Cosmology of B-L cosmic strings
Jeannerot, R.
2006-01-01
${\\rm B - L}$ cosmic strings form in a wide class of theories beyond the Standard Model which contain a ${\\rm U}(1)_{{\\rm B - L}}$ gauge symmetry. They can form at the end of hybrid inflation and explain, together with inflation, the Cosmic Microwave Background anisotropies and the formation of large scale structure. They can produce Cold Dark Matter in the form of the Lightest SuperParticle and they can be at the origin of the baryon asymmetry of our universe. One major advantage of these me...
Semi-shifted hybrid inflation with B-L cosmic strings
Lazarides, George; Vamvasakis, Achilleas
2008-01-01
We discuss a new inflationary scenario which is realized within the extended supersymmetric Pati-Salam model which yields an acceptable b-quark mass for universal boundary conditions and mu>0 by modestly violating Yukawa unification and leads to new shifted, new smooth, or standard-smooth hybrid inflation. Inflation takes place along a "semi-shifted" classically flat direction on which the U(1)_{B-L} gauge group remains unbroken. After the end of inflation, U(1)_{B-L} breaks spontaneously and a network of local cosmic strings, which contribute a small amount to the curvature perturbation, is produced. We show that, in minimal supergravity, this "semi-shifted" inflationary scenario is compatible with a recent fit to data which uses field-theory simulations of a local string network. Taking into account the requirement of gauge unification, we find that, for spectral index n_s=1, the predicted fractional contribution f_{10} of strings to the temperature power spectrum at multipole l=10 is about 0.039. Also, for...
Sakellariadou, M
2006-01-01
Cosmic strings, a hot subject in the 1980's and early 1990's, lost its appeal when it was found that it leads to inconsistencies in the power spectrum of the measured cosmic microwave background temperature anisotropies. However, topological defects in general, and cosmic strings in particular, are deeply rooted in the framework of grand unified theories. Indeed, it was shown that cosmic strings are expected to be generically formed within supersymmetric grand unified theories. This theoretical support gave a new boost to the field of cosmic strings, a boost which has been recently enhanced when it was shown that cosmic superstrings (fundamental or one-dimensional Dirichlet branes) can play the role of cosmic strings, in the framework of braneworld cosmologies. To build a cosmological scenario we employ high energy physics; inflation and cosmic strings then naturally appear. Confronting the predictions of the cosmological scenario against current astrophysical/cosmological data we impose constraints on its fr...
Cosmic strings are linear topological defects that are predicted by some grand unified theories to form during a spontaneous symmetry breaking phase transition in the early universe. They are the basis for the only theories of galaxy formation aside from quantum fluctuations from inflation that are based on fundamental physics. In contrast to inflation, they can also be observed directly through gravitational lensing and their characteristic microwave background anistropy. It has recently been discovered by F. Bouchet and myself that details of cosmic string evolution are very different from the so-called ''standard model'' that has been assumed in most of the string induced galaxy formation calculations. Therefore, the details of galaxy formation in the cosmic string models are currently very uncertain. 29 refs., 9 figs
Donaire, M; Rajantie, A.
2005-01-01
We argue that cosmic strings with high winding numbers generally form in first-order gauge symmetry breaking phase transitions, and we demonstrate this using computer simulations. These strings are heavier than single-winding strings and therefore more easily observable. Their cosmological evolution may also be very different.
Semilocal cosmic string networks
We report on a large-scale numerical study of networks of semilocal cosmic strings in flat space in the parameter regime in which they are perturbatively stable. We find a population of segments with an exponential length distribution and indications of a scaling network without significant loop formation. Very deep in the stability regime strings of superhorizon size grow rapidly and ''percolate'' through the box. We believe these should lead at late times to a population of infinite strings similar to topologically stable strings. However, the strings are very light; scalar gradients dominate the energy density, and the network has thus a global texturelike signature. As a result, the observational constraints, at least from the temperature power spectrum of the cosmic microwave background, on models predicting semilocal strings should be closer to those on global textures or monopoles, rather than on topologically stable gauged cosmic strings
Becker, Katrin; Becker, Melanie; Krause, Axel
2005-01-01
We show that all three conditions for the cosmological relevance of heterotic cosmic strings, the right tension, stability and a production mechanism at the end of inflation, can be met in the strongly coupled M-theory regime. Whereas cosmic strings generated from weakly coupled heterotic strings have the well known problems posed by Witten in 1985, we show that strings arising from M5-branes wrapped around 4-cycles (divisors) of a Calabi-Yau in heterotic M-theory compactifications, solve the...
Nonintercommuting Cosmic Strings
We perform the numerical field evolution for the collision of two Abelian type I cosmic strings. We present evidence that, for collisions at small but characteristic relative velocities and angles, these cosmic strings do not exchange ends and separate. Rather, local higher winding number bound states are formed close to the collision point, which promote multiple local scatterings at right angles and prevent intercommutation from happening. This constitutes the simplest example of the breakdown of the intercommutation rule, usually assumed in the construction of effective models for cosmic string network evolution. copyright 1997 The American Physical Society
Nonintercommuting Cosmic Strings
Bettencourt, L.M. [The Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom); Bettencourt, L.M. [Institut fuer Theoretische Physik, Universitaet Heidelberg, Philosophenweg 16, Heidelberg 69120 (Germany); Laguna, P. [Department of Astronomy Astrophysics and Center for Gravitational Physics Geometry, Penn State University, University Park, Pennsylvania 16802 (United States); Matzner, R.A. [Center for Relativity, The University of Texas, Austin, Texas 78712 (United States); Matzner, R.A. [Orson Anderson Scholar, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
1997-03-01
We perform the numerical field evolution for the collision of two Abelian type I cosmic strings. We present evidence that, for collisions at small but characteristic relative velocities and angles, these cosmic strings {ital do not} exchange ends and separate. Rather, local higher winding number bound states are formed close to the collision point, which promote multiple local scatterings at right angles and prevent intercommutation from happening. This constitutes the simplest example of the breakdown of the intercommutation rule, usually assumed in the construction of effective models for cosmic string network evolution. {copyright} {ital 1997} {ital The American Physical Society}
Davis, A. -C.; Kibble, T. W. B.
2005-01-01
Cosmic strings are linear concentrations of energy that may be formed at phase transitions in the very early universe. At one time they were thought to provide a possible origin for the density inhomogeneities from which galaxies eventually develop, though this idea has been ruled out, primarily by observations of the cosmic microwave background (CMB). Fundamental strings are the supposed building blocks of all matter in superstring theory or its modern version, M-theory. These two concepts w...
Kibble, T. W. B.
2004-01-01
There are two main reasons for the recent renewal of interest in cosmic strings: Fundamental string-theory models suggest their existence; and there are at least two tentative observations of their possible effects. In this talk, I review their current status in the light of these two factors.
We study the quantum stabilization of a cosmic string by a heavy fermion doublet in a reduced version of the standard model. We show that charged strings, obtained by populating fermionic bound state levels, become stable if the electroweak bosons are coupled to a fermion that is less than twice as heavy as the top quark. This result suggests that extraordinarily large fermion masses or unrealistic couplings are not required to bind a cosmic string in the standard model. Numerically we find the most favorable string profile to be a simple trough in the Higgs vacuum expectation value of radius ≅10-18 m. The vacuum remains stable in our model, because neutral strings are not energetically favored.
Stable charged cosmic strings.
Weigel, H; Quandt, M; Graham, N
2011-03-11
We study the quantum stabilization of a cosmic string by a heavy fermion doublet in a reduced version of the standard model. We show that charged strings, obtained by populating fermionic bound state levels, become stable if the electroweak bosons are coupled to a fermion that is less than twice as heavy as the top quark. This result suggests that extraordinarily large fermion masses or unrealistic couplings are not required to bind a cosmic string in the standard model. Numerically we find the most favorable string profile to be a simple trough in the Higgs vacuum expectation value of radius ≈10(-18) m. The vacuum remains stable in our model, because neutral strings are not energetically favored. PMID:21469786
Cosmic Strings and Quintessence
段一士; 任继荣; 杨捷
2003-01-01
Using torsion two-form we present a new Lorentz gauge invariant U (1) topological field theory in Riemann-Cartan space-time manifold U4. By virtue of the decomposition theory of U(1) gauge potential and the φ-mapping topological current theory, it is proven that the U(1) complex scalar field φ(x) can be looked upon as the order parameter field in our Universe, and a set of zero points of φ(x) create the cosmic strings as the space-time defects in the early Universe. In the standard cosmology, this complex scalar order parameter field possesses negative pressure, provides an accelerating expansion of Universe, and be able to explain the inflation in the early Universe. Therefore this complex scalar field is not only the order parameter field created the cosmic strings in the early universe, but also reasonably behaves as the quintessence, the dark energy.
Reconnection of Colliding Cosmic Strings
Hanany, Amihay; Hashimoto, Koji
2005-01-01
For vortex strings in the Abelian Higgs model and D-strings in superstring theory, both of which can be regarded as cosmic strings, we give analytical study of reconnection (recombination, inter-commutation) when they collide, by using effective field theories on the strings. First, for the vortex strings, via a string sigma model, we verify analytically that the reconnection is classically inevitable for small collision velocity and small relative angle. Evolution of the shape of the reconne...
Clément, Gérard
1995-01-01
We construct regular multi-wormhole solutions to a gravitating $\\sigma$ model in three space-time dimensions, and extend these solutions to cylindrical traversable wormholes in four and five dimensions. We then discuss the possibility of identifying wormhole mouths in pairs to give rise to Wheeler wormholes. Such an identification is consistent with the original field equations only in the absence of the $\\sigma$-model source, but with possible naked cosmic string sources. The resulting Wheel...
Cosmic strings and skyrmion decay
This paper reports on the Callan-Witten picture for monopole catalyzed skyrmion decay which is developed in order to analyze the corresponding cosmic string scenario. The authors find that cosmic strings (both ordinary and superconducting) can catalyze proton decay, but that this catalysis only occurs on the scale of the core of the string. An argument is also given for the difference in the enhancement factors for monopoles and strings
Electroweak Baryogenesis with Cosmic Strings ?
Espinosa, J. R.
1999-01-01
I report on a critical analysis of the scenario of electroweak baryogenesis mediated by nonsuperconducting cosmic strings. This mechanism relies upon electroweak symmetry restoration in a region around cosmic strings, where sphalerons would be unsuppressed. I discuss the various problems this scenario has to face, presenting a careful computation of the sphaleron rates inside the strings, of the chemical potential for chiral number and of the efficiency of baryogenesis in different regimes of...
Racetrack inflation and cosmic strings
We consider the coupling of racetrack inflation to matter fields as realised in the D3/D7 brane system. In particular, we investigate the possibility of cosmic string formation in this system. We find that string formation before or at the onset of racetrack inflation is possible, but they are then inflated away. Furthermore, string formation at the end of inflation is prevented by the presence of the moduli sector. As a consequence, no strings survive racetrack inflation. (orig.)
Test particle trajectories near cosmic strings
Farook Rahaman; Subenoy Chakraborty; K Maity
2002-01-01
We present a detailed analysis of the motion of test particle in the gravitational ﬁeld of cosmic strings in different situations using the Hamilton–Jacobi (H–J) formalism. We have discussed the trajectories near static cosmic string, cosmic string in Brans–Dicke theory and cosmic string in dilaton gravity.
Evolution of cosmic string networks
We summarize our new results on cosmic strings. These results include: the application of non-equilibrium statistical mechanics to cosmic string evolution, a simple ''one scale'' model for the long strings which has a great deal of predictive power, results from large scale numerical simulations, and a discussion of the observational consequences of our results. An upper bond on Gμ of approximately 10-7 emerges from the millisecond pulsar gravity wave bound. We discuss how numerical uncertainties affect this. Any changes which weaken the bound would probably also give the long strings the dominant role in producing observational consequences. 22 refs
Cosmic Strings with Small Tension
Halyo, Edi
2009-01-01
We describe cosmic F--term strings with exponentially small tension which are D3 branes wrapped on deformed $A_3$ singularities. We show that brane instanton effects which can be calculated after a geometric transition give rise to an exponentially small volume for the node on which the D3 branes wrap leading to a string with small tension. We generalize our description to the case of non--Abelian cosmic strings and argue that these strings are stable against monopole--anti monopole pair creation.
Cosmic necklaces from string theory
We present the properties of a cosmic superstring network in the scenario of flux compactification. An infinite family of strings, the (p,q) strings, are allowed to exist. The flux compactification leads to a string tension that is periodic in p. Monopoles, appearing here as beads on a string, are formed in certain interactions in such networks. This allows bare strings to become cosmic necklaces. We study network evolution in this scenario, outlining what conditions are necessary to reach a cosmologically viable scaling solution. We also analyze the physics of the beads on a cosmic necklace, and present general conditions for which they will be cosmologically safe, leaving the network's scaling undisturbed. In particular, we find that a large average loop size is sufficient for the beads to be cosmologically safe. Finally, we argue that loop formation will promote a scaling solution for the interbead distance in some situations
This paper discusses the following topics: Global Strings; The Gravitational field of a straight global string; How do global strings behave? The axion cosmological energy density; Computer simulations of the motion and decay of global strings; and Electromagnetic radiation from the conversion of Nambu-Goldstone bosons in astrophysical magnetic fields
Sikivie, P. (Florida Univ., Gainesville, FL (USA). Dept. of Physics)
1990-01-01
This paper discusses the following topics: Global Strings; The Gravitational field of a straight global string; How do global strings behave The axion cosmological energy density; Computer simulations of the motion and decay of global strings; and Electromagnetic radiation from the conversion of Nambu-Goldstone bosons in astrophysical magnetic fields.
Radially stabilized inflating cosmic strings
Niedermann, Florian; Schneider, Robert
2015-03-01
In general relativity, local cosmic strings are well known to produce a static, locally flat spacetime with a wedge removed. If the tension exceeds a critical value, the deficit angle becomes larger than 2 π , leading to a compact exterior that ends in a conical singularity. In this paper, we investigate dynamical solutions for cosmic strings with super-critical tensions. To this end, we model the string as a cylindrical shell of finite and stabilized transverse width and show that there is a marginally super-critical regime in which the stabilization can be achieved by physically reasonable matter. We show numerically that the static deficit angle solution is unstable for super-critical string tensions. Instead, the geometry starts expanding in the axial direction at an asymptotically constant rate, and a horizon is formed in the exterior spacetime, which has the shape of a growing cigar. We are able to find the analytic form of the attractor solution describing the interior of the cosmic string. In particular, this enables us to analytically derive the relation between the string tension and the axial expansion rate. Furthermore, we show that the exterior conical singularity can be avoided for dynamical solutions. Our results might be relevant for theories with two extra dimensions, modeling our Universe as a cosmic string with a three-dimensional axis. We derive the corresponding Friedmann equation, relating the on-brane Hubble parameter to the string tension or, equivalently, brane cosmological constant.
Fermionic Zero Modes of Supergravity Cosmic Strings
Brax, Ph.; BRUCK, C.; Davis, A C; Davis, Stephen C.
2006-01-01
Recent developments in string theory suggest that cosmic strings could be formed at the end of brane inflation. Supergravity provides a realistic model to study the properties of strings arising in brane inflation. Whilst the properties of cosmic strings in flat space-time have been extensively studied there are significant complications in the presence of gravity. We study the effects of gravitation on cosmic strings arising in supergravity. Fermion zero modes are a common feature of cosmic ...
Cosmic Strings and the String Dilaton
The existence of a dilaton (or moduli) with gravitational-strength coupling to matter imposes stringent constraints on the allowed energy scale of cosmic strings, η. In particular, superheavy gauge strings with η∼1016GeV are ruled out unless the dilaton mass mφ approx-gt 100TeV , while the currently popular value mφ∼1TeV imposes the bound η approx-lt 3x1011GeV . Some nonstandard cosmological scenarios which can avoid these constraints are pointed out. copyright 1997 The American Physical Society
Cosmic Strings and the String Dilaton
Damour, Thibault; Vilenkin, Alexander(Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, U.S.A.)
1996-01-01
The existence of a dilaton (or moduli) with gravitational-strength coupling to matter imposes stringent constraints on the allowed energy scale of cosmic strings, $\\eta$. In particular, superheavy gauge strings with $\\eta \\sim 10^{16} GeV$ are ruled out unless the dilaton mass $m_{\\phi} \\gsim 100 TeV$, while the currently popular value $m_{\\phi} \\sim 1 TeV$ imposes the bound $\\eta \\lsim 3 \\times 10^{11} GeV$. Similar constraints are obtained for global topological defects. Some non-standard c...
Black holes as beads on cosmic strings
Ashoorioon, Amjad; B. Mann, Robert
2014-01-01
We consider the possibility of formation of cosmic strings with black holes as beads. We focus on the simplest setup where two black holes are formed on a long cosmic string. It turns out the in absence of a background magnetic field and for observationally viable values for cosmic string tensions, $\\mu
Radially stabilized inflating cosmic strings
Niedermann, Florian
2014-01-01
In General Relativity, cosmic strings are well known to produce a static, locally flat spacetime with a wedge removed. If the tension exceeds a critical value, the deficit angle becomes larger than $ 2\\pi $, leading to a compact exterior that ends in a conical singularity. In this work, we investigate dynamical solutions for cosmic strings with super-critical tensions. To this end, we model the string as a cylindrical shell of finite and stabilized transverse width and show that there is a marginally super-critical regime in which the stabilization can be achieved by physically reasonable matter. We show numerically that the static deficit angle solution is unstable for super-critical string tensions. Instead, the geometry starts expanding in axial direction at an asymptotically constant rate, and a horizon is formed in the exterior, which has the shape of a growing cigar. We are able to find the analytic form of the attractor solution describing the interior of the cosmic string. In particular, this enables ...
Fireballs from Superconducting Cosmic Strings
Gruzinov, Andrei
2016-01-01
Thermalized fireballs should be created by cusp events on superconducting cosmic strings. This simple notion allows to reliably estimate particle emission from the cusps in a given background magnetic field. With plausible assumptions about intergalactic magnetic fields, the cusp events can produce observable fluxes of high-energy photons and neutrinos with unique signatures.
Quantum Stabilization of Cosmic Strings
Weigel, H; Graham, N
2015-01-01
In the standard model, stabilization of a classically unstable cosmic string may occur through the quantum fluctuations of a heavy fermion doublet. We review numerical results from a semiclassical expansion in a reduced version of the standard model. In this expansion the leading quantum corrections emerge at one loop level for many internal degrees of freedom. The resulting vacuum polarization energy and the binding energy of occupied fermion energy levels are of the same order, and must therefore be treated on equal footing. Populating these bound states lowers the total energy compared to the same number of free fermions. Charged strings are already stabilized for a fermion mass only somewhat larger than the top quark mass. Though obtained in a reduced version these results suggest that neither extraordinarily large fermion masses nor unrealistic couplings are required to bind a cosmic string in the standard model. Furthermore we also review results for a quantum stabilization mechanism that prevents close...
Vector superconductivity in cosmic strings
We argue that in most realistic cases, the usual Witten-type bosonic superconductivity of the cosmic string is automatically (independent of the existence of superconducting currents) accompanied by the condensation of charged gauge vector bosons in the core giving rise to a new vector type superconductivity. The value of the charged vector condensate is related with the charged scalar expectation value, and vanishes only if the latter goes to zero. The mechanism for the proposed vector superconductivity, differing fundamentally from those in the literature, is delineated using the simplest realistic example of the two Higgs doublet standard model interacting with the extra cosmic string. It is shown that for a wide range of parameters, for which the string becomes scalarly superconducting, W boson condensates (the sources of vector superconductivity) are necessarily excited. (author). 14 refs
A Cosmic String Specific Signature on the Cosmic Microwave Background
Moessner, R; Perivolaropoulos, L.; Brandenberger, R.
1993-01-01
Using an analytical model for the string network we show that the kurtosis of cosmic microwave background (CMB) temperature gradient maps is a good statistic to distinguish between the cosmic string model and inflationary models of structure formation. The difference between the stringy and inflationary value for the kurtosis is inversely proportional to the angular resolution and to the number of strings per Hubble volume of the strings' scaling solution. If strings are indeed responsible fo...
Duality relation between charged elastic strings and superconducting cosmic strings
Carter, B.
1989-06-23
The mechanical properties of macroscopic electromagnetically coupled string models in a flat or curved background are treated using a covariant formalism allowing the construction of a duality transformation that relates the category of uniform ''electric'' string models, constructed as the (nonconducting) charged generalisation of ordinary uncoupled (violin type) elastic strings, to a category of ''magnetic'' string models comprising recently discussed varieties of ''superconducting cosmic strings''. (orig.).
D-term inflation without cosmic strings
We present a superstring-inspired version of D-term inflation that does not lead to cosmic string formation and appears to satisfy the current cosmic microwave background constraints. It differs from minimal D-term inflation by a second pair of charged superfields that makes the strings nontopological (semilocal). The strings are also Bogomol'nyi-Prasad-Sommerfield strings, so the scenario is expected to survive supergravity corrections. The second pair of charged superfields arises naturally in several brane and conifold scenarios, but its effect on cosmic string formation had not been noticed so far
Peeling U(1)-gauge cosmic strings
We numerically investigate collisions of cosmic strings carrying different winding numbers. We find that for strings with winding numbers n1 and n2, intercommutation occurs by peeling a string of winding number chemical bondn1-n2chemical bond from the string with the larger winding number. The resulting string connects the original colliding strings to form a state of three joined strings, but because of the peeling the eventual result is a reduction in the winding numbers of the network. Stable astrophysical strings with large winding number are thus unlikely to persist. All simulations have gauge/scalar-field mass ratio = 2. .AE
Peeling U(1)-gauge cosmic strings
Laguna, P.; Matzner, R.A.
1989-04-24
We numerically investigate collisions of cosmic strings carrying different winding numbers. We find that for strings with winding numbers n/sub 1/ and n/sub 2/, intercommutation occurs by peeling a string of winding number chemically bondn/sub 1/-n/sub 2/chemically bond from the string with the larger winding number. The resulting string connects the original colliding strings to form a state of three joined strings, but because of the peeling the eventual result is a reduction in the winding numbers of the network. Stable astrophysical strings with large winding number are thus unlikely to persist. All simulations have gauge/scalar-field mass ratio = 2. .AE
Inflation, cosmic strings, and galaxy formation
Inflationary universe models and the cosmic string theory provide two distinct ways to explain the origin of inhomogeneities in the universe on large scales. I shall summarize and compare the two mechanisms for the origin of galaxies and clusters of galaxies, and mention some recent results on galaxy formation with hot dark matter and cosmic strings. (author)
CMB Constraints on Cosmic Strings and Superstrings
Charnock, Tom; Copeland, Edmund J; Moss, Adam
2016-01-01
We present the first complete MCMC analysis of cosmological models with evolving cosmic (super)string networks, using the Unconnected Segment Model in the unequal-time correlator formalism. For ordinary cosmic string networks, we derive joint constraints on {\\Lambda}CDM and string network parameters, namely the string tension G{\\mu}, the loop-chopping efficiency c_r and the string wiggliness {\\alpha}. For cosmic superstrings, we obtain joint constraints on the fundamental string tension G{\\mu}_F, the string coupling g_s, the self-interaction coefficient c_s, and the volume of compact extra dimensions w. This constitutes the most comprehensive CMB analysis of {\\Lambda}CDM cosmology + strings to date. For ordinary cosmic string networks our updated constraint on the string tension is, in relativistic units, G{\\mu}<1.1x10^-7, while for cosmic superstrings our constraint on the fundamental string tension is G{\\mu}_F<2.8x10^-8, both obtained using Planck2015 temperature and polarisation data.
CMB constraints on cosmic strings and superstrings
Charnock, Tom; Avgoustidis, Anastasios; Copeland, Edmund J.; Moss, Adam
2016-06-01
We present the first complete Markov chain Monte Carlo analysis of cosmological models with evolving cosmic (super)string networks, using the unconnected segment model in the unequal-time correlator formalism. For ordinary cosmic string networks, we derive joint constraints on Λ cold dark matter (CDM) and string network parameters, namely the string tension G μ , the loop-chopping efficiency cr, and the string wiggliness α . For cosmic superstrings, we obtain joint constraints on the fundamental string tension G μF, the string coupling gs, the self-interaction coefficient cs, and the volume of compact extra dimensions w . This constitutes the most comprehensive CMB analysis of Λ CDM cosmology+strings to date. For ordinary cosmic string networks our updated constraint on the string tension, obtained using Planck2015 temperature and polarization data, is G μ <1.1 ×10-7 in relativistic units, while for cosmic superstrings our constraint on the fundamental string tension after marginalizing over gs, cs, and w is G μF<2.8 ×10-8.
