemented with a Bacillus subtilis mutant (mutant 1). Blood samples were...... obtained 0.5 h before feeding and at 1, 2, 3, 4, 5 and 6 h after feeding and analyzed for AAs. In Experiment 2, 80 piglets (9.1±1.1 kg) were fed one of four diets containing 0.63 or 0.67 SID Val : Lys, or 0.63 SID Val : Lys supplemented with another Bacillus subtilis mutant (mutant 2) or its parent wild...

  4. Fast neutron radiation inactivation of Bacillus subtilis: Absorbed dose determination

    International Nuclear Information System (INIS)

    Song Lingli; Zheng Chun; Ai Zihui; Li Junjie; Dai Shaofeng

    2011-01-01

    In this paper, fast neutron inactivation effects of Bacillus subtilis were investigated with fission fast neutrons from CFBR-II reactor of INPC (Institute of Nuclear Physics and Chemistry) and mono-energetic neutrons from the Van de Graaff accelerator at Peking University. The method for determining the absorbed dose in the Bacillus subtilis suspension contained in test tubes is introduced. The absorbed dose, on account of its dependence on the volume and the form of confined state, was determined by combined experiments and Monte Carlo method. Using the calculation results of absorbed dose, the fast neutron inactivation effects on Bacillus subtilis were studied. The survival rates and absorbed dose curve was constructed. (authors)

  5. Assembly properties of the Bacillus subtilis actin, MreB.

    Science.gov (United States)

    Mayer, Joshua A; Amann, Kurt J

    2009-02-01

    The bacterial actin MreB has been implicated in a variety of cellular roles including cell shape determination, cell wall synthesis, chromosome condensation and segregation, and the establishment and maintenance of cell polarity. Toward elucidating a clearer understanding of how MreB functions inside the bacterial cell, we investigated biochemically the polymerization of MreB from Bacillus subtilis. Light scattering and sedimentation assays revealed pH-, ionic-, cationic-, and temperature-dependent behavior. B. subtilis MreB polymerizes in the presence of millimolar divalent cations in a protein concentration-dependent manner. Polymerization is favored by decreasing pH and inhibited by monovalent salts and low temperatures. Although B. subtilis MreB binds and hydrolyzes both ATP and GTP, it does not require a bound nucleotide for assembly and polymerizes indistinguishably regardless of the nucleotide species bound, with a critical concentration of approximately 900 nM. A number of the presently reported properties of B. subtilis MreB differ significantly from those of T. maritima MreB1 (Bean and Amann [2008]: Biochemistry 47: 826-835), including the nucleotide requirements and temperature and ionic effects on polymerization state. These observations collectively suggest that additional factors interact with MreB to account for its complex dynamic behavior in cells.

  6. Bacillus subtilis Early Colonization of Arabidopsis thaliana Roots Involves Multiple Chemotaxis Receptors.

    Science.gov (United States)

    Allard-Massicotte, Rosalie; Tessier, Laurence; Lécuyer, Frédéric; Lakshmanan, Venkatachalam; Lucier, Jean-François; Garneau, Daniel; Caudwell, Larissa; Vlamakis, Hera; Bais, Harsh P; Beauregard, Pascale B

    2016-11-29

    Colonization of plant roots by Bacillus subtilis is mutually beneficial to plants and bacteria. Plants can secrete up to 30% of their fixed carbon via root exudates, thereby feeding the bacteria, and in return the associated B. subtilis bacteria provide the plant with many growth-promoting traits. Formation of a biofilm on the root by matrix-producing B. subtilis is a well-established requirement for long-term colonization. However, we observed that cells start forming a biofilm only several hours after motile cells first settle on the plant. We also found that intact chemotaxis machinery is required for early root colonization by B. subtilis and for plant protection. Arabidopsis thaliana root exudates attract B. subtilis in vitro, an activity mediated by the two characterized chemoreceptors, McpB and McpC, as well as by the orphan receptor TlpC. Nonetheless, bacteria lacking these chemoreceptors are still able to colonize the root, suggesting that other chemoreceptors might also play a role in this process. These observations suggest that A. thaliana actively recruits B. subtilis through root-secreted molecules, and our results stress the important roles of B. subtilis chemoreceptors for efficient colonization of plants in natural environments. These results demonstrate a remarkable strategy adapted by beneficial rhizobacteria to utilize carbon-rich root exudates, which may facilitate rhizobacterial colonization and a mutualistic association with the host. Bacillus subtilis is a plant growth-promoting rhizobacterium that establishes robust interactions with roots. Many studies have now demonstrated that biofilm formation is required for long-term colonization. However, we observed that motile B. subtilis mediates the first contact with the roots. These cells differentiate into biofilm-producing cells only several hours after the bacteria first contact the root. Our study reveals that intact chemotaxis machinery is required for the bacteria to reach the

  7. Bacillus subtilis strain deficient for the protein-tyrosine kinase PtkA exhibits impaired DNA replication

    DEFF Research Database (Denmark)

    Petranovic, Dina; Michelsen, Ole; Zahradka, K

    2007-01-01

    Bacillus subtilis has recently come into the focus of research on bacterial protein-tyrosine phosphorylation, with several proteins kinases, phosphatases and their substrates identified in this Gram-positive model organism. B. subtilis protein-tyrosine phosphorylation system Ptk...... microscopy. B. subtilis cells lacking the kinase PtkA accumulated extra chromosome equivalents, exhibited aberrant initiation mass for DNA replication and an unusually long D period....

  8. Genome engineering using a synthetic gene circuit in Bacillus subtilis.

    Science.gov (United States)

    Jeong, Da-Eun; Park, Seung-Hwan; Pan, Jae-Gu; Kim, Eui-Joong; Choi, Soo-Keun

    2015-03-31

    Genome engineering without leaving foreign DNA behind requires an efficient counter-selectable marker system. Here, we developed a genome engineering method in Bacillus subtilis using a synthetic gene circuit as a counter-selectable marker system. The system contained two repressible promoters (B. subtilis xylA (Pxyl) and spac (Pspac)) and two repressor genes (lacI and xylR). Pxyl-lacI was integrated into the B. subtilis genome with a target gene containing a desired mutation. The xylR and Pspac-chloramphenicol resistant genes (cat) were located on a helper plasmid. In the presence of xylose, repression of XylR by xylose induced LacI expression, the LacIs repressed the Pspac promoter and the cells become chloramphenicol sensitive. Thus, to survive in the presence of chloramphenicol, the cell must delete Pxyl-lacI by recombination between the wild-type and mutated target genes. The recombination leads to mutation of the target gene. The remaining helper plasmid was removed easily under the chloramphenicol absent condition. In this study, we showed base insertion, deletion and point mutation of the B. subtilis genome without leaving any foreign DNA behind. Additionally, we successfully deleted a 2-kb gene (amyE) and a 38-kb operon (ppsABCDE). This method will be useful to construct designer Bacillus strains for various industrial applications. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. N-terminal amino acid sequence of Bacillus licheniformis alpha-amylase: comparison with Bacillus amyloliquefaciens and Bacillus subtilis Enzymes.

    OpenAIRE

    Kuhn, H; Fietzek, P P; Lampen, J O

    1982-01-01

    The thermostable, liquefying alpha-amylase from Bacillus licheniformis was immunologically cross-reactive with the thermolabile, liquefying alpha-amylase from Bacillus amyloliquefaciens. Their N-terminal amino acid sequences showed extensive homology with each other, but not with the saccharifying alpha-amylases of Bacillus subtilis.

  10. Production of mannanase from Bacillus Subtilis LBF-005 and its potential for manno-oligosaccharides production

    Science.gov (United States)

    Yopi, Rahmani, Nanik; Jannah, Alifah Mafatikhul; Nugraha, Irfan Pebi; Ramadana, Roni Masri

    2017-11-01

    Endo-β-1, 4-mannanase is the key enzymes for randomly hydrolyzing the β-1,4-linkages within the mannan backbone releasing manno-oligosaccharides (MOS). A marine bacterium of Bacillus subtilis LBF-005 was reported have ability to produce endo-type mannanase. The aims of this research were to compare commercial biomass Locust Bean Gum (LBG) and raw biomass contaning mannan as carbon source for mannanase production from Bacillus subtilis LBF-005, to analyze the optimum condition of mannanase production, and to find out the potential of the mannanase for MOS production. Bacillus subtilis LBF-005 was cultivated in Artificial Sea Water (ASW) medium contain NaCl and various mannan biomass as carbon source for mannanase production. The cells were grown in submerged fermentation. The maximum enzyme activity was obtained with porang potato as a substrate with concentration 1%, pH medium 8, and incubation temperature 50°C with an enzyme activity of 37.7 U/mL. The mainly MOS product released by crude mannanase produced by Bacillus subtilis LBF-005 were mannobiose (M2), mannotriose (M3), mannotetraose (M4), and mannopentaose (M5).

  11. Enhanced hydrocarbon biodegradation by a newly isolated bacillus subtilis strain

    International Nuclear Information System (INIS)

    Christova, N.; Tuleva, B.; Nikolova-Damyanova, B.

    2004-01-01

    The relation between hydrocarbon degradation and biosurfactant (rhamnolipid) production by a new bacillus subtilis 22BN strain was investigated. The strain was isolated for its capacity to utilize n-hexadecane and naphthalene and at the same time to produce surface-active compound at high concentrations (1.5 - 2.0 g l -1 ). Biosurfactant production was detected by surface tension lowering and emulsifying activity. The strain is a good degrader of both hydrocarbons used with degradability of 98.3 ± 1% and 75 ± 2% for n-hexadecane and naphthalene, respectively. Measurement of cell hydrophobicity showed that the combination of slightly soluble substrate and rhamnolipid developed higher hydrophobicity correlated with increased utilization of both hydrocarbon substrates. To our knowledge, this is the first report of bacillus subtilis strain that degrades hydrophobic compounds and at the same time produces rhamnolipid biosurfactant. (orig.)

  12. Gene activation of heavy ion treated bacillus subtilis 168 endospores during germination involved DNA-repair

    International Nuclear Information System (INIS)

    Moeller, R.; Berger, T.; Reitz, G.; Okayasu, Ryuichi

    2006-01-01

    This research project is aimed at correlating radiation effects induced DNA damage in Bacillus subtilis endospores with the linear energy transfer (LET) of the used radiation by investigating survival and gene activation after irradiation with high-LET particles. During the stationary growth phase Bacillus subtilis change their metabolic active state from the vegetative cells to the metabolic inactive but even more resistant endospores. If spores find optimal conditions, they could germinate and switch to the vegetative growth. With these outgrowth spores can and/or must repair the induced formed DNA damage. During germination spores lose their most resistance. In more detail, DNA repair and mutation induction events investigated will include the survivability, behaviour against specific antibiotics and their germination. DNA repair pattern will be detected during germination by using DNA microarrays, which contain the whole genome of Bacillus subtilis 168. (author)

  13. Two purine nucleoside phosphorylases in Bacillus subtilis. Purification and some properties of the adenosine-specific phosphorylase

    DEFF Research Database (Denmark)

    Jensen, Kaj Frank

    1978-01-01

    Two purine nucleoside phosphorylases (purine-nucleoside:orthophosphate ribosyltransferase, EC 2.4.2.1) were purified from vegetative Bacillus subtilis cells. One enzyme, inosine-guanosine phosphorylase, showed great similarity to the homologous enzyme of Bacillus cereus. It appeared...

  14. 40 CFR 180.1128 - Bacillus subtilis MBI 600; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus subtilis MBI 600; exemption... FOOD Exemptions From Tolerances § 180.1128 Bacillus subtilis MBI 600; exemption from the requirement of... biofungicide Bacillus subtilis MBI 600 in or on all food commodities, including residues resulting from post...

  15. Study of UV-induced mutagenesis in Bacillus subtilis

    International Nuclear Information System (INIS)

    Filippov, V.D.; Lotareva, O.V.

    1978-01-01

    The mechanism of UV-induced mutagenesis was studied in Bacillus subtilis departing from the assumption that a lower yield of UV-induced mutations should be found in mutants deficient in the recombination if production of mutations is coupled with the recombination process. Three recombination-deficient strains were used: two (recA and recF) with defects in different recombination pathways and the third (recB) has a block at a stage common for both of them. UV light induced reversions to prototrophy in recB cells and did not in recA and recF strains. Direct mutations, which confer to the cell additional growth requirements, were induced by UV light in recA and recF mutants. It is concluded that UV-induced mutagenesis in B subtilis is independent of the two known recombination mechanisms

  16. Menaquinone and iron are essential for complex colony development in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Gidi Pelchovich

    Full Text Available Cells of undomesticated species of Bacillus subtilis frequently form complex colonies during spreading on agar surfaces. Given that menaquinone is involved in another form of coordinated behavior, namely, sporulation, we looked for a possible role for menaquinone in complex colony development (CCD in the B. subtilis strain NCIB 3610. Here we show that inhibition of menaquinone biosynthesis in B. subtilis indeed abolished its ability to develop complex colonies. Additionally some mutations of B. subtilis which confer defective CCD could be suppressed by menaquinone derivatives. Several such mutants mapped to the dhb operon encoding the genes responsible for the biosynthesis of the iron siderophore, bacillibactin. Our results demonstrate that both menaquinone and iron are essential for CCD in B. subtilis.

  17. Bacillus pumilus KatX2 confers enhanced hydrogen peroxide resistance to a Bacillus subtilis PkatA::katX2 mutant strain.

    Science.gov (United States)

    Handtke, Stefan; Albrecht, Dirk; Zühlke, Daniela; Otto, Andreas; Becher, Dörte; Schweder, Thomas; Riedel, Kathrin; Hecker, Michael; Voigt, Birgit

    2017-04-26

    Bacillus pumilus cells exhibit a significantly higher resistance to hydrogen peroxide compared to closely related Bacilli like Bacillus subtilis. In this study we analyzed features of the catalase KatX2 of B. pumilus as one of the most important parts of the cellular response to hydrogen peroxide. KatX2, the vegetative catalase expressed in B. pumilus, was compared to the vegetative catalase KatA of B. subtilis. Data of our study demonstrate that B. pumilus can degrade toxic concentrations of hydrogen peroxide faster than B. subtilis. By replacing B. subtilis katA gene by katX2 we could significantly enhance its resistance to H 2 O 2 and its potential to eliminate this toxic compound. Mutant cells showed a 1.5- to 2-fold higher survival to toxic concentrations of hydrogen peroxide compared to wild type cells. Furthermore, we found reversible but also irreversible oxidations of the KatX2 protein which, in contrast to KatA, contains several cysteine residues. Our study indicates that the catalase KatX2 plays a major role in the increased resistance of B. pumilus to oxidative stress caused by hydrogen peroxide. Resistance to hydrogen peroxide of other Bacilli can be enhanced by exchanging the native catalase in the cells with katX2.

  18. Thiopeptide antibiotics stimulate biofilm formation in Bacillus subtilis.

    Science.gov (United States)

    Bleich, Rachel; Watrous, Jeramie D; Dorrestein, Pieter C; Bowers, Albert A; Shank, Elizabeth A

    2015-03-10

    Bacteria have evolved the ability to produce a wide range of structurally complex natural products historically called "secondary" metabolites. Although some of these compounds have been identified as bacterial communication cues, more frequently natural products are scrutinized for antibiotic activities that are relevant to human health. However, there has been little regard for how these compounds might otherwise impact the physiology of neighboring microbes present in complex communities. Bacillus cereus secretes molecules that activate expression of biofilm genes in Bacillus subtilis. Here, we use imaging mass spectrometry to identify the thiocillins, a group of thiazolyl peptide antibiotics, as biofilm matrix-inducing compounds produced by B. cereus. We found that thiocillin increased the population of matrix-producing B. subtilis cells and that this activity could be abolished by multiple structural alterations. Importantly, a mutation that eliminated thiocillin's antibiotic activity did not affect its ability to induce biofilm gene expression in B. subtilis. We go on to show that biofilm induction appears to be a general phenomenon of multiple structurally diverse thiazolyl peptides and use this activity to confirm the presence of thiazolyl peptide gene clusters in other bacterial species. Our results indicate that the roles of secondary metabolites initially identified as antibiotics may have more complex effects--acting not only as killing agents, but also as specific modulators of microbial cellular phenotypes.

  19. 40 CFR 180.1111 - Bacillus subtilis GB03; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus subtilis GB03; exemption from... FOOD Exemptions From Tolerances § 180.1111 Bacillus subtilis GB03; exemption from the requirement of a tolerance. The biofungicide Bacillus subtilis GB03 is exempted from the requirement of a tolerance in or on...

  20. Genetic determination of the radioprotective effect of cysteamine on γ-irradiated Bacillus subtilis cells

    International Nuclear Information System (INIS)

    Kalinin, V.L.; Oskolkova, O.B.; Stepanova, I.M.

    1979-01-01

    A study was made of a lethal effect of 60 Co-γ-rays on Bacillus subtilis cells: a wild type strain and recombination-deficient mutants rec A, rec B, rec D, rec F, rec K, rec L and rec O exposed in the absence and in the presence of cysteamine (H -2 M). It was established that the protective efficiency of cysteamine for repair- and recombination-deficient mutants is significantly lower than that for the wild type (DMF 2.2-3.0). The most deficient in sensitivity to the protective action of cysteamine are rec B mutants (DMF 0.8-1.2). These data suggest that in B. subtilis, like in E. coli, the radioprotective effect of cysteamine is genetically determined and depends on the activity of repair systems

  1. Potassium sensing histidine kinase in Bacillus subtilis.

    Science.gov (United States)

    López, Daniel; Gontang, Erin A; Kolter, Roberto

    2010-01-01

    The soil-dwelling organism Bacillus subtilis is able to form multicellular aggregates known as biofilms. It was recently reported that the process of biofilm formation is activated in response to the presence of various, structurally diverse small-molecule natural products. All of these small-molecule natural products made pores in the membrane of the bacterium, causing the leakage of potassium cations from the cytoplasm of the cell. The potassium cation leakage was sensed by the membrane histidine kinase KinC, triggering the genetic pathway to the production of the extracellular matrix that holds cells within the biofilm. This chapter presents the methodology used to characterize the leakage of cytoplasmic potassium as the signal that induces biofilm formation in B. subtilis via activation of KinC. Development of novel techniques to monitor activation of gene expression in microbial populations led us to discover the differentiation of a subpopulation of cells specialized to produce the matrix that holds all cells together within the biofilm. This phenomenon of cell differentiation was previously missed by conventional techniques used to monitor transcriptional gene expression. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Bacillus subtilis Protects Public Goods by Extending Kin Discrimination to Closely Related Species.

    Science.gov (United States)

    Lyons, Nicholas A; Kolter, Roberto

    2017-07-05

    Kin discrimination systems are found in numerous communal contexts like multicellularity and are theorized to prevent exploitation of cooperative behaviors. The kin discrimination system in Bacillus subtilis differs from most other such systems because it excludes nonkin cells rather than including kin cells. Because nonkin are the target of the system, B. subtilis can potentially distinguish degrees of nonkin relatedness, not just kin versus nonkin. We examined this by testing a large strain collection of diverse Bacillus species against B. subtilis in different multicellular contexts. The effects of kin discrimination extend to nearby species, as the other subtilis clade species were treated with the same antagonism as nonkin. Species in the less-related pumilus clade started to display varied phenotypes but were mostly still discriminated against, while cereus clade members and beyond were no longer subject to kin discrimination. Seeking a reason why other species are perceived as antagonistic nonkin, we tested the ability of B. subtilis to steal communally produced surfactant from these species. We found that the species treated as nonkin were the only ones that made a surfactant that B. subtilis could utilize and that nonkin antagonism prevented such stealing when the two strains were mixed. The nonkin exclusion kin discrimination method thus allows effective protection of the cooperative behaviors prevalent in multicellularity while still permitting interactions with more distant species that are not a threat. IMPORTANCE Multicellular systems like bacterial biofilms and swarms rely on cooperative behaviors that could be undermined by exploitative invaders. Discriminating kin from nonkin is one way to help guard against such exploitation but has thus far been examined only intraspecifically, so the phylogenetic range of this important trait is unknown. We tested whether Bacillus subtilis treats other species as nonkin by testing a single strain against a

  3. 77 FR 73934 - Bacillus subtilis Strain QST 713 Variant Soil; Amendment to an Exemption From the Requirement of...

    Science.gov (United States)

    2012-12-12

    ... Bacillus subtilis Strain QST 713 To Include Residues of Bacillus subtilis Strain QST 713 Variant Soil... existing exemption from the requirement of a tolerance for residues of the Bacillus subtilis strain QST 713 in or on all food commodities by including residues of Bacillus subtilis strain QST 713 variant soil...

  4. Antagonistic action of Bacillus subtilis strain SG6 on Fusarium graminearum.

    Science.gov (United States)

    Zhao, Yueju; Selvaraj, Jonathan Nimal; Xing, Fuguo; Zhou, Lu; Wang, Yan; Song, Huimin; Tan, Xinxin; Sun, Lichao; Sangare, Lancine; Folly, Yawa Minnie Elodie; Liu, Yang

    2014-01-01

    Fusarium graminearum causes Fusarium head blight (FHB), a devastating disease that leads to extensive yield and quality loss of wheat and barley. Bacteria isolated from wheat kernels and plant anthers were screened for antagonistic activity against F. graminearum. Based on its in vitro effectiveness, strain SG6 was selected for characterization and identified as Bacillus subtilis. B. subtilis SG6 exhibited a high antifungal effect on the mycelium growth, sporulation and DON production of F. graminearum with the inhibition rate of 87.9%, 95.6% and 100%, respectively. In order to gain insight into biological control effect in situ, we applied B. subtilis SG6 at anthesis through the soft dough stage of kernel development in field test. It was revealed that B. subtilis SG6 significantly reduced disease incidence (DI), FHB index and DON (P ≤ 0.05). Further, ultrastructural examination shows that B. subtilis SG6 strain induced stripping of F. graminearum hyphal surface by destroying the cellular structure. When hypha cell wall was damaged, the organelles and cytoplasm inside cell would exude, leading to cell death. The antifungal activity of SG6 could be associated with the coproduction of chitinase, fengycins and surfactins.

  5. Antagonistic action of Bacillus subtilis strain SG6 on Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Yueju Zhao

    Full Text Available Fusarium graminearum causes Fusarium head blight (FHB, a devastating disease that leads to extensive yield and quality loss of wheat and barley. Bacteria isolated from wheat kernels and plant anthers were screened for antagonistic activity against F. graminearum. Based on its in vitro effectiveness, strain SG6 was selected for characterization and identified as Bacillus subtilis. B. subtilis SG6 exhibited a high antifungal effect on the mycelium growth, sporulation and DON production of F. graminearum with the inhibition rate of 87.9%, 95.6% and 100%, respectively. In order to gain insight into biological control effect in situ, we applied B. subtilis SG6 at anthesis through the soft dough stage of kernel development in field test. It was revealed that B. subtilis SG6 significantly reduced disease incidence (DI, FHB index and DON (P ≤ 0.05. Further, ultrastructural examination shows that B. subtilis SG6 strain induced stripping of F. graminearum hyphal surface by destroying the cellular structure. When hypha cell wall was damaged, the organelles and cytoplasm inside cell would exude, leading to cell death. The antifungal activity of SG6 could be associated with the coproduction of chitinase, fengycins and surfactins.

  6. Characterization of ftsZ mutations that render Bacillus subtilis resistant to MinC

    NARCIS (Netherlands)

    de Oliveira, I.F.F.; Sousa Borges, A.; Kooij, V.; Bartosiak-Jentys, J.; Luirink, S.; Scheffers, D.J.

    2010-01-01

    Background: Cell division in Bacillus subtilis occurs precisely at midcell. Positional control of cell division is exerted by two mechanisms: nucleoid occlusion, through Noc, which prevents division through nucleoids, and the Min system, where the combined action of the MinC, D and J proteins

  7. Bacillus subtilis Protects Public Goods by Extending Kin Discrimination to Closely Related Species

    Directory of Open Access Journals (Sweden)

    Nicholas A. Lyons

    2017-07-01

    Full Text Available Kin discrimination systems are found in numerous communal contexts like multicellularity and are theorized to prevent exploitation of cooperative behaviors. The kin discrimination system in Bacillus subtilis differs from most other such systems because it excludes nonkin cells rather than including kin cells. Because nonkin are the target of the system, B. subtilis can potentially distinguish degrees of nonkin relatedness, not just kin versus nonkin. We examined this by testing a large strain collection of diverse Bacillus species against B. subtilis in different multicellular contexts. The effects of kin discrimination extend to nearby species, as the other subtilis clade species were treated with the same antagonism as nonkin. Species in the less-related pumilus clade started to display varied phenotypes but were mostly still discriminated against, while cereus clade members and beyond were no longer subject to kin discrimination. Seeking a reason why other species are perceived as antagonistic nonkin, we tested the ability of B. subtilis to steal communally produced surfactant from these species. We found that the species treated as nonkin were the only ones that made a surfactant that B. subtilis could utilize and that nonkin antagonism prevented such stealing when the two strains were mixed. The nonkin exclusion kin discrimination method thus allows effective protection of the cooperative behaviors prevalent in multicellularity while still permitting interactions with more distant species that are not a threat.

  8. The methionine salvage pathway in Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Danchin Antoine

    2002-04-01

    Full Text Available Abstract Background Polyamine synthesis produces methylthioadenosine, which has to be disposed of. The cell recycles it into methionine through methylthioribose (MTR. Very little was known about MTR recycling for methionine salvage in Bacillus subtilis. Results Using in silico genome analysis and transposon mutagenesis in B. subtilis we have experimentally uncovered the major steps of the dioxygen-dependent methionine salvage pathway, which, although similar to that found in Klebsiella pneumoniae, recruited for its implementation some entirely different proteins. The promoters of the genes have been identified by primer extension, and gene expression was analyzed by Northern blotting and lacZ reporter gene expression. Among the most remarkable discoveries in this pathway is the role of an analog of ribulose diphosphate carboxylase (Rubisco, the plant enzyme used in the Calvin cycle which recovers carbon dioxide from the atmosphere as a major step in MTR recycling. Conclusions A complete methionine salvage pathway exists in B. subtilis. This pathway is chemically similar to that in K. pneumoniae, but recruited different proteins to this purpose. In particular, a paralogue or Rubisco, MtnW, is used at one of the steps in the pathway. A major observation is that in the absence of MtnW, MTR becomes extremely toxic to the cell, opening an unexpected target for new antimicrobial drugs. In addition to methionine salvage, this pathway protects B. subtilis against dioxygen produced by its natural biotope, the surface of leaves (phylloplane.

  9. Effect of Bacillus subtilis on the growth and survival rate of shrimp ...

    African Journals Online (AJOL)

    The effect ofBacillus subtilis, isolated from digestive tract of Macrobrachium rosenbergii was investigated on growth and survival rate of Litopenaeus vannamei during 60 days of culture. Sixteen aquaria with four replicates were used for treatments and controls. Treatment groups were consisted of Bacillus subtilis, isolated ...

  10. Localization and Interactions of Teichoic Acid Synthetic Enzymes in Bacillus subtilis

    NARCIS (Netherlands)

    Formstone, Alex; Carballido-López, Rut; Noirot, Philippe; Errington, Jeffery; Scheffers, Dirk-Jan

    2008-01-01

    The thick wall of gram-positive bacteria is a polymer meshwork composed predominantly of peptidoglycan (PG) and teichoic acids, both of which have a critical function in maintenance of the structural integrity and the shape of the cell. In Bacillus subtilis 168 the major teichoic acid is covalently

  11. Genome Sequencing of Bacillus subtilis SC-8, Antagonistic to the Bacillus cereus Group, Isolated from Traditional Korean Fermented-Soybean Food

    OpenAIRE

    Yeo, In-Cheol; Lee, Nam Keun; Hahm, Young Tae

    2012-01-01

    Bacillus subtilis SC-8 is a Gram-positive bacterium displaying narrow antagonistic activity for the Bacillus cereus group. B. subtilis SC-8 was isolated from Korean traditional fermented-soybean food. Here we report the draft genome sequence of B. subtilis SC-8, including biosynthetic genes for antibiotics that may have beneficial effects for control of food-borne pathogens.

  12. Bacillus subtilis strain specificity affects performance improvement in broilers.

    Science.gov (United States)

    Rhayat, L; Jacquier, V; Brinch, K S; Nielsen, P; Nelson, A; Geraert, P-A; Devillard, E

    2017-07-01

    The study reports the effects on broiler performance of a newly isolated Bacillus subtilis strain, which is phylogenetically not closely related to already well-described strains of B. subtilis. In the first experiment, birds were reared in battery cages and exposed to C. perfringens. An increase in growth performance was observed with the strain when compared to the challenged animals. Three additional growth trials were conducted to 35 d of age, in different rearing conditions (genetic breeds, corn-soybean meal-based diet with or without animal proteins, in presence or absence of phytase, on fresh or used litter) to investigate the efficacy and the specificity of this new B. subtilis strain on the improvement of BWG and FCR of broilers in comparison with a B. subtilis-based DFM already used in the field. Whatever the rearing conditions tested, the new B. subtilis strain led to an average 3.2% improvement in feed conversion ratio or bodyweight. Comparatively, the commercial Bacillus strain significantly improved broiler performance in only one trial out of 3 with an average improvement reaching 2%. All these results indicate that this new B. subtilis strain consistently improves broiler performances. © 2017 Poultry Science Association Inc.

  13. Protein-Tyrosine Phosphorylation in Bacillus subtilis

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Petranovic, Dina; Bottini, N.

    2005-01-01

    phosphorylation, indicating that this post-translational modifi cation could regulate physiological processes ranging from stress response and exopolysaccharide synthesis to DNA metabolism. Some interesting work in this fi eld was done in Bacillus subtilis , and we here present the current state of knowledge...... on protein-tyrosine phosphorylation in this gram-positive model organism. With its two kinases, two kinase modulators, three phosphatases and at least four different tyrosine-phosphorylated substrates, B. subtilis is the bacterium with the highest number of presently known participants in the global network...

  14. TRANSDUCTION OF BACILLUS LICHENIFORMIS AND BACILLUS SUBTILIS BY EACH OF TWO PHAGES1

    Science.gov (United States)

    Taylor, Martha J.; Thorne, Curtis B.

    1963-01-01

    Taylor, Martha J. (U.S. Army Biological Laboratories, Fort Detrick, Frederick, Md.) and Curtis B. Thorne. Transduction of Bacillus licheniformis and Bacillus subtilis by each of two phages. J. Bacteriol. 86:452–461. 1963.—A second transducing bacteriophage, designated SP-15, was isolated from the same soil-sample culture filtrate that supplied the Bacillus subtilis transducing phage, SP-10, reported earlier from this laboratory. SP-10 and SP-15 differ serologically and in several other respects, but share the ability to propagate on B. subtilis W-23-Sr (streptomycin-resistant) and B. licheniformis ATCC 9945a, and to mediate general transduction in either species when propagated homologously. Attempts to transduce between the species have failed. SP-10 forms plaques readily on both W-23-Sr and 9945a; SP-15 forms minute plaques on W-23-Sr and has shown no evidence of any lytic activity on 9945a. Maximal recoveries of prototrophic colonies from mixtures of SP-10 with auxotrophs of either W-23-Sr or 9945a were obtained only when excess phage was neutralized by post-transduction treatment with specific phage antiserum. Such treatment was not necessary for maximal recovery of transductants effected by SP-15. Unlike SP-10, SP-15 propagated on W-23-Sr did not transduce B. subtilis 168 (indole−). SP-15 transduced B. licheniformis more efficiently than did SP-10. Neither phage was able to transduce B. licheniformis as efficiently as it transduced B. subtilis. The differing influences of multiplicity of infection were compared for the two phages in both species. PMID:14066421

  15. The Regulatory RNAs of Bacillus subtilis

    NARCIS (Netherlands)

    Mars, Ruben

    2014-01-01

    In vrijwel alle organismen wordt RNA aangemaakt dat niet codeert voor eiwit, maar een regulerende functie heeft. Dit proefschrift beschrijft de identificatie van ~1600 nieuwe potentiële regulatie-RNAs in de bodembacterie Bacillus subtilis die veel voor biotechnologische toepassingen ingezet wordt.

  16. Antifungical Activity of Autochthonous Bacillus subtilis Isolated from Prosopis juliflora against Phytopathogenic Fungi.

    Science.gov (United States)

    Abdelmoteleb, Ali; Troncoso-Rojas, Rosalba; Gonzalez-Soto, Tania; González-Mendoza, Daniel

    2017-12-01

    The ability of Bacillus subtilis , strain ALICA to produce three mycolytic enzymes (chitinase, β-1,3-glucanase, and protease), was carried out by the chemical standard methods. Bacillus subtilis ALICA was screened based on their antifungal activity in dual plate assay and cell-free culture filtrate (25%) against five different phytopathogenic fungi Alternaria alternata , Macrophomina sp., Colletotrichum gloeosporioides , Botrytis cinerea , and Sclerotium rolfesii . The B. subtilis ALICA detected positive for chitinase, β-1,3-glucanase and protease enzymes. Fungal growth inhibition by both strain ALICA and its cell-free culture filtrate ranged from 51.36% to 86.3% and 38.43% to 68.6%, respectively. Moreover, hyphal morphological changes like damage, broken, swelling, distortions abnormal morphology were observed. Genes expression of protease, β-1,3-glucanase, and lipopeptides (subtilosin and subtilisin) were confirmed their presence in the supernatant of strain ALICA. Our findings indicated that strain ALICA provided a broad spectrum of antifungal activities against various phytopathogenic fungi and may be a potential effective alternative to chemical fungicides.

  17. Effect of Bacillus subtilis mutants on growth performance of piglets fed tryptophan- and valine-deficient diets

    DEFF Research Database (Denmark)

    Nørgaard, Jan Værum; Canibe, Nuria; Assadi Soumeh, Elham

    2016-01-01

    The objective was to determine the concentration of l-Trp and l-Val to be substituted by feeding piglets Bacillus subtilis strains developed to overproduce Trp (B. subtilis Trp mutant [BsTrp]) and Val (B. subtilis Val mutant [BsVal]) and by using equations obtained in 3 dose–response studies......-Val per kilogram feed using curvilinear plateau and broken-line equations obtained by modeling the 6 AA levels. Bacillus subtilis Val mutant increased animal performance corresponding to 0.88 and 0.39 g l-Leu and 0.17 and 0.44 g l-Val per kilogram feed for 10x and 100x doses, respectively. Bacillus...... subtilis Trp mutant was equivalent to 0.02 and 0.11 g l-Trp/kg feed for 10x and 100x doses, respectively. Bacillus subtilis Val mutant (10x dose) increased (P Bacillus subtilis Trp mutant tended (P = 0.06) to increase Trp plasma concentrations...

  18. DECONTAMINATION ASSESSMENT OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS, AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACTS USING A HYDROGEN PERIOXIDE GAS GENERATOR

    Science.gov (United States)

    Aims: To evaluate the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface materials using hydrogen peroxide gas. Methods and Results: B. anthracis, B. subtilis, and G. Stearothermophilus spores were dried on seven...

  19. 40 CFR 180.1209 - Bacillus subtilis strain QST 713; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus subtilis strain QST 713... RESIDUES IN FOOD Exemptions From Tolerances § 180.1209 Bacillus subtilis strain QST 713; exemption from the... the microbial pesticide Bacillus subtilis strain QST 713 when used in or on all food commodities. [65...

  20. Construction of novel shuttle expression vectors for gene expression in Bacillus subtilis and Bacillus pumilus.

    Science.gov (United States)

    Shao, Huanhuan; Cao, Qinghua; Zhao, Hongyan; Tan, Xuemei; Feng, Hong

    2015-01-01

    A native plasmid (pSU01) was detected by genome sequencing of Bacillus subtilis strain S1-4. Two pSU01-based shuttle expression vectors pSU02-AP and pSU03-AP were constructed enabling stable replication in B. subtilis WB600. These vectors contained the reporter gene aprE, encoding an alkaline protease from Bacillus pumilus BA06. The expression vector pSU03-AP only possessed the minimal replication elements (rep, SSO, DSO) and exhibited more stability on structure, suggesting that the rest of the genes in pSU01 (ORF1, ORF2, mob, hsp) were unessential for the structural stability of plasmid in B. subtilis. In addition, recombinant production of the alkaline protease was achieved more efficiently with pSU03-AP whose copy number was estimated to be more than 100 per chromosome. Furthermore, pSU03-AP could also be used to transform and replicate in B. pumilus BA06 under selective pressure. In conclusion, pSU03-AP is expected to be a useful tool for gene expression in Bacillus subtilis and B. pumilus.

  1. Bacillus subtilis and yeast cell wall improve the intestinal health of broilers challenged by Clostridium perfringens.

    Science.gov (United States)

    Li, Z; Wang, W; Lv, Z; Liu, D; Guo, Y

    2017-12-01

    1. The objective was to investigate the effects of Bacillus subtilis, yeast cell wall (YCW) and their combination on intestinal health of broilers challenged by Clostridium perfringens over a 21-d period. 2. Using a 5 × 2 factorial arrangement of treatments, 800 1-d-old male Cobb 500 broilers were used to study the effects of feed additives (without additive or with zinc bacitracin, B. subtilis, YCW, and the combination of B. subtilis and YCW), pathogen challenge (without or with Clostridium perfringens challenge), and their interactive effects. 3. C. perfringens infection increased intestinal lesions scores, damaged intestinal histomorphology, increased serum endotoxin concentration, cytokine mRNA expression and intestinal population of C. perfringens and Escherichia coli and decreased ileal bifidobacteria numbers. The 4 additives decreased serum endotoxin. Zinc bacitracin tended to decrease cytokine mRNA expression and the intestinal number of C. perfringens and E. coli. B. subtilis, YCW and their combination increased cytokine mRNA expression. B. subtilis and YCW decreased the number of C. perfringens and E. coli in the ileum, and their combination decreased pathogens numbers in the ileum and caecum. 4. In conclusion, B. subtilis, YCW and their combination improved the intestinal health of NE-infected broilers, and could be potential alternatives to antibiotics.

  2. Complete Genomes of Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, Two Phylogenetically Distinct Probiotics.

    Science.gov (United States)

    Khatri, Indu; Sharma, Shailza; Ramya, T N C; Subramanian, Srikrishna

    2016-01-01

    Several spore-forming strains of Bacillus are marketed as probiotics due to their ability to survive harsh gastrointestinal conditions and confer health benefits to the host. We report the complete genomes of two commercially available probiotics, Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, and compare them with the genomes of other Bacillus and Lactobacillus. The taxonomic position of both organisms was established with a maximum-likelihood tree based on twenty six housekeeping proteins. Analysis of all probiotic strains of Bacillus and Lactobacillus reveal that the essential sporulation proteins are conserved in all Bacillus probiotic strains while they are absent in Lactobacillus spp. We identified various antibiotic resistance, stress-related, and adhesion-related domains in these organisms, which likely provide support in exerting probiotic action by enabling adhesion to host epithelial cells and survival during antibiotic treatment and harsh conditions.

  3. PRODIGIOSIN INDUCES AUTOLYSINS IN ACTIVELY GROWN Bacillus subtilis CELLS

    Directory of Open Access Journals (Sweden)

    Tjasa eDanevcic

    2016-01-01

    Full Text Available Prodigiosin produced by marine bacterium Vibrio ruber DSM 14379 exhibits a potent antimicrobial activity against a broad range of Gram positive and Gram negative bacteria. The mechanism of prodigiosin antimicrobial action, however, is not known. In this work, the effect of prodigiosin on B. subtilis growth, cell membrane leakage, and induction of autolysins was studied. Treating B. subtilis with prodigiosin resulted in rapid decline of optical density and increased cell membrane leakage measured by β-galactosidase activity. Cell lysis was initiated immediately after treatment with prodigiosin in the middle exponential phase and was completed within two hours. Lytic activity of prodigiosin in mutant strains with impaired autolysin genes lytABCD decreased for 80 % compared to the wild-type strain, while in lytABCDEF mutant strain prodigiosin had no bacteriolytic but only bacteriostatic effect. Fast prodigiosin lytic activity on individual B. subtilis cells was confirmed by a modified comet assay. The results indicate that prodigiosin autolysin induction in B. subtilis is growth phase dependent.

  4. Energy and calcium ion dependence of proteolysis during sporulation of Bacillus subtilis cells

    International Nuclear Information System (INIS)

    O'Hara, M.B.; Hageman, J.H.

    1990-01-01

    The authors have shown, with an optimized [ 14 C]leucine-labeling and chasing procedure, that intracellular protein degradation in sporulating cells of Bacillus subtilis 168 (trpC2) is apparently energy dependent. Sodium arsenate, sodium azide, carbonyl cyanide m-chlorophenylhydrozone, and N,N'-dicyclohexylcarbodiimide, at levels which did not induce appreciable lysis (≤ 10%) over 10-h periods of sporulation, inhibited intracellular proteolysis by 13 to 93%. Exponentially growing cells acquired arsenate resistance. In contrast to earlier reports, the authors found that chloramphenicol strongly inhibited proteolysis even when added 6 h into the sporulation process. Restricting the calcium ion concentration in the medium had no effect on rates or extent of vegetative growth, strongly inhibited sporulation, and inhibited rates of proteolysis by 60% or more. Inhibitors of energy metabolism, at the same levels which inhibited proteolysis, did not affect the rate or degree of uptake of Ca 2+ by cells. Restricting the Ca 2+ concentration in the medium reduced by threefold of the specific activity in cells of the major intracellular serine proteinase after 12 h of sporulation. finally, cells of a mutant of B. subtilis bearing an insertionally inactivated gene for the Ca 2+ -dependent intracellular proteinase-1 degraded protein in chemically defined sporulation medium at a rate indistinguishable from that of the wild-type cells for period of 8 h

  5. 40 CFR 180.1243 - Bacillus subtilis var. amyloliquefaciens strain FZB24; exemption from the requirement of a...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus subtilis var... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1243 Bacillus subtilis... the requirement of a tolerance for residues of the Bacillus subtilis var. amyloliquefaciens strain...

  6. Immobilizing Bacillus subtilis on the carrier of poly (acrylic acid)/sodium bentonite for treating sludge from Pangasius fish ponds

    International Nuclear Information System (INIS)

    Nguyen Thanh Duoc; Doan Binh; Pham Thi Thu Hong

    2016-01-01

    Sodium bentonite (NaBent) was modified by poly(acrylic acid) (PAAc) to prepare the carriers for immobilization of Bacillus subtilis. Different mixtures of NaBent/AAc were regularly dispersed in distilled water and irradiated under gamma rays at an absorbed dose of 6.5 kGy with dose rate of 0.85 kGy/hr in air for polymerization of acrylic acid and formation of poly(acrylic acid)/sodium bentonite (PAAc-NaBent). The reaction yield was determined with the initial concentration of acrylic acid (AAc). The functional group properties of the resulting PAAc-NaBent were analyzed by Fourier Transform Infrared spectra (FTIR). Bacillus subtilis cells were immobilized on both NaBent and PAAc-NaBent as carriers by adsorption method for treating the sludge contaminated by fish feces and residual feed from the Pangasius farming ponds. The results showed that immobilization capacity of Bacillus subtilis on the PAAc-NaBent was better than that on non-modified NaBent. Analysis of BOD for the farming pond water containing Bacillus subtilis and the bacteria immobilized carriers with time revealed the lower BOD values obtained with the samples containing PAAc-NaBent, suggested that degradation of organic pollutants by Bacillus subtilis immobilized on the PAAc-Na Bent was faster than that by free bacteria. (author)

  7. DNA repair in ultraviolet-irradiated spores of Bacillus subtilis

    International Nuclear Information System (INIS)

    Wang, T.C.V.

    1976-01-01

    It has been shown previously by others that at least two independent repair mechanisms are present in Bacillus subtilis for removing ''spore photoproduct'' from DNA of ultraviolet (254 nm)-irradiated spores after germination. One of these, designated as ''spore repair,'' is shown in this study to restore ''spore photoproduct'' to two thymine residues, leaving the DNA backbone intact at the end of the process in vivo. The circumstances under which this repair can occur and some characteristics of its energy requirements have been clarified. The second repair process is identified as excision repair, which can excise both ''spore photoproduct'' from DNA of irradiated spores and cyclobutane-type pyrimidine dimers from DNA of irradiated vegetative cells. In this study it is shown that the gene hcr 1 affects an enzyme activity for the incision step initiating this repair, while the gene hcr 42 affects a step subsequent to incision in the mechanism. In addition a third, independent repair system, termed ''germinative excision repair,'' is discovered and shown to be specific for excising only cyclobutane-type pyrimidine dimers but not ''spore photoproduct.'' This repair system is responsible for the observed high ultraviolet-resistance and temporary capacity for host cell reactivation on recently germinated spores of Bacillus subtilis HCR - strains

  8. Complete Genome Sequence of Bacillus subtilis subsp. subtilis Strain ∆6

    NARCIS (Netherlands)

    Reuß, Daniel R; Thürmer, Andrea; Daniel, Rolf; Quax, Wim J; Stülke, Jörg

    2016-01-01

    Bacillus subtilis ∆6 is a genome-reduced strain that was cured from six prophages and AT-rich islands. This strain is of great interest for biotechnological applications. Here, we announce the full-genome sequence of this strain. Interestingly, the conjugative element ICEBs1 has most likely

  9. From the genome sequence to the protein inventory of Bacillus subtilis.

    Science.gov (United States)

    Becher, Dörte; Büttner, Knut; Moche, Martin; Hessling, Bernd; Hecker, Michael

    2011-08-01

    Owing to the low number of proteins necessary to render a bacterial cell viable, bacteria are extremely attractive model systems to understand how the genome sequence is translated into actual life processes. One of the most intensively investigated model organisms is Bacillus subtilis. It has attracted world-wide research interest, addressing cell differentiation and adaptation on a molecular scale as well as biotechnological production processes. Meanwhile, we are looking back on more than 25 years of B. subtilis proteomics. A wide range of methods have been developed during this period for the large-scale qualitative and quantitative proteome analysis. Currently, it is possible to identify and quantify more than 50% of the predicted proteome in different cellular subfractions. In this review, we summarize the development of B. subtilis proteomics during the past 25 years. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Bacillus subtilis extracytoplasmic function (ECF) sigma factors and defense of the cell envelope.

    Science.gov (United States)

    Helmann, John D

    2016-04-01

    Bacillus subtilis provides a model for investigation of the bacterial cell envelope, the first line of defense against environmental threats. Extracytoplasmic function (ECF) sigma factors activate genes that confer resistance to agents that threaten the integrity of the envelope. Although their individual regulons overlap, σ(W) is most closely associated with membrane-active agents, σ(X) with cationic antimicrobial peptide resistance, and σ(V) with resistance to lysozyme. Here, I highlight the role of the σ(M) regulon, which is strongly induced by conditions that impair peptidoglycan synthesis and includes the core pathways of envelope synthesis and cell division, as well as stress-inducible alternative enzymes. Studies of these cell envelope stress responses provide insights into how bacteria acclimate to the presence of antibiotics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The studies on radiation mutation breeding of Bacillus subtilis with high-yield of amylase

    International Nuclear Information System (INIS)

    Chen Xiaoming; Zhang Liang; Zhang Jianguo; Zhou Liwei

    2008-01-01

    The mutagenesis effects on the yield of amylase have been investigated with Bacillus subtilis irradiated by γ-rays and fast neutrons in once or twice irradiation at various dose rates and total irradiation doses. Several parameters such as flat transparent circle, colony diameter, transparent circle diameter and the ratio of flat transparent circle to colony diameter (HC) are used to estimate the radiation mutation of Bacillus subtilis. A series of results has been obtained as (1) Irradiation both with neutrons and γ-rays could make Bacillus subtilis mutationed to produce high-yield amylase effectively. (2) The average colony diameter of Bacillus subtilis irradiated by γ-rays or fast neutrons is smaller than that of control group at various total doses and dose rates. And their colony diameter becomes smaller slightly with the increment of γ-rays irradiation dose. (3) After the second neutrons irradiation, the values of average colony diameter, the biggest colony diameter, average transparent circle diameter and the biggest transparent circle diameter of all mutationed Bacillus subtilis exceed that of original strains greatly. (4) Three kinds of mutationed Bacillus subtilis strains with high-yield amylase have been screened out, in which two strains can produce high-yield amylase steadily after 15 times breeding. Their biggest colony diameter, the biggest transparent circle diameter and the biggest HC value are up to 8.32 mm, 22.38 mm and 5.39 respectively. (authors)

  12. Small regulatory RNA-induced growth rate heterogeneity of Bacillus subtilis.

    Science.gov (United States)

    Mars, Ruben A T; Nicolas, Pierre; Ciccolini, Mariano; Reilman, Ewoud; Reder, Alexander; Schaffer, Marc; Mäder, Ulrike; Völker, Uwe; van Dijl, Jan Maarten; Denham, Emma L

    2015-03-01

    Isogenic bacterial populations can consist of cells displaying heterogeneous physiological traits. Small regulatory RNAs (sRNAs) could affect this heterogeneity since they act by fine-tuning mRNA or protein levels to coordinate the appropriate cellular behavior. Here we show that the sRNA RnaC/S1022 from the Gram-positive bacterium Bacillus subtilis can suppress exponential growth by modulation of the transcriptional regulator AbrB. Specifically, the post-transcriptional abrB-RnaC/S1022 interaction allows B. subtilis to increase the cell-to-cell variation in AbrB protein levels, despite strong negative autoregulation of the abrB promoter. This behavior is consistent with existing mathematical models of sRNA action, thus suggesting that induction of protein expression noise could be a new general aspect of sRNA regulation. Importantly, we show that the sRNA-induced diversity in AbrB levels generates heterogeneity in growth rates during the exponential growth phase. Based on these findings, we hypothesize that the resulting subpopulations of fast- and slow-growing B. subtilis cells reflect a bet-hedging strategy for enhanced survival of unfavorable conditions.

  13. Enhancement of Cellulase Production by Cellulomonas Fimi and Bacillus Subtilis

    International Nuclear Information System (INIS)

    Omer, A.M.

    2012-01-01

    Two bacterial strains identified as Cellulomonas fimi and Baciliius subtilus are cosidered as highly active cellulytic bacteria. Trials for maximizing the cellulolytic activites of the two strains were conducted. A maximum cellulase production was achieved at 1 and 1.5%carboxy methyl cellulose as carbon source, sodium nitrate and yeast as nitrogen source for Cellulomonas fimi and Bacillus subtilis, respectively. Incubation temprature at 30 and 45 degree C, ph at 6 and 7 achieved the highest activity of cellulase for Cellulomonas fimi and bacillus subtilis, respectively

  14. Complete Genomes of Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, Two Phylogenetically Distinct Probiotics

    Science.gov (United States)

    Ramya, T. N. C.; Subramanian, Srikrishna

    2016-01-01

    Several spore-forming strains of Bacillus are marketed as probiotics due to their ability to survive harsh gastrointestinal conditions and confer health benefits to the host. We report the complete genomes of two commercially available probiotics, Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, and compare them with the genomes of other Bacillus and Lactobacillus. The taxonomic position of both organisms was established with a maximum-likelihood tree based on twenty six housekeeping proteins. Analysis of all probiotic strains of Bacillus and Lactobacillus reveal that the essential sporulation proteins are conserved in all Bacillus probiotic strains while they are absent in Lactobacillus spp. We identified various antibiotic resistance, stress-related, and adhesion-related domains in these organisms, which likely provide support in exerting probiotic action by enabling adhesion to host epithelial cells and survival during antibiotic treatment and harsh conditions. PMID:27258038

  15. Complete Genomes of Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, Two Phylogenetically Distinct Probiotics.

    Directory of Open Access Journals (Sweden)

    Indu Khatri

    Full Text Available Several spore-forming strains of Bacillus are marketed as probiotics due to their ability to survive harsh gastrointestinal conditions and confer health benefits to the host. We report the complete genomes of two commercially available probiotics, Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, and compare them with the genomes of other Bacillus and Lactobacillus. The taxonomic position of both organisms was established with a maximum-likelihood tree based on twenty six housekeeping proteins. Analysis of all probiotic strains of Bacillus and Lactobacillus reveal that the essential sporulation proteins are conserved in all Bacillus probiotic strains while they are absent in Lactobacillus spp. We identified various antibiotic resistance, stress-related, and adhesion-related domains in these organisms, which likely provide support in exerting probiotic action by enabling adhesion to host epithelial cells and survival during antibiotic treatment and harsh conditions.

  16. Construction of a highly efficient Bacillus subtilis 168 whole-cell biocatalyst and its application in the production of L-ornithine.

    Science.gov (United States)

    Wang, Meizhou; Xu, Meijuan; Rao, Zhiming; Yang, Taowei; Zhang, Xian

    2015-11-01

    L-Ornithine, a non-protein amino acid, is usually extracted from hydrolyzed protein as well as produced by microbial fermentation. Here, we focus on a highly efficient whole-cell biocatalyst for the production of L-ornithine. The gene argI, encoding arginase, which catalyzes the hydrolysis of L-arginine to L-ornithine and urea, was cloned from Bacillus amyloliquefaciens B10-127 and expressed in GRAS strain Bacillus subtilis 168. The recombinant strain exhibited an arginase activity of 21.9 U/mg, which is 26.7 times that of wild B. subtilis 168. The optimal pH and temperature of the purified recombinant arginase were 10.0 and 40 °C, respectively. In addition, the recombinant arginase exhibited a strong Mn(2+) preference. When using whole-cell biocatalyst-based bioconversion, a hyper L-ornithine production of 356.9 g/L was achieved with a fed-batch strategy in a 5-L reactor within 12 h. This whole-cell bioconversion study demonstrates an environmentally friendly strategy for L-ornithine production in industry.

  17. Analysis of Host-Takeover During SPO1 Infection of Bacillus subtilis.

    Science.gov (United States)

    Stewart, Charles R

    2018-01-01

    When Bacillus subtilis is infected by bacteriophage SPO1, the phage directs the remodeling of the host cell, converting it into a factory for phage reproduction. Much synthesis of host DNA, RNA, and protein is shut off, and cell division is prevented. Here I describe the protocols by which we have demonstrated those processes, and identified the roles played by specific SPO1 gene products in causing those processes.

  18. Role of Ribonucleotide Reductase in Bacillus subtilis Stress-Associated Mutagenesis.

    Science.gov (United States)

    Castro-Cerritos, Karla Viridiana; Yasbin, Ronald E; Robleto, Eduardo A; Pedraza-Reyes, Mario

    2017-02-15

    The Gram-positive microorganism Bacillus subtilis relies on a single class Ib ribonucleotide reductase (RNR) to generate 2'-deoxyribonucleotides (dNDPs) for DNA replication and repair. In this work, we investigated the influence of RNR levels on B. subtilis stationary-phase-associated mutagenesis (SPM). Since RNR is essential in this bacterium, we engineered a conditional mutant of strain B. subtilis YB955 (hisC952 metB5 leu427) in which expression of the nrdEF operon was modulated by isopropyl-β-d-thiogalactopyranoside (IPTG). Moreover, genetic inactivation of ytcG, predicted to encode a repressor (NrdR) of nrdEF in this strain, dramatically increased the expression levels of a transcriptional nrdE-lacZ fusion. The frequencies of mutations conferring amino acid prototrophy in three genes were measured in cultures under conditions that repressed or induced RNR-encoding genes. The results revealed that RNR was necessary for SPM and overexpression of nrdEF promoted growth-dependent mutagenesis and SPM. We also found that nrdEF expression was induced by H 2 O 2 and such induction was dependent on the master regulator PerR. These observations strongly suggest that the metabolic conditions operating in starved B. subtilis cells increase the levels of RNR, which have a direct impact on SPM. Results presented in this study support the concept that the adverse metabolic conditions prevailing in nutritionally stressed bacteria activate an oxidative stress response that disturbs ribonucleotide reductase (RNR) levels. Such an alteration of RNR levels promotes mutagenic events that allow Bacillus subtilis to escape from growth-limited conditions. Copyright © 2017 American Society for Microbiology.

  19. Regulation of cell wall morphogenesis in Bacillus subtilis by recruitment of PBP1 to the MreB helix.

    Science.gov (United States)

    Kawai, Yoshikazu; Daniel, Richard A; Errington, Jeffery

    2009-03-01

    The bacterial actin homologue MreB plays a key role in cell morphogenesis. In Bacillus subtilis MreB is essential under normal growth conditions and mreB mutants are defective in the control of cell diameter. However, the precise role of MreB is still unclear. Analysis of the lethal phenotypic consequences of mreB disruption revealed an unusual bulging phenotype that precedes cell death. A similar phenotype was seen in wild-type cells at very low Mg(2+) concentrations. We found that inactivation of the major bi-functional penicillin-binding protein (PBP) PBP1 of B. subtilis restored the viability of an mreB null mutant as well as preventing bulging in both mutant and wild-type backgrounds. Bulging was associated with delocalization of PBP1. We show that the normal pattern of localization of PBP1 is dependent on MreB and that the proteins can physically interact using in vivo pull-down and bacterial two-hybrid approaches. Interactions between MreB and several other PBPs were also detected. Our results suggest that MreB filaments associate directly with the peptidoglycan biosynthetic machinery in B. subtilis as part of the mechanism that brings about controlled cell elongation.

  20. Incorporation of glycine and serine into sporulating cells of Bacillus subtilis

    International Nuclear Information System (INIS)

    Mitani, Takahiko; Kadota, Hajime

    1976-01-01

    The changes during growth and sporulation in activities of cells of Bacillus subtilis to incorporate various amino acids were investigated with wild-type strain and its asporogenous mutant. In the case of wild type strain the uptake of valine, phenylalanine, and proline was largest during the logarithmic growth period. The uptake of these amino acids decreased rapidly during the early stationary phase. The uptake of valine and cysteine increased again to some extent just prior to the forespore stage. The uptake of glycine and serine, however, was largest at the forespore stage at which the formation of spore coat took place. From these observed phenomena it was assumed that the remarkable incorporation of glycine and serine into the wild type strain during sporulation was closely related to the formation of spore coat. (auth.)

  1. Development of Bacillus subtilis mutants to produce tryptophan in pigs

    DEFF Research Database (Denmark)

    Bjerre, Karin; Cantor, Mette D.; Nørgaard, Jan Værum

    2017-01-01

    Objectives To generate tryptophan-overproducing Bacillus subtilis strains for in situ use in pigs, to reduce the feed cost for farmers and nitrogen pollution. Results A novel concept has been investigated—to generate B. subtilis strains able to produce tryptophan (Trp) in situ in pigs. Mutagenesis......-excreting B. subtilis strains were obtained with UV-mutagenesis and analogue selection and can be used in animal feed applications....

  2. LODO INDUSTRIAL COMO ALTERNATIVA DE MEIO DE CULTURA PARA Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Fábio Fernando de Araújo

    2006-06-01

    Full Text Available The objective of this study was to demonstrate that industrial wastewater sludge, class II, originary of alimenticeous industry, could be used as a sole raw material to sustain growth of Bacillus subtilis. The growth of one strain of Bacillus subtilis (AP-3, antagonist of phytopathogens, was evaluated in culture media based in diluitions with differents concentrations of sludge obtained in biologicals treatments of wastewater. The sludge showed concentration of organic components in 76,5% that contributed for growth and survival of B. subtilis. The dose of sludge (20% p/v evaluated was satisfactory para growth of bacteria. Nutrient enrichement did not increased growth of B. subtilis in media with sludge. Culture media based in industrial sludge evaluated would be indicated with of big potential for use large scale.

  3. Evaluation of dermal wound healing and in vitro antioxidant efficiency of Bacillus subtilis SPB1 biosurfactant.

    Science.gov (United States)

    Zouari, Raida; Moalla-Rekik, Dorsaf; Sahnoun, Zouheir; Rebai, Tarek; Ellouze-Chaabouni, Semia; Ghribi-Aydi, Dhouha

    2016-12-01

    Lipopeptide microbial surfactants are endowed with unique surface properties as well as antimicrobial, anti-wrinkle, moisturizing and free radical scavenging activities. They were introduced safely in dermatological products, as long as they present low cytotoxicity against human cells. The present study was undertaken to evaluate the in vitro antioxidant activities and the wound healing potential of Bacillus subtilis SPB1 lipopeptide biosurfactant on excision wounds induced in experimental rats. The scavenging effect of Bacillus subtilis SPB1 biosurfactant on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical at 1mg/mL was 70.4% (IC 50 =0.55mg/mL). The biosurfactant produced by Bacillus subtilis SPB1 also showed good reducing power and significant effects in terms of the β-carotene test (IC 50 =2.26mg/mL) when compared to BHA as a reference standard. Moreover, an interesting ferrous ion chelating activity (80.32%) was found for SPB1 biosurfactant at 1mg/mL. Furthermore, the topical application of Bacillus subtilis SPB1 biosurfactant based gel on the wound site in a rat model every two days, increased significantly the percentage of wound closure over a period of 13days, when compared to the untreated and CICAFLORA™-treated groups. Wound healing effect of SPB1 biosurfactant based gel was confirmed by histological study. Biopsies treated with SPB1 lipopeptides showed wholly re-epithelialized wound with a perfect epidermal regeneration. The present study provides justification for the use of Bacillus subtilis SPB1 lipopeptide biosurfactant based gel for the treatment of normal and complicated wounds as well as skin diseases. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Single cell analysis of gene expression patterns of competence development and initiation of sporulation in Bacillus subtilis grown on chemically defined media

    NARCIS (Netherlands)

    Veening, J. -W.; Smits, W. K.; Hamoen, L. W.; Kuipers, O. P.

