WorldWideScience

Sample records for b12-impaired metabolism produces

  1. Detection of vitamin B12 deficiency in older people by measuring vitamin B12 or the active fraction of vitamin B12, holotranscobalamin

    DEFF Research Database (Denmark)

    Clarke, Robert; Sherliker, Paul; Hin, Harold

    2007-01-01

    BACKGROUND: Impaired vitamin B(12) function and decreased vitamin B(12) status have been associated with neurological and cognitive impairment. Current assays analyze total vitamin B(12) concentration, only a small percentage of which is metabolically active. Concentrations of this active component......, carried on holotranscobalamin (holoTC), may be of greater relevance than total vitamin B(12). METHODS: We compared the utility of serum holoTC with conventional vitamin B(12) for detection of vitamin B(12) deficiency in a population-based study of older people, using increased methylmalonic acid (MMA......) concentrations as a marker of metabolic vitamin B(12) deficiency in the overall population (n = 2403) and in subsets with normal (n = 1651) and abnormal (n = 752) renal function. RESULTS: Among all participants, 6% had definite (MMA >0.75 micromol/L) and 16% had probable (MMA >0.45 micromol/L) metabolic vitamin...

  2. Vitamin B12-impaired metabolism produces apoptosis and Parkinson phenotype in rats expressing the transcobalamin-oleosin chimera in substantia nigra.

    Directory of Open Access Journals (Sweden)

    Carlos Enrique Orozco-Barrios

    Full Text Available BACKGROUND: Vitamin B12 is indispensable for proper brain functioning and cytosolic synthesis of S-adenosylmethionine. Whether its deficiency produces effects on viability and apoptosis of neurons remains unknown. There is a particular interest in investigating these effects in Parkinson disease where Levodopa treatment is known to increase the consumption of S-adenosylmethionine. To cause deprivation of vitamin B12, we have recently developed a cell model that produces decreased synthesis of S-adenosylmethionine by anchoring transcobalamin (TCII to the reticulum through its fusion with Oleosin (OLEO. METHODOLOGY: Gene constructs including transcobalamin-oleosin (TCII-OLEO and control constructs, green fluorescent protein-transcobalamin-oleosin (GFP-TCII-OLEO, oleosin-transcobalamin (OLEO-TCII, TCII and OLEO were used for expression in N1E-115 cells (mouse neuroblastoma and in substantia nigra of adult rats, using a targeted transfection with a Neurotensin polyplex system. We studied the viability and the apoptosis in the transfected cells and targeted tissue. The turning behavior was evaluated in the rats transfected with the different plasmids. PRINCIPAL FINDINGS: The transfection of N1E-115 cells by the TCII-OLEO-expressing plasmid significantly affected cell viability and increased immunoreactivity of cleaved Caspase-3. No change in propidium iodide uptake (used as a necrosis marker was observed. The transfected rats lost neurons immunoreactive to tyrosine hydroxylase. The expression of TCII-OLEO was observed in cells immunoreactive to tyrosine hydroxylase of the substantia nigra, with a superimposed expression of cleaved Caspase-3. These cellular and tissular effects were not observed with the control plasmids. Rats transfected with TCII-OLEO expressing plasmid presented with a significantly higher number of turns, compared with those transfected with the other plasmids. CONCLUSIONS/SIGNIFICANCE: In conclusion, the TCII-OLEO transfection

  3. Elucidation of roles for vitamin B 12 in regulation of folate, ubiquinone, and methionine metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Romine, Margaret F.; Rodionov, Dmitry A.; Maezato, Yukari; Anderson, Lindsey N.; Nandhikonda, Premchendar; Rodionova, Irina A.; Carre, Alexandre; Li, Xiaoqing; Xu, Chengdong; Clauss, Therese R. W.; Kim, Young-Mo; Metz, Thomas O.; Wright, Aaron T.

    2017-01-30

    Only a small fraction of vitamin B12-requiring organisms are able to synthesize B12 de novo, making it a common commodity in microbial communities. Initially recognized as an enzyme cofactor of a few enzymes, recent studies have revealed additional B12-binding enzymes and regulatory roles for B12. Here we report the development and use of a B12-based chemical probe to identify B12-binding proteins in a nonphototrophic B12-producing bacterium. Two unexpected discoveries resulted from this study. First, we identified a new light-sensing B12-binding transcriptional regulator and demonstrated that it controls folate and ubiquinone biosynthesis. Second, our probe captured proteins involved in folate, methionine, and ubiquinone metabolism suggesting that it may play a role as an allosteric effector of these processes. These metabolic processes produce precursors for synthesis of DNA, RNA, and protein. Thereby, B12 modulates growth, and by limiting its availability to auxotrophs, B12-producing organisms may facilitate coordination of community metabolism.

  4. Hampered Vitamin B12 Metabolism in Gaucher Disease?

    Directory of Open Access Journals (Sweden)

    Luciana Hannibal PhD

    2017-02-01

    Full Text Available Untreated vitamin B 12 deficiency manifests clinically with hematological abnormalities and combined degeneration of the spinal cord and polyneuropathy and biochemically with elevated homocysteine (Hcy and methylmalonic acid (MMA. Vitamin B 12 metabolism involves various cellular compartments including the lysosome, and a disruption in the lysosomal and endocytic pathways induces functional deficiency of this micronutrient. Gaucher disease (GD is characterized by dysfunctional lysosomal metabolism brought about by mutations in the enzyme beta-glucocerebrosidase (Online Mendelian Inheritance in Man (OMIM: 606463; Enzyme Commission (EC 3.2.1.45, gene: GBA1 . In this study, we collected and examined available literature on the associations between GD, the second most prevalent lysosomal storage disorder in humans, and hampered vitamin B 12 metabolism. Results from independent cohorts of patients show elevated circulating holotranscobalamin without changes in vitamin B 12 levels in serum. Gaucher disease patients under enzyme replacement therapy present normal levels of Hcy and MMA. Although within the normal range, a significant increase in Hcy and MMA with normal serum vitamin B 12 was documented in treated GD patients with polyneuropathy versus treated GD patients without polyneuropathy. Thus, a functional deficiency of vitamin B 12 caused by disrupted lysosomal metabolism in GD is a plausible mechanism, contributing to the neurological form of the disorder but this awaits confirmation. Observational studies suggest that an assessment of vitamin B 12 status prior to the initiation of enzyme replacement therapy may shed light on the role of vitamin B 12 in the pathogenesis and progression of GD.

  5. High-level folate production in fermented foods by the B12 producer Lactobacillus reuteri JCM1112

    NARCIS (Netherlands)

    Santos, F.; Wegkamp, A.; de Vos, W.M.; Smid, E.J.; Hugenholtz, J.

    2008-01-01

    We observed that Lactobacillus reuteri JCM1112 produces B12 and folate. However, the folate/B12 mass ratio found was far below that desired for human consumption (~170:1). We used metabolic engineering applying genetic and physiological approaches to improve this ratio and developed a generic and

  6. B-12 vitamin metabolism disorders

    International Nuclear Information System (INIS)

    Fabriciova, K.; Bzduch, V.; Behulova, D.; Skodova, J.; Holesova, D.; Ostrozlikova, M.; Schmidtova, K.; Kozich, V.

    2012-01-01

    Vitamin B-12 – cobalamin (Cbl) is a water soluble vitamin, which is synthesized by lower organisms. It cannot be synthesized by plants and higher organisms. Problem in the metabolic pathway of Cbl can be caused by its deficiency or by the deficiency of its last metabolites – adenosylcobalamin and methylcobalamin. Both reasons are presented by errors in the homocysteine and methylmalonyl-coenzyme A metabolism. Clinical symptoms of the Cbl metabolism disorders are: different neurological disorders, changes in haematological status (megaloblastic anemia, pancytopenia), symptoms of gastrointestinal tract (glossitis, loss of appetite, diarrhea) and changes in the immune system. In the article the authors describe the causes of Cbl metabolism disorders, its different diagnosis and treatment. They introduce the group of patients with these disorders, who were taken care of in the I st Paediatric Department of University Children Hospital for the last 5 years. (author)

  7. Atopy, asthma, and lung function in relation to folate and vitamin B(12) in adults

    DEFF Research Database (Denmark)

    Thuesen, B H; Husemoen, L L N; Ovesen, L

    2010-01-01

    Recent studies suggested low serum folate and impaired folate metabolism as potential risk factors for development of asthma and atopic disease, but the results are inconsistent. The aim of this study was to investigate the relations of markers of folate and vitamin B12 (B12) deficiency with diff......Recent studies suggested low serum folate and impaired folate metabolism as potential risk factors for development of asthma and atopic disease, but the results are inconsistent. The aim of this study was to investigate the relations of markers of folate and vitamin B12 (B12) deficiency...

  8. Vitamin B12 deficiency

    Science.gov (United States)

    Vitamin B12 (B12; also known as cobalamin) is a B vitamin that has an important role in cellular metabolism, especially in DNA synthesis, methylation and mitochondrial metabolism. Clinical B12 deficiency with classic haematological and neurological manifestations is relatively uncommon. However, sub...

  9. Vegan diet, subnormal vitamin B-12 status and cardiovascular health.

    Science.gov (United States)

    Woo, Kam S; Kwok, Timothy C Y; Celermajer, David S

    2014-08-19

    Vegetarian diets have been associated with atherosclerosis protection, with healthier atherosclerosis risk profiles, as well as lower prevalence of, and mortality from, ischemic heart disease and stroke. However, there are few data concerning the possible cardiovascular effects of a vegan diet (with no meat, dairy or egg products). Vitamin B-12 deficiency is highly prevalent in vegetarians; this can be partially alleviated by taking dairy/egg products in lact-ovo-vegetarians. However, metabolic vitamin B-12 deficiency is highly prevalent in vegetarians in Australia, Germany, Italy and Austria, and in vegans (80%) in Hong Kong and India, where vegans rarely take vitamin B-12 fortified food or vitamin B-12 supplements. Similar deficiencies exist in northern Chinese rural communities consuming inadequate meat, egg or dairy products due to poverty or dietary habits. Vascular studies have demonstrated impaired arterial endothelial function and increased carotid intima-media thickness as atherosclerosis surrogates in such metabolic vitamin B-12 deficient populations, but not in lactovegetarians in China. Vitamin B-12 supplementation has a favourable impact on these vascular surrogates in Hong Kong vegans and in underprivileged communities in northern rural China. Regular monitoring of vitamin B-12 status is thus potentially beneficial for early detection and treatment of metabolic vitamin B-12 deficiency in vegans, and possibly for prevention of atherosclerosis-related diseases.

  10. Vegan Diet, Subnormal Vitamin B-12 Status and Cardiovascular Health

    Directory of Open Access Journals (Sweden)

    Kam S. Woo

    2014-08-01

    Full Text Available Vegetarian diets have been associated with atherosclerosis protection, with healthier atherosclerosis risk profiles, as well as lower prevalence of, and mortality from, ischemic heart disease and stroke. However, there are few data concerning the possible cardiovascular effects of a vegan diet (with no meat, dairy or egg products. Vitamin B-12 deficiency is highly prevalent in vegetarians; this can be partially alleviated by taking dairy/egg products in lact-ovo-vegetarians. However, metabolic vitamin B-12 deficiency is highly prevalent in vegetarians in Australia, Germany, Italy and Austria, and in vegans (80% in Hong Kong and India, where vegans rarely take vitamin B-12 fortified food or vitamin B-12 supplements. Similar deficiencies exist in northern Chinese rural communities consuming inadequate meat, egg or dairy products due to poverty or dietary habits. Vascular studies have demonstrated impaired arterial endothelial function and increased carotid intima-media thickness as atherosclerosis surrogates in such metabolic vitamin B-12 deficient populations, but not in lactovegetarians in China. Vitamin B-12 supplementation has a favourable impact on these vascular surrogates in Hong Kong vegans and in underprivileged communities in northern rural China. Regular monitoring of vitamin B-12 status is thus potentially beneficial for early detection and treatment of metabolic vitamin B-12 deficiency in vegans, and possibly for prevention of atherosclerosis-related diseases.

  11. Folic acid fortification: why not vitamin B12 also?

    Science.gov (United States)

    Selhub, Jacob; Paul, Ligi

    2011-01-01

    Folic acid fortification of cereal grains was introduced in many countries to prevent neural tube defect occurrence. The metabolism of folic acid and vitamin B12 intersect during the transfer of the methyl group from 5-methyltetrahydrofolate to homocysteine catalyzed by B12-dependent methioine synthase. Regeneration of tetrahydrofolate via this reaction makes it available for synthesis of nucleotide precursors. Thus either folate or vitamin B12 deficiency can result in impaired cell division and anemia. Exposure to extra folic acid through fortification may be detrimental to those with vitamin B12 deficiency. Among participants of National Health And Nutrition Examination Survey with low vitamin B12 status, high serum folate (>59 nmol/L) was associated with higher prevalence of anemia and cognitive impairment when compared with normal serum folate. We also observed an increase in the plasma concentrations of total homocysteine and methylmalonic acid (MMA), two functional indicators of vitamin B12 status, with increase in plasma folate under low vitamin B12 status. These data strongly imply that high plasma folate is associated with the exacerbation of both the biochemical and clinical status of vitamin B12 deficiency. Hence any food fortification policy that includes folic acid should also include vitamin B12. Copyright © 2011 International Union of Biochemistry and Molecular Biology, Inc.

  12. Vitamin B12 deficiency results in severe oxidative stress, leading to memory retention impairment in Caenorhabditis elegans.

    Science.gov (United States)

    Bito, Tomohiro; Misaki, Taihei; Yabuta, Yukinori; Ishikawa, Takahiro; Kawano, Tsuyoshi; Watanabe, Fumio

    2017-04-01

    Oxidative stress is implicated in various human diseases and conditions, such as a neurodegeneration, which is the major symptom of vitamin B 12 deficiency, although the underlying disease mechanisms associated with vitamin B 12 deficiency are poorly understood. Vitamin B 12 deficiency was found to significantly increase cellular H 2 O 2 and NO content in Caenorhabditis elegans and significantly decrease low molecular antioxidant [reduced glutathione (GSH) and L-ascorbic acid] levels and antioxidant enzyme (superoxide dismutase and catalase) activities, indicating that vitamin B 12 deficiency induces severe oxidative stress leading to oxidative damage of various cellular components in worms. An NaCl chemotaxis associative learning assay indicated that vitamin B 12 deficiency did not affect learning ability but impaired memory retention ability, which decreased to approximately 58% of the control value. When worms were treated with 1mmol/L GSH, L-ascorbic acid, or vitamin E for three generations during vitamin B 12 deficiency, cellular malondialdehyde content as an index of oxidative stress decreased to the control level, but the impairment of memory retention ability was not completely reversed (up to approximately 50%). These results suggest that memory retention impairment formed during vitamin B 12 deficiency is partially attributable to oxidative stress. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Influence of Vitamin B Auxotrophy on Nitrogen Metabolism in Eukaryotic Phytoplankton

    Directory of Open Access Journals (Sweden)

    Erin M Bertrand

    2012-10-01

    Full Text Available While nitrogen availability is known to limit primary production in large parts of the ocean, vitamin starvation amongst eukaryotic phytoplankton is becoming increasingly recognized as an oceanographically relevant phenomenon. Cobalamin (B12 and thiamine (B1 auxotrophy are widespread throughout eukaryotic phytoplankton, with over 50% of cultured isolates requiring B12 and 20% requiring B1. The frequency of vitamin auxotrophy in harmful algal bloom species is even higher. Instances of colimitation between nitrogen and B vitamins have been observed in marine environments, and interactions between these nutrients have been shown to impact phytoplankton species composition. This review evaluates the potential for interactive effects of nitrogen and vitamin B12 and B1 starvation in eukaryotic phytoplankton. B12 plays essential roles in amino acid and one-carbon metabolism, while B1 is important for primary carbohydrate and amino acid metabolism and likely useful as an anti-oxidant. Here we will focus on three potential metabolic interconnections between vitamin, nitrogen and sulfur metabolism that may have ramifications for the role of vitamin and nitrogen scarcities in driving ocean productivity and species composition. These include: (1 B12, B1, and N starvation impacts on osmolyte and antioxidant production, (2 B12 and B1 starvation impacts on polyamine biosynthesis, and (3 influence of B12 and B1 starvation on the diatom urea cycle and amino acid recycling through impacts on the citric acid cycle. We evaluate evidence for these interconnections and identify oceanographic contexts in which each may impact rates of primary production and phytoplankton community composition. Major implications include that B12 and B1 deprivation may impair the ability of phytoplankton to recover from nitrogen starvation and that changes in vitamin and nitrogen availability may synergistically impact harmful algal bloom formation.

  14. Genetic disorders of vitamin B12 metabolism: eight complementation groups – eight genes

    Science.gov (United States)

    Froese, D. Sean; Gravel, Roy A.

    2010-01-01

    Vitamin B12 (cobalamin, Cbl) is an essential nutrient in human metabolism. Genetic diseases of vitamin B12 utilisation constitute an important fraction of inherited newborn disease. Functionally, B12 is the cofactor for methionine synthase and methylmalonyl CoA mutase. To function as a cofactor, B12 must be metabolised through a complex pathway that modifies its structure and takes it through subcellular compartments of the cell. Through the study of inherited disorders of vitamin B12 utilisation, the genes for eight complementation groups have been identified, leading to the determination of the general structure of vitamin B12 processing and providing methods for carrier testing, prenatal diagnosis and approaches to treatment. PMID:21114891

  15. Metformin increases liver accumulation of vitamin B12 - An experimental study in rats

    DEFF Research Database (Denmark)

    Greibe, E; Miller, J W; Foutouhi, S H

    2013-01-01

    AIMS/HYPOTHESIS: Patients treated with metformin exhibit low levels of plasma vitamin B(12) (B(12)), and are considered at risk for developing B(12) deficiency. In this study, we investigated the effect of metformin treatment on B(12) uptake and distribution in rats. METHODS: Sprague Dawley rats (n...... that metformin has no decreasing effect on the B(12) absorption. CONCLUSIONS/INTERPRETATION: These results show that metformin treatment increases liver accumulation of B(12), thereby resulting in decreases in circulating B(12) and kidney accumulation of the vitamin. Our data questions whether the low plasma B......(12) observed in patients treated with metformin reflects impaired B(12) status, and rather suggests altered tissue distribution and metabolism of the vitamin....

  16. Vitamin B12 supplementation and cognitive scores in geriatric patients with Mild Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Komal Chauhan

    2016-09-01

    Full Text Available Background: The Neurodegenerative diseases are increasingly affecting the elderly with a severe impact on their brain health. There is a wide gap in supplementation based studies for increasing the cognition levels of the geriatric population, especially in developing countries like India which are at extreme risk of developing neurological disorders. And recently Vitamin B12 has drawn considerable attention due to its ability to improve the cognitive status. Current literature has linked the possibility of alleviating neurological disorders in the elderly with effective vitamin B12 management. Abundant animal and human models have proved that supplementation of vitamin B12 is beneficial for the restoration of cognitive functions. Objective: To supplement vitamin B12 deficient mild cognitively impaired geriatric patients with injectable doses of vitamin B12 followed by impact evaluation. Methods: Screening of the mild cognitively impaired patients was carried out using the Mini- Mental State Examination and Yamaguchi Fox Pigeon Imitation test. Baseline information was elicited from the patients residing in urban Vadodara (a district in the state of Gujarat, India. This included socio-demographic, medical and drug history, anthropometric and physical activity pattern, in addition to biochemical parameters comprising of serum vitamin B12 and glycated haemoglobin profile. A sub-sample of 60 patients with mild cognitive impairment (MCI demonstrating severe vitamin B12 deficiency were conveniently enrolled for injectable doses of Vitamin B 12 in the dosage of 1,000 µg every day for one week, followed by 1,000 µg every week for 4 weeks & finishing with 1,000 µg for the remaining 4 months. An intervention six- month after the experiment with all the parameters were elicited. Results: Vitamin B12 supplementation resulted in a significant (p<0.001 improvement in the MMSE scores of the patients with a rise of 9.63% in the total patients. Gender

  17. Metabolic Profiling of Impaired Cognitive Function in Patients Receiving Dialysis.

    Science.gov (United States)

    Kurella Tamura, Manjula; Chertow, Glenn M; Depner, Thomas A; Nissenson, Allen R; Schiller, Brigitte; Mehta, Ravindra L; Liu, Sai; Sirich, Tammy L

    2016-12-01

    Retention of uremic metabolites is a proposed cause of cognitive impairment in patients with ESRD. We used metabolic profiling to identify and validate uremic metabolites associated with impairment in executive function in two cohorts of patients receiving maintenance dialysis. We performed metabolic profiling using liquid chromatography/mass spectrometry applied to predialysis plasma samples from a discovery cohort of 141 patients and an independent replication cohort of 180 patients participating in a trial of frequent hemodialysis. We assessed executive function with the Trail Making Test Part B and the Digit Symbol Substitution test. Impaired executive function was defined as a score ≥2 SDs below normative values. Four metabolites-4-hydroxyphenylacetate, phenylacetylglutamine, hippurate, and prolyl-hydroxyproline-were associated with impaired executive function at the false-detection rate significance threshold. After adjustment for demographic and clinical characteristics, the associations remained statistically significant: relative risk 1.16 (95% confidence interval [95% CI], 1.03 to 1.32), 1.39 (95% CI, 1.13 to 1.71), 1.24 (95% CI, 1.03 to 1.50), and 1.20 (95% CI, 1.05 to 1.38) for each SD increase in 4-hydroxyphenylacetate, phenylacetylglutamine, hippurate, and prolyl-hydroxyproline, respectively. The association between 4-hydroxyphenylacetate and impaired executive function was replicated in the second cohort (relative risk 1.12; 95% CI, 1.02 to 1.23), whereas the associations for phenylacetylglutamine, hippurate, and prolyl-hydroxyproline did not reach statistical significance in this cohort. In summary, four metabolites related to phenylalanine, benzoate, and glutamate metabolism may be markers of cognitive impairment in patients receiving maintenance dialysis. Copyright © 2016 by the American Society of Nephrology.

  18. TrkB blockade in the hippocampus after training or retrieval impairs memory: protection from consolidation impairment by histone deacetylase inhibition.

    Science.gov (United States)

    Blank, Martina; Petry, Fernanda S; Lichtenfels, Martina; Valiati, Fernanda E; Dornelles, Arethuza S; Roesler, Rafael

    2016-03-01

    Relatively little is known about the requirement of signaling initiated by brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin receptor kinase B (TrkB), in the early phases of memory consolidation, as well as about its possible functional interactions with epigenetic mechanisms. Here we show that blocking TrkB in the dorsal hippocampus after learning or retrieval impairs retention of memory for inhibitory avoidance (IA). More importantly, the impairing effect of TrkB antagonism on consolidation was completely prevented by the histone deacetylase (HDAC) inhibitor sodium butyrate (NaB). Male Wistar rats were given an intrahippocampal infusion of saline (SAL) or NaB before training, followed by an infusion of either vehicle (VEH) or the selective TrkB antagonist ANA-12 immediately after training. In a second experiment, the infusions were administered before and after retrieval. ANA-12 after either training or retrieval produced a significant impairment in a subsequent memory retention test. Pretraining administration of NaB prevented the effect of ANA-12, although NaB given before retrieval did not alter the impairment resulting from TrkB blockade. The results indicate that inhibition of BDNF/TrkB in the hippocampus can hinder consolidation and reconsolidation of IA memory. However, TrkB activity is not required for consolidation in the presence of NaB, suggesting that a dysfunction in BDNF/TrkB signaling can be fully compensated by HDAC inhibition to allow hippocampal memory formation.

  19. COGNITIVE IMPAIRMENTS IN VITAMIN B12 AND FOLIC ACID DEFICIENCIES AND HYPERHOMOCYSTEINEMIA

    Directory of Open Access Journals (Sweden)

    P. R. Kamchatnov

    2015-01-01

    Full Text Available Vitamin metabolic disorders can cause diverse dysfunctions of both the peripheral and central nervous systems. There is conclusive evidence that cyanocobalamin (vitamin B12 and folic acid deficiencies may lead to diminished cognitive functions even to the extent of developing dementia. Cognitive impairments may be accompanied by involvement of other regions of the central nervous system, the corticospinal tract in particular, less frequently by brainstem and cerebellar disorders. Changes in nervous system functions in the presence of cyanocobalamin deficiency may predominate in the clinical picture, ahead of the occurrence of hematological changes. The paper considers the possible mechanisms for involvement of brain neurons in deficiency of cyanocobalamin and in that of folic acid in particular in patients with hyperhomocysteinemia. The low serum concentration of folic acid or cyanocobalamin in the elderly raises the risk of developing Alzheimer’s disease in future (by almost twice and vascular dementia. The authors give the results of randomized clinical trials evaluating the efficacy of the vitamins used in patients with cognitive impairments. Thus, there are data that the use of cyanocobalamin in patients with lacunar infarcts and moderate cognitive impairments may give rise to their complete recovery and reduce the risk of depressive disorders. Intramuscular cyanocobalamin used in a daily dose of 1000 μg for 5 days, then 1000 μg once monthly is demonstrated to be efficacious. This therapy may be effective in patients with different types of dementia and cognitive diminution, primarily in those with these conditions and its serum concentration of less 150 pmol/l. Among the side effects while taking folic acid, there may be higher incidence rates of convulsive attacks. A number of trials have shown the efficacy of cyanocobalamin, pyridoxine, and folic acid in preventing acute cerebral ischemic episodes; however, not all the investigations

  20. Phylogenetic analysis of vitamin B12-related metabolism in Mycobacterium tuberculosis

    OpenAIRE

    Young, Douglas B.; Comas, I?aki; de Carvalho, Luiz P. S.

    2015-01-01

    Comparison of genome sequences from clinical isolates of Mycobacterium tuberculosis with phylogenetically-related pathogens Mycobacterium marinum, Mycobacterium kansasii, and Mycobacterium leprae reveals diversity amongst genes associated with vitamin B12-related metabolism. Diversity is generated by gene deletion events, differential acquisition of genes by horizontal transfer, and single nucleotide polymorphisms (SNPs) with predicted impact on protein function and transcriptional regulation...

  1. Stability of added and in situ-produced vitamin B12 in breadmaking.

    Science.gov (United States)

    Edelmann, Minnamari; Chamlagain, Bhawani; Santin, Marco; Kariluoto, Susanna; Piironen, Vieno

    2016-08-01

    Vitamin B12 exists naturally in foods of animal origin and is synthesised only by certain bacteria. New food sources are needed to ensure vitamin B12 intake in risk groups. This study aimed to investigate the stability of added cyanocobalamin (CNCbl, chemically modified form) and hydroxocobalamin (OHCbl, natural form) and in situ-synthesised vitamin B12 in breadmaking. Samples were analysed both with a microbiological (MBA) and a liquid chromatographic (UHPLC) method to test applicability of these two methods. Proofing did not affect CNCbl and OHCbl levels. By contrast, 21% and 31% of OHCbl was lost in oven-baking steps in straight- and sponge-dough processes, respectively, whereas CNCbl remained almost stable. In sourdough baking, 23% of CNCbl and 44% of OHCbl were lost. In situ-produced vitamin B12 was almost as stable as added CNCbl and more stable than OHCbl. The UHPLC method showed its superiority to the MBA in determining the active vitamin B12. Copyright © 2016. Published by Elsevier Ltd.

  2. Potential Links between Impaired One-Carbon Metabolism Due to Polymorphisms, Inadequate B-Vitamin Status, and the Development of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Barbara Troesch

    2016-12-01

    Full Text Available Alzheimer’s disease (AD is the major cause of dementia and no preventive or effective treatment has been established to date. The etiology of AD is poorly understood, but genetic and environmental factors seem to play a role in its onset and progression. In particular, factors affecting the one-carbon metabolism (OCM are thought to be important and elevated homocysteine (Hcy levels, indicating impaired OCM, have been associated with AD. We aimed at evaluating the role of polymorphisms of key OCM enzymes in the etiology of AD, particularly when intakes of relevant B-vitamins are inadequate. Our review indicates that a range of compensatory mechanisms exist to maintain a metabolic balance. However, these become overwhelmed if the activity of more than one enzyme is reduced due to genetic factors or insufficient folate, riboflavin, vitamin B6 and/or vitamin B12 levels. Consequences include increased Hcy levels and reduced capacity to synthetize, methylate and repair DNA, and/or modulated neurotransmission. This seems to favor the development of hallmarks of AD particularly when combined with increased oxidative stress e.g., in apolipoprotein E (ApoE ε4 carriers. However, as these effects can be compensated at least partially by adequate intakes of B-vitamins, achieving optimal B-vitamin status for the general population should be a public health priority.

  3. Phylogenetic analysis of vitamin B12-related metabolism in Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Douglas B. Young

    2015-03-01

    Full Text Available Comparison of genome sequences from clinical isolates of Mycobacterium tuberculosis with phylogenetically-related pathogens Mycobacterium marinum, Mycobacterium kansasii and Mycobacterium leprae reveals diversity amongst genes associated with vitamin B12-related metabolism. Diversity is generated by gene deletion events, differential acquisition of genes by horizontal transfer, and single nucleotide polymorphisms with predicted impact on protein function and transcriptional regulation. Differences in the B12 synthesis pathway, methionine biosynthesis, fatty acid catabolism, and DNA repair and replication are consistent with adaptations to different environmental niches and pathogenic lifestyles. While there is no evidence of further gene acquisition during expansion of the M. tuberculosis complex, the emergence of other forms of genetic diversity provides insights into continuing host-pathogen co-evolution and has the potential to identify novel targets for disease intervention.

  4. Vitamin B12 and Semen Quality.

    Science.gov (United States)

    Banihani, Saleem Ali

    2017-06-09

    Various studies have revealed the effects of vitamin B12, also named cobalamin, on semen quality and sperm physiology; however, these studies collectively are still unsummarized. Here, we systematically discuss and summarize the currently understood role of vitamin B12 on semen quality and sperm physiology. We searched the Web of Science, PubMed, and Scopus databases for only English language articles or abstracts from September 1961 to March 2017 (inclusive) using the key words "vitamin B12" and "cobalamin" versus "sperm". Certain relevant references were included to support the empirical as well as the mechanistic discussions. In conclusion, the mainstream published work demonstrates the positive effects of vitamin B12 on semen quality: first, by increasing sperm count, and by enhancing sperm motility and reducing sperm DNA damage, though there are a few in vivo system studies that have deliberated some adverse effects. The beneficial effects of vitamin B12 on semen quality may be due to increased functionality of reproductive organs, decreased homocysteine toxicity, reduced amounts of generated nitric oxide, decreased levels of oxidative damage to sperm, reduced amount of energy produced by spermatozoa, decreased inflammation-induced semen impairment, and control of nuclear factor-κB activation. However, additional research, mainly clinical, is still needed to confirm these positive effects.

  5. Effects of intra-hippocampal microinjection of vitamin B12 on the orofacial pain and memory impairments induced by scopolamine and orofacial pain in rats.

    Science.gov (United States)

    Erfanparast, Amir; Tamaddonfard, Esmaeal; Nemati, Shaghayegh

    2017-03-01

    In the present study, we investigated the effects of microinjection of vitamin B 12 into the hippocampus on the orofacial pain and memory impairments induced by scopolamine and orofacial pain. In ketamine-xylazine anesthetized rats, the right and left sides of the dorsal hippocampus (CA1) were implanted with two guide cannulas. Orofacial pain was induced by subcutaneous injection of formalin (1.5%, 50μl) into the right vibrissa pad, and the durations of face rubbing were recorded at 3-min blocks for 45min. Morris water maze (MWM) was used for evaluation of learning and memory. Finally, locomotor activity was assessed using an open-field test. Vitamin B 12 attenuated both phases of formalin-induced orofacial pain. Prior administration of naloxone and naloxonazine, but not naltrindole and nor-binaltorphimine, prevented this effect. Vitamin B 12 and physostigmine decreased latency time as well as traveled distance in Morris water maze. In addition, these chemicals improved scopolamine-induced memory impairment. The memory impairment induced by orofacial pain was improved by vitamin B 12 and physostigmine used alone. Naloxone prevented, whereas physostigmine enhanced the memory improving effect of vitamin B 12 in the pain-induced memory impairment. All the above-mentioned chemicals did not alter locomotor activity. The results of the present study showed that at the level of the dorsal hippocampus, vitamin B 12 modulated orofacial pain through a mu-opioid receptor mechanism. In addition, vitamin B 12 contributed to hippocampal cholinergic system in processing of memory. Moreover, cholinergic and opioid systems may be involved in improving effect of vitamin B 12 on pain-induced memory impairment. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Perinatal exposure of mice to the pesticide DDT impairs energy expenditure and metabolism in adult female offspring.

    Directory of Open Access Journals (Sweden)

    Michele La Merrill

    Full Text Available Dichlorodiphenyltrichloroethane (DDT has been used extensively to control malaria, typhus, body lice and bubonic plague worldwide, until countries began restricting its use in the 1970s. Its use in malaria control continues in some countries according to recommendation by the World Health Organization. Individuals exposed to elevated levels of DDT and its metabolite dichlorodiphenyldichloroethylene (DDE have an increased prevalence of diabetes and insulin resistance. Here we hypothesize that perinatal exposure to DDT disrupts metabolic programming leading to impaired metabolism in adult offspring. To test this, we administered DDT to C57BL/6J mice from gestational day 11.5 to postnatal day 5 and studied their metabolic phenotype at several ages up to nine months. Perinatal DDT exposure reduced core body temperature, impaired cold tolerance, decreased energy expenditure, and produced a transient early-life increase in body fat in female offspring. When challenged with a high fat diet for 12 weeks in adulthood, female offspring perinatally exposed to DDT developed glucose intolerance, hyperinsulinemia, dyslipidemia, and altered bile acid metabolism. Perinatal DDT exposure combined with high fat feeding in adulthood further impaired thermogenesis as evidenced by reductions in core temperature and in the expression of numerous RNA that promote thermogenesis and substrate utilization in the brown adipose tissue of adult female mice. These observations suggest that perinatal DDT exposure impairs thermogenesis and the metabolism of carbohydrates and lipids which may increase susceptibility to the metabolic syndrome in adult female offspring.

  7. Perinatal Exposure of Mice to the Pesticide DDT Impairs Energy Expenditure and Metabolism in Adult Female Offspring

    Science.gov (United States)

    La Merrill, Michele; Karey, Emma; Moshier, Erin; Lindtner, Claudia; La Frano, Michael R.; Newman, John W.; Buettner, Christoph

    2014-01-01

    Dichlorodiphenyltrichloroethane (DDT) has been used extensively to control malaria, typhus, body lice and bubonic plague worldwide, until countries began restricting its use in the 1970s. Its use in malaria control continues in some countries according to recommendation by the World Health Organization. Individuals exposed to elevated levels of DDT and its metabolite dichlorodiphenyldichloroethylene (DDE) have an increased prevalence of diabetes and insulin resistance. Here we hypothesize that perinatal exposure to DDT disrupts metabolic programming leading to impaired metabolism in adult offspring. To test this, we administered DDT to C57BL/6J mice from gestational day 11.5 to postnatal day 5 and studied their metabolic phenotype at several ages up to nine months. Perinatal DDT exposure reduced core body temperature, impaired cold tolerance, decreased energy expenditure, and produced a transient early-life increase in body fat in female offspring. When challenged with a high fat diet for 12 weeks in adulthood, female offspring perinatally exposed to DDT developed glucose intolerance, hyperinsulinemia, dyslipidemia, and altered bile acid metabolism. Perinatal DDT exposure combined with high fat feeding in adulthood further impaired thermogenesis as evidenced by reductions in core temperature and in the expression of numerous RNA that promote thermogenesis and substrate utilization in the brown adipose tissue of adult female mice. These observations suggest that perinatal DDT exposure impairs thermogenesis and the metabolism of carbohydrates and lipids which may increase susceptibility to the metabolic syndrome in adult female offspring. PMID:25076055

  8. Vitamin B-12 concentration, memory performance, and hippocampal structure in patients with mild cognitive impairment.

    Science.gov (United States)

    Köbe, Theresa; Witte, A Veronica; Schnelle, Ariane; Grittner, Ulrike; Tesky, Valentina A; Pantel, Johannes; Schuchardt, Jan Philipp; Hahn, Andreas; Bohlken, Jens; Rujescu, Dan; Flöel, Agnes

    2016-04-01

    Low-normal concentrations of vitamin B-12 (VitB12) may be associated with worse cognition. However, previous evidence has been mixed, and the underlying mechanisms remain unclear. We determined whether serum VitB12 concentrations within the normal range were linked to memory functions and related neuronal structures in patients with mild cognitive impairment (MCI). In a cross-sectional design, we assessed 100 amnestic MCI patients (52 women; age range: 50-80 y) with low- and high-normal VitB12 concentration (median split: 304 pmol/L) for memory functions with the use of the Auditory Verbal Learning Test. MRI was performed at 3 tesla (n= 86) for the estimation of the volume and microstructure of the hippocampus and its subfields as indicated by the mean diffusivity on diffusion-weighted images. With the use of a mediation analysis, we examined whether the relation between VitB12 and memory performance was partially explained by volume or microstructure. MCI patients with low-normal VitB12 showed a significantly poorer learning ability (P= 0.014) and recognition performance (P= 0.008) than did patients with high-normal VitB12. Also, the microstructure integrity of the hippocampus was lower in patients with low-normal VitB12, mainly in the cornu ammonis 4 and dentate gyrus region (P= 0.029), which partially mediated the effect of VitB12 on memory performance (32-48%). Adjustments for age, sex, education, apolipoprotein E e4 status, and total homocysteine, folate, and creatinine did not attenuate the effects. Low VitB12 concentrations within the normal range are associated with poorer memory performance, which is an effect that is partially mediated by the reduced microstructural integrity of the hippocampus. Future interventional trials are needed to assess whether supplementation of VitB12 may improve cognition in MCI patients even in the absence of clinically manifested VitB12 deficiency. This trial was registered at clinicaltrials.gov as NCT01219244. © 2016

  9. Vitamin B12 and Semen Quality

    Directory of Open Access Journals (Sweden)

    Saleem Ali Banihani

    2017-06-01

    Full Text Available Various studies have revealed the effects of vitamin B12, also named cobalamin, on semen quality and sperm physiology; however, these studies collectively are still unsummarized. Here, we systematically discuss and summarize the currently understood role of vitamin B12 on semen quality and sperm physiology. We searched the Web of Science, PubMed, and Scopus databases for only English language articles or abstracts from September 1961 to March 2017 (inclusive using the key words “vitamin B12” and “cobalamin” versus “sperm”. Certain relevant references were included to support the empirical as well as the mechanistic discussions. In conclusion, the mainstream published work demonstrates the positive effects of vitamin B12 on semen quality: first, by increasing sperm count, and by enhancing sperm motility and reducing sperm DNA damage, though there are a few in vivo system studies that have deliberated some adverse effects. The beneficial effects of vitamin B12 on semen quality may be due to increased functionality of reproductive organs, decreased homocysteine toxicity, reduced amounts of generated nitric oxide, decreased levels of oxidative damage to sperm, reduced amount of energy produced by spermatozoa, decreased inflammation-induced semen impairment, and control of nuclear factor-κB activation. However, additional research, mainly clinical, is still needed to confirm these positive effects.

  10. Exposures to arsenite and methylarsonite produce insulin resistance and impair insulin-dependent glycogen metabolism in hepatocytes.

    Science.gov (United States)

    Zhang, Chongben; Fennel, Emily M J; Douillet, Christelle; Stýblo, Miroslav

    2017-12-01

    Environmental exposure to inorganic arsenic (iAs) has been shown to disturb glucose homeostasis, leading to diabetes. Previous laboratory studies have suggested several mechanisms that may underlie the diabetogenic effects of iAs exposure, including (i) inhibition of insulin signaling (leading to insulin resistance) in glucose metabolizing peripheral tissues, (ii) inhibition of insulin secretion by pancreatic β cells, and (iii) dysregulation of the methylation or expression of genes involved in maintenance of glucose or insulin metabolism and function. Published studies have also shown that acute or chronic iAs exposures may result in depletion of hepatic glycogen stores. However, effects of iAs on pathways and mechanisms that regulate glycogen metabolism in the liver have never been studied. The present study examined glycogen metabolism in primary murine hepatocytes exposed in vitro to arsenite (iAs 3+ ) or its methylated metabolite, methylarsonite (MAs 3+ ). The results show that 4-h exposures to iAs 3+ and MAs 3+ at concentrations as low as 0.5 and 0.2 µM, respectively, decreased glycogen content in insulin-stimulated hepatocytes by inhibiting insulin-dependent activation of glycogen synthase (GS) and by inducing activity of glycogen phosphorylase (GP). Further investigation revealed that both iAs 3+ and MAs 3+ inhibit insulin-dependent phosphorylation of protein kinase B/Akt, one of the mechanisms involved in the regulation of GS and GP by insulin. Thus, inhibition of insulin signaling (i.e., insulin resistance) is likely responsible for the dysregulation of glycogen metabolism in hepatocytes exposed to iAs 3+ and MAs 3+ . This study provides novel information about the mechanisms by which iAs exposure impairs glucose homeostasis, pointing to hepatic metabolism of glycogen as one of the targets.

  11. Vitamin B12 Metabolism during Pregnancy and in Embryonic Mouse Models

    Directory of Open Access Journals (Sweden)

    Maira A. Moreno-Garcia

    2013-09-01

    Full Text Available Vitamin B12 (cobalamin, Cbl is required for cellular metabolism. It is an essential coenzyme in mammals for two reactions: the conversion of homocysteine to methionine by the enzyme methionine synthase and the conversion of methylmalonyl-CoA to succinyl-CoA by the enzyme methylmalonyl-CoA mutase. Symptoms of Cbl deficiency are hematological, neurological and cognitive, including megaloblastic anaemia, tingling and numbness of the extremities, gait abnormalities, visual disturbances, memory loss and dementia. During pregnancy Cbl is essential, presumably because of its role in DNA synthesis and methionine synthesis; however, there are conflicting studies regarding an association between early pregnancy loss and Cbl deficiency. We here review the literature about the requirement for Cbl during pregnancy, and summarized what is known of the expression pattern and function of genes required for Cbl metabolism in embryonic mouse models.

  12. Characterization of extracellular vitamin B12 producing Lactobacillus plantarum strains and assessment of the probiotic potentials.

    Science.gov (United States)

    Li, Ping; Gu, Qing; Yang, Lanlan; Yu, Yue; Wang, Yuejiao

    2017-11-01

    We investigated extracellular vitamin B 12 -producing Lactobacillus strains and their characteristics in tolerance to environmental stresses, gastric acid and bile salts. Two isolates, Lactobacillus plantarum LZ95 and CY2, showed high extracellular B 12 production, 98±15μg/L and 60±9μg/L respectively. Extracellular B 12 from LZ95 were identified as adenosylcobalamin and methylcobalamin using a combination of solid phase extraction and reverse-phase HPLC, while that from CY2 was adenosylcobalamin. Both strains grew under environmental stresses, and LZ95 exhibited better tolerance to low temperature and high ethanol concentration. LZ95 also showed good viability when exposed to gastric acid (pH 2.0 and 3.0) and bile salts (0.3%) as well as good adhesion to Caco-2 cells. The viability of CY2 was significantly reduced under low pH and exposure to bile salt. Together, extracellular B 12 producer LZ95 with good probiotic properties might be a candidate for in situ B 12 fortification in the food industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Techno-functional differentiation of two vitamin B12 producing Lactobacillus plantarum strains: an elucidation for diverse future use.

    Science.gov (United States)

    Bhushan, Bharat; Tomar, S K; Chauhan, Arun

    2017-01-01

    An appropriate selection of Lactobacillus strain (probiotic/starter/functional) on the basis of its techno-functional characteristics is required before developing a novel fermented functional food. We compared vitamin B 12 (B 12 , cobalamin) producing Lactobacillus plantarum isolates, BHM10 and BCF20, for functional (vitamin over-production, genomic insight to B 12 structural genes, and probiotic attributes) and technological [milks (skim and soy) fermentation and B 12 bio-fortification] characteristics. Addition of B 12 precursors (5-amonolevulinate and dimethylbenzimidazole) to cobalamin-free fermentation medium increased vitamin production in BHM10, BCF20, and DSM20016 (a positive standard) by 3.4-, 4.4-, and 3.86-folds, respectively. Three important B 12 structural genes were detected in L. plantarum species (strains BHM10 and BCF20) by PCR for the first time. The gene sequences were submitted to NCBI GenBank and found phylogenetically closer to respective sequences in B 12 producing Lactobacillus reuteri strains. During comparative probiotic testing, BCF20 showed significantly higher (p < 0.05 to p < 0.001) gastrointestinal tolerance and cell surface hydrophobicity (p < 0.05) than BHM10. Moreover, only BCF20 was found positive for BSH activity and also exhibited comparatively better antagonistic potential against potent pathogens. Conversely, high acid and bile susceptible strain BHM10 displayed significantly higher soy milk fermentation and resultant B 12 bio-fortification abilities during technological testing. Two B 12 quantification techniques, UFLC and competitive immunoassay, confirmed the in vitro and in situ bio-production of bio-available form of B 12 after BHM10 fermentation. Conclusively, techno-functional differentiation of two B 12 producing strains elucidates their diverse future use; BCF20 either for B 12 over-production (in vitro) or as a probiotic candidate, while BHM10 for cobalamin bio-fortification (in situ) in soy milk.

  14. Absorption and transport of radioactive 57Co-vitamin B12 in experimental giardiasis in rats

    International Nuclear Information System (INIS)

    Deka, N.C.; Sehgal, A.K.; Chnuttani, P.N.

    1981-01-01

    Giardiasis was produced in weanling albino rats by feeding suspension of Giardia lamblia cysts isolated from human stool. Experiments were carried out to assess the absorption and transport through intestinal wall of 57 Co-vitamin B 12 in these rats. The results showed a significant impairment of the absorption of the vitamin in the rats with experimental giardiasis. However, the transport of the vitamin B 12 was unimpaired. (author)

  15. Maximal load of the vitamin B12 transport system

    DEFF Research Database (Denmark)

    Lildballe, Dorte L; Mutti, Elena; Birn, Henrik

    2012-01-01

    Several studies suggest that the vitamin B12 (B12) transport system can be used for the cellular delivery of B12-conjugated drugs, also in long-term treatment Whether this strategy will affect the endogenous metabolism of B12 is not known. To study the effect of treatment with excess B12...

  16. Metabolic distress in lipid & one carbon metabolic pathway through low vitamin B-12: a population based study from North India.

    Science.gov (United States)

    Saraswathy, Kallur Nava; Joshi, Shipra; Yadav, Suniti; Garg, Priyanka Rani

    2018-04-25

    population is vulnerable to severe under-nutrition due to the association of vitamin B-12 with HDL, leading to metabolic disturbance in both the pathways; lipid and one carbon metabolic pathway. Co-factors such as ethnicity, cultural practices, and lifestyle & dietary habits must be considered while making public health policies to control diseases.

  17. Treatment of depression: time to consider folic acid and vitamin B12.

    Science.gov (United States)

    Coppen, Alec; Bolander-Gouaille, Christina

    2005-01-01

    We review the findings in major depression of a low plasma and particularly red cell folate, but also of low vitamin B12 status. Both low folate and low vitamin B12 status have been found in studies of depressive patients, and an association between depression and low levels of the two vitamins is found in studies of the general population. Low plasma or serum folate has also been found in patients with recurrent mood disorders treated by lithium. A link between depression and low folate has similarly been found in patients with alcoholism. It is interesting to note that Hong Kong and Taiwan populations with traditional Chinese diets (rich in folate), including patients with major depression, have high serum folate concentrations. However, these countries have very low life time rates of major depression. Low folate levels are furthermore linked to a poor response to antidepressants, and treatment with folic acid is shown to improve response to antidepressants. A recent study also suggests that high vitamin B12 status may be associated with better treatment outcome. Folate and vitamin B12 are major determinants of one-carbon metabolism, in which S-adenosylmethionine (SAM) is formed. SAM donates methyl groups that are crucial for neurological function. Increased plasma homocysteine is a functional marker of both folate and vitamin B12 deficiency. Increased homocysteine levels are found in depressive patients. In a large population study from Norway increased plasma homocysteine was associated with increased risk of depression but not anxiety. There is now substantial evidence of a common decrease in serum/red blood cell folate, serum vitamin B12 and an increase in plasma homocysteine in depression. Furthermore, the MTHFR C677T polymorphism that impairs the homocysteine metabolism is shown to be overrepresented among depressive patients, which strengthens the association. On the basis of current data, we suggest that oral doses of both folic acid (800 microg daily

  18. A High-Fat Diet Causes Impairment in Hippocampal Memory and Sex-Dependent Alterations in Peripheral Metabolism

    Directory of Open Access Journals (Sweden)

    Erica L. Underwood

    2016-01-01

    Full Text Available While high-fat diets are associated with rising incidence of obesity/type-2 diabetes and can induce metabolic and cognitive deficits, sex-dependent comparisons are rarely systematically made. Effects of exclusive consumption of a high-fat diet (HFD on systemic metabolism and on behavioral measures of hippocampal-dependent memory were compared in young male and female LE rats. Littermates were fed from weaning either a HFD or a control diet (CD for 12 wk prior to testing. Sex-different effects of the HFD were observed in classic metabolic signs associated with type-2 diabetes. Males fed the HFD became obese, and had elevated fasted blood glucose levels, elevated corticosterone, and impaired glucose-tolerance, while females on the HFD exhibited only elevated corticosterone. Regardless of peripheral metabolism alteration, rats of both sexes fed the HFD were equally impaired in a spatial object recognition memory task associated with impaired hippocampal function. While the metabolic changes reported here have been characterized previously in males, the set of diet-induced effects observed here in females are novel. Impaired memory can have significant cognitive consequences, over the short-term and over the lifespan. A significant need exists for comparative research into sex-dependent differences underlying obesity and metabolic syndromes relating systemic, cognitive, and neural plasticity mechanisms.

  19. Systemic Inflammation and Lung Function Impairment in Morbidly Obese Subjects with the Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Astrid van Huisstede

    2013-01-01

    Full Text Available Background. Obesity and asthma are associated. There is a relationship between lung function impairment and the metabolic syndrome. Whether this relationship also exists in the morbidly obese patients is still unknown. Hypothesis. Low-grade systemic inflammation associated with the metabolic syndrome causes inflammation in the lungs and, hence, lung function impairment. Methods. This is cross-sectional study of morbidly obese patients undergoing preoperative screening for bariatric surgery. Metabolic syndrome was assessed according to the revised NCEP-ATP III criteria. Results. A total of 452 patients were included. Patients with the metabolic syndrome (n=293 had significantly higher blood monocyte (mean 5.3 versus 4.9, P=0.044 and eosinophil percentages (median 1.0 versus 0.8, P=0.002, while the total leukocyte count did not differ between the groups. The FEV1/FVC ratio was significantly lower in patients with the metabolic syndrome (76.7% versus 78.2%, P=0.032. Blood eosinophils were associated with FEV1/FVC ratio (adj. B −0.113, P=0.018. Conclusion. Although the difference in FEV1/FVC ratio between the groups is relatively small, in this cross-sectional study, and its clinical relevance may be limited, these data indicate that the presence of the metabolic syndrome may influence lung function impairment, through the induction of relative eosinophilia.

  20. Sex differences in diet and inhaled ozone (O3) induced metabolic impairment

    Science.gov (United States)

    APS 2015 abstract Sex differences in diet and inhaled ozone (O3) induced metabolic impairment U.P. Kodavanti1, V.L. Bass2, M.C. Schladweiler1, C.J. Gordon3, K.A. Jarema1, P. Phillips1, A.D. Ledbetter1, D.B. Miller4, S. Snow5, J.E. Richards1. 1 EPHD, NHEERL, USEPA, Research Triang...

  1. [Folate, vitamin B12 and human health].

    Science.gov (United States)

    Brito, Alex; Hertrampf, Eva; Olivares, Manuel; Gaitán, Diego; Sánchez, Hugo; Allen, Lindsay H; Uauy, Ricardo

    2012-11-01

    During the past decade the role of folate and vitamin B12 in human nutrition have been under constant re-examination. Basic knowledge on the metabolism and interactions between these essential nutrients has expanded and multiple complexities have been unraveled. These micronutrients have shared functions and intertwined metabolic pathways that define the size of the "methyl donor" pool utilized in multiple metabolic pathways; these include DNA methylation and synthesis of nucleic acids. In Chile, folate deficiency is virtually nonexistent, while vitamin B12 deficiency affects approximately 8.5-51% depending on the cut-off value used to define deficiency. Folate is found naturally mainly in vegetables or added as folic acid to staple foods. Vitamin B12 in its natural form is present only in foods of animal origin, which is why deficit is more common among strict vegetarians and populations with a low intake of animal foods. Poor folate status in vulnerable women of childbearing age increases the risk of neural tube birth defects, so the critical time for the contribution of folic acid is several months before conception since neural tube closure occurs during the first weeks of life. The absorption of vitamin B12 from food is lower in older adults, who are considered to have higher risk of gastric mucosa atrophy, altered production of intrinsic factor and acid secretion. Deficiency of these vitamins is associated with hematological disorders. Vitamin B12 deficiency can also induce clinical and sub-clinical neurological and of other disorders. The purpose of this review is to provide an update on recent advances in the basic and applied knowledge of these vitamins relative to human health.

  2. Effects of Insulin on Brain Glucose Metabolism in Impaired Glucose Tolerance

    Science.gov (United States)

    Hirvonen, Jussi; Virtanen, Kirsi A.; Nummenmaa, Lauri; Hannukainen, Jarna C.; Honka, Miikka-Juhani; Bucci, Marco; Nesterov, Sergey V.; Parkkola, Riitta; Rinne, Juha; Iozzo, Patricia; Nuutila, Pirjo

    2011-01-01

    OBJECTIVE Insulin stimulates brain glucose metabolism, but this effect of insulin is already maximal at fasting concentrations in healthy subjects. It is not known whether insulin is able to stimulate glucose metabolism above fasting concentrations in patients with impaired glucose tolerance. RESEARCH DESIGN AND METHODS We studied the effects of insulin on brain glucose metabolism and cerebral blood flow in 13 patients with impaired glucose tolerance and nine healthy subjects using positron emission tomography (PET). All subjects underwent PET with both [18F]fluorodeoxyglucose (for brain glucose metabolism) and [15O]H2O (for cerebral blood flow) in two separate conditions (in the fasting state and during a euglycemic-hyperinsulinemic clamp). Arterial blood samples were acquired during the PET scans to allow fully quantitative modeling. RESULTS The hyperinsulinemic clamp increased brain glucose metabolism only in patients with impaired glucose tolerance (whole brain: +18%, P = 0.001) but not in healthy subjects (whole brain: +3.9%, P = 0.373). The hyperinsulinemic clamp did not alter cerebral blood flow in either group. CONCLUSIONS We found that insulin stimulates brain glucose metabolism at physiological postprandial levels in patients with impaired glucose tolerance but not in healthy subjects. These results suggest that insulin stimulation of brain glucose metabolism is maximal at fasting concentrations in healthy subjects but not in patients with impaired glucose tolerance. PMID:21270256

  3. Identification of differentially expressed proteins in vitamin B 12

    Directory of Open Access Journals (Sweden)

    Swati Varshney

    2015-01-01

    Full Text Available Background: Vitamin B 12 (cobalamin is a water-soluble vitamin generally synthesized by microorganisms. Mammals cannot synthesize this vitamin but have evolved processes for absorption, transport and cellular uptake of this vitamin. Only about 30% of vitamin B 12 , which is bound to the protein transcobalamin (TC (Holo-TC [HoloTC] enters into the cell and hence is referred to as the biologically active form of vitamin B 12 . Vitamin B 12 deficiency leads to several complex disorders, including neurological disorders and anemia. We had earlier shown that vitamin B 12 deficiency is associated with coronary artery disease (CAD in Indian population. In the current study, using a proteomics approach we identified proteins that are differentially expressed in the plasma of individuals with low HoloTC levels. Materials and Methods: We used isobaric-tagging method of relative and absolute quantitation to identify proteins that are differently expressed in individuals with low HoloTC levels when compared to those with normal HoloTC level. Results: In two replicate isobaric tags for relative and absolute quantitation experiments several proteins involved in lipid metabolism, blood coagulation, cholesterol metabolic process, and lipoprotein metabolic process were found to be altered in individuals having low HoloTC levels. Conclusions: Our study indicates that low HoloTc levels could be a risk factor in the development of CAD.

  4. Metabolism of dimethylphthalate by Micrococcus sp. strain 12B.

    Science.gov (United States)

    Eaton, R W; Ribbons, D W

    1982-01-01

    During growth of Micrococcus sp. strain 12B with dimethylphthalate, 4-carboxy-2-hydroxymuconate lactone (CHML, X) and 3,4-dihydroxyphthalate-2-methyl ester (XI) were isolated from culture filtrates. CHML is the lactone of intermediate 4-carboxy-2-hydroxymuconate (IX). Accumulation of XI which is not a substrate for 3,4-dihydroxyphthalate-2-decarboxylase in strain 12B afforded an easy access to the preparation of 3,4-dihydroxyphthalate. PMID:7085569

  5. Production of vitamin B12 and labeled vitamin B12 by Streptomyces griseus

    International Nuclear Information System (INIS)

    Mazaheri Tehrani, M.; Ghorbanzadeh Mashkani, S.; Tajer Mohammad Ghazvini, P.; Nazari, A.; Aflakee, F.

    2009-01-01

    In this study, the production of labeled vitamin B 12 with one strain of actinomycet in a novel synthetic medium by batch fermentation method was investigated. After releasing vitamin B 12 from microbial cells, the solution containing cobalamin analogues was fixed on amberlite XAD-4 exchanger and eluted by various solutions. Vitamin B 12 in the collected fractions were measured by HPLC method and also in order to confirm the existence of cobalamin compounds in the samples, TLC technique was used. In the optimal conditions, production of vitamin B 12 by this microorganism was 1456μg/1. The best recoveries of vitamin B 12 from the column were obtained when the column was eluted by ethanol followed by acetone. The R f , values for cyanocobalamin and methylcobalamin, produced by this microorganism were the same as the standard values of R f . The desorption of labeled vitamine B 12 was carried out by different eluants, including acetone, ethanol (absolute), ethanol 25% and deionized water. The activity of labeled vitamin B 12 was 8.55, 6.90, 0.79, 5.75 Bq/ml, respectively. Therefore, the total specific activity of 21.99 Bq/ml was obtained for labeled vitamin B 12 .

  6. Ethanol metabolism by alcohol dehydrogenase or cytochrome P450 2E1 differentially impairs hepatic protein trafficking and growth hormone signaling.

    Science.gov (United States)

    Doody, Erin E; Groebner, Jennifer L; Walker, Jetta R; Frizol, Brittnee M; Tuma, Dean J; Fernandez, David J; Tuma, Pamela L

    2017-12-01

    The liver metabolizes alcohol using alcohol dehydrogenase (ADH) and cytochrome P 450 2E1 (CYP2E1). Both enzymes metabolize ethanol into acetaldehyde, but CYP2E1 activity also results in the production of reactive oxygen species (ROS) that promote oxidative stress. We have previously shown that microtubules are hyperacetylated in ethanol-treated polarized, hepatic WIF-B cells and livers from ethanol-fed rats. We have also shown that enhanced protein acetylation correlates with impaired clathrin-mediated endocytosis, constitutive secretion, and nuclear translocation and that the defects are likely mediated by acetaldehyde. However, the roles of CYP2E1-generated metabolites and ROS in microtubule acetylation and these alcohol-induced impairments have not been examined. To determine if CYP2E1-mediated alcohol metabolism is required for enhanced acetylation and the trafficking defects, we coincubated cells with ethanol and diallyl sulfide (DAS; a CYP2E1 inhibitor) or N -acetyl cysteine (NAC; an antioxidant). Both agents failed to prevent microtubule hyperacetylation in ethanol-treated cells and also failed to prevent impaired secretion or clathrin-mediated endocytosis. Somewhat surprisingly, both DAS and NAC prevented impaired STAT5B nuclear translocation. Further examination of microtubule-independent steps of the pathway revealed that Jak2/STAT5B activation by growth hormone was prevented by DAS and NAC. These results were confirmed in ethanol-exposed HepG2 cells expressing only ADH or CYP2E1. Using quantitative RT-PCR, we further determined that ethanol exposure led to blunted growth hormone-mediated gene expression. In conclusion, we determined that alcohol-induced microtubule acetylation and associated defects in microtubule-dependent trafficking are mediated by ADH metabolism whereas impaired microtubule-independent Jak2/STAT5B activation is mediated by CYP2E1 activity. NEW & NOTEWORTHY Impaired growth hormone-mediated signaling is observed in ethanol

  7. Skeletal muscle proteomic signature and metabolic impairment in pulmonary hypertension.

    Science.gov (United States)

    Malenfant, Simon; Potus, François; Fournier, Frédéric; Breuils-Bonnet, Sandra; Pflieger, Aude; Bourassa, Sylvie; Tremblay, Ève; Nehmé, Benjamin; Droit, Arnaud; Bonnet, Sébastien; Provencher, Steeve

    2015-05-01

    Exercise limitation comes from a close interaction between cardiovascular and skeletal muscle impairments. To better understand the implication of possible peripheral oxidative metabolism dysfunction, we studied the proteomic signature of skeletal muscle in pulmonary arterial hypertension (PAH). Eight idiopathic PAH patients and eight matched healthy sedentary subjects were evaluated for exercise capacity, skeletal muscle proteomic profile, metabolism, and mitochondrial function. Skeletal muscle proteins were extracted, and fractioned peptides were tagged using an iTRAQ protocol. Proteomic analyses have documented a total of 9 downregulated proteins in PAH skeletal muscles and 10 upregulated proteins compared to healthy subjects. Most of the downregulated proteins were related to mitochondrial structure and function. Focusing on skeletal muscle metabolism and mitochondrial health, PAH patients presented a decreased expression of oxidative enzymes (pyruvate dehydrogenase, p metabolism in PAH skeletal muscles. We provide evidences that impaired mitochondrial and metabolic functions found in the lungs and the right ventricle are also present in skeletal muscles of patients. • Proteomic and metabolic analysis show abnormal oxidative metabolism in PAH skeletal muscle. • EM of PAH patients reveals abnormal mitochondrial structure and distribution. • Abnormal mitochondrial health and function contribute to exercise impairments of PAH. • PAH may be considered a vascular affliction of heart and lungs with major impact on peripheral muscles.

  8. Effects of supplementary folic acid and vitamin B(12) on hepatic metabolism of dairy cows according to methionine supply.

    Science.gov (United States)

    Preynat, A; Lapierre, H; Thivierge, M C; Palin, M F; Cardinault, N; Matte, J J; Desrochers, A; Girard, C L

    2010-05-01

    The present experiment was undertaken to study the interactions between dietary supplements of rumen-protected methionine (RPM) and intramuscular injections of folic acid and vitamin B(12), given from 3 wk before calving to 16 wk of lactation, on hepatic metabolism of lactating dairy cows. Sixty multiparous Holstein cows were assigned to 10 blocks of 6 cows each according to their previous milk production. Within each block, 3 cows were fed a diet calculated to supply Met as 1.83% of metabolizable protein, whereas the 3 other cows were fed the same diet supplemented with 18g of RPM calculated to provide Met as 2.23% of metabolizable protein. Within each level of Met, the cows received no vitamin supplement or weekly intramuscular injections of 160mg of folic acid alone or combined with 10mg of vitamin B(12). Liver biopsies were taken at 2, 4, 8, and 16 wk of lactation. Liver concentrations of folates and vitamin B(12) were increased by their respective supplements but this response to vitamin supplements was altered by methionine supply. Concentrations of total lipids and triglycerides increased in livers of cows fed RPM, whereas concentrations of cholesterol ester, cholesterol, diglycerides, phosphatidylethanolamine, and phosphatidylcholine were not affected. Folic acid, alone or combined with vitamin B(12), tended to increase the ratio of phosphatidylcholine to phosphatidylethanolamine. Gene expression of 5,10-methylene-tetrahydrofolate reductase, microsomal transfer protein, and phosphatidylethanolamine methyltransferase were higher in liver of cows fed RPM supplements. The relative mRNA abundance of 5,10-methylene-tetrahydrofolate reductase and methylmalonyl-CoA mutase were increased by the combined injections of folic acid and vitamin B(12), whereas those of methionine synthase and methionine synthase reductase were not affected by treatments. These results suggest that increasing supply of methyl groups, as preformed labile methyl groups or through

  9. Metabolic Profiling of Impaired Cognitive Function in Patients Receiving Dialysis

    OpenAIRE

    Kurella Tamura, Manjula; Chertow, Glenn M.; Depner, Thomas A.; Nissenson, Allen R.; Schiller, Brigitte; Mehta, Ravindra L.; Liu, Sai; Sirich, Tammy L.

    2016-01-01

    Retention of uremic metabolites is a proposed cause of cognitive impairment in patients with ESRD. We used metabolic profiling to identify and validate uremic metabolites associated with impairment in executive function in two cohorts of patients receiving maintenance dialysis. We performed metabolic profiling using liquid chromatography/mass spectrometry applied to predialysis plasma samples from a discovery cohort of 141 patients and an independent replication cohort of 180 patients partici...

  10. Association of metabolic syndrome and 25-hydroxyvitamin D with cognitive impairment among elderly Koreans.

    Science.gov (United States)

    Lee, Eun Young; Lee, Su Jin; Kim, Kyoung Min; Yun, Young Mi; Song, Bo Mi; Kim, Jong Eun; Kim, Hyeon Chang; Rhee, Yumie; Youm, Yoosik; Kim, Chang Oh

    2017-07-01

    Metabolic syndrome and vitamin D deficiency are prevalent in older adults, and are considered risk factors for cognitive impairment. We investigated the combined effects of MetS and serum 25-hydroxyvitamin D (25[OH]D) levels on cognitive function in older adults. We studied 2940 participants aged ≥65 years from the Korean Urban Rural Elderly cohort study. Metabolic syndrome was defined according to the updated Adult Treatment Panel III criteria. Serum 25(OH)D levels were categorized into four groups: metabolic syndrome prevalence and lower serum 25(OH)D levels than those without cognitive impairment. In univariate analysis, both metabolic syndrome and low 25(OH)D levels were associated with cognitive impairment. These associations remained unchanged after adjusting for potential confounders including age, sex, season and education. In addition, participants with metabolic syndrome and low 25(OH)D had significantly increased odds for cognitive impairment (odds ratio 3.06, 95% CI 1.61-5.80) when compared with those with no metabolic syndrome and high 25(OH)D. Metabolic syndrome was associated with cognitive impairment, and this risk was synergistically increased when metabolic syndrome was combined with low 25(OH)D. A focus on individuals with metabolic syndrome and low 25(OH)D might be helpful to identify older adults who are at risk of cognitive impairment. Geriatr Gerontol Int 2017; 17: 1069-1075. © 2016 Japan Geriatrics Society.

  11. Systemic Metabolic Impairment and Lung Injury Following Acrolein Inhalation

    Science.gov (United States)

    A single ozone exposure causes pulmonary injury and systemic metabolic alterations through neuronal and hypothalamus pituitary adrenal axis activation. Metabolically impaired Goto Kakizaki (GK) rats with non-obese type-2 diabetes are more sensitive to ozone induced changes than h...

  12. Engineering a vitamin B12 high-throughput screening system by riboswitch sensor in Sinorhizobium meliloti.

    Science.gov (United States)

    Cai, Yingying; Xia, Miaomiao; Dong, Huina; Qian, Yuan; Zhang, Tongcun; Zhu, Beiwei; Wu, Jinchuan; Zhang, Dawei

    2018-05-11

    As a very important coenzyme in the cell metabolism, Vitamin B 12 (cobalamin, VB 12 ) has been widely used in food and medicine fields. The complete biosynthesis of VB 12 requires approximately 30 genes, but overexpression of these genes did not result in expected increase of VB 12 production. High-yield VB 12 -producing strains are usually obtained by mutagenesis treatments, thus developing an efficient screening approach is urgently needed. By the help of engineered strains with varied capacities of VB 12 production, a riboswitch library was constructed and screened, and the btuB element from Salmonella typhimurium was identified as the best regulatory device. A flow cytometry high-throughput screening system was developed based on the btuB riboswitch with high efficiency to identify positive mutants. Mutation of Sinorhizobium meliloti (S. meliloti) was optimized using the novel mutation technique of atmospheric and room temperature plasma (ARTP). Finally, the mutant S. meliloti MC5-2 was obtained and considered as a candidate for industrial applications. After 7 d's cultivation on a rotary shaker at 30 °C, the VB 12 titer of S. meliloti MC5-2 reached 156 ± 4.2 mg/L, which was 21.9% higher than that of the wild type strain S. meliloti 320 (128 ± 3.2 mg/L). The genome of S. meliloti MC5-2 was sequenced, and gene mutations were identified and analyzed. To our knowledge, it is the first time that a riboswitch element was used in S. meliloti. The flow cytometry high-throughput screening system was successfully developed and a high-yield VB 12 producing strain was obtained. The identified and analyzed gene mutations gave useful information for developing high-yield strains by metabolic engineering. Overall, this work provides a useful high-throughput screening method for developing high VB 12 -yield strains.

  13. The EGG 57-CO B-12 absorption test, in the evaluation of patients with low serum B-12

    International Nuclear Information System (INIS)

    Sinow, R.M.; Carmel, R.; Siegel, M.E.

    1985-01-01

    The Schilling Test (ST) is the standard test for diagnosing vitamin B-12 malabsorption (MA). However, patients with subtle gastric dysfunction may have normal ST, but impaired absorption of B-12 given with food. The authors have adapted an Egg B-12 Absorption Test (EBAT) in which 57-Co cyanocobalamin (57-Co B-12) is mixed with scrambled egg to evaluate this phenomenon in patients with low serum B-12, normal ST and possible subtle MA. Lyophilized egg yolk is reconstituted and mixed with 57-Co- B-12 of equal dose to that of ST. The authors studied 46 individuals: 13 controls, 5 patients with known pernicious anemia (PA), in addition to 28 patients with low serum B-12 levels and normal ST. ST/EBAT ratios were calculated. Twenty-eight test patients excreted 13.3% on ST and 3.5% on EBAT. Mean ST/EBAT ratio was 8.2 (1.4-35.9). Five had EBAT results in the PA range (<1%) and ST/EBAT ratios (14.4-35.9) that were significantly elevated. This group is also evaluated with pepsinogen I/II ratios, gastric analysis, deoxyuridine suppression tests, anti intrinsic factor, and antiparietal cell antibodies. The authors' results indicate that the EBAT can differentiate between PA and non PA patients, and that some patients with low serum B-12 levels and normal ST may, in fact, have subtle MA. The EBAT, combined with ST/EBAT ratio, may provide a means for identifying this group of patients

  14. Vitamin B-12 concentrations in breast milk are low and are not associated with reported household hunger, recent animal source food or vitamin B-12 intake among women in rural Kenya

    Science.gov (United States)

    Background: Breastmilk vitamin B-12 concentration may be inadequate in mothers living in regions where animal source food consumption is low or infrequent. Vitamin B-12 deficiency causes megaloglastic anemia and impairs growth and development in children. Objective: To measure vitamin B-12 in breast...

  15. Energy Metabolism Impairment in Migraine.

    Science.gov (United States)

    Cevoli, Sabina; Favoni, Valentina; Cortelli, Pietro

    2018-06-22

    Migraine is a common disabling neurological disorder which is characterised by recurring headache associated with a variety of sensory and autonomic symptoms. The pathophysiology of migraine remains not entirely understood, although many mechanisms involving the central and peripheral nervous system are now becoming clear. In particular, it is widely accepted that migraine is associated with energy metabolic impairment of the brain. The purpose of this review is to present an update overview of the energy metabolism involvement in the migraine pathophysiology. Several biochemical, morphological and magnetic resonance spectroscopy studies have confirmed the presence of energy production deficiency together with an increment of energy consumption in migraine patients. An increment of energy demand over a certain threshold create metabolic and biochemical preconditions for the onset of the migraine attack. The defect of oxidative energy metabolism in migraine is generalized. It remains to be determined if the mitochondrial deficit in migraine is primary or secondary. Riboflavin and Co-Enzyme Q10, both physiologically implicated in mitochondrial respiratory chain functioning, are effective in migraine prophylaxis, supporting the hypothesis that improving brain energy metabolism may reduce the susceptibility to migraine. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Impaired glucose metabolism in HIV-infected pregnant women: a retrospective analysis.

    LENUS (Irish Health Repository)

    Moore, Rebecca

    2015-05-20

    Metabolic complications including diabetes mellitus have been increasingly recognised in HIV-infected individuals since the introduction of antiretroviral therapy, particularly protease inhibitors (PIs). Pregnancy is also a risk factor for impaired glucose metabolism, and previous studies have given conflicting results regarding the contribution of PIs to impaired glucose tolerance (IGT) and gestational diabetes mellitus (GDM) in pregnant HIV-infected women.

  17. vitamin b12 levels in patients with type 2 diabetes mellitus

    African Journals Online (AJOL)

    is involved in DNA synthesis, fatty acid metabolism. VITAMIN B12 ..... concentrations of homocysteine, folate and vitamin B12 in ... and folic acid: a cross-sectional study in patients with type 2 ... pregnant women with polycystic ovary syndrome.

  18. Lactate rescues neuronal sodium homeostasis during impaired energy metabolism

    OpenAIRE

    Karus, Claudia; Ziemens, Daniel; Rose, Christine R

    2015-01-01

    Recently, we established that recurrent activity evokes network sodium oscillations in neurons and astrocytes in hippocampal tissue slices. Interestingly, metabolic integrity of astrocytes was essential for the neurons' capacity to maintain low sodium and to recover from sodium loads, indicating an intimate metabolic coupling between the 2 cell types. Here, we studied if lactate can support neuronal sodium homeostasis during impaired energy metabolism by analyzing whether glucose removal, pha...

  19. In vitro metabolism of benzo[a]pyrene-7,8-dihydrodiol and dibenzo[def,p]chrysene-11,12 diol in rodent and human hepatic microsomes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jordan N.; Mehinagic, Denis; Nag, Subhasree; Crowell, Susan R.; Corley, Richard A.

    2017-03-01

    Polycyclic aromatic hydrocarbons (PAHs) are contaminants that are ubiquitously found in the environment, produced through combustion of organic matter or petrochemicals, and many of which are procarcinogens. The prototypic PAH, benzo[a]pyrene (B[a]P) and the highly carcinogenic dibenzo[def,p]chrysene (DBC) are metabolically activated by isoforms of the P450 enzyme superfamily producing benzo[a]pyrene-7,8-dihydrodiol (B[a]P diol), dibenzo[def,p]chrysene-11,12 diol (DBC diol). Each of these diols can be further metabolized by cytochrome P450 enzymes to highly reactive diol-epoxide metabolites that readily react with DNA or by phase II conjugation facilitating excretion. To complement prior in vitro metabolism studies with parent B[a]P and DBC, both phase I metabolism and phase II glucuronidation of B[a]P diol and DBC diol were measured in hepatic microsomes from female B6129SF1/J mice, male Sprague-Dawley rats, and female humans. Metabolic parameters, including intrinsic clearance and Michaelis-Menten kinetics were calculated from substrate depletion data. Mice and rats demonstrated similar B[a]P diol phase I metabolic rates. Compared to rodents, human phase I metabolism of B[a]P diol demonstrated lower overall metabolic capacity, lower intrinsic clearance at higher substrate concentrations (>0.14 µM), and higher intrinsic clearance at lower substrate concentrations (<0.07 µM). Rates of DBC diol metabolism did not saturate in mice or humans and were highest overall in mice. Higher affinity constants and lower capacities were observed for DBC diol glucuronidation compared to B[a]P diol glucuronidation; however, intrinsic clearance values for these compounds were consistent within each species. Kinetic parameters reported here will be used to extend physiologically based pharmacokinetic (PBPK) models to include the disposition of B[a]P and DBC metabolites in animal models and humans to support future human health risk assessments.

  20. Hypocapnic but not metabolic alkalosis impairs alveolar fluid reabsorption.

    Science.gov (United States)

    Myrianthefs, Pavlos M; Briva, Arturo; Lecuona, Emilia; Dumasius, Vidas; Rutschman, David H; Ridge, Karen M; Baltopoulos, George J; Sznajder, Jacob Iasha

    2005-06-01

    Acid-base disturbances, such as metabolic or respiratory alkalosis, are relatively common in critically ill patients. We examined the effects of alkalosis (hypocapnic or metabolic alkalosis) on alveolar fluid reabsorption in the isolated and continuously perfused rat lung model. We found that alveolar fluid reabsorption after 1 hour was impaired by low levels of CO2 partial pressure (PCO2; 10 and 20 mm Hg) independent of pH levels (7.7 or 7.4). In addition, PCO2 higher than 30 mm Hg or metabolic alkalosis did not have an effect on this process. The hypocapnia-mediated decrease of alveolar fluid reabsorption was associated with decreased Na,K-ATPase activity and protein abundance at the basolateral membranes of distal airspaces. The effect of low PCO2 on alveolar fluid reabsorption was reversible because clearance normalized after correcting the PCO2 back to normal levels. These data suggest that hypocapnic but not metabolic alkalosis impairs alveolar fluid reabsorption. Conceivably, correction of hypocapnic alkalosis in critically ill patients may contribute to the normalization of lung ability to clear edema.

  1. Oxidative stress with tau hyperphosphorylation in memory impaired 1,2-diacetylbenzene-treated mice.

    Science.gov (United States)

    Kang, Sin-Woo; Kim, Sung Jin; Kim, Min-Sun

    2017-09-05

    Long-term exposure to organic solvent may be related to the incidence of neuronal diseases, such as, Alzheimer's disease, depression, multiple sclerosis, dementia, Parkinson's disease. Previously, the authors reported 1,2-diacetylbenzene (DAB; a neurotoxic metabolite of 1,2-diethylbenzene) causes central and peripheral neuropathies that lead to motor neuronal deficits. Furthermore, it is known DAB increases oxidative stress and protein adduct levels and impairs hippocampal neurogenesis in mice. The authors examined the relevance of oxidative stress and tau hyperphosphorylation in the hippocampus. Five-week-old male C57BL/6 mice were treated with 1 or 5mg/kg/day DAB for 2weeks. Neither overall body weight increases nor behavioral differences were observed after treatment, but kidney and liver weights decreased. Increased ROS production, activated glycogen synthase kinase-3β (GSK-3β) and tau hyperphosphorylation were observed in hippocampal homogenates. To assess memory impairment, the Morris Water Maze was used. Animals in the DAB-treated groups took longer to reach the platform. Movement patterns of DAB treated mice were more complicated and their swimming speeds were lower than those of controls. When SHSY5Y neuroblastoma cells were pretreated with NAC (an antioxidant) or a GSK-3β inhibitor, the expression of active GSK-3β and tau hyperphosphorylation were reduced. These results suggest ROS produced by DAB causes tau hyperphosphorylation via GSK-3β phosphorylation and it might be related to impaired memory deficit. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Human Vitamin B12 Absorption and Metabolism are Measured by Accelerator Mass Spectrometry Using Specifically Labeled 14C-Cobalamin

    International Nuclear Information System (INIS)

    Carkeet, C; Dueker, S R; Lango, J; Buchholz, B A; Miller, J W; Green, R; Hammock, B D; Roth, J R; Anderson, P J

    2006-01-01

    There is need for an improved test of human ability to assimilate dietary vitamin B 12 . Assaying and understanding absorption and uptake of B 12 is important because defects can lead to hematological and neurological complications. Accelerator mass spectrometry (AMS) is uniquely suited for assessing absorption and kinetics of 14 C-labeled substances after oral ingestion because it is more sensitive than decay counting and can measure levels of carbon-14 ( 14 C) in microliter volumes of biological samples, with negligible exposure of subjects to radioactivity. The test we describe employs amounts of B 12 in the range of normal dietary intake. The B 12 used was quantitatively labeled with 14 C at one particular atom of the DMB moiety by exploiting idiosyncrasies of Salmonellametabolism. In order to grow aerobically on ethanolamine, S. entericamust be provided with either pre-formed B 12 or two of its precursors: cobinamide and dimethylbenzimidazole (DMB). When provided with 14 C-DMB specifically labeled in the C2 position, cells produced 14 C-B 12 of high specific activity (2.1 GBq/mmol, 58 mCi/mmol) and no detectable dilution of label from endogenous DMB synthesis. In a human kinetic study, a physiological dose (1.5 mg, 2.2 KBq/59 nCi) of purified 14 C-B 12 was administered and showed plasma appearance and clearance curves consistent with the predicted behavior of the pure vitamin. This method opens new avenues for study of B 12 assimilation

  3. Vitamin B-12 supplementation during pregnancy and early lactation increases maternal, breast milk, and infant measures of vitamin B-12 status.

    Science.gov (United States)

    Duggan, Christopher; Srinivasan, Krishnamachari; Thomas, Tinku; Samuel, Tinu; Rajendran, Ramya; Muthayya, Sumithra; Finkelstein, Julia L; Lukose, Ammu; Fawzi, Wafaie; Allen, Lindsay H; Bosch, Ronald J; Kurpad, Anura V

    2014-05-01

    Pregnant women in resource-poor areas are at risk of multiple micronutrient deficiencies, and indicators of low vitamin B-12 status have been associated with adverse pregnancy outcomes, including anemia, low birth weight, and intrauterine growth retardation. To evaluate whether daily oral vitamin B-12 supplementation during pregnancy increases maternal and infant measures of vitamin B-12 status, we performed a randomized, placebo-controlled clinical trial. Pregnant women vitamin B-12 (50 μg) or placebo through 6 wk postpartum. All women were administered iron and folic acid supplements throughout pregnancy. One hundred eighty-three women were randomly assigned to receive vitamin B-12 and 183 to receive placebo. Compared with placebo recipients, vitamin B-12-supplemented women had significantly higher plasma vitamin B-12 concentrations at both the second (median vitamin B-12 concentration: 216 vs. 111 pmol/L, P vitamin B-12 concentration was 136 pmol/L in vitamin B-12-supplemented women vs. 87 pmol/L in the placebo group (P vitamin B-12-supplemented women, the incidence of delivering an infant with intrauterine growth retardation was 33 of 131 (25%) vs. 43 of 125 (34%) in those administered placebo (P = 0.11). In a subset of infants tested at 6 wk of age, median plasma vitamin B-12 concentration was 199 pmol/L in those born to supplemented women vs. 139 pmol/L in the placebo group (P = 0.01). Infant plasma methylmalonic acid and homocysteine concentrations were significantly lower in the vitamin B-12 group as well. Oral supplementation of urban Indian women with vitamin B-12 throughout pregnancy and early lactation significantly increases vitamin B-12 status of mothers and infants. It is important to determine whether there are correlations between these findings and neurologic and metabolic functions. This trial was registered at clinicaltrials.gov as NCT00641862.

  4. Low vitamin B-12 status and risk of cognitive decline in older adults

    DEFF Research Database (Denmark)

    Clarke, Robert; Birks, Jacqueline; Nexo, Ebba

    2007-01-01

    BACKGROUND: Elevated total homocysteine (tHcy) concentrations have been associated with cognitive impairment, but it is unclear whether low vitamin B-12 or folate status is responsible for cognitive decline. OBJECTIVE: We examined the associations of cognitive decline with vitamin B-12 and folate...

  5. Nuclear structure and magnetic moment of the unstable 12B-12N mirror pair

    International Nuclear Information System (INIS)

    Zheng Yongnan; Zhou Dongmei; Yuan Daqing; Zuo Yi; Fan Ping; Xu Yongjun; Zhu Jiazheng; Wang Zhiqiang; Luo Hailong; Zhang Xizhen; Zhu Shengyun; Mihara, M.; Matsuta, K.; Fukuda, M.; Minamisono, T.; Suzuki, T.

    2010-01-01

    Magnetic moments of the A=12 unstable mirror pair nuclides 12 B and 12 N have been measured by the β-NMR technique. The experimentally measured magnetic moments are μ( 12 B)=1.00(17)μ N and μ( 12 N)=0.4571(1)μ N . The improved shell model using an SFO Hamiltonian with enhanced spin-isospin monopole proton-neutron interaction and modified single-particle energies is employed to calculate the magnetic moments of 12 B and 12 N. The calculation yields μ( 12 B)=0.929μ N and μ( 12 N)=0.452μ N and has produced a new magic number 6 for the short-lived unstable mirror pair nuclides 12 B and 12 N. (authors)

  6. Identification of ABC transporters acting in vitamin B12 metabolism in Caenorhabditis elegans.

    Science.gov (United States)

    McDonald, Megan K; Fritz, Julie-Anne; Jia, Dongxin; Scheuchner, Deborah; Snyder, Floyd F; Stanislaus, Avalyn; Curle, Jared; Li, Liang; Stabler, Sally P; Allen, Robert H; Mains, Paul E; Gravel, Roy A

    2017-12-01

    Vitamin B 12 (cobalamin, Cbl) is a micronutrient essential to human health. Cbl is not utilized as is but must go through complex subcellular and metabolic processing to generate two cofactor forms: methyl-Cbl for methionine synthase, a cytosolic enzyme; and adenosyl-Cbl for methylmalonyl-CoA mutase, a mitochondrial enzyme. Some 10-12 human genes have been identified responsible for the intracellular conversion of Cbl to cofactor forms, including genes that code for ATP-binding cassette (ABC) transporters acting at the lysosomal and plasma membranes. However, the gene for mitochondrial uptake is not known. We hypothesized that ABC transporters should be candidates for other uptake and efflux functions, including mitochondrial transport, and set out to screen ABC transporter mutants for blocks in Cbl utilization using the nematode roundworm Caenorhabditis elegans. Thirty-seven mutant ABC transporters were screened for the excretion of methylmalonic acid (MMA), which should result from loss of Cbl transport into the mitochondria. One mutant, wht-6, showed elevated MMA excretion and reduced [ 14 C]-propionate incorporation, pointing to a functional block in methylmalonyl-CoA mutase. In contrast, the wht-6 mutant appeared to have a normal cytosolic pathway based on analysis of cystathionine excretion, suggesting that cytosolic methionine synthase was functioning properly. Further, the MMA excretion in wht-6 could be partially reversed by including vitamin B 12 in the assay medium. The human ortholog of wht-6 is a member of the G family of ABC transporters. We propose wht-6 as a candidate for the transport of Cbl into mitochondria and suggest that a member of the corresponding ABCG family of ABC transporters has this role in humans. Our ABC transporter screen also revealed that mrp-1 and mrp-2 mutants excreted lower MMA than wild type, suggesting they were concentrating intracellular Cbl, consistent with the cellular efflux defect proposed for the mammalian MRP1 ABC

  7. Vitamin B12 transport from food to the body's cells--a sophisticated, multistep pathway

    DEFF Research Database (Denmark)

    Nielsen, Marianne J; Rasmussen, Mie R; Andersen, Christian B F

    2012-01-01

    Vitamin B(12) (B(12); also known as cobalamin) is a cofactor in many metabolic processes; deficiency of this vitamin is associated with megaloblastic anaemia and various neurological disorders. In contrast to many prokaryotes, humans and other mammals are unable to synthesize B(12). Instead...... in the transport pathway are also known culprits of functional B(12) deficiency. Biochemical and genetic approaches have identified novel proteins in the B(12) transport pathway--now known to involve more than 15 gene products--delineating a coherent pathway for B(12) trafficking from food to the body's cells...