Gravitational Scattering Of Photons Off Cosmic Strings
Chu, Yi-Zen
2013-01-01
Photons can gravitationally scatter off a cosmic string loop and gain or lose energy. We consider the spectral distortion induced by cosmic string loops placed in an ambient thermal bath of photons. The fractional deviation from a thermal spectrum caused by cosmic strings is estimated to scale as (G_N \\mu)^2 z^2, where G_N is Newton's constant, $\\mu$ is the string tension, and z is the cosmological redshift after which spectral distortions can survive. This effect is large enough to potentially be of observational interest.
Metastable cosmic strings in realistic models
The stability of the electroweak Z-string is investigated at high temperatures. The results show that, while finite temperature corrections can improve the stability of the Z-string, their effect is not strong enough to stabilize the Z-string in the standard electroweak model. Consequently, the Z-string will be unstable even under the conditions present during the electroweak phase transition. Phenomenologically viable models based on the gauge group SU(2)L x SU(2) R x U(1)B-L are then considered, and it is shown that metastable strings exist and are stable to small perturbations for a large region of the parameter space for these models. It is also shown that these strings are superconducting with bosonic charge carriers. The string superconductivity may be able to stabilize segments and loops against dynamical contraction. Possible implications of these strings for cosmology are discussed
Black holes as beads on cosmic strings
We consider the possibility of the formation of cosmic strings with black holes as beads. We focus on the simplest setup where two black holes are formed on a long cosmic string. It turns out that in the absence of a background magnetic field and for observationally viable values for cosmic string tensions, μ<2×10−7, the tension of the strut in between the black holes has to be less than the ones that run into infinity. This result does not change if a cosmological constant is present. However, if a background magnetic field is turned on, we can have stable setups where the tensions of all cosmic strings are equal. We derive the equilibrium conditions in each of these setups depending on whether the black holes are extremal or non-extremal. We obtain cosmologically acceptable solutions with solar mass black holes and an intragalactic-strength cosmic magnetic field. (paper)
Constraints on Cosmic Strings due to Black Holes Formed from Collapsed Cosmic String Loops
Caldwell, R. R.; Gates, E.
1993-01-01
The cosmological features of primordial black holes formed from collapsed cosmic string loops are studied. Observational restrictions on a population of primordial black holes are used to restrict $f$, the fraction of cosmic string loops which collapse to form black holes, and $\\mu$, the cosmic string mass-per-unit-length. Using a realistic model of cosmic strings, we find the strongest restriction on the parameters $f$ and $\\mu$ is due to the energy density in $100 MeV$ photons radiated by t...
Particle creation if a cosmic string snaps
Bilge, A H; Ozdemir, N; Bilge, A H; Hortacsu, M; Ozdemir, N
1994-01-01
We calculate the Bogolubov coefficients for a metric which describes the snapping of a cosmic string. If we insist on a matching condition for all times {\\it and} a particle interpretation, we find no particle creation.
Constraints on cosmic strings from ultracompact minihalos
Anthonisen, Madeleine; Scott, Pat
2015-01-01
Cosmic strings are expected to form loops. These can act as seeds for accretion of dark matter, leading to the formation of ultracompact minihalos (UCMHs). We perform a detailed study of the accretion of dark matter onto cosmic string loops and compute the resulting mass distribution of UCMHs. We then apply observational limits on the present-day abundance of UCMHs to derive corresponding limits on the cosmic string tension $G\\mu$. The bounds are strongly dependent upon the assumed distribution of loop velocities and their impacts on UCMH formation. Under the assumption that a loop can move up to a thousand times its own radius and still form a UCMH, we find a limit of $G\\mu\\le 5\\times10^{-8}$. We show, in opposition to previous results, that strong limits on the cosmic string tension are not obtainable from UCMHs when more stringent (and realistic) requirements are placed on loop velocities.
Flux-Confinement in Dilatonic Cosmic Strings
G.W. Gibbons; Wells, C. G.
1993-01-01
We study dilaton-electrodynamics in flat spacetime and exhibit a set of global cosmic string like solutions in which the magnetic flux is confined. These solutions continue to exist for a small enough dilaton mass but cease to do so above a critcal value depending on the magnetic flux. There also exist domain wall and Dirac monopole solutions. We discuss a mechanism whereby magnetic monopolesmight have been confined by dilaton cosmic strings during an epoch in the early universe during which ...
Higher order intercommutations in Cosmic String Collisions
Achúcarro, A.; Verbiest, G. J.
2010-01-01
We report the first observation of multiple intercommutation (more than two successive reconnections) of cosmic strings at ultra-high collision speeds, and the formation of ``kink trains'' with up to four closely spaced left- or right-moving kinks. We performed a flat space numerical study of abelian Higgs cosmic string intercommutation in the type-II regime $\\beta > 1$ (where $\\beta = m^2_{scalar} / m^2_{gauge}$) up to $\\beta = 64$, the highest value investigated to date. Our results confirm...
Long range effects of cosmic string structure
Allen, B; Ottewill, A C; Allen, Bruce; Kay, Bernard S; Ottewill, Adrian C
1996-01-01
We combine and further develop ideas and techniques of Allen \\& Ottewill, Phys. Rev.D, {\\bf 42}, 2669 (1990) and Kay \\& Studer Commun. Math. Phys., {\\bf 139}, 103 (1991) for calculating the long range effects of cosmic string cores on classical and quantum field quantities far from an (infinitely long, straight) cosmic string. We find analytical approximations for (a) the gravity-induced ground state renormalized expectation values of \\hat\\varphi^2 and \\hat T_\\mu{}^\
Wave diffraction by a cosmic string
Fernández-Núñez, Isabel
2016-01-01
We show that if a cosmic string exists, it may be identified through characteristic diffraction pattern in the energy spectrum of the observed signal. In particular, if the string is on the line of sight, the wave field is shown to fit the Cornu spiral. We suggest a simple procedure, based on Keller's geometrical theory of diffraction, which allows to explain wave effects in conical spacetime of a cosmic string in terms of interference of four characteristic rays. Our results are supposed to be valid for scalar massless waves, including gravitational waves, electromagnetic waves, or even sound in case of condensed matter systems with analogous topological defects.
Hiramatsu, Takashi; Sendouda, Yuuiti; Takahashi, Keitaro; Yamauchi, Daisuke; Yoo, Chul-Moon
2013-01-01
We study the network of Type-I cosmic strings using the field-theoretic numerical simulations in the Abelian-Higgs model. For Type-I strings, the gauge field plays an important role, and thus we find that the correlation length of the strings is strongly dependent upon the parameter \\beta, the ratio between the self-coupling constant of the scalar field and the gauge coupling constant, namely, \\beta=\\lambda/2e^2. In particular, if we take the cosmic expansion into account, the network becomes...
Gamma Ray Signatures from Ordinary Cosmic Strings
MacGibbon, Jane H.; Brandenberger, Robert H.
1992-01-01
We calculate the flux of ultra high energy photons from individual ordinary (i.e. non-superconducting) cosmic strings and compare the results with the sensitivity of current and proposed TeV and EeV telescopes. Our calculations give only upper limits for the gamma ray flux, since the source of the photons, jets from particle production at cusps, may be weakened by back reaction effects. For the usual cosmic distribution of strings, the predicted bursts from strings with the value of mass per ...
Wave diffraction by a cosmic string
Fernández-Núñez, Isabel; Bulashenko, Oleg
2016-08-01
We show that if a cosmic string exists, it may be identified through characteristic diffraction pattern in the energy spectrum of the observed signal. In particular, if the string is on the line of sight, the wave field is shown to fit the Cornu spiral. We suggest a simple procedure, based on Keller's geometrical theory of diffraction, which allows to explain wave effects in conical spacetime of a cosmic string in terms of interference of four characteristic rays. Our results are supposed to be valid for scalar massless waves, including gravitational waves, electromagnetic waves, or even sound in case of condensed matter systems with analogous topological defects.
Supermassive screwed cosmic string in dilaton gravity
Bezerra, V B; Cuesta, H J M; Bezerra, Valdir B.; Ferreira, Cristine N.; Cuesta, Herman J. Mosquera
2006-01-01
The early Universe might have undergone phase transitions at energy scales much higher than the one corresponding to the Grand Unified Theories (GUT) scales. Then, at these higher energy scales, the transition at which gravity separated from all other interactions, the Planck era, more massive strings called supermassive cosmic strings, could be produced, with energy of about 10^{19}GeV. The dynamics of strings formed with this energy scale cannot be described by means of the weak-field approximation, as in the standard procedure for ordinary GUT cosmic strings. As suggested by string theories, at this extreme energies, gravity may be transmitted by some kind of scalar field (usually called the dilaton in addition to the tensor field of Einstein's theory of gravity. In this framework is then permissible to tackle the question regarding the dynamics of supermassive cosmic strings that may arise at this energy scale. With this aim we obtain the gravitational field of a supermassive screwed cosmic string in a sc...
Cosmic Strings Stabilized by Fermion Fluctuations
Weigel, H; Graham, N
2011-01-01
We provide a thorough exposition of recent results on the quantum stabilization of cosmic strings. Stabilization occurs through the coupling to a heavy fermion doublet in a reduced version of the standard model. The study combines the vacuum polarization energy of fermion zero-point fluctuations and the binding energy of occupied energy levels, which are of the same order in a semi-classical expansion. Populating these bound states assigns a charge to the string. Strings carrying fermion charge become stable if the Higgs and gauge fields are coupled to a fermion that is less than twice as heavy as the top quark. The vacuum remains stable in the model, because neutral strings are not energetically favored. These findings suggest that extraordinarily large fermion masses or unrealistic couplings are not required to bind a cosmic string in the standard model.
Cosmic-string loops are straight
It is shown that a loop of idealized cosmic string deforms the background geometry in its vicinity so that its path and shape become geodesics of this background. For angular deficits smaller than π, this deformation causes the background curvature to grow without bound near an infinitely thin string. However, the rate of growth is so weak that the tidal forces are not yet appreciable at the surface of a grand-unification string. Although equations of motion for the string in a ''background'' geometry cannot be defined in a clear-cut fashion, they are not inconsistent with the conventional dynamics derived from the Nambu action
Effects of cosmic strings on free streaming
We study the effect of free streaming in a universe with cosmic strings with time-varying tension as well as with constant tension. Although current cosmological observations suggest that fluctuation seeded by cosmic strings cannot be the primary source of cosmic density fluctuation, some contributions from them are still allowed. Since cosmic strings actively produce isocurvature fluctuation, the damping of small scale structure via free streaming by dark matter particles with large velocity dispersion at the epoch of radiation-matter equality is less efficient than that in models with conventional adiabatic fluctuation. We discuss its implications to the constraints on the properties of particles such as massive neutrinos and warm dark matter
Effects of Cosmic Strings on Free Streaming
Takahashi, T; Takahashi, Tomo; Yamaguchi, Masahide
2006-01-01
We study the effect of free streaming in a universe with cosmic strings with time-varying tension as well as with constant tension. Although current cosmological observations suggest that fluctuation seeded by cosmic strings cannot be the primary source of cosmic density fluctuation, some contributions from them are still allowed. Since cosmic strings actively produce isocurvature fluctuation, the damping of small scale structure via free streaming by dark matter particles with large velocity dispersion at the epoch of radiation-matter equality is less efficient than that in models with conventional adiabatic fluctuation. We discuss its implications to the constraints on the properties of particles such as massive neutrinos and warm dark matter.
Cosmic Microwave Background spectral distortions from cosmic string loops
Anthonisen, Madeleine; Brandenberger, Robert; Laguë, Alex; Morrison, Ian A.; Xia, Daixi
2016-02-01
Cosmic string loops contain cusps which decay by emitting bursts of particles. A significant fraction of the released energy is in the form of photons. These photons are injected non-thermally and can hence cause spectral distortions of the Cosmic Microwave Background (CMB). Under the assumption that cusps are robust against gravitational back-reaction, we compute the fractional energy density released as photons in the redshift interval where such non-thermal photon injection causes CMB spectral distortions. Whereas current constraints on such spectral distortions are not strong enough to constrain the string tension, future missions such as the PIXIE experiment will be able to provide limits which rule out a range of string tensions between G μ ~ 10-15 and G μ ~ 10-12, thus ruling out particle physics models yielding these kind of intermediate-scale cosmic strings.
Cosmic Microwave Background Spectral Distortions from Cosmic String Loops
Anthonisen, Madeleine; Laguë, Alex; Morrison, Ian A; Xia, Daixi
2015-01-01
Cosmic string loops contain cusps which decay by emitting bursts of particles. A significant fraction of the released energy is in the form of photons. These photons are injected non-thermally and can hence cause spectral distortions of the Cosmic Microwave Background (CMB). Under the assumption that cusps are robust against gravitational back-reaction, we compute the fractional energy density released as photons in the redshift interval where such non-thermal photon injection causes CMB spectral distortions. Whereas current constraints on such spectral distortions are not strong enough to constrain the string tension, future missions such as the PIXIE experiment will be able to provide limits which rule out a range of string tensions between $G \\mu \\sim 10^{-15}$ and $G \\mu \\sim 10^{-12}$, thus ruling out particle physics models yielding these kind of intermediate-scale cosmic strings.
Cosmic microwave anisotropies from BPS semilocal strings
Urrestilla, Jon; Hindmarsh, Mark; Kunz, Martin; Liddle, Andrew R
2007-01-01
We present the first ever calculation of cosmic microwave background CMB anisotropy power spectra from semilocal cosmic strings, obtained via simulations of a classical field theory. Semilocal strings are a type of non-topological defect arising in some models of inflation motivated by fundamental physics, and are thought to relax the constraints on the symmetry breaking scale as compared to models with (topological) cosmic strings. We derive constraints on the model parameters, including the string tension parameter mu, from fits to cosmological data, and find that in this regard BPS semilocal strings resemble textures more than topological strings. The observed microwave anisotropy at l=10 is reproduced if Gmu = 4.9x10^{-6} (G is Newton's constant). However as with other defects the spectral shape does not match observations, and in models with inflationary perturbations plus semilocal strings the 95% confidence level upper bound is Gmu<1.9x10^{-6} when CMB data, Hubble Key Project and Big Bang Nucleosyn...
CMB temperature bispectrum induced by cosmic strings
The cosmic microwave background (CMB) bispectrum of the temperature anisotropies induced by a network of cosmic strings is derived for small angular scales, under the assumption that the principal cause of temperature fluctuations is the Gott-Kaiser-Stebbins effect. We provide analytical expressions for all isosceles triangle configurations in Fourier space. Their overall amplitude is amplified as the inverse cube of the angle and diverges for flat triangles. The isosceles configurations generically lead to a negative bispectrum with a power-law decay l-6 for large multipole l. However, collapsed triangles are found to be associated with a positive bispectrum whereas the squeezed triangles still exhibit negative values. We then compare our analytical estimates to a direct computation of the bispectrum from a set of 300 statistically independent temperature maps obtained from Nambu-Goto cosmic string simulations in a Friedmann-Lemaitre-Robertson-Walker universe. We find good agreement for the overall amplitude, the power-law behavior, and the angle dependency of the various triangle configurations. At l∼500 the cosmic string Gott-Kaiser-Stebbins effect contributes approximately the same equilateral CMB bispectrum amplitude as an inflationary model with |fNLloc|≅103, if the strings contribute about 10% of the temperature power spectrum at l=10. Current bounds on fNL are not derived using cosmic string bispectrum templates, and so our fNL estimate cannot be used to derive bounds on strings. However it does suggest that string bispectrum templates should be included in the search of CMB non-Gaussianities.
Wiggly cosmic strings accrete dark energy
Gonzalez-Diaz, Pedro F.; Madrid, Jose A. Jimenez
2005-01-01
This paper deals with a study of the cylindrically symmetric accretion of dark energy with equation of state $p=w\\rho$ onto wiggly straight cosmic strings. We have obtained that when $w>-1$ the linear energy density in the string core gradually increases tending to a finite maximum value as time increases for all considered dark energy models. On the regime where the dominant energy condition is violated all such models predict a steady decreasing of the linear energy density of the cosmic st...
Gravitating cosmic strings with flat directions
Hartmann, Betti; Lopez-Eiguren, Asier; Sousa, Kepa; Urrestilla, Jon
2012-01-01
We study field theoretical models for cosmic strings with flat directions in curved space-time. More precisely, we consider minimal models with semilocal, axionic and tachyonic strings, respectively. In flat space-time, the string solutions of these models have a flat direction, i.e., a uniparametric family of configurations with the same energy exists which is associated to a zero mode. We prove that the zero mode survives coupling to gravity, and study the role of the flat direction when co...
Searching for Cosmic Strings in the Cosmic Microwave Background:
Wu, Jiun-Huei Proty
The role of cosmic defects in cosmology is entering its new phase—as a test for several fundamental physics, including unification theories and inflation. We discuss how to use the Cosmic Microwave Background (CMB) to detect cosmic strings, a type of cosmic defects, and how to use this result to constrain the underlying physics. In particular, we use the simulations for the Array for Microwave Background Anisotropy (AMiBA) to demonstrate the power of this approach. The required resolution and sensitivity in such a method are discussed, and so is the possible scientific impact.
Collisions of Cosmic F- and D-strings
Jackson, Mark G.; Jones, Nicholas T.; Polchinski, Joseph
2004-01-01
Recent work suggests that fundamental and Dirichlet strings, and their (p,q) bound states, may be observed as cosmic strings. The evolution of cosmic string networks, and therefore their observational signals, depends on what happens when two strings collide. We study this in string perturbation theory for collisions between all possible pairs of strings; different cases involve sphere, disk, and annulus amplitudes. The result also depends on the details of compactification; the dependence on...
Gravitational Particle Production in Spinning Cosmic String Spacetimes
De Lorenci, V. A.; De Paola, R.; Svaiter, N. F.
1997-01-01
The spontaneous loss of angular momentum of a spinning cosmic string due to particle emission is discussed. The rate of particle production between two assymptotic spacetimes: the spinning cosmic string spacetime in the infinite past and a non-spinning cosmic string spacetime in the infinite future is calculated.
Small scale structure on cosmic strings
I discuss our current understanding of cosmic string evolution, and focus on the question of small scale structure on strings, where most of the disagreements lie. I present a physical picture designed to put the role of the small scale structure into more intuitive terms. In this picture one can see how the small scale structure can feed back in a major way on the overall scaling solution. I also argue that it is easy for small scale numerical errors to feed back in just such a way. The intuitive discussion presented here may form the basis for an analytic treatment of the small structure, which I argue in any case would be extremely valuable in filling the gaps in our resent understanding of cosmic string evolution. 24 refs., 8 figs
Time evolution of a warped cosmic string
Slagter, Reinoud Jan
2014-06-01
The time evolution of a self-gravitating U(1) cosmic string on a warped five-dimensional (5D) axially symmetric spacetime is numerically investigated. Although cosmic strings are theoretically predicted in four-dimensional (4D) general relativistic models, there is still no observational evidence of their existence. From recent observations of the cosmic microwave background (CMB), it is concluded that these cosmic strings cannot provide a satisfactory explanation for the bulk of density perturbations. They even could not survive inflation. It is conjectured that only in a 5D warped braneworld model there will be observable imprint of these so-called cosmic superstrings on the induced effective 4D brane metric for values of the symmetry breaking scale larger than the grand unified theory (GUT) values. The warp factor makes these strings consistent with the predicted mass per unit length on the brane. However, in a time-dependent setting, it seems that there is a wavelike energy-momentum transfer to infinity on the brane, a high-energy braneworld behavior. This in contrast to earlier results in approximation models. Evidence of this information from the bulk geometry could be found in the gravitational cosmic background radiation via gravitational wave energy-momentum affecting the brane evolution. Fluctuations of the brane when there is a U(1) gauge field present, are comparable with the proposed brane tension fluctuations, or branons, whose relic abundance can be a dark matter candidate. We briefly made a connection with the critical behavior at the threshold of black hole formation found by Choptuik several decades ago in self-gravitating time-dependent scalar field models. The critical distinction between dispersion of the scalar waves and singular behavior fade away when a time-dependent warp factor is present.
The Hubble Web: The Dark Matter Problem and Cosmic Strings
Alexander, Stephon
2007-01-01
I propose a reinterpretation of cosmic dark matter in which a rigid network of cosmic strings formed at the end of inflation. The cosmic strings fulfill three functions: At recombination they provide an accretion mechanism for virializing baryonic and warm dark matter into disks. These cosmic strings survive as configurations which thread spiral and elliptical galaxies leading to the observed flatness of rotation curves and the Tully-Fisher relation. We find a relationship between the rotatio...
The minimal SUSY B - L model: simultaneous Wilson lines and string thresholds
Deen, Rehan; Ovrut, Burt A.; Purves, Austin
2016-07-01
In previous work, we presented a statistical scan over the soft supersymmetry breaking parameters of the minimal SUSY B - L model. For specificity of calculation, unification of the gauge parameters was enforced by allowing the two Z_3× Z_3 Wilson lines to have mass scales separated by approximately an order of magnitude. This introduced an additional "left-right" sector below the unification scale. In this paper, for three important reasons, we modify our previous analysis by demanding that the mass scales of the two Wilson lines be simultaneous and equal to an "average unification" mass . The present analysis is 1) more "natural" than the previous calculations, which were only valid in a very specific region of the Calabi-Yau moduli space, 2) the theory is conceptually simpler in that the left-right sector has been removed and 3) in the present analysis the lack of gauge unification is due to threshold effects — particularly heavy string thresholds, which we calculate statistically in detail. As in our previous work, the theory is renormalization group evolved from to the electroweak scale — being subjected, sequentially, to the requirement of radiative B - L and electroweak symmetry breaking, the present experimental lower bounds on the B - L vector boson and sparticle masses, as well as the lightest neutral Higgs mass of ˜125 GeV. The subspace of soft supersymmetry breaking masses that satisfies all such constraints is presented and shown to be substantial.
Superconducting cosmic string evolution of quasars
The quasars may have been undergoing two evolutionary processes after they formed. As a result of the string loops shrinking at the first stage, the luminosities of the quasars increased gradually up to their maximum value at the redshift z ∼ 2, after then the second evolutionary stage began and the luminosity reduced. This result can be fitted by luminosity counting of quasars. Observable limit of quasars can be obtained naturally. Many phenomena, such as radiomorphology, density distribution between fuzz structure and broad line region and rotational curve may also originate from the first evolutionary stage of quasars as cosmic string. (author). 10 refs
Scattering of cosmic strings by black holes: loop formation
Dubath, Florian; Sakellariadou, Mairi; Viallet, Claude
2007-01-01
We study the deformation of a long cosmic string by a nearby rotating black hole. We examine whether the deformation of a cosmic string, induced by the gravitational field of a Kerr black hole, may lead to the formation of a loop of cosmic string. The segment of the string which enters the ergosphere of a rotating black hole gets deformed and, if it is sufficiently twisted, it can self-intersect chopping off a loop of cosmic string. We find that the formation of a loop, via this mechanism, is...
Cosmic strings and baryon decay catalysis
Gregory, R.; Perkins, W.B.; Davis, A.C.; Brandenberger, R.H. (Fermi National Accelerator Lab., Batavia, IL (USA); Cambridge Univ. (UK); Brown Univ., Providence, RI (USA). Dept. of Physics)
1989-09-01
Cosmic strings, like monopoles, can catalyze proton decay. For integer charged fermions, the cross section for catalysis is not amplified, unlike in the case of monopoles. We review the catalysis processes both in the free quark and skyrmion pictures and discuss the implications for baryogenesis. We present a computation of the cross section for monopole catalyzed skyrmion decay using classical physics. We also discuss some effects which can screen catalysis processes. 32 refs., 1 fig.
Constraints on brane inflation and cosmic strings
By considering simple, but representative, models of brane inflation from a single brane–antibrane pair in the slow roll regime, we provide constraints on the parameters of the theory imposed by measurements of the cosmic microwave background (CMB) anisotropies by WMAP (Wilkinson Microwave Anisotropy Probe) including a cosmic string component. We find that inclusion of the string component is critical in constraining parameters. In the most general model studied, which includes an inflaton mass term, as well as the brane–antibrane attraction, values nsP at horizon exit. We also investigate models with a mass term. These observational considerations suggest that such models have r−5, which can only be circumvented in the fast roll regime, or by increasing the number of antibranes. Such a value of r would not be detectable in any CMB polarization experiment likely in the near future, but the B-mode signal from the cosmic strings could be detectable. We present forecasts of what a similar analysis using PLANCK data would yield and find that it should be possible to rule out Gμ>6.5 × 10−8 using just the TT, TE and EE power spectra
Gravitational Field and Equations of Motion of Nonlinear Cosmic String
Chechin, L M
1999-01-01
For the case of tension tensor containing nonlinear terms in $l^{\\alpha}$, we give generalization of Vilenkin metrics and equations of motion of cosmic string. Dynamics of nonlinear string in (1+1)-dimensional universe is discussed.
Limits on Black Hole Formation from Cosmic String Loops
MacGibbon, Jane H.; Brandenberger, Robert H.; Wichoski, U. F.