    Aim: Understanding the basis for the heterogeneous (or bistable) expression patterns of competence development and sporulation in Bacillus subtilis. Methods and Results: Using flow cytometric analyses of various promoter-GFP fusions, we have determined the single-cell gene expression patterns of

  5. A love affair with Bacillus subtilis.

    Science.gov (United States)

    Losick, Richard

    2015-01-30

    My career in science was launched when I was an undergraduate at Princeton University and reinforced by graduate training at the Massachusetts Institute of Technology. However, it was only after I moved to Harvard University as a junior fellow that my affections were captured by a seemingly mundane soil bacterium. What Bacillus subtilis offered was endless fascinating biological problems (alternative sigma factors, sporulation, swarming, biofilm formation, stochastic cell fate switching) embedded in a uniquely powerful genetic system. Along the way, my career in science became inseparably interwoven with teaching and mentoring, which proved to be as rewarding as the thrill of discovery. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Oscillating behavior of Clostridium difficile Min proteins in Bacillus subtilis.

    Science.gov (United States)

    Makroczyová, Jana; Jamroškovič, Ján; Krascsenitsová, Eva; Labajová, Nad'a; Barák, Imrich

    2016-06-01

    In rod-shaped bacteria, the proper placement of the division septum at the midcell relies, at least partially, on the proteins of the Min system as an inhibitor of cell division. The main principle of Min system function involves the formation of an inhibitor gradient along the cell axis; however, the establishment of this gradient differs between two well-studied gram-negative and gram-positive bacteria. While in gram-negative Escherichia coli, the Min system undergoes pole-to-pole oscillation, in gram-positive Bacillus subtilis, proper spatial inhibition is achieved by the preferential attraction of the Min proteins to the cell poles. Nevertheless, when E.coli Min proteins are inserted into B.subtilis cells, they still oscillate, which negatively affects asymmetric septation during sporulation in this organism. Interestingly, homologs of both Min systems were found to be present in various combinations in the genomes of anaerobic and endospore-forming Clostridia, including the pathogenic Clostridium difficile. Here, we have investigated the localization and behavior of C.difficile Min protein homologs and showed that MinDE proteins of C.difficile can oscillate when expressed together in B.subtilis cells. We have also investigated the effects of this oscillation on B.subtilis sporulation, and observed decreased sporulation efficiency in strains harboring the MinDE genes. Additionally, we have evaluated the effects of C.difficile Min protein expression on vegetative division in this heterologous host. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  7. A new-generation of Bacillus subtilis cell factory for further elevated scyllo-inositol production.

    Science.gov (United States)

    Tanaka, Kosei; Natsume, Ayane; Ishikawa, Shu; Takenaka, Shinji; Yoshida, Ken-Ichi

    2017-04-21

    A stereoisomer of inositol, scyllo-inositol (SI), has been regarded as a promising therapeutic agent for Alzheimer's disease. However, this compound is relatively rare, whereas another stereoisomer of inositol, myo-inositol (MI) is abundant in nature. Bacillus subtilis 168 has the ability to metabolize inositol stereoisomers, including MI and SI. Previously, we reported a B. subtilis cell factory with modified inositol metabolism that converts MI into SI in the culture medium. The strain was constructed by deleting all genes related to inositol metabolism and overexpressing key enzymes, IolG and IolW. By using this strain, 10 g/l of MI initially included in the medium was completely converted into SI within 48 h of cultivation in a rich medium containing 2% (w/v) Bacto soytone. When the initial concentration of MI was increased to 50 g/l, conversion was limited to 15.1 g/l of SI. Therefore, overexpression systems of IolT and PntAB, the main transporter of MI in B. subtilis and the membrane-integral nicotinamide nucleotide transhydrogenase in Escherichia coli respectively, were additionally introduced into the B. subtilis cell factory, but the conversion efficiency hardly improved. We systematically determined the amount of Bacto soytone necessary for ultimate conversion, which was 4% (w/v). As a result, the conversion of SI reached to 27.6 g/l within 48 h of cultivation. The B. subtilis cell factory was improved to yield a SI production rate of 27.6 g/l/48 h by simultaneous overexpression of IolT and PntAB, and by addition of 4% (w/v) Bacto soytone in the conversion medium. The concentration of SI was increased even in the stationary phase perhaps due to nutrients in the Bacto soytone that contribute to the conversion process. Thus, MI conversion to SI may be further optimized via identification and control of these unknown nutrients.

  8. From cell differentiation to cell collectives: Bacillus subtilis uses division of labor to migrate.

    Directory of Open Access Journals (Sweden)

    Jordi van Gestel

    2015-04-01

    Full Text Available The organization of cells, emerging from cell-cell interactions, can give rise to collective properties. These properties are adaptive when together cells can face environmental challenges that they separately cannot. One particular challenge that is important for microorganisms is migration. In this study, we show how flagellum-independent migration is driven by the division of labor of two cell types that appear during Bacillus subtilis sliding motility. Cell collectives organize themselves into bundles (called "van Gogh bundles" of tightly aligned cell chains that form filamentous loops at the colony edge. We show, by time-course microscopy, that these loops migrate by pushing themselves away from the colony. The formation of van Gogh bundles depends critically on the synergistic interaction of surfactin-producing and matrix-producing cells. We propose that surfactin-producing cells reduce the friction between cells and their substrate, thereby facilitating matrix-producing cells to form bundles. The folding properties of these bundles determine the rate of colony expansion. Our study illustrates how the simple organization of cells within a community can yield a strong ecological advantage. This is a key factor underlying the diverse origins of multicellularity.

  9. From cell differentiation to cell collectives: Bacillus subtilis uses division of labor to migrate.

    Science.gov (United States)

    van Gestel, Jordi; Vlamakis, Hera; Kolter, Roberto

    2015-04-01

    The organization of cells, emerging from cell-cell interactions, can give rise to collective properties. These properties are adaptive when together cells can face environmental challenges that they separately cannot. One particular challenge that is important for microorganisms is migration. In this study, we show how flagellum-independent migration is driven by the division of labor of two cell types that appear during Bacillus subtilis sliding motility. Cell collectives organize themselves into bundles (called "van Gogh bundles") of tightly aligned cell chains that form filamentous loops at the colony edge. We show, by time-course microscopy, that these loops migrate by pushing themselves away from the colony. The formation of van Gogh bundles depends critically on the synergistic interaction of surfactin-producing and matrix-producing cells. We propose that surfactin-producing cells reduce the friction between cells and their substrate, thereby facilitating matrix-producing cells to form bundles. The folding properties of these bundles determine the rate of colony expansion. Our study illustrates how the simple organization of cells within a community can yield a strong ecological advantage. This is a key factor underlying the diverse origins of multicellularity.

  10. Antimicrobial and plant growth-promoting properties of the cacao endophyte Bacillus subtilis ALB629.

    Science.gov (United States)

    Falcäo, L L; Silva-Werneck, J O; Vilarinho, B R; da Silva, J P; Pomella, A W V; Marcellino, L H

    2014-06-01

    To investigate the effects of the endophyte Bacillus subtilisALB629 on the growth of cacao seedlings at early developmental stage and to evaluate its antimicrobial properties. Germinating cacao seeds were inoculated with ALB629, and seedlings growth was evaluated 30 days later. Significant increase (P cacao-grafting procedure in the field, ALB629 increased the grafting success rate (24%), indicating its protective effect. In addition, this Bacillus secretes an antagonist compound, as shown by the antifungal activity of the cell-free culture. Bacillus subtilisALB629 promotes cacao root growth, besides promoting growth of the aerial part of cacao seedlings. It has antimicrobial properties and produces an antifungal compound. ALB629 presented beneficial characteristics for cacao cultivation, being a good biological control agent candidate. Furthermore, it is a potential source of antifungal compound with potential for commercial exploitation. © 2014 The Society for Applied Microbiology.

  11. Enhanced biomass production study on probiotic Bacillus subtilis ...

    African Journals Online (AJOL)

    user

    2010-11-22

    Nov 22, 2010 ... INTRODUCTION. Probiotic organisms find their potential use in food and ..... complex nutrients, temperature and pH on bacteriocin production by. Bacillus subtilis ... B, Gupta R (2004). Application of statistical experimental.

  12. Control of Initiation of DNA Replication in Bacillus subtilis and Escherichia coli

    Directory of Open Access Journals (Sweden)

    Katie H. Jameson

    2017-01-01

    Full Text Available Initiation of DNA Replication is tightly regulated in all cells since imbalances in chromosomal copy number are deleterious and often lethal. In bacteria such as Bacillus subtilis and Escherichia coli, at the point of cytokinesis, there must be two complete copies of the chromosome to partition into the daughter cells following division at mid-cell during vegetative growth. Under conditions of rapid growth, when the time taken to replicate the chromosome exceeds the doubling time of the cells, there will be multiple initiations per cell cycle and daughter cells will inherit chromosomes that are already undergoing replication. In contrast, cells entering the sporulation pathway in B. subtilis can do so only during a short interval in the cell cycle when there are two, and only two, chromosomes per cell, one destined for the spore and one for the mother cell. Here, we briefly describe the overall process of DNA replication in bacteria before reviewing initiation of DNA replication in detail. The review covers DnaA-directed assembly of the replisome at oriC and the multitude of mechanisms of regulation of initiation, with a focus on the similarities and differences between E. coli and B. subtilis.

  13. Control of Initiation of DNA Replication in Bacillus subtilis and Escherichia coli

    Science.gov (United States)

    Jameson, Katie H.; Wilkinson, Anthony J.

    2017-01-01

    Initiation of DNA Replication is tightly regulated in all cells since imbalances in chromosomal copy number are deleterious and often lethal. In bacteria such as Bacillus subtilis and Escherichia coli, at the point of cytokinesis, there must be two complete copies of the chromosome to partition into the daughter cells following division at mid-cell during vegetative growth. Under conditions of rapid growth, when the time taken to replicate the chromosome exceeds the doubling time of the cells, there will be multiple initiations per cell cycle and daughter cells will inherit chromosomes that are already undergoing replication. In contrast, cells entering the sporulation pathway in B. subtilis can do so only during a short interval in the cell cycle when there are two, and only two, chromosomes per cell, one destined for the spore and one for the mother cell. Here, we briefly describe the overall process of DNA replication in bacteria before reviewing initiation of DNA replication in detail. The review covers DnaA-directed assembly of the replisome at oriC and the multitude of mechanisms of regulation of initiation, with a focus on the similarities and differences between E. coli and B. subtilis. PMID:28075389

  14. Production of nattokinase by high cell density fed-batch culture of Bacillus subtilis.

    Science.gov (United States)

    Kwon, Eun-Yeong; Kim, Kyung Mi; Kim, Mi Kyoung; Lee, In Young; Kim, Beom Soo

    2011-09-01

    Bacillus subtilis was cultivated to high cell density for nattokinase production by pH-stat fed-batch culture. A concentrated mixture solution of glucose and peptone was automatically added by acid-supplying pump when culture pH rose above high limit. Effect of the ratio of glucose to peptone in feeding solution was investigated on cell growth and nattokinase production by changing the ratio from 0.2 to 5 g glucose/g peptone. The highest cell concentration was 77 g/L when the ratio was 0.2 g glucose/g peptone. Cell concentration decreased with increasing the ratio of glucose to peptone in feeding solution, while the optimum condition existed for nattokinase production. The highest nattokinase activity was 14,500 unit/mL at a ratio of 0.33 g glucose/g peptone, which was 4.3 times higher than that in batch culture.

  15. FORMALDEHYDE GAS INACTIVATION OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACE MATERIALS.

    Science.gov (United States)

    Research evaluated the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface material using formaldehyde gas. Spores were dried on seven types of indoor surfaces and exposed to 1100 ppm formaldehyde gas for 10 hr. Fo...

  16. Proteins that interact with GTP during sporulation of Bacillus subtilis

    International Nuclear Information System (INIS)

    Mitchell, C.; Vary, J.C.

    1989-01-01

    During sporulation of Bacillus subtilis, several proteins were shown to interact with GTP in specific ways. UV light was used to cross-link [α- 32 P]GTP to proteins in cell extracts at different stages of growth. After electrophoresis, 11 bands of radioactivity were found in vegetative cells, 4 more appeared during sporulation, and only 9 remained in mature spores. Based on the labeling pattern with or without UV light to cross-link either [α- 32 P]GTP or [γ- 32 P]GTP, 11 bands of radioactivity were apparent guanine nucleotide-binding proteins, and 5 bands appeared to be phosphorylated and/or guanylated. Similar results were found with Bacillus megaterium. Assuming the GTP might be a type of signal for sporulation, it could interact with and regulate proteins by at least three mechanisms

  17. Logarithmic sensing in Bacillus subtilis aerotaxis.

    Science.gov (United States)

    Menolascina, Filippo; Rusconi, Roberto; Fernandez, Vicente I; Smriga, Steven; Aminzare, Zahra; Sontag, Eduardo D; Stocker, Roman

    2017-01-01

    Aerotaxis, the directed migration along oxygen gradients, allows many microorganisms to locate favorable oxygen concentrations. Despite oxygen's fundamental role for life, even key aspects of aerotaxis remain poorly understood. In Bacillus subtilis, for example, there is conflicting evidence of whether migration occurs to the maximal oxygen concentration available or to an optimal intermediate one, and how aerotaxis can be maintained over a broad range of conditions. Using precisely controlled oxygen gradients in a microfluidic device, spanning the full spectrum of conditions from quasi-anoxic to oxic (60 n mol/l-1 m mol/l), we resolved B. subtilis' 'oxygen preference conundrum' by demonstrating consistent migration towards maximum oxygen concentrations ('monotonic aerotaxis'). Surprisingly, the strength of aerotaxis was largely unchanged over three decades in oxygen concentration (131 n mol/l-196 μ mol/l). We discovered that in this range B. subtilis responds to the logarithm of the oxygen concentration gradient, a rescaling strategy called 'log-sensing' that affords organisms high sensitivity over a wide range of conditions. In these experiments, high-throughput single-cell imaging yielded the best signal-to-noise ratio of any microbial taxis study to date, enabling the robust identification of the first mathematical model for aerotaxis among a broad class of alternative models. The model passed the stringent test of predicting the transient aerotactic response despite being developed on steady-state data, and quantitatively captures both monotonic aerotaxis and log-sensing. Taken together, these results shed new light on the oxygen-seeking capabilities of B. subtilis and provide a blueprint for the quantitative investigation of the many other forms of microbial taxis.

  18. Effect of Bacillus subtilis microecological probiotics on livestock breeding

    Directory of Open Access Journals (Sweden)

    Xiaohui ZHOU

    2016-10-01

    Full Text Available As a kind of green and healthy microecologics, Bacillus subtilis could balance the intestinal flora, promote the nutrient absorption and enhance immunity. Microecologics is one of the ideal antibiotics alternative, which are effective in preventing and treating animal disease and promoting the growth and development of the animal. Because of its advantages, such as no toxin side effect and no residual or drug-resistant, microecologics has been used in livestock breeding widely. Here, we concluded the characteristics and mechanism of Bacillus subtilis,elaborated application of microecologics on livestock breeding, discussed its problems and suggested its solved methods. In the end, the future of microecologics was expected in order to provide a reference for subsequent livestock breeding.

  19. MUTATION ON Bacillus subtilis BAC4 USING ACRIDINE ORANGE AS AN EFFORT FOR INCREASING ANTIBIOTIC PRODUCTION

    Directory of Open Access Journals (Sweden)

    Supartono Supartono

    2010-06-01

    Full Text Available The efforts to get a new antibiotic require to be done continuously, because infection diseases still become the main health problems in Indonesia. A new local strain of Bacillus subtilis BAC4 has been known producing an antibiotic that inhibites Serratia marcescens ATCC 27117 growth. Nevertheless, the optimum conditions have not been studied seriously. The objective of this research was to conduct mutation on B. subtilis BAC4 in order to obtain a mutant cell that overproduct in producing antibiotic. The mutation process was performed by using acridine orange of 1 g.L-1 randomly at various volumes. The production of antibiotic was conducted using batch fermentation and antibiotic assay was performed with agar absorption method using S.  marcescens ATCC 27117 as bacteria assay. Research result provided a B. subtilis M10 mutant with overproduction of antibiotic. Characterization of B. subtilis M10 mutant showed that the mutant cell has size of (0.5-1.0 µm x (1.85-2.5 µm; spore has the form of ellipse with thick wavy wall, positive reaction for catalase, and forming acid from glucose and xylose.   Keywords: mutant, Bacillus, acridin, and antibiotics

  20. [A study of the mechanisms of probiotic effect of Bacillus subtilis 8130 strain].

    Science.gov (United States)

    Ushakova, N A; Kotenkova, E V; Kozlova, A A; Nifatov, A V

    2006-01-01

    The wild-type Bacillus subtilis strain 8130 secreted metabolites that stimulated two to three times the growth of the test cultures of lactic acid bacteria. It exhibited endoglucanase activity that depended on the composition of nutrient medium. The addition of the product of two-stage culturing of B. subtilis 8130 to the diet of pigs (0.2% of fodder weight) made it possible to increase the daily weight gain by 19% and decrease the consumption of mixed fodder by 10%. Digestion of protein, fat, and other organic compounds increased by 3-4% and cellulose by 12%. It was shown that B. subtilis 8130 is a probiotic with targeted action stimulating digestion (primarily the digestion of cellulose). The enrichment of a dry-beer pellet with the product of solid-phase fermentation by bacillus (1 x 10(8) cells per gram dry pellet) allowed the pellet to entered into the diet of a calf (6% of the weight of fodder with probiotic), causing additional weight gain by 12% and a 10% economy of fodder consumption.

  1. Extracellular signals that define distinct and coexisting cell fates in Bacillus subtilis.

    Science.gov (United States)

    López, Daniel; Kolter, Roberto

    2010-03-01

    The soil-dwelling bacterium Bacillus subtilis differentiates into distinct subpopulations of specialized cells that coexist within highly structured communities. The coordination and interplay between these cell types requires extensive extracellular communication driven mostly by sensing self-generated secreted signals. These extracellular signals activate a set of sensor kinases, which respond by phosphorylating three major regulatory proteins, Spo0A, DegU and ComA. Each phosphorylated regulator triggers a specific differentiation program while at the same time repressing other differentiation programs. This allows a cell to differentiate in response to a specific cue, even in the presence of other, possibly conflicting, signals. The sensor kinases involved respond to an eclectic group of extracellular signals, such as quorum-sensing molecules, natural products, temperature, pH or scarcity of nutrients. This article reviews the cascades of cell differentiation pathways that are triggered by sensing extracellular signals. We also present a tentative developmental model in which the diverse cell types sequentially differentiate to achieve the proper development of the bacterial community.

  2. Regulation of proteolysis in Bacillus subtilis: effects of calcium ions and energy poisons

    International Nuclear Information System (INIS)

    O'Hara, M.B.; Hageman, J.H.

    1987-01-01

    Bacillus subtilis cells carry out extensive intracellular proteolysis (k = 0.15-0.23/h) during sporulation. Protein degradation was measured in cells growing in chemically defined sporulation medium, by following the release of [ 14 C]-leucine from the cells during spore formation. Sodium arsenate, carbonyl cyanide 3-chlorophenyl hydrazone, and sodium azide strongly inhibited proteolysis without altering cell viability greatly, which suggested that bulk proteolysis in B. subtilis is energy dependent. The authors have tested the hypothesis that the energy requirement may be for pumping in Ca 2+ . When [Ca 2+ ] was -6 , rates of proteolysis in sporulating cells were reduced 4-8 times that in cells in calcium ion- sufficient medium. Further, omission of Ca 2+ from the medium prevented the increase in the activity of the major intracellular serine protease. However, the presence of energy poisons in the media at levels which inhibited proteolysis, had no detectable effect on the uptake of by cells [ 45 Ca]. The authors concluded that B. subtilis cells required both metabolic energy and calcium ions for normal proteolysis

  3. Carbohydrate metabolism in Bacillus subtilis

    International Nuclear Information System (INIS)

    Riedel, K.

    1980-01-01

    The glucose metabolism via the glycolytic pathway as well as via the oxidative and inoxidative hexose monophosphate pathways in Bacillus subtilis was studied applying 1- 14 C- and 6- 14 C-glucose, respectively, and determining labelled CO 2 and RNA. A method for calculating the catabolic pathways was developed. In nonproliferating cultures glucose is catabolized to 62% via the glycolytic pathway, to 20% via the oxidative, and to 18% via the inoxidative pathway

  4. Bacterial determinants of the social behavior of Bacillus subtilis.

    Science.gov (United States)

    Romero, Diego

    2013-09-01

    Bacteria utilize sophisticated cellular machinery to sense environmental changes and coordinate the most appropriate response. Fine sensors located on cell surfaces recognize a myriad of triggers and initiate genetic cascades leading to activation or repression of certain groups of genes. Structural elements such as pilli, exopolysaccharides and flagella are also exposed at the cell surface and contribute to modulating the intimate interaction with surfaces and host cells. This review will cover the latest advances in our understanding of the biology and functionality of these bacterial determinants within the context of biofilm formation of Bacillus subtilis. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  5. High Pressure Germination of Bacillus subtilis Spores with Alterations in Levels and Types of Germination Proteins

    Science.gov (United States)

    2014-01-01

    1ITLE AND SUBTITLE 5a CONTRACTNUMBER High pressure germination of Bacillus subtilis spores with W911NF-09-l-0286 alterations in levels and types of...A moderate high pressure (mHP) of 150 megaPascals (MPa) triggers germination of Bacillus subtilis spores via germinant receptors (GRs), while...germination by a very high pressure (vHP) of550 MPa is GR-independent. The mHP and vHP germination of Bacillus subtilis spores with different levels ofGRs

  6. Vectorial signalling mechanism required for cell-cell communication during sporulation in Bacillus subtilis.

    Science.gov (United States)

    Diez, Veronica; Schujman, Gustavo E; Gueiros-Filho, Frederico J; de Mendoza, Diego

    2012-01-01

    Spore formation in Bacillus subtilis takes place in a sporangium consisting of two chambers, the forespore and the mother cell, which are linked by pathways of cell-cell communication. One pathway, which couples the proteolytic activation of the mother cell transcription factor σ(E) to the action of a forespore synthesized signal molecule, SpoIIR, has remained enigmatic. Signalling by SpoIIR requires the protein to be exported to the intermembrane space between forespore and mother cell, where it will interact with and activate the integral membrane protease SpoIIGA. Here we show that SpoIIR signal activity as well as the cleavage of its N-terminal extension is strictly dependent on the prespore fatty acid biosynthetic machinery. We also report that a conserved threonine residue (T27) in SpoIIR is required for processing, suggesting that signalling of SpoIIR is dependent on fatty acid synthesis probably because of acylation of T27. In addition, SpoIIR localization in the forespore septal membrane depends on the presence of SpoIIGA. The orchestration of σ(E) activation in the intercellular space by an acylated signal protein provides a new paradigm to ensure local transmission of a weak signal across the bilayer to control cell-cell communication during development. © 2011 Blackwell Publishing Ltd.

  7. Effects of Bacillus subtilis natto and Different Components in Culture on Rumen Fermentation and Rumen Functional Bacteria In Vitro.

    Science.gov (United States)

    Sun, Peng; Li, Jinan; Bu, Dengpan; Nan, Xuemei; Du, Hong

    2016-05-01

    This study was to investigate the effects of live or autoclaved Bacillus subtilis natto, their fermented products and media on rumen fermentation and rumen functional bacteria in vitro. Rumen fluid from three multiparous lactating Holstein cows was combined and transferred into serum bottles after diluted. Fifteen serum bottles were divided into five treatments, which were designed as following: CTR (the fermentation of 0.5 g TMR and ruminal fluids from dairy cows), LBS (CTR plus a minimum of 10(11) cfu live Bacillus subtilis natto), ABS (CTR plus a minimum of 10(11) cfu autoclaved Bacillus subtilis natto), BSC (CTR plus 1 ml Bacillus subtilis natto fermentation products without bacteria), and BSM (CTR plus 1 ml liquid fermentation medium). When separated from the culture, live Bacillus subtilis natto individually increased the concentrations of ammonia-N (P Bacillus subtilis natto has the similar function with the live bacteria except for the ratio of acetate and propionate. Except B. fibrisolvens, live or autoclaved Bacillus subtilis natto did not influence or decreased the 16S rRNA gene quantification of the detected bacteria. BSC and BSM altered the relative expression of certain functional bacteria in the rumen. These results indicated that it was Bacillus subtilis natto thalli that played the important role in promoting rumen fermentation when applied as a probiotic in dairy ration.

  8. Complete nucleotide sequence of Bacillus subtilis (natto) bacteriophage PM1, a phage associated with disruption of food production.

    Science.gov (United States)

    Umene, Kenichi; Shiraishi, Atsushi

    2013-06-01

    "Natto", considered a traditional food, is made by fermenting boiled soybeans with Bacillus subtilis (natto), which is a natto-producing strain related to B. subtilis. The production of natto is disrupted by phage infections of B. subtilis (natto); hence, it is necessary to control phage infections. PM1, a phage of B. subtilis (natto), was isolated during interrupted natto production in a factory. In a previous study, PM1 was classified morphologically into the family Siphoviridae, and its genome, comprising approximately 50 kbp of linear double-stranded DNA, was assumed to be circularly permuted. In the present study, the complete nucleotide sequence of the PM1 genomic DNA of 50,861 bp (41.3 %G+C) was determined, and 86 open reading frames (ORFs) were deduced. Forty-one ORFs of PM1 shared similarities with proteins deduced from the genome of phages reported so far. Twenty-three ORFs of PM1 were associated with functions related to the phage multiplication process of gene control, DNA replication/modification, DNA packaging, morphogenesis, and cell lysis. Bacillus subtilis (natto) produces a capsular polypeptide of glutamate with a γ-linkage (called poly-γ-glutamate), which appears to serve as a physical barrier to phage adsorption. One ORF of PM1 had similarity with a poly-γ-glutamate hydrolase, which is assumed to degrade the capsular barrier to allow phage progenies to infect encapsulated host cells. The genome analysis of PM1 revealed the characteristics of the phage that are consistent as Bacillus subtilis (natto)-infecting phage.

  9. Transcriptome analysis documents induced competence of Bacillus subtilis during nitrogen limiting conditions

    DEFF Research Database (Denmark)

    Jarmer, Hanne Østergaard; Berka, R.; Knudsen, Steen

    2002-01-01

    DNA microarrays were used to analyze the changes in gene expression in Bacillus subtilis strain 168 when nitrogen limiting (glutamate) and nitrogen excess (ammonium plus glutamate) growth conditions were compared. Among more than 100 genes that were significantly induced during nitrogen starvation...... we detected the comG, comF, comE, nin-nucA and comK transcription units together with recA. DNA was added to B. subtilis grown in minimal medium with glutamate as the sole nitrogen source and it was demonstrated that the cells were competent. Based on these observations we propose a simplification...

  10. Foam separation of Pseudomonas fluorescens and Bacillus subtilis var. niger.

    Science.gov (United States)

    Grieves, R B; Wang, S L

    1967-01-01

    An experimental investigation established the effect of the presence of inorganic salts on the foam separation of Pseudomonas fluorescens and of Bacillus subtilis var. niger (B. globigii) from aqueous suspension by use of a cationic surfactant. For P. fluorescens, 5.0 mueq/ml of NaCl, KCl, Na(2)SO(4), K(2)SO(4), CaCl(2), CaSO(4), MgCl(2), or MgSO(4) produced increases in the cell concentration in the residual suspension (not carried into the foam) from 2.9 x 10(5) up to 1.6 x 10(6) to 2.8 x 10(7) cells per milliliter (initial suspensions contain from 3.3 x 10(7) to 4.8 x 10(7) cells per milliliter). The exceptional influence of magnesium was overcome by bringing the cells into contact first with the surfactant and then the salt. For B. subtilis, the presence of 5.0 mueq/ml of any of the eight salts increased the residual cell concentration by one order of magnitude from 1.2 x 10(4) to about 4.0 x 10(5) cells per milliliter. This occurred regardless of the sequence of contact as long as the surfactant contact period was sufficient. The presence of salts increased collapsed foam volumes with P. fluorescens and decreased collapsed foam volumes with B. subtilis.

  11. The essential YycFG two-component system controls cell wall metabolism in Bacillus subtilis

    DEFF Research Database (Denmark)

    Bisicchia, Paola; Noone, David; Lioliou, Efthimia

    2007-01-01

    Adaptation of bacteria to the prevailing environmental and nutritional conditions is often mediated by two-component signal transduction systems (TCS). The Bacillus subtilis YycFG TCS has attracted special attention as it is essential for viability and its regulon is poorly defined. Here we show...

  12. Digestibility and fecal characteristics of dogs fed with Bacillus subtilis in diet

    OpenAIRE

    Félix,Ananda Portella; Netto,Marina Volanski Teixeira; Murakami,Fabiane Yukiko; Brito,Cleusa Bernardete Marcon de; Oliveira,Simone Gisele de; Maiorka,Alex

    2010-01-01

    Considering the benefice demonstrated by the modulating action of probiotics on the host intestinal microbiota, this study aimed to evaluate diet digestibility and fecal characteristics of dogs fed with diets supplemented with Bacillus subtilis (C-3102). Twelve young Beagle dogs were distributed in a completely randomized experimental design consisting of two treatments: diet with no addition or with the addition of 0.01% Bacillus subtilis (C-3102). Dogs passed through 25 days of adaptation t...

  13. Analysis of the Effects of a gerP Mutation on the Germination of Spores of Bacillus subtilis

    Science.gov (United States)

    2012-11-01

    REPORT Analysis of the effects of a gerP mutation on the germination of spores of Bacillus subtilis 14. ABSTRACT 16. SECURITY CLASSIFICATION OF... Bacillus subtilis spores with a gerP mutation triggered spore germination via nutrient germinant receptors (GRs) slowly, although this defect was...gerP, Bacillus subtilis , dipicolinic acid Xuan Y. Butzin, Anthony J. Troiano, William H. Coleman, Keren K. Griffiths, Christopher J. Doona, Florence E

  14. Study of the radiation effect of "9"9Mo/"9"9"mTc generator on Bacillus subtilis and Bacillus pumilus species

    International Nuclear Information System (INIS)

    Fukumori, Neuza T.O.; Endo, Erica M.M.; Felgueiras, Carlos F.; Matsuda, Margareth M.N.; Osso Junior, João A.

    2016-01-01

    In this work, molybdenum-99 loaded columns were challenged with Bacillus subtilis vegetative cells and Bacillus pumilus spores inside and outside the alumina column, and microbial recovery and radiation effect were assessed. Alumina was a barrier for the passage of microorganisms regardless the species, whilst spores were more retained than vegetative cells with a lower microbial recovery, without significant differences between 9.25 and 74 GBq generators. Bacillus pumilus biological indicator showed lower recoveries, suggesting a radiation inactivating effect on microorganisms. - Highlights: • Microorganisms in radionuclide generator may impair the quality of the product. • Killing of Bacillus pumilus was not complete even after 20 days of exposition. • Alumina column was a physical barrier for the microbial recovery. • An alternative biological indicator based on B. pumilus spores is proposed.

  15. Advances and prospects of Bacillus subtilis cellular factories: From rational design to industrial applications.

    Science.gov (United States)

    Gu, Yang; Xu, Xianhao; Wu, Yaokang; Niu, Tengfei; Liu, Yanfeng; Li, Jianghua; Du, Guocheng; Liu, Long

    2018-05-15

    Bacillus subtilis is the most characterized gram-positive bacterium that has significant attributes, such as growing well on cheap carbon sources, possessing clear inherited backgrounds, having mature genetic manipulation methods, and exhibiting robustness in large-scale fermentations. Till date, B. subtilis has been identified as attractive hosts for the production of recombinant proteins and chemicals. By applying various systems and synthetic biology tools, the productivity features of B. subtilis can be thoroughly analyzed and further optimized via metabolic engineering. In the present review, we discussed why B. subtilis is the primary organisms used for metabolic engineering and industrial applications. Additionally, we summarized the recent advances in systems and synthetic biology, engineering strategies for improving cellular performances, and metabolic engineering applications of B. subtilis. In particular, we proposed emerging opportunities and essential strategies to enable the successful development of B. subtilis as microbial cell factories. Copyright © 2018. Published by Elsevier Inc.

  16. Production of alkaline proteases by alkalophilic Bacillus subtilis ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2016-11-23

    Nov 23, 2016 ... Key words: Production, alkaline protease, Bacillus subtilis, animal wastes, enzyme activity. ... Generally, alkaline proteases are produced using submerged fermentation .... biopolymer concentrations were reported to have an influence ... adding nitrogenous compounds stimulate microorganism growth and ...

  17. Higher antibiotic yielding mutants of bacillus subtilis by gamma radiation

    International Nuclear Information System (INIS)

    Ahmad, M.S.; Shaukat, G.A.; Malik, M.A.

    1987-01-01

    When Bacillus Subtilis AECL69 was grown in malt extract-pepetone-molasses-sugar (MPMS) medium, it could produce antibiotic substance(s) with antibacterial and antifungal properties in the culture fluid. The bacterial cells grown in MPMS medium were washed and suspended into distilled water and irradiated with gamma rays in Gammacell 220 at different doses. Higher antibiotic yielding isolates (plus mutants) were obtained from cell pollutions irradiated at 15 Kr. These gamma rays-induced plus mutants showed simultaneous higher production of antibacterial as well as antifungal activity. (author)

  18. Engineering of Bacillus subtilis 168 for increased nisin resistance

    DEFF Research Database (Denmark)

    Hansen, Mette; Wangari, Romilda; Hansen, Egon Bech

    2009-01-01

    . Bacillus subtilis had been suggested as a potential host for the biosynthesis of nisin but was discarded due to its sensitivity to the lethal action of nisin. In this study, we have reevaluated the potential of B. subtilis as a host organism for the heterologous production of nisin. We applied...... transcriptome and proteome analyses of B. subtilis and identified eight genes upregulated in the presence of nisin. We demonstrated that the overexpression of some of these genes boosts the natural defenses of B. subtilis, which allows it to sustain higher levels of nisin in the medium. We also attempted...... to overcome the nisin sensitivity of B. subtilis by introducing the nisin resistance genes nisFEG and nisI from L. lactis under the control of a synthetic promoter library....

  19. Bacillus subtilis as a platform for molecular characterisation of regulatory mechanisms of Enterococcus faecalis resistance against cell wall antibiotics.

    Science.gov (United States)

    Fang, Chong; Stiegeler, Emanuel; Cook, Gregory M; Mascher, Thorsten; Gebhard, Susanne

    2014-01-01

    To combat antibiotic resistance of Enterococcus faecalis, a better understanding of the molecular mechanisms, particularly of antibiotic detection, signal transduction and gene regulation is needed. Because molecular studies in this bacterium can be challenging, we aimed at exploiting the genetically highly tractable Gram-positive model organism Bacillus subtilis as a heterologous host. Two fundamentally different regulators of E. faecalis resistance against cell wall antibiotics, the bacitracin sensor BcrR and the vancomycin-sensing two-component system VanSB-VanRB, were produced in B. subtilis and their functions were monitored using target promoters fused to reporter genes (lacZ and luxABCDE). The bacitracin resistance system BcrR-BcrAB of E. faecalis was fully functional in B. subtilis, both regarding regulation of bcrAB expression and resistance mediated by the transporter BcrAB. Removal of intrinsic bacitracin resistance of B. subtilis increased the sensitivity of the system. The lacZ and luxABCDE reporters were found to both offer sensitive detection of promoter induction on solid media, which is useful for screening of large mutant libraries. The VanSB-VanRB system displayed a gradual dose-response behaviour to vancomycin, but only when produced at low levels in the cell. Taken together, our data show that B. subtilis is a well-suited host for the molecular characterization of regulatory systems controlling resistance against cell wall active compounds in E. faecalis. Importantly, B. subtilis facilitates the careful adjustment of expression levels and genetic background required for full functionality of the introduced regulators.

  20. Bacillus subtilis as a Platform for Molecular Characterisation of Regulatory Mechanisms of Enterococcus faecalis Resistance against Cell Wall Antibiotics

    OpenAIRE

    Fang, Chong; Stiegeler, Emanuel; Cook, Gregory M.; Mascher, Thorsten; Gebhard, Susanne

    2014-01-01

    To combat antibiotic resistance of Enterococcus faecalis, a better understanding of the molecular mechanisms, particularly of antibiotic detection, signal transduction and gene regulation is needed. Because molecular studies in this bacterium can be challenging, we aimed at exploiting the genetically highly tractable Gram-positive model organism Bacillus subtilis as a heterologous host. Two fundamentally different regulators of E. faecalis resistance against cell wall antibiotics, the bacitra...

  1. Galactose metabolism plays a crucial role in biofilm formation by Bacillus subtilis.

    Science.gov (United States)

    Chai, Yunrong; Beauregard, Pascale B; Vlamakis, Hera; Losick, Richard; Kolter, Roberto

    2012-01-01

    Galactose is a common monosaccharide that can be utilized by all living organisms via the activities of three main enzymes that make up the Leloir pathway: GalK, GalT, and GalE. In Bacillus subtilis, the absence of GalE causes sensitivity to exogenous galactose, leading to rapid cell lysis. This effect can be attributed to the accumulation of toxic galactose metabolites, since the galE mutant is blocked in the final step of galactose catabolism. In a screen for suppressor mutants restoring viability to a galE null mutant in the presence of galactose, we identified mutations in sinR, which is the major biofilm repressor gene. These mutations caused an increase in the production of the exopolysaccharide (EPS) component of the biofilm matrix. We propose that UDP-galactose is the toxic galactose metabolite and that it is used in the synthesis of EPS. Thus, EPS production can function as a shunt mechanism for this toxic molecule. Additionally, we demonstrated that galactose metabolism genes play an essential role in B. subtilis biofilm formation and that the expressions of both the gal and eps genes are interrelated. Finally, we propose that B. subtilis and other members of the Bacillus genus may have evolved to utilize naturally occurring polymers of galactose, such as galactan, as carbon sources. Bacteria switch from unicellular to multicellular states by producing extracellular matrices that contain exopolysaccharides. In such aggregates, known as biofilms, bacteria are more resistant to antibiotics. This makes biofilms a serious problem in clinical settings. The resilience of biofilms makes them very useful in industrial settings. Thus, understanding the production of biofilm matrices is an important problem in microbiology. In studying the synthesis of the biofilm matrix of Bacillus subtilis, we provide further understanding of a long-standing microbiological observation that certain mutants defective in the utilization of galactose became sensitive to it. In this

  2. The cell envelope stress response of Bacillus subtilis: from static signaling devices to dynamic regulatory network.

    Science.gov (United States)

    Radeck, Jara; Fritz, Georg; Mascher, Thorsten

    2017-02-01

    The cell envelope stress response (CESR) encompasses all regulatory events that enable a cell to protect the integrity of its envelope, an essential structure of any bacterial cell. The underlying signaling network is particularly well understood in the Gram-positive model organism Bacillus subtilis. It consists of a number of two-component systems (2CS) and extracytoplasmic function σ factors that together regulate the production of both specific resistance determinants and general mechanisms to protect the envelope against antimicrobial peptides targeting the biogenesis of the cell wall. Here, we summarize the current picture of the B. subtilis CESR network, from the initial identification of the corresponding signaling devices to unraveling their interdependence and the underlying regulatory hierarchy within the network. In the course of detailed mechanistic studies, a number of novel signaling features could be described for the 2CSs involved in mediating CESR. This includes a novel class of so-called intramembrane-sensing histidine kinases (IM-HKs), which-instead of acting as stress sensors themselves-are activated via interprotein signal transfer. Some of these IM-HKs are involved in sensing the flux of antibiotic resistance transporters, a unique mechanism of responding to extracellular antibiotic challenge.

  3. The comER Gene Plays an Important Role in Biofilm Formation and Sporulation in both Bacillus subtilis and Bacillus cereus.

    Science.gov (United States)

    Yan, Fang; Yu, Yiyang; Wang, Luyao; Luo, Yuming; Guo, Jian-Hua; Chai, Yunrong

    2016-01-01

    Bacteria adopt alternative cell fates during development. In Bacillus subtilis, the transition from planktonic growth to biofilm formation and sporulation is controlled by a complex regulatory circuit, in which the most important event is activation of Spo0A, a transcription factor and a master regulator for genes involved in both biofilm formation and sporulation. In B. cereus, the regulatory pathway controlling biofilm formation and cell differentiation is much less clear. In this study, we show that a novel gene, comER, plays a significant role in biofilm formation as well as sporulation in both B. subtilis and B. cereus. Mutations in the comER gene result in defects in biofilm formation and a delay in spore formation in the two Bacillus species. Our evidence supports the idea that comER may be part of the regulatory circuit that controls Spo0A activation. comER likely acts upstream of sda, a gene encoding a small checkpoint protein for both sporulation and biofilm formation, by blocking the phosphor-relay and thereby Spo0A activation. In summary, our studies outlined a conserved, positive role for comER, a gene whose function was previously uncharacterized, in the regulation of biofilm formation and sporulation in the two Bacillus species.

  4. The comER Gene Plays an Important Role in Biofilm Formation and Sporulation in both Bacillus subtilis and Bacillus cereus

    Science.gov (United States)

    Yan, Fang; Yu, Yiyang; Wang, Luyao; Luo, Yuming; Guo, Jian-hua; Chai, Yunrong

    2016-01-01

    Bacteria adopt alternative cell fates during development. In Bacillus subtilis, the transition from planktonic growth to biofilm formation and sporulation is controlled by a complex regulatory circuit, in which the most important event is activation of Spo0A, a transcription factor and a master regulator for genes involved in both biofilm formation and sporulation. In B. cereus, the regulatory pathway controlling biofilm formation and cell differentiation is much less clear. In this study, we show that a novel gene, comER, plays a significant role in biofilm formation as well as sporulation in both B. subtilis and B. cereus. Mutations in the comER gene result in defects in biofilm formation and a delay in spore formation in the two Bacillus species. Our evidence supports the idea that comER may be part of the regulatory circuit that controls Spo0A activation. comER likely acts upstream of sda, a gene encoding a small checkpoint protein for both sporulation and biofilm formation, by blocking the phosphor-relay and thereby Spo0A activation. In summary, our studies outlined a conserved, positive role for comER, a gene whose function was previously uncharacterized, in the regulation of biofilm formation and sporulation in the two Bacillus species. PMID:27446060

  5. A microbial transformation using Bacillus subtilis B7-S to produce natural vanillin from ferulic acid.

    Science.gov (United States)

    Chen, Peng; Yan, Lei; Wu, Zhengrong; Li, Suyue; Bai, Zhongtian; Yan, Xiaojuan; Wang, Ningbo; Liang, Ning; Li, Hongyu

    2016-02-04

    Bacillus subtilis strain B7-S screened from18 strains is an aerobic, endospore-forming, model organism of Gram-positive bacteria which is capable to form vanillin during ferulic acid bioconversion. The bioconversion of ferulic acid to vanillin by Bacillus subtilis B7-S (B. subtilis B7-S) was investigated. Based on our results, the optimum bioconversion conditions for the production of vanillin by B. subtilis B7-S can be summarized as follows: temperature 35 °C; initial pH 9.0; inoculum volume 5%; ferulic acid concentration 0.6 g/L; volume of culture medium 20%; and shaking speed 200 r/min. Under these conditions, several repeated small-scale batch experiments showed that the maximum conversion efficiency was 63.30% after 3 h of bioconversion. The vanillin products were confirmed by spectral data achieved from UV-vis, inductively coupled plasma atomic emission spectroscope (ICP-AES) and Fourier transform infrared spectrometer (FT-IR) spectra. Scanning electron microscopy (SEM) and transmission electron spectroscopy (TEM) results confirmed that the cell surface of B. subtilis plays a role in the induction of ferulic acid tolerance. These results demonstrate that B. subtilis B7-S has the potential for use in vanillin production through bioconversion of ferulic acid.

  6. Sticking together: building a biofilm the Bacillus subtilis way.

    Science.gov (United States)

    Vlamakis, Hera; Chai, Yunrong; Beauregard, Pascale; Losick, Richard; Kolter, Roberto

    2013-03-01

    Biofilms are ubiquitous communities of tightly associated bacteria encased in an extracellular matrix. Bacillus subtilis has long served as a robust model organism to examine the molecular mechanisms of biofilm formation, and a number of studies have revealed that this process is regulated by several integrated pathways. In this Review, we focus on the molecular mechanisms that control B. subtilis biofilm assembly, and then briefly summarize the current state of knowledge regarding biofilm disassembly. We also discuss recent progress that has expanded our understanding of B. subtilis biofilm formation on plant roots, which are a natural habitat for this soil bacterium.

  7. Homogeneity and heterogeneity in amylase production by Bacillus subtilis under different growth conditions.

    Science.gov (United States)

    Ploss, Tina N; Reilman, Ewoud; Monteferrante, Carmine G; Denham, Emma L; Piersma, Sjouke; Lingner, Anja; Vehmaanperä, Jari; Lorenz, Patrick; van Dijl, Jan Maarten

    2016-03-29

    Bacillus subtilis is an important cell factory for the biotechnological industry due to its ability to secrete commercially relevant proteins in large amounts directly into the growth medium. However, hyper-secretion of proteins, such as α-amylases, leads to induction of the secretion stress-responsive CssR-CssS regulatory system, resulting in up-regulation of the HtrA and HtrB proteases. These proteases degrade misfolded proteins secreted via the Sec pathway, resulting in a loss of product. The aim of this study was to investigate the secretion stress response in B. subtilis 168 cells overproducing the industrially relevant α-amylase AmyM from Geobacillus stearothermophilus, which was expressed from the strong promoter P(amyQ)-M. Here we show that activity of the htrB promoter as induced by overproduction of AmyM was "noisy", which is indicative for heterogeneous activation of the secretion stress pathway. Plasmids were constructed to allow real-time analysis of P(amyQ)-M promoter activity and AmyM production by, respectively, transcriptional and out-of-frame translationally coupled fusions with gfpmut3. Our results show the emergence of distinct sub-populations of high- and low-level AmyM-producing cells, reflecting heterogeneity in the activity of P(amyQ)-M. This most likely explains the heterogeneous secretion stress response. Importantly, more homogenous cell populations with regard to P(amyQ)-M activity were observed for the B. subtilis mutant strain 168degUhy32, and the wild-type strain 168 under optimized growth conditions. Expression heterogeneity of secretory proteins in B. subtilis can be suppressed by degU mutation and optimized growth conditions. Further, the out-of-frame translational fusion of a gene for a secreted target protein and gfp represents a versatile tool for real-time monitoring of protein production and opens novel avenues for Bacillus production strain improvement.

  8. Increasing plasmid transformation efficiency of natural spizizen method in Bacillus Subtilis by a cell permeable peptide

    Directory of Open Access Journals (Sweden)

    Mehrdad Moosazadeh Moghaddam

    2013-01-01

    Full Text Available Introduction: Some of bacterial species are able to uptake DNA molecule from environment, the yield of this process depends on some conditions such as plasmid size and host type. In the case of Bacillus subtilis, DNA uptake has low efficacy. Using Spizizen minimal medium is common method in plasmid transformation into B. subtilis, but rate of this process is not suitable and noteworthy. The aim of this study was investigation of novel method for improvement of DNA transformation into B. subtilis based on CM11 cationic peptide as a membrane permeable agent.Materials and methods: In this study, for optimization of pWB980 plasmid transformation into B. subtilis, the CM11 cationic peptide was used. For this purpose, B. subtilis competent cell preparation in the present of different concentration of peptide was implemented by two methods. In the first method, after treatment of bacteria with different amount of peptide for 14h, plasmid was added. In the second method, several concentration of peptide with plasmid was exposed to bacteria simultaneously. Bacteria that uptake DNA were screened on LB agar medium containing kanamycin. The total transformed bacteria per microgram of DNA was calculated and compared with the control.Results: Plasmid transformation in best conditions was 6.5 folds higher than the control. This result was statistically significant (P value <0.001.Discussion and conclusion: This study showed that CM11 cationic peptide as a membrane permeable agent was able to increase plasmid transformation rate into B. subtilis. This property was useful for resolution of low transformation efficacy.

  9. Production of D-alanine from DL-alanine using immobilized cells of Bacillus subtilis HLZ-68.

    Science.gov (United States)

    Zhang, Yangyang; Li, Xiangping; Zhang, Caifei; Yu, Xiaodong; Huang, Fei; Huang, Shihai; Li, Lianwei; Liu, Shiyu

    2017-09-13

    Immobilized cells of Bacillus subtilis HLZ-68 were used to produce D-alanine from DL-alanine by asymmetric degradation. Different compounds such as polyvinyl alcohol and calcium alginate were employed for immobilizing the B. subtilis HLZ-68 cells, and the results showed that cells immobilized using a mixture of these two compounds presented higher L-alanine degradation activity, when compared with free cells. Subsequently, the effects of different concentrations of polyvinyl alcohol and calcium alginate on L-alanine consumption were examined. Maximum L-alanine degradation was exhibited by cells immobilized with 8% (w/v) polyvinyl alcohol and 2% (w/v) calcium alginate. Addition of 400 g of DL-alanine (200 g at the beginning of the reaction and 200 g after 30 h of incubation) into the reaction solution at 30 °C, pH 6.0, aeration of 1.0 vvm, and agitation of 400 rpm resulted in complete L-alanine degradation within 60 h, leaving 185 g of D-alanine in the reaction solution. The immobilized cells were applied for more than 15 cycles of degradation and a maximum utilization rate was achieved at the third cycle. D-alanine was easily extracted from the reaction solution using cation-exchange resin, and the chemical and optical purity of the extracted D-alanine was 99.1 and 99.6%, respectively.

  10. Isolation and characterization of a novel analyte from Bacillus subtilis SC-8 antagonistic to Bacillus cereus.

    Science.gov (United States)

    Lee, Nam Keun; Yeo, In-Cheol; Park, Joung Whan; Kang, Byung-Sun; Hahm, Young Tae

    2010-09-01

    In this study, an effective substance was isolated from Bacillus subtilis SC-8, which was obtained from traditionally fermented soybean paste, cheonggukjang. The substance was purified by HPLC, and its properties were analyzed. It had an adequate antagonistic effect on Bacilluscereus, and its spectrum of activity was narrow. When tested on several gram-negative and gram-positive foodborne pathogenic bacteria such as Salmonella enterica, Salmonella enteritidis, Staphylococcus aureus, and Listeria monocytogenes, no antagonistic effect was observed. Applying the derivative from B. subtilis SC-8 within the same genus did not inhibit the growth of major soybean-fermenting bacteria such as Bacillus subtilis, Bacillus licheniformis, and Bacillus amyloquefaciens. The range of pH stability of the purified antagonistic substance was wide (from 4.0 to >10.0), and the substance was thermally stable up to 60 degrees C. In the various enzyme treatments, the antagonistic activity of the purified substance was reduced with proteinase K, protease, and lipase; its activity was partially destroyed with esterase. Spores of B. cereus did not grow at all in the presence of 5mug/mL of the purified antagonistic substance. The isolated antagonistic substance was thought to be an antibiotic-like lipopeptidal compound and was tentatively named BSAP-254 because it absorbed to UV radiation at 254nm. Copyright 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Bacillus subtilis MreB paralogues have different filament architectures and lead to shape remodelling of a heterologous cell system.

    Science.gov (United States)

    Soufo, Hervé Joël Defeu; Graumann, Peter L

    2010-12-01

    Like many bacteria, Bacillus subtilis cells contain three actin-like MreB proteins. We show that the three paralogues, MreB, Mbl and MreBH, have different filament architectures in a heterologous cell system, and form straight filaments, helices or ring structures, different from the regular helical arrangement in B. subtilis cells. However, when coexpressed, they colocalize into a single filamentous helical structure, showing that the paralogues influence each other's filament architecture. Ring-like MreBH structures can be converted into MreB-like helical filaments by a single point mutation affecting subunit contacts, showing that MreB paralogues feature flexible filament arrangements. Time-lapse and FRAP experiments show that filaments can extend as well as shrink at both ends, and also show internal rearrangement, suggesting that filaments consist of overlapping bundles of shorter filaments that continuously turn over. Upon induction in Escherichia coli cells, B. subtilis MreB (BsMreB) filaments push the cells into strikingly altered cell morphology, showing that MreB filaments can change cell shape. E. coli cells with a weakened cell wall were ruptured upon induction of BsMreB filaments, suggesting that the bacterial actin orthologue may exert force against the cell membrane and envelope, and thus possibly plays an additional mechanical role in bacteria. © 2010 Blackwell Publishing Ltd.

  12. Studies on DNA repair in Bacillus subtilis

    International Nuclear Information System (INIS)

    Inoue, Tadashi; Kada, Tsuneo

    1977-01-01

    An enzyme which enhances the priming activity of γ-irradiated DNA for type I DNA polymerase (EC 2.7.7.7) was identified and partially purified from extracts of Bacillus subtilis cells. The enzyme preferentially degraded γ-irradiated DNA into acid-soluble materials. DNA preparations treated with heat, ultraviolet light, pancreatic DNAase (EC 3.1.4.5) or micrococcal DNAase (EC 3.1.4.7) were not susceptible to the enzyme. However, sonication rendered DNA susceptible to the enzyme to some extent. From these results, it is supposed that this enzyme may function by 'cleaning' damaged terminals produced by γ-irradiation to serve as effective primer of sites for repair synthesis by the type I DNA polymerase

  13. Fitness Trade-Offs in Competence Differentiation of Bacillus subtilis

    OpenAIRE

    Yüksel, Melih; Power, Jeffrey J.; Ribbe, Jan; Volkmann, Thorsten; Maier, Berenike

    2016-01-01

    In the stationary phase, Bacillus subtilis differentiates stochastically and transiently into the state of competence for transformation (K-state). The latter is associated with growth arrest, and it is unclear how the ability to develop competence is stably maintained, despite its cost. To quantify the effect differentiation has on the competitive fitness of B. subtilis, we characterized the competition dynamics between strains with different probabilities of entering the K-state. The relati...

  14. Clonal analysis of the progeny of UV-irradiated cells of Bacillus subtilis (uvr+ and uvr)

    International Nuclear Information System (INIS)

    Lotareva, O.V.; Filippov, V.D.

    1975-01-01

    The revertants to adenine prototrophy or mutants to auxotrophy can be easily identified on synthetic media which are pathly enriched with caseine hydrolyzate and yeast extract. It is shown with the use of these media that 1.5% colonies formed by Bacillus subtilis cells of the original type (ade6 met5) have mutant clones which are initiated by spontaneous revertants to adenine prototrophy. These revertants arise in the time of division of cells in macrocolonies. After plating diluted suspension of irradiated cells those colonies which contain mutant clones formed by spontaneous revertants can be erroneously taken for mixed colonies formed by induced revertants. About 40% mutants to auxotrophy induced by high dose of UV-light in uvr + cells form pure mutant colonies. The same mutants, induced in uvr cells by a five-times as-low UV-dose, usually form mixed colonies

  15. Antibiotic Stimulation of a Bacillus subtilis Migratory Response

    Science.gov (United States)

    Liu, Yongjin; Kyle, Steven

    2018-01-01

    ABSTRACT Competitive interactions between bacteria reveal physiological adaptations that benefit fitness. Bacillus subtilis is a Gram-positive species with several adaptive mechanisms for competition and environmental stress. Biofilm formation, sporulation, and motility are the outcomes of widespread changes in a population of B. subtilis. These changes emerge from complex, regulated pathways for adapting to external stresses, including competition from other species. To identify competition-specific functions, we cultured B. subtilis with multiple species of Streptomyces and observed altered patterns of growth for each organism. In particular, when plated on agar medium near Streptomyces venezuelae, B. subtilis initiates a robust and reproducible mobile response. To investigate the mechanistic basis for the interaction, we determined the type of motility used by B. subtilis and isolated inducing metabolites produced by S. venezuelae. Bacillus subtilis has three defined forms of motility: swimming, swarming, and sliding. Streptomyces venezuelae induced sliding motility specifically in our experiments. The inducing agents produced by S. venezuelae were identified as chloramphenicol and a brominated derivative at subinhibitory concentrations. Upon further characterization of the mobile response, our results demonstrated that subinhibitory concentrations of chloramphenicol, erythromycin, tetracycline, and spectinomycin all activate a sliding motility response by B. subtilis. Our data are consistent with sliding motility initiating under conditions of protein translation stress. This report underscores the importance of hormesis as an early warning system for potential bacterial competitors and antibiotic exposure. IMPORTANCE Antibiotic resistance is a major challenge for the effective treatment of infectious diseases. Identifying adaptive mechanisms that bacteria use to survive low levels of antibiotic stress is important for understanding pathways to

  16. Biodegradation of furfural by Bacillus subtilis strain DS3.

    Science.gov (United States)

    Zheng, Dan; Bao, Jianguo; Lu, Jueming; Lv, Quanxi

    2015-07-01

    An aerobic bacterial strain DS3, capable of growing on furfural as sole carbon source, was isolated from actived sludge of wastewater treatment plant in a diosgenin factory after enrichment. Based on morphological physiological tests as well as 16SrDNA sequence and Biolog analyses it was identified as Bacillus subtilis. The study revealed that strain DS3 utilized furfural, as analyzed by high-performance liquid chromatography (HPLC). Under following conditions: pH 8.0, temperature 35 degrees C, 150 rpm and 10% inoculum, strain DS3 showed 31.2% furfural degradation. Furthermore, DS3 strain was found to tolerate furfural concentration as high as 6000 mg(-1). The ability of Bacillus subtilis strain DS3 to degrade furfural has been demonstrated for the first time in the present study.

  17. Bacillus subtilis HJ18-4 from traditional fermented soybean food inhibits Bacillus cereus growth and toxin-related genes.

    Science.gov (United States)

    Eom, Jeong Seon; Lee, Sun Young; Choi, Hye Sun

    2014-11-01

    Bacillus subtilis HJ18-4 isolated from buckwheat sokseongjang, a traditional Korean fermented soybean food, exhibits broad-spectrum antimicrobial activity against foodborne pathogens, including Bacillus cereus. In this study, we investigated the antibacterial efficacy and regulation of toxin gene expression in B. cereus by B. subtilis HJ18-4. Expression of B. cereus toxin-related genes (groEL, nheA, nheC, and entFM) was downregulated by B. subtilis HJ18-4, which also exhibited strong antibacterial activity against B. cereus. We also found that water extracts of soy product fermented with B. subtilis HJ18-4 significantly inhibited the growth of B. cereus and toxin expression. These results indicate that B. subtilis HJ18-4 could be used as an antimicrobial agent to control B. cereus in the fermented soybean food industry. Our findings also provide an opportunity to develop an efficient biological control agent against B. cereus. © 2014 The Authors. Journal of Food Science published by Wiley Periodicals, Inc. on behalf of Institute of Food Technologists®

  18. Protein export in bacillus subtilis and escherichia coli

    NARCIS (Netherlands)

    Dijl, Jan Maarten van

    1990-01-01

    The export of heterologous proteins in Bacillus subtilis and Escherichia coli is often inefficient. Frequently observed problems are: 1) accumulation of the precursor form of the exported protein in the cytoplasm or in the membrane; 2), inefficient or incorrect processing of the precursor; 3),

  19. Spore coat protein synthesis in cell-free systems from sporulating cells of Bacillus subtilis.

    Science.gov (United States)

    Nakayama, T; Munoz, L E; Sadaie, Y; Doi, R H

    1978-09-01

    Cell-free systems for protein synthesis were prepared from Bacillus subtilis 168 cells at several stages of sporulation. Immunological methods were used to determine whether spore coat protein could be synthesized in the cell-free systems prepared from sporulating cells. Spore coat protein synthesis first occurred in extracts from stage t2 cells. The proportion of spore coat protein to total proteins synthesized in the cell-free systems was 2.4 and 3.9% at stages t2 and t4, respectively. The sodium dodecyl sulfate-urea-polyacrylamide gel electrophoresis patterns of immunoprecipitates from the cell-free systems showed the complete synthesis of an apparent spore coat protein precursor (molecular weight, 25,000). A polypeptide of this weight was previously identified in studies in vivo (L.E. Munoz, Y. Sadaie, and R.H. Doi, J. Biol. Chem., in press). The synthesis in vitro of polysome-associated nascent spore coat polypeptides with varying molecular weights up to 23,000 was also detected. These results indicate that the spore coat protein may be synthesized as a precursor protein. The removal of proteases in the crude extracts by treatment with hemoglobin-Sepharose affinity techniques may be preventing the conversion of the large 25,000-dalton precursor to the 12,500-dalton mature spore coat protein.

  20. Bacillus subtilis biofilm induction by plant polysaccharides.

    Science.gov (United States)

    Beauregard, Pascale B; Chai, Yunrong; Vlamakis, Hera; Losick, Richard; Kolter, Roberto

    2013-04-23

    Bacillus subtilis is a plant-beneficial Gram-positive bacterium widely used as a biofertilizer. However, relatively little is known regarding the molecular processes underlying this bacterium's ability to colonize roots. In contrast, much is known about how this bacterium forms matrix-enclosed multicellular communities (biofilms) in vitro. Here, we show that, when B. subtilis colonizes Arabidopsis thaliana roots it forms biofilms that depend on the same matrix genes required in vitro. B. subtilis biofilm formation was triggered by certain plant polysaccharides. These polysaccharides served as a signal for biofilm formation transduced via the kinases controlling the phosphorylation state of the master regulator Spo0A. In addition, plant polysaccharides are used as a source of sugars for the synthesis of the matrix exopolysaccharide. The bacterium's response to plant polysaccharides was observed across several different strains of the species, some of which are known to have beneficial effects on plants. These observations provide evidence that biofilm genes are crucial for Arabidopsis root colonization by B. subtilis and provide insights into how matrix synthesis may be triggered by this plant.