  8. Effects of 1,2-cyclohexanedione modification on the metabolism of very low density lipoprotein apolipoprotein B: potential role of receptors in intermediate density lipoprotein catabolism

    International Nuclear Information System (INIS)

    Packard, C.J.; Boag, D.E.; Clegg, R.; Bedford, D.; Shepherd, J.

    1985-01-01

    The conversion of very low density (VLDL) to low density lipoproteins (LDL) is a two-step process. The first step is mediated by lipoprotein lipase, but the mechanism responsible for the second is obscure. In this study we examined the possible involvement of receptors at this stage. Apolipoprotein B (apoB)-containing lipoproteins were separated into three fractions, VLDL (Sf 100-400), an intermediate fraction IDL (Sf 12-100), and LDL (Sf 0-12). Autologous 125I-labeled VLDL and 131I-labeled 1,2-cyclohexanedione-modified VLDL were injected into the plasma of four normal subjects and the rate of transfer of apoB radioactivity was followed through IDL to LDL. Modification did not affect VLDL to IDL conversion. Thereafter, however, the catabolism of modified apoB in IDL was retarded and its appearance in LDL was delayed. Hence, functional arginine residues (and by implication, receptors) are required in this process. Confirmation of this was obtained by injecting 125I-labeled IDL and 131I-labeled cyclohexanedione-treated IDL into two additional subjects. Again, IDL metabolism was delayed by approximately 50% as a result of the modification. These data are consistent with the view that receptors are involved in the metabolism of intermediate density lipoprotein

  9. Production Of Vitamin B 12 By Streptomyces Fulvissimus | Atta ...

    African Journals Online (AJOL)

    Fifty five of actinomycete isolates were screened for vitamin B12 production by growing on soybean meal medium fortified with cobalt. Only one AZ-Z-88 among nine actinomycete cultures was found to produce significantly higher yield of the vitamin B12 (64.57 ug/ml). Determination of vitamin B12 production was carried out ...

  10. Vitamin B12 among Vegetarians: Status, Assessment and Supplementation

    Directory of Open Access Journals (Sweden)

    Gianluca Rizzo

    2016-11-01

    Full Text Available Cobalamin is an essential molecule for humans. It acts as a cofactor in one-carbon transfers through methylation and molecular rearrangement. These functions take place in fatty acid, amino acid and nucleic acid metabolic pathways. The deficiency of vitamin B12 is clinically manifested in the blood and nervous system where the cobalamin plays a key role in cell replication and in fatty acid metabolism. Hypovitaminosis arises from inadequate absorption, from genetic defects that alter transport through the body, or from inadequate intake as a result of diet. With the growing adoption of vegetarian eating styles in Western countries, there is growing focus on whether diets that exclude animal foods are adequate. Since food availability in these countries is not a problem, and therefore plant foods are sufficiently adequate, the most delicate issue remains the contribution of cobalamin, which is poorly represented in plants. In this review, we will discuss the status of vitamin B12 among vegetarians, the diagnostic markers for the detection of cobalamin deficiency and appropriate sources for sufficient intake, through the description of the features and functions of vitamin B12 and its absorption mechanism.

  11. Vitamin B12 among Vegetarians: Status, Assessment and Supplementation.

    Science.gov (United States)

    Rizzo, Gianluca; Laganà, Antonio Simone; Rapisarda, Agnese Maria Chiara; La Ferrera, Gioacchina Maria Grazia; Buscema, Massimo; Rossetti, Paola; Nigro, Angela; Muscia, Vincenzo; Valenti, Gaetano; Sapia, Fabrizio; Sarpietro, Giuseppe; Zigarelli, Micol; Vitale, Salvatore Giovanni

    2016-11-29

    Cobalamin is an essential molecule for humans. It acts as a cofactor in one-carbon transfers through methylation and molecular rearrangement. These functions take place in fatty acid, amino acid and nucleic acid metabolic pathways. The deficiency of vitamin B12 is clinically manifested in the blood and nervous system where the cobalamin plays a key role in cell replication and in fatty acid metabolism. Hypovitaminosis arises from inadequate absorption, from genetic defects that alter transport through the body, or from inadequate intake as a result of diet. With the growing adoption of vegetarian eating styles in Western countries, there is growing focus on whether diets that exclude animal foods are adequate. Since food availability in these countries is not a problem, and therefore plant foods are sufficiently adequate, the most delicate issue remains the contribution of cobalamin, which is poorly represented in plants. In this review, we will discuss the status of vitamin B12 among vegetarians, the diagnostic markers for the detection of cobalamin deficiency and appropriate sources for sufficient intake, through the description of the features and functions of vitamin B12 and its absorption mechanism.

  12. Coenzyme B12 synthesis as a baseline to study metabolite contribution of animal microbiota.

    Science.gov (United States)

    Danchin, Antoine; Braham, Sherazade

    2017-07-01

    Microbial communities thrive in a number of environments. Exploration of their microbiomes - their global genome - may reveal metabolic features that contribute to the development and welfare of their hosts, or chemical cleansing of environments. Yet we often lack final demonstration of their causal role in features of interest. The reason is that we do not have proper baselines that we could use to monitor how microbiota cope with key metabolites in the hosting environment. Here, focusing on animal gut microbiota, we describe the fate of cobalamins - metabolites of the B12 coenzyme family - that are essential for animals but synthesized only by prokaryotes. Microbiota produce the vitamin used in a variety of animals (and in algae). Coprophagy plays a role in its management. For coprophobic man, preliminary observations suggest that the gut microbial production of vitamin B12 plays only a limited role. By contrast, the vitamin is key for structuring microbiota. This implies that it is freely available in the environment. This can only result from lysis of the microbes that make it. A consequence for biotechnology applications is that, if valuable for their host, B12-producing microbes should be sensitive to bacteriophages and colicins, or make spores. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  13. Cognitive impairment and Alzheimer’s disease: Links with oxidative stress and cholesterol metabolism

    Directory of Open Access Journals (Sweden)

    Alejandra Sekler

    2008-08-01

    Full Text Available Alejandra Sekler1,2, José M Jiménez2, Leonel Rojo2, Edgard Pastene3, Patricio Fuentes4, Andrea Slachevsky4, Ricardo B Maccioni1,21Center of Cognitive Neurosciences, International Center for Biomedicine (ICC, Santiago, Chile; 2Laboratory of Cellular, Molecular Biology and Neurosciences, Faculty of Sciences, Universidad de Chile, Santiago, Chile; 3Department of Pharmacy, Faculty of Pharmacy, University of Concepcion, Concepción, Chile; 4Unidad de Neurología Cognitiva y Demencias, Servicio de Neurología, Hospital del Salvador, Santiago, ChileAbstract: Oxidative stress has been implicated in the progression of a number of neurodegenerative diseases, including Alzheimer’s disease (AD, Parkinson’s disease and amyotrophic lateral sclerosis. We carried out an in-depth study of cognitive impairment and its relationships with oxidative stress markers such as ferric-reducing ability of plasma (FRAP, plasma malondialdehyde and total antioxidative capacity (TAC, as well as cholesterol parameters, in two subsets of subjects, AD patients (n = 59 and a control group of neurologically normal subjects (n = 29, attending the University Hospital Salvador in Santiago, Chile. Cognitive impairment was assessed by a set of neuropsychological tests (Mini-Mental State Examination, Boston Naming Test, Ideomotor Praxia by imitation, Semantic Verbal Fluency of animals or words with initial A, Test of Memory Alteration, Frontal Assessment Battery, while the levels of those oxidative stress markers and cholesterol metabolism parameters were determined according with standard bioassays in fresh plasma samples of the two subgroups of patients. No significant differences were observed when the cholesterol parameters (low-, high-density lipoprotein, total cholesterol of the AD group were compared with normal controls. Interestingly, a correlation was evidenced when the levels of cognitive impairment were analyzed with respect to the plasma antioxidant capacity (AOC of

  14. Robust Regression Analysis of GCMS Data Reveals Differential Rewiring of Metabolic Networks in Hepatitis B and C Patients

    Directory of Open Access Journals (Sweden)

    Cedric Simillion

    2017-10-01

    Full Text Available About one in 15 of the world’s population is chronically infected with either hepatitis virus B (HBV or C (HCV, with enormous public health consequences. The metabolic alterations caused by these infections have never been directly compared and contrasted. We investigated groups of HBV-positive, HCV-positive, and uninfected healthy controls using gas chromatography-mass spectrometry analyses of their plasma and urine. A robust regression analysis of the metabolite data was conducted to reveal correlations between metabolite pairs. Ten metabolite correlations appeared for HBV plasma and urine, with 18 for HCV plasma and urine, none of which were present in the controls. Metabolic perturbation networks were constructed, which permitted a differential view of the HBV- and HCV-infected liver. HBV hepatitis was consistent with enhanced glucose uptake, glycolysis, and pentose phosphate pathway metabolism, the latter using xylitol and producing threonic acid, which may also be imported by glucose transporters. HCV hepatitis was consistent with impaired glucose uptake, glycolysis, and pentose phosphate pathway metabolism, with the tricarboxylic acid pathway fueled by branched-chain amino acids feeding gluconeogenesis and the hepatocellular loss of glucose, which most probably contributed to hyperglycemia. It is concluded that robust regression analyses can uncover metabolic rewiring in disease states.

  15. Is muscle glycogenolysis impaired in X-linked phosphorylase b kinase deficiency?

    DEFF Research Database (Denmark)

    Orngreen, M.C.; Schelhaas, H.J.; Jeppesen, T.D.

    2008-01-01

    OBJECTIVE: It is unclear to what extent muscle phosphorylase b kinase (PHK) deficiency is associated with exercise-related symptoms and impaired muscle metabolism, because 1) only four patients have been characterized at the molecular level, 2) reported symptoms have been nonspecific, and 3......) lactate responses to ischemic handgrip exercise have been normal. METHODS: We studied a 50-year-old man with X-linked PHK deficiency using ischemic forearm and cycle ergometry exercise tests to define the derangement of muscle metabolism. We compared our findings with those in patients with Mc...... in healthy subjects. Constant workload elicited a second wind in all patients with McArdle disease, but not in the patient with PHK deficiency. IV glucose administration appeared to improve exercise tolerance in the patient with PHK deficiency, but not to the same extent as in the patients with Mc...

  16. The role of Cra in regulating acetate excretion and osmotic tolerance in E. coli K-12 and E. coli B at high density growth.

    Science.gov (United States)

    Son, Young-Jin; Phue, Je-Nie; Trinh, Loc B; Lee, Sang Jun; Shiloach, Joseph

    2011-06-30

    E. coli B (BL21), unlike E.coli K-12 (JM109) is insensitive to glucose concentration and, therefore, grows faster and produces less acetate than E. coli K-12, especially when growing to high cell densities at high glucose concentration. By performing genomic analysis, it was demonstrated that the cause of this difference in sensitivity to the glucose concentration is the result of the differences in the central carbon metabolism activity. We hypothesized that the global transcription regulator Cra (FruR) is constitutively expressed in E. coli B and may be responsible for the different behaviour of the two strains. To investigate this possibility and better understand the function of Cra in the two strains, cra - negative E. coli B (BL21) and E. coli K-12 (JM109) were prepared and their growth behaviour and gene expression at high glucose were evaluated using microarray and real-time PCR. The deletion of the cra gene in E. coli B (BL21) minimally affected the growth and maximal acetate accumulation, while the deletion of the same gene in E.coli K-12 (JM109) caused the cells to stop growing as soon as acetate concentration reached 6.6 g/L and the media conductivity reached 21 mS/cm. ppsA (gluconeogenesis gene), aceBA (the glyoxylate shunt genes) and poxB (the acetate producing gene) were down-regulated in both strains, while acs (acetate uptake gene) was down-regulated only in E.coli B (BL21). These transcriptional differences had little effect on acetate and pyruvate production. Additionally, it was found that the lower growth of E. coli K-12 (JM109) strain was the result of transcription inhibition of the osmoprotectant producing bet operon (betABT). The transcriptional changes caused by the deletion of cra gene did not affect the activity of the central carbon metabolism, suggesting that Cra does not act alone; rather it interacts with other pleiotropic regulators to create a network of metabolic effects. An unexpected outcome of this work is the finding that cra

  17. Retinoid acid-induced microRNA-27b-3p impairs C2C12 myoblast proliferation and differentiation by suppressing α-dystrobrevin

    Energy Technology Data Exchange (ETDEWEB)

    Li, Nan; Tang, Yi; Liu, Bo; Cong, Wei; Liu, Chao, E-mail: liuchao_19760711@yahoo.com; Xiao, Jing, E-mail: xiaoj@dmu.edu.cn

    2017-01-15

    We previously reported that excess retinoic acid (RA) resulted in hypoplastic and derangement of myofilaments in embryonic tongue by inhibiting myogenic proliferation and differentiation through CamKIID pathway. Our further studies revealed that the expression of a series of miRNAs was altered by RA administration in embryonic tongue as well as in C2C12 cells. Thus, if excess RA impairs myogenic proliferation and differentiation through miRNAs is taken into account. In present study, miR-27b-3p was found up-regulated in RA-treated C2C12 cells as in embryonic tongue, and predicted to target the 3′UTR of α-dystrobrevin (DTNA). Luciferase reporter assays confirmed the direct interaction between miR-27b-3p and the 3′UTR of DTNA. MiR-27b-3p mimics recapitulated the RA repression on DTNA expression, C2C12 proliferation and differentiation, while the miR-27b-3p inhibitor circumvented these defects resulting from excess RA. As expected, the effects of siDTNA on C2C12 were coincided with those by RA treatment or miR-27b-3p mimics. Therefore, these findings indicated that excess RA inhibited the myoblast proliferation and differentiation by up-regulating miR-27b-3p to target DTNA, which implied a new mechanism in myogenic hypoplasia. - Highlights: • A mechanism that RA results in tongue deformity by disrupting the myogenesis. • A non-muscle specific miR mediating the RA suppression on tongue myogenesis. • A target gene of non-muscle specific miR involved in RA induced tongue deformity.

  18. Regulation of lifespan, metabolism, and stress responses by the Drosophila SH2B protein, Lnk.

    Directory of Open Access Journals (Sweden)

    Cathy Slack

    2010-03-01

    Full Text Available Drosophila Lnk is the single ancestral orthologue of a highly conserved family of structurally-related intracellular adaptor proteins, the SH2B proteins. As adaptors, they lack catalytic activity but contain several protein-protein interaction domains, thus playing a critical role in signal transduction from receptor tyrosine kinases to form protein networks. Physiological studies of SH2B function in mammals have produced conflicting data. However, a recent study in Drosophila has shown that Lnk is an important regulator of the insulin/insulin-like growth factor (IGF-1 signaling (IIS pathway during growth, functioning in parallel to the insulin receptor substrate, Chico. As this pathway also has an evolutionary conserved role in the determination of organism lifespan, we investigated whether Lnk is required for normal lifespan in Drosophila. Phenotypic analysis of mutants for Lnk revealed that loss of Lnk function results in increased lifespan and improved survival under conditions of oxidative stress and starvation. Starvation resistance was found to be associated with increased metabolic stores of carbohydrates and lipids indicative of impaired metabolism. Biochemical and genetic data suggest that Lnk functions in both the IIS and Ras/Mitogen activated protein Kinase (MapK signaling pathways. Microarray studies support this model, showing transcriptional feedback onto genes in both pathways as well as indicating global changes in both lipid and carbohydrate metabolism. Finally, our data also suggest that Lnk itself may be a direct target of the IIS responsive transcription factor, dFoxo, and that dFoxo may repress Lnk expression. We therefore describe novel functions for a member of the SH2B protein family and provide the first evidence for potential mechanisms of SH2B regulation. Our findings suggest that IIS signaling in Drosophila may require the activity of a second intracellular adaptor, thereby yielding fundamental new insights into the

  19. Synthesis of benzo[b]fluoranthene derivatives and their application in research on the metabolic activation of benzo[b]fluoranthene

    International Nuclear Information System (INIS)

    Amin, S.; Huie, K.; Hussain, N.; Balanikas, G.; Geddie, J.E.; LaVoie, E.J.; Hecht, S.S.

    1986-01-01

    Our earlier studies on benzo[b]fluoranthene (BbF) have shown that dihydrodiols and phenols are formed metabolically in rat liver and mouse skin. The dihydrodiols were identified by comparison to synthetic standards as 1,2-dihydro-1,2-dihydroxyBbF and 11,12-dihydro-11,12-dihydroxyBbF. In the present study, the authors developed syntheses for BbF phenols and have used these standards to identify the metabolically formed phenols. In addition, they have prepared several methylated analogs of BbF and have tested their activities as tumor initiators on mouse skin

  20. Dementia with impaired glucose metabolism in late onset metachromatic leukodystrophy

    DEFF Research Database (Denmark)

    Johannsen, P.; Ehlers, L.; Hansen, Hans Jacob

    2001-01-01

    and attention deficits with a slow psychomotor speed. MR brain imaging displayed confluent hyperintensities of periventricular and subcortical white matter. Low levels of arylsulfatase A confirmed the diagnosis. Impaired cortical glucose metabolism especially of the medial temporal and frontal cortices...... was observed using positron emission tomography and fluor-18-labeled fluorodesoxyglucose. The neuropsychological deficits are related to the location of deficits in glucose metabolism....

  1. A patient with an inborn error of vitamin B12 metabolism (cblF) detected by newborn screening.

    Science.gov (United States)

    Armour, Christine M; Brebner, Alison; Watkins, David; Geraghty, Michael T; Chan, Alicia; Rosenblatt, David S

    2013-07-01

    A neonate, who was found to have an elevated C3/C2 ratio and minimally elevated propionylcarnitine on newborn screening, was subsequently identified as having the rare cblF inborn error of vitamin B12 (cobalamin) metabolism. This disorder is characterized by the retention of unmetabolized cobalamin in lysosomes such that it is not readily available for cellular metabolism. Although cultured fibroblasts from the patient did not show the expected functional abnormalities of the cobalamin-dependent enzymes, methylmalonyl-CoA mutase and methionine synthase, they did show reduced synthesis of the active cobalamin cofactors adenosylcobalamin and methylcobalamin. Mutation analysis of LMBRD1 established that the patient had the cblF disorder. Treatment was initiated promptly, and the patient showed a robust response to regular injections of cyanocobalamin, and she was later switched to hydroxocobalamin. Currently, at 3 years of age, the child is clinically well, with appropriate development. Adjusted newborn screening cutoffs in Ontario allowed detection of a deficiency that might not have otherwise been identified, allowing early treatment and perhaps preventing the adverse sequelae seen in some untreated patients.

  2. Genetic determinants of serum vitamin B12 and their relation to body mass index

    DEFF Research Database (Denmark)

    Allin, Kristine H.; Friedrich, Nele; Pietzner, Maik

    2017-01-01

    for associations between (1) serum vitamin B12 levels and body mass index (BMI), (2) genetic variants and serum vitamin B12 levels, and (3) genetic variants and BMI. The effect of a genetically determined decrease in serum vitamin B12 on BMI was estimated by instrumental variable regression. Decreased serum......Lower serum vitamin B12 levels have been related to adverse metabolic health profiles, including adiposity. We used a Mendelian randomization design to test whether this relation might be causal. We included two Danish population-based studies (ntotal = 9311). Linear regression was used to test...... vitamin B12 associated with increased BMI (P vitamin B12 associated variants associated strongly with serum vitamin B12 (P vitamin B12...

  3. A role for 12/15 lipoxygenase in the amyloid beta precursor protein metabolism.

    Science.gov (United States)

    Succol, Francesca; Praticò, Domenico

    2007-10-01

    12/15 Lipoxygenase (12/15LO) protein levels and activity are increased in pathologically affected regions of Alzheimer's disease (AD) brains, compared with controls. Its metabolic products are elevated in cerebrospinal fluid of patients with AD and individuals with mild cognitive impairment, suggesting that this enzyme may be involved early in AD pathogenesis. Herein, we investigate the effect of pharmacologic inhibition of 12/15LO on the amyloid beta precursor protein (APP) metabolism. To this end, we used CHO and N2A cells stably expressing human APP with the Swedish mutant, and two structurally distinct and selective 12/15LO inhibitors, PD146176 and CDC. Our results demonstrated that both drugs dose-dependently reduced Abeta formation without affecting total APP levels. Interestingly, in the same cells we observed a significant reduction in secreted (s)APPbeta and beta-secretase (BACE), but not sAPPalpha and ADAM10 protein levels. Together, these data show for the first time that this enzymatic pathway influences Abeta formation whereby modulating the BACE proteolytic cascade. We conclude that specific pharmacologic inhibition of 12/15LO could represent a novel therapeutic target for treating or preventing AD pathology in humans.

  4. Suppression of Glut1 and Glucose Metabolism by Decreased Akt/mTORC1 Signaling Drives T Cell Impairment in B Cell Leukemia

    NARCIS (Netherlands)

    Siska, Peter J.; van der Windt, Gerritje J. W.; Kishton, Rigel J.; Cohen, Sivan; Eisner, William; MacIver, Nancie J.; Kater, Arnon P.; Weinberg, J. Brice; Rathmell, Jeffrey C.

    2016-01-01

    Leukemia can promote T cell dysfunction and exhaustion that contributes to increased susceptibility to infection and mortality. The treatment-independent mechanisms that mediate leukemia-associated T cell impairments are poorly understood, but metabolism tightly regulates T cell function and may

  5. Cerebral Metabolic Differences Associated with Cognitive Impairment in Parkinson's Disease.

    Directory of Open Access Journals (Sweden)

    Yilin Tang

    Full Text Available To characterize cerebral glucose metabolism associated with different cognitive states in Parkinson's disease (PD using 18F-fluorodeoxyglucose (FDG and Positron Emission Tomography (PET.Three groups of patients were recruited in this study including PD patients with dementia (PDD; n = 10, with mild cognitive impairment (PD-MCI; n = 20, and with no cognitive impairment (PD-NC; n = 30. The groups were matched for age, sex, education, disease duration, motor disability, levodopa equivalent dose and Geriatric Depression Rating Scale (GDS score. All subjects underwent a FDG-PET study. Maps of regional metabolism in the three groups were compared using statistical parametric mapping (SPM5.PD-MCI patients exhibited limited areas of hypometabolism in the frontal, temporal and parahippocampal gyrus compared with the PD-NC patients (p < 0.01. PDD patients had bilateral areas of hypometabolism in the frontal and posterior parietal-occipital lobes compared with PD-MCI patients (p < 0.01, and exhibited greater metabolic reductions in comparison with PD-NC patients (p < 0.01.Compared with PD-NC patients, hypometabolism was much higher in the PDD patients than in PD-MCI patients, mainly in the posterior cortical areas. The result might suggest an association between posterior cortical hypometabolism and more severe cognitive impairment. PD-MCI might be important for early targeted therapeutic intervention and disease modification.

  6. Vitamin B12

    Science.gov (United States)

    ... Consumer Datos en español Health Professional Other Resources Vitamin B12 Fact Sheet for Consumers Have a question? ... out more about vitamin B12? Disclaimer What is vitamin B12 and what does it do? Vitamin B12 ...

  7. Low vitamin B-12 status and risk of cognitive decline in older adults

    DEFF Research Database (Denmark)

    Clarke, Robert; Birks, Jacqueline; Nexo, Ebba

    2007-01-01

    remained significant. CONCLUSIONS: Low vitamin B-12 status was associated with more rapid cognitive decline. Randomized trials are required to determine the relevance of vitamin B-12 supplementation for prevention of dementia. Udgivelsesdato: 2007-Nov......BACKGROUND: Elevated total homocysteine (tHcy) concentrations have been associated with cognitive impairment, but it is unclear whether low vitamin B-12 or folate status is responsible for cognitive decline. OBJECTIVE: We examined the associations of cognitive decline with vitamin B-12 and folate...... status in a longitudinal cohort study performed from 1993 to 2003 in Oxford, United Kingdom. DESIGN: Cognitive function was assessed with the Mini-Mental State Examination on >/=3 occasions during 10 y and related to serum concentrations of vitamin B-12, holotranscobalamin (holoTC), tHcy, methylmalonic...

  8. A clinical study on cognitive impairment in post-ischemic stroke patients with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    LI Chen

    2012-02-01

    Full Text Available Objective To explore the relation between metabolic syndrome (MetS and cognitive impairment after ischemic stroke. Methods Ninety-four cases of first ischemic stroke patients were divided into stroke without MetS group (n = 54 and stroke with MetS group (n = 40 according to the diagnostic criteria for MetS defined by Metabolic Syndrome Researching Group of Chinese Diabetes Society. All patients underwent Mini-Mental State Examination (MMSE, Clock Drawing Test (CDT, animal Verbal Fluency Test (aVFT, Trial Making Test-A (TMT-A at 2 weeks and 3 months after stroke to evaluate mental state such as verbal learning memory, and executive, attentional and visuospatial abilities. The incidence and development of cognitive impairment were also assessed. Results At 2 weeks and 3 months after stroke, the incidence of cognitive impairment were 24.47% (23/94 and 22.34% (21/94, respectively, and in the cognitive impairment patients the incidence of non-dementia were 21.28% (20/94 and 19.15% (18/94, while the incidence of dementia were 3.19% (3/94 and 3.19% (3/94, respectively. The incidence of cognitive impairment was higher in the stroke patients with MetS than the stroke patients without MetS, 37.50% (15/40 vs 14.81% (8/54 (Z = 2.500, P = 0.012 at 2 weeks after stroke and 35.00% (14/40 vs 12.96% (7/54 (Z = 2.513, P = 0.012 at 3 months after stroke. In the scores of MMSE, delay recall and CDT of the stroke patients with MetS were all lower than those without MetS at 2 weeks after stroke and at 3 months after stroke (P < 0.05, for all. The stroke patients with MetS had more cognition deterioration than the stroke patients without MetS at 3 months after stroke, the difference was significant (Z = 2.134, P = 0.033. Conclusion MetS can increase the incidence of cognitive impairment, especially non-dementia cognitive impairment in post ischemic stroke. Executive dysfunction and hypomnesis are often seen. The development of cognitive impairment in stroke patients

  9. CARDIOVASCULAR AND METABOLIC IMPAIRMENT IN PATIENTS WITH OBSTRUCTIVE SLEEP APNEA

    Directory of Open Access Journals (Sweden)

    M. V. Gorbunova

    2018-01-01

    Full Text Available Since the moment when the obstructive nature of sleep apnea was first revealed, many new in-formation on this disease have been obtained. Now obstructive sleep apnea (OSA recognized as an  independent predictor of the development of impaired glucose  tolerance (insulin resistance, fasting hyperglycaemia, type 2  diabetes mellitus (DM2, resistant arterial hypertension, cardio- vascular death. The problem of identifying and treating patients with OSA is still actual. In real clinical practice, there is a need for an integrated approach to the diagnosis and therapy of comorbid OSA patients with metabolic impairment and cardiovascular  diseases.The aim of this review is to assess the clinical and  pathogenesis features of metabolic impaired, carbohydrate metabolism, basic metabolism, eating behavior, body weight fluctuations in patients with ob-structive sleep apnea syndrome. Methods. In our work, we used a retrospective analysis of pub-lished clinical research data of domestic and foreign authors  over the past 20 years. The review included studies with adequate  design from the standpoint of «good clinical practice» (GCP and  evidence-based medicine.The conclusion. According to modern  interpretation, obstructive sleep apnea is considered as an  independent disease that has its pathogenic mechanisms, clinical  and functional manifestations. There are several main causes of the effect of OSA on the metabolic component and the work of the cardiovascular system. Among them, intermittent hypoxemia,  endothelial dysfunction, fluctuations in intrathoracic pressure,  increased activity of the sympathetic nervous system, disturbance of the structure of sleep are leading. OSA is considered as a disease capable of disabling patients of working age, dramatically changing  the quality of life, leading to early mortality due to cardiovascular  disasters. Timely detection of clinical symptoms of OSA and the  strategy of early

  10. 4-ethylphenyl-cobalamin impairs tissue uptake of vitamin B12 and causes vitamin B12 deficiency in mice

    DEFF Research Database (Denmark)

    Mutti, Elena; Ruetz, Markus; Birn, Henrik

    2013-01-01

    Coβ-4-ethylphenyl-cob(III) alamin (EtPhCbl) is an organometallic analogue of vitamin B12 (CNCbl) which binds to transcobalamin (TC), a plasma protein that facilitates the cellular uptake of cobalamin (Cbl). In vitro assays with key enzymes do not convert EtPhCbl to the active coenzyme forms of Cbl...... treated with EtPhCbl (1.01±0.12 µmol/L) compared to controls (0.30±0.02 µmol/L) and CNCbl (0.29±0.01 µmol/L) treated animals. The same pattern was observed for tHcy. Plasma total Cbl concentration was higher in animals treated with EtPhCbl (128.82±1.87 nmol/L) than in CNCbl treated animals (87.......64±0.93 nmol/L). However, the organ levels of total Cbl were significantly lower in animals treated with EtPhCbl compared to CNCbl treated animals or controls, notably in the liver (157.07±8.56 pmol/g vs. 603.85±20.02 pmol/g, and 443.09±12.32 pmol/g, respectively). Differences between the three groups...

  11. Low Maternal Vitamin B12 Status Is Associated with Lower Cord Blood HDL Cholesterol in White Caucasians Living in the UK

    Directory of Open Access Journals (Sweden)

    Antonysunil Adaikalakoteswari

    2015-04-01

    Full Text Available Background and Aims: Studies in South Asian population show that low maternal vitamin B12 associates with insulin resistance and small for gestational age in the offspring. Low vitamin B12 status is attributed to vegetarianism in these populations. It is not known whether low B12 status is associated with metabolic risk of the offspring in whites, where the childhood metabolic disorders are increasing rapidly. Here, we studied whether maternal B12 levels associate with metabolic risk of the offspring at birth. Methods: This is a cross-sectional study of 91 mother-infant pairs (n = 182, of white Caucasian origin living in the UK. Blood samples were collected from white pregnant women at delivery and their newborns (cord blood. Serum vitamin B12, folate, homocysteine as well as the relevant metabolic risk factors were measured. Results: The prevalence of low serum vitamin B12 (<191 ng/L and folate (<4.6 μg/L were 40% and 11%, respectively. Maternal B12 was inversely associated with offspring’s Homeostasis Model Assessment 2-Insulin Resistance (HOMA-IR, triglycerides, homocysteine and positively with HDL-cholesterol after adjusting for age and BMI. In regression analysis, after adjusting for likely confounders, maternal B12 is independently associated with neonatal HDL-cholesterol and homocysteine but not triglycerides or HOMA-IR. Conclusions: Our study shows that low B12 status is common in white women and is independently associated with adverse cord blood cholesterol.

  12. Impaired glucose metabolism and type 2 diabetes in apparently healthy senior citizens.

    Science.gov (United States)

    Medina Escobar, Pedro; Moser, Michel; Risch, Lorenz; Risch, Martin; Nydegger, Urs Ernst; Stanga, Zeno

    2015-01-01

    To estimate the prevalence of unknown impaired glucose metabolism, also referred to as prediabetes (PreD), and unknown type 2 diabetes mellitus (T2DM) among subjectively healthy Swiss senior citizens. The fasting plasma glucose (FPG) and glycated haemoglobin A(1c) (HbA(1c)) levels were used for screening. A total of 1 362 subjects were included (613 men and 749 women; age range 60-99 years). Subjects with known T2DM were excluded. The FPG was processed immediately for analysis under standardised preanalytical conditions in a cross-sectional cohort study; plasma glucose levels were measured by means of the hexokinase procedure, and HbA(1c) was measured chromatographically and classified using the current American Diabetes Association (ADA) criteria. The crude prevalence of individuals unaware of having prediabetic FPG or HbA(1c) levels, was 64.5% (n = 878). Analogously, unknown T2DM was found in 8.4% (n = 114) On the basis of HbA(1c) criteria alone, significantly more subjects with unknown fasting glucose impairment and laboratory T2DM could be identified than with the FPG. The prevalence of PreD as well as of T2DM increased with age. The mean HOMA indices (homeostasis model assessment) for the different age groups, between 2.12 and 2.59, are consistent with clinically hidden disease and are in agreement with the largely orderly Body Mass Indices found in the normal range. Laboratory evidence of impaired glucose metabolism and, to a lesser extent, unknown T2DM, has a high prevalence among subjectively healthy older Swiss individuals. Laboratory identification of people with unknown out-of-range glucose values and overt diabetic hyperglycaemia might improve the prognosis by delaying the emergence of overt disease.

  13. Vitamin B12 deficiency: Characterization of psychometrics and MRI morphometrics.

    Science.gov (United States)

    Hsu, Yen-Hsuan; Huang, Ching-Feng; Lo, Chung-Ping; Wang, Tzu-Lan; Tu, Min-Chien

    2016-01-01

    Vitamin B12 is essential for the integrity of the central nervous system. However, performances in different cognitive domains relevant to vitamin B12 deficiency remain to be detailed. To date, there have been limited studies that examined the relationships between cognitions and structural neuroimaging in a single cohort of low-vitamin B12 status. The present study aimed to depict psychometrics and magnetic resonance imaging (MRI) morphometrics among patients with vitamin B12 deficiency, and to examine their inter-relations. We compared 34 consecutive patients with vitamin B12 deficiency (serum level ≤ 250 pg/ml) to 34 demographically matched controls by their cognitive performances and morphometric indices of brain MRI. The correlations between psychometrics and morphometrics were analyzed. The vitamin B12 deficiency group had lower scores than the controls on total scores of Mini-Mental Status Examination (MMSE) and Cognitive Abilities Screening Instrument (CASI) (both P psychometric and morphometric indices, pronounced correlations between bicaudate ratio and long-term memory, mental manipulation, orientation, language, and verbal fluency were noted (all P < 0.01). Vitamin B12 deficiency is associated with a global cognition decline with language, orientation, and mental manipulation selectively impaired. Preferential atrophy in frontal regions is the main neuroimaging feature. Although the frontal ratio highlights the relevant atrophy among patients, the bicaudate ratio might be the best index on the basis of its strong association with global cognition and related cognitive domains, implying dysfunction of fronto-subcortical circuits as the fundamental pathogenesis related to vitamin B12 deficiency.

  14. Effect of acute acid-base disturbances on ErbB1/2 tyrosine phosphorylation in rabbit renal proximal tubules.

    Science.gov (United States)

    Skelton, Lara A; Boron, Walter F

    2013-12-15

    The renal proximal tubule (PT) is a major site for maintaining whole body pH homeostasis and is responsible for reabsorbing ∼80% of filtered HCO3(-), the major plasma buffer, into the blood. The PT adapts its rate of HCO3(-) reabsorption (JHCO3(-)) in response to acute acid-base disturbances. Our laboratory previously showed that single isolated perfused PTs adapt JHCO3(-) in response to isolated changes in basolateral (i.e., blood side) CO2 and HCO3(-) concentrations but, surprisingly, not to pH. The response to CO2 concentration can be blocked by the ErbB family tyrosine kinase inhibitor PD-168393. In the present study, we exposed enriched rabbit PT suspensions to five acute acid-base disturbances for 5 and 20 min using a panel of phosphotyrosine (pY)-specific antibodies to determine the influence of each disturbance on pan-pY, ErbB1-specific pY (four sites), and ErbB2-specific pY (two sites). We found that each acid-base treatment generated a distinct temporal pY pattern. For example, the summated responses of the individual ErbB1/2-pY sites to each disturbance showed that metabolic acidosis (normal CO2 concentration and reduced HCO3(-) concentration) produced a transient summated pY decrease (5 vs. 20 min), whereas metabolic alkalosis produced a transient increase. Respiratory acidosis (normal HCO3(-) concentration and elevated CO2 concentration) had little effect on summated pY at 5 min but produced an elevation at 20 min, whereas respiratory alkalosis produced a reduction at 20 min. Our data show that ErbB1 and ErbB2 in the PT respond to acute acid-base disturbances, consistent with the hypothesis that they are part of the signaling cascade.

  15. Vitamin B-12 treatment of asymptomatic, deficient, elderly Chileans improves conductivity in myelinated periphreal nerves, but high serum folate impairs vitamin B-12 status response assessed by the combined indicator of..

    Science.gov (United States)

    Since 2005 the National Feeding Program for the Elderly (PACAM) in Chile has provided a B12 fortified milk drink (1.7 µg B12/d) which is insufficient to ensure B12 adequacy in many individuals. The objective was to evaluate effects of adding 1 mg B12/d to PACAM vs 1 mg B12/d as a pill with PACAM on ...

  16. Clinical Trial Assessing the Efficacy of Gabapentin Plus B Complex (B1/B12 versus Pregabalin for Treating Painful Diabetic Neuropathy

    Directory of Open Access Journals (Sweden)

    Alberto Mimenza Alvarado

    2016-01-01

    Full Text Available Introduction. Painful diabetic neuropathy (PDN is a prevalent and impairing disorder. The objective of this study was to show the efficacy and safety of gabapentin (GBP plus complex B vitamins: thiamine (B1 and cyanocobalamine (B12 compared to pregabalin in patients with moderate to severe intensity PDN. Method. Multicenter, randomized, blind study. Two hundred and seventy patients were evaluated, 147 with GBP/B1/B12 and 123 with PGB, with a 7/10 pain intensity on the Visual Analog Scale (VAS. Five visits (12 weeks were scheduled. The GBP/B1 (100 mg/B12 (20 mg group started with 300 mg at visit 1 to 3600 mg at visit 5. The PGB group started with 75 mg/d at visit 1 to 600 mg/d at visit 5. Different safety and efficacy scales were applied, as well as adverse event assessment. Results. Both drugs showed reduction of pain intensity, without significant statistical difference (P=0.900. In the GBP/B1/B12 group, an improvement of at least 30% on VAS correlated to a 900 mg/d dose, compared with PGB 300 mg/d. Likewise, occurrence of vertigo was lower in the GBP/B1-B12 group, with a significant statistical difference, P=0.014. Conclusions. Our study shows that GPB/B1-B12 combination is as effective as PGB. Nonetheless, pain intensity reduction is achieved with 50% of the minimum required gabapentin dose alone (800 to 1600 mg/d in classic NDD trials. Less vertigo and dizziness occurrence was also observed in the GBP/B1/B12 group. This trial is registered with ClinicalTrials.gov NCT01364298.

  17. Impaired NAD+ Metabolism in Neuronal Dysfunction in Critical Conditions

    Directory of Open Access Journals (Sweden)

    A. V Salmina

    2008-01-01

    Full Text Available The present views of the pathogenesis of neuronal dysfunction in critical conditions are analyzed, by taking into account of impairments of cellular NAD+ metabolism, the activity of NAD+-converting enzymes, including ADP-ribosyl cyclase/CD38, the possibilities of developing new neuroprotective strategies. Key words: neuronal dysfunction, ADP-rybosyl cyclase/CD38, NAD+, critical condition.

  18. Association between intake of B vitamins and cognitive function in elderly Koreans with cognitive impairment.

    Science.gov (United States)

    Kim, Hyesook; Kim, Ggotpin; Jang, Won; Kim, Seong Yoon; Chang, Namsoo

    2014-12-17

    It is possible that blood B vitamins level and cognitive function may be affected by dietary intake of these vitamins, no study however has yet been conducted on relationships between B vitamins intake and cognitive function among elderly population in Korea. This study examined the relationship between B vitamins intake and cognitive function among elderly in South Korea. Participants consisted of 100 adults with mild cognitive impairment (MCI), 100 with Alzheimer's disease (AD), and 121 normal subjects. Dietary intake data that included the use of dietary supplements were obtained using a 24-hour recall method by well-trained interviewers. Plasma folate and vitamin B12 concentrations were analyzed by radioimmunoassay, and homocysteine (Hcy) was assessed by a high performance liquid chromatography-fluorescence method. Plasma levels of folate and vitamin B12 were positively correlated with B vitamins intake; and plasma Hcy was negatively correlated with total intake of vitamin B2, vitamin B6, vitamin B12 and folate. In the AD group, a multiple regression analysis after adjusting for covariates revealed positive relationships between vitamin B2 intake and test scores for the MMSE-KC, Boston Naming, Word Fluency, Word List Memory and Constructional Recall Tests; and between vitamin B6 intake and the MMSE-KC, Boston Naming, Word Fluency, Word List Memory, Word List Recognition, Constructional Recall and Constructional Praxis Tests. Positive associations were observed between vitamin B12 intake and the MMSE-KC, Boston Naming, Constructional Recall and Constructional Praxis Tests, and between folate intake and the Constructional Recall Test. In the MCI group, vitamin B2 intake was positively associated with the MMSE-KC and Boston Naming Test, vitamin B6 intake was positively associated with the Boston Naming Test, and folate intake was positively associated with the MMSE-KC and Word List Memory test. No associations were observed in the normal group. These results

  19. Proteomic evidences for rex regulation of metabolism in toxin-producing Bacillus cereus ATCC 14579.

    Directory of Open Access Journals (Sweden)

    Sabrina Laouami

    Full Text Available The facultative anaerobe, Bacillus cereus, causes diarrheal diseases in humans. Its ability to deal with oxygen availability is recognized to be critical for pathogenesis. The B. cereus genome comprises a gene encoding a protein with high similarities to the redox regulator, Rex, which is a central regulator of anaerobic metabolism in Bacillus subtilis and other Gram-positive bacteria. Here, we showed that B. cereus rex is monocistronic and down-regulated in the absence of oxygen. The protein encoded by rex is an authentic Rex transcriptional factor since its DNA binding activity depends on the NADH/NAD+ ratio. Rex deletion compromised the ability of B. cereus to cope with external oxidative stress under anaerobiosis while increasing B. cereus resistance against such stress under aerobiosis. The deletion of rex affects anaerobic fermentative and aerobic respiratory metabolism of B. cereus by decreasing and increasing, respectively, the carbon flux through the NADH-recycling lactate pathway. We compared both the cellular proteome and exoproteome of the wild-type and Δrex cells using a high throughput shotgun label-free quantitation approach and identified proteins that are under control of Rex-mediated regulation. Proteomics data have been deposited to the ProteomeXchange with identifier PXD000886. The data suggest that Rex regulates both the cross-talk between metabolic pathways that produce NADH and NADPH and toxinogenesis, especially in oxic conditions.

  20. MiR130b-Regulation of PPARγ Coactivator- 1α Suppresses Fat Metabolism in Goat Mammary Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Zhi Chen

    Full Text Available Fat metabolism is a complicated process regulated by a series of factors. microRNAs (miRNAs are a class of negative regulator of proteins and play crucial roles in many biological processes; including fat metabolism. Although there have been some researches indicating that miRNAs could influence the milk fat metabolism through targeting some factors, little is known about the effect of miRNAs on goat milk fat metabolism. Here we utilized an improved miRNA detection assay, S-Poly-(T, to profile the expression of miRNAs in the goat mammary gland in different periods, and found that miR-130b was abundantly and differentially expressed in goat mammary gland. Additionally, overexpressing miR-130b impaired adipogenesis while inhibiting miR-130b enhanced adipogenesis in goat mammary epithelial cells. Utilizing 3'-UTR assay and Western Blot analusis, the protein peroxisome proliferator-activated receptor coactivator-1α (PGC1α, a major regulator of fat metabolism, was demonstrated to be a potential target of miR-130b. Interestingly, miR-130b potently repressed PGC1α expression by targeting both the PGC1α mRNA coding and 3' untranslated regions. These findings have some insight of miR-130b in mediating adipocyte differentiation by repressing PGC1α expression and this contributes to further understanding about the functional significance of miRNAs in milk fat synthesis.

  1. Vitamin B12 absorption capacity in healthy children

    International Nuclear Information System (INIS)

    Hjelt, K.; Krasilnikoff, P.A.

    1986-01-01

    B12 absorption was investigated in 47 healthy children aged 7 months to 15.8 years (median 4.9 years). The patients had either recovered from giardiasis, the post-gastroenteritis syndrome, or had celiac disease in remission (treated with a gluten-free diet). The B12 absorption was measured by a double-isotope technique using 57 CoB12 and 51 CrCl 3 , the latter being the inabsorbable marker. The radiation dose was minimal. The results were presented as fractional absorption of B12 (FAB12). Within the different age groups, the absorption test was performed by means of the following oral amounts of B12: 0- less than 1 year, 0.5 microgram; 1-3 years: 1.7 micrograms, 4-6 years, 2.5 micrograms; 7-10 years; 3.3 micrograms; and 11-15 years, 4.5 micrograms. When using these oral amounts of B12, the medians (and ranges) of FAB12 were found to be: 1-3 years (n = 18), 37% (16-80%); 4-6 years (n = 10), 27% (19-40%); 7-10 years (n = 9), 32% (21-44%); and 11-15 years (n = 8), 27% (19-59%). The FAB12 in two children aged 7 and 11 months was 31% and 32%, respectively. These results may be interpretated as reference values for B12 absorption in children. Further absorption tests were performed in seven children representing the four age groups from 1 to 15 years. When a high oral amount of B12 was given (i.e., three times the saturation dose), the FAB12 ranged from 0 to 20% (median 9%), whereas a low amount (i.e., one-ninth of the saturation dose) produced fractional absorptions from 65 to 82% (median 74%)

  2. Vitamin B12 absorption capacity in healthy children

    Energy Technology Data Exchange (ETDEWEB)

    Hjelt, K.; Krasilnikoff, P.A.

    1986-03-01

    B12 absorption was investigated in 47 healthy children aged 7 months to 15.8 years (median 4.9 years). The patients had either recovered from giardiasis, the post-gastroenteritis syndrome, or had celiac disease in remission (treated with a gluten-free diet). The B12 absorption was measured by a double-isotope technique using /sup 57/CoB12 and /sup 51/CrCl/sub 3/, the latter being the inabsorbable marker. The radiation dose was minimal. The results were presented as fractional absorption of B12 (FAB12). Within the different age groups, the absorption test was performed by means of the following oral amounts of B12: 0- less than 1 year, 0.5 microgram; 1-3 years: 1.7 micrograms, 4-6 years, 2.5 micrograms; 7-10 years; 3.3 micrograms; and 11-15 years, 4.5 micrograms. When using these oral amounts of B12, the medians (and ranges) of FAB12 were found to be: 1-3 years (n = 18), 37% (16-80%); 4-6 years (n = 10), 27% (19-40%); 7-10 years (n = 9), 32% (21-44%); and 11-15 years (n = 8), 27% (19-59%). The FAB12 in two children aged 7 and 11 months was 31% and 32%, respectively. These results may be interpretated as reference values for B12 absorption in children. Further absorption tests were performed in seven children representing the four age groups from 1 to 15 years. When a high oral amount of B12 was given (i.e., three times the saturation dose), the FAB12 ranged from 0 to 20% (median 9%), whereas a low amount (i.e., one-ninth of the saturation dose) produced fractional absorptions from 65 to 82% (median 74%).

  3. Dual isotope Schilling test for measuring absorption of food-bound and free vitamin B12 simultaneously

    International Nuclear Information System (INIS)

    Doscherholmen, A.; Silvis, S.; McMahon, J.

    1983-01-01

    A prototype food-bound vitamin B12 (food-B12) absorption test has been developed in which 57 Co-B12 was incorporated in vitro into egg yolk (yolk-B12) and served to volunteers in 50-g cooked portions together with toast and coffee for breakfast. Six hours later, 1 mg nonlabeled B12 was given intramuscularly and 24-hour urine was collected for radioactivity measurement. In separate tests, the absorption of yolk-B12 and crystalline 57 Co-B12 was equally poor in patients with pernicious anemia. However, in patients with simple gastric achlorhydria and those who had undergone gastric surgery, the assimilation of yolk-B12 was impaired greatly, whereas the absorption of crystalline radio-B12 was normal. Egg yolk labeled with 58 Co-B12 was administered together with crystalline 57 Co-B12 in a dual isotope test with results similar to those obtained when the tests were prepared separately. This yolk- 58 Co-B12 test with its ability to detect malabsorption of food-B12 may be considered as an addition to the first part of the Schilling test

  4. Vitamin B12 and folate deficiency in chronic heart failure.

    Science.gov (United States)

    van der Wal, Haye H; Comin-Colet, Josep; Klip, Ijsbrand T; Enjuanes, Cristina; Grote Beverborg, Niels; Voors, Adriaan A; Banasiak, Waldemar; van Veldhuisen, Dirk J; Bruguera, Jordi; Ponikowski, Piotr; Jankowska, Ewa A; van der Meer, Peter

    2015-02-01

    To determine the prevalence, clinical correlates and the effects on outcome of vitamin B12 and folic acid levels in patients with chronic heart failure (HF). We studied an international pooled cohort comprising 610 patients with chronic HF. The main outcome measure was all-cause mortality. Mean age of the patients was 68±12 years and median serum N-terminal prohormone brain natriuretic peptide level was 1801 pg/mL (IQR 705-4335). Thirteen per cent of the patients had an LVEF >45%. Vitamin B12 deficiency (serum level <200 pg/mL), folate deficiency (serum level <4.0 ng/mL) and iron deficiency (serum ferritin level <100 µg/L, or 100-299 µg/L with a transferrin saturation <20%) were present in 5%, 4% and 58% of the patients, respectively. No significant correlation between mean corpuscular volume and vitamin B12, folic acid or ferritin levels was observed. Lower folate levels were associated with an impaired health-related quality of life (p=0.029). During a median follow-up of 2.10 years (1.31-3.60 years), 254 subjects died. In multivariable proportional hazard models, vitamin B12 and folic acid levels were not associated with prognosis. Vitamin B12 and folate deficiency are relatively rare in patients with chronic HF. Since no significant association was observed between mean corpuscular volume and neither vitamin B12 nor folic acid levels, this cellular index should be used with caution in the differential diagnosis of anaemia in patients with chronic HF. In contrast to iron deficiency, vitamin B12 and folic acid levels were not related to prognosis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  5. Physical activity energy expenditure vs cardiorespiratory fitness level in impaired glucose metabolism

    DEFF Research Database (Denmark)

    Lidegaard, Lærke P; Hansen, Anne-Louise Smidt; Johansen, Nanna B

    2015-01-01

    Aim/hypothesis: Little is known about the relative roles of physical activity energy expenditure (PAEE) and cardiorespiratory fitness (CRF) as determinants of glucose regulation. The aim of this study was to examine the associations of PAEE and CRF with markers of glucose metabolism, and to test...... the hypothesis that CRF modifies the association between PAEE and glucose metabolism. Methods: We analysed cross-sectional data from 755 adults from the Danish ADDITION-PRO study. On the basis of OGTT results, participants without known diabetes were classified as having normal glucose tolerance, isolated...... impaired fasting glycaemia (i-IFG), isolated impaired glucose tolerance (i-IGT), combined IFG + IGT or screen-detected diabetes mellitus. Markers of insulin sensitivity and beta cell function were determined. PAEE was measured using a combined heart rate and movement sensor. CRF (maximal oxygen uptake...

  6. Diet-induced obesity impairs endometrial stromal cell decidualization: a potential role for impaired autophagy.

    Science.gov (United States)

    Rhee, Julie S; Saben, Jessica L; Mayer, Allyson L; Schulte, Maureen B; Asghar, Zeenat; Stephens, Claire; Chi, Maggie M-Y; Moley, Kelle H

    2016-06-01

    What effect does diet-induced obesity have on endometrial stromal cell (ESC) decidualization? Diet-induced obesity impairs ESC decidualization. Decidualization is important for successful implantation and subsequent health of the pregnancy. Compared with normal-weight women, obese women have lower pregnancy rates (both spontaneous and by assisted reproductive technology), higher rates of early pregnancy loss and poorer oocyte quality. Beginning at 6 weeks of age, female C57Bl/6J mice were fed either a high-fat/high-sugar diet (HF/HS; 58% Fat Energy/Sucrose) or a diet of standard mouse chow (CON; 13% Fat) for 12 weeks. At this point, metabolic parameters were measured. Some of the mice (n = 9 HF/HS and 9 CON) were mated with reproductively competent males, and implantation sites were assessed. Other mice (n = 11 HF/HS and 10 CON) were mated with vasectomized males, and artificial decidualization was induced. For in vitro human studies of primary ESCs, endometrial tissue was obtained via biopsy from normo-ovulatory patients without history of infertility (obese = BMI > 30 kg/m(2), n = 11 and lean = BMI treatment with cAMP and medroxyprogesterone. The level of expression of decidualization markers was assessed by RT-qPCR (mRNA) and western blotting (protein). ATP content of ESCs was measured, and levels of autophagy were assessed by western blotting of the autophagy regulators acetyl coa carboxylase (ACC) and ULK1 (Ser 317). Autophagic flux was measured by western blot of the marker LC3b-II. Mice exposed to an HF/HS diet became obese and metabolically impaired. HF/HS-exposed mice mated to reproductively competent males had smaller implantation sites in early pregnancy (P obese women than in those of normal-weight women (Ptreatment abrogated this increase. Many aspects of obesity and metabolic impairment could contribute to the decidualization defects observed in the HF/HS-exposed mice. Although our findings suggest that both autophagy and decidualization are impaired

  7. A structured approach to the study of metabolic control principles in intact and impaired mitochondria.

    Science.gov (United States)

    Huber, Heinrich J; Connolly, Niamh M C; Dussmann, Heiko; Prehn, Jochen H M

    2012-03-01

    We devised an approach to extract control principles of cellular bioenergetics for intact and impaired mitochondria from ODE-based models and applied it to a recently established bioenergetic model of cancer cells. The approach used two methods for varying ODE model parameters to determine those model components that, either alone or in combination with other components, most decisively regulated bioenergetic state variables. We found that, while polarisation of the mitochondrial membrane potential (ΔΨ(m)) and, therefore, the protomotive force were critically determined by respiratory complex I activity in healthy mitochondria, complex III activity was dominant for ΔΨ(m) during conditions of cytochrome-c deficiency. As a further important result, cellular bioenergetics in healthy, ATP-producing mitochondria was regulated by three parameter clusters that describe (1) mitochondrial respiration, (2) ATP production and consumption and (3) coupling of ATP-production and respiration. These parameter clusters resembled metabolic blocks and their intermediaries from top-down control analyses. However, parameter clusters changed significantly when cells changed from low to high ATP levels or when mitochondria were considered to be impaired by loss of cytochrome-c. This change suggests that the assumption of static metabolic blocks by conventional top-down control analyses is not valid under these conditions. Our approach is complementary to both ODE and top-down control analysis approaches and allows a better insight into cellular bioenergetics and its pathological alterations.

  8. Effect of B vitamins and lowering homocysteine on cognitive impairment in patients with previous stroke or transient ischemic attack: a prespecified secondary analysis of a randomized, placebo-controlled trial and meta-analysis.

    Science.gov (United States)

    Hankey, Graeme J; Ford, Andrew H; Yi, Qilong; Eikelboom, John W; Lees, Kennedy R; Chen, Christopher; Xavier, Denis; Navarro, Jose C; Ranawaka, Udaya K; Uddin, Wasim; Ricci, Stefano; Gommans, John; Schmidt, Reinhold; Almeida, Osvaldo P; van Bockxmeer, Frank M

    2013-08-01

    High plasma total homocysteine (tHcy) has been associated with cognitive impairment but lowering tHcy with B-vitamins has produced equivocal results. We aimed to determine whether B-vitamin supplementation would reduce tHcy and the incidence of new cognitive impairment among individuals with stroke or transient ischemic attack≥6 months previously. A total of 8164 patients with stroke or transient ischemic attack were randomly allocated to double-blind treatment with one tablet daily of B-vitamins (folic acid, 2 mg; vitamin B6, 25 mg; vitamin B12, 500 μg) or placebo and followed up for 3.4 years (median) in the VITAmins TO Prevent Stroke (VITATOPS) trial. For this prespecified secondary analysis of VITATOPS, the primary outcome was a new diagnosis of cognitive impairment, defined as a Mini-Mental State Examination (MMSE) score6 months after the qualifying stroke; 2608 participants were cognitively unimpaired (MMSE≥24), of whom 2214 participants (1110 B-vitamins versus 1104 placebo) had follow-up MMSEs during 2.8 years (median). At final follow-up, allocation to B-vitamins, compared with placebo, was associated with a reduction in mean tHcy (10.2 μmol/L versus 14.2 μmol/L; Pvitamin B6, and vitamin B12 to a self-selected clinical trial cohort of cognitively unimpaired patients with previous stroke or transient ischemic attack lowered mean tHcy but had no effect on the incidence of cognitive impairment or cognitive decline, as measured by the MMSE, during a median of 2.8 years. URL: http://www.controlled-trials.com. Unique identifier: ISRCTN74743444; URL: http://www.clinicaltrials.gov. Unique identifier: NCT00097669.

  9. Lactate rescues neuronal sodium homeostasis during impaired energy metabolism.

    Science.gov (United States)

    Karus, Claudia; Ziemens, Daniel; Rose, Christine R

    2015-01-01

    Recently, we established that recurrent activity evokes network sodium oscillations in neurons and astrocytes in hippocampal tissue slices. Interestingly, metabolic integrity of astrocytes was essential for the neurons' capacity to maintain low sodium and to recover from sodium loads, indicating an intimate metabolic coupling between the 2 cell types. Here, we studied if lactate can support neuronal sodium homeostasis during impaired energy metabolism by analyzing whether glucose removal, pharmacological inhibition of glycolysis and/or addition of lactate affect cellular sodium regulation. Furthermore, we studied the effect of lactate on sodium regulation during recurrent network activity and upon inhibition of the glial Krebs cycle by sodium-fluoroacetate. Our results indicate that lactate is preferentially used by neurons. They demonstrate that lactate supports neuronal sodium homeostasis and rescues the effects of glial poisoning by sodium-fluoroacetate. Altogether, they are in line with the proposed transfer of lactate from astrocytes to neurons, the so-called astrocyte-neuron-lactate shuttle.

  10. Lactate rescues neuronal sodium homeostasis during impaired energy metabolism

    Science.gov (United States)

    Karus, Claudia; Ziemens, Daniel; Rose, Christine R

    2015-01-01

    Recently, we established that recurrent activity evokes network sodium oscillations in neurons and astrocytes in hippocampal tissue slices. Interestingly, metabolic integrity of astrocytes was essential for the neurons' capacity to maintain low sodium and to recover from sodium loads, indicating an intimate metabolic coupling between the 2 cell types. Here, we studied if lactate can support neuronal sodium homeostasis during impaired energy metabolism by analyzing whether glucose removal, pharmacological inhibition of glycolysis and/or addition of lactate affect cellular sodium regulation. Furthermore, we studied the effect of lactate on sodium regulation during recurrent network activity and upon inhibition of the glial Krebs cycle by sodium-fluoroacetate. Our results indicate that lactate is preferentially used by neurons. They demonstrate that lactate supports neuronal sodium homeostasis and rescues the effects of glial poisoning by sodium-fluoroacetate. Altogether, they are in line with the proposed transfer of lactate from astrocytes to neurons, the so-called astrocyte-neuron-lactate shuttle. PMID:26039160

  11. Elevated 20-HETE impairs coronary collateral growth in metabolic syndrome via endothelial dysfunction.

    Science.gov (United States)

    Joseph, Gregory; Soler, Amanda; Hutcheson, Rebecca; Hunter, Ian; Bradford, Chastity; Hutcheson, Brenda; Gotlinger, Katherine H; Jiang, Houli; Falck, John R; Proctor, Spencer; Schwartzman, Michal Laniado; Rocic, Petra

    2017-03-01

    Coronary collateral growth (CCG) is impaired in metabolic syndrome (MetS). microRNA-145 (miR-145-Adv) delivery to our rat model of MetS (JCR) completely restored and neutrophil depletion significantly improved CCG. We determined whether low endogenous levels of miR-145 in MetS allowed for elevated production of 20-hydroxyeicosatetraenoic acid (20-HETE), which, in turn, resulted in excessive neutrophil accumulation and endothelial dysfunction leading to impaired CCG. Rats underwent 0-9 days of repetitive ischemia (RI). RI-induced cardiac CYP4F (neutrophil-specific 20-HETE synthase) expression and 20-HETE levels were increased (4-fold) in JCR vs. normal rats. miR-145-Adv and 20-HETE antagonists abolished and neutrophil depletion (blocking antibodies) reduced (~60%) RI-induced increases in CYP4F expression and 20-HETE production in JCR rats. Impaired CCG in JCR rats (collateral-dependent blood flow using microspheres) was completely restored by 20-HETE antagonists [collateral-dependent zone (CZ)/normal zone (NZ) flow ratio was 0.76 ± 0.07 in JCR + 20-SOLA, 0.84 ± 0.05 in JCR + 20-HEDGE vs. 0.11 ± 0.02 in JCR vs. 0.84 ± 0.03 in normal rats]. In JCR rats, elevated 20-HETE was associated with excessive expression of endothelial adhesion molecules and neutrophil infiltration, which were reversed by miR-145-Adv. Endothelium-dependent vasodilation of coronary arteries, endothelial nitric oxide synthase (eNOS) Ser1179 phosphorylation, eNOS-dependent NO ·- production and endothelial cell survival were compromised in JCR rats. These parameters of endothelial dysfunction were completely reversed by 20-HETE antagonism or miR-145-Adv delivery, whereas neutrophil depletion resulted in partial reversal (~70%). We conclude that low miR-145 in MetS allows for increased 20-HETE, mainly from neutrophils, which compromises endothelial cell survival and function leading to impaired CCG. 20-HETE antagonists could provide viable therapy for restoration of CCG in MetS. NEW & NOTEWORTHY

  12. Human intrinsic factor expression for bioavailable vitamin B12 enrichment in microalgae

    DEFF Research Database (Denmark)

    Lima, Serena; Webb, Conner L.; Deery, Evelyne

    2018-01-01

    Dietary supplements and functional foods are becoming increasingly popular complements to regular diets. A recurring ingredient is the essential cofactor vitamin B12(B12). Microalgae are making their way into the dietary supplement and functional food market but do not produce B12, and their B12 ...... that is suitable for vegetarians and, potentially, more bioavailable for humans....

  13. Impaired ventilatory and thermoregulatory responses to hypoxic stress in newborn Phox2b heterozygous knockout mice

    Directory of Open Access Journals (Sweden)

    Nelina eRamanantsoa

    2011-09-01

    Full Text Available The Phox2b gene is necessary for the development of the autonomic nervous system, and especially, of respiratory neuronal circuits. In the present study, we examined the role of Phox2b in ventilatory and thermoregulatory responses to hypoxic stress, which are closely related in the postnatal period. Hypoxic stress was generated by strong thermal stimulus, combined or not with reduced inspired O2. To this end, we exposed 6-day-old Phox2b+/- pups and their wild-type littermates (Phox2b+/+ to hypoxia (10% O2 or hypercapnia (8% CO2 under thermoneutral (33°C or cold (26°C conditions. We found that Phox2b+/- pups showed less normoxic ventilation (VE in the cold than Phox2b+/+ pups. Phox2b+/- pups also showed lower oxygen consumption (VO2 in the cold, reflecting reduced thermogenesis and a lower body temperature. Furthermore, while the cold depressed ventilatory responses to hypoxia and hypercapnia in both genotype groups, this effect was less pronounced in Phox2b+/- pups. Finally, because serotonin (5-HT neurons are pivotal to respiratory and thermoregulatory circuits and depend on Phox2b for their differentiation, we studied 5-HT metabolism using high-pressure liquid chromatography, and found that it was altered in Phox2b+/- pups. We conclude that Phox2b haploinsufficiency alters the ability of newborns to cope with metabolic challenges, possibly due to 5-HT signaling impairments.

  14. Intrahippocampal Administration of Amyloid-β1–42 Oligomers Acutely Impairs Spatial Working Memory, Insulin Signaling, and Hippocampal Metabolism

    Science.gov (United States)

    Pearson-Leary, Jiah; McNay, Ewan C.

    2017-01-01

    Increasing evidence suggests that abnormal brain accumulation of amyloid-β1–42 (Aβ1–42) oligomers plays a causal role in Alzheimer’s disease (AD), and in particular may cause the cognitive deficits that are the hallmark of AD. In vitro, Aβ1–42 oligomers impair insulin signaling and suppress neural functioning. We previously showed that endogenous insulin signaling is an obligatory component of normal hippocampal function, and that disrupting this signaling led to a rapid impairment of spatial working memory, while delivery of exogenous insulin to the hippocampus enhanced both memory and metabolism; diet-induced insulin resistance both impaired spatial memory and prevented insulin from increasing metabolism or cognitive function. Hence, we tested the hypothesis that Aβ1–42 oligomers could acutely impair hippocampal metabolic and cognitive processes in vivo in the rat. Our findings support this hypothesis: Aβ1–42 oligomers impaired spontaneous alternation behavior while preventing the task-associated dip in hippocampal ECF glucose observed in control animals. In addition, Aβ1–42 oligomers decreased plasma membrane translocation of the insulin-sensitive glucose transporter 4 (GluT4), and impaired insulin signaling as measured by phosphorylation of Akt. These data show in vivo that Aβ1–42 oligomers can rapidly impair hippocampal cognitive and metabolic processes, and provide support for the hypothesis that elevated Aβ1–42 leads to cognitive impairment via interference with hippocampal insulin signaling. PMID:22430529

  15. Bio-crude transcriptomics: Gene discovery and metabolic network reconstruction for the biosynthesis of the terpenome of the hydrocarbon oil-producing green alga, Botryococcus braunii race B (Showa*

    Directory of Open Access Journals (Sweden)

    Molnár István

    2012-10-01

    Full Text Available Abstract Background Microalgae hold promise for yielding a biofuel feedstock that is sustainable, carbon-neutral, distributed, and only minimally disruptive for the production of food and feed by traditional agriculture. Amongst oleaginous eukaryotic algae, the B race of Botryococcus braunii is unique in that it produces large amounts of liquid hydrocarbons of terpenoid origin. These are comparable to fossil crude oil, and are sequestered outside the cells in a communal extracellular polymeric matrix material. Biosynthetic engineering of terpenoid bio-crude production requires identification of genes and reconstruction of metabolic pathways responsible for production of both hydrocarbons and other metabolites of the alga that compete for photosynthetic carbon and energy. Results A de novo assembly of 1,334,609 next-generation pyrosequencing reads form the Showa strain of the B race of B. braunii yielded a transcriptomic database of 46,422 contigs with an average length of 756 bp. Contigs were annotated with pathway, ontology, and protein domain identifiers. Manual curation allowed the reconstruction of pathways that produce terpenoid liquid hydrocarbons from primary metabolites, and pathways that divert photosynthetic carbon into tetraterpenoid carotenoids, diterpenoids, and the prenyl chains of meroterpenoid quinones and chlorophyll. Inventories of machine-assembled contigs are also presented for reconstructed pathways for the biosynthesis of competing storage compounds including triacylglycerol and starch. Regeneration of S-adenosylmethionine, and the extracellular localization of the hydrocarbon oils by active transport and possibly autophagy are also investigated. Conclusions The construction of an annotated transcriptomic database, publicly available in a web-based data depository and annotation tool, provides a foundation for metabolic pathway and network reconstruction, and facilitates further omics studies in the absence of a genome

  16. Electronic properties and bulk moduli of novel boron nitride polymorphs: hyperdiamond B12N12 and the simple cubic B24N24, B12N12 fulborenites

    International Nuclear Information System (INIS)

    Pokrivnyj, V.V.; Bekenev, V.L.

    2006-01-01

    Equation of states, energy band structure, electronic density of states, and bulk moduli of the boron nitride fulborenite crystals: B 12 N 12 with a diamond lattice and B 24 N 24 , B 12 N 12 with a simple cubic lattice have been calculated for the first time by FLAPW method. Calculated parameters of these compounds are as follows: equilibrium lattice parameter, the length of B-N bond, the number of atoms per conventional cell, density, bulk modulus, band gap. Hyperdiamond B 12 N 12 is shown to have the record bulk modulus B 0 = 658 GPa [ru

  17. Metabolism of the hydrochlorofluorocarbon 1,2-dichloro-1,1-difluoroethane.

    Science.gov (United States)

    Harris, J W; Anders, M W

    1991-01-01

    1,2-Dichloro-1,1-difluoroethane (HCFC-132b) is a potential substitute for some ozone-depleting chlorofluorocarbons and a model for other 1,1,1,2-tetrahaloethanes under consideration as chlorofluorocarbon substitutes. Male Fischer 344 rats were given 10 mmol/kg HCFC-132b dissolved in corn oil by intraperitoneal injection. An NMR assay for covalent binding of HCFC-132b metabolites to liver proteins was negative, whereas binding was observed in halothane-treated rats. Total urinary metabolites excreted by rats given HCFC-132b during the first 24 h amounted to 1.8 +/- 0.1% of the injected dose, as determined by 19F NMR. During the first 6 h, metabolites of HCFC-132b corresponding to 2-chloro-2,2-difluoroethyl glucuronide, unknown metabolite A, chlorodifluoroacetic acid, and chlorodifluoroacetaldehyde hydrate [both free and conjugated (unknown metabolite B)] were excreted in urine in the approximate ratio 100:9:3:7, respectively. Metabolite A is apparently an O-conjugate of 2-chloro-2,2-difluoroethanol; unconjugated 2-chloro-2,2-difluoroethanol was not detected in urine. The 19F NMR spectrum of metabolite B indicates the formation of a hemiacetal of chlorodifluoroacetaldehyde. Repeated exposure of rats to HCFC-132b significantly increased both the rate of chlorodifluoroacetic acid excretion and the relative fraction of the HCFC-132b dose excreted as chlorodifluoroacetic acid in urine. Incubation of HCFC-132b with rat hepatic microsomes yielded chlorodifluoroacetaldehyde hydrate as the only fluorinated product. The in vitro metabolism of HCFC-132b was increased in microsomes from pyridine-treated rats as compared with control rats, and HCFC-132b metabolism was inhibited by p-nitrophenol, indicating that the cytochrome P-450 isoform IIE1 is largely responsible for the initial hydroxylation of HCFC-132b.

  18. Long-Term Interrelationship between Brain Metabolism and Amyloid Deposition in Mild Cognitive Impairment

    DEFF Research Database (Denmark)

    Kemppainen, Nina; Joutsa, Juho; Johansson, Jarkko

    2015-01-01

    The aim of this longitudinal positron emission tomography (PET) study was to evaluate the interrelationship between brain metabolism and amyloid accumulation during the disease process from mild cognitive impairment (MCI) to Alzheimer's disease (AD). Nine MCI patients, who converted to AD between...... especially in the temporal-parietal regions in MCI compared to controls at baseline, and widely over the cortex at the 5-year follow-up. The reduction in metabolism during the follow-up was significant in the posterior brain regions. In addition, brain amyloid load was positively associated with metabolism...

  19. High pressure synthesis of ThB/sub 12/ and HfB/sub 12/

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, J F; Farnsworth, P B [Brigham Young Univ., Provo, UT (USA). Dept. of Chemistry

    1938-08-01

    High pressure synthesis techniques were used to prepare ThB/sub 12/ and HfB/sub 12/. These compounds have the cubic UB/sub 12/-type structure with lattice parameters 7.612(1) A and 7.377(2) A respectively. The relationship between the lattice parameter for UB/sub 12/-type dodecaborides and the coordination number 12 radius of the metal atom differs for lanthanide, actinide and transition metal atoms. The prediction is made that it is possible to prepare AmB/sub 12/ at high pressures.

  20. Vitamin B-12

    Science.gov (United States)

    Vitamin B-12 is a cofactor for 2 enzymes. In the cytoplasm, methionine synthase requires vitamin B-12 in the form of methylcobalamin and catalyzes the conversion of homocysteine to methionine by transfer of a methyl group from methyltetrahydrofolate.This enzyme links the methylation pathway through ...

  1. Cause of impaired carbohydrate metabolism in hyperthyroidism

    International Nuclear Information System (INIS)

    Foeldes, J.; Megyesi, K.; Koranyi, L.

    1984-01-01

    Hyperthyroidism (HT) affects glucose metabolism in various ways. The role of insulin, glucagon and growth-hormone (GH) was determined. After glucose loading the insulin response is weaker in HT than in euthyroid subjects. Enhanced degradation of insulin has been reported. It is suggested that in HT the serum insulin concentration declines at a slightly accelerated rate. In HT the deranged carbohydrate metabolism might be a consequence of altered tissue sensitivity to insulin. To elucidate this problem insulin receptors on erythrocytes obtained from hyperthyroid women were investigated. The maximal specific binding of 125 I-insulin to RBC of hyperthyroid patients was decreased and the analysis refers to a decreased receptor concentration in RBC. The nature of glucagon secretion and its influence on glucose metabolism in HT was investigated. The basal plasma glucagon is elevated in hyperthyroid patients. The suppression of glucagon secretion induced by an oral glucose loading was of significantly lesser degree in hyperthyroid patients than in controls. Applying the erythrocyte receptor assay a decreased specific binding of 125 I-glucagon to RBC of hyperthyroid patients has been found and data indicate a significantly less glucagon receptor concentration in thyrotoxicosis. Physiological elevations of serum GH levels led to a significant impairment of glucose metabolism. Beside the GH-RH and somatostatin, the dopaminergic neurotransmitter system participates in the regulation of GH secretion too. It has been demonstrated that after administration of the dopamine agonist l-dopa the GH response was weaker in HT than in controls. This indicates that in thyrotoxicosis the GH secretion can not be stimulated in such a degree as in euthyroidism. (author)

  2. Cause of impaired carbohydrate metabolism in hyperthyroidism

    Energy Technology Data Exchange (ETDEWEB)

    Foeldes, J.; Megyesi, K.; Koranyi, L. (Semmelweis Orvostudomanyi Egyetem, Budapest (Hungary))

    1984-01-01

    Hyperthyroidism (HT) affects glucose metabolism in various ways. The role of insulin, glucagon and growth-hormone (GH) was determined. After glucose loading the insulin response is weaker in HT than in euthyroid subjects. Enhanced degradation of insulin has been reported. It is suggested that in HT the serum insulin concentration declines at a slightly accelerated rate. In HT the deranged carbohydrate metabolism might be a consequence of altered tissue sensitivity to insulin. To elucidate this problem insulin receptors on erythrocytes obtained from hyperthyroid women were investigated. The maximal specific binding of /sup 125/I-insulin to RBC of hyperthyroid patients was decreased and the analysis refers to a decreased receptor concentration in RBC. The nature of glucagon secretion and its influence on glucose metabolism in HT was investigated. The basal plasma glucagon is elevated in hyperthyroid patients. The suppression of glucagon secretion induced by an oral glucose loading was of significantly lesser degree in hyperthyroid patients than in controls. Applying the erythrocyte receptor assay a decreased specific binding of /sup 125/I-glucagon to RBC of hyperthyroid patients has been found and data indicate a significantly less glucagon receptor concentration in thyrotoxicosis. Physiological elevations of serum GH levels led to a significant impairment of glucose metabolism. Beside the GH-RH and somatostatin, the dopaminergic neurotransmitter system participates in the regulation of GH secretion too. It has been demonstrated that after administration of the dopamine agonist l-dopa the GH response was weaker in HT than in controls. This indicates that in thyrotoxicosis the GH secretion can not be stimulated in such a degree as in euthyroidism.

  3. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria.

    Science.gov (United States)

    LeBlanc, Jean Guy; Chain, Florian; Martín, Rebeca; Bermúdez-Humarán, Luis G; Courau, Stéphanie; Langella, Philippe

    2017-05-08

    The aim of this review is to summarize the effect in host energy metabolism of the production of B group vitamins and short chain fatty acids (SCFA) by commensal, food-grade and probiotic bacteria, which are also actors of the mammalian nutrition. The mechanisms of how these microbial end products, produced by these bacterial strains, act on energy metabolism will be discussed. We will show that these vitamins and SCFA producing bacteria could be used as tools to recover energy intakes by either optimizing ATP production from foods or by the fermentation of certain fibers in the gastrointestinal tract (GIT). Original data are also presented in this work where SCFA (acetate, butyrate and propionate) and B group vitamins (riboflavin, folate and thiamine) production was determined for selected probiotic bacteria.

  4. Metabolic effect of streptomyces avermitilis irradiated by ion beam of "1"2C"6"+

    International Nuclear Information System (INIS)

    Wang Shuyang; Chen Jihong; Li Wenjian; Liang Jianping; Liu Jing; Bo Yongheng; Wang Lihua

    2013-01-01

    pH value, mycelium concentration, carbon source and nitrogen metabolism in flask fermentation of the mutant high-producing strain ZJAV-Yl-203 and the original strain ZJAV-A1 have been investigated, in order to show the metabolic effect of avermitilis irradiated by ion beam of "1"2C"6"+. In early stage (48 h) of the fermentation, pH value of the original fermentation was lower than that of the mutant strains. In 96∼196 h of fermentation, the nitrogen utilization in the strains ZJAV-Y1-203 was higher than that in the original strains, its reproductive was fast, and its growing was vigorous. The mycelium concentration of ZJAV-Yl-203 was greater than the original strain, and the pH value of fermentation were stable, so its metabolism was relatively more stable. In 144∼240 h of fermentation, the strain ZJAV-Y1-203 on sugar consumption was less than the original strains. The effect of "1"2C"6"+ ion irradiation on metabolism of Streptomyces avermitilis is conducive to the synthesis of avermectin. (authors)

  5. Impaired Ventilatory and Thermoregulatory Responses to Hypoxic Stress in Newborn Phox2b Heterozygous Knock-Out Mice

    Science.gov (United States)

    Ramanantsoa, Nelina; Matrot, Boris; Vardon, Guy; Lajard, Anne-Marie; Voituron, Nicolas; Dauger, Stéphane; Denjean, André; Hilaire, Gérard; Gallego, Jorge

    2011-01-01

    The Phox2b genesis necessary for the development of the autonomic nervous system, and especially, of respiratory neuronal circuits. In the present study, we examined the role of Phox2b in ventilatory and thermoregulatory responses to hypoxic stress, which are closely related in the postnatal period. Hypoxic stress was generated by strong thermal stimulus, combined or not with reduced inspired O2. To this end, we exposed 6-day-old Phox2b+/− pups and their wild-type littermates (Phox2b+/+) to hypoxia (10% O2) or hypercapnia (8% CO2) under thermoneutral (33°C) or cold (26°C) conditions. We found that Phox2b+/− pups showed less normoxic ventilation (VE) in the cold than Phox2b+/+ pups. Phox2b+/− pups also showed lower oxygen consumption (VO2) in the cold, reflecting reduced thermogenesis and a lower body temperature. Furthermore, while the cold depressed ventilatory responses to hypoxia and hypercapnia in both genotype groups, this effect was less pronounced in Phox2b+/− pups. Finally, because serotonin (5-HT) neurons are pivotal to respiratory and thermoregulatory circuits and depend on Phox2b for their differentiation, we studied 5-HT metabolism using high pressure liquid chromatography, and found that it was altered in Phox2b+/− pups. We conclude that Phox2b haploinsufficiency alters the ability of newborns to cope with metabolic challenges, possibly due to 5-HT signaling impairments. PMID:21977017

  6. Emerging Perspectives on Essential Amino Acid Metabolism in Obesity and the Insulin-Resistant State12

    OpenAIRE

    Adams, Sean H.

    2011-01-01

    Dysregulation of insulin action is most often considered in the context of impaired glucose homeostasis, with the defining feature of diabetes mellitus being elevated blood glucose concentration. Complications arising from the hyperglycemia accompanying frank diabetes are well known and epidemiological studies point to higher risk toward development of metabolic disease in persons with impaired glucose tolerance. Although the central role of proper blood sugar control in maintaining metabolic...

  7. Quantitative Tools for Dissection of Hydrogen-Producing Metabolic Networks-Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rabinowitz, Joshua D.; Dismukes, G.Charles.; Rabitz, Herschel A.; Amador-Noguez, Daniel

    2012-10-19

    During this project we have pioneered the development of integrated experimental-computational technologies for the quantitative dissection of metabolism in hydrogen and biofuel producing microorganisms (i.e. C. acetobutylicum and various cyanobacteria species). The application of these new methodologies resulted in many significant advances in the understanding of the metabolic networks and metabolism of these organisms, and has provided new strategies to enhance their hydrogen or biofuel producing capabilities. As an example, using mass spectrometry, isotope tracers, and quantitative flux-modeling we mapped the metabolic network structure in C. acetobutylicum. This resulted in a comprehensive and quantitative understanding of central carbon metabolism that could not have been obtained using genomic data alone. We discovered that biofuel production in this bacterium, which only occurs during stationary phase, requires a global remodeling of central metabolism (involving large changes in metabolite concentrations and fluxes) that has the effect of redirecting resources (carbon and reducing power) from biomass production into solvent production. This new holistic, quantitative understanding of metabolism is now being used as the basis for metabolic engineering strategies to improve solvent production in this bacterium. In another example, making use of newly developed technologies for monitoring hydrogen and NAD(P)H levels in vivo, we dissected the metabolic pathways for photobiological hydrogen production by cyanobacteria Cyanothece sp. This investigation led to the identification of multiple targets for improving hydrogen production. Importantly, the quantitative tools and approaches that we have developed are broadly applicable and we are now using them to investigate other important biofuel producers, such as cellulolytic bacteria.

  8. A combined supplementation of vitamin B12 and omega-3 fatty acids across two generations improves cardiometabolic variables in rats.

    Science.gov (United States)

    Khaire, Amrita; Rathod, Richa; Randhir, Karuna; Kale, Anvita; Joshi, Sadhana

    2016-09-14

    Our earlier studies indicate that micronutrients (vitamin B12, folic acid) and omega-3 fatty acids especially docosahexaenoic acid (DHA) are interlinked in one carbon cycle. The present study examines the effects of a sustained vitamin B12 deficiency/supplementation in the presence of omega-3 fatty acids across two generations on the pregnancy outcome and cardiometabolic profile [blood pressure, plasma lipid profile (cholesterol and triglycerides), plasma/liver fatty acid profile and hepatic lipid metabolism] in the second generation adult Wistar rat offspring. Two generations of animals were fed the following diets: control; vitamin B12 deficient; vitamin B12 supplemented; vitamin B12 deficient diet supplemented with omega-3 fatty acids; vitamin B12 and omega-3 fatty acid supplemented diets. Male offspring were sacrificed at 3 months of age. Vitamin B12 deficiency lowered the weight gain (p blood pressure, and lowered the levels of plasma/liver DHA (p lipid profile. Vitamin B12 supplementation showed weight gain, blood pressure and the fatty acid profile similar to the control. However, it increased (p acid supplementation to the vitamin B12 deficient group lowered the weight gain although the levels of cardiometabolic variables were comparable to the control. Omega-3 fatty acid supplementation in the presence of vitamin B12 improved the pregnancy outcome and all cardio-metabolic variables. Our study highlights the adverse effects of sustained vitamin B12 deficiency across two generations on the pregnancy outcome, fatty acid profile and blood pressure while a combined supplementation of vitamin B12 and omega-3 fatty acids is beneficial.

  9. Usefulness of organic acid produced by Exiguobacterium sp. 12/1 on neutralization of alkaline wastewater.

    Science.gov (United States)

    Kulshreshtha, Niha Mohan; Kumar, Anil; Bisht, Gopal; Pasha, Santosh; Kumar, Rita

    2012-01-01

    The aim of this study was to investigate the role of organic acids produced by Exiguobacterium sp. strain 12/1 (DSM 21148) in neutralization of alkaline wastewater emanated from beverage industry. This bacterium is known to be able to grow in medium of pH as high as pH 12.0 and to neutralize alkaline industrial wastewater from pH 12.0 to pH 7.5. The initial investigation on the type of functional groups present in medium, carried out using FT-IR spectroscopy, revealed the presence of peaks corresponding to carbonyl group and hydroxyl group, suggesting the release of carboxylic acid or related metabolic product(s). The identification of specific carboxylic group, carried out using RP-HPLC, revealed the presence of a single peak in the culture supernatant with retention time most similar to formic acid. The concentration of acid produced on different carbon sources was studied as a function of time. Although acid was present in same final concentration, the rate of acid production was highest in case of medium supplemented with sucrose followed by fructose and glucose. The knowledge of metabolic products of the bacterium can be considered as a first step towards realization of its potential for large-scale bioremediation of alkaline wastewater from beverage industry.

  10. Usefulness of Organic Acid Produced by Exiguobacterium sp. 12/1 on Neutralization of Alkaline Wastewater

    Directory of Open Access Journals (Sweden)

    Niha Mohan Kulshreshtha

    2012-01-01

    Full Text Available The aim of this study was to investigate the role of organic acids produced by Exiguobacterium sp. strain 12/1 (DSM 21148 in neutralization of alkaline wastewater emanated from beverage industry. This bacterium is known to be able to grow in medium of pH as high as pH 12.0 and to neutralize alkaline industrial wastewater from pH 12.0 to pH 7.5. The initial investigation on the type of functional groups present in medium, carried out using FT-IR spectroscopy, revealed the presence of peaks corresponding to carbonyl group and hydroxyl group, suggesting the release of carboxylic acid or related metabolic product(s. The identification of specific carboxylic group, carried out using RP-HPLC, revealed the presence of a single peak in the culture supernatant with retention time most similar to formic acid. The concentration of acid produced on different carbon sources was studied as a function of time. Although acid was present in same final concentration, the rate of acid production was highest in case of medium supplemented with sucrose followed by fructose and glucose. The knowledge of metabolic products of the bacterium can be considered as a first step towards realization of its potential for large-scale bioremediation of alkaline wastewater from beverage industry.

  11. Radioactively labelled vitamin B12

    International Nuclear Information System (INIS)

    Charlton, J.C.; Hamilton, A.L.

    1978-01-01

    The application concerns the manufacture of radioactive forms of vitamin B-12 in which the cobalt atom present in the vitamin B-12 molecule is replaced with a radioactive isotope of cobalt, usually cobalt-57 or cobalt-58. Such radioactive forms of B-12 are used extensively in the diagnosis of B-12 deficiency states

  12. The Effect of Hippocampal Cognitive Impairment and XIAP on Glucose and Lipids Metabolism in Rats

    Directory of Open Access Journals (Sweden)

    Chunbo Xia

    2016-02-01

    Full Text Available Background/Aims: To investigate the effect of cognitive impairment and X-linked inhibitor of apoptosis protein (XIAP on glucolipid metabolism. Materials and Methods: β-amyloid (Aβ 1-42 was injected into the hippocampus of rats to establish a cognitive impairment model. Trans-activator of transcription (TAT-XIAP fusion protein (the TAT-XIAP group, PBS (the model group, or XIAP antisense oligonucleotides (the ASODN group was injected into the lateral ventricles of the rats to increase and decrease the activity of XIAP in the hippocampus. To determine the level of blood glucose and lipids, adenosine monophosphate-activated protein kinase (AMPK expression of liver and hipppocamual neuronal apoptosis. Results: The levels of FPG, TG, TC and LDL were significantly higher in the TAT-XIAP group, the model group and the ASODN group than in the blank group (P Conclusion: Cognitive impairment and hippocampal neuron apoptosis can cause glucose and lipids metabolic abnormalities, possibly by regulating gastrointestinal motility and AMPK expression in the liver. The changes in the function of XIAP, which is an anti-apoptotic protein in the hippocampus, may affect the metabolism of glucose and lipids.

