WorldWideScience

Sample records for azobenzene nanoparticle-embedded polyacrylic

  1. Antibiotic-Conjugated Polyacrylate Nanoparticles: New Opportunities for Development of Anti-MRSA Agents

    OpenAIRE

    Turos, Edward; Shim, Jeung-Yeop; Wang, Yang; Greenhalgh, Kerriann; Reddy, G. Suresh Kumar; Dickey, Sonja; Lim, Daniel V.

    2006-01-01

    This report describes the preparation of polyacrylate nanoparticles in which an N-thiolated β-lactam antibiotic is covalently conjugated onto the polymer framework. These nanoparticles are formed in water by emulsion polymerization of an acrylated antibiotic pre-dissolved in a liquid acrylate monomer (or mixture of co-monomers) in the presence of sodium dodecyl sulfate as a surfactant and potassium persulfate as a radical initiator. Dynamic light scattering analysis and electron microscopy im...

  2. A convenient method to prepare emulsified polyacrylate nanoparticles from powders [corrected] for drug delivery applications.

    Science.gov (United States)

    Garay-Jimenez, Julio C; Turos, Edward

    2011-08-01

    We describe a method to obtain purified, polyacrylate nanoparticles in a homogeneous powdered form that can be readily reconstituted in aqueous media for in vivo applications. Polyacrylate-based nanoparticles can be easily prepared by emulsion polymerization using a 7:3 mixture of butyl acrylate and styrene in water containing sodium dodecyl sulfate as a surfactant and potassium persulfate as a water-soluble radical initiator. The resulting emulsions contain nanoparticles measuring 40-50 nm in diameter with uniform morphology, and can be purified by centrifugation and dialysis to remove larger coagulants as well as residual surfactant and monomers associated with toxicity. These purified emulsions can be lyophilized in the presence of maltose (a non-toxic cryoprotectant) to provide a homogeneous dried powder, which can be reconstituted as an emulsion by addition of an aqueous diluent. Dynamic light scattering and microbiological experiments were carried out on the reconstituted nanoparticles. This procedure allows for ready preparation of nanoparticle emulsions for drug delivery applications. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Penicillin-Bound Polyacrylate Nanoparticles: Restoring the Activity of β-Lactam Antibiotics Against MRSA

    OpenAIRE

    Turos, Edward; Reddy, G. Suresh Kumar; Greenhalgh, Kerriann; Ramaraju, Praveen; Abeylath, Sampath C.; Jang, Seyoung; Dickey, Sonja; Lim, Daniel V.

    2007-01-01

    This report describes the preparation of antibacterially-active emulsified polyacrylate nanoparticles in which a penicillin antibiotic is covalently conjugated onto the polymeric framework. These nanoparticles were prepared in water by emulsion polymerization of an acrylated penicillin analogue pre-dissolved in a 7:3 (w:w) mixture of butyl acrylate and styrene in the presence of sodium dodecyl sulfate (surfactant) and potassium persulfate (radical initiator). Dynamic light scattering analysis...

  4. Surface modification of magnetite nanoparticle with azobenzene-containing water dispersible polymer

    International Nuclear Information System (INIS)

    Theamdee, Pawinee; Traiphol, Rakchart; Rutnakornpituk, Boonjira; Wichai, Uthai; Rutnakornpituk, Metha

    2011-01-01

    We here report the synthesis of magnetite nanoparticle (MNP) grafted with poly (ethylene glycol) methyl ether methacrylate (PEGMA)-azobenzene acrylate (ABA) statistical copolymer via atom transfer radical polymerization (ATRP) for drug entrapment and photocontrolled release. MNP was synthesized via thermal decomposition of iron (III) acetylacetonate in benzyl alcohol and surface functionalized to obtain ATRP initiating sites. Molar compositions of the copolymer on MNP surface were systematically varied (100:0, 90:10, 70:30, and 50:50 of PEGMA:ABA, respectively) to obtain water dispersible particles with various amounts of azobenzene. The presence of polymeric shell on MNP core was evidenced by transmission electron microscopy (TEM). Drug loading and entrapment efficiencies as well as drug release behavior of the copolymer–MNP complexes were investigated. It was found that when percent of ABA in the copolymers was increased, entrapment and loading efficiencies of prednisolone model drug were enhanced. Releasing rate and percent of the released prednisolone of the complex exposed in UV light were slightly enhanced as compared to the system without UV irradiation. This copolymer–MNP complex with photocontrollable drug release and magnetic field-directed properties is warranted for further studies for potential uses as a novel drug delivery vehicle.

  5. Fabrication of polyacrylate core–shell nanoparticles via spray drying method

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Pengpeng, E-mail: chenpp@ahu.edu.cn [Anhui University, College of Chemistry and Chemical Engineering (China); Cheng, Zenghui; Chu, Fuxiang; Xu, Yuzhi; Wang, Chunpeng, E-mail: wangcpg@163.com [Chinese Academy of Forestry, Institute of Chemical Industry of Forest Products (China)

    2016-05-15

    Fine polyacrylate particles are thought to be environmental plastisols for car industry. However, these particles are mainly dried through demulsification of the latexes, which is not reproducible and hard to be scaled up. In this work, a spray drying method had been applied to the plastisols-used acrylate latex. By adjusting the core/shell ratio, spray drying process of the latex was fully studied. Scanning electronic microscopy observation of the nanoparticles before and after spray drying indicated that the core–shell structures could be well preserved and particles were well separated by spray drying if the shell was thick enough. Otherwise, the particles fused into each other and core–shell structures were destroyed. Polyacrylate plastisols were developed using diisononylphthalate as a plasticizer, and plastigels were obtained after heat treatment of the sols. Results showed that the shell thickness also had a great influence on the storage stability of the plastisols and mechanical properties of the plastigels.Graphical Abstract.

  6. Fabrication of polyacrylate core–shell nanoparticles via spray drying method

    International Nuclear Information System (INIS)

    Chen, Pengpeng; Cheng, Zenghui; Chu, Fuxiang; Xu, Yuzhi; Wang, Chunpeng

    2016-01-01

    Fine polyacrylate particles are thought to be environmental plastisols for car industry. However, these particles are mainly dried through demulsification of the latexes, which is not reproducible and hard to be scaled up. In this work, a spray drying method had been applied to the plastisols-used acrylate latex. By adjusting the core/shell ratio, spray drying process of the latex was fully studied. Scanning electronic microscopy observation of the nanoparticles before and after spray drying indicated that the core–shell structures could be well preserved and particles were well separated by spray drying if the shell was thick enough. Otherwise, the particles fused into each other and core–shell structures were destroyed. Polyacrylate plastisols were developed using diisononylphthalate as a plasticizer, and plastigels were obtained after heat treatment of the sols. Results showed that the shell thickness also had a great influence on the storage stability of the plastisols and mechanical properties of the plastigels.Graphical Abstract

  7. Magnetic hyperthermia studies on water-soluble polyacrylic acid-coated cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Krishna Surendra, M. [Indian Institute of Technology Madras, Department of Physics, Nano Functional Materials Technology Centre, Materials Research Centre (India); Annapoorani, S. [Anna University of Technology, Department of Nanotechnology (India); Ansar, Ereath Beeran; Harikrishna Varma, P. R. [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Bioceramics Laboratory (India); Ramachandra Rao, M. S., E-mail: msrrao@iitm.ac.in [Indian Institute of Technology Madras, Department of Physics, Nano Functional Materials Technology Centre, Materials Research Centre (India)

    2014-12-15

    We report on synthesis and hyperthermia studies in the water-soluble ferrofluid made of polyacrylic acid-coated cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles with different particle sizes. Magnetic nanoparticles were synthesized using co-precipitation method and particle size was varied as 6, 10, and 14 nm by varying the precursor to surfactant concentration. PAA surfactant bonding and surfactant thickness were studied by FTIR and thermogravimetric analysis. At room temperature, nanoparticles show superparamagnetism and saturation magnetization was found to vary from 33 to 44 emu/g with increase in the particle size from 6 to 14 nm, and this increase was attributed to the presence of a magnetic inert layer of 4 Å thick. Effect of particle size, concentration, and alternating magnetic field strength at 275 kHz on specific absorption rate were studied by preparing ferrofluids in deionized water at different concentrations. Ferrofluids at a concentration of 1.25 g/L, with 10 min of AMF exposure of strength ∼15.7 kA/m show stable temperatures ∼48, 58, and 68 °C with increase in the particle sizes 6, 10, and 14 nm. A maximum specific absorption rate of 251 W/g for ferrofluid with a particle size of 10 nm at 1.25 g/L, 15.7 kA/m, and 275 kHz was observed. Viability of L929 fibroblasts is measured by MTT assay cytotoxicity studies using the polyacrylic acid-coated CoFe{sub 2}O{sub 4} nanoparticles.

  8. Laser assisted embedding of nanoparticles into metallic materials

    International Nuclear Information System (INIS)

    Lin Dong; Suslov, Sergey; Ye Chang; Liao Yiliang; Liu, C. Richard; Cheng, Gary J.

    2012-01-01

    This paper reports a methodology of half-embedding nanoparticles into metallic materials. Transparent and opaque nanoparticles are chosen to demonstrate the process of laser assisted nanoparticle embedding. Dip coating method is used to coat transparent or opaque nanoparticle on the surface of metallic material. Nanoparticles are embedded into substrate by laser irradiation. In this study, the mechanism and process of nanoparticle embedding are investigated. It is found both transparent and opaque nanoparticles embedding are with high densities and good uniformities.

  9. Photoswitching in azobenzene self-assembled monolayers capped on zinc oxide: nanodots vs nanorods.

    Science.gov (United States)

    Shah, Syed Mujtaba; Martini, Cyril; Ackermann, Jörg; Fages, Frédéric

    2012-02-01

    We report the synthesis and spectroscopic characterization of nanohybrid structures consisting of an azobenzene compound grafted on the surface of zinc oxide nanoparticles. Characteristic bathochromic shifts indicate that the azobenzene photochromic molecules self-assemble onto the surface of the nanocrystals. The extent of packing is dependent on the shape of the nanoparticle. ZnO nanorods, with flat facets, enable a tighter organization of the molecules in the self-assembled monolayer than in the case of nanodots that display a more curvated shape. Consistently, the efficiency of photochromic switching of the self-assembled monolayer on ZnO nanoparticles is also shown to be strongly affected by nanoparticle shape. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Properties of polyacrylic acid-coated silver nanoparticle ink for inkjet printing conductive tracks on paper with high conductivity

    International Nuclear Information System (INIS)

    Huang, Qijin; Shen, Wenfeng; Xu, Qingsong; Tan, Ruiqin; Song, Weijie

    2014-01-01

    Silver nanoparticles with a mean diameter of approximately 30 nm were synthesized by reduction of silver nitrate with triethanolamine in the presence of polyacrylic acid. Silver nanoparticle-based ink was prepared by dispersing silver nanoparticles into a mixture of water and ethylene glycol. The mechanism for the dispersion and aggregation of silver nanoparticles in ink is discussed. The strong electrostatic repulsions of the carboxylate anions of the adsorbed polyacrylic acid molecules disturbed the aggregation of metal particles in solutions with a high pH value (pH > 5). An inkjet printer was used to deposit this silver nanoparticle-based ink to form silver patterns on photo paper. The actual printing qualities of the silver tracks were then analyzed by variation of printing passes, sintering temperature and time. The results showed that sintering temperature and time are associated strongly with the conductivity of the inkjet-printed conductive patterns. The conductivity of printed patterns sintered at 150 °C increased to 2.1 × 10 7  S m −1 , which was approximately one third that of bulk silver. In addition, silver tracks on paper substrate also showed better electrical performance after folding. This study demonstrated that the resulting ink-jet printed patterns can be used as conductive tracks in flexible electronic devices. - Highlights: • An ink from silver nanoparticles coated with polyacrylic acid was prepared. • The ink was used for inkjet-printed tracks at varying printing parameters. • The conductivity of printed tracks sintered at 150 °C increased to 2.1 × 10 7  S/m. • Mechanism for dispersion and aggregation of the nanoparticles in ink is discussed

  11. Properties of polyacrylic acid-coated silver nanoparticle ink for inkjet printing conductive tracks on paper with high conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qijin [Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China); Shen, Wenfeng, E-mail: wfshen@nimte.ac.cn [Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China); Xu, Qingsong [Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China); Tan, Ruiqin [Faculty of Information Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211 (China); Song, Weijie, E-mail: weijiesong@nimte.ac.cn [Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China)

    2014-10-15

    Silver nanoparticles with a mean diameter of approximately 30 nm were synthesized by reduction of silver nitrate with triethanolamine in the presence of polyacrylic acid. Silver nanoparticle-based ink was prepared by dispersing silver nanoparticles into a mixture of water and ethylene glycol. The mechanism for the dispersion and aggregation of silver nanoparticles in ink is discussed. The strong electrostatic repulsions of the carboxylate anions of the adsorbed polyacrylic acid molecules disturbed the aggregation of metal particles in solutions with a high pH value (pH > 5). An inkjet printer was used to deposit this silver nanoparticle-based ink to form silver patterns on photo paper. The actual printing qualities of the silver tracks were then analyzed by variation of printing passes, sintering temperature and time. The results showed that sintering temperature and time are associated strongly with the conductivity of the inkjet-printed conductive patterns. The conductivity of printed patterns sintered at 150 °C increased to 2.1 × 10{sup 7} S m{sup −1}, which was approximately one third that of bulk silver. In addition, silver tracks on paper substrate also showed better electrical performance after folding. This study demonstrated that the resulting ink-jet printed patterns can be used as conductive tracks in flexible electronic devices. - Highlights: • An ink from silver nanoparticles coated with polyacrylic acid was prepared. • The ink was used for inkjet-printed tracks at varying printing parameters. • The conductivity of printed tracks sintered at 150 °C increased to 2.1 × 10{sup 7} S/m. • Mechanism for dispersion and aggregation of the nanoparticles in ink is discussed.

  12. Polyelectrolyte Complex Nanoparticles of Poly(ethyleneimine) and Poly(acrylic acid): Preparation and Applications

    OpenAIRE

    Martin Müller; Bernd Keßler; Sebastian Poeschla; Bernhard Torger; Johanna Fröhlich

    2011-01-01

    In this contribution we outline polyelectrolyte (PEL) complex (PEC) nanoparticles, prepared by mixing solutions of the low cost PEL components poly(ethyleneimine) (PEI) and poly(acrylic acid) (PAC). It was found, that the size and internal structure of PEI/PAC particles can be regulated by process, media and structural parameters. Especially, mixing order, mixing ratio, PEL concentration, pH and molecular weight, were found to be sensible parameters to regulate the size (diameter) of spherica...

  13. Novel Nanocomposite Optical Plastics: Dispersion of Titanium in Polyacrylates

    Directory of Open Access Journals (Sweden)

    Gunjan Suri

    2010-01-01

    Full Text Available Polyacrylates have become the preferred materials for optical applications replacing the conventionally used glass due to their superior optical clarity. The major disadvantage with polyacrylates is their low (1.40–1.50 refractive index besides their poor impact resistance. The improvements in refractive index as well as mechanical properties can be achieved by way of incorporation of metals or metal compounds in the matrix. A novel methodology for the incorporation of high refractive index metals into low refractive index polymeric materials to improve the refractive index and impact resistance of the latter has been developed. With the in-situ formation of nanoparticles of TiO2, the refractive index of polyacrylates improved from 1.45 to 1.53 and the Abbe number increased from 40 to 57. One of the interesting dimension of this study pertains to the possibility of tailor-making of the two key optical properties of materials by way of varying the amount of TiO2 being formed in-situ. Thermal stability and impact resistance of nano dispersed (4.3% by wt. of Ti polyacrylates are found to be better than the neat polyacrylates. Moreover, TiO2-containing polyacrylate is of light weight. TEM, SEM, and IR analysis confirms the in-situ formation of nanoparticles of TiO2. Gamma irradiation has been used as an eco-friendly technique for polymerization. The developed compositions can be cast polymerized into clear and bubble free material for optical applications.