  1. Dynamic sporulation gene co-expression networks for Bacillus subtilis 168 and the food-borne isolate Bacillus amyloliquefaciens: a transcriptomic model.

    Science.gov (United States)

    Omony, Jimmy; de Jong, Anne; Krawczyk, Antonina O; Eijlander, Robyn T; Kuipers, Oscar P

    2018-02-09

    Sporulation is a survival strategy, adapted by bacterial cells in response to harsh environmental adversities. The adaptation potential differs between strains and the variations may arise from differences in gene regulation. Gene networks are a valuable way of studying such regulation processes and establishing associations between genes. We reconstructed and compared sporulation gene co-expression networks (GCNs) of the model laboratory strain Bacillus subtilis 168 and the food-borne industrial isolate Bacillus amyloliquefaciens. Transcriptome data obtained from samples of six stages during the sporulation process were used for network inference. Subsequently, a gene set enrichment analysis was performed to compare the reconstructed GCNs of B. subtilis 168 and B. amyloliquefaciens with respect to biological functions, which showed the enriched modules with coherent functional groups associated with sporulation. On basis of the GCNs and time-evolution of differentially expressed genes, we could identify novel candidate genes strongly associated with sporulation in B. subtilis 168 and B. amyloliquefaciens. The GCNs offer a framework for exploring transcription factors, their targets, and co-expressed genes during sporulation. Furthermore, the methodology described here can conveniently be applied to other species or biological processes.

  2. A Generic Protocol for Intracellular Expression of Recombinant Proteins in Bacillus subtilis.

    Science.gov (United States)

    Phan, Trang; Huynh, Phuong; Truong, Tuom; Nguyen, Hoang

    2017-01-01

    Bacillus subtilis (B. subtilis) is a potential and attractive host for the production of recombinant proteins. Different expression systems for B. subtilis have been developed recently, and various target proteins have been recombinantly synthesized and purified using this host. In this chapter, we introduce a generic protocol to express a recombinant protein in B. subtilis. It includes protocols for (1) using our typical expression vector (plasmid pHT254) to introduce a target gene, (2) transformation of the target vector into B. subtilis, and (3) evaluation of the actual expression of a recombinant protein.

  3. Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis.

    Science.gov (United States)

    López, Daniel; Fischbach, Michael A; Chu, Frances; Losick, Richard; Kolter, Roberto

    2009-01-06

    We report a previously undescribed quorum-sensing mechanism for triggering multicellularity in Bacillus subtilis. B. subtilis forms communities of cells known as biofilms in response to an unknown signal. We discovered that biofilm formation is stimulated by a variety of small molecules produced by bacteria--including the B. subtilis nonribosomal peptide surfactin--that share the ability to induce potassium leakage. Natural products that do not cause potassium leakage failed to induce multicellularity. Small-molecule-induced multicellularity was prevented by the addition of potassium, but not sodium or lithium. Evidence is presented that potassium leakage stimulates the activity of a membrane protein kinase, KinC, which governs the expression of genes involved in biofilm formation. We propose that KinC responds to lowered intracellular potassium concentration and that this is a quorum-sensing mechanism that enables B. subtilis to respond to related and unrelated bacteria.

  4. Comparative transcriptional analysis of Bacillus subtilis cells overproducing either secreted proteins, lipoproteins or membrane proteins

    NARCIS (Netherlands)

    Marciniak, Bogumila C.; Trip, Hein; van-der Veek, Patricia J.; Kuipers, Oscar P.; Marciniak, Bogumiła C.

    2012-01-01

    Background: Bacillus subtilis is a favorable host for the production of industrially relevant proteins because of its capacity of secreting proteins into the medium to high levels, its GRAS (Generally Recognized As Safe) status, its genetic accessibility and its capacity to grow in large

  5. Disruption of Autolysis in Bacillus subtilis using TiO2 Nanoparticles.

    Science.gov (United States)

    McGivney, Eric; Han, Linchen; Avellan, Astrid; VanBriesen, Jeanne; Gregory, Kelvin B

    2017-03-17

    In contrast to many nanotoxicity studies where nanoparticles (NPs) are observed to be toxic or reduce viable cells in a population of bacteria, we observed that increasing concentration of TiO 2 NPs increased the cell survival of Bacillus subtilis in autolysis-inducing buffer by 0.5 to 5 orders of magnitude over an 8 hour exposure. Molecular investigations revealed that TiO 2 NPs prevent or delay cell autolysis, an important survival and growth-regulating process in bacterial populations. Overall, the results suggest two potential mechanisms for the disruption of autolysis by TiO 2 NPs in a concentration dependent manner: (i) directly, through TiO 2 NP deposition on the cell wall, delaying the collapse of the protonmotive-force and preventing the onset of autolysis; and (ii) indirectly, through adsorption of autolysins on TiO 2 NP, limiting the activity of released autolysins and preventing further lytic activity. Enhanced darkfield microscopy coupled to hyperspectral analysis was used to map TiO 2 deposition on B. subtilis cell walls and released enzymes, supporting both mechanisms of autolysis interference. The disruption of autolysis in B. subtilis cultures by TiO 2 NPs suggests the mechanisms and kinetics of cell death may be influenced by nano-scale metal oxide materials, which are abundant in natural systems.

  6. Fitness Trade-Offs in Competence Differentiation of Bacillus subtilis.

    Science.gov (United States)

    Yüksel, Melih; Power, Jeffrey J; Ribbe, Jan; Volkmann, Thorsten; Maier, Berenike

    2016-01-01

    In the stationary phase, Bacillus subtilis differentiates stochastically and transiently into the state of competence for transformation (K-state). The latter is associated with growth arrest, and it is unclear how the ability to develop competence is stably maintained, despite its cost. To quantify the effect differentiation has on the competitive fitness of B. subtilis, we characterized the competition dynamics between strains with different probabilities of entering the K-state. The relative fitness decreased with increasing differentiation probability both during the stationary phase and during outgrowth. When exposed to antibiotics inhibiting cell wall synthesis, transcription, and translation, cells that differentiated into the K-state showed a selective advantage compared to differentiation-deficient bacteria; this benefit did not require transformation. Although beneficial, the K-state was not induced by sub-MIC concentrations of antibiotics. Increasing the differentiation probability beyond the wt level did not significantly affect the competition dynamics with transient antibiotic exposure. We conclude that the competition dynamics are very sensitive to the fraction of competent cells under benign conditions but less sensitive during antibiotic exposure, supporting the picture of stochastic differentiation as a fitness trade-off.

  7. Phylogenetic analysis of Bacillus subtilis strains applicable to natto (fermented soybean) production.

    Science.gov (United States)

    Kubo, Yuji; Rooney, Alejandro P; Tsukakoshi, Yoshiki; Nakagawa, Rikio; Hasegawa, Hiromasa; Kimura, Keitarou

    2011-09-01

    Spore-forming Bacillus strains that produce extracellular poly-γ-glutamic acid were screened for their application to natto (fermented soybean food) fermentation. Among the 424 strains, including Bacillus subtilis and B. amyloliquefaciens, which we isolated from rice straw, 59 were capable of fermenting natto. Biotin auxotrophism was tightly linked to natto fermentation. A multilocus nucleotide sequence of six genes (rpoB, purH, gyrA, groEL, polC, and 16S rRNA) was used for phylogenetic analysis, and amplified fragment length polymorphism (AFLP) analysis was also conducted on the natto-fermenting strains. The ability to ferment natto was inferred from the two principal components of the AFLP banding pattern, and natto-fermenting strains formed a tight cluster within the B. subtilis subsp. subtilis group.

  8. 75 FR 862 - Bacillus subtilis; Registration Review Proposed Decision; Notice of Availability

    Science.gov (United States)

    2010-01-06

    ...: Bacillus subtilis strain GB03 is used to prevent, control and suppress plant disease on barley, berries, bulb vegetables, cole crops, cotton, cucurbits, fruiting vegetables, herbs, leafy crops, legumes... subtilis strain MBI 600 is used to suppress disease organisms such as Botrytis, Alternaria, Rhizoctonia...

  9. Characterization of a new cell-bound alpha-amylase in Bacillus subtilis 168 Marburg that is only immunologically related to the exocellular alpha-amylase.

    OpenAIRE

    Haddaoui, E; Petit-Glatron, M F; Chambert, R

    1995-01-01

    Immunoblot analysis of Bacillus subtilis cell extracts with polyclonal antibodies, raised against purified exocellular alpha-amylase, revealed one protein species of 82,000 Da. This protein was found even in cells in which the amyE gene, encoding exocellular alpha-amylase, was disrupted. Isolated from the membrane fraction, the 82,000-M(r) protein displayed an alpha-amylase activity in vitro.

  10. Cell wall and DNA cosegregation in Bacillus subtilis studied by electron microscope autoradiography

    International Nuclear Information System (INIS)

    Schlaeppi, J.M.; Schaefer, O.; Karamata, D.

    1985-01-01

    Cells of a Bacillus subtilis mutant deficient in both major autolytic enzyme activities were continuously labeled in either cell wall or DNA or both cell wall and DNA. After appropriate periods of chase in minimal as well as in rich medium, thin sections of cells were autoradiographed and examined by electron microscopy. The resolution of the method was adequate to distinguish labeled DNA units from cell wall units. The latter, which could be easily identified, were shown to segregate symmetrically, suggesting a zonal mode of new wall insertion. DNA units could also be clearly recognized despite a limited fragmentation; they segregated asymmetrically with respect to the nearest septum. Analysis of cells simultaneously labeled in cell wall and DNA provided clear visual evidence of their regular but asymmetrical cosegregation, confirming a previous report obtained by light microscope autoradiography. In addition to labeled wall units, electron microscopy of thin sections of aligned cells has revealed fibrillar networks of wall material which are frequently associated with the cell surface. Most likely, these structures correspond to wall sloughed off by the turnover mechanism but not yet degraded to filterable or acid-soluble components

  11. Transfer of Eu (III) associated with polymaleic acid to Bacillus subtilis

    International Nuclear Information System (INIS)

    Markai, S.; Montavon, G.; Andres, Y.; Grambow, B.

    2003-01-01

    The aim of this study is to contribute to the understanding of the distribution of Eu(III) between dissolved organic matter and microorganisms, and to investigate the effect of competitive ions such as Ca +2 on adsorption properties. Polymaleic acid (PMA), is used as synthetic organic matter, having similar properties as natural fulvic acid, and Bacillus subtilis is chosen as microorganism. A double labeling method was used: [ 14 C]MPA and 152 Eu to quantify the behavior of the various components. Preliminary experiments showed that the adsorption of polymaleic acid onto Bacillus subtilis was negligible at pH=5 in 0.15 mol/l of NaCl. In the absence of Ca +2 , the transfer of Eu(III) from PMA to B. subtilis could be described by a simple empirical model based on data obtained from sorption isotherms on the reference systems Eu(III)/PMA and Eu(III)/B. subtilis. In the presence of Ca +2 , the transfer was increased. The hypothesis that Ca +2 ions acted as a bridging agent between PMA and the bacteria was proposed

  12. Sporulation during growth in a gut isolate of Bacillus subtilis.

    Science.gov (United States)

    Serra, Cláudia R; Earl, Ashlee M; Barbosa, Teresa M; Kolter, Roberto; Henriques, Adriano O

    2014-12-01

    Sporulation by Bacillus subtilis is a cell density-dependent response to nutrient deprivation. Central to the decision of entering sporulation is a phosphorelay, through which sensor kinases promote phosphorylation of Spo0A. The phosphorelay integrates both positive and negative signals, ensuring that sporulation, a time- and energy-consuming process that may bring an ecological cost, is only triggered should other adaptations fail. Here we report that a gastrointestinal isolate of B. subtilis sporulates with high efficiency during growth, bypassing the cell density, nutritional, and other signals that normally make sporulation a post-exponential-phase response. Sporulation during growth occurs because Spo0A is more active per cell and in a higher fraction of the population than in a laboratory strain. This in turn, is primarily caused by the absence from the gut strain of the genes rapE and rapK, coding for two aspartyl phosphatases that negatively modulate the flow of phosphoryl groups to Spo0A. We show, in line with recent results, that activation of Spo0A through the phosphorelay is the limiting step for sporulation initiation in the gut strain. Our results further suggest that the phosphorelay is tuned to favor sporulation during growth in gastrointestinal B. subtilis isolates, presumably as a form of survival and/or propagation in the gut environment. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. Isolation, purification and characterization of Bacillus subtilis Phytase from Holiwood Gresik

    Directory of Open Access Journals (Sweden)

    Leny Yuanita

    2012-01-01

    Full Text Available The aim of the research were isolation, purification and characterization of Bacillus subtilis phytase from Holiwood Gresik. The research was done in two stages; the first include enzyme isolation, precipitation with amonium sulphate, dialysis, gel filtration chromatography, SDS-PAGE analysis, while second determining optimum pH, optimum temperature, the effect of pH and temperature to enzim stability, the values of KM and Vmax Bacillus subtilis phytase from Holiwood Gresik. The first stage research design were One Shot Case Study and Post Test Only Control Group Design, while the second stage were Post Test Only Control Group Design and Factorial Design. The data being analyzed by one-way and two-way Anova. The results of research showed that Bacillus subtilis phytase has the molecular mass of 36.5 kDa, optimum pH at 6.5–7.0, optimum temperature at 41°C and it was found to be stable for 30 minute incubation at pH 7or 30° C with 2% or 3% lost of its activity respectively. KM value was 0.62 mM and VMax 0.393 mmol/ml/minute.

  14. Dynamic expression of the translational machinery during Bacillus subtilis life cycle at a single cell level.

    Directory of Open Access Journals (Sweden)

    Alex Rosenberg

    Full Text Available The ability of bacteria to responsively regulate the expression of translation components is crucial for rapid adaptation to fluctuating environments. Utilizing Bacillus subtilis (B. subtilis as a model organism, we followed the dynamics of the translational machinery at a single cell resolution during growth and differentiation. By comprehensive monitoring the activity of the major rrn promoters and ribosomal protein production, we revealed diverse dynamics between cells grown in rich and poor medium, with the most prominent dissimilarities exhibited during deep stationary phase. Further, the variability pattern of translational activity varied among the cells, being affected by nutrient availability. We have monitored for the first time translational dynamics during the developmental process of sporulation within the two distinct cellular compartments of forespore and mother-cell. Our study uncovers a transient forespore specific increase in expression of translational components. Finally, the contribution of each rrn promoter throughout the bacterium life cycle was found to be relatively constant, implying that differential expression is not the main purpose for the existence of multiple rrn genes. Instead, we propose that coordination of the rrn operons serves as a strategy to rapidly fine tune translational activities in a synchronized fashion to achieve an optimal translation level for a given condition.

  15. Enhanced biomass production study on probiotic Bacillus subtilis ...

    African Journals Online (AJOL)

    The culture conditions of lactose fermenting, spore forming probiotic Bacillus subtilis SK09 isolated from dairy effluent were optimized by response surface methodology to maximize the biomass production. The student's t-test of the Placket-Burman screening design revealed that the effects of pH, ammonium citrate and ...

  16. Modulation of Thiol-Disulfide Oxidoreductases for Increased Production of Disulfide-Bond-Containing Proteins in Bacillus subtilis

    NARCIS (Netherlands)

    Kouwen, Thijs R. H. M.; Dubois, Jean-Yves F.; Freudl, Roland; Quax, Wim J.; van Dijl, Jan Maarten

    2008-01-01

    Disulfide bonds are important for the correct folding, structural integrity, and activity of many biotechnologically relevant proteins. For synthesis and subsequent secretion of these proteins in bacteria, such as the well-known "cell factory" Bacillus subtilis, it is often the correct formation of

  17. Efektivitas Formula Bacillus subtilis TM4 untuk Pengendalian Penyakit pada Tanaman Jagung

    Directory of Open Access Journals (Sweden)

    Nurasiah Djaenuddin

    2017-11-01

    Full Text Available Banded leaf and sheath blight (BLSB and maydis leaf blight (MLB caused by Rhizoctonia solani and Bipolaris maydis, respectively are considered as important diseases in maize.   The use of biopesticides is an alternative method to control the diseases. This study was conducted to determine the effectiveness of bacterial formula Bacillus subtilis to inhibit the development of BLSB and MLB on the plant. Testing of biopesticide formula was done in two different applications, i.e. seed treatment for BLSB control and leaf spraying in the field for MLB. The results showed that the B.subtilis formula effectively suppressed the development of BLSB but it was not effectively suppressed the development of MLB .Key words: Bacillus subtilis, biopesticide, Bipolaris maydis, leaf blight diseaseBanded leaf and sheath blight (BLSB and maydis leaf blight (MLB caused by Rhizoctonia solani and Bipolaris maydis, respectively are considered as important diseases in maize.   The use of biopesticides is an alternative method to control the diseases. This study was conducted to determine the effectiveness of bacterial formula Bacillus subtilis to inhibit the development of BLSB and MLB on the plant. Testing of biopesticide formula was done in two different applications, i.e. seed treatment for BLSB control and leaf spraying in the field for MLB. The results showed that the B.subtilis formula effectively suppressed the development of BLSB but it was not effectively suppressed the development of MLB.

  18. Mutations affecting substrate specificity of the Bacillus subtilis multidrug transporter Bmr.

    OpenAIRE

    Klyachko, K A; Schuldiner, S; Neyfakh, A A

    1997-01-01

    The Bacillus subtilis multidrug transporter Bmr, a member of the major facilitator superfamily of transporters, causes the efflux of a number of structurally unrelated toxic compounds from cells. We have shown previously that the activity of Bmr can be inhibited by the plant alkaloid reserpine. Here we demonstrate that various substitutions of residues Phe143 and Phe306 of Bmr not only reduce its sensitivity to reserpine inhibition but also significantly change its substrate specificity. Cros...

  19. Bacillus subtilis spores as vaccine adjuvants: further insights into the mechanisms of action.

    Directory of Open Access Journals (Sweden)

    Renata Damásio de Souza

    Full Text Available Bacillus subtilis spores have received growing attention regarding potential biotechnological applications, including the use as probiotics and in vaccine formulations. B. subtilis spores have also been shown to behave as particulate vaccine adjuvants, promoting the increase of antibody responses after co-administration with antigens either admixed or adsorbed on the spore surface. In this study, we further evaluated the immune modulatory properties of B. subtilis spores using a recombinant HIV gag p24 protein as a model antigen. The adjuvant effects of B. subtilis spores were not affected by the genetic background of the mouse lineage and did not induce significant inflammatory or deleterious effects after parenteral administration. Our results demonstrated that co-administration, but not adsorption to the spore surface, enhanced the immunogenicity of that target antigen after subcutaneous administration to BALB/c and C57BL/6 mice. Spores promoted activation of antigen presenting cells as demonstrated by the upregulation of MHC and CD40 molecules and enhanced secretion of pro-inflammatory cytokines by murine dendritic cells. In addition, in vivo studies indicated a direct role of the innate immunity on the immunomodulatory properties of B. subtilis spores, as demonstrated by the lack of adjuvant effects on MyD88 and TLR2 knockout mouse strains.

  20. Bacillus subtilis Swarmer Cells Lead the Swarm, Multiply, and Generate a Trail of Quiescent Descendants

    Directory of Open Access Journals (Sweden)

    Lina Hamouche

    2017-02-01

    Full Text Available Bacteria adopt social behavior to expand into new territory, led by specialized swarmers, before forming a biofilm. Such mass migration of Bacillus subtilis on a synthetic medium produces hyperbranching dendrites that transiently (equivalent to 4 to 5 generations of growth maintain a cellular monolayer over long distances, greatly facilitating single-cell gene expression analysis. Paradoxically, while cells in the dendrites (nonswarmers might be expected to grow exponentially, the rate of swarm expansion is constant, suggesting that some cells are not multiplying. Little attention has been paid to which cells in a swarm are actually multiplying and contributing to the overall biomass. Here, we show in situ that DNA replication, protein translation and peptidoglycan synthesis are primarily restricted to the swarmer cells at dendrite tips. Thus, these specialized cells not only lead the population forward but are apparently the source of all cells in the stems of early dendrites. We developed a simple mathematical model that supports this conclusion.

  1. Functional requirements of cellular differentiation: lessons from Bacillus subtilis.

    Science.gov (United States)

    Narula, Jatin; Fujita, Masaya; Igoshin, Oleg A

    2016-12-01

    Successful execution of differentiation programs requires cells to assess multitudes of internal and external cues and respond with appropriate gene expression programs. Here, we review how Bacillus subtilis sporulation network deals with these tasks focusing on the lessons generalizable to other systems. With feedforward loops controlling both production and activation of downstream transcriptional regulators, cells achieve ultrasensitive threshold-like responses. The arrangement of sporulation network genes on the chromosome and transcriptional feedback loops allow coordination of sporulation decision with DNA-replication. Furthermore, to assess the starvation conditions without sensing specific metabolites, cells respond to changes in their growth rates with increased activity of sporulation master regulator. These design features of the sporulation network enable cells to robustly decide between vegetative growth and sporulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Dimethylglycine provides salt and temperature stress protection to Bacillus subtilis.

    Science.gov (United States)

    Bashir, Abdallah; Hoffmann, Tamara; Smits, Sander H J; Bremer, Erhard

    2014-05-01

    Glycine betaine is a potent osmotic and thermal stress protectant of many microorganisms. Its synthesis from glycine results in the formation of the intermediates monomethylglycine (sarcosine) and dimethylglycine (DMG), and these compounds are also produced when it is catabolized. Bacillus subtilis does not produce sarcosine or DMG, and it cannot metabolize these compounds. Here we have studied the potential of sarcosine and DMG to protect B. subtilis against osmotic, heat, and cold stress. Sarcosine, a compatible solute that possesses considerable protein-stabilizing properties, did not serve as a stress protectant of B. subtilis. DMG, on the other hand, proved to be only moderately effective as an osmotic stress protectant, but it exhibited good heat stress-relieving and excellent cold stress-relieving properties. DMG is imported into B. subtilis cells primarily under osmotic and temperature stress conditions via OpuA, a member of the ABC family of transporters. Ligand-binding studies with the extracellular solute receptor (OpuAC) of the OpuA system showed that OpuAC possesses a moderate affinity for DMG, with a Kd value of approximate 172 μM; its Kd for glycine betaine is about 26 μM. Docking studies using the crystal structures of the OpuAC protein with the sulfur analog of DMG, dimethylsulfonioacetate, as a template suggest a model of how the DMG molecule can be stably accommodated within the aromatic cage of the OpuAC ligand-binding pocket. Collectively, our data show that the ability to acquire DMG from exogenous sources under stressful environmental conditions helps the B. subtilis cell to cope with growth-restricting osmotic and temperature challenges.

  3. Association of RNAs with Bacillus subtilis Hfq.

    Directory of Open Access Journals (Sweden)

    Michael Dambach

    Full Text Available The prevalence and characteristics of small regulatory RNAs (sRNAs have not been well characterized for Bacillus subtilis, an important model system for Gram-positive bacteria. However, B. subtilis was recently found to synthesize many candidate sRNAs during stationary phase. In the current study, we performed deep sequencing on Hfq-associated RNAs and found that a small subset of sRNAs associates with Hfq, an enigmatic RNA-binding protein that stabilizes sRNAs in Gram-negatives, but whose role is largely unknown in Gram-positive bacteria. We also found that Hfq associated with antisense RNAs, antitoxin transcripts, and many mRNA leaders. Several new candidate sRNAs and mRNA leader regions were also discovered by this analysis. Additionally, mRNA fragments overlapping with start or stop codons associated with Hfq, while, in contrast, relatively few full-length mRNAs were recovered. Deletion of hfq reduced the intracellular abundance of several representative sRNAs, suggesting that B. subtilis Hfq-sRNA interactions may be functionally significant in vivo. In general, we anticipate this catalog of Hfq-associated RNAs to serve as a resource in the functional characterization of Hfq in B. subtilis.

  4. From Genome to Function: Systematic Analysis of the Soil Bacterium Bacillus Subtilis

    Science.gov (United States)

    Crawshaw, Samuel G.; Wipat, Anil

    2001-01-01

    Bacillus subtilis is a sporulating Gram-positive bacterium that lives primarily in the soil and associated water sources. Whilst this bacterium has been studied extensively in the laboratory, relatively few studies have been undertaken to study its activity in natural environments. The publication of the B. subtilis genome sequence and subsequent systematic functional analysis programme have provided an opportunity to develop tools for analysing the role and expression of Bacillus genes in situ. In this paper we discuss analytical approaches that are being developed to relate genes to function in environments such as the rhizosphere. PMID:18628943

  5. Extracellular protease produced by Bacillus subtilis isolated from ...

    African Journals Online (AJOL)

    In a study to evaluate the microbiological safety of some paracetamol oral solutions sold in some Nigerian drug stores, 40.0% of the samples examined was contaminated with protease-producing Bacillus subtilis. The production of extracellular protease was induced by casein in the minimal medium and was found to be the ...

  6. Termination factor Rho: From the control of pervasive transcription to cell fate determination in Bacillus subtilis

    Science.gov (United States)

    Nicolas, Pierre; Repoila, Francis; Bardowski, Jacek; Aymerich, Stéphane

    2017-01-01

    In eukaryotes, RNA species originating from pervasive transcription are regulators of various cellular processes, from the expression of individual genes to the control of cellular development and oncogenesis. In prokaryotes, the function of pervasive transcription and its output on cell physiology is still unknown. Most bacteria possess termination factor Rho, which represses pervasive, mostly antisense, transcription. Here, we investigate the biological significance of Rho-controlled transcription in the Gram-positive model bacterium Bacillus subtilis. Rho inactivation strongly affected gene expression in B. subtilis, as assessed by transcriptome and proteome analysis of a rho–null mutant during exponential growth in rich medium. Subsequent physiological analyses demonstrated that a considerable part of Rho-controlled transcription is connected to balanced regulation of three mutually exclusive differentiation programs: cell motility, biofilm formation, and sporulation. In the absence of Rho, several up-regulated sense and antisense transcripts affect key structural and regulatory elements of these differentiation programs, thereby suppressing motility and biofilm formation and stimulating sporulation. We dissected how Rho is involved in the activity of the cell fate decision-making network, centered on the master regulator Spo0A. We also revealed a novel regulatory mechanism of Spo0A activation through Rho-dependent intragenic transcription termination of the protein kinase kinB gene. Altogether, our findings indicate that distinct Rho-controlled transcripts are functional and constitute a previously unknown built-in module for the control of cell differentiation in B. subtilis. In a broader context, our results highlight the recruitment of the termination factor Rho, for which the conserved biological role is probably to repress pervasive transcription, in highly integrated, bacterium-specific, regulatory networks. PMID:28723971

  7. Strategy to approach stable production of recombinant nattokinase in Bacillus subtilis.

    Science.gov (United States)

    Chen, Po Ting; Chiang, Chung-Jen; Chao, Yun-Peng

    2007-01-01

    Bacillus subtilis (B. subtilis) is widely accepted as an excellent host cell for the secretory production of recombinant proteins. In this study, a shuttle vector was constructed by fusion of Staphylococcus aureus (S. aureus) plasmid pUB110 with Escherichia coli (E. coli) plasmid pUC18 and used for the expression of nattokinase in B. subtilis. The pUB110/pUC-based plasmid was found to exhibit high structural instability with the identification of a DNA deletion between two repeated regions. An initial attempt was made to eliminate the homologous site in the plasmid, whereas the stability of the resulting plasmid was not improved. In an alternative way, the pUC18-derived region in this hybrid vector was replaced by the suicidal R6K plasmid origin of E. coli. As a consequence, the pUB110/R6K-based plasmid displayed full structural stability, leading to a high-level production of recombinant nattokinase in the culture broth. This was mirrored by the detection of a very low level of high molecular weight DNAs generated by the plasmid. Moreover, 2-fold higher nattokinase production was obtained by B. subtilis strain carrying the pUB110/R6K-based plasmid as compared to the cell with the pAMbeta1-derived vector, a plasmid known to have high structural stability. Overall, it indicates the feasibility of the approach by fusing two compatible plasmid origins for stable and efficient production of recombinant nattokinase in B. subtilis.

  8. Process optimization by response surface methodology for extracellular alkaline protease production from bacillus subtilis

    International Nuclear Information System (INIS)

    Mushtaq, Z.; Adnan, A.; Mehmood, Z.

    2014-01-01

    Three microbial cultures Bacillus subtilis DSM 1970, Bacillus subtilis GCU-8 and Bacillus licheniformis DSM 1969 were screened for protease production by casein agar plate method. Among these Bacillus subtilis GCU-8 was found to be the most potent protease producer in wide pH range (5.0 to 8.0). Fermentation conditions were optimized for the production of alkaline protease using two statistical tools: Placket Burmen Model for linear regression study and Response Surface Model for interactive effects of significant factors on production. The alkaline protease was optimally produced after 48 hours of incubation at 37 degree C in fermentation media containing equal amounts of substrates (soybean meal and wheat bran, 7.5 g), MgSO/sub 4/ 7H/sub 2/O, 0.10 g and yeast extract 0.55 g. The protease was purified to homogeneity by salt precipitation, ion-exchange chromatography and size exclusion chromatography. The homogeneity and molecular weights were checked by SDS-PAGE. The protease was 45 KDa protein, predominantly alkaline and optimally active at pH 8.0. (author)

  9. Strain Screening from Traditional Fermented Soybean Foods and Induction of Nattokinase Production in Bacillus subtilis MX-6.

    Science.gov (United States)

    Man, Li-Li; Xiang, Dian-Jun; Zhang, Chun-Lan

    2018-02-06

    The plasminogen-free fibrin plate assay method was used to isolate Bacillus subtilis MX-6, a strain with high production of nattokinase from Chinese douchi. The presence of aprN, a gene-encoding nattokinase, was verified with PCR method. The predicted amino acid sequence was aligned with homologous sequences, and a phylogenetic tree was constructed. Nattokinase was sublimated with ammonium sulfate, using a DEAE-Sepharose Fast Flow column, a CM-Sepharose Fast Flow column and a Sephadex G-75 gel filtration column. SDS-PAGE analysis indicated that the molecular weight of the purified nattokinase from Bacillus subtilis MX-6 was about 28 kDa. Fermentation of Bacillus subtilis MX-6 nattokinase showed that nattokinase production was maximized after 72 h; the diameter of clear zone reached 21.60 mm on the plasminogen-free fibrin plate. Nattokinase production by Bacillus subtilis MX-6 increased significantly after supplementation with supernatant I, supernatant II and soy peptone but decreased substantially after the addition of amino acids. This result indicated that the nattokinase production by B. subtilis MX-6 might be induced by soybean polypeptides. The addition of MgSO 4 and CaCl 2 increased B. subtilis MX-6 nattokinase production.

  10. Digestibility and fecal characteristics of dogs fed with Bacillus subtilis in diet Digestibilidade e características das fezes de cães suplementados com Bacillus subtilis na dieta

    Directory of Open Access Journals (Sweden)

    Ananda Portella Félix

    2010-10-01

    Full Text Available Considering the benefice demonstrated by the modulating action of probiotics on the host intestinal microbiota, this study aimed to evaluate diet digestibility and fecal characteristics of dogs fed with diets supplemented with Bacillus subtilis (C-3102. Twelve young Beagle dogs were distributed in a completely randomized experimental design consisting of two treatments: diet with no addition or with the addition of 0.01% Bacillus subtilis (C-3102. Dogs passed through 25 days of adaptation to the diets, and five days of total feces collection. The following fecal characteristics were evaluated: pH, fecal score (1 - watery feces; 5: dry and hard feces, and ammonia content. Diet mean digestibility was compared by the Tukey test, and fecal characteristics by the Tukey-Kramer test. Diet digestibility was not different between treatments, but dogs supplemented with the tested probiotic presented dryer feces (39.1% vs. 36.5% dry matter, higher fecal score (3.4 vs. 3.0 and lower fecal ammonia content (0.45% vs. 0.56%, than dogs fed with the control diet. The dietary supplementation with Bacillus subtilis (C-3102 improves fecal texture and odor in dogs.Em virtude da capacidade moduladora dos probióticos sobre a microbiota intestinal a favor da saúde do hospedeiro, objetivou-se, com este estudo, avaliar a digestibilidade e as características das fezes de cães suplementados com Bacillus subtilis (C-3102 na dieta. Foram utilizados 12 cães adultos da raça Beagle, os quais foram distribuídos inteiramente ao acaso, em dois tratamentos: dieta controle e dieta com adição de 0,01% de Bacillus subtilis (C-3102. Os animais passaram por 25 dias de adaptação às dietas e por cinco dias para colheita total de fezes. As características das fezes foram avaliadas por meio da matéria seca, do escore (1: fezes moles, malformadas a 5: fezes secas e duras, do pH, da amônia e da produção de fezes. Não houve diferença na digestibilidade; entretanto, os c

  11. Cellular architecture mediates DivIVA ultrastructure and regulates min activity in Bacillus subtilis | Center for Cancer Research

    Science.gov (United States)

    The Min system in rod-shaped bacteria restricts improper assembly of the division septum. In Escherichia coli, the Min system localizes to the cell poles, but in Bacillus subtilis, it is recruited to nascent cell division sites at mid-cell to prevent aberrant septation events immediately adjacent to a constricting septum. How does the cell spatially and temporally restrict the

  12. Interspecies interactions that result in Bacillus subtilis forming biofilms are mediated mainly by members of its own genus.

    Science.gov (United States)

    Shank, Elizabeth A; Klepac-Ceraj, Vanja; Collado-Torres, Leonardo; Powers, Gordon E; Losick, Richard; Kolter, Roberto

    2011-11-29

    Many different systems of bacterial interactions have been described. However, relatively few studies have explored how interactions between different microorganisms might influence bacterial development. To explore such interspecies interactions, we focused on Bacillus subtilis, which characteristically develops into matrix-producing cannibals before entering sporulation. We investigated whether organisms from the natural environment of B. subtilis--the soil--were able to alter the development of B. subtilis. To test this possibility, we developed a coculture microcolony screen in which we used fluorescent reporters to identify soil bacteria able to induce matrix production in B. subtilis. Most of the bacteria that influence matrix production in B. subtilis are members of the genus Bacillus, suggesting that such interactions may be predominantly with close relatives. The interactions we observed were mediated via two different mechanisms. One resulted in increased expression of matrix genes via the activation of a sensor histidine kinase, KinD. The second was kinase independent and conceivably functions by altering the relative subpopulations of B. subtilis cell types by preferentially killing noncannibals. These two mechanisms were grouped according to the inducing strain's relatedness to B. subtilis. Our results suggest that bacteria preferentially alter their development in response to secreted molecules from closely related bacteria and do so using mechanisms that depend on the phylogenetic relatedness of the interacting bacteria.

  13. Sigma A recognition sites in the Bacillus subtilis genome

    DEFF Research Database (Denmark)

    Jarmer, Hanne Østergaard; Larsen, Thomas Schou; Krogh, Anders Stærmose

    2001-01-01

    A hidden Markov model of sigma (A) RNA polymerase cofactor recognition sites in Bacillus subtilis, containing either the common or the extended -10 motifs, has been constructed based on experimentally verified sigma (A) recognition sites. This work suggests that more information exists...... at the initiation site of transcription in both types of promoters than previously thought. When tested on the entire B. subtilis genome, the model predicts that approximately half of the sigma (A) recognition sites are of the extended type. Some of the response-regulator aspartate phosphatases were among...

  14. Repair effects of exogenous SOD on Bacillus subtilis against gamma radiation exposure

    International Nuclear Information System (INIS)

    Chen, Xiaoming; Zhang, E.; Fang, Liu; Zhang, Jianguo; Zhu, Jie; He, Wei; Luo, Xuegang

    2013-01-01

    Superoxide dismutase (SOD) is an enzyme that removes free radicals from cells in many organisms. In order to further characterize these repair effects and their mechanism when subjected to radiation, Bacillus subtilis cells were exposed to gamma radiation and the cell survival rate, intracellular SOD activity, and DNA double-strand breakage were investigated. Vegetative cells of B. subtilis were irradiated by 60 Co gamma radiation at varying doses and subsequently exposed to varying levels of exogenous SOD. Standard plate-count, xanthine oxidase, and pulsed-field gel electrophoresis (PFGE) methods were employed to investigate the repair effects. The results showed that the exogenous SOD could significantly improve cell survival rate and intracellular SOD activity after gamma radiation. The cell survival rate was elevated 30–87 times above levels observed in control samples. Adding exogenous SOD into gamma irradiated cells may dramatically increase intracellular SOD activity (p 60 Co γ radiation and exposed to exogenous SOD. • Adding exogenous SOD into γ-irradiated cells may dramatically increase cell survival rate. • DNA strand scission may be prevented by addition of SOD. • Exogenous SOD may have the ability to repair cell damage after γ-rays radiation

  15. Cloned Bacillus subtilis alkaline protease (aprA) gene showing high level of keratinolytic activity.

    Science.gov (United States)

    Zaghloul, T I

    1998-01-01

    The Bacillus subtilis alkaline protease(aprA) gene was previously cloned on a pUBHO-derivative plasmid. High levels of expression and gene stability were demonstrated when B. subtilis cells were grown on the laboratory medium 2XSG. B. subtilis cells harboring the multicopy aprA gene were grown on basal medium, supplemented with 1 % chicken feather as a source of energy, carbon, and nitrogen. Proteolytic and keratinolytic activities were monitored throughout the cultivation time. A high level of keratinolytic activity was obtained, and this indicates that alkaline protease is acting as a keratinase. Furthermore, considerable amounts of soluble proteins and free amino acids were obtained as a result of the enzymatic hydrolysis of feather. Biodegradation of feather waste using these cells represents an alternative way to improve the nutritional value of feather, since feather waste is currently utilized on a limited basis as a dietary protein supplement for animal feedstuffs. Moreover, the release of free amino acids from feather and the secreted keratinase enzyme would promote industries based on feather waste.

  16. Removing Bacillus subtilis from fermentation broth using alumina nanoparticles.

    Science.gov (United States)

    Mu, Dashuai; Mu, Xin; Xu, Zhenxing; Du, Zongjun; Chen, Guanjun

    2015-12-01

    In this study, an efficient separation technology using Al2O3 nanoparticles (NPs) was developed for removing Bacillus subtilis from fermentation broth. The dosage of alumina nanoparticles used for separating B. subtilis increased during the culture process and remained stable in the stationary phase of the culture process. The pH of the culture-broth was also investigated for its effects on flocculation efficiency, and showed an acidic pH could enhance the flocculation efficiency. The attachment mechanisms of Al2O3 NPs to the B. subtilis surface were investigated, and the zeta potential analysis showed that Al2O3 NPs could attach to B. subtilis via electrostatic attachment. Finally, the metabolite content and the antibacterial effect of the fermentation supernatants were detected and did not significantly differ between alumina nanoparticle separation and centrifugation separation. Together, these results indicate a great potential for a highly efficient and economical method for removing B. subtilis from fermentation broth using alumina nanoparticles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Inhibition of quorum sensing-mediated virulence in Serratia marcescens by Bacillus subtilis R-18.

    Science.gov (United States)

    Devi, Kannan Rama; Srinivasan, Subramaniyan; Ravi, Arumugam Veera

    2018-04-13

    Serratia marcescens is an opportunistic human pathogen causing various nosocomial infections, most importantly urinary tract infections (UTIs). It exhibits increased resistance towards the conventional antibiotics. This study was aimed to evaluate the anti-virulence effect of a rhizosphere soil bacterium Bacillus subtilis strain R-18 against the uropathogen S. marcescens. First, the bacterial cell-free culture supernatant (CFCS) of B. subtilis strain R-18 was evaluated for its quorum sensing inhibitory (QSI) potential against biomarker strain Chromobacterium violaceum and the test pathogen S. marcescens. The B. subtilis R-18 CFCS effectively inhibited the quorum sensing (QS)-mediated violacein pigment production in C. violaceum and prodigiosin pigment production in S. marcescens. Furthermore, B. subtilis R-18 CFCS was successively extracted with different solvent systems. Of these solvents, B. subtilis R-18 petroleum ether (PE) extract showed inhibition in biofilm formation, protease, lipase, and hemolysin productions in S. marcescens. Fourier transform infrared spectroscopic (FT-IR) analysis revealed the alterations in the cellular components of bacterial cell pellets obtained from B. subtilis R-18 PE extract treated and untreated S. marcescens. The differential gene expression study further validated the downregulation of virulence-associated genes. Characterization of the active principle in B. subtilis R-18 PE extract by gas chromatography-mass spectrometry (GC-MS) analysis showed the presence of multiple compounds with therapeutic values, which could possibly reduce the QS-dependent phenotypes in S. marcescens. Copyright © 2018. Published by Elsevier Ltd.

  18. Effect of Novel Quercetin Titanium Dioxide-Decorated Multi-Walled Carbon Nanotubes Nanocomposite on Bacillus subtilis Biofilm Development

    DEFF Research Database (Denmark)

    Raie, Diana S; Mhatre, Eisha; El-Desouki, Doaa S

    2018-01-01

    The present work was targeted to design a surface against cell seeding and adhering of bacteria, Bacillus subtilis. A multi-walled carbon nanotube/titanium dioxide nano-power was produced via simple mixing of carbon nanotube and titanium dioxide nanoparticles during the sol-gel process followed...

  19. Effect of decoyinine on the regulation of alpha-amylase synthesis in Bacillus subtilis.

    OpenAIRE

    Nicholson, W L; Chambliss, G H

    1987-01-01

    Decoyinine, an inhibitor of GMP synthetase, allows sporulation in Bacillus subtilis to initiate and proceed under otherwise catabolite-repressing conditions. The effect of decoyinine on alpha-amylase synthesis in B. subtilis, an event which exhibits regulatory features resembling sporulation initiation, was examined. Decoyinine did not overcome catabolite repression of alpha-amylase synthesis in a wild-type strain of B. subtilis but did cause premature and enhanced synthesis in a mutant strai...

  20. Bacillus subtilis generates a major specific deletion in pAM beta 1.

    OpenAIRE

    van der Lelie, D; Venema, G

    1987-01-01

    pAM beta 1, a 26.5-kilobase plasmid originally isolated from Streptococcus faecalis, was conjugally transferred from Streptococcus lactis to Bacillus subtilis. No conjugal transfer of pAM beta 1 from B. subtilis to S. lactis was observed. In addition, pAM beta 1 which had been reintroduced in S. lactis after cycling through B. subtilis had lost its conjugal transferability to Streptococcus cremoris, although under the same conditions noncycled pAM beta 1 was transferred at high efficiency. Re...

  1. Production of nattokinase by batch and fed-batch culture of Bacillus subtilis.

    Science.gov (United States)

    Cho, Young-Han; Song, Jae Yong; Kim, Kyung Mi; Kim, Mi Kyoung; Lee, In Young; Kim, Sang Bum; Kim, Hyeon Shup; Han, Nam Soo; Lee, Bong Hee; Kim, Beom Soo

    2010-09-30

    Nattokinase was produced by batch and fed-batch culture of Bacillus subtilis in flask and fermentor. Effect of supplementing complex media (peptone, yeast extract, or tryptone) was investigated on the production of nattokinase. In flask culture, the highest cell growth and nattokinase activity were obtained with 50 g/L of peptone supplementation. In this condition, nattokinase activity was 630 unit/ml at 12 h. In batch culture of B. subtilis in fermentor, the highest nattokinase activity of 3400 unit/ml was obtained at 10h with 50 g/L of peptone supplementation. From the batch kinetics data, it was shown that nattokinase production was growth-associated and culture should be harvested before stationary phase for maximum nattokinase production. In fed-batch culture of B. subtilis using pH-stat feeding strategy, cell growth (optical density monitored at 600 nm) increased to ca. 100 at 22 h, which was 2.5 times higher than that in batch culture. The highest nattokinase activity was 7100 unit/ml at 19 h, which was also 2.1 times higher than that in batch culture. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Engineering the Xylan Utilization System in Bacillus subtilis for Production of Acidic Xylooligosaccharides

    Science.gov (United States)

    Mun Su Rhee; Lusha Wei; Neha Sawhney; John D. Rice; Franz J. St. John; Jason C. Hurlbert; James F. Preston

    2014-01-01

    Xylans are the predominant polysaccharides in hemicelluloses and an important potential source of biofuels and chemicals. The ability of Bacillus subtilis subsp. subtilis strain 168 to utilize xylans has been ascribed to secreted glycoside hydrolase family 11 (GH11) and GH30 endoxylanases, encoded by the xynA and...

  3. Effect of Mono and Di-rhamnolipids on Biofilms Pre-formed by Bacillus subtilis BBK006.

    Science.gov (United States)

    De Rienzo, Mayri A Díaz; Martin, Peter J

    2016-08-01

    Different microbial inhibition strategies based on the planktonic bacterial physiology have been known to have limited efficacy on the growth of biofilms communities. This problem can be exacerbated by the emergence of increasingly resistant clinical strains. Biosurfactants have merited renewed interest in both clinical and hygienic sectors due to their potential to disperse microbial biofilms. In this work, we explore the aspects of Bacillus subtilis BBK006 biofilms and examine the contribution of biologically derived surface-active agents (rhamnolipids) to the disruption or inhibition of microbial biofilms produced by Bacillus subtilis BBK006. The ability of mono-rhamnolipids (Rha-C10-C10) produced by Pseudomonas aeruginosa ATCC 9027 and the di-rhamnolipids (Rha-Rha-C14-C14) produced by Burkholderia thailandensis E264, and phosphate-buffered saline to disrupt biofilm of Bacillus subtilis BBK006 was evaluated. The biofilm produced by Bacillus subtilis BBK006 was more sensitive to the di-rhamnolipids (0.4 g/L) produced by Burkholderia thailandensis than the mono-rhamnolipids (0.4 g/L) produced by Pseudomonas aeruginosa ATCC 9027. Rhamnolipids are biologically produced compounds safe for human use. This makes them ideal candidates for use in new generations of bacterial dispersal agents and useful for use as adjuvants for existing microbial suppression or eradication strategies.

  4. Development and characterization of membrane surface display system using molecular chaperon, prsA, of Bacillus subtilis

    International Nuclear Information System (INIS)

    Kim, June-Hyung; Park, In-Suk; Kim, Byung-Gee

    2005-01-01

    We report a new membrane surface display system based on molecular chaperon, prsA, of Bacillus subtilis. Clostridium thermocellum cellulase, celA, was fused to C-terminal end of PrsA. Cellulase activity of B. subtilis protoplast, which expressed PrsA-CelA was 15 times higher compared to control strain. More than 85% of total cellulase activity was observed in surface displayed format and less than 15% of total cellulase activity was found in supernatant. Flow cytometric analysis of protoplast of PrsA-CelA fusion expressing bacteria provided another proof of uniform expression of fusion protein onto cytoplasmic membrane of B. subtilis. Without lysozyme treatment, only part of cellulase activity (10%) was observed in whole cell fraction

  5. Phylogenetic Analysis of Bacillus subtilis Strains Applicable to Natto (Fermented Soybean) Production ▿

    Science.gov (United States)

    Kubo, Yuji; Rooney, Alejandro P.; Tsukakoshi, Yoshiki; Nakagawa, Rikio; Hasegawa, Hiromasa; Kimura, Keitarou

    2011-01-01

    Spore-forming Bacillus strains that produce extracellular poly-γ-glutamic acid were screened for their application to natto (fermented soybean food) fermentation. Among the 424 strains, including Bacillus subtilis and B. amyloliquefaciens, which we isolated from rice straw, 59 were capable of fermenting natto. Biotin auxotrophism was tightly linked to natto fermentation. A multilocus nucleotide sequence of six genes (rpoB, purH, gyrA, groEL, polC, and 16S rRNA) was used for phylogenetic analysis, and amplified fragment length polymorphism (AFLP) analysis was also conducted on the natto-fermenting strains. The ability to ferment natto was inferred from the two principal components of the AFLP banding pattern, and natto-fermenting strains formed a tight cluster within the B. subtilis subsp. subtilis group. PMID:21764950

  6. Evolution of exploitative interactions during diversification in Bacillus subtilis biofilms

    DEFF Research Database (Denmark)

    Dragoš, Anna; Lakshmanan, Nivedha; Martin, Marivic

    2018-01-01

    variants. These variants can settle in alternative biofilm niches and develop new types of interactions that greatly influence population productivity. Here, we explore the evolutionary diversification of pellicle biofilms of the Gram positive, spore-forming bacterium Bacillus subtilis. We discover that......-similarly to other species-B. subtilis diversifies into distinct colony variants. These variants dramatically differ in biofilm formation abilities and expression of biofilm-related genes. In addition, using a quantitative approach, we reveal striking differences in surface complexity and hydrophobicity...

  7. Fast Neutron Radiation Effects on Bacillus Subtili

    International Nuclear Information System (INIS)

    Chen Xiaoming; Zhang Jianguo; Chu Shijin; Ren Zhenglong; Zheng Chun; Yang Chengde; Tan Bisheng

    2009-01-01

    To examine the sterilizing effect and mechanism of neutron radiation, Bacillus subtilis var. niger. strain (ATCC 9372) spores were irradiated with the fast neutron from the Chinese fast burst reactor II(CFBR-II). The plate-count results indicated that the D 10 value was 384.6 Gy with a neutron radiation dose rate of 7.4 Gy/min. The rudimental catalase activity of the spores declined obviously with the increase in the radiation dose. Meanwhile, under the scanning electron microscope, no visible influence of the neutron radiation on the spore configuration was detected even if the dose was increased to 4 kGy. The content and distribution of DNA double-strand breaks induced by neutron radiation at different doses were measured and quantified by pulsed-field gel electrophoresis (PFGE). Further analysis of the DNA release percentage (PR), the DNA breakage level (L), and the average molecular weight, indicated that DNA fragments were obviously distributed around the 5 kb regions at different radiation doses, which suggests that some points in the DNA molecule were sensitive to neutron radiation. Both PR and L varied regularly to some extent with the increase in radiation dose. Thus neutron radiation has a high sterilization power, and can induce falling enzyme activity and DNA breakage in Bacillus subtilis spores

  8. Preliminary X-ray crystallographic studies of Bacillus subtilis SpeA protein

    International Nuclear Information System (INIS)

    Liu, Xiao-Yan; Lei, Jian; Liu, Xiang; Su, Xiao-Dong; Li, Lanfen

    2009-01-01

    In order to further illustrate the catalytic mechanism of arginine decarboxylase by determining the three-dimensional structure of the enzyme the speA gene was amplified from B. subtilis genomic DNA and cloned. The enzyme was expressed in Escherichia coli and purified to homogeneity by nickel-chelation chromatography followed by size-exclusion chromatography. High-quality crystals were obtained using the hanging-drop vapour-diffusion method at 298 K. The speA gene in Bacillus subtilis encodes arginine decarboxylase, which catalyzes the conversion of arginine to agmatine. Arginine decarboxylase is an important enzyme in polyamine metabolism in B. subtilis. In order to further illustrate the catalytic mechanism of arginine decarboxylase by determining the three-dimensional structure of the enzyme, the speA gene was amplified from B. subtilis genomic DNA and cloned into the expression vector pET-28a(+). SpeA was expressed in Escherichia coli and purified to homogeneity by nickel-chelation chromatography followed by size-exclusion chromatography. High-quality crystals were obtained using the hanging-drop vapour-diffusion method at 289 K. The best crystal diffracted to 2.0 Å resolution and belonged to space group P2 1 , with unit-cell parameters a = 86.4, b = 63.3 c = 103.3 Å, β = 113.9°

  9. Isolation and characterization of lipopeptide antibiotics produced by Bacillus subtilis.

    Science.gov (United States)

    Chen, H; Wang, L; Su, C X; Gong, G H; Wang, P; Yu, Z L

    2008-09-01

    Antibiotics from Bacillus subtilis JA show strong pathogen inhibition ability, which has potential market application; yet, the composition of these antibiotics has not been elucidated. The aim of this paper is to isolate and identify these antibiotics. The antagonistic activity of JA was tested in vitro; it exhibited strong inhibition against some important phytopathogens and postharvest pathogens. Crude antibiotic production was extracted with methanol from the precipitate by adding 6 mol l(-1) HCl to the bacillus-free culture broth. The crude extract was run on Diamonsil C18 column (5 microm, 250 x 4.6 mm) in HPLC system to separate the antibiotics. Major antibiotics were classified into three lipopeptide families according to electrospray ionization-mass spectrometry analysis. Subsequently, the classification of antibiotics was confirmed with typical collision-induced dissociation fragments. Three kinds of antibiotics were isolated from B. subtilis JA and were identified to the lipopeptide families, surfactin, iturin and fengycin. These compounds could function as biocontrol agents against a large spectrum of pathogens. This study provided a reliable and rapid method for isolation and structural characterization of lipopeptide antibiotics from B. subtilis.

  10. A Combinatorial Kin Discrimination System in Bacillus subtilis.

    Science.gov (United States)

    Lyons, Nicholas A; Kraigher, Barbara; Stefanic, Polonca; Mandic-Mulec, Ines; Kolter, Roberto

    2016-03-21

    Multicellularity inherently involves a number of cooperative behaviors that are potentially susceptible to exploitation but can be protected by mechanisms such as kin discrimination. Discrimination of kin from non-kin has been observed in swarms of the bacterium Bacillus subtilis, but the underlying molecular mechanism has been unknown. We used genetic, transcriptomic, and bioinformatic analyses to uncover kin recognition factors in this organism. Our results identified many molecules involved in cell-surface modification and antimicrobial production and response. These genes varied significantly in expression level and mutation phenotype among B. subtilis strains, suggesting interstrain variation in the exact kin discrimination mechanism used. Genome analyses revealed a substantial diversity of antimicrobial genes present in unique combinations in different strains, with many likely acquired by horizontal gene transfer. The dynamic combinatorial effect derived from this plethora of kin discrimination genes creates a tight relatedness cutoff for cooperation that has likely led to rapid diversification within the species. Our data suggest that genes likely originally selected for competitive purposes also generate preferential interactions among kin, thus stabilizing multicellular lifestyles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. A major protein component of the Bacillus subtilis biofilm matrix.

    Science.gov (United States)

    Branda, Steven S; Chu, Frances; Kearns, Daniel B; Losick, Richard; Kolter, Roberto

    2006-02-01

    Microbes construct structurally complex multicellular communities (biofilms) through production of an extracellular matrix. Here we present evidence from scanning electron microscopy showing that a wild strain of the Gram positive bacterium Bacillus subtilis builds such a matrix. Genetic, biochemical and cytological evidence indicates that the matrix is composed predominantly of a protein component, TasA, and an exopolysaccharide component. The absence of TasA or the exopolysaccharide resulted in a residual matrix, while the absence of both components led to complete failure to form complex multicellular communities. Extracellular complementation experiments revealed that a functional matrix can be assembled even when TasA and the exopolysaccharide are produced by different cells, reinforcing the view that the components contribute to matrix formation in an extracellular manner. Having defined the major components of the biofilm matrix and the control of their synthesis by the global regulator SinR, we present a working model for how B. subtilis switches between nomadic and sedentary lifestyles.

  12. Two Genes Encoding Uracil Phosphoribosyltransferase Are Present in Bacillus subtilis

    DEFF Research Database (Denmark)

    Martinussen, Jan; Glaser, Philippe; Andersen, Paal S.

    1995-01-01

    Uracil phosphoribosyltransferase (UPRTase) catalyzes the key reaction in the salvage of uracil in many microorganisms. Surprisingly, two genes encoding UPRTase activity were cloned from Bacillus subtilis by complementation of an Escherichia coli mutant. The genes were sequenced, and the putative...

  13. Characterization of a thermostable Bacillus subtilis β-amylase

    African Journals Online (AJOL)

    ... 70 0C respectively, and the thermal stability curve gave a maximum activity of 9.75 U at 70oC for 60 min of incubation. Bacillus subtilis â-amylase is valuable for maltose production, which can be hydrolyzed further by other groups of amylase for the production of high cassava glucose syrup used as sweeteners in the food ...

  14. Phosphorylated DegU Manipulates Cell Fate Differentiation in the Bacillus subtilis Biofilm

    Science.gov (United States)

    Marlow, Victoria L.; Porter, Michael; Hobley, Laura; Kiley, Taryn B.; Swedlow, Jason R.; Davidson, Fordyce A.

    2014-01-01

    Cell differentiation is ubiquitous and facilitates division of labor and development. Bacteria are capable of multicellular behaviors that benefit the bacterial community as a whole. A striking example of bacterial differentiation occurs throughout the formation of a biofilm. During Bacillus subtilis biofilm formation, a subpopulation of cells differentiates into a specialized population that synthesizes the exopolysaccharide and the TasA amyloid components of the extracellular matrix. The differentiation process is indirectly controlled by the transcription factor Spo0A that facilitates transcription of the eps and tapA (tasA) operons. DegU is a transcription factor involved in regulating biofilm formation. Here, using a combination of genetics and live single-cell cytological techniques, we define the mechanism of biofilm inhibition at high levels of phosphorylated DegU (DegU∼P) by showing that transcription from the eps and tapA promoter regions is inhibited. Data demonstrating that this is not a direct regulatory event are presented. We demonstrate that DegU∼P controls the frequency with which cells activate transcription from the operons needed for matrix biosynthesis in favor of an off state. Subsequent experimental analysis led us to conclude that DegU∼P functions to increase the level of Spo0A∼P, driving cell fate differentiation toward the terminal developmental process of sporulation. PMID:24123822

  15. Multiple regulatory systems coordinate DNA replication with cell growth in Bacillus subtilis.

    Science.gov (United States)

    Murray, Heath; Koh, Alan

    2014-10-01

    In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes.

  16. On the use of a probiotic (Bacillus subtilis - strain DSM 17299 as growth promoter in broiler diets

    Directory of Open Access Journals (Sweden)

    M Opalinski

    2007-06-01

    Full Text Available The objective of this experiment was to evaluate the effect of a probiotic (Bacillus subtilis, strain DSM 17299 in broiler diets on feed intake, weight gain, and feed conversion ratio. The experiment included 1,200 male Ross broilers from 1 to 42 days of age. Birds were randomly allocated to 4 treatments, with 10 replicates of 30 birds. The following treatments were applied: T1 - Negative Control (basal diet, with no added growth promoter; T2 - Negative Control + Bacillus subtilis (8 x 10(5 CFUs/g feed; T3 - Negative Control + Bacillus subtilis (3 x 10(5 CFUs/ g de feed and T4 - Positive Control (avilamycin + anticoccidial from 1 to 35 days of age. At 21, 35, and 42 days of age, there was an increase of antibiotic-free diet intake as compared to the diets with growth promoters (p0.05. The use of growth promoter did not improve weight gain at the studied ages. There was a marked improvement in the feed conversion ratio of broilers fed the diet with antibiotics and of broilers fed the diet with added B. subtilis. It is concluded that the Bacillus subtilis probiotic can be used as a growth promoter in broiler diets.

  17. Transformation of undomesticated strains of Bacillus subtilis by protoplast electroporation

    NARCIS (Netherlands)

    Romero, Diego; Perez-Garcia, Alejandro; Veening, Jan-Willem; de Vicente, Antonio; Kuipers, Oscar P.; de, Vicente A.

    A rapid method combining the use of protoplasts and electroporation was developed to transform recalcitrant wild strains of Bacillus subtilis. The method described here allows transformation with both replicative and integrative plasmids, as well as with chromosomal DNA, and provides a valuable tool

  18. Enhanced dipicolinic acid production during the stationary phase in Bacillus subtilis by blocking acetoin synthesis.

    Science.gov (United States)

    Toya, Yoshihiro; Hirasawa, Takashi; Ishikawa, Shu; Chumsakul, Onuma; Morimoto, Takuya; Liu, Shenghao; Masuda, Kenta; Kageyama, Yasushi; Ozaki, Katsuya; Ogasawara, Naotake; Shimizu, Hiroshi

    2015-01-01

    Bacterial bio-production during the stationary phase is expected to lead to a high target yield because the cells do not consume the substrate for growth. Bacillus subtilis is widely used for bio-production, but little is known about the metabolism during the stationary phase. In this study, we focused on the dipicolinic acid (DPA) production by B. subtilis and investigated the metabolism. We found that DPA production competes with acetoin synthesis and that acetoin synthesis genes (alsSD) deletion increases DPA productivity by 1.4-fold. The mutant showed interesting features where the glucose uptake was inhibited, whereas the cell density increased by approximately 50%, resulting in similar volumetric glucose consumption to that of the parental strain. The metabolic profiles revealed accumulation of pyruvate, acetyl-CoA, and the TCA cycle intermediates in the alsSD mutant. Our results indicate that alsSD-deleted B. subtilis has potential as an effective host for stationary-phase production of compounds synthesized from these intermediates.