1997-01-01
In theories with cosmic strings, a small fraction of string loops may collapse to form black holes. In this Letter, various constraints on such models involving black holes are considered. Hawking radiation from black holes, gamma and cosmic ray flux limits and constraints from the possible formation of stable black hole remnants are reanalyzed. The constraints which emerge from these considerations are remarkably close to those derived from the normalization of the cosmic string model to the...
From spinning to non-spinning cosmic string spacetimes
De Lorenci, V. A.; De Paola, R. D. M.; Svaiter, N. F.
1999-01-01
We analyse the properties of a fluid generating a spinning cosmic string spacetime with flat limiting cases corresponding to a constant angular momentum in the infinite past and static configuration in the infinite future. The spontaneous loss of angular momentum of a spinning cosmic string due to particle emission is discussed. The rate of particle production between the spinning and non-spinning cosmic string spacetimes is calculated.
Warped Angle-deficit of a 5 Dimensional Cosmic String
Slagter, Reinoud Jan; Masselink, Derk
2011-01-01
We present a cosmic string on a warped five dimensional space time in Einstein-Yang-Mills theory. Four-dimensional cosmic strings show some serious problems concerning the mechanism of string smoothing related to the string mass per unit length, $G\\mu \\approx 10^{-6}$. A warped cosmic string could overcome this problem and also the superstring requirement that $G\\mu$ must be of order 1, which is far above observational bounds. Also the absence of observational evidence of axially symmetric le...
The Hubble Web: The Dark Matter Problem and Cosmic Strings
I propose a reinterpretation of cosmic dark matter in which a rigid network of cosmic strings formed at the end of inflation. The cosmic strings fulfill three functions: At recombination they provide an accretion mechanism for virializing baryonic and warm dark matter into disks. These cosmic strings survive as configurations which thread spiral and elliptical galaxies leading to the observed flatness of rotation curves and the Tully-Fisher relation. We find a relationship between the rotational velocity of the galaxy and the string tension and discuss the testability of this model.
Stable and Metastable Cosmic Strings in Heterotic M-Theory
Buchbinder, Evgeny I.
2006-01-01
We address the question of finding stable and metastable cosmic strings in quasi-realistic heterotic M-theory compactifications with stabilized moduli. According to Polchinski's conjecture, the only stable strings in the absence of massless fields are Aharonov-Bohm strings. Such strings could potentially be created in heterotic compactifications as bound states of open membranes, five-branes wrapped on four-cycles and solitonic strings. However, in generic compactifications, the process of mo...
Thin shells joining local cosmic string geometries
Eiroa, Ernesto F; Simeone, Claudio
2016-01-01
In this article we present a theoretical construction of spacetimes with a thin shell that joins two different local cosmic string geometries. We study two types of global manifolds, one representing spacetimes with a standard thin shell and the other corresponding to wormholes which are not symmetric across the throat located at the shell. We analyze the stability of the static configurations under perturbations preserving the cylindrical symmetry. For both types of geometries we find that the static configurations can be stable for suitable values of the parameters.
Dirac Born Infeld (DBI) Cosmic Strings
Babichev, Eugeny; Brax, Philippe; Caprini, Chiara; Martin, Jerome; Steer, Daniele
2008-01-01
Motivated by brane physics, we consider the non-linear Dirac-Born-Infeld (DBI) extension of the Abelian-Higgs model and study the corresponding cosmic string configurations. The model is defined by a potential term, assumed to be of the mexican hat form, and a DBI action for the kinetic terms. We show that it is a continuous deformation of the Abelian-Higgs model, with a single deformation parameter depending on a dimensionless combination of the scalar coupling constant, the vacuum expectati...
Geodesic Lines in the Gravitational Field of Nonlinear Cosmic Strings
Chechin, L M
2000-01-01
We briefly review the equations of motion and the space-time interval due to the nonlinear cosmic string that have been derived in ref. [3] for the first time. The different types of isotropic and nonisotropic geodesic lines in the gravitational field of nonlinear cosmic string have been analyzed in detail.
The 21 cm signature of cosmic string wakes
We discuss the signature of a cosmic string wake in 21cm redshift surveys. Since 21cm surveys probe higher redshifts than optical large-scale structure surveys, the signatures of cosmic strings are more manifest in 21cm maps than they are in optical galaxy surveys. We find that, provided the tension of the cosmic string exceeds a critical value (which depends on both the redshift when the string wake is created and the redshift of observation), a cosmic string wake will generate an emission signal with a brightness temperature which approaches a limiting value which at a redshift of z+1 = 30 is close to 400 mK in the limit of large string tension. The signal will have a specific signature in position space: the excess 21cm radiation will be confined to a wedge-shaped region whose tip corresponds to the position of the string, whose planar dimensions are set by the planar dimensions of the string wake, and whose thickness (in redshift direction) depends on the string tension. For wakes created at zi+1 = 103, then at a redshift of z+1 = 30 the critical value of the string tension μ is Gμ = 6 × 10−7, and it decreases linearly with redshift (for wakes created at the time of equal matter and radiation, the critical value is a factor of two lower at the same redshift). For smaller tensions, cosmic strings lead to an observable absorption signal with the same wedge geometry
Pair production of black holes on cosmic strings
Hawking, Stephen William; Ross, Simon F
1995-01-01
We discuss the pair creation of black holes by the breaking of a cosmic string. We obtain an instanton describing this process from the C metric, and calculate its probability. Only topologically unstable strings can break, as topologically stable strings cannot have ends.
Limits on black hole formation from cosmic string loops
In theories with cosmic strings, a small fraction of string loops may collapse to form black holes. In this paper, various constraints on such models involving black holes are considered. Hawking radiation from black holes, gamma and cosmic ray flux limits and constraints from the possible formation of stable black hole remnants are reanalyzed. The constraints which emerge from these considerations are remarkably close to those derived from the normalization of the cosmic string model to the cosmic microwave background anisotropies. copyright 1998 The American Physical Society
Pair creation of black holes joined by cosmic strings
Emparan García de Salazar, Roberto A.
1995-01-01
We argue that production of charged black hole pairs joined by a cosmic string in the presence of a magnetic field can be analyzed using the Ernst metric. The effect of the cosmic string is to pull the black holes towards each other, opposing to the background field. An estimation of the production rate using the Euclidean action shows that the process is suppressed as compared to the formation of black holes without strings.
The Minimal SUSY $B-L$ Model: Simultaneous Wilson Lines and String Thresholds
Deen, Rehan; Purves, Austin
2016-01-01
In previous work, we presented a statistical scan over the soft supersymmetry breaking parameters of the minimal SUSY $B-L$ model. For specificity of calculation, unification of the gauge parameters was enforced by allowing the two ${\\mathbb Z}_{3}\\times {\\mathbb Z}_{3}$ Wilson lines to have mass scales separated by approximately an order of magnitude. This introduced an additional "left-right" sector below the unification scale. In this paper, for three important reasons, we modify our previous analysis by demanding that the mass scales of the two Wilson lines be simultaneous and equal to an "average unification" mass $\\left$. The present analysis is 1) more "natural" than the previous calculations, which were only valid in a very specific region of the Calabi-Yau moduli space, 2) the theory is conceptually simpler in that the left-right sector has been removed and 3) in the present analysis the lack of gauge unification is due to threshold effects--particularly heavy string thresholds, which we calculate st...
Fermionic vacuum polarization in compactified cosmic string spacetime
Bellucci, S. [INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Bezerra de Mello, E.R.; Padua, A. de [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Saharian, A.A. [Yerevan State University, Department of Physics, Yerevan (Armenia)
2014-01-15
We investigate the fermionic condensate and the vacuum expectation value (VEV) of the energy-momentum tensor for a charged massive fermionic field in the geometry of a cosmic string compactified along its axis. In addition, we assume the presence of two types of magnetic fluxes: a flux running along the cosmic string and another enclosed by the compact dimension. These fluxes give rise to Aharanov-Bohm-like effects on the VEVs. The VEVs are decomposed into two parts corresponding to the geometry of a straight cosmic string without compactification plus a topological part induced by the compactification of the string axis. Both contributions are even periodic functions of the magnetic fluxes with period equal to the flux quantum. The vacuum energy density is equal to the radial stress for the parts corresponding to the straight cosmic string and the topological one. Moreover, the axial stress is equal to the energy density for the parts corresponding to the straight cosmic string; however, for massive fermionic fields this does not occur for the topological contributions. With respect to the dependence on the magnetic fluxes, both the fermionic condensate and the vacuum energy density, can be either positive or negative. Moreover, for points near the string, the main contribution to the VEVs comes from the straight cosmic string part, whereas at large distances the topological ones dominate. In addition to the local characteristics of the vacuum state, we also evaluate the part in the topological Casimir energy induced by the string. (orig.)
Fermionic vacuum polarization in compactified cosmic string spacetime
We investigate the fermionic condensate and the vacuum expectation value (VEV) of the energy-momentum tensor for a charged massive fermionic field in the geometry of a cosmic string compactified along its axis. In addition, we assume the presence of two types of magnetic fluxes: a flux running along the cosmic string and another enclosed by the compact dimension. These fluxes give rise to Aharanov-Bohm-like effects on the VEVs. The VEVs are decomposed into two parts corresponding to the geometry of a straight cosmic string without compactification plus a topological part induced by the compactification of the string axis. Both contributions are even periodic functions of the magnetic fluxes with period equal to the flux quantum. The vacuum energy density is equal to the radial stress for the parts corresponding to the straight cosmic string and the topological one. Moreover, the axial stress is equal to the energy density for the parts corresponding to the straight cosmic string; however, for massive fermionic fields this does not occur for the topological contributions. With respect to the dependence on the magnetic fluxes, both the fermionic condensate and the vacuum energy density, can be either positive or negative. Moreover, for points near the string, the main contribution to the VEVs comes from the straight cosmic string part, whereas at large distances the topological ones dominate. In addition to the local characteristics of the vacuum state, we also evaluate the part in the topological Casimir energy induced by the string. (orig.)
The bispectrum of cosmic string temperature fluctuations including recombination effects
Regan, Donough
2015-01-01
We calculate the cosmic microwave background temperature bispectrum from cosmic strings, for the first time including the contributions from the last scattering surface, using a well-established Gaussian model for the string energy-momentum correlation functions, and a simplified model for the cosmic fluid. We check our approximation for the integrated Sachs-Wolfe (ISW) contribution against the bispectrum obtained from the full sky map of the cosmic string ISW signal used by the Planck team, obtaining good agreement. We validate our model for the last scattering surface contribution by comparing the predicted temperature power spectrum with that obtained from a full Boltzmann code treatment applied to the Unconnected Segment Model of a string network. We find that including the last scattering contribution has only a small impact on the upper limit on the string tension resulting from the bispectrum at Planck resolutions, and argue that the bispectrum is unlikely to be competitive with the power spectrum at a...
Cosmic strings in hidden sectors: 2. Cosmological and astrophysical signatures
Cosmic strings can arise in hidden sector models with a spontaneously broken Abelian symmetry group. We have studied the couplings of the Standard Model fields to these so-called dark strings in the companion paper. Here we survey the cosmological and astrophysical observables that could be associated with the presence of dark strings in our universe with an emphasis on low-scale models, perhaps TeV. Specifically, we consider constraints from nucleosynthesis and CMB spectral distortions, and we calculate the predicted fluxes of diffuse gamma ray cascade photons and cosmic rays. For strings as light as TeV, we find that the predicted level of these signatures is well below the sensitivity of the current experiments, and therefore low scale cosmic strings in hidden sectors remain unconstrained. Heavier strings with a mass scale in the range 1013 GeV to 1015 GeV are at tension with nucleosynthesis constraints
Cosmic Strings in Hidden Sectors: 2. Cosmological and Astrophysical Signatures
Long, Andrew J
2014-01-01
Cosmic strings can arise in hidden sector models with a spontaneously broken Abelian symmetry group. We have studied the couplings of the Standard Model fields to these so-called dark strings in the companion paper. Here we survey the cosmological and astrophysical observables that could be associated with the presence of dark strings in our universe with an emphasis on low-scale models, perhaps TeV. Specifically, we consider constraints from nucleosynthesis and CMB spectral distortions, and we calculate the predicted fluxes of diffuse gamma ray cascade photons and cosmic rays. For strings as light as TeV, we find that the predicted level of these signatures is well below the sensitivity of the current experiments, and therefore low scale cosmic strings in hidden sectors remain unconstrained. Heavier strings with a mass scale in the range 10^(13) GeV to 10^(15) GeV are at tension with nucleosynthesis constraints.
Gravitating non-Abelian cosmic strings
Santo, Antônio de Padua
2015-01-01
In this paper we study regular cosmic string solutions of the non-Abelian Higgs model coupled with the Einstein gravity. In order to do that, we constructed a set of coupled differential ordinary equation. Because there is no closed solution for this set of equations, we solve it numerically. The solutions that we are interested in asymptote to a flat space-time with a planar angle deficit. This model under consideration present two bosonic sectors, besides the non-Abelian gauge one, coupled minimally with the gravitational fields. The two bosonic sectors may present a direct coupling, which plays an important role on the behavior of the matter and gauge fields and also on the behavior on the geometry of the spacetime. We explicitly analyze the behaviors of the energy density and planar angle deficit as function of the energy scale where the gauge symmetry is spontaneously broken and the coupling interaction between the bosonic sectors.
Relativistic Landau Levels in the Rotating Cosmic String Spacetime
Cunha, M S; Christiansen, H R; Bezerra, V B
2016-01-01
We calculate the energy levels of a spinless massive and charged particle interacting with a stationary rotating cosmic string in a region with a static homogeneous magnetic field parallel to the string. First, we completely solve the Klein-Gordon equation in that particular spacetime, checking consistency in the non-relativistic limit and comparing with the static string case. We also solve the problem for a magnetized rotating cosmic string in order to find the Landau levels using rigid-wall boundary conditions, and discuss the possibility of these levels to be purely induced by spacetime rotation.
Cosmic D--term Strings as Wrapped D3 Branes
Halyo, E
2004-01-01
We describe cosmic D--term strings as D3 branes wrapped on a resolved conifold. The matter content that gives rise to D--term strings is shown to describe the world--volume theory of a space--filling D3 brane transverse to the conifold which itself is a wrapped D5 brane. We show that, in this brane theory, the tension of the wrapped D3 brane mathces that of the D--term string. We argue that there is a new type of cosmic string which arises from fractional D1 branes on the world--volume of a fractional D3 brane.
Adiabatic fluctuations from cosmic strings in a contracting universe
We show that adiabatic, super-Hubble, and almost scale invariant density fluctuations are produced by cosmic strings in a contracting universe. An essential point is that isocurvature perturbations produced by topological defects such as cosmic strings on super-Hubble scales lead to a source term which seeds the growth of curvature fluctuations on these scales. Once the symmetry has been restored at high temperatures, the isocurvature seeds disappear, and the fluctuations evolve as adiabatic ones in the expanding phase. Thus, cosmic strings may be resurrected as a mechanism for generating the primordial density fluctuations observed today
Cosmic D-strings as Axionic D-term Strings
Blanco-Pillado, Jose J.; Dvali, Gia; Redi, Michele(INFN — Sezione di Firenze, Via G. Sansone, 1, I-50019, Sesto Fiorentino, Italy)
2005-01-01
In this work we derive non-singular BPS string solutions from an action that captures the essential features of a D-brane-anti-D-brane system compactified to four dimensions. The model we consider is a supersymmetric abelian Higgs model with a D-term potential coupled to an axion-dilaton multiplet. The strings in question are axionic D-term strings which we identify with the D-strings of type II string theory. In this picture the Higgs field represents the open string tachyon of the D-Dbar pa...
Intercommutation of U(1) global cosmic strings
Moore, Guy D.
2016-01-01
Global strings (those which couple to Goldstone modes) may play a role in cosmology. In particular, if the QCD axion exists, axionic strings may control the efficiency of axionic dark matter abundance. The string network dynamics depend on the string intercommutation efficiency (whether strings re-connect when they cross). We point out that the velocity and angle in a collision between global strings "renormalize" between the network scale and the microscopic scale, and that this plays a sign...
Aharonov-Bohm effect in curved space and cosmic strings
The paper deals with the development of the theory of nonrelativistic particle scattering in the cosmic string field, which is considered as a registration of magnetic and gravitation strings. The effects, which are caused by the finite nature of the transverse parameters of the strings, are taken into account making sufficiently general assumptions about the distribution of the magnetic field and space curvature inside the string. It is shown that in a certain region of angles the differential scattering section significantly depends on the string magnetic flux value at all absolute values of the bombarding particle wind vector. 34 refs
Coupled field solutions for U(1)-gauge cosmic strings
Laguna-Castillo, P.; Matzner, R.A.
1987-12-15
Numerical solutions for the coupled Einstein-scalar-gauge field equations of a static, infinitely long, straight, U(1)-gauge cosmic string are obtained. The boundary conditions at the axis of the string and at radial infinity are chosen such that the solutions represent an isolated string; that is, the metric fields of the string approach Minkowski spacetime minus a wedge at radial infinity. The numerical solutions for the metric, scalar, and gauge fields, and for the components of the energy-momentum tensor, are classified according to the energy scale of symmetry breaking and the mass ratio of the scalar and gauge fields of the strings.
Tackling tangledness of cosmic strings by knot polynomial topological invariants
Li, Xinfei; Huang, Yong-Chang
2016-01-01
Cosmic strings in the early universe have received revived interest in recent years. In this paper we derive these structures as topological defects from singular distributions of the quintessence field of dark energy. Our emphasis is placed on the topological charge of tangled cosmic strings, which originates from the Hopf mapping and is a Chern-Simons action possessing strong inherent tie to knot topology. It is shown that the Kauffman bracket knot polynomial can be constructed in terms of this charge for un-oriented knotted strings, serving as a topological invariant much stronger than the traditional Gauss linking numbers in characterizing string topology. Especially, we introduce a mathematical approach of breaking-reconnection which provides a promising candidate for studying physical reconnection processes within the complexity-reducing cascades of tangled cosmic strings.
Physical cosmic strings do not generate closed timelike curves
We reexamine the causal properties of geometries generated by parallel, moving cosmic strings, particularly our statement that closed timelike curves are forbidden there. Contrary to a recent claim, such acausal behavior cannot be realized by physical, timelike, sources
Probabilistic estimates of the number of cosmic strings
The dependences of the mean expected number of cosmic strings on their redshift up to the surface of last scattering have been derived. The calculations are based on the geometric probability of a straight string segment crossing a given field and on information about the absence of strings when they are searched for via their gravitational lensing effects in optical catalogs. It is shown that there are no strings for redshifts 0 3 at the 95% confidence level. The expected number of strings for redshifts up to z = 1100 can be no more than 2.4 × 104 at the 95% confidence level. The latter estimate is sensitive to a priori information about the absence of cosmic strings in the redshift range 0 < z < 1.954 in a field of 4.48 square degrees in optical catalogs; it is smaller than the estimate without allowance for this information by 6%.
The stability of D-term cosmic strings
In this article, we discuss the semi-classical stability of the D-term string solution of D=4, N=1 supergravity with a constant Fayet-Iliopoulos term. Regardless of the particular theory one is interested in, the stability of cosmic strings is necessary if we hope to observe them. We apply the spinorial Witten-Nester method to prove a positive energy theorem for the D-term cosmic string background with positive deficit angle. We also pay particular attention to the negative deficit angle D-term string, which is known to violate the dominant energy condition. Within the class of string solutions we consider, this violation implies that the negative deficit angle D-term string must have a naked pathology and therefore the positive energy theorem we prove does not apply to it. (orig.)
Pair Production of Black Holes on Cosmic Strings
Hawking, S. W.; Ross, Simon F.
1995-11-01
We discuss the pair creation of black holes by the breaking of a cosmic string. We obtain an instanton describing this process from the C metric, and calculate its probability. This is very low for the strings that have been suggested for galaxy formation.
Perturbations from cosmic strings in cold dark matter
Albrecht, Andreas; Stebbins, Albert
1992-01-01
A systematic linear analysis of the perturbations induced by cosmic strings in cold dark matter is presented. The power spectrum is calculated and it is found that the strings produce a great deal of power on small scales. It is shown that the perturbations on interesting scales are the result of many uncorrelated string motions, which indicates a much more Gaussian distribution than was previously supposed.
General Relativity, Scalar Fields and Cosmic Strings.
Burd, Adrian Benedict
1987-09-01
in the Appendix. Most of the models exhibit power-law inflation and we examine the limits on the potential imposed by the constraints on the inflationary period. The last section of the thesis involves a review of the cosmic string picture of galaxy formation. We examine the structure of the string from the viewpoint of the fields. We conjecture that the solutions are stable against small time-dependent perturbations and minimise the energy. We extend this analysis to straight strings in expanding space -times and find that at late times the fields settle down to a steady solution. At early times the fields oscillate and the stress-tensor of the fields is non-diagonal. The oscillations are probably not important since they die away rapidly but the form of the stress-tensor may have to be taken into account when considering the back reaction of the string on the space-time shortly after the string is formed.
Evidence for a scaling solution in cosmic-string evolution
Bennett, David P.; Bouchet, Francois R.
1988-01-01
Numerical simulations are used to study the most fundamental issue of cosmic-string evolution: the existence of a scaling solution. Strong evidence is found that a scaling solution does indeed exist. This justifies the main assumption on which the cosmic-string theories of galaxy formation is based. The main conclusion coincides with that of Albrecht and Turok (1985) but the results are not consistent with theirs. In fact, the results indicate that the details of string evolution are very different from the standard dogma.
Non-Thermal Dark Matter from Cosmic Strings
Cui, Yanou; David E. Morrissey
2008-01-01
Cosmic strings can be created in the early universe during symmetry-breaking phase transitions, such as might arise if the gauge structure of the standard model is extended by additional U(1) factors at high energies. Cosmic strings present in the early universe form a network of long horizon-length segments, as well as a population of closed string loops. The closed loops are unstable against decay, and can be a source of non-thermal particle production. In this work we compute the density o...
Search for Cosmic Strings in the COSMOS Survey
Christiansen, J L; Goldman, J; Teng, I P W; Foley, M; Smoot, G F
2010-01-01
We search the COSMOS survey for pairs of galaxies consistent with the gravitational lensing signature of a cosmic string. The COSMOS survey imaged 1.64 square degrees using the Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope (HST). Our technique includes estimates of the efficiency for finding the lensed galaxy pair. We find no evidence for cosmic strings with a mass per unit length of G\\mu/c^2 < 3.0E-7 out to redshifts greater than 0.6 at 95% confidence. This corresponds to a global limit on Omega_string<0.0017.
Numerical study of cosmic censorship in string theory
Recently Hertog, Horowitz, and Maeda have argued that cosmic censorship can be generically violated in string theory in anti-de Sitter spacetime by considering a collapsing bubble of a scalar field whose mass saturates the Breitenlohner-Freedman bound. We study this system numerically, and find that black holes form rather than naked singularities, implying that cosmic censorship is upheld. (author)
Numerical study of cosmic censorship in string theory
Gutperle, Michael E-mail: gutperle@physics.ucla.edu; Kraus, Per
2004-04-01
Recently Hertog, Horowitz, and Maeda have argued that cosmic censorship can be generically violated in string theory in anti-de Sitter spacetime by considering a collapsing bubble of a scalar field whose mass saturates the Breitenlohner-Freedman bound. We study this system numerically, and find that black holes form rather than naked singularities, implying that cosmic censorship is upheld. (author)
Vacuum polarization by a flat boundary in cosmic string spacetime
In this paper, we analyze the vacuum expectation values of the field squared and the energy-momentum tensor associated with a massive scalar field in a higher dimensional cosmic string spacetime, obeying Dirichlet or Neumann boundary conditions on the surface orthogonal to the string. In order to develop this analysis, the corresponding Green's function is obtained. The Green's function is given by the sum of two expressions: the first one corresponds to the standard Green's function in the boundary-free cosmic string spacetime and the second contribution is induced by the boundary. The boundary-induced parts have opposite signs for Dirichlet and Neumann scalars. Because the analysis of vacuum polarization effects in the boundary-free cosmic string spacetime has been developed in the literature, here we are mainly interested in the calculations of the effects induced by the boundary. In this way closed expressions for the corresponding expectation values are provided, as well as their asymptotic behavior in different limiting regions being investigated. We show that the non-trivial topology due to the cosmic string enhances the boundary-induced vacuum polarization effects for both the field squared and the energy-momentum tensor, compared to the case of a boundary in Minkowski spacetime. The presence of the cosmic string induces non-zero stress along the direction normal to the boundary. The corresponding vacuum force acting on the boundary is investigated.
Exceptional Colloquium: The Rise, Fall, and Rebirth of Cosmic Strings
CERN. Geneva
2005-01-01
In the 1980s many people were excited by the concept that cosmic strings, as relics of the Grand Unified Era, could be responsible for the formation of cosmic structure. In the 1990s the cosmic string concept steadily lost ground to the Inflationary model both as a result of the difficulty of calculations and more definitively through observations of the CMB. About the time many expected the new WMAP data to deliver the coup de grace, the concepts of cosmic strings as major physical phenomena (not so important in structure formation) has begun a renaissance. This new interest is motivated by one of the original ideas that topological defects are inevitable in symmetry breaking by the Kibble (1976) mechanism and the introduction of new ideas such as brane-cosmology/inflation and the realization that cosmic strings may be the only acceptable such defect. We find ourselves back in the business of trying to detect or limit and understand cosmic strings once again for the insight and constraints they put on p...