  13. Disruption of BCAA metabolism in mice impairs exercise metabolism and endurance.

    Science.gov (United States)

    She, Pengxiang; Zhou, Yingsheng; Zhang, Zhiyou; Griffin, Kathleen; Gowda, Kavitha; Lynch, Christopher J

    2010-04-01

    Exercise enhances branched-chain amino acid (BCAA) catabolism, and BCAA supplementation influences exercise metabolism. However, it remains controversial whether BCAA supplementation improves exercise endurance, and unknown whether the exercise endurance effect of BCAA supplementation requires catabolism of these amino acids. Therefore, we examined exercise capacity and intermediary metabolism in skeletal muscle of knockout (KO) mice of mitochondrial branched-chain aminotransferase (BCATm), which catalyzes the first step of BCAA catabolism. We found that BCATm KO mice were exercise intolerant with markedly decreased endurance to exhaustion. Their plasma lactate and lactate-to-pyruvate ratio in skeletal muscle during exercise and lactate release from hindlimb perfused with high concentrations of insulin and glucose were significantly higher in KO than wild-type (WT) mice. Plasma and muscle ammonia concentrations were also markedly higher in KO than WT mice during a brief bout of exercise. BCATm KO mice exhibited 43-79% declines in the muscle concentration of alanine, glutamine, aspartate, and glutamate at rest and during exercise. In response to exercise, the increments in muscle malate and alpha-ketoglutarate were greater in KO than WT mice. While muscle ATP concentration tended to be lower, muscle IMP concentration was sevenfold higher in KO compared with WT mice after a brief bout of exercise, suggesting elevated ammonia in KO is derived from the purine nucleotide cycle. These data suggest that disruption of BCAA transamination causes impaired malate/aspartate shuttle, thereby resulting in decreased alanine and glutamine formation, as well as increases in lactate-to-pyruvate ratio and ammonia in skeletal muscle. Thus BCAA metabolism may regulate exercise capacity in mice.

  14. Vitamin B-12 Concentrations in Breast Milk Are Low and Are Not Associated with Reported Household Hunger, Recent Animal-Source Food, or Vitamin B-12 Intake in Women in Rural Kenya.

    Science.gov (United States)

    Williams, Anne M; Chantry, Caroline J; Young, Sera L; Achando, Beryl S; Allen, Lindsay H; Arnold, Benjamin F; Colford, John M; Dentz, Holly N; Hampel, Daniela; Kiprotich, Marion C; Lin, Audrie; Null, Clair A; Nyambane, Geoffrey M; Shahab-Ferdows, Setti; Stewart, Christine P

    2016-05-01

    Breast milk vitamin B-12 concentration may be inadequate in regions in which animal-source food consumption is low or infrequent. Vitamin B-12 deficiency causes megaloblastic anemia and impairs growth and development in children. We measured vitamin B-12 in breast milk and examined its associations with household hunger, recent animal-source food consumption, and vitamin B-12 intake. In a cross-sectional substudy nested within a cluster-randomized trial assessing water, sanitation, hygiene, and nutrition interventions in Kenya, we sampled 286 women 1-6 mo postpartum. Mothers hand-expressed breast milk 1 min into a feeding after 90 min observed nonbreastfeeding. The Household Hunger Scale was used to measure hunger, food intake in the previous week was measured with the use of a food-frequency questionnaire (FFQ), and vitamin B-12 intake was estimated by using 24-h dietary recall. An animal-source food score was based on 10 items from the FFQ (range: 0-70). Breast milk vitamin B-12 concentration was measured with the use of a solid-phase competitive chemiluminescent enzyme immunoassay and was modeled with linear regression. Generalized estimating equations were used to account for correlated observations at the cluster level. Median (IQR) vitamin B-12 intake was 1.5 μg/d (0.3, 9.7 μg/d), and 60% of women consumed hunger prevalence was 27%; the animal-source food score ranged from 0 to 30 item-d/wk. Hunger and recent animal-source food and vitamin B-12 intake were not associated with breast milk vitamin B-12 concentrations. Maternal age was negatively associated with breast milk vitamin B-12 concentrations. Most lactating Kenyan women consumed less than the estimated average requirement of vitamin B-12 and had low breast milk vitamin B-12 concentrations. We recommend interventions that improve vitamin B-12 intake in lactating Kenyan women to foster maternal health and child development. The main trial was registered at clinicaltrials.gov as NCT01704105. © 2016

  15. Use of pantothenate as a metabolic switch increases the genetic stability of farnesene producing Saccharomyces cerevisiae.

    Science.gov (United States)

    Sandoval, Celeste M; Ayson, Marites; Moss, Nathan; Lieu, Bonny; Jackson, Peter; Gaucher, Sara P; Horning, Tizita; Dahl, Robert H; Denery, Judith R; Abbott, Derek A; Meadows, Adam L

    2014-09-01

    We observed that removing pantothenate (vitamin B5), a precursor to co-enzyme A, from the growth medium of Saccharomyces cerevisiae engineered to produce β-farnesene reduced the strain׳s farnesene flux by 70%, but increased its viability, growth rate and biomass yield. Conversely, the growth rate and biomass yield of wild-type yeast were reduced. Cultivation in media lacking pantothenate eliminates the growth advantage of low-producing mutants, leading to improved production upon scale-up to lab-scale bioreactor testing. An omics investigation revealed that when exogenous pantothenate levels are limited, acyl-CoA metabolites decrease, β-oxidation decreases from unexpectedly high levels in the farnesene producer, and sterol and fatty acid synthesis likely limits the growth rate of the wild-type strain. Thus pantothenate supplementation can be utilized as a "metabolic switch" for tuning the synthesis rates of molecules relying on CoA intermediates and aid the economic scale-up of strains producing acyl-CoA derived molecules to manufacturing facilities. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  16. PPAR ligands improve impaired metabolic pathways in fetal hearts of diabetic rats.

    Science.gov (United States)

    Kurtz, Melisa; Capobianco, Evangelina; Martinez, Nora; Roberti, Sabrina Lorena; Arany, Edith; Jawerbaum, Alicia

    2014-10-01

    In maternal diabetes, the fetal heart can be structurally and functionally affected. Maternal diets enriched in certain unsaturated fatty acids can activate the nuclear receptors peroxisome proliferator-activated receptors (PPARs) and regulate metabolic and anti-inflammatory pathways during development. Our aim was to investigate whether PPARα expression, lipid metabolism, lipoperoxidation, and nitric oxide (NO) production are altered in the fetal hearts of diabetic rats, and to analyze the putative effects of in vivo PPAR activation on these parameters. We found decreased PPARα expression in the hearts of male but not female fetuses of diabetic rats when compared with controls. Fetal treatments with the PPARα ligand leukotriene B4 upregulated the expression of PPARα and target genes involved in fatty acid oxidation in the fetal hearts. Increased concentrations of triglycerides, cholesterol, and phospholipids were found in the hearts of fetuses of diabetic rats. Maternal treatments with diets supplemented with 6% olive oil or 6% safflower oil, enriched in unsaturated fatty acids that can activate PPARs, led to few changes in lipid concentrations, but up-regulated PPARα expression in fetal hearts. NO production, which was increased in the hearts of male and female fetuses in the diabetic group, and lipoperoxidation, which was increased in the hearts of male fetuses in the diabetic group, was reduced by the maternal treatments supplemented with safflower oil. In conclusion, impaired PPARα expression, altered lipid metabolism, and increased oxidative and nitridergic pathways were evidenced in hearts of fetuses of diabetic rats and were regulated in a gender-dependent manner by treatments enriched with PPAR ligands. © 2014 Society for Endocrinology.

  17. Total serum homocysteine as an indicator of vitamin B12 and folate status

    International Nuclear Information System (INIS)

    Chu, R.C.; Hall, C.A.

    1988-01-01

    Presented is a modification of an assay for total serum homocysteine (Hcy) in which the Hcy plus radioactive adenosine is converted enzymatically to labeled S-adenosylhomocysteine (AdoHcy). The modifications included a commerical source for the AdoHcy hydrolase, adenosine labeled with either 14 C or 3 H, and separation of the AdoHcy by thin layer chromatography. The assay was sensitive to 25 pmol. Hcy levels in sera from 18 controls ranged from 6.9 to 12.1 mumol/L with a mean of 9.1 and a SD of 1.5 mumol/L. The total serum Hcy was increased in vitamin B12 and folate deficiency. The level was high in congenital defects of vitamin B12 metabolism, blocking the methylation of Hcy regardless of the serum vitamin B12 levels, but was normal in the absence of tissue deficiency even if the serum vitamin B12 levels were low. The procedure has been found practical in two years of use and requires only 0.1 mL of serum

  18. Electronic properties and bulk moduli of new boron nitride polymorphs, i.e., hyperdiamond B12N12 and simple cubic B24N24, B12N12 fulborenites

    International Nuclear Information System (INIS)

    Pokropivny, V. V.; Bekenev, V. L.

    2006-01-01

    The energy-band structure, density of states, electron density distribution, equation of state, and bulk moduli of three boron-nitride fulborenite crystals, i.e., B 12 N 12 with diamond lattice and B 24 N 24 , B 12 N 12 with simple cubic lattice, whose sites contain fulborene B 12 N 12 and B 24 N 24 molecules, are calculated for the first time using the full-potential linearized augmented plane wave method. The following hyperdiamond B 12 N 12 parameters were obtained: the equilibrium lattice parameter a = 1.1191 nm, the B-N bond length a BN = 0.1405 nm, the number of atoms per unit cell Z = 192, the density ρ = 2.823 g/cm 3 , the bulk modulus B 0 = 658 GPa, and the band gap ΔE g = 3.05 eV. This is a previously unknown unique light superhard semiconductor faujasite with a recorded bulk modulus higher than that of diamond. There are reasons to assume that it is a E phase. The characteristics of B 24 N 24 with simple cubic lattice are as follows: the equilibrium lattice parameter a = 0.7346 nm, the B-N bond length a BN = 0.1521 nm, the number of atoms per unit cell Z = 48, the density ρ = 2.495 g/cm 3 , the bulk modulus B 0 = 367 GPa, and the band gap ΔE g = 3.76 eV. This material is a heteropolar semiconductor or insulator with a bulk modulus comparable with that of cubic boron nitride, as well as a new boron-nitride zeolite with channel diameter of 0.46 nm. B 12 N 12 with simple cubic lattice is a molecular semimetal

  19. Study of Methionine, Vitamin B12, and Folic Acid Status in Coronary Atherosclerotic Male Patients

    OpenAIRE

    M Djalali; SR A Hoseiny; F Siassi; N Fardad; R Ghiasvand; TR Neyestani

    2007-01-01

    Background: Increased level of serum homocysteine is one of the risk factor of atherosclerosis. Its production related in some sulfur amino acids such as methionine. Some important cofactors that are involved in metabolic pathways of this amino acid are folate and vitamin B12. We have assessed the status of methionine, folic acid, and vitamin B12 in some coronary atherosclerotic male patients.Methods: In this case-control study, 46 cases of coronary atherosclerosis were selected from male pat...

  20. Assay for vitamin B12 absorption and method of making labeled vitamin B12

    Science.gov (United States)

    Anderson, Peter J [Davis, CA; Dueker, Stephen [Davis, CA; Miller, Joshua [Davis, CA; Green, Ralph [Elmacero, CA; Roth, John [Davis, CA; Carkeet, Colleen [Silver Spring, MD; Buchholz,; Bruce, A [Orinda, CA

    2012-06-19

    The invention provides methods for labeling vitamin B12 with .sup.14C, .sup.13C, tritium, and deuterium. When radioisotopes are used, the invention provides for methods of labeling B12 with high specific activity. The invention also provides labeled vitamin B12 compositions made in accordance with the invention.

  1. The association between donor genetic variations in one-carbon metabolism pathway genes and hepatitis B recurrence after liver transplantation.

    Science.gov (United States)

    Lu, Di; Zhuo, Jianyong; Yang, Modan; Wang, Chao; Linhui, Pan; Xie, Haiyang; Xu, Xiao; Zheng, Shusen

    2018-04-05

    Hepatitis B recurrence adversely affects patients' survival after liver transplantation. This study aims to find association between donor gene variations of one carbon metabolism and post-transplant hepatitis B recurrence. This study enrolled 196 patients undergoing liver transplantation for HBV related end-stage liver diseases. We detected 11 single nucleotide polymorphisms (SNP) of 7 one-carbon metabolism pathway genes (including MTHFR, MTR, MTRR, ALDH1L1, GART, SHMT1 and CBS) in donor livers and analyzed their association with HBV reinfection after liver transplantation. Hepatitis B recurrence was observed in 19 of the 196 patients (9.7%) undergoing liver transplantation. Hepatitis B recurrence significantly affected post-transplant survival in the 196 patients (p = 0.018), and correlate with tumor recurrence in the subgroup of HCC patients (n = 99, p = 0.006). Among the 11 SNPs, donor liver mutation in rs1979277 (G > A) was adversely associated with post-transplant hepatitis B recurrence (p = 0.042). In the subgroup of HCC patients, survival analysis showed donor liver mutations in rs1801133 (G > A) and rs1979277 (G > A) were risk factors for hepatitis B recurrence (p B recurrence in non-HCC patients (n = 97, p > 0.05). Hepatitis B recurrence impaired post-transplant survival. Donor liver genetic variations in one-carbon metabolism pathway genes were significantly associated with post-transplant hepatitis B recurrence. Copyright © 2017. Published by Elsevier B.V.

  2. Cytolytic T lymphocyte responses to metabolically inactivated stimulator cells. I. Metabolic inactivation impairs both CD and LD antigen signals

    International Nuclear Information System (INIS)

    Kelso, A.; Boyle, W.

    1982-01-01

    The effects of metabolic inactivation of spleen cells on antigen presentation to precursors of alloreactive cytolytic T lymphocytes (T/sub c/) were examined. By serological methods, populations inactivated by ultraviolet irradiation, glutaraldehyde fixation or plasma membrane isolation were found to retain normal levels of H-2K/D and Ia antigens. However, comparison of the antigen doses required to stimulate secondary T/sub c/ responses in mixed leukocyte culture showed that the inactivated preparations were approximately 10-fold less immunogenic than X-irradiated spleen cells. Their total inability to stimulate primary cytolytic responses pointed to at least a 100-fold impairment of immunogenicity for unprimed T/sub c/ precursors in the case of uv-irradiated and glutaraldehyde-treated stimulator cells, and at least a 10-fold impairment for membrane fragments. Experiments showing that the capacity of cell monolayers to absorb precursor T/sub c/ from unprimed spleen populations was reduced following uv-irradiation or glutaraldehyde treatment provided direct evidence that this loss of immunogenicity was due in part to suboptimal antigen presentation to precursor T/sub c/. It is concluded that, in addition to the traditional view that these treatments damage the ''LD'' signal to helper T lymphocytes, metabolic inactivation also impairs recognition of ''CD'' determinants by precursor T/sub c/

  3. Exercise counteracts aging-related memory impairment: a potential role for the astrocytic metabolic shuttle

    Directory of Open Access Journals (Sweden)

    Sheng-Feng eTsai

    2016-03-01

    Full Text Available Age-related cognitive impairment has become one of the most common health threats in many countries. The biological substrate of cognition is the interconnection of neurons to form complex information processing networks. Experience-based alterations in the activities of these information processing networks lead to neuroadaptation, which is physically represented at the cellular level as synaptic plasticity. Although synaptic plasticity is known to be affected by aging, the underlying molecular mechanisms are not well described. Astrocytes, a glial cell type that is infrequently investigated in cognitive science, have emerged as energy suppliers which are necessary for meeting the abundant energy demand resulting from glutamatergic synaptic activity. Moreover, the concerted action of an astrocyte-neuron metabolic shuttle is essential for cognitive function; whereas, energetic incoordination between astrocytes and neurons may contribute to cognitive impairment. Whether altered function of the astrocyte-neuron metabolic shuttle links aging to reduced synaptic plasticity is unexplored. However, accumulated evidence documents significant beneficial effects of long-term, regular exercise on cognition and synaptic plasticity. Furthermore, exercise increases the effectiveness of astrocyte-neuron metabolic shuttle by upregulation of astrocytic lactate transporter levels. This review summarizes previous findings related to the neuronal activity-dependent astrocyte-neuron metabolic shuttle. Moreover, we discuss how aging and exercise may shape the astrocyte-neuron metabolic shuttle in cognition-associated brain areas.

  4. 59Fe and 58Co-vitamin B12 absorptions studies in radiotherapy of collum carcinomas by whole-body radiometry

    International Nuclear Information System (INIS)

    Kaplan, M.A.; Bolovin, L.M.; Verkhovskaya, N.I.; Mel'nikova, L.N.; Yavor, T.; Bero, T.

    1983-01-01

    The results of examination of iron and vitamin B-12 metabolism in the radiotherapy of collum carcinomas are reported. The absorption of iron and vitamin B-12 was found to decrease under the influence of radiotherapy. The degree of the absorption decrease depends on the radiation dose. (author)

  5. Reversible Vitamin B12 Deficiency Presenting with Acute Dementia, Paraparesis, and Normal Hemoglobin

    Directory of Open Access Journals (Sweden)

    Hani Almoallim

    2016-01-01

    Full Text Available Vitamin B12 is essential for neurological function and its deficiency is associated with many neuropsychiatric disorders. We report the case of a previously healthy 53-year-old male patient presenting with delirium and multiple neurological findings. Complete blood analysis indicated megaloblastic anemia. All infectious causes were excluded owing to negative cultures (blood and urine. Tests for human immunodeficiency virus, syphilis, and toxoplasma were also negative. Metabolic workup showed severe vitamin B12 deficiency, decreased reticulocyte count, and increased direct bilirubin and lactate dehydrogenase. Intramuscular injection of cobalamin was started, and the patient showed significant improvement.

  6. Curcumin Reverses the Diazepam-Induced Cognitive Impairment by Modulation of Oxidative Stress and ERK 1/2/NF-κB Pathway in Brain

    Directory of Open Access Journals (Sweden)

    Alexandra C. Sevastre-Berghian

    2017-01-01

    Full Text Available Oxidative stress and inflammation can be involved in cognitive dysfunction associated with neurodegenerative disorders. Diazepam (DZP administration has been chosen to simulate the memory impairment. The aim of this study was to evaluate the effects of curcumin (CUR on spatial cognition, ambulatory activity, and blood and brain oxidative stress levels. The ERK/NF-κB signaling pathway and the histopathological changes in the hippocampus and frontal lobe, in diazepam-treated rats, were also analyzed. The animals were divided into 4 groups: control, carboxymethylcellulose (CMC + CUR, CMC + DZP, and CUR + CMC + DZP. CUR (150 mg/kg b.w. was orally administered for 28 days. DZP (2 mg/kg b.w. was intraperitoneally administered 20 minutes before the behavioral tests (open field test, Y-maze, and elevated plus maze. CUR improved the spontaneous alternation behavior, decreased the oxidative stress levels, both in the blood and in the hippocampus, and downregulated the extracellular signal-regulated kinase (ERK 1/2/nuclear transcription factor- (NF- κB/pNF-κB pathway in the hippocampus and the iNOS expression in the hippocampus and frontal lobe of the DZP-treated rats. Histopathologically, no microscopic changes were found. The immunohistochemical signal of iNOS decreased in the DZP and CUR-treated group. Thus, our findings suggest that curcumin administration may improve the cognitive performance and may also have an antioxidant effect.

  7. Mutations that alter the transport function of the LamB protein in Escherichia coli.

    OpenAIRE

    Wandersman, C; Schwartz, M

    1982-01-01

    Some Escherichia coli K-12 lamB mutants, those producing reduced amounts of LamB protein (one-tenth the wild type amount), grow normally on dextrins but transport maltose when present at a concentration of 1 microM at about one-tenth the normal rate. lamB Dex- mutants were found as derivatives of these strains. These Dex- mutants are considerably impaired in the transport of maltose at low concentrations (below 10 microM), and they have a structurally altered LamB protein which is impaired in...

  8. Animal experiments and clinical studies on the role of the vitamins B1, B2, and B6 in radiation protection

    International Nuclear Information System (INIS)

    Schmidt, W.; Wulff, K.; Grimm, U.

    1988-01-01

    The effects of ionizing radiation on erythrocytic transketolase, glutathion reductase, and aspartate-aminotransferase activities with and without addition of coenzymes were studied in 152 Wistar rats, six beagles, and 225 carcinoma patients, as a measure for vitamin B 1 , B 2 , and B 6 supplies. Examinations of 108 patients with mammary carcinoma and 117 patients with cervical, corpus, and ovarian carcinomas were undertaken prior to, during, and after termination of radiotherapy. Two check-up series were run, the first without vitamin B complex therapy, and the second with three daily applications of one dragee each, beginning on the first day of irradiation. The TPP effects recorded indicated no impairment of vitamin B 1 supply. FAD and PLP effects, on the other hand, were significantly increased, which suggested B 2 and B 6 deficits. Vitamin B 2 metabolism was causally impaired by radiation, while the disordes in vitamin B 6 metabolism were attributed to tumour-related causes. The results obtained revealed that both types of disorders can be avoided by prophylactic vitamin B complex treatment. (author)

  9. Alteration patterns of brain glucose metabolism: comparisons of healthy controls, subjective memory impairment and mild cognitive impairment.

    Science.gov (United States)

    Song, In-Uk; Choi, Eun Kyoung; Oh, Jin Kyoung; Chung, Yong-An; Chung, Sung-Woo

    2016-01-01

    Some groups have focused on the detection and management of subjective memory impairment (SMI) as the stage that precedes mild cognitive impairment (MCI). However, there have been few clinical studies that have examined biomarkers of SMI to date. To investigate the differences in glucose metabolism as a prodromal marker of dementia in patients with SMI, MCI, and healthy controls using brain F-18 fluoro-2-deoxyglucose positron emission tomography (FDG-PET). Sixty-eight consecutive patients with SMI, 47 patients with MCI, and 42 age-matched healthy subjects were recruited. All subjects underwent FDG-PET and detailed neuropsychological testing. FDG-PET images were analyzed using the statistical parametric mapping (SPM) program. FDG-PET analysis showed glucose hypometabolism in the periventricular regions of patients with SMI and in the parietal, precentral frontal, and periventricular regions of patients with MCI compared with healthy controls. Interestingly, hypometabolism on FDG-PET was noted in the parietal and precentral frontal regions in MCI patients compared to SMI patients. The results suggest that hypometabolism in the periventricular regions as seen on FDG-PET may play a role as a predictive biomarker of pre-dementia, and the extension of reduced glucose metabolism into parietal regions likely reflects progression of cognitive deterioration. © The Foundation Acta Radiologica 2014.

  10. Lipopolysaccharide inhibits myogenic differentiation of C2C12 myoblasts through the Toll-like receptor 4-nuclear factor-κB signaling pathway and myoblast-derived tumor necrosis factor-α.

    Directory of Open Access Journals (Sweden)

    Yuko Ono

    Full Text Available Circulating lipopolysaccharide (LPS concentrations are often elevated in patients with sepsis or with various endogenous diseases that are associated with metabolic endotoxemia. Involuntary loss of skeletal muscle, termed muscle wasting, is commonly observed in these conditions, suggesting that circulating LPS might play an essential role in its development. Although impairment of muscle regeneration is an important determinant of skeletal muscle wasting, it is unclear whether LPS affects this process and, if so, by what mechanism. Here, we used the C2C12 myoblast cell line to investigate the effects of LPS on myogenesis.C2C12 myoblasts were grown to 80% confluence and induced to differentiate in the absence or presence of LPS (0.1 or 1 μg/mL; TAK-242 (1 μM, a specific inhibitor of Toll-like receptor 4 (TLR4 signaling; and a tumor necrosis factor (TNF-α neutralizing antibody (5 μg/mL. Expression of a skeletal muscle differentiation marker (myosin heavy chain II, two essential myogenic regulatory factors (myogenin and MyoD, and a muscle negative regulatory factor (myostatin was analyzed by western blotting. Nuclear factor-κB (NF-κB DNA-binding activity was measured using an enzyme-linked immunosorbent assay.LPS dose-dependently and significantly decreased the formation of multinucleated myotubes and the expression of myosin heavy chain II, myogenin, and MyoD, and increased NF-κB DNA-binding activity and myostatin expression. The inhibitory effect of LPS on myogenic differentiation was reversible, suggesting that it was not caused by nonspecific toxicity. Both TAK-242 and anti-TNF-α reduced the LPS-induced increase in NF-κB DNA-binding activity, downregulation of myogenic regulatory factors, and upregulation of myostatin, thereby partially rescuing the impairment of myogenesis.Our data suggest that LPS inhibits myogenic differentiation via a TLR4-NF-κB-dependent pathway and an autocrine/paracrine TNF-α-induced pathway. These pathways

  11. Sleep apnea predicts distinct alterations in glucose homeostasis and biomarkers in obese adults with normal and impaired glucose metabolism

    Directory of Open Access Journals (Sweden)

    Hill Nathan R

    2010-12-01

    Full Text Available Abstract Background Notwithstanding previous studies supporting independent associations between obstructive sleep apnea (OSA and prevalence of diabetes, the underlying pathogenesis of impaired glucose regulation in OSA remains unclear. We explored mechanisms linking OSA with prediabetes/diabetes and associated biomarker profiles. We hypothesized that OSA is associated with distinct alterations in glucose homeostasis and biomarker profiles in subjects with normal (NGM and impaired glucose metabolism (IGM. Methods Forty-five severely obese adults (36 women without certain comorbidities/medications underwent anthropometric measurements, polysomnography, and blood tests. We measured fasting serum glucose, insulin, selected cytokines, and calculated homeostasis model assessment estimates of insulin sensitivity (HOMA-IS and pancreatic beta-cell function (HOMA-B. Results Both increases in apnea-hypopnea index (AHI and the presence of prediabetes/diabetes were associated with reductions in HOMA-IS in the entire cohort even after adjustment for sex, race, age, and BMI (P = 0.003. In subjects with NGM (n = 30, OSA severity was associated with significantly increased HOMA-B (a trend towards decreased HOMA-IS independent of sex and adiposity. OSA-related oxyhemoglobin desaturations correlated with TNF-α (r=-0.76; P = 0.001 in women with NGM and with IL-6 (rho=-0.55; P = 0.035 in women with IGM (n = 15 matched individually for age, adiposity, and AHI. Conclusions OSA is independently associated with altered glucose homeostasis and increased basal beta-cell function in severely obese adults with NGM. The findings suggest that moderate to severe OSA imposes an excessive functional demand on pancreatic beta-cells, which may lead to their exhaustion and impaired secretory capacity over time. The two distinct biomarker profiles linking sleep apnea with NGM and IGM via TNF-α and IL-6 have been discerned in our study to suggest that sleep apnea and particularly

  12. Organometallic B12-DNA conjugate

    DEFF Research Database (Denmark)

    Hunger, Miriam; Mutti, Elena; Rieder, Alexander

    2014-01-01

    Design, synthesis, and structural characterization of a B12-octadecanucleotide are presented herein, a new organometallic B12-DNA conjugate. In such covalent conjugates, the natural B12 moiety may be a versatile vector for controlled in vivo delivery of oligonucleotides to cellular targets in hum...

  13. Vitamin B12 deficiency

    DEFF Research Database (Denmark)

    Green, Ralph; Allen, Lindsay H; Bjørke-Monsen, Anne-Lise

    2017-01-01

    , subclinical deficiency affects between 2.5% and 26% of the general population depending on the definition used, although the clinical relevance is unclear. B12 deficiency can affect individuals at all ages, but most particularly elderly individuals. Infants, children, adolescents and women of reproductive age...... remain debated. Management depends on B12 supplementation, either via high-dose oral routes or via parenteral administration. This Primer describes the current knowledge surrounding B12 deficiency, and highlights improvements in diagnostic methods as well as shifting concepts about the prevalence, causes...

  14. TOTAL PARENTERAL NUTRITION (TPN: ROLE OF RIBOFLAVIN (VITAMIN B2 AND CYANOCOBALAMIN (VITAMIN B12

    Directory of Open Access Journals (Sweden)

    Samina Shiekh

    2015-06-01

    Full Text Available Total parenteral nutrition (TPN replaces and maintains essential nutrients in patients in whom oral or tube feedings are contraindicated or inadequate. A nutritional assessment must be carried out before initiating TPN in order to determine nutritional needs and any metabolic changes due to the patient’s underlying condition, medications or concurrent therapies. In addition to carbohydrates, proteins and fats, certain amounts of micronutirents are also added to TPN solutions. These micronutrients include electrolytes, vitamins, and trace minerals. This review highlights some basic concepts regarding the use and formulation of TPNs along with their advantages and disadvantages and the importance of water soluble vitamins B2 and B12 in human nutrition.

  15. Smoking Discriminately Changes the Serum Active and Non-Active Forms of Vitamin B12.

    Science.gov (United States)

    Shekoohi, Niloofar; Javanbakht, Mohammad Hassan; Sohrabi, Marjan; Zarei, Mahnaz; Mohammadi, Hamed; Djalali, Mahmoud

    2017-06-01

    Smoking may modify the appetite, and consequently affect nutrient intake and serum micronutrients. The effect of smoking on vitamin B12 status has been considered in several studies. The research proposed that organic nitrites, nitro oxide, cyanides, and isocyanides of cigarette smoke interfere with vitamin B12 metabolism, and convert it to inactive forms. This research was carried out to determine the serum level of active and inactive forms of vitamin B12 in male smokers in comparison with male nonsmokers. This is a case-control study, in which the participants were 85 male smokers and 85 male nonsmokers. The serum levels of total and active form of vitamin B12 were measured. Dietary intake was recorded by a quantitative food frequency questionnaire and one-day 24-hour dietary recall method. Independent two sample T test was used to compare quantitative variables between the case and control groups. The serum level of total vitamin B12 was not significantly different between two groups, but serum level of active form of vitamin B12 in the smoking group was significantly lower than non-smoking group (Psmokers in the Iranian community. The results of this study identified that serum level of total vitamin B12 might be not different between smoking and non-smoking people, but the function of this vitamin is disturbed in the body of smokers through the reduction of serum level of active form of vitamin B12.

  16. Changes in cerebral glucose metabolism in patients with posttraumatic cognitive impairment after memantine therapy. A preliminary study

    International Nuclear Information System (INIS)

    Kim, Yong-Wook; Shin, Ji-Cheol; An, Young-Sil

    2010-01-01

    The objective of this study was to investigate the changes in cerebral glucose metabolism in patients with posttraumatic cognitive impairment after memantine therapy. We performed serial F-18 fluorodeoxyglucose positron emission tomography studies before and after memantine therapy (20 mg per day) on 17 patients with posttraumatic cognitive impairment using statistical parametric mapping analysis. In addition, covariance analysis was performed to identify regions, where changes in regional cerebral glucose metabolism correlated significantly with increased Mini-Mental Status Examination scores. Statistical parametric mapping analysis demonstrated that, compared with baseline, significantly increased cerebral glucose metabolism occurred in both inferior, middle and superior frontal gyri, both angular gyri, both precuneus, the right middle cingulum, the left inferior parietal lobule, the left fusiform gyrus, the left precentral gyrus, the left paracentral lobule, and the left lingual gyrus after memantine therapy (P uncorrected uncorrected corrected <0.0001). Our findings indicate that the prefrontal and the parietal association cortices may be the relevant structures for the pharmacological response to memantine therapy in patients with posttraumatic cognitive impairment. (author)

  17. Purification of rat intestinal receptor for intrinsic factor-vitamin B12 complex

    International Nuclear Information System (INIS)

    Yamada, Shoji; Itaya, Harutaka; Nakazawa, Osamu; Fukuda, Morimichi.

    1977-01-01

    The intrinsic factor (IF) in a rat gastric mucosal extract was bound efficiently to vitamin B 12 -sepharose without significant change in its nature to produce IF-vitamin B 12 -sepharose. The purification of the intestinal receptor for the IF-vitamin B 12 complex was performed by the affinity chromatography using the IF-vitamin B 12 -sepharose as the affinity adsorbent. As a result of admixing the gastric mucosal extract sample with B 12 -sepharose while stirring for 4 hours, the adsorption was performed without any break through. Further, it was recognized that the B 12 -bound protein purified by the affinity chromatography using B 12 -sepharose was not much changed as compared with that before purification. Furthermore, it was recognized that IF-B 12 -sepharose was able to be made by binding IF with B 12 -sepharose which was made by coupling B 12 with the market-available AH-sepharose. The IF-B 12 -sepharose was washed with buffer solution, and then was loaded with the small intestine mucosal extract. Thereafter, the receptor was eluted by making di-valent cation inert with the buffer solution. After the removal of EDTA in the eluted solution by dialysis, the activity of the receptor was measured. 48.5% of the receptor activity loaded was recovered by the elution with EDTA. The specific activity of the receptor represented by the final amount of B 12 (pg)/the amount of protein (mg) in the purified substance was 335 folds of the original activity. (Iwakiri, K.)

  18. Vitamin B12

    Science.gov (United States)

    Institute of Medicine, Food and Nutrition Board. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. National Academies Press. Washington, DC, 1998. PMID: 23193625 ...

  19. [Morphological characteristics and physiological properties of aflatoxin B1 producing and non-producing Aspergillus flavus strains].

    Science.gov (United States)

    Kogbo, W; Lemarinier, S; Boutibonnes, P

    1985-09-01

    Comparison between about 80 strains of Aspergillus flavus, belonging to the series flavus and oryzae, obtained from international collections but also isolated from French or African substrates revealed the following observations: 1. Cultural and morphological characteristics of toxicogenic and atoxicogenic strains of A. flavus are similar. However, the former produce a diffusible yellow pigment in 83% of isolates. 2. The two groups of conidiospores have the same resistance to UV irradiation (254 nm, 5 and 10 min). All the strains are equally sensitive to 4 antifungal antibiotics: nystatine, ketoconazole, clotrimazole and amphotericine. 3. A difference was seen in the capacity to produce enzymes as alpha-galactosidase, beta-galactosidase and beta-glucosidase, implicated in the glucid metabolism. The specific hydrolytic activity has been confirmed by the characterization of a large amount of beta-galactosidase and by a diauxic growth on glucose medium supplemented by lactose. Possible relationship between these characters and aflatoxin B1 production by A. flavus strains is discussed.

  20. Faecal carriage of extended-spectrum b-lactamase-producing and AMpC b-lactamase-producing bacteria among Danish army recruits

    DEFF Research Database (Denmark)

    Hammerum, A.M; Lester, C.H; Jakobsen, L

    2011-01-01

    During May and June 2008, 84 Danish army recruits were tested for faecal carriage of extended-spectrum b-lactamase (ESBL)- producing and AmpC b-lactamase-producing bacteria. Three ESBL-producing (CTX-M-14a) Escherichia coli isolates, two AmpC-producing (CMY-2) E. coli isolates and one Amp...

  1. Differences of hormones involved in adipose metabolism and lactation between high and low producing Holstein cows during heat stress

    Directory of Open Access Journals (Sweden)

    Mingzi Qu

    2015-12-01

    Full Text Available The experiment was conducted to evaluate hormonal involvement in the adipose metabolism and lactation between high and low producing dairy cows in a hot environment. Forty Holstein healthy cows with a similar parity were used and assigned into high producing group (average production 41.44 ± 2.25 kg/d and low producing group (average production 29.92 ± 1.02 kg/d with 20 cows in each group. Blood samples were collected from caudal vein to determine the difference of hormones related to adipose metabolism and lactation. The highest, lowest, and average temperature humidity index (THI, recorded as 84.02, 79.35 and 81.89, respectively, indicated that cows were at the state of high heat stress. No significant differences between high and low producing groups were observed in the levels of nonestesterified fatty acid (NEFA, β-hydroxybutyrate (β-OHB, total cholesterol (TCHO, and insulin (INS (P > 0.05. However, the very low density lipoprotein (VLDL, apolipoprotein B100 (apoB-100, high-density lipoprotein (HDL-C and estrogen (E2 concentrations in high producing group were significantly higher than those of low producing group (P  0.05, whereas high producing group had a rise in the insulin-like growth factor-1 (IGF-1 level compared with low producing group (P < 0.05. These results indicated that, during summer, high and low producing dairy cows have similar levels of lipid catabolism, but high producing dairy cows have advantages in outputting hepatic triglyceride (TG.

  2. The effect of impaired glucose metabolism on weight loss in multidisciplinary childhood obesity treatment

    DEFF Research Database (Denmark)

    Kloppenborg, Julie T; Gamborg, Michael; Fonvig, Cilius E

    2017-01-01

    and adolescents from the Children's Obesity Clinic, Holbaek, Denmark. Anthropometrics, pubertal development, socioeconomic status (SES), and fasting concentrations of plasma glucose, serum insulin, serum C-peptide, and whole blood glycosylated hemoglobin (HbA1c) were collected at treatment entry and at follow......OBJECTIVE: To investigate whether children and adolescents exhibiting an impaired glucose metabolism are more obese at treatment entry and less likely to reduce their degree of obesity during treatment. METHODS: The present study is a longitudinal observational study, including children...... mass index (BMI) z-score 2.94 (range 1.34-5.54) were included. The mean BMI z-score reduction was 0.31 (±0.46) after 13 months (range 6-18) of treatment. At treatment entry, patients with impaired estimates of glucose metabolism were more obese than normoglycemic patients. Baseline concentration of C...

  3. Impaired fasting glucose and the metabolic profile in Danish children and adolescents with normal weight, overweight, or obesity

    DEFF Research Database (Denmark)

    Kloppenborg, Julie T; Fonvig, Cilius E; Nielsen, Tenna R H

    2017-01-01

    OBJECTIVE: Whether the definitions of impaired fasting glucose (IFG) from the American Diabetes Association (ADA) and the World Health Organization (WHO) differentially impact estimates of the metabolic profile and IFG-related comorbidities in Danish children and adolescents is unknown. METHODS......: Two thousand one hundred and fifty four (979 boys) children and adolescents with overweight or obesity (median age 12 years) and 1824 (728 boys) children with normal weight (median age 12 years) from The Danish Childhood Obesity Biobank were studied. Anthropometrics, blood pressure, puberty......, and fasting concentrations of glucose, insulin, glycosylated hemoglobin (HbA1c), and lipids were measured. RESULTS: About 14.1% of participants with overweight or obesity exhibited IFG according to the ADA and 3.5% according to the WHO definition. Among individuals with normal weight, the corresponding...

  4. Plasma Folate and Vitamin B12 Levels in Patients with Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Lian-Hua Cui

    2016-06-01

    Full Text Available Folate and vitamin B12 involved in the one-carbon metabolism may play a key role in carcinogenesis and progression of hepatocellular carcinoma (HCC through influencing DNA integrity. The purpose of this study is to evaluate the association of plasma folate and vitamin B12 levels with HCC in a case-control study on 312 HCC patients and 325 cancer-free controls. Plasma concentrations of folate and vitamin B12 in all the subjects were measured by electrochemiluminescence immunoassay. Meanwhile, the information of HCC patients’ clinical characteristics including tumor-node-metastasis (TNM stage, tumor size and tumor markers were collected. The patients of HCC had significantly lower folate levels than those of controls; there was no significant difference in the mean of plasma vitamin B12 levels. We also observed an inverse association between the levels of plasma folate and HCC: the adjusted odds ratios (OR (95% confidence intervals (CI of HCC from the highest to lowest quartile of folate were 0.30 (0.15–0.60, 0.33 (0.17–0.65, and 0.19 (0.09–0.38. Compared to the subjects in the lowest quartile of plasma vitamin B12, only the subjects in the highest quartile of vitamin B12 exhibited a significant positive relationship with HCC, the adjusted OR was 2.01 (95% CI, 1.02–3.98. HCC patients with Stage III and IV or bigger tumor size had lower folate and higher vitamin B12 levels. There was no significant difference in the mean plasma folate levels of the HCC cases in tumor markers status (AFP, CEA and CA19-9 levels, whereas patients with higher CEA or CA19-9 levels retained significantly more plasma vitamin B12 than those with normal-CEA or CA19-9 level. In conclusion, plasma folate and vitamin B12 levels could be associated with HCC, and might be used as predictors of clinical characteristics of HCC patients. However, further prospective studies are essential to confirm the observed results.

  5. Vitamin B-12 and Perinatal Health.

    Science.gov (United States)

    Finkelstein, Julia L; Layden, Alexander J; Stover, Patrick J

    2015-09-01

    Vitamin B-12 deficiency (importance of adequate vitamin B-12 status periconceptionally and during pregnancy cannot be overemphasized, given its fundamental role in neural myelination, brain development, and growth. Infants born to vitamin B-12-deficient women may be at increased risk of neural tube closure defects, and maternal vitamin B-12 insufficiency (pregnancy complications, few prospective studies and, to our knowledge, only 1 randomized trial have examined the effects of vitamin B-12 supplementation during pregnancy. The role of vitamin B-12 in the etiology of adverse perinatal outcomes needs to be elucidated to inform public health interventions. © 2015 American Society for Nutrition.

  6. Astragalus Polysaccharide Improves Palmitate-Induced Insulin Resistance by Inhibiting PTP1B and NF-κB in C2C12 Myotubes

    Directory of Open Access Journals (Sweden)

    Yong Li

    2012-06-01

    Full Text Available We investigated the effects of Astragalus polysaccharide (APS on palmitate-induced insulin resistance in C2C12 skeletal muscle myotubes. Palmitate-reduced glucose uptake was restored by APS. APS prevented palmitate-induced C2C12 myotubes from impaired insulin signaling by inhibiting Ser307 phosphorylation of insulin receptor substrate-1 (IRS-1 and increasing Ser473 phosphorylation of Akt. Moreover, the increases in protein-tyrosine phosphatase-1B (PTP1B protein level and NF-κB activation associated with palmitate treatment were also prevented by APS. However the treatment with APS didn’t change AMP-activated protein kinase (AMPK activation in palmitate-induced myotubes. The results of the present study suggest that Astragalus polysaccharide inhibits palmitate-induced insulin resistance in C2C12 myotubes by inhibiting expression of PTP1B and regulating NF-κB but not AMPK pathway.

  7. [Characteristics of cerebral glucose metabolism in patients with cognitive impairment in Parkinson's disease].

    Science.gov (United States)

    Homenko, Ju G; Susin, D S; Kataeva, G V; Irishina, Ju A; Zavolokov, I G

    To study the relationship between early cognitive impairment symptoms and cerebral glucose metabolism in different brain regions (according to the positron emission tomography (PET) data) in Parkinson's disease (PD) in order to increase the diagnostic and treatment efficacy. Two groups of patients with PD (stage I-III), including 11 patients without cognitive disorders and 13 with mild cognitive impairment (MCI), were examined. The control group included 10 age-matched people with normal cognition. To evaluate cognitive state, the Mini mental state examination (MMSE), the Frontal assessment battery (FAB) and the 'clock drawing test' were used. The regional cerebral glucose metabolism rate (CMRglu) was assessed using PET with 18F-fluorodeoxyglucose (FDG). In PD patients, CMRglu were decreased in the frontal (Brodmann areas (BA) 9, 10, 11, 46, 47), occipital (BA 19) and parietal (BA 39), temporal (BA 20, 37), and cingulate cortex (BA 32) compared to the control group. Cerebral glucose metabolism was decreased in the frontal (BA 8, 9, 10, 45, 46, 47), parietal (BA 7, 39, 40) and cingulate cortex (BA 23, 24, 31, 32) in the group of PD patients with MCI compared to PD patients with normal cognition. Hypometabolism in BA 7, 8, 23, 24, 31, 40 was revealed only in comparison of PD and PD-MCI groups, and did not appear in case of comparison of cognitively normal PD patients with the control group. It is possible to suggest that the mentioned above brain areas were associated with cognitive impairment. The revealed glucose hypometabolism pattern possibly has the diagnostic value for the early and preclinical diagnosis of MCI in PD and control of treatment efficacy.

  8. The metabolic enhancer piracetam ameliorates the impairment of mitochondrial function and neurite outgrowth induced by beta-amyloid peptide.

    Science.gov (United States)

    Kurz, C; Ungerer, I; Lipka, U; Kirr, S; Schütt, T; Eckert, A; Leuner, K; Müller, W E

    2010-05-01

    beta-Amyloid peptide (Abeta) is implicated in the pathogenesis of Alzheimer's disease by initiating a cascade of events from mitochondrial dysfunction to neuronal death. The metabolic enhancer piracetam has been shown to improve mitochondrial dysfunction following brain aging and experimentally induced oxidative stress. We used cell lines (PC12 and HEK cells) and murine dissociated brain cells. The protective effects of piracetam in vitro and ex vivo on Abeta-induced impairment of mitochondrial function (as mitochondrial membrane potential and ATP production), on secretion of soluble Abeta and on neurite outgrowth in PC12 cells were investigated. Piracetam improves mitochondrial function of PC12 cells and acutely dissociated brain cells from young NMRI mice following exposure to extracellular Abeta(1-42). Similar protective effects against Abeta(1-42) were observed in dissociated brain cells from aged NMRI mice, or mice transgenic for mutant human amyloid precursor protein (APP) treated with piracetam for 14 days. Soluble Abeta load was markedly diminished in the brain of those animals after treatment with piracetam. Abeta production by HEK cells stably transfected with mutant human APP was elevated by oxidative stress and this was reduced by piracetam. Impairment of neuritogenesis is an important consequence of Abeta-induced mitochondrial dysfunction and Abeta-induced reduction of neurite growth in PC12 cells was substantially improved by piracetam. Our findings strongly support the concept of improving mitochondrial function as an approach to ameliorate the detrimental effects of Abeta on brain function.

  9. Increased susceptibility to metabolic dysregulation in a mouse model of Alzheimer's disease is associated with impaired hypothalamic insulin signaling and elevated BCAA levels.

    Science.gov (United States)

    Ruiz, Henry H; Chi, Tiffany; Shin, Andrew C; Lindtner, Claudia; Hsieh, Wilson; Ehrlich, Michelle; Gandy, Sam; Buettner, Christoph

    2016-08-01

    Epidemiologic studies have demonstrated an association between diabetes and dementia. Insulin signaling within the brain, in particular within the hypothalamus regulates carbohydrate, lipid, and branched chain amino acid (BCAA) metabolism in peripheral organs such as the liver and adipose tissue. We hypothesized that cerebral amyloidosis impairs central nervous system control of metabolism through disruption of insulin signaling in the hypothalamus, which dysregulates glucose and BCAA homeostasis resulting in increased susceptibility to diabetes. We examined whether APP/PS1 mice exhibit increased susceptibility to aging or high-fat diet (HFD)-induced metabolic impairment using metabolic phenotyping and insulin-signaling studies. APP/PS1 mice were more susceptible to high-fat feeding and aging-induced metabolic dysregulation including disrupted BCAA homeostasis and exhibited impaired hypothalamic insulin signaling. Our data suggest that AD pathology increases susceptibility to diabetes due to impaired hypothalamic insulin signaling, and that plasma BCAA levels could serve as a biomarker of hypothalamic insulin action in patients with AD. Copyright © 2016 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  10. B12 deficiency increases with age in hospitalized patients: a study on 14,904 samples.

    Science.gov (United States)

    Mézière, Anthony; Audureau, Etienne; Vairelles, Stéphane; Krypciak, Sébastien; Dicko, Michèle; Monié, Marguerite; Giraudier, Stéphane

    2014-12-01

    Cobalamin deficiency is responsible for hematological, neurological, neurocognitive, and neuropsychiatric impairments and is a risk factor for cardiovascular diseases, particularly in the elderly people. In order to determine B12 status in old inpatients, a total number of 14,904 hospitalized patients in whom B12 measurements were performed in five hospitals in the Paris metropolitan area were included from January 1, 2011 to December 31, 2011. The aims of the study were to determine whether age had an impact on B12 and folate deficiencies and to evaluate correlations between B12 and biological parameters-folate, hemoglobin, mean cell volume, homocystein (tHcy)-and age. Patients were aged 70.3±19.5 years. Low B12 concentration ( 17 µmol/L), 20.4% had low folate concentration (folate 17 µmol/L), and 4.7% of patients were both functional B12 and folate deficient. The B12 or folate deficient patients had lower mean cell volume level than nondeficient patients. Increase in mean cell volume and tHcy concentrations with age and decrease in B12, folate, and hemoglobin levels with age were observed. Frequency of functional B12 deficiency was 9.6% in patients aged 30-60 years and 14.2% in patients over 90 years. Frequency of functional folate deficiency was 9.5% in 30-60 years and 12.1% in >90 years. In inpatients, functional B12 deficiency and functional folate deficiency increase with age and are not associated with anemia or macrocytosis. False vitamin B deficiencies are frequent. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Diurnal changes in CN metabolism and response of rice seedlings to UV-B radiation.

    Science.gov (United States)

    Yun, Hyejin; Lim, Sunhyung; Kim, Yangmin X; Lee, Yejin; Lee, Seulbi; Lee, Deogbae; Park, Keewoong; Sung, Jwakyung

    2018-03-13

    Plants regulate a number of primary metabolites, including carbohydrates, organic acids, and amino acids, in response to UV-B radiation. Therefore, it is essential to understand the time-dependent response of rice plants to UV-B stress. This study focused on the response of plants to UV-B at different leaf developmental phases (emerging, growing, and maturing) in an attempt to fully comprehend the metabolic shift. We analyzed the expression levels of genes related to starch/sucrose metabolism in the leaf blades of rice seedlings (Oryza sativa L. "Saechuchenog") exposed to UV-B irradiation for short (1 day) and long terms (5 days) using quantitative real-time polymerase chain reaction. We also examined the diurnal variations in the contents of primary metabolites using an established GCTOF-MS (gas chromatography time of flight-mass spectrometry) method. The results showed that the levels of primary metabolites were largely dependent upon the diurnal rhythm and leaf developmental phase. The young leaves (sink) produced and accumulated starch rather than sucrose. The short-term (4 h, 1 day) UV-B exposure inhibited sucrose synthesis, which could be the first target of UV-B radiation. Following short- and long-term (5 days) exposure to UV-B radiation, the dynamic response of primary metabolites was evaluated. It was found that the content of carbohydrates decreased throughout the period of exposure to UV-B stress, especially in terms of sucrose concentration. However, the content of the majority of amino acids increased after an early decrease. Our data revealed that the metabolic response, as well as the gene expression, differed with the period (intensity) of exposure to UV-B radiation and with the phase of leaf development. These findings provide new insights for a better understanding of the metabolic response of a variety of plant species exposed to a wide range of UV-B radiation. Copyright © 2018. Published by Elsevier GmbH.

  12. Smoking Discriminately Changes the Serum Active and Non-Active Forms of Vitamin B12

    Directory of Open Access Journals (Sweden)

    Niloofar Shekoohi

    2017-08-01

    Full Text Available Smoking may modify the appetite, and consequently affect nutrient intake and serum micronutrients. The effect of smoking on vitamin B12 status has been considered in several studies. The research proposed that organic nitrites, nitro oxide, cyanides, and isocyanides of cigarette smoke interfere with vitamin B12 metabolism, and convert it to inactive forms. This research was carried out to determine the serum level of active and inactive forms of vitamin B12 in male smokers in comparison with male nonsmokers. This is a case-control study, in which the participants were 85 male smokers and 85 male nonsmokers. The serum levels of total and active form of vitamin B12 were measured. Dietary intake was recorded by a quantitative food frequency questionnaire and one-day 24-hour dietary recall method. Independent two sample T test was used to compare quantitative variables between the case and control groups. The serum level of total vitamin B12 was not significantly different between two groups, but serum level of active form of vitamin B12 in the smoking group was significantly lower than non-smoking group (P<0.001. This is one of the first studies that evaluated the serum level of active form of vitamin B12 in smokers in the Iranian community. The results of this study identified that serum level of total vitamin B12 might be not different between smoking and non-smoking people, but the function of this vitamin is disturbed in the body of smokers through the reduction of serum level of active form of vitamin B12.

  13. Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial.

    Directory of Open Access Journals (Sweden)

    A David Smith

    2010-09-01

    Full Text Available An increased rate of brain atrophy is often observed in older subjects, in particular those who suffer from cognitive decline. Homocysteine is a risk factor for brain atrophy, cognitive impairment and dementia. Plasma concentrations of homocysteine can be lowered by dietary administration of B vitamins.To determine whether supplementation with B vitamins that lower levels of plasma total homocysteine can slow the rate of brain atrophy in subjects with mild cognitive impairment in a randomised controlled trial (VITACOG, ISRCTN 94410159.Single-center, randomized, double-blind controlled trial of high-dose folic acid, vitamins B(6 and B(12 in 271 individuals (of 646 screened over 70 y old with mild cognitive impairment. A subset (187 volunteered to have cranial MRI scans at the start and finish of the study. Participants were randomly assigned to two groups of equal size, one treated with folic acid (0.8 mg/d, vitamin B(12 (0.5 mg/d and vitamin B(6 (20 mg/d, the other with placebo; treatment was for 24 months. The main outcome measure was the change in the rate of atrophy of the whole brain assessed by serial volumetric MRI scans.A total of 168 participants (85 in active treatment group; 83 receiving placebo completed the MRI section of the trial. The mean rate of brain atrophy per year was 0.76% [95% CI, 0.63-0.90] in the active treatment group and 1.08% [0.94-1.22] in the placebo group (P =  0.001. The treatment response was related to baseline homocysteine levels: the rate of atrophy in participants with homocysteine >13 µmol/L was 53% lower in the active treatment group (P =  0.001. A greater rate of atrophy was associated with a lower final cognitive test scores. There was no difference in serious adverse events according to treatment category.The accelerated rate of brain atrophy in elderly with mild cognitive impairment can be slowed by treatment with homocysteine-lowering B vitamins. Sixteen percent of those over 70 y old have mild

  14. Hyperfine interactions of /sup 12/B implanted in ferromagnetic nickel

    Energy Technology Data Exchange (ETDEWEB)

    Hamagaki, H; Nojiri, Y; Sugimoto, K [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Nakai, K

    1979-12-01

    Temperature dependences of hyperfine interactions of /sup 12/B implanted in Ni were investigated in the temperature range of 6 K - 730 K by the NMR method with use of polarized /sup 12/B produced in a nuclear reaction and the asymmetric ..beta.. decay. Two kinds of hyperfine fields with different signs were observed (B sub(hf)sup(+) = +4.161 +- 0.022 kG and B sub(hf)sup(-) = -1.611 +- 0.021 kG at 6 K), which indicated that the implanted /sup 12/B were trapped in two different sites (S/sup +/ and S/sup -/, respectively). The spin-lattice relaxation times T/sub 1/ and the population rates at the two sites were studied. Near the Curie temperature, an effect of critical slowing-down of the spin-spin correlation was observed as steep variation of T/sub 1/. The behavior of local field around T sub(C) was also studied by varying the external field. Results of these experiments near T sub(C) indicate itinerant nature of the electron-spin structure in nickel.

  15. Biological Variability and Impact of Oral Contraceptives on Vitamins B6, B12 and Folate Status in Women of Reproductive Age

    Directory of Open Access Journals (Sweden)

    Samir Samman

    2013-09-01

    Full Text Available Vitamins B6, B12 and folate play crucial metabolic roles especially during the reproductive years for women. There is limited reporting of within-subject variability of these vitamins. This study aimed to determine the within and between subject variability in serum vitamins B6, B12, folate and erythrocyte folate concentrations in young women; identify factors that contribute to variability; and determine dietary intakes and sources of these vitamins. Data were obtained from the control group of a trial aimed at investigating the effect of iron on the nutritional status of young women (age 25.2 ± 4.2 year; BMI 21.9 ± 2.2 kg/m2. The coefficients of variability within-subject (CVI and between-subject (CVG for serum vitamins B6, B12 and folate, and erythrocyte folate were calculated. Food frequency questionnaires provided dietary data. CVI and CVG were in the range 16.1%–25.7% and 31.7%–62.2%, respectively. Oral contraceptive pill (OCP use was associated (P = 0.042 with lower serum vitamin B12 concentrations. Initial values were 172 ± 16 pmol/L and 318 ± 51 pmol/L for OCP and non-OCP users, respectively; with differences maintained at four time points over 12 weeks. BMI, age, physical activity, alcohol intake and haematological variables did not affect serum or erythrocyte vitamin concentrations. Vitamin B12 intakes were derived from traditional and unexpected sources including commercial energy drinks. Young women using OCP had significantly lower serum vitamin B12 concentrations. This should be considered in clinical decision making and requires further investigation.

  16. Overexpression of SIRT1 in mouse forebrain impairs lipid/glucose metabolism and motor function.

    Directory of Open Access Journals (Sweden)

    Dongmei Wu

    Full Text Available SIRT1 plays crucial roles in glucose and lipid metabolism, and has various functions in different tissues including brain. The brain-specific SIRT1 knockout mice display defects in somatotropic signaling, memory and synaptic plasticity. And the female mice without SIRT1 in POMC neuron are more sensitive to diet-induced obesity. Here we created transgenic mice overexpressing SIRT1 in striatum and hippocampus under the control of CaMKIIα promoter. These mice, especially females, exhibited increased fat accumulation accompanied by significant upregulation of adipogenic genes in white adipose tissue. Glucose tolerance of the mice was also impaired with decreased Glut4 mRNA levels in muscle. Moreover, the SIRT1 overexpressing mice showed decreased energy expenditure, and concomitantly mitochondria-related genes were decreased in muscle. In addition, these mice showed unusual spontaneous physical activity pattern, decreased activity in open field and rotarod performance. Further studies demonstrated that SIRT1 deacetylated IRS-2, and upregulated phosphorylation level of IRS-2 and ERK1/2 in striatum. Meanwhile, the neurotransmitter signaling in striatum and the expression of endocrine hormones in hypothalamus and serum T3, T4 levels were altered. Taken together, our findings demonstrate that SIRT1 in forebrain regulates lipid/glucose metabolism and motor function.

  17. Neuronal glucose metabolism is impaired while astrocytic TCA cycling is unaffected at symptomatic stages in the hSOD1G93A mouse model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Tefera, Tesfaye W; Borges, Karin

    2018-01-01

    Although alterations in energy metabolism are known in ALS, the specific mechanisms leading to energy deficit are not understood. We measured metabolite levels derived from injected [1- 13 C]glucose and [1,2- 13 C]acetate (i.p.) in cerebral cortex and spinal cord extracts of wild type and hSOD1 G93A mice at onset and mid disease stages using high-pressure liquid chromatography, 1 H and 13 C nuclear magnetic resonance spectroscopy. Levels of spinal and cortical CNS total lactate, [3- 13 C]lactate, total alanine and [3- 13 C]alanine, but not cortical glucose and [1- 13 C]glucose, were reduced mostly at mid stage indicating impaired glycolysis. The [1- 13 C]glucose-derived [4- 13 C]glutamate, [4- 13 C]glutamine and [2- 13 C]GABA amounts were diminished at mid stage in cortex and both time points in spinal cord, suggesting decreased [3- 13 C]pyruvate entry into the TCA cycle. Lack of changes in [1,2- 13 C]acetate-derived [4,5- 13 C]glutamate, [4,5- 13 C]glutamine and [1,2- 13 C]GABA levels indicate unchanged astrocytic 13 C-acetate metabolism. Reduced levels of leucine, isoleucine and valine in CNS suggest compensatory breakdown to refill TCA cycle intermediate levels. Unlabelled, [2- 13 C] and [4- 13 C]GABA concentrations were decreased in spinal cord indicating that impaired glucose metabolism contributes to hyperexcitability and supporting the use of treatments which increase GABA amounts. In conclusion, CNS glucose metabolism is compromised, while astrocytic TCA cycling appears to be normal in the hSOD1 G93A mouse model at symptomatic disease stages.

  18. The Folate-Vitamin B12 Interaction, Low Hemoglobin, and the Mortality Risk from Alzheimer's Disease.

    Science.gov (United States)

    Min, Jin-Young; Min, Kyoung-Bok

    2016-03-21

    Abnormal hemoglobin levels are a risk factor for Alzheimer's disease (AD). Although the mechanism underlying these associations is elusive, inadequate micronutrients, particularly folate and vitamin B12, may increase the risk for anemia, cognitive impairment, and AD. In this study, we investigated whether the nutritional status of folate and vitamin B12 is involved in the association between low hemoglobin levels and the risk of AD mortality. Data were obtained from the 1999-2006 National Health and Nutrition Examination Survey (NHANES) and the NHANES (1999-2006) Linked Mortality File. A total of 4,688 participants aged ≥60 years with available baseline data were included in this study. We categorized three groups based on the quartiles of folate and vitamin B12 as follows: Group I (low folate and vitamin B12); Group II (high folate and low vitamin B12 or low folate and high vitamin B12); and Group III (high folate and vitamin B12). Of 4,688 participants, 49 subjects died due to AD. After adjusting for age, sex, ethnicity, education, smoking history, body mass index, the presence of diabetes or hypertension, and dietary intake of iron, significant increases in the AD mortality were observed in Quartile1 for hemoglobin (HR: 8.4, 95% CI: 1.4-50.8), and the overall risk of AD mortality was significantly reduced with increases in the quartile of hemoglobin (p for trend = 0.0200), in subjects with low levels of both folate and vitamin B12 at baseline. This association did not exist in subjects with at least one high level of folate and vitamin B12. Our finding shows the relationship between folate and vitamin B12 levels with respect to the association between hemoglobin levels and AD mortality.

  19. Impaired Glucose Metabolism Despite Decreased Insulin Resistance After Renal Transplantation

    Directory of Open Access Journals (Sweden)

    Manfred Hecking

    2012-06-01

    Full Text Available The pathophysiology underlying new-onset diabetes after transplantation (NODAT is unresolved. We obtained demographics and laboratory data from all 1064 renal transplant recipients followed at our outpatient clinic in 2009/2010, randomly assigned 307 patients without previously diagnosed diabetes to a routine 2-hour oral glucose tolerance test (OGTT, and compared the metabolic results to a large, unrelated cross-sectional cohort of non-transplanted subjects. Among renal transplant recipients, 11% had a history of NODAT, and 12% had type 1 and type 2 diabetes. 42% of all OGTTs were abnormal (9% diabetic, predominantly in older patients who received tacrolimus. Compared to non-transplanted subjects, basal glucose was lower and HbA1c higher in renal transplant patients. Compared to non-transplanted subjects, insulin secretion was inferior, and insulin sensitivity improved at ≥6 months, as well as 3 months post-transplantation:(The Figure shows linear spline interpolation; all p for overall difference between non-Tx and Tx patients <0.02, using likelihood ratio testing. Our results indicate that impaired insulin secretion is the predominant problem after renal transplantation, suggesting benefit for therapeutic regimens that preserve beta cell function after renal transplantation. The mechanism of increased insulin sensitivity might be pathophysiologically similar to pancreatogenic diabetes.fx1

  20. Radioassay of vitamin B-12 employing bentonite

    International Nuclear Information System (INIS)

    Lewin, N.; Fries, J.E.; Richards, C.S.

    1976-01-01

    Radioassay for vitamin B-12 using the unknown quantity of non-radioactive vitamin B-12 released from serum mixed with the radioactivity of a known quantity of radioactive vitamin B-12 tracer. A solution of intrinsic factor having a binding capacity less than the quantity of serum vitamin B-12 and radioactive vitamin B-12 is used to bind a portion of the vitamin B-12 mixture. The vitamin B-12 not bound to intrinsic factor is removed by addition of a bentonite-containing tablet. The quantity of radioactive vitamin B-12 bound to intrinsic factor is compared with standard values and the unknown serum vitamin B-12 obtained. In the steps of the procedure the acid assay medium is pre-combined with the radioactive tracer so that the radioactive vitamin B-12 tracer receives the same treatment as serum vitamin B-12. Certain of the other reagent solutions are pre-combined and the concentration of the components adjusted so that the volume used of each of these other reagent solutions is the same in different assay steps. Thus, fewer pipetting steps are necessary. 7 claims, 1 drawing figure

  1. Fasting metabolism modulates the interleukin-12/interleukin-10 cytokine axis.

    Directory of Open Access Journals (Sweden)

    Johannes J Kovarik

    Full Text Available A crucial role of cell metabolism in immune cell differentiation and function has been recently established. Growing evidence indicates that metabolic processes impact both, innate and adaptive immunity. Since a down-stream integrator of metabolic alterations, mammalian target of rapamycin (mTOR, is responsible for controlling the balance between pro-inflammatory interleukin (IL-12 and anti-inflammatory IL-10, we investigated the effect of upstream interference using metabolic modulators on the production of pro- and anti-inflammatory cytokines. Cytokine release and protein expression in human and murine myeloid cells was assessed after toll-like receptor (TLR-activation and glucose-deprivation or co-treatment with 5'-adenosine monophosphate (AMP-activated protein kinase (AMPK activators. Additionally, the impact of metabolic interference was analysed in an in-vivo mouse model. Glucose-deprivation by 2-deoxy-D-glucose (2-DG increased the production of IL-12p40 and IL-23p19 in monocytes, but dose-dependently inhibited the release of anti-inflammatory IL-10. Similar effects have been observed using pharmacological AMPK activation. Consistently, an inhibition of the tuberous sclerosis complex-mTOR pathway was observed. In line with our in vitro observations, glycolysis inhibition with 2-DG showed significantly reduced bacterial burden in a Th2-prone Listeria monocytogenes mouse infection model. In conclusion, we showed that fasting metabolism modulates the IL-12/IL-10 cytokine balance, establishing novel targets for metabolism-based immune-modulation.

  2. Fasting metabolism modulates the interleukin-12/interleukin-10 cytokine axis

    Science.gov (United States)

    Kernbauer, Elisabeth; Hölzl, Markus A.; Hofer, Johannes; Gualdoni, Guido A.; Schmetterer, Klaus G.; Miftari, Fitore; Sobanov, Yury; Meshcheryakova, Anastasia; Mechtcheriakova, Diana; Witzeneder, Nadine; Greiner, Georg; Ohradanova-Repic, Anna; Waidhofer-Söllner, Petra; Säemann, Marcus D.; Decker, Thomas

    2017-01-01

    A crucial role of cell metabolism in immune cell differentiation and function has been recently established. Growing evidence indicates that metabolic processes impact both, innate and adaptive immunity. Since a down-stream integrator of metabolic alterations, mammalian target of rapamycin (mTOR), is responsible for controlling the balance between pro-inflammatory interleukin (IL)-12 and anti-inflammatory IL-10, we investigated the effect of upstream interference using metabolic modulators on the production of pro- and anti-inflammatory cytokines. Cytokine release and protein expression in human and murine myeloid cells was assessed after toll-like receptor (TLR)-activation and glucose-deprivation or co-treatment with 5′-adenosine monophosphate (AMP)-activated protein kinase (AMPK) activators. Additionally, the impact of metabolic interference was analysed in an in-vivo mouse model. Glucose-deprivation by 2-deoxy-D-glucose (2-DG) increased the production of IL-12p40 and IL-23p19 in monocytes, but dose-dependently inhibited the release of anti-inflammatory IL-10. Similar effects have been observed using pharmacological AMPK activation. Consistently, an inhibition of the tuberous sclerosis complex-mTOR pathway was observed. In line with our in vitro observations, glycolysis inhibition with 2-DG showed significantly reduced bacterial burden in a Th2-prone Listeria monocytogenes mouse infection model. In conclusion, we showed that fasting metabolism modulates the IL-12/IL-10 cytokine balance, establishing novel targets for metabolism-based immune-modulation. PMID:28742108

  3. Metabolism of leukotriene B4 to dihydro and dihydro-oxo products by porcine leukocytes

    International Nuclear Information System (INIS)

    Powell, W.S.; Gravelle, F.

    1989-01-01

    Porcine leukocytes contain a novel pathway for the metabolism of leukotriene B4 (LTB4) which results in reduction of the conjugated triene chromophore to a conjugated diene. These cells converted LTB4 to two major metabolites, both of which exhibited maximal absorbance at 230 nm in their UV spectra. These products were purified by high pressure liquid chromatography and identified as 10, 11-dihydro-LTB4 and 10,11-dihydro-12-oxo-LTB4 on the basis of the mass spectra of various derivatives. The position of the double bond of LTB4 which had been reduced was established by cleaving the remaining double bonds of 10, 11-dihydro-LTB4 with ozone followed by oxidation or reduction of the resulting ozonide and analysis of the products by mass spectrometry. Experiments with deuterium-labeled substrate indicated that LTB4 could be directly converted to 10, 11-dihydro-LTB4 without the prior oxidation of either of its hydroxyl groups, as is required for the formation of dihydro metabolites of prostaglandins. Incubation of porcine leukocytes with 10, 11-dihydro-LTB4 and 10, 11-dihydro-12-oxo-LTB4 indicated that these two products can be interconverted and are in equilibrium with one another. The dihydro-oxo metabolite can therefore be formed from 10, 11-dihydro-LTB4, although we have not ruled out the possibility that it is also produced via 12-oxo-LTB4, which could be a transitory intermediate. These results indicate that porcine leukocytes contain a novel reductase/dehydrogenase pathway distinct from the pathway responsible for the metabolism of prostaglandins. This pathway is also different from the pathway in human polymorphonuclear leukocytes which converts 6-trans-isomers of LTB4 to dihydro products, since the latter pathway involves 5-oxo intermediates and results in a shift in the positions of the remaining double bonds

  4. [Isolation and identification of a lactate-utilizing, butyrate-producing bacterium and its primary metabolic characteristics].

    Science.gov (United States)

    Liu, Wei; Zhu, Wei-yun; Yao, Wen; Mao, Sheng-yong

    2007-06-01

    The distal mammalian gut harbors prodigiously abundant microbes, which provide unique metabolic traits to host. A lactate-utilizing, butyrate-producing bacterium, strain LB01, was isolated from adult swine feces by utilizing modified Hungate technique with rumen liquid-independent YCFA medium supplemented with lactate as the single carbon source. It was an obligate anaerobic, Gram positive bacterium, and could utilize glucose, fructose, maltose and lactate with a large amount of gas products. 16S rRNA sequence analysis revealed that it had the high similarity with members of the genus Megasphaera. The metabolic characteristics of strain LB01 was investigated by using in vitro fermentation system. Lactate at the concentration of 65 mmol/L in YCFA medium was rapidly consumed within 9 hours and was mainly converted to propionate and butyrate after 24h. As the level of acetate declined, the concentration of butyrate rose only in the presence of glucose, suggesting that butyrate could possibly be synthesized by the acetyl CoA: butyryl CoA transferase. When co-cultured with lactic acid bacteria strain K9, strain LB01 evidently reduced the concentration of lactate produced by strain K9 and decelerated the rapid pH drop, finally producing 12.11 mmol/L butyrate and 4.06 mmol/L propionate. The metabolic characteristics that strain LB01 efficiently converts toxic lactate and excessive acetate to butyrate can prevent lactate and acetate accumulation in the large intestine and maintain the slightly acidic environment of the large intestine, consequently revealing that stain LB01 could act as a potential probiotics.

  5. Dietary Sources of Vitamin B-12 and Their Association with Vitamin B-12 Status Markers in Healthy Older Adults in the B-PROOF Study

    Directory of Open Access Journals (Sweden)

    Elske M. Brouwer-Brolsma

    2015-09-01

    Full Text Available Low vitamin B-12 concentrations are frequently observed among older adults. Malabsorption is hypothesized to be an important cause of vitamin B-12 inadequacy, but serum vitamin B-12 may also be differently affected by vitamin B-12 intake depending on food source. We examined associations between dietary sources of vitamin B-12 (meat, fish and shellfish, eggs, dairy and serum vitamin B-12, using cross-sectional data of 600 Dutch community-dwelling adults (≥65 years. Dietary intake was assessed with a validated food frequency questionnaire. Vitamin B-12 concentrations were measured in serum. Associations were studied over tertiles of vitamin B-12 intake using P for trend, by calculating prevalence ratios (PRs, and splines. Whereas men had significantly higher vitamin B-12 intakes than women (median (25th–75th percentile: 4.18 (3.29–5.38 versus 3.47 (2.64–4.40 μg/day, serum vitamin B-12 did not differ between the two sexes (mean ± standard deviation (SD: 275 ± 104 pmol/L versus 290 ± 113 pmol/L. Higher intakes of dairy, meat, and fish and shellfish were significantly associated with higher serum vitamin B-12 concentrations, where meat and dairy—predominantly milk were the most potent sources. Egg intake did not significantly contribute to higher serum vitamin B-12 concentrations. Thus, dairy and meat were the most important contributors to serum vitamin B-12, followed by fish and shellfish.

  6. Integral measurement of the $^{12}$C(n,p)$^{12}$B reaction up to 10 GeV

    CERN Document Server

    Žugec, P; Bosnar, D; Ventura, A; Mengoni, A; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Berthoumieux, E; Billowes, J; Boccone, V; Brugger, M; Calviani, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Cortés, G; Cortés-Giraldo, M.A; Cosentino, L; Diakaki, M; Domingo-Pardo, C; Dressler, R; Duran, I; Eleftheriadis, C; Ferrari, A; Finocchiaro, P; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Guerrero, C; Gunsing, F; Gurusamy, P; Heinitz, S; Jenkins, D G; Jericha, E; Käppeler, F; Karadimos, D; Kivel, N; Kokkoris, M; Krtička, M; Kroll, J; Langer, C; Lederer, C; Leeb, H; Leong, L S; Meo, S Lo; Losito, R; Manousos, A; Marganiec, J; Martínez, T; Massimi, C; Mastinu, P; Mastromarco, M; Mendoza, E; Milazzo, P M; Mingrone, F; Mirea, M; Mondalaers, W; Musumarra, A; Paradela, C; Pavlik, A; Perkowski, J; Plompen, A; Praena, J; Quesada, J; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Saxena, A; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiß, C; Wright, T

    2016-01-01

    The integral measurement of the $^{12}$C(n,p)$^{12}$B reaction was performed at the neutron time of flight facility n_TOF at CERN. The total number of $^{12}$B nuclei produced per neutron pulse of the n_TOF beam was determined using the activation technique in combination with a time of flight technique. The cross section is integrated over the n_TOF neutron energy spectrum from reaction threshold at 13.6 MeV to 10 GeV. Having been measured up to 1 GeV on basis of the $^{235}$U(n,f) reaction, the neutron energy spectrum above 200 MeV has been reevaluated due to the recent extension of the cross section reference for this particular reaction, which is otherwise considered a standard up to 200 MeV. The results from the dedicated GEANT4 simulations have been used to evaluate the neutron flux from 1 GeV up to 10 GeV. The experimental results related to the $^{12}$C(n,p)$^{12}$B reaction are compared with the evaluated cross sections from major libraries and with the predictions of different GEANT4 models, which m...

  7. B-Cell Metabolic Remodeling and Cancer

    DEFF Research Database (Denmark)

    Franchina, Davide G.; Grusdat, Melanie; Brenner, Dirk

    2018-01-01

    Cells of the immune system display varying metabolic profiles to fulfill their functions. B lymphocytes overcome fluctuating energy challenges as they transition from the resting state and recirculation to activation, rapid proliferation, and massive antibody production. Only through a controlled...

  8. Brain metabolic impairment of OSAS: evidence from MRS

    International Nuclear Information System (INIS)

    Shen Jie; Long Miaomiao; Shen Wen; Qi Ji

    2011-01-01

    Objective: To evaluate the impact of obstructive sleep apnea syndrome (OSAS) on human cerebral metabolism by using magnetic resonance spectroscopy (MRS). Materials and methods: Twenty-one severe OSAS patients, 14 mild-moderate OSAS patients, and 15 healthy control subjects were included. All subjects underwent MRS using the point-resolved echo spin spectroscopy (PRESS). Proton volumes of interest were placed in the bilateral frontal lobes and left temporal -parietal-occipital cortex, and left hippocampus. Results: 1. Compared to the controls, the NAA/Cr ratio was significantly decreased in the left frontal lobe in the severe OSAS group (P=0.004), and in the right frontal lobe in the severe (P=0.002) and mild-moderate (P=0.007) OSAS patients. The NAA/Cr ratio trended to be decreased in the left hippocampus in the OSAS patients compared to controls. 2. A significant increase in the ml/Cr ratio was detected in the right frontal regions in the severe (P=0.008) and mild-moderate (P<0.001) OSAS groups. 3. Clx/Cr ratio values were significantly smaller than controls in the left (P=0.006) and right (P=0.027) frontal regions. Conclusion: Bilateral frontal lobes are the vulnerable location in patients with OSAS. MRS can be used to screen the brain metabolic impairment. (authors)

  9. Capillary recruitment is impaired in essential hypertension and relates to insulin's metabolic and vascular actions

    NARCIS (Netherlands)

    Serne, EH; Gans, ROB; ter Maaten, JC; ter Wee, PM; Donker, AM; Stehouwer, CDA

    Objective: In patients with essential hypertension, defects in both the metabolic and vascular actions of insulin have been described. Impaired microvascular function, a well-established abnormality in essential hypertension, may explain part of these defects. In the present study we investigated

  10. [Work integration of impaired workers in a type-B social cooperative].

    Science.gov (United States)

    Taino, G; Gazzoldi, T; Marandola, P; Fabris, F; Ferrari, M; Imbriani, M

    2008-01-01

    This research aims to evaluate job occupation results of impaired workers in a type-B social cooperative, taking into consideration not only specific occupational risks' analysis and assessment, but also organisational, relational and psycho-social matters essential for their stable job occupation. The impaired workers involved were all those hired by a type-B social cooperative from Jan 1999 until Dec 2007, ie. 16 workers (M 8, F 8), equal to 40% of employees' total number. Every impaired worker has been submitted to preventive health surveillance in order to evaluate the degree of disability and residual job ability in relation to the job tasks suitable for him/her. In order to find available tasks which can be performed by disadvantaged workers, the personnel chart has been analyzed, and 10 of the 16 workers (equal to 62.5%) have been considered fit for the specific task without limitations. The other 6 (37.5%) have been considered capable of the specific task with limitations and/or prescriptions, and for 2 of them (12.5%) a tutorial supervision prescription was also necessary. Among those 6 workers with limitations and/or prescriptions, 4 were psychologically impaired (67%) and 2 were physically impaired (37%). The situation of these 16 impaired workers has been periodically verified and followed up for 8 years. Not only have the fifteen workers continued to perform the task initially considered suitable for their health status, but for some of them (5 workers), an increase in job performance, in both complexity and shift duration, has been observed. Moreover, with the only exception of a psychologically impaired worker who did alternate between good comfort times and occasional disease acute phases, all other workers have shown good and stable gains in psychological and physical health conditions, performing requested tasks not only with efficiency, but also with commitment and motivation. All workers have shown a remarkable improvement in their ability to

  11. C12 derivatives of the hydroperoxide lyase pathway are produced by product recycling through lipoxygenase-2 in Nicotiana attenuata leaves

    NARCIS (Netherlands)

    Kallenbach, M.; Gilardoni, P.A.; Allmann, S.; Baldwin, I.T.; Bonaventure, G.

    2011-01-01

    In response to diverse stresses, the hydroperoxide lyase (HPL) pathway produces C(6) aldehydes and 12-oxo-(9Z )-dodecenoic acid ((9Z )-traumatin). Since the original characterization of (10E )-traumatin and traumatic acid, little has been added to our knowledge of the metabolism and fluxes

  12. Fructose intervention for 12 weeks does not impair glycemic control or incretin hormone responses during oral glucose or mixed meal tests in obese men.

    Science.gov (United States)

    Matikainen, N; Söderlund, S; Björnson, E; Bogl, L H; Pietiläinen, K H; Hakkarainen, A; Lundbom, N; Eliasson, B; Räsänen, S M; Rivellese, A; Patti, L; Prinster, A; Riccardi, G; Després, J-P; Alméras, N; Holst, J J; Deacon, C F; Borén, J; Taskinen, M-R

    2017-06-01

    Incretin hormones glucagon-like peptide (GLP)-1 and glucose-dependent insulinotropic polypeptide (GIP) are affected early on in the pathogenesis of metabolic syndrome and type 2 diabetes. Epidemiologic studies consistently link high fructose consumption to insulin resistance but whether fructose consumption impairs the incretin response remains unknown. As many as 66 obese (BMI 26-40 kg/m 2 ) male subjects consumed fructose-sweetened beverages containing 75 g fructose/day for 12 weeks while continuing their usual lifestyle. Glucose, insulin, GLP-1 and GIP were measured during oral glucose tolerance test (OGTT) and triglycerides (TG), GLP-1, GIP and PYY during a mixed meal test before and after fructose intervention. Fructose intervention did not worsen glucose and insulin responses during OGTT, and GLP-1 and GIP responses during OGTT and fat-rich meal were unchanged. Postprandial TG response increased significantly, p = 0.004, and we observed small but significant increases in weight and liver fat content, but not in visceral or subcutaneous fat depots. However, even the subgroups who gained weight or liver fat during fructose intervention did not worsen their glucose, insulin, GLP-1 or PYY responses. A minor increase in GIP response during OGTT occurred in subjects who gained liver fat (p = 0.049). In obese males with features of metabolic syndrome, 12 weeks fructose intervention 75 g/day did not change glucose, insulin, GLP-1 or GIP responses during OGTT or GLP-1, GIP or PYY responses during a mixed meal. Therefore, fructose intake, even accompanied with mild weight gain, increases in liver fat and worsening of postprandial TG profile, does not impair glucose tolerance or gut incretin response to oral glucose or mixed meal challenge. Copyright © 2017 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University

  13. CXCL12 Mediates Aberrant Costimulation of B Lymphocytes in Warts, Hypogammaglobulinemia, Infections, Myelokathexis Immunodeficiency

    Directory of Open Access Journals (Sweden)

    Giuliana Roselli

    2017-09-01

    Full Text Available The Warts, Hypogammaglobulinemia, Infections, Myelokathexis (WHIM syndrome is an immunodeficiency caused by mutations in chemokine receptor CXCR4. WHIM patient adaptive immunity defects remain largely unexplained. We have previously shown that WHIM-mutant T cells form unstable immunological synapses, affecting T cell activation. Here, we show that, in WHIM patients and WHIM CXCR4 knock-in mice, B cells are more apoptosis prone. Intriguingly, WHIM-mutant B cells were also characterized by spontaneous activation. Searching for a mechanistic explanation for these observations, we uncovered a novel costimulatory effect of CXCL12, the CXCR4 ligand, on WHIM-mutant but not wild-type B cells. The WHIM CXCR4-mediated costimulation led to increased B-cell activation, possibly involving mTOR, albeit without concurrently promoting survival. A reduction in antigenic load during immunization in the mouse was able to circumvent the adaptive immunity defects. These results suggest that WHIM-mutant CXCR4 may lead to spontaneous aberrant B-cell activation, via CXCL12-mediated costimulation, impairing B-cell survival and thus possibly contributing to the WHIM syndrome defects in adaptive immunity.

  14. CXCL12 Mediates Aberrant Costimulation of B Lymphocytes in Warts, Hypogammaglobulinemia, Infections, Myelokathexis Immunodeficiency

    Science.gov (United States)

    Roselli, Giuliana; Martini, Elisa; Lougaris, Vassilios; Badolato, Raffaele; Viola, Antonella; Kallikourdis, Marinos

    2017-01-01

    The Warts, Hypogammaglobulinemia, Infections, Myelokathexis (WHIM) syndrome is an immunodeficiency caused by mutations in chemokine receptor CXCR4. WHIM patient adaptive immunity defects remain largely unexplained. We have previously shown that WHIM-mutant T cells form unstable immunological synapses, affecting T cell activation. Here, we show that, in WHIM patients and WHIM CXCR4 knock-in mice, B cells are more apoptosis prone. Intriguingly, WHIM-mutant B cells were also characterized by spontaneous activation. Searching for a mechanistic explanation for these observations, we uncovered a novel costimulatory effect of CXCL12, the CXCR4 ligand, on WHIM-mutant but not wild-type B cells. The WHIM CXCR4-mediated costimulation led to increased B-cell activation, possibly involving mTOR, albeit without concurrently promoting survival. A reduction in antigenic load during immunization in the mouse was able to circumvent the adaptive immunity defects. These results suggest that WHIM-mutant CXCR4 may lead to spontaneous aberrant B-cell activation, via CXCL12-mediated costimulation, impairing B-cell survival and thus possibly contributing to the WHIM syndrome defects in adaptive immunity. PMID:28928741

  15. Prevalence and characteristics of impaired glucose metabolism in patients referred to comprehensive cardiac rehabilitation: the DANSUK study

    DEFF Research Database (Denmark)

    Boas Soja, Anne Merete; Zwisler, Ann-Dorthe Olsen; Melchior, Thomas

    2006-01-01

    and mortality. We studied the prevalence of impaired glucose metabolism (T2DM, IGT and impaired fasting glucose; IFG) in patients referred to cardiac rehabilitation, and further studied whether we could identify groups in which an oral glucose tolerance test (OGTT) need not be performed. METHODS: As part...... of a cardiac rehabilitation trial, 201 patients participated. Patients without a diagnosis of T2DM (N=159) underwent an OGTT 3 months after inclusion. RESULTS: Forty-two patients (21%) had known T2DM at enrolment. Based on the OGTT, 26 patients (13%) had unrecognized T2DM, 36 (18%) had IGT and 19 (9%) were...... predictive value of 39%. CONCLUSION: More than 60% of the patients (123/201) referred to cardiac rehabilitation had impaired glucose metabolism and 18% of the screened patients (29/159) would be misclassified if an OGTT was omitted. IFG and IGT did not identify the same patients or the same cardiovascular...

  16. Metabolic reprogramming for producing energy and reducing power in fumarate hydratase null cells from hereditary leiomyomatosis renal cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Youfeng Yang

    Full Text Available Fumarate hydratase (FH-deficient kidney cancer undergoes metabolic remodeling, with changes in mitochondrial respiration, glucose, and glutamine metabolism. These changes represent multiple biochemical adaptations in glucose and fatty acid metabolism that supports malignant proliferation. However, the metabolic linkages between altered mitochondrial function, nucleotide biosynthesis and NADPH production required for proliferation and survival have not been elucidated. To characterize the alterations in glycolysis, the Krebs cycle and the pentose phosphate pathways (PPP that either generate NADPH (oxidative or do not (non-oxidative, we utilized [U-(13C]-glucose, [U-(13C,(15N]-glutamine, and [1,2- (13C2]-glucose tracers with mass spectrometry and NMR detection to track these pathways, and measured the oxygen consumption rate (OCR and extracellular acidification rate (ECAR of growing cell lines. This metabolic reprogramming in the FH null cells was compared to cells in which FH has been restored. The FH null cells showed a substantial metabolic reorganization of their intracellular metabolic fluxes to fulfill their high ATP demand, as observed by a high rate of glucose uptake, increased glucose turnover via glycolysis, high production of glucose-derived lactate, and low entry of glucose carbon into the Krebs cycle. Despite the truncation of the Krebs cycle associated with inactivation of fumarate hydratase, there was a small but persistent level of mitochondrial respiration, which was coupled to ATP production from oxidation of glutamine-derived α-ketoglutarate through to fumarate. [1,2- (13C2]-glucose tracer experiments demonstrated that the oxidative branch of PPP initiated by glucose-6-phosphate dehydrogenase activity is preferentially utilized for ribose production (56-66% that produces increased amounts of ribose necessary for growth and NADPH. Increased NADPH is required to drive reductive carboxylation of α-ketoglutarate and fatty acid

  17. Metabolism and disposition of a novel antineoplastic JS-38 (Benzamide, N-[4-(2,4-dimethoxyphenyl)-4,5-dihydro-5-oxo-1,2-dithiolo[4,3-b]pyrrol-6-yl]-3,5-bis (trifluoromethyl)-(9Cl)) in rats.

    Science.gov (United States)

    Zhang, Hong; Liu, Quanhai; Fan, Tingting; Fang, Yu; Li, Ying; Wang, Guoping

    2012-03-01

    The metabolism and catabolism of a novel antineoplastic (ID code JS-38),Benzamide, N-[4-(2,4-dimethoxyphenyl)-4,5-dihydro-5-oxo-1,2-dithiolo[4,3-b]pyrrol-6-yl]-3,5-bis (trifluoromethyl)-(9Cl), were investigated in Wistar rats (3 female, 3 male). LC/UV, LC/MS, LC/MS/MS, NMR and acid hydrolysis methods showed that the metabolic process of JS-38 consists of a series of acetylation and glucoronation that form a metabolic product with a unique pharmacologic property of accelerating bone-marrow cell formation, and also showed a novel metabolic pathway of being acetylated and glucuronated in series.