  19. The Bacillus subtilis GntR family repressor YtrA responds to cell wall antibiotics.

    Science.gov (United States)

    Salzberg, Letal I; Luo, Yun; Hachmann, Anna-Barbara; Mascher, Thorsten; Helmann, John D

    2011-10-01

    The transglycosylation step of cell wall synthesis is a prime antibiotic target because it is essential and specific to bacteria. Two antibiotics, ramoplanin and moenomycin, target this step by binding to the substrate lipid II and the transglycosylase enzyme, respectively. Here, we compare the ramoplanin and moenomycin stimulons in the Gram-positive model organism Bacillus subtilis. Ramoplanin strongly induces the LiaRS two-component regulatory system, while moenomycin almost exclusively induces genes that are part of the regulon of the extracytoplasmic function (ECF) σ factor σ(M). Ramoplanin additionally induces the ytrABCDEF and ywoBCD operons, which are not part of a previously characterized antibiotic-responsive regulon. Cluster analysis reveals that these two operons are selectively induced by a subset of cell wall antibiotics that inhibit lipid II function or recycling. Repression of both operons requires YtrA, which recognizes an inverted repeat in front of its own operon and in front of ywoB. These results suggest that YtrA is an additional regulator of cell envelope stress responses.

  20. Repeated triggering of sporulation in Bacillus subtilis selects against a protein that affects the timing of cell division

    NARCIS (Netherlands)

    Siebring, Jeroen; Elema, Matthijs J. H.; Vega, Fatima Drubi; Kovacs, Akos T.; Haccou, Patsy; Kuipers, Oscar P.

    Bacillus subtilis sporulation is a last-resort phenotypical adaptation in response to starvation. The regulatory network underlying this developmental pathway has been studied extensively. However, how sporulation initiation is concerted in relation to the environmental nutrient availability is

  1. Antioxidation, angiotensin converting enzyme inhibition activity, nattokinase, and antihypertension of Bacillus subtilis (natto)-fermented pigeon pea

    OpenAIRE

    Bao-Hong Lee; Yi-Syuan Lai; She-Ching Wu

    2015-01-01

    Because of the high incidence of cardiovascular diseases in Asian countries, traditional fermented foods from Asia have been increasingly investigated for antiatherosclerotic effects. This study investigated the production of nattokinase, a serine fibrinolytic enzyme, in pigeon pea by Bacillus subtilis fermentation. B. subtilis 14714, B. subtilis 14715, B. subtilis 14716, and B. subtilis 14718 were employed to produce nattokinase. The highest nattokinase activity in pigeon pea was obtained us...

  2. Analysis of Spo0M function in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Luz Adriana Vega-Cabrera

    Full Text Available Spo0M has been previously reported as a regulator of sporulation in Bacillus subtilis; however, little is known about the mechanisms through which it participates in sporulation, and there is no information to date that relates this protein to other processes in the bacterium. In this work we present evidence from proteomic, protein-protein interaction, morphological, subcellular localization microscopy and bioinformatics studies which indicate that Spo0M function is not necessarily restricted to sporulation, and point towards its involvement in other stages of the vegetative life cycle. In the current study, we provide evidence that Spo0M interacts with cytoskeletal proteins involved in cell division, which suggest a function additional to that previously described in sporulation. Spo0M expression is not restricted to the transition phase or sporulation; rather, its expression begins during the early stages of growth and Spo0M localization in B. subtilis depends on the bacterial life cycle and could be related to an additional proposed function. This is supported by our discovery of homologs in a broad distribution of bacterial genera, even in non-sporulating species. Our work paves the way for re-evaluation of the role of Spo0M in bacterial cell.

  3. High-level expression and characterization of the Bacillus subtilis subsp. subtilis str. BSP1 YwaD aminopeptidase in Pichia pastoris.

    Science.gov (United States)

    Tang, Wei; Li, Zhezhe; Li, Chunhua; Yu, Xianhong; Wang, Fei; Wan, Xin; Wang, Yaping; Ma, Lixin

    2016-06-01

    Aminopeptidases are widely used for creating protein hydrolysates and peptide sequencing. The ywaD gene from a new Bacillus isolate, named Bacillus subtilis subsp. subtilis str. BSP1, was cloned into the yeast expression vector pHBM905A and expressed and secreted by Pichia pastoris strain GS115. The deduced amino acid sequence of the aminopeptidase encoded by the ywaD gene shared up to 98% identity with aminopeptidases from B. subtilis strains 168 and zj016. The yield (3.81 g/l) and specific activity (788 U/mg) of recombinant YwaD in high-density fermentation were extremely high. And 829.83 mg of the purified enzyme (4089.72 U/mg) were harvested. YwaD was glycosylated, and its activity decreased after deglycosylation, which was similar to that of the aminopeptidase from B. subtilis strain zj016. YwaD was most active toward l-arginine-4-nitroanilide. Moreover, it exhibited high resistance to carbamide, which was not true for aminopeptidases from B. subtilis strains 168 and zj016, which could simplify the purification of YwaD. Moreover, the expression and parts of characterization of the aminopeptidase from B. subtilis strain 168 in Pichia pastoris were added as supplementary material. The sequence and other characteristics of YwaD were compared with those of aminopeptidases from B. subtilis strains 168 and zj016, and they will provide a solid foundation for further research on the influence of amino acid mutations on the function of aminopeptidases. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Severe hepatotoxicity following ingestion of Herbalife nutritional supplements contaminated with Bacillus subtilis.

    Science.gov (United States)

    Stickel, Felix; Droz, Sara; Patsenker, Eleonora; Bögli-Stuber, Katja; Aebi, Beat; Leib, Stephen L

    2009-01-01

    Nutritional supplements are widely used. Recently, liver injury after consumption of Herbalife preparations was reported but the underlying pathogenesis remained cryptic. Two patients presented with cholestatic hepatitis and pruritus, and cirrhosis, respectively. Viral, alcoholic, metabolic, autoimmune, neoplastic, vascular liver diseases and synthetic drugs as the precipitating causes of liver injury were excluded. However, both patients reported long-term consumption of Herbalife products. All Herbalife products were tested for contamination with drugs, pesticides, heavy metals, and softeners, and examined for microbial contamination according to standard laboratory procedures. Bacteria isolated from the samples were identified as Bacillus subtilis by sequencing the 16S rRNA and gyrB genes. Causality between consumption of Herbalife products and disease according to CIOMS was scored "probable" in both cases. Histology showed cholestatic and lobular/portal hepatitis with cirrhosis in one patient, and biliary fibrosis with ductopenia in the other. No contamination with chemicals or heavy metals was detected, and immunological testing showed no drug hypersensitivity. However, samples of Herbalife products ingested by both patients showed growth of Bacillus subtilis of which culture supernatants showed dose- and time-dependent hepatotoxicity. Two novel incidents of severe hepatic injury following intake of Herbalife products contaminated with Bacillus subtilis emphasize its potential hepatotoxicity.

  5. Effects of water chemistry and surface contact on the toxicity of silver nanoparticles to Bacillus subtilis.

    Science.gov (United States)

    Yi, Jun; Cheng, Jinping

    2017-07-01

    The growing use of silver nanoparticles (AgNPs) has created concerns about its potential impacts on natural microbial communities. In this study, the physicochemical properties of AgNPs and its toxicity on natural bacteria Bacillus subtilis (B. subtilis) were investigated in aqueous conditions. The characterization data showed that AgNPs highly aggregated in aqueous conditions, and the hydrodynamic diameter of AgNPs in aqueous conditions was larger than its primary size. The studied AgNPs was less toxic to B. subtilis in estuarine water as compared to that in Milli-Q water and artificial seawater, which might be due to the observed enhanced aggregation of AgNPs in estuarine water. The toxicity of AgNPs to B. subtilis was greatly reduced when their surface contact was blocked by a dialysis membrane. Scanning electron microscope images showed that exposure contact to AgNPs resulted in damage of the microbial cell wall and enhanced formation of fibrillar structures. These results suggest that particle-cell contact is largely responsible for the observed toxicity of AgNPs in B. subtilis. This study can help to understand the potential impacts of AgNPs to natural microbes, especially in the complex aquatic environments.

  6. Role of enzymes of homologous recombination in illegitimate plasmid recombination in Bacillus subtilis

    NARCIS (Netherlands)

    Meima, R; Haijema, BJ; Haan, GJ; Venema, G; Bron, S

    The structural stability of plasmid pGP1, which encodes a fusion between the penicillinase gene (penP) of Bacillus licheniformis and the Escherichia coli lacZ gene, was investigated in Bacillus subtilis strains expressing mutated subunits of the ATP-dependent nuclease, AddAB, and strains lacking the

  7. The Bacillus subtilis Acyl Lipid Desaturase Is a Δ5 Desaturase

    Science.gov (United States)

    Altabe, Silvia G.; Aguilar, Pablo; Caballero, Gerardo M.; de Mendoza, Diego

    2003-01-01

    Bacillus subtilis was recently reported to synthesize unsaturated fatty acids (UFAs) with a double bond at positions Δ5, Δ7, and Δ9 (M. H. Weber, W. Klein, L. Muller, U. M. Niess, and M. A. Marahiel, Mol. Microbiol. 39:1321-1329, 2001). Since this finding would have considerable importance in the double-bond positional specificity displayed by the B. subtilis acyl lipid desaturase, we have attempted to confirm this observation. We report that the double bond of UFAs synthesized by B. subtilis is located exclusively at the Δ5 position, regardless of the growth temperature and the length chain of the fatty acids. PMID:12730185

  8. In Bacillus subtilis, the SatA (Formerly YyaR) Acetyltransferase Detoxifies Streptothricin via Lysine Acetylation.

    Science.gov (United States)

    Burckhardt, Rachel M; Escalante-Semerena, Jorge C

    2017-11-01

    Soil is a complex niche, where survival of microorganisms is at risk due to the presence of antimicrobial agents. Many microbes chemically modify cytotoxic compounds to block their deleterious effects. Streptothricin is a broad-spectrum antibiotic produced by streptomycetes that affects Gram-positive and Gram-negative bacteria alike. Here we identify the SatA (for s treptothricin a ce t yltransferase A , formerly YyaR) enzyme of Bacillus subtilis as the mechanism used by this soil bacterium to detoxify streptothricin. B. subtilis strains lacking satA were susceptible to streptothricin. Ectopic expression of satA + restored streptothricin resistance to B. subtilis satA ( Bs SatA) strains. Purified Bs SatA acetylated streptothricin in vitro at the expense of acetyl-coenzyme A (acetyl-CoA). A single acetyl moiety transferred onto streptothricin by SatA blocked the toxic effects of the antibiotic. SatA bound streptothricin with high affinity ( K d [dissociation constant] = 1 μM), and did not bind acetyl-CoA in the absence of streptothricin. Expression of B. subtilis satA + in Salmonella enterica conferred streptothricin resistance, indicating that SatA was necessary and sufficient to detoxify streptothricin. Using this heterologous system, we showed that the SatA homologue from Bacillus anthracis also had streptothricin acetyltransferase activity. Our data highlight the physiological relevance of lysine acetylation for the survival of B. subtilis in the soil. IMPORTANCE Experimental support is provided for the functional assignment of gene products of the soil-dwelling bacilli Bacillus subtilis and Bacillus anthracis This study focuses on one enzyme that is necessary and sufficient to block the cytotoxic effects of a common soil antibiotic. The enzyme alluded to is a member of a family of proteins that are broadly distributed in all domains of life but poorly studied in B. subtilis and B. anthracis The initial characterization of the enzyme provides insights into its

  9. Antioxidation, angiotensin converting enzyme inhibition activity, nattokinase, and antihypertension of Bacillus subtilis (natto)-fermented pigeon pea.

    Science.gov (United States)

    Lee, Bao-Hong; Lai, Yi-Syuan; Wu, She-Ching

    2015-12-01

    Because of the high incidence of cardiovascular diseases in Asian countries, traditional fermented foods from Asia have been increasingly investigated for antiatherosclerotic effects. This study investigated the production of nattokinase, a serine fibrinolytic enzyme, in pigeon pea by Bacillus subtilis fermentation. B. subtilis 14714, B. subtilis 14715, B. subtilis 14716, and B. subtilis 14718 were employed to produce nattokinase. The highest nattokinase activity in pigeon pea was obtained using B. subtilis 14715 fermentation for 32 hours. In addition, the levels of antioxidants (phenolics and flavonoids) and angiotensin converting enzyme inhibitory activity were increased in B. subtilis 14715-fermented pigeon pea, compared with those in nonfermented pigeon pea. In an animal model, we found that both water extracts of pigeon pea (100 mg/kg body weight) and water extracts of B. subtilis-fermented pigeon pea (100 mg/kg body weight) significantly improved systolic blood pressure (21 mmHg) and diastolic blood pressure (30 mmHg) in spontaneously hypertensive rats. These results suggest that Bacillus-fermented pigeon pea has benefits for cardiovascular health and can be developed as a new dietary supplement or functional food that prevents hypertension. Copyright © 2015. Published by Elsevier B.V.

  10. Antioxidation, angiotensin converting enzyme inhibition activity, nattokinase, and antihypertension of Bacillus subtilis (natto-fermented pigeon pea

    Directory of Open Access Journals (Sweden)

    Bao-Hong Lee

    2015-12-01

    Full Text Available Because of the high incidence of cardiovascular diseases in Asian countries, traditional fermented foods from Asia have been increasingly investigated for antiatherosclerotic effects. This study investigated the production of nattokinase, a serine fibrinolytic enzyme, in pigeon pea by Bacillus subtilis fermentation. B. subtilis 14714, B. subtilis 14715, B. subtilis 14716, and B. subtilis 14718 were employed to produce nattokinase. The highest nattokinase activity in pigeon pea was obtained using B. subtilis 14715 fermentation for 32 hours. In addition, the levels of antioxidants (phenolics and flavonoids and angiotensin converting enzyme inhibitory activity were increased in B. subtilis 14715-fermented pigeon pea, compared with those in nonfermented pigeon pea. In an animal model, we found that both water extracts of pigeon pea (100 mg/kg body weight and water extracts of B. subtilis-fermented pigeon pea (100 mg/kg body weight significantly improved systolic blood pressure (21 mmHg and diastolic blood pressure (30 mmHg in spontaneously hypertensive rats. These results suggest that Bacillus-fermented pigeon pea has benefits for cardiovascular health and can be developed as a new dietary supplement or functional food that prevents hypertension.

  11. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis

    KAUST Repository

    Li, Yongxin

    2015-03-24

    Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning plug-and-playa approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus.

  12. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis

    Science.gov (United States)

    Li, Yongxin; Li, Zhongrui; Yamanaka, Kazuya; Xu, Ying; Zhang, Weipeng; Vlamakis, Hera; Kolter, Roberto; Moore, Bradley S.; Qian, Pei-Yuan

    2015-03-01

    Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning ``plug-and-play'' approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus.

  13. Enzyme activities and antibiotic susceptibility of colonial variants of Bacillus subtilis and Bacillus licheniformis.

    OpenAIRE

    Carlisle, G E; Falkinham, J O

    1989-01-01

    A nonmucoid colonial variant of a mucoid Bacillus subtilis strain produced less amylase activity and a transparent colonial variant of a B. licheniformis strain produced less protease activity compared with their parents. Antibiotic susceptibility patterns of the colonial variants differed, and increased resistance to beta-lactam antibiotics was correlated with increased production of extracellular beta-lactamase.

  14. Degradation of extracytoplasmic catalysts for protein folding in Bacillus subtilis

    NARCIS (Netherlands)

    Krishnappa, Laxmi; Monteferrante, Carmine G; Neef, Jolanda; Dreisbach, Annette; van Dijl, Jan Maarten

    The general protein secretion pathway of Bacillus subtilis has a high capacity for protein export from the cytoplasm, which is exploited in the biotechnological production of a wide range of enzymes. These exported proteins pass the membrane in an unfolded state, and accordingly, they have to fold

  15. Thermosensitive mutant of Bacillus subtilis deficient in uracil and cell division

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, K; Some, H; Tamura, G

    1976-01-01

    Thermonsensitive division mutants were derived from Bacillus subtilis Marburg 168 thy trp/sub 2/ by means of membrane filtration after nitrosoguanidine mutagenesis. Among them, ts42 requiring uracil for normal growth at 48/sup 0/C was investigated. In the absence of uracil, the mutant cells grew normally at 37/sup 0/C and stopped dividing after temperature shift to 48/sup 0/C resulting in filaments of two to four times length of normal rods. The total cell number after the temperature shift increased two to three fold in 90 min and remained constant thereafter. The viable count after the temperature shift to 48/sup 0/C, increased 1.5 to 2 fold in initial 60 min and then decreased exponentially. A rapid restoration of colony forming ability was shown when the mutant cells were shifted back to the permissive temperature after 120 to 180 min of incubation at 48/sup 0/C or when uracil was introduced to the culture at 48/sup 0/C. This recovery of viability was partly observed even in the presence of chloramphenicol. The synthesis of RNA of this mutant was shown to decline 20 min after the temperature shift to 48/sup 0/C whereas the syntheses of DNA and protein proceeded for more than 80 min at that temperature. No newly isolated uracil requiring mutants formed filaments in the medium lacking uracil or showed growth pattern like ts42.

  16. A singular enzymatic megacomplex from Bacillus subtilis.

    Science.gov (United States)

    Straight, Paul D; Fischbach, Michael A; Walsh, Christopher T; Rudner, David Z; Kolter, Roberto

    2007-01-02

    Nonribosomal peptide synthetases (NRPS), polyketide synthases (PKS), and hybrid NRPS/PKS are of particular interest, because they produce numerous therapeutic agents, have great potential for engineering novel compounds, and are the largest enzymes known. The predicted masses of known enzymatic assembly lines can reach almost 5 megadaltons, dwarfing even the ribosome (approximately 2.6 megadaltons). Despite their uniqueness and importance, little is known about the organization of these enzymes within the native producer cells. Here we report that an 80-kb gene cluster, which occupies approximately 2% of the Bacillus subtilis genome, encodes the subunits of approximately 2.5 megadalton active hybrid NRPS/PKS. Many copies of the NRPS/PKS assemble into a single organelle-like membrane-associated complex of tens to hundreds of megadaltons. Such an enzymatic megacomplex is unprecedented in bacterial subcellular organization and has important implications for engineering novel NRPS/PKSs.

  17. The sensitivity of Bacillus subtilis to diverse antimicrobial compounds is influenced by Abh.

    Science.gov (United States)

    Murray, Ewan J; Stanley-Wall, Nicola R

    2010-12-01

    Abh is a transition state regulator of Bacillus subtilis that controls biofilm formation and the production of several diverse antimicrobial compounds. Using a high-throughput non-biased technique, we show for the first time that Abh influences the sensitivity of B. subtilis to diverse antimicrobial compounds. Following up on these findings with a combination of classical genetics and antibiotic susceptibility assays, we demonstrate that Abh influences cellular processes such as the remodelling of the cell wall. We present data demonstrating that the extracytoplasmic function sigma factor σ(X) controls resistance to β-lactam antibiotics by activating abh transcription. Downstream from Abh, activation of slrR expression by Abh is responsible for controlling the sensitivity of B. subtilis to such antibiotics due to the role that SlrR plays in regulating autolysin biosynthesis. The abh mutant additionally exhibits increased resistance to aminoglycoside antimicrobials. We confirm that aminoglycoside killing of B. subtilis is likely to be caused by oxidative damage but rule out the possibility that the increased resistance of the abh mutant to aminoglycosides is due to a general increase in resistance to oxidative stress.

  18. Metabolic pathway analysis and kinetic studies for production of nattokinase in Bacillus subtilis.

    Science.gov (United States)

    Unrean, Pornkamol; Nguyen, Nhung H A

    2013-01-01

    We have constructed a reaction network model of Bacillus subtilis. The model was analyzed using a pathway analysis tool called elementary mode analysis (EMA). The analysis tool was used to study the network capabilities and the possible effects of altered culturing conditions on the production of a fibrinolytic enzyme, nattokinase (NK) by B. subtilis. Based on all existing metabolic pathways, the maximum theoretical yield for NK synthesis in B. subtilis under different substrates and oxygen availability was predicted and the optimal culturing condition for NK production was identified. To confirm model predictions, experiments were conducted by testing these culture conditions for their influence on NK activity. The optimal culturing conditions were then applied to batch fermentation, resulting in high NK activity. The EMA approach was also applied for engineering B. subtilis metabolism towards the most efficient pathway for NK synthesis by identifying target genes for deletion and overexpression that enable the cell to produce NK at the maximum theoretical yield. The consistency between experiments and model predictions proves the feasibility of EMA being used to rationally design culture conditions and genetic manipulations for the efficient production of desired products.

  19. Mutation Induction with UV- and X-radiations in spores and vegetative cells of Bacillus subtilis

    International Nuclear Information System (INIS)

    Tanooka, H.; Munakata, N.; Kitahara, S.

    1978-01-01

    Spores and vegetative cells of Bacillus subtilis strains with various defects in DNA-repair capacities (hcr - , ssp - , hcr - ssp - ) were irradiated with UV radiation or X-rays. Induced mutation frequency was determined from the observed frequency of prototrophic reversion of a suppressible auxotropic mutation. At equal physical dose, after either UV- or X-irradiation, spores were more resistant to mutations as well as to killing than were vegetative cells. However, quantitative comparison revealed that, at equally lethal doses, spores and vegetative cells were almost equally mutable by X-rays whereas spores were considerably less mutable by UV than were vegetative cells. Thus, as judged from their mutagenic efficiency relative to the lethality, X-ray-induced damage in the spore DNA and the vegetative DNA were equally mutagenic, while UV-induced DNA photoproducts in the spore were less mutagenic than those in vegetative cells. Post-treatment of UV-irradiated cells with caffeine decreased the survival and the induced mutation frequency for either spores or vegetative cells for all the strains. In X-irradiated spores however, a similar suppressing effect of caffeine was observed only for mutability of a strain lacking DNA polymerase I activity

  20. Tryptophan provision by dietary supplementation of a Bacillus subtilis mutant strain in piglets

    DEFF Research Database (Denmark)

    Torres-Pitarch, A; Nielsen, B.; Canibe, Nuria

    2015-01-01

    Supplementing Bacillus (B.) subtilis mutants selected to overproduce a specific amino acid (AA) may be an alternative method to provide essential AA in pig diets. Two experiments on a B. subtilis strain selected to overproduce Trp were conducted using 8-kg pigs fed Trp-deficient diets for 20 d. B....... subtilis were supplied in a low or high dose in Experiments 1 and 2, respectively. The Trp-deficient diet (0.15 SID Trp:Lys) reduced (p subtilis strain was not able...... to counterbalance the Trp deficiency in any of the two experiments. No effect of B. subtilis supplementation to piglet diets was observed on the plasma AA profile. In conclusion, this mutant strain of B. subtilis was not able to compensate a Trp deficiency in the tested doses....

  1. DNA Repair and Genome Maintenance in Bacillus subtilis

    Science.gov (United States)

    Lenhart, Justin S.; Schroeder, Jeremy W.; Walsh, Brian W.

    2012-01-01

    Summary: From microbes to multicellular eukaryotic organisms, all cells contain pathways responsible for genome maintenance. DNA replication allows for the faithful duplication of the genome, whereas DNA repair pathways preserve DNA integrity in response to damage originating from endogenous and exogenous sources. The basic pathways important for DNA replication and repair are often conserved throughout biology. In bacteria, high-fidelity repair is balanced with low-fidelity repair and mutagenesis. Such a balance is important for maintaining viability while providing an opportunity for the advantageous selection of mutations when faced with a changing environment. Over the last decade, studies of DNA repair pathways in bacteria have demonstrated considerable differences between Gram-positive and Gram-negative organisms. Here we review and discuss the DNA repair, genome maintenance, and DNA damage checkpoint pathways of the Gram-positive bacterium Bacillus subtilis. We present their molecular mechanisms and compare the functions and regulation of several pathways with known information on other organisms. We also discuss DNA repair during different growth phases and the developmental program of sporulation. In summary, we present a review of the function, regulation, and molecular mechanisms of DNA repair and mutagenesis in Gram-positive bacteria, with a strong emphasis on B. subtilis. PMID:22933559

  2. The transcriptionally active regions in the genome of Bacillus subtilis

    DEFF Research Database (Denmark)

    Rasmussen, Simon; Nielsen, Henrik Bjørn; Jarmer, Hanne Østergaard

    2009-01-01

    The majority of all genes have so far been identified and annotated systematically through in silico gene finding. Here we report the finding of 3662 strand-specific transcriptionally active regions (TARs) in the genome of Bacillus subtilis by the use of tiling arrays. We have measured the genome...

  3. bmr3, a third multidrug transporter gene of Bacillus subtilis.

    OpenAIRE

    Ohki, R; Murata, M

    1997-01-01

    A third multidrug transporter gene named bmr3 was cloned from Bacillus subtilis. Although Bmr3 shows relatively low homology to Bmr and Blt, the substrate specificities of these three transporters overlap. Northern hybridization analysis showed that expression of the bmr3 gene was dependent on the growth phase.

  4. SpoVT: From Fine-Tuning Regulator in Bacillus subtilis to Essential Sporulation Protein in Bacillus cereus.

    Science.gov (United States)

    Eijlander, Robyn T; Holsappel, Siger; de Jong, Anne; Ghosh, Abhinaba; Christie, Graham; Kuipers, Oscar P

    2016-01-01

    Sporulation is a highly sophisticated developmental process adopted by most Bacilli as a survival strategy to withstand extreme conditions that normally do not support microbial growth. A complicated regulatory cascade, divided into various stages and taking place in two different compartments of the cell, involves a number of primary and secondary regulator proteins that drive gene expression directed toward the formation and maturation of an endospore. Such regulator proteins are highly conserved among various spore formers. Despite this conservation, both regulatory and phenotypic differences are observed between different species of spore forming bacteria. In this study, we demonstrate that deletion of the regulatory sporulation protein SpoVT results in a severe sporulation defect in Bacillus cereus , whereas this is not observed in Bacillus subtilis . Although spores are initially formed, the process is stalled at a later stage in development, followed by lysis of the forespore and the mother cell. A transcriptomic investigation of B. cereus Δ spoVT shows upregulation of genes involved in germination, potentially leading to premature lysis of prespores formed. Additionally, extreme variation in the expression of species-specific genes of unknown function was observed. Introduction of the B. subtilis SpoVT protein could partly restore the sporulation defect in the B. cereus spoVT mutant strain. The difference in phenotype is thus more than likely explained by differences in promoter targets rather than differences in mode of action of the conserved SpoVT regulator protein. This study stresses that evolutionary variances in regulon members of sporulation regulators can have profound effects on the spore developmental process and that mere protein homology is not a foolproof predictor of similar phenotypes.

  5. Cloning and enhancing production of a detergent- and organic-solvent-resistant nattokinase from Bacillus subtilis VTCC-DVN-12-01 by using an eight-protease-gene-deficient Bacillus subtilis WB800.

    Science.gov (United States)

    Nguyen, Thao Thi; Quyen, Thi Dinh; Le, Hoang Thanh

    2013-09-10

    Nattokinases/Subtilisins (EC 3.4.21.62) belong to the second large family of serine proteases, which gain significant attention and play important role in many biotechnology processes. Thus, a number of nattokinases/subtilisins from various Bacillus species, especially from B. subtilis strains, extensively have been investigated to understand their biochemical and physical properties as well as to improve the production for industrial application. The purpose of this study was to clone a nattokinase gene from Bacillus subtilis strain VTCC-DVN-12-01, enhance its production in B. subtilis WB800, which is deficient in eight extracellular proteases and characterize its physicochemical properties for potential application in organic synthesis and detergent production. A gene coding for the nattokinase (Nk) from B. subtilis strain VTCC-DVN-12-01 consisted of an ORF of 1146 nucleotides, encoding a pre-pro-protein enzyme (30-aa pre-signal peptide, 76-aa pro-peptide and 275-aa mature protein with a predicted molecular mass of 27.7 kDa and pI 6.6). The nattokinase showed 98-99% identity with other nattokinases/subtilisins from B. subtilis strains in GenBank. Nk was expressed in B. subtilis WB800 under the control of acoA promoter at a high level of 600 mg protein per liter culture medium which is highest yield of proteins expressed in any extracellular-protease-deficient B. subtilis system till date. Nk was purified to homogeneity with 3.25 fold purification, a specific activity of 12.7 U/mg, and a recovery of 54.17%. The purified Nk was identified by MALDI-TOF mass spectrometry through three peptides, which showed 100% identity to corresponding peptides of the B. subtilis nattokinase (CAC41625). An optimal activity for Nk was observed at 65 °C and pH 9. The nattokinase was stable at temperature up to 50 °C and in pH range of 5-11 and retained more than 85% of its initial activity after incubation for 1 h. Mg2+ activated Nk up to 162% of its activity. The addition of

  6. Multiple regulatory systems coordinate DNA replication with cell growth in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Heath Murray

    2014-10-01

    Full Text Available In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes.

  7. Multiple Regulatory Systems Coordinate DNA Replication with Cell Growth in Bacillus subtilis

    Science.gov (United States)

    Murray, Heath; Koh, Alan

    2014-01-01

    In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes. PMID:25340815

  8. Bacillus subtilis Biofilm Development – A Computerized Study of Morphology and Kinetics

    Directory of Open Access Journals (Sweden)

    Sarah Gingichashvili

    2017-11-01

    Full Text Available Biofilm is commonly defined as accumulation of microbes, embedded in a self-secreted extra-cellular matrix, on solid surfaces or liquid interfaces. In this study, we analyze several aspects of Bacillus subtilis biofilm formation using tools from the field of image processing. Specifically, we characterize the growth kinetics and morphological features of B. subtilis colony type biofilm formation and compare these in colonies grown on two different types of solid media. Additionally, we propose a model for assessing B. subtilis biofilm complexity across different growth conditions. GFP-labeled B. subtilis cells were cultured on agar surfaces over a 4-day period during which microscopic images of developing colonies were taken at equal time intervals. The images were used to perform a computerized analysis of few aspects of biofilm development, based on features that characterize the different phenotypes of B. subtilis colonies. Specifically, the analysis focused on the segmented structure of the colonies, consisting of two different regions of sub-populations that comprise the biofilm – a central “core” region and an “expanding” region surrounding it. Our results demonstrate that complex biofilm of B. subtillis grown on biofilm-promoting medium [standard lysogeny broth (LB supplemented with manganese and glycerol] is characterized by rapidly developing three-dimensional complex structure observed at its core compared to biofilm grown on standard LB. As the biofilm develops, the core size remains largely unchanged during development and colony expansion is mostly attributed to the expansion in area of outer cell sub-populations. Moreover, when comparing the bacterial growth on biofilm-promoting agar to that of colonies grown on LB, we found a significant decrease in the GFP production of colonies that formed a more complex biofilm. This suggests that complex biofilm formation has a diminishing effect on cell populations at the biofilm

  9. GLYCOGEN IN BACILLUS-SUBTILIS - MOLECULAR CHARACTERIZATION OF AN OPERON ENCODING ENZYMES INVOLVED IN GLYCOGEN BIOSYNTHESIS AND DEGRADATION

    NARCIS (Netherlands)

    KIEL, JAKW; BOELS, JM; BELDMAN, G; VENEMA, G

    Although it has never been reported that Bacillus subtilis is capable of accumulating glycogen, we have isolated a region from the chromosome of B. subtilis containing a glycogen operon. The operon is located directly downstream from trnB, which maps at 275 degrees on the B. subtilis chromosome. It

  10. Immune responses induced by recombinant Bacillus subtilis expressing the spike protein of transmissible gastroenteritis virus in pigs.

    Science.gov (United States)

    Mou, Chunxiao; Zhu, Liqi; Xing, Xianping; Lin, Jian; Yang, Qian

    2016-07-01

    Transmissible gastroenteritis (TGE) causes severe diarrhea in suckling piglets, results in enormous economic loss in swine-producing areas of the world. To develop an effective, safe, and convenient vaccine for the prevention of TGE, we have constructed a recombinant Bacillus subtilis strain (B. subtilis CotGSG) displaying the transmissible gastroenteritis virus (TGEV) spike (S) protein and discussed its immune function to intestinal submucosal dendritic cells (DCs). Our results showed that the recombinant B. subtilis had the ability to recruit more DCs to sample B. subtilis CotGSG, migrate to MLNs, and induce immune responses. Immunized piglets with B. subtilis CotGSG could significantly elevate the specific SIgA titers in feces, IgG titers and neutralizing antibodies in serum. Collectively, our results suggested that recombinant B. subtilis CotGSG expressing the TGEV S protein could effectively induce immune responses via DCs, and provided a perspective on potential novel strategy and approach that may be applicable to the development of the next generation of TGEV vaccines. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Preparation, crystallization and preliminary X-ray analysis of YjcG protein from Bacillus subtilis

    International Nuclear Information System (INIS)

    Li, Dan; Chan, Chiomui; Liang, Yu-He; Zheng, Xiaofeng; Li, Lanfen; Su, Xiao-Dong

    2005-01-01

    B. subtilis YjcG protein was expressed, purified and crystallized. A complete diffraction data set was collected at BSRF beamline 3W1A and processed to 2.3 Å resolution. Bacillus subtilis YjcG is a functionally uncharacterized protein with 171 residues that has no structural homologue in the Protein Data Bank. However, it shows sequence homology to bacterial and archaeal 2′–5′ RNA ligases. In order to identify its exact function via structural studies, the yjcG gene was amplified from B. subtilis genomic DNA and cloned into the expression vector pET21-DEST. The protein was expressed in a soluble form in Escherichia coli and was purified to homogeneity. Crystals suitable for X-ray analysis were obtained that diffracted to 2.3 Å and belonged to space group C2, with unit-cell parameters a = 99.66, b = 73.93, c = 61.77 Å, β = 113.56°

  12. Production, regulation and transportation of bacillibactin in bacillus subtilis

    International Nuclear Information System (INIS)

    Raza, W.; Hussain, Q.; Shen, Q.

    2012-01-01

    Bacillus subtilis produces a catecholate type siderophore 'Bacillibactin'. This review focuses on the non-ribosomal synthesis, transport and regulation of bacillibactin. Bacillibactin biosynthetic operon contains five genes (dhbACEBF). The uptake of bacillibactin requires the FeuABC transporter, inner-membrane permease, FepDG and YusV ATPase and an esterase encoding gene, besA and while export required YmfE major facilitator super-family (MFS)-type transporter. Fur is the major iron-controlled transcriptional regulator in B. subtilis, which acts as an iron-dependent repressor of the dhb operon in vivo while an iron-independent repressor in vitro. Knowledge of the Fur regulon will be useful in interpreting other global analysis of transcriptional responses. (author)

  13. Anatomy of the bacitracin resistance network in Bacillus subtilis.

    Science.gov (United States)

    Radeck, Jara; Gebhard, Susanne; Orchard, Peter Shevlin; Kirchner, Marion; Bauer, Stephanie; Mascher, Thorsten; Fritz, Georg

    2016-05-01

    Protection against antimicrobial peptides (AMPs) often involves the parallel production of multiple, well-characterized resistance determinants. So far, little is known about how these resistance modules interact and how they jointly protect the cell. Here, we studied the interdependence between different layers of the envelope stress response of Bacillus subtilis when challenged with the lipid II cycle-inhibiting AMP bacitracin. The underlying regulatory network orchestrates the production of the ABC transporter BceAB, the UPP phosphatase BcrC and the phage-shock proteins LiaIH. Our systems-level analysis reveals a clear hierarchy, allowing us to discriminate between primary (BceAB) and secondary (BcrC and LiaIH) layers of bacitracin resistance. Deleting the primary layer provokes an enhanced induction of the secondary layer to partially compensate for this loss. This study reveals a direct role of LiaIH in bacitracin resistance, provides novel insights into the feedback regulation of the Lia system, and demonstrates a pivotal role of BcrC in maintaining cell wall homeostasis. The compensatory regulation within the bacitracin network can also explain how gene expression noise propagates between resistance layers. We suggest that this active redundancy in the bacitracin resistance network of B. subtilis is a general principle to be found in many bacterial antibiotic resistance networks. © 2016 John Wiley & Sons Ltd.

  14. Septal membrane localization by C-terminal amphipathic α-helices of MinD in Bacillus subtilis mutant cells lacking MinJ or DivIVA.

    Science.gov (United States)

    Ishikawa, Kazuki; Matsuoka, Satoshi; Hara, Hiroshi; Matsumoto, Kouji

    2017-10-18

    The Min system, which inhibits assembly of the cytokinetic protein FtsZ, is largely responsible for positioning the division site in rod-shaped bacteria. It has been reported that MinJ, which bridges DivIVA and MinD, is targeted to the cell poles by an interaction with DivIVA, and that MinJ in turn recruits MinCD to the cell poles. MinC, however, is located primarily at active division sites at mid-cell when expressed from its native promoter. Surprisingly, we found that Bacillus subtilis MinD is located at nascent septal membranes and at an asymmetric site on lateral membranes between nascent septal membranes in filamentous cells lacking MinJ or DivIVA. Bacillus subtilis MinD has two amphipathic α-helices rich in basic amino acid residues at its C-terminus; one of these, named MTS1 here, is the counterpart of the membrane targeting sequence (MTS) in Escherichia coli MinD while the other, named MTS-like sequence (MTSL), is the nearest helix to MTS1. These amphipathic helices were located independently at nascent septal membranes in cells lacking MinJ or DivIVA, whereas elimination of the helices from the wild type protein reduced its localization considerably. MinD variants with altered MTS1 and MTSL, in which basic amino acid residues were replaced with proline or acidic residues, were not located at nascent septal membranes, indicating that the binding to the nascent septal membranes requires basic residues and a helical structure. The septal localization of MTSL, but not of MTS1, was dependent on host cell MinD. These results suggest that MinD is targeted to nascent septal membranes via its C-terminal amphipathic α-helices in B. subtilis cells lacking MinJ or DivIVA. Moreover, the diffuse distribution of MinD lacking both MTSs suggests that only a small fraction of MinD depends on MinJ for its localization to nascent septal membranes.

  15. The Bacillus subtilis GntR Family Repressor YtrA Responds to Cell Wall Antibiotics▿§

    Science.gov (United States)

    Salzberg, Letal I.; Luo, Yun; Hachmann, Anna-Barbara; Mascher, Thorsten; Helmann, John D.

    2011-01-01

    The transglycosylation step of cell wall synthesis is a prime antibiotic target because it is essential and specific to bacteria. Two antibiotics, ramoplanin and moenomycin, target this step by binding to the substrate lipid II and the transglycosylase enzyme, respectively. Here, we compare the ramoplanin and moenomycin stimulons in the Gram-positive model organism Bacillus subtilis. Ramoplanin strongly induces the LiaRS two-component regulatory system, while moenomycin almost exclusively induces genes that are part of the regulon of the extracytoplasmic function (ECF) σ factor σM. Ramoplanin additionally induces the ytrABCDEF and ywoBCD operons, which are not part of a previously characterized antibiotic-responsive regulon. Cluster analysis reveals that these two operons are selectively induced by a subset of cell wall antibiotics that inhibit lipid II function or recycling. Repression of both operons requires YtrA, which recognizes an inverted repeat in front of its own operon and in front of ywoB. These results suggest that YtrA is an additional regulator of cell envelope stress responses. PMID:21856850

  16. RNA-seq analysis of antibiotic-producing Bacillus subtilis SC-8 in response to signal peptide PapR of Bacillus cereus.

    Science.gov (United States)

    Yeo, In-Cheol; Lee, Nam Keun; Yang, Byung Wook; Hahm, Young Tae

    2014-01-01

    Bacillus subtilis SC-8 produces an antibiotic that has narrow antagonistic activity against bacteria in the Bacillus cereus group. In B. cereus group bacteria, peptide-activating PlcR (PapR) plays a significant role in regulating the transcription of virulence factors. When B. subtilis SC-8 and B. cereus are co-cultured, PapR is assumed to stimulate antibiotic production by B. subtilis SC-8. To better understand the effect of PapR on this interspecies interaction, the global transcriptome profile of B. subtilis SC-8 was analyzed in the presence of PapR. Significant changes were detected in 12.8 % of the total transcripts. Genes related to amino acid transport and metabolism (16.5 %) and transcription (15 %) were mainly upregulated, whereas genes involved in carbohydrate transport and metabolism (12.7 %) were markedly downregulated. The expression of genes related to transcription, including several transcriptional regulators and proteins involved in tRNA biosynthesis, was increased. The expression levels of genes associated with several transport systems, such as antibiotic, cobalt, and iron complex transporters, was also significantly altered. Among the downregulated genes were transcripts associated with spore formation, the subtilosin A gene cluster, and nitrogen metabolism.

  17. Metabolic engineering of carbon overflow metabolism of Bacillus subtilis for improved N-acetyl-glucosamine production.

    Science.gov (United States)

    Ma, Wenlong; Liu, Yanfeng; Shin, Hyun-Dong; Li, Jianghua; Chen, Jian; Du, Guocheng; Liu, Long

    2018-02-01

    Bacillus subtilis is widely used as cell factories for the production of important industrial biochemicals. Although many studies have demonstrated the effects of organic acidic byproducts, such as acetate, on microbial fermentation, little is known about the effects of blocking the neutral byproduct overflow, such as acetoin, on bioproduction. In this study, we focused on the influences of modulating overflow metabolism on the production of N-acetyl-d-glucosamine (GlcNAc) in engineered B. subtilis. We found that acetoin overflow competes with GlcNAc production, and blocking acetoin overflow increased GlcNAc titer and yield by 1.38- and 1.39-fold, reaching 48.9 g/L and 0.32 g GlcNAc/g glucose, respectively. Further blocking acetate overflow inhibited cell growth and GlcNAc production may be induced by inhibiting glucose uptake. Taken together, our results show that blocking acetoin overflow is a promising strategy for enhancing GlcNAc production. The strategies developed in this work may be useful for engineering strains of B. subtilis for producing other important biochemicals. Copyright © 2017. Published by Elsevier Ltd.

  18. Translation Control of Swarming Proficiency in Bacillus subtilis by 5-Amino-pentanolylated Elongation Factor P.

    Science.gov (United States)

    Rajkovic, Andrei; Hummels, Katherine R; Witzky, Anne; Erickson, Sarah; Gafken, Philip R; Whitelegge, Julian P; Faull, Kym F; Kearns, Daniel B; Ibba, Michael

    2016-05-20

    Elongation factor P (EF-P) accelerates diprolyl synthesis and requires a posttranslational modification to maintain proteostasis. Two phylogenetically distinct EF-P modification pathways have been described and are encoded in the majority of Gram-negative bacteria, but neither is present in Gram-positive bacteria. Prior work suggested that the EF-P-encoding gene (efp) primarily supports Bacillus subtilis swarming differentiation, whereas EF-P in Gram-negative bacteria has a more global housekeeping role, prompting our investigation to determine whether EF-P is modified and how it impacts gene expression in motile cells. We identified a 5-aminopentanol moiety attached to Lys(32) of B. subtilis EF-P that is required for swarming motility. A fluorescent in vivo B. subtilis reporter system identified peptide motifs whose efficient synthesis was most dependent on 5-aminopentanol EF-P. Examination of the B. subtilis genome sequence showed that these EF-P-dependent peptide motifs were represented in flagellar genes. Taken together, these data show that, in B. subtilis, a previously uncharacterized posttranslational modification of EF-P can modulate the synthesis of specific diprolyl motifs present in proteins required for swarming motility. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Bacillus subtilis based-formulation for the control of postbloom fruit drop of citrus.

    Science.gov (United States)

    Klein, Mariana Nadjara; da Silva, Aline Caroline; Kupper, Katia Cristina

    2016-12-01

    Postbloom fruit drop (PFD) caused by Colletotrichum acutatum affects flowers and causes early fruit drop in all commercial varieties of citrus. Biological control with the isolate ACB-69 of Bacillus subtilis has been considered as a potential method for controlling this disease. This study aimed to develop and optimize a B. subtilis based-formulation with a potential for large-scale applications and evaluate its effect on C. acutatum in vitro and in vivo. Bacillus subtilis based-formulations were developed using different carrier materials, and their ability to control PFD was evaluated. The results of the assays led to the selection of the B. subtilis based-formulation with talc + urea (0.02 %) and talc + ammonium molybdate (1 mM), which inhibited mycelial growth and germination of C. acutatum. Studies with detached citrus flowers showed that the formulations were effective in controlling the pathogen. In field conditions, talc + urea (0.02 %) provided 73 % asymptomatic citrus flowers and 56 % of the average number of effective fruit (ANEF), equating with fungicide treatment. On the contrary, non-treated trees had 8.8 % of asymptomatic citrus flowers and 0.83 % ANEF. The results suggest that B. subtilis based-formulations with talc as the carrier supplemented with a nitrogen source had a high potential for PFD control.

  20. Global transcriptional responses of Bacillus subtilis to xenocoumacin 1.

    Science.gov (United States)

    Zhou, T; Zeng, H; Qiu, D; Yang, X; Wang, B; Chen, M; Guo, L; Wang, S

    2011-09-01

    To determine the global transcriptional response of Bacillus subtilis to an antimicrobial agent, xenocoumacin 1 (Xcn1). Subinhibitory concentration of Xcn1 applied to B. subtilis was measured according to Hutter's method for determining optimal concentrations. cDNA microarray technology was used to study the global transcriptional response of B. subtilis to Xcn1. Real-time RT-PCR was employed to verify alterations in the transcript levels of six genes. The subinhibitory concentration was determined to be 1 μg ml(-1). The microarray data demonstrated that Xcn1 treatment of B. subtilis led to more than a 2.0-fold up-regulation of 480 genes and more than a 2.0-fold down-regulation of 479 genes (q ≤ 0.05). The transcriptional responses of B. subtilis to Xcn1 were determined, and several processes were affected by Xcn1. Additionally, cluster analysis of gene expression profiles after treatment with Xcn1 or 37 previously studied antibiotics indicated that Xcn1 has similar mechanisms of action to protein synthesis inhibitors. These microarray data showed alterations of gene expression in B. subtilis after exposure to Xcn1. From the results, we identified various processes affected by Xcn1. This study provides a whole-genome perspective to elucidate the action of Xcn1 as a potential antimicrobial agent. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  1. Amyloid fibers provide structural integrity to Bacillus subtilis biofilms.

    Science.gov (United States)

    Romero, Diego; Aguilar, Claudio; Losick, Richard; Kolter, Roberto

    2010-02-02

    Bacillus subtilis forms biofilms whose constituent cells are held together by an extracellular matrix. Previous studies have shown that the protein TasA and an exopolysaccharide are the main components of the matrix. Given the importance of TasA in biofilm formation, we characterized the physicochemical properties of this protein. We report that purified TasA forms fibers of variable length and 10-15 nm in width. Biochemical analyses, in combination with the use of specific dyes and microscopic analyses, indicate that TasA forms amyloid fibers. Consistent with this hypothesis, TasA fibers required harsh treatments (e.g., formic acid) to be depolymerized. When added to a culture of a tasA mutant, purified TasA restored wild-type biofilm morphology, indicating that the purified protein retained biological activity. We propose that TasA forms amyloid fibers that bind cells together in the biofilm.

  2. [New antibiotics produced by Bacillus subtilis strains].

    Science.gov (United States)

    Malanicheva, I A; Kozlov, D G; Efimenko, T A; Zenkova, V A; Kastrukha, G S; Reznikova, M I; Korolev, A M; Borshchevskaia, L N; Tarasova, O D; Sineokiĭ, S P; Efremenkova, O V

    2014-01-01

    Two Bacillus subtilis strains isolated from the fruiting body of a basidiomycete fungus Pholiota squarrosa exhibited a broad range of antibacterial activity, including those against methicillin-resistant Staphylococcus aureus INA 00761 (MRSA) and Leuconostoc mes6nteroides VKPM B-4177 resistant to glycopep-> tide antibiotics, as well as antifungal activity. The strains were identified as belonging to the "B. subtilis" com- plex based on their morphological and physiological characteristics, as well as by sequencing of the 16S rRNA gene fragments. Both strains (INA 01085 and INA 01086) produced insignificant amounts of polyene antibiotics (hexaen and pentaen, respectively). Strain INA 01086 produced also a cyclic polypeptide antibiotic containing Asp, Gly, Leu, Pro, Tyr, Thr, Trp, and Phe, while the antibiotic of strain INA 01085 contained, apart from these, two unidentified nonproteinaceous amino acids. Both polypeptide antibiotics were new compounds efficient against gram-positive bacteria and able to override the natural bacterial antibiotic resistance.

  3. Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis

    DEFF Research Database (Denmark)

    Nicolas, Pierre; Mäder, Ulrike; Dervyn, Etienne

    2012-01-01

    Bacteria adapt to environmental stimuli by adjusting their transcriptomes in a complex manner, the full potential of which has yet to be established for any individual bacterial species. Here, we report the transcriptomes of Bacillus subtilis exposed to a wide range of environmental and nutrition...

  4. Condition-Dependent Transcriptome Reveals High-Level Regulatory Architecture in Bacillus subtilis

    NARCIS (Netherlands)

    Nicolas, Pierre; Maeder, Ulrike; Dervyn, Etienne; Rochat, Tatiana; Leduc, Aurelie; Pigeonneau, Nathalie; Bidnenko, Elena; Marchadier, Elodie; Hoebeke, Mark; Aymerich, Stephane; Becher, Doerte; Bisicchia, Paola; Botella, Eric; Delumeau, Olivier; Doherty, Geoff; Denham, Emma L.; Fogg, Mark J.; Fromion, Vincent; Goelzer, Anne; Hansen, Annette; Haertig, Elisabeth; Harwood, Colin R.; Homuth, Georg; Jarmer, Hanne; Jules, Matthieu; Klipp, Edda; Le Chat, Ludovic; Lecointe, Francois; Lewis, Peter; Liebermeister, Wolfram; March, Anika; Mars, Ruben A. T.; Nannapaneni, Priyanka; Noone, David; Pohl, Susanne; Rinn, Bernd; Ruegheimer, Frank; Sappa, Praveen K.; Samson, Franck; Schaffer, Marc; Schwikowski, Benno; Steil, Leif; Stuelke, Joerg; Wiegert, Thomas; Devine, Kevin M.; Wilkinson, Anthony J.; van Dijl, Jan Maarten; Hecker, Michael; Voelker, Uwe; Bessieres, Philippe; Noirot, Philippe

    2012-01-01

    Bacteria adapt to environmental stimuli by adjusting their transcriptomes in a complex manner, the full potential of which has yet to be established for any individual bacterial species. Here, we report the transcriptomes of Bacillus subtilis exposed to a wide range of environmental and nutritional

  5. Comparative transcriptional analysis of Bacillus subtilis cells overproducing either secreted proteins, lipoproteins or membrane proteins

    Directory of Open Access Journals (Sweden)

    Marciniak Bogumiła C

    2012-05-01

    Full Text Available Abstract Background Bacillus subtilis is a favorable host for the production of industrially relevant proteins because of its capacity of secreting proteins into the medium to high levels, its GRAS (Generally Recognized As Safe status, its genetic accessibility and its capacity to grow in large fermentations. However, production of heterologous proteins still faces limitations. Results This study aimed at the identification of bottlenecks in secretory protein production by analyzing the response of B. subtilis at the transcriptome level to overproduction of eight secretory proteins of endogenous and heterologous origin and with different subcellular or extracellular destination: secreted proteins (NprE and XynA of B. subtilis, Usp45 of Lactococcus lactis, TEM-1 β-lactamase of Escherichia coli, membrane proteins (LmrA of L. lactis and XylP of Lactobacillus pentosus and lipoproteins (MntA and YcdH of B. subtilis. Responses specific for proteins with a common localization as well as more general stress responses were observed. The latter include upregulation of genes encoding intracellular stress proteins (groES/EL, CtsR regulated genes. Specific responses include upregulation of the liaIHGFSR operon under Usp45 and TEM-1 β-lactamase overproduction; cssRS, htrA and htrB under all secreted proteins overproduction; sigW and SigW-regulated genes mainly under membrane proteins overproduction; and ykrL (encoding an HtpX homologue specifically under membrane proteins overproduction. Conclusions The results give better insights into B. subtilis responses to protein overproduction stress and provide potential targets for genetic engineering in order to further improve B. subtilis as a protein production host.

  6. Fungal Competitors Affect Production of Antimicrobial Lipopeptides in Bacillus subtilis Strain B9-5.

    Science.gov (United States)

    DeFilippi, Stefanie; Groulx, Emma; Megalla, Merna; Mohamed, Rowida; Avis, Tyler J

    2018-04-01

    Bacillus subtilis has shown success in antagonizing plant pathogens where strains of the bacterium produce antimicrobial cyclic lipopeptides (CLPs) in response to microbial competitors in their ecological niche. To gain insight into the inhibitory role of these CLPs, B. subtilis strain B9-5 was co-cultured with three pathogenic fungi. Inhibition of mycelial growth and spore germination was assessed and CLPs produced by B. subtilis B9-5 were quantified over the entire period of microbial interaction. B. subtilis B9-5 significantly inhibited mycelial growth and spore germination of Fusarium sambucinum and Verticillium dahliae, but not Rhizopus stolonifer. LC-MS analysis revealed that B. subtilis differentially produced fengycin and surfactin homologs depending on the competitor. CLP quantification suggested that the presence of Verticillium dahliae, a fungus highly sensitive to the compounds, caused an increase followed by a decrease in CLP production by the bacterium. In co-cultures with Fusarium sambucinum, a moderately sensitive fungus, CLP production increased more gradually, possibly because of its slower rate of spore germination. With co-cultures of the tolerant fungus Rhizopus stolonifer, B. subtilis produced high amounts of CLPs (per bacterial cell) for the duration of the interaction. Variations in CLP production could be explained, in part, by the pathogens' overall sensitivities to the bacterial lipopeptides and/or the relative growth rates between the plant pathogen and B. subtilis. CLP production varied substantially temporally depending on the targeted fungus, which provides valuable insight concerning the effectiveness of B. subtilis B9-5 protecting its ecological niche against the ingress of these pathogens.

  7. Noise Expands the Response Range of the Bacillus subtilis Competence Circuit.

    Directory of Open Access Journals (Sweden)

    Andrew Mugler

    2016-03-01

    Full Text Available Gene regulatory circuits must contend with intrinsic noise that arises due to finite numbers of proteins. While some circuits act to reduce this noise, others appear to exploit it. A striking example is the competence circuit in Bacillus subtilis, which exhibits much larger noise in the duration of its competence events than a synthetically constructed analog that performs the same function. Here, using stochastic modeling and fluorescence microscopy, we show that this larger noise allows cells to exit terminal phenotypic states, which expands the range of stress levels to which cells are responsive and leads to phenotypic heterogeneity at the population level. This is an important example of how noise confers a functional benefit in a genetic decision-making circuit.

  8. Changes in the oligomerization potential of the division inhibitor UgtP co-ordinate Bacillus subtilis cell size with nutrient availability.

    Science.gov (United States)

    Chien, An-Chun; Zareh, Shannon Kian Gharabiklou; Wang, Yan Mei; Levin, Petra Anne

    2012-11-01

    How cells co-ordinate size with growth and development is a major, unresolved question in cell biology. In previous work we identified the glucosyltransferase UgtP as a division inhibitor responsible for increasing the size of Bacillus subtilis cells under nutrient-rich conditions. In nutrient-rich medium, UgtP is distributed more or less uniformly throughout the cytoplasm and concentrated at the cell poles and/or the cytokinetic ring. Under these conditions, UgtP interacts directly with FtsZ to inhibit division and increase cell size. Conversely, under nutrient-poor conditions, UgtP is sequestered away from FtsZ in punctate foci, and division proceeds unimpeded resulting in a reduction in average cell size. Here we report that nutrient-dependent changes in UgtP's oligomerization potential serve as a molecular rheostat to precisely co-ordinate B. subtilis cell size with nutrient availability. Our data indicate UgtP interacts with itself and the essential cell division protein FtsZ in a high-affinity manner influenced in part by UDP glucose, an intracellular proxy for nutrient availability. These findings support a model in which UDP-glc-dependent changes in UgtP's oligomerization potential shift the equilibrium between UgtP•UgtP and UgtP•FtsZ, fine-tuning the amount of FtsZ available for assembly into the cytokinetic ring and with it cell size. © 2012 Blackwell Publishing Ltd.

  9. Preliminary X-ray Study of Naproxen Esterase from Bacillus subtilis

    NARCIS (Netherlands)

    van der Laan, Jan; Teplyakov, A.V.; Lammers, A.A.; Dijkstra, B.W.

    1993-01-01

    Single crystals of naproxen esterase from Bacillus subtilis have been obtained from PEG6000 solutions at pH 8.0 by liquid-liquid diffusion while applying a temperature gradient from 4°C to room temperature over a period of four weeks. The crystals belong to the trigonal space group P3121 or P3221

  10. Spo0A regulates chromosome copy number during sporulation by directly binding to the origin of replication in Bacillus subtilis

    NARCIS (Netherlands)

    Boonstra, Mirjam; de Jong, Imke G.; Scholefield, Graham; Murray, Heath; Kuipers, Oscar P.; Veening, Jan-Willem

    When starved, Bacillus subtilis cells can enter the developmental programme of endospore formation by activation of the master transcriptional regulator Spo0A. Correct chromosome copy number is crucial for the production of mature and fully resistant spores. The production and maintenance of one

  11. The Antimicrobial Properties of Silver Nanoparticles in Bacillus subtilis Are Mediated by Released Ag+ Ions

    Science.gov (United States)

    Hsueh, Yi-Huang; Lin, Kuen-Song; Ke, Wan-Ju; Hsieh, Chien-Te; Chiang, Chao-Lung; Tzou, Dong-Ying; Liu, Shih-Tung

    2015-01-01

    The superior antimicrobial properties of silver nanoparticles (Ag NPs) are well-documented, but the exact mechanisms underlying Ag-NP microbial toxicity remain the subject of intense debate. Here, we show that Ag-NP concentrations as low as 10 ppm exert significant toxicity against Bacillus subtilis, a beneficial bacterium ubiquitous in the soil. Growth arrest and chromosomal DNA degradation were observed, and flow cytometric quantification of propidium iodide (PI) staining also revealed that Ag-NP concentrations of 25 ppm and above increased membrane permeability. RedoxSensor content analysis and Phag-GFP expression analysis further indicated that reductase activity and cytosolic protein expression decreased in B. subtilis cells treated with 10–50 ppm of Ag NPs. We conducted X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses to directly clarify the valence and fine structure of Ag atoms in B. subtilis cells placed in contact with Ag NPs. The results confirmed the Ag species in Ag NP-treated B. subtilis cells as Ag2O, indicating that Ag-NP toxicity is likely mediated by released Ag+ ions from Ag NPs, which penetrate bacterial cells and are subsequently oxidized intracellularly to Ag2O. These findings provide conclusive evidence for the role of Ag+ ions in Ag-NP microbial toxicity, and suggest that the impact of inappropriately disposed Ag NPs to soil and water ecosystems may warrant further investigation. PMID:26669836

  12. The Antimicrobial Properties of Silver Nanoparticles in Bacillus subtilis Are Mediated by Released Ag+ Ions.

    Directory of Open Access Journals (Sweden)

    Yi-Huang Hsueh

    Full Text Available The superior antimicrobial properties of silver nanoparticles (Ag NPs are well-documented, but the exact mechanisms underlying Ag-NP microbial toxicity remain the subject of intense debate. Here, we show that Ag-NP concentrations as low as 10 ppm exert significant toxicity against Bacillus subtilis, a beneficial bacterium ubiquitous in the soil. Growth arrest and chromosomal DNA degradation were observed, and flow cytometric quantification of propidium iodide (PI staining also revealed that Ag-NP concentrations of 25 ppm and above increased membrane permeability. RedoxSensor content analysis and Phag-GFP expression analysis further indicated that reductase activity and cytosolic protein expression decreased in B. subtilis cells treated with 10-50 ppm of Ag NPs. We conducted X-ray absorption near-edge structure (XANES and extended X-ray absorption fine structure (EXAFS analyses to directly clarify the valence and fine structure of Ag atoms in B. subtilis cells placed in contact with Ag NPs. The results confirmed the Ag species in Ag NP-treated B. subtilis cells as Ag2O, indicating that Ag-NP toxicity is likely mediated by released Ag+ ions from Ag NPs, which penetrate bacterial cells and are subsequently oxidized intracellularly to Ag2O. These findings provide conclusive evidence for the role of Ag+ ions in Ag-NP microbial toxicity, and suggest that the impact of inappropriately disposed Ag NPs to soil and water ecosystems may warrant further investigation.

  13. Efficient biosynthesis of d-ribose using a novel co-feeding strategy in Bacillus subtilis without acid formation.

    Science.gov (United States)

    Cheng, J; Zhuang, W; Li, N N; Tang, C L; Ying, H J

    2017-01-01

    Normally, low d-ribose production was identified as responsible for plenty of acid formation by Bacillus subtilis due to its carbon overflow. An approach of co-feeding glucose and sodium citrate is developed here and had been proved to be useful in d-ribose production. This strategy is critical because it affects the cell concentration, the productivity of d-ribose and, especially, the formation of by-products such as acetoin, lactate and acetate. d-ribose production was increased by 59·6% from 71·06 to 113·41 g l -1 without acid formation by co-feeding 2·22 g l -1  h -1 glucose and 0·036 g l -1  h -1 sodium citrate to a 60 g l -1 glucose reaction system. Actually, the cell density was also enhanced from 11·51 to 13·84 g l -1 . These parameters revealed the importance of optimization and modelling of the d-ribose production process. Not only could zero acid formation was achieved over a wide range of co-feeding rate by reducing glycolytic flux drastically but also the cell density and d-ribose yield were elevated by increasing the hexose monophosphate pathway flux. Bacillus subtilis usually produce d-ribose accompanied by plenty of organic acids when glucose is used as a carbon source, which is considered to be a consequence of mismatched glycolytic and tricarboxylic acid cycle capacities. This is the first study to provide high-efficiency biosynthesis of d-ribose without organic acid formation in B. subtilis, which would be lower than the cost of separation and purification. The strain transketolase-deficient B. subtilis CGMCC 3720 can be potentially applied to the production of d-ribose in industry. © 2016 The Society for Applied Microbiology.