Fermion Energies in the Background of a Cosmic String
Graham, N; Weigel, H
2011-01-01
We provide a thorough exposition, including technical and numerical details, of previously published results on the quantum stabilization of cosmic strings. Stabilization occurs through the coupling to a heavy fermion doublet in a reduced version of the standard model. We combine the vacuum polarization energy of fermion zero-point fluctuations and the binding energy of occupied energy levels, which are of the same order in a semi-classical expansion. Populating these bound states assigns a charge to the string. We show that strings carrying fermion charge become stable if the electro-weak bosons are coupled to a fermion that is less than twice as heavy as the top quark. The vacuum remains stable in our model, because neutral strings are not energetically favored. These findings suggests that extraordinarily large fermion masses or unrealistic couplings are not required to bind a cosmic string in the standard model.
Cosmic strings in a product Abelian gauge field theory
It is shown that multiply distributed cosmic strings arise in the product Abelian gauge field theory of Tong and Wong where vortices generated from an extra gauge sector are used to realize magnetic impurities. It is seen that, in view of the fully coupled Einstein and gauge-matter equations, the presence of such cosmic strings in the form of topological defects is essential for gravitation. Asymptotic behavior of the string solutions can be precisely described to allow the derivation of a necessary and sufficient condition for the gravitational metric to be geodesically complete and an explicit calculation of the deficit angle proportional to the string tension, both stated in terms of string numbers, energy levels of broken symmetries, and the universal gravitational constant
Interaction of U(1) cosmic strings: Numerical intercommutation
Matzner, R.A.
1988-09-01
The putative ability of cosmic strings to act as seeds for galaxies depends on the efficiency of a number of processes that produce an initial network of strings and then allow them to evolve to a population that can act as condensation centers. Here the classical field theory of the interaction of cosmic strings is studied. A limited survey of numerical evolutions has been carried out. Calculations have been carried out showing parallel string--string repulsion; string--antistring (i.e., antiparallel string) annihilation with initial velocity v = 0 and v = 0.75; string--string collision at right angles with v/c = 0.1, 0.5, 0.75, 0.85, 0.9c, with v/c = 0.75 at theta = ..pi../4 and at theta = 3..pi../4, and with v/c = 0.9 at theta = 7..pi../8; and string--string and string--antistring collisions with v/c = 0.9 and v/c = 0.95. Intercommutation occurs in all situations so far investigated except that string--antistring collision with v/capprox. >0.90 apparently leads to reemergence, i.e., no intercommutation. All simulations have a ''sombrero'' potential V (phi) = lambda(chemically bondphichemically bond/sup 2/-sigma/sup 2/)/sup 2/ and a gauge field coupling e. (The numerical results are obtained with lambda = 0.01, e = 0.2, giving the gauge field a slightly longer scale length than that of the scalar field.)
Effects of the image universe on cosmic strings
We investigate some of the cosmological effects of the gravitational attraction of straight cosmic strings that arises due to the conical geometry of the string. Although this effect is second order in Newton's gravitational constant, its effects in the early universe can be significant. We find that the image masses responsible for this second order attraction effectively 'fill up' the volume deficit due to the conical geometry of a static straight string. A moving string also experiences a frictional force due to the images and this provides a mechanism for energy dissipation. The energy loss due to the image effect is comparable to the energy loss in gravitational radiation for strings on the size of the horizon scale but is probably not important when compared to the energy loss due to loop production. The image effect can also become important when a string comes close to a black hole. Our analysis of these effects is newtonian. (orig.)
Observational constraints on the types of cosmic strings
This paper is aimed at setting observational limits to the number of cosmic strings (Nambu-Goto, Abelian-Higgs, semilocal) and other topological defects (textures). Radio maps of CMB anisotropy, provided by the space mission Planck for various frequencies, were filtered and then processed by the method of convolution with modified Haar functions (MHF) to search for cosmic string candidates. This method was designed to search for solitary strings, without additional assumptions as regards the presence of networks of such objects. The sensitivity of the MHF method is δT ∼ 10 μK in a background of δT ∼ 100 μK. The comparison of these with previously known results on search string network shows that strings can only be semilocal in the range of 1 / 5, with the upper restriction on individual string tension (linear density) of Gμ/c2 ≤ 7.36 x 10-7. The texture model is also legal. There are no strings with Gμ/c2 > 7.36 x 10-7. However, a comparison with the data for the search of non-Gaussian signals shows that the presence of several (up to three) Nambu-Goto strings is also possible. For Gμ/c2 ≤ 4.83 x 10-7 the MHF method is ineffective because of unverifiable spurious string candidates. Thus the existence of strings with tensions Gμ/c2 ≤ 4.83 x 10-7 is not prohibited but it is beyond the Planck data possibilities. The same string candidates have been found in the WMAP 9-year data. Independence of Planck and WMAP data sets serves as an additional argument to consider those string candidates as very promising. However, the final proof should be given by optical deep surveys. (orig.)
The String and the Cosmic Bounce
Bozza V.
2014-01-01
String theory introduces a new fundamental scale (the string length) that is expected to regularize the singularities of classical general relativity. In a cosmological context, the Big Bang is no longer regarded as the beginning of time, but just a transition between a Pre-Big Bang collapse phase and the current expansion. We will review old and recent attempts to build consistent bouncing cosmologies inspired to string theories, discussing their solved and unsolved problems, focussing on th...
In this paper we study the footprint of cosmic string as the topological defects in the very early universe on the cosmic microwave background radiation. We develop the method of level crossing analysis in the context of the well-known Kaiser-Stebbins phenomenon for exploring the signature of cosmic strings. We simulate a Gaussian map by using the best fit parameter given by WMAP-7 and then superimpose cosmic strings effects on it as an incoherent and active fluctuations. In order to investigate the capability of our method to detect the cosmic strings for the various values of tension, Gμ, a simulated pure Gaussian map is compared with that of including cosmic strings. Based on the level crossing analysis, the superimposed cosmic string with Gμ∼>4 × 10−9 in the simulated map without instrumental noise and the resolution R = 1' could be detected. In the presence of anticipated instrumental noise the lower bound increases just up to Gμ∼>5.8 × 10−9
Evolution of a non-Abelian cosmic string network
We describe a numerical simulation of the evolution of an S3 cosmic string network which takes fully into account the noncommutative nature of the cosmic string fluxes and the topological obstructions which hinder strings from moving past each other or intercommuting. The influence of initial conditions, string tensions, and other parameters on the network close-quote s evolution is explored. Contrary to some previous suggestions, we find no strong evidence of the open-quotes freezingclose quotes required for a string-dominated cosmological scenario. Instead, the results in a broad range of regimes are consistent with the familiar scaling law, i.e., a constant number of strings per horizon volume. The size of this number, however, can vary quite a bit, as can other overall features. There is a surprisingly strong dependence on the statistical properties of the initial conditions. We also observe a rich variety of interesting new structures, such as light string webs stretched between heavier strings, which are not seen in Abelian networks. copyright 1998 The American Physical Society
Bosonic structure of realistic SO(10) supersymmetric cosmic strings
Allys, Erwan
2016-05-01
We study the bosonic structure of F -term Nambu-Goto cosmic strings forming in a realistic SO(10) implementation, assuming standard hybrid inflation. We describe the supersymmetric grand unified theory, and its spontaneous symmetry breaking scheme in parallel with the inflationary process. We also write the explicit tensor formulation of its scalar sector, focusing on the subrepresentations singlet under the standard model, which is sufficient to describe the string structure. We then introduce an ansatz for Abelian cosmic strings, discussing in details the hypothesis, and write down the field equations and boundary conditions. Finally, after doing a perturbative study of the model, we present and discuss the results obtained with numerical solutions of the string structure.
Bosonic structure of realistic SO(10) SUSY cosmic strings
Allys, E
2015-01-01
We study the bosonic structure of F-term Nambu-Goto cosmic strings forming in a realistic SO(10) implementation, assuming standard hybrid inflation. We describe the supersymmetric Grand Unified Theory, and its SSB scheme in parallel with the inflationary process. We also write the explicit tensor formulation of its scalar sector, focusing on the sub-representations singlet under the Standard Model, which is sufficient to describe the string structure. We then introduce an ansatz for abelian cosmic strings, discussing in details the hypothesis, and write down the field equations and boundary conditions. Finally, after doing a perturbative study of the model, we present and discuss the results obtained with numerical solutions of the string structure.
Light-Cone Fluctuations in the Cosmic String Spacetime
Mota, H F; Bessa, C H G; Bezerra, V B
2016-01-01
In this paper we consider light-cone fluctuations arising as a consequence of the nontrivial topology of the locally flat cosmic string spacetime. By setting the light-cone along the z-direction we are able to develop a full analysis to calculate the renormalized graviton two-point function, as well as the mean square fluctuation in the geodesic interval function and the time delay (or advance) in the propagation of a light-pulse. We found that all these expressions depend upon the parameter characterizing the conical topology of the cosmic string spacetime and vanish in the absence of it. We also point out that at large distances from the cosmic string the mean square fluctuation in the geodesic interval function is extremely small while in the opposite limit it logarithmically increases, improving the signal and thus, making possible the detection of such quantity.
Cosmic string interactions induced by gauge and scalar fields
Kabat, Daniel; Sarkar, Debajyoti
2012-01-01
We study the interaction between two parallel cosmic strings induced by gauge fields and by scalar fields with non-minimal couplings to curvature. For small deficit angles the gauge field behaves like a collection of non-minimal scalars with a specific value for the non-minimal coupling. We check this equivalence by computing the interaction energy between strings at first order in the deficit angles. This result provides another physical context for the "contact terms" which play an importan...
Radio Jets and Galaxies as Cosmic String Probes
Feng, Fa-bo
2011-01-01
The lensing effect of a cosmic string is studied, and some new methods are proposed to detect the cosmic string. The technique for using jets as extended gravitational lensing probes was firstly explored by Kronberg. We use the "alignment-breaking parameter" $ \\eta_G $ as a sensitive indicator of gravitational distortion by a wiggly cosmic string. Then, we applied the non-constant deflection angle to jets, and $ \\eta_G $ of a specific jet is just related to the projected slope of the jet. At least three jets in the sample of Square Kilometer Array (SKA) would have significant signals ($ \\eta_G >10^\\circ $) if the wiggly infinite cosmic string existed. The distortion of elliptical object is also studied and used to do a statistical research on directions of axes and ellipticities of galaxies. In the direction of the string, we find that galaxies appear to be rounder for an observer and the distribution of apparent ellipticity changes correspondingly. Ellipticity distribution of current SDSS spiral sample has t...
New CMB constraints for Abelian Higgs cosmic strings
Lizarraga, Joanes; Daverio, David; Hindmarsh, Mark; Kunz, Martin
2016-01-01
We present cosmic microwave background (CMB) power spectra from recent numerical simulations of cosmic strings in the Abelian Higgs model and compare them to CMB power spectra measured by Planck. We obtain revised constraints on the cosmic string tension parameter $G\\mu$. For example, in the $\\Lambda$CDM model with the addition of strings and no primordial tensor perturbations, we find $G\\mu < 2.0 \\times 10^{-7}$ at 95% confidence, about 20% lower than the value obtained from previous simulations, which had 1/64 of the spatial volume. We investigate the source of the difference, showing that the main cause is an improved treatment of the string evolution across the radiation-matter transition. The increased computational volume also makes possible to simulate fully the physical equations of motion, in which the string cores shrink in comoving coordinates. This, and the larger dynamic range, changes the amplitude of the power spectra by only about 10%, demonstrating that field theory simulations of cosmic s...
Bosonic condensates in realistic supersymmetric GUT cosmic strings
Allys, Erwan
2016-04-01
We study the realistic structure of F-term Nambu-Goto cosmic strings forming in a general supersymmetric Grand Unified Theory implementation, assuming standard hybrid inflation. Examining the symmetry breaking of the unification gauge group down to the Standard Model, we discuss the minimal field content necessary to describe abelian cosmic strings appearing at the end of inflation. We find that several fields will condense in most theories, questioning the plausible occurrence of associated currents (bosonic and fermionic). We perturbatively evaluate the modification of their energy per unit length due to the condensates. We provide a criterion for comparing the usual abelian Higgs approximation used in cosmology to realistic situations.
Using Cosmic Strings to Relate Local Geometry to Spatial Topology
Duston, Christopher L
2015-01-01
In this paper we will discuss how cosmic strings can be used to bridge the gap between the local geometry of our spacetime model and the global topology. The primary tool is the theory of foliations and surfaces, and together with observational constraints we can isolate several possibilities for the topology of the spatial section. This implies that the discovery of cosmic strings would not just be significant for an understanding of structure formation in the early universe, but also for the global properties of the spacetime model.
Black strings, low viscosity fluids, and violation of cosmic censorship.
Lehner, Luis; Pretorius, Frans
2010-09-01
We describe the behavior of 5-dimensional black strings, subject to the Gregory-Laflamme instability. Beyond the linear level, the evolving strings exhibit a rich dynamics, where at intermediate stages the horizon can be described as a sequence of 3-dimensional spherical black holes joined by black string segments. These segments are themselves subject to a Gregory-Laflamme instability, resulting in a self-similar cascade, where ever-smaller satellite black holes form connected by ever-thinner string segments. This behavior is akin to satellite formation in low-viscosity fluid streams subject to the Rayleigh-Plateau instability. The simulation results imply that the string segments will reach zero radius in finite asymptotic time, whence the classical space-time terminates in a naked singularity. Since no fine-tuning is required to excite the instability, this constitutes a generic violation of cosmic censorship. PMID:20867508
Black hole formation from collisions of cosmic strings
We explain simple semi-classical rules to estimate the lifetime of any given highly excited quantum state of the string spectrum and apply them to identify new long-lived string states. Using analytic formulae for the string evolution after joining and interconnection, we study examples of fundamental cosmic string collisions leading to gravitational collapse. We find that the interconnection of two strings of equal and opposite maximal angular momenta and arbitrarily large mass generically leads to the formation of black holes. (Based on the works (Iengo and Russo 2006 J. High Energy Phys.JHEP02(2006)041, Iengo and Russo 2006 J. High Energy Phys.JHEP08(2006)079).)
Prolongation of Friction Dominated Evolution for Superconducting Cosmic Strings
This investigation is concerned with cosmological scenarios based on particle physics theories that give rise to superconducting cosmic strings (whose subsequent evolution may produce stable loop configurations known as vortons). Cases in which electromagnetic coupling of the string current is absent or unimportant have been dealt with in previous work. The purpose of the present work is to provide quantitative estimates for cases in which electromagnetic interaction with the surrounding plasma significantly affects the string dynamics. In particular it will be shown that the current can become sufficiently strong for the initial period of friction dominated string motion to be substantially prolonged, which would entail a reinforcement of the short length scale end of the spectrum of the string distribution, with potentially observable cosmological implications if the friction dominated scenario lasts until the time of plasma recombination. (author)
The String and the Cosmic Bounce
Bozza V.
2014-04-01
Full Text Available String theory introduces a new fundamental scale (the string length that is expected to regularize the singularities of classical general relativity. In a cosmological context, the Big Bang is no longer regarded as the beginning of time, but just a transition between a Pre-Big Bang collapse phase and the current expansion. We will review old and recent attempts to build consistent bouncing cosmologies inspired to string theories, discussing their solved and unsolved problems, focussing on the observables that may distinguish them from standard inflationary scenarios.
Cosmic String Universes Embedded with Viscosity
Koijam Manihar Singh; Kangujam Priyokumar Singh
2011-01-01
We study string cosmological models with attached particles in LRS BI type space time.The dynamical and physical properties of such universes are studied,and the possibility that during the evolution of the universe the strings disappear,leaving only the particles,is also discussed.It is found that bulk viscosity plays a large role in the evolution of the universe.In these models we find critical instances of when there was a “Bounce”.The studied models are found to be of an inflationary type,and since a desirable feature of a meaningful string cosmological model is the presence of an inflationary epoch in the very early stages of evolution,our models can be thought of as realistic universes.The origin of the universe and the early stages of formation are still interesting areas of research.The concept of string theory was developed to describe the events of the early stages of the evolution of the universe.The universe can be described as a collection of extended (non point) objects.Thus,“string dust” cosmology will provide us with a model to investigate the properties related to this fact.%We study string cosmological models with attached particles in LRS BI type space time. The dynamical and physical properties of such universes are studied, and the possibility that during the evolution of the universe the strings disappear, leaving only the particles, is also discussed. It is found that bulk viscosity plays a large role in the evolution of the universe. In these models we find critical instances of when there was a "Bounce". The studied models are found to be of an inflationary type, and since a desirable feature of a meaningful string cosmological model is the presence of an inflationary epoch in the very early stages of evolution, our models can be thought of as realistic universes.
Small-angle CMB temperature anisotropies induced by cosmic strings
We use Nambu-Goto numerical simulations to compute the cosmic microwave background (CMB) temperature anisotropies induced at arcminute angular scales by a network of cosmic strings in a Friedmann-Lemaitre-Robertson-Walker (FLRW) expanding universe. We generate 84 statistically independent maps on a 7.2 deg. field of view, which we use to derive basic statistical estimators such as the one-point distribution and two-point correlation functions. At high multipoles, the mean angular power spectrum of string-induced CMB temperature anisotropies can be described by a power law slowly decaying as l-p, with p=0.889 (+0.001,-0.090) (including only systematic errors). Such a behavior suggests that a nonvanishing string contribution to the overall CMB anisotropies may become the dominant source of fluctuations at small angular scales. We therefore discuss how well the temperature gradient magnitude operator can trace strings in the context of a typical arcminute diffraction-limited experiment. Including both the thermal and nonlinear kinetic Sunyaev-Zel'dovich effects, the Ostriker-Vishniac effect, and the currently favored adiabatic primary anisotropies, we find that, on such a map, strings should be 'eye visible', with at least of order ten distinctive string features observable on a 7.2 deg. gradient map, for tensions U down to GU≅2x10-7 (in Planck units). This suggests that, with upcoming experiments such as the Atacama Cosmology Telescope (ACT), optimal non-Gaussian, string-devoted statistical estimators applied to small-angle CMB temperature or gradient maps may put stringent constraints on a possible cosmic string contribution to the CMB anisotropies.
We present a significant update of the constraints on the Abelian Higgs cosmic string tension by cosmic microwave background (CMB) data, enabled both by the use of new high-resolution CMB data from suborbital experiments as well as the latest results of the WMAP satellite, and by improved predictions for the impact of Abelian Higgs cosmic strings on the CMB power spectra. The new cosmic string spectra [1] were improved especially for small angular scales, through the use of larger Abelian Higgs string simulations and careful extrapolation. If Abelian Higgs strings are present then we find improved bounds on their contribution to the CMB anisotropies, fdAH AH −6, both at 95% confidence level using WMAP7 data; and fdAH AH −6 using all the CMB data. We also find that using all the CMB data, a scale invariant initial perturbation spectrum, ns = 1, is now disfavoured at 2.4σ even if strings are present. A Bayesian model selection analysis no longer indicates a preference for strings
Large scale CMB anomalies from thawing cosmic strings
Ringeval, Christophe; Yokoyama, Jun'ichi; Bouchet, Francois R
2015-01-01
Cosmic strings formed during inflation are expected to be either diluted over super-Hubble distances, i.e., invisible today, or to have crossed our past light cone very recently. We discuss the latter situation in which a few strings imprint their signature in the Cosmic Microwave Background (CMB) Anisotropies after recombination. Being almost frozen in the Hubble flow, these strings are quasi static and evade almost all of the previously derived constraints on their tension while being able to source large scale anisotropies in the CMB sky. Using a local variance estimator on thousand of numerically simulated Nambu-Goto all sky maps, we compute the expected signal and show that it can mimic a dipole modulation at large angular scales while being negligible at small angles. Interestingly, such a scenario generically produces one cold spot from the thawing of a cosmic string loop. Mixed with anisotropies of inflationary origin, we find that a few strings of tension GU = O(1) x 10^(-6) match the amplitude of th...
Abelian Higgs cosmic strings: Small-scale structure and loops
Classical lattice simulations of the Abelian Higgs model are used to investigate small-scale structure and loop distributions in cosmic string networks. Use of the field theory ensures that the small-scale physics is captured correctly. The results confirm analytic predictions of Polchinski and Rocha 29 for the two-point correlation function of the string tangent vector, with a power law from length scales of order the string core width up to horizon scale. An analysis of the size distribution of string loops gives a very low number density, of order 1 per horizon volume, in contrast with Nambu-Goto simulations. Further, our loop distribution function does not support the detailed analytic predictions for loop production derived by Dubath et al. 30. Better agreement to our data is found with a model based on loop fragmentation 32, coupled with a constant rate of energy loss into massive radiation. Our results show a strong energy-loss mechanism, which allows the string network to scale without gravitational radiation, but which is not due to the production of string width loops. From evidence of small-scale structure we argue a partial explanation for the scale separation problem of how energy in the very low frequency modes of the string network is transformed into the very high frequency modes of gauge and Higgs radiation. We propose a picture of string network evolution, which reconciles the apparent differences between Nambu-Goto and field theory simulations.
Analytic theory of discontinuities in current-carrying cosmic strings
Trojan, Ernst
2013-01-01
We formulate an analytic method to study the discontinuities in superconducting cosmic strings. Equations of discontinuities and conditions of their existence are derived from the intrinsic and extrinsic equations of motion. It is the fundamental for research of particular solutions, associated with kinks, cusps and shocks.
Stringy cosmic strings and compactifications of F-theory
We construct stringy cosmic string solutions corresponding to compactifications of F-theory on several elliptic Calabi-Yau manifolds by solving the equations of motion of low energy effective action of ten-dimensional type IIB superstring theory. Existence of such solutions supports the compactifications of F-theory. (orig.)
Cosmic strings in an expanding spacetime
We investigate the stability of a static, infinitely long and straight vacuum string solution under inhomogeneous axisymmetric time-dependent perturbations. We find it to be perturbatively stable. We further extend our work by finding a string solutions in an expanding Universe. The back reaction of the string on the gravitational field has been ignored. The background is assumed to be a Friedman-Robertson-Walker (FRW) cosmology. By numerically integrating the field equations in a radiation and matter dominated models, we discover oscillatory solutions. The possible damping of these oscillations is discussed. For late times the solution becomes identical to the static one studied in the first part of the paper. 19 refs., 8 figs
Abelian cosmic string in the extended Starobinsky model of gravity
Graça, J P Morais
2016-01-01
We analyze numerically the behaviour of the solutions corresponding to an Abelian cosmic string taking into account an extension of the Starobinsky model, where the action of general relativity is replaced by $f(R) = R - 2\\Lambda + \\eta R^2 + \\rho R^m$, with $m > 2$. As an interesting result, we find that the angular deficit which characterizes the cosmic string decreases as the parameters $\\eta$ and $\\rho$ increase. We also find that the cosmic horizon due to the presence of a cosmological constant is affected in such a way that it can grows or shrinks, depending on the vacuum expectation value of the scalar field and on the value of the cosmological constant
Spacetime of supermassive U(1)-gauge cosmic strings
We investigate numerically the spacetime geometry in the presence of an infinitely long, straight, static, U(1)-gauge cosmic string formed during phase transitions at energy scales larger than the grand-unified-theory scale. As the energy scale of symmetry breaking increases, we find that at radial infinity the geometry around a string changes from Minkowskian minus a wedge to an analog of a Kasner spacetime. The geometry transition occurs at Δφ=2π, where the deficit angle Δφ is defined in the sense of comparison with flat spacetime in the absence of the string. Phase transitions producing such supermassive strings should occur before inflation to avoid contradictions with current observations
The stability of cosmic string loops
A general perturbation analysis is performed on closed string loops to investigate whether small perturbations cause the known class of non-self-intersecting loops to self-intersect. This leads to the conclusion that most of this class of loops are stable to small perturbations. (orig.)
New solutions for non-Abelian cosmic strings
Hindmarsh, Mark; Weir, David J
2016-01-01
We study the properties of classical vortex solutions in a non-Abelian gauge theory. A system of two adjoint Higgs fields breaks the SU(2) gauge symmetry to $Z_2$, producing 't Hooft-Polyakov monopoles trapped on cosmic strings, termed beads; there are two charges of monopole and two degenerate string solutions. The strings break an accidental discrete $Z_2$ symmetry of the theory, explaining the degeneracy of the ground state. Further symmetries of the model, not previously appreciated, emerge when the masses of the two adjoint Higgs fields are degenerate. The breaking of the enlarged discrete symmetry gives rise to additional string solutions and splits the monopoles into four types of `semipole': kink solutions that interpolate between the string solutions, classified by a complex gauge invariant magnetic flux and a $Z_4$ charge. At special values of the Higgs self-couplings, the accidental symmetry broken by the string is continuous, giving rise to supercurrents on the strings. The SU(2) theory can be emb...