  14. Polyelectrolyte Complex Nanoparticles of Poly(ethyleneimine and Poly(acrylic acid: Preparation and Applications

    Directory of Open Access Journals (Sweden)

    Martin Müller

    2011-04-01

    Full Text Available In this contribution we outline polyelectrolyte (PEL complex (PEC nanoparticles, prepared by mixing solutions of the low cost PEL components poly(ethyleneimine (PEI and poly(acrylic acid (PAC. It was found, that the size and internal structure of PEI/PAC particles can be regulated by process, media and structural parameters. Especially, mixing order, mixing ratio, PEL concentration, pH and molecular weight, were found to be sensible parameters to regulate the size (diameter of spherical PEI/PAC nanoparticles, in the range between 80–1,000 nm, in a defined way. Finally, applications of dispersed PEI/PAC particles as additives for the paper making process, as well as for drug delivery, are outlined. PEI/PAC nanoparticles mixed directly on model cellulose film showed a higher adsorption level applying the mixing order 1. PAC 2. PEI compared to 1. PEI 2. PAC. Surface bound PEI/PAC nanoparticles were found to release a model drug compound and to stay immobilized due to the contact with the aqueous release medium.

  15. Novel Nano composite Optical Plastics: Dispersion of Titanium in Polyacrylates

    International Nuclear Information System (INIS)

    Suri, G.; Tyagi, M.; Seshadri, G.; Khandal, R.K.; Verma, G.L.

    2010-01-01

    Polyacrylates have become the preferred materials for optical applications replacing the conventionally used glass due to their superior optical clarity. The major disadvantage with polyacrylates is their low (1.40-1.50) refractive index besides their poor impact resistance. The improvements in refractive index as well as mechanical properties can be achieved by way of incorporation of metals or metal compounds in the matrix. A novel methodology for the incorporation of high refractive index metals into low refractive index polymeric materials to improve the refractive index and impact resistance of the latter has been developed. With the in-situ formation of nanoparticles of TiO 2 , the refractive index of polyacrylates improved from 1.45 to 1.53 and the Abbe number increased from 40 to 57. One of the interesting dimension of this study pertains to the possibility of tailor-making of the two key optical properties of materials by way of varying the amount of TiO 2 being formed in-situ. Thermal stability and impact resistance of nano dispersed (4.3% by wt. of Ti) polyacrylates are found to be better than the neat polyacrylates. Moreover, TiO 2 -containing polyacrylate is of light weight. TEM, SEM, and IR analysis confirms the in-situ formation of nanoparticles of TiO 2 . Gamma irradiation has been used as an eco-friendly technique for polymerization. The developed compositions can be cast polymerized into clear and bubble free material for optical applications.

  16. Preparation of an antibacterial, hydrophilic and photocatalytically active polyacrylic coating using TiO2 nanoparticles sensitized by graphene oxide.

    Science.gov (United States)

    Nosrati, Rahimeh; Olad, Ali; Shakoori, Sahar

    2017-11-01

    In recent years more attentions have been paid for preparation of coatings with self-cleaning and antibacterial properties. These properties allow the surface to maintain clean and health over long times without any need to cleaning or disinfection. Acrylic coatings are widely used on various surfaces such as automotive, structural and furniture which their self-cleaning and antibacterial ability is very important. The aim of this work is the preparation of a polyacrylic based self-cleaning and antibacterial coating by the modification of TiO 2 as a coating additive. TiO 2 nanoparticles were sensitized to the visible light irradiation using graphene oxide through the preparation of TiO 2 /graphene oxide nanocomposite. Graphene oxide was prepared via a modified Hummers method. TiO 2 /graphene oxide nanocomposite was used as additive in a polyacrylic coating formulation. Hydrophilicity, photocatalytic and antibacterial activities as well as coating stability were evaluated for TiO 2 /graphene oxide modified polyacrylic coating and compared with that of pristine TiO 2 modified and unmodified polyacrylic coatings. TiO 2 /graphene oxide nanocomposite and polyacrylic coating modified by TiO 2 /graphene oxide additive were characterized using FT-IR, UV-Vis, XRD, and FESEM techniques. The effect of TiO 2 /graphene oxide composition and its percent in the coating formulation was evaluated on the polyacrylic coating properties. Results showed that polyacrylic coating having 3% W TiO 2 /graphene oxide nanocomposite additive with TiO 2 to graphene oxide ratio of 100:20 is the best coating considering most of beneficial features such as high photodecolorization efficiency of organic dye contaminants, high hydrophilicity, and stability in water. According to the results, TiO 2 is effectively sensitized by graphene oxide and the polyacrylic coating modified by TiO 2 /graphene oxide nanocomposite shows good photocatalytic activity under visible light irradiation. Copyright © 2017

  17. Dual patterning of a poly(acrylic acid) layer by electron-beam and block copolymer lithographies.

    Science.gov (United States)

    Pearson, Anthony C; Linford, Matthew R; Harb, John N; Davis, Robert C

    2013-06-18

    We show the controllable patterning of palladium nanoparticles in both one and two dimensions using electron-beam lithography and reactive ion etching of a thin film of poly(acrylic acid) (PAA). After the initial patterning of the PAA, a monolayer of polystyrene-b-poly-2-vinylpyridine micelles is spun cast onto the surface. A short reactive ion etch is then used to transfer the micelle pattern into the patterned poly(acrylic acid). Finally, PdCl2 is loaded from solution into the patterned poly(acrylic acid) features, and a reactive-ion etching process is used to remove the remaining polymer and form Pd nanoparticles. This method yields location-controlled patches of nanoparticles, including single- and double-file lines and nanoparticle pairs. A locational accuracy of 9 nm or less in one direction was achieved by optimizing the size of the PAA features.

  18. Influence of polyacrylic acid nanoparticles on the elastic properties of RBCs membranes in patients with diabetes mellitus type 2

    Czech Academy of Sciences Publication Activity Database

    Melnikova, G.B.; Kuzhel, N.S.; Tolstaya, T.N.; Konstantinova, E.E.; Drozd, E.S.; Shisko, O.N.; Mokhort, T.G.; Antonova, N.; Říha, Pavel; Kowalczuk, A.; Koseva, N.

    2015-01-01

    Roč. 29, č. 4 (2015), s. 12-19 ISSN 1313-2458 Institutional support: RVO:67985874 Keywords : red blood cells * nanoparticles * poly(acrylic acid) * elasticity modulus * atomic force microscopy Subject RIV: BK - Fluid Dynamics http://www.imbm.bas.bg/biomechanics/uploads/Archive2015-4/12-19_Melnikova-Konstantinova_et%20al_abstract-1_18.12.15.pdf

  19. Inhibited growth of Pseudomonas aeruginosa by dextran- and polyacrylic acid-coated ceria nanoparticles

    Directory of Open Access Journals (Sweden)

    Wang Q

    2013-08-01

    Full Text Available Qi Wang,1 J Manuel Perez,2 Thomas J Webster1,3 1Bioengineering Program, College of Engineering, Northeastern University, Boston, MA, USA; 2Nanoscience Technology Center, University of Central Florida, Orlando, FL, USA; 3Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, USA Abstract: Ceria (CeO2 nanoparticles have been widely studied for numerous applications, but only a few recent studies have investigated their potential applications in medicine. Moreover, there have been almost no studies focusing on their possible antibacterial properties, despite the fact that such nanoparticles may reduce reactive oxygen species. In this study, we coated CeO2 nanoparticles with dextran or polyacrylic acid (PAA because of their enhanced biocompatibility properties, minimized toxicity, and reduced clearance by the immune system. For the first time, the coated CeO2 nanoparticles were tested in bacterial assays involving Pseudomonas aeruginosa, one of the most significant bacteria responsible for infecting numerous medical devices. The results showed that CeO2 nanoparticles with either coating significantly inhibited the growth of Pseudomonas aeruginosa, by up to 55.14%, after 24 hours compared with controls (no particles. The inhibition of bacterial growth was concentration dependent. In summary, this study revealed, for the first time, that the characterized dextran- and PAA-coated CeO2 nanoparticles could be potential novel materials for numerous antibacterial applications. Keywords: antibacterial, biomedical applications

  20. Motion of Adsorbed Nano-Particles on Azobenzene Containing Polymer Films

    Directory of Open Access Journals (Sweden)

    Sarah Loebner

    2016-12-01

    Full Text Available We demonstrate in situ recorded motion of nano-objects adsorbed on a photosensitive polymer film. The motion is induced by a mass transport of the underlying photoresponsive polymer material occurring during irradiation with interference pattern. The polymer film contains azobenzene molecules that undergo reversible photoisomerization reaction from trans- to cis-conformation. Through a multi-scale chain of physico-chemical processes, this finally results in the macro-deformations of the film due to the changing elastic properties of polymer. The topographical deformation of the polymer surface is sensitive to a local distribution of the electrical field vector that allows for the generation of dynamic changes in the surface topography during irradiation with different light interference patterns. Polymer film deformation together with the motion of the adsorbed nano-particles are recorded using a homemade set-up combining an optical part for the generation of interference patterns and an atomic force microscope for acquiring the surface deformation. The particles undergo either translational or rotational motion. The direction of particle motion is towards the topography minima and opposite to the mass transport within the polymer film. The ability to relocate particles by photo-induced dynamic topography fluctuation offers a way for a non-contact simultaneous manipulation of a large number of adsorbed particles just in air at ambient conditions.

  1. pH Triggered Recovery and Reuse of Thiolated Poly(acrylic acid) Functionalized Gold Nanoparticles with Applications in Colloidal Catalysis.

    Science.gov (United States)

    Ansar, Siyam M; Fellows, Benjamin; Mispireta, Patrick; Mefford, O Thompson; Kitchens, Christopher L

    2017-08-08

    Thiolated poly(acrylic acid) (PAA-SH) functionalized gold nanoparticles were explored as a colloidal catalyst with potential application as a recoverable catalyst where the PAA provides pH-responsive dispersibility and phase transfer capability between aqueous and organic media. This system demonstrates complete nanoparticle recovery and redispersion over multiple reaction cycles without changes in nanoparticle morphology or reduction in conversion. The catalytic activity (rate constant) was reduced in subsequent reactions when recovery by aggregation was employed, despite unobservable changes in morphology or dispersibility. When colloidal catalyst recovery employed a pH induced phase transfer between two immiscible solvents, the catalytic activity of the recovered nanoparticles was unchanged over four cycles, maintaining the original rate constant and 100% conversion. The ability to recover and reuse colloidal catalysts by aggregation/redispersion and phase transfer methods that occur at low and high pH, respectively, could be used for different gold nanoparticle catalyzed reactions that occur at different pH conditions.

  2. Structure and magnetism in Cr-embedded Co nanoparticles.

    Science.gov (United States)

    Baker, S H; Kurt, M S; Roy, M; Lees, M R; Binns, C

    2016-02-03

    We present the results of an investigation into the atomic structure and magnetism of 2 nm diameter Co nanoparticles embedded in an antiferromagnetic Cr matrix. The nanocomposite films used in this study were prepared by co-deposition directly from the gas phase, using a gas aggregation source for the Co nanoparticles and a molecular beam epitaxy (MBE) source for the Cr matrix material. Co K and Cr K edge extended x-ray absorption fine structure (EXAFS) experiments were performed in order to investigate atomic structure in the embedded nanoparticles and matrix respectively, while magnetism was investigated by means of a vibrating sample magnetometer. The atomic structure type of the Co nanoparticles is the same as that of the Cr matrix (bcc) although with a degree of disorder. The net Co moment per atom in the Co/Cr nanocomposite films is significantly reduced from the value for bulk Co, and decreases as the proportion of Co nanoparticles in the film is decreased; for the sample with the most dilute concentration of Co nanoparticles (4.9% by volume), the net Co moment was 0.25 μ B/atom. After field cooling to below 30 K all samples showed an exchange bias, which was largest for the most dilute sample. Both the structural and magnetic results point towards a degree of alloying at the nanoparticle/matrix interface, leading to a core/shell structure in the embedded nanoparticles consisting of an antiferromagnetic CoCr alloy shell surrounding a reduced ferromagnetic Co core.

  3. Thermal isomerization of azobenzenes: on the performance of Eyring transition state theory

    Science.gov (United States)

    Rietze, Clemens; Titov, Evgenii; Lindner, Steven; Saalfrank, Peter

    2017-08-01

    The thermal Z\\to E (back-)isomerization of azobenzenes is a prototypical reaction occurring in molecular switches. It has been studied for decades, yet its kinetics is not fully understood. In this paper, quantum chemical calculations are performed to model the kinetics of an experimental benchmark system, where a modified azobenzene (AzoBiPyB) is embedded in a metal-organic framework (MOF). The molecule can be switched thermally from cis to trans, under solvent-free conditions. We critically test the validity of Eyring transition state theory for this reaction. As previously found for other azobenzenes (albeit in solution), good agreement between theory and experiment emerges for activation energies and activation free energies, already at a comparatively simple level of theory, B3LYP/6-31G* including dispersion corrections. However, theoretical Arrhenius prefactors and activation entropies are in qualitiative disagreement with experiment. Several factors are discussed that may have an influence on activation entropies, among them dynamical and geometric constraints (imposed by the MOF). For a simpler model—Z\\to E isomerization in azobenzene—a systematic test of quantum chemical methods from both density functional theory and wavefunction theory is carried out in the context of Eyring theory. Also, the effect of anharmonicities on activation entropies is discussed for this model system. Our work highlights capabilities and shortcomings of Eyring transition state theory and quantum chemical methods, when applied for the Z\\to E (back-)isomerization of azobenzenes under solvent-free conditions.

  4. Fluorescent Nanocomposite of Embedded Ceria Nanoparticles in Crosslinked PVA Electrospun Nanofibers

    Directory of Open Access Journals (Sweden)

    Nader Shehata

    2016-06-01

    Full Text Available This paper introduces a new fluorescent nanocomposite of electrospun biodegradable nanofibers embedded with optical nanoparticles. In detail, this work introduces the fluorescence properties of PVA nanofibers generated by the electrospinning technique with embedded cerium oxide (ceria nanoparticles. Under near-ultra violet excitation, the synthesized nanocomposite generates a visible fluorescent emission at 520 nm, varying its intensity peak according to the concentration of in situ embedded ceria nanoparticles. This is due to the fact that the embedded ceria nanoparticles have optical tri-valiant cerium ions, associated with formed oxygen vacancies, with a direct allowed bandgap around 3.5 eV. In addition, the impact of chemical crosslinking of the PVA on the fluorescence emission is studied in both cases of adding ceria nanoparticles in situ or of a post-synthesis addition via a spin-coating mechanism. Other optical and structural characteristics such as absorbance dispersion, direct bandgap, FTIR spectroscopy, and SEM analysis are presented. The synthesized optical nanocomposite could be helpful in different applications such as environmental monitoring and bioimaging.

  5. azobenzene

    Indian Academy of Sciences (India)

    2-hydroxybenzylideneamino)azobenzene having the flexible terminal chain of OCnH2n+1, in which n are even numbers ... base.12,13 Thus, in this work, we report the synthesis and ..... tion, the absence of a singlet at δ = 13.60 ppm indi-.

  6. The passive optical properties of a silicon nanoparticle-embedded benzocyclobutene polymer waveguide

    International Nuclear Information System (INIS)

    Chiu, J.-J.; Perng, Tsong P

    2008-01-01

    The passive optical properties of a silicon nanoparticle-embedded benzocyclobutene (BCB) waveguide were investigated. The silicon nanoparticles, of a size varying from 6 to 25 nm, were prepared by vapor condensation. The transmission modes and losses were examined by the prism coupler and cut-back methods. A He-Ne laser beam with a wavelength of 6328 A was used to measure the effective index and thickness of the waveguide. Laser light could be efficiently coupled into the BCB waveguide when the embedded Si nanoparticles were smaller than 6 nm. The film thickness and effective index of the Si-embedded BCB waveguide were measured to be 1.825 μm and 1.565, respectively. The optical transmission losses of the pure BCB and Si-embedded ridge waveguides measured by the cut-back method were 0.85 and 1.63 dB cm -1 , respectively. Although the optical loss was increased by the embedded Si, the disturbance of the output contour was quite small. This result demonstrates that the nanoparticle-embedded polymer waveguide may be used for optoelectronic integrated circuits

  7. Graphene oxide catalyzed cis-trans isomerization of azobenzene

    Directory of Open Access Journals (Sweden)

    Dongha Shin

    2014-09-01

    Full Text Available We report the fast cis-trans isomerization of an amine-substituted azobenzene catalyzed by graphene oxide (GO, where the amine functionality facilitates the charge transfer from azobenzene to graphene oxide in contrast to non-substituted azobenzene. This catalytic effect was not observed in stilbene analogues, which strongly supports the existence of different isomerization pathways between azobenzene and stilbene. The graphene oxide catalyzed isomerization is expected to be useful as a new photoisomerization based sensing platform complementary to GO-based fluorescence quenching methods.