  14. Visualization of tandem repeat mutagenesis in Bacillus subtilis.

    Science.gov (United States)

    Dormeyer, Miriam; Lentes, Sabine; Ballin, Patrick; Wilkens, Markus; Klumpp, Stefan; Kohlheyer, Dietrich; Stannek, Lorena; Grünberger, Alexander; Commichau, Fabian M

    2018-03-01

    Mutations are crucial for the emergence and evolution of proteins with novel functions, and thus for the diversity of life. Tandem repeats (TRs) are mutational hot spots that are present in the genomes of all organisms. Understanding the molecular mechanism underlying TR mutagenesis at the level of single cells requires the development of mutation reporter systems. Here, we present a mutation reporter system that is suitable to visualize mutagenesis of TRs occurring in single cells of the Gram-positive model bacterium Bacillus subtilis using microfluidic single-cell cultivation. The system allows measuring the elimination of TR units due to growth rate recovery. The cultivation of bacteria carrying the mutation reporter system in microfluidic chambers allowed us for the first time to visualize the emergence of a specific mutation at the level of single cells. The application of the mutation reporter system in combination with microfluidics might be helpful to elucidate the molecular mechanism underlying TR (in)stability in bacteria. Moreover, the mutation reporter system might be useful to assess whether mutations occur in response to nutrient starvation. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Hg(II) removal from aqueous solutions by bacillus subtilis biomass

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xue Song; Li, Fei Yan; He, Wen; Miao, Hua Hua [Department of Chemical Engineering, Huaihai Institute of Technology, Lianyungang (China)

    2010-01-15

    The biosorption of Hg(II) from aqueous solutions using Bacillus subtilis biomass was investigated in this study. The adsorbent was characterized by FTIR. Various factors including solution pH, initial concentration of Hg(II), contact time, reaction temperature and ionic strength were taken into account and promising results were obtained. An initial solution pH of 5.0 was most favorable for Hg(II) removal. The kinetic data was also analyzed using pseudo first order and pseudo second order equations. The results suggested that Hg(II) bioadsorption was best represented by the pseudo second order equation. Freundlich, Langmuir and Langmuir-Freundlich isotherms for the present systems were analyzed. The most satisfactory interpretation for the equilibrium data at different temperatures was given by the Langmuir-Freundlich isotherm. The effect of ionic strength on bioadsorption was significant. Bacillus subtilis biomass could serve as low cost adsorbent to remove Hg(II) from aqueous solutions, especially at lower concentrations of Hg(II) (<20 mg Hg/L). (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  16. The structure of the transposable genetic element ISBsu2 from the cryptic plasmid p1516 of a soil Bacillus subtilis strain and the presence of homologues of this element in the chromosomes of various Bacillus subtilis strains

    NARCIS (Netherlands)

    Holsappel, S; Gagarina, EY; Poluektova, EU; Nezametdinova, VZ; Gel'fand, MS; Prozorov, AA; Bron, S

    2003-01-01

    A cryptic plasmid from a soil strain of Bacillus subtilis was found to contain a sequence having features of an IS element. Homologous sequences were also found in the chromosome of this strain and in the chromosomes of some other B. subtilis strains.

  17. Glutamate dehydrogenase affects resistance to cell wall antibiotics in Bacillus subtilis.

    Science.gov (United States)

    Lee, Yong Heon; Kingston, Anthony W; Helmann, John D

    2012-03-01

    The glutamate dehydrogenase RocG of Bacillus subtilis is a bifunctional protein with both enzymatic and regulatory functions. Here we show that the rocG null mutant is sensitive to β-lactams, including cefuroxime (CEF), and to fosfomycin but that resistant mutants arise due to gain-of-function mutations in gudB, which encodes an otherwise inactive glutamate dehydrogenase. In the presence of CEF, ΔrocG ΔgudB mutant cells exhibit growth arrest when they reach mid-exponential phase. Using microarray-based transcriptional profiling, we found that the σ(W) regulon was downregulated in the ΔrocG ΔgudB null mutant. A survey of σ(W)-controlled genes for effects on CEF resistance identified both the NfeD protein YuaF and the flotillin homologue YuaG (FloT). Notably, overexpression of yuaFG in the rocG null mutant prevents the growth arrest induced by CEF. The YuaG flotillin has been shown previously to localize to defined lipid microdomains, and we show here that the yuaFGI operon contributes to a σ(W)-dependent decrease in membrane fluidity. We conclude that glutamate dehydrogenase activity affects the expression of the σ(W) regulon, by pathways that are yet unclear, and thereby influences resistance to CEF and other antibiotics.

  18. Single cell FRET analysis for the identification of optimal FRET-pairs in Bacillus subtilis using a prototype MEM-FLIM system.

    Directory of Open Access Journals (Sweden)

    Ruud G J Detert Oude Weme

    Full Text Available Protein-protein interactions can be studied in vitro, e.g. with bacterial or yeast two-hybrid systems or surface plasmon resonance. In contrast to in vitro techniques, in vivo studies of protein-protein interactions allow examination of spatial and temporal behavior of such interactions in their native environment. One approach to study protein-protein interactions in vivo is via Förster Resonance Energy Transfer (FRET. Here, FRET efficiency of selected FRET-pairs was studied at the single cell level using sensitized emission and Frequency Domain-Fluorescence Lifetime Imaging Microscopy (FD-FLIM. For FRET-FLIM, a prototype Modulated Electron-Multiplied FLIM system was used, which is, to the best of our knowledge, the first account of Frequency Domain FLIM to analyze FRET in single bacterial cells. To perform FRET-FLIM, we first determined and benchmarked the best fluorescent protein-pair for FRET in Bacillus subtilis using a novel BglBrick-compatible integration vector. We show that GFP-tagRFP is an excellent donor-acceptor pair for B. subtilis in vivo FRET studies. As a proof of concept, selected donor and acceptor fluorescent proteins were fused using a linker that contained a tobacco etch virus (TEV-protease recognition sequence. Induction of TEV-protease results in loss of FRET efficiency and increase in fluorescence lifetime. The loss of FRET efficiency after TEV induction can be followed in time in single cells via time-lapse microscopy. This work will facilitate future studies of in vivo dynamics of protein complexes in single B. subtilis cells.

  19. Selective inhibition of Bacillus subtilis sporulation by acridine orange and promethazine.

    Science.gov (United States)

    Burke, W F; Spizizen, J

    1977-03-01

    Two structurally similar compounds were found to inhibit sporulation in Bacillus subtilis 168. A dye, acridine orange, and an antischizophrenic drug, promethazine, blocked spore formation at concentrations subinhibitory to vegetative growth, while allowing synthesis of serine protease, antibiotic, and certain catabolite-repressed enzymes. The sporulation process was sensitive to promethazine through T2, whereas acridine orange was inhibitory until T4. The drug-treated cells were able to support the replication of phages phie and phi29, although the lytic cycles were altered slightly. The selective inhibition of sporulation by these compounds may be related to the affinity of some sporulation-specific genes to intercalating compounds.

  20. Production, optimization and characterization of fibrinolytic enzyme by Bacillus subtilis RJAS19.

    Science.gov (United States)

    Kumar, D J Mukesh; Rakshitha, R; Vidhya, M Annu; Jennifer, P Sharon; Prasad, Sandip; Kumar, M Ravi; Kalaichelvan, P T

    2014-04-01

    The present study aimed at the production, purification and characterization of fibrinolytic nattokinase enzyme from the bacteria isolated from natto food. For the purpose, a fibrinolytic bacterium was isolated and identified as Bacillus subtilis based on 16S rDNA sequence analysis. The strain was employed for the production and optimization of fibrinolytic enzyme. The strain showed better enzyme production during 72nd h of incubation time with 50 degrees C at the pH 9. The lactose and peptone were found to be increasing the enzyme production rate. The enzyme produced was purified and also characterized with the help of SDS-PAGE analysis. The activity and stability profile of the purified enzyme was tested against different temperature and pH. The observations suggesting that the potential of fibrinolytic enzyme produced by Bacillus subtilis RJAS 19 for its applications in preventive medicines.

  1. Isolation and characterization of atrazine mineralizing Bacillus subtilis strain HB-6.

    Directory of Open Access Journals (Sweden)

    Jinhua Wang

    Full Text Available Atrazine is a widely used herbicide with great environmental concern due to its high potential to contaminate soil and waters. An atrazine-degrading bacterial strain HB-6 was isolated from industrial wastewater and the 16S rRNA gene sequencing identified HB-6 as a Bacillus subtilis. PCR assays indicated that HB-6 contained atrazine-degrading genes trzN, atzB and atzC. The strain HB-6 was capable of utilizing atrazine and cyanuric acid as a sole nitrogen source for growth and even cleaved the s-triazine ring and mineralized atrazine. The strain demonstrated a very high efficiency of atrazine biodegradation with a broad optimum pH and temperature ranges and could be enhanced by cooperating with other bacteria, suggesting its huge potential for remediation of atrazine-contaminated sites. To our knowledge, there are few Bacillus subtilis strains reported that can mineralize atrazine, therefore, the present work might provide some new insights on atrazine remediation.

  2. Genetic Competence Drives Genome Diversity in Bacillus subtilis

    Science.gov (United States)

    Chevreux, Bastien; Serra, Cláudia R; Schyns, Ghislain; Henriques, Adriano O

    2018-01-01

    Abstract Prokaryote genomes are the result of a dynamic flux of genes, with increases achieved via horizontal gene transfer and reductions occurring through gene loss. The ecological and selective forces that drive this genomic flexibility vary across species. Bacillus subtilis is a naturally competent bacterium that occupies various environments, including plant-associated, soil, and marine niches, and the gut of both invertebrates and vertebrates. Here, we quantify the genomic diversity of B. subtilis and infer the genome dynamics that explain the high genetic and phenotypic diversity observed. Phylogenomic and comparative genomic analyses of 42 B. subtilis genomes uncover a remarkable genome diversity that translates into a core genome of 1,659 genes and an asymptotic pangenome growth rate of 57 new genes per new genome added. This diversity is due to a large proportion of low-frequency genes that are acquired from closely related species. We find no gene-loss bias among wild isolates, which explains why the cloud genome, 43% of the species pangenome, represents only a small proportion of each genome. We show that B. subtilis can acquire xenologous copies of core genes that propagate laterally among strains within a niche. While not excluding the contributions of other mechanisms, our results strongly suggest a process of gene acquisition that is largely driven by competence, where the long-term maintenance of acquired genes depends on local and global fitness effects. This competence-driven genomic diversity provides B. subtilis with its generalist character, enabling it to occupy a wide range of ecological niches and cycle through them. PMID:29272410

  3. An unstable donor-recipient DNA complex in transformation of Bacillus subtilis

    International Nuclear Information System (INIS)

    Popowski, J.; Venema, G.

    1978-01-01

    In re-extracted DNA obtained shortly after uptake of transforming DNA by Bacillus subtilis, increased amounts of donor DNA radioactivity banding at the position of donor-recipient DNA complex (DRC) are observed in CsCl gradients, if the cells are irradiated with high doses of UV prior to reextraction of the DNA. Qualitatively, the same phenomenon is observed if lysates of transforming cells are irradiated. UV-irradiation of lysates of competent cells to which single-stranded DNA is added after lysis, does not result in linkage of this DNA to the chromosomal DNA. Two observations argue in favour of the formation of a specific labile complex between donor and resident DNA during transformation. Firstly, heterologous donor DNA from Escherichia coli, although being processed to single-stranded DNA in competent B. subtilis, does not seem to be linked to the recipient chromosome upon UV-irradiation, and secondly, the labile complex of donor and recipient DNA can be stabilized by means of treatment of the lysates of transforming cells with 4, 5 1 , 8-trimethylpsoralen in conjuction with long-wave-ultra violet light irradiation. This indicates that basepairing is involved in the formation of the complex. On the basis of these results we assume that the unstable complex of donor and recipient DNA is an early intermediate in genetic recombination during transformation. (orig.) [de

  4. Formulations of Bacillus subtilis BY-2 suppress Sclerotinia sclerotiorum on oilseed rape in the field

    Science.gov (United States)

    We are developing a collection of Bacillus strains, isolated from different environments, for use in controlling Sclerotinia sclerotiorum on oilseed rape in China and elsewhere. Strain BY-2, isolated from internal tissues of an oilseed rape root, was demonstrated to be Bacillus subtilis based on bi...

  5. Association of Eu(III) and Cm(III) with Bacillus subtilis and Halobacterium salinarum

    International Nuclear Information System (INIS)

    Ozaki, Takuo; Kimura, Takaumi; Ohnuki, Toshihiko; Yoshida, Zenko

    2002-01-01

    Adsorption behavior of Eu(III) and Cm(III) by Bacillus subtilis and Halobacterium salinarum was investigated. Both microorganisms showed almost identical pH dependence on the distribution ratio (K d ) of the metals examined, i.e., K d of Eu(III) and Cm(III) increased with an increase of pH. The coordination state of Eu(III) adsorbed on the microorganisms was studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS). The coordination states of Eu(III) adsorbed on the B. subtilis and H. salinarum was of different characteristics. H. salinarum exhibited more outer-spherical interaction with Eu(III) than B. subtilis. (author)

  6. Role of the ganSPQAB Operon in Degradation of Galactan by Bacillus subtilis.

    Science.gov (United States)

    Watzlawick, Hildegard; Morabbi Heravi, Kambiz; Altenbuchner, Josef

    2016-10-15

    Bacillus subtilis possesses different enzymes for the utilization of plant cell wall polysaccharides. This includes a gene cluster containing galactan degradation genes (ganA and ganB), two transporter component genes (ganQ and ganP), and the sugar-binding lipoprotein-encoding gene ganS (previously known as cycB). These genes form an operon that is regulated by GanR. The degradation of galactan by B. subtilis begins with the activity of extracellular GanB. GanB is an endo-β-1,4-galactanase and is a member of glycoside hydrolase (GH) family 53. This enzyme was active on high-molecular-weight arabinose-free galactan and mainly produced galactotetraose as well as galactotriose and galactobiose. These galacto-oligosaccharides may enter the cell via the GanQP transmembrane proteins of the galactan ABC transporter. The specificity of the galactan ABC transporter depends on the sugar-binding lipoprotein, GanS. Purified GanS was shown to bind galactotetraose and galactotriose using thermal shift assay. The energy for this transport is provided by MsmX, an ATP-binding protein. The transported galacto-oligosaccharides are further degraded by GanA. GanA is a β-galactosidase that belongs to GH family 42. The GanA enzyme was able to hydrolyze short-chain β-1,4-galacto-oligosaccharides as well as synthetic β-galactopyranosides into galactose. Thermal shift assay as well as electrophoretic mobility shift assay demonstrated that galactobiose is the inducer of the galactan operon regulated by GanR. DNase I footprinting revealed that the GanR protein binds to an operator overlapping the -35 box of the σ(A)-type promoter of Pgan, which is located upstream of ganS IMPORTANCE: Bacillus subtilis is a Gram-positive soil bacterium that utilizes different types of carbohydrates, such as pectin, as carbon sources. So far, most of the pectin degradation systems and enzymes have been thoroughly studied in B. subtilis Nevertheless, the B. subtilis utilization system of galactan, which is

  7. Safety assessment of Bacillus subtilis CU1 for use as a probiotic in humans.

    Science.gov (United States)

    Lefevre, Marie; Racedo, Silvia M; Denayrolles, Muriel; Ripert, Gabrielle; Desfougères, Thomas; Lobach, Alexandra R; Simon, Ryan; Pélerin, Fanny; Jüsten, Peter; Urdaci, Maria C

    2017-02-01

    Bacillus subtilis CU1 is a recently described probiotic strain with beneficial effects on immune health in elderly subjects. The following work describes a series of studies supporting the safety of the strain for use as an ingredient in food and supplement preparations. Using a combination of 16S rDNA and gyrB nucleotide analyses, the species was identified as a member of the Bacillus subtilis complex (B. subtilis subsp. spizizenii). Further characterization of the organism at the strain level was achieved using random amplified polymorphic DNA polymerase chain reaction (RAPD PCR) and pulsed field gel electrophoresis (PFGE) analyses. B. subtilis CU1 did not demonstrate antibiotic resistance greater than existing regulatory cutoffs against clinically important antibiotics, did not induce hemolysis or produce surfactant factors, and was absent of toxigenic activity in vitro. Use of B. subtilis CU1 as a probiotic has recently been evaluated in a 16-week randomized, double-blind, placebo-controlled, parallel-arm study, in which 2 × 10 9 spores per day of B. subtilis CU1 were administered for a total 40 days to healthy elderly subjects (4 consumption periods of 10 days separated by 18-day washouts). This work describes safety related endpoints not previously reported. B. subtilis CU1 was safe and well-tolerated in the clinical subjects without undesirable physiological effects on markers of liver and kidney function, complete blood counts, hemodynamic parameters, and vital signs. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Whole genome assembly of a natto production strain Bacillus subtilis natto from very short read data.

    Science.gov (United States)

    Nishito, Yukari; Osana, Yasunori; Hachiya, Tsuyoshi; Popendorf, Kris; Toyoda, Atsushi; Fujiyama, Asao; Itaya, Mitsuhiro; Sakakibara, Yasubumi

    2010-04-16

    Bacillus subtilis natto is closely related to the laboratory standard strain B. subtilis Marburg 168, and functions as a starter for the production of the traditional Japanese food "natto" made from soybeans. Although re-sequencing whole genomes of several laboratory domesticated B. subtilis 168 derivatives has already been attempted using short read sequencing data, the assembly of the whole genome sequence of a closely related strain, B. subtilis natto, from very short read data is more challenging, particularly with our aim to assemble one fully connected scaffold from short reads around 35 bp in length. We applied a comparative genome assembly method, which combines de novo assembly and reference guided assembly, to one of the B. subtilis natto strains. We successfully assembled 28 scaffolds and managed to avoid substantial fragmentation. Completion of the assembly through long PCR experiments resulted in one connected scaffold for B. subtilis natto. Based on the assembled genome sequence, our orthologous gene analysis between natto BEST195 and Marburg 168 revealed that 82.4% of 4375 predicted genes in BEST195 are one-to-one orthologous to genes in 168, with two genes in-paralog, 3.2% are deleted in 168, 14.3% are inserted in BEST195, and 5.9% of genes present in 168 are deleted in BEST195. The natto genome contains the same alleles in the promoter region of degQ and the coding region of swrAA as the wild strain, RO-FF-1. These are specific for gamma-PGA production ability, which is related to natto production. Further, the B. subtilis natto strain completely lacked a polyketide synthesis operon, disrupted the plipastatin production operon, and possesses previously unidentified transposases. The determination of the whole genome sequence of Bacillus subtilis natto provided detailed analyses of a set of genes related to natto production, demonstrating the number and locations of insertion sequences that B. subtilis natto harbors but B. subtilis 168 lacks

  9. Whole genome assembly of a natto production strain Bacillus subtilis natto from very short read data

    Directory of Open Access Journals (Sweden)

    Fujiyama Asao

    2010-04-01

    Full Text Available Abstract Background Bacillus subtilis natto is closely related to the laboratory standard strain B. subtilis Marburg 168, and functions as a starter for the production of the traditional Japanese food "natto" made from soybeans. Although re-sequencing whole genomes of several laboratory domesticated B. subtilis 168 derivatives has already been attempted using short read sequencing data, the assembly of the whole genome sequence of a closely related strain, B. subtilis natto, from very short read data is more challenging, particularly with our aim to assemble one fully connected scaffold from short reads around 35 bp in length. Results We applied a comparative genome assembly method, which combines de novo assembly and reference guided assembly, to one of the B. subtilis natto strains. We successfully assembled 28 scaffolds and managed to avoid substantial fragmentation. Completion of the assembly through long PCR experiments resulted in one connected scaffold for B. subtilis natto. Based on the assembled genome sequence, our orthologous gene analysis between natto BEST195 and Marburg 168 revealed that 82.4% of 4375 predicted genes in BEST195 are one-to-one orthologous to genes in 168, with two genes in-paralog, 3.2% are deleted in 168, 14.3% are inserted in BEST195, and 5.9% of genes present in 168 are deleted in BEST195. The natto genome contains the same alleles in the promoter region of degQ and the coding region of swrAA as the wild strain, RO-FF-1. These are specific for γ-PGA production ability, which is related to natto production. Further, the B. subtilis natto strain completely lacked a polyketide synthesis operon, disrupted the plipastatin production operon, and possesses previously unidentified transposases. Conclusions The determination of the whole genome sequence of Bacillus subtilis natto provided detailed analyses of a set of genes related to natto production, demonstrating the number and locations of insertion sequences that B

  10. Detecting protein-protein interactions in the intact cell of Bacillus subtilis (ATCC 6633).

    Science.gov (United States)

    Winters, Michael S; Day, R A

    2003-07-01

    The salt bridge, paired group-specific reagent cyanogen (ethanedinitrile; C(2)N(2)) converts naturally occurring pairs of functional groups into covalently linked products. Cyanogen readily permeates cell walls and membranes. When the paired groups are shared between associated proteins, isolation of the covalently linked proteins allows their identity to be assigned. Examination of organisms of known genome sequence permits identification of the linked proteins by mass spectrometric techniques applied to peptides derived from them. The cyanogen-linked proteins were isolated by polyacrylamide gel electrophoresis. Digestion of the isolated proteins with proteases of known specificity afforded sets of peptides that could be analyzed by mass spectrometry. These data were compared with those derived theoretically from the Swiss Protein Database by computer-based comparisons (Protein Prospector; http://prospector.ucsf.edu). Identification of associated proteins in the ribosome of Bacillus subtilis strain ATCC 6633 showed that there is an association homology with the association patterns of the ribosomal proteins of Haloarcula marismortui and Thermus thermophilus. In addition, other proteins involved in protein biosynthesis were shown to be associated with ribosomal proteins.

  11. The complete genome sequence of the Gram-positive bacterium Bacillus subtilis

    NARCIS (Netherlands)

    Kunst, F; Ogasawara, N; Moszer, [No Value; Albertini, AM; Alloni, G; Azevedo, [No Value; Bertero, MG; Bessieres, P; Bolotin, A; Borchert, S; Borriss, R; Boursier, L; Brans, A; Brignell, SC; Bron, S; Brouillet, S; Bruschi, CV; Caldwell, B; Capuano, [No Value; Carter, NM; Choi, SK; Codani, JJ; Connerton, IF; Cummings, NJ; Daniel, RA; Denizot, F; Devine, KM; Dusterhoft, A; Ehrlich, SD; Emmerson, PT; Entian, KD; Errington, J; Fabret, C; Ferrari, E; Foulger, D; Fujita, M; Fujita, Y; Fuma, S; Galizzi, A; Galleron, N; Ghim, SY; Glaser, P; Goffeau, A; Golightly, EJ; Grandi, G; Guiseppi, G; Guy, BJ; Haga, K; Haiech, J; Harwood, CR; Henaut, A; Hilbert, H; Holsappel, S; Hosono, S; Hullo, MF; Itaya, M; Jones, L; Joris, B; Karamata, D; Kasahara, Y; KlaerrBlanchard, M; Klein, C; Kobayashi, Y; Koetter, P; Koningstein, G; Krogh, S; Kumano, M; Kurita, K; Lapidus, A; Lardinois, S; Lauber, J; Lazarevic, [No Value; Lee, SM; Levine, A; Liu, H; Masuda, S; Mauel, C; Medigue, C; Medina, N; Mellado, RP; Mizuno, M; Moestl, D; Nakai, S; Noback, M; Noone, D; OReilly, M; Ogawa, K; Ogiwara, A; Oudega, B; Park, SH; Parro, [No Value; Pohl, TM; Portetelle, D; Porwollik, S; Prescott, AM; Presecan, E; Pujic, P; Purnelle, B; Rapoport, G; Rey, M; Reynolds, S; Rieger, M; Rivolta, C; Rocha, E; Roche, B; Rose, M; Sadaie, Y; Sato, T; Scanlan, E; Schleich, S; Schroeter, R; Scoffone, F; Sekiguchi, J; Sekowska, A; Seror, SJ; Serror, P; Shin, BS; Soldo, B; Sorokin, A; Tacconi, E; Takagi, T; Takahashi, H; Takemaru, K; Takeuchi, M; Tamakoshi, A; Tanaka, T; Terpstra, P; Tognoni, A; Tosato, [No Value; Uchiyama, S; Vandenbol, M; Vannier, F; Vassarotti, A; Viari, A; Wambutt, R; Wedler, E; Wedler, H; Weitzenegger, T; Winters, P; Wipat, A; Yamamoto, H; Yamane, K; Yasumoto, K; Yata, K; Yoshida, K; Yoshikawa, HF; Zumstein, E; Yoshikawa, H; Danchin, A

    1997-01-01

    Bacillus subtilis is the best-characterized member of the Gram-positive bacteria. Its genome of 4,214,810 base pairs comprises 4,100 protein-coding genes. Of these protein-coding genes, 53% are represented once, while a quarter of the genome corresponds to several gene families that have been

  12. Crude glycerol from biodiesel industry as substrate for biosurfactant production by Bacillus subtilis ATCC 6633

    Directory of Open Access Journals (Sweden)

    Marylane de Sousa

    2014-04-01

    Full Text Available Glycerol, a co-product of the biodiesel industry, may be a suitable raw material for the production of high added-value compounds by the microorganisms. This study aimed to use the glycerol obtained from the biodiesel production process as the main carbon source for biosurfactant production by Bacillus subtilis ATCC 6633. Results indicated that the strain lowered the surface tension of the cell-free fermented broth to 31.5 ± 1.6 mN/m, indicating the production of biosurfactant. The critical micelle concentration (CMC = 33.6 mN/m obtained was similar to the previously reported for biossurfactants isolated from other Bacillus. The produced biosurfactant was able to emulsify n-hexadecane and soybean oil.

  13. Deleting multiple lytic genes enhances biomass yield and production of recombinant proteins by Bacillus subtilis.

    Science.gov (United States)

    Wang, Yi; Chen, Zhenmin; Zhao, Ruili; Jin, Tingting; Zhang, Xiaoming; Chen, Xiangdong

    2014-08-31

    Bacillus subtilis is widely used in agriculture and industrial biotechnology; however, cell autolysis significantly decreases its yield in liquid cultures. Numerous factors mediate the lysis of B. subtilis, such as cannibalism factors, prophages, and peptidoglycan (PG) hydrolases. The aim of this work was to use molecular genetic techniques to develop a new strategy to prevent cell lysis and enhance biomass as well as the production of recombinant proteins. Five genes or genetic elements representing three different functional categories were studied as follows: lytC encoding PG hydrolases, the prophage genes xpf and yqxG-yqxH-cwlA (yGlA), and skfA and sdpC that encode cannibalism factors. Cell lysis was reduced and biomass was enhanced by deleting individually skfA, sdpC, xpf, and lytC. We constructed the multiple deletion mutant LM2531 (skfA sdpC lytC xpf) and found that after 4 h of culture, its biomass yield was significantly increased compared with that of prototypical B. subtilis 168 (wild-type) strain and that 15% and 92% of the cells were lysed in cultures of LM2531 and wild-type, respectively. Moreover, two expression vectors were constructed for producing recombinant proteins (β-galactosidase and nattokinase) under the control of the P43 promoter. Cultures of LM2531 and wild-type transformants produced 13741 U/ml and 7991 U/ml of intracellular β-galactosidase, respectively (1.72-fold increase). Further, the level of secreted nattokinase produced by strain LM2531 increased by 2.6-fold compared with wild-type (5226 IU/ml vs. 2028 IU/ml, respectively). Our novel, systematic multigene deletion approach designed to inhibit cell lysis significantly increased the biomass yield and the production of recombinant proteins by B. subtilis. These findings show promise for guiding efforts to manipulate the genomes of other B. subtilis strains that are used for industrial purposes.

  14. Density of founder cells affects spatial pattern formation and cooperation in Bacillus subtilis biofilms.

    Science.gov (United States)

    van Gestel, Jordi; Weissing, Franz J; Kuipers, Oscar P; Kovács, Akos T

    2014-10-01

    In nature, most bacteria live in surface-attached sedentary communities known as biofilms. Biofilms are often studied with respect to bacterial interactions. Many cells inhabiting biofilms are assumed to express 'cooperative traits', like the secretion of extracellular polysaccharides (EPS). These traits can enhance biofilm-related properties, such as stress resilience or colony expansion, while being costly to the cells that express them. In well-mixed populations cooperation is difficult to achieve, because non-cooperative individuals can reap the benefits of cooperation without having to pay the costs. The physical process of biofilm growth can, however, result in the spatial segregation of cooperative from non-cooperative individuals. This segregation can prevent non-cooperative cells from exploiting cooperative neighbors. Here we examine the interaction between spatial pattern formation and cooperation in Bacillus subtilis biofilms. We show, experimentally and by mathematical modeling, that the density of cells at the onset of biofilm growth affects pattern formation during biofilm growth. At low initial cell densities, co-cultured strains strongly segregate in space, whereas spatial segregation does not occur at high initial cell densities. As a consequence, EPS-producing cells have a competitive advantage over non-cooperative mutants when biofilms are initiated at a low density of founder cells, whereas EPS-deficient cells have an advantage at high cell densities. These results underline the importance of spatial pattern formation for competition among bacterial strains and the evolution of microbial cooperation.

  15. Primary structure of the tms and prs genes of Bacillus subtilis

    DEFF Research Database (Denmark)

    Nilsson, Dan; Hove-Jensen, Bjarne; Arnvig, Kirsten

    1989-01-01

    The nucleotide sequence was determined of a 3211 nucleotide pair EcoRI-PvuII DNA fragment containing the tms and prs genes as well as a part of the ctc gene of Bacillus subtilis. The prs gene encodes phosphoribosylpyrophosphate (PRPP) synthetase, whereas the functioning of the tms and ctc gene...... products remains to be established. The prs gene contains an open reading frame of 317 codons resulting in a subunit Mr of 34828. An open reading frame comprising the tms gene contained 456 codons resulting in a putative translation product with an Mr of 49,554. Comparison of the deduced B. subtilis PRPP...

  16. Bacterial competition reveals differential regulation of the pks genes by Bacillus subtilis.

    Science.gov (United States)

    Vargas-Bautista, Carol; Rahlwes, Kathryn; Straight, Paul

    2014-02-01

    Bacillus subtilis is adaptable to many environments in part due to its ability to produce a broad range of bioactive compounds. One such compound, bacillaene, is a linear polyketide/nonribosomal peptide. The pks genes encode the enzymatic megacomplex that synthesizes bacillaene. The majority of pks genes appear to be organized as a giant operon (>74 kb from pksC-pksR). In previous work (P. D. Straight, M. A. Fischbach, C. T. Walsh, D. Z. Rudner, and R. Kolter, Proc. Natl. Acad. Sci. U. S. A. 104:305-310, 2007, doi:10.1073/pnas.0609073103), a deletion of the pks operon in B. subtilis was found to induce prodiginine production by Streptomyces coelicolor. Here, colonies of wild-type B. subtilis formed a spreading population that induced prodiginine production from Streptomyces lividans, suggesting differential regulation of pks genes and, as a result, bacillaene. While the parent colony showed widespread induction of pks expression among cells in the population, we found the spreading cells uniformly and transiently repressed the expression of the pks genes. To identify regulators that control pks genes, we first determined the pattern of pks gene expression in liquid culture. We next identified mutations in regulatory genes that disrupted the wild-type pattern of pks gene expression. We found that expression of the pks genes requires the master regulator of development, Spo0A, through its repression of AbrB and the stationary-phase regulator, CodY. Deletions of degU, comA, and scoC had moderate effects, disrupting the timing and level of pks gene expression. The observed patterns of expression suggest that complex regulation of bacillaene and other antibiotics optimizes competitive fitness for B. subtilis.

  17. Paralogous gene analysis reveals a highly enantioselective 1,2-O-isopropylideneglycerol caprylate esterase of Bacillus subtilis

    NARCIS (Netherlands)

    Droge, MJ; Bos, R; Quax, WJ

    Carboxylesterase NP of Bacillus subtilis Thai 1-8, characterized in 1992 as a very enantioselective (S)-naproxen esterase, was found to show no enantiopreference towards (S)-1,2-O-isopropylideneglycerol (IPG) esters. The ybfK gene was identified by the B. subtilis genome project as an unknown gene

  18. Mutation breeding of Bacillus subtilis YTB4 with high yield of ...

    African Journals Online (AJOL)

    DR TONUKARI NYEROVWO

    2012-07-17

    Jul 17, 2012 ... Helium-neon (He-Ne) laser irradiation is a highly efficient mutation breeding technology and is widely applied to various fields of biological science. Using Bacillus subtilis YTB4 with high yield of multienzyme complex as original strain, mutation breeding was carried out by He-Ne laser irradiation in.

  19. ABILITY OF BACTERIAL CONSORTIUM: Bacillus coagulans, Bacilus licheniformis, Bacillus pumilus, Bacillus subtilis, Nitrosomonas sp. and Pseudomonas putida IN BIOREMEDIATION OF WASTE WATER IN CISIRUNG WASTE WATER TREATMENT PLANT

    Directory of Open Access Journals (Sweden)

    Ratu SAFITRI

    2015-10-01

    Full Text Available This study was conducted in order to determine the ability of bacterial consortium: Bacillus coagulans, Bacilus licheniformis, Bacillus pumilus, Bacillus subtilis, Nitrosomonas sp., and Pseudomonas putida in bioremediation of wastewater origin Cisirung WWTP. This study uses an experimental method completely randomized design (CRD, which consists of two treatment factors (8x8 factorial design. The first factor is a consortium of bacteria (K, consisting of 8 level factors (k1, k2, k3, k4, k5, k6, k7, and k8. The second factor is the time (T, consisting of a 7 level factors (t0, t1, t2, t3, t4, t5, t6, and t7. Test parameters consist of BOD (Biochemical Oxygen Demand, COD (Chemical Oxygen Demand, TSS (Total Suspended Solid, Ammonia and Population of Microbes during bioremediation. Data were analyzed by ANOVA, followed by Duncan test. The results of this study showed that the consortium of Bacillus pumilus, Bacillus subtilis, Bacillus coagulans, Nitrosomonas sp., and Pseudomonas putida with inoculum concentration of 5% (k6 is a consortium of the most effective in reducing BOD 71.93%, 64.30% COD, TSS 94.85%, and 88.58% of ammonia.

  20. Phylogenetic analysis of Bacillus subtilis strains applicable to natto (fermented soybean) production

    Science.gov (United States)

    Spore-forming Bacillus strains that produce extracellular poly-'-glutamic acid were screened for their application to natto (fermented soybean food) fermentation. Among the 365 strains, including B. subtilis and B. amyloliquefaciens, which we isolated from rice straw, 59 were capable of fermenting n...

  1. In vitro characterization of the Bacillus subtilis protein tyrosine phosphatase YwqE

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Musumeci, Lucia; Tautz, Lutz

    2005-01-01

    Both gram-negative and gram-positive bacteria possess protein tyrosine phosphatases (PTPs) with a catalytic Cys residue. In addition, many gram-positive bacteria have acquired a new family of PTPs, whose first characterized member was CpsB from Streptococcus pneumoniae. Bacillus subtilis contains...

  2. Enhanced secretion of natto phytase by Bacillus subtilis.

    Science.gov (United States)

    Tsuji, Shogo; Tanaka, Kosei; Takenaka, Shinji; Yoshida, Ken-ichi

    2015-01-01

    Phytases comprise a group of phosphatases that trim inorganic phosphates from phytic acid (IP6). In this study, we aimed to achieve the efficient secretion of phytase by Bacillus subtilis. B. subtilis laboratory standard strain 168 and its derivatives exhibit no phytase activity, whereas a natto starter secretes phytase actively. The natto phytase gene was cloned into strain RIK1285, a protease-defective derivative of 168, to construct a random library of its N-terminal fusions with 173 different signal peptides (SPs) identified in the 168 genome. The library was screened to assess the efficiency of phytase secretion based on clear zones around colonies on plates, which appeared when IP6 was hydrolyzed. The pbp SP enhanced the secretion of the natto phytase most efficiently, i.e. twice that of the original SP. Thus, the secreted natto phytase was purified and found to remove up to 3 phosphates from IP6.

  3. Enhancement of extracellular expression of Bacillus naganoensis pullulanase from recombinant Bacillus subtilis: Effects of promoter and host.

    Science.gov (United States)

    Song, Wan; Nie, Yao; Mu, Xiao Qing; Xu, Yan

    2016-08-01

    Pullulanase plays an important role in industrial applications of starch processing. However, extracellular production of pullulanase from recombinant Bacillus subtilis is yet limited due to the issues on regulatory elements of B. subtilis expression system. In this study, the gene encoding B. naganoensis pullulanase (PUL) was expressed in B. subtilis WB800 under the promoter PHpaII in the shuttle vector pMA0911. The extracellular activity of expressed pullulanase was 3.9 U ml(-1) from the recombinant B. subtilis WB800/pMA0911-PHpaII-pul. To further enhance the yield of PUL, the promoter PHpaII in pMA0911 was replaced by a stronger constitutive promoter P43. Then the activity was increased to 8.7 U ml(-1) from the recombinant B. subtilis WB800/pMA0911-P43-pul. Effect of host on pullulanase expression was further investigated by comparison between B. subtilis WB600 and B. subtilis WB800. In addition to the available B. subtilis WB800 recombinants, the constructed plasmids pMA0911-PHpaII-pul and pMA0911-P43-pul were transformed into B. subtilis WB600, respectively. Consequently, the extracellular production of PUL was significantly enhanced by B. subtilis WB600/pMA0911-P43-pul, resulting in the extracellular pullulanase activity of 24.5 U ml(-1). Therefore, promoter and host had an impact on pullulanase expression and their optimization would be useful to improve heterologous protein expression in B. subtilis. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Bistability and Biofilm Formation in Bacillus subtilis

    Science.gov (United States)

    Chai, Yunrong; Chu, Frances; Kolter, Roberto; Losick, Richard

    2008-01-01

    Summary Biofilms of Bacillus subtilis consist of long chains of cells that are held together in bundles by an extracellular matrix of exopolysaccharide and the protein TasA. The exopolysaccharide is produced by enzymes encoded by the epsA-O operon and the gene encoding TasA is located in the yqxM-sipW-tasA operon. Both operons are under the control of the repressor SinR. Derepression is mediated by the antirepressor SinI, which binds to SinR with a 1:1 stoichiometry. Paradoxically, in medium promoting derepression of the matrix operons, the overall concentration of SinR in the culture greatly exceeded that of SinI. We show that under biofilm-promoting conditions sinI, which is under the control of the response regulator Spo0A, was expressed only in a small subpopulation of cells, whereas sinR was expressed in almost all cells. Activation of Spo0A is known to be subject to a bistable switch, and we infer that SinI reaches levels sufficient to trigger matrix production only in the subpopulation of cells in which Spo0A is active. Additionally, evidence suggests that sinI is expressed at intermediate, but not low or high, levels of Spo0A activity, which may explain why certain nutritional conditions are more effective in promoting biofilm formation than others. PMID:18047568

  5. Differentiated roles for MreB-actin isologues and autolytic enzymes in Bacillus subtilis morphogenesis.

    Science.gov (United States)

    Domínguez-Cuevas, Patricia; Porcelli, Ida; Daniel, Richard A; Errington, Jeff

    2013-09-01

    Cell morphogenesis in most bacteria is governed by spatiotemporal growth regulation of the peptidoglycan cell wall layer. Much is known about peptidoglycan synthesis but regulation of its turnover by hydrolytic enzymes is much less well understood. Bacillus subtilis has a multitude of such enzymes. Two of the best characterized are CwlO and LytE: cells lacking both enzymes have a lethal block in cell elongation. Here we show that activity of CwlO is regulated by an ABC transporter, FtsEX, which is required for cell elongation, unlike cell division as in Escherichia coli. Actin-like MreB proteins are thought to play a key role in orchestrating cell wall morphogenesis. B. subtilis has three MreB isologues with partially differentiated functions. We now show that the three MreB isologues have differential roles in regulation of the CwlO and LytE systems and that autolysins control different aspects of cell morphogenesis. The results add major autolytic activities to the growing list of functions controlled by MreB isologues in bacteria and provide new insights into the different specialized functions of essential cell wall autolysins. © 2013 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  6. Functional Diversity of AAA+ Protease Complexes in Bacillus subtilis

    OpenAIRE

    Elsholz, Alexander K. W.; Birk, Marlene S.; Charpentier, Emmanuelle; Turgay, K?r?ad

    2017-01-01

    Here, we review the diverse roles and functions of AAA+ protease complexes in protein homeostasis, control of stress response and cellular development pathways by regulatory and general proteolysis in the Gram-positive model organism Bacillus subtilis. We discuss in detail the intricate involvement of AAA+ protein complexes in controlling sporulation, the heat shock response and the role of adaptor proteins in these processes. The investigation of these protein complexes and their adaptor pro...

  7. Adaptation of Bacillus subtilis to Life at Extreme Potassium Limitation.

    Science.gov (United States)

    Gundlach, Jan; Herzberg, Christina; Hertel, Dietrich; Thürmer, Andrea; Daniel, Rolf; Link, Hannes; Stülke, Jörg

    2017-07-05

    Potassium is the most abundant metal ion in every living cell. This ion is essential due to its requirement for the activity of the ribosome and many enzymes but also because of its role in buffering the negative charge of nucleic acids. As the external concentrations of potassium are usually low, efficient uptake and intracellular enrichment of the ion is necessary. The Gram-positive bacterium Bacillus subtilis possesses three transporters for potassium, KtrAB, KtrCD, and the recently discovered KimA. In the absence of the high-affinity transporters KtrAB and KimA, the bacteria were unable to grow at low potassium concentrations. However, we observed the appearance of suppressor mutants that were able to overcome the potassium limitation. All these suppressor mutations affected amino acid metabolism, particularly arginine biosynthesis. In the mutants, the intracellular levels of ornithine, citrulline, and arginine were strongly increased, suggesting that these amino acids can partially substitute for potassium. This was confirmed by the observation that the supplementation with positively charged amino acids allows growth of B. subtilis even at the extreme potassium limitation that the bacteria experience if no potassium is added to the medium. In addition, a second class of suppressor mutations allowed growth at extreme potassium limitation. These mutations result in increased expression of KtrAB, the potassium transporter with the highest affinity and therefore allow the acquisition and accumulation of the smallest amounts of potassium ions from the environment. IMPORTANCE Potassium is essential for every living cell as it is required for the activity for many enzymes and for maintaining the intracellular pH by buffering the negative charge of the nucleic acids. We have studied the adaptation of the soil bacterium Bacillus subtilis to life at low potassium concentrations. If the major high-affinity transporters are missing, the bacteria are unable to grow

  8. Plasmids replicatable in Bacillus subtilis, E. coli and lactic acid streptococcus bacteria

    NARCIS (Netherlands)

    Kok, Jan; Maat, Jan; van der Vossen, Josephus Mauritius; Venema, Gerard

    1997-01-01

    The claimed invention is drawn to a recombinant plasmid which can replicate in Bacillus subtilis, Escherichia coli, and lactic acid Streptococcus bacteria comprising the replication of origin from Streptococcus cremoris plasmid pWV01 as its origin of replication, in addition to coding marker genes

  9. Fed-Batch Biomolecule Production by Bacillus subtilis: A State of the Art Review.

    Science.gov (United States)

    Ÿztürk, Sibel; Ÿalık, Pınar; Ÿzdamar, Tunçer H

    2016-04-01

    Bacillus subtilis is a highly promising production system for various biomolecules. This review begins with the algorithm of fed-batch operations (FBOs) and then illustrates the approaches to design the initial production medium and/or feed stream. Additionally, the feeding strategies developed with or without feedback control for fed-batch B. subtilis fermentations were compiled with a special emphasis on recombinant protein (r-protein) production. For biomolecule production by wild-type B. subtilis, due to the different intracellular production patterns, no consensus exists on the FBO strategy that gives the maximum productivity, whereas for r-protein production appropriate feeding strategies vary depending on the promoter used. Thus, we conclude that the B. subtilis community is still seeking an approved strong promoter and generalized FBO strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Growth and sporulation of Bacillus subtilis under microgravity (7-IML-1)

    Science.gov (United States)

    Mennigmann, Horst-Dieter

    1992-01-01

    The experiment was aimed at measuring the growth and sporulation of Bacillus subtilis under microgravity. The hardware for the experiment consists of a culture chamber (15 ml) made from titanium and closed by a membrane permeable for gases but not for water. Two variants of this basic structure were built which fit into the standard Biorack container types 1 and 2 respectively. Growth of the bacteria will be monitored by continuously measuring the optical density with a built-in miniaturized photometer. Other parameters (viability, sporulation, fine structure, size distribution of cells and spores, growth kinetics, etc.) will be measured on the fixed samples and on those where metabolism was temporarily halted, respectively.

  11. Mutation breeding of Bacillus subtilis YTB4 with high yield of ...

    African Journals Online (AJOL)

    Helium-neon (He-Ne) laser irradiation is a highly efficient mutation breeding technology and is widely applied to various fields of biological science. Using Bacillus subtilis YTB4 with high yield of multienzyme complex as original strain, mutation breeding was carried out by He-Ne laser irradiation in this study. Based on the ...

  12. Intracellular pH Response to Weak Acid Stress in Individual Vegetative Bacillus subtilis Cells.

    Science.gov (United States)

    Pandey, Rachna; Vischer, Norbert O E; Smelt, Jan P P M; van Beilen, Johan W A; Ter Beek, Alexander; De Vos, Winnok H; Brul, Stanley; Manders, Erik M M

    2016-11-01

    Intracellular pH (pH i ) critically affects bacterial cell physiology. Hence, a variety of food preservation strategies are aimed at perturbing pH i homeostasis. Unfortunately, accurate pH i quantification with existing methods is suboptimal, since measurements are averages across populations of cells, not taking into account interindividual heterogeneity. Yet, physiological heterogeneity in isogenic populations is well known to be responsible for differences in growth and division kinetics of cells in response to external stressors. To assess in this context the behavior of intracellular acidity, we have developed a robust method to quantify pH i at single-cell levels in Bacillus subtilis Bacilli spoil food, cause disease, and are well known for their ability to form highly stress-resistant spores. Using an improved version of the genetically encoded ratiometric pHluorin (IpHluorin), we have quantified pH i in individual B. subtilis cells, cultured at an external pH of 6.4, in the absence or presence of weak acid stresses. In the presence of 3 mM potassium sorbate, a decrease in pH i and an increase in the generation time of growing cells were observed. Similar effects were observed when cells were stressed with 25 mM potassium acetate. Time-resolved analysis of individual bacteria in growing colonies shows that after a transient pH decrease, long-term pH evolution is highly cell dependent. The heterogeneity at the single-cell level shows the existence of subpopulations that might be more resistant and contribute to population survival. Our approach contributes to an understanding of pH i regulation in individual bacteria and may help scrutinizing effects of existing and novel food preservation strategies. This study shows how the physiological response to commonly used weak organic acid food preservatives, such as sorbic and acetic acids, can be measured at the single-cell level. These data are key to coupling often-observed single-cell heterogeneous growth

  13. Inoculação de sementes com Bacillus subtilis, formulado com farinha de ostras e desenvolvimento de milho, soja e algodão Seed inoculation with Bacillus subtilis, formulated with oyster meal and growth of corn, soybean and cotton

    Directory of Open Access Journals (Sweden)

    Fabio Fernando de Araujo

    2008-04-01

    Full Text Available Bacillus subtilis, bactéria habitante natural do solo, produz antibióticos, enzimas e fitohormonios que proporcionam benefícios para as plantas. Essa espécie microbiana é também descrita como rizobactéria promotora de crescimento de plantas (RPCP. Sementes de milho, algodão e soja foram inoculadas com células de B. subtilis formulado com farinha de ostras objetivando-se avaliar a emergência e o desenvolvimento das plantas. A inoculação proporcionou aumento de emergências em algodão e soja. Além disso, a inoculação com o produto biológico incrementou significativamente a produção de massa seca, na parte aérea do milho. Os teores de fósforo e nitrogênio foram maiores no tecido foliar de milho, inoculados com a bactéria e farinha de ostras, comparando-se com a testemunha. A interação do resíduo orgânico com a bactéria proporcionou ganhos no crescimento e nutrição das plantas. A inoculação de sementes com B. subtilis, formulado com o resíduo orgânico, apresentou-se como uma alternativa tecnológica viável para a inoculação de sementes.Bacillus subtilis is a soil bacteria able to synthesize antibiotics, enzymes and phytohormones importants for plant growth. This specie is also classified in plant growth as promoting rhizobacteria (PGPR. A biological product containing oyster meal and cells of B. subtilis was inoculated in seeds of corn, cotton and soybean. This inoculation increased emergence in cotton and soybean. The growth of corn was stimulated by seed inoculation with B. subtilis and organic amendment. The concentration of phosphorus and nitrogen significantly increased in the corn treated with the product. The interaction bacteria with organic amendment provided increments in plant growth. The inoculation of seeds with B. subtilis and amendments is promising technological alternative for seed treatment.

  14. Cucumber rhizosphere microbial community response to biocontrol agent Bacillus subtilis B068150

    Science.gov (United States)

    Gram-positive bacteria Bacillus subtilis B068150 has been used as a biocontrol agent against the pathogen Fusarium oxysporum f. sp. Cucumerinum. However, their survival ability in cucumber rhizosphere and non-rhizosphere as well as their influence on native microbial communities has not been fully i...

  15. Expression of Bacillus subtilis levanase gene in Lactobacillus plantarum and Lactobacillus casei

    NARCIS (Netherlands)

    Wanker, E.; Leer, R.J.; Pouwels, P.H.; Schwab, H.

    1995-01-01

    Two Lactobacillus-Escherichia coli shuttle vectors, harbouring the levanase gene from Bacillus subtilis under the control of its own promoter (pLPEW1) or behind the E. coli tac promoter (pE-SIEW2), were constructed. Lactobacillus plantarum showed the same growth characteristics on selective plates

  16. Heterologous expression and characterization of a new heme-catalase in Bacillus subtilis 168.

    Science.gov (United States)

    Philibert, Tuyishime; Rao, Zhiming; Yang, Taowei; Zhou, Junping; Huang, Genshu; Irene, Komera; Samuel, Niyomukiza

    2016-06-01

    Reactive oxygen species (ROS) is an inherent consequence to all aerobically living organisms that might lead to the cells being lethal and susceptible to oxidative stress. Bacillus pumilus is characterized by high-resistance oxidative stress that stimulated our interest to investigate the heterologous expression and characterization of heme-catalase as potential biocatalyst. Results indicated that recombinant enzyme significantly exhibited the high catalytic activity of 55,784 U/mg expressed in Bacillus subtilis 168 and 98.097 µmol/min/mg peroxidatic activity, the apparent K m of catalytic activity was 59.6 ± 13 mM with higher turnover rate (K cat = 322.651 × 10(3) s(-1)). The pH dependence of catalatic and peroxidatic activity was pH 7.0 and pH 4.5 respectively with temperature dependence of 40 °C and the recombinant heme-catalase exhibited a strong Fe(2+) preference. It was further revealed that catalase KatX2 improved the resistance oxidative stress of B. subtilis. These findings suggest that this B. pumilus heme-catalase can be considered among the industrially relevant biocatalysts due to its exceptional catalytic rate and high stability and it can be a potential candidate for the improvement of oxidative resistance of industrially produced strains.

  17. Antagonistic effects of Bacillus subtilis subsp. subtilis and B. amyloliquefaciens against Macrophomina phaseolina: SEM study of fungal changes and UV-MALDI-TOF MS analysis of their bioactive compounds.

    Science.gov (United States)

    Torres, M J; Brandan, C Pérez; Petroselli, G; Erra-Balsells, R; Audisio, M C

    2016-01-01

    The antifungal effect of Bacillus subtilis subsp. subtilis PGPMori7 and Bacillus amyloliquefaciens PGPBacCA1 was evaluated against Macrophomina phaseolina (Tassi) Goid. Cell suspension (CS), cell-free supernatant (CFS) and the lipopeptide fraction (LF) of PGPMori7 and PGPBacCA1 were screened against three different M. phaseolina strains. CS exhibited the highest inhibitory effect (around 50%) when compared to those of CFS and LF, regardless of the fungal strain studied. The synthesis of lipopeptides was studied by UV-MALDI TOF. Chemical analysis of Bacillus metabolite synthesis revealed that surfactin and iturin were mainly produced in liquid medium. Potential fengycin was also co-produced when both Bacillus were cultivated in solid medium. In co-culture assays, the bacterial colony-fungal mycelium interface at the inhibition zone was evaluated by both scanning electron microscopy (SEM) and UV-MALDI TOF, the former to determine the structural changes on M. phaseolina cells and the latter to identify the main bioactive molecules involved in the inhibitory effect. PGPBacCA1 produced surfactin, iturin and fengycin in the inhibition zone while PGPMori7 only produced these metabolites within its colony and not in the narrow inhibition zone. Interestingly, SEM revealed that PGPBacCA1 induced damage in M. phaseolina sclerotia, generating a fungicidal effect as no growth was observed when normal growth conditions were reestablished. In turn, PGPMori7 inhibited the growth of the Macrophomina mycelium without fungal injury, resulting only in a fungistatic activity. From these results, it was determined that the two bacilli significantly inhibited the growth of an important phytopathogenic fungus by at least two different mechanisms: lipopeptide synthesis and competition among microorganisms. Copyright © 2015 Elsevier GmbH. All rights reserved.

  18. Effect of salt on a thermosensitive mutant of Bacillus subtilis deficient in uracil and cell division

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, N; Nagai, K; Tamura, G

    1976-01-01

    A thermosensitive uracil requiring mutant of Bacillus subtilis Marburg 168 thy trp/sub 2/ ts42 was examined as to the colony forming ability at the permissive and nonpermissive temperatures. The viability of the mutant cells decreased rapidly at the restrictive temperature in the modified Woese's (MW) medium. However, the cells retained viability when sodium succinate or potassium chloride was added to the medium at that temperature although uracil deficiency was unchanged. A little but significant incorporation of adenine-8-/sup 14/C into RNA still continued even after the incorporation of N-acetyl-/sup 3/H-D-glucosamine into acid insoluble fraction of the cells terminated in the MW medium at 48/sup 0/C. Both incorporations as well as increase of absorbance were slowed down in the presence of sodium succinate at 48/sup 0/C. This mutant, ts-42, was more sensitive to deoxycholate (DOC) than the parent strain. The restoration of colony forming ability after the temperature shift back to 37/sup 0/C was suppressed by the addition of DOC to the medium. However, the cell became resistant to DOC when uracil was added to the medium prior to the temperature shift.

  19. Enhanced viability of Lactobacillus reuteri for probiotics production in mixed solid-state fermentation in the presence of Bacillus subtilis.

    Science.gov (United States)

    Zhang, Yi-Ran; Xiong, Hai-Rong; Guo, Xiao-Hua

    2014-01-01

    In order to develop a multi-microbe probiotic preparation of Lactobacillus reuteri G8-5 and Bacillus subtilis MA139 in solid-state fermentation, a series of parameters were optimized sequentially in shake flask culture. The effect of supplementation of B. subtilis MA139 as starters on the viability of L. reuteri G8-5 was also explored. The results showed that the optimized process was as follows: water content, 50 %; initial pH of diluted molasses, 6.5; inocula volume, 2 %; flask dry contents, 30∼35 g/250 g without sterilization; and fermentation time, 2 days. The multi-microbial preparations finally provided the maximum concentration of Lactobacillus of about 9.01 ± 0.15 log CFU/g and spores of Bacillus of about 10.30 ± 0.08 log CFU/g. Compared with pure fermentation of L. reuteri G8-5, significantly high viable cells, low value of pH, and reducing sugar in solid substrates were achieved in mixed fermentation in the presence of B. subtilis MA139 (P fermentation showed the significantly higher antimicrobial activity against E. coli K88 (P solid-state fermentation with low cost. Moreover, the viability of L. reuteri G8-5 could be significantly enhanced in the presence of B. subtilis MA139 in solid-state fermentation, which favored the production of probiotics for animal use.

  20. Surfactin production enhances the level of cardiolipin in the cytoplasmic membrane of Bacillus subtilis

    Czech Academy of Sciences Publication Activity Database

    Seydlová, G.; Fišer, R.; Čabala, R.; Kozlík, P.; Svobodová, J.; Pátek, Miroslav

    2013-01-01

    Roč. 1828, č. 11 (2013), s. 2370-2378 ISSN 0005-2736 Institutional support: RVO:61388971 Keywords : Surfactin * Bacillus subtilis * Membrane Subject RIV: EE - Microbiology, Virology Impact factor: 3.431, year: 2013

  1. MUTANT STRAIN of Bacillus subtilis IFBG MC-1 WITH INCREASED TRYPTOPHAN SYNTHESIS

    Directory of Open Access Journals (Sweden)

    A. F. Tkachenko

    2013-12-01

    Full Text Available Scientific research of essential amino acids biotechnology is directed both to create optimum conditions for producer’s cultivation and economically viable raw materials selection for these technologies, so as breeding the more productive microorganisms strains capable of extracellular producing amino acids. For successful microbial synthesis it is necessary to have an excellent crop’s metabolism knowledge and ensure that the composition of growth medium have no repressing substances. Bacterial cultures from «Collection microorganism’s stains and plants line for food and agriculture biotechnology» from Institute of Food Biotechnology and Genomics of National Academy of Sciences of Ukraine have been studied. Tryptophan producer Bacillus subtilis have been selected, which accumulated the greatest amount of this amino acid in the cultivation liquid. The optimal culture producer conditions were selected. Using selection methods, namely mutagenesis with UV irradiation and sequential stepwise selection, mutant strain Bacillus subtilis IFBG MC-1 were obtained which produced nearly 50% more tryptophan (13.9 g/l than the parent strain.

  2. Use of Bacillus Subtilis PB6 as a potential antibiotic growth promoter replacement in improving performance of broiler birds.

    Science.gov (United States)

    Jayaraman, Sathishkumar; Das, Partha Pratim; Saini, Prakash Chandra; Roy, Barun; Chatterjee, Paresh Nath

    2017-08-01

    The intestinal gut health is one of the primary determinants of broiler growth and performance. Among the various enteric diseases, necrotic enteritis (NE) is an enterotoxemic disease caused by Clostridium perfringens, which can result in severe economic losses in poultry farming. Antibiotics like bacitracin methylene disalicylate (BMD) and avilamycin (AVL) are commonly used antibiotic growth promoters (AGP) in poultry feed to control necrotic enteritis in birds. Bacillus subtilis PB6 was reported to prevent necrotic enteritis and improve performance in birds. This paper investigated the influence of Bacillus subtilis PB6 in improving the performance of broiler birds in comparison with BMD and avilamycin. A 35 day trial was conducted with 240 day-old commercial broiler chicks (VenCobb 400), which were divided into four treatment groups, where each treatment group was composed of 6 replicates each containing 10 birds, for a total of 60 birds per treatment. The treatment groups included a negative control (no AGP), Bacillus subtilis PB6, BMD, and avilamycin. The parameters analyzed included body weight, feed conversion ratio (FCR), mortality, villus histomorphometry, and European efficiency factor (EEF). Bacillus subtilis PB6 significantly (P < 0.05) improved body weight and FCR (8 points) compared to the control. The group supplemented with B. subtilis PB6 or BMD had higher (P < 0.05) body weight compared to all other treatment groups. The supplementation of B. subtilis PB6 significantly improved the villus height (P < 0.05) compared to control and other AGP groups. The EEF was found to be the highest in the B. subtilis PB6 supplemented group at 35th day as compared to other treatment groups. The combined data from this study indicate that supplementation of B. subtilis PB6 improves overall performance of broilers compared to BMD and avilamycin, and can be used as potential AGP replacement in poultry farming. © 2017 Poultry Science Association Inc.

  3. Reversal of an Epigenetic Switch Governing Cell Chaining in Bacillus subtilis by Protein Instability

    Science.gov (United States)

    Chai, Yunrong; Kolter, Roberto; Losick, Richard

    2010-01-01

    Bacillus subtilis forms long chains of cells during growth and biofilm formation. Cell separation is mediated by autolysins, whose genes are under the negative control of a heteromeric complex composed of the proteins SinR and SlrR. Formation of the SinR•SlrR complex is governed by a self-reinforcing, double-negative feedback loop in which SinR represses the gene for SlrR and SlrR, by forming the SinR•SlrR complex, titrates SinR and prevents it from repressing slrR. The loop is a bistable switch and exists in a SlrRLOW state in which autolysin genes are on, and a SlrRHIGH state in which autolysin genes are repressed by SinR•SlrR. Cells in the SlrRLOW state are driven into the SlrRHIGH state by SinI, an antirepressor that binds to and inhibits SinR. However, the mechanism by which cells in the SlrRHIGH state revert back to the SlrRLOW state is unknown. We report that SlrR is proteolytically unstable and present evidence that self-cleavage via a LexA-like autopeptidase and ClpC contribute to its degradation. Cells producing a self-cleavage-resistant mutant of SlrR exhibited more persistent chaining during growth and yielded biofilms with enhanced structural complexity. We propose that degradation of SlrR allows cells to switch from the SlrRHIGH to the SlrRLOW state. PMID:20923420

  4. Adaptation of Bacillus subtilis carbon core metabolism to simultaneous nutrient limitation and osmotic challenge : a multi-omics perspective

    NARCIS (Netherlands)

    Kohlstedt, Michael; Sappa, Praveen K; Meyer, Hanna; Maaß, Sandra; Zaprasis, Adrienne; Hoffmann, Tamara; Becker, Judith; Steil, Leif; Hecker, Michael; van Dijl, Jan Maarten; Lalk, Michael; Mäder, Ulrike; Stülke, Jörg; Bremer, Erhard; Völker, Uwe; Wittmann, Christoph

    The Gram-positive bacterium Bacillus subtilis encounters nutrient limitations and osmotic stress in its natural soil ecosystem. To ensure survival and sustain growth, highly integrated adaptive responses are required. Here, we investigated the system-wide response of B.subtilis to different,

  5. Methylglyoxal synthase regulates cell elongation via alterations of cellular methylglyoxal and spermidine content in Bacillus subtilis.