Topological Casimir effect in compactified cosmic string spacetime
We investigate the Wightman function, the vacuum expectation values of the field squared and the energy-momentum tensor for a massive scalar field with general curvature coupling in the generalized cosmic string geometry with a compact dimension along its axis. The boundary condition along the compactified dimension is taken in general form with an arbitrary phase. The vacuum expectation values are decomposed into two parts. The first one corresponds to the uncompactified cosmic string geometry and the second one is the correction induced by the compactification. The asymptotic behavior of the vacuum expectation values of the field squared, energy density and stresses is investigated near the string and at large distances. We show that the nontrivial topology due to the cosmic string enhances the vacuum polarization effects induced by the compactness of spatial dimension for both the field squared and the vacuum energy density. A simple formula is given for the part of the integrated topological Casimir energy induced by the planar angle deficit. The results are generalized for a charged scalar field in the presence of a constant gauge field. In this case, the vacuum expectation values are periodic functions of the component of the vector potential along the compact dimension. (paper)
Implications of cosmic strings with time-varying tension on CMB and large scale structure
Ichikawa, Kazuhide; Takahashi, Tomo; Yamaguchi, Masahide
2006-01-01
We investigate cosmological evolution and implications of cosmic strings with time-dependent tension. We derive basic equations of time development of the correlation length and the velocity of such strings, based on the one scale model. Then, we find that, in the case where the tension depends on some power of the cosmic time, cosmic strings with time-dependent tension goes into the scaling solution if the power is lower than a critical value. We also discuss cosmic microwave background anis...
CMB Anisotropy due to Cosmic Strings in an Accelerated Expanding Universe
Rokni, S Y; Bordbar, M R
2013-01-01
We want to find the cosmological constant influence on cosmic microwave background (CMB) anisotropy due to cosmic strings. Considering the space-time metric of a cosmic string under the effect of a positive cosmological constant, the CMB anisotropy is studied. The result shows that a positive cosmological constant (i.e. the presence of cosmic strings in an accelerated expanding universe) weakens the anisotropy so that more strong resolution is needed to detect the corresponding influences on the CMB power spectrum.
Correlations between black holes formed in cosmic string breaking
Emparan García de Salazar, Roberto A.
1995-01-01
An analysis of cosmic string breaking with the formation of black holes attached to the ends reveals a remarkable feature: the black holes can be correlated or uncorrelated. We find that, as a consequence, the number-of-states enhancement factor in the action governing the formation of uncorrelated black holes is twice the one for a correlated pair. We argue that when an uncorrelated pair forms at the ends of the string, the physics involved is more analogous to thermal nucleation than to par...
Gravitational fields of straight and circular cosmic strings
This paper focuses on the relation between the gravitational mass, the angular deficit Δφ of the conical geometry and the internal structure of cosmic strings. For small angular deficits the conventional results derived from linear weak-field theory are confirmed. At larger angular deficits, the relation between Δφ and inertial mass becomes model-dependent, and the gravitational mass is smaller than predicted by linear theory. When Δφ approx-gt π the string loop is generally enclosed within a black hole
D-term cosmic strings from N = 2 supergravity
We describe new half-BPS cosmic string solutions in N = 2, d = 4 supergravity coupled to one vector multiplet and one hypermultiplet. They are closely related to D-term strings in N = 1 supergravity. Fields of the N = 2 theory that are frozen in the solution contribute to the triplet moment map of the quaternionic isometries and leave their trace in N = 1 as a constant Fayet-Iliopoulos term. The choice of U(1) gauging and of special geometry are crucial. The construction gives rise to a non-minimal Kaehler potential and can be generalized to higher dimensional quaternionic-Kaehler manifolds
Cosmic optical activity in the spacetime of a scalar-tensor screwed cosmic string
Bezerra, V B
2003-01-01
Measurements of the quasars optical activities verify that their polarization vectors are not randomly oriented as naturally expected. In order to give a possible explanation to this phenomenon we investigate the role played by a Chern-Simons-type term in the scalar-tensor screwed cosmic string(SCS) background. In this scenario we discuss the possibility that the quasar optical polarization can be explained by considering that the electromagnetic waves emitted by these quasars interact with a scalar-tensor screwed cosmic string throught a Chern-Simons-type coupling. We use this screwed cosmic string to put limit in the coupling constant. The superconducting case has also been discussed and the results compared with general relativity effects.
Solution for a local straight cosmic string in the braneworld gravity
In this work we deal with the spacetime shaped by a straight cosmic string, emerging from local gauge theories, in the braneworld gravity context. We search for physical consequences of string features due to the modified gravitational scenario encoded in the projected gravitational equations. It is shown that cosmic strings in braneworld gravity may present significant differences when compared to the general relativity predictions, since its linear density is modified and the deficit angle produced by the cosmic string is attenuated. Furthermore, the existence of cosmic strings in that scenario requires a strong restriction to the braneworld tension: λ ≥ 3 x 10-17, in Planck units. (orig.)
Solution for a local straight cosmic string in the braneworld gravity
Abdalla, M.C.B.; Carlesso, P.F. [UNESP, Universidade Estadual Paulista, Instituto de Fisica Teorica, Rua Dr. Bento Teobaldo Ferraz 271, Bloco II, Barra-Funda, Caixa Postal 70532-2, Sao Paulo, SP (Brazil); Hoff da Silva, J.M. [UNESP, Universidade Estadual Paulista, Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil)
2015-09-15
In this work we deal with the spacetime shaped by a straight cosmic string, emerging from local gauge theories, in the braneworld gravity context. We search for physical consequences of string features due to the modified gravitational scenario encoded in the projected gravitational equations. It is shown that cosmic strings in braneworld gravity may present significant differences when compared to the general relativity predictions, since its linear density is modified and the deficit angle produced by the cosmic string is attenuated. Furthermore, the existence of cosmic strings in that scenario requires a strong restriction to the braneworld tension: λ ≥ 3 x 10{sup -17}, in Planck units. (orig.)
Dynamics of cosmic strings with higher-dimensional windings
We consider F-strings with arbitrary configurations in the Minkowski directions of a higher-dimensional spacetime, which also wrap and spin around S1 subcycles of constant radius in an arbitrary internal manifold, and determine the relation between the higher-dimensional and the effective four-dimensional quantities that govern the string dynamics. We show that, for any such configuration, the motion of the windings in the compact space may render the string effectively tensionless from a four-dimensional perspective, so that it remains static with respect to the large dimensions. Such a critical configuration occurs when (locally) exactly half the square of the string length lies in the large dimensions and half lies in the compact space. The critical solution is then seen to arise as a special case, in which the wavelength of the windings is equal to their circumference. As examples, long straight strings and circular loops are considered in detail, and the solutions to the equations of motion that satisfy the tensionless condition are presented. These solutions are then generalized to planar loops and arbitrary three-dimensional configurations. Under the process of dimensional reduction, in which higher-dimensional motion is equivalent to an effective worldsheet current (giving rise to a conserved charge), this phenomenon may be seen as the analogue of the tensionless condition which arises for superconducting and chiral-current carrying cosmic strings
Discontinuity cylinder model of gravitating U(1) cosmic strings
Laguna-Castillo, P.; Matzner, R.A.
1987-05-15
We introduce a model for an infinite-length, straight U(1) cosmic string as a cylindrical, singular shell enclosing a region of false vacuum. The properties of the geometry for the region exterior to the string are fully determined under the assumption that changes in the scalar and gauge field variables occur only at the cylindrical shell. This is consistent with a limiting form of the scalar potential V(phi) where a minimum at chemically bondphichemically bond = 0 is separated by a large barrier from a global minimum at chemically bondphichemically bond = etanot =0. The introduction of an approximately singular ''surface'' for the string allows the definition of a delta-function stress-energy density that characterizes discontinuities in the fields. We show consistency of the model with the full coupled equations for the metric, and the scalar and gauge fields in curved space-time. It is found that for this model, in the absence of an ''external'' cosmological constant, the exterior geometry of the string approaches Minkowski space-time with a deficit angle, and it is shown that in the limit when the string becomes a line source, i.e., its radius vanishes, the deficit angle reduces to the well-known expression ..delta..theta = 8..pi mu.., with ..mu.. the proper mass per unit length of the string.
Dynamics of cosmic strings with higher-dimensional windings
Yamauchi, Daisuke [Research Center for the Early Universe, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Lake, Matthew J. [The Institute for Fundamental Study, “The Tah Poe Academia Institute' , Naresuan University, Phitsanulok 65000 (Thailand); Thailand Center of Excellence in Physics, Ministry of Education,Bangkok 10400 (Thailand)
2015-06-11
We consider F-strings with arbitrary configurations in the Minkowski directions of a higher-dimensional spacetime, which also wrap and spin around S{sup 1} subcycles of constant radius in an arbitrary internal manifold, and determine the relation between the higher-dimensional and the effective four-dimensional quantities that govern the string dynamics. We show that, for any such configuration, the motion of the windings in the compact space may render the string effectively tensionless from a four-dimensional perspective, so that it remains static with respect to the large dimensions. Such a critical configuration occurs when (locally) exactly half the square of the string length lies in the large dimensions and half lies in the compact space. The critical solution is then seen to arise as a special case, in which the wavelength of the windings is equal to their circumference. As examples, long straight strings and circular loops are considered in detail, and the solutions to the equations of motion that satisfy the tensionless condition are presented. These solutions are then generalized to planar loops and arbitrary three-dimensional configurations. Under the process of dimensional reduction, in which higher-dimensional motion is equivalent to an effective worldsheet current (giving rise to a conserved charge), this phenomenon may be seen as the analogue of the tensionless condition which arises for superconducting and chiral-current carrying cosmic strings.
Discontinuity cylinder model of gravitating U(1) cosmic strings
We introduce a model for an infinite-length, straight U(1) cosmic string as a cylindrical, singular shell enclosing a region of false vacuum. The properties of the geometry for the region exterior to the string are fully determined under the assumption that changes in the scalar and gauge field variables occur only at the cylindrical shell. This is consistent with a limiting form of the scalar potential V(phi) where a minimum at chemical bondphichemical bond = 0 is separated by a large barrier from a global minimum at chemical bondphichemical bond = etanot =0. The introduction of an approximately singular ''surface'' for the string allows the definition of a δ-function stress-energy density that characterizes discontinuities in the fields. We show consistency of the model with the full coupled equations for the metric, and the scalar and gauge fields in curved space-time. It is found that for this model, in the absence of an ''external'' cosmological constant, the exterior geometry of the string approaches Minkowski space-time with a deficit angle, and it is shown that in the limit when the string becomes a line source, i.e., its radius vanishes, the deficit angle reduces to the well-known expression Δθ = 8πμ, with μ the proper mass per unit length of the string
Cosmic string in compactified gauge theory
A solution of the vortex type is given in a six-dimensional SU(2)xU(1) pure gauge theory coupled to Einstein gravity in a compactified background geometry. We construct the solution of an effective Abelian-Higgs model in terms of dimensional reduction. The solution, however, has a peculiarity in its physically relevant quantity, a deficit angle, which is given as a function of the ratio of the gauge couplings of SU(2) and U(1). The size of the extra space (sphere) is shown to vary with the distance from the axis of the 'string'. (author)
Is it really naked? On cosmic censorship in string theory
We investigate the possibility of cosmic censorship violation in string theory using a characteristic double-null code, which penetrates horizons and is capable of resolving the spacetime all the way to the singularity. We perform high-resolution numerical simulations of the evolution of negative mass initial scalar field profiles, which were argued to provide a counterexample to cosmic censorship conjecture for AdS-asymptotic spacetimes in five-dimensional supergravity. In no instances formation of naked singularity is seen. Instead, numerical evidence indicates that black holes form in the collapse. Our results are consistent with earlier numerical studies, and explicitly show where the 'no black hole' argument breaks
DF-strings from D3${\\bar {\\bf D}}$3 as Cosmic Strings
Cho, I; Kyae, B; Cho, Inyong; Kim, Yoonbai; Kyae, Bumseok
2006-01-01
We study Dirac-Born-Infeld type effective field theory of a complex tachyon and U(1)$\\times$U(1) gauge fields describing a D3${\\bar {\\rm D}}$3 system. Classical solutions of straight global and local DF-strings with quantized vorticity are found and are classified into two types by the asymptotic behavior of the tachyon amplitude. For sufficiently large radial distances, one has linearly-growing tachyon amplitude and the other logarithmically-growing tachyon amplitude. A constant radial electric flux density denoting the fundamental-string background makes the obtained DF-strings thick. The other electric flux density parallel to the strings is localized, which represents localization of fundamental strings in the D1-F1 bound states. Since these DF-strings are formed in the coincidence limit of the D3${\\bar {\\rm D}}$3, these cosmic DF-strings are safe from inflation induced by the approach of the separated D3 and ${\\bar {\\rm D}}3$.
Rotating black holes pierced by a cosmic string
Kubiznak, David
2015-01-01
A rotating black hole threaded by an infinitely long cosmic string is studied in the framework of the Abelian Higgs model. We show that contrary to a common belief in the presence of rotation the backreaction of the string does not induce a simple conical deficit. This leads to new distinct features of the Kerr--string system such as modified ISCO or shifted ergosphere, though these effects are most likely outside the range of observational precision. For an extremal rotating black hole, the system exhibits a first-order phase transition for the gravitational Meissner effect: small black holes exhibit a flux-expelled solution, with the gauge and scalar field remaining identically in their false vacuum state on the event horizon, whereas the horizon of large black holes is pierced by the vortex. A brief review prepared for the MG14 Proceedings.
Cosmic R-string, R-tube and vacuum instability
Eto, Minoru [Yamagata Univ. (Japan). Dept. of Physics; Hamada, Yuta; Kobayashi, Tatsuo [Kyoto Univ. (Japan). Dept. of Physics; Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ohashi, Keisuke [Osaka City Univ. (Japan). Dept. of Mathematics and Physics; Ookouchi, Yutaka [Kyoto Univ. (Japan). Dept. of Physics; Kyoto Univ. (Japan). The Hakubi Center for Advanced Research
2012-11-15
We show that a cosmic string associated with spontaneous U(1) R symmetry breaking gives a constraint for supersymmetric model building. In some models, the string can be viewed as a tube-like domain wall with a winding number interpolating a false vacuum and a true vacuum. Such string causes inhomogeneous decay of the false vacuum to the true vacuum via rapid expansion of the radius of the tube and hence its formation would be inconsistent with the present Universe. However, we demonstrate that there exist metastable solutions which do not expand rapidly. Furthermore, when the true vacua are degenerate, the structure inside the tube becomes involved. As an example, we show a ''bamboo''-like solution, which suggests a possibility observing an information of true vacua from outside of the tube through the shape and the tension of the tube.
Disruption of Cosmic String Wakes by Gaussian Fluctuations
Brandenberger, Robert H; da Cunha, Disrael C N
2015-01-01
We study the stability of cosmic string wakes against the disruption by the dominant Gaussian fluctuations which are present in cosmological models. We find that for a string tension given by $G \\mu = 10^{-7}$ wakes remain locally stable until a redshift of $z = 6$, and for a value of $G \\mu = 10^{-14}$ they are stable beyond a redshift of $z = 20$. We study a global stability criterion which shows that wakes created by strings at times after $t_{eq}$ are identifiable up to the present time, independent of the value of $G \\mu$. Taking into account our criteria it is possible to develop strategies to search for the distinctive position space signals in cosmological maps which are induced by wakes.
Cosmic R-string, R-tube and vacuum instability
We show that a cosmic string associated with spontaneous U(1) R symmetry breaking gives a constraint for supersymmetric model building. In some models, the string can be viewed as a tube-like domain wall with a winding number interpolating a false vacuum and a true vacuum. Such string causes inhomogeneous decay of the false vacuum to the true vacuum via rapid expansion of the radius of the tube and hence its formation would be inconsistent with the present Universe. However, we demonstrate that there exist metastable solutions which do not expand rapidly. Furthermore, when the true vacua are degenerate, the structure inside the tube becomes involved. As an example, we show a ''bamboo''-like solution, which suggests a possibility observing an information of true vacua from outside of the tube through the shape and the tension of the tube.
Cosmic R-string, R-tube and vacuum instability
Eto, Minoru; Hamada, Yuta; Kamada, Kohei; Kobayashi, Tatsuo; Ohashi, Keisuke; Ookouchi, Yutaka
2013-03-01
We show that a cosmic string associated with spontaneous U(1) R symmetry breaking gives a constraint for supersymmetric model building. In some models, the string can be viewed as a tube-like domain wall with a winding number interpolating a false vacuum and a true vacuum. Such string causes inhomogeneous decay of the false vacuum to the true vacuum via rapid expansion of the radius of the tube and hence its formation would be inconsistent with the present Universe. However, we demonstrate that there exist metastable solutions which do not expand rapidly. Furthermore, when the true vacua are degenerate, the structure inside the tube becomes involved. As an example, we show a "bamboo"-like solution, which suggests a possibility observing an information of true vacua from outside of the tube through the shape and the tension of the tube.
Cosmic R-string, R-tube and Vacuum Instability
Eto, Minoru; Kamada, Kohei; Kobayashi, Tatsuo; Ohashi, Keisuke; Ookouchi, Yutaka
2012-01-01
We show that a cosmic string associated with spontaneous $U(1)_R$ symmetry breaking gives a constraint for supersymmetric model building. In some models, the string can be viewed as a tube-like domain wall with a winding number interpolating a false vacuum and a true vacuum. Such string causes inhomogeneous decay of the false vacuum to the true vacuum via rapid expansion of the radius of the tube and hence its formation would be inconsistent with the present Universe. However, we demonstrate that there exist metastable solutions which do not expand rapidly. Furthermore, when the true vacua are degenerate, the structure inside the tube becomes involved. As an example, we show a "bamboo"-like solution, which suggests a possibility observing an information of true vacua from outside of the tube through the shape and the tension of the tube.
General relativistic model of a spinning cosmic string
The authors investigate the infinite, straight, rotating cosmic string within the framework of Einstein's General Theory of Relativity. A class of exact interior solutions is derived for which the source satisfies the weak and the dominant energy conditions. The interior metric is matched smoothly to the exterior vacuum. A subclass of these solutions has closed time-like curves both in the interior and the exterior geometry. 39 refs., 2 figs
The COBE cosmic 3 K anisotropy experiment: A gravity wave and cosmic string probe
Bennett, Charles L.; Smoot, George F.
1989-01-01
Among the experiments to be carried into orbit next year, by the COBE satellite, are differential microwave radiometers. They will make sensitive all-sky maps of the temperature of the cosmic microwave background radiation at three frequencies, giving dipole, quadrupole, and higher order multipole measurements of the background radiation. The experiment will either detect, or place significant constraints on, the existence of cosmic strings and long wavelength gravity waves.
Search for Cosmic Strings in the GOODS Survey
Christiansen, J L; James, K A; Goldman, J; Maruyama, D; Smoot, G F
2008-01-01
We search Hubble Space Telescope Treasury Program images collected as part of the Great Observatories Origins Deep Survey for pairs of galaxies consistent with the gravitational lensing signature of a cosmic string. Our technique includes estimates of the efficiency for finding the lensed galaxy pair. In the North (South) survey field we find no evidence out to a redshift of greater than 1 (0.5) for cosmic strings to a mass per unit length limit of $G\\mu<3.0x10^{-7}$ at 95% CL. In the combined 314.9 arcmin$^2$ of the North and South survey fields this corresponds to a limit on $\\Omega_{strings}<0.0056$. Our global limit on $G\\mu$ is more than an order of magnitude lower than searches for individual strings in CMB data. Our limit is higher than other CMB and gravitational wave searches, however we note that it is less model dependent than these other searches.