  8. Multifunctional carbon nanotubes with nanoparticles embedded in their walls

    International Nuclear Information System (INIS)

    Mattia, D; Korneva, G; Sabur, A; Friedman, G; Gogotsi, Y

    2007-01-01

    Controlled amounts of nanoparticles ranging in size and composition were embedded in the walls of carbon nanotubes during a template-assisted chemical vapour deposition (CVD) process. The encapsulation of gold nanoparticles enabled surface enhanced Raman spectroscopy (SERS) detection of glycine inside the cavity of the nanotubes. Iron oxide particles are partially reduced to metallic iron during the CVD process giving the nanotubes ferromagnetic behaviour. At high nanoparticle concentrations, particle agglomerates can form. These agglomerates or larger particles, which are only partially embedded in the walls of the nanotubes, are covered by additional carbon layers inside the hollow cavity of the tube producing hillocks inside the nanotubes, with sizes comparable to the bore of the tube

  9. Phosphate sensing by fluorecent reporter proteins embedded in poly-acrylamide nanoparticles

    DEFF Research Database (Denmark)

    Sun, Honghao; Scharff-Poulsen, Anne Marie; Gu, Hong

    2008-01-01

    Phosphate sensors were developed by embedding fluorescent reporter proteins (FLIPPi) in polyacrylamide nanoparticles; with diameters from 40 to 120 nm. The sensor activity and protein loading efficiency varied according to nanoparticle composition, that is, the total monomer content (% T) and the......, in nanoparticles for, for example, sensing, biological catalysis, and gene delivery.......Phosphate sensors were developed by embedding fluorescent reporter proteins (FLIPPi) in polyacrylamide nanoparticles; with diameters from 40 to 120 nm. The sensor activity and protein loading efficiency varied according to nanoparticle composition, that is, the total monomer content (% T......) and the cross-linker content (% C). Nanoparticles with 28% T and 20% C were considered optimal as a result of relatively high loading efficiency (50.6%) as well as high protein activity (50%). The experimental results prove that the cross-linked polyacrylamide matrix could protect FLIPPi from degradation...

  10. Cis-to- Trans Isomerization of Azobenzene Derivatives Studied with Transition Path Sampling and Quantum Mechanical/Molecular Mechanical Molecular Dynamics.

    Science.gov (United States)

    Muždalo, Anja; Saalfrank, Peter; Vreede, Jocelyne; Santer, Mark

    2018-04-10

    Azobenzene-based molecular photoswitches are becoming increasingly important for the development of photoresponsive, functional soft-matter material systems. Upon illumination with light, fast interconversion between a more stable trans and a metastable cis configuration can be established resulting in pronounced changes in conformation, dipole moment or hydrophobicity. A rational design of functional photosensitive molecules with embedded azo moieties requires a thorough understanding of isomerization mechanisms and rates, especially the thermally activated relaxation. For small azo derivatives considered in the gas phase or simple solvents, Eyring's classical transition state theory (TST) approach yields useful predictions for trends in activation energies or corresponding half-life times of the cis isomer. However, TST or improved theories cannot easily be applied when the azo moiety is part of a larger molecular complex or embedded into a heterogeneous environment, where a multitude of possible reaction pathways may exist. In these cases, only the sampling of an ensemble of dynamic reactive trajectories (transition path sampling, TPS) with explicit models of the environment may reveal the nature of the processes involved. In the present work we show how a TPS approach can conveniently be implemented for the phenomenon of relaxation-isomerization of azobenzenes starting with the simple examples of pure azobenzene and a push-pull derivative immersed in a polar (DMSO) and apolar (toluene) solvent. The latter are represented explicitly at a molecular mechanical (MM) and the azo moiety at a quantum mechanical (QM) level. We demonstrate for the push-pull azobenzene that path sampling in combination with the chosen QM/MM scheme produces the expected change in isomerization pathway from inversion to rotation in going from a low to a high permittivity (explicit) solvent model. We discuss the potential of the simulation procedure presented for comparative calculation of

  11. One-step formation of lipid-polyacrylic acid-calcium carbonate nanoparticles for co-delivery of doxorubicin and curcumin.

    Science.gov (United States)

    Peng, Jianqing; Fumoto, Shintaro; Miyamoto, Hirotaka; Chen, Yi; Kuroda, Naotaka; Nishida, Koyo

    2017-09-01

    A doxorubicin (Dox) and curcumin (Cur) combination treatment regimen has been widely studied in pre-clinical research. However, the nanoparticles developed for this combination therapy require a consecutive drug loading process because of the different water-solubility of these drugs. This study provides a strategy for the "one-step" formation of nanoparticles encapsulating both Dox and Cur. We took advantage of polyacrylic acid (PAA) and calcium carbonate (CaCO 3 ) to realise a high drug entrapment efficiency (EE) and pH-sensitive drug release using a simplified preparation method. Optimisation of lipid ratios and concentrations of CaCO 3 was conducted. Under optimal conditions, the mean diameter of PEGylated lipid/PAA/CaCO 3 nanoparticles with encapsulated Cur and Dox (LPCCD) was less than 100 nm. An obvious pH-sensitive release of both drugs was observed, with different Dox and Cur release rates. Successful co-delivery of Cur and Dox was achieved via LPCCD on HepG2 cells. LPCCD altered the bio-distribution of Dox and Cur in vivo and decreased Dox-induced cardiotoxicity. The current investigation has developed an efficient ternary system for co-delivery of Dox and Cur to tumours, using a "one-step" formation resulting in nanoparticles possessing remarkable pH-sensitive drug release behaviour, which may be valuable for further clinical studies and eventual clinical application.

  12. Formation of DNA-network embedding ferromagnetic Cobalt nano-particles

    Science.gov (United States)

    Kanki, Teruo; Tanaka, Hidekazu; Shirakawa, Hideaki; Sacho, Yu; Taniguchi, Masateru; Lee, Hea-Yeon; Kawai, Tomoji; Kang, Nam-Jung; Chen, Jinwoo

    2002-03-01

    Formation of DNA-network embedding ferromagnetic Cobalt nano-particles T. Kanki, Hidekazu. Tanaka, H. Shirakawa, Y. Sacho, M. Taniguchi, H. Lee, T. Kawai The Institute of Scientific and Industrial Research, Osaka University, Japan and Nam-Jung Kang, Jinwoo Chen Korea Advanced Institute of Science and Technology (KAIST), Korea DNA can be regarded as a naturally occurring and highly specific functional biopolymer and as a fine nano-wire. Moreover, it was found that large-scale DNA networks can be fabricated on mica surfaces. By using this network structure, we can expect to construct nano-scale assembly of functional nano particle, for example ferromagnetic Co nano particles, toward nano scale spin-electronics based on DNA circuits. When we formed DNA network by 250mg/ml DNA solution of poly(dG)-poly(dC) including ferromagnetic Co nano particles (diameter of 12nm), we have conformed the DNA network structure embedding Co nano-particles (height of about 12nm) by atomic force microscopy. On the other hand, we used 100mg/ml DNA solution, DNA can not connect each other, and many Co nano-particles exist without being embedded.

  13. Poly(acrylic acid)-block-poly(vinyl alcohol) anchored maghemite nanoparticles designed for multi-stimuli triggered drug release

    Science.gov (United States)

    Liu, Ji; Detrembleur, Christophe; Debuigne, Antoine; de Pauw-Gillet, Marie-Claire; Mornet, Stéphane; Vander Elst, Luce; Laurent, Sophie; Labrugère, Christine; Duguet, Etienne; Jérôme, Christine

    2013-11-01

    Original core/corona nanoparticles composed of a maghemite core and a stimuli-responsive polymer coating made of poly(acrylic acid)-block-poly(vinyl alcohol) macromolecules were fabricated for drug delivery system (DDS) application. This kind of DDS aims to combine the advantage of stimuli-responsive polymer coating, in order to regulate the drug release behaviours under different conditions and furthermore, improve the biocompatibility and in vivo circulation half-time of the maghemite nanoparticles. Drug loading capacity was evaluated with methylene blue (MB), a cationic model drug. The triggered release of MB was studied under various stimuli such as pH, ionic strength and temperature. Local heating generated under alternating magnetic field (AMF) application was studied, and remotely AMF-triggered release was also confirmed, while a mild heating-up of the release medium was observed. Furthermore, their potential application as magnetic resonance imaging (MRI) contrast agents was explored via relaxivity measurements and acquisition of T2-weighted images. Preliminary studies on the cytotoxicity against mouse fibroblast-like L929 cell line and also their cellular uptake within human melanoma MEL-5 cell line were carried out. In conclusion, this kind of stimuli-responsive nanoparticles appears to be promising carriers for delivering drugs to some tumour sites or into cellular compartments with an acidic environment.Original core/corona nanoparticles composed of a maghemite core and a stimuli-responsive polymer coating made of poly(acrylic acid)-block-poly(vinyl alcohol) macromolecules were fabricated for drug delivery system (DDS) application. This kind of DDS aims to combine the advantage of stimuli-responsive polymer coating, in order to regulate the drug release behaviours under different conditions and furthermore, improve the biocompatibility and in vivo circulation half-time of the maghemite nanoparticles. Drug loading capacity was evaluated with methylene

  14. Molecular Understanding and Structural-Based Design of Polyacrylamides and Polyacrylates as Antifouling Materials.

    Science.gov (United States)

    Chen, Hong; Zhao, Chao; Zhang, Mingzhen; Chen, Qiang; Ma, Jie; Zheng, Jie

    2016-04-12

    Design and synthesis of highly bioinert and biocompatible antifouling materials are crucial for a broad range of biomedical and engineering applications. Among antifouling materials, polyacrylamides and polyacrylates have proved so promising because of cheap raw materials, ease of synthesis and applicability, and abundant functional groups. The strong surface hydration and the high surface packing density of polyacrylamides and polyacrylates are considered to be the key contributors to their antifouling property. In this article, we review our studies on the design and synthesis of a series of polyacrylamides and polyacrylates with different molecular structures. These polymers can be fabricated into different architectural forms (brushes, nanoparticles, nanogels, and hydrogels), all of which are highly resistant to the attachment of proteins, cells, and bacteria. We find that small structural changes in the polymers can lead to large enhancement in surface hydration and antifouling performance, both showing a positive correlation. This reveals a general design rule for effective antifouling materials. Furthermore, polyacrylamides and polyacrylates are readily functionalized with other bioactive compounds to achieve different new multifunctionalities.

  15. Synthesis of new liquid crystals embedded gold nanoparticles for photoswitching properties.

    Science.gov (United States)

    Rahman, Md Lutfor; Biswas, Tapan Kumar; Sarkar, Shaheen M; Yusoff, Mashitah Mohd; Yuvaraj, A R; Kumar, Sandeep

    2016-09-15

    A new series of liquid crystals decorated gold nanoparticles is synthesized whose molecular architecture has azobenzenes moieties as the peripheral units connected to gold nanoparticles (Au NPs) via alkyl groups. The morphology and mesomorphic properties were investigated by field emission scanning electron microscope, high-resolution transmission electron microscopy, differential scanning calorimetry and polarizing optical microscopy. The thiolated ligand molecules (3a-c) showed enantiotropic smectic A phase, whereas gold nanoparticles (5a-c) exhibit nematic and smectic A phase with monotropic nature. HR-TEM measurement showed that the functionalized Au NPs are of the average size of 2nm and they are well dispersed without any aggregation. The trans-form of azo compounds showed a strong band in the UV region at ∼378nm for the π-π(∗) transition, and a weak band in the visible region at ∼472nm due to the n-π(∗) transition. These molecules exhibit attractive photoisomerization behaviour in which trans-cis transition takes about 15s whereas the cis-trans transition requires about 45min for compound 5c. The extent of reversible isomerization did not decay after 10 cycles, which proved that the photo-responsive properties of 5c were stable and repeatable. Therefore, these materials may be suitably exploited in the field of molecular switches and the optical storage devices. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Core–shell Au/Ag nanoparticles embedded in silicate sol–gel ...

    Indian Academy of Sciences (India)

    Administrator

    Dedicated to the memory of the late Professor S K Rangarajan. *For correspondence. Core–shell Au/Ag nanoparticles embedded in silicate sol–gel network for sensor .... An immediate colour change was observed for the mixed solution, indicating the dis- persion of metal nanoparticles in the MTMOS sol– gel matrix.

  17. Radiation induced deposition of copper nanoparticles inside the nanochannels of poly(acrylic acid)-grafted poly(ethylene terephthalate) track-etched membranes

    Science.gov (United States)

    Korolkov, Ilya V.; Güven, Olgun; Mashentseva, Anastassiya A.; Atıcı, Ayse Bakar; Gorin, Yevgeniy G.; Zdorovets, Maxim V.; Taltenov, Abzal A.

    2017-01-01

    Poly(ethylene terephthalate) PET, track-etched membranes (TeMs) with 400 nm average pore size were UV-grafted with poly(acrylic acid) (PAA) after oxidation of inner surfaces by H2O2/UV system. Carboxylate groups of grafted PAA chains were easily complexed with Cu2+ ions in aqueous solutions. These ions were converted into metallic copper nanoparticles (NPs) by radiation-induced reduction of copper ions in aqueous-alcohol solution by gamma rays in the dose range of 46-250 kGy. Copper ions chelating with -COOH groups of PAA chains grafted on PET TeMs form polymer-metal ion complex that prevent the formation of agglomerates during reduction of copper ions to metallic nanoparticles. The detailed analysis by X-Ray diffraction technique (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) confirmed the deposition of copper nanoparticles with the average size of 70 nm on the inner surface of nanochannels of PET TeMs. Samples were also investigated by FTIR, ESR spectroscopies to follow copper ion reduction.

  18. Electron photoemission in plasmonic nanoparticle arrays: analysis of collective resonances and embedding effects

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei V.; Babicheva, Viktoriia; Uskov, Alexander

    2014-01-01

    We theoretically study the characteristics of photoelectron emission in plasmonic nanoparticle arrays. Nanoparticles are partially embedded in a semiconductor, forming Schottky barriers at metal/semiconductor interfaces through which photoelectrons can tunnel from the nanoparticle...... into the semiconductor; photodetection in the infrared range, where photon energies are below the semiconductor band gap (insufficient for band-to-band absorption in semiconductor), is therefore possible. The nanoparticles are arranged in a sparse rectangular lattice so that the wavelength of the lattice......-induced Rayleigh anomalies can overlap the wavelength of the localized surface plasmon resonance of the individual particles, bringing about collective effects from the nanoparticle array. Using full-wave numerical simulations, we analyze the effects of lattice constant, embedding depth, and refractive index step...

  19. Enhanced Deformation of Azobenzene-Modified Liquid Crystal Polymers under Dual Wavelength Exposure: A Photophysical Model

    Science.gov (United States)

    Liu, Ling; Onck, Patrick R.

    2017-08-01

    Azobenzene-embedded liquid crystal polymers can undergo mechanical deformation in response to ultraviolet (UV) light. The natural rodlike trans state azobenzene absorbs UV light and isomerizes to a bentlike cis state, which disturbs the order of the polymer network, leading to an anisotropic deformation. The current consensus is that the magnitude of the photoinduced deformation is related to the statistical building up of molecules in the cis state. However, a recent experimental study [Liu and Broer, Nat. Commun. 6 8334 (2015)., 10.1038/ncomms9334] shows that a drastic (fourfold) increase of the photoinduced deformation can be generated by exposing the samples simultaneously to 365 nm (UV) and 455 nm (visible) light. To elucidate the physical mechanism that drives this increase, we develop a two-light attenuation model and an optomechanical constitutive relation that not only accounts for the statistical accumulation of cis azobenzenes, but also for the dynamic trans-cis-trans oscillatory isomerization process. Our experimentally calibrated model predicts that the optimal single-wavelength exposure is 395 nm light, a pronounced shift towards the visible spectrum. In addition, we identify a range of optimal combinations of two-wavelength lights that generate a favorable response for a given amount of injected energy. Our model provides mechanistic insight into the different (multi)wavelength exposures used in experiments and, at the same time, opens new avenues towards enhanced, multiwavelength optomechanical behavior.