  18. Glutamate receptor antibodies directed against AMPA receptors subunit 3 peptide B (GluR3B) can be produced in DBA/2J mice, lower seizure threshold and induce abnormal behavior.

    Science.gov (United States)

    Ganor, Yonatan; Goldberg-Stern, Hadassa; Cohen, Ran; Teichberg, Vivian; Levite, Mia

    2014-04-01

    Anti-GluR3B antibodies (GluR3B Ab's), directed against peptide B/aa372-395 of GluR3 subunit of glutamate/AMPA receptors, are found in ∼35% of epilepsy patients, activate glutamate/AMPA receptors, evoke ion currents, kill neurons and damage the brain. We recently found that GluR3B Ab's also associate with neurological/psychiatric/behavioral abnormalities in epilepsy patients. Here we asked if GluR3B Ab's could be produced in DBA/2J mice, and also modulate seizure threshold and/or cause behavioral/motor impairments in these mice. DBA/2J mice were immunized with the GluR3B peptide in Complete Freund's Adjuvant (CFA), or with controls: ovalbumin (OVA), CFA, or phosphate-buffer saline (PBS). GluR3B Ab's and OVA Ab's were tested. Seizures were induced in all mice by the chemoconvulsant pentylenetetrazole (PTZ) at three time points, each time with less PTZ to avoid non-specific death. Behavior was examined in Open-Field, RotaRod and Grip tests. GluR3B Ab's were produced only in GluR3B-immunized mice, while OVA Ab's were produced only in OVA-immunized mice, showing high Ab's specificity. In GluR3B Ab's negative mice, seizure severity scores and percentages of animals developing generalized seizures declined in response to decreasing PTZ doses. In contrast, both parameters remained unchanged/high in the GluR3B Ab's positive mice, showing that these mice were more susceptible to seizures. The seizure scores associated significantly with the GluR3B Ab's levels. GluR3B Ab's positive mice were also more anxious in Open-Field test, fell faster in RotaRod test, and fell more in Grip test, compared to all the control mice. GluR3B Ab's are produced in DBA/2J mice, facilitate seizures and induce behavioral/motor impairments. This animal model can therefore serve for studying autoimmune epilepsy and abnormal behavior mediated by pathogenic anti-GluR3B Ab's. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. NF-κB activation impairs somatic cell reprogramming in ageing.

    Science.gov (United States)

    Soria-Valles, Clara; Osorio, Fernando G; Gutiérrez-Fernández, Ana; De Los Angeles, Alejandro; Bueno, Clara; Menéndez, Pablo; Martín-Subero, José I; Daley, George Q; Freije, José M P; López-Otín, Carlos

    2015-08-01

    Ageing constitutes a critical impediment to somatic cell reprogramming. We have explored the regulatory mechanisms that constitute age-associated barriers, through derivation of induced pluripotent stem cells (iPSCs) from individuals with premature or physiological ageing. We demonstrate that NF-κB activation blocks the generation of iPSCs in ageing. We also show that NF-κB repression occurs during cell reprogramming towards a pluripotent state. Conversely, ageing-associated NF-κB hyperactivation impairs the generation of iPSCs by eliciting the reprogramming repressor DOT1L, which reinforces senescence signals and downregulates pluripotency genes. Genetic and pharmacological NF-κB inhibitory strategies significantly increase the reprogramming efficiency of fibroblasts from Néstor-Guillermo progeria syndrome and Hutchinson-Gilford progeria syndrome patients, as well as from normal aged donors. Finally, we demonstrate that DOT1L inhibition in vivo extends lifespan and ameliorates the accelerated ageing phenotype of progeroid mice, supporting the interest of studying age-associated molecular impairments to identify targets of rejuvenation strategies.

  20. Omega-3 Fatty Acid Supplementation for 12 Weeks Increases Resting and Exercise Metabolic Rate in Healthy Community-Dwelling Older Females.

    Directory of Open Access Journals (Sweden)

    Samantha L Logan

    Full Text Available Critical among the changes that occur with aging are decreases in muscle mass and metabolic rate and an increase in fat mass. These changes may predispose older adults to chronic disease and functional impairment; ultimately resulting in a decrease in the quality of life. Research has suggested that long chain omega-3 fatty acids, found predominantly in fatty fish, may assist in reducing these changes. The objective of this study was to evaluate the effect of fish oil (FO supplementation in a cohort of healthy, community-dwelling older females on 1 metabolic rate and substrate oxidation at rest and during exercise; 2 resting blood pressure and resting and exercise heart rates; 3 body composition; 4 strength and physical function, and; 5 blood measures of insulin, glucose, c-reactive protein, and triglycerides. Twenty-four females (66 ± 1 yr were recruited and randomly assigned to receive either 3g/d of EPA and DHA or a placebo (PL, olive oil for 12 wk. Exercise measurements were taken before and after 12 wk of supplementation and resting metabolic measures were made before and at 6 and 12 wk of supplementation. The results demonstrated that FO supplementation significantly increased resting metabolic rate by 14%, energy expenditure during exercise by 10%, and the rate of fat oxidation during rest by 19% and during exercise by 27%. In addition, FO consumption lowered triglyceride levels by 29% and increased lean mass by 4% and functional capacity by 7%, while no changes occurred in the PL group. In conclusion, FO may be a strategy to improve age-related physical and metabolic changes in healthy older females. Trial registration: ClinicalTrials.gov NCT01734538.

  1. Deficiency in L-serine deaminase interferes with one-carbon metabolism and cell wall synthesis in Escherichia coli K-12.

    Science.gov (United States)

    Zhang, Xiao; El-Hajj, Ziad W; Newman, Elaine

    2010-10-01

    Escherichia coli K-12 provided with glucose and a mixture of amino acids depletes L-serine more quickly than any other amino acid even in the presence of ammonium sulfate. A mutant without three 4Fe4S L-serine deaminases (SdaA, SdaB, and TdcG) of E. coli K-12 is unable to do this. The high level of L-serine that accumulates when such a mutant is exposed to amino acid mixtures starves the cells for C(1) units and interferes with cell wall synthesis. We suggest that at high concentrations, L-serine decreases synthesis of UDP-N-acetylmuramate-L-alanine by the murC-encoded ligase, weakening the cell wall and producing misshapen cells and lysis. The inhibition by high L-serine is overcome in several ways: by a large concentration of L-alanine, by overproducing MurC together with a low concentration of L-alanine, and by overproducing FtsW, thus promoting septal assembly and also by overexpression of the glycine cleavage operon. S-Adenosylmethionine reduces lysis and allows an extensive increase in biomass without improving cell division. This suggests that E. coli has a metabolic trigger for cell division. Without that reaction, if no other inhibition occurs, other metabolic functions can continue and cells can elongate and replicate their DNA, reaching at least 180 times their usual length, but cannot divide.

  2. Dietary sources of vitamin B-12 and their association with vitamin B-12 status markers in healthy older adults in the B-PROOF study

    NARCIS (Netherlands)

    Brouwer-Brolsma, E.M.; Dhonukshe-Rutten, R.A.M.; Wijngaarden, van J.P.; Zwaluw, van der N.L.; Velde, van der N.; Groot, de C.P.G.M.

    2015-01-01

    Low vitamin B-12 concentrations are frequently observed among older adults. Malabsorption is hypothesized to be an important cause of vitamin B-12 inadequacy, but serum vitamin B-12 may also be differently affected by vitamin B-12 intake depending on food source. We examined associations between

  3. Dietary Sources of Vitamin B-12 and Their Association with Vitamin B-12 Status Markers in Healthy Older Adults in the B-PROOF Study

    NARCIS (Netherlands)

    Brouwer-Brolsma, Elske M.; Dhonukshe-Rutten, Rosalie A. M.; van Wijngaarden, Janneke P.; Zwaluw, Nikita L. van der; Velde, Nathalie van der; de Groot, Lisette C. P. G. M.

    2015-01-01

    Low vitamin B-12 concentrations are frequently observed among older adults. Malabsorption is hypothesized to be an important cause of vitamin B-12 inadequacy, but serum vitamin B-12 may also be differently affected by vitamin B-12 intake depending on food source. We examined associations between

  4. Dietary sources of vitamin B-12 and their association with vitamin B-12 status markers in healthy older adults in the B-PROOF study

    NARCIS (Netherlands)

    E.M. Brouwer-Brolsma (Elske); R.A.M. Dhonukshe-Rutten (Rosalie); J.P. van Wijngaarden (Janneke); N.L. van der Zwaluw (N.); N. van der Velde (Nathalie); L.C.P.G.M. de Groot (Lisette)

    2015-01-01

    textabstractLow vitamin B-12 concentrations are frequently observed among older adults. Malabsorption is hypothesized to be an important cause of vitamin B-12 inadequacy, but serum vitamin B-12 may also be differently affected by vitamin B-12 intake depending on food source. We examined associations

  5. Investigation of the binding affinity in vitamin B12-Bovine serum albumin system using various spectroscopic methods

    Science.gov (United States)

    Makarska-Bialokoz, Magdalena

    2017-09-01

    The binding affinity between vitamin B12 (VitB12) and bovine serum albumin (BSA) has been investigated in aqueous solution at pH = 7.4, employing UV-vis absorption and steady-state, synchronous and three-dimensional fluorescence spectra techniques. Representative effects noted for BSA intrinsic fluorescence resulting from the interactions with VitB12 confirm the formation of π-π stacked non-covalent and non-fluorescent complexes in the system VitB12-BSA. All the determined parameters, the binding, fluorescence quenching and bimolecular quenching rate constants (of the order of 104 L mol- 1, 103 L mol- 1 and 1011 L mol- 1 s- 1, respectively), as well as Förster resonance energy transfer parameters validate the mechanism of static quenching. The interaction with VitB12 induces folding of the polypeptide chains around Trp residues of BSA, resulting in a more hydrophobic surrounding. Presented outcomes suggest that the addition of VitB12 can lead to the more organized BSA conformation and its more folded tertiary structure, what could influence the physiological functions of bovine serum albumin, notably in case of its overuse or abnormal metabolism.

  6. Effect of Mediterranean diet with and without weight loss on apolipoprotein B100 metabolism in men with metabolic syndrome

    Science.gov (United States)

    The objective of this study was to assess the effect of a Mediterranean diet (MedDiet) with and without weight loss (WL) on apolipoprotein B100 (apoB100) metabolism in men with metabolic syndrome. The diet of 19 men with metabolic syndrome (age, 24–62 years) was first standardized to a North America...

  7. Dissociation between brain amyloid deposition and metabolism in early mild cognitive impairment.

    Directory of Open Access Journals (Sweden)

    Liyong Wu

    Full Text Available The hypothetical model of dynamic biomarkers for Alzheimer's disease (AD describes high amyloid deposition and hypometabolism at the mild cognitive impairment (MCI stage. However, it remains unknown whether brain amyloidosis and hypometabolism follow the same trajectories in MCI individuals. We used the concept of early MCI (EMCI and late MCI (LMCI as defined by the Alzheimer's disease Neuroimaging Initiative (ADNI-Go in order to compare the biomarker profile between EMCI and LMCI.To examine the global and voxel-based neocortical amyloid burden and metabolism among individuals who are cognitively normal (CN, as well as those with EMCI, LMCI and mild AD.In the present study, 354 participants, including CN (n = 109, EMCI (n = 157, LMCI (n = 39 and AD (n = 49, were enrolled between September 2009 and November 2011 through ADNI-GO and ADNI-2. Brain amyloid load and metabolism were estimated using [(18F]AV45 and [(18F]fluorodeoxyglucose ([(18F]FDG PET, respectively. Uptake ratio images of [(18F]AV45 and [(18F]FDG were calculated by dividing the summed PET image by the median counts of the grey matter of the cerebellum and pons, respectively. Group differences of global [(18F]AV45 and [(18F]FDG were analyzed using ANOVA, while the voxel-based group differences were estimated using statistic parametric mapping (SPM.EMCI patients showed higher global [(18F]AV45 retention compared to CN and lower uptake compared to LMCI. SPM detected higher [(18F]AV45 uptake in EMCI compared to CN in the precuneus, posterior cingulate, medial and dorsal lateral prefrontal cortices, bilaterally. EMCI showed lower [(18F]AV45 retention than LMCI in the superior temporal, inferior parietal, as well as dorsal lateral prefrontal cortices, bilaterally. Regarding to the global [(18F]FDG, EMCI patients showed no significant difference from CN and a higher uptake ratio compared to LMCI. At the voxel level, EMCI showed higher metabolism in precuneus, hippocampus, entorhinal and

  8. Metabolic engineering of Corynebacterium glutamicum to produce GDP-L-fucose from glucose and mannose.

    Science.gov (United States)

    Chin, Young-Wook; Park, Jin-Byung; Park, Yong-Cheol; Kim, Kyoung Heon; Seo, Jin-Ho

    2013-06-01

    Wild-type Corynebacterium glutamicum was metabolically engineered to convert glucose and mannose into guanosine 5'-diphosphate (GDP)-L-fucose, a precursor of fucosyl-oligosaccharides, which are involved in various biological and pathological functions. This was done by introducing the gmd and wcaG genes of Escherichia coli encoding GDP-D-mannose-4,6-dehydratase and GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase-4-reductase, respectively, which are known as key enzymes in the production of GDP-L-fucose from GDP-D-mannose. Coexpression of the genes allowed the recombinant C. glutamicum cells to produce GDP-L-fucose in a minimal medium containing glucose and mannose as carbon sources. The specific product formation rate was much higher during growth on mannose than on glucose. In addition, the specific product formation rate was further increased by coexpressing the endogenous phosphomanno-mutase gene (manB) and GTP-mannose-1-phosphate guanylyl-transferase gene (manC), which are involved in the conversion of mannose-6-phosphate into GDP-D-mannose. However, the overexpression of manA encoding mannose-6-phosphate isomerase, catalyzing interconversion of mannose-6-phosphate and fructose-6-phosphate showed a negative effect on formation of the target product. Overall, coexpression of gmd, wcaG, manB and manC in C. glutamicum enabled production of GDP-L-fucose at the specific rate of 0.11 mg g cell(-1) h(-1). The specific GDP-L-fucose content reached 5.5 mg g cell(-1), which is a 2.4-fold higher than that of the recombinant E. coli overexpressing gmd, wcaG, manB and manC under comparable conditions. Well-established metabolic engineering tools may permit optimization of the carbon and cofactor metabolisms of C. glutamicum to further improve their production capacity.

  9. Impaired arsenic metabolism in children during weaning

    International Nuclear Information System (INIS)

    Faengstroem, Britta; Hamadani, Jena; Nermell, Barbro; Grander, Margaretha; Palm, Brita; Vahter, Marie

    2009-01-01

    Background: Methylation of inorganic arsenic (iAs) via one-carbon metabolism is a susceptibility factor for a range of arsenic-related health effects, but there is no data on the importance of arsenic metabolism for effects on child development. Aim: To elucidate the development of arsenic metabolism in early childhood. Methods: We measured iAs, methylarsonic acid (MA) and dimethylarsinic acid (DMA), the metabolites of iAs, in spot urine samples of 2400 children at 18 months of age. The children were born to women participating in a population-based longitudinal study of arsenic effects on pregnancy outcomes and child development, carried out in Matlab, a rural area in Bangladesh with a wide range of arsenic concentrations in drinking water. Arsenic metabolism was evaluated in relation to age, sex, anthropometry, socio-economic status and arsenic exposure. Results: Arsenic concentrations in child urine (median 34 μg/L, range 2.4-940 μg/L), adjusted to average specific gravity of 1.009 g/mL, were considerably higher than that measured at 3 months of age, but lower than that in maternal urine. Child urine contained on average 12% iAs, 9.4% MA and 78% DMA, which implies a marked change in metabolite pattern since infancy. In particular, there was a marked increase in urinary %MA, which has been associated with increased risk of health effects. Conclusion: The arsenic metabolite pattern in urine of children at 18 months of age in rural Bangladesh indicates a marked decrease in arsenic methylation efficiency during weaning.

  10. Physical Activity Dimensions Associated with Impaired Glucose Metabolism

    DEFF Research Database (Denmark)

    Amadid, Hanan; Johansen, Nanna B.; Bjerregaard, Anne-Louise

    2017-01-01

    Purpose Physical activity (PA) is important in the prevention of Type 2 diabetes, yet little is known about the role of specific dimensions of PA, including sedentary time in subgroups at risk for impaired glucose metabolism (IGM). We applied a data-driven decision tool to identify dimensions of PA...... identified subgroups in which different activity dimensions were associated with IGM. Methodology and results from this study may suggest a preliminary step toward the goal of tailoring and targeting PA interventions aimed at Type 2 diabetes prevention....... associated with IGM across age, sex, and body mass index (BMI) groups. Methods This cross-sectional study included 1501 individuals (mean (SD) age, 65.6 (6.8) yr) at high risk for Type 2 diabetes from the ADDITION-PRO study. PA was measured by an individually calibrated combined accelerometer and heart rate...

  11. Classical NF-κB Metabolically Reprograms Sarcoma Cells Through Regulation of Hexokinase 2

    Directory of Open Access Journals (Sweden)

    Priya Londhe

    2018-04-01

    Full Text Available BackgroundMetabolic reprogramming has emerged as a cancer hallmark, and one of the well-known cancer-associated metabolic alterations is the increase in the rate of glycolysis. Recent reports have shown that both the classical and alternative signaling pathways of nuclear factor κB (NF-κB play important roles in controlling the metabolic profiles of normal cells and cancer cells. However, how these signaling pathways affect the metabolism of sarcomas, specifically rhabdomyosarcoma (RMS and osteosarcoma (OS, has not been characterized.MethodsClassical NF-κB activity was inhibited through overexpression of the IκBα super repressor of NF-κB in RMS and OS cells. Global gene expression analysis was performed using Affymetrix GeneChip Human Transcriptome Array 2.0, and data were interpreted using gene set enrichment analysis. Seahorse Bioscience XFe24 was used to analyze oxygen consumption rate as a measure of aerobic respiration.ResultsInhibition of classical NF-κB activity in sarcoma cell lines restored alternative signaling as well as an increased oxidative respiratory metabolic phenotype in vitro. In addition, microarray analysis indicated that inhibition of NF-κB in sarcoma cells reduced glycolysis. We showed that a glycolytic gene, hexokinase (HK 2, is a direct NF-κB transcriptional target. Knockdown of HK2 shifted the metabolic profile in sarcoma cells away from aerobic glycolysis, and re-expression of HK2 rescued the metabolic shift induced by inhibition of NF-κB activity in OS cells.ConclusionThese findings suggest that classical signaling of NF-κB plays a crucial role in the metabolic profile of pediatric sarcomas potentially through the regulation of HK2.

  12. Vitamin B12 deficiency is associated with geographical latitude and solar radiation in the older population.

    Science.gov (United States)

    Cabrera, Sebastián; Benavente, David; Alvo, Miriam; de Pablo, Paola; Ferro, Charles J

    2014-11-01

    Vitamin B12 and folic acid deficiency are common in the older and are associated with several conditions including anaemia, cardiovascular disease, cognitive impairment and cancer. Evidence from in vitro studies suggests that solar radiation can degrade both vitamins in the skin. Chile is the longest country in the world running perfectly North-South making it an ideal place to study potential associations of latitude and solar radiation on vitamin B12 and folic acid deficiency. The objective was to examine the association between vitamin B12 and folic acid deficiencies and latitude. Plasma samples were collected from Chileans aged 65+ years (n=1013) living across the whole country and assayed for vitamin B12 and folic acid concentrations as part of the Chilean Health Survey 2009-2010, which is a national representative sample study. Overall, the prevalence of vitamin B12 deficiency was 11.3%, with the prevalence in the North of the country being significantly greater than in the Central and South zones (19.1%,10.5%, and 5.7%, respectively; Psolar radiation (OR 1.203 [95% confidence intervals 1.119-1.294], Psolar radiation. Although degradation by solar radiation might explain this observation, further work is required to establish the potential mechanisms. In countries that routinely fortify food with folic acid, efforts to identify vitamin B12 deficiency might be more cost-efficiently targeted in areas closest to the Equator. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Brain-derived neurotrophic factor, impaired glucose metabolism, and bipolar disorder course

    DEFF Research Database (Denmark)

    Mansur, Rodrigo B; Santos, Camila M; Rizzo, Lucas B

    2016-01-01

    OBJECTIVES: The neurotrophin brain-derived neurotrophic factor (BDNF) has been proposed as a potential biomarker in bipolar disorder (BD). However, current evidence is limited and results have been highly heterogeneous. This study aimed to assess the moderating effect of impaired glucose metabolism......, alcohol use, and IGM (P=.046). There was no effect of IGM (P=.860) and no interaction between BD diagnosis and IGM (P=.893). Peripheral BDNF levels were positively correlated with lifetime depressive episodes (Psuicide attempts (P=.021). IGM moderated...... the association between BDNF and the number of previous mood episodes (P

  14. Molecular Basis of Impaired Glycogen Metabolism during Ischemic Stroke and Hypoxia

    Science.gov (United States)

    Hossain, Mohammed Iqbal; Roulston, Carli Lorraine; Stapleton, David Ian

    2014-01-01

    Background Ischemic stroke is the combinatorial effect of many pathological processes including the loss of energy supplies, excessive intracellular calcium accumulation, oxidative stress, and inflammatory responses. The brain's ability to maintain energy demand through this process involves metabolism of glycogen, which is critical for release of stored glucose. However, regulation of glycogen metabolism in ischemic stroke remains unknown. In the present study, we investigate the role and regulation of glycogen metabolizing enzymes and their effects on the fate of glycogen during ischemic stroke. Results Ischemic stroke was induced in rats by peri-vascular application of the vasoconstrictor endothelin-1 and forebrains were collected at 1, 3, 6 and 24 hours post-stroke. Glycogen levels and the expression and activity of enzymes involved in glycogen metabolism were analyzed. We found elevated glycogen levels in the ipsilateral hemispheres compared with contralateral hemispheres at 6 and 24 hours (25% and 39% increase respectively; PGlycogen synthase activity and glycogen branching enzyme expression were found to be similar between the ipsilateral, contralateral, and sham control hemispheres. In contrast, the rate-limiting enzyme for glycogen breakdown, glycogen phosphorylase, had 58% lower activity (Pglycogen debranching enzyme expression 24 hours post-stroke was 77% (Pglycogen phosphorylase activity and increased glycogen accumulation but did not alter glycogen synthase activity. Furthermore, elevated glycogen levels provided metabolic support to astrocytes during hypoxia. Conclusion Our study has identified that glycogen breakdown is impaired during ischemic stroke, the molecular basis of which includes reduced glycogen debranching enzyme expression level together with reduced glycogen phosphorylase and PKA activity. PMID:24858129

  15. 21 CFR 184.1945 - Vitamin B12.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Vitamin B12. 184.1945 Section 184.1945 Food and... Substances Affirmed as GRAS § 184.1945 Vitamin B12. (a) Vitamin B12, also known as cyanocobalamin (C63H88Co... is used in food at levels not to exceed current good manufacturing practice. Vitamin B12 also may be...

  16. Degradation of vitamin B12 in dietary supplements.

    Science.gov (United States)

    Yamada, Keiko; Shimodaira, Michiko; Chida, Seiko; Yamada, Noriko; Matsushima, Norio; Fukuda, Morimichi; Yamada, Shoji

    2008-01-01

    Beverages and solid dietary supplements rich in various added vitamins and minerals have recently become available. It seems reasonable to consider that the intake of these foods is convenient for easy ingestion of nutrients, but problems caused by blending different nutrients in high concentrations have arisen. We focused on vitamin B12 (B12) among vitamins and determined the B12 contents of beverages and solid dietary supplements purchased from a retail shop. The B12 contents of three of five beverages were less than stated on the labels. On the other hand, certain beverages unexpectedly contained much more B12 than stated on the labels. In these beverages the amount of B12 decreased rapidly with time, whereas B12 content was lower than stated on the label in only one of four solid dietary supplements. The content of B12 was affected by storage time, light exposure, temperature and vitamin C. From experimental analysis with a competitive binding assay method employing a ACS Chemiluminescent B12 kit, examining differential binding by intrinsic factors and spectral analysis of B12, it was determined that some of the B12 might have been converted into B12 analogues or small degradation products by multinutrient interaction during storage.

  17. Impaired Glucose Metabolism Is Associated with Visit-to-Visit Blood Pressure Variability in Participants without Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Nobuo Sasaki

    2018-01-01

    Full Text Available We evaluated data from 10,088 participants without cardiovascular disease (CVD who underwent 75 g oral glucose tolerance tests and had more than four visits during the first 5 years following the test to investigate the association between impaired glucose metabolism and visit-to-visit blood pressure (BP variability. Participants were classified into groups of normal glucose tolerance (NGT, impaired fasting glucose (IFG, impaired glucose tolerance (IGT, and diabetes. Visit-to-visit BP variability was estimated for each individual using standard deviation (SD and coefficients of variation (CV, defined as SD/mean. SDs and CVs of systolic BP (SBP values were divided into quartiles. The samples falling in the highest quartile were considered as having high SD/CV. The adjusted odds ratio (OR for high SD of SBP in the IFG (OR, 1.39; P<0.003, IGT (OR, 1.26; P<0.001, and diabetes (OR, 1.54; P<0.001 groups was significantly higher than that for high SD of SBP in the NGT group. Similarly, the OR for high CV of SBP in the IGT and diabetes groups was significantly higher than that for high CV of SBP in the NGT group. In participants without CVD, impaired glucose metabolism may modulate visit-to-visit BP variability.

  18. Profile of Cardiovascular Risk Factors in Patients with Coronary Heart Disease, Normal and Impaired Carbohydrate Metabolism

    Directory of Open Access Journals (Sweden)

    І.V. Cherniavska

    2015-11-01

    Full Text Available The aim of research was to conduct the comparative analysis of the profile of cardiovascular risk factors in patients with coronary heart disease (CHD and normal either impaired carbohydrate metabolism. Materials and methods. One hundred and forty two patients were observed. In order to estimate the rate of different forms of CHD depending on the state of carbohydrate metabolism such groups were formed: the first group consisted of 83 patients with type 2 diabetes mellitus (DM, the second group involved 34 patients with impaired glucose tolerance (IGT, the third group consisted of 25 patients with normal carbohydrate metabolism. The ischemic changes of myocardium were detected by ambulatory ECG monitoring with the obligatory achievement of submaximal heart rate during the research. Results. Silent myocardial ischemia was educed in 19 (22.9 % patients with type 2 DM, in 3 (8.8 % persons with IGT and in 2 (8.0 % patients with normal carbohydrate metabolism. Smoking, burdened heredity, violation in the haemostatic system more often occurred in the group of patients with type 2 DM and silent myocardial ischemia in comparison with the patients with type 2 DM without CHD. The profile of general population cardiovascular risk factors in patients with CHD and type 2 DM belongs to the most unfavorable. At the same time for patients with early violations of carbohydrate metabolism and normal carbohydrate metabolism such profile statistically does not differentiate meaningfully. Conclusions. Patients with type 2 DM and silent myocardial ischemia as compared to patients with type 2 DM without CHD have more expressed violations of indexes of general population cardiovascular risk factors for certain.

  19. Application of B{sub 12}N{sub 12} and B{sub 12}P{sub 12} as two fullerene-like semiconductors for adsorption of halomethane: Density functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Rad, Ali Shokuhi, E-mail: a.shokuhi@gmail.com [Islamic Azad University, Department of Chemical Engineering, Qaemshahr Branch (Iran, Islamic Republic of)

    2017-01-15

    We examined and discussed the interaction of two halomethanes (mono-chloromethane (MCM), and mono-fluoromethane (MFM)) with B{sub 12}N{sub 12} and B{sub 12}P{sub 12} fullerene-like nanocages as semiconductor based on density functional theory (DFT). We calculated adsorption energies and followed the changes in the electronic structure of semiconductors upon adsorption of MCM and MFM. We found that the adsorption on the B{sub 12}N{sub 12} nano-cluster is energetically more favorable compared to B{sub 12}P{sub 12} nano-cluster. Also for both systems we found higher values of adsorption energy for MFM than for MCM. We found that upon adsorption of above-mentioned species on these two fullerene-like semiconductors, the HOMO–LUMO distributions and also the gap energy for each system did not change significantly, which correspond to the physisorption process. As a result, B{sub 12}N{sub 12} is a more appropriate nano-cluster to be used as a selective sensor for halomethanes, especially for MFM.

  20. Absorption of vitamin B12 and effect of pancreatic juice on gastric vitamin B12 binder in the dog

    International Nuclear Information System (INIS)

    Kasaki, Yukio

    1977-01-01

    The effect of pancreatic juice on vitamin B 12 absorption was studied in dogs. It was found that dog gastric juice as well as pancreatic juice contain vitamin B 12 binding proteins which differ in the elution pattern on DEAE-cellulose columns, the former being eluted at much lower sodium chloride concentrations. When radio-active vitamin B 12 was fed or instilled in the proximal bowel and vitamin B 12 recovered at different bowel levels, it was found that vitamin B 12 -protein complex behaved like gastric juice binder in the proximal bowel and like pancreatic binder in the distal. In vitro digestion of gastric binder with pancreatic juice altered vitamin B 12 -protein complex in such a way that elution pattern became similar to that of pancreatic juice. It was also shown that the change was not due to transfer of vitamin B 12 from gastric binder to pancreatic binder. Trypsin digestion had similar effect on gastric binder, and Sephadex G-200 gelfiltration demonstrated reduction in the molecular size. In the doz, vitamin B 12 first bound to gastric binder undergoes chemical changes in the bowel and becomes a readily absorbable form in the distal bowel. (auth.)

  1. Deficiency in l-Serine Deaminase Interferes with One-Carbon Metabolism and Cell Wall Synthesis in Escherichia coli K-12

    Science.gov (United States)

    Zhang, Xiao; El-Hajj, Ziad W.; Newman, Elaine

    2010-01-01

    Escherichia coli K-12 provided with glucose and a mixture of amino acids depletes l-serine more quickly than any other amino acid even in the presence of ammonium sulfate. A mutant without three 4Fe4S l-serine deaminases (SdaA, SdaB, and TdcG) of E. coli K-12 is unable to do this. The high level of l-serine that accumulates when such a mutant is exposed to amino acid mixtures starves the cells for C1 units and interferes with cell wall synthesis. We suggest that at high concentrations, l-serine decreases synthesis of UDP-N-acetylmuramate-l-alanine by the murC-encoded ligase, weakening the cell wall and producing misshapen cells and lysis. The inhibition by high l-serine is overcome in several ways: by a large concentration of l-alanine, by overproducing MurC together with a low concentration of l-alanine, and by overproducing FtsW, thus promoting septal assembly and also by overexpression of the glycine cleavage operon. S-Adenosylmethionine reduces lysis and allows an extensive increase in biomass without improving cell division. This suggests that E. coli has a metabolic trigger for cell division. Without that reaction, if no other inhibition occurs, other metabolic functions can continue and cells can elongate and replicate their DNA, reaching at least 180 times their usual length, but cannot divide. PMID:20729359

  2. Circulating concentrations of folate and vitamin B12 in relation to prostate cancer risk: results from the European Prospective Investigation into Cancer and Nutrition study.

    NARCIS (Netherlands)

    Johansson, M.; Appleby, P.N.; Allen, N.E.; Travis, R.C.; Roddam, A.W.; Egevad, L.; Jenab, M.; Rinaldi, S.; Kiemeney, L.A.L.M.; Bueno-De-Mesquita, H.B.; Vollset, S.E.; Ueland, P.M.; Sanchez, M.J.; Quiros, J.R.; Gonzalez, C.A.; Larrañaga, N.; Chirlaque, M.D.; Ardanaz, E.; Sieri, S.; Palli, D.; Vineis, P.; Tumino, R.; Linseisen, J.; Kaaks, R.; Boeing, H.; Pischon, T.; Psaltopoulou, T.; Trichopoulou, A.; Trichopoulos, D.; Khaw, K.T.; Bingham, S.; Hallmans, G.; Riboli, E.; Stattin, P; Key, T.J.

    2008-01-01

    BACKGROUND: Determinants of one-carbon metabolism, such as folate and vitamin B(12), have been implicated in cancer development. Previous studies have not provided conclusive evidence for the importance of circulating concentrations of folate and vitamin B(12) in prostate cancer etiology. The aim of

  3. 21 CFR 582.5945 - Vitamin B12.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Vitamin B12. 582.5945 Section 582.5945 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5945 Vitamin B12. (a) Product. Vitamin B12. (b) Conditions of use. This substance is...

  4. Integral measurement of the {sup 12}C(n, p){sup 12}B reaction up to 10 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Zugec, P.; Bosnar, D. [University of Zagreb, Department of Physics, Faculty of Science, Zagreb (Croatia); Colonna, N.; Barbagallo, M.; Mastromarco, M.; Tagliente, G.; Variale, V. [Istituto Nazionale di Fisica Nucleare, Bari (Italy); Ventura, A. [Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Mengoni, A. [ENEA, Bologna (Italy); Altstadt, S.; Langer, C.; Lederer, C.; Reifarth, R.; Schmidt, S.; Weigand, M. [Johann-Wolfgang-Goethe Universitaet, Frankfurt (Germany); Andrzejewski, J.; Marganiec, J.; Perkowski, J. [Uniwersytet Lodzki, Lodz (Poland); Audouin, L.; Leong, L.S.; Tassan-Got, L. [Centre National de la Recherche Scientifique/IN2P3 - IPN, Orsay (France); Becares, V.; Cano-Ott, D.; Garcia, A.R.; Gonzalez-Romero, E.; Martinez, T.; Mendoza, E. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Becvar, F.; Krticka, M.; Kroll, J.; Valenta, S. [Charles University, Prague (Czech Republic); Belloni, F.; Mondalaers, W.; Plompen, A.; Schillebeeckx, P. [European Commission JRC, Institute for Reference Materials and Measurements, Geel (Belgium); Berthoumieux, E.; Fraval, K.; Gunsing, F. [CEA/Saclay - IRFU, Gif-sur-Yvette (France); Billowes, J.; Ware, T.; Wright, T. [University of Manchester, Manchester (United Kingdom); Boccone, V.; Brugger, M.; Calviani, M.; Cerutti, F.; Chiaveri, E.; Chin, M.; Ferrari, A.; Guerrero, C.; Losito, R.; Roman, F.; Rubbia, C.; Tsinganis, A.; Versaci, R.; Vlachoudis, V.; Weiss, C. [CERN, Geneva (Switzerland); Calvino, F.; Cortes, G.; Gomez-Hornillos, M.B.; Riego, A. [Universitat Politecnica de Catalunya, Barcelona (Spain); Carrapico, C.; Goncalves, I.F.; Sarmento, R.; Vaz, P. [Universidade de Lisboa, C2TN-Instituto Superior Tecnico, Lisboa (Portugal); Cortes-Giraldo, M.A.; Praena, J.; Quesada, J. [Universidad de Sevilla, Sevilla (Spain); Cosentino, L.; Finocchiaro, P. [INFN - Laboratori Nazionali del Sud, Catania (Italy); Diakaki, M.; Karadimos, D.; Kokkoris, M.; Vlastou, R. [National Technical University of Athens (NTUA), Athens (Greece); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L. [CSIC-Universidad de Valencia, Instituto de Fisica Corpuscular, Valencia (Spain); Dressler, R.; Heinitz, S.; Kivel, N.; Schumann, D. [Paul Scherrer Institut, Villigen (Switzerland); Duran, I.; Tarrio, D. [Universidade de Santiago de Compostela, Santiago de Compostela (Spain); Eleftheriadis, C.; Manousos, A. [Aristotle University of Thessaloniki, Thessaloniki (Greece); Ganesan, S.; Gurusamy, P.; Saxena, A. [Bhabha Atomic Research Centre (BARC), Mumbai (India); Griesmayer, E.; Jericha, E.; Leeb, H. [Atominstitut der Oesterreichischen Universitaeten, Technische Universitaet Wien, Wien (Austria); Jenkins, D.G.; Vermeulen, M.J. [University of York, York, Heslington (United Kingdom); Kaeppeler, F. [Karlsruhe Institute of Technology (KIT), Institut fuer Kernphysik, Karlsruhe (Germany); Lo Meo, S. [Istituto Nazionale di Fisica Nucleare, Bologna (Italy); ENEA, Bologna (Italy); Massimi, C.; Mingrone, F.; Vannini, G. [Dipartimento di Fisica, Universita di Bologna (IT); INFN, Bologna (IT); Mastinu, P. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Legnaro (IT); Milazzo, P.M. [Istituto Nazionale di Fisica Nucleare, Trieste (IT); Mirea, M. [Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH, Magurele (RO); Musumarra, A. [Universita di Catania, Dipartimento di Fisica e Astronomia DFA, Catania (IT); INFN-Laboratori Nazionali del Sud, Catania (IT); Paradela, C. [European Commission JRC, Institute for Reference Materials and Measurements, Geel (BE); Universidade de Santiago de Compostela, Santiago de Compostela (ES); Pavlik, A. [Faculty of Physics, University of Vienna, Wien (AT); Rauscher, T. [University of Hertfordshire, Centre for Astrophysics Research, School of Physics, Astronomy and Mathematics, Hatfield (GB); University of Basel, Department of Physics, Basel (CH); Wallner, A. [Faculty of Physics, University of Vienna, Wien (AT); Australian National University, Research School of Physics and Engineering, Canberra (AU)

    2016-04-15

    The integral measurement of the {sup 12}C(n, p){sup 12}B reaction was performed at the neutron time-of-flight facility nTOF at CERN. The total number of {sup 12}B nuclei produced per neutron pulse of the nTOF beam was determined using the activation technique in combination with a time-of-flight technique. The cross section is integrated over the nTOF neutron energy spectrum from reaction threshold at 13.6 MeV to 10 GeV. Having been measured up to 1GeV on basis of the {sup 235}U(n, f) reaction, the neutron energy spectrum above 200 MeV has been re-evaluated due to the recent extension of the cross section reference for this particular reaction, which is otherwise considered a standard up to 200 MeV. The results from the dedicated GEANT4 simulations have been used to evaluate the neutron flux from 1 GeV up to 10 GeV. The experimental results related to the {sup 12}C(n, p){sup 12}B reaction are compared with the evaluated cross sections from major libraries and with the predictions of different GEANT4 models, which mostly underestimate the {sup 12}B production. On the contrary, a good reproduction of the integral cross section derived from measurements is obtained with TALYS-1.6 calculations, with optimized parameters. (orig.)

  5. Vitamin B/sub 12/ production from whey and simulation of optimal cultural conditions. [Propionibacterium shermanii 566

    Energy Technology Data Exchange (ETDEWEB)

    Marwaha, S S; Kennedy, J F; Sethi, R P

    1983-12-01

    The paper reports Propionibacterium shermanii 566 to be an efficient culture, among the three propionibacteria tested, for vitamin B/sub 12/ fermentation from whey. On the basis of the results observed and expected values calculated from simulated equations, 24 hours old inoculum, 5 mg/iron and 4% whey lactose concentration were selected as the optimal values for the fermentation. Carbon mixture of whey lactose and D-glucose (3.6% + 0.4%) and supplementation of whey with 0.5% (NH/sub 4/)/sub 2/HPO/sub 4/ further enhanced the yield of the metabolite. Under optimum cultural conditions, the organism metabolized 5.12 ..mu..g vitamin B/sub 12//ml culture, subsequently reducing the BOD by 90%, thereby reducing the pollution problems.

  6. Metabolic learning and memory formation by the brain influence systemic metabolic homeostasis

    Science.gov (United States)

    Zhang, Yumin; Liu, Gang; Yan, Jingqi; Zhang, Yalin; Li, Bo; Cai, Dongsheng

    2015-01-01

    Metabolic homeostasis is regulated by the brain, whether this regulation involves learning and memory of metabolic information remains unexplored. Here we use a calorie-based, taste-independent learning/memory paradigm to show that Drosophila form metabolic memories that help balancing food choice with caloric intake; however, this metabolic learning or memory is lost under chronic high-calorie feeding. We show that loss of individual learning/memory-regulating genes causes a metabolic learning defect, leading to elevated trehalose and lipids levels. Importantly, this function of metabolic learning requires not only the mushroom body but the hypothalamus-like pars intercerebralis, while NF-κB activation in the pars intercerebralis mimics chronic overnutrition in that it causes metabolic learning impairment and disorders. Finally, we evaluate this concept of metabolic learning/memory in mice, suggesting the hypothalamus is involved in a form of nutritional learning and memory, which is critical for determining resistance or susceptibility to obesity. In conclusion, our data indicate the brain, and potentially the hypothalamus, direct metabolic learning and the formation of memories, which contribute to the control of systemic metabolic homeostasis. PMID:25848677

  7. Ultraviolet B radiation induces impaired lifecycle traits and modulates expression of cytochrome P450 (CYP) genes in the copepod Tigriopus japonicus

    Energy Technology Data Exchange (ETDEWEB)

    Puthumana, Jayesh; Lee, Min-Chul; Park, Jun Chul; Kim, Hui-Su; Hwang, Dae-Sik; Han, Jeonghoon, E-mail: jeonghoon@skku.edu; Lee, Jae-Seong, E-mail: jslee2@skku.edu

    2017-03-15

    Highlights: • Impaired effects of UV-B on the copepod Tigriopus japonicus were examined. • Modulation of entire CYP genes were analyzed in response to UV-B. • CYP inhibitor (PBO) confirmed the role of CYP in UV-B induced mortality. • Low-dose UV-B found induce developmental delays, and higher doses cause reproductive impairments. • Study predicted the mechanistic effects of UV-B in copepods through the AhR-mediated up-regulation of CYP genes. - Abstract: To evaluate the effects of ultraviolet B (UV-B) radiation at the developmental, reproductive, and molecular levels in aquatic invertebrates, we measured UV-B-induced acute toxicity, impairments in developmental and reproductive traits, and UV-B interaction with the entire family of cytochrome P450 (CYP) genes in the intertidal benthic copepod Tigriopus japonicus. We found a significant, dose-dependent reduction (P < 0.05) in the survival of T. japonicus that began as a developmental delay and decreased fecundity. The 48 h LD10 and LD50 were 1.35 and 1.84 kJ/m{sup 2}, and the CYP inhibitor (PBO) elevated mortality, confirming the involvement of CYP genes in UV-B induced toxicity. Low-dose UV-B (1.5 kJ/m{sup 2}) induced developmental delays, and higher doses (6–18 kJ/m{sup 2}) caused reproductive impairments in ovigerous females. The significant up-regulation of CYP genes belonging to clans 2/3/MT/4/20 in T. japonicus exposed to UV-B (12 kJ/m{sup 2}) confirmed molecular interaction between UV-B and CYP genes. Moreover, orphan CYPs, such as CYP20A1, provide good insight on the deorphanization of invertebrate CYPs. Overall, these results demonstrate the involvement of UV-B radiation in the expression of all the CYP genes in T. japonicus and their susceptibility to UV-B radiation. This will provide a better understanding of the mechanistic effects of UV-B in copepods through the predicted AhR-mediated up-regulation of CYP genes.

  8. Ultraviolet B radiation induces impaired lifecycle traits and modulates expression of cytochrome P450 (CYP) genes in the copepod Tigriopus japonicus

    International Nuclear Information System (INIS)

    Puthumana, Jayesh; Lee, Min-Chul; Park, Jun Chul; Kim, Hui-Su; Hwang, Dae-Sik; Han, Jeonghoon; Lee, Jae-Seong

    2017-01-01

    Highlights: • Impaired effects of UV-B on the copepod Tigriopus japonicus were examined. • Modulation of entire CYP genes were analyzed in response to UV-B. • CYP inhibitor (PBO) confirmed the role of CYP in UV-B induced mortality. • Low-dose UV-B found induce developmental delays, and higher doses cause reproductive impairments. • Study predicted the mechanistic effects of UV-B in copepods through the AhR-mediated up-regulation of CYP genes. - Abstract: To evaluate the effects of ultraviolet B (UV-B) radiation at the developmental, reproductive, and molecular levels in aquatic invertebrates, we measured UV-B-induced acute toxicity, impairments in developmental and reproductive traits, and UV-B interaction with the entire family of cytochrome P450 (CYP) genes in the intertidal benthic copepod Tigriopus japonicus. We found a significant, dose-dependent reduction (P < 0.05) in the survival of T. japonicus that began as a developmental delay and decreased fecundity. The 48 h LD10 and LD50 were 1.35 and 1.84 kJ/m"2, and the CYP inhibitor (PBO) elevated mortality, confirming the involvement of CYP genes in UV-B induced toxicity. Low-dose UV-B (1.5 kJ/m"2) induced developmental delays, and higher doses (6–18 kJ/m"2) caused reproductive impairments in ovigerous females. The significant up-regulation of CYP genes belonging to clans 2/3/MT/4/20 in T. japonicus exposed to UV-B (12 kJ/m"2) confirmed molecular interaction between UV-B and CYP genes. Moreover, orphan CYPs, such as CYP20A1, provide good insight on the deorphanization of invertebrate CYPs. Overall, these results demonstrate the involvement of UV-B radiation in the expression of all the CYP genes in T. japonicus and their susceptibility to UV-B radiation. This will provide a better understanding of the mechanistic effects of UV-B in copepods through the predicted AhR-mediated up-regulation of CYP genes.

  9. Effects of algal-produced neurotoxins on metabolic activity in telencephalon, optic tectum and cerebellum of Atlantic salmon (Salmo salar)

    International Nuclear Information System (INIS)

    Bakke, Marit Jorgensen; Horsberg, Tor Einar

    2007-01-01

    Neurotoxins from algal blooms have been reported to cause mortality in a variety of species, including sea birds, sea mammals and fish. Farmed fish cannot escape harmful algal blooms and their potential toxins, thus they are more vulnerable for exposure than wild stocks. Sublethal doses of the toxins are likely to affect fish behaviour and may impair cognitive abilities. In the present study, changes in the metabolic activity in different parts of the Atlantic salmon (Salmo salar) brain involved in central integration and cognition were investigated after exposure to sublethal doses of three algal-produced neurotoxins; saxitoxin (STX), brevetoxin (BTX) and domoic acid (DA). Fish were randomly selected to four groups for i.p. injection of saline (control) or one of the neurotoxins STX (10 μg STX/kg bw), BTX (68 μg BTX/kg bw) or DA (6 mg DA/kg bw). In addition, 14 C-2-deoxyglucose was i.m. injected to measure brain metabolic activity by autoradiography. The three regions investigated were telencephalon (Tel), optic tectum (OT) and cerebellum (Ce). There were no differences in the metabolic activity after STX and BTX exposure compared to the control in these regions. However, a clear increase was observed after DA exposure. When the subregions with the highest metabolic rate were pseudocoloured in the three brain regions, the three toxins caused distinct differences in the respective patterns of metabolic activation. Fish exposed to STX displayed similar patterns as the control fish, whereas fish exposed to BTX and DA showed highest metabolic activity in subregions different from the control group. All three neurotoxins affected subregions that are believed to be involved in cognitive abilities in fish

  10. Prevalence of depression in individuals with impaired glucose metabolism or undiagnosed diabetes

    DEFF Research Database (Denmark)

    Nouwen, Arie; Nefs, Giesje; Caramlau, Isabela

    2011-01-01

    diagnosed type 2 diabetes (PDD) has not been the subject of a systematic review/meta-analysis. This study examined the prevalence of depression in IGM and UDD subjects relative to each other and to NGM and PDD subjects by reviewing the literature and conducting a meta-analysis of studies on this topic......OBJECTIVE: Meta-analyses have shown that the risk for depression is elevated in type 2 diabetes. Whether this risk in individuals with impaired glucose metabolism (IGM) or undiagnosed diabetes (UDD) is elevated relative to normal glucose metabolism (NGM) or decreased relative to previously....... RESEARCH DESIGN AND METHODS: EMBASE and MEDLINE databases were searched for articles published up to May 2010. All studies that compared the prevalence of depression in subjects with IGM and UDD were included. Odds ratios (ORs) were calculated using fixed and random-effects models. RESULTS: The meta-analysis...

  11. Vitamin B12 absorption from eggs.

    Science.gov (United States)

    Doscherholmen, A; McMahon, J; Ripley, D

    1975-09-01

    The assimilation of 57Co B12 from in vivo labeled eggs was much inferior to that of a comparable amount of crystalline 57Co B12. Furthermore, the absorption varied with the form in which the eggs were served. Judged by the urinary excretion test and the plasma absorption of radioactivity the average absorption from boiled and fried eggs was more than twice that from scrambled whole eggs, but less than half that absorbed from crystalline 57Co B12.

  12. Lower Circulating B12 Is Associated with Higher Obesity and Insulin Resistance during Pregnancy in a Non-Diabetic White British Population.

    Directory of Open Access Journals (Sweden)

    Bridget Ann Knight

    Full Text Available Vitamin B12 and folate are critical micronutrients needed to support the increased metabolic demands of pregnancy. Recent studies from India have suggested that low vitamin B12 and folate concentrations in pregnancy are associated with increased obesity; however differences in diet, antenatal vitamin supplementation, and socioeconomic status may limit the generalisability of these findings. We aimed to explore the cross-sectional relationship of circulating serum vitamin B12 and folate at 28 weeks' gestation with maternal adiposity and related biochemical markers in a white non diabetic UK obstetric cohort.Anthropometry and biochemistry data was available on 995 women recruited at 28 weeks gestation to the Exeter Family Study of Childhood Health. Associations between B12 and folate with maternal BMI and other obesity-related biochemical factors (HOMA-R, fasting glucose, triglycerides, HDL and AST were explored using regression analysis, adjusting for potential confounders (socioeconomic status, vegetarian diet, vitamin supplementation, parity, haemodilution (haematocrit.Higher 28 week BMI was associated with lower circulating vitamin B12 (r = -0.25; P<0.001 and folate (r = -0.15; P<0.001. In multiple regression analysis higher 28 week BMI remained an independent predictor of lower circulating B12 (β (95% CI = -0.59 (-0.74, -0.44 i.e. for every 1% increase in BMI there was a 0.6% decrease in circulating B12. Other markers of adiposity/body fat metabolism (HOMA-R, triglycerides and AST were also independently associated with circulating B12. In a similar multiple regression AST was the only independent obesity-related marker associated with serum folate (β (95% CI = 0.16 (0.21, 0.51.In conclusion, our study has replicated the previous Indian findings of associations between lower serum B12 and higher obesity and insulin resistance during pregnancy in a non-diabetic White British population. These findings may have important implications for

  13. Stability and aromaticity of nH2@B12N12 (n=1–12 clusters

    Directory of Open Access Journals (Sweden)

    Pratim K. Chattaraj

    2011-04-01

    Full Text Available Standard ab initio and density functional calculations are carried out to determine the structure, stability, and reactivity of B12N12 clusters with hydrogen doping. To lend additional support, conceptual DFT-based reactivity descriptors and the associated electronic structure principles are also used. Related cage aromaticity of this B12N12 and nH2@B12N12 are analyzed through the nucleus independent chemical shift values.

  14. Hearing impairment related to age in Usher syndrome types 1B and 2A.

    Science.gov (United States)

    Wagenaar, M; van Aarem, A; Huygen, P; Pieke-Dahl, S; Kimberling, W; Cremers, C

    1999-04-01

    To evaluate hearing impairment in 2 common genetic subtypes of Usher syndrome, USH1B and USH2A. Cross-sectional analysis of hearing threshold related to age in patients with genotypes determined by linkage and mutation analysis. Otolaryngology department, university referral center. Nineteen patients with USH1B and 27 with USH2A were examined. All participants were living in the Netherlands and Belgium. Pure tone audiometry of the best ear at last visit. The patients with USH1B had residual hearing without age dependence, with minimum thresholds of 80, 95, and 120 dB at 0.25, 0.5, and 1 to 2 kHz, respectively. Mean thresholds of patients with USH2A were about 45 to 55 dB better than these minimum values. Distinctive audiographic features of patients with USH2A were maximum hearing thresholds of 70, 80, and 100 dB at 0.25, 0.5, and 1 kHz, respectively, only at younger than 40 years. Progression of hearing impairment in USH2A was 0.7 dB/y on average for 0.25 to 4 kHz and could not be explained by presbyacusis alone. The USH1B and USH2A can be easily distinguished by hearing impairment at younger than 40 years at the low frequencies. Hearing impairment in our patients with USH2A could be characterized as progressive.

  15. The synthesis, structure, and properties of 5,6,11,12-tetraarylindeno[1,2-b]fluorenes and their applications as donors for organic photovoltaic devices

    KAUST Repository

    Lo, Yuan-Chih; Ting, Hao-Chun; Li, Ya-Ze; Li, Yi-Hua; Liu, Shun-Wei; Huang, Kuo-Wei; Wong, Ken-Tsung

    2016-01-01

    The synthesis, structure, and properties of three new 5,6,11,12-tetraarylindeno[1,2-b]fluorenes are reported. The highly twisted conformations between an indeno[1,2-b]fluorene core and peripheral aryl substitutions endow these indeno[1,2-b]fluorene derivatives with good photostability for use as electron donors for vacuum-deposited photovoltaic devices. The optimized device based on a TAInF2 donor blended with C70 as an electron acceptor produces a high open-circuit voltage (>0.9 V) and a power conversion efficiency of 2.91%. This work demonstrates the first application of an indenofluorene derivative as an electron donor in organic solar cells.

  16. The synthesis, structure, and properties of 5,6,11,12-tetraarylindeno[1,2-b]fluorenes and their applications as donors for organic photovoltaic devices

    KAUST Repository

    Lo, Yuan-Chih

    2016-12-01

    The synthesis, structure, and properties of three new 5,6,11,12-tetraarylindeno[1,2-b]fluorenes are reported. The highly twisted conformations between an indeno[1,2-b]fluorene core and peripheral aryl substitutions endow these indeno[1,2-b]fluorene derivatives with good photostability for use as electron donors for vacuum-deposited photovoltaic devices. The optimized device based on a TAInF2 donor blended with C70 as an electron acceptor produces a high open-circuit voltage (>0.9 V) and a power conversion efficiency of 2.91%. This work demonstrates the first application of an indenofluorene derivative as an electron donor in organic solar cells.

  17. Holo-transcobalamin is an indicator of vitamin B-12 absorption in healthy adults with adequate vitamin B-12 status

    DEFF Research Database (Denmark)

    von Castel-Roberts, Kristina M; Mørkbak, Anne Louise; Nexo, Ebba

    2007-01-01

    BACKGROUND: It has been hypothesized that the response of holo-transcobalamin (holo-TC) to oral vitamin B-12 may be used to assess absorption. To develop a reliable clinical absorption test that uses holo-TC, it is necessary to determine the optimal timeline for vitamin B-12 administration...... and postdose assessment. OBJECTIVE: The objective of this study was to assess the magnitude and patterns of change in the postabsorption response of holo-TC to oral vitamin B-12. DESIGN: Adult (18-49 y) male and female participants (n = 21) with normal vitamin B-12 status were given three 9-mug doses...... of vitamin B-12 at 6-h intervals beginning early morning (baseline) on day 1. Blood was drawn at 17 timed intervals over the course of 3 d for the analysis of holo-TC and other indicators of vitamin B-12 status. RESULTS: Mean holo-TC increased significantly (P

  18. Assessed Clean Water Act 305(b) Water Sources of Impairment

    Data.gov (United States)

    U.S. Environmental Protection Agency — Identifies the sources of impairment for assessed waters under the Clean Water Act 305(b) program. This view can be used for viewing the details at the assessment...

  19. 7 CFR 15b.12 - Discrimination prohibited.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Discrimination prohibited. 15b.12 Section 15b.12... ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Employment Practices § 15b.12 Discrimination prohibited. (a... discrimination in employment under any program or activity receiving assistance from this Department. (2) A...

  20. Fuzzy modeling for Vitamin B12 deficiency

    NARCIS (Netherlands)

    Wilbik, A.M.; van Loon, S.L.M.; Boer, A.K.; Kaymak, U.; Scharnhorst, V.; Carvalho, J.; Lesot, M.J.; Kaymak, U.; Vieira, S.; Bouchon-Meunier, B.; Yager, R.

    2016-01-01

    Blood vitamin B12 levels are not representative for actual vitamin B12 status in tissue. Instead plasma methylmalonic acid (MMA) levels can be measured because MMA concentrations increase relatively early in the course of vitamin B12 deficiency. However, MMA levels in plasma may also be increased

  1. Atypical and classical memory B cells produce Plasmodium falciparum neutralizing antibodies

    DEFF Research Database (Denmark)

    Muellenbeck, Matthias F; Ueberheide, Beatrix; Amulic, Borko

    2013-01-01

    signs of active antibody secretion. AtM and CM were also different in their IgG gene repertoire, suggesting that they develop from different precursors. The findings provide direct evidence that natural Pf infection leads to the development of protective memory B cell antibody responses and suggest......Antibodies can protect from Plasmodium falciparum (Pf) infection and clinical malaria disease. However, in the absence of constant reexposure, serum immunoglobulin (Ig) levels rapidly decline and full protection from clinical symptoms is lost, suggesting that B cell memory is functionally impaired...... that constant immune activation rather than impaired memory function leads to the accumulation of AtM in malaria. Understanding the memory B cell response to natural Pf infection may be key to the development of a malaria vaccine that induces long-lived protection....

  2. How common is vitamin B-12 deficiency?

    Science.gov (United States)

    Allen, Lindsay H

    2009-02-01

    In considering the vitamin B-12 fortification of flour, it is important to know who is at risk of vitamin B-12 deficiency and whether those individuals would benefit from flour fortification. This article reviews current knowledge of the prevalence and causes of vitamin B-12 deficiency and considers whether fortification would improve the status of deficient subgroups of the population. In large surveys in the United States and the United Kingdom, approximately 6% of those aged > or =60 y are vitamin B-12 deficient (plasma vitamin B-12 life. In developing countries, deficiency is much more common, starting in early life and persisting across the life span. Inadequate intake, due to low consumption of animal-source foods, is the main cause of low serum vitamin B-12 in younger adults and likely the main cause in poor populations worldwide; in most studies, serum vitamin B-12 concentration is correlated with intake of this vitamin. In older persons, food-bound cobalamin malabsorption becomes the predominant cause of deficiency, at least in part due to gastric atrophy, but it is likely that most elderly can absorb the vitamin from fortified food. Fortification of flour with vitamin B-12 is likely to improve the status of most persons with low stores of this vitamin. However, intervention studies are still needed to assess efficacy and functional benefits of increasing intake of the amounts likely to be consumed in flour, including in elderly persons with varying degrees of gastric atrophy.

  3. Testicular Metabolic Reprogramming in Neonatal Streptozotocin-Induced Type 2 Diabetic Rats Impairs Glycolytic Flux and Promotes Glycogen Synthesis

    Science.gov (United States)

    Rato, L.; Alves, M. G.; Dias, T. R.; Cavaco, J. E.; Oliveira, Pedro F.

    2015-01-01

    Defects in testicular metabolism are directly implicated with male infertility, but most of the mechanisms associated with type 2 diabetes- (T2DM) induced male infertility remain unknown. We aimed to evaluate the effects of T2DM on testicular glucose metabolism by using a neonatal-streptozotocin- (n-STZ) T2DM animal model. Plasma and testicular hormonal levels were evaluated using specific kits. mRNA and protein expression levels were assessed by real-time PCR and Western Blot, respectively. Testicular metabolic profile was assessed by 1H-NMR spectroscopy. T2DM rats showed increased glycemic levels, impaired glucose tolerance and hyperinsulinemia. Both testicular and serum testosterone levels were decreased, whereas those of 17β-estradiol were not altered. Testicular glycolytic flux was not favored in testicles of T2DM rats, since, despite the increased expression of both glucose transporters 1 and 3 and the enzyme phosphofructokinase 1, lactate dehydrogenase activity was severely decreased contributing to lower testicular lactate content. However, T2DM enhanced testicular glycogen accumulation, by modulating the availability of the precursors for its synthesis. T2DM also affected the reproductive sperm parameters. Taken together these results indicate that T2DM is able to reprogram testicular metabolism by enhancing alternative metabolic pathways, particularly glycogen synthesis, and such alterations are associated with impaired sperm parameters. PMID:26064993

  4. Influence of vitamin b-12 complex injection (eldervit-12) on ...

    African Journals Online (AJOL)

    Objectives: To assess the effect of vitamin B-12 complex injection on the nephrotoxicity of gentamicin. Design: Experimental study using a pre-validated model. Subject: Adult Swiss albino rats weighing 140-214g, Generic gentamicin sulphate injection and Vitamin B-12complex injection containing 2500mcg ...

  5. Atypical B12 Deficiency with Nonresolving Paraesthesia

    Directory of Open Access Journals (Sweden)

    S. Haider

    2013-01-01

    Full Text Available Vitamin B12 deficiency can present with various hematological, gastrointestinal and neurological manifestations. We report a case of elderly female who presented with neuropathy and vitamin B12 deficiency where the final work-up revealed polyneuropathy, organomegaly, endocrinopathy, monoclonal gammopathy, and skin changes (POEMS. This case suggests that, although POEMS syndrome is a rare entity, it can present with vitamin-B12 deficiency and thus specific work up for early diagnosis of POEMS should be considered in patients with B12 deficiency unresponsive to therapy.

  6. Synthesis and crystal structure of MgB12

    International Nuclear Information System (INIS)

    Adasch, Volker; Hess, Kai-Uwe; Ludwig, Thilo; Vojteer, Natascha; Hillebrecht, Harald

    2006-01-01

    Single crystals of MgB 12 were synthesized from the elements in a Mg/Cu melt at 1600deg. C. MgB 12 crystallizes orthorhombic in space group Pnma with a=16.632(3)A, b=17.803(4)A and c=10.396(2)A. The crystal structure (Z=30, 5796 reflections, 510 variables, R 1 (F)=0.049, wR 2 (I)=0.134) consists of a three dimensional net of B 12 icosahedra and B 21 units in a ratio 2:1. The B 21 units are observed for the first time in a solid compound. Mg is on positions with partial occupation. The summation reveals the composition MgB 12.35 or Mg 0.97 B 12 , respectively. This is in good agreement with the value of MgB 11.25 as expected by electronic reasons to stabilize the boron polyhedra B 12 2- and B 21 4-

  7. Association of Branched and Aromatic Amino Acids Levels with Metabolic Syndrome and Impaired Fasting Glucose in Hypertensive Patients

    OpenAIRE

    Weng, Liming; Quinlivan, Eoin; Gong, Yan; Beitelshees, Amber L.; Shahin, Mohamed H.; Turner, Stephen T.; Chapman, Arlene B.; Gums, John G.; Johnson, Julie A.; Frye, Reginald F.; Garrett, Timothy J.; Cooper-DeHoff, Rhonda M.

    2015-01-01

    Background: The three branched amino acids (valine, leucine, and isoleucine) and two aromatic amino acids (tyrosine and phenylalanine) have been associated with many adverse metabolic pathways, including diabetes. However, these associations have been identified primarily in otherwise healthy Caucasian populations. We aimed to investigate the association of this five-amino-acid signature with metabolic syndrome and impaired fasting glucose (IFG) in a hypertensive cohort of Caucasian and Afric...

  8. Insulin Stimulates S100B Secretion and These Proteins Antagonistically Modulate Brain Glucose Metabolism.

    Science.gov (United States)

    Wartchow, Krista Minéia; Tramontina, Ana Carolina; de Souza, Daniela F; Biasibetti, Regina; Bobermin, Larissa D; Gonçalves, Carlos-Alberto

    2016-06-01

    Brain metabolism is highly dependent on glucose, which is derived from the blood circulation and metabolized by the astrocytes and other neural cells via several pathways. Glucose uptake in the brain does not involve insulin-dependent glucose transporters; however, this hormone affects the glucose influx to the brain. Changes in cerebrospinal fluid levels of S100B (an astrocyte-derived protein) have been associated with alterations in glucose metabolism; however, there is no evidence whether insulin modulates glucose metabolism and S100B secretion. Herein, we investigated the effect of S100B on glucose metabolism, measuring D-(3)H-glucose incorporation in two preparations, C6 glioma cells and acute hippocampal slices, and we also investigated the effect of insulin on S100B secretion. Our results showed that: (a) S100B at physiological levels decreases glucose uptake, through the multiligand receptor RAGE and mitogen-activated protein kinase/ERK signaling, and (b) insulin stimulated S100B secretion via PI3K signaling. Our findings indicate the existence of insulin-S100B modulation of glucose utilization in the brain tissue, and may improve our understanding of glucose metabolism in several conditions such as ketosis, streptozotocin-induced dementia and pharmacological exposure to antipsychotics, situations that lead to changes in insulin signaling and extracellular levels of S100B.

  9. Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism.

    Science.gov (United States)

    Eltzschig, Holger K; Thompson, Linda F; Karhausen, Jorn; Cotta, Richard J; Ibla, Juan C; Robson, Simon C; Colgan, Sean P

    2004-12-15

    Hypoxia is a well-documented inflammatory stimulus and results in tissue polymorphonuclear leukocyte (PMN) accumulation. Likewise, increased tissue adenosine levels are commonly associated with hypoxia, and given the anti-inflammatory properties of adenosine, we hypothesized that adenosine production via adenine nucleotide metabolism at the vascular surface triggers an endogenous anti-inflammatory response during hypoxia. Initial in vitro studies indicated that endogenously generated adenosine, through activation of PMN adenosine A(2A) and A(2B) receptors, functions as an antiadhesive signal for PMN binding to microvascular endothelia. Intravascular nucleotides released by inflammatory cells undergo phosphohydrolysis via hypoxia-induced CD39 ectoapyrase (CD39 converts adenosine triphosphate/adenosine diphosphate [ATP/ADP] to adenosine monophosphate [AMP]) and CD73 ecto-5'-nucleotidase (CD73 converts AMP to adenosine). Extensions of our in vitro findings using cd39- and cd73-null animals revealed that extracellular adenosine produced through adenine nucleotide metabolism during hypoxia is a potent anti-inflammatory signal for PMNs in vivo. These findings identify CD39 and CD73 as critical control points for endogenous adenosine generation and implicate this pathway as an innate mechanism to attenuate excessive tissue PMN accumulation.

  10. Skeletal muscle metabolism is impaired during exercise in glycogen storage disease type III

    DEFF Research Database (Denmark)

    Preisler, Nicolai; Laforêt, Pascal; Madsen, Karen Lindhardt

    2015-01-01

    /kg/min (p = 0.024). Fructose ingestion improved exercise tolerance in the patients. CONCLUSION: Similar to patients with McArdle disease, in whom muscle glycogenolysis is also impaired, GSDIIIa is associated with a reduced skeletal muscle oxidation of carbohydrates and a compensatory increase in fatty acid......OBJECTIVE: Glycogen storage disease type IIIa (GSDIIIa) is classically regarded as a glycogenosis with fixed weakness, but we hypothesized that exercise intolerance in GSDIIIa is related to muscle energy failure and that oral fructose ingestion could improve exercise tolerance in this metabolic...... myopathy. METHODS: We challenged metabolism with cycle-ergometer exercise and measured substrate turnover and oxidation rates using stable isotope methodology and indirect calorimetry in 3 patients and 6 age-matched controls on 1 day, and examined the effect of fructose ingestion on exercise tolerance...

  11. Effects of bacterially produced precipitates on the metabolism of sulfate reducing bacteria during the bio-treatment process of copper-containing wastewater

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A large volume of bacterially produced precipitates are generated during the bio-treatment of heavy metal wastewater.The composition of the bacterially produced precipitates and its effects on sulfate reducing bacteria (SRB) in copper-containing waste stream were evaluated in this study.The elemental composition of the microbial precipitate was studied using electrodispersive X-ray spectroscopy (EDX),and it was found that the ratio of S:Cu was 1.12.Combining with the results of copper distribution in the SRB metabolism culture,which was analyzed by the sequential extraction procedure,copper in the precipitates was determined as covellite (CuS).The bacterially produced precipitates caused a decrease of the sulfate reduction rate,and the more precipitates were generated,the lower the sulfate reduction rate was.The particle sizes of bacterially generated covellite were ranging from 0.03 to 2 m by particles size distribution (PSD) analysis,which was smaller than that of the SRB cells.Transmission electron microscopy (TEM) analysis showed that the microbial covellite was deposited on the surface of the cell.The effects of the microbial precipitate on SRB metabolism were found to be weakened by increasing the precipitation time and adding microbial polymeric substances in later experiments.These results provided direct evidence that the SRB activity was inhibited by the bacterially produced covellite,which enveloped the bacterium and thus affected the metabolism of SRB on mass transfer.

  12. Relationship Between Metabolic Syndrome and Cognitive Abilities in U.S. Adolescents.

    Science.gov (United States)

    Rubens, Muni; Ramamoorthy, Venkataraghavan; Saxena, Anshul; George, Florence; Shehadeh, Nancy; Attonito, Jennifer; McCoy, H Virginia; Beck-Sagué, Consuelo M

    2016-10-01

    Metabolic syndrome is increasingly common in U.S. adolescents and has been linked to cognitive dysfunction. Purpose of this study is to explore associations between metabolic syndrome and cognitive impairment in U.S. adolescents using population-based data. Participants included adolescents aged 12-16 years who participated in the National Health and Nutrition Examination Survey (NHANES) III. The main outcome measures included assessments of cognitive function using Wide Range Achievement Test-Revised (WRAT-R) and Wechsler Intelligence Scale for Children-Revised (WISC-R) tools. The WRAT-R consisted of mathematics and reading tests. The WISC-R consisted of block design test, which measures spatial visualization and motor skills, and digit span test, which measures working memory and attention. Linear regression models were used to examine associations between metabolic syndrome and cognitive function. We used education levels of the family reference person, while controlling for education levels because of missing data. Presence or absence of metabolic syndrome was tested in 1170 of 2216 NHANES III participants aged 12-16 years. Regression models showed that participants with metabolic syndrome scored an average 1.25 [95% confidence interval (CI) = -2.14 to -0.36] points lower in reading examination and an average 0.89 (95% CI = -1.65 to -0.13) points lower in digit span examination, compared to those without metabolic syndrome. In addition, components of metabolic syndrome-elevated systolic blood pressure and increased waist circumference (WC)-were associated with impaired working memory/attention, and higher fasting glucose and increased WC were associated with poorer reading test scores. Metabolic syndrome was associated with impaired reading, working memory, and attention among adolescents.

  13. Reprogramming of metabolism by the Arabidopsis thaliana bZIP11 transcription factor

    NARCIS (Netherlands)

    Ma, J.

    2012-01-01

    The Arabidopsis bZIP11 transcription factor is known to regulate amino acid metabolism, and transcriptomic analysis suggests that bZIP11 has a broader regulatory effects in metabolism. Moreover, sucrose controls its translation via its uORF and all the available evidences point to the fact that

  14. Identification of structural markers for vitamin B12 and other corrinoid derivatives in solution using FTIR spectroscopy

    International Nuclear Information System (INIS)

    Taraszka, K.S.; Chen, Eefei; Metzger, T.; Chance, M.R.

    1991-01-01

    The identification of structural markers for B 12 /protein interactions is crucial to a complete understanding of vitamin B 12 transport and metabolic reaction mechanisms of B 12 coenzymes. Fourier transform infrared spectroscopy can provide direct measurements of changes in the side chains and corrin ring resulting from B 12 /protein interactions. Using FTIR spectroscopy in various solvent systems, the authors have identified structural markers for corrinoids in the physiological state. They assign the major band (denoted B), which occurs at ca. 1,630 cm -1 in D 2 O and ca. 1675 cm -1 in ethanol, to the amide I C double-bond stretching mode of the propionamide side chains of the corrin ring. The lower frequency of band B in D 2 O versus ethanol is due to the greater hydrogen-bonding properties of D 2 O that stabilize the charged amide resonance form. Since the propionamides are known to be important in protein binding, band B is a suitable marker for monitoring the interaction of these side chains with proteins. They assign bands at ca. 1,575 and 1,545 cm -1 (denoted C and D) as breathing modes of the corrin ring on the basis of the bands' solvent independence and their sensitivity to changes in axial ligation

  15. Endothelial ErbB4 deficit induces alterations in exploratory behavior and brain energy metabolism in mice.

    Science.gov (United States)

    Wu, Gang; Liu, Xiu-Xiu; Lu, Nan-Nan; Liu, Qi-Bing; Tian, Yun; Ye, Wei-Feng; Jiang, Guo-Jun; Tao, Rong-Rong; Han, Feng; Lu, Ying-Mei

    2017-06-01

    The receptor tyrosine kinase ErbB4 is present throughout the primate brain and has a distinct functional profile. In this study, we investigate the potential role of endothelial ErbB4 receptor signaling in the brain. Here, we show that the endothelial cell-specific deletion of ErbB4 induces decreased exploratory behavior in adult mice. However, the water maze task for spatial memory and the memory reconsolidation test reveal no changes; additionally, we observe no impairment in CaMKII phosphorylation in Cdh5Cre;ErbB4 f/f mice, which indicates that the endothelial ErbB4 deficit leads to decreased exploratory activity rather than direct memory deficits. Furthermore, decreased brain metabolism, which was measured using micro-positron emission tomography, is observed in the Cdh5Cre;ErbB4 f/f mice. Consistently, the immunoblot data demonstrate the downregulation of brain Glut1, phospho-ULK1 (Ser555), and TIGAR in the endothelial ErbB4 conditional knockout mice. Collectively, our findings suggest that endothelial ErbB4 plays a critical role in regulating brain function, at least in part, through maintaining normal brain energy homeostasis. Targeting ErbB4 or the modulation of endothelial ErbB4 signaling may represent a rational pharmacological approach to treat neurological disorders. © 2017 John Wiley & Sons Ltd.

  16. Vitamin B12 and Folate Test

    Science.gov (United States)

    ... offer the folate test. Can taking too many vitamin B12 and folic acid supplements hurt me? Not usually. Since B12 and folic acid are water-soluble, the body will rid itself of any excess by excreting it in the urine. However, taking ...

  17. Sedentary behaviour and clustered metabolic risk in adolescents: the HELENA study.

    Science.gov (United States)

    Rey-López, J P; Bel-Serrat, S; Santaliestra-Pasías, A; de Moraes, A C; Vicente-Rodríguez, G; Ruiz, J R; Artero, E G; Martínez-Gómez, D; Gottrand, F; De Henauw, S; Huybrechts, I; Polito, A; Molnar, D; Manios, Y; Moreno, L A

    2013-10-01

    Although sedentary behaviours are linked with mortality for cardiovascular reasons, it is not clear whether they are negatively related with cardio-metabolic risk factors. The aim was to examine the association between time engaged in television (TV) viewing or playing with videogames and a clustered cardio-metabolic risk in adolescents. Sedentary behaviours and physical activity were assessed in 769 adolescents (376 boys, aged 12.5-17.5 years) from the HELENA-CSS study. We measured systolic blood pressure, HOMA index, triglycerides, TC/HDL-c, VO₂max and the sum of four skinfolds, and a clustered metabolic risk index was computed. A multilevel regression model (by Poisson) was performed to calculate the prevalence ratio of having a clustered metabolic risk. In boys, playing >4 h/day with videogames (weekend) and moderate to vigorous PA (MVPA) was associated with cardio-metabolic risk after adjustment for age, maternal education and MVPA. In contrast, TV viewing was not associated with the presence of cardio-metabolic risk. In boys, playing with videogames may impair cardio-metabolic health during the adolescence. Adolescents should be encouraged to increase their participation in physical activity of at least moderate intensity to obtain a more favourable risk factor profile. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Long-term feeding of red algae (Gelidium amansii) ameliorates glucose and lipid metabolism in a high fructose diet-impaired glucose tolerance rat model.

    Science.gov (United States)

    Liu, Hshuan-Chen; Chang, Chun-Ju; Yang, Tsung-Han; Chiang, Meng-Tsan

    2017-07-01

    This study was designed to investigate the effect of Gelidium amansii (GA) on carbohydrate and lipid metabolism in rats with high fructose (HF) diet (57.1% w/w). Five-week-old male Sprague-Dawley rats were fed a HF diet to induce glucose intolerance and hyperlipidemia. The experiment was divided into three groups: (1) control diet group (Con); (2) HF diet group (HF); and (3) HF with GA diet group (HF + 5% GA). The rats were fed the experimental diets and drinking water ad libitum for 23 weeks. The results showed that GA significantly decreased retroperitoneal fat mass weight of HF diet-fed rats. Supplementation of GA caused a decrease in plasma glucose, insulin, tumor necrosis factor-α, and leptin. HF diet increased hepatic lipid content. However, intake of GA reduced the accumulation of hepatic lipids including total cholesterol (TC) and triglyceride contents. GA elevated the excretion of fecal lipids and bile acid in HF diet-fed rats. Furthermore, GA significantly decreased plasma TC, triglyceride, low density lipoprotein plus very low density lipoprotein cholesterol, and TC/high density lipoprotein cholesterol ratio in HF diet-fed rats. HF diet induced an in plasma glucose and an impaired glucose tolerance, but GA supplementation decreased homeostasis model assessment equation-insulin resistance and improved impairment of glucose tolerance. Taken together, these results indicate that supplementation of GA can improve the impairment of glucose and lipid metabolism in an HF diet-fed rat model. Copyright © 2016. Published by Elsevier B.V.

  19. RNA-seq analysis of antibiotic-producing Bacillus subtilis SC-8 in response to signal peptide PapR of Bacillus cereus.

    Science.gov (United States)

    Yeo, In-Cheol; Lee, Nam Keun; Yang, Byung Wook; Hahm, Young Tae

    2014-01-01

    Bacillus subtilis SC-8 produces an antibiotic that has narrow antagonistic activity against bacteria in the Bacillus cereus group. In B. cereus group bacteria, peptide-activating PlcR (PapR) plays a significant role in regulating the transcription of virulence factors. When B. subtilis SC-8 and B. cereus are co-cultured, PapR is assumed to stimulate antibiotic production by B. subtilis SC-8. To better understand the effect of PapR on this interspecies interaction, the global transcriptome profile of B. subtilis SC-8 was analyzed in the presence of PapR. Significant changes were detected in 12.8 % of the total transcripts. Genes related to amino acid transport and metabolism (16.5 %) and transcription (15 %) were mainly upregulated, whereas genes involved in carbohydrate transport and metabolism (12.7 %) were markedly downregulated. The expression of genes related to transcription, including several transcriptional regulators and proteins involved in tRNA biosynthesis, was increased. The expression levels of genes associated with several transport systems, such as antibiotic, cobalt, and iron complex transporters, was also significantly altered. Among the downregulated genes were transcripts associated with spore formation, the subtilosin A gene cluster, and nitrogen metabolism.

  20. A modular metabolic engineering approach for the production of 1,2-propanediol from glycerol by Saccharomyces cerevisiae.

    Science.gov (United States)

    Islam, Zia-Ul; Klein, Mathias; Aßkamp, Maximilian R; Ødum, Anders S R; Nevoigt, Elke

    2017-11-01

    Compared to sugars, a major advantage of using glycerol as a feedstock for industrial bioprocesses is the fact that this molecule is more reduced than sugars. A compound whose biotechnological production might greatly profit from the substrate's higher reducing power is 1,2-propanediol (1,2-PDO). Here we present a novel metabolic engineering approach to produce 1,2-PDO from glycerol in S. cerevisiae. Apart from implementing the heterologous methylglyoxal (MG) pathway for 1,2-PDO formation from dihydroxyacetone phosphate (DHAP) and expressing a heterologous glycerol facilitator, the employed genetic modifications included the replacement of the native FAD-dependent glycerol catabolic pathway by the 'DHA pathway' for delivery of cytosolic NADH and the reduction of triosephosphate isomerase (TPI) activity for increased precursor (DHAP) supply. The choice of the medium had a crucial impact on both the strength of the metabolic switch towards fermentation in general (as indicated by the production of ethanol and 1,2-PDO) and on the ratio at which these two fermentation products were formed. For example, virtually no 1,2-PDO but only ethanol was formed in synthetic glycerol medium with urea as the nitrogen source. When nutrient-limited complex YG medium was used, significant amounts of 1,2-PDO were formed and it became obvious that the concerted supply of NADH and DHAP are essential for boosting 1,2-PDO production. Additionally, optimizing the flux into the MG pathway improved 1,2-PDO formation at the expense of ethanol. Cultivation of the best-performing strain in YG medium and a controlled bioreactor set-up resulted in a maximum titer of > 4gL -1 1,2-PDO which, to the best of our knowledge, has been the highest titer of 1,2-PDO obtained in yeast so far. Surprisingly, significant 1,2-PDO production was also obtained in synthetic glycerol medium after changing the nitrogen source towards ammonium sulfate and adding a buffer. Copyright © 2017 International Metabolic

  1. Metabolic responses to pyruvate kinase deletion in lysine producing Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Wittmann Christoph

    2008-03-01

    Full Text Available Abstract Background Pyruvate kinase is an important element in flux control of the intermediate metabolism. It catalyzes the irreversible conversion of phosphoenolpyruvate into pyruvate and is under allosteric control. In Corynebacterium glutamicum, this enzyme was regarded as promising target for improved production of lysine, one of the major amino acids in animal nutrition. In pyruvate kinase deficient strains the required equimolar ratio of the two lysine precursors oxaloacetate and pyruvate can be achieved through concerted action of the phosphotransferase system (PTS and phosphoenolpyruvate carboxylase (PEPC, whereby a reduced amount of carbon may be lost as CO2 due to reduced flux into the tricarboxylic acid (TCA cycle. In previous studies, deletion of pyruvate kinase in lysine-producing C. glutamicum, however, did not yield a clear picture and the exact metabolic consequences are not fully understood. Results In this work, deletion of the pyk gene, encoding pyruvate kinase, was carried out in the lysine-producing strain C. glutamicum lysCfbr, expressing a feedback resistant aspartokinase, to investigate the cellular response to deletion of this central glycolytic enzyme. Pyk deletion was achieved by allelic replacement, verified by PCR analysis and the lack of in vitro enzyme activity. The deletion mutant showed an overall growth behavior (specific growth rate, glucose uptake rate, biomass yield which was very similar to that of the parent strain, but differed in slightly reduced lysine formation, increased formation of the overflow metabolites dihydroxyacetone and glycerol and in metabolic fluxes around the pyruvate node. The latter involved a flux shift from pyruvate carboxylase (PC to PEPC, by which the cell maintained anaplerotic supply of the TCA cycle. This created a metabolic by-pass from PEP to pyruvate via malic enzyme demonstrating its contribution to metabolic flexibility of C. glutamicum on glucose. Conclusion The metabolic

  2. RPAP3 enhances cytotoxicity of doxorubicin by impairing NF-kappa B pathway

    International Nuclear Information System (INIS)

    Shimada, Kana; Saeki, Makio; Egusa, Hiroshi; Fukuyasu, Sho; Yura, Yoshiaki; Iwai, Kazuhiro; Kamisaki, Yoshinori

    2011-01-01

    Research highlights: → RNA polymerase II-associated protein 3 (RPAP3) possesses an activity to bind with NEMO and to inhibit the ubiquitination of NEMO. → RPAP3 enhances doxorubicin-induced cell death in breast cancer cell line T-47D through the marked impairment of NF-κB pathway. → RPAP3 is a novel modulator of NF-κB pathway in apoptosis induced by anti-cancer chemotherapeutic agents. -- Abstract: Activation of anti-apoptotic gene transcription by NF-κB (nuclear factor-kappa B) has been reported to be linked with a resistance of cancer cells against chemotherapy. NEMO (NF-κB essential modulator) interacts with a number of proteins and modulates the activity of NF-κB pathway. In this study, we revealed that RPAP3 (RNA polymerase II-associated protein 3) possesses an activity to bind with NEMO and to inhibit the ubiquitination of NEMO and that RPAP3 enhances doxorubicin-induced cell death in breast cancer cell line T-47D through the marked impairment of NF-κB pathway. These results indicate that RPAP3 may be a novel modulator of NF-κB pathway in apoptosis induced by anti-cancer chemotherapeutic agents.

  3. Assay of vitamin B12

    International Nuclear Information System (INIS)

    Tovey, K.C.; Carrick, D.T.

    1982-01-01

    A radioassay is described for vitamin B12 which involves denaturing serum protein binding proteins with alkali. In the denaturation step a dithiopolyol and cyanide are used and in the intrinsic factor assay step a vitamin B12 analogue such as cobinamide is used to bind with any remaining serum proteins. The invention also includes a kit in which the dithiopolyol is provided in admixture with the alkali. The dithiopolyol may be dithiothreitol or dithioerythritol. (author)

  4. Interactions between plasma concentrations of folate and markers of vitamin B12 status with cognitive performance in elderly people not exposed to folic acid fortification: the Hordaland Health Study

    NARCIS (Netherlands)

    Doets, E.L.; Ueland, P.M.; Tell, G.S.; Vollset, S.E.; Nygard, O.K.; Veer, van 't P.; Groot, de C.P.G.M.; Nurk, E.; Refsum, H.; Smith, A.D.; Eussen, S.J.P.M.

    2014-01-01

    A combination of high folate with low vitamin B12 plasma status has been associated with cognitive impairment in a population exposed to mandatory folic acid fortification. The objective of the present study was to examine the interactions between plasma concentrations of folate and vitamin B12

  5. Crosstalk between Vitamins A, B12, D, K, C, and E Status and Arterial Stiffness

    Science.gov (United States)

    Luca, Constantin Tudor

    2017-01-01

    Arterial stiffness is associated with cardiovascular risk, morbidity, and mortality. The present paper reviews the main vitamins related to arterial stiffness and enabling destiffening, their mechanisms of action, providing a brief description of the latest studies in the area, and their implications for primary cardiovascular prevention, clinical practice, and therapy. Despite inconsistent evidence for destiffening induced by vitamin supplementation in several randomized clinical trials, positive results were obtained in specific populations. The main mechanisms are related to antiatherogenic effects, improvement of endothelial function (vitamins A, C, D, and E) and metabolic profile (vitamins A, B12, C, D, and K), inhibition of the renin-angiotensin-aldosterone system (vitamin D), anti-inflammatory (vitamins A, D, E, and K) and antioxidant effects (vitamins A, C, and E), decrease of homocysteine level (vitamin B12), and reversing calcification of arteries (vitamin K). Vitamins A, B12, C, D, E, and K status is important in evaluating cardiovascular risk, and vitamin supplementation may be an effective, individualized, and inexpensive destiffening therapy. PMID:28167849

  6. Simultaneous radioassay of folate and vitamin B12

    International Nuclear Information System (INIS)

    Gutcho, S.; Mansbach, L.

    1979-01-01

    A serum sample is heated at an alkaline pH to release folate and vitamin B 12 from endogenous binders. A simultaneous radioassay for folate and vitamin B 12 is effected by contacting the sample with binder for folate, binder for vitamin B 12 , folote labeled with one radioactive isotope and vitamin B 12 labeled with another radioacitve isotope, followed by separation of bound and free portions, and determination of the radioactivity of at least one of the portions. The amounts of folate and vitamin B 12 present in the sample may be determined from standard curves

  7. Synthesis and crystal structure of Pb(Bipy)2B12H12

    International Nuclear Information System (INIS)

    Lagun, V.L.; Orlova, A.M.; Katser, S.B.; Solntsev, K.A.; Kuznetsov, N.T.