Constraints on cosmic (super)strings from the LIGO-Virgo gravitational-wave detectors
Aasi, J; Abbott, B P; Abbott, R; Abbott, T; Abernathy, M R; Accadia, T; Acernese, F; Adams, C; Adams, T; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ajith, P; Allen, B; Allocca, A; Ceron, E Amador; Amariutei, D; Anderson, R A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J; Ast, S; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Austin, L; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barker, D; Barnum, S H; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J; Bauchrowitz, J; Bauer, Th S; Bebronne, M; Behnke, B; Bejger, M; Beker, M G; Bell, A S; Bell, C; Belopolski, I; Bergmann, G; Berliner, J M; Bersanetti, D; Bertolini, A; Bessis, D; Betzwieser, J; Beyersdorf, P T; Bhadbhade, T; Bilenko, I A; Billingsley, G; Birch, J; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Blom, M; Bock, O; Bodiya, T P; Boer, M; Bogan, C; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, S; Bosi, L; Bowers, J; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brannen, C A; Brau, J E; Breyer, J; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Britzger, M; Brooks, A F; Brown, D A; Brown, D D; Brückner, F; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Bustillo, J Calderón; Calloni, E; Camp, J B; Campsie, P; Cannon, K C; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Castiglia, A; Caudill, S; Cavagliá, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Chow, J; Christensen, N; Chu, Q; Chua, S S Y; Chung, S; Ciani, G; Clara, F; Clark, D E; Clark, J A; Cleva, F; Coccia, E; Cohadon, P -F; Colla, A; Colombini, M; Constancio, M; Conte, A; Conte, R; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corsi, A; Costa, C A; Coughlin, M W; Coulon, J -P; Countryman, S; Couvares, P; Coward, D M; Cowart, M; Coyne, D C; Craig, K; Creighton, J D E; Creighton, T D; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dahl, K; Canton, T Dal; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daudert, B; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; Dayanga, T; De Rosa, R; Debreczeni, G; Degallaix, J; Del Pozzo, W; Deleeuw, E; Deléglise, S; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R; DeSalvo, R; Dhurandhar, S; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Díaz, M; Dietz, A; Dmitry, K; Donovan, F; Dooley, K L; Doravari, S; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Dumas, J -C; Dwyer, S; Eberle, T; Edwards, M; Effler, A; Ehrens, P; Eichholz, J; Eikenberry, S S; Endröczi, G; Essick, R; Etzel, T; Evans, K; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fang, Q; Farinon, S; Farr, B; Farr, W; Favata, M; Fazi, D; Fehrmann, H; Feldbaum, D; Ferrante, I; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R; Flaminio, R; Foley, E; Foley, S; Forsi, E; Fotopoulos, N; Fournier, J -D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fujimoto, M -K; Fulda, P; Fyffe, M; Gair, J; Gammaitoni, L; Garcia, J; Garufi, F; Gehrels, N; Gemme, G; Genin, E; Gennai, A; Gergely, L; Ghosh, S; Giaime, J A; Giampanis, S; Giardina, K D; Giazotto, A; Gil-Casanova, S; Gill, C; Gleason, J; Goetz, E; Goetz, R; Gondan, L; González, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goßler, S; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Griffo, C; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C; Gushwa, K E; Gustafson, E K; Gustafson, R; Hall, B; Hall, E; Hammer, D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hartman, M T; Haughian, K; Hayama, K; Heefner, J; Heidmann, A; Heintze, M; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Holtrop, M; Hong, T; Hooper, S; Horrom, T; Hosken, D J; Hough, J; Howell, E J; Hu, Y; Hua, Z; Huang, V; Huerta, E A; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Iafrate, J; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Iyer, B R; Izumi, K; Jacobson, M; James, E; Jang, H; Jang, Y J; Jaranowski, P; Jiménez-Forteza, F; Johnson, W W; Jones, D; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kasprzack, M; Kasturi, R; Katsavounidis, E; Katzman, W; Kaufer, H; Kaufman, K; Kawabe, K; Kawamura, S; Kawazoe, F; Kéfélian, F; Keitel, D; Kelley, D B; Kells, W; Keppel, D G; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, B K; Kim, C; Kim, K; Kim, N; Kim, W; Kim, Y -M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Koehlenbeck, S; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D; Kremin, A; Kringel, V; Królak, A; Kucharczyk, C; Kudla, S; Kuehn, G; Kumar, A; Kumar, P; Kumar, R; Kurdyumov, R; Kwee, P; Landry, M; Lantz, B; Larson, S; Lasky, P D; Lawrie, C; Lazzarini, A; Roux, A Le; Leaci, P; Lebigot, E O; Lee, C -H; Lee, H K; Lee, H M; Lee, J; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levine, B; Lewis, J B; Lhuillier, V; Li, T G F; Lin, A C; Littenberg, T B; Litvine, V; Liu, F; Liu, H; Liu, Y; Liu, Z; Lloyd, D; Lockerbie, N A; Lockett, V; Lodhia, D; Loew, K; Logue, J; Lombardi, A L; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J; Luan, J; Lubinski, M J; Lück, H; Lundgren, A P; Macarthur, J; Macdonald, E; Machenschalk, B; MacInnis, M; Macleod, D M; Magana-Sandoval, F; Mageswaran, M; Mailand, K; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Manca, G M; Mandel, I; Mandic, V; Mangano, V; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Martinelli, L; Martynov, D; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; May, G; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McIver, J; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Meier, T; Melatos, A; Mendell, G; Mercer, R A; Meshkov, S; Messenger, C; Meyer, M S; Miao, H; Michel, C; Mikhailov, E E; Milano, L; Miller, J; Minenkov, Y; Mingarelli, C M F; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moe, B; Mohan, M; Mohapatra, S R P; Mokler, F; Moraru, D; Moreno, G; Morgado, N; Mori, T; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Mukherjee, S; Mullavey, A; Munch, J; Murphy, D; Murray, P G; Mytidis, A; Nagy, M F; Kumar, D Nanda; Nardecchia, I; Nash, T; Naticchioni, L; Nayak, R; Necula, V; Nelemans, G; Neri, I; Neri, M; Newton, G; Nguyen, T; Nishida, E; Nishizawa, A; Nitz, A; Nocera, F; Nolting, D; Normandin, M E; Nuttall, L K; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oppermann, P; O'Reilly, B; Larcher, W Ortega; O'Shaughnessy, R; Osthelder, C; Ott, C D; Ottaway, D J; Ottens, R S; Ou, J; Overmier, H; Owen, B J; Padilla, C; Pai, A; Palomba, C; Pan, Y; Pankow, C; Paoletti, F; Paoletti, R; Papa, M A; Paris, H; Pasqualetti, A; Passaquieti, R; Passuello, D; Pedraza, M; Peiris, P; Penn, S; Perreca, A; Phelps, M; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pinard, L; Pindor, B; Pinto, I M; Pitkin, M; Poeld, J; Poggiani, R; Poole, V; Poux, C; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Quetschke, V; Quintero, E; Quitzow-James, R; Raab, F J; Rabeling, D S; Rácz, I; Radkins, H; Raffai, P; Raja, S; Rajalakshmi, G; Rakhmanov, M; Ramet, C; Rapagnani, P; Raymond, V; Re, V; Reed, C M; Reed, T; Regimbau, T; Reid, S; Reitze, D H; Ricci, F; Riesen, R; Riles, K; Robertson, N A; Robinet, F; Rocchi, A; Roddy, S; Rodriguez, C; Rodruck, M; Roever, C; Rolland, L; Rollins, J G; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Salemi, F; Sammut, L; Sandberg, V; Sanders, J; Sannibale, V; Santiago-Prieto, I; Saracco, E; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Savage, R; Schilling, R; Schnabel, R; Schofield, R M S; Schreiber, E; Schuette, D; Schulz, B; Schutz, B F; Schwinberg, P; Scott, J; Scott, S M; Seifert, F; Sellers, D; Sengupta, A S; Sentenac, D; Sergeev, A; Shaddock, D; Shah, S; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Shoemaker, D H; Sidery, T L; Siellez, K; Siemens, X; Sigg, D; Simakov, D; Singer, A; Singer, L; Sintes, A M; Skelton, G R; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Smith, R J E; Smith-Lefebvre, N D; Soden, K; Son, E J; Sorazu, B; Souradeep, T; Sperandio, L; Staley, A; Steinert, E; Steinlechner, J; Steinlechner, S; Steplewski, S; Stevens, D; Stochino, A; Stone, R; Strain, K A; Straniero, N; Strigin, S; Stroeer, A S; Sturani, R; Stuver, A L; Summerscales, T Z; Susmithan, S; Sutton, P J; Swinkels, B; Szeifert, G; Tacca, M; Talukder, D; Tang, L; Tanner, D B; Tarabrin, S P; Taylor, R; ter Braack, A P M; Thirugnanasambandam, M P; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, V; Tokmakov, K V; Tomlinson, C; Toncelli, A; Tonelli, M; Torre, O; Torres, C V; Torrie, C I; Travasso, F; Traylor, G; Tse, M; Ugolini, D; Unnikrishnan, C S; Vahlbruch, H; Vajente, G; Vallisneri, M; Brand, J F J van den; Broeck, C Van Den; van der Putten, S; van der Sluys, M V; van Heijningen, J; van Veggel, A A; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Verma, S; Vetrano, F; Viceré, A; Vincent-Finley, R; Vinet, J -Y; Vitale, S; Vlcek, B; Vo, T; Vocca, H; Vorvick, C; Vousden, W D; Vrinceanu, D; Vyachanin, S P; Wade, A; Wade, L; Wade, M; Waldman, S J; Walker, M; Wallace, L; Wan, Y; Wang, J; Wang, M; Wang, X; Wanner, A; Ward, R L; Was, M; Weaver, B; Wei, L -W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Wibowo, S; Wiesner, K; Wilkinson, C; Williams, L; Williams, R; Williams, T; Willis, J L; Willke, B; Wimmer, M; Winkelmann, L; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Yablon, J; Yakushin, I; Yamamoto, H; Yancey, C C; Yang, H; Yeaton-Massey, D; Yoshida, S; Yum, H; Yvert, M; Zadrożny, A; Zanolin, M; Zendri, J -P; Zhang, F; Zhang, L; Zhao, C; Zhu, H; Zhu, X J; Zotov, N; Zucker, M E; Zweizig, J
2013-01-01
Cosmic string cusps produce powerful bursts of gravitational waves (GWs). These bursts provide the most promising observational signature of cosmic strings. In this letter we report stringent limits on cosmic string models obtained from the analysis of 625 days of observation with the LIGO and Virgo GW detectors. A significant fraction of the cosmic string parameter space is ruled out. This result complements and improves existing limits from searches for a stochastic background of GWs using cosmic microwave background and pulsar timing data. In particular, if the size of loops is given by gravitational back-reaction, we place upper limits on the string tension $G\\mu$ below $10^{-8}$ in some regions of the cosmic string parameter space.
Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors
Aasi, J.; Abadie, J.; Abbott, B.P.; Abbott, R.; Abbott, T.; Abernathy, M.R.; Accadia, T.; Adams, C.; Adams, T.; Adhikari, R.X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O.D.; Ajith, P.; Allen, B.; Allocca, A.; Ceron, E.A.; Amariutei, D.; Anderson, S.B.; Blackburn, L.; Camp, J.B.; Gehrels, N.; Graff, P.B.; Kanner, J.B.
2014-01-01
Cosmic strings can give rise to a large variety of interesting astrophysical phenomena. Among them, powerful bursts of gravitational waves (GWs) produced by cusps are a promising observational signature. In this Letter we present a search for GWs from cosmic string cusps in data collected by the LIGO and Virgo gravitational wave detectors between 2005 and 2010, with over 625 days of live time. We find no evidence of GW signals from cosmic strings. From this result, we derive new constraints on cosmic string parameters, which complement and improve existing limits from previous searches for a stochastic background of GWs from cosmic microwave background measurements and pulsar timing data. In particular, if the size of loops is given by the gravitational backreaction scale, we place upper limits on the string tension (Newton's Constant x mass per unit length) below 10(exp -8) in some regions of the cosmic string parameter space.
Constraints on cosmic strings from the LIGO-Virgo gravitational-wave detectors.
Aasi, J; Abadie, J; Abbott, B P; Abbott, R; Abbott, T; Abernathy, M R; Accadia, T; Acernese, F; Adams, C; Adams, T; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ajith, P; Allen, B; Allocca, A; Amador Ceron, E; Amariutei, D; Anderson, R A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J; Ast, S; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Austin, L; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barker, D; Barnum, S H; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J; Bauchrowitz, J; Bauer, Th S; Bebronne, M; Behnke, B; Bejger, M; Beker, M G; Bell, A S; Bell, C; Belopolski, I; Bergmann, G; Berliner, J M; Bersanetti, D; Bertolini, A; Bessis, D; Betzwieser, J; Beyersdorf, P T; Bhadbhade, T; Bilenko, I A; Billingsley, G; Birch, J; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Blom, M; Bock, O; Bodiya, T P; Boer, M; Bogan, C; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, S; Bosi, L; Bowers, J; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brannen, C A; Brau, J E; Breyer, J; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Britzger, M; Brooks, A F; Brown, D A; Brown, D D; Brückner, F; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Calderón Bustillo, J; Calloni, E; Camp, J B; Campsie, P; Cannon, K C; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Castiglia, A; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Chow, J; Christensen, N; Chu, Q; Chua, S S Y; Chung, S; Ciani, G; Clara, F; Clark, D E; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Colombini, M; Constancio, M; Conte, A; Conte, R; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corsi, A; Costa, C A; Coughlin, M W; Coulon, J-P; Countryman, S; Couvares, P; Coward, D M; Cowart, M; Coyne, D C; Craig, K; Creighton, J D E; Creighton, T D; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dahl, K; Dal Canton, T; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daudert, B; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; Dayanga, T; De Rosa, R; Debreczeni, G; Degallaix, J; Del Pozzo, W; Deleeuw, E; Deléglise, S; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R; DeSalvo, R; Dhurandhar, S; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Díaz, M; Dietz, A; Dmitry, K; Donovan, F; Dooley, K L; Doravari, S; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Dumas, J-C; Dwyer, S; Eberle, T; Edwards, M; Effler, A; Ehrens, P; Eichholz, J; Eikenberry, S S; Endrőczi, G; Essick, R; Etzel, T; Evans, K; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fang, Q; Farinon, S; Farr, B; Farr, W; Favata, M; Fazi, D; Fehrmann, H; Feldbaum, D; Ferrante, I; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R; Flaminio, R; Foley, E; Foley, S; Forsi, E; Fotopoulos, N; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fujimoto, M-K; Fulda, P; Fyffe, M; Gair, J; Gammaitoni, L; Garcia, J; Garufi, F; Gehrels, N; Gemme, G; Genin, E; Gennai, A; Gergely, L; Ghosh, S; Giaime, J A; Giampanis, S; Giardina, K D; Giazotto, A; Gil-Casanova, S; Gill, C; Gleason, J; Goetz, E; Goetz, R; Gondan, L; González, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goßler, S; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Griffo, C; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C; Gushwa, K E; Gustafson, E K; Gustafson, R; Hall, B; Hall, E; Hammer, D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hartman, M T; Haughian, K; Hayama, K; Heefner, J; Heidmann, A; Heintze, M; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Holtrop, M; Hong, T; Hooper, S; Horrom, T; Hosken, D J; Hough, J; Howell, E J; Hu, Y; Hua, Z; Huang, V; Huerta, E A; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Iafrate, J; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Iyer, B R; Izumi, K; Jacobson, M; James, E; Jang, H; Jang, Y J; Jaranowski, P; Jiménez-Forteza, F; Johnson, W W; Jones, D; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kasprzack, M; Kasturi, R; Katsavounidis, E; Katzman, W; Kaufer, H; Kaufman, K; Kawabe, K; Kawamura, S; Kawazoe, F; Kéfélian, F; Keitel, D; Kelley, D B; Kells, W; Keppel, D G; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, B K; Kim, C; Kim, K; Kim, N; Kim, W; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Koehlenbeck, S; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D; Kremin, A; Kringel, V; Królak, A; Kucharczyk, C; Kudla, S; Kuehn, G; Kumar, A; Kumar, P; Kumar, R; Kurdyumov, R; Kwee, P; Landry, M; Lantz, B; Larson, S; Lasky, P D; Lawrie, C; Lazzarini, A; Le Roux, A; Leaci, P; Lebigot, E O; Lee, C-H; Lee, H K; Lee, H M; Lee, J; Lee, J; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levine, B; Lewis, J B; Lhuillier, V; Li, T G F; Lin, A C; Littenberg, T B; Litvine, V; Liu, F; Liu, H; Liu, Y; Liu, Z; Lloyd, D; Lockerbie, N A; Lockett, V; Lodhia, D; Loew, K; Logue, J; Lombardi, A L; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J; Luan, J; Lubinski, M J; Lück, H; Lundgren, A P; Macarthur, J; Macdonald, E; Machenschalk, B; MacInnis, M; Macleod, D M; Magana-Sandoval, F; Mageswaran, M; Mailand, K; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Manca, G M; Mandel, I; Mandic, V; Mangano, V; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Martinelli, L; Martynov, D; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; May, G; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McIver, J; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Meier, T; Melatos, A; Mendell, G; Mercer, R A; Meshkov, S; Messenger, C; Meyer, M S; Miao, H; Michel, C; Mikhailov, E E; Milano, L; Miller, J; Minenkov, Y; Mingarelli, C M F; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moe, B; Mohan, M; Mohapatra, S R P; Mokler, F; Moraru, D; Moreno, G; Morgado, N; Mori, T; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Mukherjee, S; Mullavey, A; Munch, J; Murphy, D; Murray, P G; Mytidis, A; Nagy, M F; Nanda Kumar, D; Nardecchia, I; Nash, T; Naticchioni, L; Nayak, R; Necula, V; Nelemans, G; Neri, I; Neri, M; Newton, G; Nguyen, T; Nishida, E; Nishizawa, A; Nitz, A; Nocera, F; Nolting, D; Normandin, M E; Nuttall, L K; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oppermann, P; O'Reilly, B; Ortega Larcher, W; O'Shaughnessy, R; Osthelder, C; Ott, C D; Ottaway, D J; Ottens, R S; Ou, J; Overmier, H; Owen, B J; Padilla, C; Pai, A; Palomba, C; Pan, Y; Pankow, C; Paoletti, F; Paoletti, R; Papa, M A; Paris, H; Pasqualetti, A; Passaquieti, R; Passuello, D; Pedraza, M; Peiris, P; Penn, S; Perreca, A; Phelps, M; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pinard, L; Pindor, B; Pinto, I M; Pitkin, M; Poeld, J; Poggiani, R; Poole, V; Poux, C; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Quetschke, V; Quintero, E; Quitzow-James, R; Raab, F J; Rabeling, D S; Rácz, I; Radkins, H; Raffai, P; Raja, S; Rajalakshmi, G; Rakhmanov, M; Ramet, C; Rapagnani, P; Raymond, V; Re, V; Reed, C M; Reed, T; Regimbau, T; Reid, S; Reitze, D H; Ricci, F; Riesen, R; Riles, K; Robertson, N A; Robinet, F; Rocchi, A; Roddy, S; Rodriguez, C; Rodruck, M; Roever, C; Rolland, L; Rollins, J G; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Salemi, F; Sammut, L; Sandberg, V; Sanders, J; Sannibale, V; Santiago-Prieto, I; Saracco, E; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Savage, R; Schilling, R; Schnabel, R; Schofield, R M S; Schreiber, E; Schuette, D; Schulz, B; Schutz, B F; Schwinberg, P; Scott, J; Scott, S M; Seifert, F; Sellers, D; Sengupta, A S; Sentenac, D; Sergeev, A; Shaddock, D; Shah, S; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Shoemaker, D H; Sidery, T L; Siellez, K; Siemens, X; Sigg, D; Simakov, D; Singer, A; Singer, L; Sintes, A M; Skelton, G R; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Smith, R J E; Smith-Lefebvre, N D; Soden, K; Son, E J; Sorazu, B; Souradeep, T; Sperandio, L; Staley, A; Steinert, E; Steinlechner, J; Steinlechner, S; Steplewski, S; Stevens, D; Stochino, A; Stone, R; Strain, K A; Straniero, N; Strigin, S; Stroeer, A S; Sturani, R; Stuver, A L; Summerscales, T Z; Susmithan, S; Sutton, P J; Swinkels, B; Szeifert, G; Tacca, M; Talukder, D; Tang, L; Tanner, D B; Tarabrin, S P; Taylor, R; ter Braack, A P M; Thirugnanasambandam, M P; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, V; Tokmakov, K V; Tomlinson, C; Toncelli, A; Tonelli, M; Torre, O; Torres, C V; Torrie, C I; Travasso, F; Traylor, G; Tse, M; Ugolini, D; Unnikrishnan, C S; Vahlbruch, H; Vajente, G; Vallisneri, M; van den Brand, J F J; Van Den Broeck, C; van der Putten, S; van der Sluys, M V; van Heijningen, J; van Veggel, A A; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Verma, S; Vetrano, F; Viceré, A; Vincent-Finley, R; Vinet, J-Y; Vitale, S; Vlcek, B; Vo, T; Vocca, H; Vorvick, C; Vousden, W D; Vrinceanu, D; Vyachanin, S P; Wade, A; Wade, L; Wade, M; Waldman, S J; Walker, M; Wallace, L; Wan, Y; Wang, J; Wang, M; Wang, X; Wanner, A; Ward, R L; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Wibowo, S; Wiesner, K; Wilkinson, C; Williams, L; Williams, R; Williams, T; Willis, J L; Willke, B; Wimmer, M; Winkelmann, L; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Yablon, J; Yakushin, I; Yamamoto, H; Yancey, C C; Yang, H; Yeaton-Massey, D; Yoshida, S; Yum, H; Yvert, M; Zadrożny, A; Zanolin, M; Zendri, J-P; Zhang, F; Zhang, L; Zhao, C; Zhu, H; Zhu, X J; Zotov, N; Zucker, M E; Zweizig, J
2014-04-01
Cosmic strings can give rise to a large variety of interesting astrophysical phenomena. Among them, powerful bursts of gravitational waves (GWs) produced by cusps are a promising observational signature. In this Letter we present a search for GWs from cosmic string cusps in data collected by the LIGO and Virgo gravitational wave detectors between 2005 and 2010, with over 625 days of live time. We find no evidence of GW signals from cosmic strings. From this result, we derive new constraints on cosmic string parameters, which complement and improve existing limits from previous searches for a stochastic background of GWs from cosmic microwave background measurements and pulsar timing data. In particular, if the size of loops is given by the gravitational backreaction scale, we place upper limits on the string tension Gμ below 10(-8) in some regions of the cosmic string parameter space. PMID:24745400
Scaling and small-scale structure in cosmic string networks
We examine the scaling properties of an evolving network of strings in Minkowski spacetime and study the evolution of length scales in terms of a three-scale model proposed by Austin, Copeland, and Kibble (ACK). We find good qualitative and some quantitative agreement between the model and our simulations. We also investigate small-scale structure by altering the minimum allowed size for loop production Ec. Certain quantities depend significantly on this parameter: for example, the scaling density can vary by a factor of 2 or more with increasing Ec. Small-scale structure as defined by ACK disappears if no restrictions are placed on loop production, and the fractal dimension of the string changes smoothly from 2 to 1 as the resolution scale is decreased. Loops are nearly all produced at the lattice cutoff. We suggest that the lattice cutoff should be interpreted as corresponding to the string width, and that in a real network loops are actually produced with this size. This leads to a radically different string scenario, with particle production rather than gravitational radiation being the dominant mode of energy dissipation. At the very least, a better understanding of the discretization effects in all simulations of cosmic strings is called for. copyright 1997 The American Physical Society
Cosmic Strings in the Abelian Higgs Model with Conformal Coupling to Gravity
Verbin, Y.
1998-01-01
Cosmic string solutions of the abelian Higgs model with conformal coupling to gravity are shown to exist. The main characteristics of the solutions are presented and the differences with respect to the minimally coupled case are studied. An important difference is the absence of Bogomolnyi cosmic string solutions for conformal coupling. Several new features of the abelian Higgs cosmic strings of both types are discussed. The most interesting is perhaps a relation between the angular deficit a...
Impact of radiative decay on cosmic string dynamics at small scales
Stuckey, Stephanie
2012-01-01
Cosmic strings are topological defects appearing as extended solutions in many high energy physics scenarios. Observation of signatures expected due to the presence of cosmic string networks could provide critical evidence in distinguishing and constraining fundamental cosmological and particle physics theories. Large scale evolution of cosmic string is well understood but the dynamics influenced by small scale structure remains unclear. Radiation back-reaction is expected t...
Energy-momentum correlations for Abelian Higgs cosmic strings
Daverio, David; Hindmarsh, Mark; Kunz, Martin; Lizarraga, Joanes; Urrestilla, Jon
2016-04-01
We report on the energy-momentum correlators obtained with recent numerical simulations of the Abelian Higgs model, essential for the computation of cosmic microwave background and matter perturbations of cosmic strings. Due to significant improvements both in raw computing power and in our parallel simulation framework, the dynamical range of the simulations has increased fourfold both in space and time, and for the first time we are able to simulate strings with a constant physical width in both the radiation and matter eras. The new simulations improve the accuracy of the measurements of the correlation functions at the horizon scale and confirm the shape around the peak. The normalization is slightly higher in the high wave-number tails, due to a small increase in the string density. We study, for the first time, the behavior of the correlators across cosmological transitions and discover that the correlation functions evolve adiabatically; i.e., the network adapts quickly to changes in the expansion rate. We propose a new method for constructing source functions for Einstein-Boltzmann integrators, comparing it with two other methods previously used. The new method is more consistent, easier to implement, and significantly more accurate.
Energy-momentum correlations for Abelian Higgs cosmic strings
Daverio, David; Kunz, Martin; Lizarraga, Joanes; Urrestilla, Jon
2015-01-01
We report on the energy-momentum correlators obtained with recent numerical simulations of the Abelian Higgs model, essential for the computation of cosmic microwave background and matter perturbations of cosmic strings. Due to significant improvements both in raw computing power and in our parallel simulation framework, the dynamical range of the simulations has increased four-fold both in space and time, and for the first time we are able to simulate strings with a constant physical width in both the radiation and matter eras. The new simulations improve the accuracy of the measurements of the correlation functions at the horizon scale and confirm the shape around the peak. The normalization is slightly higher in the high wave-number tails, due to a small increase in the string density. We study for the first time the behaviour of the correlators across cosmological transitions, and discover that the correlation functions evolve adiabatically, ie the network adapts quickly to changes in the expansion rate. ...
CMB polarization power spectra contributions from a network of cosmic strings
We present the first calculation of the possible (local) cosmic string contribution to the cosmic microwave background polarization spectra from simulations of a string network (rather than a stochastic collection of unconnected string segments). We use field-theory simulations of the Abelian Higgs model to represent local U(1) strings, including their radiative decay and microphysics. Relative to previous estimates, our calculations show a shift in power to larger angular scales, making the chance of a future cosmic string detection from the B-mode polarization slightly greater. We explore a future ground-based polarization detector, taking the CLOVER project as our example. In the null hypothesis (that cosmic strings make a zero contribution) we find that CLOVER should limit the string tension μ to Gμ-6 (where G is the gravitational constant), above which it is likely that a detection would be possible
Abelian Higgs Cosmic Strings: Small Scale Structure and Loops
Hindmarsh, Mark; Bevis, Neil
2008-01-01
Classical lattice simulations of the Abelian Higgs model are used to investigate small scale structure and loop distributions in cosmic string networks. Use of the field theory ensures that the small-scale physics is captured correctly. The results confirm analytic predictions of Polchinski & Rocha [1] for the two-point correlation function of the string tangent vector, with a power law from length scales of order the string core width up to horizon scale with evidence to suggest that the small scale structure builds up from small scales. An analysis of the size distribution of string loops gives a very low number density, of order 1 per horizon volume, in contrast with Nambu-Goto simulations. Further, our loop distribution function does not support the detailed analytic predictions for loop production derived by Dubath et al. [2]. Better agreement to our data is found with a model based on loop fragmentation [3], coupled with a constant rate of energy loss into massive radiation. Our results show a stron...
Negative energy in string theory and cosmic censorship violation
We find asymptotically anti-de Sitter solutions in N=8 supergravity which have a negative total energy. This is possible since the boundary conditions required for the positive energy theorem are stronger than those required for a finite mass (and allowed by string theory). But the stability of the anti-de Sitter vacuum is still ensured by the positivity of a modified energy, which includes an extra surface term. Some of the negative energy solutions describe the classical evolution of nonsingular initial data to naked singularities. Since there is an open set of such solutions, cosmic censorship is violated generically in supergravity. Using the dual field theory description, we argue that these naked singularities will be resolved in the full string theory
Gravitational back reaction on piecewise linear cosmic string loops
Wachter, Jeremy M
2016-01-01
We calculate the metric and affine connection due to a piecewise linear cosmic string loop, and the effect of gravitational back reaction for the Garfinkle-Vachaspati loop with four straight segments. As expected, back reaction reduces the size of the loop, in accord with the energy going into gravitational waves. The "square" loop whose generators lie at right angles evaporates without changing shape, but in all other cases, the kinks become less sharp and segments between kinks become curved. If the loop is close to the square case, the loop will evaporate before its kinks are significantly changed; if it is far from square, the opening out of the kinks is much faster than evaporation of the loop. In more realistic loops, the curvature of the straight segments due to gravitational back reaction may lead to cusps which did not exist in the original shape with the bending of the string concentrated at kinks.