  20. The still unknown azobenzene - Wavelength dependent photoanisotropy in amorphous azobenzene polymers

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Jensen, Ole Bjarlin; Tidemand-Lichtenberg, Peter

    2013-01-01

    We demonstrate a new type of anisotropy in thin films of amorphous azobenzene polymers induced between 570 and 633 nm, where the absorbance in the film is on the order of 0.05. The anisotropy has a pronounced radial contribution. This observation points to an additional mechanism for the alignment...

  1. Shape manipulation of ion irradiated Ag nanoparticles embedded in lithium niobate

    NARCIS (Netherlands)

    Wolf, S.; Rensberg, J.; Johannes, A.; Thomae, R.; Smit, F.; Neveling, R.; Moodley, M.; Bierschenk, T.; Rodriquez, M.; Afra, B.; Hasan, Shakeeb Bin; Rockstuhl, C.; Ridgway, M.; Bharuth-Ram, K.; Ronning, C.

    2016-01-01

    Spherical silver nanoparticles were prepared by means of ion beam synthesis in lithium niobate. The embedded nanoparticles were then irradiated with energetic 84Kr and 197Au ions, resulting in different electronic energy losses between 8.1 and 27.5 keV nm−1 in the top layer of the samples. Due to

  2. Molecular dynamics simulations of the embedding of a nano-particle into a polymer film

    International Nuclear Information System (INIS)

    Ochoa, J G Diaz; Binder, K; Paul, W

    2006-01-01

    In this work we report on molecular dynamics simulations of the embedding process of a nano-particle into a polymeric film as a function of temperature. This process has been employed experimentally in recent years to test for a shift of the glass transition of a material due to the confined film geometry and to test for the existence of a liquid-like layer on top of a glassy polymer film. The embedding process is governed thermodynamically by the prewetting properties of the polymer on the nano-particle. We show that the dynamics of the process depends on the Brownian motion characteristics of the nano-particle in and on the polymer film. It displays large sample to sample variations, suggesting that it is an activated process. On the timescales of the simulation an embedding of the nano-particle is only observed for temperatures above the bulk glass transition temperature of the polymer, agreeing with experimental observations on noble metal clusters of comparable size

  3. Ordered arrays of embedded Ga nanoparticles on patterned silicon substrates

    International Nuclear Information System (INIS)

    Bollani, M; Bietti, S; Sanguinetti, S; Frigeri, C; Chrastina, D; Reyes, K; Smereka, P; Millunchick, J M; Vanacore, G M; Tagliaferri, A; Burghammer, M

    2014-01-01

    We fabricate site-controlled, ordered arrays of embedded Ga nanoparticles on Si, using a combination of substrate patterning and molecular-beam epitaxial growth. The fabrication process consists of two steps. Ga droplets are initially nucleated in an ordered array of inverted pyramidal pits, and then partially crystallized by exposure to an As flux, which promotes the formation of a GaAs shell that seals the Ga nanoparticle within two semiconductor layers. The nanoparticle formation process has been investigated through a combination of extensive chemical and structural characterization and theoretical kinetic Monte Carlo simulations. (papers)

  4. Preparation and optical characteristics of layered perovskite-type lead-bromide-incorporated azobenzene chromophores

    Science.gov (United States)

    Sasai, Ryo; Shinomura, Hisashi

    2013-02-01

    Lead bromide-based layered perovskite powders with azobenzene derivatives were prepared by a homogeneous precipitation method. From the diffuse reflectance (DR) and photoluminescence (PL) spectra of the hybrid powder materials, the present hybrids exhibited sharp absorption and PL peaks originating from excitons produced in the PbBr42- layer. When the present hybrid powder was irradiated with UV light at 350 nm, the absorption band from the trans-azobenzene chromophore, observed around 350 nm, decreased, while the absorption band from the cis-azobenzene chromophore, observed around 450 nm, increased. These results indicate that azobenzene chromophores in the present hybrid materials exhibit reversible photoisomerization. Moreover, it was found that the PL intensity from the exciton also varied due to photoisomerization of the azobenzene chromophores in the present hybrid. Thus, for the first time we succeeded in preparing the azobenzene derivative lead-bromide-based layered perovskite with photochromism before and after UV light irradiation.

  5. Photosensitive Layer-by-Layer Assemblies Containing Azobenzene Groups: Synthesis and Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Uichi Akiba

    2017-10-01

    Full Text Available This review provides an overview of the syntheses of photosensitive layer-by-layer (LbL films and microcapsules modified with azobenzene derivatives and their biomedical applications. Photosensitive LbL films and microcapsules can be prepared by alternate deposition of azobenzene-bearing polymers and counter polymers on the surface of flat substrates and microparticles, respectively. Azobenzene residues in the films and microcapsules exhibit trans-to-cis photoisomerization under UV light, which causes changes in the physical or chemical properties of the LbL assemblies. Therefore, azobenzene-functionalized LbL films and microcapsules have been used for the construction of photosensitive biomedical devices. For instance, cell adhesion on the surface of a solid can be controlled by UV light irradiation by coating the surface with azobenzene-containing LbL films. In another example, the ion permeability of porous materials coated with LbL films can be regulated by UV light irradiation. Furthermore, azobenzene-containing LbL films and microcapsules have been used as carriers for drug delivery systems sensitive to light. UV light irradiation triggers permeability changes in the LbL films and/or decomposition of the microcapsules, which results in the release of encapsulated drugs and proteins.

  6. Preparation and optical characteristics of layered perovskite-type lead-bromide-incorporated azobenzene chromophores

    International Nuclear Information System (INIS)

    Sasai, Ryo; Shinomura, Hisashi

    2013-01-01

    Lead bromide-based layered perovskite powders with azobenzene derivatives were prepared by a homogeneous precipitation method. From the diffuse reflectance (DR) and photoluminescence (PL) spectra of the hybrid powder materials, the present hybrids exhibited sharp absorption and PL peaks originating from excitons produced in the PbBr 4 2− layer. When the present hybrid powder was irradiated with UV light at 350 nm, the absorption band from the trans-azobenzene chromophore, observed around 350 nm, decreased, while the absorption band from the cis-azobenzene chromophore, observed around 450 nm, increased. These results indicate that azobenzene chromophores in the present hybrid materials exhibit reversible photoisomerization. Moreover, it was found that the PL intensity from the exciton also varied due to photoisomerization of the azobenzene chromophores in the present hybrid. Thus, for the first time we succeeded in preparing the azobenzene derivative lead-bromide-based layered perovskite with photochromism before and after UV light irradiation. - Graphical abstract: For the first time, we succeeded in preparing the azobenzene derivative lead-bromide-based layered perovskite with photochromism before and after UV light irradiation. Highlights: ► PbBr-based layered perovskite with azobenezene derivatives could be synthesized by a homogeneous precipitation method. ► Azobenzene derivatives incorporated the present hybrid that exhibited reversible photoisomerization under UV and/or visible light irradiation. ► PL property of the present hybrid could also be varied by photoisomerization.

  7. Enhanced emission of nile red fluorescent nanoparticles embedded in hybrid sol-gel glasses.

    Science.gov (United States)

    Ferrer, Maria L; del Monte, Francisco

    2005-01-13

    Highly fluorescent Nile Red (NR) nanoparticles embedded in a hybrid sol-gel glass are reported. The crystallite growth within the confined system created by the porous hybrid matrix results in NR nanoparticles of averaged dimensions below 36 nm. The preparation process allows for the control of both the conformation adopted by single NR molecules prior to aggregation (e.g., near planar) and the configuration of the aggregates (e.g., oblique with phi architecture which ultimately forms the nanoparticles. The full preservation of the fluorescent configuration of the aggregates in the nanoparticles is confirmed through the application of the exciton theory, and it is responsible for the significant increase of the fluorescence emission intensity (e.g., up to 525- and 70-fold as compared to that obtained for single NR molecules embedded in pure and hybrid silica glasses, respectively).

  8. Azobenzene dye-coupled quadruply hydrogen-bonding modules as colorimetric indicators for supramolecular interactions

    Directory of Open Access Journals (Sweden)

    Yagang Zhang

    2012-04-01

    Full Text Available The facile coupling of azobenzene dyes to the quadruply hydrogen-bonding modules 2,7-diamido-1,8-naphthyridine (DAN and 7-deazaguanine urea (DeUG is described. The coupling of azobenzene dye 2 to mono-amido DAN units 4, 7, and 9 was effected by classic 4-(dimethylaminopyridine (DMAP-catalyzed peptide synthesis with N-(3-dimethylaminopropyl-N’-ethyl carbodiimide hydrochloride (EDC as activating agent, affording the respective amide products 5, 8, and 10 in 60–71% yield. The amide linkage was formed through either the aliphatic or aromatic ester group of 2, allowing both the flexibility and absorption maximum to be tuned. Azobenzene dye 1 was coupled to the DeUG unit 11 by Steglich esterification to afford the product amide 12 in 35% yield. Alternatively, azobenzene dye 16 underwent a room-temperature copper-catalyzed azide–alkyne Huisgen cycloaddition with DeUG alkyne 17 to give triazole 18 in 71% yield. Azobenzene coupled DAN modules 5, 8, and 10 are bright orange–red in color, and azobenzene coupled DeUG modules 12 and 18 are orange–yellow in color. Azobenzene coupled DAN and DeUG modules were successfully used as colorimetric indicators for specific DAN–DeUG and DAN–UPy (2-ureido-4(1H-pyrimidone quadruply hydrogen-bonding interactions.

  9. Photoinduced Reversible Morphological Transformation of Azobenzene-Containing Pseudo-2D Polymers.

    Science.gov (United States)

    Li, Zili; Tang, Miao; Jiang, Chen; Bai, Ruke; Bai, Wei

    2018-05-02

    2D polymer sheets containing azobenzene are successfully prepared by a facile strategy of "2D self-assembly polymerization (2DSP)" via free radical polymerization in solution. A bola amphiphile containing azobenzene as a novel monomer is designed and synthesized. The results indicate that single-layer covalent pseudo-2D polymers on a micrometer scale are obtained after polymerization with vinyl monomers. Moreover, the 2D polymer sheets are highly sensitive to UV light due to incorporation of azobenzene groups into the polymer. Upon alternative irradiation with UV and visible light, the morphological transformation between sheets and rolled-up nanotubes can be achieved based on the reversible trans-to-cis photoisomerization of azobenzene units in the 2D polymer sheets. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Transformation mechanism of n-butyl terminated Si nanoparticles embedded into Si1-xCx nanocomposites mixed with Si nanoparticles and C atoms

    International Nuclear Information System (INIS)

    Shin, J.W.; Oh, D.H.; Kim, T.W.; Cho, W.J.

    2009-01-01

    Bright-field transmission electron microscopy (TEM) images, high-resolution TEM (HRTEM) images, and fast-Fourier transformed electron-diffraction patterns showed that n-butyl terminated Si nanoparticles were aggregated. The formation of Si 1-x C x nanocomposites was mixed with Si nanoparticles and C atoms embedded in a SiO 2 layer due to the diffusion of C atoms from n-butyl termination shells into aggregated Si nanoparticles. Atomic force microscopy (AFM) images showed that the Si 1-x C x nanocomposites mixed with Si nanoparticles and C atoms existed in almost all regions of the SiO 2 layer. The formation mechanism of Si nanoparticles and the transformation mechanism of n-butyl terminated Si nanoparticles embedded into Si 1-x C x nanocomposites mixed with Si nanoparticles and C atoms are described on the basis of the TEM, HRTEM, and AFM results. These results can help to improve the understanding of the formation mechanism of Si nanoparticles.

  11. Compound grating structures in photonic crystals for resonant excitation of azobenzene

    DEFF Research Database (Denmark)

    Jahns, Sabrina; Kallweit, Christine; Adam, Jost

    Photo-switchable molecules such as azobenzene are of high interest for “smart” surfaces. Such “smart” surfaces respond to external light excitation by changing their macroscopic properties. The absorbance of light on a single normal path through a layer of azobenzene immobilized on a surface......-difference time-domain (FDTD) calculations for determination of resonance positions and electric field strengths in compound grating structures. By superimposing two single-period gratings a photonic crystal can be designed supporting multiple guided mode resonances suitable to switch azobenzenes between...

  12. Structural characterization of copolymer embedded magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nedelcu, G.G., E-mail: ggnedelcu@yahoo.com [Faculty of Physics, University “Alexandru Ioan Cuza”, Carol I Bulevard, Nr.11, 700506 Iasi (Romania); Nastro, A.; Filippelli, L. [Department of Chemistry and Chemical Technology, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Cosenza (Italy); Cazacu, M.; Iacob, M. [Institute of Macromolecular Chemistry “Petru Poni”, Aleea Grigore Ghica Voda, nr. 41A, 700487 Iasi (Romania); Rossi, C. Oliviero [Department of Chemistry and Chemical Technology, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Cosenza (Italy); Popa, A.; Toloman, D. [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Str., 400293 Cluj-Napoca 5 (Romania); Dobromir, M.; Iacomi, F. [Faculty of Physics, University “Alexandru Ioan Cuza”, Carol I Bulevard, Nr.11, 700506 Iasi (Romania)

    2015-10-15

    Highlights: • The emulsion polymerization method was used to synthesize three samples of poly(methyl methacrylate-co-acrylic acid) coated magnetite obtained before through co-precipitation technique. • Poly(methyl methacrylate-co-acrylic acid) coated magnetite nanoparticles were prepared having spherical shape and dimensions between 13 and 16 nm without agglomerations. • Fourier transform infrared spectra have found that the magnetite was pure and spectral characteristics of PMMA-co-AAc were present. • The electron spin resonance spectra revealed that interactions between nanoparticles are very weak due to the fact that the nanoparticles have been individually embedded in polymer. • The resonance field values as function of temperature demonstrate that the presence of polymer has not modified essentially its magnetic properties, except that at temperatures below 140 K there was a change due to decreasing of the magnetic anisotropy. - Abstract: Small magnetic nanoparticles (Fe{sub 3}O{sub 4}) were synthesized by co-precipitation and coated by emulsion polymerization with poly(methyl methacrylate-co-acrylic acid) (PMMA-co-AAc) to create surface functional groups that can attach drug molecules and other biomolecules. The coated and uncoated magnetite nanoparticles were stored for two years in normal closed ships and than characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, vibrating sample magnetometry, and electron paramagnetic resonance spectroscopy. The solid phase transformation of magnetite to maghemite, as well as an increase in particle size were evidenced for the uncoated nanoparticles. The coated nanoparticles preserved their magnetite structure and magnetic properties. The influences of monomers and surfactant layers on interactions between the magnetic nanoparticles evidenced that the thickness of the polymer has a significant effect on magnetic properties.

  13. The Roll of NaPSS Surfactant on the Ceria Nanoparticles Embedding in Polypyrrole Films

    Directory of Open Access Journals (Sweden)

    Simona Popescu

    2016-01-01

    Full Text Available Cerium oxide nanoparticles (CeO2 NPs in crystalline form have been synthesized by a coprecipitation method. CeO2 nanoparticles were then embedded in polypyrrole (PPy films during the electropolymerization of pyrrole (Py on titanium substrate. The influence of poly(sodium 4-styrenesulfonate (NaPSS surfactant used during polymerization on the embedding of CeO2 NPs in polypyrrole films was investigated. The new films were characterized in terms of surface analysis, wettability, electrochemical behaviour, and antibacterial effect. The surface and electrochemical characterization revealed the role of surfactant on PPy doping process cerium oxide incorporation. In the presence of surfactant, CeO2 NPs are preferentially embedded in the polymeric film while, without surfactant, the ceria nanoparticles are quasiuniformly spread as agglomerates onto polymeric films. The antibacterial effect of studied PPy films was substantially improved in the presence of cerium oxide and depends by the polymerization conditions.