    Science.gov (United States)

    Shin, Sang-Min; Song, Sung-Hyun; Lee, Jin-Woo; Kwak, Min-Kyu; Kang, Sa-Ouk

    2017-10-01

    Methylglyoxal regulates cell division and differentiation through its interaction with polyamines. Loss of their biosynthesizing enzyme causes physiological impairment and cell elongation in eukaryotes. However, the reciprocal effects of methylglyoxal and polyamine production and its regulatory metabolic switches on morphological changes in prokaryotes have not been addressed. Here, Bacillus subtilis methylglyoxal synthase (mgsA) and polyamine biosynthesizing genes encoding arginine decarboxylase (SpeA), agmatinase (SpeB), and spermidine synthase (SpeE), were disrupted or overexpressed. Treatment of 0.2mM methylglyoxal and 1mM spermidine led to the elongation and shortening of B. subtilis wild-type cells to 12.38±3.21μm (P<0.05) and 3.24±0.73μm (P<0.01), respectively, compared to untreated cells (5.72±0.68μm). mgsA-deficient (mgsA - ) and -overexpressing (mgsA OE ) mutants also demonstrated cell shortening and elongation, similar to speB- and speE-deficient (speB - and speE - ) and -overexpressing (speB OE and speE OE ) mutants. Importantly, both mgsA-depleted speB OE and speE OE mutants (speB OE /mgsA - and speE OE /mgsA - ) were drastically shortened to 24.5% and 23.8% of parental speB OE and speE OE mutants, respectively. These phenotypes were associated with reciprocal alterations of mgsA and polyamine transcripts governed by the contents of methylglyoxal and spermidine, which are involved in enzymatic or genetic metabolite-control mechanisms. Additionally, biophysically detected methylglyoxal-spermidine Schiff bases did not affect morphogenesis. Taken together, the findings indicate that methylglyoxal triggers cell elongation. Furthermore, cells with methylglyoxal accumulation commonly exhibit an elongated rod-shaped morphology through upregulation of mgsA, polyamine genes, and the global regulator spx, as well as repression of the cell division and shape regulator, FtsZ. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Transcriptional regulation of the Bacillus subtilis menp1 promoter.

    OpenAIRE

    Qin, X; Taber, H W

    1996-01-01

    The Bacillus subtilis men genes encode biosynthetic enzymes for formation of the respiratory chain component menaquinone. The menp1 promoter previously was shown to be the primary cis element for menFD gene expression. In the present work, it was found that either supplementation with nonfermentable carbon sources or reutilization of glycolytic end products increased menp1 activity in the late postexponential phase. The effect on menp1 activity by a particular end product (such as acetoin or ...

  7. The probiotics (Pediococcus acidilactici and Bacillus subtilis evaluation after weaning and effects on the piglets performance/ Avaliação de probióticos (Pediococcus acidilactici e Bacillus subtilis após o desmame e efeitos no desempenho dos leitões

    Directory of Open Access Journals (Sweden)

    Marcus Vinícius Briganó

    2006-06-01

    Full Text Available The experiment was conducted with the goal to evaluate the use of rations with Pediococcus acidilactici and Pediococcus acidilactici plus Bacillus subtilis as probiotics to weaned piglets (21 days and the effects on the performance until 63 day of age. 210 piglets were submitted to the folowing treatments: T1- ration with Pediococcus acidilactici; T2- ration with Pediococcus acidilactici + Bacillus subtilis; and T3- ration without probiotic. Were evaluated the daily weight gain, daily feed intake and the conversion rate, the dirrohea ocurrence and the mortality rate. The experimental design was a randomized blocks,with 3 treatments and 7 replications, been the means compared by Duncan’s Test. At the end of the experiment the animals that received the ration with Pediococcus acidilactici and the ration with Pediococcus acidilactici plus Bacillus subtilis (T1 and T2 presented a better conversion rate (PO experimento foi conduzido visando avaliar o uso das bactérias probióticas Pediococcus acidilactici associada ou não ao Bacillus subtilis em rações para leitões recém-desmamados (21 dias e seus efeitos no desempenho até os 63 dias de idade. Foram utilizados 210 animais submetidos aos seguintes tratamentos: T1- ração com Pediococcus acidilactici; T2 – ração com Pediococcus acidilactici + Bacillus subtilis; e T3 – ração isenta de probiótico. Foram avaliados o ganho diário de peso, o consumo diário de ração, a conversão alimentar, a ocorrência de diarréias e a taxa de mortalidade. O delineamento experimental foi em blocos casualizados, com 3 tratamentos e 7 repetições, sendo as médias comparadas pelo teste de Duncan. Observou-se ao final do experimento que animais que receberam o Pediococcus acidilactici associada ou não ao Bacillus subtilis (T1 e T2 apresentaram melhor conversão alimentar (P < 0,05 com relação ao grupo controle. A utilização destas bactérias não determinou ocorrência de diarréias. Os probi

  8. Bacillus subtilis single-stranded DNA-binding protein SsbA is phosphorylated at threonine 38 by the serine/threonine kinase YabT

    DEFF Research Database (Denmark)

    Derouiche, Abderahmane; Petranovic, Dina; Macek, Boris

    2016-01-01

    Background and purpose: Single-stranded DNA-binding proteins participate in all stages of DNA metabolism that involve single-stranded DNA, from replication, recombination, repair of DNA damage, to natural competence in species such as Bacillus subtilis. B. subtilis single-stranded DNA......-binding proteins have previously been found to be phosphorylated on tyrosine and arginine residues. While tyrosine phosphorylation was shown to enhance the DNA-binding properties of SsbA, arginine phosphorylation was not functionally characterized.Materials and methods: We used mass spectrometry analysis to detect...... phosphorylation of SsbA purified from B. subtilis cells. The detected phosphorylation site was assessed for its influence on DNA-binding in vitro, using electrophoretic mobility shift assays. The ability of B. subtilis serine/threonine kinases to phosphorylate SsbA was assessed using in vitro phosphorylation...

  9. [Molecular cloning and expression of Nattokinase gene in Bacillus subtilis].

    Science.gov (United States)

    Liu, B Y; Song, H Y

    2002-05-01

    In order to characterize biochemically the nattokinase,the nucleotide sequence of the nattokinase gene was amplified from the chromosomal DNA of B.subtilis (natto) by PCR. The expression plasmid pBL NK was constructed and was used to transform Bacillus subtilis containing a chromosomal deletion in its subtilisin gene. The supernatant of the culture was collected after 15 h culture. The target proteins were identified by SDS-PAGE. Nattokinase was purified by a method including ultrafiltration, Sephacryl S-100 gel filtration and S-Sepharose ion-exchange chromatography, and 100 mg of purified nattokinase was obtained from one liter of culture. The purity of the protein and the specific activity were 95% and 12 000 u/mg (compared to tPA), respectively.

  10. Bacterial Competition Reveals Differential Regulation of the pks Genes by Bacillus subtilis

    Science.gov (United States)

    Vargas-Bautista, Carol; Rahlwes, Kathryn

    2014-01-01

    Bacillus subtilis is adaptable to many environments in part due to its ability to produce a broad range of bioactive compounds. One such compound, bacillaene, is a linear polyketide/nonribosomal peptide. The pks genes encode the enzymatic megacomplex that synthesizes bacillaene. The majority of pks genes appear to be organized as a giant operon (>74 kb from pksC-pksR). In previous work (P. D. Straight, M. A. Fischbach, C. T. Walsh, D. Z. Rudner, and R. Kolter, Proc. Natl. Acad. Sci. U. S. A. 104:305–310, 2007, doi:10.1073/pnas.0609073103), a deletion of the pks operon in B. subtilis was found to induce prodiginine production by Streptomyces coelicolor. Here, colonies of wild-type B. subtilis formed a spreading population that induced prodiginine production from Streptomyces lividans, suggesting differential regulation of pks genes and, as a result, bacillaene. While the parent colony showed widespread induction of pks expression among cells in the population, we found the spreading cells uniformly and transiently repressed the expression of the pks genes. To identify regulators that control pks genes, we first determined the pattern of pks gene expression in liquid culture. We next identified mutations in regulatory genes that disrupted the wild-type pattern of pks gene expression. We found that expression of the pks genes requires the master regulator of development, Spo0A, through its repression of AbrB and the stationary-phase regulator, CodY. Deletions of degU, comA, and scoC had moderate effects, disrupting the timing and level of pks gene expression. The observed patterns of expression suggest that complex regulation of bacillaene and other antibiotics optimizes competitive fitness for B. subtilis. PMID:24187085

  11. Adsorption of Th(IV) and Pu(IV) on the surface of Pseudomonas fluorescens and Bacillus subtilis in the presence of desferrioxamine siderophore

    International Nuclear Information System (INIS)

    Yoshida, Takahiro; Ozaki, Takuo; Ohnuki, Toshihiko; Francis, Arokiasamy J.

    2005-01-01

    Adsorption of Th(IV) and Pu(IV) on a Gram-negative bacterium Pseudomonas fluorescens and a Gram-positive bacterium Bacillus subtilis in the presence of siderophore desferrioxamine B (DFO) was studied. Thorium(IV) and Pu(IV) were dissociated from DFO during adsorption on the cells. Thorium(IV) adsorption on bacterial cells in the presence of DFO was larger than that of Pu(IV) because of the smaller stability of the Th(IV)-DFO complex than that of the Pu(IV)-DFO complex. On the other hand, adsorption of Pu(IV) was larger than that of Fe(III), wherein the stability of the Pu(IV)- and Fe(III)-DFO complex is comparable. P. fluorescens showed a higher affinity for Th(IV) and Pu(IV) than B. subtilis, though potentiometric titration of bacterial cells indicated that surfaces of P. fluorescens and B. subtilis cells showed similar proton binding properties. (author)

  12. MreB-Dependent Inhibition of Cell Elongation during the Escape from Competence in Bacillus subtilis.

    Science.gov (United States)

    Mirouze, Nicolas; Ferret, Cécile; Yao, Zhizhong; Chastanet, Arnaud; Carballido-López, Rut

    2015-06-01

    During bacterial exponential growth, the morphogenetic actin-like MreB proteins form membrane-associated assemblies that move processively following trajectories perpendicular to the long axis of the cell. Such MreB structures are thought to scaffold and restrict the movement of peptidoglycan synthesizing machineries, thereby coordinating sidewall elongation. In Bacillus subtilis, this function is performed by the redundant action of three MreB isoforms, namely MreB, Mbl and MreBH. mreB and mbl are highly transcribed from vegetative promoters. We have found that their expression is maximal at the end of exponential phase, and rapidly decreases to a low basal level upon entering stationary phase. However, in cells developing genetic competence, a stationary phase physiological adaptation, expression of mreB was specifically reactivated by the central competence regulator ComK. In competent cells, MreB was found in complex with several competence proteins by in vitro pull-down assays. In addition, it co-localized with the polar clusters formed by the late competence peripheral protein ComGA, in a ComGA-dependent manner. ComGA has been shown to be essential for the inhibition of cell elongation characteristic of cells escaping the competence state. We show here that the pathway controlling this elongation inhibition also involves MreB. Our findings suggest that ComGA sequesters MreB to prevent cell elongation and therefore the escape from competence.

  13. Bacillus subtilis alters the proportion of major membrane phospholipids in response to surfactin exposure.

    Science.gov (United States)

    Uttlová, Petra; Pinkas, Dominik; Bechyňková, Olga; Fišer, Radovan; Svobodová, Jaroslava; Seydlová, Gabriela

    2016-12-01

    Surfactin, an anionic lipopeptide produced by Bacillus subtilis, is an antimicrobial that targets the cytoplasmic membrane. Nowadays it appears increasingly apparent that the mechanism of resistance against these types of antibiotics consists of target site modification. This prompted us to investigate whether the surfactin non-producing strain B. subtilis 168 changes its membrane composition in response to a sublethal surfactin concentration. Here we show that the exposure of B. subtilis to surfactin at concentrations of 350 and 650 μg/ml (designated as SF350 and SF650, respectively) leads to a concentration-dependent growth arrest followed by regrowth with an altered growth rate. Analysis of the membrane lipid composition revealed modifications both in the polar head group and the fatty acid region. The presence of either surfactin concentration resulted in a reduction in the content of the major membrane phospholipid phosphatidylglycerol (PG) and increase in phosphatidylethanolamine (PE), which was accompanied by elevated levels of phosphatidic acid (PA) in SF350 cultures. The fatty acid analysis of SF350 cells showed a marked increase in non-branched high-melting fatty acids, which lowered the fluidity of the membrane interior measured as the steady-state fluorescence anisotropy of DPH. The liposome leakage of carboxyfluorescein-loaded vesicles resembling the phospholipid composition of surfactin-adapted cells showed that the susceptibility to surfactin-induced leakage is strongly reduced when the PG/PE ratio decreases and/or PA is included in the target bilayer. We concluded that the modifications of the phospholipid content of B. subtilis cells might provide a self-tolerance of the membrane active surfactin. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Increased dipicolinic acid production with an enhanced spoVF operon in Bacillus subtilis and medium optimization.

    Science.gov (United States)

    Takahashi, Fumikazu; Sumitomo, Nobuyuki; Hagihara, Hiroshi; Ozaki, Katsuya

    2015-01-01

    Dipicolinic acid (DPA) is a multi-functional agent for cosmetics, antimicrobial products, detergents, and functional polymers. The aim of this study was to design a new method for producing DPA from renewable material. The Bacillus subtilis spoVF operon encodes enzymes for DPA synthase and the part of lysine biosynthetic pathway. However, DPA is only synthesized in the sporulation phase, so the productivity of DPA is low level. Here, we report that DPA synthase was expressed in vegetative cells, and DPA was produced in the culture medium by replacement of the spoVFA promoter with other highly expressed promoter in B. subtilis vegetative cells, such as spoVG promoter. DPA levels were increased in the culture medium of genetically modified strains. DPA productivity was significantly improved up to 29.14 g/L in 72 h culture by improving the medium composition using a two-step optimization technique with the Taguchi methodology.

  15. Antimicrobial Peptide Trichokonin VI-Induced Alterations in the Morphological and Nanomechanical Properties of Bacillus subtilis

    OpenAIRE

    Su, Hai-Nan; Chen, Zhi-Hua; Song, Xiao-Yan; Chen, Xiu-Lan; Shi, Mei; Zhou, Bai-Cheng; Zhao, Xian; Zhang, Yu-Zhong

    2012-01-01

    Antimicrobial peptides are promising alternative antimicrobial agents compared to conventional antibiotics. Understanding the mode of action is important for their further application. We examined the interaction between trichokonin VI, a peptaibol isolated from Trichoderma pseudokoningii, and Bacillus subtilis, a representative Gram-positive bacterium. Trichokonin VI was effective against B. subtilis with a minimal inhibitory concentration of 25 µM. Trichokonin VI exhibited a concentration- ...

  16. Bacillus subtilis MreB orthologs self-organize into filamentous structures underneath the cell membrane in a heterologous cell system.

    Directory of Open Access Journals (Sweden)

    Felix Dempwolff

    Full Text Available Actin-like bacterial cytoskeletal element MreB has been shown to be essential for the maintenance of rod cell shape in many bacteria. MreB forms rapidly remodelling helical filaments underneath the cell membrane in Bacillus subtilis and in other bacterial cells, and co-localizes with its two paralogs, Mbl and MreBH. We show that MreB localizes as dynamic bundles of filaments underneath the cell membrane in Drosophila S2 Schneider cells, which become highly stable when the ATPase motif in MreB is modified. In agreement with ATP-dependent filament formation, the depletion of ATP in the cells lead to rapid dissociation of MreB filaments. Extended induction of MreB resulted in the formation of membrane protrusions, showing that like actin, MreB can exert force against the cell membrane. Mbl also formed membrane associated filaments, while MreBH formed filaments within the cytosol. When co-expressed, MreB, Mbl and MreBH built up mixed filaments underneath the cell membrane. Membrane protein RodZ localized to endosomes in S2 cells, but localized to the cell membrane when co-expressed with Mbl, showing that bacterial MreB/Mbl structures can recruit a protein to the cell membrane. Thus, MreB paralogs form a self-organizing and dynamic filamentous scaffold underneath the membrane that is able to recruit other proteins to the cell surface.

  17. Bacillus subtilis MreB orthologs self-organize into filamentous structures underneath the cell membrane in a heterologous cell system.

    Science.gov (United States)

    Dempwolff, Felix; Reimold, Christian; Reth, Michael; Graumann, Peter L

    2011-01-01

    Actin-like bacterial cytoskeletal element MreB has been shown to be essential for the maintenance of rod cell shape in many bacteria. MreB forms rapidly remodelling helical filaments underneath the cell membrane in Bacillus subtilis and in other bacterial cells, and co-localizes with its two paralogs, Mbl and MreBH. We show that MreB localizes as dynamic bundles of filaments underneath the cell membrane in Drosophila S2 Schneider cells, which become highly stable when the ATPase motif in MreB is modified. In agreement with ATP-dependent filament formation, the depletion of ATP in the cells lead to rapid dissociation of MreB filaments. Extended induction of MreB resulted in the formation of membrane protrusions, showing that like actin, MreB can exert force against the cell membrane. Mbl also formed membrane associated filaments, while MreBH formed filaments within the cytosol. When co-expressed, MreB, Mbl and MreBH built up mixed filaments underneath the cell membrane. Membrane protein RodZ localized to endosomes in S2 cells, but localized to the cell membrane when co-expressed with Mbl, showing that bacterial MreB/Mbl structures can recruit a protein to the cell membrane. Thus, MreB paralogs form a self-organizing and dynamic filamentous scaffold underneath the membrane that is able to recruit other proteins to the cell surface.

  18. Use of bacillus subtilis strains to inhibit postharvest pathogenic fungi; Attivita` antagonista di alcuni ceppi di bacillus subtilis nei confronti di funghi patogeni

    Energy Technology Data Exchange (ETDEWEB)

    Arras, G.; Gambella, F.; Demontis, S.; Petretto, A.

    1995-09-01

    An isolate (87) of the bacillus subtilis strains isolated from cold stored citrus fruit 13 proved to inhibit the growth in vitro of the penicillium italicum used in the experiment (from 50.6% to 92.2%) and to inhibit botrytis cinerea (from 65.3% to 95.9%). A further test, superimposing on plates containing PDA strains Nos. 13, 173, and 160, totally inhibited the fungi. Tested in vivo on artificially bruised oranges, they significantly inhibited two fungi.

  19. Effect of medium components and culture conditions in Bacillus subtilis EA-CB0575 spore production.

    Science.gov (United States)

    Posada-Uribe, Luisa F; Romero-Tabarez, Magally; Villegas-Escobar, Valeska

    2015-10-01

    Bacillus subtilis spores have important biotechnological applications; however, achieving both, high spore cell densities and sporulation efficiencies in fermentation, is poorly reported. In this study, medium components and culture conditions were optimized with different statistical methods to increase spore production of the plant growth promoting rhizobacteria B. subtilis EA-CB0575. Key medium components were determined with Plackett-Burman (PB) design, and the optimum concentration levels of two components (glucose, MgSO4·7H2O) were optimized with a full factorial and central composite design, achieving 1.37 × 10(9) CFU/mL of spore cell density and 93.5 % of sporulation efficiency in shake flask. The optimized medium was used to determine the effect of culture conditions on spore production at bioreactor level, finding that maintaining pH control did not affect significantly spore production, while the interaction of agitation and aeration rates had a significant effect on spore cell density. The overall optimization generated a 17.2-fold increase in spore cell density (8.78 × 10(9) CFU/mL) and 1.9-fold increase in sporulation efficiency (94.2 %) compared to that of PB design. These results indicate the potential of B. subtilis EA-CB0575 to produce both, high spore cell densities and sporulation efficiencies, with very low nutrient requirements and short incubation period which can represent savings of process production.

  20. Homolactic fermentation from glucose and cellobiose using Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Martinez Alfredo

    2009-04-01

    Full Text Available Abstract Backgroung Biodegradable plastics can be made from polylactate, which is a polymer made from lactic acid. This compound can be produced from renewable resources as substrates using microorganisms. Bacillus subtilis is a Gram-positive bacterium recognized as a GRAS microorganism (generally regarded as safe by the FDA. B. subtilis produces and secretes different kind of enzymes, such as proteases, cellulases, xylanases and amylases to utilize carbon sources more complex than the monosaccharides present in the environment. Thus, B. subtilis could be potentially used to hydrolyze carbohydrate polymers contained in lignocellulosic biomass to produce chemical commodities. Enzymatic hydrolysis of the cellulosic fraction of agroindustrial wastes produces cellobiose and a lower amount of glucose. Under aerobic conditions, B. subtilis grows using cellobiose as substrate. Results In this study, we proved that under non-aerated conditions, B. subtilis ferments cellobiose to produce L-lactate with 82% of the theoretical yield, and with a specific rate of L-lactate production similar to that one obtained fermenting glucose. Under fermentative conditions in a complex media supplemented with glucose, B. subtilis produces L-lactate and a low amount of 2,3-butanediol. To increase the L-lactate production of this organism, we generated the B subtilis CH1 alsS- strain that lacks the ability to synthesize 2,3-butanediol. Inactivation of this pathway, that competed for pyruvate availability, let a 15% increase in L-lactate yield from glucose compared with the parental strain. CH1 alsS- fermented 5 and 10% of glucose to completion in mineral medium supplemented with yeast extract in four and nine days, respectively. CH1 alsS- produced 105 g/L of L-lactate in this last medium supplemented with 10% of glucose. The L-lactate yield was up to 95% using mineral media, and the optical purity of L-lactate was of 99.5% since B. subtilis has only one gene (lctE that

  1. Phylogenetic Analysis of Bacillus subtilis Strains Applicable to Natto (Fermented Soybean) Production ▿

    OpenAIRE

    Kubo, Yuji; Rooney, Alejandro P.; Tsukakoshi, Yoshiki; Nakagawa, Rikio; Hasegawa, Hiromasa; Kimura, Keitarou

    2011-01-01

    Spore-forming Bacillus strains that produce extracellular poly-γ-glutamic acid were screened for their application to natto (fermented soybean food) fermentation. Among the 424 strains, including Bacillus subtilis and B. amyloliquefaciens, which we isolated from rice straw, 59 were capable of fermenting natto. Biotin auxotrophism was tightly linked to natto fermentation. A multilocus nucleotide sequence of six genes (rpoB, purH, gyrA, groEL, polC, and 16S rRNA) was used for phylogenetic analy...

  2. Construction and development of an auto-regulatory gene expression system in Bacillus subtilis.

    Science.gov (United States)

    Guan, Chengran; Cui, Wenjing; Cheng, Jintao; Zhou, Li; Guo, Junling; Hu, Xu; Xiao, Guoping; Zhou, Zhemin

    2015-09-21

    Bacillus subtilis is an all-important Gram-positive bacterium of valuable biotechnological utility that has been widely used to over-produce industrially and pharmaceutically relevant proteins. There are a variety of expression systems in terms of types of transcriptional patterns, among which the auto-inducible and growth-phase-dependent promoters are gaining increasing favor due to their inducer-independent feature, allowing for the potential to industrially scale-up. To expand the applicability of the auto-inducible expression system, a novel auto-regulatory expression system coupled with cell density was constructed and developed in B. subtilis using the quorum-sensing related promoter srfA (PsrfA). The promoter of the srf operon was used to construct an expression plasmid with the green fluorescent protein (GFP) downstream of PsrfA. The expression displayed a cell-density-dependent pattern in that GFP had a fairly low expression level at the early exponential stage and was highly expressed at the late exponential as well as the stationary stages. Moreover, the recombinant system had a similar expression pattern in wild-type B. subtilis 168, WB600, and WB800, as well as in B. subtilis 168 derivative strain 1681, with the complete deletion of PsrfA, indicating the excellent compatibility of this system. Noticeably, the expression strength of PsrfA was enhanced by optimizing the -10 and -35 core sequence by substituting both sequences with consensus sequences. Importantly, the expression pattern was successfully developed in an auto-regulatory cell-density coupling system by the simple addition of glucose in which GFP could not be strongly expressed until glucose was depleted, resulting in a greater amount of the GFP product and increased cell density. The expression system was eventually tested by the successful over-production of aminopeptidase to a desired level. The auto-regulatory cell density coupling system that is mediated by PsrfA is a novel expression

  3. Ability of Bacillus subtilis protoplasts to repair irradiated bacteriophage deoxyribonucleic acid via acquired and natural enzymatic systems

    International Nuclear Information System (INIS)

    Yasbin, R.E.; Andersen, B.J.; Sutherland, B.M.

    1981-01-01

    A novel form of enzyme therapy was achieved by utilizing protoplasts of Bacillus subtilis. Photoreactivating enzyme of Escherichia coli was successfully inserted into the protoplasts of B. subtilis treated with polyethylene glycol. This enzyme was used to photoreactivate ultraviolet-damaged bacteriophage deoxyribonucleic acid (DNA). Furthermore, in polyethylene glycol-treated protoplasts, ultraviolet-irradiated transfecting bacteriophage DNA was shown to be a functional substrate for the host DNA excision repair system. Previous results (R.E. Yasbin, J.D. Fernwalt, and P.I. Fields, J. Bacteriol.; 137: 391-396) showed that ultraviolet-irradiated bacteriophage DNA could not be repaired via the excision repair system of competent cells. Therefore, the processing of bacteriophage DNA by protoplasts and by competent cells must be different. This sensitive protoplast assay can be used to identify and to isolate various types of DNA repair enzymes

  4. Characterization of Bacillus subtilis strains in Thua nao, a traditional fermented soybean food in northern Thailand.

    Science.gov (United States)

    Inatsu, Y; Nakamura, N; Yuriko, Y; Fushimi, T; Watanasiritum, L; Kawamoto, S

    2006-09-01

    To clarify the diversity of Bacillus subtilis strains in Thua nao that produce high concentrations of products useful in food manufacturing and in health-promoting compounds. Production of amylase, protease, subtilisin NAT (nattokinase), and gamma-polyglutamic acid (PGA) by the Bacillus subtilis strains in Thua nao was measured. Productivity of protease NAT by these strains tended to be higher than by Japanese commercial natto-producing strains. Molecular diversity of isolated strains was analysed via randomly amplified polymorphic DNA-PCR fingerprinting. The strains were divided into 19 types, including a type with the same pattern as a Japanese natto-producing strain. B. subtilis strains that could be a resource for effective production of protease, amylase, subtilisin NAT, or PGA were evident in Thua nao produced in various regions in northern Thailand. This study clearly demonstrated the value of Thua nao as a potential resource of food-processing enzymes and health-promoting compounds.

  5. Distribution of Europium between poly-maleic acid in solution or adsorbed onto alumina and Bacillus subtilis

    International Nuclear Information System (INIS)

    Markai, S.

    2002-07-01

    In order to understand the interactions of radionuclides under natural water conditions, the interactions were studied in a quaternary system composed of well characterized reference substances: europium as a heavy metal, poly-maleic acid (PMA) as model of humic substances, alumina as mineral phase and Bacillus subtilis representing biomass. The work was performed at pH=5 in 0,1 mol/L of NaClO 4 . The fundamental question addressed was to know if parameters deduced from the quantitative study of the reference systems Eu/PMA, Eu/PMA-Al 2 O 3 and Eu/Bacillus subtilis, could be used to quantify the distribution of Eu in the multi-substrate systems Eu/PMA/Bacillus subtilis and Eu/PMA-Al 2 O 3 /Bacillus subtilis. The experimental interaction data were described by a Langmuir-type model or by a surface complexation model, with surface speciation assessment by time resolved laser induced fluorescence spectroscopy. The study of the Eu/PMA system showed similarities with the Eu/ humic substances system as far as interaction strength and the nature of Eu environment were concerned. When PMA was adsorbed onto Al 2 O 3 , its complexation properties towards Eu were different. For high concentrations of Eu, a ternary complex was formed in which Eu was bound to a carboxylic function of PMA and to an aluminol function of Al 2 O 3 . For the Eu/B.subtilis system, Eu was bound to a carboxylic function and to a phosphate function. For the PMA/Eu/bacteria system, the reference systems were reversible and the parameters deduced from sub-systems allowed to quantify the distribution of Eu in the global system. In the PMA A l 2 O 3 /Eu/bacteria system, the equilibrium Eu/PMA-Al 2 O 3 was not reversible due to a diffusion of Eu in the adsorbed layer of PMA, reducing its bio-availability. (author)

  6. Bacillus subtilis-based direct-fed microbials augment macrophage function in broiler chickens

    Science.gov (United States)

    The present study was conducted to evaluate the function of Bacillus subtilis-based direct-fed microbials (DFMs) on macrophage functions, i.e., nitric oxide (NO) production and phagocytosis in broiler chickens. DFMs used in this study were eight single strains designated as Bs2084, LSSAO1, 3AP4, Bs1...

  7. Bacillus subtilis as a tool for vaccine development: from antigen factories to delivery vectors

    Directory of Open Access Journals (Sweden)

    Luís C.S. Ferreira

    2005-03-01

    Full Text Available Bacillus subtilis and some of its close relatives have a long history of industrial and biotechnological applications. Search for antigen expression systems based on recombinant B. subtilis strains sounds attractive both by the extensive genetic knowledge and the lack of an outer membrane, which simplify the secretion and purification of heterologous proteins. More recently, genetically modified B. subtilis spores have been described as indestructible delivery vehicles for vaccine antigens. Nonetheless both production and delivery of antigens by B. subtilis strains face some inherent obstacles, as unstable gene expression and reduced immunogenicity that, otherwise, can be overcome by already available gene technology approaches. In the present review we present the status of B. subtilis-based vaccine research, either as protein factories or delivery vectors, and discuss some alternatives for a better use of genetically modified strains.Bacillus subtilis e alguns de seus parentes mais próximos possuem uma longa história de aplicações industriais e biotecnológicas. A busca de sistemas de expressão de antígenos baseados em linhagens recombinants de B. subtilis mostra-se atrativa em função do conhecimento genético disponível e ausência de uma membrana externa, o que simplifica a secreção e a purificação de proteínas heterólogas. Mais recentemente, esporos geneticamente modificados de B. subtilis foram descritos com veículos indestrutíveis para o transporte de antígenos vacinais. Todavia a produção e o transporte de antígenos por linhagens de B. subtilis encontra obstáculos, como a expressão gênica instável e imunogenicidade reduzida, que podem ser superados com o auxílio de tecnologias genéticas atualmente disponíveis. Apresentamos nesta revisão o estado atual da pesquisa em vacinas baseadas em B. subtilis, empregado tanto como fábrica de proteínas ou veículos, e discute algumas alternativas para o uso mais

  8. Synthesis of acid-soluble spore proteins by Bacillus subtilis.

    OpenAIRE

    Leventhal, J M; Chambliss, G H

    1982-01-01

    The major acid-soluble spore proteins (ASSPs) of Bacillus subtilis were detected by immunoprecipitation of radioactively labeled in vitro- and in vivo-synthesized proteins. ASSP synthesis in vivo began 2 h after the initiation of sporulation (t2) and reached its maximum rate at t7. This corresponded to the time of synthesis of mRNA that stimulated the maximum rate of ASSP synthesis in vitro. Under the set of conditions used in these experiments, protease synthesis began near t0, alkaline phos...

  9. Interaction between N-methyl-N'-nitro-N-nitrosoguanidine and ultraviolet irradiation on Bacillus subtilis

    International Nuclear Information System (INIS)

    Lotareva, O.V.

    1990-01-01

    The mutagenic interaction between ultraviolet-irradiation and the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine was studied in a repaid-competent and excision-deficient strains of Bacillus subtilis. Pre-exposure to low doses of MNNG with following treatment by low and intermediate doses of UV-light increase the resistance of Bac. subtilis to UV-radiation (antagonistic effect). Probably pre-exposition with MNNG leads to induction of enzymes reparation, UV-damages being controlled with adaptive respons genes

  10. Osmoprotection of Bacillus subtilis through Import and Proteolysis of Proline-Containing Peptides

    Science.gov (United States)

    Zaprasis, Adrienne; Brill, Jeanette; Thüring, Marietta; Wünsche, Guido; Heun, Magnus; Barzantny, Helena; Hoffmann, Tamara

    2013-01-01

    Bacillus subtilis can attain cellular protection against the detrimental effects of high osmolarity through osmotically induced de novo synthesis and uptake of the compatible solute l-proline. We have now found that B. subtilis can also exploit exogenously provided proline-containing peptides of various lengths and compositions as osmoprotectants. Osmoprotection by these types of peptides is generally dependent on their import via the peptide transport systems (Dpp, Opp, App, and DtpT) operating in B. subtilis and relies on their hydrolysis to liberate proline. The effectiveness with which proline-containing peptides confer osmoprotection varies considerably, and this can be correlated with the amount of the liberated and subsequently accumulated free proline by the osmotically stressed cell. Through gene disruption experiments, growth studies, and the quantification of the intracellular proline pool, we have identified the PapA (YqhT) and PapB (YkvY) peptidases as responsible for the hydrolysis of various types of Xaa-Pro dipeptides and Xaa-Pro-Xaa tripeptides. The PapA and PapB peptidases possess overlapping substrate specificities. In contrast, osmoprotection by peptides of various lengths and compositions with a proline residue positioned at their N terminus was not affected by defects in the PapA and PapB peptidases. Taken together, our data provide new insight into the physiology of the osmotic stress response of B. subtilis. They illustrate the flexibility of this ubiquitously distributed microorganism to effectively exploit environmental resources in its acclimatization to sustained high-osmolarity surroundings through the accumulation of compatible solutes. PMID:23144141

  11. Bacillus subtilis is a Potential Degrader of Pyrene and Benzo[a]pyrene

    Directory of Open Access Journals (Sweden)

    Lynette Ekunwe

    2005-08-01

    Full Text Available Polycyclic Aromatic Hydrocarbons (PAHs are a group of compounds that pose many health threats to human and animal life. They occur in nature as a result of incomplete combustion of organic matter, as well as from many anthropogenic sources including cigarette smoke and automobile exhaust. PAHs have been reported to cause liver damage, red blood cell damage and a variety of cancers. Because of this, methods to reduce the amount of PAHs in the environment are continuously being sought. The purpose of this study was to find soil bacteria capable of degrading high molecular weight PAHs, such as pyrene (Pyr and benzo[a]pyrene (BaP, which contain more than three benzene rings and so persist in the environment. Bacillus subtilis, identified by fatty acid methyl ester (FAME analysis, was isolated from PAH contaminated soil. Because it grew in the presence of 33μg/ml each of pyrene, 1-AP and 1-HP, its biodegradation capabilities were assessed. It was found that after a four-day incubation period at 30oC in 20μg/ml pyrene or benzo[a]pyrene, B. subtilis was able to transform approximately 40% and 50% pyrene and benzo[a]pyrene, respectively. This is the first report implicating B. subtilis in PAH degradation. Whether or not the intermediates resulting from the transformation are more toxic than their parent compounds, and whether B. subtilis is capable of mineralizing pyrene or benzo[a]pyrene to carbon dioxide and water, remains to be evaluated.

  12. Bacillus subtilis biofilm extends Caenorhabditis elegans longevity through downregulation of the insulin-like signalling pathway

    Science.gov (United States)

    Donato, Verónica; Ayala, Facundo Rodríguez; Cogliati, Sebastián; Bauman, Carlos; Costa, Juan Gabriel; Leñini, Cecilia; Grau, Roberto

    2017-01-01

    Beneficial bacteria have been shown to affect host longevity, but the molecular mechanisms mediating such effects remain largely unclear. Here we show that formation of Bacillus subtilis biofilms increases Caenorhabditis elegans lifespan. Biofilm-proficient B. subtilis colonizes the C. elegans gut and extends worm lifespan more than biofilm-deficient isogenic strains. Two molecules produced by B. subtilis — the quorum-sensing pentapeptide CSF and nitric oxide (NO) — are sufficient to extend C. elegans longevity. When B. subtilis is cultured under biofilm-supporting conditions, the synthesis of NO and CSF is increased in comparison with their production under planktonic growth conditions. We further show that the prolongevity effect of B. subtilis biofilms depends on the DAF-2/DAF-16/HSF-1 signalling axis and the downregulation of the insulin-like signalling (ILS) pathway. PMID:28134244

  13. Destruction of Bacillus subtilis cells using an atmospheric-pressure dielectric capillary electrode discharge plasma

    International Nuclear Information System (INIS)

    Panikov, N.S.; Paduraru, S.; Crowe, R.; Ricatto, P.J.; Christodoulatos, C.; Becker, K.

    2002-01-01

    The results of experiments aimed at the investigation of the destruction of spore-forming bacteria, which are believed to be among the most resistant microorganisms, using a novel atmospheric-pressure dielectric capillary electrode discharge plasma are reported. Various well-characterized cultures of Bacillus subtilis were prepared, subjected to atmospheric-pressure plasma jets emanating from a plasma shower reactor operated either in He or in air (N 2 /O 2 mixture) at various power levels and exposure times, and analyzed after plasma treatment. Reductions in colony-forming units ranged from 10 4 (He plasma) to 10 8 (air plasma) for plasma exposure times of less than 10 minutes. (author)

  14. Five new amicoumacins isolated from a marine-derived Bacterium bacillus subtilis

    KAUST Repository

    Li, Yongxin; Xu, Ying; Liu, Lingli; Han, Zhuang; Lai, Pok Yui; Guo, Xiangrong; Zhang, Xixiang; Lin, Wenhan; Qian, Pei-Yuan

    2012-01-01

    Four novel amicoumacins, namely lipoamicoumacins A-D (1-4), and one new bacilosarcin analog (5) were isolated from culture broth of a marine-derived bacterium Bacillus subtilis, together with six known amicoumacins. Their structures were elucidated on the basis of extensive spectroscopic (2D NNR, IR, CD and MS) analysis and in comparison with data in literature. 2012 by the authors; licensee MDPI.

  15. Five new amicoumacins isolated from a marine-derived Bacterium bacillus subtilis

    KAUST Repository

    Li, Yongxin

    2012-02-03

    Four novel amicoumacins, namely lipoamicoumacins A-D (1-4), and one new bacilosarcin analog (5) were isolated from culture broth of a marine-derived bacterium Bacillus subtilis, together with six known amicoumacins. Their structures were elucidated on the basis of extensive spectroscopic (2D NNR, IR, CD and MS) analysis and in comparison with data in literature. 2012 by the authors; licensee MDPI.

  16. New tools for comparing microscopy images: quantitative analysis of cell types in Bacillus subtilis.

    Science.gov (United States)

    van Gestel, Jordi; Vlamakis, Hera; Kolter, Roberto

    2015-02-15

    Fluorescence microscopy is a method commonly used to examine individual differences between bacterial cells, yet many studies still lack a quantitative analysis of fluorescence microscopy data. Here we introduce some simple tools that microbiologists can use to analyze and compare their microscopy images. We show how image data can be converted to distribution data. These data can be subjected to a cluster analysis that makes it possible to objectively compare microscopy images. The distribution data can further be analyzed using distribution fitting. We illustrate our methods by scrutinizing two independently acquired data sets, each containing microscopy images of a doubly labeled Bacillus subtilis strain. For the first data set, we examined the expression of srfA and tapA, two genes which are expressed in surfactin-producing and matrix-producing cells, respectively. For the second data set, we examined the expression of eps and tapA; these genes are expressed in matrix-producing cells. We show that srfA is expressed by all cells in the population, a finding which contrasts with a previously reported bimodal distribution of srfA expression. In addition, we show that eps and tapA do not always have the same expression profiles, despite being expressed in the same cell type: both operons are expressed in cell chains, while single cells mainly express eps. These findings exemplify that the quantification and comparison of microscopy data can yield insights that otherwise would go unnoticed. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Tricksy business : Transcriptome analysis reveals the involvement of thioredoxin a in redox homeostasis, oxidative stress, sulfur metabolism, and cellular differentiation in Bacillus subtilis

    NARCIS (Netherlands)

    Smits, Wiep; Dubois, Jean-Yves; Bron, S; van Dijl, J.M; Kuipers, O.P.

    Thioredoxins are important thiol-reactive proteins. Most knowledge about this class of proteins is derived from proteome studies, and little is known about the global transcriptional response of cells to various thioredoxin levels. In Bacillus subtilis, thioredoxin A is encoded by trxA and is

  18. Pulsed dielectric barrier discharge for Bacillus subtilis inactivation in water

    Science.gov (United States)

    Hernández-Arias, A. N.; Rodríguez-Méndez, B. G.; López-Callejas, R.; Valencia-Alvarado, R.; Mercado-Cabrera, A.; Peña-Eguiluz, R.; Barocio, S. R.; Muñoz-Castro, A. E.; de la Piedad Beneitez, A.

    2012-06-01

    The inactivation of Bacillus subtilis bacteria in water has been experimentally studied by means of a pulsed dielectric barrier discharge (PDBD) in a coaxial reactor endowed with an alumina dielectric. The plasma source is capable of operating at atmospheric pressure with gas, water or hybrid gas-liquid media at adjustable 25 kV pulses, 30 μs long and at a 500 Hz frequency. In order to evaluate the inactivation efficiency of the system, a set of experiments were designed on the basis of oxygen flow control. The initial data have showed a significant bacterial rate reduction of 103-107 CFU/mL. Additional results proved that applying an oxygen flow for a few seconds during the PDBD treatment inactivates the Bacillus subtilis population with 99.99% effectiveness. As a reference, without gas flow but with the same exposure times, this percentage is reduced to ~90%. The analysis of the relationship between inactivation rate and chemical species in the discharge has been carried out using optical emission spectroscopy as to identifying the main reactive species. Reactive oxygen species such as atomic oxygen and ozone tuned out to be the dominant germicidal species. Some proposed inactivation mechanisms of this technique are discussed.

  19. Pulsed dielectric barrier discharge for Bacillus subtilis inactivation in water

    International Nuclear Information System (INIS)

    Hernández-Arias, A N; López-Callejas, R; De la Piedad Beneitez, A; Rodríguez-Méndez, B G; Valencia-Alvarado, R; Mercado-Cabrera, A; Peña-Eguiluz, R; Barocio, S R; Muñoz-Castro, A E

    2012-01-01

    The inactivation of Bacillus subtilis bacteria in water has been experimentally studied by means of a pulsed dielectric barrier discharge (PDBD) in a coaxial reactor endowed with an alumina dielectric. The plasma source is capable of operating at atmospheric pressure with gas, water or hybrid gas-liquid media at adjustable 25 kV pulses, 30 μs long and at a 500 Hz frequency. In order to evaluate the inactivation efficiency of the system, a set of experiments were designed on the basis of oxygen flow control. The initial data have showed a significant bacterial rate reduction of 10 3 -10 7 CFU/mL. Additional results proved that applying an oxygen flow for a few seconds during the PDBD treatment inactivates the Bacillus subtilis population with 99.99% effectiveness. As a reference, without gas flow but with the same exposure times, this percentage is reduced to ∼90%. The analysis of the relationship between inactivation rate and chemical species in the discharge has been carried out using optical emission spectroscopy as to identifying the main reactive species. Reactive oxygen species such as atomic oxygen and ozone tuned out to be the dominant germicidal species. Some proposed inactivation mechanisms of this technique are discussed.

  20. Transcription Profiling of Bacillus subtilis Cells Infected with AR9, a Giant Phage Encoding Two Multisubunit RNA Polymerases.

    Science.gov (United States)

    Lavysh, Daria; Sokolova, Maria; Slashcheva, Marina; Förstner, Konrad U; Severinov, Konstantin

    2017-02-14

    Bacteriophage AR9 is a recently sequenced jumbo phage that encodes two multisubunit RNA polymerases. Here we investigated the AR9 transcription strategy and the effect of AR9 infection on the transcription of its host, Bacillus subtilis Analysis of whole-genome transcription revealed early, late, and continuously expressed AR9 genes. Alignment of sequences upstream of the 5' ends of AR9 transcripts revealed consensus sequences that define early and late phage promoters. Continuously expressed AR9 genes have both early and late promoters in front of them. Early AR9 transcription is independent of protein synthesis and must be determined by virion RNA polymerase injected together with viral DNA. During infection, the overall amount of host mRNAs is significantly decreased. Analysis of relative amounts of host transcripts revealed notable differences in the levels of some mRNAs. The physiological significance of up- or downregulation of host genes for AR9 phage infection remains to be established. AR9 infection is significantly affected by rifampin, an inhibitor of host RNA polymerase transcription. The effect is likely caused by the antibiotic-induced killing of host cells, while phage genome transcription is solely performed by viral RNA polymerases. IMPORTANCE Phages regulate the timing of the expression of their own genes to coordinate processes in the infected cell and maximize the release of viral progeny. Phages also alter the levels of host transcripts. Here we present the results of a temporal analysis of the host and viral transcriptomes of Bacillus subtilis infected with a giant phage, AR9. We identify viral promoters recognized by two virus-encoded RNA polymerases that are a unique feature of the phiKZ-related group of phages to which AR9 belongs. Our results set the stage for future analyses of highly unusual RNA polymerases encoded by AR9 and other phiKZ-related phages. Copyright © 2017 Lavysh et al.

  1. Identification of a Bacillus subtilis secretion mutant using a ß-galactosidase screening procedure

    DEFF Research Database (Denmark)

    Jacobs, Myra F.; Andersen, Jens Bo; Borchert, Torben V.

    1995-01-01

    High-level synthesis of exportable beta-galactosidase (LacZ) fusion proteins in Bacillus subtilis results in a lethal phenotype, and has been suggested as a tool for the selection of secretion mutants. We tested a plasmid-based, inducible lacZ fusion gene system for this purpose, but frequent...... mutations in cis, which reduced expression of the fusion gene, forced abandonment of the induction-selection strategy. Instead, after modification of the indicator plasmid, a screening procedure for increased basal LacZ activity levels was adopted. This led to the identification of a conditional B. subtilis...

  2. Identification of a Bacillus subtilis secretion mutant using a beta-galactosidase screening procedure

    DEFF Research Database (Denmark)

    Jacobs, M F; Borchert, T V; Kontinen, V P

    1995-01-01

    High-level synthesis of exportable beta-galactosidase (LacZ) fusion proteins in Bacillus subtilis results in a lethal phenotype, and has been suggested as a tool for the selection of secretion mutants. We tested a plasmid-based, inducible lacZ fusion gene system for this purpose, but frequent...... mutations in cis, which reduced expression of the fusion gene, forced abandonment of the induction-selection strategy. Instead, after modification of the indicator plasmid, a screening procedure for increased basal LacZ activity levels was adopted. This led to the identification of a conditional B. subtilis...

  3. YbxF, a protein associated with exponential-phase ribosomes in Bacillus subtilis

    Czech Academy of Sciences Publication Activity Database

    Sojka, Luděk; Fučík, Vladimír; Krásný, Libor; Barvík, I.; Jonák, Jiří

    2007-01-01

    Roč. 189, č. 13 (2007), s. 4809-4814 ISSN 0021-9193 R&D Projects: GA AV ČR IAA5052206 Institutional research plan: CEZ:AV0Z50520514 Keywords : ybxF * ymxC * ribosomes * Bacillus subtilis * GFP * growth phase Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.013, year: 2007

  4. Application of a Bacillus subtilis Whole-Cell Biosensor (PliaI-lux) for the Identification of Cell Wall Active Antibacterial Compounds.

    Science.gov (United States)

    Kobras, Carolin Martina; Mascher, Thorsten; Gebhard, Susanne

    2017-01-01

    Whole-cell biosensors, based on the visualization of a reporter strain's response to a particular stimulus, are a robust and cost-effective means to monitor defined environmental conditions or the presence of chemical compounds. One specific field in which such biosensors are frequently applied is drug discovery, i.e., the screening of large numbers of bacterial or fungal strains for the production of antimicrobial compounds. We here describe the application of a luminescence-based Bacillus subtilis biosensor for the discovery of cell wall active substances. The system is based on the well-characterized promoter P liaI , which is induced in response to a wide range of conditions that cause cell envelope stress, particularly antibiotics that interfere with the membrane-anchored steps of cell wall biosynthesis. A simple "spot-on-lawn" assay, where colonies of potential producer strains are grown directly on a lawn of the reporter strain, allows for quantitative and time-resolved detection of antimicrobial compounds. Due to the very low technical demands of this procedure, we expect it to be easily applicable to a large variety of candidate producer strains and growth conditions.

  5. An Exogenous Surfactant-Producing Bacillus subtilis Facilitates Indigenous Microbial Enhanced Oil Recovery.

    Science.gov (United States)

    Gao, Peike; Li, Guoqiang; Li, Yanshu; Li, Yan; Tian, Huimei; Wang, Yansen; Zhou, Jiefang; Ma, Ting

    2016-01-01

    This study used an exogenous lipopeptide-producing Bacillus subtilis to strengthen the indigenous microbial enhanced oil recovery (IMEOR) process in a water-flooded reservoir in the laboratory. The microbial processes and driving mechanisms were investigated in terms of the changes in oil properties and the interplay between the exogenous B. subtilis and indigenous microbial populations. The exogenous B. subtilis is a lipopeptide producer, with a short growth cycle and no oil-degrading ability. The B. subtilis facilitates the IMEOR process through improving oil emulsification and accelerating microbial growth with oil as the carbon source. Microbial community studies using quantitative PCR and high-throughput sequencing revealed that the exogenous B. subtilis could live together with reservoir microbial populations, and did not exert an observable inhibitory effect on the indigenous microbial populations during nutrient stimulation. Core-flooding tests showed that the combined exogenous and indigenous microbial flooding increased oil displacement efficiency by 16.71%, compared with 7.59% in the control where only nutrients were added, demonstrating the application potential in enhanced oil recovery in water-flooded reservoirs, in particular, for reservoirs where IMEOR treatment cannot effectively improve oil recovery.

  6. Production of Bioactive Compounds by Bacillus subtilis against Sclerotium rolfsii

    Directory of Open Access Journals (Sweden)

    Nalisha, I.

    2006-01-01

    Full Text Available This study aims to investigate the characteristic of bioactive compound produced by Bacillus subtilis against Sclerotium rolfsii and the influence of additive supplements on the antagonistic activity of B. subtilis. The fact that B. subtilis produced an antifungal substance which has inhibitory effect on wide range of fungi, including S. rolfsii, is well known. To learn the effect of pH, temperature and light condition on the production of antifungal compound, B. subtilis was inoculated in Potato Dextrose Broth at various initial pH, temperatures and light conditions, respectively. This antagonist was found to produce antifungal compound that stable at 80C with 58.3 % inhibition on S. rolfsii. The activity was constant within a wide range of pH (3–11. However, treatment with pH11 lead to higher antifungal activity (31.57 % inhibition and it was also found to produce substance that can endure dark condition (46.24 % inhibition with fungicidal effect on S. rolfsii. A series of experiments also been carried out to enhance the antifungal production by supplementing different carbon source preparation into bacterial liquid culture. B. subtilis were grown in minimal medium containing 1 % of oil palm root, Ganoderma lucidum or chitin, respectively prior to bioassay. Crude culture from oil palm root supplemented culture shown significantly reduction in S. rolfsii growth compared to other carbon source crude culture or the antagonism alone, suggesting that this approach may provide improved biocontrol efficiency.

  7. Immobilization of CotA, an extremophilic laccase from Bacillus subtilis, on glassy carbon electrodes for biofuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Beneyton, T.; El Harrak, A.; Griffiths, A.D.; Taly, V. [Institut de Science et d' Ingenierie Supramoleculaire, CNRS UMR, Strasbourg (France); Hellwig, P. [Institut de Chimie, Universite de Strasbourg, CNRS UMR, Strasbourg (France)

    2011-01-15

    Thanks to their high stability over a wide range of experimental conditions, extremophilic enzymes represent an interesting alternative to mesophilic enzymes as catalysts for biofuel cell applications. In the present work, we report for the first time the immobilization of a thermophilic laccase (CotA from Bacillus subtilis endospore coat) on glassy carbon electrodes functionalized via electrochemical reduction of in situ generated aminophenyl monodiazonium salts. We compare the performance of CotA-modified electrodes for the reduction of O{sub 2} to mutant variants and demonstrate that the measured electrical current is directly correlated to the catalytic efficiencies (k{sub cat}/K{sub m}) of the immobilized enzyme. CotA-modified electrodes showed an optimal operation temperature of 45-50 C and stable catalytic activity for at least 7 weeks. (author)

  8. The difference in in vivo sensitivity between Bacillus licheniformis PerR and Bacillus subtilis PerR is due to the different cellular environments.

    Science.gov (United States)

    Kim, Jung-Hoon; Won, Young-Bin; Ji, Chang-Jun; Yang, Yoon-Mo; Ryu, Su-Hyun; Ju, Shin-Yeong; Kwon, Yumi; Lee, Yeh-Eun; Lee, Jin-Won

    2017-02-26

    PerR, a member of Fur family of metal-dependent regulators, is a major peroxide sensor in many Gram positive bacteria, and controls the expression of genes involved in peroxide resistance. Bacillus licheniformis, a close relative to the well-studied model organism Bacillus subtilis, contains three PerR-like proteins (PerR BL , PerR2 and PerR3) in addition to Fur and Zur. In the present study, we characterized the role of PerR BL in B. licheniformis. In vitro and in vivo studies indicate that PerR BL , like PerR BS , uses either Fe 2+ or Mn 2+ as a corepressor and only the Fe 2+ -bound form of PerR BL senses low levels of H 2 O 2 by iron-mediated histidine oxidation. Interestingly, regardless of the difference in H 2 O 2 sensitivity, if any, between PerR BL and PerR BS , B. licheniformis expressing PerR BL or PerR BS could sense lower levels of H 2 O 2 and was more sensitive to H 2 O 2 than B. subtilis expressing PerR BL or PerR BS . This result suggests that the differences in cellular milieu between B. subtilis and B. licheniformis, rather than the intrinsic differences in PerR BS and PerR BL per se, affect the H 2 O 2 sensing ability of PerR inside the cell and the H 2 O 2 resistance of cell. In contrast, B. licheniformis and B. subtilis expressing Staphylococcus aureus PerR (PerR SA ), which is more sensitive to H 2 O 2 than PerR BL and PerR BS , were more resistant to H 2 O 2 than those expressing either PerR BL or PerR BS . This result indicates that the sufficient difference in H 2 O 2 susceptibility of PerR proteins can override the difference in cellular environment and affect the resistance of cell to H 2 O 2 . Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Bacillus subtilis as potential producer for polyhydroxyalkanoates.

    Science.gov (United States)

    Singh, Mamtesh; Patel, Sanjay Ks; Kalia, Vipin C

    2009-07-20

    Polyhydroxyalkanoates (PHAs) are biodegradable polymers produced by microbes to overcome environmental stress. Commercial production of PHAs is limited by the high cost of production compared to conventional plastics. Another hindrance is the brittle nature and low strength of polyhydroxybutyrate (PHB), the most widely studied PHA. The needs are to produce PHAs, which have better elastomeric properties suitable for biomedical applications, preferably from inexpensive renewable sources to reduce cost. Certain unique properties of Bacillus subtilis such as lack of the toxic lipo-polysaccharides, expression of self-lysing genes on completion of PHA biosynthetic process - for easy and timely recovery, usage of biowastes as feed enable it to compete as potential candidate for commercial production of PHA.

  10. Induction of L-form-like cell shape change of Bacillus subtilis under microculture conditions.

    Science.gov (United States)

    Shingaki, Ryuji; Kasahara, Yasuhiro; Iwano, Megumi; Kuwano, Masayoshi; Takatsuka, Tomomasa; Inoue, Tetsuyoshi; Kokeguchi, Susumu; Fukui, Kazuhiro

    2003-09-01

    A remarkable cell shape change was observed in Bacillus subtilis strain 168 under microculture conditions on CI agar medium (Spizizen's minimal medium supplemented with a trace amount of yeast extract and Casamino acids). Cells cultured under a cover glass changed in form from rod-shaped to spherical, large and irregular shapes that closely resembled L-form cells. The cell shape change was observed only with CI medium, not with Spizizen's minimum medium alone or other rich media. The whole-cell protein profile of cells grown under cover glass and cells grown on CI agar plates differed in several respects. Tandem mass analysis of nine gel bands which differed in protein expression between the two conditions showed that proteins related to nitrate respiration and fermentation were expressed in the shape-changed cells grown under cover glass. The cell shape change of CI cultures was repressed when excess KNO3 was added to the medium. Whole-cell protein analysis of the normal rod-shaped cells grown with 0.1% KNO3 and the shape-changed cells grown without KNO3 revealed that the expression of the branched-chain alpha-keto acid dehydrogenase complex (coded by the bfmB gene locus) was elevated in the shape-changed cells. Inactivation of the bfmB locus resulted in the repression of cell shape change, and cells in which bfmB expression was induced by IPTG did show changes in shape. Transmission electron microscopy of ultrathin sections demonstrated that the shape-changed cells had thin walls, and plasmolysis of cells fixed with a solution including 0.1 M sucrose was observed. Clarifying the mechanism of thinning of the cell wall may lead to the development of a new type of cell wall biosynthetic inhibitor.

  11. Bacillus subtilis at near-zero specific growth rates : Adaptations to extreme caloric restriction

    NARCIS (Netherlands)

    Overkamp, Wout

    2015-01-01

    Bacillus subtilis is an important soil-dwelling bacteria species that is used for the production of e.g. vitamins, enzymes and medicines. In both the natural and industrial environment the availability of energy sources can be limited. In contrary to a situation of complete ‘nutrient depletion’,

  12. Binding of phage displayed Bacillus subtilis lipase A to a phosphonate suicide inhibitor

    NARCIS (Netherlands)

    Dröge, M.J; Ruggeberg, C.J.; van der Sloot, Almer Martinus; Schimmel, J.; Dijkstra, Durk; Verhaert, R.M D; Reetz, M.T.; Quax, Wim; Droge, MJ; Dijkstra, DS

    2003-01-01

    Phage display can be used as a protein engineering tool to select proteins with desirable binding properties from a library of randomly constructed mutants. Here, we describe the development of this method for the directed evolution of Bacillus subtilis lipase A, an enzyme that has marked properties

  13. The effect of ionic strength on the adsorption of H{sup +}, Cd{sup 2+}, Pb{sup 2+}, and Cu{sup 2+} by Bacillus subtilis and Bacillus licheniformis: A surface complexation model

    Energy Technology Data Exchange (ETDEWEB)

    Daughney, C.J. [McGill Univ., Montreal, Quebec (Canada). Earth and Planetary Sciences; Fein, J.B. [Univ. of Notre Dame, IN (United States)

    1998-02-01

    To quantify metal adsorption onto bacterial surfaces, recent studies have applied surface complexation theory to model the specific chemical and electrostatic interactions occurring at the solution-cell wall interface. However, to date, the effect of ionic strength on these interactions has not been investigated. In this study, the authors perform acid-base titrations of suspensions containing Bacillus subtilis or Bacillus licheniformis in 0.01 or 0.1 M NaNO{sub 3}, and they evaluate the constant capacitance and basic Stern double-layer models for their ability to describe ionic-strength-dependent behavior. The constant capacitance model provides the best description of the experimental data. The constant capacitance model parameters vary between independently grown bacterial cultures, possibly due to cell wall variation arising from genetic exchange during reproduction. The authors perform metal-B. subtilis and metal-B. licheniformis adsorption experiments using Cd, Pb, and Cu, and they solve for stability constants describing metal adsorption onto distinct functional groups on the bacterial cell walls. They find that these stability constants vary substantially but systematically between the two bacterial species at the two different ionic strengths.

  14. Ultrasensitivity of the Bacillus subtilis sporulation decision.

    Science.gov (United States)

    Narula, Jatin; Devi, Seram N; Fujita, Masaya; Igoshin, Oleg A

    2012-12-11

    Starving Bacillus subtilis cells execute a gene expression program resulting in the formation of stress-resistant spores. Sporulation master regulator, Spo0A, is activated by a phosphorelay and controls the expression of a multitude of genes, including the forespore-specific sigma factor σ(F) and the mother cell-specific sigma factor σ(E). Identification of the system-level mechanism of the sporulation decision is hindered by a lack of direct control over Spo0A activity. This limitation can be overcome by using a synthetic system in which Spo0A activation is controlled by inducing expression of phosphorelay kinase KinA. This induction results in a switch-like increase in the number of sporulating cells at a threshold of KinA. Using a combination of mathematical modeling and single-cell microscopy, we investigate the origin and physiological significance of this ultrasensitive threshold. The results indicate that the phosphorelay is unable to achieve a sufficiently fast and ultrasensitive response via its positive feedback architecture, suggesting that the sporulation decision is made downstream. In contrast, activation of σ(F) in the forespore and of σ(E) in the mother cell compartments occurs via a cascade of coherent feed-forward loops, and thereby can produce fast and ultrasensitive responses as a result of KinA induction. Unlike σ(F) activation, σ(E) activation in the mother cell compartment only occurs above the KinA threshold, resulting in completion of sporulation. Thus, ultrasensitive σ(E) activation explains the KinA threshold for sporulation induction. We therefore infer that under uncertain conditions, cells initiate sporulation but postpone making the sporulation decision to average stochastic fluctuations and to achieve a robust population response.