Repulsive Casimir-Polder forces from cosmic strings
Saharian, A A
2011-01-01
We investigate the Casimir-Polder force acting on a polarizable microparticle in the geometry of a straight cosmic string. In order to develop this analysis we evaluate the electromagnetic field Green tensor on the imaginary frequency axis. The expression for the Casimir-Polder force is derived in the general case of anisotropic polarizability. In dependence of the eigenvalues for the polarizability tensor and of the orientation of its principal axes, the Casimir-Polder force can be either repulsive or attractive. Moreover, there are situations where the force changes the sign with separation. We show that for an isotropic polarizability tensor the force is always repulsive. At large separations between the microparticle and the string, the force varies inversely as the fifth power of the distance. In the non-retarded regime, corresponding to separations smaller than the relevant transition wavelengths, the force decays as the inverse fourth power of the distance. In the case of anisotropic polarizability, th...
Radiative non-Abelian cosmic strings with negative cosmological constant
We investigated the SU(2) Einstein-Yang-Mills system with a cosmological constant on a time-dependent non-diagonal cylindrical symmetric spacetime. Only for suitable negative Λ and specific initial values, we find numerically regular wave-like solutions dressed with both electric and magnetic charges. The cosmic string feature is maintained by the finite angle deficit the solutions possess. In general the solution will develop a cosmological horizon; however, it resolves for increasing negative values of the cosmological constant and increasing time. Further, the features of the dyon depend on the angular momentum flux
Is it Really Naked? On Cosmic Censorship in String Theory
Frolov, A
2004-09-30
We investigate the possibility of cosmic censorship violation in string theory using a characteristic double-null code, which penetrates horizons and is capable of resolving the spacetime all the way to the singularity. We perform high-resolution numerical simulations of the evolution of negative mass initial scalar field profiles, which were argued to provide a counter example to cosmic censorship conjecture for AdS-asymptotic spacetimes in five-dimensional supergravity. In no instances formation of naked singularity is seen. Instead, numerical evidence indicates that black holes form in the collapse. Our results are consistent with earlier numerical studies, and explicitly show where the ''no black hole'' argument breaks.
Implications of fast radio bursts for superconducting cosmic strings
Highly beamed, short-duration electromagnetic bursts could be produced by superconducting cosmic string (SCS) loops oscillating in cosmic magnetic fields. We demonstrated that the basic characteristics of SCS bursts such as the electromagnetic frequency and the energy release could be consistently exhibited in the recently discovered fast radio bursts (FRBs). Moreover, it is first showed that the redshift distribution of the FRBs can also be well accounted for by the SCS burst model. Such agreements between the FRBs and SCS bursts suggest that the FRBs could originate from SCS bursts and thus they could provide an effective probe to study SCSs. The obtained values of model parameters indicate that the loops generating the FRBs have a small length scale and they are mostly formed in the radiation-dominated cosmological epoch
On Bianchi-I cosmic strings coupled with Maxwell ﬁelds in bimetric relativity
V Mahurpawar; S D Deo
2003-10-01
Axially symmetric Bianchi-I model is studied with source cosmic cloud strings coupled with electromagnetic ﬁeld in Rosen’s bimetric theory of relativity and observed that there is no contribution from cosmic strings and Maxwell ﬁelds in this theory.
Sini, R; Kuriakose, V C
2008-01-01
Dirac equation for a general black hole metric having a cosmic string in the back ground is derived. We evaluate quasi normal mode frequencies for Schwarzschild, RN extremal, SdS and near extremal SdS black hole space times with cosmic string perturbed by a massless Dirac field, using WKB approximation.
Cosmic Strings as the Source of Small-Scale Microwave Background Anisotropy
Pogosian, Levon; Wasserman, Ira; Wyman, Mark
2008-01-01
Cosmic string networks generate cosmological perturbations actively throughout the history of the universe. Thus, the string sourced anisotropy of the cosmic microwave background is not affected by Silk damping as much as the anisotropy seeded by inflation. The spectrum of perturbations generated by strings does not match the observed CMB spectrum on large angular scales (l2000) will dominate over that created by the primary inflationary perturbations. This range of angular scales in the CMB is presently being measured by a number of experiments; their results will test this prediction of cosmic string networks soon.
Detecting cosmic string passage through the Earth by consequent global earthquake
Motohashi, Hayato
2013-01-01
Effects invoked by the passage of the cosmic string through the Earth are investigated. The cosmic string induces global oscillations of the Earth whose amplitude and acceleration both linearly depend on the string line density. For the line density maximally allowed by the cosmic observations, the oscillations are perceivable even to human beings and may cause serious damages to the environment. Use of the sophisticated accelerograph enables us to detect the string of a line density down to ten orders of magnitude smaller than the cosmologically relevant value.
Closed timelike curves produced by pairs of moving cosmic strings - Exact solutions
Gott, J. Richard, III
1991-01-01
Exact solutions of Einstein's field equations are presented for the general case of two moving straight cosmic strings that do not intersect. The solutions for parallel cosmic strings moving in opposite directions show closed timelike curves (CTCs) that circle the two strings as they pass, allowing observers to visit their own past. Similar results occur for nonparallel strings, and for masses in (2+1)-dimensional spacetime. For finite string loops the possibility that black-hole formation may prevent the formation of CTCs is discussed.
Circular Loop Equation of a Cosmic String in Gauss–Bonnet–de Sitter Spacetimes
We perform the analysis of evolution of cosmic string loops in the background of Gauss–Bonnet–de Sitter. The equation of motion of cosmic string loops in this spacetime is derived. Having solved the equation numerically we investigate the dependence of the loop evolution on the values of α, related to the Gauss–Bonnet coupling. In the Gauss–Bonnet–de Sitter spacetimes with different dimensionality there exists a special parameter αm. In the environment with α > αm, all the cosmic string loops will collapse to form black holes. Within the region 0 m, the stronger Gauss–Bonnet effect will lead more cosmic string loops, including smaller ones, to form black holes. The larger the value of α is, the smaller the special values that exist, and only the cosmic string loops with initial radius larger than the special values can expand and evolve instead of becoming black holes
Induced vacuum current and magnetic field in the background of a cosmic string
Vacuum polarization effects in the cosmic string background are considered. We find that a current is induced in the vacuum of the quantized massive scalar field and that the current circulates around the string which is generalized to a (d - 2)-brane in locally flat (d + 1)-dimensional spacetime. As a consequence of the Maxwell equation, a magnetic field strength is also induced in the vacuum and is directed along the cosmic string. The dependence of the current and the field strength on the string flux and tension is comprehensively analysed. Both the current and the field strength are holomorphic functions of the space dimension, decreasing exponentially with the distance from the string. In the case of d = 3 we show that, due to the vacuum polarization, the cosmic string is enclosed in a tube of the magnetic flux lines if the mass of the quantized field is less than the inverse of the transverse size of the string core.
Cosmic strings and the formation of galaxies and clusters of galaxies
The evolution of density perturbations around cosmic strings in the matter-dominated era is discussed with attention to the specific nature of string perturbations. The parameter Gμ is calculated in two completely independent ways: from the requirements that Abell clusters are formed and that the galaxy-galaxy correlation function matches the observed one. Both values are consistent, lending support to the cosmic string theory
Anisotropies in the gravitational wave background as a probe of the cosmic string network
Kuroyanagi, Sachiko; Yonemaru, Naoyuki; Kumamoto, Hiroki
2016-01-01
Pulsar timing arrays are one of the powerful tools to test the existence of cosmic strings through searching for the gravitational wave background. The amplitude of the background connects to information on cosmic strings such as the tension and string network properties. In addition, one may be able to extract more information on properties of cosmic strings by measuring anisotropies in the gravitational wave (GW) background. In this paper, we provide estimates of the level of anisotropy expected in the GW background generated by cusps on cosmic strings. We find that the anisotropy level strongly depends on the initial loop size $\\alpha$, and thus we may be able to put constraint on $\\alpha$ by measuring the anisotropy of the GW background. We also find that certain regions of the parameter space can be probed by shifting the observation frequency of GWs.
Cosmic strings as the source of small-scale microwave background anisotropy
Pogosian, Levon; Tye, S.-H. Henry; Wasserman, Ira; Wyman, Mark
2009-02-01
Cosmic string networks generate cosmological perturbations actively throughout the history of the universe. Thus, the string sourced anisotropy of the cosmic microwave background is not affected by Silk damping as much as the anisotropy seeded by inflation. The spectrum of perturbations generated by strings does not match the observed CMB spectrum on large angular scales (ell < 1000) and is bounded to contribute no more than 10% of the total power on those scales. However, when this bound is marginally saturated, the anisotropy created by cosmic strings on small angular scales ell gtrsim 2000 will dominate over that created by the primary inflationary perturbations. This range of angular scales in the CMB is presently being measured by a number of experiments; their results will test this prediction of cosmic string networks soon.
Repulsive Casimir-Polder forces from cosmic strings
We investigate the Casimir-Polder force acting on a polarizable microparticle in the geometry of a straight cosmic string. In order to develop this analysis we evaluate the electromagnetic field Green tensor on the imaginary frequency axis. The expression for the Casimir-Polder force is derived in the general case of anisotropic polarizability. In dependence on the eigenvalues for the polarizability tensor and of the orientation of its principal axes, the Casimir-Polder force can be either repulsive or attractive. Moreover, there are situations where the force changes the sign with separation. We show that for an isotropic polarizability tensor the force is always repulsive. At large separations between the microparticle and the string, the force varies inversely with the fifth power of the distance. In the non-retarded regime, corresponding to separations smaller than the relevant transition wavelengths, the force decays with the inverse fourth power of the distance. In the case of anisotropic polarizability, the dependence of the Casimir-Polder potential on the orientation of the polarizability tensor principal axes also leads to a moment of force acting on the particle. (orig.)
R., Sini; Varghese, Nijo; Kuriakose, V. C.
2008-01-01
Dirac equation for a general black hole metric having a cosmic string is derived. The quasi-normal mode frequencies for Schwarzschild, RN extremal, SdS and near extremal SdS black hole space-times with cosmic string perturbed by a massless Dirac field are obtained using WKB approximation and found that in all these cases, decay is less in black holes having cosmic string compared to black holes with out string.
A simple model for the evolution of a non-Abelian cosmic string network
Cella, G
2015-01-01
In this paper we present the results of numerical simulations intended to study the behavior of non-Abelian cosmic strings networks. In particular we are interested in discussing the variations in the asymptotic behavior of the system as we variate the number of generators for the topological defects. A simple model which should generate cosmic strings is presented and its lattice discretization is discussed. The evolution of the generated cosmic string networks is then studied for different values for the number of generators for the topological defects. Scaling solution appears to be approached in most cases and we present an argument to justify the lack of scaling for the residual cases.
The Implications of the COBE-DMR Results for Cosmic Strings
Bennett, David P.; Stebbins, Albert; Bouchet, Francois R.
1992-01-01
We compare the anisotropies in the cosmic microwave background radiation measured by the COBE experiment to the predictions of cosmic strings. We use an analytic model for the $\\Delta T/T$ power spectrum that is based on our previous numerical simulations to show that the COBE results imply a value for the string mass per unit length, $\\mu$ under the assumption that cosmic strings are the source of the measured anisotropy. We find $G\\mu = 1.5\\pm 0.5 \\times 10^{-6}$ which is consistent with th...
Evading the pulsar constraints on the cosmic string tension in supergravity inflation
Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Miyamoto, Yuhei [Tokyo Univ. (Japan). Dept. of Physics; Tokyo Univ. (JP). Research Center for the Early Universe (RESCEU); Yokoyama, Jun' ichi [Tokyo Univ. (JP). Research Center for the Early Universe (RESCEU); Tokyo Univ., Kashiwa, Chiba (JP). Inst. for the Physics and Mathematics of the Universe (IPMU)
2012-04-15
The cosmic string is a useful probe of the early Universe and may give us a clue to physics at high energy scales where any artificial particle accelerators cannot reach. Although one of the most promising tools is the cosmic microwave background, the constraint from gravitational waves is becoming so stringent that one may not hope to detect its signatures in the cosmic microwave background. In this paper, we construct a scenario that contains cosmic strings observable in the cosmic microwave background while evading the constraint imposed by the recent pulsar timing data. We argue that cosmic strings with relatively large tension are allowed by delaying the onset of the scaling regime. We also show that this scenario is naturally realized in the context of chaotic inflation in supergravity, where the phase transition is governed by the Hubble induced mass.
The Battle of the Bulge: Decay of the Thin, False Cosmic String
Lee, Bum-Hoon; MacKenzie, Richard; Paranjape, M B; Yajnik, U A; Yeom, Dong-han
2013-01-01
We consider the decay of cosmic strings that are trapped in the false vacuum in a theory of scalar electrodynamics in 3+1 dimensions. We restrict our analysis to the case of thin-walled cosmic strings which occur when large magnetic flux trapped inside the string. Thus the string looks like a tube of fixed radius, at which it is classically stable. The core of the string contains magnetic flux in the true vacuum, while outside the string, separated by a thin wall, is the false vacuum. The string decays by tunnelling to a configuration which is represented by a bulge, where the region of true vacuum within, is ostensibly enlarged. The bulge can be described as the meeting, of a kink soliton anti-soliton pair, along the length of the string. It can be described as a bulge appearing in the initial string, starting from the string of small, classically stable radius, expanding to a fat string of large, classically unstable (to expansion) radius and then returning back to the string of small radius along its lengt...
Searching for Cosmic Strings in CMB Anisotropy Maps using Wavelets and Curvelets
Hergt, Lukas; Brandenberger, Robert; Kacprzak, Tomasz; Refregier, Alexandre
2016-01-01
We use wavelet and curvelet transforms to extract signals of cosmic strings from cosmic microwave background (CMB) temperature anisotropy maps, and to study the limits on the cosmic string tension which various ongoing CMB temperature anisotropy experiments will be able to achieve. We construct sky maps with size and angular resolution corresponding to various experiments. These maps contain the signals of a scaling solution of long string segments with a given string tension $G \\mu$, the contribution of the dominant Gaussian primordial cosmological fluctuations, and pixel by pixel white noise with an amplitude corresponding to the instrumental noise of the various experiments. In the case that we include white noise, we find that the curvelets are more powerful than wavelets. For maps with Planck specification, we obtain bounds on the string tension comparable to what was obtained by the Planck collaboration. Experiments with better angular resolution such as the South Pole Telescope third generation (SPT-3G...
The bound state Aharonov-Bohm effect around a cosmic string revisited
Filgueiras, C.; Moraes, Fernando
2005-01-01
In this article we observe that the self-adjoint extension of the Hamiltonian of a particle moving around a shielded cosmic string gives rise to a gravitational analogue of the bound state Aharonov-Bohm effect.
Absorption/Scattering of Massless Dirac Wave from Black Hole Spacetimes with Cosmic String
In this paper we investigate the scattering of massless Dirac wave from several different black hole spacetimes (i.e. the Schwarzschild black hole, the RN extremal black hole, the Schwarzschild de Sitter black hole, and the extremal Schwarzschild de Sitter black hole) which are influenced by the cosmic string, respectively. All these cases show us that the total absorption cross sections oscillate around the geometric-optical limit and decrease with linear mass density μ of the cosmic string. All of the total scattering cross sections exhibit that the main scattering angle becomes narrower for the high partial frequency wave. Due to the influence of cosmic string, the glory peak becomes wider for larger values of linear mass density μ of the cosmic string. (general)
The stochastic background from cosmic (super)strings: popcorn and (Gaussian) continuous regimes
Regimbau, Tania; Giampanis, Stefanos; Siemens, Xavier; Mandic, Vuk
2011-01-01
In the era of the next generation of gravitational wave experiments a stochastic background from cusps of cosmic (super)strings is expected to be probed and, if not detected, to be significantly constrained. A popcorn-like background can be, for part of the parameter space, as pronounced as the (Gaussian) continuous contribution from unresolved sources that overlap in frequency and time. We study both contributions from unresolved cosmic string cusps over a range of frequencies relevant to gr...
The effect of extra dimensions on gravity wave bursts from cosmic string cusps
We explore the kinematical effect of having extra dimensions on the gravitational wave emission from cosmic strings. Additional dimensions both round off cusps, and reduce the probability of their formation. We recompute the gravitational wave burst, taking into account these two factors, and find a potentially significant damping on the gravitational waves of the strings
Warped Self-Gravitating U(1) Gauge Cosmic Strings in 5D
Slagter, R.J.; Masselink, D.
2012-01-01
We present the "classical" Nielsen-Olesen vortex solution on a warped five dimensional space time, where we solved the effective four-dimensional equations from the five-dimensional equations together with the junction and boundary conditions. Four dimensional cosmic strings show some serious problems concerning the mechanism of string smoothing related to the string mass per unit length, $G\\mu \\leq 10^{-6}$. Moreover, there is no observational evidence of axially symmetric lensing effect cau...
Evading the pulsar constraints on the cosmic string tension in supergravity inflation
The cosmic string is a useful probe of the early Universe and may give us a clue to physics at high energy scales which particle accelerators cannot reach. Although the most promising tool to observe it is the cosmic microwave background (CMB), the constraint from gravitational waves is becoming so stringent that detecting its signatures in CMB may be impossible. In this paper, we construct a scenario that contains cosmic strings observable in the cosmic microwave background while evading the constraint imposed by the recent pulsar timing data. We argue that cosmic strings with relatively large tension are allowed by diluting loops contributing to the relevant frequency range of the gravitational wave background. We also present a particle physics model to realize such dilution in the context of chaotic inflation in supergravity, where the phase transition occurs during inflation due to the time-dependence of the Hubble induced mass
The gravitational wave spectrum from cosmological B-L breaking
Cosmological B-L breaking is a natural and testable mechanism to generate the initial conditions of the hot early universe. If B-L is broken at the grand unification scale, the false vacuum phase drives hybrid inflation, ending in tachyonic preheating. The decays of heavy B-L Higgs bosons and heavy neutrinos generate entropy, baryon asymmetry and dark matter and also control the reheating temperature. The different phases in the transition from inflation to the radiation dominated phase produce a characteristic spectrum of gravitational waves. We calculate the complete gravitational wave spectrum due to inflation, preheating and cosmic strings, which turns out to have several features. The production of gravitational waves from cosmic strings has large uncertainties, with lower and upper bounds provided by Abelian Higgs strings and Nambu-Goto strings, implying ΩGWh2 ∼ 10−13–10−8, much larger than the spectral amplitude predicted by inflation. Forthcoming gravitational wave detectors such as eLISA, advanced LIGO, ET, BBO and DECIGO will reach the sensitivity needed to test the predictions from cosmological B-L breaking
The gravitational wave spectrum from cosmological B-L breaking
Buchmueller, W.; Domcke, V.; Kamada, K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Schmitz, K. [Tokyo Univ., Kashiwa (Japan). Kavli IPMU (WPI)
2013-05-15
Cosmological B-L breaking is a natural and testable mechanism to generate the initial conditions of the hot early universe. If B-L is broken at the grand unification scale, the false vacuum phase drives hybrid inflation, ending in tachyonic preheating. The decays of heavy B-L Higgs bosons and heavy neutrinos generate entropy, baryon asymmetry and dark matter and also control the reheating temperature. The different phases in the transition from inflation to the radiation dominated phase produce a characteristic spectrum of gravitational waves. We calculate the complete gravitational wave spectrum due to inflation, preheating and cosmic strings, which turns out to have several features. The production of gravitational waves from cosmic strings has large uncertainties, with lower and upper bounds provided by Abelian Higgs strings and Nambu-Goto strings, implying {Omega}{sub GW}h{sup 2}{proportional_to}10{sup -13}-10{sup -8}, much larger than the spectral amplitude predicted by inflation. Forthcoming gravitational wave detectors such as eLISA, advanced LIGO and BBO/DECIGO will reach the sensitivity needed to test the predictions from cosmological B-L breaking.
The gravitational wave spectrum from cosmological B-L breaking
Buchmüller, W.; Domcke, V.; Kamada, K. [Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg (Germany); Schmitz, K., E-mail: buchmuwi@mail.desy.de, E-mail: valerie.domcke@desy.de, E-mail: kohei.kamada@desy.de, E-mail: kai.schmitz@ipmu.jp [Kavli IPMU (WPI), University of Tokyo, Kashiwa 277-8583 (Japan)
2013-10-01
Cosmological B-L breaking is a natural and testable mechanism to generate the initial conditions of the hot early universe. If B-L is broken at the grand unification scale, the false vacuum phase drives hybrid inflation, ending in tachyonic preheating. The decays of heavy B-L Higgs bosons and heavy neutrinos generate entropy, baryon asymmetry and dark matter and also control the reheating temperature. The different phases in the transition from inflation to the radiation dominated phase produce a characteristic spectrum of gravitational waves. We calculate the complete gravitational wave spectrum due to inflation, preheating and cosmic strings, which turns out to have several features. The production of gravitational waves from cosmic strings has large uncertainties, with lower and upper bounds provided by Abelian Higgs strings and Nambu-Goto strings, implying Ω{sub GW}h{sup 2} ∼ 10{sup −13}–10{sup −8}, much larger than the spectral amplitude predicted by inflation. Forthcoming gravitational wave detectors such as eLISA, advanced LIGO, ET, BBO and DECIGO will reach the sensitivity needed to test the predictions from cosmological B-L breaking.
Light deflection with torsion effects caused by a spinning cosmic string
Jusufi, Kimet
2016-06-01
Using a new geometrical method introduced by Werner, we find the deflection angle in the weak limit approximation by a spinning cosmic string in the context of the Einstein-Cartan (EC) theory of gravity. We begin by adopting the String-Randers optical metric, then we apply the Gauss-Bonnet theorem to the optical geometry and derive the leading terms of the deflection angle in the equatorial plane. Calculation shows that light deflection is affected by the intrinsic spin of the cosmic string and torsion.
Light Deflection with Torsion Effects Caused by a Spinning Cosmic String
Jusufi, Kimet
2016-01-01
Using a new geometrical method introduced by Werner, we find the deflection angle in the weak limit approximation by a spinning cosmic string in the context of the Einstein-Cartan (EC) theory of gravity. We begin by adopting the String-Randers optical metric, then we apply the Gauss-Bonnet theorem to the optical geometry and derive the leading terms of the deflection angle in the equatorial plane. Calculations shows that light deflection is affected by the intrinsic spin of the cosmic string and torsion.
Search for cosmic strings in the Great Observatories Origins Deep Survey
We search Hubble Space Telescope Treasury Program images collected as part of the Great Observatories Origins Deep Survey for pairs of galaxies consistent with the gravitational lensing signature of a cosmic string. Our technique includes estimates of the efficiency for finding the lensed galaxy pair. In the north (south) survey field we find no evidence out to a redshift of greater than 0.5 (0.3) for cosmic strings to a mass per unit length limit of Gμ/c2-7 at 95% confidence limits (C.L.). In the combined 314.9 arcmin2 of the north and south survey fields this corresponds to a global limit on Ωstrings2 is more than an order of magnitude lower than searches for individual strings in cosmic microwave background (CMB) data. Our limit is higher than other CMB and gravitational wave searches, however, we note that it is less model dependent than these other searches
Gravitational-Wave Stochastic Background from Kinks and Cusps on Cosmic Strings
Olmez, S; Siemens, X
2010-01-01
We compute the contribution of kinks on cosmic string loops to stochastic background of gravitational waves (SBGW).We find that kinks contribute at the same order as cusps to the SBGW.We discuss the accessibility of the total background due to kinks as well as cusps to current and planned gravitational wave detectors, as well as to the big bang nucleosynthesis (BBN), the cosmic microwave background (CMB), and pulsar timing constraints. As in the case of cusps, we find that current data from interferometric gravitational wave detectors, such as LIGO, are sensitive to areas of parameter space of cosmic string models complementary to those accessible to pulsar, BBN, and CMB bounds.
Gravitational waves from kinks on infinite cosmic strings
Kawasaki, Masahiro; Miyamoto, Koichi; Nakayama, Kazunori(Department of Physics, University of Tokyo, 7-3-1 Bunkyo-ku, Hongo, Tokyo 113-0033, Japan)
2010-01-01
Gravitational waves emitted by kinks on infinite strings are investigated using detailed estimations of the kink distribution on infinite strings. We find that gravitational waves from kinks can be detected by future pulsar timing experiments such as SKA for an appropriate value of the the string tension, if the typical size of string loops is much smaller than the horizon at their formation. Moreover, the gravitational wave spectrum depends on the thermal history of the Universe and hence it...