    1994-01-01

    Lead complex with B 12 H 12 2- anion and 2,2' bipyridine-lead(2) dodecahydro-closo-dodecaborate di(2,2' bipyridine) is synthesized and characterized by IF, UV and NMR spectrography methods. According to roentgen-structural analysis the crystals belong to monoclinic syngony, sp.gr. C2/m,a=17.872(4), b=18.672(5), c=9.228(7)A, β=109.11(4), V=2910(2)A 3 , Z=4. The structure consists of Pb 2 (Bipy) 4 (B 12 H 12 ) 2 dimeric units. The Pb-B distances are within the limits of 3.313-3.514A. 11 refs.; 2 figs.; 2 tabs

  8. Metabolic learning and memory formation by the brain influence systemic metabolic homeostasis.

    Science.gov (United States)

    Zhang, Yumin; Liu, Gang; Yan, Jingqi; Zhang, Yalin; Li, Bo; Cai, Dongsheng

    2015-04-07

    Metabolic homeostasis is regulated by the brain, but whether this regulation involves learning and memory of metabolic information remains unexplored. Here we use a calorie-based, taste-independent learning/memory paradigm to show that Drosophila form metabolic memories that help in balancing food choice with caloric intake; however, this metabolic learning or memory is lost under chronic high-calorie feeding. We show that loss of individual learning/memory-regulating genes causes a metabolic learning defect, leading to elevated trehalose and lipid levels. Importantly, this function of metabolic learning requires not only the mushroom body but also the hypothalamus-like pars intercerebralis, while NF-κB activation in the pars intercerebralis mimics chronic overnutrition in that it causes metabolic learning impairment and disorders. Finally, we evaluate this concept of metabolic learning/memory in mice, suggesting that the hypothalamus is involved in a form of nutritional learning and memory, which is critical for determining resistance or susceptibility to obesity. In conclusion, our data indicate that the brain, and potentially the hypothalamus, direct metabolic learning and the formation of memories, which contribute to the control of systemic metabolic homeostasis.

  9. Effect of two different sublingual dosages of vitamin B12 on cobalamin nutritional status in vegans and vegetarians with a marginal deficiency: A randomized controlled trial.

    Science.gov (United States)

    Del Bo', Cristian; Riso, Patrizia; Gardana, Claudio; Brusamolino, Antonella; Battezzati, Alberto; Ciappellano, Salvatore

    2018-02-15

    Vegetarians and vegans are more vulnerable to vitamin B 12 deficiency with severe risks of megaloblastic anemia, cognitive decline, neuropathy, and depression. An easy and simple method of supplementation consists of taking one weekly dosage of 2000 μg. However, single large oral doses of vitamin B 12 are poorly absorbed. The present research evaluates the ability of two different sublingual dosages of vitamin B 12 (350 μg/week vs 2000 μg/week) in improving cyanocobalamin (vitamin B 12 ) nutritional status in vegans and vegetarians with a marginal deficiency. A 12-week randomized, double-blind, controlled, parallel intervention trial was performed. Forty subjects with marginal vitamin B 12 deficiency were enrolled and randomly divided into two groups: test group Ld (low dose, 350 μg/week) and control group Hd (high dose, 2000 μg/week) vitamin B 12 supplementation. Blood samples were collected at baseline and after 15, 30, 60, and 90 days from the intervention for the determination of vitamin B 12 , related metabolic markers, and blood cell counts. Two-way analysis of variance showed a significant effect of time (P < 0.0001) and of time × treatment interaction (P = 0.012) on serum concentration of vitamin B 12 that increased after 90-day supplementation (Ld and Hd) compared to baseline. Both the supplements increased (P < 0.0001, time effect) the levels of holotranscobalamin, succinic acid, methionine and wellness parameter, while decreased (P < 0.0001, time effect) the levels of methylmalonic acid, homocysteine and folate compared to baseline. No difference was observed between groups (LdvsHd). No effect was detected for vitamin B 6 and blood cell count. In our experimental conditions, both supplements were able to restore adequate serum concentrations of vitamin B 12 and to improve the levels of related metabolic blood markers in subjects with a marginal deficiency. The results support the use of a sublingual dosage of 50 μg/day (350

  10. Net flux of nutrients across splanchnic tissues of lactating dairy cows as influenced by dietary supplements of biotin and vitamin B12.

    Science.gov (United States)

    Girard, C L; Desrochers, A

    2010-04-01

    Biotin and vitamin B(12) are coenzymes in reactions that are essential to propionate metabolism in dairy cows. The objective of the present studies was to determine whether an increased dietary supply of these vitamins would change the net flux of nutrients through the rumen, the portal-drained viscera (PDV), the total splanchnic tissues (TSP), and the liver. Four lactating cows equipped with ultrasonic flow probes around the right ruminal artery and the portal vein and catheters in the right ruminal vein, the portal vein, one hepatic vein, and one mesenteric artery were fed 12 times per day a mixed ration at 95% of ad libitum dry matter intake. Daily supplements of 500 mg of vitamin B(12)+20mg of biotin or no vitamin supplement (study 1) or 500 mg of vitamin B(12) alone or with 20mg of biotin (study 2) were fed according to a crossover design with two 4-wk periods in each study. On the last day of each period, blood flow was recorded and blood samples were collected every 30 min for 4h. In study 1, biotin and vitamin B(12) given together increased milk production and milk protein yields compared with the control diet. The supplement increased appearance of the 2 vitamins across the PDV and TSP. It also reduced the net portal appearance of ammonia and total volatile fatty acids across the PDV. In study 2, compared with the 2 vitamins together, vitamin B(12) alone increased glucose flux across PDV and TSP as well as its arterial concentration and PDV flux of ammonia. With the diet used in the present experiment, the major effects of the vitamin supplements seem to be mediated through changes in ruminal fermentation and gastrointestinal tract metabolism rather than by effects on hepatic metabolism. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Ptp1b deletion in pro-opiomelanocortin neurons increases energy expenditure and impairs endothelial function via TNF-α dependent mechanisms.

    Science.gov (United States)

    Bruder-Nascimento, Thiago; Kennard, Simone; Antonova, Galina; Mintz, James D; Bence, Kendra K; Belin de Chantemèle, Eric J

    2016-06-01

    Protein tyrosine phosphatase 1b (Ptp1b) is a negative regulator of leptin and insulin-signalling pathways. Its targeted deletion in proopiomelanocortin (POMC) neurons protects mice from obesity and diabetes by increasing energy expenditure. Inflammation accompanies increased energy expenditure. Therefore, the present study aimed to determine whether POMC-Ptp1b deletion increases energy expenditure via an inflammatory process, which would impair endothelial function. We characterized the metabolic and cardiovascular phenotypes of Ptp1b+/+ and POMC-Ptp1b-/- mice. Clamp studies revealed that POMC-Ptp1b deletion reduced body fat and increased energy expenditure as evidenced by a decrease in feed efficiency and an increase in oxygen consumption and respiratory exchange ratio. POMC-Ptp1b deletion induced a 2.5-fold increase in plasma tumour necrosis factor α (TNF-α) levels and elevated body temperature. Vascular studies revealed an endothelial dysfunction in POMC-Ptp1b-/- mice. Nitric oxide synthase inhibition [N-nitro-L-arginine methyl ester (L-NAME)] reduced relaxation to a similar extent in Ptp1b+/+ and POMC-Ptp1b-/- mice. POMC-Ptp1b deletion decreased ROS-scavenging enzymes [superoxide dismutases (SODs)] whereas it increased ROS-generating enzymes [NADPH oxidases (NOXs)] and cyclooxygenase-2 (COX-1) expression, in aorta. ROS scavenging or NADPH oxidase inhibition only partially improved relaxation whereas COX-2 inhibition and thromboxane-A2 (TXA2) antagonism fully restored relaxation in POMC-Ptp1b-/- mice Chronic treatment with the soluble TNF-α receptor etanercept decreased body temperature, restored endothelial function and reestablished aortic COX-2, NOXs and SOD expression to their baseline levels in POMC-Ptp1b-/- mice. However, etanercept promoted body weight gain and decreased energy expenditure in POMC-Ptp1b-/- mice. POMC-Ptp1b deletion increases plasma TNF-α levels, which contribute to body weight regulation via increased energy expenditure and impair

  12. Simultaneous radioassay of folate and vitamin B12

    International Nuclear Information System (INIS)

    1981-01-01

    An improved simultaneous radioassay for folate and vitamin B 12 in biological specimens is described. A sample containing folate and vitamin B 12 is contacted with 125 I-folate and 57 Co-vitamin B 12 and their respective specific binders. After separation of the bound and free portions, the radioactivity in the portions is counted and the amounts of folate and vitamin B 12 then determined from standard curves. (U.K.)

  13. Cofilin/Twinstar phosphorylation levels increase in response to impaired coenzyme a metabolism.

    Directory of Open Access Journals (Sweden)

    Katarzyna Siudeja

    Full Text Available Coenzyme A (CoA is a pantothenic acid-derived metabolite essential for many fundamental cellular processes including energy, lipid and amino acid metabolism. Pantothenate kinase (PANK, which catalyses the first step in the conversion of pantothenic acid to CoA, has been associated with a rare neurodegenerative disorder PKAN. However, the consequences of impaired PANK activity are poorly understood. Here we use Drosophila and human neuronal cell cultures to show how PANK deficiency leads to abnormalities in F-actin organization. Cells with reduced PANK activity are characterized by abnormally high levels of phosphorylated cofilin, a conserved actin filament severing protein. The increased levels of phospho-cofilin coincide with morphological changes of PANK-deficient Drosophila S2 cells and human neuronal SHSY-5Y cells. The latter exhibit also markedly reduced ability to form neurites in culture--a process that is strongly dependent on actin remodeling. Our results reveal a novel and conserved link between a metabolic biosynthesis pathway, and regulation of cellular actin dynamics.

  14. Solid-phase radioimmunoassay for vitamin B12 in serum, with use of radioiodinated tyrosine methyl ester of vitamin B12

    International Nuclear Information System (INIS)

    Endres, D.B.; Painter, K.; Niswender, G.D.

    1978-01-01

    Although radioassays for vitamin B 12 with use of any of several binding proteins have been available for many years, a radioimmunoassay for B 12 has not been reported. We describe here such a radioimmunoassay, incorporating, for the first time, a radioiodinated tyrosine methyl ester of B 12 as the radioactive tracer. Polypropylene tubes are coated with antiserum raised in a rabbit against B 12 /bovine serum albumin to simplify the separation of bound and free radioactivity. Factors affecting the preparation of coated tubes are described. The assay is accurate, sensitive, precise, and specific for vitamin B 12 . Accuracy of the assay is unaffected by the presence of denatured protein. The advantages of this radioimmunoassay over conventional radioassays are discussed

  15. Synthesis and crystal structure of Pb(Bipy)(DMFA)B12H12

    International Nuclear Information System (INIS)

    Lagun, V.L.; Solntsev, K.A.; Katser, S.B.; Orlova, A.M.; Kuznetsov, N.T.

    1994-01-01

    Lead complex with B 12 H 12 2- anion and neutral ligands -2,2' -bipyridine (Bipy) and dimethylformamide (DMFA) has been prepared by Pb(Bipy) B 12 H 12 recrystallization from mixed solvent DMFA - benzene (1:1). The complex prepared has been studied by the methods of IR spectroscopy, element and X-ray diffraction analyses. Parameters of monoclinic cell are as follows: 1 = 9.583(2), b = 16.958 (4), c = 18.685 (3) A; β = 105.65 (2), V = 2924 (1) A 3 , Z =4; sp.gr. P2 1 /c. The structure consists of dimer units. Pb-B distance is within 3.23-3.71 (3) A. 5 refs.; 2 figs.; 2 tabs

  16. Effects of altered maternal folic acid, vitamin B12 and docosahexaenoic acid on placental global DNA methylation patterns in Wistar rats.

    Directory of Open Access Journals (Sweden)

    Asmita Kulkarni

    Full Text Available Potential adverse effects of excess maternal folic acid supplementation on a vegetarian population deficient in vitamin B(12 are poorly understood. We have previously shown in a rat model that maternal folic acid supplementation at marginal protein levels reduces brain omega-3 fatty acid levels in the adult offspring. We have also reported that reduced docosahexaenoic acid (DHA levels may result in diversion of methyl groups towards DNA in the one carbon metabolic pathway ultimately resulting in DNA methylation. This study was designed to examine the effect of normal and excess folic acid in the absence and presence of vitamin B(12 deficiency on global methylation patterns in the placenta. Further, the effect of maternal omega 3 fatty acid supplementation on the above vitamin B(12 deficient diets was also examined. Our results suggest maternal folic acid supplementation in the absence of vitamin B(12 lowers plasma and placental DHA levels (p<0.05 and reduces global DNA methylation levels (p<0.05. When this group was supplemented with omega 3 fatty acids there was an increase in placental DHA levels and subsequently DNA methylation levels revert back to the levels of the control group. Our results suggest for the first time that DHA plays an important role in one carbon metabolism thereby influencing global DNA methylation in the placenta.

  17. New method for the radioactive determination of vitamin B12

    International Nuclear Information System (INIS)

    Lewin, Nathan; Fries, J.E.; Richards, C.S.

    1975-01-01

    A description is given of a method for the radioactive determination of vitamin B12 in a sample solution of serum in which a radioactive tracer of vitamin B12 and the vitamin B12 of the serum compete with respect to an intrinsic factor of limited linking capacity. The free radioactive vitamin B12 and the free vitamin B12 of the serum are separated from the intrinsic factor and from the radioactive vitamin B12 and from the serum vitamin B12 linked to this factor, before the radioactivity is measured against standard values. The method consists in separating the free radioactive vitamin B12 and the free serum vitamin B12 of the intrinsic factor and portions of radioactive and serum vitamin B12 linked to this factor, by adding an adequate quantity of bentonite to adsorb the free radioactive vitamin B12 and free serum vitamin B12 so that the intrinsic factor surface floating solution in association with the linked radioactive vitamin B12 and the linked serum vitamin B12 may be physically isolated from the solid bentonite that has adsorbed the free radioactive vitamin B12 and the free serum vitamin B12 [fr

  18. Experimental search for second-class currents. Beta-ray angular distributions from aligned nuclei /sup 12/B and /sup 12/N

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, K; Minamisono, T; Nojiri, Y; Masuda, Y [Osaka Univ., Toyonaka (Japan). Lab. of Nuclear Studies

    1978-01-01

    The ..beta..-energy dependent angular distributions, W(theta) asymptoticaly equals 1 +- P(1 + ..cap alpha../sub +-/E)P/sub 1/(cos theta) + A..cap alpha../sub +-/EP/sub 2/(cos theta), from the aligned nuclei /sup 12/B and /sup 12/N have been measured. Positive A/sup +/ and negative A/sup -/ alignments were successively produced, by use of NMR, after every other production period of polarized nuclei through nuclear reactions; A/sup +/ - A/sup -/ asymptoticaly equals 0.26 for /sup 12/B and /sup +/A/sup +/ - A/sup - +/ asymptoticaly equals 0.55 for /sup 12/N with p asymptoticaly equals 0. The results are ..cap alpha../sub -/(/sup 12/B) = 0.02/sub 5/ +- 0.03/sub 4/%/MeV, /sup +/..cap alpha../sub +/(/sup 12/N)/sup +/ = 0.27/sub 7/ +- 0.05/sub 2/%/MeV, and ..cap alpha../sub -/ - ..cap alpha../sub +/ = 0.30/sub 2/ +- 0.06/sub 2/%/MeV assuming ..cap alpha../sub +/<0. In comparison with available data for CVC test in the mass-12 triad and theoretical predictions, the present ..cap alpha../sub -/ - ..cap alpha../sub +/ value is consistent within 20% level with predictions of the CVC theory and with absence of second-class induced-tensor currents.

  19. Attention-deficit hyperactivity disorder (ADHD and glial integrity: S100B, cytokines and kynurenine metabolism - effects of medication

    Directory of Open Access Journals (Sweden)

    Schwarz Markus J

    2010-05-01

    Full Text Available Abstract Background Children with attention-deficit/hyperactivity disorder (ADHD show a marked temporal variability in their display of symptoms and neuropsychological performance. This could be explained in terms of an impaired glial supply of energy to support neuronal activity. Method We pursued one test of the idea with measures of a neurotrophin reflecting glial integrity (S100B and the influences of 8 cytokines on the metabolism of amino-acids, and of tryptophan/kynurenine to neuroprotective or potentially toxic products that could modulate glial function. Serum samples from 21 medication-naïve children with ADHD, 21 typically-developing controls, 14 medicated children with ADHD and 7 healthy siblings were analysed in this preliminary exploration of group differences and associations. Results There were no marked group differences in levels of S100B, no major imbalance in the ratios of pro- to anti-inflammatory interleukins nor in the metabolism of kynurenine to toxic metabolites in ADHD. However, four trends are described that may be worthy of closer examination in a more extensive study. First, S100B levels tended to be lower in ADHD children that did not show oppositional/conduct problems. Second, in medicated children raised interleukin levels showed a trend to normalisation. Third, while across all children the sensitivity to allergy reflected increased levels of IL-16 and IL-10, the latter showed a significant inverse relationship to measures of S100B in the ADHD group. Fourthly, against expectations healthy controls tended to show higher levels of toxic 3-hydroxykynurenine (3 HK than those with ADHD. Conclusions Thus, there were no clear signs (S100B that the glial functions were compromised in ADHD. However, other markers of glial function require examination. Nonetheless there is preliminary evidence that a minor imbalance of the immunological system was improved on medication. Finally, if lower levels of the potentially toxic 3

  20. Gastric emptying in patients with vitamin B12 deficiency

    International Nuclear Information System (INIS)

    Yagci, Muenci; Yamac, Kadri; Acar, Kadir; Haznedar, Rauf; Cingi, Elif; Kitapci, Mehmet

    2002-01-01

    The clinical presentation of patients with vitamin B 12 deficiency varies in a spectrum ranging from haematological disorders to neuropsychiatric diseases. In rare cases, orthostatic hypotension, impotence, constipation and urinary retention have been attributed to autonomic nervous system dysfunction due to vitamin B 12 deficiency. The aim of this study was to evaluate the effect of vitamin B 12 deficiency on autonomic nervous system function by studying gastric emptying times (T 1/2 ). Twenty patients with newly diagnosed vitamin B 12 deficiency and 12 control patients with gastritis and normal vitamin B 12 levels were enrolled in this study. Gastroduodenoscopy, endoscopic biopsy, histopathological evaluation of the biopsy specimens and radionuclide gastric emptying studies were performed. After vitamin B 12 replacement therapy for 3 months, radionuclide gastric emptying studies were repeated. Mean gastric emptying T 1/2 in patients before and after treatment and in controls were 103.83±48.80 min, 90.00±17.29 min and 74.55±8.52 min, respectively. The difference in mean gastric emptying T 1/2 between patients before treatment and controls was statistically significant (P 12 treatment (P 1/2 was somewhat shorter. There were no positive or negative correlations between gastric emptying T 1/2 and the following parameters: haemoglobin, vitamin B 12 level and Helicobacter pylori positivity. In conclusion, gastric emptying T 1/2 was prolonged in patients with vitamin B 12 deficiency and this prolongation was not corrected after vitamin B 12 replacement therapy. Although autonomic nervous system dysfunction due to vitamin B 12 deficiency rarely gives rise to clinical manifestations, latent dysfunction demonstrated by laboratory tests seems to be a frequent phenomenon. The level of vitamin B 12 does not correlate with the degree of autonomic nervous system dysfunction measured by radionuclide gastric emptying studies. (orig.)

  1. C. elegans MRP-5 Exports Vitamin B12 from Mother to Offspring to Support Embryonic Development.

    Science.gov (United States)

    Na, Huimin; Ponomarova, Olga; Giese, Gabrielle E; Walhout, Albertha J M

    2018-03-20

    Vitamin B12 functions as a cofactor for methionine synthase to produce the anabolic methyl donor S-adenosylmethionine (SAM) and for methylmalonyl-CoA mutase to catabolize the short-chain fatty acid propionate. In the nematode Caenorhabditis elegans, maternally supplied vitamin B12 is required for the development of offspring. However, the mechanism for exporting vitamin B12 from the mother to the offspring is not yet known. Here, we use RNAi of more than 200 transporters with a vitamin B12-sensor transgene to identify the ABC transporter MRP-5 as a candidate vitamin B12 exporter. We show that the injection of vitamin B12 into the gonad of mrp-5 deficient mothers rescues embryonic lethality in the offspring. Altogether, our findings identify a maternal mechanism for the transit of an essential vitamin to support the development of the next generation. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. [Vitamin B12 deficiency: what's new?].

    Science.gov (United States)

    Braillard, O; Casini, A; Samii, K; Rufenacht, P; Junod, Perron N

    2012-09-26

    Vitamin B12 screening is only recommended among symptomatic patients or in those with risk factors. The main cause of vitamin B12 deficiency is the food cobalamin malabsorption syndrom. Holotranscobalamin is a more reliable marker than cyanocobalamin to confirm vitamin B12 deficiency, but it has not been validated yet in complex situations. An autoimmune gastritis must be excluded in the absence of risk factors but in the presence of a probable deficiency. Oral substitution treatment is effective but requires excellent therapeutic compliance and close follow-up to monitor the response to treatment. It has not yet been studied among patients suffering from severe symptoms, inflammatory bowel disease and ileal resection.

  3. Cholinergic denervation of the hippocampal formation does not produce long-term changes in glucose metabolism

    International Nuclear Information System (INIS)

    Harrell, L.E.; Davis, J.N.

    1984-01-01

    Decreased glucose metabolism is found in Alzheimer's disease associated with a loss of cholinergic neurons. The relationship between the chronic cholinergic denervation produced by medial septal lesions and glucose metabolism was studied using 2-deoxy-D-[ 3 H]glucose in the rat hippocampal formation. Hippocampal glucose metabolism was increased 1 week after medial septal lesions. Three weeks after lesions, glucose metabolism was profoundly suppressed in all regions. By 3 months, intraregional hippocampal glucose metabolism had returned to control values. Our results demonstrate that chronic cholinergic denervation of the hippocampal formation does not result in permanent alterations of metabolic activity

  4. A blue corrinoid from partial degradation of vitamin B12 in aqueous bicarbonate: spectra, structure, and interaction with proteins of B12 transport.

    Science.gov (United States)

    Fedosov, Sergey N; Ruetz, Markus; Gruber, Karl; Fedosova, Natalya U; Kräutler, Bernhard

    2011-09-20

    Cobalamin (Cbl) is a complex cofactor produced only by bacteria but used by all animals and humans. Cyanocobalamin (vitamin B(12), CNCbl) is one commonly isolated form of cobalamin. B(12) belongs to a large group of corrinoids, which are characterized by a distinct red color conferred by the system of conjugated double bonds of the corrin ring retaining a Co(III) ion. A unique blue Cbl derivative was produced by hydrolysis of CNCbl in a weakly alkaline aqueous solution of bicarbonate. This corrinoid was purified and isolated as dark blue crystals. Its spectroscopic analysis and X-ray crystallography revealed B-ring opening with formation of 7,8-seco-cyanocobalamin (7,8-sCNCbl). The unprecedented structural change was caused by cleavage of the peripheral C-C bond between saturated carbons 7 and 8 of the corrin macrocycle accompanied by formation of a C═C bond at C7 and a carbonyl group at C8. Additionally, the C-amide was hydrolyzed to a carboxylic acid. The extended conjugation of the π-system caused a considerable red shift of the absorbance spectrum. Formation and degradation of 7,8-sCNCbl were analyzed qualitatively. Its interaction with the proteins of mammalian Cbl transport revealed both a slow binding kinetics and a low overall affinity. The binding data were compared to those of other monocarboxylic derivatives and agreed with the earlier proposed scheme for two-step ligand recognition. The obtained results are consistent with the structural models of 7,8-sCNCbl and the transport proteins intrinsic factor and transcobalamin. Potential applications of the novel derivative for drug conjugation are discussed. © 2011 American Chemical Society

  5. Electron addition to alkyl cobalamins, coenzyme B12 and vitamin B12

    International Nuclear Information System (INIS)

    Rao, D.N.R.; Symons, M.C.R.

    1983-01-01

    Exposure of dilute solutions of methyl and ethyl cobalamins and coenzyme B 12 in dilute solutions (D 2 O+CD 3 OD) to 60 Co #betta#-rays at 77 K gave a single broad feature in the free-spin region assigned to electron-capture species with the excess electron largely confined to a π* corrin orbital. On warming above 77 K the methyl derivative gave a novel species with spectral features characteristic of an unpaired electron in the Co(dsub(x 2 -y 2 )) orbital. The other two substrates gave spectra due to Cosup(II)Bsub(12r) both on warming and after photolyses with visible light. The acetyl derivative gave an electron-capture species whose e.s.r. spectrum was characteristic of an electron in the Co(dsub(z 2 )) orbital, which on warming above 77 K changed to the normal Cosup(II)Bsub(12r) spectrum. The cyano derivative (vitamin B 12 ) gave electron addition into the Co(dsub(z 2 )) orbital, as evidenced by the large hyperfine coupling to 13 C from 13 CN ligands. On annealing, cyanide ions were lost irreversibly, Bsub(12r) being detected by e.s.r. spectroscopy. In contrast, the dicyano derivative on electron addition at 77 K gave a species containing only one 13 CN ligand. Hence in this case one CN - ligand was lost at 77 K, with no return of the dimethylbenzimidazole ligand. These results are discussed in terms of a new mechanism for electron-addition to alkyl cobalamins. (author)

  6. High passage MIN6 cells have impaired insulin secretion with impaired glucose and lipid oxidation.

    Directory of Open Access Journals (Sweden)

    Kim Cheng

    Full Text Available Type 2 diabetes is a metabolic disorder characterized by the inability of beta-cells to secrete enough insulin to maintain glucose homeostasis. MIN6 cells secrete insulin in response to glucose and other secretagogues, but high passage (HP MIN6 cells lose their ability to secrete insulin in response to glucose. We hypothesized that metabolism of glucose and lipids were defective in HP MIN6 cells causing impaired glucose stimulated insulin secretion (GSIS. HP MIN6 cells had no first phase and impaired second phase GSIS indicative of global functional impairment. This was coupled with a markedly reduced ATP content at basal and glucose stimulated states. Glucose uptake and oxidation were higher at basal glucose but ATP content failed to increase with glucose. HP MIN6 cells had decreased basal lipid oxidation. This was accompanied by reduced expressions of Glut1, Gck, Pfk, Srebp1c, Ucp2, Sirt3, Nampt. MIN6 cells represent an important model of beta cells which, as passage numbers increased lost first phase but retained partial second phase GSIS, similar to patients early in type 2 diabetes onset. We believe a number of gene expression changes occurred to produce this defect, with emphasis on Sirt3 and Nampt, two genes that have been implicated in maintenance of glucose homeostasis.

  7. Dynamic metabolic flux analysis using B-splines to study the effects of temperature shift on CHO cell metabolism

    Directory of Open Access Journals (Sweden)

    Verónica S. Martínez

    2015-12-01

    Full Text Available Metabolic flux analysis (MFA is widely used to estimate intracellular fluxes. Conventional MFA, however, is limited to continuous cultures and the mid-exponential growth phase of batch cultures. Dynamic MFA (DMFA has emerged to characterize time-resolved metabolic fluxes for the entire culture period. Here, the linear DMFA approach was extended using B-spline fitting (B-DMFA to estimate mass balanced fluxes. Smoother fits were achieved using reduced number of knots and parameters. Additionally, computation time was greatly reduced using a new heuristic algorithm for knot placement. B-DMFA revealed that Chinese hamster ovary cells shifted from 37 °C to 32 °C maintained a constant IgG volume-specific productivity, whereas the productivity for the controls peaked during mid-exponential growth phase and declined afterward. The observed 42% increase in product titer at 32 °C was explained by a prolonged cell growth with high cell viability, a larger cell volume and a more stable volume-specific productivity. Keywords: Dynamic, Metabolism, Flux analysis, CHO cells, Temperature shift, B-spline curve fitting

  8. Long-Term, Supplemental, One-Carbon Metabolism-Related Vitamin B Use in Relation to Lung Cancer Risk in the Vitamins and Lifestyle (VITAL) Cohort.

    Science.gov (United States)

    Brasky, Theodore M; White, Emily; Chen, Chi-Ling

    2017-10-20

    Purpose Inconsistent findings have been reported of a link between the use of one-carbon metabolism-related B vitamins and lung cancer risk. Because of the high prevalence of supplemental vitamin B use, any possible increased association warrants further investigation. We examined the association between long-term use of supplemental B vitamins on the one-carbon metabolism pathway and lung cancer risk in the Vitamins and Lifestyle (VITAL) cohort, which was designed specifically to look at supplement use relative to cancer risk. Methods A total of 77,118 participants of the VITAL cohort, 50 to 76 years of age, were recruited between October 2000 and December 2002 and included in this analysis. Incident, primary, invasive lung cancers (n = 808) were ascertained by prospectively linking the participants to a population-based cancer registry. The 10-year average daily dose from individual and multivitamin supplements were the exposures of primary interest. Results Use of supplemental vitamins B 6 , folate, and B 12 was not associated with lung cancer risk among women. In contrast, use of vitamin B 6 and B 12 from individual supplement sources, but not from multivitamins, was associated with a 30% to 40% increase in lung cancer risk among men. When the 10-year average supplement dose was evaluated, there was an almost two-fold increase in lung cancer risk among men in the highest categories of vitamin B 6 (> 20 mg/d; hazard ratio, 1.82; 95% CI, 1.25 to 2.65) and B 12 (> 55µg/d; hazard ratio, 1.98; 95% CI, 1.32 to 2.97) compared with nonusers. For vitamin B 6 and B 12 , the risk was even higher among men who were smoking at baseline. In addition, the B 6 and B 12 associations were apparent in all histologic types except adenocarcinoma, which is the type less related to smoking. Conclusion This sex- and source-specific association provides further evidence that vitamin B supplements are not chemopreventive for lung cancer and may be harmful.

  9. Peripheral inflammation acutely impairs human spatial memory via actions on medial temporal lobe glucose metabolism.

    Science.gov (United States)

    Harrison, Neil A; Doeller, Christian F; Voon, Valerie; Burgess, Neil; Critchley, Hugo D

    2014-10-01

    Inflammation impairs cognitive performance and is implicated in the progression of neurodegenerative disorders. Rodent studies demonstrated key roles for inflammatory mediators in many processes critical to memory, including long-term potentiation, synaptic plasticity, and neurogenesis. They also demonstrated functional impairment of medial temporal lobe (MTL) structures by systemic inflammation. However, human data to support this position are limited. Sequential fluorodeoxyglucose positron emission tomography together with experimentally induced inflammation was used to investigate effects of a systemic inflammatory challenge on human MTL function. Fluorodeoxyglucose positron emission tomography scanning was performed in 20 healthy participants before and after typhoid vaccination and saline control injection. After each scanning session, participants performed a virtual reality spatial memory task analogous to the Morris water maze and a mirror-tracing procedural memory control task. Fluorodeoxyglucose positron emission tomography data demonstrated an acute reduction in human MTL glucose metabolism after inflammation. The inflammatory challenge also selectively compromised human spatial, but not procedural, memory; this effect that was independent of actions on motivation or psychomotor response. Effects of inflammation on parahippocampal and rhinal glucose metabolism directly mediated actions of inflammation on spatial memory. These data demonstrate acute sensitivity of human MTL to mild peripheral inflammation, giving rise to associated functional impairment in the form of reduced spatial memory performance. Our findings suggest a mechanism for the observed epidemiologic link between inflammation and risk of age-related cognitive decline and progression of neurodegenerative disorders including Alzheimer's disease. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  10. Metabolic Syndrome Remodels Electrical Activity of the Sinoatrial Node and Produces Arrhythmias in Rats

    Science.gov (United States)

    Albarado-Ibañez, Alondra; Avelino-Cruz, José Everardo; Velasco, Myrian; Torres-Jácome, Julián; Hiriart, Marcia

    2013-01-01

    In the last ten years, the incidences of metabolic syndrome and supraventricular arrhythmias have greatly increased. The metabolic syndrome is a cluster of alterations, which include obesity, hypertension, hypertriglyceridemia, glucose intolerance and insulin resistance, that increase the risk of developing, among others, atrial and nodal arrhythmias. The aim of this study is to demonstrate that metabolic syndrome induces electrical remodeling of the sinus node and produces arrhythmias. We induced metabolic syndrome in 2-month-old male Wistar rats by administering 20% sucrose in the drinking water. Eight weeks later, the rats were anesthetized and the electrocardiogram was recorded, revealing the presence of arrhythmias only in treated rats. Using conventional microelectrode and voltage clamp techniques, we analyzed the electrical activity of the sinoatrial node. We observed that in the sinoatrial node of “metabolic syndrome rats”, compared to controls, the spontaneous firing of all cells decreased, while the slope of the diastolic depolarization increased only in latent pacemaker cells. Accordingly, the pacemaker currents If and Ist increased. Furthermore, histological analysis showed a large amount of fat surrounding nodal cardiomyocytes and a rise in the sympathetic innervation. Finally, Poincaré plot denoted irregularity in the R-R and P-P ECG intervals, in agreement with the variability of nodal firing potential recorded in metabolic syndrome rats. We conclude that metabolic syndrome produces a dysfunction SA node by disrupting normal architecture and the electrical activity, which could explain the onset of arrhythmias in rats. PMID:24250786

  11. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism.

    Science.gov (United States)

    Lerin, Carles; Goldfine, Allison B; Boes, Tanner; Liu, Manway; Kasif, Simon; Dreyfuss, Jonathan M; De Sousa-Coelho, Ana Luisa; Daher, Grace; Manoli, Irini; Sysol, Justin R; Isganaitis, Elvira; Jessen, Niels; Goodyear, Laurie J; Beebe, Kirk; Gall, Walt; Venditti, Charles P; Patti, Mary-Elizabeth

    2016-10-01

    Plasma levels of branched-chain amino acids (BCAA) are consistently elevated in obesity and type 2 diabetes (T2D) and can also prospectively predict T2D. However, the role of BCAA in the pathogenesis of insulin resistance and T2D remains unclear. To identify pathways related to insulin resistance, we performed comprehensive gene expression and metabolomics analyses in skeletal muscle from 41 humans with normal glucose tolerance and 11 with T2D across a range of insulin sensitivity (SI, 0.49 to 14.28). We studied both cultured cells and mice heterozygous for the BCAA enzyme methylmalonyl-CoA mutase (Mut) and assessed the effects of altered BCAA flux on lipid and glucose homeostasis. Our data demonstrate perturbed BCAA metabolism and fatty acid oxidation in muscle from insulin resistant humans. Experimental alterations in BCAA flux in cultured cells similarly modulate fatty acid oxidation. Mut heterozygosity in mice alters muscle lipid metabolism in vivo, resulting in increased muscle triglyceride accumulation, increased plasma glucose, hyperinsulinemia, and increased body weight after high-fat feeding. Our data indicate that impaired muscle BCAA catabolism may contribute to the development of insulin resistance by perturbing both amino acid and fatty acid metabolism and suggest that targeting BCAA metabolism may hold promise for prevention or treatment of T2D.

  12. Natural Killer Cell Activity and Interleukin-12 in Metabolically Healthy versus Metabolically Unhealthy Overweight Individuals

    Science.gov (United States)

    Kim, Minjoo; Kim, Minkyung; Yoo, Hye Jin; Lee, Jong Ho

    2017-01-01

    The purpose of this study was to determine whether the immune system is involved in the different metabolic circumstances in healthy and unhealthy overweight individuals. We examined the metabolic and immune characteristics of 117 overweight individuals. Subjects were classified as metabolically healthy overweight (MHO, n = 72) or metabolically unhealthy overweight (MUO, n = 45). The immune response was measured by circulating levels of natural killer (NK) cell activity and cytokines. Both groups were comparable with regards to age, sex distribution, smoking and drinking status, and body mass index. When compared to the MHO group, the MUO group showed higher systolic and diastolic blood pressure, serum levels of triglyceride, glucose, glucose-related markers, and lower levels of HDL cholesterol. Compared to the MHO group, the MUO group showed 39% lower interferon-γ levels (not significant) and 41% lower interleukin (IL)-12 levels (significant). The MUO group also showed lower NK cell activity at E:T ratios of 10:1, 5:1, 2.5:1, and 1.25:1 (all Ps < 0.05) than the MHO group. This study indicates that individuals displaying the MUO phenotype present an unfavorable immune system with lower NK cell activities under all assay conditions and lower serum levels of IL-12 than the activities and levels in similarly overweight MHO individuals. This result suggests that the immune system may be altered in overweight individuals who are at risk for overweight/obesity-related comorbidities. PMID:29238351

  13. Natural Killer Cell Activity and Interleukin-12 in Metabolically Healthy versus Metabolically Unhealthy Overweight Individuals

    Directory of Open Access Journals (Sweden)

    Minjoo Kim

    2017-11-01

    Full Text Available The purpose of this study was to determine whether the immune system is involved in the different metabolic circumstances in healthy and unhealthy overweight individuals. We examined the metabolic and immune characteristics of 117 overweight individuals. Subjects were classified as metabolically healthy overweight (MHO, n = 72 or metabolically unhealthy overweight (MUO, n = 45. The immune response was measured by circulating levels of natural killer (NK cell activity and cytokines. Both groups were comparable with regards to age, sex distribution, smoking and drinking status, and body mass index. When compared to the MHO group, the MUO group showed higher systolic and diastolic blood pressure, serum levels of triglyceride, glucose, glucose-related markers, and lower levels of HDL cholesterol. Compared to the MHO group, the MUO group showed 39% lower interferon-γ levels (not significant and 41% lower interleukin (IL-12 levels (significant. The MUO group also showed lower NK cell activity at E:T ratios of 10:1, 5:1, 2.5:1, and 1.25:1 (all Ps < 0.05 than the MHO group. This study indicates that individuals displaying the MUO phenotype present an unfavorable immune system with lower NK cell activities under all assay conditions and lower serum levels of IL-12 than the activities and levels in similarly overweight MHO individuals. This result suggests that the immune system may be altered in overweight individuals who are at risk for overweight/obesity-related comorbidities.

  14. Folate (vitamin B9) and vitamin B12 and their function in the maintenance of nuclear and mitochondrial genome integrity

    Energy Technology Data Exchange (ETDEWEB)

    Fenech, Michael, E-mail: michael.fenech@csiro.au [CSIRO Food and Nutritional Sciences, PO Box 10041 Adelaide BC, SA 5000 (Australia)

    2012-05-01

    Folate plays a critical role in the prevention of uracil incorporation into DNA and hypomethylation of DNA. This activity is compromised when vitamin B12 concentration is low because methionine synthase activity is reduced, lowering the concentration of S-adenosyl methionine (SAM) which in turn may diminish DNA methylation and cause folate to become unavailable for the conversion of dUMP to dTMP. The most plausible explanation for the chromosome-breaking effect of low folate is excessive uracil misincorporation into DNA, a mutagenic lesion that leads to strand breaks in DNA during repair. Both in vitro and in vivo studies with human cells clearly show that folate deficiency causes expression of chromosomal fragile sites, chromosome breaks, excessive uracil in DNA, micronucleus formation, DNA hypomethylation and mitochondrial DNA deletions. In vivo studies show that folate and/or vitamin B12 deficiency and elevated plasma homocysteine (a metabolic indicator of folate deficiency) are significantly correlated with increased micronucleus formation and reduced telomere length respectively. In vitro experiments indicate that genomic instability in human cells is minimised when folic acid concentration in culture medium is greater than 100 nmol/L. Intervention studies in humans show (a) that DNA hypomethylation, chromosome breaks, uracil incorporation and micronucleus formation are minimised when red cell folate concentration is greater than 700 nmol/L and (b) micronucleus formation is minimised when plasma concentration of vitamin B12 is greater than 300 pmol/L and plasma homocysteine is less than 7.5 {mu}mol/L. These concentrations are achievable at intake levels at or above current recommended dietary intakes of folate (i.e. >400 {mu}g/day) and vitamin B12 (i.e. >2 {mu}g/day) depending on an individual's capacity to absorb and metabolise these vitamins which may vary due to genetic and epigenetic differences.

  15. Folate (vitamin B9) and vitamin B12 and their function in the maintenance of nuclear and mitochondrial genome integrity

    International Nuclear Information System (INIS)

    Fenech, Michael

    2012-01-01

    Folate plays a critical role in the prevention of uracil incorporation into DNA and hypomethylation of DNA. This activity is compromised when vitamin B12 concentration is low because methionine synthase activity is reduced, lowering the concentration of S-adenosyl methionine (SAM) which in turn may diminish DNA methylation and cause folate to become unavailable for the conversion of dUMP to dTMP. The most plausible explanation for the chromosome-breaking effect of low folate is excessive uracil misincorporation into DNA, a mutagenic lesion that leads to strand breaks in DNA during repair. Both in vitro and in vivo studies with human cells clearly show that folate deficiency causes expression of chromosomal fragile sites, chromosome breaks, excessive uracil in DNA, micronucleus formation, DNA hypomethylation and mitochondrial DNA deletions. In vivo studies show that folate and/or vitamin B12 deficiency and elevated plasma homocysteine (a metabolic indicator of folate deficiency) are significantly correlated with increased micronucleus formation and reduced telomere length respectively. In vitro experiments indicate that genomic instability in human cells is minimised when folic acid concentration in culture medium is greater than 100 nmol/L. Intervention studies in humans show (a) that DNA hypomethylation, chromosome breaks, uracil incorporation and micronucleus formation are minimised when red cell folate concentration is greater than 700 nmol/L and (b) micronucleus formation is minimised when plasma concentration of vitamin B12 is greater than 300 pmol/L and plasma homocysteine is less than 7.5 μmol/L. These concentrations are achievable at intake levels at or above current recommended dietary intakes of folate (i.e. >400 μg/day) and vitamin B12 (i.e. >2 μg/day) depending on an individual's capacity to absorb and metabolise these vitamins which may vary due to genetic and epigenetic differences.

  16. A Controlled Trial of CPAP Therapy on Metabolic Control in Individuals with Impaired Glucose Tolerance and Sleep Apnea

    Science.gov (United States)

    Weinstock, Tanya G.; Wang, Xuelei; Rueschman, Michael; Ismail-Beigi, Faramarz; Aylor, Joan; Babineau, Denise C.; Mehra, Reena; Redline, Susan

    2012-01-01

    Study Objectives: To address whether treatment of sleep apnea improves glucose tolerance. Design: Randomized, double-blind crossover study. Setting: Sleep clinic referrals. Patients: 50 subjects with moderate to severe sleep apnea (AHI > 15) and impaired glucose tolerance. Interventions: Subjects were randomized to 8 weeks of CPAP or sham CPAP, followed by the alternate therapy after a one-month washout. After each treatment, subjects underwent 2-hour OGTT, polysomnography, actigraphy, and measurements of indices of glucose control. Measurements and Results: The primary outcome was normalization of the mean 2-h OGTT; a secondary outcome was improvement in the Insulin Sensitivity Index (ISI (0,120). Subjects were 42% men, mean age of 54 (10), BMI of 39 (8), and AHI of 44 (27). Baseline fasting glucose was 104 (12), and mean 2-h OGTT was 110 (57) mg/dL. Seven subjects normalized their mean 2-h OGTT after CPAP but not after sham CPAP, while 5 subjects normalized after sham CPAP but not after CPAP. Overall, there was no improvement in ISI (0,120) between CPAP and sham CPAP (3.6%; 95% CI: [-2.2%, 9.7%]; P = 0.22). However, in those subjects with baseline AHI ≥ 30 (n = 25), there was a 13.3% (95% CI: [5.2%, 22.1%]; P CPAP compared to sham CPAP. Conclusions: This study did not show that IGT normalizes after CPAP in subjects with moderate sleep apnea and obesity. However, insulin sensitivity improved in those with AHI ≥ 30, suggesting beneficial metabolic effects of CPAP in severe sleep apnea. Clinical Trials Information: ClinicalTrials.gov Identifier: NCT01385995. Citation: Weinstock TG; Wang X; Rueschman M; Ismail-Beigi F; Aylor J; Babineau DC; Mehra R; Redline S. A controlled trial of CPAP therapy on metabolic control in individuals with impaired glucose tolerance and sleep apnea. SLEEP 2012;35(5):617-625. PMID:22547887

  17. Associations between Intake of Folate, Methionine, and Vitamins B-12, B-6 and Prostate Cancer Risk in American Veterans

    Directory of Open Access Journals (Sweden)

    Adriana C. Vidal

    2012-01-01

    Full Text Available Prostate cancer (PC is the second leading cause of cancer death in men. Recent reports suggest that excess of nutrients involved in the one-carbon metabolism pathway increases PC risk; however, empirical data are lacking. Veteran American men (272 controls and 144 PC cases who attended the Durham Veteran American Medical Center between 2004–2009 were enrolled into a case-control study. Intake of folate, vitamin B12, B6, and methionine were measured using a food frequency questionnaire. Regression models were used to evaluate the association among one-carbon cycle nutrients, MTHFR genetic variants, and prostate cancer. Higher dietary methionine intake was associated with PC risk (OR = 2.1; 95%CI 1.1–3.9 The risk was most pronounced in men with Gleason sum <7 (OR = 2.75; 95%CI 1.32– 5.73. The association of higher methionine intake and PC risk was only apparent in men who carried at least one MTHFR A1298C allele (OR =6.7; 95%CI = 1.6–27.8, compared to MTHFR A1298A noncarrier men (OR =0.9; 95%CI = 0.24–3.92 (p-interaction =0.045. There was no evidence for associations between B vitamins (folate, B12, and B6 and PC risk. Our results suggest that carrying the MTHFR A1298C variants modifies the association between high methionine intake and PC risk. Larger studies are required to validate these findings.

  18. Associations between Intake of Folate, Methionine, and Vitamins B-12, B-6 and Prostate Cancer Risk in American Veterans

    International Nuclear Information System (INIS)

    Vidal, A.C.; Hoyo, C.; Grant, D. J.

    2012-01-01

    Prostate cancer (PC) is the second leading cause of cancer death in men. Recent reports suggest that excess of nutrients involved in the one-carbon metabolism pathway increases PC risk; however, empirical data are lacking. Veteran American men (272 controls and 144 PC cases) who attended the Durham Veteran American Medical Center between 2004-2009 were enrolled into a case-control study. Intake of folate, vitamin B12, B6, and methionine were measured using a food frequency questionnaire. Regression models were used to evaluate the association among one-carbon cycle nutrients, MTHFR genetic variants, and prostate cancer. Higher dietary methionine intake was associated with PC risk (OR = 2.1; 95 % CI 1.1-3.9) The risk was most pronounced in men with Gleason sum <7 (OR = 2.75; 95%CI 1.32-5.73). The association of higher methionine intake and PC risk was only apparent in men who carried at least one MTHFR A1298C allele (OR=6.7 ; 95% CI=1.6-27.8), compared to MTHFR A1298A noncarrier men (OR = 0 . 9 ; 95 % CI=0.24-3.92) (p-interaction=0.045). There was no evidence for associations between B vitamins (folate, B12, and B6) and PC risk. Our results suggest that carrying the MTHFR A1298C variants modifies the association between high methionine intake and PC risk. Larger studies are required to validate these findings.

  19. Metabolic syndrome, impaired fasting glucose and obesity, as predictors of incident diabetes in 14 120 hypertensive patients of ASCOT-BPLA: comparison of their relative predictability using a novel approach.

    Science.gov (United States)

    Gupta, A K; Prieto-Merino, D; Dahlöf, B; Sever, P S; Poulter, N R

    2011-08-01

    To evaluate, in hypertensive patients, whether the metabolic syndrome is a better predictor of new-onset diabetes compared with impaired fasting glucose, obesity or its other individual components alone, or collectively. Cox models were developed to assess the risk of new-onset diabetes associated with the metabolic syndrome after adjusting for a priori confounders (age, sex, ethnicity and concomitant use of non-cardiovascular medications), its individual components and other determinants of new-onset diabetes. Area under receiver operator curves using the metabolic syndrome or models of impaired fasting glucose were compared, and the ability of these models to correctly identify those who (after 5-years of follow-up) would or would not develop diabetes was assessed. The metabolic syndrome adjusted for a priori confounders and its individual components, and further adjusted for other determinants, was associated with significantly increased risk of new-onset diabetes [1.19 (1.00-1.40), P = 0.05 and 1.22 (1.03-1.44), P = 0.02, respectively]. The discriminative ability of the metabolic syndrome model [area under receiver operating curve: 0.764 (0.750-0.778)] was significantly better than the model of impaired fasting glucose [0.742 (0.727-0.757)] (P fasting glucose status (37.7%) (P fasting glucose were associated with an approximately 9-fold (7.47-10.45) increased risk of new-onset diabetes. Among normoglycaemic patients, the metabolic syndrome was also associated with significantly increased risk of new-onset diabetes, after adjusting for BMI and a priori confounders [1.66 (1.29-2.13)]. Both impaired fasting glucose and the metabolic syndrome predict the risk of new-onset diabetes; however, the metabolic syndrome is a better predictor than impaired fasting glucose in assigning the risk of new-onset diabetes in hypertensive patients, and among those with normoglycaemia. © 2011 The Authors. Diabetic Medicine © 2011 Diabetes UK.

  20. Ozone induces glucose intolerance and systemic metabolic effects in young and aged brown Norway rats

    International Nuclear Information System (INIS)

    Bass, V.; Gordon, C.J.; Jarema, K.A.; MacPhail, R.C.; Cascio, W.E.; Phillips, P.M.; Ledbetter, A.D.; Schladweiler, M.C.; Andrews, D.; Miller, D.; Doerfler, D.L.; Kodavanti, U.P.

    2013-01-01

    Air pollutants have been associated with increased diabetes in humans. We hypothesized that ozone would impair glucose homeostasis by altering insulin signaling and/or endoplasmic reticular (ER) stress in young and aged rats. One, 4, 12, and 24 month old Brown Norway (BN) rats were exposed to air or ozone, 0.25 or 1.0 ppm, 6 h/day for 2 days (acute) or 2 d/week for 13 weeks (subchronic). Additionally, 4 month old rats were exposed to air or 1.0 ppm ozone, 6 h/day for 1 or 2 days (time-course). Glucose tolerance tests (GTT) were performed immediately after exposure. Serum and tissue biomarkers were analyzed 18 h after final ozone for acute and subchronic studies, and immediately after each day of exposure in the time-course study. Age-related glucose intolerance and increases in metabolic biomarkers were apparent at baseline. Acute ozone caused hyperglycemia and glucose intolerance in rats of all ages. Ozone-induced glucose intolerance was reduced in rats exposed for 13 weeks. Acute, but not subchronic ozone increased α 2 -macroglobulin, adiponectin and osteopontin. Time-course analysis indicated glucose intolerance at days 1 and 2 (2 > 1), and a recovery 18 h post ozone. Leptin increased day 1 and epinephrine at all times after ozone. Ozone tended to decrease phosphorylated insulin receptor substrate-1 in liver and adipose tissues. ER stress appeared to be the consequence of ozone induced acute metabolic impairment since transcriptional markers of ER stress increased only after 2 days of ozone. In conclusion, acute ozone exposure induces marked systemic metabolic impairments in BN rats of all ages, likely through sympathetic stimulation. - Highlights: • Air pollutants have been associated with increased diabetes in humans. • Acute ozone exposure produces profound metabolic alterations in rats. • Age influences metabolic risk factors in aging BN rats. • Acute metabolic effects are reversible and repeated exposure reduces these effects. • Ozone metabolic

  1. Ozone induces glucose intolerance and systemic metabolic effects in young and aged brown Norway rats

    Energy Technology Data Exchange (ETDEWEB)

    Bass, V. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Gordon, C.J.; Jarema, K.A.; MacPhail, R.C. [Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Cascio, W.E. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Phillips, P.M. [Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Ledbetter, A.D.; Schladweiler, M.C. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Andrews, D. [Research Cores Unit, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Miller, D. [Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC (United States); Doerfler, D.L. [Research Cores Unit, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Kodavanti, U.P., E-mail: kodavanti.urmila@epa.gov [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States)

    2013-12-15

    Air pollutants have been associated with increased diabetes in humans. We hypothesized that ozone would impair glucose homeostasis by altering insulin signaling and/or endoplasmic reticular (ER) stress in young and aged rats. One, 4, 12, and 24 month old Brown Norway (BN) rats were exposed to air or ozone, 0.25 or 1.0 ppm, 6 h/day for 2 days (acute) or 2 d/week for 13 weeks (subchronic). Additionally, 4 month old rats were exposed to air or 1.0 ppm ozone, 6 h/day for 1 or 2 days (time-course). Glucose tolerance tests (GTT) were performed immediately after exposure. Serum and tissue biomarkers were analyzed 18 h after final ozone for acute and subchronic studies, and immediately after each day of exposure in the time-course study. Age-related glucose intolerance and increases in metabolic biomarkers were apparent at baseline. Acute ozone caused hyperglycemia and glucose intolerance in rats of all ages. Ozone-induced glucose intolerance was reduced in rats exposed for 13 weeks. Acute, but not subchronic ozone increased α{sub 2}-macroglobulin, adiponectin and osteopontin. Time-course analysis indicated glucose intolerance at days 1 and 2 (2 > 1), and a recovery 18 h post ozone. Leptin increased day 1 and epinephrine at all times after ozone. Ozone tended to decrease phosphorylated insulin receptor substrate-1 in liver and adipose tissues. ER stress appeared to be the consequence of ozone induced acute metabolic impairment since transcriptional markers of ER stress increased only after 2 days of ozone. In conclusion, acute ozone exposure induces marked systemic metabolic impairments in BN rats of all ages, likely through sympathetic stimulation. - Highlights: • Air pollutants have been associated with increased diabetes in humans. • Acute ozone exposure produces profound metabolic alterations in rats. • Age influences metabolic risk factors in aging BN rats. • Acute metabolic effects are reversible and repeated exposure reduces these effects. • Ozone

  2. Effect of lifestyle interventions with or without metformin therapy on serum levels of osteoprotegerin and receptor activator of nuclear factor kappa B ligand in patients with prediabetes.

    Science.gov (United States)

    Arslan, Muyesser Sayki; Tutal, Esra; Sahin, Mustafa; Karakose, Melia; Ucan, Bekir; Ozturk, Gulfer; Cakal, Erman; Biyikli Gencturk, Zeynep; Ozbek, Mustafa; Delibasi, Tuncay

    2017-02-01

    Osteoprotegerin has been shown to be increased in cardiovascular disorders and type 2 diabetes mellitus. Prediabetes represents a high risk condition for diabetes and diabetic complications. Therefore, we aimed to find the relationship between prediabetes and osteoprotegerin with nuclear factor-B ligand, carotid intima media thickness, and metabolic markers. A total of 54 participants with prediabetes including impaired fasting glucose (n = 21), impaired glucose tolerance (n = 8), impaired fasting glucose and impaired glucose tolerance (n = 25), and 60 healthy individuals as a control were admitted to the study. Metabolic and anthropometric parameters, insulin resistance variables, osteoprotegerin, and nuclear factor-B ligand markers, carotid intima media thickness were examined at baseline for all participants. To evaluate the effect of therapy we determined the same parameters after the end of the study. Measurements of waist circumference, body mass index, body fat percentage and levels of fasting blood glucose, fasting insulin, homeostatic model assessment of insulin resistance, triglyceride levels and hsCRP and carotid intima media thickness were significantly higher in patients with prediabetes (p  0.05). Patients with prediabetes were under lifestyle interventions with (group 1, n = 33) or without metformin (group 2, n = 21) therapy. Baseline anthropometric and metabolic characteristics were not found statistically different in group 1 and group 2. Mean follow up period of the patients were 7.9 ± 2.2 month (min-max: 6-12 months). After the follow up period we evaluated the same parameters and found significant differences between waist circumference, body mass index, body fat percentage, fasting insulin, homeostatic model assessment of insulin resistance, and osteoprotegerin levels (p prediabetes was associated with a significant decrease in osteoprotegerin and certain metabolic variables together with an increase in nuclear

  3. Metabolic evolution of Escherichia coli strains that produce organic acids

    Science.gov (United States)

    Grabar, Tammy; Gong, Wei; Yocum, R Rogers

    2014-10-28

    This invention relates to the metabolic evolution of a microbial organism previously optimized for producing an organic acid in commercially significant quantities under fermentative conditions using a hexose sugar as sole source of carbon in a minimal mineral medium. As a result of this metabolic evolution, the microbial organism acquires the ability to use pentose sugars derived from cellulosic materials for its growth while retaining the original growth kinetics, the rate of organic acid production and the ability to use hexose sugars as a source of carbon. This invention also discloses the genetic change in the microorganism that confers the ability to use both the hexose and pentose sugars simultaneously in the production of commercially significant quantities of organic acids.

  4. Effects of acute respiratory and metabolic acidosis on diaphragm muscle obtained from rats.

    Science.gov (United States)

    Michelet, Pierre; Carreira, Serge; Demoule, Alexandre; Amour, Julien; Langeron, Olivier; Riou, Bruno; Coirault, Catherine

    2015-04-01

    Acute respiratory acidosis is associated with alterations in diaphragm performance. The authors compared the effects of respiratory acidosis and metabolic acidosis in the rat diaphragm in vitro. Diaphragmatic strips were stimulated in vitro, and mechanical and energetic variables were measured, cross-bridge kinetics calculated, and the effects of fatigue evaluated. An extracellular pH of 7.00 was obtained by increasing carbon dioxide tension (from 25 to 104 mmHg) in the respiratory acidosis group (n = 12) or lowering bicarbonate concentration (from 24.5 to 5.5 mM) in the metabolic acidosis group (n = 12) and the results compared with a control group (n = 12, pH = 7.40) after 20-min exposure. Respiratory acidosis induced a significant decrease in maximum shortening velocity (-33%, P Respiratory acidosis impaired more relaxation than contraction, as shown by impairment in contraction-relaxation coupling under isotonic (-26%, P acidosis group. In rat diaphragm, acute (20 min) respiratory acidosis induced a marked decrease in the diaphragm contractility, which was not observed in metabolic acidosis.

  5. Longitudinal brain metabolic changes from amnestic mild cognitive impairment to Alzheimer's disease

    Science.gov (United States)

    Fouquet, Marine; Desgranges, Béatrice; Landeau, Brigitte; Duchesnay, Edouard; Mézenge, Florence; De La Sayette, Vincent; Viader, Fausto; Baron, Jean-Claude; Eustache, Francis; Chételat, Gaël

    2009-01-01

    A sensitive marker for monitoring progression of early Alzheimer’s Disease (AD) would help to develop and test new therapeutic strategies. The present study aimed at investigating brain metabolism changes over time, as potential monitoring marker, in patients with amnestic Mild Cognitive Impairment (aMCI), according to their clinical outcome (converters or non-converters), and in relation to their cognitive decline. Seventeen aMCI patients underwent MRI and 18FDG-PET scans both at inclusion and 18 months later. Baseline and follow-up PET data were corrected for partial volume effects and spatially normalized using MRI data, scaled to the vermis and compared using SPM2. ‘PET-PAC’ maps reflecting metabolic percent annual changes were created for correlation analyses with cognitive decline. In the whole sample, the greatest metabolic decrease concerned the posterior cingulate-precuneus area. Converters had significantly greater metabolic decrease than nonconverters in two ventro-medial prefrontal areas, the subgenual (BA25) and anterior cingulate (BA24/32). PET-PAC in BA25 and BA24/32 combined allowed complete between-group discrimination. BA25 PET-PAC significantly correlated with both cognitive decline and PET-PAC in the hippocampal region and temporal pole, while BA24/32 PET-PAC correlated with posterior cingulate PET-PAC. Finally, the metabolic change in BA8/9/10 was inversely related to that in BA25 and showed relative increase with cognitive decline, suggesting that compensatory processes may occur in this dorso-medial prefrontal region. The observed ventro-medial prefrontal disruption is likely to reflect disconnection from the hippocampus, both indirectly through the cingulum bundle and posterior cingulate cortex for BA24/32, and directly through the uncinate fasciculus for BA25. Altogether, our findings emphasize the potential of 18FDG-PET for monitoring early AD progression. PMID:19477964

  6. The metabolic enhancer piracetam ameliorates the impairment of mitochondrial function and neurite outgrowth induced by ß-amyloid peptide

    Science.gov (United States)

    Kurz, C; Ungerer, I; Lipka, U; Kirr, S; Schütt, T; Eckert, A; Leuner, K; Müller, WE

    2010-01-01

    Background and purpose: β-Amyloid peptide (Aβ) is implicated in the pathogenesis of Alzheimer's disease by initiating a cascade of events from mitochondrial dysfunction to neuronal death. The metabolic enhancer piracetam has been shown to improve mitochondrial dysfunction following brain aging and experimentally induced oxidative stress. Experimental approach: We used cell lines (PC12 and HEK cells) and murine dissociated brain cells. The protective effects of piracetam in vitro and ex vivo on Aβ-induced impairment of mitochondrial function (as mitochondrial membrane potential and ATP production), on secretion of soluble Aβ and on neurite outgrowth in PC12 cells were investigated. Key results: Piracetam improves mitochondrial function of PC12 cells and acutely dissociated brain cells from young NMRI mice following exposure to extracellular Aβ1-42. Similar protective effects against Aβ1-42 were observed in dissociated brain cells from aged NMRI mice, or mice transgenic for mutant human amyloid precursor protein (APP) treated with piracetam for 14 days. Soluble Aβ load was markedly diminished in the brain of those animals after treatment with piracetam. Aβ production by HEK cells stably transfected with mutant human APP was elevated by oxidative stress and this was reduced by piracetam. Impairment of neuritogenesis is an important consequence of Aβ-induced mitochondrial dysfunction and Aβ-induced reduction of neurite growth in PC12 cells was substantially improved by piracetam. Conclusion and implications: Our findings strongly support the concept of improving mitochondrial function as an approach to ameliorate the detrimental effects of Aβ on brain function. This article is commented on by Moncada, pp. 217–219 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2010.00706.x and to view related papers by Pravdic et al. and Puerta et al. visit http://dx.doi.org/10.1111/j.1476-5381.2010.00698.x and http://dx.doi.org/10.1111/j

  7. 21 CFR 862.1810 - Vitamin B12 test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Vitamin B12 test system. 862.1810 Section 862.1810....1810 Vitamin B12 test system. (a) Identification. A vitamin B12 test system is a device intended to measure vitamin B12 in serum, plasma, and urine. Measurements obtained by this device are used in the...

  8. Severe but Not Moderate Vitamin B12 Deficiency Impairs Lipid Profile, Induces Adiposity, and Leads to Adverse Gestational Outcome in Female C57BL/6 Mice.

    Science.gov (United States)

    Ghosh, Shampa; Sinha, Jitendra Kumar; Putcha, Uday Kumar; Raghunath, Manchala

    2016-01-01

    Vitamin B12 deficiency is widely prevalent in women of childbearing age, especially in developing countries. In the present study, through dietary restriction, we have established mouse models of severe and moderate vitamin B12 deficiencies to elucidate the impact on body composition, biochemical parameters, and reproductive performance. Female weanling C57BL/6 mice were fed for 4 weeks: (a) control AIN-76A diet, (b) vitamin B12-restricted AIN-76A diet with pectin as dietary fiber (severe deficiency group, as pectin inhibits vitamin B12 absorption), or (c) vitamin B12-restricted AIN-76A diet with cellulose as dietary fiber (moderate deficiency group as cellulose does not interfere with vitamin B12 absorption). After confirming deficiency, the mice were mated with male colony mice and maintained on their respective diets throughout pregnancy, lactation, and thereafter till 12 weeks. Severe vitamin B12 deficiency increased body fat% significantly, induced adiposity and altered lipid profile. Pregnant dams of both the deficient groups developed anemia. Severe vitamin B12 deficiency decreased the percentage of conception and litter size, pups were small-for-gestational-age and had significantly lower body weight at birth as well as weaning. Most of the offspring born to severely deficient dams died within 24 h of birth. Stress markers and adipocytokines were elevated in severe deficiency with concomitant decrease in antioxidant defense. The results show that severe but not moderate vitamin B12 restriction had profound impact on the physiology of C57BL/6 mice. Oxidative and corticosteroid stress, inflammation and poor antioxidant defense seem to be the probable underlying mechanisms mediating the deleterious effects.

  9. Severe but not moderate vitamin B12 deficiency impairs lipid profile, induces adiposity and leads to adverse gestational outcome in female C57BL/6 mice

    Directory of Open Access Journals (Sweden)

    Shampa eGhosh

    2016-01-01

    Full Text Available Vitamin B12 deficiency is widely prevalent in women of childbearing age especially in developing countries. In the present study, through dietary restriction, we have established mouse models of severe and moderate vitamin B12 deficiencies to elucidate the impact on body composition, biochemical parameters and reproductive performance. Female weanling C57BL/6 mice were fed for four weeks, (a control AIN-76A diet, (b vitamin B12 restricted AIN-76A diet with pectin as dietary fiber (severe deficiency group, as pectin inhibits vitamin B12 absorption or (c vitamin B12 restricted AIN-76A diet with cellulose as dietary fiber (moderate deficiency group as cellulose does not interfere with vitamin B12 absorption. After confirming deficiency, the mice were mated with male colony mice and maintained on their respective diets throughout pregnancy, lactation and thereafter till 12 weeks. Severe vitamin B12 deficiency increased body fat % significantly, induced adiposity and altered lipid profile. Pregnant dams of both the deficient groups developed anemia. Severe vitamin B12 deficiency decreased the percentage of conception and litter size, pups were small-for-gestational-age and had significantly lower body weight at birth as well as weaning. Most of the offspring born to severely deficient dams died within 24 hours of birth. Stress markers and adipocytokines were elevated in severe deficiency with concomitant decrease in antioxidant defense. The results show that severe but not moderate vitamin B12 restriction had profound impact on the physiology of C57BL/6 mice. Oxidative and corticosteroid stress, inflammation and poor antioxidant defense seem to be the probable underlying mechanisms mediating the deleterious effects.

  10. PODAAC-RSX12-L2B11

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset contains the RapidScat Level 2B 12.5km Version 1.1 science-quality ocean surface wind vectors. The Level 2B wind vectors are binned on a 12.5 km Wind...

  11. Vitamin B12 Deficiency in Relation to Functional Disabilities

    Directory of Open Access Journals (Sweden)

    Heather E. Rasmussen

    2013-11-01

    Full Text Available This study was designed to assess whether symptoms, functional measures, and reported disabilities were associated with vitamin B12 (B12 deficiency when defined in three ways. Participants, aged 60 or more years of age, in 1999–2002 National Health and Nutrition Examination Surveys (NHANES were categorized in relation to three previously used definitions of B12 deficiency: (1 serum B12 20 μmol/L; and (3 serum B12 0.21 μmol/L. Functional measures of peripheral neuropathy, balance, cognitive function, gait speed, along with self-reported disability (including activities of daily living were examined with standardized instruments by trained NHANES interviewers and technicians. Individuals identified as B12 deficient by definition 2 were more likely to manifest peripheral neuropathy OR (odds (95% confidence intervals, p value: 9.70 (2.24, 42.07, 0.004 and report greater total disability, 19.61 (6.22, 61.86 0.0001 after adjustments for age, sex, race, serum creatinine, and ferritin concentrations, smoking, diabetes, and peripheral artery disease. Smaller, but significantly increased, odds of peripheral neuropathy and total disability were also observed when definition 3 was applied. Functional measures and reported disabilities were associated with B12 deficiency definitions that include B12 biomarkers (homocysteine or methylmalonic acid. Further study of these definitions is needed to alert clinicians of possible subclinical B12 deficiency because functional decline amongst older adults may be correctable if the individual is B12 replete.

  12. Why is coronary collateral growth impaired in type II diabetes and the metabolic syndrome?

    Science.gov (United States)

    Rocic, Petra

    2012-01-01

    Type II diabetes and the metabolic syndrome are strong predictors of severity of occlusive coronary disease and poorer outcomes of coronary revascularization therapies. Coronary collateral growth can provide an alternative or accessory pathway of revascularization. However, collateral growth is impaired in type II diabetes and the metabolic syndrome. Although many factors necessary for collateral growth are known and many interventions have shown promising results in animal studies, not a single attempt to induce coronary collateral growth in human clinical trials has led to satisfactory results. Accordingly, the first part of this review outlines the known deleterious effects of diabetes and the metabolic syndrome on factors necessary for collateral growth, including pro-angiogenic growth factors, endothelial function, the redox state of the coronary circulation, intracellular signaling, leukocytes and bone marrow-derived progenitors cells. The second section highlights the gaps in our current knowledge of how these factors interact with the radically altered environment of the coronary circulation in diabetes and the metabolic syndrome. The interplay between these pathologies and inadequately explored areas related to the temporal regulation of collateral remodeling and the roles of the extracellular matrix, vascular cell phenotype and pro-inflammatory cytokines are emphasized with implications to development of efficient therapies. PMID:22342811

  13. A diagnostic algorithm for metabolic myopathies.

    Science.gov (United States)

    Berardo, Andres; DiMauro, Salvatore; Hirano, Michio

    2010-03-01

    Metabolic myopathies comprise a clinically and etiologically diverse group of disorders caused by defects in cellular energy metabolism, including the breakdown of carbohydrates and fatty acids to generate adenosine triphosphate, predominantly through mitochondrial oxidative phosphorylation. Accordingly, the three main categories of metabolic myopathies are glycogen storage diseases, fatty acid oxidation defects, and mitochondrial disorders due to respiratory chain impairment. The wide clinical spectrum of metabolic myopathies ranges from severe infantile-onset multisystemic diseases to adult-onset isolated myopathies with exertional cramps. Diagnosing these diverse disorders often is challenging because clinical features such as recurrent myoglobinuria and exercise intolerance are common to all three types of metabolic myopathy. Nevertheless, distinct clinical manifestations are important to recognize as they can guide diagnostic testing and lead to the correct diagnosis. This article briefly reviews general clinical aspects of metabolic myopathies and highlights approaches to diagnosing the relatively more frequent subtypes (Fig. 1). Fig. 1 Clinical algorithm for patients with exercise intolerance in whom a metabolic myopathy is suspected. CK-creatine kinase; COX-cytochrome c oxidase; CPT-carnitine palmitoyl transferase; cyt b-cytochrome b; mtDNA-mitochondrial DNA; nDNA-nuclear DNA; PFK-phosphofructokinase; PGAM-phosphoglycerate mutase; PGK-phosphoglycerate kinase; PPL-myophosphorylase; RRF-ragged red fibers; TFP-trifunctional protein deficiency; VLCAD-very long-chain acyl-coenzyme A dehydrogenase.

  14. GlmS and NagB regulate amino sugar metabolism in opposing directions and affect Streptococcus mutans virulence.

    Directory of Open Access Journals (Sweden)

    Miki Kawada-Matsuo

    Full Text Available Streptococcus mutans is a cariogenic pathogen that produces an extracellular polysaccharide (glucan from dietary sugars, which allows it to establish a reproductive niche and secrete acids that degrade tooth enamel. While two enzymes (GlmS and NagB are known to be key factors affecting the entrance of amino sugars into glycolysis and cell wall synthesis in several other bacteria, their roles in S. mutans remain unclear. Therefore, we investigated the roles of GlmS and NagB in S. mutans sugar metabolism and determined whether they have an effect on virulence. NagB expression increased in the presence of GlcNAc while GlmS expression decreased, suggesting that the regulation of these enzymes, which functionally oppose one another, is dependent on the concentration of environmental GlcNAc. A glmS-inactivated mutant could not grow in the absence of GlcNAc, while nagB-inactivated mutant growth was decreased in the presence of GlcNAc. Also, nagB inactivation was found to decrease the expression of virulence factors, including cell-surface protein antigen and glucosyltransferase, and to decrease biofilm formation and saliva-induced S. mutans aggregation, while glmS inactivation had the opposite effects on virulence factor expression and bacterial aggregation. Our results suggest that GlmS and NagB function in sugar metabolism in opposing directions, increasing and decreasing S. mutans virulence, respectively.

  15. Coupling of glucose deprivation with impaired histone H2B monoubiquitination in tumors.

    Directory of Open Access Journals (Sweden)

    Yasuyo Urasaki

    Full Text Available Metabolic reprogramming is associated with tumorigenesis. However, glucose metabolism in tumors is poorly understood. Here, we report that glucose levels are significantly lower in bulk tumor specimens than those in normal tissues of the same tissue origins. We show that mono-ubiquitinated histone H2B (uH2B is a semi-quantitative histone marker for glucose. We further show that loss of uH2B occurs specifically in cancer cells from a wide array of tumor specimens of breast, colon, lung and additional 23 anatomic sites. In contrast, uH2B levels remain high in stromal tissues or non-cancerous cells in the tumor specimens. Taken together, our data suggest that glucose deficiency and loss of uH2B are novel properties of cancer cells in vivo, which may represent important regulatory mechanisms of tumorigenesis.

  16. Mass spectrometry and metabolism of leukotriene B4

    International Nuclear Information System (INIS)

    Harper, T.W.

    1985-01-01

    Leukotriene B 4 (LTB 4 ) is a potent and powerful chemotactic factor for polymorphonuclear leukocytes and has been hypothesized to play a role as a mediator of the inflammatory response. A cell free system capable of generating leukotrienes from exogenous arachidonic acid was developed using both rat basophilic leukemia cells and murine mastocytoma cells. The cell free leukotriene generating system was used to prepare leukotrienes for mass spectral studies using electron impact (EI), chemical ionization (Cl), negative ion chemical ionization (NCl) and both positive and negative ion fast atom bombardment mass spectrometry (FAB-MS). Although all of the techniques examined yielded useful information, NCl was found to be the most useful for sensitive quantitation of leukotrienes, whereas Cl and El are more useful for unambiguous structural characterization of hydroxy fatty acid leukotrienes. Investigation of the in vivo metabolism of LTB 4 in the mouse and guinea pig indicated that less than 10% of the injected radiolabel from 3 H-LTB 4 was excreted via the urine and feces. Approximately 30% of the urinary radioactivity was volatile, probably due to loss of the tritium label as water. In the monkey, approximately 10% of the injected radiolabel from 14 C-LTB 4 was excreted in the urine within 5 1/2 hours. In this study, approximately 10% of the urinary radiolabel was volatile, with a large number of unidentified non-volatile products also observed. The isolated perfused rat lung was found to rapidly metabolize leukotriene C 4 to leukotrienes D 4 and E 4 and to leukotriene C 4 sulfoxide

  17. Vitamin B12-catalyzed synthesis of some peracetylated alkyl b-D-xylopyranosides

    Directory of Open Access Journals (Sweden)

    LJILJANA STEVANOVIC

    2003-10-01

    Full Text Available The vitamin B12-catalyzed glycosylation reaction of brominated b-D-xylose peracetate with alkanols ROH (C1-C8 has been studied. The catalytically active species in this reaction was cob(Ialamin, obtained by chemical reduction of Vitamin B12 with NaBH4 (Co(III to Co(I. The reaction was carried out with 2 mol% of vitamin B12, with respect to xylosyl bromide 1, under argon at room temperature. Under these conditions, peracetylated C1-C8-alkyl b-D-xylopyranosides (3a–3f were obtained in moderate yield (55–70 %. In all cases 3,4-di-O-acetyl-D-xylal (4 was obtained, as the product of reductive elimination of peracetylated xylosyl bromide (15–25 %.

  18. Effect of Toxicants on Fatty Acid Metabolism in HepG2 Cells

    Directory of Open Access Journals (Sweden)

    David Grünig

    2018-04-01

    Full Text Available Impairment of hepatic fatty acid metabolism can lead to liver steatosis and injury. Testing drugs for interference with hepatic fatty acid metabolism is therefore important. To find out whether HepG2 cells are suitable for this purpose, we investigated the effect of three established fatty acid metabolism inhibitors and of three test compounds on triglyceride accumulation, palmitate metabolism, the acylcarnitine pool and dicarboxylic acid accumulation in the cell supernatant and on ApoB-100 excretion in HepG2 cells. The three established inhibitors [etomoxir, methylenecyclopropylacetic acid (MCPA, and 4-bromocrotonic acid (4-BCA] depleted mitochondrial ATP at lower concentrations than cytotoxicity occurred, suggesting mitochondrial toxicity. They inhibited palmitate metabolism at similar or lower concentrations than ATP depletion, and 4-BCA was associated with cellular fat accumulation. They caused specific changes in the acylcarnitine pattern and etomoxir an increase of thapsic (C18 dicarboxylic acid in the cell supernatant, and did not interfere with ApoB-100 excretion (marker of VLDL export. The three test compounds (amiodarone, tamoxifen, and the cannabinoid WIN 55,212-2 depleted the cellular ATP content at lower concentrations than cytotoxicity occurred. They all caused cellular fat accumulation and inhibited palmitate metabolism at similar or higher concentrations than ATP depletion. They suppressed medium-chain acylcarnitines in the cell supernatant and amiodarone and tamoxifen impaired thapsic acid production. Tamoxifen and WIN 55,212-2 decreased cellular ApoB-100 excretion. In conclusion, the established inhibitors of fatty acid metabolism caused the expected effects in HepG2 cells. HepG cells proved to be useful for the detection of drug-associated toxicities on hepatocellular fatty acid metabolism.

  19. Symptoms of depression in people with impaired glucose metabolism or Type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Adriaanse, M C; Dekker, J M; Heine, R. J.

    2008-01-01

    .28] and women with DM2 (OR = 3.18, 95% CI = 1.31 to 7.74). In men, depression was not associated with IGM (OR = 0.90, 95% CI = 0.32 to 2.57) and non-significantly more common in DM2 (OR = 2.04, 95% CI = 0.75 to 5.49). Adjustment for cardiovascular risk factors, cardiovascular disease and diabetes symptoms...... reduced the strength of these associations. CONCLUSIONS: Depressive symptoms are more common in women with IGM, but not men. Adjustment for cardiovascular risk factors, cardiovascular disease and diabetes symptoms partially attenuated these associations, suggesting that these variables could......OBJECTIVE: To study the prevalence and risk factors of depressive symptoms, comparing subjects with normal glucose metabolism (NGM), impaired glucose metabolism (IGM) or Type 2 diabetes mellitus (DM2). RESEARCH DESIGN AND METHODS: Cross-sectional data from a population-based cohort study conducted...

  20. Characterization of the electronic properties of YB{sub 12}, ZrB{sub 12}, and LuB{sub 12} using {sup 11}B NMR and first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, B [Institut fuer Physikalische Chemie, Universitaet Wien, Waehringer Strasse 42, 1090 Vienna (Austria); Paluch, S [Institute for Low Temperature and Structure Research, Polish Academy of Sciences, PO Box 1410, 50-950 Wroclaw (Poland); Zogal, O J [Institute for Low Temperature and Structure Research, Polish Academy of Sciences, PO Box 1410, 50-950 Wroclaw (Poland); Wolf, W [Materials Design s. a. r. l., 44, avenue F.-A. Bartholdi, 72000 Le Mans (France); Herzig, P [Institut fuer Physikalische Chemie, Universitaet Wien, Waehringer Strasse 42, 1090 Vienna (Austria); Filippov, V B [Institute for Problems of Materials Science, Academy of Sciences of Ukraine, 3 Krzhyzhanovsky street, 03680 Kiev, Ukraine (Ukraine); Shitsevalova, N [Institute for Problems of Materials Science, Academy of Sciences of Ukraine, 3 Krzhyzhanovsky street, 03680 Kiev, Ukraine (Ukraine); Paderno, Y [Institute for Problems of Materials Science, Academy of Sciences of Ukraine, 3 Krzhyzhanovsky street, 03680 Kiev, Ukraine (Ukraine)

    2006-03-01

    Three metallic dodecaborides, YB{sub 12}, ZrB{sub 12} and LuB{sub 12}, have been investigated by electric-field gradient (EFG) measurements at the boron sites using the {sup 11}B nuclear magnetic resonance (NMR) technique and by performing first-principles calculations. The NMR powder spectra reveal patterns typical for a completely asymmetric EFG tensor, i.e., an {eta} parameter close to unity. The absolute values of V{sub zz} (the largest component of the EFG) are determined from the spectra and they range between 11 x 10{sup 20} V m{sup -2} and 11.6 x 10{sup 20} V m{sup -2} with an uncertainty of 0.8 x 10{sup 20} V m{sup -2}, being in very good agreement with the first-principles results. In addition the electronic structure and chemical bonding are analysed from partial densities of states and electron densities.

  1. Vitamin B12-Containing Plant Food Sources for Vegetarians

    Science.gov (United States)

    Watanabe, Fumio; Yabuta, Yukinori; Bito, Tomohiro; Teng, Fei

    2014-01-01

    The usual dietary sources of Vitamin B12 are animal-derived foods, although a few plant-based foods contain substantial amounts of Vitamin B12. To prevent Vitamin B12 deficiency in high-risk populations such as vegetarians, it is necessary to identify plant-derived foods that contain high levels of Vitamin B12. A survey of naturally occurring plant-derived food sources with high Vitamin B12 contents suggested that dried purple laver (nori) is the most suitable Vitamin B12 source presently available for vegetarians. Furthermore, dried purple laver also contains high levels of other nutrients that are lacking in vegetarian diets, such as iron and n-3 polyunsaturated fatty acids. Dried purple laver is a natural plant product and it is suitable for most people in various vegetarian groups. PMID:24803097

  2. Vitamin B12-Containing Plant Food Sources for Vegetarians

    Directory of Open Access Journals (Sweden)

    Fumio Watanabe

    2014-05-01

    Full Text Available The usual dietary sources of Vitamin B12 are animal-derived foods, although a few plant-based foods contain substantial amounts of Vitamin B12. To prevent Vitamin B12 deficiency in high-risk populations such as vegetarians, it is necessary to identify plant-derived foods that contain high levels of Vitamin B12. A survey of naturally occurring plant-derived food sources with high Vitamin B12 contents suggested that dried purple laver (nori is the most suitable Vitamin B12 source presently available for vegetarians. Furthermore, dried purple laver also contains high levels of other nutrients that are lacking in vegetarian diets, such as iron and n-3 polyunsaturated fatty acids. Dried purple laver is a natural plant product and it is suitable for most people in various vegetarian groups.

  3. Validity of transcobalamin II-based radioassay for the determination of serum vitamin B12 concentrations

    International Nuclear Information System (INIS)

    Paltridge, G.; Rudzki, Z.; Ryall, R.G.

    1980-01-01

    A valid radioassay for the estimation of serum vitamin B 12 in the presence of naturally occurring vitamin B 12 (= cobalamin) analogues can be operated if serum transcobalamin II (TC II) is used as the binding protein. Serum samples that gave diagnostically discrepant results when their vitamin B 12 content was analysed (i) by a commercial radioassay known to be susceptible to interference from cobalamin analogues, and (ii) by microbiological assay, were further analysed by an alternative radioassay which uses the transcobalamins (principally TC II) of diluted normal serum as the assay binding protein. Concordance between the results from microbiological assay and the TC II-based radioassay was found in all cases. In an extended study over a three-year period, all routine serum samples sent for vitamin B 12 analysis that had a vitamin B 12 content of less than 320 ng/l by the TC II-based radioassay (reference range 200-850 ng/l) were reanalysed using an established microbiological method. Over 1000 samples were thus analysed. The data are presented to demonstrate the validity of the TC II-based radioassay results in this group of patients, serum samples from which are most likely to produce diagnostically erroneous vitamin B 12 results when analysed by a radioassay that is less specific for cobalamins. (author)

  4. Effect of produced water on feeding and metabolism of Atlantic cod (Gadus morhua)

    Energy Technology Data Exchange (ETDEWEB)

    Volkoff, H.; Parrish, C. [Memorial Univ. of Newfoundland, St. John' s, NL (Canada); Hamoutene, D.; Mabrouk, G.; Samuelson, S.; Mansour, A.; Lee, K. [Fisheries and Oceans Canada, Dartmouth, NS (Canada). Maritimes Region, Ocean Sciences Division

    2007-07-01

    This paper addressed concerns regarding potentially detrimental cumulative effects of waste products from oil industry activities on marine organisms around production sites. The metabolic capacities, feeding and digestive physiology of fish have been shown to change with environmental parameters, which could impact the growth and health status of fish populations. In this study, the effects of produced water (PW) on feeding and metabolism of Atlantic cod was investigated by exposing fish to 0.100 ppm (x 10,000 PW dilution) or 200 ppm (x 500 dilution) of PW for 76 days. Throughout the experiment, food intake and mean weight were monitored. In addition, serum lipids, metabolites and gene expression of a brain appetite regulating factor were measured at the end of the experiment. No significant differences were observed in weight gain or food intake between the 3 groups of fish. Serum metabolites and neuropeptide Y expression remained unchanged between groups. The study is ongoing to complete comparative measurements of whole blood fatty acid profiles in plasma. The preliminary results indicate that feeding and metabolism in cod is not affected by produced water.

  5. MicroRNA, miR-374b, directly targets Myf6 and negatively regulates C2C12 myoblasts differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhiyuan; Sun, Xiaorui; Xu, Dequan; Xiong, Yuanzhu; Zuo, Bo, E-mail: zuobo@mail.hzau.edu.cn

    2015-11-27

    Myogenesis is a complex process including myoblast proliferation, differentiation and myotube formation and is controlled by myogenic regulatory factors (MRFs), MyoD, MyoG, Myf5 and Myf6 (also known as MRF4). MicroRNA is a kind of ∼22 nt-long non-coding small RNAs, and act as key transcriptional or post-transcriptional regulators of gene expression. Identification of miRNAs involved in the regulation of muscle genes could improve our understanding of myogenesis process. In this study, we investigated the regulation of Myf6 gene by miRNAs. We showed that miR-374b specifically bound to the 3'untranslated region (UTR) of Myf6 and down-regulated the expression of Myf6 gene at both mRNA and protein level. Furthermore, miR-374b is ubiquitously expressed in the tissues of adult C57BL6 mouse, and the mRNA abundance increases first and then decreases during C2C12 myoblasts differentiation. Over-expression of miR-374b impaired C2C12 cell differentiation, while inhibiting miR-374b expression by 2′-O-methyl antisense oligonucleotides promoted C2C12 cell differentiation. Taken together, our findings identified miR-374b directly targets Myf6 and negatively regulates myogenesis. - Highlights: • MiR-374b directly targets 3′UTR of Myf6. • MiR-374b negatively regulates Myf6 in C2C12 cells. • MiR-374b abundance significiently changes during C2C12 cells differentiation. • MiR-374b negatively regulates C2C12 cells differentiation.