  15. Comprehensive analysis of temporal alterations in cellular proteome of Bacillus subtilis under curcumin treatment.

    Directory of Open Access Journals (Sweden)

    Panga Jaipal Reddy

    Full Text Available Curcumin is a natural dietary compound with antimicrobial activity against various gram positive and negative bacteria. This study aims to investigate the proteome level alterations in Bacillus subtilis due to curcumin treatment and identification of its molecular/cellular targets to understand the mechanism of action. We have performed a comprehensive proteomic analysis of B. subtilis AH75 strain at different time intervals of curcumin treatment (20, 60 and 120 min after the drug exposure, three replicates to compare the protein expression profiles using two complementary quantitative proteomic techniques, 2D-DIGE and iTRAQ. To the best of our knowledge, this is the first comprehensive longitudinal investigation describing the effect of curcumin treatment on B. subtilis proteome. The proteomics analysis revealed several interesting targets such UDP-N-acetylglucosamine 1-carboxyvinyltransferase 1, putative septation protein SpoVG and ATP-dependent Clp protease proteolytic subunit. Further, in silico pathway analysis using DAVID and KOBAS has revealed modulation of pathways related to the fatty acid metabolism and cell wall synthesis, which are crucial for cell viability. Our findings revealed that curcumin treatment lead to inhibition of the cell wall and fatty acid synthesis in addition to differential expression of many crucial proteins involved in modulation of bacterial metabolism. Findings obtained from proteomics analysis were further validated using 5-cyano-2,3-ditolyl tetrazolium chloride (CTC assay for respiratory activity, resazurin assay for metabolic activity and membrane integrity assay by potassium and inorganic phosphate leakage measurement. The gene expression analysis of selected cell wall biosynthesis enzymes has strengthened the proteomics findings and indicated the major effect of curcumin on cell division.

  16. Effect of salt on a thermosensitive mutant of Bacillus subtilis deficient in uracil and cell division

    International Nuclear Information System (INIS)

    Miyazaki, Nobuyoshi; Nagai, Kazuo; Tamura, Gakuzo

    1976-01-01

    A thermosensitive mutant ts 42, of Bacillus subtilis Marburg 168 thy trp2 which requires uracil, was examined as to the colony-forming ability at the permissive and nonpermissive temperatures. The viability of the mutant cells decreased rapidly at the restrictive temperature in modified woese's medium. However, the cells retained the viability when sodium succinate or potassium chloride was added to the medium at that temperature, although uranil deficiency was unchanged. A little but significant incorporation of adenine-8- 14 C into RNA still continued even after the incorporation of N-acetyl- 3 H-D-glucosamine into the acid-insoluble fraction of the cells terminated in the modified Woese's medium at 48 0 C. Both incorporations as well as the increase of absorbance were slowed down in the presence of sodium succinate at 48 0 C. This mutant, ts42, was more sensitive to deoxycholate than the parent wild strain. The resoration of the colony-forming ability after the temperature shifted back from 48 0 to 37 0 C was suppressed by the addition of deoxycholate to the medium. However, the cells became resistant to deoxycholate when uracil had been added to the medium prior to the temperature shift. (Kobatake, H.)

  17. Analysis of the Function of a Putative 2,3-Diphosphoglyceric Acid-Dependent Phosphoglycerate Mutase from Bacillus subtilis

    Science.gov (United States)

    Pearson, Claire L.; Loshon, Charles A.; Pedersen, Lotte B.; Setlow, Barbara; Setlow, Peter

    2000-01-01

    A Bacillus subtilis gene termed yhfR encodes the only B. subtilis protein with significant sequence similarity to 2,3-diphosphoglycerate-dependent phosphoglycerate mutases (dPGM). This gene is expressed at a low level during growth and sporulation, but deletion of yhfR had no effect on growth, sporulation, or spore germination and outgrowth. YhfR was expressed in and partially purified from Escherichia coli but had little if any PGM activity and gave no detectable PGM activity in B. subtilis. These data indicate that B. subtilis does not require YhfR and most likely does not require a dPGM. PMID:10869096

  18. Mucosal immune response in broilers following vaccination with inactivated influenza and recombinant Bacillus subtilis

    Science.gov (United States)

    Mucosal and systemic immunity were observed in broilers vaccinated with mannosylated chitosan adjuvated (MCA) inactivated A/Turkey/Virginia/158512/2002 (H7N2) and administered with and without recombinant Bacillus subtilis to elicit heterologous influenza strain protection. Previously, mucosal immu...

  19. MreB-Dependent Inhibition of Cell Elongation during the Escape from Competence in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Nicolas Mirouze

    2015-06-01

    Full Text Available During bacterial exponential growth, the morphogenetic actin-like MreB proteins form membrane-associated assemblies that move processively following trajectories perpendicular to the long axis of the cell. Such MreB structures are thought to scaffold and restrict the movement of peptidoglycan synthesizing machineries, thereby coordinating sidewall elongation. In Bacillus subtilis, this function is performed by the redundant action of three MreB isoforms, namely MreB, Mbl and MreBH. mreB and mbl are highly transcribed from vegetative promoters. We have found that their expression is maximal at the end of exponential phase, and rapidly decreases to a low basal level upon entering stationary phase. However, in cells developing genetic competence, a stationary phase physiological adaptation, expression of mreB was specifically reactivated by the central competence regulator ComK. In competent cells, MreB was found in complex with several competence proteins by in vitro pull-down assays. In addition, it co-localized with the polar clusters formed by the late competence peripheral protein ComGA, in a ComGA-dependent manner. ComGA has been shown to be essential for the inhibition of cell elongation characteristic of cells escaping the competence state. We show here that the pathway controlling this elongation inhibition also involves MreB. Our findings suggest that ComGA sequesters MreB to prevent cell elongation and therefore the escape from competence.

  20. Differences in the roles of a glutamine amidotransferase subunit of pyridoxal 5'-phosphate synthase between Bacillus circulans and Bacillus subtilis.

    Science.gov (United States)

    Itagaki, Shiori; Haga, Minami; Oikawa, Yuji; Sakoda, Ayaka; Ohke, Yoshie; Sawada, Hiroshi; Eguchi, Tadashi; Tamegai, Hideyuki

    2013-01-01

    BtrC2 of the butirosin producer Bacillus circulans is a non-catalytic subunit of 2-deoxy-scyllo-inosose (DOI) synthase that is involved in butirosin biosynthesis, and also a homolog of glutamine amidotransferase subunit (PdxT) of pyridoxal 5'-phosphate (PLP) synthase of Bacillus subtilis. BtrC2 has been found to have functions in B. circulans both in primary and secondary metabolism. In this study, we investigated the properties of PdxT of B. subtilis in order to determine whether the property of enzyme stabilization is universal among PdxT homologs. Complementation with PdxT in the btrC2 disruptant of B. circulans restored the growth and short-term production of antibiotics, but long-term production of antibiotics cannot be restored. Additionally, PdxT did not bind physically with or stabilize BtrC. Our results indicate that the function of BtrC2 in secondary metabolism is specific properties, not universal among PdxT homologs.

  1. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis

    KAUST Repository

    Li, Yongxin; Li, Zhongrui; Yamanaka, Kazuya; Xu, Ying; Zhang, Weipeng; Vlamakis, Hera; Kolter, Roberto; Moore, Bradley S.; Qian, Pei-Yuan

    2015-01-01

    validating this direct cloning plug-and-playa approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation

  2. Investigation of spore coat display of Bacillus subtilis β-galactosidase for developing of whole cell biocatalyst.

    Science.gov (United States)

    Tavassoli, Setareh; Hinc, Krzysztof; Iwanicki, Adam; Obuchowski, Michal; Ahmadian, Gholamreza

    2013-03-01

    The production of highly efficient, recyclable and cost-effective enzymes is one of the most important goals in industrial biotechnology. Bacterial spores are highly resistant to harsh environmental conditions, easy to produce and are suitable for manipulation of genetic materials. These features make them a very efficient tool for biotechnology. Here, we show the use bacterial spores for presentation of functional enzyme. Spore coat display was used to produce a biocatalyst, which expresses β-galactiosidase (LacA). This enzyme is commonly used to produce lactose-free milk for lactose intolerant individuals. The lacA gene from Bacillus subtilis strain 168 was expressed on the surface of B. subtilis RH101(ΔcotC) spores using CotC as protein carrier. Presence of LacA protein is verified by western blotting. Results of β-galactiosidase assay show that the expressed enzyme retained its activity in condition of freezing and drying, as well as after recovery from the reaction's mixture.

  3. The effect of the probiotics Bacillus subtilis (PB6 on the selected indicators of the table eggs quality, fat and cholesterol

    Directory of Open Access Journals (Sweden)

    Jana Tkáčová

    2013-03-01

    Full Text Available 1024x768 The aim of this study was to determine the effect of dietary probiotics Bacillus subtilis (PB6 on egg weigh, egg mass weigh, egg fat content and cholesterol content in egg yolk in laying hens ISA Brown during two experiments. The probiotics where supplied to the laying hens for 42 days as preparation period before eggs samples collection. The eggs samples were collected during 6 days for the 1st and 2nd experiments after the hens reached the age of 34 and 61 weeks, respectively.  A total of 36 ISA Brown laying hens were divided into 2 treatment groups. Control group laying hens were fed a basal diet with no probiotic added. In group Bacillus subtilis, the basal diet was supplemented with the bacteria Bacillus subtilis (PB6 at 1 g/kg, min. 2.3*108 cfu/g. Dietary treatments did not significantly affect the egg weigh, internal egg content weigh, cholesterol content expressed by g/100 g of egg yolk.  Bacillus subtilis (PB6 supplementation significantly (p expressed as g/pc.  doi:10.5219/271 Normal 0 false false false EN-US X-NONE X-NONE

  4. The Bacillus subtilis and Bacillus halodurans Aspartyl-tRNA Synthetases Retain Recognition of tRNA(Asn).

    Science.gov (United States)

    Nair, Nilendra; Raff, Hannah; Islam, Mohammed Tarek; Feen, Melanie; Garofalo, Denise M; Sheppard, Kelly

    2016-02-13

    Synthesis of asparaginyl-tRNA (Asn-tRNA(Asn)) in bacteria can be formed either by directly ligating Asn to tRNA(Asn) using an asparaginyl-tRNA synthetase (AsnRS) or by synthesizing Asn on the tRNA. In the latter two-step indirect pathway, a non-discriminating aspartyl-tRNA synthetase (ND-AspRS) attaches Asp to tRNA(Asn) and the amidotransferase GatCAB transamidates the Asp to Asn on the tRNA. GatCAB can be similarly used for Gln-tRNA(Gln) formation. Most bacteria are predicted to use only one route for Asn-tRNA(Asn) formation. Given that Bacillus halodurans and Bacillus subtilis encode AsnRS for Asn-tRNA(Asn) formation and Asn synthetases to synthesize Asn and GatCAB for Gln-tRNA(Gln) synthesis, their AspRS enzymes were thought to be specific for tRNA(Asp). However, we demonstrate that the AspRSs are non-discriminating and can be used with GatCAB to synthesize Asn. The results explain why B. subtilis with its Asn synthetase genes knocked out is still an Asn prototroph. Our phylogenetic analysis suggests that this may be common among Firmicutes and 30% of all bacteria. In addition, the phylogeny revealed that discrimination toward tRNA(Asp) by AspRS has evolved independently multiple times. The retention of the indirect pathway in B. subtilis and B. halodurans likely reflects the ancient link between Asn biosynthesis and its use in translation that enabled Asn to be added to the genetic code. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. ANTIBACTERIAL ACTIVITY STUDY OF ACTIVE FRACTION FROM CHICK WEED PLANTS (Ageratum Conyzoides L. AGAINST Bacillus Subtilis AND Vibrio Cholerae

    Directory of Open Access Journals (Sweden)

    Ratih Anggara

    2017-07-01

    Full Text Available The purpose of this research to determine the fractions of Chick Weed which has strong antibacterial activity  against bacteria test categories of Bacillus subtilis and Vibriocholerae.determine the value of the minimum in hibitory concentration(MIC of the active fraction antibacterial Chick Weed.This research was carried out in August up to November 2016. The method used in this study  were extracted by maceration, fractionation by liquid-liquid fractionation, separation by column chromatography fractions, antibacterial activity test by theKirby-Bauermethod, while the determination of minimum in hibitory concentration by dilution broth,with test bacteria Bacillus subtilis and Vibriocholerae.The data presented in tabular form based on the average value and percent.The results of this study showed that the methanol extract Chick Weed active against test bacteria Bacillus subtilis and Vibrio cholerae. Fractionation which has strong category to standard antibiotics are methanol fraction by fraction column S4.The concentration MIC1000;500;250;125;62.5;31.2515.62; 7.81 ppm. The minimum in hibitory concentration column fractions S4 to test bacteria Vibrio cholerae of 62.5 ppm gives half the antibacterial activity of the antibacterial activity of standard antibiotics streptomycin and penicillin,tetracycline while giving a quarter activity. It can be concluded that the active fraction of methanol extractisa methanol fraction by fraction column S4 to test bacteria Vibrio cholerae. Keywords: Chick Weed, Minimum Inhibitory Concentration (MIC, active compound, Bacillus subtilis, Vibriocholera.

  6. Effects of Bacillus subtilis on some physiological and biochemical parameters of Triticum aestivum L. (wheat) under salinity.

    Science.gov (United States)

    Lastochkina, Oksana; Pusenkova, Ludmila; Yuldashev, Ruslan; Babaev, Marat; Garipova, Svetlana; Blagova, Dar'ya; Khairullin, Ramil; Aliniaeifard, Sasan

    2017-12-01

    Endophytic strain Bacillus subtilis (B. subtilis) 10-4, producing indole-3-acetic acid (IAA) and siderofores but not active in phosphate solubilization, exerted a protective effect on Triticum aestivum L. (wheat) plant grown under salinity (2% NaCl) stress. Exposure to salt stress resulted in an essential increase of proline (Pro) and malondialdehyde (MDA) level in the seedlings. At the same time the seedlings inoculated with B. subtilis 10-4 were characterized by decreased level of stress-induced Pro and MDA accumulation. It was revealed that both B. subtilis 10-4 and salinity caused increase in the content of endogenous salicylic acid (SA) in wheat seedlings as compared to SA content in the control, while B. subtilis 10-4 suppressed stress-induced SA accumulation. Water storage capacity (WSC) in leaf tissues was increased and stress-induced hydrolysis of statolite starch in root cap cells of the germinal roots was reduced by B. subtilis 10-4. The obtained data indicated that the activation of the defense reactions induced by B. subtilis 10-4 induced defense reactions may be connected with their ability to decrease the level of stress-induced oxidative and osmotic stress in seedlings and with the increase of endogenous SA level that can make a significant contribution to the implementation of the protective effect of B. subtilis 10-4 and is manifested in the improvement of plant growth, WSC of leaves and slowing down of the process of statolite starch hydrolysis under salinity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Functional redundancy of division specific penicillin-binding proteins in Bacillus subtilis.

    Science.gov (United States)

    Sassine, Jad; Xu, Meizhu; Sidiq, Karzan R; Emmins, Robyn; Errington, Jeff; Daniel, Richard A

    2017-10-01

    Bacterial cell division involves the dynamic assembly of a diverse set of proteins that coordinate the invagination of the cell membrane and synthesis of cell wall material to create the new cell poles of the separated daughter cells. Penicillin-binding protein PBP 2B is a key cell division protein in Bacillus subtilis proposed to have a specific catalytic role in septal wall synthesis. Unexpectedly, we find that a catalytically inactive mutant of PBP 2B supports cell division, but in this background the normally dispensable PBP 3 becomes essential. Phenotypic analysis of pbpC mutants (encoding PBP 3) shows that PBP 2B has a crucial structural role in assembly of the division complex, independent of catalysis, and that its biochemical activity in septum formation can be provided by PBP 3. Bioinformatic analysis revealed a close sequence relationship between PBP 3 and Staphylococcus aureus PBP 2A, which is responsible for methicillin resistance. These findings suggest that mechanisms for rescuing cell division when the biochemical activity of PBP 2B is perturbed evolved prior to the clinical use of β-lactams. © 2017 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  8. Use of bacillus subtilis strains to inhibit postharvest pathogenic fungi

    International Nuclear Information System (INIS)

    Arras, G.; Gambella, F.; Demontis, S.; Petretto, A.

    1995-01-01

    An isolate (87) of the bacillus subtilis strains isolated from cold stored citrus fruit 13 proved to inhibit the growth in vitro of the penicillium italicum used in the experiment (from 50.6% to 92.2%) and to inhibit botrytis cinerea (from 65.3% to 95.9%). A further test, superimposing on plates containing PDA strains Nos. 13, 173, and 160, totally inhibited the fungi. Tested in vivo on artificially bruised oranges, they significantly inhibited two fungi

  9. Molecular analysis of Phr peptide processing in Bacillus subtilis.

    Science.gov (United States)

    Stephenson, Sophie; Mueller, Christian; Jiang, Min; Perego, Marta

    2003-08-01

    In Bacillus subtilis, an export-import pathway regulates production of the Phr pentapeptide inhibitors of Rap proteins. Processing of the Phr precursor proteins into the active pentapeptide form is a key event in the initiation of sporulation and competence development. The PhrA (ARNQT) and PhrE (SRNVT) peptides inhibit the RapA and RapE phosphatases, respectively, whose activity is directed toward the Spo0F approximately P intermediate response regulator of the sporulation phosphorelay. The PhrC (ERGMT) peptide inhibits the RapC protein acting on the ComA response regulator for competence with regard to DNA transformation. The structural organization of PhrA, PhrE, and PhrC suggested a role for type I signal peptidases in the processing of the Phr preinhibitor, encoded by the phr genes, into the proinhibitor form. The proinhibitor was then postulated to be cleaved to the active pentapeptide inhibitor by an additional enzyme. In this report, we provide evidence that Phr preinhibitor proteins are subject to only one processing event at the peptide bond on the amino-terminal end of the pentapeptide. This processing event is most likely independent of type I signal peptidase activity. In vivo and in vitro analyses indicate that none of the five signal peptidases of B. subtilis (SipS, SipT, SipU, SipV, and SipW) are indispensable for Phr processing. However, we show that SipV and SipT have a previously undescribed role in sporulation, competence, and cell growth.

  10. Expression of the neutral protease gene from a thermophilic Bacillus sp BT1 strain in Bacillus subtilis and its natural host : Identification of a functional promoter

    NARCIS (Netherlands)

    Vecerek, B; Venema, G

    The expression of the neutral protease gene (npr) from the thermophilic Bacillus sp. BT1 strain was studied in its natural host and in mesophilic Bacillus subtilis. In the thermophilic BT1 strain, the transcription of the protease gene is initiated from its own promoter, just 5' to the gene. In

  11. Functional Diversity of AAA+ Protease Complexes in Bacillus subtilis

    Science.gov (United States)

    Elsholz, Alexander K. W.; Birk, Marlene S.; Charpentier, Emmanuelle; Turgay, Kürşad

    2017-01-01

    Here, we review the diverse roles and functions of AAA+ protease complexes in protein homeostasis, control of stress response and cellular development pathways by regulatory and general proteolysis in the Gram-positive model organism Bacillus subtilis. We discuss in detail the intricate involvement of AAA+ protein complexes in controlling sporulation, the heat shock response and the role of adaptor proteins in these processes. The investigation of these protein complexes and their adaptor proteins has revealed their relevance for Gram-positive pathogens and their potential as targets for new antibiotics. PMID:28748186

  12. Hyper production of alkaline protease by mutagenized bacillus subtilis

    International Nuclear Information System (INIS)

    Qureshi, A.M.; Tanseem, F.

    2010-01-01

    The purpose of this work was to augment the alkaline protease production from Bacillus subtilis by using chemical mutagen (MMS) and UV mutagenesis. A number of mutants were isolated which produce high levels of extra cellular proteases. Analysis of culture supernatants of these mutants had shown that the total amounts of proteolysis activity were increased from 1 to 2 fold over the wild strain. Clones showing promote response were further characterized by analyzing different parameters; like of Temperature, pH substrate concentration and incubation period, to study the activity of protease enzyme. (author)

  13. Functional Diversity of AAA+ Protease Complexes in Bacillus subtilis.

    Science.gov (United States)

    Elsholz, Alexander K W; Birk, Marlene S; Charpentier, Emmanuelle; Turgay, Kürşad

    2017-01-01

    Here, we review the diverse roles and functions of AAA+ protease complexes in protein homeostasis, control of stress response and cellular development pathways by regulatory and general proteolysis in the Gram-positive model organism Bacillus subtilis . We discuss in detail the intricate involvement of AAA+ protein complexes in controlling sporulation, the heat shock response and the role of adaptor proteins in these processes. The investigation of these protein complexes and their adaptor proteins has revealed their relevance for Gram-positive pathogens and their potential as targets for new antibiotics.

  14. Study on mutagenic breeding of bacillus subtilis and properties of its antifungal substances

    International Nuclear Information System (INIS)

    Liu Jing; Yao Jianming

    2004-01-01

    Bacillus subtilis JA isolated by our laboratory produced a large amount of antifungal substances, which had strong inhibitory activity against various plant pathogenic fungi, such as Rhizoctonia solani, Fusarium graminearum and so on. Ion beam implantation as a new mutagenic methods was applied in our study. After B. subtilis JA was implanted by N + ions, a strain designated as B. Subtilis JA-026 was screened and obtained, which had a higher ability to produce those antifungal substances. A series of experiments indicated that the antifungal substances were thermostable and partially sensitive to proteinases K and tryproteinase. When the fermentating broth was fractionated with ammonium sulphate of a final saturation of 70%, the precipitate enhanced inhibitory activity while the supernatant lost this activity. It appeared that the antifungal substances were likely to be protein. (authors)

  15. A Duo of Potassium-Responsive Histidine Kinases Govern the Multicellular Destiny of Bacillus subtilis

    NARCIS (Netherlands)

    Grau, Roberto R; de Oña, Paula; Kunert, Maritta; Leñini, Cecilia; Gallegos-Monterrosa, Ramses; Mhatre, Eisha; Vileta, Darío; Donato, Verónica; Hölscher, Theresa; Boland, Wilhelm; Kuipers, Oscar P; Kovács, Ákos T

    2015-01-01

    Multicellular biofilm formation and surface motility are bacterial behaviors considered mutually exclusive. However, the basic decision to move over or stay attached to a surface is poorly understood. Here, we discover that in Bacillus subtilis, the key root biofilm-controlling transcription factor

  16. A part toolbox to tune genetic expression in Bacillus subtilis

    Science.gov (United States)

    Guiziou, Sarah; Sauveplane, Vincent; Chang, Hung-Ju; Clerté, Caroline; Declerck, Nathalie; Jules, Matthieu; Bonnet, Jerome

    2016-01-01

    Libraries of well-characterised components regulating gene expression levels are essential to many synthetic biology applications. While widely available for the Gram-negative model bacterium Escherichia coli, such libraries are lacking for the Gram-positive model Bacillus subtilis, a key organism for basic research and biotechnological applications. Here, we engineered a genetic toolbox comprising libraries of promoters, Ribosome Binding Sites (RBS), and protein degradation tags to precisely tune gene expression in B. subtilis. We first designed a modular Expression Operating Unit (EOU) facilitating parts assembly and modifications and providing a standard genetic context for gene circuits implementation. We then selected native, constitutive promoters of B. subtilis and efficient RBS sequences from which we engineered three promoters and three RBS sequence libraries exhibiting ∼14 000-fold dynamic range in gene expression levels. We also designed a collection of SsrA proteolysis tags of variable strength. Finally, by using fluorescence fluctuation methods coupled with two-photon microscopy, we quantified the absolute concentration of GFP in a subset of strains from the library. Our complete promoters and RBS sequences library comprising over 135 constructs enables tuning of GFP concentration over five orders of magnitude, from 0.05 to 700 μM. This toolbox of regulatory components will support many research and engineering applications in B. subtilis. PMID:27402159

  17. Role of excision repair in postradiation recovery of biological activity of cellular DNA Bacillus subtilis

    International Nuclear Information System (INIS)

    Filippov, V.D.

    1976-01-01

    DNA extracted from UV-irradiated prototroph cells of Bacillus subtilis uvr + (45 sec. of UV light, 20% survivals) has a lowered transforming activity (TA) of markers purB and metB, and a lowered ratio TA pur/TA met. During the subsequent incubation of uvr + cells in glucose-salt medium free of nitrogen sources the TA of markers and the ratio between them increase. No increase is observed during the postradiation incubation under the same conditions or in a nutrition medium of uvr cells, deficient in escision of pyrimidine dimers. The increment of DNA begins approsimately in 30 min. after the beginning of incubation of irradiated uvr cells in nutrition medium. On the basis of these facts it is concluded that neither the replication of damaged DNA nor the postreplication repair, but only excision repair, can provide the recovery of biological (transforming) activity of cellular DNA in Bac. subtilis. The system given might be a suitable model for testing compounds which affect the activity of this process. The well-known inhibitors of dark repair, caffeine, proflavine to inhibit reversibly the initial steps of the process/ and especially acriflavine, delay the recovery of markers of cellular DNA in irradiated uvr + cells. Caffeine is proved to inhibit reversibly the initial steps of the process

  18. PEMANFAATAN LIMBAH BULU AYAM MENJADI BAHAN PAKAN IKAN DENGAN FERMENTASI Bacillus subtilis (Utilization of Waste Chicken Feather to Fish Feed Ingredients Material with Fermentation of Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Dini Siswani Mulia

    2016-02-01

    Full Text Available ABSTRAK Penelitian ini bertujuan untuk memanfaatkan limbah bulu ayam menjadi bahan pakan ikan dengan fermentasi Bacillus subtilis. Penelitian menggunakan metode eksperimen dengan Rancangan Acak Lengkap (RAL 4 perlakuan, 3 kali ulangan, yaitu P0 : tepung bulu ayam non fermentasi; P1 : fermentasi dengan inokulum B. subtilis 5 mL/2 g tepung bulu ayam; P2 : fermentasi dengan inokulum B. subtilis 10 mL/2 g tepung bulu ayam; P3 : fermentasi dengan inokulum B. subtilis 15 mL/2 g tepung bulu ayam. Parameter yang diamati adalah hasil uji proksimat meliputi kadar protein kasar, kadar air, kadar abu, kadar lemak kasar, kadar serat kasar, dan parameter pendukung yaitu uji organoleptik, berupa sifat fisik tepung bulu ayam, meliputi warna, tekstur, dan bau. Data berupa hasil uji proksimat dianalisis menggunakan ANAVA dan Duncan Multiple Range Test (DMRT dengan taraf uji 5%, sedangkan untuk data hasil organoleptik dianalisis secara deskriptif kualitatif. Hasil penelitian menunjukkan bahwa pemanfaatan limbah bulu ayam menjadi bahan pakan ikan dapat dilakukan dengan fermentasi B. subtilis. Fermentasi tepung bulu ayam menggunakan B. subtillis dapat meningkatkan kualitas bahan baku pakan ikan. Perlakuan P2 (inokulum 10 mL/2 g tepung bulu ayamadalah perlakuan yang paling efektif karena menghasilkan protein tertinggi yaitu 80,59%, dengan perubahan sifat fisik menjadi putih sampai putih kekuningan (warna, lembut (tekstur, dan khas kurang menyengat (bau.   ABSTRACT This study aims to utilize waste chicken feathers into fish feed ingredients by fermentation of Bacillus subtilis. The research has done by experimental methods with completely randomized design (CRD 4 treatments, 3 repetitions, ie P0: non-fermented chicken feather meal; P1: fermentation with B. subtilis 5 mL inoculum/2 g chicken feather meal; P2: 10 mL/2 g chicken feather meal; P3: 15 mL/2 g chicken feather meal. Parameters measured were the proximate test results include the levels of crude protein

  19. BIOMASS PRODUCTION AND FORMULATION OF Bacillus subtilis FOR BIOLOGICAL CONTROL

    Directory of Open Access Journals (Sweden)

    Amran Muis

    2016-10-01

    Full Text Available Bacillus subtilis is a widespread bacterium found in soil, water, and air. It controls the growth of certain harmful bacteria and fungi, presumably by competing for nutrients, growth sites on plants, and by directly colonizing and attaching to fungal pathogens. When applied to seeds, it colonizes the developing root system of the plants and continues to live on the root system and provides protection throughout the growing season. The study on biomass production and formulation of B. subtilis for biological control was conducted in the laboratory of Department of Plant Pathology, College of Agriculture, University of the Philippines Los Baños (UPLB-CA, College, Laguna from May to July 2005. The objective of the study was to determine the optimum pH and a good carbon source for biomass production of B. subtilis and to develop a seed treatment formulation of B. subtilis as biological control agent. Results showed that the optimum pH for growth of B. subtilis was pH 6 (1.85 x 109 cfu/ml. In laboratory tests for biomass production using cassava flour, corn flour, rice flour, and brown sugar as carbon sources, it grew best in brown sugar plus yeast extract medium (6.8 x 108 cfu ml-1 in sterile distilled water and 7.8 x 108 cfu ml-1 in coconut water. In test for bacterial biomass carriers, talc proved to be the best in terms of number of bacteria recovered from the seeds (3.98 x 105 cfu seed-1.

  20. Heterologous expression of antigenic peptides in Bacillus subtilis biofilms.

    Science.gov (United States)

    Vogt, Cédric M; Schraner, Elisabeth M; Aguilar, Claudio; Eichwald, Catherine

    2016-08-11

    Numerous strategies have been developed for the display of heterologous proteins in the surface of live bacterial carriers, which can be used as vaccines, immune-modulators, cancer therapy or bioremediation. Bacterial biofilms have emerged as an interesting approach for the expression of proteins of interest. Bacillus subtilis is a well-described, endospore-forming organism that is able to form biofilms and also used as a probiotic, thus making it a suitable candidate for the display of heterologous proteins within the biofilm. Here, we describe the use of TasA, an important structural component of the biofilms formed by B. subtilis, as a genetic tool for the display of heterologous proteins. We first engineered the fusion protein TasA-mCherry and showed that was widely deployed within the B. subtilis biofilms. A significant enhancement of the expression of TasA-mCherry within the biofilm was obtained when depleting both tasA and sinR genes. We subsequently engineered fusion proteins of TasA to antigenic peptides of the E. granulosus parasite, paramyosin and tropomyosin. Our results show that the antigens were well expressed within the biofilm as denoted by macrostructure complementation and by the detection of the fusion protein in both immunoblot and immunohistochemistry. In addition, we show that the recombinant endospores of B. subtilis preserve their biophysical and morphological properties. In this work we provide strong evidence pointing that TasA is a suitable candidate for the display of heterologous peptides, such as antigens, cytokines, enzymes or antibodies, in the B. subtilis biofilms. Finally, our data portray that the recombinant endospores preserve their morphological and biophysical properties and could be an excellent tool to facilitate the transport and the administration.

  1. Methyl group turnover on methyl-accepting chemotaxis proteins during chemotaxis by Bacillus subtilis

    International Nuclear Information System (INIS)

    Thoelke, M.S.; Casper, J.M.; Ordal, G.W.

    1990-01-01

    The addition of attractant to Bacillus subtilis briefly exposed to radioactive methionine causes an increase of labeling of the methyl-accepting chemotaxis proteins. The addition of attractant to cells radiolabeled for longer times shows no change in the extent of methylation. Therefore, the increase in labeling for the briefly labeled cells is due to an increased turnover of methyl groups caused by attractant. All amino acids gave enhanced turnover. This turnover lasted for a prolonged time, probably spanning the period of smooth swimming caused by the attractant addition. Repellent did not affect the turnover when added alone or simultaneously with attractant. Thus, for amino acid attractants, the turnover is probably the excitatory signal, which is seen to extend long into or throughout the adaptation period, not just at the start of it

  2. Cyclic lipopeptides from Bacillus subtilis activate distinct patterns of defence responses in grapevine.

    Science.gov (United States)

    Farace, Giovanni; Fernandez, Olivier; Jacquens, Lucile; Coutte, François; Krier, François; Jacques, Philippe; Clément, Christophe; Barka, Essaid Ait; Jacquard, Cédric; Dorey, Stéphan

    2015-02-01

    Non-self-recognition of microorganisms partly relies on the perception of microbe-associated molecular patterns (MAMPs) and leads to the activation of an innate immune response. Bacillus subtilis produces three main families of cyclic lipopeptides (LPs), namely surfactins, iturins and fengycins. Although LPs are involved in induced systemic resistance (ISR) activation, little is known about defence responses induced by these molecules and their involvement in local resistance to fungi. Here, we showed that purified surfactin, mycosubtilin (iturin family) and plipastatin (fengycin family) are perceived by grapevine plant cells. Although surfactin and mycosubtilin stimulated grapevine innate immune responses, they differentially activated early signalling pathways and defence gene expression. By contrast, plipastatin perception by grapevine cells only resulted in early signalling activation. Gene expression analysis suggested that mycosubtilin activated salicylic acid (SA) and jasmonic acid (JA) signalling pathways, whereas surfactin mainly induced an SA-regulated response. Although mycosubtilin and plipastatin displayed direct antifungal activity, only surfactin and mycosubtilin treatments resulted in a local long-lasting enhanced tolerance to the necrotrophic fungus Botrytis cinerea in grapevine leaves. Moreover, challenge with specific strains overproducing surfactin and mycosubtilin led to a slightly enhanced stimulation of the defence response compared with the LP-non-producing strain of B. subtilis. Altogether, our results provide the first comprehensive view of the involvement of LPs from B. subtilis in grapevine plant defence and local resistance against the necrotrophic pathogen Bo. cinerea. Moreover, this work is the first to highlight the ability of mycosubtilin to trigger an immune response in plants. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  3. A novel halotolerant xylanase from marine isolate Bacillus subtilis cho40: gene cloning and sequencing

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, R.; Verma, P.; Deobagkar, D.

    A novel halotolerant xylanase from marine bacterium Bacillus subtilis cho40 isolated from Chorao island of Mandovi estuary Goa, India has been reported. Extracellular xylanase was produced by using agricultural residue such as wheat bran as carbon...

  4. Bacillus subtilis as potential producer for polyhydroxyalkanoates

    Directory of Open Access Journals (Sweden)

    Patel Sanjay KS

    2009-07-01

    Full Text Available Abstract Polyhydroxyalkanoates (PHAs are biodegradable polymers produced by microbes to overcome environmental stress. Commercial production of PHAs is limited by the high cost of production compared to conventional plastics. Another hindrance is the brittle nature and low strength of polyhydroxybutyrate (PHB, the most widely studied PHA. The needs are to produce PHAs, which have better elastomeric properties suitable for biomedical applications, preferably from inexpensive renewable sources to reduce cost. Certain unique properties of Bacillus subtilis such as lack of the toxic lipo-polysaccharides, expression of self-lysing genes on completion of PHA biosynthetic process – for easy and timely recovery, usage of biowastes as feed enable it to compete as potential candidate for commercial production of PHA.

  5. The actin-like MreB proteins in Bacillus subtilis: a new turn.

    Science.gov (United States)

    Chastanet, Arnaud; Carballido-Lopez, Rut

    2012-06-01

    A decade ago, two breakthrough descriptions were reported: 1) the first helix-like protein localization pattern of MreB and its paralog Mbl in Bacillus subtilis and 2) the crystal structure of Thermotoga maritima MreB1, which was remarkably similar to that of actin. These discoveries strongly stimulated the field of bacterial development, leading to the identification of many new cytoskeletal proteins (1) and the publication of many studies describing the helical patterns of protein, DNA and even lipid domains. However, today, new breakthroughs are shaking up what had become a dogma. Instead of helical structures, MreBs appear to form discrete patches that move circumferentially around the cell, questioning the idea of MreB cables forming an actin-like cytoskeleton. Furthermore, increasing evidence of biochemical properties that are unlike the properties of actin suggest that the molecular behavior of MreB proteins may be different. The aim of this review is to summarize the current knowledge of the so-called "actin-like" MreB cytoskeleton through a discussion of the model Gram-positive bacterium B. subtilis and the most recent findings in this rapidly evolving research field.

  6. Poly-γ-Glutamic Acids Contribute to Biofilm Formation and Plant Root Colonization in Selected Environmental Isolates of Bacillus subtilis

    Science.gov (United States)

    Yu, Yiyang; Yan, Fang; Chen, Yun; Jin, Christopher; Guo, Jian-Hua; Chai, Yunrong

    2016-01-01

    Bacillus subtilis is long known to produce poly-γ-glutamic acids (γ-PGA) as one of the major secreted polymeric substances. In B. subtilis, the regulation of γ-PGA production and its physiological role are still unclear. B. subtilis is also capable of forming structurally complex multicellular communities, or biofilms, in which an extracellular matrix consisting of secreted proteins and polysaccharides holds individual cells together. Biofilms were shown to facilitate B. subtilis–plant interactions. In this study, we show that different environmental isolates of B. subtilis, all capable of forming biofilms, vary significantly in γ-PGA production. This is possibly due to differential regulation of γ-PGA biosynthesis genes. In many of those environmental isolates, γ-PGA seems to contribute to robustness and complex morphology of the colony biofilms, suggesting a role of γ-PGA in biofilm formation. Our evidence further shows that in selected B. subtilis strains, γ-PGA also plays a role in root colonization by the bacteria, pinpointing a possible function of γ-PGA in B. subtilis–plant interactions. Finally, we found that several pathways co-regulate both γ-PGA biosynthesis genes and genes for the biofilm matrix in B. subtilis, but in an opposing fashion. We discussed potential biological significance of that. PMID:27891125

  7. Electron transfer reactions, cyanide and O2 binding of truncated hemoglobin from Bacillus subtilis

    DEFF Research Database (Denmark)

    Fernandez, Esther; Larsson, Jonas T.; McLean, Kirsty J.

    2013-01-01

    The truncated hemoglobin from Bacillus subtilis (trHb-Bs) possesses a surprisingly high affinity for oxygen and resistance to (auto)oxidation; its physiological role in the bacterium is not understood and may be connected with its very special redox and ligand binding reactions. Electron transfer...

  8. Differences in cold adaptation of .i.Bacillus subtilis./i. under anaerobic and aerobic conditions

    Czech Academy of Sciences Publication Activity Database

    Beranová, J.; Mansilla, M.C.; de Mendoza, D.; Elhottová, Dana; Konopásek, I.

    2010-01-01

    Roč. 192, č. 16 (2010), s. 4164-4171 ISSN 0021-9193 R&D Projects: GA MŠk LC06066 Institutional research plan: CEZ:AV0Z60660521 Keywords : cold adaptation * Bacillus subtilis * anaerobiosis Subject RIV: EE - Microbiology, Virology Impact factor: 3.726, year: 2010

  9. Engineering of quorum-sensing systems for improved production of alkaline protease by Bacillus subtilis.

    NARCIS (Netherlands)

    Tjalsma, H.; Koetje, E.J.; Kiewiet, R.; Kuipers, O.P.; Kolkman, M.J.M.; Laan, J.H. van der; Daskin, R.; Ferrari, E.; Bron, S.

    2004-01-01

    AIM: Engineering of Rap-Phr quorum-sensing systems of Bacillus subtilis and subsequent evaluation of the transcription of the aprE gene, encoding a major extracellular alkaline protease. METHODS AND RESULTS: Addition of synthetic Phr pentapeptides to the growth medium, or overproduction of pre-Phr

  10. Engineering of quorum-sensing systems for improved production of alkaline protease by Bacillus subtilis

    NARCIS (Netherlands)

    Tjalsma, H; Koetje, EJ; Kiewiet, R; Kuipers, OP; Kolkman, M; van der Laan, J; Daskin, R; Ferrari, E; Bron, S

    2004-01-01

    Aim: Engineering of Rap-Phr quorum-sensing systems of Bacillus subtilis and subsequent evaluation of the transcription of the aprE gene, encoding a major extracellular alkaline protease. Methods and Results: Addition of synthetic Phr pentapeptides to the growth medium, or overproduction of pre-Phr

  11. Metabolic engineering of Bacillus subtilis fueled by systems biology: Recent advances and future directions.

    Science.gov (United States)

    Liu, Yanfeng; Li, Jianghua; Du, Guocheng; Chen, Jian; Liu, Long

    By combining advanced omics technology and computational modeling, systems biologists have identified and inferred thousands of regulatory events and system-wide interactions of the bacterium Bacillus subtilis, which is commonly used both in the laboratory and in industry. This dissection of the multiple layers of regulatory networks and their interactions has provided invaluable information for unraveling regulatory mechanisms and guiding metabolic engineering. In this review, we discuss recent advances in the systems biology and metabolic engineering of B. subtilis and highlight current gaps in our understanding of global metabolism and global pathway engineering in this organism. We also propose future perspectives in the systems biology of B. subtilis and suggest ways that this approach can be used to guide metabolic engineering. Specifically, although hundreds of regulatory events have been identified or inferred via systems biology approaches, systematic investigation of the functionality of these events in vivo has lagged, thereby preventing the elucidation of regulatory mechanisms and further rational pathway engineering. In metabolic engineering, ignoring the engineering of multilayer regulation hinders metabolic flux redistribution. Post-translational engineering, allosteric engineering, and dynamic pathway analyses and control will also contribute to the modulation and control of the metabolism of engineered B. subtilis, ultimately producing the desired cellular traits. We hope this review will aid metabolic engineers in making full use of available systems biology datasets and approaches for the design and perfection of microbial cell factories through global metabolism optimization. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Dual-specificity anti-sigma factor reinforces control of cell-type specific gene expression in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Mónica Serrano

    2015-04-01

    Full Text Available Gene expression during spore development in Bacillus subtilis is controlled by cell type-specific RNA polymerase sigma factors. σFand σE control early stages of development in the forespore and the mother cell, respectively. When, at an intermediate stage in development, the mother cell engulfs the forespore, σF is replaced by σG and σE is replaced by σK. The anti-sigma factor CsfB is produced under the control of σF and binds to and inhibits the auto-regulatory σG, but not σF. A position in region 2.1, occupied by an asparagine in σG and by a glutamate in οF, is sufficient for CsfB discrimination of the two sigmas, and allows it to delay the early to late switch in forespore gene expression. We now show that following engulfment completion, csfB is switched on in the mother cell under the control of σK and that CsfB binds to and inhibits σE but not σK, possibly to facilitate the switch from early to late gene expression. We show that a position in region 2.3 occupied by a conserved asparagine in σE and by a conserved glutamate in σK suffices for discrimination by CsfB. We also show that CsfB prevents activation of σG in the mother cell and the premature σG-dependent activation of σK. Thus, CsfB establishes negative feedback loops that curtail the activity of σE and prevent the ectopic activation of σG in the mother cell. The capacity of CsfB to directly block σE activity may also explain how CsfB plays a role as one of the several mechanisms that prevent σE activation in the forespore. Thus the capacity of CsfB to differentiate between the highly similar σF/σG and σE/σK pairs allows it to rinforce the cell-type specificity of these sigma factors and the transition from early to late development in B. subtilis, and possibly in all sporeformers that encode a CsfB orthologue.

  13. Genomic analysis of Bacillus subtilis OH 131.1 and coculturing with Cryptococcus flavescens for control of fusarium head blight

    Science.gov (United States)

    Bacillus subtilis OH131.1 is a bacterial antagonist of Fusarium graminearum, a plant pathogen which causes Fusarium head blight in wheat. The genome of B. subtilis OH131.1 was sequenced, annotated and analyzed to understand its potential to produce bioactive metabolites. The analysis identified 6 sy...

  14. EFEKTIVITAS BIOPESTISIDA BACILLUS SUBTILIS BNt 8 DAN PESTISIDA NABATI UNTUK PENGENDALIAN PENYAKIT HAWAR PELEPAH DAN UPIH DAUN JAGUNG

    Directory of Open Access Journals (Sweden)

    Nurasiah Djaenuddin

    2017-05-01

    Full Text Available Effectiveness of the biopesticide of Bacillus subtilis BNt 8 and botanical pesticide in controlling banded leaf and sheath blight disease on maize. Banded leaf and sheath blight disease (BLSB caused by the fungus Rhizoctonia solani is difficult to control because it pertained soil borne fungus that can survive in a long time in the soil. Control the disease with synthetic pesticide causing contamination to the environment, so that an environmentally friendly alternative control is needed. This study aimed to obtain a Bacillus subtilis formulation as biological agents and selected botanical pesticides that effective to control BLSB in the field. The study was conducted at the Plant Pathology Laboratory of Indonesia Cereals Research Institute in Maros and at the Bajeng Experimental Farm in Gowa, held from February to August 2015. The reatments consists of several botanical pesticides, B. subtilis formulation, a synthetic fungicide, positive and negative controls. In vitro test was inhibition test between botanical pesticide with R. solani and antagonistic test between the B. subtilis and botanical pesticides, each of them consists of 6 treatments and 3 replications, while the field activity consists of test of effectiveness of single treatment and combination between B. subtilis formulation and botanical pesticides. The results showed that combination of formulated B. subtilis with botanical pesticide of cloves leaves, betel leaves, and turmeric were not significantly different from single treatment of formulated B. subtilis and botanical pesticides. Formulated B. subtilis suppressed the severity of BLSB as much as 39.1% and yield reached 8.4 t/ha.

  15. Thermodynamic analysis of Bacillus subtilis endospore protonation using isothermal titration calorimetry

    Science.gov (United States)

    Harrold, Zoë R.; Gorman-Lewis, Drew

    2013-05-01

    Bacterial proton and metal adsorption reactions have the capacity to affect metal speciation and transport in aqueous environments. We coupled potentiometric titration and isothermal titration calorimetry (ITC) analyses to study Bacillus subtilis spore-proton adsorption. We modeled the potentiometric data using a four and five-site non-electrostatic surface complexation model (NE-SCM). Heats of spore surface protonation from coupled ITC analyses were used to determine site specific enthalpies of protonation based on NE-SCMs. The five-site model resulted in a substantially better model fit for the heats of protonation but did not significantly improve the potentiometric titration model fit. The improvement observed in the five-site protonation heat model suggests the presence of a highly exothermic protonation reaction circa pH 7 that cannot be resolved in the less sensitive potentiometric data. From the log Ks and enthalpies we calculated corresponding site specific entropies. Log Ks and site concentrations describing spore surface protonation are statistically equivalent to B. subtilis cell surface protonation constants. Spore surface protonation enthalpies, however, are more exothermic relative to cell based adsorption suggesting a different bonding environment. The thermodynamic parameters defined in this study provide insight on molecular scale spore-surface protonation reactions. Coupled ITC and potentiometric titrations can reveal highly exothermic, and possibly endothermic, adsorption reactions that are overshadowed in potentiometric models alone. Spore-proton adsorption NE-SCMs derived in this study provide a framework for future metal adsorption studies.

  16. Mixed culture models for predicting intestinal microbial interactions between Escherichia coli and Lactobacillus in the presence of probiotic Bacillus subtilis.

    Science.gov (United States)

    Yang, J J; Niu, C C; Guo, X H

    2015-01-01

    Bacillus has been proposed as a probiotic due to its in vivo effectiveness in the gastrointestinal tract through antimicrobial activities. The present study investigates the effects of Lactobacillus alone or in the presence of Bacillus subtilis MA139 on the inhibition of pathogenic Escherichia coli K88. Mixed cultures were used to predict the possible interactions among these bacteria within the intestinal tract of animals. B. subtilis MA139 was first assayed for its inhibition against E. coli K88 both under shaking and static culture conditions. A co-culture assay was employed under static conditions to test the inhibitory effects of Lactobacillus reuteri on E. coli K88, with or without addition of B. subtilis MA139. The results showed that B. subtilis MA139 had marked inhibition against E. coli K88 under shaking conditions and weak inhibition under static conditions. Lactobacillus alone as well as in combination with B. subtilis MA139 spores exerted strong inhibition against E. coli K88 under static conditions. However, the inhibition by Lactobacillus in combination with B. subilis spores was much higher than that by Lactobacillus alone (Psubtilis MA139 significantly decreased the pH and oxidation-reduction potential values of the co-culture broth compared to that of Lactobacillus alone (Psubtilis MA139 because of significantly higher Lactobacillus counts and lower pH values in the broth (PBacillus in the mixed culture models suggests that Bacillus may produce beneficial effects by increasing the viability of lactobacilli and subsequently inhibiting the growth of pathogenic E. coli. Therefore, the combination of Bacillus and Lactobacillus species as a probiotic is recommended.

  17. High-level extracellular protein production in Bacillus subtilis using an optimized dual-promoter expression system.

    Science.gov (United States)

    Zhang, Kang; Su, Lingqia; Duan, Xuguo; Liu, Lina; Wu, Jing

    2017-02-20

    We recently constructed a Bacillus subtilis strain (CCTCC M 2016536) from which we had deleted the srfC, spoIIAC, nprE, aprE and amyE genes. This strain is capable of robust recombinant protein production and amenable to high-cell-density fermentation. Because the promoter is among the factors that influence the production of target proteins, optimization of the initial promoter, P amyQ from Bacillus amyloliquefaciens, should improve protein expression using this strain. This study was undertaken to develop a new, high-level expression system in B. subtilis CCTCC M 2016536. Using the enzyme β-cyclodextrin glycosyltransferase (β-CGTase) as a reporter protein and B. subtilis CCTCC M 2016536 as the host, nine plasmids equipped with single promoters were screened using shake-flask cultivation. The plasmid containing the P amyQ' promoter produced the greatest extracellular β-CGTase activity; 24.1 U/mL. Subsequently, six plasmids equipped with dual promoters were constructed and evaluated using this same method. The plasmid containing the dual promoter P HpaII -P amyQ' produced the highest extracellular β-CGTase activity (30.5 U/mL) and was relatively glucose repressed. The dual promoter P HpaII -P amyQ' also mediated substantial extracellular pullulanase (90.7 U/mL) and α-CGTase expression (9.5 U/mL) during shake-flask cultivation, demonstrating the general applicability of this system. Finally, the production of β-CGTase using the dual-promoter P HpaII -P amyQ' system was investigated in a 3-L fermenter. Extracellular expression of β-CGTase reached 571.2 U/mL (2.5 mg/mL), demonstrating the potential of this system for use in industrial applications. The dual-promoter P HpaII -P amyQ' system was found to support superior expression of extracellular proteins in B. subtilis CCTCC M 2016536. This system appears generally applicable and is amenable to scale-up.

  18. Enkele aspecten van competentie bij Bacillus subtilis : Een genetisch en electronenmicroscopisch - autoradiografisch onderzoek

    NARCIS (Netherlands)

    1972-01-01

    Ïhe results reported in this thesis refer to: (1) an analysis of the variation in transformability of Bacillus subtilis cultures when grown to competence both by the same method and by different methods, l2l the estimation of the size of the competent fraction by two methods and (3) an electron

  19. Molecular and Physiological Logics of the Pyruvate-Induced Response of a Novel Transporter in Bacillus subtilis.

    Science.gov (United States)

    Charbonnier, Teddy; Le Coq, Dominique; McGovern, Stephen; Calabre, Magali; Delumeau, Olivier; Aymerich, Stéphane; Jules, Matthieu

    2017-10-03

    At the heart of central carbon metabolism, pyruvate is a pivotal metabolite in all living cells. Bacillus subtilis is able to excrete pyruvate as well as to use it as the sole carbon source. We herein reveal that ysbAB (renamed pftAB ), the only operon specifically induced in pyruvate-grown B. subtilis cells, encodes a hetero-oligomeric membrane complex which operates as a facilitated transport system specific for pyruvate, thereby defining a novel class of transporter. We demonstrate that the LytST two-component system is responsible for the induction of pftAB in the presence of pyruvate by binding of the LytT response regulator to a palindromic region upstream of pftAB We show that both glucose and malate, the preferred carbon sources for B. subtilis , trigger the binding of CcpA upstream of pftAB , which results in its catabolite repression. However, an additional CcpA-independent mechanism represses pftAB in the presence of malate. Screening a genome-wide transposon mutant library, we find that an active malic enzyme replenishing the pyruvate pool is required for this repression. We next reveal that the higher the influx of pyruvate, the stronger the CcpA-independent repression of pftAB , which suggests that intracellular pyruvate retroinhibits pftAB induction via LytST. Such a retroinhibition challenges the rational design of novel nature-inspired sensors and synthetic switches but undoubtedly offers new possibilities for the development of integrated sensor/controller circuitry. Overall, we provide evidence for a complete system of sensors, feed-forward and feedback controllers that play a major role in environmental growth of B. subtilis IMPORTANCE Pyruvate is a small-molecule metabolite ubiquitous in living cells. Several species also use it as a carbon source as well as excrete it into the environment. The bacterial systems for pyruvate import/export have yet to be discovered. Here, we identified in the model bacterium Bacillus subtilis the first import

  20. The screening of bacillus subtilis strain with high-produced antimicrobial substance using N+ ion implantation

    International Nuclear Information System (INIS)

    Shen Juan; Bie Xiaomei; Lu Zhaoxin; Lu Fengxia; Zhu Xiaoyu

    2006-01-01

    N + ion implantation was used to obtain higher-yield antimicrobial substance. Bacillus subtilis fmbJ was mutated by 25 keV N + ion implantation with the dose of 50 x 2.6 x 10 13 , 80 x 2.6 x 10 13 , 100 x 2.6 x 10 13 , 120 x 2.6 x 10 13 and 150 x 2.6 x 10 13 N + /m 2 . Results showed that the optimal N + ion dose was 50 x 2.6 x 10 13 N + /m 2 , and a strain of high-yield antimicrobials was obtained and named as Bacillus subtilis fmbJ224. Its antimicrobial substance yield was increased by 96% than the initial. The fermentation characteristic of the strain was studied, and the mode of producing antimicrobial substance for the selected strain was arrearage synthesis type. (authors)

  1. Anaerobic growth of Bacillus subtilis alters the spectrum of spontaneous mutations in the rpoB gene leading to rifampicin resistance.

    Science.gov (United States)

    Nicholson, Wayne L; Park, Roy

    2015-12-01

    Spontaneous rifampicin-resistant (RFM(R)) mutants were isolated from Bacillus subtilis 168 cultivated in the presence or absence of oxygen. By DNA sequencing, the mutations were located within Cluster I of the rpoB gene encoding the β subunit of RNA polymerase. The spectrum of RFM(R) rpoB mutations isolated from B. subtilis cells grown anaerobically differed from aerobically grown cells, not only with respect to the location of mutations within Cluster I but also in the class of mutation observed (transition versus transversion). In the absence of RFM, RFM(R) mutants exhibited poorer growth under anaerobic conditions than did the wild-type strain, indicating their lower fitness in the absence of antibiotic selection. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Comparison of plant growth-promotion with Pseudomonas aeruginosa and Bacillus subtilis in three vegetables Comparação da promoção de crescimento de plantas por Pseudomonas aeruginosa e Bacillus subtilis em três vegetais

    Directory of Open Access Journals (Sweden)

    A.O. Adesemoye

    2008-09-01

    Full Text Available Our objective was to compare some plant growth promoting rhizobacteria (PGPR properties of Bacillus subtilis and Pseudomonas aeruginosa as representatives of their two genera. Solanum lycopersicum L. (tomato, Abelmoschus esculentus (okra, and Amaranthus sp. (African spinach were inoculated with the bacterial cultures. At 60 days after planting, dry biomass for plants treated with B. subtilis and P. aeruginosa increased 31% for tomato, 36% and 29% for okra, and 83% and 40% for African spinach respectively over the non-bacterized control. Considering all the parameters tested, there were similarities but no significant difference at P Nosso objetivo foi comparar as propriedades PGPR (rizobactérias promotoras de crescimento de plantas de Bacillus subtilis e Pseudomonas aeruginosa. Solanum licopersicum (tomate, Asbelmoschus esculentus (ocra e Amaranthus sp (espinafre africano foram inoculados com as culturas bacterianas. Após 60 dias de plantio, a biomassa seca das plantas tratadas com B.subtilis e P. aeruginosa aumentou 31% para o tomate, 36% e 29% para ocra, e 83% e 40% para espinafre africano, respectivamente, em comparação com o controle não inoculado. Considerando os parâmetros testados, o desempenho dos dois microrganismos foi similar, sem diferença estatisticamente significativa (p< 0,05.

  3. Compartment-specific pH monitoring in Bacillus subtilis using fluorescent sensor proteins: a tool to analyze the antibacterial effect of weak organic acids.

    NARCIS (Netherlands)

    van Beilen, J.W.A.; Brul, S.

    2013-01-01

    The internal pH (pHi) of a living cell is one of its most important physiological parameters. To monitor the pH inside Bacillus subtilis during various stages of its life cycle, we constructed an improved version (IpHluorin) of the ratiometric, pH-sensitive fluorescent protein pHluorin by extending

  4. Effect of gamma irradiation on thermal inactivation and injury of Bacillus subtilis spores

    International Nuclear Information System (INIS)

    El-Zawahry, Y.A.; Mostafa, S.A.; Awny, N.M.

    1986-01-01

    Bacillus subtilis spores which received preliminary irradiation doses were more sensitive to subsequent heating than non-irradiated spores. The thermal inactivation increased by increasing any of exposure temperature, thermal exposure time or preliminary irradiation dose. The thermal (D T -) value was much higher for non-irradiated spores than the D TR value for the pre-thermal irradiated spores. The radiosensitizing effect was directly proportional to the preliminary irradiation dose. The pre-thermal irradiation treatment of B. subtilis spores resulted in a synergistic effect in spore deactivation. This synergistic effect increased gradually by increasing the preliminary irradiation dose and/or the thermal temperature from 60 to 80 0 C, but decreased for 90 0 C and for the longer exposure periods at any of the examined temperature. Thermal injury of B. subtilis spores was more for the non-irradiated than for the irradiated spores

  5. [Use of antagonistic Bacillus subtilis bacteria for treatment of nosocomial urinary tract infections].

    Science.gov (United States)

    Pushkarev, A M; Tuĭgunova, V G; Zaĭnullin, R R; Kuznetsova, T N; Gabidullin, Iu Z

    2007-01-01

    Effect of Bactisporin--a probiotic, containing spores of aerobic Bacillus subtilis 3H bacterium--for complex treatment of patients with nosocomial urinary tract infections was studied. 68 Cultures of different species of conditionally pathogenic bacteria were isolated from urine of the patients. Susceptibility of the isolated cultures to antibiotics before and after application of B. subtilis 3H metabolites was determined. The metabolites were accumulated on potato-glucose agar (PGA) while bacterium was cultivated on kapron membranes placed on surface of the medium. Influence of obtained metabolites on isolated strains was assessed by cultivation of each strain in metabolites-rich PGA during 24 h. Metabolites of B. subtilis led to decrease in resistance of isolated uropathogenic microflora to antibiotics. Use of Bactisporin in complex treatment of nosocomial urinary tract infections resulted in accelerated elimination of causative microorganism.

  6. DNA repair and its relation to recombination-deficient and other mutations in Bacillus subtilis

    International Nuclear Information System (INIS)

    Ganesan, A.T.

    1975-01-01

    DNA repair processes operating in Bacillus subtilis are similar to other transformable bacterial systems. Radiation-sensitive, recombination-deficient mutants are blocked in distinct steps leading to recombination. DNA polymerase I is essential for the repair of x-ray-induced damage to DNA but not for recombination

  7. Microbial Activation of Bacillus subtilis-Immobilized Microgel Particles for Enhanced Oil Recovery.

    Science.gov (United States)

    Son, Han Am; Choi, Sang Koo; Jeong, Eun Sook; Kim, Bohyun; Kim, Hyun Tae; Sung, Won Mo; Kim, Jin Woong

    2016-09-06

    Microbially enhanced oil recovery involves the use of microorganisms to extract oil remaining in reservoirs. Here, we report fabrication of microgel particles with immobilized Bacillus subtilis for application to microbially enhanced oil recovery. Using B. subtilis isolated from oil-contaminated soils in Myanmar, we evaluated the ability of this microbe to reduce the interfacial tension at the oil-water interface via production of biosurfactant molecules, eventually yielding excellent emulsification across a broad range of the medium pH and ionic strength. To safely deliver B. subtilis into a permeable porous medium, in this study, these bacteria were physically immobilized in a hydrogel mesh of microgel particles. In a core flooding experiment, in which the microgel particles were injected into a column packed with silica beads, we found that these particles significantly increased oil recovery in a concentration-dependent manner. This result shows that a mesh of microgel particles encapsulating biosurfactant-producing microorganisms holds promise for recovery of oil from porous media.

  8. Inhibitory effects of Bacillus probionts on growth and toxin production of Vibrio harveyi pathogens of shrimp.

    Science.gov (United States)

    Nakayama, T; Lu, H; Nomura, N

    2009-12-01

    To investigate the effects of Bacillus subtilis, Bacillus licheniformis and Bacillus megaterium in terms of toxin and growth of pathogenic Vibrio harveyi. Three Bacillus probionts were isolated from probiotic BZT aquaculture and identified using a 16S rDNA sequence. Growth inhibition assay showed that supernatants from the 24-h culture of three Bacillus species were able to inhibit the growth of V. harveyi (LMG 4044); B. subtilis was the most effective based on the well diffusion method. Results of a liquid culture model showed that B. subtilis was also widely effective in inhibiting three strains of V. harveyi (isolated from Thailand, the Philippines and LMG 4044), and that both B. licheniformis and B. megaterium inhibit the growth of V. harveyi isolated from the Philippines. Moreover, a haemolytic activity assay demonstrated that V. harveyi (IFO 15634) was significantly decreased by the addition of B. licheniformis or B. megaterium supernatant. Bacillus subtilis inhibited Vibrio growth, and both B. licheniformis and B. megaterium suppressed haemolytic activity in Vibrio. The cell-free supernatants produced by Bacillus probionts inhibit Vibrio disease, and Bacillus probionts might have an influence on Vibrio cell-to-cell communications.