  14. Embedded vertical dual of silver nanoparticles for improved ZnO/Si heterojunction solar cells

    Science.gov (United States)

    Shokeen, Poonam; Jain, Amit; Kapoor, Avinashi

    2017-10-01

    A ZnO/Si heterojunction solar cell is studied with plasmonic nanoparticles embedded in the active layer. Two layers of silver nanoparticles are embedded in the ZnO layer. The effect of various parameters such as vertical-interparticle distance, horizontal-interparticle distance, relative dimensions of nanoparticles, and order of particle diameters are discussed in detail. Finite-difference time-domain studies suggest that particle dimensions of the top layer of silver nanoparticles should be less than the dimensions of the underneath layer of silver nanoparticles. The resulting structure acquires the benefits of each layer and improves the device performance over a broad spectrum. The dielectric separation of plasmonic layers is observed to be an important factor in favorable plasmonic response. Electric field diagrams are used to study the scattering of an incident field by proposed structure. Results are encouraging and suggest more concerted studies of multilayer plasmonic structures.

  15. Strain Distribution of Au and Ag Nanoparticles Embedded in Al2O3 Thin Film

    Directory of Open Access Journals (Sweden)

    Honghua Huang

    2014-01-01

    Full Text Available Au and Ag nanoparticles embedded in amorphous Al2O3 matrix are fabricated by the pulsed laser deposition (PLD method and rapid thermal annealing (RTA technique, which are confirmed by the experimental high-resolution transmission electron microscope (HRTEM results, respectively. The strain distribution of Au and Ag nanoparticles embedded in the Al2O3 matrix is investigated by the finite-element (FE calculations. The simulation results clearly indicate that both the Au and Ag nanoparticles incur compressive strain by the Al2O3 matrix. However, the compressive strain existing on the Au nanoparticle is much weaker than that on the Ag nanoparticle. This phenomenon can be attributed to the reason that Young’s modulus of Au is larger than that of Ag. This different strain distribution of Au and Ag nanoparticles in the same host matrix may have a significant influence on the technological potential applications of the Au-Ag alloy nanoparticles.

  16. Irradiation of polyacrylate compositions in air

    International Nuclear Information System (INIS)

    Wendling, L.A.; Covington, J.B.

    1983-01-01

    The invention relates to processes for polymerizing polyacrylate functional compositions and in particular to processes for the curing in air of certain polyacrylate functional materials by irradiation

  17. Magnetite nanoparticles embedded in biodegradable porous silicon

    International Nuclear Information System (INIS)

    Granitzer, P.; Rumpf, K.; Roca, A.G.; Morales, M.P.; Poelt, P.; Albu, M.

    2010-01-01

    Magnetite nanoparticles, which are coated with oleic acid in a hexane solution and exhibit an average diameter of 7.7 nm, were embedded in a porous silicon (PS) matrix by immersion under defined parameters (e.g. concentration, temperature, time). The porous silicon matrix is prepared by anodization of a highly n-doped silicon wafer in an aqueous HF-solution. Magnetic characterization of the samples has been performed by SQUID-magnetometry. The superparamagnetic behaviour of the magnetite nanoparticles is represented by temperature-dependent magnetization measurements. Zero field (ZFC)/field cooled (FC) experiments indicate magnetic interactions between the particles. For the infiltration into the PS-templates different concentrations of the magnetite nanoparticles are used and magnetization measurements are performed in respect with magnetic interactions between the particles. The achieved porous silicon/magnetite specimens are not only interesting due to their transition between superparamagnetic and ferromagnetic behaviour, and thus for magnetic applications but also because of the non-toxicity of both materials giving the opportunity to employ the system in medical applications as drug delivery or in medical diagnostics.

  18. Physical processes in azobenzene polymers on irradiation with polarized light

    DEFF Research Database (Denmark)

    Holme, N.C.R.; Nikolova, L.; Norris, T.B.

    1999-01-01

    Azobenzenes can serve as model compounds for the study of trans-cis isomerization in more complex molecules. We have performed time-resolved spectroscopy in solutions containing free azobenzene chromophores and diols with a view to obtaining the energy levels and lifetimes of the excited states....... A transition route based on experimental results for the theoretically calculated energy level scheme is proposed. Physical observations of surface relief in thin films of azobenzene polymers when irradiated with polarized light are reported. These include two beam polarization holographic observations...... and single beam transmission measurements through a mask, followed by atomic force microscope and profiler investigations. It is concluded that none of the prevalent theories can explain all the observed facts....

  19. Cotunneling enhancement of magnetoresistance in double magnetic tunnel junctions with embedded superparamagnetic NiFe nanoparticles

    International Nuclear Information System (INIS)

    Dempsey, K.J.; Arena, D.; Hindmarch, A.T.; Wei, H.X.; Qin, Q.H.; Wen, Z.C.; Wang, W.X.; Vallejo-Fernandez, G.; Han, X.F.; Marrows, C.H.

    2010-01-01

    Temperature and bias voltage-dependent transport characteristics are presented for double magnetic tunnel junctions (DMTJs) with self-assembled NiFe nanoparticles embedded between insulating alumina barriers. The junctions with embedded nanoparticles are compared to junctions with a single barrier of comparable size and growth conditions. The embedded particles are characterized using x-ray absorption spectroscopy, transmission electron microscopy, and magnetometry techniques, showing that they are unoxidized and remain superparamagnetic to liquid helium temperatures. The tunneling magnetoresistance (TMR) for the DMTJs is lower than the control samples, however, for the DMTJs an enhancement in TMR is seen in the Coulomb blockade region. Fitting the transport data in this region supports the theory that cotunneling is the dominant electron transport process within the Coulomb blockade region, sequential tunneling being suppressed. We therefore see an enhanced TMR attributed to the change in the tunneling process due to the interplay of the Coulomb blockade and spin-dependent tunneling through superparamagnetic nanoparticles, and develop a simple model to quantify the effect, based on the fact that our nanoparticles will appear blocked when measured on femtosecond tunneling time scales.

  20. Azobenzene versus 3,3',5,5'-tetra-tert-butyl-azobenzene (TBA) at Au(111): characterizing the role of spacer groups.

    Science.gov (United States)

    McNellis, Erik R; Bronner, Christopher; Meyer, Jörg; Weinelt, Martin; Tegeder, Petra; Reuter, Karsten

    2010-06-28

    We present large-scale density-functional theory (DFT) calculations and temperature programmed desorption measurements to characterize the structural, energetic and vibrational properties of the functionalized molecular switch 3,3',5,5'-tetra-tert-butyl-azobenzene (TBA) adsorbed at Au(111). Particular emphasis is placed on exploring the accuracy of the semi-empirical dispersion correction approach to semi-local DFT (DFT-D) in accounting for the substantial van der Waals component in the surface bonding. In line with previous findings for benzene and pure azobenzene at coinage metal surfaces, DFT-D significantly overbinds the molecule, but seems to yield an accurate adsorption geometry as far as can be judged from the experimental data. Comparing the trans adsorption geometry of TBA and azobenzene at Au(111) reveals a remarkable insensitivity of the structural and vibrational properties of the -N[double bond, length as m-dash]N- moiety. This questions the established view of the role of the bulky tert-butyl-spacer groups for the switching of TBA in terms of a mere geometric decoupling of the photochemically active diazo-bridge from the gold substrate.

  1. Modification of nucleic acids by azobenzene derivatives and their applications in biotechnology and nanotechnology.

    Science.gov (United States)

    Li, Jing; Wang, Xingyu; Liang, Xingguo

    2014-12-01

    Azobenzene has been widely used as a photoregulator due to its reversible photoisomerization, large structural change between E and Z isomers, high photoisomerization yield, and high chemical stability. On the other hand, some azobenzene derivatives can be used as universal quenchers for many fluorophores. Nucleic acid is a good candidate to be modified because it is not only the template of gene expression but also widely used for building well-organized nanostructures and nanodevices. Because the size and polarity distribution of the azobenzene molecule is similar to a nucleobase pair, the introduction of azobenzene into nucleic acids has been shown to be an ingenious molecular design for constructing light-switching biosystems or light-driven nanomachines. Here we review recent advances in azobenzene-modified nucleic acids and their applications for artificial regulation of gene expression and enzymatic reactions, construction of photoresponsive nanostructures and nanodevices, molecular beacons, as well as obtaining structural information using the introduced azobenzene as an internal probe. In particular, nucleic acids bearing multiple azobenzenes can be used as a novel artificial nanomaterial with merits of high sequence specificity, regular duplex structure, and high photoregulation efficiency. The combination of functional groups with biomolecules may further advance the development of chemical biotechnology and biomolecular engineering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Optically induced surface relief phenomena in azobenzene polymers

    DEFF Research Database (Denmark)

    Holme, NCR; Nikolova, Ludmila; Hvilsted, Søren

    1999-01-01

    Azobenzene polymers and oligomers show intriguing surface relief features when irradiated with polarized laser light. We show through atomic force microscopic investigation of side-chain azobenzene polymers after irradiation through an amplitude mask that large peaks or trenches result depending...... on the architecture of the polymer. Extensive mass transport over long distances has been observed, paving the way for easy replication of nanostructures. We also show that it is possible to store microscopic images as topographic features in the polymers just through polarized light irradiation. (C) 1999 American...... Institute of Physics....

  3. Atomic dynamics of tin nanoparticles embedded into porous glass

    Energy Technology Data Exchange (ETDEWEB)

    Parshin, P. P.; Zemlyanov, M. G., E-mail: zeml@isssph.kiae.ru; Panova, G. Kh.; Shikov, A. A. [Russian Research Centre Kurchatov Institute (Russian Federation); Kumzerov, Yu. A.; Naberezhnov, A. A. [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation); Sergueev, I.; Crichton, W. [European Synchrotron Radiation Facility (France); Chumakov, A. I. [Russian Research Centre Kurchatov Institute (Russian Federation); Rueffer, R. [European Synchrotron Radiation Facility (France)

    2012-03-15

    The method of resonant nuclear inelastic absorption of synchrotron radiation has been used to study the phonon spectrum for tin nanoparticles (with a natural isotope mixture) embedded into a porous glassy (silica) matrix with an average pore diameter of 7 nm in comparison to the analogous spectrum of bulk tin enriched with {sup 119}Sn isotope. Differences between the spectra have been observed, which are related to both the dimensional effects and specific structural features of the porous glass-tin nanocomposite. Peculiarities in the dynamics of tin atoms embedded into nanopores of glass are interpreted in terms of a qualitative model of the nanocomposite structure.

  4. Atomic dynamics of tin nanoparticles embedded into porous glass

    International Nuclear Information System (INIS)

    Parshin, P. P.; Zemlyanov, M. G.; Panova, G. Kh.; Shikov, A. A.; Kumzerov, Yu. A.; Naberezhnov, A. A.; Sergueev, I.; Crichton, W.; Chumakov, A. I.; Rüffer, R.

    2012-01-01

    The method of resonant nuclear inelastic absorption of synchrotron radiation has been used to study the phonon spectrum for tin nanoparticles (with a natural isotope mixture) embedded into a porous glassy (silica) matrix with an average pore diameter of 7 nm in comparison to the analogous spectrum of bulk tin enriched with 119 Sn isotope. Differences between the spectra have been observed, which are related to both the dimensional effects and specific structural features of the porous glass-tin nanocomposite. Peculiarities in the dynamics of tin atoms embedded into nanopores of glass are interpreted in terms of a qualitative model of the nanocomposite structure.

  5. DNA compaction by azobenzene-containing surfactant

    International Nuclear Information System (INIS)

    Zakrevskyy, Yuriy; Kopyshev, Alexey; Lomadze, Nino; Santer, Svetlana; Morozova, Elena; Lysyakova, Ludmila; Kasyanenko, Nina

    2011-01-01

    We report on the interaction of cationic azobenzene-containing surfactant with DNA investigated by absorption and fluorescence spectroscopy, dynamic light scattering, and atomic force microscopy. The properties of the surfactant can be controlled with light by reversible switching of the azobenzene unit, incorporated into the surfactant tail, between a hydrophobic trans (visible irradiation) and a hydrophilic cis (UV irradiation) configuration. The influence of the trans-cis isomerization of the azobenzene on the compaction process of DNA molecules and the role of both isomers in the formation and colloidal stability of DNA-surfactant complexes is discussed. It is shown that the trans isomer plays a major role in the DNA compaction process. The influence of the cis isomer on the DNA coil configuration is rather small. The construction of a phase diagram of the DNA concentration versus surfactant/DNA charge ratio allows distancing between three major phases: colloidally stable and unstable compacted globules, and extended coil conformation. There is a critical concentration of DNA above which the compacted globules can be hindered from aggregation and precipitation by adding an appropriate amount of the surfactant in the trans configuration. This is because of the compensation of hydrophobicity of the globules with an increasing amount of the surfactant. Below the critical DNA concentration, the compacted globules are colloidally stable and can be reversibly transferred with light to an extended coil state.

  6. Understanding the Thermal Stability of Silver Nanoparticles Embedded in a-Si

    DEFF Research Database (Denmark)

    Gould, Anna L.; Kadkhodazadeh, Shima; Wagner, Jakob Birkedal

    2015-01-01

    properties of the amorphous-Si environment are important as well as incomplete packing of the Ag nanoparticle surfaces. These factors affect the melting temperature, causing some parts of the Ag nanoparticles to dissolve preferentially and other areas to remain stable at high temperatures.......The inclusion of silver plasmonic nanoparticles in silicon is highly relevant for photovoltaics as it may enhance optical absorption. We report an investigation of the stability of such pristine silver nanoparticles embedded in a-Si upon heat treatment. We have investigated the morphological...... changes via in situ and ex situ high-resolution and high-angle annular dark-field scanning transmission electron microscopy (HRTEM and HAADF STEM). The melting of Ag particles and subsequent interdiffusion of Ag and Si atoms are strongly related to the size of the Ag nanoparticles, as well as the presence...

  7. Microheater based on magnetic nanoparticle embedded PDMS

    International Nuclear Information System (INIS)

    Kim, Jeong Ah; Lee, Seung Hwan; Park, Tai Hyun; Park, Hongsuk; Kim, Jong Hyo

    2010-01-01

    A microheater was established by embedding magnetic nanoparticles into PDMS (MNP-PDMS). MNP-PDMS generated heat under an AC magnetic field and the temperature was controlled by varying the magnetic particle content and the magnetic field intensity. In this study, the MNP-PDMS chip was demonstrated to amplify the target DNA (732 bp) with > 90% efficiency compared to the conventional PCR thermocycler, and exhibited good performance in regards to temperature control. This system holds great promise for reliably controlling the temperature of thermal processes on an integrated microchip platform for biochemical applications.

  8. Microheater based on magnetic nanoparticle embedded PDMS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Ah; Lee, Seung Hwan; Park, Tai Hyun [School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Park, Hongsuk [Interdisciplinary Program of Bioengineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Kim, Jong Hyo, E-mail: thpark@snu.ac.kr [Department of Radiology, College of Medicine, Seoul National University, Seoul, 110-744 (Korea, Republic of)

    2010-04-23

    A microheater was established by embedding magnetic nanoparticles into PDMS (MNP-PDMS). MNP-PDMS generated heat under an AC magnetic field and the temperature was controlled by varying the magnetic particle content and the magnetic field intensity. In this study, the MNP-PDMS chip was demonstrated to amplify the target DNA (732 bp) with > 90% efficiency compared to the conventional PCR thermocycler, and exhibited good performance in regards to temperature control. This system holds great promise for reliably controlling the temperature of thermal processes on an integrated microchip platform for biochemical applications.