  6. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism

    Directory of Open Access Journals (Sweden)

    Carles Lerin

    2016-10-01

    Full Text Available Objective: Plasma levels of branched-chain amino acids (BCAA are consistently elevated in obesity and type 2 diabetes (T2D and can also prospectively predict T2D. However, the role of BCAA in the pathogenesis of insulin resistance and T2D remains unclear. Methods: To identify pathways related to insulin resistance, we performed comprehensive gene expression and metabolomics analyses in skeletal muscle from 41 humans with normal glucose tolerance and 11 with T2D across a range of insulin sensitivity (SI, 0.49 to 14.28. We studied both cultured cells and mice heterozygous for the BCAA enzyme methylmalonyl-CoA mutase (Mut and assessed the effects of altered BCAA flux on lipid and glucose homeostasis. Results: Our data demonstrate perturbed BCAA metabolism and fatty acid oxidation in muscle from insulin resistant humans. Experimental alterations in BCAA flux in cultured cells similarly modulate fatty acid oxidation. Mut heterozygosity in mice alters muscle lipid metabolism in vivo, resulting in increased muscle triglyceride accumulation, increased plasma glucose, hyperinsulinemia, and increased body weight after high-fat feeding. Conclusions: Our data indicate that impaired muscle BCAA catabolism may contribute to the development of insulin resistance by perturbing both amino acid and fatty acid metabolism and suggest that targeting BCAA metabolism may hold promise for prevention or treatment of T2D. Keywords: Insulin sensitivity, BCAA, Fatty acid oxidation, TCA cycle

  7. B-cell exposure to self-antigen induces IL-10 producing B cells as well as IL-6- and TNF-α-producing B-cell subsets in healthy humans

    DEFF Research Database (Denmark)

    Langkjær, Anina; Kristensen, Birte; Hansen, Bjarke E

    2012-01-01

    Human B cells are able to secrete IL-10 after stimulation with mitogens, but their ability to produce IL-10 and regulate T-cell responses after stimulation with self-antigens is unclear. We co-cultured thyroglobulin-pulsed B cells from healthy donors with autologous T cells and observed production...... of IL-10 and TGF-β, in addition to TNF-α and IL-6. Pulsing with foreign antigen, tetanus toxoid (TT), induced a Th1-response with minimal IL-10 production. After thyroglobulin-pulsing, 1.10±0.50% of B cells and 1.00±0.20% of CD4(+) T cells produced IL-10, compared to 0.29±0.19% of B cells (P=0.01) and 0.......13±0.15% of CD4(+) T cells (P=0.006) following TT-pulsing. Thyroglobulin-stimulated, IL-10-secreting B cells were enriched within CD5(+) and CD24(high) cells. While thyroglobulin-pulsed B cells induced only modest proliferation of CD4(+) T cells, B cells pulsed with TT induced vigorous proliferation. Thus, B...

  8. Reproductive hormones and metabolic syndrome in 24 testicular cancer survivors and their biological brothers.

    Science.gov (United States)

    Bandak, M; Jørgensen, N; Juul, A; Lauritsen, J; Kier, M G G; Mortensen, M S; Oturai, P S; Mortensen, J; Hojman, P; Helge, J W; Daugaard, G

    2017-07-01

    Testicular cancer survivors have impaired gonadal function and increased risk of metabolic syndrome when compared to healthy controls. However, because of the fetal etiology of testicular cancer, familial unrelated healthy men might not be an optimal control group. The objective of this study was to clarify if testicular cancer survivors have impaired gonadal function and increased risk of metabolic syndrome when compared to their biological brothers. A cross-sectional study of testicular cancer survivors (ClinicalTrials.gov number, NCT02240966) was conducted between 2014 and 2016. Of 158 testicular cancer survivors included, 24 had a biological brother who accepted to participate in the study. Serum levels of reproductive hormones and prevalence of metabolic syndrome according to International Diabetes Federation Criteria and National Cholesterol Education Program (Adult Treatment Panel III) criteria comprised the main outcome measures of the study. Median age was similar in testicular cancer survivors and their biological brothers [44 years (IQR 39-50) vs. 46 (40-53) years respectively (p = 0.1)]. In testicular cancer survivors, follow-up since treatment was 12 years (7-19). Serum levels of luteinizing hormone and follicle-stimulating hormone were elevated (p ≤ 0.001), while total testosterone, free testosterone, inhibin B and anti-Müllerian hormone were lower (p ≤ 0.001) in testicular cancer survivors than in their biological brothers. The prevalence of metabolic syndrome was similar and apart from HDL-cholesterol, which was lower in testicular cancer survivors (p = 0.01); there were no differences in the individual components of the metabolic syndrome between testicular cancer survivors and their brothers. In conclusion, gonadal function was impaired in testicular cancer survivors, while we did not detect any difference in the prevalence of metabolic syndrome between testicular cancer survivors and their biological brothers. © 2017 American

  9. Mechanism of ({sup 14}N, {sup 12}B) reactions at intermediate energy leading to large spin-polarization of {sup 12}B

    Energy Technology Data Exchange (ETDEWEB)

    Mitsuoka, Shin-ichi [Osaka Univ., Ibaraki (Japan). Research Center for Nuclear Physics; Shimoda, Tadashi; Miyatake, Hiroari [and others

    1996-05-01

    To study mechanisms of the ({sup 14}N, {sup 12}B) reactions at intermediate energies, double differential cross section and nuclear spin-polarization of the {sup 12}B projectile-like fragments have been measured as a function of longitudinal momentum in the angular range of 0deg - 9deg. Large spin-polarization of the reaction products {sup 12}B has been observed in the {sup 9}Be({sup 14}N, {sup 12}B) reaction at 39.3 MeV/u. The momentum distributions at forward angles exhibit characteristic features which can not be understood by the current projectile fragmentation picture. It is shown that by assuming the existence of direct two-proton transfer process in addition to the fragmentation process, both the cross section and polarization of {sup 12}B fragments are successfully explained. The target and incident energy dependence of the momentum distribution are also explained reasonably. (author)

  10. Effects of genetic variants in ADCY5, GIPR, GCKR and VPS13C on early impairment of glucose and insulin metabolism in children.

    Directory of Open Access Journals (Sweden)

    Jan Windholz

    Full Text Available OBJECTIVE: Recent genome-wide association studies identified novel candidate genes for fasting and 2 h blood glucose and insulin levels in adults. We investigated the role of four of these loci (ADCY5, GIPR, GCKR and VPS13C in early impairment of glucose and insulin metabolism in children. RESEARCH DESIGN AND METHODS: We genotyped four variants (rs2877716; rs1260326; rs10423928; rs17271305 in 638 Caucasian children with detailed metabolic testing including an oGTT and assessed associations with measures of glucose and insulin metabolism (including fasting blood glucose, insulin levels and insulin sensitivity/secretion indices by linear regression analyses adjusted for age, sex, BMI-SDS and pubertal stage. RESULTS: The major allele (C of rs2877716 (ADCY5 was nominally associated with decreased fasting plasma insulin (P = 0.008, peak insulin (P = 0.009 and increased QUICKI (P = 0.016 and Matsuda insulin sensitivity index (P = 0.013. rs17271305 (VPS13C was nominally associated with 2 h blood glucose (P = 0.009, but not with any of the insulin or insulin sensitivity parameters. We found no association of the GIPR and GCKR variants with parameters of glucose and insulin metabolism. None of the variants correlated with anthropometric traits such as height, WHR or BMI-SDS, which excluded potential underlying associations with obesity. CONCLUSIONS: Our data on obese children indicate effects of genetic variation within ADCY5 in early impairment of insulin metabolism and VPS13C in early impairment of blood glucose homeostasis.

  11. BClI polymorphism of the glucocorticoid receptor gene is associated with increased obesity, impaired glucose metabolism and dyslipidaemia in patients with Addison's disease.

    Science.gov (United States)

    Giordano, Roberta; Marzotti, Stefania; Berardelli, Rita; Karamouzis, Ioannis; Brozzetti, Annalisa; D'Angelo, Valentina; Mengozzi, Giulio; Mandrile, Giorgia; Giachino, Daniela; Migliaretti, Giuseppe; Bini, Vittorio; Falorni, Alberto; Ghigo, Ezio; Arvat, Emanuela

    2012-12-01

    Although glucocorticoids are essential for health, several studies have shown that glucocorticoids replacement in Addison's disease might be involved in anthropometric and metabolic impairment, with increased cardiovascular risk, namely if conventional doses are used. As the effects of glucocorticoids are mediated by the glucocorticoid receptor, encoded by NR3C1 gene, different polymorphisms in the NR3C1 gene have been linked to altered glucocorticoid sensitivity in general population as well as in patients with obesity or metabolic syndrome. We investigated the impact of glucocorticoid receptor gene polymorphisms, including the BclI, N363S and ER22/23EK variants, on anthropometric parameters (BMI and waist circumference), metabolic profile (HOMA, OGTT and serum lipids) and ACTH levels in 50 patients with Addison's disease (34 women and 16 men, age 20-82 year) under glucocorticoids replacement. Neither N363S nor ER22/23EK variants were significantly associated with anthropometric, metabolic or hormonal parameters, while patients carrying the homozygous BclI polymorphism GG (n = 4) showed higher (P Addison's disease and may contribute, along with other factors, to the increase in central adiposity, impaired glucose metabolism and dyslipidaemia. © 2012 Blackwell Publishing Ltd.

  12. Gastric emptying in patients with vitamin B{sub 12} deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Yagci, Muenci; Yamac, Kadri; Acar, Kadir; Haznedar, Rauf [Department of Hematology, Gazi Medical School (Turkey); Cingi, Elif; Kitapci, Mehmet [Department of Nuclear Medicine, Gazi Medical School (Turkey)

    2002-09-01

    The clinical presentation of patients with vitamin B{sub 12} deficiency varies in a spectrum ranging from haematological disorders to neuropsychiatric diseases. In rare cases, orthostatic hypotension, impotence, constipation and urinary retention have been attributed to autonomic nervous system dysfunction due to vitamin B{sub 12} deficiency. The aim of this study was to evaluate the effect of vitamin B{sub 12} deficiency on autonomic nervous system function by studying gastric emptying times (T{sub 1/2}). Twenty patients with newly diagnosed vitamin B{sub 12} deficiency and 12 control patients with gastritis and normal vitamin B{sub 12} levels were enrolled in this study. Gastroduodenoscopy, endoscopic biopsy, histopathological evaluation of the biopsy specimens and radionuclide gastric emptying studies were performed. After vitamin B{sub 12} replacement therapy for 3 months, radionuclide gastric emptying studies were repeated. Mean gastric emptying T{sub 1/2} in patients before and after treatment and in controls were 103.83{+-}48.80 min, 90.00{+-}17.29 min and 74.55{+-}8.52 min, respectively. The difference in mean gastric emptying T{sub 1/2} between patients before treatment and controls was statistically significant (P<0.01). The statistically significant difference persisted after vitamin B{sub 12} treatment (P<0.05), though mean gastric emptying T{sub 1/2} was somewhat shorter. There were no positive or negative correlations between gastric emptying T{sub 1/2} and the following parameters: haemoglobin, vitamin B{sub 12} level and Helicobacter pylori positivity. In conclusion, gastric emptying T{sub 1/2} was prolonged in patients with vitamin B{sub 12} deficiency and this prolongation was not corrected after vitamin B{sub 12} replacement therapy. Although autonomic nervous system dysfunction due to vitamin B{sub 12} deficiency rarely gives rise to clinical manifestations, latent dysfunction demonstrated by laboratory tests seems to be a frequent phenomenon

  13. Impairment of metabolic capacities in copper and cadmium contaminated wild yellow perch (Perca flavescens)

    International Nuclear Information System (INIS)

    Couture, Patrice; Rajender Kumar, Puja

    2003-01-01

    This study examined variations in resting oxygen consumption rate (ROCR), post-exercise oxygen consumption rate, relative scope for activity (RSA), liver and muscle aerobic and anaerobic capacities (using citrate synthase (CS) and lactate dehydrogenase, respectively, as indicators), and tissue biosynthetic capacities (using nucleoside diphosphate kinase (NDPK) as an indicator), in wild yellow perch from four lakes varying in copper (Cu) and cadmium (Cd) contamination. Liver Cu and Cd concentrations largely reflected environmental contamination and were positively correlated with liver protein concentrations and NDPK activities. Our results suggest that metal contamination leads to an upregulation of liver protein metabolism, presumably at least in part for the purpose of metal detoxification. In contrast, muscle NDPK activities decreased with increasing liver Cd concentrations and NDPK activities. There was a 25% decrease in ROCR for a doubling of liver Cu concentrations and a 42% decrease in RSA for a doubling of liver Cd concentrations in the range studied. Cu contamination was also associated with lower muscle CS activities. Our results support previous findings of impaired aerobic capacities in the muscle of metal-contaminated fish, and demonstrate that this impairment is also reflected in aerobic capacities of whole fish. The evidence presented suggests that mitochondria may be primary targets for inhibition by Cu, and that Cd may reduce gill respiratory capacity. Muscle aerobic and anaerobic capacities were inversely related. This work indicates that metal exposure of wild yellow perch leads to a wide range of disturbances in metabolic capacities

  14. Bace1 activity impairs neuronal glucose metabolism: rescue by beta-hydroxybutyrate and lipoic acid

    Directory of Open Access Journals (Sweden)

    John A Findlay

    2015-10-01

    Full Text Available Glucose hypometabolism and impaired mitochondrial function in neurons have been suggested to play early and perhaps causative roles in Alzheimer’s disease (AD pathogenesis. Activity of the aspartic acid protease, beta-site amyloid precursor protein (APP cleaving enzyme 1 (BACE1, responsible for beta amyloid peptide generation, has recently been demonstrated to modify glucose metabolism. We therefore examined, using a human neuroblastoma (SH-SY5Y cell line, whether increased BACE1 activity is responsible for a reduction in cellular glucose metabolism. Overexpression of active BACE1, but not a protease-dead mutant BACE1, protein in SH-SY5Y cells reduced glucose oxidation and the basal oxygen consumption rate, which was associated with a compensatory increase in glycolysis. Increased BACE1 activity had no effect on the mitochondrial electron transfer process but was found to diminish substrate delivery to the mitochondria by inhibition of key mitochondrial decarboxylation reaction enzymes. This BACE1 activity-dependent deficit in glucose oxidation was alleviated by the presence of beta hydroxybutyrate or α-lipoic acid. Consequently our data indicate that raised cellular BACE1 activity drives reduced glucose oxidation in a human neuronal cell line through impairments in the activity of specific tricarboxylic acid cycle enzymes. Because this bioenergetic deficit is recoverable by neutraceutical compounds we suggest that such agents, perhaps in conjunction with BACE1 inhibitors, may be an effective therapeutic strategy in the early-stage management or treatment of AD.

  15. [Vitamin B12-independent strains of Methylophaga marina isolated from Red Sea algae].

    Science.gov (United States)

    Li, Ts D; Doronina, N V; Ivanova, E G; Trotsenko, Iu A

    2007-01-01

    Two strains (KM3 and KM5) of halophilic methylobacteria isolated from Red Sea algae do not require vitamin B12 for growth and can use methanol, methylamine, dimethylamine, trimethylamine, dimethyl sulfide, and fructose as sources of carbon and energy. The cells of these strains are gram-negative motile monotrichous (strain KM3) or peritrichous (strain KM5) rods. The strains are strictly aerobic and require Na+ ions but not growth factors for growth. They are oxidase- and catalase-positive and reduce nitrates to nitrites. Both strains can grow in a temperature range of 4 to 37 degrees C (with optimal growth at 29-34 degrees C), at pH between 5.5 and 8.5 (with optimal growth at pH 7.5-8.0), and in a range of salt concentrations between 0.5 and 15% NaCl (with optimal growth at 5-9% NaCl). The phospholipids of these strains are dominated by phosphatidylethanolamine and phosphatidylglycerol and also include phosphatidylcholine, phosphatidylserine, and cardiolipin. The dominant fatty acids are C(16:1omega7c) and C(16:0). The major ubiquinone is Q8. The cells accumulate ectoin, glutamate, and sucrose as intracellular osmoprotectants. The strains implement the 2-keto-3-deoxy-6-phosphogluconate-dependent variant of the ribulose monophosphate pathway. The G+C content of the DNA is 44.4-44.7 mol %. Analysis of the 16S rRNA genes showed that both strains belong to Gammaproteobacteria and have a high degree of homology (99.4%) to Methylophaga marina ATCC 35842T . Based on the data of polyphasic taxonomy, strains KM3 and KM5 are identified as new strains M. marina KM3 (VKM B-2386) and M. marina KM5 (VKM B-2387). The ability of these strains to produce auxins (indole-3-acetic acid) suggests their metabolic association with marine algae.

  16. Cobalamin (Vitamin B12) Role on the Biochemical, Histological and Teratological Changes Induced in Diabetic Irradiated Pregnant Rats

    International Nuclear Information System (INIS)

    Ramadan, F.L.

    2013-01-01

    Vitamin B 12 called Cobalamin, is a water soluble vitamin with a key role in the normal function of the brain, nervous system, cell division and for the formation of blood. It is normally involved in the metabolism of every cell of the human body especially affecting DNA synthesis and regulation, fatty acid synthesis and energy production.The aim of the present study was to evaluate the role of vitamin B 12 intake on radiation induced damage in diabetic mothers.Diabetes was induced in female rats by intra-peritoneal injection of alloxan 150 mg/kg b.wt. dissolved in saline. Pregnant diabetic mothers were received vitamin B 12 0.1 mg/100 g b.wt. from the 1st up to 19th day of gestation. Meanwhile, pregnant diabetic rats were exposed to 0.6 Gy on the 7th and the 14th days of gestation. The increased incidence of malformations in diabetic pregnancy with an excess of free oxygen radicals in the embryos was recorded .Vitamin B12 supplementation to diabetic mother ameliorated radiation-induced damage which was obvious by diminishing the increase in glucose level, improving serum insulin level, glycogen content in the liver and ameliorating the decrease in glutathione (GSH) content in the liver of pregnant rats and their fetuses.In addition, vitamin B 12 treatment improved the decrease in red blood cells (RBCs), white blood cells (WBCs) and hemoglobin (Hb) of fetuses and DNA content in the liver tissues. Moreover, vitamin B 12 treatment lead to the regeneration of normal architecture of maternal and fetuses hepatic cells and blood vessels. It could be concluded that vitamin B 12 supplementation to diabetic mothers ameliorated the radiation effect which induced biochemical, histochemical, histological and teratological disorders.Furthermore, the results obtained showed that vitamin B 12 administration caused a protection to diabetic pregnant rats against embryo malformations induced by gamma rays

  17. 12 CFR 269b.731 - Signature.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Signature. 269b.731 Section 269b.731 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM CHARGES OF UNFAIR LABOR PRACTICES General Rules § 269b.731 Signature. The original of each document filed shall be...

  18. Emerging Perspectives on Essential Amino Acid Metabolism in Obesity and the Insulin-Resistant State12

    Science.gov (United States)

    Adams, Sean H.

    2011-01-01

    Dysregulation of insulin action is most often considered in the context of impaired glucose homeostasis, with the defining feature of diabetes mellitus being elevated blood glucose concentration. Complications arising from the hyperglycemia accompanying frank diabetes are well known and epidemiological studies point to higher risk toward development of metabolic disease in persons with impaired glucose tolerance. Although the central role of proper blood sugar control in maintaining metabolic health is well established, recent developments have begun to shed light on associations between compromised insulin action [obesity, prediabetes, and type 2 diabetes mellitus (T2DM)] and altered intermediary metabolism of fats and amino acids. For amino acids, changes in blood concentrations of select essential amino acids and their derivatives, in particular BCAA, sulfur amino acids, tyrosine, and phenylalanine, are apparent with obesity and insulin resistance, often before the onset of clinically diagnosed T2DM. This review provides an overview of these changes and places recent observations from metabolomics research into the context of historical reports in the areas of biochemistry and nutritional biology. Based on this synthesis, a model is proposed that links the FFA-rich environment of obesity/insulin resistance and T2DM with diminution of BCAA catabolic enzyme activity, changes in methionine oxidation and cysteine/cystine generation, and tissue redox balance (NADH/NAD+). PMID:22332087

  19. Inhibition of Prenylation Promotes Caspase 3 Activation, Lamin B Degradation and Loss in Metabolic Cell Viability in Pancreatic β-Cells

    Directory of Open Access Journals (Sweden)

    Khadija G. Syeda

    2017-10-01

    Full Text Available Background/Aims: Lamins are intermediate filament proteins that constitute the main components of the lamina underlying the inner-nuclear membrane and serve to organize chromatin. Lamins (e.g., lamin B undergo posttranslational modifications (e.g., isoprenylation at their C-terminal cysteine residues. Such modifications are thought to render optimal association of lamins with the nuclear envelop. Using human islets, rodent islets, and INS-1 832/13 cells, we recently reported significant metabolic defects under glucotoxic and endoplasmic reticulum (ER stress conditions, including caspase 3 activation and lamin B degradation. The current study is aimed at further understanding the regulatory roles of protein prenylation in the induction of the aforestated metabolic defects. Methods: Subcellular phase partitioning assay was done using Triton X-114. Cell morphology and metabolic cell viability assays were carried out using standard methodologies. Results: We report that exposure of pancreatic β-cells to Simvastatin, an inhibitor of mevalonic acid (MVA biosynthesis, and its downstream isoprenoid derivatives, or FTI-277, an inhibitor of farnesyltransferase that mediates farnesylation of lamins, leads to activation of caspase 3 and lamin B degradation. Furthermore, Simvastatin-treatment increased activation of p38MAPK (a stress kinase and inhibited ERK1/2 (regulator of cell proliferation. Inhibition of farnesylation also resulted in the release of degraded lamin B into the cytosolic fraction and promoted loss in metabolic cell viability. Conclusion: Based on these findings we conclude that protein prenylation plays key roles in islet β-cell function. These findings affirm further support to the hypothesis that defects in prenylation pathway induce caspase-3 activation and nuclear lamin degradation in pancreatic β-cells under the duress of metabolic stress (e.g., glucotoxicity.

  20. Racial difference in serum Vitamin B12 levels

    International Nuclear Information System (INIS)

    Kwee, H.G.; Bowman, H.S.; Wells, L.W.

    1985-01-01

    Measurements of the serum Vitamin B 12 concentrations of 49 black and 49 white healthy adults demonstrate a significantly higher mean serum Vitamin B 12 level in blacks when compared to whites. The reason for this difference appears to be genetic, although environmental factors may also be involved. It is suggested that clinical laboratories should establish their own separate reference values of serum Vitamin B 12 for blacks and whites in order to prevent misinterpretation of test results

  1. Effects of lanthanum(III) on nitrogen metabolism of soybean seedlings under elevated UV-B radiation.

    Science.gov (United States)

    Cao, Rui; Huang, Xiao-hua; Zhou, Qing; Cheng, Xiao-ying

    2007-01-01

    The hydroponic culture experiments of soybean bean seedlings were conducted to investigate the effect of lanthanum (La) on nitrogen metabolism under two different levels of elevated UV-B radiation (UV-B, 280-320 nm). The whole process of nitrogen metabolism involves uptake and transport of nitrate, nitrate assimilation, ammonium assimilation, amino acid biosynthesis, and protein synthesis. Compared with the control, UV-B radiation with the intensity of low level 0.15 W/m2 and high level 0.45 W/m2 significantly affected the whole nitrogen metabolism in soybean seedlings (p nitrogen-metabolism-related enzymes, such as: nitrate reductase (NR) to the nitrate reduction, glutamine systhetase (GS) and glutamine synthase (GOGAT) to the ammonia assimilation, while it increased the content of free amino acids and decreased that of soluble protein as well. The damage effect of high level of UV-B radiation on nitrogen metabolism was greater than that of low level. And UV-B radiation promoted the activity of the anti-adversity enzyme glutamate dehydrogenase (GDH), which reduced the toxicity of excess ammonia in plant. After pretreatment with the optimum concentration of La (20 mg/L), La could increase the activity of NR, GS, GOGAT, and GDH, and ammonia assimilation, but decrease nitrate and ammonia accumulation. In conclusion, La could relieve the damage effect of UV-B radiation on plant by regulating nitrogen metabolism process, and its alleviating effect under low level was better than that under the high one.

  2. Genetic and non-genetic influences during pregnancy on infant global and site specific DNA methylation: role for folate gene variants and vitamin B12.

    Directory of Open Access Journals (Sweden)

    Jill A McKay

    Full Text Available Inter-individual variation in patterns of DNA methylation at birth can be explained by the influence of environmental, genetic and stochastic factors. This study investigates the genetic and non-genetic determinants of variation in DNA methylation in human infants. Given its central role in provision of methyl groups for DNA methylation, this study focuses on aspects of folate metabolism. Global (LUMA and gene specific (IGF2, ZNT5, IGFBP3 DNA methylation were quantified in 430 infants by Pyrosequencing®. Seven polymorphisms in 6 genes (MTHFR, MTRR, FOLH1, CβS, RFC1, SHMT involved in folate absorption and metabolism were analysed in DNA from both infants and mothers. Red blood cell folate and serum vitamin B(12 concentrations were measured as indices of vitamin status. Relationships between DNA methylation patterns and several covariates viz. sex, gestation length, maternal and infant red cell folate, maternal and infant serum vitamin B(12, maternal age, smoking and genotype were tested. Length of gestation correlated positively with IGF2 methylation (rho = 0.11, p = 0.032 and inversely with ZNT5 methylation (rho = -0.13, p = 0.017. Methylation of the IGFBP3 locus correlated inversely with infant vitamin B(12 concentration (rho = -0.16, p = 0.007, whilst global DNA methylation correlated inversely with maternal vitamin B(12 concentrations (rho = 0.18, p = 0.044. Analysis of common genetic variants in folate pathway genes highlighted several associations including infant MTRR 66G>A genotype with DNA methylation (χ(2 = 8.82, p = 0.003 and maternal MTHFR 677C>T genotype with IGF2 methylation (χ(2 = 2.77, p = 0.006. These data support the hypothesis that both environmental and genetic factors involved in one-carbon metabolism influence DNA methylation in infants. Specifically, the findings highlight the importance of vitamin B(12 status, infant MTRR genotype and maternal MTHFR genotype, all of which may influence the supply of methyl groups for

  3. Interactive effects of UV-B irradiation and triadimefon on nodulation and nitrogen metabolism in Vigna radiata plants

    International Nuclear Information System (INIS)

    Rajendiran, K.; Ramanujam, M.P.

    2006-01-01

    Supply of aqueous solution of triadimefon (20 mg/cubic dm) to unstressed green gram plants increased the contents of soluble proteins, amino acids, nitrate and nitrite, and the activity of nitrate reductase in the leaves and nitrate reductase in nodules. The nitrogenase activity in nodules and roots was also increased. Number and fresh mass of nodules and their nitrate and nitrite contents were also higher than those of the controls. In contrast, the UV-B stress (12.2 kJ/square m/d) suppressed nodulation and nitrogen metabolism in leaves and roots in comparison with plants under natural UV-B (10 kJ/square m/d). Triadimefon-treated plants did not show such severe inhibitions after exposure to elevated UV-B. Thus, triadimefon increased their tolerance to UV-B stress

  4. Glucose and oxygen metabolism after penetrating ballistic-like brain injury

    Science.gov (United States)

    Gajavelli, Shyam; Kentaro, Shimoda; Diaz, Julio; Yokobori, Shoji; Spurlock, Markus; Diaz, Daniel; Jackson, Clayton; Wick, Alexandra; Zhao, Weizhao; Leung, Lai Y; Shear, Deborah; Tortella, Frank; Bullock, M Ross

    2015-01-01

    Traumatic brain injury (TBI) is a major cause of death and disability in all age groups. Among TBI, penetrating traumatic brain injuries (PTBI) have the worst prognosis and represent the leading cause of TBI-related morbidity and death. However, there are no specific drugs/interventions due to unclear pathophysiology. To gain insights we looked at cerebral metabolism in a PTBI rat model: penetrating ballistic-like brain injury (PBBI). Early after injury, regional cerebral oxygen tension and consumption significantly decreased in the ipsilateral cortex in the PBBI group compared with the control group. At the same time point, glucose uptake was significantly reduced globally in the PBBI group compared with the control group. Examination of Fluorojade B-stained brain sections at 24 hours after PBBI revealed an incomplete overlap of metabolic impairment and neurodegeneration. As expected, the injury core had the most severe metabolic impairment and highest neurodegeneration. However, in the peri-lesional area, despite similar metabolic impairment, there was lesser neurodegeneration. Given our findings, the data suggest the presence of two distinct zones of primary injury, of which only one recovers. We anticipate the peri-lesional area encompassing the PBBI ischemic penumbra, could be salvaged by acute therapies. PMID:25669903

  5. Vitamin B 12 absorption: correction of intestinal retention by whole-body profile activity of vitamin B 12-58 cobalt and by double tracer technique

    International Nuclear Information System (INIS)

    Goncalves, M.R. Bencke; Gheldof, R.; Paternot, L. van Tricht; Delmotte, E.; Verschaeren, A.; Martin, P.; Verhas, M.; Universidade Federal, Rio de Janeiro, RJ

    1997-01-01

    Full text. Intestinal retention could give false negative results in determining the whole-body retention of vitamin B 12 absorption (WBC B12-58Co). After having validate the WBC B12-58Co, taking the Schilling test as reference, we have studied the feasibility to evaluate the intestinal contamination by measurement of the profile activity distribution of vitamin B12-58Co and by a double tracer technique (WBC B12-58Co/ WBC 51 Cr Cl3). Methodology: twenty five patients were studied for the setting up of the new methodology. For eleven of them the WBC B12-58 Co retention was measured at the 7th day after the oral administration of 37KBq of B12-58Co using a four detectors whole body counter. One week later, a Schilling test was performed after the oral absorption of 18,5 KBq B12-57Co. Results were expressed as %ID. In these patients, one single peak of hepatic activity was observed on the whole body profile and thus no further intestinal correction was needed. In order to evaluate the intestinal contribution, we made in nine other patients the profile of the whole body distribution of activity at 1 h, 1 week and two weeks after the oral administration of B12-58Co. For five other patients a double tracer technique was used for intestinal correction after the simultaneous oral administration of 37 KBq of B12-58Co and 1,85 MBq of 51 Cr Cl3. The B12-58Co absorption was evaluated after intestinal correction based on subtraction of the 51Cr Cl3 contribution after the formula: B12-58Co(%ID) = WBC B12-58Co - WBC 51 Cr Cl3/1 - WBC 51 Cr Cl3. Results: the correlation with the Schilling test was found excellent: r=0,94 (n=11). The normality for WBC retention (n=7) was define as 53,2 +-12,4% ID (SD). For nine patients studied at the 7th day, the presence of a double peak (hepatic and intestinal peaks) allowed the subtraction by exponential extrapolation; the correction range was 4,4% to 37,2%. With the exception of one observation there was no difference in the measure of vitamin

  6. High sucrose consumption induces memory impairment in rats associated with electrophysiological modifications but not with metabolic changes in the hippocampus.

    Science.gov (United States)

    Lemos, C; Rial, D; Gonçalves, F Q; Pires, J; Silva, H B; Matheus, F C; da Silva, A C; Marques, J M; Rodrigues, R J; Jarak, I; Prediger, R D; Reis, F; Carvalho, R A; Pereira, F C; Cunha, R A

    2016-02-19

    High sugar consumption is a risk factor for metabolic disturbances leading to memory impairment. Thus, rats subject to high sucrose intake (HSu) develop a metabolic syndrome and display memory deficits. We now investigated if these HSu-induced memory deficits were associated with metabolic and electrophysiological alterations in the hippocampus. Male Wistar rats were submitted for 9 weeks to a sucrose-rich diet (35% sucrose solution) and subsequently to a battery of behavioral tests; after sacrifice, their hippocampi were collected for ex vivo high-resolution magic angle spinning (HRMAS) metabolic characterization and electrophysiological extracellular recordings in slices. HSu rats displayed a decreased memory performance (object displacement and novel object recognition tasks) and helpless behavior (forced swimming test), without altered locomotion (open field). HRMAS analysis indicated a similar hippocampal metabolic profile of HSu and control rats. HSu rats also displayed no change of synaptic transmission and plasticity (long-term potentiation) in hippocampal Schaffer fibers-CA1 pyramid synapses, but had decreased amplitude of long-term depression in the temporoammonic (TA) pathway. Furthermore, HSu rats had an increased density of inhibitory adenosine A1 receptors (A1R), that translated into a greater potency of A1R in Schaffer fiber synapses, but not in the TA pathway, whereas the endogenous activation of A1R in HSu rats was preserved in the TA pathway but abolished in Schaffer fiber synapses. These results suggest that HSu triggers a hippocampal-dependent memory impairment that is not associated with altered hippocampal metabolism but is probably related to modified synaptic plasticity in hippocampal TA synapses. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. C30F12.4 influences oogenesis, fat metabolism, and lifespan in C. elegans

    Directory of Open Access Journals (Sweden)

    Lu Wang

    2016-09-01

    Full Text Available ABSTRACT Reproduction, fat metabolism, and longevity are intertwined regulatory axes; recent studies in C. elegans have provided evidence that these processes are directly coupled. However, the mechanisms by which they are coupled and the reproductive signals modulating fat metabolism and lifespan are poorly understood. Here, we find that an oogenesis-enriched gene, c30f12.4, is specifically expressed and located in germ cells and early embryos; when the gene is knocked out, oogenesis is disrupted and brood size is decreased. In addition to the reproductive phenotype, we find that the loss of c30f12.4 alters fat metabolism, resulting in decreased fat storage and smaller lipid droplets. Meanwhile, c30f12.4 mutant worms display a shortened lifespan. Our results highlight an important role for c30f12.4 in regulating reproduction, fat homeostasis, and aging in C. elegans, which helps us to better understand the relationship between these processes.

  8. Evaluation of visual impairment in Usher syndrome 1b and Usher syndrome 2a.

    NARCIS (Netherlands)

    Pennings, R.J.E.; Huygen, P.L.M.; Orten, D.J.; Wagenaar, M.; Aarem, A. van; Kremer, J.M.J.; Kimberling, W.J.; Cremers, C.W.R.J.; Deutman, A.F.

    2004-01-01

    PURPOSE: To evaluate visual impairment in Usher syndrome 1b (USH1b) and Usher syndrome 2a (USH2a). METHODS: We carried out a retrospective study of 19 USH1b patients and 40 USH2a patients. Cross-sectional regression analyses of the functional acuity score (FAS), functional field score (FFS) and

  9. Relative Handgrip Strength Is Inversely Associated with Metabolic Profile and Metabolic Disease in the General Population in China.

    Science.gov (United States)

    Li, Dongxue; Guo, Guanghong; Xia, Lili; Yang, Xinghua; Zhang, Biao; Liu, Feng; Ma, Jingang; Hu, Zhiping; Li, Yajun; Li, Wei; Jiang, Jiajia; Gaisano, Herbert; Shan, Guangliang; He, Yan

    2018-01-01

    Background: Absolute handgrip strength has been correlated with metabolic profile and metabolic disease. Whether relative handgrip strength is also associated with metabolic disease has not been assessed. This study aimed at assessing the association of relative handgrip strength with metabolic profile and metabolic disease in the general population in China. Methods: Data were derived from an ongoing cross-sectional survey of the 2013 National Physical and Health in Shanxi Province, which involved 5520 participants. Multiple linear regression or multiple logistic regression analysis were used to assess the association of absolute/relative handgrip strength with the metabolic profile, preclinical, and established stages of metabolic diseases. Results: This study revealed that relative handgrip strength, that is when normalized to BMI, was associated with: (1) in both genders for more favorable blood lipid levels of high-density lipoprotein cholesterol [males: b = 0.19 (0.15, 0.23); females: b = 0.22 (0.17, 0.28)], low-density lipoprotein cholesterol [males: b = -0.14 (-0.23, -0.05); females: b = -0.19 (-0.31, -0.18)], triglycerides [males: b = -0.58 (-0.74, -0.43); females: b = -0.55 (-0.74, -0.36)] and total cholesterol [males: b = -0.20 (-0.31, -0.10); females: b = -0.19 (-0.32, -0.06)]; and better serum glucose levels in males [ b = -0.30 (-0.46, -0.15)]. (2) lower risk of impaired fasting glucose in males {third quartile [OR = 0.66 (0.45-0.95)] and fourth quartile [OR = 0.46 (0.30-0.71)] vs. first quartile} and dyslipidemia in both genders {third quartile [males: OR = 0.65 (0.48-0.87); females: OR = 0.68 (0.53-0.86)] and fourth quartile [males: OR = 0.47 (0.35-0.64); females: OR = 0.47(0.36-0.61)] vs. first quartile}. (3) lower risk of hyperlipidemia in both genders third quartile [males: OR = 0.66 (0.50-0.87); females: OR = 0.57 (0.43-0.75)] and fourth quartile [males: OR = 0.35 (0.26-0.47); females: OR = 0.51 (0.38-0.70)] vs. first quartile. However, contrary

  10. Mass-producing B mesons

    Energy Technology Data Exchange (ETDEWEB)

    Aleksan, Roy; Ali, Ahmed

    1993-06-15

    Since the discovery of the upsilon resonances in 1977 the physics of the fifth quark - beauty - has played a vital role in establishing and consolidating today's Standard Model of particle physics. In recent years, a wealth of data on B particle (containing the beauty quark) has emerged from the detectors ARGUS (at the DORIS ring, DESY, Hamburg) and CLEO (at the Cornell CESR ring) as well as from CERN's LEP electron-positron collider and the proton-antiproton colliders at CERN and Fermilab. But the most challenging goal of this physics is to explore the mystery of CP violation, so far only seen in neutral kaon decays. This subtle mechanism - a disregard for the combined symmetry of particle antiparticle switching and left-right reflection - possibly moulded the evolution of the Universe after the Big Bang, providing a world dominated by matter, rather than one where matter and antimatter play comparable roles. To fully explore CP violation in the laboratory needs a dedicated machine - a particle 'factory' - to mass produce B mesons. Only when this full picture of CP violation has been revealed will physicists finally be able to solve its mysteries. As well as major proposals in the US and Japan, several ideas have been launched in Europe. Over the years, many working groups have accumulated an impressive amount of data and knowledge on the physics as well as on the machine and detectors. The spearheads of experimental B physics are the ARGUS and CLEO collaborations. Highlights include the determination of the parameters of the (Cabibbo-Kobayashi-Maskawa, CKM) quark mixing matrix, testing the consistency of the Standard Model with six quarks and three leptons, and giving the first indirect hint that the as yet unseen sixth ('top') quark is very heavy, together with initial indications of how it should decay. Valuable complementary information has come from proton-antiproton collider data and particularly from the LEP experiments at the Z resonance. Experiments at

  11. Mass-producing B mesons

    International Nuclear Information System (INIS)

    Aleksan, Roy; Ali, Ahmed

    1993-01-01

    Since the discovery of the upsilon resonances in 1977 the physics of the fifth quark - beauty - has played a vital role in establishing and consolidating today's Standard Model of particle physics. In recent years, a wealth of data on B particle (containing the beauty quark) has emerged from the detectors ARGUS (at the DORIS ring, DESY, Hamburg) and CLEO (at the Cornell CESR ring) as well as from CERN's LEP electron-positron collider and the proton-antiproton colliders at CERN and Fermilab. But the most challenging goal of this physics is to explore the mystery of CP violation, so far only seen in neutral kaon decays. This subtle mechanism - a disregard for the combined symmetry of particle antiparticle switching and left-right reflection - possibly moulded the evolution of the Universe after the Big Bang, providing a world dominated by matter, rather than one where matter and antimatter play comparable roles. To fully explore CP violation in the laboratory needs a dedicated machine - a particle 'factory' - to mass produce B mesons. Only when this full picture of CP violation has been revealed will physicists finally be able to solve its mysteries. As well as major proposals in the US and Japan, several ideas have been launched in Europe. Over the years, many working groups have accumulated an impressive amount of data and knowledge on the physics as well as on the machine and detectors. The spearheads of experimental B physics are the ARGUS and CLEO collaborations. Highlights include the determination of the parameters of the (Cabibbo-Kobayashi-Maskawa, CKM) quark mixing matrix, testing the consistency of the Standard Model with six quarks and three leptons, and giving the first indirect hint that the as yet unseen sixth ('top') quark is very heavy, together with initial indications of how it should decay. Valuable complementary information has come from proton-antiproton collider data and particularly from the LEP experiments at the

  12. Nonradiative transitions in the media of different polarity and their simulation for 12'-apo-b-caroten-12'-al and 8'-apo-b-caroten-8'-al

    International Nuclear Information System (INIS)

    Pavlovich, V.S.

    2014-01-01

    The theory of nonradiative transitions based on the model of orientation broadening of electronic levels has been used to interpret known data on the medium polarity and temperature effect on the S 1 (A g - ) state lifetime of 12'-apo-b-caroten-12'-al and 8'-apo-b-caroten-8'-al. The effect of promotion vibrations on the rate constant of the nonradiative transitions has been considered. The results allow assuming that the internal electric field produced by the environment heavily perturbs molecules of the pigments. In consequence of this, at both pigments in the excited S 1 (A g - ) state exist in the form of different conformers I and II. Their structure differs by 180° turn of the cyclohexene ring relative to the polyene chain. Conformer II dominates in the polar media, and it is in the intramolecular charge transfer state S 1 (A g - /ICT). In addition, it can also be in the charge separated state S 1 (A g - /CS) due to the fluctuations of internal electric field. (authors)

  13. Investigation for preparation and production of radio-kit Vitamin B12 with med-grade (part 1)

    International Nuclear Information System (INIS)

    Ghafourian, H.; Mazaheri Tehrani, M.; Ezadyar, A.; Shams Rafiee, M.; Nazari, A.

    2005-01-01

    Labelled vitamins B 12 with 58 Co is one of the important ingredients of the diagnostic Kits for diagnosis of patients affected by anemia. The insufficient absorption of vitamin B 12 is one of the causes of anemia in humans and one of the accurate methods for measurement of the absorbed vitamin B 12 is application of labelled vitamin B 12 with the cobalt-58 radioisotope.The isolation and purifications of the labelled vitamin B 12 from fermentation medium of streptomyces olivaceus is an essential process for kit preparation. The first experiment in this research was isolation and purification of B 12 using different resins with the solution of cyanocobalamin containing cobalt-59, produced by this bacterium. After investigation and pre-feasibility experiments two non-polar resins XAD-4 and XAD-7 were selected. The results that obtained from different experiments on XAD-4 and XAD-7 showed that XAD-4 is much better than the latter one due to immobilization of cobalamin. The isolation of vitamin B1 2 on XAD-4 column was achieved by different solvents such as methanol, ethanol and isopropanol in different concentration ratios. The results of Thin Layer Chromatography showed that the best eluant solutions for desorbtion of cobalamin from XAD-4 column are solvents such as methanol,ethanol and isopropanol with the maximum concentration of vitamin B 12 in the concentration ranges of 25 up to 50 per-cent, 30 up to 40 per-cent and 10 per-cent, respectively. Cobalamin was collected in aceton and crystallized in low temperature

  14. Radiation Changes the Metabolic Profiling of Melanoma Cell Line B16.

    Directory of Open Access Journals (Sweden)

    Lige Wu

    Full Text Available Radiation therapy can be an effective way to kill cancer cells using ionizing radiation, but some tumors are resistant to radiation therapy and the underlying mechanism still remains elusive. It is therefore necessary to establish an appropriate working model to study and monitor radiation-mediated cancer therapy. In response to cellular stress, the metabolome is the integrated profiling of changes in all metabolites in cells, which can be used to investigate radiation tolerance mechanisms and identify targets for cancer radiation sensibilization. In this study, using 1H nuclear magnetic resonance for untargeted metabolic profiling in radiation-tolerant mouse melanoma cell line B16, we comprehensively investigated changes in metabolites and metabolic network in B16 cells in response to radiation. Principal component analysis and partial least squares discriminant analysis indicated the difference in cellular metabolites between the untreated cells and X-ray radiated cells. In radiated cells, the content of alanine, glutamate, glycine and choline was increased, while the content of leucine, lactate, creatine and creatine phosphate was decreased. Enrichment analysis of metabolic pathway showed that the changes in metabolites were related to multiple metabolic pathways including the metabolism of glycine, arginine, taurine, glycolysis, and gluconeogenesis. Taken together, with cellular metabolome study followed by bioinformatic analysis to profile specific metabolic pathways in response to radiation, we deepened our understanding of radiation-resistant mechanisms and radiation sensibilization in cancer, which may further provide a theoretical and practical basis for personalized cancer therapy.

  15. Impaired B cell development in the absence of Krüppel-like factor 3.

    Science.gov (United States)

    Vu, Thi Thanh; Gatto, Dominique; Turner, Vivian; Funnell, Alister P W; Mak, Ka Sin; Norton, Laura J; Kaplan, Warren; Cowley, Mark J; Agenès, Fabien; Kirberg, Jörg; Brink, Robert; Pearson, Richard C M; Crossley, Merlin

    2011-11-15

    Krüppel-like factor 3 (Klf3) is a member of the Klf family of transcription factors. Klfs are widely expressed and have diverse roles in development and differentiation. In this study, we examine the function of Klf3 in B cell development by studying B lymphopoiesis in a Klf3 knockout mouse model. We show that B cell differentiation is significantly impaired in the bone marrow, spleen, and peritoneal cavity of Klf3 null mice and confirm that the defects are cell autonomous. In the bone marrow, there is a reduction in immature B cells, whereas recirculating mature cells are noticeably increased. Immunohistology of the spleen reveals a poorly structured marginal zone (MZ) that may in part be caused by deregulation of adhesion molecules on MZ B cells. In the peritoneal cavity, there are significant defects in B1 B cell development. We also report that the loss of Klf3 in MZ B cells is associated with reduced BCR signaling strength and an impaired ability to respond to LPS stimulation. Finally, we show increased expression of a number of Klf genes in Klf3 null B cells, suggesting that a Klf regulatory network may exist in B cells.

  16. Bipolaron formation in B/sub 12/ and (B/sub 11/C)/sup +/ icosahedra

    International Nuclear Information System (INIS)

    Howard, I.A.; Beckel, C.L.; Emin, D.

    1987-01-01

    Boron carbides, B/sub 1-x/C/sub x/ with 0.085 ≤ x ≤ 0.200, generally contain both B/sub 12/ and B/sub 11/C icosahedra. However, the electronic transport with 0.1 ≤ x ≤ 0.2 is believed to occur by means of bipolaron hopping between only B/sub 11/C icosahedra. The authors have calculated the changes in energy, atomic positions and charge distribution when a pair of electrons is added to the isoelectronic icosahedral clusters B/sub 12/ and (B/sub 11/C)/sup +/. They simulate an icosahedron in a neutral lattice by bonding the icosahedral atoms to hydrogenic atoms which the authors constrain to be neutral. The computations are performed with a self-consistent molecular-orbital method, PRDDO. They find a total energy reduction of -- 3.7 eV for two electrons added to a B/sub 12/ icosahedron. Of this, -- 2.7 eV arises from the electrons filling the icosahedron's bonding orbitals. The remaining -- 1.0 eV comes from the contraction of the icosahedron's radius by -- 0.09 A. For two electrons added to a (B/sub 11/C)/sup +/ icosahedron the authors find a total energy reduction of -- 18.2 eV. Of this, -- 16.5 eV arises from filling the icosahedron's bonding orbitals. The remainder arises from a -- 0.09 A contraction of the icosahedron's radius. Thus, the authors find (B/sub 11/C)/sup +/ icosahedra to be strongly energetically favored over B/sub 12/ icosahedra as bipolaron sites. The positive charge associated with a (B/sub 11/C)/sup +/ icosahedron is distributed over the eleven boron atoms. Concomitantly, they find the added two electrons of the bipolaron to be distributed over all twelve sites of the B/sub 11/C icosahedron. They find the energy difference between an electron pair added to B/sub 12/ and (B/sub 11/C)/sup +/ icosahedra to arise principally from the increased Coulombic attraction provided by the extra positive charge of the (B/sub 11/C)/sup +/ icosahedron

  17. EFICIENTIZAREA OBŢINERII SEDIMENTELOR FURAJERE B12 -VITAMINIZATE DIN APE REZIDUALE AGROINDUSTRIALE: 2. MODIFICĂRI ALE UTILAJULUI

    Directory of Open Access Journals (Sweden)

    Victor COVALIOV

    2017-03-01

    Full Text Available Prin modificări constructive ale dispozitivelor bioreactorului şi soluţii noi: separarea zonelor acetogenă şi meta­no­genă în interiorul bioreactorului, recircularea CO2 şi suplimentarea acestuia cu H2 exogen, adsorbţia vitaminei B12 din lichidul postfermentare cu diatomită s-a obţinut ridicarea conţinutului de vitamina B12 în sedimentele epurării fermentativ–metanogene (anaerobe a borhotului postalcoolic până la calitatea de con­centrat furajer B12-vitaminizat, concomitent cu intensificarea producerii biometanului, ca elemente ale ridicării eficienţei ecologo-economice a epurării anaerobe a borhotului.MORE EFFICIENT PRODUCITON OF VITAMINIZED FORAGE SLUDGE CONTAINING B12 FROM AGRO-INDUSTRIAL WASTES: 2. EQUIPMENT MODIFICAITON The increase in vitamin B12 contents in the sludge was obtained resulted from the methanogenic (anaerobic digestion of post-distillery vinasse, through the design modifications of bioreactor interiour, CO2 re-circulation and its interaction with additionally dosed exogenic hydrogen. Vitamin B12 was further adsorbed on diatomite surface from the post-digestion liquid, which made it possible to produce the cattle forage concentrate enriched with vitamin B12. At the same time, biomethane production was intensified, being the element of ecologically-economic efficiency of anaerobic treatment of vinasse (agro-industrial waste.

  18. Inflammatory cause of metabolic syndrome via brain stress and NF-κB

    Science.gov (United States)

    Cai, Dongsheng; Liu, Tiewen

    2012-01-01

    Metabolic syndrome, a network of medical disorders that greatly increase the risk for developing metabolic and cardiovascular diseases, has reached epidemic levels in many areas of today's world. Despite this alarming medicare situation, scientific understandings on the root mechanisms of metabolic syndrome are still limited, and such insufficient knowledge contributes to the relative lack of effective treatments or preventions for related diseases. Recent interdisciplinary studies from neuroendocrinology and neuroimmunology fields have revealed that overnutrition can trigger intracellular stresses to cause inflammatory changes mediated by molecules that control innate immunity. This type of nutrition-related molecular inflammation in the central nervous system, particularly in the hypothalamus, can form a common pathogenic basis for the induction of various metabolic syndrome components such as obesity, insulin resistance, and hypertension. Proinflammatory NF-κB pathway has been revealed as a key molecular system for pathologic induction of brain inflammation, which translates overnutrition and resulting intracellular stresses into central neuroendocrine and neural dysregulations of energy, glucose, and cardiovascular homeostasis, collectively leading to metabolic syndrome. This article reviews recent research advances in the neural mechanisms of metabolic syndrome and related diseases from the perspective of pathogenic induction by intracellular stresses and NF-κB pathway of the brain. PMID:22328600

  19. Vitamin B12 absorption judged by measurement of holotranscobalamin, active vitamin B12: evaluation of a commercially available EIA kit.

    Science.gov (United States)

    Greibe, Eva; Nexo, Ebba

    2011-11-01

    Active vitamin B12 absorption is followed by an increase in holotranscobalamin (holoTC) upon loading with a high physiological dose of the vitamin (the CobaSorb test). This study evaluates the use of a newly launched EIA kit for measurement of holoTC (active B12) in relation to the CobaSorb test. Intra-assay imprecision and linearity of the EIA kit was examined, employing serum pools of increasing holoTC concentrations. For the CobaSorb test, holoTC was measured before and after loading with 3-times 9 μg of vitamin B12 employing both the in-house ELISA and the EIA kit (n=25). The EIA kit showed an intra-assay CV between 2.2% and 5.8% for holoTC values ranging from 21 to 80 pmol/L. Employing diluted serum samples resulted in spurious high values of holoTC. The EIA kit performed well in relation to the CobaSorb test and classified the patients studied as capable of absorbing vitamin B12 (n=10) or not (n=15), as did the in-house ELISA. The Active B12 (holoTC) EIA kit proved suitable for use with the CobaSorb test, but not for analysis of diluted serum samples.

  20. Expression of genes involved in lipid metabolism in men with impaired glucose tolerance : impact of insulin stimulation and weight loss

    NARCIS (Netherlands)

    Konings, E.; Corpeleijn, E.; Bouwman, F.G.; Mariman, E.C.; Blaak, E.E.

    2010-01-01

    Background: The impaired glucose tolerance (IGT) state is characterized by insulin resistance. Disturbances in fatty acid (FA) metabolism may underlie this reduced insulin sensitivity. The aim of this study was to investigate whether the prediabetic state is accompanied by changes in the expression

  1. The 380 kb pCMU01 plasmid encodes chloromethane utilization genes and redundant genes for vitamin B12- and tetrahydrofolate-dependent chloromethane metabolism in Methylobacterium extorquens CM4: a proteomic and bioinformatics study.

    Directory of Open Access Journals (Sweden)

    Sandro Roselli

    Full Text Available Chloromethane (CH3Cl is the most abundant volatile halocarbon in the atmosphere and contributes to the destruction of stratospheric ozone. The only known pathway for bacterial chloromethane utilization (cmu was characterized in Methylobacterium extorquens CM4, a methylotrophic bacterium able to utilize compounds without carbon-carbon bonds such as methanol and chloromethane as the sole carbon source for growth. Previous work demonstrated that tetrahydrofolate and vitamin B12 are essential cofactors of cmuA- and cmuB-encoded methyltransferases of chloromethane dehalogenase, and that the pathway for chloromethane utilization is distinct from that for methanol. This work reports genomic and proteomic data demonstrating that cognate cmu genes are located on the 380 kb pCMU01 plasmid, which drives the previously defined pathway for tetrahydrofolate-mediated chloromethane dehalogenation. Comparison of complete genome sequences of strain CM4 and that of four other M. extorquens strains unable to grow with chloromethane showed that plasmid pCMU01 harbors unique genes without homologs in the compared genomes (bluB2, btuB, cobA, cbiD, as well as 13 duplicated genes with homologs of chromosome-borne genes involved in vitamin B12-associated biosynthesis and transport, or in tetrahydrofolate-dependent metabolism (folC2. In addition, the presence of both chromosomal and plasmid-borne genes for corrinoid salvaging pathways may ensure corrinoid coenzyme supply in challenging environments. Proteomes of M. extorquens CM4 grown with one-carbon substrates chloromethane and methanol were compared. Of the 49 proteins with differential abundance identified, only five (CmuA, CmuB, PurU, CobH2 and a PaaE-like uncharacterized putative oxidoreductase are encoded by the pCMU01 plasmid. The mainly chromosome-encoded response to chloromethane involves gene clusters associated with oxidative stress, production of reducing equivalents (PntAA, Nuo complex, conversion of

  2. Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer's disease: a PET follow-up study

    Energy Technology Data Exchange (ETDEWEB)

    Drzezga, Alexander; Willoch, Frode; Schwaiger, Markus [Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675, Muenchen (Germany); Lautenschlager, Nicola; Riemenschneider, Matthias; Kurz, Alexander [Department of Psychiatry and Psychotherapy, Technische Universitaet Muenchen, Muenchen (Germany); Siebner, Hartwig [Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, London (United Kingdom); Minoshima, Satoshi [Department of Radiology, University of Washington, Seattle, WA (United States)

    2003-08-01

    A high percentage of patients with mild cognitive impairment (MCI) develop clinical dementia of the Alzheimer type (AD) within 1 year. The aim of this longitudinal study was to identify characteristic patterns of cerebral metabolism at baseline in patients converting from MCI to AD, and to evaluate the changes in these patterns over time. Baseline and follow-up examinations after 1 year were performed in 22 MCI patients (12 males, 10 females, aged 69.8{+-}5.8 years); these examinations included neuropsychological testing, structural cranial magnetic resonance imaging and fluorine-18 fluorodeoxyglucose positron emission tomography (PET) evaluation of relative cerebral glucose metabolic rate (rCMRglc). Individual PET scans were stereotactically normalised with NEUROSTAT software (Univ. of Michigan, Ann Arbor, USA). Subsequently, statistical comparison of PET data with an age-matched healthy control population and between patient subgroups was performed using SPM 99 (Wellcome Dept. of Neuroimaging Sciences, London, UK). After 1 year, eight patients (36%) had developed probable AD (referred to as MCI{sub AD}), whereas 12 (55%) were still classified as having stable MCI (referred to as MCI{sub MCI}). Compared with the healthy control group, a reduced rCMRglc in AD-typical regions, including the temporoparietal and posterior cingulate cortex, was detected at baseline in patients with MCI{sub AD}. Abnormalities in the posterior cingulate cortex reached significance even in comparison with the MCI{sub MCI} group. After 1 year, MCI{sub AD} patients demonstrated an additional bilateral reduction of rCMRglc in prefrontal areas, along with a further progression of the abnormalities in the parietal and posterior cingulate cortex. No such changes were observed in the MCI{sub MCI} group. In patients with MCI, characteristic cerebral metabolic differences can be delineated at the time of initial presentation, which helps to define prognostic subgroups. A newly emerging reduction

  3. Scaffold Attachment Factor B1: A Novel Chromatin Regulator of Prostate Cancer Metabolism

    Science.gov (United States)

    2016-10-01

    AWARD NUMBER: W81XWH-14-1-0152 TITLE: Scaffold Attachment Factor B1: A Novel Chromatin Regulator of Prostate Cancer Metabolism PRINCIPAL...TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-14-1-0152 Scaffold Attachment Factor B1: A Novel Chromatin Regulator of Prostate Cancer Metabolism... chromatin immunoprecipitation-next generation DNA sequencing (ChIP-seq) and integrative network modeling to identify the SAFB1 cistrome and the extent of

  4. Combination of soya pulp and Bacillus coagulans lilac-01 improves intestinal bile acid metabolism without impairing the effects of prebiotics in rats fed a cholic acid-supplemented diet.

    Science.gov (United States)

    Lee, Yeonmi; Yoshitsugu, Reika; Kikuchi, Keidai; Joe, Ga-Hyun; Tsuji, Misaki; Nose, Takuma; Shimizu, Hidehisa; Hara, Hiroshi; Minamida, Kimiko; Miwa, Kazunori; Ishizuka, Satoshi

    2016-08-01

    Intestinal bacteria are involved in bile acid (BA) deconjugation and/or dehydroxylation and are responsible for the production of secondary BA. However, an increase in the production of secondary BA modulates the intestinal microbiota due to the bactericidal effects and promotes cancer risk in the liver and colon. The ingestion of Bacillus coagulans improves constipation via the activation of bowel movement to promote defaecation in humans, which may alter BA metabolism in the intestinal contents. BA secretion is promoted with high-fat diet consumption, and the ratio of cholic acid (CA):chenodeoxycholic acid in primary BA increases with ageing. The dietary supplementation of CA mimics the BA environment in diet-induced obesity and ageing. We investigated whether B. coagulans lilac-01 and soya pulp influence both BA metabolism and the maintenance of host health in CA-supplemented diet-fed rats. In CA-fed rats, soya pulp significantly increased the production of secondary BA such as deoxycholic acid and ω-muricholic acids, and soya pulp ingestion alleviated problems related to plasma adiponectin and gut permeability in rats fed the CA diet. The combination of B. coagulans and soya pulp successfully suppressed the increased production of secondary BA in CA-fed rats compared with soya pulp itself, without impairing the beneficial effects of soya pulp ingestion. In conclusion, it is possible that a combination of prebiotics and probiotics can be used to avoid an unnecessary increase in the production of secondary BA in the large intestine without impairing the beneficial functions of prebiotics.

  5. A hybrid approach identifies metabolic signatures of high-producers for chinese hamster ovary clone selection and process optimization.

    Science.gov (United States)

    Popp, Oliver; Müller, Dirk; Didzus, Katharina; Paul, Wolfgang; Lipsmeier, Florian; Kirchner, Florian; Niklas, Jens; Mauch, Klaus; Beaucamp, Nicola

    2016-09-01

    In-depth characterization of high-producer cell lines and bioprocesses is vital to ensure robust and consistent production of recombinant therapeutic proteins in high quantity and quality for clinical applications. This requires applying appropriate methods during bioprocess development to enable meaningful characterization of CHO clones and processes. Here, we present a novel hybrid approach for supporting comprehensive characterization of metabolic clone performance. The approach combines metabolite profiling with multivariate data analysis and fluxomics to enable a data-driven mechanistic analysis of key metabolic traits associated with desired cell phenotypes. We applied the methodology to quantify and compare metabolic performance in a set of 10 recombinant CHO-K1 producer clones and a host cell line. The comprehensive characterization enabled us to derive an extended set of clone performance criteria that not only captured growth and product formation, but also incorporated information on intracellular clone physiology and on metabolic changes during the process. These criteria served to establish a quantitative clone ranking and allowed us to identify metabolic differences between high-producing CHO-K1 clones yielding comparably high product titers. Through multivariate data analysis of the combined metabolite and flux data we uncovered common metabolic traits characteristic of high-producer clones in the screening setup. This included high intracellular rates of glutamine synthesis, low cysteine uptake, reduced excretion of aspartate and glutamate, and low intracellular degradation rates of branched-chain amino acids and of histidine. Finally, the above approach was integrated into a workflow that enables standardized high-content selection of CHO producer clones in a high-throughput fashion. In conclusion, the combination of quantitative metabolite profiling, multivariate data analysis, and mechanistic network model simulations can identify metabolic

  6. One-carbon metabolism, cognitive impairment and CSF measures of Alzheimer pathology: homocysteine and beyond.

    Science.gov (United States)

    Dayon, Loïc; Guiraud, Seu Ping; Corthésy, John; Da Silva, Laeticia; Migliavacca, Eugenia; Tautvydaitė, Domilė; Oikonomidi, Aikaterini; Moullet, Barbara; Henry, Hugues; Métairon, Sylviane; Marquis, Julien; Descombes, Patrick; Collino, Sebastiano; Martin, François-Pierre J; Montoliu, Ivan; Kussmann, Martin; Wojcik, Jérôme; Bowman, Gene L; Popp, Julius

    2017-06-17

    Hyperhomocysteinemia is a risk factor for cognitive decline and dementia, including Alzheimer disease (AD). Homocysteine (Hcy) is a sulfur-containing amino acid and metabolite of the methionine pathway. The interrelated methionine, purine, and thymidylate cycles constitute the one-carbon metabolism that plays a critical role in the synthesis of DNA, neurotransmitters, phospholipids, and myelin. In this study, we tested the hypothesis that one-carbon metabolites beyond Hcy are relevant to cognitive function and cerebrospinal fluid (CSF) measures of AD pathology in older adults. Cross-sectional analysis was performed on matched CSF and plasma collected from 120 older community-dwelling adults with (n = 72) or without (n = 48) cognitive impairment. Liquid chromatography-mass spectrometry was performed to quantify one-carbon metabolites and their cofactors. Least absolute shrinkage and selection operator (LASSO) regression was initially applied to clinical and biomarker measures that generate the highest diagnostic accuracy of a priori-defined cognitive impairment (Clinical Dementia Rating-based) and AD pathology (i.e., CSF tau phosphorylated at threonine 181 [p-tau181]/β-Amyloid 1-42 peptide chain [Aβ 1-42 ] >0.0779) to establish a reference benchmark. Two other LASSO-determined models were generated that included the one-carbon metabolites in CSF and then plasma. Correlations of CSF and plasma one-carbon metabolites with CSF amyloid and tau were explored. LASSO-determined models were stratified by apolipoprotein E (APOE) ε4 carrier status. The diagnostic accuracy of cognitive impairment for the reference model was 80.8% and included age, years of education, Aβ 1-42 , tau, and p-tau181. A model including CSF cystathionine, methionine, S-adenosyl-L-homocysteine (SAH), S-adenosylmethionine (SAM), serine, cysteine, and 5-methyltetrahydrofolate (5-MTHF) improved the diagnostic accuracy to 87.4%. A second model derived from plasma included cystathionine

  7. Individual cerebral metabolic deficits in Alzheimer's disease and amnestic mild cognitive impairment: an FDG PET study

    International Nuclear Information System (INIS)

    Del Sole, Angelo; Lecchi, Michela; Lucignani, Giovanni; Clerici, Francesca; Mariani, Claudio; Maggiore, Laura; Chiti, Arturo; Mosconi, Lisa

    2008-01-01

    The purpose of the study was the identification of group and individual subject patterns of cerebral glucose metabolism (CMRGlu) in patients with Alzheimer's disease (AD) and with amnestic mild cognitive impairment (aMCI). [ 18 F]fluorodeoxyglucose positron emission tomography (PET) studies and neuropsychological tests were performed in 16 aMCI patients (ten women, age 75 ± 8 years) and in 14 AD patients (ten women, age 75 ± 9 years). Comparisons between patient subgroups and with a control population were performed using Statistical Parametric Mapping. Clusters of low CMRGlu were observed bilaterally in the posterior cingulate cortex (PCC), in the precuneus, in the inferior parietal lobule and middle temporal gyrus of AD patients. In aMCI patients, reduced CMRGlu was found only in PCC. Areas of low CMRGlu in PCC were wider in AD compared to aMCI and extended to the precuneus, while low CMRGlu was found in the lateral parietal cortex in AD but not in aMCI patients. Individual subject pattern analysis revealed that 86% of AD patients had low CMRGlu in the PCC (including the precuneus in 71%), 71% in the temporal cortex, 64% in the parietal cortex and 35% in the frontal cortex. Among the aMCI patients, 56% had low CMRGlu in the PCC, 44% in the temporal cortex, 18% in the frontal cortex and none in the parietal cortex. This study demonstrates that both AD and aMCI patients have highly heterogeneous metabolic impairment. This potential of individual metabolic PET imaging in patients with AD and aMCI may allow timely identification of brain damage on individual basis and possibly help planning tailored early interventions. (orig.)

  8. Experiments with the High Resolution Kaon Spectrometer at Jlab Hall C and the New Spectroscopy of ^12_Lambda B Hypernuclei

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Liguang; Chen, Chunhua; Gogami, Toshiyuki; Kawama, Daisuke; Han, Yuncheng; Yuan, Lulin; Matsumura, Akihiko; Okayasu, Yuichi; Seva, Tomislav; Rodriguez, Victor; Baturin, Pavlo; Acha Quimper, Armando; Achenbach, Carsten; Ahmidouch, Abdellah; Albayrak, Ibrahim; Androic, Darko; Asaturyan, Arshak; Asaturyan, Razmik; Ates, Ozgur; Badui, Rafael; Baker, Oliver; Benmokhtar, Fatiha; Boeglin, Werner; Bono, Jason; Bosted, Peter; Brash, Edward; Carter, Philip; Carlini, Roger; Chiba, Atsushi; Christy, Michael; Cole, Leon; Dalton, Mark; Danagoulian, Samuel; Daniel, Aji; De Leo, Raffaele; Dharmawardane, Kahanawita; Doi, Daisuke; Egiyan, Kim; Elaasar, Mostafa; Ent, Rolf; Fenker, Howard; Fujii, Yu; Furic, Miroslav; Gabrielyan, Marianna; Gan, Liping; Garibaldi, Franco; Gaskell, David; Gasparian, Ashot; Gibson, Edward; Gueye, Paul; Hashimoto, Osamu; Honda, D; Horn, Tanja; Hu, Bitao; Hungerford, Ed; Jayalath, Chandana; Jones, Mark; Johnston, Kathleen; Kalantarians, Narbe; Kanda, Hiroki; Kaneta, M; Kato, F; Kato, Seigo; Kawai, Masaharu; Keppel, Cynthia; Khanal, Hari; Kohl, M; Kramer, Laird; Lan, Kejian; Li, Ya; Habarakada Liyanage, Anusha; Luo, Wei; Mack, David; Maeda, Kazushige; Malace, Simona; Margaryan, Amur; Marikyan, Gagik; Markowitz, Pete; Maruta, Tomofumi; Maruyama, Nayuta; Maxwell, Victor; Millener, David; Miyoshi, Toshinobu; Mkrtchyan, Arthur; Mkrtchyan, Hamlet; Motoba, Toshio; Nagao, Sho; Nakamura, Satoshi; Narayan, Amrendra; Neville, Casey; Niculescu, Gabriel; Niculescu, Maria; Nunez, Angel; Nuruzzaman, nfn; Nomura, Hiroshi; Nonaka, Kenichi; Ohtani, Atsushi; Oyamada, Masamichi; Perez, Naipy; Petkovic, Tomislav; Pochodzalla, J; Qiu, Xiyu; Randeniya, Kapugodage; Raue, Brian; Reinhold, Joerg; Rivera, R; Roche, Julie; Samanta, Chhanda; Sato, Yoshinori; Sawatzky, Bradley; Segbefia, Edwin; Schott, Diane; Shichijo, Ayako; Simicevic, Neven; Smith, Gregory; Song, Yushou; Sumihama, Mizuki; Tadevosyan, Vardan; Takahashi, Toshiyuki; Taniya, Naotaka; Tsukada, Kyo; Tvaskis, Vladas; Veilleux, Micah; Vulcan, William; Wells, Steven; Wesselmann, Frank; Wood, Stephen; Yamamoto, Taku; Yan, Chen; Ye, Z; Yokota, Kosuke; Zhamkochyan, Simon; Zhu, Lingyan

    2014-09-01

    Since the pioneering experiment, E89-009 studying hypernuclear spectroscopy using the $(e,e^{\\prime}K^+)$ reaction was completed, two additional experiments, E01-011 and E05-115, were performed at Jefferson Lab. These later experiments used a modified experimental design, the "Tilt Method", to dramatically suppress the large electromagnetic background, and allowed for a substantial increase in luminosity. Additionally, a new kaon spectrometer, HKS (E01-011), a new electron spectrometer, HES, and a new splitting magnet were added to produce precision, high-resolution hypernuclear spectroscopy. These two experiments, E01-011 and E05-115, resulted in two new data sets, producing sub-MeV energy resolution in the spectra of ${}^{7}_{\\Lambda}\\text{He}$, ${}^{12}_{\\Lambda}\\text{B}$ and ${}^{28}_{\\Lambda} \\text{Al}$ and ${}^{7}_{\\Lambda}\\text{He}$, ${}^{10}_{\\Lambda}\\text{Be}$, ${}^{12}_{\\Lambda}\\text{B}$ and ${}^{52}_{\\Lambda}\\text{V}$. All three experiments obtained a ${}^{12}_{\\Lambda}\\text{B}$, spectrum, which is the most characteristic $p$-shell hypernucleus and is commonly used for calibration. Independent analyses of these different experiments demonstrate excellent consistency and provide the clearest level structure to date of this hypernucleus as produced by the $(e,e^{\\prime}K^+)$ reaction. This paper presents details of these experiments, and the extraction and analysis of the observed ${}^{12}_{\\Lambda}\\text{B}$ spectrum.

  9. RP-HPLC Determination of vitamins B1, B3, B6, folic acid and B12 in multivitamin tablets

    Directory of Open Access Journals (Sweden)

    SOTE VLADIMIROV

    2005-10-01

    Full Text Available Abstract:Asimple and sensitive reversed-phase, ion-pair HPLC method was developed and validated for the simultaneous determination of B-group vitamins, thiamine chloride hydrochloride (B1, nicotinamide (B3, pyridoxine hydrochloride (B6 and folic acid in Pentovit® coated tablets. The cyanocobalamine (B12 was determined separately, because of its low concentration in the investigated multivitamin preparation. RP-HPLC analysis was performed with a LKB 2150 HPLC system, equipped with a UV/VIS Waters M484 detector. The procedures for the determination of B1, B2, B6 and folic acid were carried out on a Supelcosil ABZ+ (15 cm 4.6 mm; 5 µm column with methanol-5mM heptanesulphonic acid sodium salt 0.1%triethylamine TEA(25:75 V/V; pH 2.8 as themobile phase. For the determination of B12 a Suplex pKb-100 (15 cm 4.6 mm; 5 µm column andmethanol–water (22:78 V/V as themobile phase were used. The column effluentsweremonitored at 290 nm for B 1, B3, B6 and folic acid, and at 550 nm for B12. The obtained results and statistical parameters for all the investigated vitamins of the B-group in Pentovit® coated tablets were satisfactory and ranged from 90.4 % to 108.5 % (RSD. from 0.5% to 4.1 %. The parameters for the validation of the methods are given.

  10. The Relationships between Metabolic Disorders (Hypertension, Dyslipidemia, and Impaired Glucose Tolerance) and Computed Tomography-Based Indices of Hepatic Steatosis or Visceral Fat Accumulation in Middle-Aged Japanese Men.

    Science.gov (United States)

    Fujibayashi, Kazutoshi; Gunji, Toshiaki; Yokokawa, Hirohide; Naito, Toshio; Sasabe, Noriko; Okumura, Mitsue; Iijima, Kimiko; Shibuya, Katsuhiko; Hisaoka, Teruhiko; Fukuda, Hiroshi

    2016-01-01

    Most studies on the relationships between metabolic disorders (hypertension, dyslipidemia, and impaired glucose tolerance) and hepatic steatosis (HS) or visceral fat accumulation (VFA) have been cross-sectional, and thus, these relationships remain unclear. We conducted a retrospective cohort study to clarify the relationships between components of metabolic disorders and HS/VFA. The participants were 615 middle-aged men who were free from serious liver disorders, diabetes, and HS/VFA and underwent multiple general health check-ups at our institution between 2009 and 2013. The data from the initial and final check-ups were used. HS and VFA were assessed by computed tomography. HS was defined as a liver to spleen attenuation ratio of ≤1.0. VFA was defined as a visceral fat cross-sectional area of ≥100 cm2 at the level of the navel. Metabolic disorders were defined using Japan's metabolic syndrome diagnostic criteria. The participants were divided into four groups based on the presence (+) or absence (-) of HS/VFA. The onset rates of each metabolic disorder were compared among the four groups. Among the participants, 521, 55, 24, and 15 were classified as HS(-)/VFA(-), HS(-)/VFA(+), HS(+)/VFA(-), and HS(+)/VFA(+), respectively, at the end of the study. Impaired glucose tolerance was more common among the participants that exhibited HS or VFA (p = 0.05). On the other hand, dyslipidemia was more common among the participants that displayed VFA (p = 0.01). It is likely that VFA is associated with impaired glucose tolerance and dyslipidemia, while HS might be associated with impaired glucose tolerance. Unfortunately, our study failed to detect associations between HS/VFA and metabolic disorders due to the low number of subjects that exhibited fat accumulation. Although our observational study had major limitations, we consider that it obtained some interesting results. HS and VFA might affect different metabolic disorders. Further large-scale longitudinal studies are

  11. The Relationships between Metabolic Disorders (Hypertension, Dyslipidemia, and Impaired Glucose Tolerance and Computed Tomography-Based Indices of Hepatic Steatosis or Visceral Fat Accumulation in Middle-Aged Japanese Men.

    Directory of Open Access Journals (Sweden)

    Kazutoshi Fujibayashi

    Full Text Available Most studies on the relationships between metabolic disorders (hypertension, dyslipidemia, and impaired glucose tolerance and hepatic steatosis (HS or visceral fat accumulation (VFA have been cross-sectional, and thus, these relationships remain unclear. We conducted a retrospective cohort study to clarify the relationships between components of metabolic disorders and HS/VFA.The participants were 615 middle-aged men who were free from serious liver disorders, diabetes, and HS/VFA and underwent multiple general health check-ups at our institution between 2009 and 2013. The data from the initial and final check-ups were used. HS and VFA were assessed by computed tomography. HS was defined as a liver to spleen attenuation ratio of ≤1.0. VFA was defined as a visceral fat cross-sectional area of ≥100 cm2 at the level of the navel. Metabolic disorders were defined using Japan's metabolic syndrome diagnostic criteria. The participants were divided into four groups based on the presence (+ or absence (- of HS/VFA. The onset rates of each metabolic disorder were compared among the four groups.Among the participants, 521, 55, 24, and 15 were classified as HS(-/VFA(-, HS(-/VFA(+, HS(+/VFA(-, and HS(+/VFA(+, respectively, at the end of the study. Impaired glucose tolerance was more common among the participants that exhibited HS or VFA (p = 0.05. On the other hand, dyslipidemia was more common among the participants that displayed VFA (p = 0.01.It is likely that VFA is associated with impaired glucose tolerance and dyslipidemia, while HS might be associated with impaired glucose tolerance. Unfortunately, our study failed to detect associations between HS/VFA and metabolic disorders due to the low number of subjects that exhibited fat accumulation. Although our observational study had major limitations, we consider that it obtained some interesting results. HS and VFA might affect different metabolic disorders. Further large-scale longitudinal studies

  12. Atgl gene deletion predisposes to proximal tubule damage by impairing the fatty acid metabolism

    International Nuclear Information System (INIS)

    Chen, Wen; Zhang, Qiong; Cheng, Shiwu; Huang, Jie; Diao, Ge; Han, Jian

    2017-01-01

    Fibrosis is the final common pathway of chronic kidney disease (CKD). Normal lipid metabolism is integral to renal physiology, and disturbances of renal lipid metabolism are increasingly being linked with CKD, including the fibrosis. Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme of lipolysis. In the present study, we used Atgl −/− mice to investigate whether ATGL played a role in the regulation of proximal convoluted tubule (PCT) lipid metabolism and renal fibrosis development. ATGL deficiency led to lipid vacuolation of PCT and tubulointerstitial fibrosis, accompanied by massive albuminuria and decreased creatinine clearance rate (Ccr). In vitro experiments indicated that inhibition of ATGL in proximal tubular cell line HK-2 promoted intracellular lipid deposition, reactive oxygen species (ROS) accumulation and cell apoptosis. Both in vitro and in vivo experiments showed that ATGL inhibition decreased the renal peroxisome proliferator-activated receptorα(PPARα) expression, which implied the suppressed lipid metabolism. The antioxidant N-acetylcysteine (NAC) could partially reverse the effect of ROS accumulation and cell apoptosis, but could not restore the PPARαdecrease. These data raise the possibility that ATGL deficiency could impair the renal fatty acid metabolism though inhibiting PPARαexpression, which may lead to lipid deposition and cell apoptosis of PCT, and finally contribute to the renal fibrosis and dysfunction. - Highlights: • Atgl −/− mice develop tubulointerstitial damage and renal dysfunction. • ATGL deficiency results in lipid accumulation and apoptosis of proximal tubular cells. • ROS scavenger alleviates the ATGL-knockdown mediated lipid accumulation and apoptosis. • PPARαdown-regulation is the reason of ROS elevating in ATGL-knockdown HK-2 cells.

  13. Vitamin B12 status and the effects of vitamin B12 supplementation during the first year of life of spring calves from pasture-fed dairy herds.

    Science.gov (United States)

    Grace, N D; Knowles, S O; Nortjé, R

    2014-09-01

    To determine the vitamin B12 status of dairy calves during their first year of life, and to evaluate the benefits of vitamin B12 supplementation. In Experiment I, 20 17-day-old heifer calves from the AgResearch Flock House herd were monitored until 198 days old. On Days 0 and 90 of the study, half of the animals received an injection of microencapsulated vitamin B12 at 0.12 mg/kg bodyweight. All received colostrum, milk replacer and calf meal, with ad libitum access to pasture. At regular intervals the calves were weighed and serum collected for vitamin B12 measurement. In Experiment II at Flock House and the adjacent Landcorp Tangimoana station, 80 150-day-old heifer calves were monitored until 342 days old. On Days 0 and 97, half of the animals received vitamin B12 as per Experiment I. At regular intervals samples were collected from 12 calves per group, to determine concentrations of vitamin B12 in serum. Mean concentration of vitamin B12 in milk replacer was 63 (SE 4) µg/kg dry matter (DM). Cobalt concentrations in calf meal were 0.45-1.58 and 0.07-0.28 mg/kg DM in pastures. From 17 to 198 days of age (Experiment I) mean concentrations of vitamin B12 in serum of the control group decreased from 119 (SE 8) to 57 (SE 5) pmol/L. From 150 to 342 days of age (Experiment II), overall mean concentrations of the control groups at Flock House and Tangimoana were 90 (SE 2) and 96 (SE 3) pmol/L, respectively. Vitamin B12 injections increased (ppasture-based diet. Supplementation increased concentrations of vitamin B12 in serum but did not improve liveweight gains. Under this calf rearing system, vitamin B12 deficiency is unlikely to occur prior to weaning, and vitamin B12 supplementation is unlikely to increase growth rates of grazing calves when concentrations of vitamin B12 in serum are > 90 pmol/L.

  14. Vitamin B12 deficiency anemia

    Science.gov (United States)

    ... diet Poor diet in infants Poor nutrition during pregnancy Certain health conditions can make it difficult for your body to absorb enough vitamin B12. They include: Chronic alcoholism Crohn disease, celiac disease, infection with the fish ...

  15. Influence of high carbohydrate versus high fat diet in ozone induced pulmonary injury and systemic metabolic impairment in a Brown Norway (BN) rat model of healthy aging

    Science.gov (United States)

    Rationale: Air pollution has been recently linked to the increased prevalence of metabolic syndrome. It has been postulated that dietary risk factors might exacerbate air pollution-induced metabolic impairment. We have recently reported that ozone exposure induces acute systemic ...

  16. Comparison of two modes of vitamin B12 supplementation on neuroconduction and cognitive function among older people living in Santiago, Chile: a cluster randomized controlled trial. a study protocol [ISRCTN 02694183

    Directory of Open Access Journals (Sweden)

    Brito Alex

    2011-09-01

    Full Text Available Abstract Background Older people have a high risk of vitamin B12 deficiency; this can lead to varying degrees of cognitive and neurological impairment. CBL deficiency may present as macrocytic anemia, subacute combined degeneration of the spinal cord, or as neuropathy, but is often asymptomatic in older people. Less is known about subclinical vitamin B12 deficiency and concurrent neuroconduction and cognitive impairment. A Programme of Complementary Feeding for the Older Population (PACAM in Chile delivers 2 complementary fortified foods that provide approximately 1.4 μg/day of vitamin B12 (2.4 μg/day elderly RDA. The aim of the present study is to assess whether supplementation with vitamin B12 will improve neuroconduction and cognitive function in older people who have biochemical evidence of vitamin B12 insufficiency in the absence of clinical deficiency. Methods We designed a cluster double-blind placebo-controlled trial involving community dwelling people aged 70-79 living in Santiago, Chile. We randomized 15 clusters (health centers involving 300 people (20 per cluster. Each cluster will be randomly assigned to one of three arms: a a 1 mg vitamin B12 pill taken daily and a routine PACAM food; b a placebo pill and the milk-PACAM food fortified to provide 1 mg of vitamin B12; c the routine PACAM food and a placebo pill. The study has been designed as an 18 month follow up period. The primary outcomes assessed at baseline, 4, 9 and 18 months will be: serum levels of vitamin B12, neuroconduction and cognitive function. Conclusions In view of the high prevalence of vitamin B12 deficiency in later life, the present study has potential public health interest because since it will measure the impact of the existing program of complementary feeding as compared to two options that provide higher vitamin B12 intakes that might potentially may contribute in preserving neurophysiologic and cognitive function and thus improve quality of life for older

  17. High Glucose-Induced PC12 Cell Death by Increasing Glutamate Production and Decreasing Methyl Group Metabolism

    Directory of Open Access Journals (Sweden)

    Minjiang Chen

    2016-01-01

    Full Text Available Objective. High glucose- (HG- induced neuronal cell death is responsible for the development of diabetic neuropathy. However, the effect of HG on metabolism in neuronal cells is still unclear. Materials and Methods. The neural-crest derived PC12 cells were cultured for 72 h in the HG (75 mM or control (25 mM groups. We used NMR-based metabolomics to examine both intracellular and extracellular metabolic changes in HG-treated PC12 cells. Results. We found that the reduction in intracellular lactate may be due to excreting more lactate into the extracellular medium under HG condition. HG also induced the changes of other energy-related metabolites, such as an increased succinate and creatine phosphate. Our results also reveal that the synthesis of glutamate from the branched-chain amino acids (isoleucine and valine may be enhanced under HG. Increased levels of intracellular alanine, phenylalanine, myoinositol, and choline were observed in HG-treated PC12 cells. In addition, HG-induced decreases in intracellular dimethylamine, dimethylglycine, and 3-methylhistidine may indicate a downregulation of methyl group metabolism. Conclusions. Our metabolomic results suggest that HG-induced neuronal cell death may be attributed to a series of metabolic changes, involving energy metabolism, amino acids metabolism, osmoregulation and membrane metabolism, and methyl group metabolism.

  18. Exercise reveals impairments in left ventricular systolic function in patients with metabolic syndrome.

    Science.gov (United States)

    Fournier, Sara B; Reger, Brian L; Donley, David A; Bonner, Daniel E; Warden, Bradford E; Gharib, Wissam; Failinger, Conard F; Olfert, Melissa D; Frisbee, Jefferson C; Olfert, I Mark; Chantler, Paul D

    2014-01-01

    Metabolic syndrome (MetS) is the manifestation of a cluster of cardiovascular risk factors and is associated with a threefold increase in the risk of cardiovascular morbidity and mortality, which is suggested to be mediated, in part, by resting left ventricular (LV) systolic dysfunction. However, to what extent resting LV systolic function is impaired in MetS is controversial, and there are no data indicating whether LV systolic function is impaired during exercise. Accordingly, the objective of this study was to examine comprehensively the LV and arterial responses to exercise in individuals with MetS without diabetes and/or overt cardiovascular disease in comparison to a healthy control population. Cardiovascular function was characterized using Doppler echocardiography and gas exchange in individuals with MetS (n = 27) versus healthy control subjects (n = 20) at rest and during peak exercise. At rest, individuals with MetS displayed normal LV systolic function but reduced LV diastolic function compared with healthy control subjects. During peak exercise, individuals with MetS had impaired contractility, pump performance and vasodilator reserve capacity versus control subjects. A blunted contractile reserve response resulted in diminished arterial-ventricular coupling reserve and limited aerobic capacity in individuals with MetS versus control subjects. These findings are of clinical importance, because they provide insight into the pathophysiological changes in MetS that may predispose this population of individuals to an increased risk of cardiovascular morbidity and mortality.

  19. Metabolic syndrome and cardiovascular risk

    Directory of Open Access Journals (Sweden)

    Abdullah M Alshehri

    2010-01-01

    Full Text Available The constellation of dyslipidemia (hypertriglyceridemia and low levels of high-density lipoprotein cholesterol, elevated blood pressure, impaired glucose tolerance, and central obesity is now classified as metabolic syndrome, also called syndrome X. In the past few years, several expert groups have attempted to set forth simple diagnostic criteria for use in clinical practice to identify patients who manifest the multiple components of the metabolic syndrome. These criteria have varied somewhat in specific elements, but in general, they include a combination of multiple and metabolic risk factors. The most widely recognized of the metabolic risk factors are atherogenic dyslipidemia, elevated blood pressure, and elevated plasma glucose. Individuals with these characteristics, commonly manifest a prothrombotic state as well as and a proinflammatory state. Atherogenic dyslipidemia consists of an aggregation of lipoprotein abnormalities including elevated serum triglyceride and apolipoprotein B (apoB, increased small LDL particles, and a reduced level of HDL cholesterol (HDL-C. The metabolic syndrome is often referred to as if it were a discrete entity with a single cause. Available data suggest that it truly is a syndrome, ie, a grouping of atherosclerotic cardiovascular disease (ASCVD risk factors, that probably has more than one cause. Regardless of cause, the syndrome identifies individuals at an elevated risk for ASCVD. The magnitude of the increased risk can vary according to the components of the syndrome present as well as the other, non-metabolic syndrome risk factors in a particular person.

  20. Metabolic syndrome and cardiovascular risk

    Directory of Open Access Journals (Sweden)

    Abdullah M Alshehri

    2010-11-01

    Full Text Available The constellation of dyslipidemia (hypertriglyceridemia and low levels of high-density lipoprotein cholesterol, elevated blood pressure, impaired glucose tolerance, and central obesity is now classified as metabolic syndrome, also called syndrome X. In the past few years, several expert groups have attempted to set forth simple diagnostic criteria for use in clinical practice to identify patients who manifest the multiple components of the metabolic syndrome. These criteria have varied somewhat in specific elements, but in general, they include a combination of multiple and metabolic risk factors. The most widely recognized of the metabolic risk factors are atherogenic dyslipidemia, elevated blood pressure, and elevated plasma glucose. Individuals with these characteristics, commonly manifest a prothrombotic state as well as and a proinflammatory state. Atherogenic dyslipidemia consists of an aggregation of lipoprotein abnormalities including elevated serum triglyceride and apolipoprotein B (apoB, increased small LDL particles, and a reduced level of HDL cholesterol (HDL-C. The metabolic syndrome is often referred to as if it were a discrete entity with a single cause. Available data suggest that it truly is a syndrome, ie, a grouping of atherosclerotic cardiovascular disease (ASCVD risk factors, that probably has more than one cause. Regardless of cause, the syndrome identifies individuals at an elevated risk for ASCVD. The magnitude of the increased risk can vary according to the components of the syndrome present as well as the other, non-metabolic syndrome risk factors in a particular person.