  9. Post-translational modification of ribosomally synthesized peptides by a radical SAM epimerase in Bacillus subtilis

    Science.gov (United States)

    Benjdia, Alhosna; Guillot, Alain; Ruffié, Pauline; Leprince, Jérôme; Berteau, Olivier

    2017-07-01

    Ribosomally synthesized peptides are built out of L-amino acids, whereas D-amino acids are generally the hallmark of non-ribosomal synthetic processes. Here we show that the model bacterium Bacillus subtilis is able to produce a novel type of ribosomally synthesized and post-translationally modified peptide that contains D-amino acids, and which we propose to call epipeptides. We demonstrate that a two [4Fe-4S]-cluster radical S-adenosyl-L-methionine (SAM) enzyme converts L-amino acids into their D-counterparts by catalysing Cα-hydrogen-atom abstraction and using a critical cysteine residue as the hydrogen-atom donor. Unexpectedly, these D-amino acid residues proved to be essential for the activity of a peptide that induces the expression of LiaRS, a major component of the bacterial cell envelope stress-response system. Present in B. subtilis and in several members of the human microbiome, these epipeptides and radical SAM epimerases broaden the landscape of peptidyl structures accessible to living organisms.

  10. Acid and base stress and transcriptomic responses in Bacillus subtilis.

    Science.gov (United States)

    Wilks, Jessica C; Kitko, Ryan D; Cleeton, Sarah H; Lee, Grace E; Ugwu, Chinagozi S; Jones, Brian D; BonDurant, Sandra S; Slonczewski, Joan L

    2009-02-01

    Acid and base environmental stress responses were investigated in Bacillus subtilis. B. subtilis AG174 cultures in buffered potassium-modified Luria broth were switched from pH 8.5 to pH 6.0 and recovered growth rapidly, whereas cultures switched from pH 6.0 to pH 8.5 showed a long lag time. Log-phase cultures at pH 6.0 survived 60 to 100% at pH 4.5, whereas cells grown at pH 7.0 survived base induced adaptation to a more extreme acid or base, respectively. Expression indices from Affymetrix chip hybridization were obtained for 4,095 protein-encoding open reading frames of B. subtilis grown at external pH 6, pH 7, and pH 9. Growth at pH 6 upregulated acetoin production (alsDS), dehydrogenases (adhA, ald, fdhD, and gabD), and decarboxylases (psd and speA). Acid upregulated malate metabolism (maeN), metal export (czcDO and cadA), oxidative stress (catalase katA; OYE family namA), and the SigX extracytoplasmic stress regulon. Growth at pH 9 upregulated arginine catabolism (roc), which generates organic acids, glutamate synthase (gltAB), polyamine acetylation and transport (blt), the K(+)/H(+) antiporter (yhaTU), and cytochrome oxidoreductases (cyd, ctaACE, and qcrC). The SigH, SigL, and SigW regulons were upregulated at high pH. Overall, greater genetic adaptation was seen at pH 9 than at pH 6, which may explain the lag time required for growth shift to high pH. Low external pH favored dehydrogenases and decarboxylases that may consume acids and generate basic amines, whereas high external pH favored catabolism-generating acids.

  11. Bottleneck in secretion of α-amylase in Bacillus subtilis.

    Science.gov (United States)

    Yan, Shaomin; Wu, Guang

    2017-07-19

    Amylase plays an important role in biotechnology industries, and Gram-positive bacterium Bacillus subtilis is a major host to produce heterogeneous α-amylases. However, the secretion stress limits the high yield of α-amylase in B. subtilis although huge efforts have been made to address this secretion bottleneck. In this question-oriented review, every effort is made to answer the following questions, which look simple but are long-standing, through reviewing of literature: (1) Does α-amylase need a specific and dedicated chaperone? (2) What signal sequence does CsaA recognize? (3) Does CsaA require ATP for its operation? (4) Does an unfolded α-amylase is less soluble than a folded one? (5) Does α-amylase aggregate before transporting through Sec secretion system? (6) Is α-amylase sufficient stable to prevent itself from misfolding? (7) Does α-amylase need more disulfide bonds to be stabilized? (8) Which secretion system does PrsA pass through? (9) Is PrsA ATP-dependent? (10) Is PrsA reused after folding of α-amylase? (11) What is the fate of PrsA? (12) Is trigger factor (TF) ATP-dependent? The literature review suggests that not only the most of those questions are still open to answers but also it is necessary to calculate ATP budget in order to better understand how B. subtilis uses its energy for production and secretion.

  12. Bistable forespore engulfment in Bacillus subtilis by a zipper mechanism in absence of the cell wall.

    Directory of Open Access Journals (Sweden)

    Nikola Ojkic

    2014-10-01

    Full Text Available To survive starvation, the bacterium Bacillus subtilis forms durable spores. The initial step of sporulation is asymmetric cell division, leading to a large mother-cell and a small forespore compartment. After division is completed and the dividing septum is thinned, the mother cell engulfs the forespore in a slow process based on cell-wall degradation and synthesis. However, recently a new cell-wall independent mechanism was shown to significantly contribute, which can even lead to fast engulfment in [Formula: see text] 60 [Formula: see text] of the cases when the cell wall is completely removed. In this backup mechanism, strong ligand-receptor binding between mother-cell protein SpoIIIAH and forespore-protein SpoIIQ leads to zipper-like engulfment, but quantitative understanding is missing. In our work, we combined fluorescence image analysis and stochastic Langevin simulations of the fluctuating membrane to investigate the origin of fast bistable engulfment in absence of the cell wall. Our cell morphologies compare favorably with experimental time-lapse microscopy, with engulfment sensitive to the number of SpoIIQ-SpoIIIAH bonds in a threshold-like manner. By systematic exploration of model parameters, we predict regions of osmotic pressure and membrane-surface tension that produce successful engulfment. Indeed, decreasing the medium osmolarity in experiments prevents engulfment in line with our predictions. Forespore engulfment may thus not only be an ideal model system to study decision-making in single cells, but its biophysical principles are likely applicable to engulfment in other cell types, e.g. during phagocytosis in eukaryotes.

  13. Sticking together: building a biofilm the Bacillus subtilis way

    Science.gov (United States)

    Vlamakis, Hera; Chai, Yunrong; Beauregard, Pascale; Losick, Richard; Kolter, Roberto

    2014-01-01

    Preface Biofilms are ubiquitous communities of tightly associated bacteria encased in an extracellular matrix. Bacillus subtilis has long-served as a robust model organism to examine the molecular mechanisms of biofilm formation and a number of studies have revealed that this process is subject to a number of integrated regulatory pathways. In this Review, we focus on the molecular mechanisms controlling biofilm assembly and briefly summarize the current state of knowledge regarding their disassembly. We also discuss recent progress that has expanded our understanding of biofilm formation on plant roots, which are a natural habitat for this soil bacterium. PMID:23353768

  14. Ultrasensitive electrochemical biosensor for detection of DNA from Bacillus subtilis by coupling target-induced strand displacement and nicking endonuclease signal amplification.

    Science.gov (United States)

    Hu, Yuhua; Xu, Xueqin; Liu, Qionghua; Wang, Ling; Lin, Zhenyu; Chen, Guonan

    2014-09-02

    A simple, ultrasensitive, and specific electrochemical biosensor was designed to determine the given DNA sequence of Bacillus subtilis by coupling target-induced strand displacement and nicking endonuclease signal amplification. The target DNA (TD, the DNA sequence from the hypervarient region of 16S rDNA of Bacillus subtilis) could be detected by the differential pulse voltammetry (DPV) in a range from 0.1 fM to 20 fM with the detection limit down to 0.08 fM at the 3s(blank) level. This electrochemical biosensor exhibits high distinction ability to single-base mismatch, double-bases mismatch, and noncomplementary DNA sequence, which may be expected to detect single-base mismatch and single nucleotide polymorphisms (SNPs). Moreover, the applicability of the designed biosensor for detecting the given DNA sequence from Bacillus subtilis was investigated. The result obtained by electrochemical method is approximately consistent with that by a real-time quantitative polymerase chain reaction detecting system (QPCR) with SYBR Green.

  15. Enhanced production of recombinant nattokinase in Bacillus subtilis by the elimination of limiting factors.

    Science.gov (United States)

    Chen, Po Ting; Chao, Yun-Peng

    2006-10-01

    By systematic investigation, glutamate and a mixture of metal ions were identified as factors limiting the production of nattokinase in Bacillus subtilis. Consequently, in medium supplemented with these materials, the recombinant strain secreted 4 times more nattokinase (260 mg l(-1)) than when grown in the unsupplemented medium.

  16. Purification and crystallization of Bacillus subtilis NrnA, a novel enzyme involved in nanoRNA degradation

    Energy Technology Data Exchange (ETDEWEB)

    Nelersa, Claudiu M.; Schmier, Brad J.; Malhotra, Arun (Miami-MED)

    2012-05-08

    The final step in RNA degradation is the hydrolysis of RNA fragments five nucleotides or less in length (nanoRNA) to mononucleotides. In Escherichia coli this step is carried out by oligoribonuclease (Orn), a DEDD-family exoribonuclease that is conserved throughout eukaryotes. However, many bacteria lack Orn homologs, and an unrelated DHH-family phosphoesterase, NrnA, has recently been identified as one of the enzymes responsible for nanoRNA degradation in Bacillus subtilis. To understand its mechanism of action, B. subtilis NrnA was purified and crystallized at room temperature using the hanging-drop vapor-diffusion method with PEG 4000, PEG 3350 or PEG MME 2000 as precipitant. The crystals belonged to the primitive monoclinic space group P2{sub 1}, with unit-cell parameters a = 50.62, b = 121.3, c = 123.4 {angstrom}, {alpha} = 90, {beta} = 91.31, {gamma} = 90{sup o}.

  17. Improvement of iturin A production in Bacillus subtilis ZK0 by overexpression of the comA and sigA genes.

    Science.gov (United States)

    Zhang, Z; Ding, Z T; Zhong, J; Zhou, J Y; Shu, D; Luo, D; Yang, J; Tan, H

    2017-06-01

    Bacillus subtilis ZK0, which was isolated from cotton, produces a type of lipopeptide antibiotic iturin A that inhibits the growth of pathogenic fungi on agricultural crops. However, the low level of iturin A production by B. subtilis ZK0 does not support its large-scale application. In this study, B. subtilis ZK0 was subjected to genetic manipulation to improve iturin A production. By the independent or simultaneous overexpression of two regulatory genes (comA and sigA), iturin A production by B. subtilis ZK0 was significantly increased. When both genes were simultaneously overexpressed under optimal conditions, iturin A production increased up to 215 mg l -1 (an approximate 43-fold increase compared with B. subtilis ZK0). Moreover, overexpression of both genes was unexpectedly found to inhibit biofilm formation by B. subtilis ZK0, indicating that the phenomenon of 'stuck fermentation' would be avoided during B. subtilis ZK0 fermentation. In conclusion, a genetic manipulation method that improves iturin A production and inhibits biofilm formation in B. subtilis ZK0 is reported for the first time and this method has the potential to be widely applied in B. subtilis ZK0 commercial fermentation. This study provides new perspectives on improving iturin A production by Bacillus subtilis. Our newly engineered strains could be applied to commercial fermentation by enhancing yields of iturin A and reducing the rate of 'stuck fermentation'. Increased production would facilitate more widespread application of this powerful antibiotic. © 2017 The Society for Applied Microbiology.

  18. Bacillus subtilis EdmS (formerly PgsE) participates in the maintenance of episomes.

    Science.gov (United States)

    Ashiuchi, Makoto; Yamashiro, Daisuke; Yamamoto, Kento

    2013-09-01

    Extrachromosomal DNA maintenance (EDM) is an important process in molecular breeding and for various applications in the construction of genetically engineered microbes. Here we describe a novel Bacillus subtilis gene involved in EDM function called edmS (formerly pgsE). Functional gene regions were identified using molecular genetics techniques. We found that EdmS is a membrane-associated protein that is crucial for EDM. We also determined that EdmS can change a plasmid vector with an unstable replicon and worse-than-random segregation into one with better-than-random segregation, suggesting that the protein functions in the declustering and/or partitioning of episomes. EdmS has two distinct domains: an N-terminal membrane-anchoring domain and a C-terminal assembly accelerator-like structure, and mutational analysis of edmS revealed that both domains are essential for EDM. Further studies using cells of Bacillus megaterium and itsedmS (formerly capE) gene implied that EdmS has potential as a molecular probe for exploring novel EDM systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. CHARACTERIZATION OF SINGLE-STRAND ORIGINS OF CRYPTIC ROLLING-CIRCLE PLASMIDS FROM BACILLUS-SUBTILIS

    NARCIS (Netherlands)

    MEIJER, WJJ; VENEMA, G; BRON, S

    1995-01-01

    In this paper we describe the isolation and characterization of single strand origins (SSOs) of several cryptic Bacillus subtilis plasmids which use the rolling-circle mechanism of replication, The plasmids used in this study involved pTA1015, pTA1020, pTA1030, pTA1040, pTA1050 and pTA1060, The SSO

  20. Synthesis of a Bacillus subtilis small, acid-soluble spore protein in Escherichia coli causes cell DNA to assume some characteristics of spore DNA

    International Nuclear Information System (INIS)

    Setlow, B.; Hand, A.R.; Setlow, P.

    1991-01-01

    Small, acid-soluble proteins (SASP) of the alpha/beta-type are associated with DNA in spores of Bacillus subtilis. Induction of synthesis of alpha/beta-type SASP in Escherichia coli resulted in rapid cessation of DNA synthesis, followed by a halt in RNA and then protein accumulation, although significant mRNA and protein synthesis continued. There was a significant loss in viability associated with SASP synthesis in E. coli: recA+ cells became extremely long filaments, whereas recA mutant cells became less filamentous. The nucleoids of cells with alpha/beta-type SASP were extremely condensed, as viewed in both light and electron microscopes, and immunoelectron microscopy showed that the alpha/beta-type SASP were associated with the cell DNA. Induction of alpha/beta-type SASP synthesis in E. coli increased the negative superhelical density of plasmid DNA by approximately 20%; UV irradiation of E. coli with alpha/beta-type SASP gave reduced yields of thymine dimers but significant amounts of the spore photoproduct. These changes in E. coli DNA topology and photochemistry due to alpha/beta-type SASP are similar to the effects of alpha/beta-type SASP on the DNA in Bacillus spores, further suggesting that alpha/beta-type SASP are a major factor determining DNA properties in bacterial spores

  1. Antagonistic activity of Bacillus subtilis SB1 and its biocontrol effect on tomato bacterial wilt

    Science.gov (United States)

    A potential biocontrol agent of bacterial wilt, Bacillus subtilis SB1, isolated from tomato roots, showed a broad-spectrum of antimicrobial activity in in vitro experiments. It inhibited the growth of many plant pathogens, including Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, Fusarium ox...

  2. Antibacterial activity of antagonistic bacterium Bacillus subtilis DJM-51 against phytopathogenic Clavibacter michiganense subsp. michiganense ATCC 7429 in vitro.

    Science.gov (United States)

    Jung, W J; Mabood, F; Souleimanov, A; Whyte, L G; Niederberger, T D; Smith, D L

    2014-12-01

    To investigate antibacterial activity against the tomato pathogen Clavibacter michiganense subsp. michiganense ATCC 7429 (Cmm ATCC 7429), Bacillus subtilis DJM-51 was isolated from rhizosphere soil. For isolation of bacteria, samples were taken from rhizosphere soil. The isolate, DJA-51, had strong antagonistic ability against Tomato pathogen Cmm ATCC 7429 on nutrient-broth yeast extract agar (NBYA) as indicated by inhibition zones around colonies. On the basis of the nucleotide sequence of a conserved segment of the 16S rRNA gene, the bacterium has been identified as B. subtilis DJM-51. The growth of Cmm ATCC 7429 on NBYA plates was inhibited by culture broth of B. subtilis DJM-51 including cells, by the supernatant of culture broth of B. subtilis DJM-51, and by the liquid material resulting from butanol extract of bacterial cultures. The OD value in co-culture mixture was lower than the control throughout the entire incubation period. Antibiotics obtained from B. subtilis DJM-51 inhibited the growth of Tomato pathogen Cmm ATCC 7429. These results provide potentially information about the protection of tomato from pathogen Cmm ATCC 7429 under greenhouse conditions in Quebec. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Temporal Regulation of the Bacillus subtilis Acetylome and Evidence for a Role of MreB Acetylation in Cell Wall Growth.

    Science.gov (United States)

    Carabetta, Valerie J; Greco, Todd M; Tanner, Andrew W; Cristea, Ileana M; Dubnau, David

    2016-05-01

    N ε -Lysine acetylation has been recognized as a ubiquitous regulatory posttranslational modification that influences a variety of important biological processes in eukaryotic cells. Recently, it has been realized that acetylation is also prevalent in bacteria. Bacteria contain hundreds of acetylated proteins, with functions affecting diverse cellular pathways. Still, little is known about the regulation or biological relevance of nearly all of these modifications. Here we characterize the cellular growth-associated regulation of the Bacillus subtilis acetylome. Using acetylation enrichment and quantitative mass spectrometry, we investigate the logarithmic and stationary growth phases, identifying over 2,300 unique acetylation sites on proteins that function in essential cellular pathways. We determine an acetylation motif, EK(ac)(D/Y/E), which resembles the eukaryotic mitochondrial acetylation signature, and a distinct stationary-phase-enriched motif. By comparing the changes in acetylation with protein abundances, we discover a subset of critical acetylation events that are temporally regulated during cell growth. We functionally characterize the stationary-phase-enriched acetylation on the essential shape-determining protein MreB. Using bioinformatics, mutational analysis, and fluorescence microscopy, we define a potential role for the temporal acetylation of MreB in restricting cell wall growth and cell diameter. The past decade highlighted N ε -lysine acetylation as a prevalent posttranslational modification in bacteria. However, knowledge regarding the physiological importance and temporal regulation of acetylation has remained limited. To uncover potential regulatory roles for acetylation, we analyzed how acetylation patterns and abundances change between growth phases in B. subtilis . To demonstrate that the identification of cell growth-dependent modifications can point to critical regulatory acetylation events, we further characterized MreB, the cell

  4. Enhancement of Bacillus subtilis Lipopeptide Biosurfactants Production through Optimization of Medium Composition and Adequate Control of Aeration

    OpenAIRE

    Ghribi, Dhouha; Ellouze-Chaabouni, Semia

    2011-01-01

    Interest in biosurfactants has increased considerably in recent years, as they are potentially used in many commercial applications in petroleum, pharmaceuticals, biomedical, and food processing industries. Since improvement of their production was of great importance to reduce the final coast, cultural conditions were analyzed to optimize biosurfactants production from Bacillus subtilis SPB1 strain. A high yield of biosurfactants was obtained from a culture of B. subtilis using carbohydrate ...

  5. 6S-1 RNA function leads to a delay in sporulation in Bacillus subtilis.

    Science.gov (United States)

    Cavanagh, Amy T; Wassarman, Karen M

    2013-05-01

    We have discovered that 6S-1 RNA (encoded by bsrA) is important for appropriate timing of sporulation in Bacillus subtilis in that cells lacking 6S-1 RNA sporulate earlier than wild-type cells. The time to generate a mature spore once the decision to sporulate has been made is unaffected by 6S-1 RNA, and, therefore, we propose that it is the timing of onset of sporulation that is altered. Interestingly, the presence of cells lacking 6S-1 RNA in coculture leads to all cell types exhibiting an early-sporulation phenotype. We propose that cells lacking 6S-1 RNA modify their environment in a manner that promotes early sporulation. In support of this model, resuspension of wild-type cells in conditioned medium from ΔbsrA cultures also resulted in early sporulation. Use of Escherichia coli growth as a reporter of the nutritional status of conditioned media suggested that B. subtilis cells lacking 6S-1 RNA reduce the nutrient content of their environment earlier than wild-type cells. Several pathways known to impact the timing of sporulation, such as the skf- and sdp-dependent cannibalism pathways, were eliminated as potential targets of 6S-1 RNA-mediated changes, suggesting that 6S-1 RNA activity defines a novel mechanism for altering the timing of onset of sporulation. In addition, 6S-2 RNA does not influence the timing of sporulation, providing further evidence of the independent influences of these two related RNAs on cell physiology.

  6. The ESX system in Bacillus subtilis mediates protein secretion.

    Directory of Open Access Journals (Sweden)

    Laura A Huppert

    Full Text Available Esat-6 protein secretion systems (ESX or Ess are required for the virulence of several human pathogens, most notably Mycobacterium tuberculosis and Staphylococcus aureus. These secretion systems are defined by a conserved FtsK/SpoIIIE family ATPase and one or more WXG100 family secreted substrates. Gene clusters coding for ESX systems have been identified amongst many organisms including the highly tractable model system, Bacillus subtilis. In this study, we demonstrate that the B. subtilis yuk/yue locus codes for a nonessential ESX secretion system. We develop a functional secretion assay to demonstrate that each of the locus gene products is specifically required for secretion of the WXG100 virulence factor homolog, YukE. We then employ an unbiased approach to search for additional secreted substrates. By quantitative profiling of culture supernatants, we find that YukE may be the sole substrate that depends on the FtsK/SpoIIIE family ATPase for secretion. We discuss potential functional implications for secretion of a unique substrate.

  7. Translation elicits a growth rate-dependent, genome-wide, differential protein production in Bacillus subtilis.

    Science.gov (United States)

    Borkowski, Olivier; Goelzer, Anne; Schaffer, Marc; Calabre, Magali; Mäder, Ulrike; Aymerich, Stéphane; Jules, Matthieu; Fromion, Vincent

    2016-05-17

    Complex regulatory programs control cell adaptation to environmental changes by setting condition-specific proteomes. In balanced growth, bacterial protein abundances depend on the dilution rate, transcript abundances and transcript-specific translation efficiencies. We revisited the current theory claiming the invariance of bacterial translation efficiency. By integrating genome-wide transcriptome datasets and datasets from a library of synthetic gfp-reporter fusions, we demonstrated that translation efficiencies in Bacillus subtilis decreased up to fourfold from slow to fast growth. The translation initiation regions elicited a growth rate-dependent, differential production of proteins without regulators, hence revealing a unique, hard-coded, growth rate-dependent mode of regulation. We combined model-based data analyses of transcript and protein abundances genome-wide and revealed that this global regulation is extensively used in B. subtilis We eventually developed a knowledge-based, three-step translation initiation model, experimentally challenged the model predictions and proposed that a growth rate-dependent drop in free ribosome abundance accounted for the differential protein production. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  8. Caracterización de cristales de calcita bioprecipitada por un aislamiento nativo de Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Carolina Montoya

    2007-02-01

    Full Text Available Bacillus subtilis es una bacteria útil en algunas aplicaciones biotecnológicas por poseer enzimas como las amilasas, las cuales desempeñan un papel importante en diferentes procesos industriales. Una de sus propiedades, poco estudiada, ha sido su capacidad de inducir bioprecipitación química de carbonato de calcio (Ca2+ + HCO3 3> CaCO3 + H+ mediante un mecanismo similar al observado en la formación de rocas, suelos y estructuras biológicas como huesos, conchas y dientes. En esta investigación se estudiaron los cristales producidos por un aislamiento nativo de B. subtilis, tomado de una mina de oro situada en Segovia (Antioquia. Se determinó su capacidad calcificante utilizando el medio de cultivo B4. La caracterización del cristal producido se realizó con lupa binocular, microscopio petrográfico de luz plana polarizada (MOLP en su modo de luz transmitida, microscopio electrónico de barrido con analizador de estado sólido (ESEM/EDX y espectroscopía infrarroja con transformada de Fourier (FTIR. A partir de los resultados obtenidos por medio de la caracterización utilizando la combinación de las técnicas analíticas que se mencionaron, fue posible determinar que el aislado nativo de B. subtilis generó y por ende es productor de cristales de carbonato de calcio (CaCO3 en su forma polimórfica de baja temperatura (calcite.Palabras clave: Bacillus subtilis, calcita, bioprecipitación, mineralogía aplicada, biomineralogía.ABSTRACTBacillus subtilis, a bacterium useful in some biotechnology applications, contains enzymes such as amylases, which play an important role in several industrial processes. One of its properties, not very well studied, is its capacity to induce the chemical bioprecipitation of CaCO3 (Ca2+ + HCO3 —> CaCO3 + H+, a similar mechanism commonly observed in the formation of rocks, soils and biological structures like bones, shells and teeth. In this work we have studied carbonate crystals produced by a B

  9. Caracterización de cristales de calcita bioprecipitada por un aislamiento nativo de Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Carolina Montoya

    2005-07-01

    Full Text Available Bacillus subtilis es una bacteria útil en algunas aplicaciones biotecnológicas por poseer enzimas como las amilasas, las cuales desempeñan un papel importante en diferentes procesos industriales. Una de sus propiedades, poco estudiada, ha sido su capacidad de inducir bioprecipitación química de carbonato de calcio (Ca2+ + HCO3 3> CaCO3 + H+ mediante un mecanismo similar al observado en la formación de rocas, suelos y estructuras biológicas como huesos, conchas y dientes. En esta investigación se estudiaron los cristales producidos por un aislamiento nativo de B. subtilis, tomado de una mina de oro situada en Segovia (Antioquia. Se determinó su capacidad calcificante utilizando el medio de cultivo B4. La caracterización del cristal producido se realizó con lupa binocular, microscopio petrográfico de luz plana polarizada (MOLP en su modo de luz transmitida, microscopio electrónico de barrido con analizador de estado sólido (ESEM/EDX y espectroscopía infrarroja con transformada de Fourier (FTIR. A partir de los resultados obtenidos por medio de la caracterización utilizando la combinación de las técnicas analíticas que se mencionaron, fue posible determinar que el aislado nativo de B. subtilis generó y por ende es productor de cristales de carbonato de calcio (CaCO3 en su forma polimórfica de baja temperatura (calcite.Palabras clave: Bacillus subtilis, calcita, bioprecipitación, mineralogía aplicada, biomineralogía.ABSTRACTBacillus subtilis, a bacterium useful in some biotechnology applications, contains enzymes such as amylases, which play an important role in several industrial processes. One of its properties, not very well studied, is its capacity to induce the chemical bioprecipitation of CaCO3 (Ca2+ + HCO3 —> CaCO3 + H+, a similar mechanism commonly observed in the formation of rocks, soils and biological structures like bones, shells and teeth. In this work we have studied carbonate crystals produced by a B

  10. Translational coupling in Escherichia coli of a heterologous Bacillus subtilis-Escherichia coli gene fusion.

    OpenAIRE

    Zaghloul, T I; Doi, R H

    1986-01-01

    The efficient expression in Escherichia coli of the Tn9-derived chloramphenicol acetyltransferase (EC 2.3.1.28) gene fused distal to the promoter and N terminus of the Bacillus subtilis aprA gene was dependent on the initiation of translation from the ribosome-binding site in the aprA gene.

  11. Disinfection and regrowth potential of bacillus subtilis spores by ozone, ultraviolet rays and gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hae Yeon; Lee, O Mi; Kim, Tae Hun; Lee, Myun Joo; Yu, Seung Ho [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2009-06-15

    Chlorination has been the most commonly adopted disinfection process for the treatment of drinking water. However, Cryptosporidium parvum oocysts and Giardia lamblia cysts were not treated effectively by the common chlorine-based disinfectants. Additionally the regrowth of pathogenic microorganisms is associated with hygienic and aesthetic problems for the consumers of drinking water. Study on alternative disinfection processes such as ozone, UV-C, VUV and gamma irradiation were conducted. Bacillus subtilis spores have been used as a surrogate microorganism for Cryptosporidium parvum oocysts and Giardia lamblia cyst. Inactivation efficiency by ozone was from 30% to 96% within the range of 5 min to 120 min exposures. Inactivation efficiencies by UV-C and VUV were 95.18%, 95.07% at 30 sec, respectively. Inactivation efficiency at gamma irradiation dose of 2 kGy was 99.4%. Microbial regrowths after ozone, UV-C, VUV and gamma irradiation disinfections were also evaluated for 4 days. Bacillus subtilis spores after ozone treatment for 120 min exposure at the rate of 1.68 mg {center_dot} min{sup -1} showed 96.02% disinfection efficiency and significant microbial regrowth. Bacillus subtilis spores after UV-C (99.25% disinfection efficiency) and VUV (99.67% disinfection efficiency) treatments for 5 min showed gradual regrowth. However, inactivation efficiency of gamma irradiation at dose of 1 kGy was 98.8% and the disinfected sample showed no microbial regrowth for 4 days. Therefore, gamma irradiation is the most effective process for the disinfection of pathogenic microorganisms such as oocysts of protozoan parasites among four disinfection process.

  12. Disinfection and regrowth potential of bacillus subtilis spores by ozone, ultraviolet rays and gamma irradiation

    International Nuclear Information System (INIS)

    Kim, Hae Yeon; Lee, O Mi; Kim, Tae Hun; Lee, Myun Joo; Yu, Seung Ho

    2009-01-01

    Chlorination has been the most commonly adopted disinfection process for the treatment of drinking water. However, Cryptosporidium parvum oocysts and Giardia lamblia cysts were not treated effectively by the common chlorine-based disinfectants. Additionally the regrowth of pathogenic microorganisms is associated with hygienic and aesthetic problems for the consumers of drinking water. Study on alternative disinfection processes such as ozone, UV-C, VUV and gamma irradiation were conducted. Bacillus subtilis spores have been used as a surrogate microorganism for Cryptosporidium parvum oocysts and Giardia lamblia cyst. Inactivation efficiency by ozone was from 30% to 96% within the range of 5 min to 120 min exposures. Inactivation efficiencies by UV-C and VUV were 95.18%, 95.07% at 30 sec, respectively. Inactivation efficiency at gamma irradiation dose of 2 kGy was 99.4%. Microbial regrowths after ozone, UV-C, VUV and gamma irradiation disinfections were also evaluated for 4 days. Bacillus subtilis spores after ozone treatment for 120 min exposure at the rate of 1.68 mg · min -1 showed 96.02% disinfection efficiency and significant microbial regrowth. Bacillus subtilis spores after UV-C (99.25% disinfection efficiency) and VUV (99.67% disinfection efficiency) treatments for 5 min showed gradual regrowth. However, inactivation efficiency of gamma irradiation at dose of 1 kGy was 98.8% and the disinfected sample showed no microbial regrowth for 4 days. Therefore, gamma irradiation is the most effective process for the disinfection of pathogenic microorganisms such as oocysts of protozoan parasites among four disinfection process

  13. Analysis of Bacillus subtilis sporulation with spore-converting bacteriophage PMB12.

    OpenAIRE

    Kinney, D M; Bramucci, M G

    1981-01-01

    Previous observations concerning the ability of the spore-converting bacteriophage PMB12 to cause sporulation in certain sporulation-deficient mutants of Bacillus subtilis 168 were extended to include a spoOK mutant and a mutant temperature sensitive for sporulation due to a ribosomal mutation. Mutants of PMB12 that were unable to induce sporulation in the spoOK mutant were isolated to determine whether PMB12-encoded products had to affect the sporulation-specific functions of both the transc...

  14. Detection of spore coat protein of Bacillus subtilis by immunological method

    International Nuclear Information System (INIS)

    Uchida, Aritsune; Kadota, Hajime

    1976-01-01

    The spore coat protein of Bacillus subtilis was separated, and the qualitative assay for the spore coat protein was made by use of the immunological technique. The immunological method was found to be useful for judging the maturation of spore coat in the course of sporulation. The spore coat protein antigen appeared at t 2 stage of sporulation. The addition of rifampicin at the earlier stages of sporulation inhibited the increase in content of the spore coat antigen. (auth.)

  15. Characterization of dacC, which encodes a new low-molecular-weight penicillin-binding protein in Bacillus subtilis

    DEFF Research Database (Denmark)

    Pedersen, Lotte Bang; Murray, T; Popham, D L

    1998-01-01

    The pbp gene (renamed dacC), identified by the Bacillus subtilis genome sequencing project, encodes a putative 491-residue protein with sequence homology to low-molecular-weight penicillin-binding proteins. Use of a transcriptional dacC-lacZ fusion revealed that dacC expression (i) is initiated...... at the end of stationary phase; (ii) depends strongly on transcription factor sigmaH; and (iii) appears to be initiated from a promoter located immediately upstream of yoxA, a gene of unknown function located upstream of dacC on the B. subtilis chromosome. A B. subtilis dacC insertional mutant grew...

  16. Inhibitory effects of Bacillus subtilis on plant pathogens of conservatory in high latitudes

    Science.gov (United States)

    Xue, Chun-Mei; Wang, Xue; Yang, Jia-Li; Zhang, Yue-Hua

    2018-03-01

    Researching the effect of three kinds of Bacillus and their mixed strains inhibitory on common fungal diseases of conservatory vegetables. The results showed that B. megaterium culture medium had a significant inhibition effect on Cucumber Fusarium wilt, and the inhibition rate was up to 84.36%; B. mucilaginosus and B. megaterium sterile superna-tant had an obvious inhibitory effect on brown disease of eggplant, and the inhibition rate as high as 85.49%; B. subtilis sterile supernatant had a good inhibitory effect on the spore germination of C. Fusarium wilt, and the inhibition rate was 76.83%. The results revealed that Bacillus had a significant inhibitory effect on five common fungal pathogens. Three kinds of Bacillus can be used for the prevention and control of common fungal diseases in conservatory vegetables.

  17. Purine biosynthesis is the bottleneck in trimethoprim-treated Bacillus subtilis.

    Science.gov (United States)

    Stepanek, Jennifer Janina; Schäkermann, Sina; Wenzel, Michaela; Prochnow, Pascal; Bandow, Julia Elisabeth

    2016-10-01

    Trimethoprim is a folate biosynthesis inhibitor. Tetrahydrofolates are essential for the transfer of C 1 units in several biochemical pathways including purine, thymine, methionine, and glycine biosynthesis. This study addressed the effects of folate biosynthesis inhibition on bacterial physiology. Two complementary proteomic approaches were employed to analyze the response of Bacillus subtilis to trimethoprim. Acute changes in protein synthesis rates were monitored by radioactive pulse labeling of newly synthesized proteins and subsequent 2DE analysis. Changes in protein levels were detected using gel-free quantitative MS. Proteins involved in purine and histidine biosynthesis, the σ B -dependent general stress response, and sporulation were upregulated. Most prominently, the PurR-regulon required for de novo purine biosynthesis was derepressed indicating purine depletion. The general stress response was activated energy dependently and in a subpopulation of treated cultures an early onset of sporulation was observed, most likely triggered by low guanosine triphosphate levels. Supplementation of adenosine triphosphate, adenosine, and guanosine to the medium substantially decreased antibacterial activity, showing that purine depletion becomes the bottleneck in trimethoprim-treated B. subtilis. The frequently prescribed antibiotic trimethoprim causes purine depletion in B. subtilis, which can be complemented by supplementing purines to the medium. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Effects of Phosphorelay Perturbations on Architecture, Sporulation, and Spore Resistance in Biofilms of Bacillus subtilis

    NARCIS (Netherlands)

    Veening, JW; Kuipers, OP; Brul, S; Hellingwerf, KJ; Kort, R

    The spore-forming bacterium Bacillus subtilis is able to form highly organized multicellular communities called biofilms. This coordinated bacterial behavior is often lost in domesticated or laboratory strains as a result of planktonic growth in rich media for many generations. However, we show here

  19. Thrombolytic effects of Douchi Fibrinolytic enzyme from Bacillus subtilis LD-8547 in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Yuan Jun

    2012-07-01

    Full Text Available Abstract Background Today, thrombosis is one of the most widely occurring diseases in modern life. Drugs with thrombolytic functions are the most effective methods in the treatment of thrombosis. Among them, Douchi fibrinolytic enzyme (DFE is a promising agent. DFE was isolated from Douchi, a typical and popular soybean-fermented food in China, and it can dissolve fibrin directly and efficiently. A strain, Bacillus subtilis LD-8547 produced DFE with high fibrinolytic activity has been isolated in our lab previously. Results In the study, thrombolytic effect of DFE from Bacillus subtilis LD-8547 was studied in vitro and in vivo systematically. The results showed that DFE played a significant role in thrombolysis and anticoagulation in vitro. And the thrombolytic effects correlated with DFE in a dose-dependent manner. In vivo, the acute toxicity assay showed that DFE had no obvious acute toxicity to mice. Test of carrageenan-induced thrombosis in mice indicated that the DFE significantly prevented tail thrombosis, and arterial thrombosis model test indicated that Douchi fibrinolytic enzyme DFE had thrombolytic effect on carotid thrombosis of rabbits in vivo. Other results in vivo indicated that DFE could increase bleeding and clotting time obviously. Conclusions The DFE isolated from Bacillus subtilis LD-8547 has obvious thrombolytic effects in vitro and in vivo. This function demonstrates that this enzyme can be a useful tool for preventing and treating clinical thrombus.

  20. Inhibition of Lipopolysaccharide-Induced Interleukin 8 in Human Adenocarcinoma Cell Line HT-29 by Spore Probiotics: B. coagulans and B. subtilis (natto).

    Science.gov (United States)

    Azimirad, Masoumeh; Alebouyeh, Masoud; Naji, Tahereh

    2017-03-01

    Probiotics are used as a treatment for different intestinal disorders. They confer health benefits by different ways. This study was aimed to investigate immunomodulatory effect of Bacillus probiotic spores on the production of lipopolysaccharide (LPS)-induced interleukin 8 (IL-8) in HT-29 intestinal epithelial cells. Differentiated intestinal epithelial cell line was used as a model for the study of colonization of purified spores (Bacillus subtilis (natto) and B. coagulans) and their anti-inflammatory effects. MTT assay and trypan blue staining were used for the detection of optimal concentration of the purified spores and LPS. Pre-treatment assay was done by treatment of the cells with the purified spores for 2 h, followed by challenges with LPS for 3 and 18 h. Post-treatment assay was done by initial treatment of the cells with LPS for 18 h, followed by the spores for 3 and 6 h. Levels of IL-8 secretion and its mRNA expression were measured by ELISA and relative Q real-time PCR. Our results showed similar rates of adherence to intestinal epithelial cells by the spore probiotics, while displaying no cytotoxic effect. In the pre-treatment assay, a significant decrease in IL-8, at both protein and mRNA levels, was measured for B. coagulans spores after the addition of LPS, which was higher than those observed for Bacillus subtilis (natto) spores. In the post-treatment assay, while Bacillus subtilis (but not B. coagulans) diminished the LPS-stimulated IL-8 levels after 3 h of incubation, the inhibitory effect was not constant. In conclusion, ability of Bacillus spore probiotics for adherence to intestinal epithelial cell and their anti-inflammatory effects, through interference with LPS/IL-8 signaling, was shown in this study. Further studies are needed to characterize responsible bacterial compounds associated with these effects.

  1. Inactivation of Vegetative Cells, but Not Spores, of Bacillus anthracis, B. cereus, and B. subtilis on Stainless Steel Surfaces Coated with an Antimicrobial Silver- and Zinc-Containing Zeolite Formulation

    Science.gov (United States)

    Galeano, Belinda; Korff, Emily; Nicholson, Wayne L.

    2003-01-01

    Stainless steel surfaces coated with paints containing a silver- and zinc-containing zeolite (AgION antimicrobial) were assayed in comparison to uncoated stainless steel for antimicrobial activity against vegetative cells and spores of three Bacillus species, namely, B. anthracis Sterne, B. cereus T, and B. subtilis 168. Under the test conditions (25°C and 80% relative humidity), the zeolite coating produced approximately 3 log10 inactivation of vegetative cells within a 5- to 24-h period, but viability of spores of the three species was not significantly affected. PMID:12839825

  2. Free and attached cells of Bacillus subtilis as starters for production of a soup flavouring (“ogiri egusi”

    Directory of Open Access Journals (Sweden)

    Peter-Ikechukwu, A. I.

    2013-01-01

    Full Text Available Aims: This Bacillus subtilis has been identified to be the main fermenting bacterium during indigenous production of “ogiri egusi”; a traditional soup flavouring rich in protein. Evaluation of the use of starter and broth cultures of this bacterium in the production of ‘ogiri egusi’ was therefore undertaken with the view to improve the fermentation process and quality of product. Methodology and Results: Cowpea granules in association with Bacillus subtilis cells were developed as starter cultures for the fermentation. Results obtained showed that the starter cultures resulted in an increase in the aminonitrogen from 1.67±0.02 to 19.96±0.05 mg N/100 g dry matter in 48 h while the broth cultures increased the aminonitrogen from 1.63±0.03 to 16.54±0.05 mg N/100 g dry matter in 72 h. There was also a corresponding increase in the protease activity of the fermentation conducted with the starter cultures from 2.69±0.03 to 54.98±0.04 mg N/min in 48 h. The broth cultures produced an increase from 2.65±0.02 to 47.61±0.06 mg N/min in 72 h. Changes in these parameters for the natural process were gradual and reached their peaks at 120 h with values of 9.89±0.13 mg N/100g dry matter and 31.92±0.03 mg N/min respectively. Peroxide values for the fermentation processes increased throughout the period; however the starter cultures produced the lowest value (10.20±0.10 meq/kg showing that rancidity may not occur in the product fermented by the starter culture. Conclusion, significance and impact of study: The starter cultures significantly reduced fermentation time from 96 – 120 h in the natural process to 48 h. Thus use of starter cultures optimized the process of fermentation and will eliminate chances of contamination of product with pathogens and spoilage organisms. This ultimately will improve product quality.

  3. Thermal Regulation of Membrane Lipid Fluidity by a Two-Component System in "Bacillus Subtilis"

    Science.gov (United States)

    Bredeston, L. M.; Marciano, D.; Albanesi, D.; De Mendoza, D.; Delfino, J. M.

    2011-01-01

    This article describes a simple and robust laboratory exercise on the regulation of membrane unsaturated fatty acid composition in bacteria by a decrease in growth temperature. We take advantage of the well characterized Des pathway of "Bacillus subtilis", composed of a [delta]5-desaturase (encoded by the "des" gene) and the canonical…

  4. Engineering of a Bacillus subtilis strain with adjustable levels of intracellular biotin for secretory production of functional streptavidin.

    Science.gov (United States)

    Wu, Sau-Ching; Wong, Sui-Lam

    2002-03-01

    Streptavidin is a biotin-binding protein which has been widely used in many in vitro and in vivo applications. Because of the ease of protein recovery and availability of protease-deficient strains, the Bacillus subtilis expression-secretion system is an attractive system for streptavidin production. However, attempts to produce streptavidin using B. subtilis face the problem that cells overproducing large amounts of streptavidin suffer poor growth, presumably because of biotin deficiency. This problem cannot be solved by supplementing biotin to the culture medium, as this will saturate the biotin binding sites in streptavidin. We addressed this dilemma by engineering a B. subtilis strain (WB800BIO) which overproduces intracellular biotin. The strategy involves replacing the natural regulatory region of the B. subtilis chromosomal biotin biosynthetic operon (bioWAFDBIorf2) with an engineered one consisting of the B. subtilis groE promoter and gluconate operator. Biotin production in WB800BIO is induced by gluconate, and the level of biotin produced can be adjusted by varying the gluconate dosage. A level of gluconate was selected to allow enhanced intracellular production of biotin without getting it released into the culture medium. WB800BIO, when used as a host for streptavidin production, grows healthily in a biotin-limited medium and produces large amounts (35 to 50 mg/liter) of streptavidin, with over 80% of its biotin binding sites available for future applications.

  5. Inhibition of biofilm formation in Bacillus subtilis by new halogenated furanones.

    Science.gov (United States)

    Kayumov, Airat R; Khakimullina, Elvina N; Sharafutdinov, Irshad S; Trizna, Elena Y; Latypova, Lilia Z; Thi Lien, Hoang; Margulis, Anna B; Bogachev, Mikhail I; Kurbangalieva, Almira R

    2015-05-01

    Gram-positive bacteria can cause various infections including hospital-acquired infections. While in the biofilm, the resistance of bacteria to both antibiotics and the human immune system is increased causing difficulties in the treatment. Bacillus subtilis, a non-pathogenic Gram-positive bacterium, is widely used as a model organism for studying biofilm formation. Here we investigated the effect of novel synthesized chloro- and bromo-containing 2(5H)-furanones on biofilm formation by B. subtilis. Mucobromic acid (3,4-dibromo-5-hydroxy-2(5H)-furanone) and the two derivatives of mucochloric acid (3,4-dichloro-5-hydroxy-2(5H)-furanone)-F8 and F12-were found to inhibit the growth and to efficiently prevent biofilm formation by B. subtilis. Along with the low production of polysaccharide matrix and repression of the eps operon, strong repression of biofilm-related yqxM also occurred in the presence of furanones. Therefore, our data confirm that furanones affect significantly the regulatory pathway(s) leading to biofilm formation. We propose that the global regulator, Spo0A, is one of the potential putative cellular targets for these compounds.

  6. Purification and characterization of nattokinase from Bacillus subtilis natto B-12.

    Science.gov (United States)

    Wang, Cong; Du, Ming; Zheng, Dongmei; Kong, Fandong; Zu, Guoren; Feng, Yibing

    2009-10-28

    Bacillus subtilis natto B-12 was isolated from natto, a traditional fermented soybean food in Japan. A fibrinolytic enzyme (B-12 nattokinase) was purified from the supernatant of B. subtilis natto B-12 culture broth and showed strong fibrinolytic activity. The enzyme was homogenously purified to 56.1-fold, with a recovery of 43.2% of the initial activity. B-12 nattokinase was demonstrated to be homogeneous by SDS-PAGE and was identified as a monomer of 29000 +/- 300 Da in its native state by SDS-PAGE and size exclusion methods. The optimal pH value and temperature were 8.0 and 40 degrees C, respectively. Purified nattokinase showed high thermostability at temperatures from 30 to 50 degrees C and alkaline stability within the range of pH 6.0-9.0. The enzyme activity was activated by Zn(2+) and obviously inhibited by Fe(3+) and Al(3+). This study provides some important information for the effect factors of fibrinolytic activity, the purification methods, and characterization of nattokinase from B. subtilis natto B-12, which enriches the theoretical information of nattokinase for the research and development of nattokinase as a functional additive of food.

  7. Design of a CRISPR-Cas system to increase resistance of Bacillus subtilis to bacteriophage SPP1.

    Science.gov (United States)

    Jakutyte-Giraitiene, Lina; Gasiunas, Giedrius

    2016-08-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) together with CRISPR-associated (cas) genes form an adaptive prokaryotic immune system which provides acquired resistance against viruses and plasmids. Bacillus subtilis presently is the best-characterized laboratory model for Gram-positive bacteria and also widely used for industrial production of enzymes, vitamins and antibiotics. In this study, we show that type II-A CRISPR-Cas system from Streptococcus thermophilus can be transferred into B. subtilis and provides heterologous protection against phage infection. We engineered a heterologous host by cloning S. thermophilus Cas9 and a spacer targeting bacteriophage SPP1 into the chromosome of B. subtilis, which does not harbor its own CRISPR-Cas systems. We found that the heterologous CRISPR-Cas system is functionally active in B. subtilis and provides resistance against bacteriophage SPP1 infection. The high efficiency of the acquired immunity against phage could be useful in generation of biotechnologically important B. subtilis strains with engineered chromosomes.

  8. The multidrug ABC transporter BmrC/BmrD of Bacillus subtilis is regulated via a ribosome-mediated transcriptional attenuation mechanism

    OpenAIRE

    Reilman, E.; Mars, R. A. T.; van Dijl, J. M.; Denham, Emma

    2014-01-01

    Expression of particular drug transporters in response to antibiotic pressure is a critical element in the development of bacterial multidrug resistance, and represents a serious concern for human health. To obtain a better understanding of underlying regulatory mechanisms, we have dissected the transcriptional activation of the ATP-binding cassette (ABC) transporter BmrC/BmrD of the Gram-positive model bacterium Bacillus subtilis. By using promoter-GFP fusions and live cell array technology,...

  9. Phosphoribosylpyrophosphate synthetase of Bacillus subtilis. Cloning, characterization and chromosomal mapping of the prs gene

    DEFF Research Database (Denmark)

    Nilsson, Dan; Hove-Jensen, Bjarne

    1987-01-01

    The gene (prs) encoding phosphoribosylpyrophosphate (PRPP) synthetase has been cloned from a library of Bacillus subtilis DNA by complementation of an Escherichia coli prs mutation. Flanking DNA sequences were pruned away by restriction endonuclease and exonuclease BAL 31 digestions, resulting...... in a DNA fragment of approx. 1.8 kb complementing the E. coli prs mutation. Minicell experiments revealed that this DNA fragment coded for a polypeptide, shown to be the PRPP synthetase subunit, with an Mr of approx. 40,000. B. subtilis strains harbouring the prs gene in a multicopy plasmid contained up...... to nine-fold increased PRPP synthetase activity. The prs gene was cloned in an integration vector and the resulting hybrid plasmid inserted into the B. subtilis chromosome by homologous recombination. The integration site was mapped by transduction and the gene order established as purA-guaA-prs-cysA....

  10. Metabolism of isoeugenol via isoeugenol-diol by a newly isolated strain of Bacillus subtilis HS8.

    Science.gov (United States)

    Zhang, Yongmei; Xu, Ping; Han, Shuai; Yan, Haiqin; Ma, Cuiqing

    2006-12-01

    A bacterium designated as HS8 was newly isolated from soil based on its ability to degrade isoeugenol. The strain was identified as Bacillus subtilis according to its 16S rDNA sequence analysis and biochemical characteristics. The metabolic pathway for the degradation of isoeugenol was examined. Isoeugenol-diol, for the first time, was detected as an intermediate from isoeugenol to vanillin by a bacterial strain. Isoeugenol was converted to vanillin via isoeugenol-diol, and vanillin was then metabolized via vanillic acid to guaiacol by strain HS8. These metabolites, vanillin, vanillic acid, and guaiacol, are all valuable aromatic compounds in flavor production. At the same time, the bipolymerization of isoeugenol was observed, which produced dehydrodiisoeugenol and decreased the vanillin yield. High level of vanillic acid decarboxylase activity was detected in cell-free extract. These findings provided a detailed profile of isoeugenol metabolism by a B. subtilis strain for the first time, which would improve the production of valuable aromatic compounds by biotechnology.

  11. Significantly improving the yield of recombinant proteins in Bacillus subtilis by a novel powerful mutagenesis tool (ARTP): Alkaline α-amylase as a case study.

    Science.gov (United States)

    Ma, Yingfang; Yang, Haiquan; Chen, Xianzhong; Sun, Bo; Du, Guocheng; Zhou, Zhemin; Song, Jiangning; Fan, You; Shen, Wei

    2015-10-01

    In this study, atmospheric and room temperature plasma (ARTP), a promising mutation breeding technique, was successfully applied to generate Bacillus subtilis mutants that yielded large quantities of recombinant protein. The high throughput screening platform was implemented to select those mutants with the highest yield of recombinant alkaline α-amylase (AMY), including the preferred mutant B. subtilis WB600 mut-12#. The yield and productivity of recombinant AMY in B. subtilis WB600 mut-12# increased 35.0% and 8.8%, respectively, the extracellular protein concentration of which increased 37.9%. B. subtilis WB600 mut-12# exhibited good genetic stability. Cells from B. subtilis WB600 mut-12# became shorter and wider than those from the wild-type. This study is the first to report a novel powerful mutagenesis tool (ARTP) that significantly improves the yield of recombinant proteins in B. subtilis and may therefore play an important role in the high expression level of proteins in recombinant microbial hosts. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. An antifungal compound produced by Bacillus subtilis YM 10-20 inhibits germination of Penicillium roqueforti conidiospores

    NARCIS (Netherlands)

    Chitarra, G.S.; Breeuwer, P.; Nout, M.J.R.; Aelst, van A.C.; Rombouts, F.M.; Abee, T.

    2003-01-01

    Aims: To identify and characterize an antifungal compound produced by Bacillus subtilis YM 10-20 which prevents spore germination of Penicillium roqueforti . Methods and Results: The antifungal compound was isolated by acid precipitation with HCl. This compound inhibited fungal germination and

  13. DNA synthesis in toluene-treated bacteriophage-infected minicells of Bacillus subtilis

    International Nuclear Information System (INIS)

    Amann, E.; Reeve, J.N.

    1978-01-01

    Bateriophage (phi29, SPP1, or SP01)-infected, toluene-treated minicells of Bacillus subtilis are capable of limited amounts of non-replicative DNA synthesis as measured by incorporation of [ 3 H]dTTP into a trichloroacetic acid-precipitable form. The [ 3 H]dTTP is covalently incorporated into small DNA fragments which result from the degradation of a small percentage of the infecting phage genomes (molecular weights in the range of 2.10 5 ). Short exposure of the DNA molecules containing the incorporated [ 3 H]dTMP to Escherichia coli exonuclease III results in over 90% of the [ 3 H]dTMP being converted to a trichloroacetic acid-soluble form. The synthesis is totally dependent on host-cell enzymes and is not inhibited by the addition of chloramphenicol, rifampicin, nalidixic acid and mitomycin C and only slightly (approx. 20%) inhibited by the addition of 6-(p-hydroxyphenylazo)-uracil. (Auth.)

  14. Effect of UV-irradiation on DNA-membrane complex of Bacillus subtilis

    International Nuclear Information System (INIS)

    Chefranova, O.A.; Gaziev, A.I.

    1979-01-01

    The UV radiation effect on DNA membrane complex of Bacillus subtilis has been studied. Increase of DNA content in the DNA membrane complex in two strains of 168 and recA - and its decrease in the polA - strain are shown. The above effect in the first two stamms is suppressed with caffeine and correlates with the change in protein content in the DNA membrane complex, determined by a radioactive label, but not lipids in other words, fixation of DNA and membrane goes through proteins. Capability of DNA content increase in the DNA membrane complex after UV irradiation and subsequent bacteria incubation in a total medium correlates with the relative sensitivity of stamm UV sensitivity. It is suggested, that the reparation synthesis goes in cells on the membrane and that binding of DNA and the membrane is necessary for the normal DNA reparation process

  15. Pimelic acid, the first precursor of the Bacillus subtilis biotin synthesis pathway, exists as the free acid and is assembled by fatty acid synthesis.

    Science.gov (United States)

    Manandhar, Miglena; Cronan, John E

    2017-05-01

    Biotin synthetic pathways are readily separated into two stages, synthesis of the seven carbon α, ω-dicarboxylic acid pimelate moiety and assembly of the fused heterocyclic rings. The biotin pathway genes responsible for pimelate moiety synthesis vary widely among bacteria whereas the ring synthesis genes are highly conserved. Bacillus subtilis seems to have redundant genes, bioI and bioW, for generation of the pimelate intermediate. Largely consistent with previous genetic studies it was found that deletion of bioW caused a biotin auxotrophic phenotype whereas deletion of bioI did not. BioW is a pimeloyl-CoA synthetase that converts pimelic acid to pimeloyl-CoA. The essentiality of BioW for biotin synthesis indicates that the free form of pimelic acid is an intermediate in biotin synthesis although this is not the case in E. coli. Since the origin of pimelic acid in Bacillus subtilis is unknown, 13 C-NMR studies were carried out to decipher the pathway for its generation. The data provided evidence for the role of free pimelate in biotin synthesis and the involvement of fatty acid synthesis in pimelate production. Cerulenin, an inhibitor of the key fatty acid elongation enzyme, FabF, markedly decreased biotin production by B. subtilis resting cells whereas a strain having a cerulenin-resistant FabF mutant produced more biotin. In addition, supplementation with pimelic acid fully restored biotin production in cerulenin-treated cells. These results indicate that pimelic acid originating from fatty acid synthesis pathway is a bona fide precursor of biotin in B. subtilis. © 2017 John Wiley & Sons Ltd.

  16. Selectivity in protein degradation during sporulation of Bacillus subtilis

    International Nuclear Information System (INIS)

    Mitani, Takahiko; Kadota, Hajime

    1976-01-01

    The breakdown of cellular protein was investigated in Bacillus subtilis ATCC 6051 labeled with glycine-2- 3 H or L-phenylalanine-U- 14 C at the different stages of vegetative growth and sporulation. The growth of the culture was determined by measuring optical density at 660 nm. The heat-resistant spores were scored by plating after heating at 80 deg C for 10 minutes. A question whether the turnover of glycine-labeled protein is similar to that of phenylalanine-labeled protein was experimentally studied. The patterns obtained with the glycine-labeled protein were different from those of phenylalanine-labeled protein. This was not multiple turnover. The cellular protein which was labeled with glycine at an early stage of sporulation showed rapid degradation, but the degradation of the protein labeled with glycine at later stages did not occur at all. Another question whether the labeled glycine incorporated into cells at the different stages of growth and sporulation was present in the spore coat fraction of matured spores was studied. Experiment demonstrated that the glycine incorporated into cells at the late sporulation stage was mainly utilized for the biosynthesis of the spore coat protein. These data suggest that the spore coat protein which contains relatively large amount of glycine is rarely subject to further degradation. (Iwakiri, K.)

  17. A novel expression vector for the secretion of abaecin in Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Li Li

    Full Text Available ABSTRACT This study aimed to describe a Bacillus subtilis expression system based on genetically modified B. subtilis. Abaecin, an antimicrobial peptide obtained from Apis mellifera, can enhance the effect of pore-forming peptides from other species on the inhibition of bacterial growth. For the exogenous expression, the abaecin gene was fused with a tobacco etch virus protease cleavage site, a promoter Pglv, and a mature beta-glucanase signal peptide. Also, a B. subtilis expression system was constructed. The recombinant abaecin gene was expressed and purified as a recombinant protein in the culture supernatant. The purified abaecin did not inhibit the growth of Escherichia coli strain K88. Cecropin A and hymenoptaecin exhibited potent bactericidal activities at concentrations of 1 and 1.5 µM. Combinatorial assays revealed that cecropin A and hymenoptaecin had sublethal concentrations of 0.3 and 0.5 µM. This potentiating functional interaction represents a promising therapeutic strategy. It provides an opportunity to address the rising threat of multidrug-resistant pathogens that are recalcitrant to conventional antibiotics.

  18. Absence of penicillin-binding protein 4 from an apparently normal strain of Bacillus subtilis.

    OpenAIRE

    Buchanan, C E

    1987-01-01

    The phenotype of a Bacillus subtilis 168 strain with no detectable penicillin-binding protein 4 was examined. Despite the fact that penicillin-binding protein 4 is one of the most penicillin-sensitive proteins in the species, its apparent loss had no obvious effect on the organism or its susceptibility to various beta-lactam antibiotics.

  19. Isolation and molecular characterization of thermostable phytase from Bacillus subtilis (BSPhyARRMK33).

    Science.gov (United States)

    Reddy, Chinreddy Subramanyam; Achary, V Mohan Murali; Manna, Mrinalini; Singh, Jitender; Kaul, Tanushri; Reddy, Malireddy K

    2015-03-01

    The thermostable phytase gene was isolated from Bacillus subtilis ARRMK33 (BsPhyARRMK33). The gene has an ORF of 1152 bp and that encodes a protein of 383 amino acids. Sequence analysis showed high homology with Bacillus sp. phytase proteins, but no similarity was found with other phytases. SDS-PAGE analysis exhibited a predicted molecular mass of 42 kDa. Homology modeling of BsPhyARRMK33 protein based on Bacillus amyloliquefaciens crystal structure disclosed its β-propeller structure. BsPhyARRMK33 recombinant plasmid in pET-28a(+) was expressed in Rosetta gami B DE3 cells and the maximum phytase activity 15.3 U mg(-1) obtained. The enzyme exhibits high thermostability at various temperatures and broad pH ranges. The recombinant protein retained 74% of its original activity after incubation at 95 °C for 10 min. In the presence of Ca(2+), the recombinant phytase activity was maximal where as it was inhibited by EDTA. The optimal pH and temperature for the recombinant phytase activity is achieved at 7.0 and 55 °C, respectively. Thermostable nature and wide range of pH are promising features of recombinant BsPhyARRMK33 protein that may be employed as an efficient alternative to commercially known phytases and thereby alleviate environmental eutrophication.

  20. A new maltose-inducible high-performance heterologous expression system in Bacillus subtilis.

    Science.gov (United States)

    Yue, Jie; Fu, Gang; Zhang, Dawei; Wen, Jianping

    2017-08-01

    To improve heterologous proteins production, we constructed a maltose-inducible expression system in Bacillus subtilis. An expression system based on the promoter for maltose utilization constructed in B. subtilis. Successively, to improve the performance of the P malA -derived system, mutagenesis was employed by gradually shortening the length of P malA promoter and altering the spacing between the predicted MalR binding site and the -35 region. Furthermore, deletion of the maltose utilization genes (malL and yvdK) improved the P malA promoter activity. Finally, using this efficient maltose-inducible expression system, we enhanced the production of luciferase and D-aminoacylase, compared with the P hpaII system. A maltose-inducible expression system was constructed and evaluated. It could be used for high level expression of heterologous proteins production.