  9. Bendable solid-state supercapacitors with Au nanoparticle-embedded graphene hydrogel films

    Science.gov (United States)

    Yang, Kyungwhan; Cho, Kyoungah; Yoon, Dae Sung; Kim, Sangsig

    2017-01-01

    In this study, we fabricate bendable solid-state supercapacitors with Au nanoparticle (NP)-embedded graphene hydrogel (GH) electrodes and investigate the influence of the Au NP embedment on the internal resistance and capacitive performance. Embedding the Au NPs into the GH electrodes results in a decrease of the internal resistance from 35 to 21 Ω, and a threefold reduction of the IR drop at a current density of 5 A/g when compared with GH electrodes without Au NPs. The Au NP-embedded GH supercapacitors (NP-GH SCs) exhibit excellent capacitive performances, with large specific capacitance (135 F/g) and high energy density (15.2 W·h/kg). Moreover, the NP-GH SCs exhibit comparable areal capacitance (168 mF/cm2) and operate under tensile/compressive bending. PMID:28074865

  10. MIL-100 derived nitrogen-embodied carbon shells embedded with iron nanoparticles

    Science.gov (United States)

    Mao, Chengyu; Kong, Aiguo; Wang, Yuan; Bu, Xianhui; Feng, Pingyun

    2015-06-01

    The use of metal-organic frameworks (MOFs) as templates and precursors to synthesize new carbon materials with controllable morphology and pre-selected heteroatom doping holds promise for applications as efficient non-precious metal catalysts. Here, we report a facile pyrolysis pathway to convert MIL-100 into nitrogen-doped carbon shells encapsulating Fe nanoparticles in a comparative study involving multiple selected nitrogen sources. The hierarchical porous architecture, embedded Fe nanoparticles, and nitrogen decoration endow this composite with a superior oxygen reduction activity. Furthermore, the excellent durability and high methanol tolerance even outperform the commercial Pt-C catalyst.The use of metal-organic frameworks (MOFs) as templates and precursors to synthesize new carbon materials with controllable morphology and pre-selected heteroatom doping holds promise for applications as efficient non-precious metal catalysts. Here, we report a facile pyrolysis pathway to convert MIL-100 into nitrogen-doped carbon shells encapsulating Fe nanoparticles in a comparative study involving multiple selected nitrogen sources. The hierarchical porous architecture, embedded Fe nanoparticles, and nitrogen decoration endow this composite with a superior oxygen reduction activity. Furthermore, the excellent durability and high methanol tolerance even outperform the commercial Pt-C catalyst. Electronic supplementary information (ESI) available: Material synthesis and elemental analysis, electrochemistry measurements, and additional figures. See DOI: 10.1039/c5nr02346g

  11. Polyacrylate/nanosilica causes pleural and pericardial effusion, and pulmonary fibrosis and granuloma in rats similar to those observed in exposed workers.

    Science.gov (United States)

    Zhu, Xiaoli; Cao, Wen; Chang, Bing; Zhang, Linyuan; Qiao, Peihuan; Li, Xue; Si, Lifang; Niu, Yingmei; Song, Yuguo

    2016-01-01

    Nanomaterials offer great benefit as well as potential damage to humans. Workers exposed to polyacrylate coatings have pleural effusion, pericardial effusion, and pulmonary fibrosis and granuloma, which are thought to be related to the high exposure to nanomaterials in the coatings. The study aimed to determine whether polyacrylate/silica nanoparticles cause similar toxicity in rats, as observed in exposed workers. Ninety male Wistar rats were randomly divided into five groups with 18 rats in each group. The groups included the saline control group, another control group of polyacrylate only, and low-, intermediate-, and high-dose groups of polyacrylate/nanosilica with concentrations of 3.125, 6.25, and 12.5 mg/kg. Seventy-five rats for the 1-week study were terminated for scheduled necropsy at 24 hours, 3 days, and 7 days postintratracheal instillation. The remaining 15 rats (three males/group) had repeated ultrasound and chest computed tomography examinations in a 2-week study to observe the pleural and pericardial effusion and pulmonary toxicity. We found that polyacrylate/nanosilica resulted in pleural and pericardial effusions, where nanosilica was isolated and detected. Effusion occurred on day 3 and day 5 post-administration of nanocomposites in the 6.25 and 12.5 mg/kg groups, it gradually rose to a maximum on days 7-10 and then slowly decreased and disappeared on day 14. With an increase in polyacrylate/nanosilica concentrations, pleural effusion increased, as shown by ultrasonographic qualitative observations. Pulmonary fibrosis and granuloma were also observed in the high-dose polyacrylate/nanosilica group. Our study shows that polyacrylate/nanosilica results in specific toxicity presenting as pleural and pericardial effusion, as well as pulmonary fibrosis and granuloma, which are almost identical to results in reported patients. These results indicate the urgent need and importance of nanosafety and awareness of toxicity of polyacrylate/nanosilica.

  12. Polyacrylate/nanosilica causes pleural and pericardial effusion, and pulmonary fibrosis and granuloma in rats similar to those observed in exposed workers

    Science.gov (United States)

    Zhu, Xiaoli; Cao, Wen; Chang, Bing; Zhang, Linyuan; Qiao, Peihuan; Li, Xue; Si, Lifang; Niu, Yingmei; Song, Yuguo

    2016-01-01

    Nanomaterials offer great benefit as well as potential damage to humans. Workers exposed to polyacrylate coatings have pleural effusion, pericardial effusion, and pulmonary fibrosis and granuloma, which are thought to be related to the high exposure to nanomaterials in the coatings. The study aimed to determine whether polyacrylate/silica nanoparticles cause similar toxicity in rats, as observed in exposed workers. Ninety male Wistar rats were randomly divided into five groups with 18 rats in each group. The groups included the saline control group, another control group of polyacrylate only, and low-, intermediate-, and high-dose groups of polyacrylate/nanosilica with concentrations of 3.125, 6.25, and 12.5 mg/kg. Seventy-five rats for the 1-week study were terminated for scheduled necropsy at 24 hours, 3 days, and 7 days postintratracheal instillation. The remaining 15 rats (three males/group) had repeated ultrasound and chest computed tomography examinations in a 2-week study to observe the pleural and pericardial effusion and pulmonary toxicity. We found that polyacrylate/nanosilica resulted in pleural and pericardial effusions, where nanosilica was isolated and detected. Effusion occurred on day 3 and day 5 post-administration of nanocomposites in the 6.25 and 12.5 mg/kg groups, it gradually rose to a maximum on days 7–10 and then slowly decreased and disappeared on day 14. With an increase in polyacrylate/nanosilica concentrations, pleural effusion increased, as shown by ultrasonographic qualitative observations. Pulmonary fibrosis and granuloma were also observed in the high-dose polyacrylate/nanosilica group. Our study shows that polyacrylate/nanosilica results in specific toxicity presenting as pleural and pericardial effusion, as well as pulmonary fibrosis and granuloma, which are almost identical to results in reported patients. These results indicate the urgent need and importance of nanosafety and awareness of toxicity of polyacrylate

  13. Polarisation-sensitive optical elements in azobenzene polyesters and peptides

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Dam-Hansen, Carsten; Berg, Rolf Henrik

    2006-01-01

    In this article, we describe fabrication of polarisation holographic optical elements in azobenzene polyesters. Both liquid crystalline and amorphous side-chain polyesters have been utilised. Diffractive optical elements such as lenses and gratings that are sensitive to the polarisation...... of the incident light have been fabricated with polarisation holography. Computer-generated optical elements and patterns have also been written with a single polarised laser beam. Recording of polarisation defects enabling easy visualisation is also shown to be feasible in azobenzene polyesters....

  14. Light sensitive polymer obtained by dispersion of azo-functionalized POSS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Miniewicz, A., E-mail: andrzej.miniewicz@pwr.edu.pl [Advanced Materials Engineering and Modelling, Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Tomkowicz, M.; Karpinski, P.; Sznitko, L. [Advanced Materials Engineering and Modelling, Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Mossety-Leszczak, B. [Faculty of Chemistry, Rzeszow University of Technology, Al. Powstancow Warszawy 12, 35-959 Rzeszow (Poland); Dutkiewicz, M. [Faculty of Chemistry, Adam Mickiewicz University of Poznan, Umultowska 89 B, 61-614 Poznan (Poland)

    2015-07-29

    Highlights: • Nanocomposite material PMMA containing azo-functionalized POSS has been prepared. • Surface topographies of prepared films are porous and dependent on azo-POSS content. • Photo-induced optical anisotropies both static and dynamic have been characterized. - Abstract: Hybrid inorganic–organic nanoparticles based on cubic siloxane cage (RSiO{sub 3/2}){sub 8}, known as polyhedral oligosilsesquioxane (POSS), have been functionalized by eight groups of azo-benzene mesogens and dispersed in poly(methyl methacrylate) PMMA matrix. Presence of azo-benzene units adds an important light-driven functionality to the system due to their photoisomerization resulting in refractive index and/or absorption changes of the whole system. The polymer films containing various concentrations of azo-POSS nanoparticles show remarkable changes of surface morphology being either transparent (at low POSS concentration) or highly scattering (at high POSS concentration) for visible light. Surface structures were examined by optical microscopy as well as by atomic force microscopy (AFM). Results of photoinduced alignment are discussed in the framework of light-induced modification of the aliphatic chains containing azo-benzene photoisomerizing moieties and self-organization process.

  15. Light sensitive polymer obtained by dispersion of azo-functionalized POSS nanoparticles

    International Nuclear Information System (INIS)

    Miniewicz, A.; Tomkowicz, M.; Karpinski, P.; Sznitko, L.; Mossety-Leszczak, B.; Dutkiewicz, M.

    2015-01-01

    Highlights: • Nanocomposite material PMMA containing azo-functionalized POSS has been prepared. • Surface topographies of prepared films are porous and dependent on azo-POSS content. • Photo-induced optical anisotropies both static and dynamic have been characterized. - Abstract: Hybrid inorganic–organic nanoparticles based on cubic siloxane cage (RSiO 3/2 ) 8 , known as polyhedral oligosilsesquioxane (POSS), have been functionalized by eight groups of azo-benzene mesogens and dispersed in poly(methyl methacrylate) PMMA matrix. Presence of azo-benzene units adds an important light-driven functionality to the system due to their photoisomerization resulting in refractive index and/or absorption changes of the whole system. The polymer films containing various concentrations of azo-POSS nanoparticles show remarkable changes of surface morphology being either transparent (at low POSS concentration) or highly scattering (at high POSS concentration) for visible light. Surface structures were examined by optical microscopy as well as by atomic force microscopy (AFM). Results of photoinduced alignment are discussed in the framework of light-induced modification of the aliphatic chains containing azo-benzene photoisomerizing moieties and self-organization process

  16. Light trapping in a-Si/c-Si heterojunction solar cells by embedded ITO nanoparticles at rear surface

    Science.gov (United States)

    Dhar, Sukanta; Mandal, Sourav; Mitra, Suchismita; Ghosh, Hemanta; Mukherjee, Sampad; Banerjee, Chandan; Saha, Hiranmoy; Barua, A. K.

    2017-12-01

    The advantages of the amorphous silicon (a-Si)/crystalline silicon (c-Si) hetero junction technology are low temperature (oxide (ITO) nanoparticles embedded in amorphous silicon material at the rear side of the crystalline wafer. The nanoparticles were embedded in silicon to have higher scattering efficiency, as has been established by simulation studies. It has been shown that significant photocurrent enhancements (32.8 mA cm-2 to 35.1 mA cm-2) are achieved because of high scattering and coupling efficiency of the embedded nanoparticles into the silicon device, leading to an increase in efficiency from 13.74% to 15.22%. In addition, we have observed a small increase in open circuit voltage. This may be due to the surface passivation during the ITO nanoparticle formation with hydrogen plasma treatment. We also support our experimental results by simulation, with the help of a commercial finite-difference time-domain (FDTD) software solution.

  17. The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer

    KAUST Repository

    Lee, Jung-Yong

    2010-04-29

    We analyze the enhancement in optical absorption of an absorbing medium when spherical metal nanoparticles are embedded in it. Our analysis uses generalized Mie theory to calculate the absorbed optical power as a function of the distance from the metal nanoparticle. This analysis is used to evaluate the potential of enhancing optical absorption in thin-film solar cells by embedding spherical metal nanoparticles. We consider the trade-off between maximizing overall optical absorption and ensuring that a large fraction of the incident optical power is dissipated in the absorbing host medium rather than in the metal nanoparticle. We show that enhanced optical absorption results from strong scattering by the metal nanoparticle which locally enhances the optical electric fields. We also discuss the effect of a thin dielectric encapsulation of the metal nanoparticles. ©2010 Optical Society of America.

  18. The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer

    KAUST Repository

    Lee, Jung-Yong; Peumans, Peter

    2010-01-01

    We analyze the enhancement in optical absorption of an absorbing medium when spherical metal nanoparticles are embedded in it. Our analysis uses generalized Mie theory to calculate the absorbed optical power as a function of the distance from the metal nanoparticle. This analysis is used to evaluate the potential of enhancing optical absorption in thin-film solar cells by embedding spherical metal nanoparticles. We consider the trade-off between maximizing overall optical absorption and ensuring that a large fraction of the incident optical power is dissipated in the absorbing host medium rather than in the metal nanoparticle. We show that enhanced optical absorption results from strong scattering by the metal nanoparticle which locally enhances the optical electric fields. We also discuss the effect of a thin dielectric encapsulation of the metal nanoparticles. ©2010 Optical Society of America.

  19. Self-Driven Bioelectrochemical Mineralization of Azobenzene by Coupling Cathodic Reduction with Anodic Intermediate Oxidation

    International Nuclear Information System (INIS)

    Liu, Rong-Hua; Li, Wen-Wei; Sheng, Guo-Ping; Tong, Zhong-Hua; Lam, Michael Hon-Wah; Yu, Han-Qing

    2015-01-01

    Highlights: • Azobenzene was reduced to aniline at the cathode of an acetate-fueled MFC. • Aniline was degraded at the bioanode of a single-chamber MFC. • Cathodic reduction of azobenzene was coupled with anodic oxidation of aniline. • Self-driven, complete mineralization of azobenzene in an MFC was accomplished. - Abstract: Bioelectrochemical systems have been intensively studied as a promising technology for wastewater treatment and environment remediation. Coupling of the anodic and cathodic electrochemical reactions allows an enhanced degradation of recalcitrant organics, but external power supply is usually needed to overcome the thermodynamic barrier. In this work, we report a self-driven degradation of azobenzene in a microbial fuel cell (MFC), where the cathodic reduction of azobenzene was effectively coupled with the anodic oxidation of its reduction degradation intermediate (i.e., aniline). The anodic degradation rate of aniline, as the sole carbon source, was significantly higher than that under open-circuit conditions, suggesting a considerable bioelectrochemical oxidation of aniline. Output voltages up to 8 mV were obtained in the MFC. However, a shift of cathodic electron acceptor from oxygen to azobenzene resulted in a decreased aniline degradation rate and output voltage. The present work may provide valuable implications for development of sustainable bioelectrochemical technologies for environmental remediation

  20. Silver nanoparticles embedded in amine-functionalized silicate sol–gel network assembly for sensing cysteine, adenosine and NADH

    International Nuclear Information System (INIS)

    Maduraiveeran, Govindhan; Ramaraj, Ramasamy

    2011-01-01

    Silver nanoparticles embedded in amine-functionalized silicate sol–gel network were synthesized and used for sensing biomolecules such as cysteine, adenosine, and β-nicotinamide adenine dinucleotide (NADH). The sensing of these biomolecules by the assembly of silver nanoparticles was triggered by the optical response of the surface plasmon resonance (SPR) of the silver nanoparticles. The optical sensor exhibited the lowest detection limit (LOD) of 5, 20, and 5 μM for cysteine, adenosine, and NADH, respectively. The sensing of biomolecules in the micromolar range by using the amine-functionalized silicate sol–gel embedded silver nanoparticles was studied in the presence of interference molecules like uridine, glycine, guanine, and guanosine. Thus, the present approach might open up a new avenue for the development of silver nanoparticles-based optical sensor devices for biomolecules.