  1. Time-course of myocardial perfusion and fatty acid metabolism after coronary reperfusion

    International Nuclear Information System (INIS)

    Sochor, H.; Pachinger, O.; Ogris, E.; Probst, P.; Kaindl, F.

    1985-01-01

    To investigate the relationship and time-course of myocardial perfusion and behaviour of fatty acid uptake and clearance following reperfusion, the authors studied 19 patients after successful intracoronary thrombolysis with Tl-201 and I-123 hepta-decanoic acid (HDA) and planar imaging. Pts were studied acute (A: 48 hours), early (E:6-8 days) and late (L:6-12 months). %-defect size and relative tracer uptake were determined for both markers as well as t1/2 of the early clearance phase for HDA. Late Tl was done as stress test study after dipyridamole infusion. As in a previous report acute HDA uptake-defects were larger than Tl (38 +- 10% vs 24 +- 9%, p<0.05) suggesting a larger area of metabolic impairment than outlined by perfusion. HDA and Tl uptake at A correlated significantly (p<0.01, r=0.86) but HDA uptake was 19% lower than Tl and not different at E and L. Tl stress studies exhibited in 74% reversible ischemia in the area of ''metabolic recovery''. The authors conclude that early after reperfusion uptake of HDA is frequently impaired despite improved perfusion suggesting metabolic derangement showing a slow recovery over time. A multiple tracer approach including metabolic markers may improve the characterization of reperfused myocardium

  2. Arid1b haploinsufficient mice reveal neuropsychiatric phenotypes and reversible causes of growth impairment.

    Science.gov (United States)

    Celen, Cemre; Chuang, Jen-Chieh; Luo, Xin; Nijem, Nadine; Walker, Angela K; Chen, Fei; Zhang, Shuyuan; Chung, Andrew S; Nguyen, Liem H; Nassour, Ibrahim; Budhipramono, Albert; Sun, Xuxu; Bok, Levinus A; McEntagart, Meriel; Gevers, Evelien F; Birnbaum, Shari G; Eisch, Amelia J; Powell, Craig M; Ge, Woo-Ping; Santen, Gijs We; Chahrour, Maria; Zhu, Hao

    2017-07-11

    Sequencing studies have implicated haploinsufficiency of ARID1B , a SWI/SNF chromatin-remodeling subunit, in short stature (Yu et al., 2015), autism spectrum disorder (O'Roak et al., 2012), intellectual disability (Deciphering Developmental Disorders Study, 2015), and corpus callosum agenesis (Halgren et al., 2012). In addition, ARID1B is the most common cause of Coffin-Siris syndrome, a developmental delay syndrome characterized by some of the above abnormalities (Santen et al., 2012; Tsurusaki et al., 2012; Wieczorek et al., 2013). We generated Arid1b heterozygous mice, which showed social behavior impairment, altered vocalization, anxiety-like behavior, neuroanatomical abnormalities, and growth impairment. In the brain, Arid1b haploinsufficiency resulted in changes in the expression of SWI/SNF-regulated genes implicated in neuropsychiatric disorders. A focus on reversible mechanisms identified Insulin-like growth factor (IGF1) deficiency with inadequate compensation by Growth hormone-releasing hormone (GHRH) and Growth hormone (GH), underappreciated findings in ARID1B patients. Therapeutically, GH supplementation was able to correct growth retardation and muscle weakness. This model functionally validates the involvement of ARID1B in human disorders, and allows mechanistic dissection of neurodevelopmental diseases linked to chromatin-remodeling.

  3. Immunotoxicity of aflatoxin B1: Impairment of the cell-mediated response to vaccine antigen and modulation of cytokine expression

    International Nuclear Information System (INIS)

    Meissonnier, Guylaine M.; Pinton, Philippe; Laffitte, Joelle; Cossalter, Anne-Marie; Gong, Yun Yun; Wild, Christopher P.; Bertin, Gerard; Galtier, Pierre; Oswald, Isabelle P.

    2008-01-01

    Aflatoxin B1 (AFB1), a mycotoxin produced by Aspergillus flavus or A. parasiticus, is a frequent contaminant of food and feed. This toxin is hepatotoxic and immunotoxic. The present study analyzed in pigs the influence of AFB1 on humoral and cellular responses, and investigated whether the immunomodulation observed is produced through interference with cytokine expression. For 28 days, pigs were fed a control diet or a diet contaminated with 385, 867 or 1807 μg pure AFB1/kg feed. At days 4 and 15, pigs were vaccinated with ovalbumin. AFB1 exposure, confirmed by an observed dose-response in blood aflatoxin-albumin adduct, had no major effect on humoral immunity as measured by plasma concentrations of total IgA, IgG and IgM and of anti-ovalbumin IgG. Toxin exposure did not impair the mitogenic response of lymphocytes but delayed and decreased their specific proliferation in response to the vaccine antigen, suggesting impaired lymphocyte activation in pigs exposed to AFB1. The expression level of pro-inflammatory (TNF-α, IL-1β, IL-6, IFN-γ) and regulatory (IL-10) cytokines was assessed by real-time PCR in spleen. A significant up-regulation of all 5 cytokines was observed in spleen from pigs exposed to the highest dose of AFB1. In pigs exposed to the medium dose, IL-6 expression was increased and a trend towards increased IFN-γ and IL-10 was observed. In addition we demonstrate that IL-6 impaired in vitro the antigenic- but not the mitogenic-induced proliferation of lymphocytes from control pigs vaccinated with ovalbumin. These results indicate that AFB1 dietary exposure decreases cell-mediated immunity while inducing an inflammatory response. These impairments in the immune response could participate in failure of vaccination protocols and increased susceptibility to infections described in pigs exposed to AFB1

  4. On the oxidation of the three-dimensional aromatics [B(12)X(12)](2-) (X=F, Cl, Br, I).

    Science.gov (United States)

    Boeré, René T; Derendorf, Janis; Jenne, Carsten; Kacprzak, Sylwia; Kessler, Mathias; Riebau, Rainer; Riedel, Sebastian; Roemmele, Tracey L; Rühle, Monika; Scherer, Harald; Vent-Schmidt, Thomas; Warneke, Jonas; Weber, Stefan

    2014-04-07

    The perhalogenated closo-dodecaborate dianions [B12 X12 ](2-) (X=H, F, Cl, Br, I) are three-dimensional counterparts to the two-dimensional aromatics C6 X6 (X=H, F, Cl, Br, I). Whereas oxidation of the parent compounds [B12 H12 ](2-) and benzene does not lead to isolable radicals, the perhalogenated analogues can be oxidized by chemical or electrochemical methods to give stable radicals. The chemical oxidation of the closo-dodecaborate dianions [B12 X12 ](2-) with the strong oxidizer AsF5 in liquid sulfur dioxide (lSO2 ) yielded the corresponding radical anions [B12 X12 ](⋅-) (X=F, Cl, Br). The presence of radical ions was proven by EPR and UV/Vis spectroscopy and supported by quantum chemical calculations. Use of an excess amount of the oxidizing agent allowed the synthesis of the neutral perhalogenated hypercloso-boranes B12 X12 (X=Cl, Br). These compounds were characterized by single-crystal X-ray diffraction of dark blue B12 Cl12 and [Na(SO2 )6 ][B12 Br12 ]⋅B12 Br12 . Sublimation of the crude reaction products that contained B12 X12 (X=Cl, Br) resulted in pure dark blue B12 Cl12 or decomposition to red B9 Br9 , respectively. The energetics of the oxidation processes in the gas phase were calculated by DFT methods at the PBE0/def2-TZVPP level of theory. They revealed the trend of increasing ionization potentials of the [B12 X12 ](2-) dianions by going from fluorine to bromine as halogen substituent. The oxidation of all [B12 X12 ](2-) dianions was also studied in the gas phase by mass spectrometry in an ion trap. The electrochemical oxidation of the closo-dodecaborate dianions [B12 X12 ](2-) (X=F, Cl, Br, I) by cyclic and Osteryoung square-wave voltammetry in liquid sulfur dioxide or acetonitrile showed very good agreement with quantum chemical calculations in the gas phase. For [B12 X12 ](2-) (X=F, Cl, Br) the first and second oxidation processes are detected. Whereas the first process is quasi-reversible (with oxidation potentials in the range between +1

  5. MILD COGNITIVE IMPAIRMENT: STRUCTURAL, METABOLICAL AND NEUROPHYSIOLOGICAL EVIDENCE OF A NOVEL EEG BIOMARKER

    Directory of Open Access Journals (Sweden)

    Davide Vito Moretti

    2015-07-01

    Full Text Available Background: recent studies demonstrate that the alpha 3/alpha 2 power ratio correlates with cortical atrophy, regional hypoperfusion and memory impairment in subjects with mild cognitive impairment (MCI.Methods: evidences were reviewed in subjects with MCI who underwent EEG recording, Magnetic Resonance Imaging (MRI scans and memory evaluation. Alpha3/alpha2 power ratio (alpha2 8.9–10.9 Hz range; alpha3 10.9–12.9 Hz range, cortical thickness, linear EEG coherence and memory impairment have been evaluated in a large group of 74 patients. A subset of 27 subjects within the same group underwent also Single Photon Emission Computed Tomography (SPECT evaluation. Results: in MCI subjects with higher EEG upper/low alpha power ratio a greater temporo-parietal and hippocampal atrophy was found as well as a decrease in regional blood perfusion and memory impairment. In this group, an increase of theta oscillations is associated with a greater interhemispheric coupling between temporal areas. Conclusion: the increase of alpha3/alpha2 power ratio is a promising novel biomarker in identifying MCI subjects at risk for Alzheimer’s disease

  6. Metabolic changes during B cell differentiation for the production of intestinal IgA antibody.

    Science.gov (United States)

    Kunisawa, Jun

    2017-04-01

    To sustain the bio-energetic demands of growth, proliferation, and effector functions, the metabolism of immune cells changes dramatically in response to immunologic stimuli. In this review, I focus on B cell metabolism, especially regarding the production of intestinal IgA antibody. Accumulating evidence has implicated not only host-derived factors (e.g., cytokines) but also gut environmental factors, including the possible involvement of commensal bacteria and diet, in the control of B cell metabolism during intestinal IgA antibody production. These findings yield new insights into the regulation of immunosurveillance and homeostasis in the gut.

  7. The distribution of total vitamin b12 holotranscobalamin and the active vitamin b12 fraction in the first 5 weeks postpartum

    NARCIS (Netherlands)

    van der Woude, D.A.A.; Pijnenborg, J.M.A.; de Vries, J.; van Wijk, E.M.

    2018-01-01

    Introduction Total vitamin B12 levels decrease significantly during pregnancy and recover to normal values within 8-week postpartum. Holotranscobalamin (holoTC) reflects the active part of vitamin B12 and has been shown to remain constant during pregnancy and postpartum. A mechanism of

  8. Direct Rehydrogenation of LiBH4 from H-Deficient Li2B12H12−x

    Directory of Open Access Journals (Sweden)

    Yigang Yan

    2018-03-01

    Full Text Available Li2B12H12 is commonly considered as a boron sink hindering the reversible hydrogen sorption of LiBH4. Recently, in the dehydrogenation process of LiBH4 an amorphous H-deficient Li2B12H12−x phase was observed. In the present study, we investigate the rehydrogenation properties of Li2B12H12−x to form LiBH4. With addition of nanostructured cobalt boride in a 1:1 mass ratio, the rehydrogenation properties of Li2B12H12−x are improved, where LiBH4 forms under milder conditions (e.g., 400 °C, 100 bar H2 with a yield of 68%. The active catalytic species in the reversible sorption reaction is suggested to be nonmetallic CoxB (x = 1 based on 11B MAS NMR experiments and its role has been discussed.

  9. ATP5B and ETFB metabolic markers in children with congenital hydronephrosis.

    Science.gov (United States)

    Zhao, Qi; Yang, Yi; Wang, Changlin; Hou, Ying; Chen, Hui

    2016-12-01

    Congenital obstructive nephropathy is the primary cause of chronic renal failure in children. Disorders of mitochondrial energy metabolism may be a primary factor underlying tubular cell apoptosis in hydronephrosis. The β-F1-ATPase (ATP5B) and electron transfer flavoprotein β subunit (ETFB) metabolic markers are involved in mitochondrial energy metabolism in other diseases. The aim of the present study was to evaluate whether ATP5B and ETFB are represented in the hydronephrotic kidney, and whether they are associated with the progression of hydronephrosis. The cohort examined consisted of 20 children with hydronephrosis, graded III and IV using the Society for Fetal Urology grading system, and a control group consisting of 20 patients with nephroblastoma. Reverse transcription‑quantitative polymerase chain reaction and immunoblot analyses were used to investigate the differential expression of genes and proteins in the two groups. The gene and protein expression levels of ATP5B and ETFB were upregulated in the hydronephrosis group. Correlation analyses revealed negative correlations between ATP5B, ETFB protein and split renal function (SRF). Receiver‑operator curve analysis found a diagnostic profile of the ETFB protein in identifying children with hydronephrosis with abnormal SRF (hydronephrosis and require further detailed investigation.

  10. Simultaneous radiodetermination of folate and vitamin B12

    International Nuclear Information System (INIS)

    Gutcho, S.; Mansbach, L.

    1978-01-01

    The invention concerns a method to simultaneously investigate or determine folate and vitamin B12. The differentiation between both compounds is based on the use of radioactive tracers; a radio-iodized folic acid is used as folate tracer; vitamin B12 can be labelled with 57 Co. (VJ) [de

  11. Cobalt-vitamin B12 deficiency and the activity of methylmalonyl CoA mutase and methionine synthase in cattle.

    Science.gov (United States)

    Kennedy, D G; Young, P B; Kennedy, S; Scott, J M; Molloy, A M; Weir, D G; Price, J

    1995-01-01

    Cobalt deficiency was induced in cattle by feeding two groups of animals either a basal diet that was very low in Co (12.9-17.6 micrograms Co per kg), or the same diet supplemented with cobalt, for a total of 64 weeks. Vitamin B12 deficiency was induced, as judged by hepatic concentrations of vitamin B12 and plasma concentrations of MMA. However, the activity of holo-methylmalonyl CoA mutase was significantly reduced only in brain. This was reflected in very minor alterations in the tissue concentrations of branched chain- and odd numbered-fatty acids. The activity of holo-methionine synthase was significantly reduced in liver and brain, but there were no consequent alterations in the concentrations of phosphatidyl choline and phosphatidyl ethanolamine. This study confirms that cattle are less susceptible to the effects of cobalt deficiency than sheep, and concludes that prolonged cobalt deficiency had little significant effect on tissue metabolism.

  12. Peroxisome Proliferators-Activated Receptor (PPAR Modulators and Metabolic Disorders

    Directory of Open Access Journals (Sweden)

    Min-Chul Cho

    2008-01-01

    Full Text Available Overweight and obesity lead to an increased risk for metabolic disorders such as impaired glucose regulation/insulin resistance, dyslipidemia, and hypertension. Several molecular drug targets with potential to prevent or treat metabolic disorders have been revealed. Interestingly, the activation of peroxisome proliferator-activated receptor (PPAR, which belongs to the nuclear receptor superfamily, has many beneficial clinical effects. PPAR directly modulates gene expression by binding to a specific ligand. All PPAR subtypes (α,γ, and σ are involved in glucose metabolism, lipid metabolism, and energy balance. PPAR agonists play an important role in therapeutic aspects of metabolic disorders. However, undesired effects of the existing PPAR agonists have been reported. A great deal of recent research has focused on the discovery of new PPAR modulators with more beneficial effects and more safety without producing undesired side effects. Herein, we briefly review the roles of PPAR in metabolic disorders, the effects of PPAR modulators in metabolic disorders, and the technologies with which to discover new PPAR modulators.

  13. Molecular epidemiology of Escherichia coli producing extended-spectrum {beta}-lactamases in Lugo (Spain): dissemination of clone O25b:H4-ST131 producing CTX-M-15.

    Science.gov (United States)

    Blanco, Miguel; Alonso, Maria Pilar; Nicolas-Chanoine, Marie-Hélène; Dahbi, Ghizlane; Mora, Azucena; Blanco, Jesús E; López, Cecilia; Cortés, Pilar; Llagostera, Montserrat; Leflon-Guibout, Véronique; Puentes, Beatriz; Mamani, Rosalía; Herrera, Alexandra; Coira, María Amparo; García-Garrote, Fernando; Pita, Julia María; Blanco, Jorge

    2009-06-01

    Having shown that the Xeral-Calde Hospital in Lugo (Spain) has been concerned by Escherichia coli clone O25:H4-ST131 producing CTX-M-15 (Nicolas-Chanoine et al. J Antimicrob Chemother 2008; 61: 273-81), the present study was carried out to evaluate the prevalence of this clone among the extended-spectrum beta-lactamase (ESBL)-producing E. coli isolates and also to molecularly characterize the E. coli isolates producing ESBL other than CTX-M-15. In the first part of this study, 105 ESBL-producing E. coli isolates (February 2006 to March 2007) were characterized with regard to ESBL enzymes, serotypes, virulence genes, phylogenetic groups, multilocus sequence typing (MLST) and PFGE. In the second part of this study, 249 ESBL-producing E. coli isolates (April 2007 to May 2008) were investigated only for the detection of clone O25b:H4-ST131 producing CTX-M-15 using a triplex PCR developed in this study and based on the detection of the new operon afa FM955459 and the targets rfbO25b and 3' end of the bla(CTX-M-15) gene. Of the 105 ESBL-producing E. coli isolates, 60 (57.1%) were positive for CTX-M-14, 23 (21.9%) for CTX-M-15, 10 (9.5%) for SHV-12 and 7 (6.7%) for CTX-M-32. Serotypes, virulence genes, phylogenetic groups and molecular typing by PFGE demonstrated high homogeneity within those producing CTX-M-15 and high diversity within E. coli producing CTX-M-14 and other ESBLs. By PFGE, CTX-M-15-producing E. coli isolates O25b:H4 belonging to the phylogenetic group B2 and MLST profile ST131 were grouped in the same cluster. The epidemic strain of clone O25b:H4-ST131 represented 23.1%, 22.5% and 20.0% of all ESBL-producing E. coli isolated in 2006, 2007 and 2008, respectively. CTX-M-type ESBLs, primarily CTX-M-14 and CTX-M-15, have emerged as the predominant types of ESBL produced by E. coli isolates in Lugo. In view of the reported findings, long-term care facilities for elderly people may represent a significant reservoir for E. coli clone O25b:H4-ST131 producing CTX

  14. EFFECT OF DANCE EXERCISE ON COGNITIVE FUNCTION IN ELDERLY PATIENTS WITH METABOLIC SYNDROME: A PILOT STUDY

    OpenAIRE

    Sang-Wook Song; Seo-Jin Park; Jung-hyoun Cho; Sung-Goo Kang; Hyun-Kook Lim; Yu-Bae Ahn; Minjeong Kim; Se-Hong Kim

    2011-01-01

    Metabolic syndrome is associated with an increased risk of cognitive impairment. The purpose of this prospective pilot study was to examine the effects of dance exercise on cognitive function in elderly patients with metabolic syndrome. The participants included 38 elderly metabolic syndrome patients with normal cognitive function (26 exercise group and 12 control group). The exercise group performed dance exercise twice a week for 6 months. Cognitive function was assessed in all participants...

  15. Aflatoxin B1-producing Aspergillus in sun-dried medicinal plant materials

    Directory of Open Access Journals (Sweden)

    Chinaputi, A.

    2001-10-01

    Full Text Available Fifty sun-dried medicinal plants were obtained from fraditional drug stores in Songkhla Province, Thailand, and examined for Aspergillus and aflatoxin B1. 288 isolates of Aspergillus were obtaines by standard blotter plate and 25 species were identified. The most common species were A. niger with 99 isolates, A. Flavus 84 isolates, A. terreus 33 isolates, A. oryzae 25 isolates, A.nidulans (Emericella nidulans 10 isolates, A fumigatus 9 isolates and A. chevalieri (Eurotium chevalieri 8 isolates. The other species[A. alliaceus, A.auricomus, A. carbonarius, A. carneus, A. clavatus, A. fisheri(Sartorya fumigata, A. janus, A. melleus,A. ochraceus, A. phoencis, A. sparsus, A. terricola, A. thomii, A. versicolor, A. wentii and Aspergillus sp.1-3] each had 1-2 siolates. Ofthe 50 different plants examined,9 had no trace of Aspergillus, namely Cinnamomum zeylanicum, Illicium verum, Andrographis paniculate, Carthamus tinctorius, Eugenia caryophyllus, Elettaria cardomomum, Coriandrum sativum, Curcuma longa and Cassia garrettiana. The highest number of species(9 of Aspergillus was found on Rauvolfia serpentina.The ability of Aspergillus to form aflatoxin was determined in coconut milk agar by observing the intensity of blue fluorescence in agar surrounding the colonies under ultraviolet light and the yellow pigment under the colonies. The results showed the production of aflatoxin was limited to the one species, A. flavus, from which 84 isolates produced aflatoxin in 57 isolates(67.8%.Aflatoxin B1. production was confirmed by culturing fluorescencing isolates of A. flavus in coconut nilk broth and detecting by ELISA technique. Aflatoxin B1. showed increasing production after 2 days, stabilizing at 3-4 days, and the decreasing after 5-6 days. Aflatoxin B1. could not be detected from nonfluorescencing isolates.The morphological characteristics of the aflatoxin B1. -producing and non-producing strains of A. flavus were similar under light microscope and

  16. Relative Handgrip Strength Is Inversely Associated with Metabolic Profile and Metabolic Disease in the General Population in China

    Directory of Open Access Journals (Sweden)

    Dongxue Li

    2018-02-01

    Full Text Available Background: Absolute handgrip strength has been correlated with metabolic profile and metabolic disease. Whether relative handgrip strength is also associated with metabolic disease has not been assessed. This study aimed at assessing the association of relative handgrip strength with metabolic profile and metabolic disease in the general population in China.Methods: Data were derived from an ongoing cross-sectional survey of the 2013 National Physical and Health in Shanxi Province, which involved 5520 participants. Multiple linear regression or multiple logistic regression analysis were used to assess the association of absolute/relative handgrip strength with the metabolic profile, preclinical, and established stages of metabolic diseases.Results: This study revealed that relative handgrip strength, that is when normalized to BMI, was associated with: (1 in both genders for more favorable blood lipid levels of high-density lipoprotein cholesterol [males: b = 0.19 (0.15, 0.23; females: b = 0.22 (0.17, 0.28], low-density lipoprotein cholesterol [males: b = −0.14 (−0.23, −0.05; females: b = −0.19 (−0.31, −0.18], triglycerides [males: b = −0.58 (−0.74, −0.43; females: b = −0.55 (−0.74, −0.36] and total cholesterol [males: b = −0.20 (−0.31, −0.10; females: b = −0.19 (−0.32, −0.06]; and better serum glucose levels in males [b = −0.30 (−0.46, −0.15]. (2 lower risk of impaired fasting glucose in males {third quartile [OR = 0.66 (0.45–0.95] and fourth quartile [OR = 0.46 (0.30–0.71] vs. first quartile} and dyslipidemia in both genders {third quartile [males: OR = 0.65 (0.48–0.87; females: OR = 0.68 (0.53–0.86] and fourth quartile [males: OR = 0.47 (0.35–0.64; females: OR = 0.47(0.36–0.61] vs. first quartile}. (3 lower risk of hyperlipidemia in both genders third quartile [males: OR = 0.66 (0.50–0.87; females: OR = 0.57 (0.43–0.75] and fourth quartile [males: OR = 0.35 (0.26–0.47; females: OR

  17. SHIP-1 Deficiency in AID+ B Cells Leads to the Impaired Function of B10 Cells with Spontaneous Autoimmunity.

    Science.gov (United States)

    Chen, Yingjia; Hu, Fanlei; Dong, Xuejiao; Zhao, Meng; Wang, Jing; Sun, Xiaolin; Kim, Tae Jin; Li, Zhanguo; Liu, Wanli

    2017-11-01

    Unlike conventional B cells, regulatory B cells exhibit immunosuppressive functions to downregulate inflammation via IL-10 production. However, the molecular mechanism regulating the production of IL-10 is not fully understood. In this study, we report the finding that activation-induced cytidine deaminase (AID) is highly upregulated in the IL-10-competent B cell (B10) cell from Innp5d fl/fl Aicda Cre/+ mice, whereas the 5' inositol phosphatase SHIP-1 is downregulated. Notably, SHIP-1 deficiency in AID + B cells leads to a reduction in cell count and impaired IL-10 production by B10 cells. Furthermore, the Innp5d fl/fl Aicda Cre/+ mouse model shows B cell-dependent autoimmune lupus-like phenotypes, such as elevated IgG serum Abs, formation of spontaneous germinal centers, production of anti-dsDNA and anti-nuclear Abs, and the obvious deposition of IgG immune complexes in the kidney with age. We observe that these lupus-like phenotypes can be reversed by the adoptive transfer of B10 cells from control Innp5d fl/fl mice, but not from the Innp5d fl/fl Aicda Cre/+ mice. This finding highlights the importance of defective B10 cells in Innp5d fl/fl Aicda Cre/+ mice. Whereas p-Akt is significantly upregulated, MAPK and AP-1 activation is impaired in B10 cells from Innp5d fl/fl Aicda Cre/+ mice, resulting in the reduced production of IL-10. These results show that SHIP-1 is required for the maintenance of B10 cells and production of IL-10, and collectively suggests that SHIP-1 could be a new potential therapeutic target for the treatment of autoimmune diseases. Copyright © 2017 by The American Association of Immunologists, Inc.

  18. Malabsorption of protein bound vitamin B12.

    OpenAIRE

    Dawson, D W; Sawers, A H; Sharma, R K

    1984-01-01

    Patients with subnormal serum vitamin B12 concentrations were tested for absorption of protein bound vitamin B12 and compared with controls. Absorption of the protein bound vitamin appeared to decrease with increasing age in healthy subjects. Differences between the result of this test and the result of the Schilling test in patients who had undergone gastric surgery were confirmed; such differences were also seen in some patients who had iron deficiency anaemia, an excessive alcohol intake, ...

  19. 12 CFR 708b.101 - Mergers generally.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Mergers generally. 708b.101 Section 708b.101 Banks and Banking NATIONAL CREDIT UNION ADMINISTRATION REGULATIONS AFFECTING CREDIT UNIONS MERGERS OF FEDERALLY-INSURED CREDIT UNIONS; VOLUNTARY TERMINATION OR CONVERSION OF INSURED STATUS Mergers § 708b.101...

  20. Pyridoxal, Vitamin B12 and Folate Metabolism Women Taking Oral ...

    African Journals Online (AJOL)

    1974-09-21

    Sep 21, 1974 ... in vitamin B" levels in 20 women taking aCA compared ... 250 flg folic acid daily while continuing to take aCA. .... A total of 1126 women between the ages of 20 and .... of a normal serum pyridoxal level during pregnancy.

  1. Deletion of genes involved in glutamate metabolism to improve poly-gamma-glutamic acid production in B. amyloliquefaciens LL3.

    Science.gov (United States)

    Zhang, Wei; He, Yulian; Gao, Weixia; Feng, Jun; Cao, Mingfeng; Yang, Chao; Song, Cunjiang; Wang, Shufang

    2015-02-01

    Here, we attempted to elevate poly-gamma-glutamic acid (γ-PGA) production by modifying genes involved in glutamate metabolism in Bacillus amyloliquefaciens LL3. Products of rocR, rocG and gudB facilitate the conversion from glutamate to 2-oxoglutarate in Bacillus subtillis. The gene odhA is responsible for the synthesis of a component of the 2-oxoglutarate dehydrogenase complex that catalyzes the oxidative decarboxylation of 2-oxoglutarate to succinyl coenzyme A. In-frame deletions of these four genes were performed. In shake flask experiments the gudB/rocG double mutant presented enhanced production of γ-PGA, a 38 % increase compared with wild type. When fermented in a 5-L fermenter with pH control, the γ-PGA yield of the rocR mutant was increased to 5.83 g/L from 4.55 g/L for shake flask experiments. The gudB/rocG double mutant produced 5.68 g/L γ-PGA compared with that of 4.03 g/L for the wild type, a 40 % increase. Those results indicated the possibility of improving γ-PGA production by modifying glutamate metabolism, and identified potential genetic targets to improve γ-PGA production.

  2. Cubilin P1297L mutation associated with hereditary megaloblastic anemia 1 causes impaired recognition of intrinsic factor-vitamin B(12) by cubilin

    DEFF Research Database (Denmark)

    Kristiansen, M; Aminoff, M; Jacobsen, Christian

    2000-01-01

    Megaloblastic anemia 1 (MGA1) is an autosomal recessive disorder caused by the selective intestinal malabsorption of intrinsic factor (IF) and vitamin B(12)/cobalamin (Cbl) in complex. Most Finnish patients with MGA1 carry the disease-specific P1297L mutation (FM1) in the IF-B(12) receptor, cubilin......-IF-Cbl in cubilin-expressing epithelial cells. In conclusion, the data presented show a substantial loss in affinity of the FM1 mutant form of the IF-Cbl binding region of cubilin. This now explains the malabsorption of Cbl and Cbl-dependent anemia in MGA1 patients with the FM1 mutation. (Blood. 2000...

  3. Interaction of metabolic and respiratory acidosis with α and β-adrenoceptor stimulation in rat myocardium.

    Science.gov (United States)

    Biais, Matthieu; Jouffroy, Romain; Carillion, Aude; Feldman, Sarah; Jobart-Malfait, Aude; Riou, Bruno; Amour, Julien

    2012-12-01

    The effects of acute respiratory versus metabolic acidosis on the myocardium and their consequences on adrenoceptor stimulation remain poorly described. We compared the effects of metabolic and respiratory acidosis on inotropy and lusitropy in rat myocardium and their effects on the responses to α- and β-adrenoceptor stimulations. The effects of acute respiratory and metabolic acidosis (pH 7.10) and their interactions with α and β-adrenoceptor stimulations were studied in isolated rat left ventricular papillary muscle (n=8 per group). Intracellular pH was measured using confocal microscopy and a pH-sensitive fluorophore in isolated rat cardiomyocytes. Data are mean percentages of baseline±SD. Respiratory acidosis induced more pronounced negative inotropic effects than metabolic acidosis did both in isotonic (45±3 versus 63±6%, Prespiratory or metabolic acidosis. The inotropic response to β-adrenergic stimulation was impaired only in metabolic acidosis (137±12 versus 200±33%, Pacidosis. The lusitropic response to β-adrenergic stimulation was not modified by respiratory or metabolic acidosis. Acute metabolic and respiratory acidosis induce different myocardial effects related to different decreases in intracellular pH. Only metabolic acidosis impairs the positive inotropic effect of β-adrenergic stimulation.

  4. Lhermitte's sign and vitamin B12 deficiency: case report

    OpenAIRE

    Teive, Hélio Afonso Ghizoni; Haratz, Salo; Zavala, Jorge; Munhoz, Renato Puppi; Scola, Rosana Hermínia; Werneck, Lineu César

    2009-01-01

    CONTEXT AND OBJECTIVE: Lhermitte's sign, a classical neurological sign, is a rare manifestation of vitamin B12 deficiency. The aim here was to report on a case of an elderly patient with vitamin B12 deficiency whose first clinical manifestation was the presence of Lhermitte's sign. CASE REPORT: We describe an elderly patient with vitamin B12 deficiency who presented cognitive dysfunction, peripheral polyneuropathy and sensory ataxia, and whose first clinical manifestation was the presence of ...

  5. Electroacupuncture ameliorates cognitive impairment through inhibition of NF-κB-mediated neuronal cell apoptosis in cerebral ischemia-reperfusion injured rats.

    Science.gov (United States)

    Feng, Xiaodong; Yang, Shanli; Liu, Jiao; Huang, Jia; Peng, Jun; Lin, Jiumao; Tao, Jing; Chen, Lidian

    2013-05-01

    Cognitive impairment is a serious mental deficit following stroke that severely affects the quality of life of stroke survivors. Nuclear factor‑κB (NF-κB)-mediated neuronal cell apoptosis is involved in the development of post-stroke cognitive impairment; therefore, it has become a promising target for the treatment of impaired cognition. Acupuncture at the Baihui (DU20) and Shenting (DU24) acupoints is commonly used in China to clinically treat post‑stroke cognitive impairment; however, the precise mechanism of its action is largely unknown. In the present study, we evaluated the therapeutic efficacy of electroacupuncture against post-stroke cognitive impairment and investigated the underlying molecular mechanisms using a rat model of focal cerebral ischemia-reperfusion (I/R) injury. Electroacupuncture at Baihui and Shenting was identified to significantly ameliorate neurological deficits and reduce cerebral infarct volume. Additionally, electroacupuncture improved learning and memory ability in cerebral I/R injured rats, demonstrating its therapeutic efficacy against post-stroke cognitive impairment. Furthermore, electroacupuncture significantly suppressed the I/R-induced activation of NF-κB signaling in ischemic cerebral tissues. The inhibitory effect of electroacupuncture on NF-κB activation led to the inhibition of cerebral cell apoptosis. Finally, electroacupuncture markedly downregulated the expression of pro-apoptotic Bax and Fas, two critical downstream target genes of the NF-κB pathway. Collectively, our findings suggest that inhibition of NF-κB‑mediated neuronal cell apoptosis may be one mechanism via which electroacupuncture at Baihui and Shenting exerts a therapeutic effect on post-stroke cognitive impairment.

  6. Impaired CD40L signaling is a cause of defective IL-12 and TNF-alpha production in Sézary syndrome: circumvention by hexameric soluble CD40L.

    Science.gov (United States)

    French, Lars E; Huard, Bertrand; Wysocka, Maria; Shane, Ryan; Contassot, Emmanuel; Arrighi, Jean-François; Piguet, Vincent; Calderara, Silvio; Rook, Alain H

    2005-01-01

    Sézary syndrome (SzS) is an advanced form of cutaneous T-cell lymphoma characterized by peripheral blood involvement, impaired cell-mediated immunity, and T-helper 1 (TH1) cytokine production. To understand the mechanism of these defects, we studied the expression and function of CD40L in peripheral blood mononuclear cells (PBMCs) of patients with SzS. We found that PBMCs of patients with SzS have a defect in interleukin-12 (IL-12) and tumor necrosis factor-alpha (TNF-alpha) production upon anti-CD3 stimulation and that tumor CD4+ T lymphocytes have a specific defect in CD40L induction after anti-CD3 ligation in vitro. This defect may explain the poor IL-12 production, because IL-12 production by anti-CD3-stimulated PBMCs was dependent on CD40L in healthy donors. The observed defect in tumor cell CD40L expression appears to be due to inappropriate T-cell signaling upon CD3 ligation, because expression of other T-cell activation antigens such as CD25, and to a lesser extent CD69, are also impaired on tumor cells. Importantly however, the inability of SzS PBMCs to appropriately produce IL-12 and TNF-alpha could be restored by recombinant hexameric CD40L. Taken together, our results demonstrate that impaired IL-12 and TNF-alpha production in SzS is associated with defective CD4+ T lymphocyte CD40L induction and indicate that CD40L may have therapeutic potential in SzS.

  7. Psoriasis is not associated with IL-12p70/IL-12p40 production and IL12B promoter polymorphism

    DEFF Research Database (Denmark)

    Litjens, Nicolle H R; van der Plas, Mariena J A; Ravensbergen, Bep

    2004-01-01

    Psoriasis is a type-1 T cell-mediated, chronic inflammatory disease. Since interleukin (IL)-12p70 promotes the development of type-1 T cells, we investigated whether psoriasis is associated with an increased production of this cyctokine by blood cells. Results revealed that the production of IL-12p....... The frequencies of the various genotypes for the promoter region of the gene encoding IL-12p40 (IL12B) did not differ between psoriasis patients and controls. No association was observed between the various IL12B promoter genotypes and the LPS-stimulated production of IL-12p70 or IL-12p40 by blood cells. Together......, psoriasis is not associated with a promoter polymorphism in the IL12B gene nor with the production of IL-12p70 by LPS-stimulated blood cells....

  8. Solid-state synthesis of Li_4Ti_5O_1_2 whiskers from TiO_2-B

    International Nuclear Information System (INIS)

    Yao, Wenjun; Zhuang, Wei; Ji, Xiaoyan; Chen, Jingjing; Lu, Xiaohua; Wang, Changsong

    2016-01-01

    Highlights: • The Li_4Ti_5O_1_2 whiskers were synthesized from TiO_2-B whiskers via a solid state reaction. • The TiO_2-B crystal structure for lithium diffusion is easier than anatase. • The separated diffusion and reaction process is crucial for the solid-state syntheses of Li_4Ti_5O_1_2 whiskers. - Abstract: In this work, Li_4Ti_5O_1_2 (LTO) was synthesized from the precursors of TiO_2-B and anatase whiskers, respectively. The synthesized LTO whiskers from TiO_2-B whiskers via a solid state reaction at 650 °C have a high degree of crystallinity with an average diameter of 300 nm. However, when anatase whiskers were used as the precursor, only particle morphology LTO was produced at 750 °C. The further analysis of the precursors, the intermediate products and the final products reveal that the crystal structure of the anatase hinders the diffusion of lithium, leading to a typical reaction–diffusion process. Under this condition, only particle morphology LTO can be produced. However, the crystal structure of the TiO_2-B is easy for lithium diffusion and the process is performed in two separated steps (i.e., diffusion and reaction), which makes it possible to decrease the solid-state reaction temperature down to 650 °C and then maintain the morphologies of whiskers.

  9. Genome-scale reconstruction of metabolic networks of Lactobacillus casei ATCC 334 and 12A.

    Directory of Open Access Journals (Sweden)

    Elena Vinay-Lara

    Full Text Available Lactobacillus casei strains are widely used in industry and the utility of this organism in these industrial applications is strain dependent. Hence, tools capable of predicting strain specific phenotypes would have utility in the selection of strains for specific industrial processes. Genome-scale metabolic models can be utilized to better understand genotype-phenotype relationships and to compare different organisms. To assist in the selection and development of strains with enhanced industrial utility, genome-scale models for L. casei ATCC 334, a well characterized strain, and strain 12A, a corn silage isolate, were constructed. Draft models were generated from RAST genome annotations using the Model SEED database and refined by evaluating ATP generating cycles, mass-and-charge-balances of reactions, and growth phenotypes. After the validation process was finished, we compared the metabolic networks of these two strains to identify metabolic, genetic and ortholog differences that may lead to different phenotypic behaviors. We conclude that the metabolic capabilities of the two networks are highly similar. The L. casei ATCC 334 model accounts for 1,040 reactions, 959 metabolites and 548 genes, while the L. casei 12A model accounts for 1,076 reactions, 979 metabolites and 640 genes. The developed L. casei ATCC 334 and 12A metabolic models will enable better understanding of the physiology of these organisms and be valuable tools in the development and selection of strains with enhanced utility in a variety of industrial applications.

  10. Valsartan Improves β-Cell Function and Insulin Sensitivity in Subjects With Impaired Glucose Metabolism

    Science.gov (United States)

    van der Zijl, Nynke J.; Moors, Chantalle C.M.; Goossens, Gijs H.; Hermans, Marc M.H.; Blaak, Ellen E.; Diamant, Michaela

    2011-01-01

    OBJECTIVE Recently, the Nateglinide and Valsartan in Impaired Glucose Tolerance Outcomes Research Trial demonstrated that treatment with the angiotensin receptor blocker (ARB) valsartan for 5 years resulted in a relative reduction of 14% in the incidence of type 2 diabetes in subjects with impaired glucose metabolism (IGM). We investigated whether improvements in β-cell function and/or insulin sensitivity underlie these preventive effects of the ARB valsartan in the onset of type 2 diabetes. RESEARCH DESIGN AND METHODS In this randomized controlled, double-blind, two-center study, the effects of 26 weeks of valsartan (320 mg daily; n = 40) or placebo (n = 39) on β-cell function and insulin sensitivity were assessed in subjects with impaired fasting glucose and/or impaired glucose tolerance, using a combined hyperinsulinemic-euglycemic and hyperglycemic clamp with subsequent arginine stimulation and a 2-h 75-g oral glucose tolerance test (OGTT). Treatment effects were analyzed using ANCOVA, adjusting for center, glucometabolic status, and sex. RESULTS Valsartan increased first-phase (P = 0.028) and second-phase (P = 0.002) glucose-stimulated insulin secretion compared with placebo, whereas the enhanced arginine-stimulated insulin secretion was comparable between groups (P = 0.25). In addition, valsartan increased the OGTT-derived insulinogenic index (representing first-phase insulin secretion after an oral glucose load; P = 0.027). Clamp-derived insulin sensitivity was significantly increased with valsartan compared with placebo (P = 0.049). Valsartan treatment significantly decreased systolic and diastolic blood pressure compared with placebo (P valsartan treatment increased glucose-stimulated insulin release and insulin sensitivity in normotensive subjects with IGM. These findings may partly explain the beneficial effects of valsartan in the reduced incidence of type 2 diabetes. PMID:21330640

  11. Pathogenetic Aspects of Preventive Correction of Cognitive Impairment in Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    T.I. Nasonova

    2016-02-01

    Full Text Available Objective. To study the opportunities to increase the efficiency of pathogenetic therapy in patients with chronic cerebrovascular diseases (CVD (discirculatory encephalopathy, DE on the background of metabolic syndrome (MS using the drug Vitaxon®. The feature of the work was to identify strategic areas of the brain in cognitive and emotional disorders in patients with MS and its absence. Materials and methods. We observed 49 patients with DE II degree aged 37 to 73 years against the background of MS. The main group — 30 patients — received Vitaxon® as a part of treatment. The control group consisted of 19 patients with DE degree II following MS, comparable in the age and stage of the disease, who were not taking Vitaxon®. Patients were observed for 12 weeks. In addition to neurological, general clinical examinations, detection of MS signs, we have used neuropsychological tests by Mini Mental State Examination (MMSE and Montreal Cognitive Assessment (МоСА, Spielberger anxiety scale; Beck depression scale; study of attention: search of numbers by Schulte tables with the assessment of task-performance time. The brain and its liquor system in 41 patients (27 patients with MS — the first group and 14 patients without MS — the second group were evaluated using the method of volumetry (measuring the volume of certain brain regions, on the magnetic resonance imaging scanner Toshiba Vantage Titan 1.5. Results. Cognitive impairment in both groups manifested by the loss of memory, attention disorders, slowing of mental processes. After 12 weeks, the median by the MMSE significantly increased by 3.3 % (p < 0.05 compared with the first test in patients who received Vitaxon®. By МоСА, which is more sensitive when determining the mild cognitive impairment, in a group of Vitaxon® cognitive functions improved by 5 %, while in the control group — by 1.66 %. By Spielberger scale, state anxiety indicators improved more in the group of

  12. Forms and Amounts of Vitamin B12 in Infant Formula: A Pilot Study

    DEFF Research Database (Denmark)

    Greibe, Eva; Nexø, Ebba

    2016-01-01

    12 (cyano-B12). Here we test commercially available infant formulas. METHODS: Eleven commercially available infant formulas were measured for content of B12 and analyzed for the presence of B12-binding proteins and forms of B12 using size exclusion chromatography and HPLC. RESULTS: All infant...... formulas contained B12 by and large in accord with the informations given on the package inserts. None of the formulas contained protein-bound B12, and cyano-B12 accounted for 19-78% of the total amount of B12 present, while hydroxo-B12 constituted more or less the rest. CONCLUSIONS: This pilot study shows...... that infant formula differs from breast milk in providing the infant with free B12, rather than protein-bound B12, and by a relative high content of cyano-B12. The consequence of supplying the infant with synthetic cyano-B12 remains to be elucidated....

  13. Xanthomonas citri ssp. citri requires the outer membrane porin OprB for maximal virulence and biofilm formation.

    Science.gov (United States)

    Ficarra, Florencia A; Grandellis, Carolina; Galván, Estela M; Ielpi, Luis; Feil, Regina; Lunn, John E; Gottig, Natalia; Ottado, Jorgelina

    2017-06-01

    Xanthomonas citri ssp. citri (Xcc) causes canker disease in citrus, and biofilm formation is critical for the disease cycle. OprB (Outer membrane protein B) has been shown previously to be more abundant in Xcc biofilms compared with the planktonic state. In this work, we showed that the loss of OprB in an oprB mutant abolishes bacterial biofilm formation and adherence to the host, and also compromises virulence and efficient epiphytic survival of the bacteria. Moreover, the oprB mutant is impaired in bacterial stress resistance. OprB belongs to a family of carbohydrate transport proteins, and the uptake of glucose is decreased in the mutant strain, indicating that OprB transports glucose. Loss of OprB leads to increased production of xanthan exopolysaccharide, and the carbohydrate intermediates of xanthan biosynthesis are also elevated in the mutant. The xanthan produced by the mutant has a higher viscosity and, unlike wild-type xanthan, completely lacks pyruvylation. Overall, these results suggest that Xcc reprogrammes its carbon metabolism when it senses a shortage of glucose input. The participation of OprB in the process of biofilm formation and virulence, as well as in metabolic changes to redirect the carbon flux, is discussed. Our results demonstrate the importance of environmental nutrient supply and glucose uptake via OprB for Xcc virulence. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  14. Forms and Amounts of Vitamin B12 in Infant Formula: A Pilot Study.

    Directory of Open Access Journals (Sweden)

    Eva Greibe

    Full Text Available Infant formula is based on cow's milk and designed to mimic breast milk for substitution. Vitamin B12 (B12 is bound to proteins in both breast milk and cow's milk, and in milk from both species the vitamin occurs mainly in its natural form such as hydroxo-B12 with little or no synthetic B12 (cyano-B12. Here we test commercially available infant formulas.Eleven commercially available infant formulas were measured for content of B12 and analyzed for the presence of B12-binding proteins and forms of B12 using size exclusion chromatography and HPLC.All infant formulas contained B12 by and large in accord with the informations given on the package inserts. None of the formulas contained protein-bound B12, and cyano-B12 accounted for 19-78% of the total amount of B12 present, while hydroxo-B12 constituted more or less the rest.This pilot study shows that infant formula differs from breast milk in providing the infant with free B12, rather than protein-bound B12, and by a relative high content of cyano-B12. The consequence of supplying the infant with synthetic cyano-B12 remains to be elucidated.

  15. Forms and Amounts of Vitamin B12 in Infant Formula: A Pilot Study.

    Science.gov (United States)

    Greibe, Eva; Nexo, Ebba

    2016-01-01

    Infant formula is based on cow's milk and designed to mimic breast milk for substitution. Vitamin B12 (B12) is bound to proteins in both breast milk and cow's milk, and in milk from both species the vitamin occurs mainly in its natural form such as hydroxo-B12 with little or no synthetic B12 (cyano-B12). Here we test commercially available infant formulas. Eleven commercially available infant formulas were measured for content of B12 and analyzed for the presence of B12-binding proteins and forms of B12 using size exclusion chromatography and HPLC. All infant formulas contained B12 by and large in accord with the informations given on the package inserts. None of the formulas contained protein-bound B12, and cyano-B12 accounted for 19-78% of the total amount of B12 present, while hydroxo-B12 constituted more or less the rest. This pilot study shows that infant formula differs from breast milk in providing the infant with free B12, rather than protein-bound B12, and by a relative high content of cyano-B12. The consequence of supplying the infant with synthetic cyano-B12 remains to be elucidated.

  16. The formation of AlB2 in an Al-B master alloy

    International Nuclear Information System (INIS)

    Wang Xiaoming

    2005-01-01

    The formation of borides in an Al-3 wt.%B master alloy, produced via chemical reactions of KBF 4 and aluminium has been investigated. The chemical reactions produce boron, which dissolves into molten aluminium and subsequently forms aluminium borides. Backscattered electron imaging (BEI) of the Al-3 wt.%B master alloy under a scanning electron microscope (SEM) revealed the presence of two types of phases that contain different levels of boron. Combined with X-ray diffraction (XRD) results, the two types of phases are identified as AlB 2 on AlB 12 . This gives a direct evidence for a peritectic reaction of AlB 12 and aluminium, which produces AlB 2 . The thermodynamic properties of the reactions that may be involved are examined, and the presence of AlB 12 phase in the master alloy explained. The observed microstructure is explained according to the peritectic reaction in an Al-B phase diagram. The stability of AlB 2 and AlB 12 at lower temperature than 975 deg. C is clarified

  17. [Vitamin B12 Deficiency in Type 2 Diabetes Mellitus].

    Science.gov (United States)

    Tavares Bello, Carlos; Capitão, Ricardo Miguel; Sequeira Duarte, João; Azinheira, Jorge; Vasconcelos, Carlos

    2017-10-31

    Type 2 diabetes mellitus is a common disease, affecting up to 13.1% of the Portuguese population. In addition to the known micro and macrovascular complications, drug side effects constitute a major concern, leading to changes in the treatment guidelines, which favor safety over efficacy. Metformin is the first-line pharmacological treatment for most patients with type 2 diabetes mellitus; however, it has been associated with vitamin B12 deficiency in up to 30% of treated patients. The authors describe the prevalence of vitamin B12 deficiency in a diabetic population and explore the possible underlying factors. Retrospective, observational study. Clinical and laboratory data of type 2 diabetes mellitus patients whose vitamin B12 status was evaluated in the last decade (2005 - 2016) were analyzed. Patients with known malabsorptive syndromes or having undergone bariatric surgery were excluded from the study. Statistical analysis of the data was done and the results were considered statistically significant at p values 2.2 years and 11 ± 10.4 years of type 2 diabetes mellitus duration. These patients had a high prevalence of complications: diabetic renal disease 47.7%, neuropathy 9.2%, retinopathy 14.9%, coronary artery disease 8.4%, cerebrovascular disease 10.9%, and peripheral arterial disease 5.5%. Vitamin B12 deficiency (21.4% of the population and this subgroup was older (68.4 vs 65.8 years, p = 0.006), had a longer type 2 diabetes mellitus duration (13.35 vs 10.36 years; p = 0.001), higher prevalence of retinopathy (20.9% vs 13.3%; p = 0.005) and thyroid dysfunction (34% vs 23.7%; p = 0.002). Vitamin B12 deficiency was also more frequent in patients treated with metformin (24.7% vs 15.8%; p = 0.017), antiplatelet agents (25.4% vs 16.2%, p 26.8% vs 18.2%; p = 0.001). After adjustment for possible confounders, the variables associated with B12 deficiency were: metformin, hypothyroidism, age and type 2 diabetes mellitus duration. Despite the retrospective design

  18. Change in energy metabolism of in vitro produced embryos: an alternative to make them more cryoresistant?

    Directory of Open Access Journals (Sweden)

    Luzia Renata Oliveira Dias

    2017-08-01

    Full Text Available For the development of in vitro produced (IVP as well as in vivo produced bovine embryos, it is extremely important that their energy metabolism works properly because the embryo must be able to metabolize energy substrates that are necessary for producing energy. Lipids play an important role in early embryonic development, acting as source of energy for oocytes and embryos. However, it is known that oocytes and embryos, mainly IVP, accumulate large amounts of lipids in the cytoplasm. Although they are extremely important in embryonic development, lipids have been associated with the reduced survival of bovine embryos following cryopreservation. There is evidence that at least four different categories of lipids affect embryo survival after cryopreservation, including triglycerides (TAG, free fatty acids, cholesterol and phospholipids. Thus, many studies are being conducted to improve the resistance of IVP embryos to the cryopreservation process by reducing the concentration or removing the source of serum from the medium or by reducing oocyte/embryo lipids using mechanical or chemical means. Regarding the use of delipidating agents that reduce the uptake and synthesis of fatty acids (FA by cells, substances such as phenazine ethosulfate (PES, forskolin, L-carnitine and isomers of conjugated linoleic acid (CLA have been utilized. This review aims to address important issues related to embryonic energy metabolism, the importance of lipid metabolism and its relation to the cryopreservation of IVP bovine embryos by summarizing the latest research in this field.

  19. Characterization of substances that restore impaired cell division of UV-irradiated E. coli B

    International Nuclear Information System (INIS)

    Yoshiyama, Y.; Shimoii, H.; Tamura, G.

    1981-01-01

    Substances which restore impaired cell division in UV-irradiated E. coli B were surveyed among various bacteria. The active substance was found only in several genera of Gram-negative bacteria, i.e., Escherichia, Enterobacter, Salmonella and some species of Pseudomonas. The activity in the dialyzed cell extract of E. coli B/r was observed in the presence of β-NAD and was enhanced by Mg 2+ and Mn 2+ . The active substance was very labile, but the activity was protected by 1 mM dithiothreitol in the process of purification. The activity of a fraction recovered through DEAE-cellulose column chromatography was stimulated by the presence of membrane fraction. Upon treatment with lipid-degrading enzymes and proteases, the division-stimulating activity was lost or reduced. It appears that the inactivation by lipase and phospholipase A2 was due to the formation of lysophospholipids and that a proteinous substance participated in the recovery of impaired cell division of UV-irradiated E. coli B

  20. Transgenic neuronal expression of proopiomelanocortin attenuates hyperphagic response to fasting and reverses metabolic impairments in leptin-deficient obese mice.

    Science.gov (United States)

    Mizuno, Tooru M; Kelley, Kevin A; Pasinetti, Giulio M; Roberts, James L; Mobbs, Charles V

    2003-11-01

    Hypothalamic proopiomelanocortin (POMC) gene expression is reduced in many forms of obesity and diabetes, particularly in those attributable to deficiencies in leptin or its receptor. To assess the functional significance of POMC in mediating metabolic phenotypes associated with leptin deficiency, leptin-deficient mice bearing a transgene expressing the POMC gene under control of the neuron-specific enolase promoter were produced. The POMC transgene attenuated fasting-induced hyperphagia in wild-type mice. Furthermore, the POMC transgene partially reversed obesity, hyperphagia, and hypothermia and effectively normalized hyperglycemia, glucosuria, glucose intolerance, and insulin resistance in leptin-deficient mice. Effects of the POMC transgene on glucose homeostasis were independent of the partial correction of hyperphagia and obesity. Furthermore, the POMC transgene normalized the profile of hepatic and adipose gene expression associated with gluconeogenesis, glucose output, and insulin sensitivity. These results indicate that central POMC is a key modulator of glucose homeostasis and that agonists of POMC products may provide effective therapy in treating impairments in glucose homeostasis when hypothalamic POMC expression is reduced, as occurs with leptin deficiency, hypothalamic damage, and aging.

  1. Metabolic syndrome impairs notch signaling and promotes apoptosis in chronically ischemic myocardium.

    Science.gov (United States)

    Elmadhun, Nassrene Y; Sabe, Ashraf A; Lassaletta, Antonio D; Chu, Louis M; Kondra, Katelyn; Sturek, Michael; Sellke, Frank W

    2014-09-01

    Impaired angiogenesis is a known consequence of metabolic syndrome (MetS); however, the mechanism is not fully understood. Recent studies have shown that the notch signaling pathway is an integral component of cardiac angiogenesis. We tested, in a clinically relevant swine model, the effects of MetS on notch and apoptosis signaling in chronically ischemic myocardium. Ossabaw swine were fed either a regular diet (control [CTL], n = 8) or a high-cholesterol diet (MetS, n = 8) to induce MetS. An ameroid constrictor was placed to induce chronic myocardial ischemia. Eleven weeks later, the wine underwent cardiac harvest of the ischemic myocardium. Downregulation of pro-angiogenesis proteins notch2, notch4, jagged2, angiopoietin 1, and endothelial nitric oxide synthase were found in the MetS group compared with the CTL group. Also, upregulation of pro-apoptosis protein caspase 8 and downregulation of anti-angiogenesis protein phosphorylated forkhead box transcription factor 03 and pro-survival proteins phosphorylated P38 and heat shock protein 90 were present in the MetS group. Cell death was increased in the MetS group compared with the CTL group. Both CTL and MetS groups had a similar arteriolar count and capillary density, and notch3 and jagged1 were both similarly concentrated in the smooth muscle wall. MetS in chronic myocardial ischemia significantly impairs notch signaling by downregulating notch receptors, ligands, and pro-angiogenesis proteins. MetS also increases apoptosis signaling, decreases survival signaling, and increases cell death in chronically ischemic myocardium. Although short-term angiogenesis appears unaffected in this model of early MetS, the molecular signals for angiogenesis are impaired, suggesting that inhibition of notch signaling might underlie the decreased angiogenesis in later stages of MetS. Copyright © 2014 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  2. Investigation of the Relationship Between Molluscum Pendulum and Impairment of Carbohydrate Metabolism

    Directory of Open Access Journals (Sweden)

    Murat Kemal

    2011-12-01

    Full Text Available Background and Design: High blood sugar level, insulin resistance and dyslipidemia are accepted to be indicators of impaired carbohydrate metabolism. The potential role of these markers as well as the serum levels of insulin growth factor (IGF-1 and insulin growth factor binding protein (IGFBP-3 in the pathogenesis of molluscum pendulum were investigated in this study. Materials and methods: Forty-five molluscum pendulum patients and 45 age-, sex- and body mass index-matched healthy individuals as controls were enrolled in the study. Evaluation included dermatological examination, measurement of insulin resistance using HOMA-IR method, lipid profile, fasting blood glucose, postprandial blood glucose, fasting insulin, postprandial insulin, serum IGF-1 and IGFBP-3 levels. Results: Postprandial blood glucose, fasting insulin, postprandial insulin and Homeostazis Model Assesment (HOMA-IR levels of molluscum pendulum patients were statistically higher than those of controls (p=0.037, p=0.027, p=0.03, p=0.021 respectively, whereas serum IGF-1 and IGFBP-3 levels were significantly lower than those of controls (p=0.008, p=0.001. There was no difference in fasting glucose and lipid profile between the two groups. Three patients (6.7% had DM and one patient (13.3% had impaired glucose tolerance. Only one participant from the control group (2,2% had impaired glucose tolerance. The number of molluscum pendulum lesions correlated with fasting glucose, postprandial glucose, fasting insulin, postprandial insulin, HOMA-IR, total cholesterol and triglyceride levels. Conclusion: Molluscum pendulum patients should have blood glucose and insulin resistance measurements done and be followed up for DM. Patients with multiple lesions need to be evaluated for lipid problems. We suggest that serum IGF-1 and IGFBP-3 levels have no role in the pathogenesis of molluscum pendulum. (Turk­derm 2011; 45: 188-92

  3. Vegetarer har høj risiko for at få B12-vitaminmangel

    DEFF Research Database (Denmark)

    Javid, Parva; Christensen, Erik

    2016-01-01

    Since vegetarians have a lower intake of vitamin B12 (B12) than non-vegetarians, they are at increased risk of developing B12 deficiency. The less animal products the food contains the worse the B12 status. However, even lacto-ovo-vegetarians run the risk of becoming deficient in B12. Vegetarians...... are recommended regularly to take supplements of B12, and they should be informed of the lacking content of B12 of plant products and the hazards of B12 deficiency. Furthermore, vegetarians should routinely be checked for possible B12 deficiency....

  4. Magnetic Properties of New Triangular Lattice Magnets A${_4}$B'B${_2}$O$_{12}$

    OpenAIRE

    Rawl, Ryan; Lee, Minseong; Choi, Eun Sang; Li, Guang; Chen, Kuan-Wen; Baumbach, Ryan; Cruz, Clarina R. dela; Ma, Jie; Zhou, Haidong

    2017-01-01

    The geometrically frustrated two dimensional triangular lattice magnets A${_4}$B'B${_2}$O$_{12}$ (A = Ba, Sr, La; B' = Co, Ni, Mn; B = W, Re) have been studied by x-ray diffraction, AC and DC susceptibilities, powder neutron diffraction, and specific heat measurements. The results reveal that (i) the samples containing Co$^{2+}$ (effective spin-1/2) and Ni$^{2+}$ (spin-1) ions with small spin numbers exhibit ferromagnetic (FM) ordering while the sample containing Mn$^{2+}$ (spin-5/2) ions wit...

  5. Arginine metabolism is altered in adults with A-B + ketosis-prone diabetes

    Science.gov (United States)

    A-B + ketosis-prone diabetes (KPD) is a subset of type 2 diabetes in which patients have severe but reversible B cell dysfunction of unknown etiology. Plasma metabolomic analysis indicates that abnormal arginine metabolism may be involved. The objective of this study was to determine the relation be...

  6. Development and Validation of the Somatic Symptom Disorder-B Criteria Scale (SSD-12).

    Science.gov (United States)

    Toussaint, Anne; Murray, Alexandra M; Voigt, Katharina; Herzog, Annabel; Gierk, Benjamin; Kroenke, Kurt; Rief, Winfried; Henningsen, Peter; Löwe, Bernd

    2016-01-01

    To develop and validate a new self-report questionnaire for the assessment of the psychological features of Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition somatic symptom disorder. The Somatic Symptom Disorder-B Criteria Scale (SSD-12) was developed in several steps from an initial pool of 98 items. The SSD-12 is composed of 12 items; each of the three psychological subcriteria is measured by four items. In a cross-sectional study, the SSD-12 was administered to 698 patients (65.8% female, mean [standard deviation] age = 38.79 [14.15] years) from a psychosomatic outpatient clinic. Item and scale characteristics as well as measures of reliability and validity were determined. The SSD-12 has good item characteristics and excellent reliability (Cronbach α = .95). Confirmatory factor analyses suggested that a three-factorial structure that reflects the three psychological criteria interpreted as cognitive, affective, and behavioral aspects (n = 663, Comparative Fit Index > 0.99, Tucker-Lewis Index > 0.99, Root Mean Square Error of Approximation = 0.06, 90% confidence interval = 0.01-0.08). SSD-12 total sum score was significantly associated with somatic symptom burden (r = 0.47, p psychological symptom burden reported higher general physical and mental health impairment and significantly higher health care use. The SSD-12 is the first self-report questionnaire that operationalizes the new psychological characteristics of Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition somatic symptom disorder. Initial assessment indicates that the SSD-12 has sufficient reliability and validity to warrant further testing in both research and clinical settings.

  7. Hearing impairment after childhood bacterial meningitis dependent on etiology in Luanda, Angola.

    Science.gov (United States)

    Karppinen, Mariia; Pelkonen, Tuula; Roine, Irmeli; Cruzeiro, Manuel Leite; Peltola, Heikki; Pitkäranta, Anne

    2015-11-01

    Childhood bacterial meningitis (BM) damages hearing, but the potential of different agents to cause impairment in developing countries is poorly understood. We compared the extent of hearing impairment in BM caused by Haemophilus influenzae type b (Hib), Streptococcus pneumoniae or Neisseria meningitidis among children aged 2 months to 13 years in Luanda, Angola. Hearing of 685 ears of 351 (78%) survivors among 723 enrolled patients was tested by brainstem-evoked response audiometry on day 7 of hospitalization. The causative agent was sought by cerebrospinal fluid culture, PCR or the latex-agglutination test. Altogether, 45 (12%) of the survivors were deaf (threshold >80 dB), and 20 (6%) had a threshold of 80 dB. The incidence of any kind of hearing loss, with ≥60 dB, was 34% with Hib, 30% with S. pneumoniae, 19% with N. meningitidis and 33% with other bacteria. Examining all ears combined and using the ≥60 dB threshold, the agents showed dissimilar harm (P=0.005), Hib being the most frequent and N. meningitidis the most infrequent cause. Compared to other agents, S. pneumoniae more often caused deafness (P=0.025) and hearing impairment at ≥60 dB (P=0.017) in infants, whereas this level of hearing loss in older survivors was most commonly caused by Hib (P=0.031). BM among children in Angola is often followed by hearing impairment, but the risk depends on the agent. S. pneumoniae is a major problem among infants, whereas Hib is mainly a risk beyond 12 months. N. meningitidis impairs hearing less frequently. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Activity restriction, impaired capillary function, and the development of insulin resistance in lean primates.

    Science.gov (United States)

    Chadderdon, Scott M; Belcik, J Todd; Smith, Elise; Pranger, Lindsay; Kievit, Paul; Grove, Kevin L; Lindner, Jonathan R

    2012-09-01

    Insulin produces capillary recruitment in skeletal muscle through a nitric oxide (NO)-dependent mechanism. Capillary recruitment is blunted in obese and diabetic subjects and contributes to impaired glucose uptake. This study's objective was to define whether inactivity, in the absence of obesity, leads to impaired capillary recruitment and contributes to insulin resistance (IR). A comprehensive metabolic and vascular assessment was performed on 19 adult male rhesus macaques (Macaca mulatta) after sedation with ketamine and during maintenance anesthesia with isoflurane. Thirteen normal-activity (NA) and six activity-restricted (AR) primates underwent contrast-enhanced ultrasound to determine skeletal muscle capillary blood volume (CBV) during an intravenous glucose tolerance test (IVGTT) and during contractile exercise. NO bioactivity was assessed by flow-mediated vasodilation. Although there were no differences in weight, basal glucose, basal insulin, or truncal fat, AR primates were insulin resistant compared with NA primates during an IVGTT (2,225 ± 734 vs. 5,171 ± 3,431 μg·ml⁻¹·min⁻¹, P < 0.05). Peak CBV was lower in AR compared with NA primates during IVGTT (0.06 ± 0.01 vs. 0.12 ± 0.02 ml/g, P < 0.01) and exercise (0.10 ± 0.02 vs. 0.20 ± 0.02 ml/g, P < 0.01), resulting in a lower peak skeletal muscle blood flow in both circumstances. The insulin-mediated changes in CBV correlated inversely with the degree of IR and directly with activity. Flow-mediated dilation was lower in the AR primates (4.6 ± 1.0 vs. 9.8 ± 2.3%, P = 0.01). Thus, activity restriction produces impaired skeletal muscle capillary recruitment during a carbohydrate challenge and contributes to IR in the absence of obesity. Reduced NO bioactivity may be a pathological link between inactivity and impaired capillary function.

  9. Vitamin B12 supplementation during pregnancy and postpartum improves B12 status of both mothers and infants but vaccine response in mothers only: a randomized clinical trial in Bangladesh

    Science.gov (United States)

    Purpose Poor vitamin B12 (B12) status is associated with adverse outcomes in pregnancy and infancy. Little is known about effects of B12 supplementation on immune function. The present study aimed to evaluate effects of pre- and postnatal B12 supplementation on biomarkers of B12 status and vaccine-s...

  10. Vitamin B12 Deficiency in Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Carlos Tavares Bello

    2017-10-01

    Conclusion: Further studies are needed to identify the risk factors for the B12 deficit. The recognition of these variables will contribute to optimize the screening and prevention of the B12 deficiency in type 2 diabetes mellitus.

  11. Folato, vitamina B12 e ferritina sérica e defeitos do tubo neural Folate, vitamin B12, serum ferritin and defects of the neural tube

    Directory of Open Access Journals (Sweden)

    Gizele Thame

    1998-09-01

    Full Text Available Objetivo: verificar os níveis de folatos, vitamina B12 e ferritina em pacientes cujos fetos apresentaram defeitos de tubo neural (DTN. O folato sangüíneo e a vitamina B12 atuam como cofatores para as enzimas envolvidas na biossíntese do DNA. A interrupção deste processo pode impedir o fechamento do tubo neural. A suplementação vitamínica contendo folato pode reduzir as taxas de ocorrência de defeitos de tubo neural, embora exista a preocupação de que esta prevenção possa mascarar a deficiência de vitamina B12. Métodos: dosagens de vitamina B12 e ferritina pelo método de enzimaimunoensaio com micropartículas e a dosagens de ácido fólico pelo método de captura iônica (IMx ABBOTT. Resultados: a porcentagem de gestantes com deficiência de vitamina B12 (níveis séricos Purpose: to determine folate, vitamin B12 and ferritin levels in patients whose fetuses presented neural-tube defects (NTD. Blood folate and vitamin B12 act as cofactors of enzymes involved in DNA biosynthesis. Interruption of this process may block neural-tube closing. Vitamin supplementation with folate may reduce occurrence rates and recurrence of NTD, although there is concern about the fact that this prevention may mask vitamin B12 deficiency. Methods: vitamin B12 and ferritin determinations by enzyme immunoassay with microparticles and folic acid determination using the ion capture method (IMx ABBOTT. Results: the percentage of pregnant women with vitamin B12 deficirncy (serum levels < 150 pg/ml was 11.8%. There was no case of folate deficiency (serum levels < 3.0 ng/ml and prevalence of pregnant women with iron store deficiency was 47.1% (serum levels < ng/mg. Conclusions: occording to the results obtained in this study (prevalence of 11.8% of vitamin B12 and 0% of folate deficient pregnant women we suggest that supplementation should be administered after serum vitamin B12 determination.

  12. Serum total homocystein, folate and vitamin B12 levels and their correlation with antipsychotic drug doses in adult male patients with chronic schizophrenia.

    Science.gov (United States)

    Eren, Esin; Yeğin, Ayşenur; Yilmaz, Necat; Herken, Hasan

    2010-01-01

    Elevated blood levels of homocysteine (hCY) have been associated with schizophrenic male patients. However, controversy remains regarding the association between lowered plasma folate and vitamin B12, hyperhomocysteinemia, and schizophrenia. Sixty-six (66) male patients with chronic schizophrenia were investigated to test the hypotheses that alterations in Hcy, folate, and vitamin B12 levels might be related to the antipsychotic drug doses used in treatment. Serum total homocysteine, folic acid, and vitamin B12 levels were determined by chemiluminescence methods in both patients and control subjects. The patients were grouped according to the antipsychotic drug doses used in their treatment. Patients had higher homocysteine levels but they did not differ from controls in terms of folate and vitamin B12 levels. On the other hand, only folate levels were negatively correlated in the patient group treated with higher therapeutic doses of chlorpromazine equivalents (> 400 mg/day) compared to the patient group with lower doses (< 400 mg/day). Our findings show that higher typical antipsychotic drugs may play a role as modifiying factor for folate metabolism in chronic schizoprenic male patients.

  13. Correlation of plasma B-type natriuretic peptide levels with metabolic risk markers.

    Science.gov (United States)

    Ahued-Ortega, José Armando; León-García, Plácido Enrique; Hernández-Pérez, Elizabeth

    2018-04-17

    Natriuretic peptide type B (BNP) is a marker of myocardium injury. This peptide has been associated with metabolic risk markers, although controversy exists in this regard. The aim of the present study was to determine the correlation of plasma BNP levels with metabolic risk parameters. A retrospective, observational study that included 152 patients, who were classified according to their clinical diagnosis as patients with metabolic syndrome. Plasma BNP levels and clinical metabolic parameters were assessed by using Spearmańs rank correlation coefficient. A significant inverse association with weight (r=-.408; p<.0001) and BMI (r=-.443; p<.001) was obtained. While a positive significant association with systolic pressure (r=.324; p<.001) was observed. A significant decrease was found in BNP levels and components of metabolic syndrome. (p<.05). Based on the results from this study, we can conclude that BNP determination could be an adequate metabolic marker. Copyright © 2018 Elsevier España, S.L.U. All rights reserved.

  14. Developmental Programming in Response to Intrauterine Growth Restriction Impairs Myoblast Function and Skeletal Muscle Metabolism

    Science.gov (United States)

    Yates, D. T.; Macko, A. R.; Nearing, M.; Chen, X.; Rhoads, R. P.; Limesand, S. W.

    2012-01-01

    Fetal adaptations to placental insufficiency alter postnatal metabolic homeostasis in skeletal muscle by reducing glucose oxidation rates, impairing insulin action, and lowering the proportion of oxidative fibers. In animal models of intrauterine growth restriction (IUGR), skeletal muscle fibers have less myonuclei at birth. This means that myoblasts, the sole source for myonuclei accumulation in fibers, are compromised. Fetal hypoglycemia and hypoxemia are complications that result from placental insufficiency. Hypoxemia elevates circulating catecholamines, and chronic hypercatecholaminemia has been shown to reduce fetal muscle development and growth. We have found evidence for adaptations in adrenergic receptor expression profiles in myoblasts and skeletal muscle of IUGR sheep fetuses with placental insufficiency. The relationship of β-adrenergic receptors shifts in IUGR fetuses because Adrβ2 expression levels decline and Adrβ1 expression levels are unaffected in myofibers and increased in myoblasts. This adaptive response would suppress insulin signaling, myoblast incorporation, fiber hypertrophy, and glucose oxidation. Furthermore, this β-adrenergic receptor expression profile persists for at least the first month in IUGR lambs and lowers their fatty acid mobilization. Developmental programming of skeletal muscle adrenergic receptors partially explains metabolic and endocrine differences in IUGR offspring, and the impact on metabolism may result in differential nutrient utilization. PMID:22900186

  15. Developmental Programming in Response to Intrauterine Growth Restriction Impairs Myoblast Function and Skeletal Muscle Metabolism

    Directory of Open Access Journals (Sweden)

    D. T. Yates

    2012-01-01

    Full Text Available Fetal adaptations to placental insufficiency alter postnatal metabolic homeostasis in skeletal muscle by reducing glucose oxidation rates, impairing insulin action, and lowering the proportion of oxidative fibers. In animal models of intrauterine growth restriction (IUGR, skeletal muscle fibers have less myonuclei at birth. This means that myoblasts, the sole source for myonuclei accumulation in fibers, are compromised. Fetal hypoglycemia and hypoxemia are complications that result from placental insufficiency. Hypoxemia elevates circulating catecholamines, and chronic hypercatecholaminemia has been shown to reduce fetal muscle development and growth. We have found evidence for adaptations in adrenergic receptor expression profiles in myoblasts and skeletal muscle of IUGR sheep fetuses with placental insufficiency. The relationship of β-adrenergic receptors shifts in IUGR fetuses because Adrβ2 expression levels decline and Adrβ1 expression levels are unaffected in myofibers and increased in myoblasts. This adaptive response would suppress insulin signaling, myoblast incorporation, fiber hypertrophy, and glucose oxidation. Furthermore, this β-adrenergic receptor expression profile persists for at least the first month in IUGR lambs and lowers their fatty acid mobilization. Developmental programming of skeletal muscle adrenergic receptors partially explains metabolic and endocrine differences in IUGR offspring, and the impact on metabolism may result in differential nutrient utilization.

  16. Efeito da administração de propileno glicol e cobalto associado à vitamina B12 sobre o perfil metabólico e a atividade enzimática de ovelhas da raça Santa Inês no periparto Effect of propylene glycol, cobalt and vitamin B12 on the metabolic profile and enzymatic in Santa Inês ewes in peripartum

    Directory of Open Access Journals (Sweden)

    Rogério Adriano dos Santos

    2012-12-01

    Full Text Available O presente estudo teve por objetivo avaliar a influência da administração de propileno glicol e cobalto associado à vitamina B12 sobre o perfil metabólico e a atividade enzimática de ovelhas da raça Santa Inês no período do periparto. Foram utilizadas 18 ovelhas prenhes, pesando em torno de 40kg. Aproximadamente 30 dias antes da data prevista para o parto foram separadas de maneira aleatória em três grupos e administrados os suplementos conforme a seguir: (G1/n=6 grupo que recebeu propileno glicol (30mL por via oral diariamente; (G2/n=6 grupo que recebeu cobalto (1mg de cloreto de cobalto a 1%, via oral diariamente associado a vitamina B12 (2mg via intramuscular, semanalmente e (G3/n=6 grupo controle. As amostras de sangue das ovelhas para avaliação do perfil metabólico e enzimático (glicose, β-hidroxibutirato-BHB, NEFA, proteína total, albumina, uréia, creatinina, AST, GGT, FA e CK foram colhidas 30 dias antes da data prevista para o parto, uma semana antes (ante-parto, no parto, às 24h, 72h, 5 dias, 15 dias e 30 dias após o parto. Não foi observado cetonúria nos momentos que antecederam ao parto. A administração dos suplementos não influenciou sobre o perfil metabólico, protéico e energético, assim como não houve comprometimento hepático das ovelhas no período do periparto.The aim of this study was to evaluate the influence of the administration of propylene glycol and cobalt associated with vitamin B12 on the metabolic profile and enzymatic activity of Santa Inês ewes in the peripartum period. A total of 18 pregnant ewes, weighing around 40kg were used. Approximately 30 days before the expected date of delivery were randomly separated into three groups and administered supplements as follows: (G1/n = 6 group received propylene glycol (30mL orally daily; (G2/n = 6 group receiving cobalt (1mg cobalt chloride 1%, orally daily associated with vitamin B12 (2mg intramuscular weekly and (G3/n = 6 control group. Blood

  17. Folate, vitamin B12, alpha-tocopherol and selected liver components in periparturient dairy goats supplemented with choline and vitamin E

    Directory of Open Access Journals (Sweden)

    V. Dell'Orto

    2010-04-01

    Full Text Available The influence of rumen-protected choline and vitamin E administration on status of folate, vitamin B12, and vitamin E and selected liver components was studied on 4 groups of 12 periparturient dairy goats: control, CTR; choline supplemented, RPC; vitamin E, VITE; choline and vitamin E, RPCE. Plasma folate did not differ between groups, except at parturition when RPC and RPCE goats had higher folate levels than CTR and VITE animals. Neither RPC nor vitamin E affected vitamin B12 plasma concentrations, while a time effect was observed after the third week of lactation, when B12 levels in each group started to increase. Alpha-tocopherol supplementation was associated with increased plasma a-tocopherol in the VITE and RPCE compared to the CRT and RPC groups, while RPC supplementation did not affect a-tocopherol levels in both RPC and RPCE groups compared to CTR and VITE ones. In control and RPC goats liver total lipid did not differ, while DNA contents and their ratio, were respectively higher and lower in RPC supplemented animals. Overall these results suggest that greater choline availability seems to be essential for optimising metabolic health and methyl group status, in dairy ruminants.

  18. The metabolic ER stress sensor IRE1α suppresses alternative activation of macrophages and impairs energy expenditure in obesity.

    Science.gov (United States)

    Shan, Bo; Wang, Xiaoxia; Wu, Ying; Xu, Chi; Xia, Zhixiong; Dai, Jianli; Shao, Mengle; Zhao, Feng; He, Shengqi; Yang, Liu; Zhang, Mingliang; Nan, Fajun; Li, Jia; Liu, Jianmiao; Liu, Jianfeng; Jia, Weiping; Qiu, Yifu; Song, Baoliang; Han, Jing-Dong J; Rui, Liangyou; Duan, Sheng-Zhong; Liu, Yong

    2017-05-01

    Obesity is associated with metabolic inflammation and endoplasmic reticulum (ER) stress, both of which promote metabolic disease progression. Adipose tissue macrophages (ATMs) are key players orchestrating metabolic inflammation, and ER stress enhances macrophage activation. However, whether ER stress pathways underlie ATM regulation of energy homeostasis remains unclear. Here, we identified inositol-requiring enzyme 1α (IRE1α) as a critical switch governing M1-M2 macrophage polarization and energy balance. Myeloid-specific IRE1α abrogation in Ern1 f/f ; Lyz2-Cre mice largely reversed high-fat diet (HFD)-induced M1-M2 imbalance in white adipose tissue (WAT) and blocked HFD-induced obesity, insulin resistance, hyperlipidemia and hepatic steatosis. Brown adipose tissue (BAT) activity, WAT browning and energy expenditure were significantly higher in Ern1 f/f ; Lyz2-Cre mice. Furthermore, IRE1α ablation augmented M2 polarization of macrophages in a cell-autonomous manner. Thus, IRE1α senses protein unfolding and metabolic and immunological states, and consequently guides ATM polarization. The macrophage IRE1α pathway drives obesity and metabolic syndrome through impairing BAT activity and WAT browning.

  19. Functional identification in Lactobacillus reuteri of a PocR-like transcription factor regulating glycerol utilization and vitamin B12 synthesis

    Directory of Open Access Journals (Sweden)

    Saulnier Delphine MA

    2011-07-01

    Full Text Available Abstract Background Lactobacillus reuteri harbors the genes responsible for glycerol utilization and vitamin B12 synthesis within a genetic island phylogenetically related to gamma-Proteobacteria. Within this island, resides a gene (lreu_1750 that based on its genomic context has been suggested to encode the regulatory protein PocR and presumably control the expression of the neighboring loci. However, this functional assignment is not fully supported by sequence homology, and hitherto, completely lacks experimental confirmation. Results In this contribution, we have overexpressed and inactivated the gene encoding the putative PocR in L. reuteri. The comparison of these strains provided metabolic and transcriptional evidence that this regulatory protein controls the expression of the operons encoding glycerol utilization and vitamin B12 synthesis. Conclusions We provide clear experimental evidence for assigning Lreu_1750 as PocR in Lactobacillus reuteri. Our genome-wide transcriptional analysis further identifies the loci contained in the PocR regulon. The findings reported here could be used to improve the production-yield of vitamin B12, 1,3-propanediol and reuterin, all industrially relevant compounds.

  20. Diamagnetism of the B10H12L2 series compounds

    International Nuclear Information System (INIS)

    Volkov, V.V.; Ikorskij, V.N.; Dunaev, S.T.

    1988-01-01

    The method of static magnetic susceptibility is used to study diamagnetic susceptibilities of a number of B 10 H 12 L 2 (where L - nitrogen, sulfur, phosphorus-containing organic ligands) decaborane-derivatives and to draw the increment χ M -125 for the nido cluster (B 10 H 12 ) and boron atomic increment χ bar M -9.0 in this cluster. The absolute value χ B in (B 10 H 12 ) cluster is much higher than χ B for noncluster systems (2.7-7.6). This difference proves electron delocalization in (B 10 H 12 ) and the aromatic nature of this nido-cluster

  1. Glycogen metabolism in brain and neurons - astrocytes metabolic cooperation can be altered by pre- and neonatal lead (Pb) exposure.

    Science.gov (United States)

    Baranowska-Bosiacka, Irena; Falkowska, Anna; Gutowska, Izabela; Gąssowska, Magdalena; Kolasa-Wołosiuk, Agnieszka; Tarnowski, Maciej; Chibowska, Karina; Goschorska, Marta; Lubkowska, Anna; Chlubek, Dariusz

    2017-09-01

    Lead (Pb) is an environmental neurotoxin which particularly affects the developing brain but the molecular mechanism of its neurotoxicity still needs clarification. The aim of this paper was to examine whether pre- and neonatal exposure to Pb (concentration of Pb in rat offspring blood below the "threshold level") may affect the brain's energy metabolism in neurons and astrocytes via the amount of available glycogen. We investigated the glycogen concentration in the brain, as well as the expression of the key enzymes involved in glycogen metabolism in brain: glycogen synthase 1 (Gys1), glycogen phosphorylase (PYGM, an isoform active in astrocytes; and PYGB, an isoform active in neurons) and phosphorylase kinase β (PHKB). Moreover, the expression of connexin 43 (Cx43) was evaluated to analyze whether Pb poisoning during the early phase of life may affect the neuron-astrocytes' metabolic cooperation. This work shows for the first time that exposure to Pb in early life can impair brain energy metabolism by reducing the amount of glycogen and decreasing the rate of its metabolism. This reduction in brain glycogen level was accompanied by a decrease in Gys1 expression. We noted a reduction in the immunoreactivity and the gene expression of both PYGB and PYGM isoform, as well as an increase in the expression of PHKB in Pb-treated rats. Moreover, exposure to Pb induced decrease in connexin 43 immunoexpression in all the brain structures analyzed, both in astrocytes as well as in neurons. Our data suggests that exposure to Pb in the pre- and neonatal periods results in a decrease in the level of brain glycogen and a reduction in the rate of its metabolism, thereby reducing glucose availability, which as a further consequence may lead to the impairment of brain energy metabolism and the metabolic cooperation between neurons and astrocytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Industrial vitamin B12 production by Pseudomonas denitrificans using maltose syrup and corn steep liquor as the cost-effective fermentation substrates.

    Science.gov (United States)

    Xia, Wei; Chen, Wei; Peng, Wei-Fu; Li, Kun-Tai

    2015-06-01

    The aerobic Pseudomonas denitrificans is widely used for industrial and commercial vitamin B12 fermentation, due to its higher productivity compared to the anaerobic vitamin B12-producing microorganisms. This paper aimed to develop a cost-effective fermentation medium for industrial vitamin B12 production by P. denitrificans in 120,000-l fermenter. It was found that maltose syrup (a low-cost syrup from corn starch by means of enzymatic or acid hydrolysis) and corn steep liquor (CSL, a by-product of starch industry) were greatly applicable to vitamin B12 production by P. denitrificans. Under the optimal fermentation medium performed by response surface methodology, 198.27 ± 4.60 mg/l of vitamin B12 yield was obtained in 120,000-l fermenter, which was close to the fermentation with the refined sucrose (198.80 mg/l) and was obviously higher than that obtained under beet molasses utilization (181.75 mg/l). Therefore, maltose syrups and CSL were the efficient and economical substrates for industrial vitamin B12 fermentation by P. denitrificans.

  3. Low-Dose Radiation Promotes Dendritic Cell Migration and IL-12 Production via the ATM/NF-KappaB Pathway.

    Science.gov (United States)

    Yu, Nan; Wang, Sinian; Song, Xiujun; Gao, Ling; Li, Wei; Yu, Huijie; Zhou, Chuanchuan; Wang, Zhenxia; Li, Fengsheng; Jiang, Qisheng

    2018-04-01

    For dendritic cells (DCs) to initiate an immune response, their ability to migrate and to produce interleukin-12 (IL-12) is crucial. It has been previously shown that low-dose radiation (LDR) promoted IL-12 production by DCs, resulting in increased DC activity that contributed to LDR hormesis in the immune system. However, the molecular mechanism of LDR-induced IL-12 production, as well as the effect of LDR on DC migration capacity require further elucidation. Using the JAWSII immortalized mouse dendritic cell line, we showed that in vitro X-ray irradiation (0.2 Gy) of DCs significantly increased DC migration and IL-12 production, and upregulated CCR7. The neutralizing antibody against CCR7 has been shown to abolish LDR-enhanced DC migration, demonstrating that CCR7 mediates LDR-promoting DC migration. We identified nuclear factor kappaB (NF-κB) as the central signaling pathway that mediated LDR-enhanced expression of IL-12 and CCR7 based on findings that 0.2 Gy X-ray irradiation activated NF-κB, showing increased nuclear p65 translocation and NF-κB DNA-binding activity, while an NF-κB inhibitor blocked LDR-enhanced expression of IL-12 and CCR7, as well as DC migration. Finally, we demonstrated that 0.2 Gy X-ray irradiation promoted ATM phosphorylation and reactive oxygen species generation; however, only the ATM inhibitor abolished the LDR-induced NF-κB-mediated expression of IL-12 and CCR7. Altogether, our data show that exposure to LDR resulted in a hormetic effect on DCs regarding CCR7-mediated migration and IL-12 production by activating the ATM/NF-κB pathway.