Planck 2013 results. XXV. Searches for cosmic strings and other topological defects
Ade, P.A.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R.C.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, L.Y.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.M.; Desert, F.X.; Diego, J.M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Ensslin, T.A.; Eriksen, H.K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Heraud, Y.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F.K.; Hanson, D.; Harrison, D.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Jaffe, T.R.; Jaffe, A.H.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kisner, T.S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Laureijs, R.J.; Lawrence, C.R.; Leahy, J.P.; Leonardi, R.; Lesgourgues, J.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McEwen, J.D.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschenes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Peiris, H.V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Rath, C.; Rebolo, R.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ringeval, C.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Spencer, L.D.; Starck, J.L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-01-01
Planck data have been used to provide stringent new constraints on cosmic strings and other defects. We describe forecasts of the CMB power spectrum induced by cosmic strings, calculating these from network models and simulations using line-of-sight Boltzmann solvers. We have studied Nambu-Goto cosmic strings, as well as field theory strings for which radiative effects are important, thus spanning the range of theoretical uncertainty in strings models. We have added the angular power spectrum from strings to that for a simple adiabatic model, with the extra fraction defined as $f_{10}$ at multipole $\\ell=10$. This parameter has been added to the standard six parameter fit using COSMOMC with flat priors. For the Nambu-Goto string model, we have obtained a constraint on the string tension of $G\\mu/c^2 < 1.5 x 10^{-7}$ and $f_{10} < 0.015$ at 95% confidence that can be improved to $G\\mu/c^2 < 1.3 x 10^{-7}$ and $f_{10} < 0.010$ on inclusion of high-$\\ell$ CMB data. For the abelian-Higgs field theory ...
Planck 2013 results. XXV. Searches for cosmic strings and other topological defects
Planck Collaboration,; Ade, P. A. R.; Aghanim, N.;
2013-01-01
-Goto cosmic strings, as well as field theory strings for which radiative effects are important, thus spanning the range of theoretical uncertainty in strings models. We have added the angular power spectrum from strings to that for a simple adiabatic model, with the extra fraction defined as $f_{10}$ at......Planck data have been used to provide stringent new constraints on cosmic strings and other defects. We describe forecasts of the CMB power spectrum induced by cosmic strings, calculating these from network models and simulations using line-of-sight Boltzmann solvers. We have studied Nambu...... multipole $\\ell=10$. This parameter has been added to the standard six parameter fit using COSMOMC with flat priors. For the Nambu-Goto string model, we have obtained a constraint on the string tension of $G\\mu/c^2 <1.5 x 10^{-7}$ and $f_{10} <0.015$ at 95% confidence that can be improved to $G\\mu/c^2 <1...
Spontaneous excitation of a static atom in a thermal bath in cosmic string spacetime
Cai, Huabing; Zhou, Wenting
2015-01-01
We study the average rate of change of energy for a static atom immersed in a thermal bath of electromagnetic radiation in the cosmic string spacetime and separately calculate the contributions of thermal fluctuations and radiation reaction. We find that the transition rates are crucially dependent on the atom-string distance and polarization of the atom and they in general oscillate as the atom-string distance varies. Moreover, the atomic transition rates in the cosmic string spacetime can be larger or smaller than those in Minkowski spacetime contingent upon the atomic polarization and position. In particular, when located on the string, ground-state atoms can make a transition to excited states only if they are polarizable parallel to the string, whereas ground state atoms polarizable only perpendicular to the string are stable as if they were in a vacuum, even if they are immersed in a thermal bath. Our results suggest that the influence of a cosmic string is very similar to that of a reflecting boundary ...
High redshift signatures in the 21 cm forest due to cosmic string wakes
Cosmic strings induce minihalo formation in the early universe. The resultant minihalos cluster in string wakes and create a ''21 cm forest'' against the cosmic microwave background (CMB) spectrum. Such a 21 cm forest can contribute to angular fluctuations of redshifted 21 cm signals integrated along the line of sight. We calculate the root-mean-square amplitude of the 21 cm fluctuations due to strings and show that these fluctuations can dominate signals from minihalos due to primordial density fluctuations at high redshift (z∼>10), even if the string tension is below the current upper bound, Gμ < 1.5 × 10−7. Our results also predict that the Square Kilometre Array (SKA) can potentially detect the 21 cm fluctuations due to strings with Gμ ≈ 7.5 × 10−8 for the single frequency band case and 4.0 × 10−8 for the multi-frequency band case
Spontaneous excitation of a uniformly accelerated atom in the cosmic string spacetime
Zhou, Wenting; Yu, Hongwei
2016-04-01
We study, in the cosmic string spacetime, the average rate of change of energy for an atom coupled to massless scalar fields and uniformly accelerated in a direction parallel to the string in vacuum. We find that both the noninertial motion and the nontrivial global spacetime topology affect the atomic transition rates, so an accelerated atom (an Unruh detector) does feel the string contrary to claims in the literature. We demonstrate that the equivalence between the effect of uniform acceleration and that of thermal radiation on the transition rates of the atom, which is valid in the Minkowski spacetime, holds only on the string.
Predicted constraints on cosmic string tension from Planck and future CMB polarization measurements
We perform a Fisher matrix calculation of the predicted uncertainties on estimates of the cosmic string tension Gμ from upcoming observational data (namely, cosmic microwave background power spectra from the Planck satellite and an idealized future polarization experiment). We employ simulations that are more general than others commonly used in the literature, leaving the mean velocity of strings, correlation length of the string network, and wiggliness (which parametrizes smaller-scale structure along the strings) as free parameters that can be observationally measured. In a new code, StringFast, we implement a method for efficient computation of the Cl spectra induced by a network of strings, which is fast enough to be used in Markov Chain Monte Carlo analyses of future data. Performing a calculation with the string parameters left free results in projected constraints on Gμ that are larger than those obtained by fixing their values a priori, typically by a factor of ∼2-7. We also find that, if Gμ is equal to the current observational maximum, Planck will be able to make a confident detection of strings. However, if Gμ is 2 orders of magnitude smaller, even a perfect, lensing-free measurement of polarization power spectra will not be able to detect a nonzero string tension at better than 2σ confidence.
Fermionic current induced by magnetic flux in compactified cosmic string spacetime
In this paper, we investigate the fermionic current densities induced by a magnetic flux running along the idealized cosmic string in a four-dimensional spacetime, admitting that the coordinate along the string's axis is compactified. In order to develop this investigation we construct the complete set of fermionic mode functions obeying a general quasiperiodicity condition along the compactified dimension. The vacuum expectation value of the azimuthal current density is decomposed into two parts. The first one corresponds to the uncompactified cosmic string geometry and the second one is the correction induced by the compactification. For the first part we provide a closed expression which includes various special cases previously discussed in the literature. The second part is an odd periodic function of the magnetic flux along the string axis with the period equal to the flux quantum and it is an even function of the magnetic flux enclosed by the string axis. The compactification of the cosmic string axis in combination with the quasiperiodicity condition leads to the nonzero axial current density. The latter is an even periodic function of the magnetic flux along the string axis and an odd periodic function of the magnetic flux enclosed by the string axis. The axial current density vanishes for untwisted and twisted fields in the absence of the magnetic flux enclosed by the string axis. The asymptotic behavior of the vacuum fermionic current is investigated near the string and at large distances from it. In particular, the topological part of the azimuthal current and the axial current are finite on the string's axis. (orig.)
Geodesic motion in the space-time of cosmic strings interacting via magnetic fields
Hartmann, Betti
2012-01-01
We study the geodesic motion of test particles in the space-time of two Abelian-Higgs strings interacting via their magnetic fields. These bound states of cosmic strings constitute a field theoretical realization of p-q-strings which are predicted by inflationary models rooted in String Theory, e.g. brane inflation. In contrast to previously studied models describing p-q-strings our model possesses a Bogomolnyi-Prasad-Sommerfield (BPS) limit. If cosmic strings exist it would be exciting to detect them by direct observation. We propose that this can be done by the observation of test particle motion in the space-time of these objects. In order to be able to make predictions we have to solve the field equations describing the configuration as well as the geodesic equation numerically. The geodesics can then be classified according to the test particle's energy, angular momentum and momentum along the string axis. We find that the interaction of two Abelian-Higgs strings can lead to the existence of bound orbits...
Vacuumless cosmic strings in Brans-Dicke theory
Sen, A. A.
1999-01-01
The gravitational fields of vacuumless global and gauge strings have been studied in Brans-Dicke theory under the weak field assumption of the field equations. It has been shown that both global and gauge string can have repulsive as well as attractive gravitational effect in Brans-Dicke theory which is not so in General Relativity.
Cosmic strings with twisted magnetic flux lines and wound-strings in extra dimensions
We consider a generalization of the Nielsen-Olesen ansatz, in the abelian-Higgs model, which describes strings with twisted magnetic flux lines in the vortex core. The solution does not possess cylindrical symmetry, which leads to the existence of components of conserved momentum, both around the core-axis and along the length of the string. In addition, we consider a model of F-strings with rotating, geodesic windings in the compact space of the Klebanov-Strassler geometry and determine matching conditions which ensure energy and momentum conservation when loops chop off from the long-string network. We find that the expressions for the constants of motion, which determine the macroscopic string dynamics, can be made to coincide with those for the twisted flux line string, suggesting that extra-dimensional effects for F-strings may be mimicked by field-theoretic structure in topological defects
Gravitational Waves from Light Cosmic Strings: Backgrounds and Bursts with Large Loops
Hogan, Craig J.
2006-01-01
The mean spectrum and burst statistics of gravitational waves produced by a cosmological population of cosmic string loops are estimated using analytic approximations, calibrated with earlier simulations. Formulas are derived showing the dependence of observables on the string tension, in the regime where newly-formed loops are relatively large, not very much smaller than the horizon. Large loops form earlier, are more abundant, and generate a more intense stochastic background and more frequ...
Fermionic vacuum polarization by a flat boundary in cosmic string spacetime
In this paper, we investigate the fermionic condensate and the renormalized vacuum expectation value (VEV) of the energy–momentum tensor for a massive fermionic field induced by a flat boundary in the cosmic string spacetime. In this analysis, we assume that the field operator obeys MIT bag boundary condition on the boundary. We explicitly decompose the VEVs into the boundary-free and boundary-induced parts. General formulas are provided for both parts which are valid for any value of the parameter associated with the cosmic string. For a massless field, the boundary-free part in the fermionic condensate and the boundary-induced part in the energy–momentum tensor vanish. For a massive field, the radial stress is equal to the energy density for both boundary-free and boundary-induced parts. The boundary-induced part in the stress along the axis of the cosmic string vanishes. The total energy density is negative everywhere, whereas the effective pressure along the azimuthal direction is positive near the boundary and negative near the cosmic string. We show that for points away from the boundary, the boundary-induced parts in the fermionic condensate and in the VEV of the energy–momentum tensor vanish on the string. (paper)
Battle of the bulge: Decay of the thin, false cosmic string
Lee, Bum-Hoon; Lee, Wonwoo; MacKenzie, Richard; Paranjape, M. B.; Yajnik, U. A.; Yeom, Dong-han
2013-11-01
We consider the decay of cosmic strings that are trapped in the false vacuum in a theory of scalar electrodynamics in 3+1 dimensions. This paper is the 3+1-dimensional generalization of the 2+1-dimensional decay of false vortices which we have recently completed . We restrict our analysis to the case of thin-walled cosmic strings which occur when large magnetic flux is trapped inside the string. Thus the string looks like a tube of fixed radius, at which it is classically stable. The core of the string contains magnetic flux in the true vacuum, while outside the string, separated by a thin wall, is the false vacuum. The string decays by tunneling to a configuration which is represented by a bulge, where the region of true vacuum within is ostensibly enlarged. The bulge can be described as the meeting of a kink soliton-antisoliton pair along the length of the string. It can be described as a bulge appearing in the initial string, starting from the string of small, classically stable radius, expanding to a fat string of large, classically unstable (to expansion) radius and then returning back to the string of small radius along its length. This configuration is the bounce point of a corresponding O(2) symmetric instanton, which we can determine numerically. Once the bulge appears it explodes in real time. The paired soliton and antisoliton recede from each other along the length of the string with a velocity that quickly approaches the speed of light, leaving behind a fat tube. At the same time the radius of the fat tube that is being formed expands (transversely) as it is no longer classically stable, converting false vacuum to the true vacuum with ever-diluting magnetic field within. The rate of this expansion is determined by the energy difference between the true vacuum and the false vacuum. Our analysis could be applied to a network of cosmic strings formed in the very early Universe or vortex lines in a superheated superconductor.
Akcay, Ali Riza
1999-01-01
This paper describes that the superconducting cosmic strings can be connected to an electrically charged black hole, and can be considerd as the hair of black hole. What the no-hair theorems show is that a large amount of information is lost when a body collapses to form a black hole. In addition, the no-hair theorem has not been proved for the Yang-Mills field. This paper proves and claims that the superconducting cosmic strings can be connected to an electrically charged hole when the curre...
Implications of cosmic string-induced density ﬂuctuations at the quark–hadron transition
Biswanath Layek; Soma Sanyal; Ajit M Srivastava
2003-11-01
We show that cosmic strings moving through the plasma at the time of a ﬁrst-order quark–hadron transition in the early universe generate baryon inhomogeneities, which can survive till the nucleosynthesis epoch. We ﬁnd out how these inhomogeneities actually affect the calculated values of the light element abundances. Recently a wealth of observational data from various experiments have helped to reduce the uncertainties in the values of these abundances. Using these we show that it is possible to derive constraints in the presence of cosmic strings during the quark–hadron transition.
Baryon inhomogeneities due to cosmic string wakes at the quark–hadron transition
Biswanath Layek; Soma Sanyal; Ajit M Srivastava
2003-05-01
Baryon inhomogeneities generated during the quark–hadron transition may alter the abundances of light elements if they persist up to the time of nucleosynthesis. These inhomogeneities survive up to the nucleosynthesis epoch if they are separated by a distance of at least a few metres. In this work we present a model where large sheets of these inhomogeneities separated by a distance of a few km are formed by cosmic string wakes during the quark–hadron transition. The effect of these sheets on nucleosynthesis will also put constraints on the various cosmic string parameters.
Polynomial solutions of the field equations for cosmic strings coupled to the einstein equations
A cosmic string described by an interaction Lagrangian and including a U(1) gauge vector field, minimally coupled to a scalar field was considered. This Lagrangian includes also a gravitation interacting scalar term. The field equations have been obtained from the above Lagrangian, these equations were coupled to Einstein's equations. Such a system of equations has been solved numerically and polynomial expansions derived for the fields which describe the string. With the above solutions the second order corrections to the angular deficit, produced by the string was determined. (author)
Cosmic strings in hidden sectors: 1. Radiation of standard model particles
Long, Andrew J.; Hyde, Jeffrey M.; Vachaspati, Tanmay, E-mail: andrewjlong@asu.edu, E-mail: jmhyde@asu.edu, E-mail: tvachasp@asu.edu [Physics Department, Arizona State University, Tempe, Arizona 85287 (United States)
2014-09-01
In hidden sector models with an extra U(1) gauge group, new fields can interact with the Standard Model only through gauge kinetic mixing and the Higgs portal. After the U(1) is spontaneously broken, these interactions couple the resultant cosmic strings to Standard Model particles. We calculate the spectrum of radiation emitted by these ''dark strings'' in the form of Higgs bosons, Z bosons, and Standard Model fermions assuming that string tension is above the TeV scale. We also calculate the scattering cross sections of Standard Model fermions on dark strings due to the Aharonov-Bohm interaction. These radiation and scattering calculations will be applied in a subsequent paper to study the cosmological evolution and observational signatures of dark strings.
Cosmic Strings in Hidden Sectors: 1. Radiation of Standard Model Particles
Long, Andrew J; Vachaspati, Tanmay
2014-01-01
In hidden sector models with an extra U(1) gauge group, new fields can interact with the Standard Model only through gauge kinetic mixing and the Higgs portal. After the U(1) is spontaneously broken, these interactions couple the resultant cosmic strings to Standard Model particles. We calculate the spectrum of radiation emitted by these "dark strings" in the form of Higgs bosons, Z bosons, and Standard Model fermions assuming that string tension is above the TeV scale. We also calculate the scattering cross sections of Standard Model fermions on dark strings due to the Aharonov-Bohm interaction. These radiation and scattering calculations will be applied in a subsequent paper to study the cosmological evolution and observational signatures of dark strings.
Cosmic D- and DF-strings from D3Dbar3: Black Strings and BPS Limit
Kim, Taekyung; Kim, Yoonbai; Kyae, Bumseok; Lee, Jungjai
2006-01-01
We study D- and DF-strings in a D3${\\bar {\\rm D}}3$ system by using Dirac-Born-Infeld type action. In the presence of an electric flux from the transverse direction, we discuss gravitating thick D-string solutions of a spatial manifold, ${\\rm S}^{2}\\times {\\rm R}^{1}$, in which straight D-strings stretched along the R${}^{1}$ direction are attached to the south and north poles of the two-sphere. There is a horizon along its equator, which means the structure of black strings is formed. We als...
Universal Reconnection of Non-Abelian Cosmic Strings
Eto, M; Marmorini, G; Nitta, M; Ohashi, K; Vinci, W; Eto, Minoru; Hashimoto, Koji; Marmorini, Giacomo; Nitta, Muneto; Ohashi, Keisuke; Vinci, Walter
2006-01-01
We show that local/semilocal strings in Abelian/non-Abelian gauge theories with critical couplings always reconnect classically in collision, by using moduli space approximation. The moduli matrix formalism explicitly identifies a well-defined set of the vortex moduli parameters. Our analysis of generic geodesic motion in terms of those shows right-angle scattering in head-on collision of two vortices, which is known to give the reconnection of the strings.
Cosmic strings in f(R,L{sub m}) gravity
Harko, Tiberiu, E-mail: t.harko@ucl.ac.uk [Department of Mathematics, University College London, Gower Street, WC1E 6BT, London (United Kingdom); Lake, Matthew J., E-mail: matthewj@nu.ac.th [The Institute for Fundamental Study, “The Tah Poe Academia Institute”, Naresuan University, 65000, Phitsanulok (Thailand); Thailand Center of Excellence in Physics, Ministry of Education, 10400, Bangkok (Thailand)
2015-02-07
We consider Kasner-type static, cylindrically symmetric interior string solutions in the f(R,L{sub m}) theory of modified gravity. The physical properties of the string are described by an anisotropic energy-momentum tensor satisfying the condition T{sub t}{sup t}=T{sub z}{sup z}; that is, the energy density of the string along the z-axis is equal to minus the string tension. As a first step in our study we obtain the gravitational field equations in the f(R,L{sub m}) theory for a general static, cylindrically symmetric metric, and then for a Kasner-type metric, in which the metric tensor components have a power law dependence on the radial coordinate r. String solutions in two particular modified gravity models are investigated in detail. The first is the so-called “exponential” modified gravity, in which the gravitational action is proportional to the exponential of the sum of the Ricci scalar and matter Lagrangian, and the second is the “self-consistent model”, obtained by explicitly determining the gravitational action from the field equations under the assumption of a power law dependent matter Lagrangian. In each case, the thermodynamic parameters of the string, as well as the precise form of the matter Lagrangian, are explicitly obtained.
Cosmic strings in f(R,Lm) gravity
We consider Kasner-type static, cylindrically symmetric interior string solutions in the f(R,Lm) theory of modified gravity. The physical properties of the string are described by an anisotropic energy-momentum tensor satisfying the condition Ttt=Tzz; that is, the energy density of the string along the z-axis is equal to minus the string tension. As a first step in our study we obtain the gravitational field equations in the f(R,Lm) theory for a general static, cylindrically symmetric metric, and then for a Kasner-type metric, in which the metric tensor components have a power law dependence on the radial coordinate r. String solutions in two particular modified gravity models are investigated in detail. The first is the so-called “exponential” modified gravity, in which the gravitational action is proportional to the exponential of the sum of the Ricci scalar and matter Lagrangian, and the second is the “self-consistent model”, obtained by explicitly determining the gravitational action from the field equations under the assumption of a power law dependent matter Lagrangian. In each case, the thermodynamic parameters of the string, as well as the precise form of the matter Lagrangian, are explicitly obtained
Cosmic strings in f(R,L{sub m}) gravity
Harko, Tiberiu [University College London, Department of Mathematics, London (United Kingdom); Lake, Matthew J. [Naresuan University, The Institute for Fundamental Study, ' ' The Tah Poe Academia Institute' ' , Phitsanulok (Thailand); Ministry of Education, Thailand Center of Excellence in Physics, Bangkok (Thailand)
2015-02-01
We consider Kasner-type static, cylindrically symmetric interior string solutions in the f(R,L{sub m}) theory of modified gravity. The physical properties of the string are described by an anisotropic energy-momentum tensor satisfying the condition T{sub t}{sup t} = T{sub z}{sup z}; that is, the energy density of the string along the z-axis is equal to minus the string tension. As a first step in our study we obtain the gravitational field equations in the f(R,L{sub m}) theory for a general static, cylindrically symmetric metric, and then for a Kasner-type metric, in which the metric tensor components have a power law dependence on the radial coordinate r. String solutions in two particular modified gravity models are investigated in detail. The first is the so-called ''exponential'' modified gravity, in which the gravitational action is proportional to the exponential of the sum of the Ricci scalar and matter Lagrangian, and the second is the ''self-consistent model'', obtained by explicitly determining the gravitational action from the field equations under the assumption of a power law dependent matter Lagrangian. In each case, the thermodynamic parameters of the string, as well as the precise form of the matter Lagrangian, are explicitly obtained. (orig.)
Fermionic vacuum polarization by a cosmic string in anti-de Sitter spacetime
In this paper, we investigate the fermionic condensate (FC) and the vacuum expectation value (VEV) of the energy–momentum tensor, associated with a massive fermionic field, induced by the presence of a cosmic string in the anti-de Sitter (AdS) spacetime. In order to develop this analysis we construct the complete set of normalized eigenfunctions in the corresponding spacetime. We consider a special case of boundary conditions on the AdS boundary, when the MIT bag boundary condition is imposed on the field operator at a finite distance from the boundary, which is then taken to zero. The FC and the VEV of the energy–momentum tensor are decomposed into the pure AdS and string-induced parts. Because the analysis of one-loop quantum effects in the AdS spacetime has been developed in the literature, here we are mainly interested to investigate the influence of the cosmic string on the VEVs. The string-induced part in the VEV of the energy–momentum tensor is diagonal and the axial and radial stresses are equal to the energy density. For points near the string, the effects of the curvature are subdominant and to leading order, the VEVs coincide with the corresponding VEVs for the cosmic string in the Minkowski bulk. At large proper distances from the string, the decay of the VEVs show a power-law dependence of the distance for both massless and massive fields. This is in contrast to the case of the Minkowski bulk where, for a massive field, the string-induced parts decay exponentially. (paper)
Cosmic D- and DF-strings from D3Dbar3: Black Strings and BPS Bound
Kim, T; Kyae, B; Lee, J; Kim, Taekyung; Kim, Yoonbai; Kyae, Bumseok; Lee, Jungjai
2006-01-01
We study D- and DF-strings from D3${\\bar {\\rm D}}3$ in the context of Dirac-Born-Infeld type effective field theory. In the presence of an electric flux from a transverse direction, gravitating thick D-string solutions form a spatial manifold, ${\\rm S}^{2}\\times {\\rm R}^{1}$, and straight D-strings stretched along the R${}^{1}$ direction are located at the south and north poles of the two-sphere. There is a horizon along its equator and then the structure of black strings is supported. We also discuss systematic derivation of the BPS bounds for thin parallel D- and DF-strings in both flat and curved spacetime. The BPS sum rule is obtained for arbitrarily-separated multi-string configuration under a Gaussian type tachyon potential and, at the site of each thin BPS D(F)-string, the pressure does not vanish but is finite. For the conical geometry induced by thin BPS D- and DF-strings, we find that there exists maximum deficit angle $\\pi$.
Capture and critical scattering of a long cosmic string by a rotating black hole
The capture of a straight, infinitely long cosmic string by a rotating black hole with rotation parameter a is considered. We assume that a string is moving with velocity v and that initially the string is parallel to the axis of rotation of the black hole and has the impact parameter b. The string can be either scattered or captured by the black hole. We demonstrate that there exists a critical value of the impact parameter bc(v, a) which separates these two regimes. Using numerical simulations we obtain the critical impact parameter curve for different values of the rotation parameter a. We show that for the prograde motion of the string this curve lies below the curve for the retrograde motion. Moreover, for ultrarelativistic strings moving in the prograde direction and nearly extremal black holes the critical impact parameter curve is found to be a multiply valued function of v. We obtain real time profiles of the scattered strings in the regime close to the critical. We also study critical scattering and capture of strings by the rotating black hole in the relativistic and ultrarelativistic regimes and especially such relativistic effects as coil formation and wrapping effect
Casimir-Polder potential for a metallic cylinder in cosmic string spacetime
Casimir-Polder potential is investigated for a polarizable microparticle in the geometry of a straight cosmic string with a metallic cylindrical shell. The electromagnetic field Green tensor is evaluated on the imaginary frequency axis. The expressions for the Casimir-Polder potential is derived in the general case of anisotropic polarizability for the both interior and exterior regions of the shell. The potential is decomposed into pure string and shell-induced parts. The latter dominates for points near the shell, whereas the pure string part is dominant near the string and at large distances from the shell. For the isotropic case and in the region inside the shell the both pure string and shell-induced parts in the Casimir-Polder force are repulsive with respect to the string. In the exterior region the shell-induced part of the force is directed toward the cylinder whereas the pure string part remains repulsive with respect to the string. At large distances from the shell the total force is repulsive.