  1. Improvement of n-ZnO/p-Si photodiodes by embedding of silver nanoparticles

    International Nuclear Information System (INIS)

    Hu, Zhan-Shuo; Hung, Fei-Yi; Chang, Shoou-Jinn; Chen, Kuan-Jen; Tseng, Yi-Wei; Huang, Bohr-Ran; Lin, Bo-Cheng; Chou, Wei-Yang; Chang, Jay

    2011-01-01

    The photo-current of n-ZnO/p-Si heterojunction photodiodes was improved by embedding Ag nanoparticles in the interface (ZnO/nano-P Ag /p-Si), and the ratio between photo- and dark-current increased by about three orders more than that of a n-ZnO/p-Si specimen. The improvement in the photo-current resulted from the light scattering of embedded Ag nanoparticles. The I–V curve of n-ZnO/p-Si degraded after thermal treatment (A-ZnO/p-Si) because the silicon robbed the oxygen from ZnO to form amorphous silicon dioxide and left an oxygen vacancy. Notably, the properties of ZnO/nano-P Ag /p-Si were better in the time-dependent photoresponse under 10 V bias. Ag nanoparticles (15–20 nm) scattered the UV light randomly and increased the probability for the absorption of ZnO to enhance the properties of the photodiode.

  2. Quantum theory and experimental studies of absorption spectra and photoisomerization of azobenzene polymers

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm; Ramanujam, P.S.; Johansen, P.M.

    1998-01-01

    The microscopic properties of azobenzene chromophores are important for a correct description of optical storage systems based on photoinduced anisotropy in azobenzene polymers. A quantum model of these properties is presented and verified by comparison to experimental absorption spectra for trans...

  3. Light intensity dependent optical rotation in azobenzene polymers

    Science.gov (United States)

    Ivanov, M.; Ilieva, D.; Petrova, T.; Dragostinova, V.; Todorov, T.; Nikolova, L.

    2006-05-01

    We investigate the self-induced rotation of the azimuth of light polarization ellipse in azobenzene polymers. It is initiated by the photoreorientation and ordering of the azobenzenes on illumination with elliptically polarized light resulting in the appearance of an optical axis whose direction is gradually rotated along the depth of the film. A macroscopic chiral structure is created with a pitch depending on light ellipticity and the photobirefringence ▵n in the successive layers of the film. In this work we make use of the fact that at elevated temperatures ▵n is very sensitive to light intensity. In our acrylic amorphous azobenzene polymer at temperatures 50-65°C the saturated values of ▵n are much higher for low intensity of the exciting light than for higher intensity. In this temperature range the polarization azimuth of monochromatic blue light with different intensity is rotated to a different angle after passing through the polymer film. This effect can be used for passive elements rotating the polarization azimuth depending on light intensity and for the formation of light beams with a space-variant polarization state.

  4. Approximate photochemical dynamics of azobenzene with reactive force fields

    Science.gov (United States)

    Li, Yan; Hartke, Bernd

    2013-12-01

    We have fitted reactive force fields of the ReaxFF type to the ground and first excited electronic states of azobenzene, using global parameter optimization by genetic algorithms. Upon coupling with a simple energy-gap transition probability model, this setup allows for completely force-field-based simulations of photochemical cis→trans- and trans→cis-isomerizations of azobenzene, with qualitatively acceptable quantum yields. This paves the way towards large-scale dynamics simulations of molecular machines, including bond breaking and formation (via the reactive force field) as well as photochemical engines (presented in this work).

  5. Azobenzene Photoswitches for Staudinger-Bertozzi Ligation

    NARCIS (Netherlands)

    Szymanski, Wiktor; Wu, Bian; Poloni, Claudia; Janssen, Dick B.; Feringa, Ben L.

    2013-01-01

    A novel family of azobenzenes containing residues needed for aqueous Staudinger–Bertozzi ligation to azides was designed. The resulting photochromes show stable and reversible switching behavior in water, with a photostationary state (PSS) of up to 95:5 cis/trans. Applications in model systems

  6. Photoinduced Deformation of Azobenzene Polyester Films

    DEFF Research Database (Denmark)

    Bublitz, D.; Helgert, M.; Fleck, B.

    2000-01-01

    We investigate two types of azobenzene side-chain polyesters which have shown opposite behaviour in light-induced surface grating formation experiments. Thin films of these polymers prepared on a water surface undergo opposite changes of shape under the influence of polarized light. We propose...

  7. Photosensitive response of azobenzene containing films towards pure intensity or polarization interference patterns

    Energy Technology Data Exchange (ETDEWEB)

    Yadavalli, Nataraja Sekhar; Santer, Svetlana, E-mail: santer@uni-potsdam.de [Department of Experimental Physics, Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam (Germany); Saphiannikova, Marina [Leibniz Institute of Polymer Research Dresden, 01069 Dresden (Germany)

    2014-08-04

    In this paper, we report on differences in the response of photosensitive azobenzene containing films upon irradiation with the intensity or polarization interference patterns. Two materials are studied differing in the molecular weight: an azobenzene-containing polymer and a molecular glass formed from a much smaller molecule consisting of three connected azobenzene units. Topography changes occurring along with the changes in irradiation conditions are recorded using a homemade set-up combining an optical part for generation and shaping of interference patterns and an atomic force microscope for acquiring the kinetics of film deformation. In this way, we could reveal the unique behavior of photosensitive materials during the first few minutes of irradiation: the change in topography is initially driven by an increase in the azobenzene free volume along with the trans-cis isomerization, followed by the mass transport finally resulting in the surface relief grating. This study demonstrates the great potential of our setup to experimentally highlight puzzling processes governing the formation of surface relief gratings.

  8. Surface-Plasmon-Enhanced Emissions of Phosphors with Au Nanoparticles Embedded in ITO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ja-Yeon [Korea Photonics Technology Institute (KOPTI), Gwangju (Korea, Republic of); Oh, Seung Jong; Park, Hyun-Sun; Kim, Min-Woo; Cho, Yoo-Hyun; Kwon, Min-Ki [Chosun University, Gwangju (Korea, Republic of)

    2017-03-15

    Au nanoparticles were embedded in a transparent conducting layer of indium tin oxide in order to evaluate the feasibility of applying a surface-plasmon (SP)-enhanced phosphor to light-emitting diodes (LEDs). The efficiency of the phosphor was improved by energy matching between the phosphor and the SP of the Au nanoparticles. After the density of the Au nanoparticles and the thickness of the spacer layer had been optimized, the efficiency of a green phosphor was improved by 64% compared to that of an isolated green phosphor. This work provides a way to fabricate high-efficiency LEDs with high color-rendering indices and wide color gamuts in white LEDs.

  9. Magneto-optical Faraday rotation of semiconductor nanoparticles embedded in dielectric matrices.

    Science.gov (United States)

    Savchuk, Andriy I; Stolyarchuk, Ihor D; Makoviy, Vitaliy V; Savchuk, Oleksandr A

    2014-04-01

    Faraday rotation has been studied for CdS, CdTe, and CdS:Mn semiconductor nanoparticles synthesized by colloidal chemistry methods. Additionally these materials were prepared in a form of semiconductor nanoparticles embedded in polyvinyl alcohol films. Transmission electron microscopy and atomic force microscopy analyses served as confirmation of nanocrystallinity and estimation of the average size of the nanoparticles. Spectral dependence of the Faraday rotation for the studied nanocrystals and nanocomposites is correlated with a blueshift of the absorption edge due to the confinement effect in zero-dimensional structures. Faraday rotation spectra and their temperature behavior in Mn-doped nanocrystals demonstrates peculiarities, which are associated with s, p-d exchange interaction between Mn²⁺ ions and band carriers in diluted magnetic semiconductor nanostructures.

  10. The Modification of Sodium Polyacrylate Water Solution Cooling Properties by AL2O3

    Directory of Open Access Journals (Sweden)

    Wojciech Gęstwa

    2010-01-01

    Based on cooling curves, it can be concluded that for the water solution of sodium polyacrylate with AL2O3 nanoparticles in comparison to water and 10% polymer water solution lower cooling speed is obtained. The cooling medium containing nanoparticles provides lower cooling speed in the smallest surface austenite occurance (500–600 C in the charts of the CTP for most nonalloy structural steels and low-alloy steels. However lower cooling temperature at the beginning of martensitic transformation causes the formation of smaller internal stresses, leading to smaller dimensional changes and hardening deformation. For the quenching media the wetting angle was appointed by the drop-shape method. These studies showed the best wettability of polymer water solution (sodium polyacrylate with the addition of AL2O3 nanoparticles, whose wetting angle was about 65 degrees. Obtaining the smallest wetting angle for the medium containing nanoparticles suggests that the heat transfer to the cooling medium is larger. This allows slower cooling at the same time ensuring its homogeneity. The obtained values of wetting angle confirm the conclusions drawn on the basis of cooling curves and allowus to conclude that in the case of the heat transfer rate it will have a lower value than for water and 10% polymer water solution. In the research on hardened carburized steel samples C10 and 16MnCr5 surface hardness, impact strength and changes in the size of cracks in Navy C-ring sample are examined. On this basis of the obtained results it can be concluded that polymer water solution with nanoparticles allows to obtain a better impact strength at comparable hardness on the surface. Research on the dimensional changes on the basis of the sample of Navy C-ring also shows small dimensional changes for samples carburized and hardened in 10% polymer water solution with the addition of nanoparticles AL2O3. Smaller dimensional changes were obtained for samples of steel 16MnCr5 thanfar C10. The

  11. Transport properties of β-Ga2O3 nanoparticles embedded in Nb thin films

    Directory of Open Access Journals (Sweden)

    L.S. Vaidhyanathan

    2015-01-01

    Full Text Available The origin of ferromagnetism in nanoparticles of nonmagnetic oxides is an interesting area of research. In the present work, transport properties of niobium thin films, with β-Ga2O3 nanoparticles embedded within them, are presented. Nanoparticles of β-Ga2O3 embedded in a Nb matrix were prepared at room temperature by radio frequency co-sputtering technique on Si (100 and glass substrates held at room temperature. The thin films deposited on Si substrates were subjected to Ar annealing at a temperature range of 600-650 C for 1 hour. Films were characterized by X-ray diffraction (XRD, Micro-Raman and elemental identification was performed with an Energy Dispersive X-ray Spectroscopy (EDS. Transport measurements were performed down to liquid helium temperatures by four-probe contact technique, showed characteristics analogous to those observed in the context of a Kondo system. A comparison of the experimental data with the theoretical formalism of Kondo and Hamann is presented. It is suggested that this behavior arises from the existence of magnetic moments associated with the oxygen vacancy defects in the nanoparticles of the nonmagnetic oxide Ga2O3.

  12. Ultra-high sensitive substrates for surface enhanced Raman scattering, made of 3 nm gold nanoparticles embedded on SiO2 nanospheres

    Science.gov (United States)

    Phatangare, A. B.; Dhole, S. D.; Dahiwale, S. S.; Bhoraskar, V. N.

    2018-05-01

    The surface properties of substrates made of 3 nm gold nanoparticles embedded on SiO2 nanospheres enabled fingerprint detection of thiabendazole (TBZ), crystal violet (CV) and 4-Aminothiophenol (4-ATP) at an ultralow concentration of ∼10-18 M by surface enhanced Raman spectroscopy (SERS). Gold nanoparticles of an average size of ∼3 nm were synthesized and simultaneously embedded on SiO2 nanospheres by the electron irradiation method. The substrates made from the 3 nm gold nanoparticles embedded on SiO2 nanospheres were successfully used for recording fingerprint SERS spectra of TBZ, CV and 4-ATP over a wide range of concentrations from 10-6 M to 10-18 M using 785 nm laser. The unique features of these substrates are roughness near the surface due to the inherent structural defects of 3 nm gold nanoparticles, nanogaps of ≤ 1 nm between the embedded nanoparticles and their high number. These produced an abundance of nanocavities which act as active centers of hot-spots and provided a high electric field at the reporter molecules and thus an enhancement factor required to record the SERS spectra at ultra low concentration of 10-18 M. The SERS spectra recorded by the substrates of 4 nm and 6 nm gold nanoparticles are discussed.

  13. Shape manipulation of ion irradiated Ag nanoparticles embedded in lithium niobate

    International Nuclear Information System (INIS)

    Wolf, Steffen; Rensberg, Jura; Johannes, Andreas; Ronning, Carsten; Thomae, Rainer; Smit, Frederick; Neveling, Retief; Bharuth-Ram, Krish; Moodley, Mathew; Bierschenk, Thomas; Rodriguez, Matias; Afra, Boshra; Ridgway, Mark; Hasan, Shakeeb Bin; Rockstuhl, Carsten

    2016-01-01

    Spherical silver nanoparticles were prepared by means of ion beam synthesis in lithium niobate. The embedded nanoparticles were then irradiated with energetic "8"4Kr and "1"9"7Au ions, resulting in different electronic energy losses between 8.1 and 27.5 keV nm"−"1 in the top layer of the samples. Due to the high electronic energy losses of the irradiating ions, molten ion tracks are formed inside the lithium niobate in which the elongated Ag nanoparticles are formed. This process is strongly dependent on the initial particle size and leads to a broad aspect ratio distribution. Extinction spectra of the samples feature the extinction maximum with shoulders on either side. While the maximum is caused by numerous remaining spherical nanoparticles, the shoulders can be attributed to elongated particles. The latter could be verified by COMSOL simulations. The extinction spectra are thus a superposition of the spectra of all individual particles. (paper)

  14. Photomechanical Deformation of Azobenzene-Functionalized Polyimides Synthesized with Bulky Substituents (Postprint)

    Science.gov (United States)

    2017-12-06

    comparative UV − vis result (Figure S6, Supporting Information) that azoCBODA-BPADA has the lowest absorbance change for its azobenzene trans−cis...or trans−cis−trans reorientation processes upon irradiation of 365 nm UV or blue-green light (440−530 nm), respectively. Exposure of these materials...to UV light induces a trans−cis isomerization, resulting in a length reduction of the molecular axis of azobenzene from 9 Å (trans) to 5.5 Å (cis).10

  15. Azobenzene as a photoregulator covalently attached to RNA: a quantum mechanics/molecular mechanics-surface hopping dynamics study.

    Science.gov (United States)

    Mondal, Padmabati; Granucci, Giovanni; Rastädter, Dominique; Persico, Maurizio; Burghardt, Irene

    2018-05-28

    The photoregulation of nucleic acids by azobenzene photoswitches has recently attracted considerable interest in the context of emerging biotechnological applications. To understand the mechanism of photoinduced isomerisation and conformational control in these complex biological environments, we employ a Quantum Mechanics/Molecular Mechanics (QM/MM) approach in conjunction with nonadiabatic Surface Hopping (SH) dynamics. Two representative RNA-azobenzene complexes are investigated, both of which contain the azobenzene chromophore covalently attached to an RNA double strand via a β-deoxyribose linker. Due to the pronounced constraints of the local RNA environment, it is found that trans -to- cis isomerization is slowed down to a time scale of ∼10-15 picoseconds, in contrast to 500 femtoseconds in vacuo , with a quantum yield reduced by a factor of two. By contrast, cis -to- trans isomerization remains in a sub-picosecond regime. A volume-conserving isomerization mechanism is found, similarly to the pedal-like mechanism previously identified for azobenzene in solution phase. Strikingly, the chiral RNA environment induces opposite right-handed and left-handed helicities of the ground-state cis -azobenzene chromophore in the two RNA-azobenzene complexes, along with an almost completely chirality conserving photochemical pathway for these helical enantiomers.

  16. Subsurface Synthesis and Characterization of Ag Nanoparticles Embedded in MgO

    Energy Technology Data Exchange (ETDEWEB)

    Vilayur Ganapathy, Subramanian; Devaraj, Arun; Colby, Robert J.; Pandey, Archana; Varga, Tamas; Shutthanandan, V.; Manandhar, Sandeep; El-Khoury, Patrick Z.; Kayani, Asghar N.; Hess, Wayne P.; Thevuthasan, Suntharampillai

    2013-03-08

    Metal nanoparticles exhibit localized surface plasmon resonance (LSPR) which is very sensitive to the size and shape of the nanoparticle and the dielectric medium surrounding it. LSPR causes field enhancement near the surface of the nanoparticle making them interesting candidates for plasmonic applications. In particular, partially exposed metallic nanoparticles distributed in a dielectric matrix form hotspots which are prime locations for LSPR spectroscopy and sensing. This study involves synthesizing partially buried Ag nanoparticles in MgO and investigating the characteristics of this material system. Ag nanoparticles of different shapes and size distributions were synthesized below the surface of MgO by implanting 200 keV Ag+ ions followed by annealing at 10000C for 10 and 30 hours. A detailed optical and structural characterization was carried out to understand the evolution of Ag nanoparticle microstructure and size distribution inside the MgO matrix. Micro x-ray diffraction (MicroXRD) was employed to investigate the structural properties and estimate the crystallite size. The nanoparticles evolved from a spherical to faceted morphology with annealing time, assuming an octahedral shape truncated at the (001) planes as seen from aberration corrected transmission electron microscopy (TEM) images. The nanoparticles embedded in MgO were shown to be pure metallic Ag using atom probe tomography (APT). The nanoparticles were partially exposed to the surface employing plasma etch techniques to remove the overlaying MgO. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to study the surface morphology and obtain a height distribution for the partially exposed nanoparticles.