  4. High resolution spectroscopy of the 12Lambda B hypernucleus produced by the (e,e'K+) reaction.

    Science.gov (United States)

    Miyoshi, T; Sarsour, M; Yuan, L; Zhu, X; Ahmidouch, A; Ambrozewicz, P; Androic, D; Angelescu, T; Asaturyan, R; Avery, S; Baker, O K; Bertovic, I; Breuer, H; Carlini, R; Cha, J; Chrien, R; Christy, M; Cole, L; Danagoulian, S; Dehnhard, D; Elaasar, M; Empl, A; Ent, R; Fenker, H; Fujii, Y; Furic, M; Gan, L; Garrow, K; Gasparian, A; Gueye, P; Harvey, M; Hashimoto, O; Hinton, W; Hu, B; Hungerford, E; Jackson, C; Johnston, K; Juengst, H; Keppel, C; Lan, K; Liang, Y; Likhachev, V P; Liu, J H; Mack, D; Margaryan, A; Markowitz, P; Martoff, J; Mkrtchyan, H; Nakamura, S N; Petkovic, T; Reinhold, J; Roche, J; Sato, Y; Sawafta, R; Simicevic, N; Smith, G; Stepanyan, S; Tadevosyan, V; Takahashi, T; Tanida, K; Tang, L; Ukai, M; Uzzle, A; Vulcan, W; Wells, S; Wood, S; Xu, G; Yamaguchi, H; Yan, C

    2003-06-13

    High-energy, cw electron beams at new accelerator facilities allow electromagnetic production and precision study of hypernuclear structure, and we report here on the first experiment demonstrating the potential of the (e,e'K+) reaction for hypernuclear spectroscopy. This experiment is also the first to take advantage of the enhanced virtual photon flux available when electrons are scattered at approximately zero degrees. The observed energy resolution was found to be approximately 900 keV for the (12)(Lambda)B spectrum, and is substantially better than any previous hypernuclear experiment using magnetic spectrometers. The positions of the major excitations are found to be in agreement with a theoretical prediction and with a previous binding energy measurement, but additional structure is also observed in the core excited region, underlining the future promise of this technique.

  5. Aspirin suppresses the abnormal lipid metabolism in liver cancer cells via disrupting an NFκB-ACSL1 signaling

    International Nuclear Information System (INIS)

    Yang, Guang; Wang, Yuan; Feng, Jinyan; Liu, Yunxia; Wang, Tianjiao; Zhao, Man; Ye, Lihong; Zhang, Xiaodong

    2017-01-01

    Abnormal lipid metabolism is a hallmark of tumorigenesis. Hence, the alterations of metabolism enhance the development of hepatocellular carcinoma (HCC). Aspirin is able to inhibit the growth of cancers through targeting nuclear factor κB (NF-κB). However, the role of aspirin in disrupting abnormal lipid metabolism in HCC remains poorly understood. In this study, we report that aspirin can suppress the abnormal lipid metabolism of HCC cells through inhibiting acyl-CoA synthetase long-chain family member 1 (ACSL1), a lipid metabolism-related enzyme. Interestingly, oil red O staining showed that aspirin suppressed lipogenesis in HepG2 cells and Huh7 cells in a dose-dependent manner. In addition, aspirin attenuated the levels of triglyceride and cholesterol in the cells, respectively. Strikingly, we identified that aspirin was able to down-regulate ACSL1 at the levels of mRNA and protein. Moreover, we validated that aspirin decreased the nuclear levels of NF-κB in HepG2 cells. Mechanically, PDTC, an inhibitor of NF-κB, could down-regulate ACSL1 at the levels of mRNA and protein in the cells. Functionally, PDTC reduced the levels of lipid droplets, triglyceride and cholesterol in HepG2 cells. Thus, we conclude that aspirin suppresses the abnormal lipid metabolism in HCC cells via disrupting an NFκB-ACSL1 signaling. Our finding provides new insights into the mechanism by which aspirin inhibits abnormal lipid metabolism of HCC. Therapeutically, aspirin is potentially available for HCC through controlling abnormal lipid metabolism. - Highlights: • Aspirin inhibits the levels of liquid droplets, triglyceride and cholesterol in HCC cells. • Aspirin is able to down-regulate ACSL1 in HCC cells. • NF-κB inhibitor PDTC can down-regulate ACSL1 and reduces lipogenesis in HCC cells. • Aspirin suppresses the abnormal lipid metabolism in HCC cells via disrupting an NFκB-ACSL1 signaling.

  6. Ellagic acid attenuates high-carbohydrate, high-fat diet-induced metabolic syndrome in rats.

    Science.gov (United States)

    Panchal, Sunil K; Ward, Leigh; Brown, Lindsay

    2013-03-01

    Fruits and nuts may prevent or reverse common human health conditions such as obesity, diabetes and hypertension; together, these conditions are referred to as metabolic syndrome, an increasing problem. This study has investigated the responses to ellagic acid, present in many fruits and nuts, in a diet-induced rat model of metabolic syndrome. Eight- to nine-week-old male Wistar rats were divided into four groups for 16-week feeding with cornstarch diet (C), cornstarch diet supplemented with ellagic acid (CE), high-carbohydrate, high-fat diet (H) and high-carbohydrate, high-fat diet supplemented with ellagic acid (HE). CE and HE rats were given 0.8 g/kg ellagic acid in food from week 8 to 16 only. At the end of 16 weeks, cardiovascular, hepatic and metabolic parameters along with protein levels of Nrf2, NF-κB and CPT1 in the heart and the liver were characterised. High-carbohydrate, high-fat diet-fed rats developed cardiovascular remodelling, impaired ventricular function, impaired glucose tolerance, non-alcoholic fatty liver disease with increased protein levels of NF-κB and decreased protein levels of Nrf2 and CPT1 in the heart and the liver. Ellagic acid attenuated these diet-induced symptoms of metabolic syndrome with normalisation of protein levels of Nrf2, NF-κB and CPT1. Ellagic acid derived from nuts and fruits such as raspberries and pomegranates may provide a useful dietary supplement to decrease the characteristic changes in metabolism and in cardiac and hepatic structure and function induced by a high-carbohydrate, high-fat diet by suppressing oxidative stress and inflammation.

  7. Folate promotes S-adenosyl methionine reactions and the microbial methylation cycle and boosts ruminants production and reproduction.

    Science.gov (United States)

    Abbasi, Imtiaz Hussain Raja; Abbasi, Farzana; Wang, Lamei; Abd El Hack, Mohamed E; Swelum, Ayman A; Hao, Ren; Yao, Junhu; Cao, Yangchun

    2018-04-23

    Folate has gained significant attention due to its vital role in biological methylation and epigenetic machinery. Folate, or vitamin (B 9 ), is only produced through a de novo mechanism by plants and micro-organisms in the rumen of mature animals. Although limited research has been conducted on folate in ruminants, it has been noted that ruminal synthesis could not maintain folate levels in high yielding dairy animals. Folate has an essential role in one-carbon metabolism and is a strong antiproliferative agent. Folate increases DNA stability, being crucial for DNA synthesis and repair, the methylation cycle, and preventing oxidation of DNA by free radicals. Folate is also critical for cell division, metabolism of proteins, synthesis of purine and pyrimidine, and increasing the de novo delivery of methyl groups and S-adenosylmethionine. However, in ruminants, metabolism of B 12 and B 9 vitamins are closely connected and utilization of folate by cells is significantly affected by B 12 vitamin concentration. Supplementation of folate through diet, particularly in early lactation, enhanced metabolic efficiency, lactational performance, and nutritional quality of milk. Impaired absorption, oxidative degradation, or deficient supply of folate in ruminants affects DNA stability, cell division, homocysteine remethylation to methionine, de novo synthesis of S-adenosylmethionine, and increases DNA hypomethylation, uracil misincorporation into DNA, chromosomal damage, abnormal cell growth, oxidative species, premature birth, low calf weight, placental tube defects, and decreases production and reproduction of ruminant animals. However, more studies are needed to overcome these problems and reduce enormous dietary supplement waste and impaired absorption of folate in ruminants. This review was aimed to highlight the vital role of folic acid in ruminants performance.

  8. Vitamin b 12 supplementation: effects on some biochemical and ...

    African Journals Online (AJOL)

    Phenytoin is known to have some toxicological implications. Vitamin B12 supplementation during phenytoin administration was investigated to assess the benefits and risks of single vitamin supplementation. This study evaluated the biochemical and haematological effects of vitamin B12 on phenytoin toxicity. Twenty-four ...

  9. Metabolic Myopathies.

    Science.gov (United States)

    Tarnopolsky, Mark A

    2016-12-01

    Metabolic myopathies are genetic disorders that impair intermediary metabolism in skeletal muscle. Impairments in glycolysis/glycogenolysis (glycogen-storage disease), fatty acid transport and oxidation (fatty acid oxidation defects), and the mitochondrial respiratory chain (mitochondrial myopathies) represent the majority of known defects. The purpose of this review is to develop a diagnostic and treatment algorithm for the metabolic myopathies. The metabolic myopathies can present in the neonatal and infant period as part of more systemic involvement with hypotonia, hypoglycemia, and encephalopathy; however, most cases present in childhood or in adulthood with exercise intolerance (often with rhabdomyolysis) and weakness. The glycogen-storage diseases present during brief bouts of high-intensity exercise, whereas fatty acid oxidation defects and mitochondrial myopathies present during a long-duration/low-intensity endurance-type activity or during fasting or another metabolically stressful event (eg, surgery, fever). The clinical examination is often normal between acute events, and evaluation involves exercise testing, blood testing (creatine kinase, acylcarnitine profile, lactate, amino acids), urine organic acids (ketones, dicarboxylic acids, 3-methylglutaconic acid), muscle biopsy (histology, ultrastructure, enzyme testing), MRI/spectroscopy, and targeted or untargeted genetic testing. Accurate and early identification of metabolic myopathies can lead to therapeutic interventions with lifestyle and nutritional modification, cofactor treatment, and rapid treatment of rhabdomyolysis.

  10. Loss of ABHD15 Impairs the Anti-lipolytic Action of Insulin by Altering PDE3B Stability and Contributes to Insulin Resistance.

    Science.gov (United States)

    Xia, Wenmin; Pessentheiner, Ariane R; Hofer, Dina C; Amor, Melina; Schreiber, Renate; Schoiswohl, Gabriele; Eichmann, Thomas O; Walenta, Evelyn; Itariu, Bianca; Prager, Gerhard; Hackl, Hubert; Stulnig, Thomas; Kratky, Dagmar; Rülicke, Thomas; Bogner-Strauss, Juliane G

    2018-05-15

    Elevated circulating fatty acids (FAs) contribute to obesity-associated metabolic complications, but the mechanisms by which insulin suppresses lipolysis are poorly understood. We show that α/β-hydrolase domain-containing 15 (ABHD15) is required for the anti-lipolytic action of insulin in white adipose tissue (WAT). Neither insulin nor glucose treatments can suppress FA mobilization in global and conditional Abhd15-knockout (KO) mice. Accordingly, insulin signaling is impaired in Abhd15-KO adipocytes, as indicated by reduced AKT phosphorylation, glucose uptake, and de novo lipogenesis. In vitro data reveal that ABHD15 associates with and stabilizes phosphodiesterase 3B (PDE3B). Accordingly, PDE3B expression is decreased in the WAT of Abhd15-KO mice, mechanistically explaining increased protein kinase A (PKA) activity, hormone-sensitive lipase (HSL) phosphorylation, and undiminished FA release upon insulin signaling. Ultimately, Abhd15-KO mice develop insulin resistance. Notably, ABHD15 expression is decreased in humans with obesity and diabetes compared to humans with obesity and normal glucose tolerance, identifying ABHD15 as a potential therapeutic target to mitigate insulin resistance. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  11. The clinical observation on the treatment of irradiated injuries of the skin and mucosa by using vitamin B12

    International Nuclear Information System (INIS)

    Ji, Hui; Li, Jianchao; Xie, Xiuzhen; Chen, Quiang; Yang, Yongguang

    1987-01-01

    A clinical study of the treatment of irradiated skin and mucosa injuries (40 cases). This paper introduces two methods of treating irradiated injuries of the skin and mucosa. By using Vitamin B 12 both externaly and applying in the mouth, we can stop the pain promptly, reduce the exudation, improve the growth of granulation and the healing of the ulcer especialy in the early acute stage. In addition Vitamin B 12 produces good effects on other kinds of skin injuries. Shu BaiKe considered that the skin had the same function as the liver, which includes various kinds of enzymes. We thought that using Vitamin B 12 externaly on skin injuries, it would be absorbed and join the RNA synthesizing process in the liver and skin. After applying Vitamin B 12 , the RNA content rose. The results of animal experiments coincided with clinial treatment. It clarified the mechanisms needed to treat the third degree acute irradiated skin injuries. (author)

  12. Electron addition to alkyl cobalamins, coenzyme B/sub 12/ and vitamin B/sub 12/. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rao, D N.R.; Symons, M C.R. [Leicester Univ. (UK). Dept. of Chemistry

    1983-01-01

    Exposure of dilute solutions of methyl and ethyl cobalamins and coenzyme B/sub 12/ in dilute solutions (D/sub 2/O+CD/sub 3/OD) to /sup 60/Co ..gamma..-rays at 77 K gave a single broad feature in the free-spin region assigned to electron-capture species with the excess electron largely confined to a ..pi..* corrin orbital. On warming above 77 K the methyl derivative gave a novel species with spectral features characteristic of an unpaired electron in the Co(dsub(x/sup 2/-y/sup 2/)) orbital. The other two substrates gave spectra due to Cosup(II)Bsub(12r) both on warming and after photolyses with visible light. The acetyl derivative gave an electron-capture species whose e.s.r. spectrum was characteristic of an electron in the Co(dsub(z/sup 2/)) orbital, which on warming above 77 K changed to the normal Cosup(II)Bsub(12r) spectrum. The cyano derivative (vitamin B/sub 12/) gave electron addition into the Co(dsub(z/sup 2/)) orbital, as evidenced by the large hyperfine coupling to /sup 13/C from /sup 13/CN ligands. On annealing, cyanide ions were lost irreversibly, Bsub(12r) being detected by e.s.r. spectroscopy. In contrast, the dicyano derivative on electron addition at 77 K gave a species containing only one /sup 13/CN ligand. Hence in this case one CN/sup -/ ligand was lost at 77 K, with no return of the dimethylbenzimidazole ligand. These results are discussed in terms of a new mechanism for electron-addition to alkyl cobalamins.

  13. Manifestations of Renal Impairment in Fructose-induced Metabolic Syndrome.

    Science.gov (United States)

    Bratoeva, Kameliya; Stoyanov, George S; Merdzhanova, Albena; Radanova, Mariya

    2017-11-07

    Introduction International studies show an increased incidence of chronic kidney disease (CKD) in patients with metabolic syndrome (MS). It is assumed that the major components of MS - obesity, insulin resistance, dyslipidemia, and hypertension - are linked to renal damage through the systemic release of several pro-inflammatory mediators, such as uric acid (UA), C-reactive protein (CRP), and generalized oxidative stress. The aim of the present study was to investigate the extent of kidney impairment and manifestations of dysfunction in rats with fructose-induced MS. Methods We used a model of high-fructose diet in male Wistar rats with 35% glucose-fructose corn syrup in drinking water over a duration of 16 weeks. The experimental animals were divided into two groups: control and high-fructose drinking (HFD). Serum samples were obtained from both groups for laboratory study, and the kidneys were extracted for observation via light microscopy examination. Results All HFD rats developed obesity, hyperglycemia, hypertriglyceridemia, increased levels of CRP and UA (when compared to the control group), and oxidative stress with high levels of malondialdehyde and low levels of reduced glutathione. The kidneys of the HFD group revealed a significant increase in kidney weight in the absence of evidence of renal dysfunction and electrolyte disturbances. Under light microscopy, the kidneys of the HFD group revealed amyloid deposits in Kimmelstiel-Wilson-like nodules and the walls of the large caliber blood vessels, early-stage atherosclerosis with visible ruptures and scarring, hydropic change (vacuolar degeneration) in the epithelial cells covering the proximal tubules, and increased eosinophilia in the distant tubules when compared to the control group. Conclusion Under the conditions of a fructose-induced metabolic syndrome, high serum UA and CRP correlate to the development of early renal disorders without a clinical manifestation of renal dysfunction. These

  14. Abnormal brain iron metabolism in Irp2 deficient mice is associated with mild neurological and behavioral impairments.

    Directory of Open Access Journals (Sweden)

    Kimberly B Zumbrennen-Bullough

    Full Text Available Iron Regulatory Protein 2 (Irp2, Ireb2 is a central regulator of cellular iron homeostasis in vertebrates. Two global knockout mouse models have been generated to explore the role of Irp2 in regulating iron metabolism. While both mouse models show that loss of Irp2 results in microcytic anemia and altered body iron distribution, discrepant results have drawn into question the role of Irp2 in regulating brain iron metabolism. One model shows that aged Irp2 deficient mice develop adult-onset progressive neurodegeneration that is associated with axonal degeneration and loss of Purkinje cells in the central nervous system. These mice show iron deposition in white matter tracts and oligodendrocyte soma throughout the brain. A contrasting model of global Irp2 deficiency shows no overt or pathological signs of neurodegeneration or brain iron accumulation, and display only mild motor coordination and balance deficits when challenged by specific tests. Explanations for conflicting findings in the severity of the clinical phenotype, brain iron accumulation and neuronal degeneration remain unclear. Here, we describe an additional mouse model of global Irp2 deficiency. Our aged Irp2-/- mice show marked iron deposition in white matter and in oligodendrocytes while iron content is significantly reduced in neurons. Ferritin and transferrin receptor 1 (TfR1, Tfrc, expression are increased and decreased, respectively, in the brain from Irp2-/- mice. These mice show impairments in locomotion, exploration, motor coordination/balance and nociception when assessed by neurological and behavioral tests, but lack overt signs of neurodegenerative disease. Ultrastructural studies of specific brain regions show no evidence of neurodegeneration. Our data suggest that Irp2 deficiency dysregulates brain iron metabolism causing cellular dysfunction that ultimately leads to mild neurological, behavioral and nociceptive impairments.

  15. Effects of γ-irradiation and cooking on vitamins B6 and B12 in grass prawns (Penaeus monodon)

    International Nuclear Information System (INIS)

    Hau, L.-B.; Liew, M.-S.

    1993-01-01

    The effects of radiation doses, irradiation temperature and a combined treatment of irradiation and cooking on the vitamin B 6 and B 12 contents of grass prawns have been studied. Grass prawns were irradiated at refrigerated (4 o C) or frozen (-20 o C) temperatures with different doses. A domestic cooling procedure was followed after irradiation. The changes in vitamins B 6 and B 12 of both raw and cooked grass prawns were evaluated. Results showed no significant changes of vitamin B 6 and B 12 in grass prawns with a radiation dose up to 7 kGy at either 4 o C or -20 o C. Irradiation at 4 o C caused more destruction of vitamin B 12 but not vitamin B 6 than did irradiation at -20 o C in grass prawns. There was significant destruction of both vitamins B 6 and B 12 in unirradiated samples during cooking. The introduction of the irradiation process before cooking had no effect on either vitamin. These results indicate that the loss of vitamins B 6 and B 12 in the combined treatments was caused mainly by thermal destruction. (author)

  16. Peripheral insulin resistance and impaired insulin signaling contribute to abnormal glucose metabolism in preterm baboons.

    Science.gov (United States)

    Blanco, Cynthia L; McGill-Vargas, Lisa L; Gastaldelli, Amalia; Seidner, Steven R; McCurnin, Donald C; Leland, Michelle M; Anzueto, Diana G; Johnson, Marney C; Liang, Hanyu; DeFronzo, Ralph A; Musi, Nicolas

    2015-03-01

    Premature infants develop hyperglycemia shortly after birth, increasing their morbidity and death. Surviving infants have increased incidence of diabetes as young adults. Our understanding of the biological basis for the insulin resistance of prematurity and developmental regulation of glucose production remains fragmentary. The objective of this study was to examine maturational differences in insulin sensitivity and the insulin-signaling pathway in skeletal muscle and adipose tissue of 30 neonatal baboons using the euglycemic hyperinsulinemic clamp. Preterm baboons (67% gestation) had reduced peripheral insulin sensitivity shortly after birth (M value 12.5 ± 1.5 vs 21.8 ± 4.4 mg/kg · min in term baboons) and at 2 weeks of age (M value 12.8 ± 2.6 vs 16.3 ± 4.2, respectively). Insulin increased Akt phosphorylation, but these responses were significantly lower in preterm baboons during the first week of life (3.2-fold vs 9.8-fold). Preterm baboons had lower glucose transporter-1 protein content throughout the first 2 weeks of life (8%-12% of term). In preterm baboons, serum free fatty acids (FFAs) did not decrease in response to insulin, whereas FFAs decreased by greater than 80% in term baboons; the impaired suppression of FFAs in the preterm animals was paired with a decreased glucose transporter-4 protein content in adipose tissue. In conclusion, peripheral insulin resistance and impaired non-insulin-dependent glucose uptake play an important role in hyperglycemia of prematurity. Impaired insulin signaling (reduced Akt) contributes to the defect in insulin-stimulated glucose disposal. Counterregulatory hormones are not major contributors.

  17. Malabsorption of vitamin B12 in homozygous β-thalassemia

    International Nuclear Information System (INIS)

    Vlachos, P.; Liakakos, D.

    1976-01-01

    Schilling tests were performed in ten children aged 5-12 years suffering from homozygous β-thalassemia. 57 Co labelled vitamin B 12 values excreted in the urine have been found much lower than normal and remained low when the same procedure was repeated with the addition of intrinsic factor. The possible factors responsible for this malabsorption of vitamin B 12 seemed to be liver damage and folic acid deficiency. (orig.) [de

  18. Vitamin B(12) Immunoassay on Roche Elecsys 2010: Effects of High Excess Concentration of Serum Vitamin B(12) in CKD Patients on Parenteral Administration.

    Science.gov (United States)

    Basu, Surupa; Chaudhuri, Subimal

    2011-10-01

    Vitamin B(12) being water soluble is excreted in the urine when administered in excess. The probability of finding an abnormally excess serum concentration would be almost surreal. We report a peculiar clinical situation that may impact the vitamin B(12) immunoassay on the Roche Elecsys 2010 due to excess analyte concentration. In separate episodes (Feb and June 2010), the Biochemistry laboratory of a tertiary-care hospital, Kolkata, India, encountered two critically ill patients with background chronic kidney disease (CKD), low urine output, and on cyanocoabalamin supplementation, who had serum vitamin B(12) concentrations far exceeding expected values; even post dialysis. The B(12) assays (pmol/l) were performed using electrochemiluminiscence immunoassay on Roche Elecsys 2010, the assay validity confirmed by concomitant quality control runs. The immunoassays failed to deliver results, flagged with "signal level below limit". Biotin therapy was ruled out as a possible interferent. In the first episode, re-assay of a repeat draw yielded same outcome; outsourcing on Immulite provided concentration of >738 pmol/l. Serial dilution gave result of >29520 pmol/l on Elecsys 2010. In the second, we gained from past experience. Vitamin B(12) concentration >59040 pmol/l was conveyed to the treating nephrologist the very day. The B(12) immunoassay on the Elecsys 2010 employs sequential incubation steps for competitive binding that is compromised in the event of abnormally excess B(12) concentration in patient sera akin to the prozone effect. This knowledge may be beneficial while assaying sera of CKD patients to avoid financial loss due unnecessary repeats and delay in turnaround time.

  19. Mitochondrial Dysfunction, Through Impaired Autophagy, Leads to Endoplasmic Reticulum Stress, Deregulated Lipid Metabolism, and Pancreatitis in Animal Models.

    Science.gov (United States)

    Biczo, Gyorgy; Vegh, Eszter T; Shalbueva, Natalia; Mareninova, Olga A; Elperin, Jason; Lotshaw, Ethan; Gretler, Sophie; Lugea, Aurelia; Malla, Sudarshan R; Dawson, David; Ruchala, Piotr; Whitelegge, Julian; French, Samuel W; Wen, Li; Husain, Sohail Z; Gorelick, Fred S; Hegyi, Peter; Rakonczay, Zoltan; Gukovsky, Ilya; Gukovskaya, Anna S

    2018-02-01

    Little is known about the signaling pathways that initiate and promote acute pancreatitis (AP). The pathogenesis of AP has been associated with abnormal increases in cytosolic Ca 2+ , mitochondrial dysfunction, impaired autophagy, and endoplasmic reticulum (ER) stress. We analyzed the mechanisms of these dysfunctions and their relationships, and how these contribute to development of AP in mice and rats. Pancreatitis was induced in C57BL/6J mice (control) and mice deficient in peptidylprolyl isomerase D (cyclophilin D, encoded by Ppid) by administration of L-arginine (also in rats), caerulein, bile acid, or an AP-inducing diet. Parameters of pancreatitis, mitochondrial function, autophagy, ER stress, and lipid metabolism were measured in pancreatic tissue, acinar cells, and isolated mitochondria. Some mice with AP were given trehalose to enhance autophagic efficiency. Human pancreatitis tissues were analyzed by immunofluorescence. Mitochondrial dysfunction in pancreas of mice with AP was induced by either mitochondrial Ca 2+ overload or through a Ca 2+ overload-independent pathway that involved reduced activity of ATP synthase (80% inhibition in pancreatic mitochondria isolated from rats or mice given L-arginine). Both pathways were mediated by cyclophilin D and led to mitochondrial depolarization and fragmentation. Mitochondrial dysfunction caused pancreatic ER stress, impaired autophagy, and deregulation of lipid metabolism. These pathologic responses were abrogated in cyclophilin D-knockout mice. Administration of trehalose largely prevented trypsinogen activation, necrosis, and other parameters of pancreatic injury in mice with L-arginine AP. Tissues from patients with pancreatitis had markers of mitochondrial damage and impaired autophagy, compared with normal pancreas. In different animal models, we find a central role for mitochondrial dysfunction, and for impaired autophagy as its principal downstream effector, in development of AP. In particular, the

  20. Structure of 12B from measurement and R-matrix analysis of sigma(theta) for 11B(n,n)11B and 11B(n,n')11Bsup(*)(2.12 MeV), and shell-model calculations

    International Nuclear Information System (INIS)

    Koehler, P.E.; Knox, H.D.; Resler, D.A.; Lane, R.O.

    1983-01-01

    Differential cross sections for neutrons, elastically scattered from 11 B and inelastically scattered to the first excited state 11 B*(2.12 MeV) have been measured at 13 incident energies for 4.8 12 B of 7.8 to 10.3 MeV. The cross sections were measured at nine laboratory angles per energy from 20 0 to 160 0 and show considerable resonance structure. Differential inelastic cross sections were also measured for the 4.45 and 5.02 MeV levels of 11 B for 2 to 9 angles at several incident energies. These new elastic and inelastic 2.12 MeV level data have been analyzed together with previously publsihed cross sections for 2 12 B. The shell model was used to calculate states in 12 B as well as spectroscopic amplitudes for reactions leading to these states. The results of this model calculation are compared to those of the R-matrix analysis. Much of the structure observed in the experimental work is predicted by the model for Esub(x) < or approx. 7 MeV. For levels of higher excitation the agreement is not as good. The experimental data are also compared to continuum shell-model calculations. (orig.)

  1. Aspirin suppresses the abnormal lipid metabolism in liver cancer cells via disrupting an NFκB-ACSL1 signaling.

    Science.gov (United States)

    Yang, Guang; Wang, Yuan; Feng, Jinyan; Liu, Yunxia; Wang, Tianjiao; Zhao, Man; Ye, Lihong; Zhang, Xiaodong

    2017-05-06

    Abnormal lipid metabolism is a hallmark of tumorigenesis. Hence, the alterations of metabolism enhance the development of hepatocellular carcinoma (HCC). Aspirin is able to inhibit the growth of cancers through targeting nuclear factor κB (NF-κB). However, the role of aspirin in disrupting abnormal lipid metabolism in HCC remains poorly understood. In this study, we report that aspirin can suppress the abnormal lipid metabolism of HCC cells through inhibiting acyl-CoA synthetase long-chain family member 1 (ACSL1), a lipid metabolism-related enzyme. Interestingly, oil red O staining showed that aspirin suppressed lipogenesis in HepG2 cells and Huh7 cells in a dose-dependent manner. In addition, aspirin attenuated the levels of triglyceride and cholesterol in the cells, respectively. Strikingly, we identified that aspirin was able to down-regulate ACSL1 at the levels of mRNA and protein. Moreover, we validated that aspirin decreased the nuclear levels of NF-κB in HepG2 cells. Mechanically, PDTC, an inhibitor of NF-κB, could down-regulate ACSL1 at the levels of mRNA and protein in the cells. Functionally, PDTC reduced the levels of lipid droplets, triglyceride and cholesterol in HepG2 cells. Thus, we conclude that aspirin suppresses the abnormal lipid metabolism in HCC cells via disrupting an NFκB-ACSL1 signaling. Our finding provides new insights into the mechanism by which aspirin inhibits abnormal lipid metabolism of HCC. Therapeutically, aspirin is potentially available for HCC through controlling abnormal lipid metabolism. Copyright © 2017. Published by Elsevier Inc.

  2. Proteome response of Tribolium castaneum larvae to Bacillus thuringiensis toxin producing strains.

    Directory of Open Access Journals (Sweden)

    Estefanía Contreras

    Full Text Available Susceptibility of Tribolium castaneum (Tc larvae was determined against spore-crystal mixtures of five coleopteran specific and one lepidopteran specific Bacillus thuringiensis Cry toxin producing strains and those containing the structurally unrelated Cry3Ba and Cry23Aa/Cry37Aa proteins were found toxic (LC(50 values 13.53 and 6.30 µg spore-crystal mixture/µL flour disc, respectively. Using iTRAQ combined with LC-MS/MS allowed the discovery of seven novel differentially expressed proteins in early response of Tc larvae to the two active spore-crystal mixtures. Proteins showing a statistically significant change in treated larvae compared to non-intoxicated larvae fell into two major categories; up-regulated proteins were involved in host defense (odorant binding protein C12, apolipophorin-III and chemosensory protein 18 and down-regulated proteins were linked to metabolic pathways affecting larval metabolism and development (pyruvate dehydrogenase Eα subunit, cuticular protein, ribosomal protein L13a and apolipoprotein LI-II. Among increased proteins, Odorant binding protein C12 showed the highest change, 4-fold increase in both toxin treatments. The protein displayed amino acid sequence and structural homology to Tenebrio molitor 12 kDa hemolymph protein b precursor, a non-olfactory odorant binding protein. Analysis of mRNA expression and mortality assays in Odorant binding protein C12 silenced larvae were consistent with a general immune defense function of non-olfactory odorant binding proteins. Regarding down-regulated proteins, at the transcriptional level, pyruvate dehydrogenase and cuticular genes were decreased in Tc larvae exposed to the Cry3Ba producing strain compared to the Cry23Aa/Cry37Aa producing strain, which may contribute to the developmental arrest that we observed with larvae fed the Cry3Ba producing strain. Results demonstrated a distinct host transcriptional regulation depending upon the Cry toxin treatment. Knowledge

  3. Physiological role of vitamin B12 in a methanol-utilizing bacterium, Protaminobacter ruber

    International Nuclear Information System (INIS)

    Shimizu, S.; Ueda, S.; Sato, K.

    1984-01-01

    The methanol-utilizing bacterium Protaminobacter ruber is able to produce a relatively large amount of vitamin B 12 . The present study aims at the physiological role of vitamin B 12 in P. ruber. P. ruber was found to contain the two sequential reactions of glutamate mutase with β-methylaspartase and propionyl-CoA carboxylase with methylmalonyl-CoA mutase. Considering the presence of these enzyme systems and the reaction from mesaconyl-CoA to glyoxylate and propionyl-CoA, it could be considered that the formation of glutamate from α-ketoglutarate, the conversion of glutamate to mesaconate via β-methylaspartate, the activation of mesaconate with CoA to form mesaconyl-CoA, the cleavage of mesaconyl-CoA to glyoxylate and propionyl-CoA, the carboxylation of propionyl-CoA to methylmalonyl-CoA, and the isomerization of methylmalonyl-CoA to succinyl-CoA require cobalamine as a cofactor. 29 refs., 2 figs., 2 tabs

  4. 1,25-dihydroxyvitamin D3 impairs NF-κB activation in human naive B cells

    International Nuclear Information System (INIS)

    Geldmeyer-Hilt, Kerstin; Heine, Guido; Hartmann, Bjoern; Baumgrass, Ria; Radbruch, Andreas; Worm, Margitta

    2011-01-01

    Highlights: → In naive B cells, VDR activation by calcitriol results in reduced NF-κB p105 and p50 protein expression. → Ligating the VDR with calcitriol causes reduced nuclear translocation of NF-κB p65. → Reduced nuclear amount of p65 after calcitriol incubation results in reduced binding of p65 on the p105 promoter. → Thus, vitamin D receptor signaling may reduce or prevent activation of B cells and unwanted immune responses, e.g. in IgE dependent diseases such as allergic asthma. -- Abstract: 1α,25-dihydroxyvitamin D 3 (calcitriol), the bioactive metabolite of vitamin D, modulates the activation and inhibits IgE production of anti-CD40 and IL-4 stimulated human peripheral B cells. Engagement of CD40 results in NF-κB p50 activation, which is essential for the class switch to IgE. Herein, we investigated by which mechanism calcitriol modulates NF-κB mediated activation of human naive B cells. Naive B cells were predominantly targeted by calcitriol in comparison with memory B cells as shown by pronounced induction of the VDR target gene cyp24a1. Vitamin D receptor activation resulted in a strongly reduced p105/p50 protein and mRNA expression in human naive B cells. This effect is mediated by impaired nuclear translocation of p65 and consequently reduced binding of p65 to its binding site in the p105 promoter. Our data indicate that the vitamin D receptor reduces NF-κB activation by interference with NF-κB p65 and p105. Thus, the vitamin D receptor inhibits costimulatory signal transduction in naive B cells, namely by reducing CD40 signaling.

  5. Cross-sectional study of equol producer status and cognitive impairment in older adults.

    Science.gov (United States)

    Igase, Michiya; Igase, Keiji; Tabara, Yasuharu; Ohyagi, Yasumasa; Kohara, Katsuhiko

    2017-11-01

    It is well known that consumption of isoflavones reduces the risk of cardiovascular disease. However, the effectiveness of isoflavones in preventing dementia is controversial. A number of intervention studies have produced conflicting results. One possible reason is that the ability to produce equol, a metabolite of a soy isoflavone, differs greatly in individuals. In addition to existing data, we sought to confirm whether an apparent beneficial effect in cognitive function is observed after soy consumption in equol producers compared with non-producers. The present study was a cross-sectional, observational study of 152 (male/female = 61/91, mean age 69.2 ± 9.2 years) individuals. Participants were divided into two groups according to equol production status, which was determined using urine samples collected after a soy challenge test. Cognitive function was assessed using two computer-based questionnaires (touch panel-type dementia assessment scale [TDAS] and mild cognitive impairment [MCI] screen). Overall, 60 (40%) of 152 participants were equol producers. Both TDAS and prevalence of MCI were significantly higher in the equol producer group than in the non-producer group. In univariate analyses, TDAS significantly correlated with age, serum creatinine, estimated glomerular filtration rate and low-density lipoprotein cholesterol. In multiple regression analysis using TDAS as a dependent variable, equol producer (β = 0.236, P = 0.005) was selected as an independent variable. In addition, multiple logistic regression analysis to assess the presence of MCI showed that being an equol producer was an independent risk factor for MCI (odds ratio 3.961). Compared with equol non-producers, equol producers showed an apparent beneficial effect in cognitive function after soy intake. Geriatr Gerontol Int 2017; 17: 2103-2108. © 2017 Japan Geriatrics Society.

  6. Intestinal synthesis and absorption of vitamin B-12 in channel catfish

    International Nuclear Information System (INIS)

    Limsuwan, T.; Lovell, R.T.

    1981-01-01

    A feeding experiment conducted in a controlled environment and using a vitamin B12-deficient, but otherwise nutritionally complete, purified diet revealed that intestinal microorganisms in channel catfish synthesized approximately 1.4 ng of vitamin B12 per gram of bodyweight per day. Removal of cobalt from the diet or supplementation with an antibiotic (succinylsulfathiazole) significantly reduced the rate of intestinal synthesis and liver stores of vitamin B12. Radiolabeled vitamin B12 in the blood, liver, kidneys, and spleen of fish fed 60Co in the diet indicated that the intestinally synthesized vitamin was absorbed by the fish. The primary route of absorption was directly from the digestive tract into the blood because coprophagy was prevented in the rearing aquariums and the amount of vitamin B12 dissolved in the aquarium water was too low for gill absorption. Dietary supplementation of vitamin B12 was not necessary for normal growth and erythrocyte formation in channel catfish in a 24-week feeding period. A longer period, however, may have caused a vitamin deficiency since liver-stored vitamin B 12 decreased between the 2nd and 24th weeks

  7. L-Asparaginase of Leishmania donovani: Metabolic target and its role in Amphotericin B resistance

    Directory of Open Access Journals (Sweden)

    Jasdeep Singh

    2017-12-01

    Full Text Available Emergence of Amphotericin B (AmB resistant Leishmania donovani has posed major therapeutic challenge against the parasite. Consequently, combination therapy aimed at multiple molecular targets, based on proteome wise network analysis has been recommended. In this regard we had earlier identified and proposed L-asparaginase of Leishmania donovani (LdAI as a crucial metabolic target. Here we report that both LdAI overexpressing axenic amastigote and promastigote forms of L. donovani survives better when challenged with AmB as compared to wild type strain. Conversely, qRT-PCR analysis showed an upregulation of LdAI in both forms upon AmB treatment. Our data demonstrates the importance of LdAI in imparting immediate protective response to the parasite upon AmB treatment. In the absence of structural and functional information, we modeled LdAI and validated its solution structure through small angle X-ray scattering (SAXS analysis. We identified its specific inhibitors through ligand and structure-based approach and characterized their effects on enzymatic properties (Km, Vmax, Kcat of LdAI. We show that in presence of two of the inhibitors L1 and L2, the survival of L. donovani is compromised whereas overexpression of LdAI in these cells restores viability. Taken together, our results conclusively prove that LdAI is a crucial metabolic enzyme conferring early counter measure against AmB treatment by Leishmania. Keywords: Leishmania donovani, L-asparaginase, Amphotericin B resistance, Metabolic target

  8. The determination of serum vitamin B/sub 12/ values using radioassay

    Energy Technology Data Exchange (ETDEWEB)

    Kariyone, S; Morishita, R; Sato, M; Fujimori, K; Miki, M [Kyoto Univ. (Japan). Faculty of Medicine

    1975-04-01

    Strong and weak points of both the Phadebas B/sub 12/ test kit by Pharmacia Co. Ltd. and the CIS B/sub 12/ kit by CEA Co. Ltd. were examined to determine and evaluated. One strong point was that both of kits were comparatively easy to operate. Another was that they were very accurate if only one pipet was used and it was correctly handled. The error from the fractional infusion of 0.1 ml of /sup 57/Co-B/sub 12/ sample remained within +-1.8%, including the error of measuring radioactivity. The recovery rate of vitamin B/sub 12/ added to the serum was 100+-10%. Close correlation was found between the serum B/sub 12/ values measured by each kit and with a careful procedure almost accurate, highly reproducible values were obtained. It was necessary to further examine the pH of the buffer solution in the Phadebas kit and the conditions of extraction of B/sub 12/ from the serum in the CIS kit. In reading the B/sub 12/ values from the standard curve, it was preferable to perform a logic change B/B/sub 0/ % in the samples and to make a linear standard curve, so that the accuracy of the reading would not be infuluenced by variations in the data. (Kanao, N.).

  9. TMPRSS12 Is an Activating Protease for Subtype B Avian Metapneumovirus.

    Science.gov (United States)

    Yun, Bingling; Zhang, Yao; Liu, Yongzhen; Guan, Xiaolu; Wang, Yongqiang; Qi, Xiaole; Cui, Hongyu; Liu, Changjun; Zhang, Yanping; Gao, Honglei; Gao, Li; Li, Kai; Gao, Yulong; Wang, Xiaomei

    2016-12-15

    The entry of avian metapneumovirus (aMPV) into host cells initially requires the fusion of viral and cell membranes, which is exclusively mediated by fusion (F) protein. Proteolysis of aMPV F protein by endogenous proteases of host cells allows F protein to induce membrane fusion; however, these proteases have not been identified. Here, we provide the first evidence that the transmembrane serine protease TMPRSS12 facilitates the cleavage of subtype B aMPV (aMPV/B) F protein. We found that overexpression of TMPRSS12 enhanced aMPV/B F protein cleavage, F protein fusogenicity, and viral replication. Subsequently, knockdown of TMPRSS12 with specific small interfering RNAs (siRNAs) reduced aMPV/B F protein cleavage, F protein fusogenicity, and viral replication. We also found a cleavage motif in the aMPV/B F protein (amino acids 100 and 101) that was recognized by TMPRSS12. The histidine, aspartic acid, and serine residue (HDS) triad of TMPRSS12 was shown to be essential for the proteolysis of aMPV/B F protein via mutation analysis. Notably, we observed TMPRSS12 mRNA expression in target organs of aMPV/B in chickens. Overall, our results indicate that TMPRSS12 is crucial for aMPV/B F protein proteolysis and aMPV/B infectivity and that TMPRSS12 may serve as a target for novel therapeutics and prophylactics for aMPV. Proteolysis of the aMPV F protein is a prerequisite for F protein-mediated membrane fusion of virus and cell and for aMPV infection; however, the proteases used in vitro and vivo are not clear. A combination of analyses, including overexpression, knockdown, and mutation methods, demonstrated that the transmembrane serine protease TMPRSS12 facilitated cleavage of subtype B aMPV (aMPV/B) F protein. Importantly, we located the motif in the aMPV/B F protein recognized by TMPRSS12 and the catalytic triad in TMPRSS12 that facilitated proteolysis of the aMPV/B F protein. This is the first report on TMPRSS12 as a protease for proteolysis of viral envelope

  10. TRANSIT TIMING VARIATION MEASUREMENTS OF WASP-12b AND QATAR-1b: NO EVIDENCE OF ADDITIONAL PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Karen A.; Stassun, Keivan G. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Kielkopf, John F. [Department of Physics and Astronomy, University of Louisville, Louisville, KY 40292 (United States)

    2017-02-01

    WASP-12b and Qatar-1b are transiting hot Jupiters for which previous works have suggested the presence of transit timing variations (TTVs) indicative of additional bodies in these systems—an Earth-mass planet in WASP-12 and a brown-dwarf mass object in Qatar-1. Here, we present 23 new WASP-12b and 18 new Qatar-1b complete (or nearly complete) transit observations. We perform global system fits to all of our light curves for each system, as well as RV and stellar spectroscopic parameters from the literature. The global fits provide refined system parameters and uncertainties for each system, including precise transit center times for each transit. The transit model residuals of the combined and five minute binned light curves have an rms of 183 and 255 parts per million (ppm) for WASP-12b and Qatar-1b, respectively. Most of the WASP-12b system parameter values from this work are consistent with values from previous studies, but have ∼40%–50% smaller uncertainties. Most of the Qatar-1b system parameter values and uncertainties from this work are consistent with values recently reported in the literature. We find no convincing evidence for sinusoidal TTVs with a semi-amplitude of more than ∼35 and ∼25 s in the WASP-12b and Qatar-1b systems, respectively.

  11. Magnesium isoglycyrrhizinate blocks fructose-induced hepatic NF-κB/NLRP3 inflammasome activation and lipid metabolism disorder.

    Science.gov (United States)

    Zhao, Xiao-Juan; Yang, Yan-Zi; Zheng, Yan-Jing; Wang, Shan-Chun; Gu, Hong-Mei; Pan, Ying; Wang, Shui-Juan; Xu, Hong-Jiang; Kong, Ling-Dong

    2017-08-15

    Magnesium isoglycyrrhizinate as a hepatoprotective agent possesses immune modulation and anti-inflammation, and treats liver diseases. But its effects on immunological-inflammatory and metabolic profiles for metabolic syndrome with liver injury and underlying potential mechanisms are not fully understood. In this study, magnesium isoglycyrrhizinate alleviated liver inflammation and lipid accumulation in fructose-fed rats with metabolic syndrome. It also suppressed hepatic inflammatory signaling activation by reducing protein levels of phosphorylation of nuclear factor-kappa B p65 (p-NF-κB p65), inhibitor of nuclear factor kappa-B kinase α/β (p-IKKα/β) and inhibitor of NF-κB α (p-IκBα) as well as nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC) and Caspase-1 in rats, being consistent with its reduction of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and IL-6 levels. Furthermore, magnesium isoglycyrrhizinate modulated lipid metabolism-related genes characterized by up-regulating peroxisome proliferator-activated receptor-α (PPAR-α) and carnitine palmitoyl transferase-1 (CPT-1), and down-regulating sensor for fatty acids to control-1 (SREBP-1) and stearoyl-CoA desaturase 1 (SCD-1) in the liver of fructose-fed rats, resulting in the reduction of triglyceride and total cholesterol levels. These effective actions were further confirmed in fructose-exposed BRL-3A and HepG2 cells. The molecular mechanisms underpinning these observations suggest that magnesium isoglycyrrhizinate may inhibit NF-κB/NLRP3 inflammasome activation to reduce immunological-inflammatory response, which in turn may prevent liver lipid metabolic disorder and accumulation under high fructose condition. Thus, blockade of NF-κB/NLRP3 inflammasome activation and lipid metabolism disorder by magnesium isoglycyrrhizinate may be the potential therapeutic approach for improving fructose-induced liver injury with

  12. Sda1, a Cys2-His2 zinc finger transcription factor, is involved in polyol metabolism and fumonisin B1 production in Fusarium verticillioides.

    Directory of Open Access Journals (Sweden)

    Martha Malapi-Wight

    Full Text Available The ubiquitous ascomycete Fusarium verticillioides causes ear rot and stalk rot of maize, both of which reduce grain quality and yield. Additionally, F. verticillioides produces the mycotoxin fumonisin B1 (FB1 during infection of maize kernels, and thus potentially compromises human and animal health. The current knowledge is fragmentary regarding the regulation of FB1 biosynthesis, particularly when considering interplay with environmental factors such as nutrient availability. In this study, SDA1 of F. verticillioides, predicted to encode a Cys-2 His-2 zinc finger transcription factor, was shown to play a key role in catabolizing select carbon sources. Growth of the SDA1 knock-out mutant (Δsda1 was completely inhibited when sorbitol was the sole carbon source and was severely impaired when exclusively provided mannitol or glycerol. Deletion of SDA1 unexpectedly increased FB1 biosynthesis, but reduced arabitol and mannitol biosynthesis, as compared to the wild-type progenitor. Trichoderma reesei ACE1, a regulator of cellulase and xylanase expression, complemented the F. verticillioides Δsda1 mutant, which indicates that Ace1 and Sda1 are functional orthologs. Taken together, the data indicate that Sda1 is a transcriptional regulator of carbon metabolism and toxin production in F. verticillioides.

  13. Metabolic engineering of cyanobacteria for photosynthetic 3-hydroxypropionic acid production from CO2 using Synechococcus elongatus PCC 7942.

    Science.gov (United States)

    Lan, Ethan I; Chuang, Derrick S; Shen, Claire R; Lee, Annabel M; Ro, Soo Y; Liao, James C

    2015-09-01

    Photosynthetic conversion of CO2 to chemicals using cyanobacteria is an attractive approach for direct recycling of CO2 to useful products. 3-Hydroxypropionic acid (3 HP) is a valuable chemical for the synthesis of polymers and serves as a precursor to many other chemicals such as acrylic acid. 3 HP is naturally produced through glycerol metabolism. However, cyanobacteria do not possess pathways for synthesizing glycerol and converting glycerol to 3 HP. Furthermore, the latter pathway requires coenzyme B12, or an oxygen sensitive, coenzyme B12-independent enzyme. These characteristics present major challenges for production of 3 HP using cyanobacteria. To overcome such difficulties, we constructed two alternative pathways in Synechococcus elongatus PCC 7942: a malonyl-CoA dependent pathway and a β-alanine dependent pathway. Expression of the malonyl-CoA dependent pathway genes (malonyl-CoA reductase and malonate semialdehyde reductase) enabled S. elongatus to synthesize 3 HP to a final titer of 665 mg/L. β-Alanine dependent pathway expressing S. elongatus produced 3H P to final titer of 186 mg/L. These results demonstrated the feasibility of converting CO2 into 3 HP using cyanobacteria. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  14. Genealogy profiling through strain improvement by using metabolic network analysis: metabolic flux genealogy of several generations of lysine-producing corynebacteria.

    Science.gov (United States)

    Wittmann, Christoph; Heinzle, Elmar

    2002-12-01

    A comprehensive approach of metabolite balancing, (13)C tracer studies, gas chromatography-mass spectrometry, matrix-assisted laser desorption ionization-time of flight mass spectrometry, and isotopomer modeling was applied for comparative metabolic network analysis of a genealogy of five successive generations of lysine-producing Corynebacterium glutamicum. The five strains examined (C. glutamicum ATCC 13032, 13287, 21253, 21526, and 21543) were previously obtained by random mutagenesis and selection. Throughout the genealogy, the lysine yield in batch cultures increased markedly from 1.2 to 24.9% relative to the glucose uptake flux. Strain optimization was accompanied by significant changes in intracellular flux distributions. The relative pentose phosphate pathway (PPP) flux successively increased, clearly corresponding to the product yield. Moreover, the anaplerotic net flux increased almost twofold as a consequence of concerted regulation of C(3) carboxylation and C(4) decarboxylation fluxes to cover the increased demand for lysine formation; thus, the overall increase was a consequence of concerted regulation of C(3) carboxylation and C(4) decarboxylation fluxes. The relative flux through isocitrate dehydrogenase dropped from 82.7% in the wild type to 59.9% in the lysine-producing mutants. In contrast to the NADPH demand, which increased from 109 to 172% due to the increasing lysine yield, the overall NADPH supply remained constant between 185 and 196%, resulting in a decrease in the apparent NADPH excess through strain optimization. Extrapolated to industrial lysine producers, the NADPH supply might become a limiting factor. The relative contributions of PPP and the tricarboxylic acid cycle to NADPH generation changed markedly, indicating that C. glutamicum is able to maintain a constant supply of NADPH under completely different flux conditions. Statistical analysis by a Monte Carlo approach revealed high precision for the estimated fluxes, underlining the

  15. Vitamin B12 in metformin-treated diabetic patients: a cross-sectional study in Brazil Vitamina B12 em pacientes diabéticos usando metformina: um corte transversal no Brasil

    Directory of Open Access Journals (Sweden)

    Monique Nervo

    2011-02-01

    Full Text Available OBJECTIVE: The objective of this study was to evaluate the presence of vitamin B12 deficiency and the factors associated with serum vitamin B12 levels in a sample of metformin-treated Brazilian diabetic patients. METHOD: Cross-sectional study. RESULTS: 144 patients were included. Serum vitamin B12 levels were low (OBJETIVO: O objetivo deste estudo foi avaliar a prevalência de deficiência de vitamina B12 em pacientes diabéticos brasileiros tratados com metformina e os fatores associados aos níveis séricos de vitamina B12. MÉTODO: Corte transversal. RESULTADOS: 144 pacientes foram incluídos. Os níveis séricos de vitamina B12 foram baixos (< 125 pmol/L em 10 pacientes (6,9% e possivelmente baixos (125 - 250pmol/L em 53 pacientes (36,8%. Os níveis séricos de vitamina B12 foram associados negativamente à idade (B = -3,17; β = -0,171; p = 0,037 e à duração do uso de metformina (B = -33,36; β= -0,161; p = 0,048 e positivamente com a ingestão estimada de vitamina B12 (B = 67,96; β = 0,249; p = 0,002. CONCLUSÃO: Estes resultados sugerem alta prevalência de deficiência de vitamina B12 em pacientes diabéticos tratados com metformina. Pacientes mais velhos, em uso de metformina há muito tempo e com ingestão baixa de vitamina B12 estão provavelmente mais predispostos a essa deficiência.

  16. Comparison of virulence of Francisella tularensis ssp. holarctica genotypes B.12 and B.FTNF002-00.

    Science.gov (United States)

    Kreizinger, Zsuzsa; Erdélyi, Károly; Felde, Orsolya; Fabbi, Massimo; Sulyok, Kinga M; Magyar, Tibor; Gyuranecz, Miklós

    2017-02-10

    Two main genetic groups (B.12 and B.FTNF002-00) of Francisella tularensis ssp. holarctica are endemic in Europe. The B.FTNF002-00 group proved to be dominant in Western European countries, while strains of the B.12 group were isolated mainly in Northern, Central and Eastern Europe. The clinical course of tularemia in the European brown hare (Lepus europaeus) also shows distinct patterns according to the geographical area. Acute course of the disease is observed in hares in Western European countries, while signs of sub-acute or chronic infection are more frequently detected in the eastern part of the continent. The aim of the present study was to examine whether there is any difference in the virulence of the strains belonging to the B.FTNF002-00 and B.12 genetic clades. Experimental infection of Fischer 344 rats was performed by intra-peritoneal injection of three dilutions of a Hungarian (B.12 genotype) and an Italian (B.FTNF002-00 genotype) F. tularensis ssp. holarctica strain. Moderate difference was observed in the virulence of the two genotypes. Significant differences were observed in total weight loss values and scores of clinical signs between the two genotypes with more rats succumbing to tularemia in groups infected with the B.FTNF002-00 genotype. Results of the experimental infection are consistent with previous clinical observations and pathological studies suggesting that F. tularensis ssp. holarctica genotype B.FTNF002-00 has higher pathogenic potential than the B.12 genotype.

  17. KANDUNGAN VITAMIN B6, B9, B12 DAN E BEBERAPA JENIS DAGING, TELUR, IKAN DAN UDANG LAUT DI BOGOR DAN SEKITARNYA (VITAMIN B6, B9, B12 AND E CONTENT OF SEVERAL TYPES OF MEATS, EGGS, FISHES AND MARINE SHRIMPS IN BOGOR AND SURROUNDING AREAS

    Directory of Open Access Journals (Sweden)

    Heru Yuniati

    2012-06-01

    Full Text Available ABSTRACT Food Composition Table (DKBM in Indonesia has not mentioned all types of nutrients available in the food, particularly vitamin B6, B9 (folic acid, B12, and vitamin E. Therefore this study aimed to analyze the content of vitamin B6, B9 (folic acid, B12, and vitamin E in several types of meat, eggs, fish and marine shrimps consumed in Bogor and surrounding areas. Vitamin B6, B9, B12, and vitamin E from three kinds of meat (chicken, beef, lamb, two types of eggs (chicken, duck, and four species of fish (snapper, bloating, carp and tuna and crayfish are analyzed using High-Performance Liquid Chromatography (HPLC. The samples used are raw and taken from three locations in Bogor and surrounding areas. Fishes, meats and eggs contain high levels of folic acid, however the amount of folic acid content in meat varies depending on which part of meat the samples are taken, types of organ, and the fat content of the meat. The folic acid content in chicken wings is different with those in thigh. In fatty mutton the folic acid is higher than in those lean meat, and in yolk is higher than those in egg white. Vitamin E content of snapper is the highest amongs other types of fishes (6.54 µg/100 g.Chicken eggs contain a higher amount of vitamin E than duck eggs, while the yolk contains ahigher amount of vitamin E than those egg white. Keywords: animal foods, vitamin B6, vitamin B9 (folic Acid, vitamin B12, vitamin E   ABSTRAK Daftar Komposisi Bahan Makanan (DKBM yang ada di Indonesia belum memuat semua jenis zat gizi dalam makanan, khususnya vitamin B6, B9 (asam folat, B12 dan vitamin E. Menganalisis kandungan vitamin B6, B9 (asam folat, B12, dan vitamin E dalam beberapa jenis daging, telur, ikan dan udang laut yang dikonsumsi masyarakat di Bogor dan sekitarnya. Kandungan vitamin B6, B9, B12 dan vitamin E dari tiga jenis daging (ayam, sapi, kambing, dua jenis telur (ayam, itik, serta empat jenis ikan (kakap, kembung, mas, tongkol dan udang laut

  18. Co-Metabolic Degradation of β-Cypermethrin and 3-Phenoxybenzoic Acid by Co-Culture of Bacillus licheniformis B-1 and Aspergillus oryzae M-4.

    Science.gov (United States)

    Zhao, Jiayuan; Chi, Yuanlong; Xu, Yingchao; Jia, Dongying; Yao, Kai

    2016-01-01

    The degradation efficiency of organic contaminants and their associated metabolites by co-culture of microbes is mainly limited by toxic intermediates from co-metabolic degradation. In this study, we investigated the degradation of β-cypermethrin (β-CY) and 3-phenoxybenzoic acid (3-PBA) by co-culture of Bacillus licheniformis B-1 and Aspergillus oryzae M-4, as well as the influences of β-CY and 3-PBA metabolites on their degradation and the growth of strains B-1 and M-4. Our results indicated that 100 mg/L β-CY was degraded by 78.85%, and 3-PBA concentration was 0.05 mg/L after 72 h. Compared with using only strain B-1, the half-life (t1/2) of β-CY by using the two strains together was shortened from 84.53 h to 38.54 h, and the yield coefficient of 3-PBA was decreased from 0.846 to 0.001. At 100 mg/L of 3-PBA and gallic acid, β-CY and 3-PBA degradation were only 17.68% and 40.45%, respectively. As the toxic intermediate derived from co-metabolic degradation of β-CY by strain B-1, 3-PBA was efficiently degraded by strain M-4, and gallic acid, as the toxic intermediate from co-metabolic degradation of 3-PBA by strain M-4, was efficiently degraded by strain B-1. These results provided a promising approach for efficient biodegradation of β-CY and 3-PBA.

  19. Co-Metabolic Degradation of β-Cypermethrin and 3-Phenoxybenzoic Acid by Co-Culture of Bacillus licheniformis B-1 and Aspergillus oryzae M-4.

    Directory of Open Access Journals (Sweden)

    Jiayuan Zhao

    Full Text Available The degradation efficiency of organic contaminants and their associated metabolites by co-culture of microbes is mainly limited by toxic intermediates from co-metabolic degradation. In this study, we investigated the degradation of β-cypermethrin (β-CY and 3-phenoxybenzoic acid (3-PBA by co-culture of Bacillus licheniformis B-1 and Aspergillus oryzae M-4, as well as the influences of β-CY and 3-PBA metabolites on their degradation and the growth of strains B-1 and M-4. Our results indicated that 100 mg/L β-CY was degraded by 78.85%, and 3-PBA concentration was 0.05 mg/L after 72 h. Compared with using only strain B-1, the half-life (t1/2 of β-CY by using the two strains together was shortened from 84.53 h to 38.54 h, and the yield coefficient of 3-PBA was decreased from 0.846 to 0.001. At 100 mg/L of 3-PBA and gallic acid, β-CY and 3-PBA degradation were only 17.68% and 40.45%, respectively. As the toxic intermediate derived from co-metabolic degradation of β-CY by strain B-1, 3-PBA was efficiently degraded by strain M-4, and gallic acid, as the toxic intermediate from co-metabolic degradation of 3-PBA by strain M-4, was efficiently degraded by strain B-1. These results provided a promising approach for efficient biodegradation of β-CY and 3-PBA.

  20. Gene polymorphisms as risk factors for predicting the cardiovascular manifestations in Marfan syndrome. Role of folic acid metabolism enzyme gene polymorphisms in Marfan syndrome.

    Science.gov (United States)

    Benke, Kálmán; Ágg, Bence; Mátyás, Gábor; Szokolai, Viola; Harsányi, Gergely; Szilveszter, Bálint; Odler, Balázs; Pólos, Miklós; Maurovich-Horvat, Pál; Radovits, Tamás; Merkely, Béla; Nagy, Zsolt B; Szabolcs, Zoltán

    2015-10-01

    Folic acid metabolism enzyme polymorphisms are believed to be responsible for the elevation of homocysteine (HCY) concentration in the blood plasma, correlating with the pathogenesis of aortic aneurysms and aortic dissection. We studied 71 Marfan patients divided into groups based on the severity of cardiovascular involvement: no intervention required (n=27, Group A); mild involvement requiring intervention (n=17, Group B); severe involvement (n=27, Group C) subdivided into aortic dilatation (n=14, Group C1) and aortic dissection (n=13, Group C2), as well as 117 control subjects. We evaluated HCY, folate, vitamin B12 and the polymorphisms of methylenetetrahydrofolate reductase (MTHFR;c.665C>T and c.1286A>C), methionine synthase (MTR;c.2756A>G) and methionine synthase reductase (MTRR;c.66A>G). Multiple comparisons showed significantly higher levels of HCY in Group C2 compared to Groups A, B, C1 and control group (pMarfan patients, and especially aortic dissection, is associated with higher HCY plasma levels and prevalence of homozygous genotypes of folic acid metabolism enzymes than mild or no cardiovascular involvement. These results suggest that impaired folic acid metabolism has an important role in the development and remodelling of the extracellular matrix of the aorta.

  1. Tributyltin chloride leads to adiposity and impairs metabolic functions in the rat liver and pancreas.

    Science.gov (United States)

    Bertuloso, Bruno D; Podratz, Priscila L; Merlo, Eduardo; de Araújo, Julia F P; Lima, Leandro C F; de Miguel, Emilio C; de Souza, Leticia N; Gava, Agata L; de Oliveira, Miriane; Miranda-Alves, Leandro; Carneiro, Maria T W D; Nogueira, Celia R; Graceli, Jones B

    2015-05-19

    Tributyltin chloride (TBT) is an environmental contaminant used in antifouling paints of boats. Endocrine disruptor effects of TBT are well established in animal models. However, the adverse effects on metabolism are less well understood. The toxicity of TBT in the white adipose tissue (WAT), liver and pancreas of female rats were assessed. Animals were divided into control and TBT (0.1 μg/kg/day) groups. TBT induced an increase in the body weight of the rats by the 15th day of oral exposure. The weight gain was associated with high parametrial (PR) and retroperitoneal (RP) WAT weights. TBT-treatment increased the adiposity, inflammation and expression of ERα and PPARγ proteins in both RP and PR WAT. In 3T3-L1 cells, estrogen treatment reduced lipid droplets accumulation, however increased the ERα protein expression. In contrast, TBT-treatment increased the lipid accumulation and reduced the ERα expression. WAT metabolic changes led to hepatic inflammation, lipid accumulation, increase of PPARγ and reduction of ERα protein expression. Accordingly, there were increases in the glucose tolerance and insulin sensitivity tests with increases in the number of pancreatic islets and insulin levels. These findings suggest that TBT leads to adiposity in WAT specifically, impairing the metabolic functions of the liver and pancreas. Copyright © 2015. Published by Elsevier Ireland Ltd.

  2. Altered Methylation Profile of Lymphocytes Is Concordant with Perturbation of Lipids Metabolism and Inflammatory Response in Obesity

    Directory of Open Access Journals (Sweden)

    Mette J. Jacobsen

    2016-01-01

    Full Text Available Obesity is associated with immunological perturbations that contribute to insulin resistance. Epigenetic mechanisms can control immune functions and have been linked to metabolic complications, although their contribution to insulin resistance still remains unclear. In this study, we investigated the link between metabolic dysfunction and immune alterations with the epigenetic signature in leukocytes in a porcine model of obesity. Global DNA methylation of circulating leukocytes, adipose tissue leukocyte trafficking, and macrophage polarisation were established by flow cytometry. Adipose tissue inflammation and metabolic function were further characterised by quantification of metabolites and expression levels of genes associated with obesity and inflammation. Here we show that obese pigs showed bigger visceral fat pads, higher levels of circulating LDL cholesterol, and impaired glucose tolerance. These changes coincided with impaired metabolism, sustained macrophages infiltration, and increased inflammation in the adipose tissue. Those immune alterations were linked to global DNA hypermethylation in both B-cells and T-cells. Our results provide novel insight into the possible contribution of immune cell epigenetics into the immunological disturbances observed in obesity. The dramatic changes in the transcriptomic and epigenetic signature of circulating lymphocytes reinforce the concept that epigenetic processes participate in the increased immune cell activation and impaired metabolic functions in obesity.

  3. Propofol exposure during late stages of pregnancy impairs learning and memory in rat offspring via the BDNF-TrkB signalling pathway.

    Science.gov (United States)

    Zhong, Liang; Luo, Foquan; Zhao, Weilu; Feng, Yunlin; Wu, Liuqin; Lin, Jiamei; Liu, Tianyin; Wang, Shengqiang; You, Xuexue; Zhang, Wei

    2016-10-01

    The brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB) (BDNF-TrkB) signalling pathway plays a crucial role in regulating learning and memory. Synaptophysin provides the structural basis for synaptic plasticity and depends on BDNF processing and subsequent TrkB signalling. Our previous studies demonstrated that maternal exposure to propofol during late stages of pregnancy impaired learning and memory in rat offspring. The purpose of this study is to investigate whether the BDNF-TrkB signalling pathway is involved in propofol-induced learning and memory impairments. Propofol was intravenously infused into pregnant rats for 4 hrs on gestational day 18 (E18). Thirty days after birth, learning and memory of offspring was assessed by the Morris water maze (MWM) test. After the MWM test, BDNF and TrkB transcript and protein levels were measured in rat offspring hippocampus tissues using real-time PCR (RT-PCR) and immunohistochemistry (IHC), respectively. The levels of phosphorylated-TrkB (phospho-TrkB) and synaptophysin were measured by western blot. It was discovered that maternal exposure to propofol on day E18 impaired spatial learning and memory of rat offspring, decreased mRNA and protein levels of BDNF and TrkB, and decreased the levels of both phospho-TrkB and synaptophysin in the hippocampus. Furthermore, the TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) reversed all of the observed changes. Treatment with 7,8-DHF had no significant effects on the offspring that were not exposed to propofol. The results herein indicate that maternal exposure to propofol during the late stages of pregnancy impairs spatial learning and memory of offspring by disturbing the BDNF-TrkB signalling pathway. The TrkB agonist 7,8-DHF might be a potential therapy for learning and memory impairments induced by maternal propofol exposure. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular

  4. High intraocular pressure produces learning and memory impairments in rats.

    Science.gov (United States)

    Yuan, Yuxiang; Chen, Zhiqi; Li, Lu; Li, Xing; Xia, Qian; Zhang, Hong; Duan, Qiming; Zhao, Yin

    2017-11-15

    Primary open angle glaucoma (POAG) is a leading cause of irreversible blindness worldwide. Previous MRI studies have revealed that POAG can be associated with alterations in hippocampal function. Thus, the aim of this study was to investigate a relationship between chronic high intraocular pressure (IOP) and hippocampal changes in a rat model. We used behavioural tests to assess learning and memory ability, and additionally investigated the hippocampal expression of pathological amyloid beta (Aβ), phospho-tau, and related pathway proteins. Chronic high IOP impaired learning and memory in rats and concurrently increased Aβ and phospho-tau expression in the hippocampus by altering the activation of different kinase (GSK-3β, BACE1) and phosphatase (PP2A) proteins in the hippocampus. This study provides novel evidence for the relationship between high IOP and hippocampal alterations, especially in the context of learning and memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Abnormality of cerebral cortical glucose metabolism in temporal lobe epilepsy with cognitive function impairment

    International Nuclear Information System (INIS)

    Bang-Hung Yang; Tsung-Szu Yeh; Tung-Ping Su; Jyh-Cheng Chen; Ren-Shyan Liu

    2004-01-01

    Objective: People with epilepsy commonly report having problems with their memory. Many indicate that memory difficulties significantly hinder their functioning at work, in school, and at home. Besides, some studies have reported that memory performance as a prognostic factor is of most value in patients with risk of refractory epilepsy and when used in a multidisciplinary setting. However, the cerebral cortical areas involving memory impairment in epilepsy is still unknown. The purpose of this study was to access changes of cerebral glucose metabolism of epilepsy patients using [F-18] fluorodeoxyglucose positron emission tomography (FDG PET). Method: Nine temporal lobe epilepsy patients were studied. Each patient was confirmed with lesions in right mesial temporal lobe by MRI, PET and EEG. Serial cognition function tests were performed. Regional cerebral glucose metabolism (rCMRglc) was measured by PET at 45 minutes after injection of 370 MBq of FDG. Parametric images were generated by grand mean scaling each scan to 50. The images were then transformed into standard stereotactic space. Statistical parametric mapping (SPM2) was applied to find the correlations between verbal memory, figure memory, perception intelligent quotation (PIQ) and rCMRglc in epilepsy patients. The changes of rCMRglc were significant if corrected p value was less than 0.05. Results: There was no significant relationship between figure memory score and verbal memory score. FDG-PET scan showed changes of rCMRglc positive related with verbal memory score in precentral gyms of right frontal lobe (Brodmann area 4, corrected p < 0.001, voxel size 240) and cingulated gyms of right limbic lobe (Brodmann area 32, corrected p=0.002, voxel size 143). No negative relationship was demonstrable between verbal memory and rCMRglc in this study. Besides, significanfiy positive correlation between figure memory was shown in cuneus of right occipital lobe (Brodmann area 18, corrected p < 0.001, voxel size

  6. Glucose transportation in the brain and its impairment in Huntington disease: one more shade of the energetic metabolism failure?

    Science.gov (United States)

    Morea, Veronica; Bidollari, Eris; Colotti, Gianni; Fiorillo, Annarita; Rosati, Jessica; De Filippis, Lidia; Squitieri, Ferdinando; Ilari, Andrea

    2017-07-01

    Huntington's disease (HD) or Huntington's chorea is the most common inherited, dominantly transmitted, neurodegenerative disorder. It is caused by increased CAG repeats number in the gene coding for huntingtin (Htt) and characterized by motor, behaviour and psychiatric symptoms, ultimately leading to death. HD patients also exhibit alterations in glucose and energetic metabolism, which result in pronounced weight loss despite sustained calorie intake. Glucose metabolism decreases in the striatum of all the subjects with mutated Htt, but affects symptom presentation only when it drops below a specific threshold. Recent evidence points at defects in glucose uptake by the brain, and especially by neurons, as a relevant component of central glucose hypometabolism in HD patients. Here we review the main features of glucose metabolism and transport in the brain in physiological conditions and how these processes are impaired in HD, and discuss the potential ability of strategies aimed at increasing intracellular energy levels to counteract neurological and motor degeneration in HD patients.

  7. The metabolism of aflatoxin B1 by hepatocytes isolated from rats following the in vivo administration of some xenobiotics

    International Nuclear Information System (INIS)

    Metcalfe, S.A.; Neal, G.E.

    1983-01-01

    Isolated rat hepatocytes, an intact cellular system capable of performing phase I and phase II metabolism, have been used to investigate metabolism of aflatoxin B1. These cells were found to metabolise [ 14 C]aflatoxin B1 to aflatoxins M1 and Q1, and to radiolabelled polar material, presumably conjugates, as analysed by h.p.l.c., t.l.c. and radioactive determination. In vivo administration of the mixed function oxidase inducers, phenobarbitone and 3-methylcholanthrene, resulted in enhanced hepatocyte phase I (microsomal) metabolism of aflatoxin B1. In contrast to metabolism of AFB1 by in vitro subcellular systems increased production of polar material (conjugated metabolites) derived from [ 14 C]aflatoxin B1 was also detected in hepatocytes isolated from these pretreated animals. Formation of aflatoxin Q1 by isolated hepatocytes appeared to be mediated by cytochrome P450-linked enzymes whereas cytochrome P448-linked enzymes were apparently involved in aflatoxin M1 production. Chronic feeding of aflatoxin B1 to rats enhanced hepatocyte production of conjugated material only and did not elevate cellular cytochrome P450 levels, thus suggesting that aflatoxin B1 is not an inducer of its own primary metabolism

  8. Assessment of Serum Vitamin B12 Concentrations in Patients with a ...

    African Journals Online (AJOL)

    Serum vitamin B12 levels were obtained preoperatively and every 6 months postoperatively. All patients received 100 microgram of vitamin B-12 twice yearly. Follow up ranged from 3-10 years. Results All 16 patients included in the study had a normal concentration of serum vitamin B12 preoperatively with a range of ...

  9. Effect of UV-B on enzymes of nitrogen metabolism in the cyanobacterium Nostoc calcicola

    International Nuclear Information System (INIS)

    Kumar, A.; Sinha, R.P.; Häder, D. P.

    1996-01-01

    The effects of ultraviolet-B (UV-B; 280–315 nm) irradiation on nitrogenase and nitrate reductase (NR) activity have been studied in the filamentous and heterocystous N 2 -fixing cyanobacterium Nostoc calcicola. Exposure of cultures to UV-B (5W/m 2 ) for as little as 30 min caused complete inactivation of nitrogenase activity whereas nitrate reductase activity was stimulated twofold in comparison to one exposed to fluorescent white light. GS activity was also inhibited by UV-B treatment, but there was no total loss of activity even after 4 h. NR activity showed a gradual stimulation up to 4 h and thereafter it became constant. Stimulation was also obtained in reductant deficient cultures (12 h incubation in the dark) suggesting independence of NR of PS-II under UV-B. NR activity was also unaffected in the presence of DCMU, a known inhibitor of PS-II. However, both O 2 evolution and 14 CO 2 uptake were completely abolished following 30 min of UV-B treatment. Addition of the protein synthesis inhibitor chloramphenicol (25 μg/mL) to cultures did not show any inhibitory effect on NR activity. SDS-PAGE analysis of UV-B treated cultures elicited gradual loss of protein bands with increasing duration of exposure. Our findings suggest that UV-B irradiance has differential effects on the enzymes of the nitrogen metabolism in the cyanobacterium Nostoc calcicola. Further studies are needed to reveal the exact mechanism involved in the stimulation of NR activity by UV-B. Whether UV-B has a direct effect on NO 2 − accumulation in the cells needs detailed investigation. (author)

  10. Determination of four forms of vitamin B12 and other B vitamins in seawater by liquid chromatography/tandem mass spectrometry.

    Science.gov (United States)

    Heal, Katherine R; Carlson, Laura Truxal; Devol, Allan H; Armbrust, E Virginia; Moffett, James W; Stahl, David A; Ingalls, Anitra E

    2014-11-30

    Vitamin B(12) is an essential nutrient for more than half of surveyed marine algae species, but methods for directly measuring this important cofactor in seawater are limited. Current mass spectrometry methods do not quantify all forms of B(12), potentially missing a significant portion of the B(12) pool. We present a method to measure vitamins B(1), B(2), B(6), B(7) and four forms of B(12) dissolved in seawater. The method entails solid-phase extraction, separation by ultra-performance liquid chromatography, and detection by triple-quadrupole tandem mass spectrometry using stable-isotope-labeled internal standards. We demonstrated the use of this method in the environment by analyzing B(12) concentrations at different depths in the Hood Canal, part of the Puget Sound estuarine system in Washington State. Recovery of vitamin B(12) forms during the preconcentration steps was >71% and the limits of detection were B(12) in seawater at our field site. We developed a method for quantifying four forms of B(12) in seawater by liquid chromatography/mass spectrometry with the option of simultaneous analysis of vitamins B(1), B(2), B(6), and B(7). We validated the method and demonstrated its application in the field. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Effects of fetal exposure to high-fat diet or maternal hyperglycemia on L-arginine and nitric oxide metabolism in lung.

    Science.gov (United States)

    Grasemann, C; Herrmann, R; Starschinova, J; Gertsen, M; Palmert, M R; Grasemann, H

    2017-02-20

    Alterations in the L-arginine/nitric oxide (NO) metabolism contribute to diseases such as obesity, metabolic syndrome and airway dysfunction. The impact of early-life exposures on the L-arginine/NO metabolism in lung later in life is not well understood. The objective of this work was to study the effects of intrauterine exposures to maternal hyperglycemia and high-fat diet (HFD) on pulmonary L-arginine/NO metabolism in mice. We used two murine models of intrauterine exposures to maternal (a) hyperglycemia and (b) HFD to study the effects of these exposures on the L-arginine/NO metabolism in lung in normal chow-fed offspring. Both intrauterine exposures resulted in NO deficiency in the lung of the offspring at 6 weeks of age. However, each of the exposures leading to different metabolic phenotypes caused a distinct alteration in the L-arginine/NO metabolism. Maternal hyperglycemia leading to impaired glucose tolerance but no obesity in the offspring resulted in increased levels of asymmetric dimethylarginine and impairment of NO synthases. Although maternal HFD led to obesity without impairment in glucose tolerance in the offspring, it resulted in increased expression and activity of arginase in the lung of the normal chow-fed offspring. These data suggest that maternal hyperglycemia and HFD can cause alterations in the pulmonary L-arginine/NO metabolism in offspring.

  12. Inulin-type fructan degradation capacity of Clostridium cluster IV and XIVa butyrate-producing colon bacteria and their associated metabolic outcomes.

    Science.gov (United States)

    Moens, F; De Vuyst, L

    2017-05-30

    Four selected butyrate-producing colon bacterial strains belonging to Clostridium cluster IV (Butyricicoccus pullicaecorum DSM 23266 T and Faecalibacterium prausnitzii DSM 17677 T ) and XIVa (Eubacterium hallii DSM 17630 and Eubacterium rectale CIP 105953 T ) were studied as to their capacity to degrade inulin-type fructans and concomitant metabolite production. Cultivation of these strains was performed in bottles and fermentors containing a modified medium for colon bacteria, including acetate, supplemented with either fructose, oligofructose, or inulin as the sole energy source. Inulin-type fructan degradation was not a general characteristic among these strains. B. pullicaecorum DSM 23266 T and E. hallii DSM 17630 could only ferment fructose and did not degrade oligofructose or inulin. E. rectale CIP 105953 T and F. prausnitzii DSM 17677 T fermented fructose and could degrade both oligofructose and inulin. All chain length fractions of oligofructose were degraded simultaneously (both strains) and both long and short chain length fractions of inulin were degraded either simultaneously (E. rectale CIP 105953 T ) or consecutively (F. prausnitzii DSM 17677 T ), indicating an extracellular polymer degradation mechanism. B. pullicaecorum DSM 23266 T and E. hallii DSM 17630 produced high concentrations of butyrate, CO 2 , and H 2 from fructose. E. rectale CIP 105953 T produced lactate, butyrate, CO 2 , and H 2 , from fructose, oligofructose, and inulin, whereas F. prausnitzii DSM 17677 T produced butyrate, formate, CO 2 , and traces of lactate from fructose, oligofructose, and inulin. Based on carbon recovery and theoretical metabolite production calculations, an adapted stoichiometrically balanced metabolic pathway for butyrate, formate, lactate, CO 2 , and H 2 production by members of both Clostridium cluster IV and XIVa butyrate-producing bacteria was constructed.

  13. Prebiotic potential of L-sorbose and xylitol in promoting the growth and metabolic activity of specific butyrate-producing bacteria in human fecal culture.

    Science.gov (United States)

    Sato, Tadashi; Kusuhara, Shiro; Yokoi, Wakae; Ito, Masahiko; Miyazaki, Kouji

    2017-01-01

    Dietary low-digestible carbohydrates (LDCs) affect gut microbial metabolism, including the production of short-chain fatty acids. The ability of various LDCs to promote butyrate production was evaluated in in vitro human fecal cultures. Fecal suspensions from five healthy males were anaerobically incubated with various LDCs. L-Sorbose and xylitol markedly promoted butyrate formation in cultures. Bacterial 16S rRNA gene-based denaturing gradient gel electrophoresis analyses of these fecal cultures revealed a marked increase in the abundance of bacteria closely related to the species Anaerostipes hadrus or A. caccae or both, during enhanced butyrate formation from L-sorbose or xylitol. By using an agar plate culture, two strains of A. hadrus that produced butyrate from each substrate were isolated from the feces of two donors. Furthermore, of 12 species of representative colonic butyrate producers, only A. hadrus and A. caccae demonstrated augmented butyrate production from L-sorbose or xylitol. These findings suggest that L-sorbose and xylitol cause prebiotic stimulation of the growth and metabolic activity of Anaerostipes spp. in the human colon. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Human immunodeficiency virus impairs reverse cholesterol transport from macrophages.

    Directory of Open Access Journals (Sweden)

    Zahedi Mujawar

    2006-10-01

    Full Text Available Several steps of HIV-1 replication critically depend on cholesterol. HIV infection is associated with profound changes in lipid and lipoprotein metabolism and an increased risk of coronary artery disease. Whereas numerous studies have investigated the role of anti-HIV drugs in lipodystrophy and dyslipidemia, the effects of HIV infection on cellular cholesterol metabolism remain uncharacterized. Here, we demonstrate that HIV-1 impairs ATP-binding cassette transporter A1 (ABCA1-dependent cholesterol efflux from human macrophages, a condition previously shown to be highly atherogenic. In HIV-1-infected cells, this effect was mediated by Nef. Transfection of murine macrophages with Nef impaired cholesterol efflux from these cells. At least two mechanisms were found to be responsible for this phenomenon: first, HIV infection and transfection with Nef induced post-transcriptional down-regulation of ABCA1; and second, Nef caused redistribution of ABCA1 to the plasma membrane and inhibited internalization of apolipoprotein A-I. Binding of Nef to ABCA1 was required for down-regulation and redistribution of ABCA1. HIV-infected and Nef-transfected macrophages accumulated substantial amounts of lipids, thus resembling foam cells. The contribution of HIV-infected macrophages to the pathogenesis of atherosclerosis was supported by the presence of HIV-positive foam cells in atherosclerotic plaques of HIV-infected patients. Stimulation of cholesterol efflux from macrophages significantly reduced infectivity of the virions produced by these cells, and this effect correlated with a decreased amount of virion-associated cholesterol, suggesting that impairment of cholesterol efflux is essential to ensure proper cholesterol content in nascent HIV particles. These results reveal a previously unrecognized dysregulation of intracellular lipid metabolism in HIV-infected macrophages and identify Nef and ABCA1 as the key players responsible for this effect. Our findings

  15. Progressive metabolic impairment underlies the novel nematicidal action of fluensulfone on the potato cyst nematode Globodera pallida.

    Science.gov (United States)

    Kearn, James; Lilley, Catherine; Urwin, Peter; O'Connor, Vincent; Holden-Dye, Lindy

    2017-10-01

    Fluensulfone is a new nematicide with an excellent profile of selective toxicity against plant parasitic nematodes. Here, its effects on the physiology and biochemistry of the potato cyst nematode Globodera pallida have been investigated and comparisons made with its effect on the life-span of the free-living nematode Caenorhabditis elegans to provide insight into its mode of action and its selective toxicity. Fluensulfone exerts acute effects (≤1h; ≥100μM) on stylet thrusting and motility of hatched second stage G. pallida juveniles (J2s). Chronic exposure to lower concentrations of fluensulfone (≥3days; ≤30μM), reveals a slowly developing metabolic insult in which G. pallida J2s sequentially exhibit a reduction in motility, loss of a metabolic marker for cell viability, high lipid content and tissue degeneration prior to death. These effects are absent in adults and dauers of the model genetic nematode Caenorhabditis elegans. The nematicidal action of fluensulfone follows a time-course which progresses from an early impact on motility through to an accumulating metabolic impairment, an inability to access lipid stores and death. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Interleukin 12B (IL12B) Genetic Variation and Pulmonary Tuberculosis: A Study of Cohorts from The Gambia, Guinea-Bissau, United States and Argentina

    DEFF Research Database (Denmark)

    Morris, Gerard A J; Edwards, Digna R Velez; Hill, Philip C

    2011-01-01

    We examined whether polymorphisms in interleukin-12B (IL12B) associate with susceptibility to pulmonary tuberculosis (PTB) in two West African populations (from The Gambia and Guinea-Bissau) and in two independent populations from North and South America. Nine polymorphisms (seven SNPs, one...

  17. Association of the Pro12Ala Polymorphism with the Metabolic Parameters in Women with Polycystic Ovary Syndrome

    Directory of Open Access Journals (Sweden)

    Moushira Zaki

    2017-06-01

    CONCLUSION: The PPARG Pro12Ala polymorphism might contribute to the risk of PCOS and abnormal metabolic parameters and could be considered as a biomarker for early diagnosis and clinic prediction of metabolic complications.

  18. Fatty liver as a risk factor for progression from metabolically healthy to metabolically abnormal in non-overweight individuals.

    Science.gov (United States)

    Hashimoto, Yoshitaka; Hamaguchi, Masahide; Fukuda, Takuya; Ohbora, Akihiro; Kojima, Takao; Fukui, Michiaki

    2017-07-01

    Recent studies identified that metabolically abnormal non-obese phenotype is a risk factor for cardiovascular diseases. However, little is known about risk factor for progression from metabolically healthy non-overweight to metabolically abnormal phenotype. We hypothesized that fatty liver had a clinical impact on progression from metabolically healthy non-overweight to metabolically abnormal phenotype. In this retrospective cohort study, 14,093 Japanese (7557 men and 6736 women), who received the health-checkup program from 2004 to 2012, were enrolled. Overweight and obesity were defined as body mass index 23.0-25.0 and ≥25.0 kg/m 2 . Four metabolic factors (impaired fasting glucose, hypertension, hypertriglyceridemia and low high density lipoprotein-cholesterol concentration) were used for definition of metabolically healthy (less than two factors) or metabolically abnormal (two or more). We divided the participants into three groups: metabolically healthy non-overweight (9755 individuals, men/women = 4290/5465), metabolically healthy overweight (2547 individuals, 1800/747) and metabolically healthy obesity (1791 individuals, 1267/524). Fatty liver was diagnosed by ultrasonography. Over the median follow-up period of 5.3 years, 873 metabolically healthy non-overweight, 512 metabolically healthy overweight and 536 metabolically healthy obesity individuals progressed to metabolically abnormal. The adjusted hazard risks of fatty liver on progression were 1.49 (95% confidence interval 1.20-1.83, p = 0.005) in metabolically healthy non-overweight, 1.37 (1.12-1.66, p = 0.002) in metabolically healthy overweight and 1.38 (1.15-1.66, p overweight individuals.

  19. Construction, expression, and function of 6B11ScFv-mIL-12, a fusion protein that attacks human ovarian carcinoma.

    Science.gov (United States)

    Cheng, Hongyan; Ye, Xue; Chang, Xiaohong; Ma, Ruiqiong; Cong, Xu; Niu, Yidong; Zhang, Menglei; Liu, Kai; Cui, Heng; Sang, Jianli

    2015-04-01

    We previously produced an anti-idiotypic monoclonal antibody, 6B11, which mimics ovarian cancer antigen CA166-9 and induces cellular and humoral immunity. Here, to enhance the immunogenicity of 6B11, we constructed the 6B11ScFv-mIL-12 fusion protein (FP), by fusing single-chain fragment of 6B11 variable region (6B11ScFv) with mouse interleukin-12 (mIL-12), which was expressed in eukaryotic 293EBNA cells transfected with pSBI vectors. A binding activity assay showed 6B11ScFv-mIL-12 to have activities of both 6B11 and mIL-12-it specifically bound both ovarian monoclonal antibody COC166-9 and rabbit anti-mouse IL-12 antibody. The immune activity assay showed 6B11ScFv-mIL-12 to promote proliferation of lymphocytes stimulated by phytohemagglutinin, increase the absolute numbers and percentages of CD3(-)/CD56(+) natural killer cells and CD3(+)/CD56(+) natural killer T cells among peripheral lymphocytes, and increase interferon-γ. The FP was specifically cytotoxic to the CA166-9(+) ovarian cancer cell lines HOC1A and SKOV3 and inhibited growth of ID8 subcutaneous tumors in C57BL/6J mice. This study provides an experimental basis for clinical use of 6B11ScFv-mIL-12 in ovarian cancer therapy. To our knowledge, this is the first report of a fusion protein from an anti-idiotypic antibody and IL-12.

  20. The effect of ultraviolet (UV)-B radiation on primary producers

    International Nuclear Information System (INIS)

    Germ, M.

    2003-01-01

    Ozone layer in stratosphere is thinning and consequently UV-B radiation on the Earth surface is increasing. Although there is a small portion of UV-B radiation in the solar radiation, it has strong influence on organisms. Targets of UV-B radiation and protective mechanisms in primary producers are described. In the framework of the international project we studied the effect of UV-B radiation on blue-greens, algae, mosses, lichens and vascular plants on the National Institute of Biology