  17. Directional Scattering of Semiconductor Nanoparticles Embedded in a Liquid Crystal

    Directory of Open Access Journals (Sweden)

    Braulio García-Cámara

    2014-04-01

    Full Text Available Light scattering by semiconductor nanoparticles has been shown to be more complex than was believed until now. Both electric and magnetic responses emerge in the visible range. In addition, directional effects on light scattering of these nanoparticles were recently obtained. In particular, zero backward and minimum-forward scattering are observed. These phenomena are very interesting for several applications such as, for instance, optical switches or modulators. The strong dependence of these phenomena on the properties of both the particle and the surrounding medium can be used to tune them. The electrical control on the optical properties of liquid crystals could be used to control the directional effects of embedded semiconductor nanoparticles. In this work, we theoretically analyze the effects on the directional distribution of light scattering by these particles when the refractive index of a surrounded liquid crystal changes from the ordinary to the extraordinary configuration. Several semiconductor materials and liquid crystals are studied in order to optimize the contrast between the two states.

  18. Exchange bias in Co nanoparticles embedded in an Mn matrix

    International Nuclear Information System (INIS)

    Domingo, Neus; Testa, Alberto M.; Fiorani, Dino; Binns, Chris; Baker, Stephen; Tejada, Javier

    2007-01-01

    Magnetic properties of Co nanoparticles of 1.8 nm diameter embedded in Mn and Ag matrices have been studied as a function of the volume fraction (VFF). While the Co nanoparticles in the Ag matrix show superparamagnetic behavior with T B =9.5 K (1.5% VFF) and T B =18.5 K (8.9% VFF), the Co nanoparticles in the antiferromagnetic Mn matrix show a transition peak at ∼65 K in the ZFC/FC susceptibility measurements, and an increase of the coercive fields at low temperature with respect to the Ag matrix. Exchange bias due to the interface exchange coupling between Co particles and the antiferromagnetic Mn matrix has also been studied. The exchange bias field (H eb ), observed for all Co/Mn samples below 40 K, decreases with decreasing volume fraction and with increasing temperature and depends on the field of cooling (H fc ). Exchange bias is accompanied by an increase of coercivity

  19. Shaping of Au nanoparticles embedded in various layered structures by swift heavy ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dawi, E.A., E-mail: elmuez.dawi@gmail.com [Ajman University of Science and Technology, Basic Science and Education, Physics Department, P.O. Box 346 (United Arab Emirates); Debye Institute for Nanomaterials, Nanophotonics Section, Utrecht University, P.O. Box 80000, 3508 TA Utrecht (Netherlands); ArnoldBik, W.M. [Eindhoven University of Technology, Irradiation Technology, 5600 GM Eindhoven (Netherlands); Ackermann, R.; Habraken, F.H.P.M. [Debye Institute for Nanomaterials, Nanophotonics Section, Utrecht University, P.O. Box 80000, 3508 TA Utrecht (Netherlands)

    2016-10-01

    We present a novel method to extend the ion-beam induced shaping of metallic nanoparticles in various layered structures. Monodisperse Au nanoparticles having mean diameter of 30 nm and their ion-shaping process is investigated for a limited number of experimental conditions. Au nanoparticles were embedded within a single plane in various layered structures of silicon nitride films (Si{sub 3}N{sub 4}), combinations of oxide-nitride films (SiO{sub 2}-Si{sub 3}N{sub 4}) and amorphous silicon films (a-Si) and have been sequentially irradiated at 300 K at normal incidence with 50 and 25 MeV Ag ions, respectively. Under irradiation with heavy Ag ions and with sequential increase of the irradiation fluence, the evolution of the Au peak derived from the Rutherford Backscattering Spectrometry show broadening in Au peak, which indicates that the Au becomes distributed over a larger depth region, indicative of the elongation of the nanoparticles. The latter is observed almost for every layer structure investigated except for Au nanoparticles embedded in pure a-Si matrix. The largest elongation rate at all fluences is found for the Au nanoparticles encapsulated in pure Si{sub 3}N{sub 4} films. For all irradiation energy applied, we again demonstrate the existence of both threshold and saturation fluences for the elongation effects mentioned.

  20. Unusual photoanisotropic alignment in amorphous azobenzene polymers

    DEFF Research Database (Denmark)

    Ramanujam, P.S.

    2015-01-01

    560 and 630nm, where the absorption is minimal, results in a possible uniaxial hedgehog arrangement of the molecules. Experiments performed with a dye laser, which can be tuned continuously between 560 and 630nm, are described. Not only azobenzene but also another photosensitive molecule...

  1. Light-gated molecular brakes based on pentiptycene-incorporated azobenzenes.

    Science.gov (United States)

    Tan, Wei Shyang; Chuang, Po-Ya; Chen, Chia-Huei; Prabhakar, Chetti; Huang, Shing-Jong; Huang, Shou-Ling; Liu, Yi-Hung; Lin, Ying-Chih; Peng, Shie-Ming; Yang, Jye-Shane

    2015-04-01

    Three azobenzene derivatives (2 R, 2 OR, and 2 NR) that differed in their terminal substituent (alkyl, alkyloxy, and dialkylamino, respectively) have been synthesized and investigated as molecular brakes, in which the rigid H-shaped pentiptycene group functioned as a rotor and the dinitrophenyl group as a "brake pad". The E and Z isomers of these compounds corresponded to the "brake-off" and "brake-on" states, respectively. The rotation rate of the rotor was evaluated by VT NMR spectroscopy for the brake-on state and by DFT calculations for the brake-off state. The difference between the rotation rates for the rotor in the two states was as large as eight orders of magnitude at ambient temperature. Photochemical switching of the azobenzene moieties afforded efficiencies of 55-67%. A combination of photochemical E→Z and thermal Z→E isomerization promoted the switching efficiency up to 78%. The terminal substituent affected both the photochemical and thermal switching efficiencies. Solvent polarity also played an important role in the lifetimes of the Z isomers. These azobenzene systems displayed similar braking powers but superior switching efficiencies to the stilbene analogue (1O R; ca. 60% vs 20%). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Subsurface synthesis and characterization of Ag nanoparticles embedded in MgO

    Science.gov (United States)

    Vilayurganapathy, S.; Devaraj, A.; Colby, R.; Pandey, A.; Varga, T.; Shutthanandan, V.; Manandhar, S.; El-Khoury, P. Z.; Kayani, Asghar; Hess, W. P.; Thevuthasan, S.

    2013-03-01

    Metal nanoparticles exhibit a localized surface plasmon resonance (LSPR) which is very sensitive to the size and shape of the nanoparticle and the surrounding dielectric medium. The coupling between the electromagnetic radiation and the localized surface plasmon in metallic nanoparticles results in a sizable enhancement of the incident fields, making them possible candidates for plasmonic applications. In particular, partially exposed metallic nanoparticles distributed in a dielectric matrix can provide prime locations for LSPR spectroscopy and sensing. We report the synthesis and characterization of a plasmonic substrate consisting of Ag nanoparticles partially buried in MgO. Ag nanoparticles of different shapes and size distributions were synthesized below the surface of MgO by implanting 200 keV Ag+ ions followed by annealing at 1000 °C for 10 and 30 h. A detailed optical and structural characterization was carried out to understand the evolution of the Ag nanoparticle and size distribution inside the MgO matrix. Micro x-ray diffraction (Micro-XRD) was employed to investigate the structural properties and estimate the crystallite size. The nanoparticles evolved from a spherical to a faceted morphology with annealing time, assuming an octahedral shape truncated at the (001) planes, as visualized from aberration-corrected transmission electron microscopy (TEM) images. The nanoparticles embedded in MgO were shown to be pure metallic Ag using atom probe tomography (APT). The nanoparticles were partially exposed to the surface by employing plasma etch techniques to remove the overlaying MgO. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to study the surface morphology and obtain a height distribution for the partially exposed nanoparticles.

  3. Subsurface synthesis and characterization of Ag nanoparticles embedded in MgO

    International Nuclear Information System (INIS)

    Vilayurganapathy, S; Devaraj, A; Colby, R; Pandey, A; Varga, T; Shutthanandan, V; Manandhar, S; Thevuthasan, S; El-Khoury, P Z; Hess, W P; Kayani, Asghar

    2013-01-01

    Metal nanoparticles exhibit a localized surface plasmon resonance (LSPR) which is very sensitive to the size and shape of the nanoparticle and the surrounding dielectric medium. The coupling between the electromagnetic radiation and the localized surface plasmon in metallic nanoparticles results in a sizable enhancement of the incident fields, making them possible candidates for plasmonic applications. In particular, partially exposed metallic nanoparticles distributed in a dielectric matrix can provide prime locations for LSPR spectroscopy and sensing. We report the synthesis and characterization of a plasmonic substrate consisting of Ag nanoparticles partially buried in MgO. Ag nanoparticles of different shapes and size distributions were synthesized below the surface of MgO by implanting 200 keV Ag + ions followed by annealing at 1000 °C for 10 and 30 h. A detailed optical and structural characterization was carried out to understand the evolution of the Ag nanoparticle and size distribution inside the MgO matrix. Micro x-ray diffraction (Micro-XRD) was employed to investigate the structural properties and estimate the crystallite size. The nanoparticles evolved from a spherical to a faceted morphology with annealing time, assuming an octahedral shape truncated at the (001) planes, as visualized from aberration-corrected transmission electron microscopy (TEM) images. The nanoparticles embedded in MgO were shown to be pure metallic Ag using atom probe tomography (APT). The nanoparticles were partially exposed to the surface by employing plasma etch techniques to remove the overlaying MgO. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to study the surface morphology and obtain a height distribution for the partially exposed nanoparticles. (paper)

  4. Infrared spectral studies of various metal polyacrylates

    International Nuclear Information System (INIS)

    McCluskey, P.H.; Snyder, R.L.; Condrate, R.A. Sr.

    1989-01-01

    A new process for the production of high surface area, high reactivity ceramic oxide powders involves the bonding of metal cations to polymeric polyacrylate chains. This process results in the formation of a gelatinous metal polyacrylate precipitate which can be easily removed from the mother liquor, and then calcined to form a high density ceramic oxide. Using FTIR spectroscopy, the nature of the structural arrangements has been studied for metal complexes in the yttrium, lanthanum, aluminum, cerium, copper, and iron polyacrylates. Interpretation of the infrared spectra indicates that two types of metal complex formation occur in these precipitates, involving bidentate or bridging interactions. The type that is observed for a particular metal ion is dependent on its metal ion size

  5. Melting of iron nanoparticles embedded in silica prepared by mechanical milling

    International Nuclear Information System (INIS)

    Ding, Peng; Ma, Ji; Cao, Hui; Liu, Yi; Wang, Lianwen; Li, Jiangong

    2013-01-01

    Highlights: • Melting of metallic nanoparticles was studied for some eight elements. • This slim range of materials is successfully expanded to iron. • A mechanical-milled iron–silica composite is employed. • For iron particles of 15 nm in diameter, the melting point depression is 30 K. • The measured data is in agreement with our theoretical calculations. -- Abstract: For decades, experimental studies on the size-dependent melting of metals are regretfully limited to some eight archetypal examples. In this work, to expand this slim range of materials, the melting behavior of Fe nanoparticles embedded in SiO 2 prepared by using mechanical milling are investigated. Effects of factors in sample preparation on the size, isolation and thermal stability of Fe nanoparticles are systematically studied. On this basis, the size-dependent melting of Fe is successfully traced: for Fe nanoparticles with a diameter of about 15 nm, the melting point depression is 30 °C in comparison with bulk Fe, in accordance with our recent theoretical prediction

  6. Azobenzene Pd(II) complexes with N^N- and N^O-type ligands

    Science.gov (United States)

    Nikolaeva, M. V.; Puzyk, An. M.; Puzyk, M. V.

    2017-05-01

    Methods of synthesis of cyclometalated azobenzene palladium(II) complexes of [Pd(N^N)Azb]ClO4 and [Pd(N^O)Azb]ClO4 types (where Azb- is the deprotonated form of azobenzene; N^N is 2NH3, ethylenediamine, or 2,2'-bipyridine; and (N^O)- is the deprotonated form of amino acid (glycine, α-alanine, β-alanine, tyrosine, or tryptophan)) are developed. The electronic absorption and the electrochemical properties of these complexes are studied.

  7. Nano sand filter with functionalized nanoparticles embedded in anodic aluminum oxide templates

    Science.gov (United States)

    Phuong, Nguyenthi; Andisetiawan, Anugrah; van Lam, Do; Kim, Jeong Hwan; Choi, Doo-Sun; Whang, Kyung-Hyun; Nham, Jeasun; Lee, Yun Jung; Yoo, Yeong-Eun; Yoon, Jae Sung

    2016-11-01

    Since the ancient Egyptians had used sand as filter media for water purification, its principle has been inherited through generations and it is still being used now in industries. The sand filter consists of sand literally, and the voids within the sand bed are the pores for filtration. Here we present a filtration principle using nanoparticles, so that the voids between the nanoparticles can be considered as effective pores in nanoscale dimension. Anodic aluminum oxide (AAO) membrane has been used as the working template, and the nanoparticles have been injected and embedded within the pores of the AAO template. Nanoparticles with multiple sizes have been used in order to obtain smaller voids. Moreover, the nanoparticles have been functionalized, or electrically charged, with arginine/phenylalanine (RF) peptide group. In this way, filtration performance for charged particles or molecules, such as methylene blue, has been enhanced. Consequently, this study is expected to provide a new principle for fabrication of nano voids, or nano pores, and for filtration in nanoscale dimension.

  8. Cell type-specific response to high intracellular loading of polyacrylic acid-coated magnetic nanoparticles

    Science.gov (United States)

    Lojk, Jasna; Bregar, Vladimir B; Rajh, Maruša; Miš, Katarina; Kreft, Mateja Erdani; Pirkmajer, Sergej; Veranič, Peter; Pavlin, Mojca

    2015-01-01

    Magnetic nanoparticles (NPs) are a special type of NP with a ferromagnetic, electron-dense core that enables several applications such as cell tracking, hyperthermia, and magnetic separation, as well as multimodality. So far, superparamagnetic iron oxide NPs (SPIONs) are the only clinically approved type of metal oxide NPs, but cobalt ferrite NPs have properties suitable for biomedical applications as well. In this study, we analyzed the cellular responses to magnetic cobalt ferrite NPs coated with polyacrylic acid (PAA) in three cell types: Chinese Hamster Ovary (CHO), mouse melanoma (B16) cell line, and primary human myoblasts (MYO). We compared the internalization pathway, intracellular trafficking, and intracellular fate of our NPs using fluorescence and transmission electron microscopy (TEM) as well as quantified NP uptake and analyzed uptake dynamics. We determined cell viability after 24 or 96 hours’ exposure to increasing concentrations of NPs, and quantified the generation of reactive oxygen species (ROS) upon 24 and 48 hours’ exposure. Our NPs have been shown to readily enter and accumulate in cells in high quantities using the same two endocytic pathways; mostly by macropinocytosis and partially by clathrin-mediated endocytosis. The cell types differed in their uptake rate, the dynamics of intracellular trafficking, and the uptake capacity, as well as in their response to higher concentrations of internalized NPs. The observed differences in cell responses stress the importance of evaluation of NP–cell interactions on several different cell types for better prediction of possible toxic effects on different cell and tissue types in vivo. PMID:25733835

  9. Mechanically induced cis to trans reisomerization of azobenzene

    Science.gov (United States)

    Turansky, Robert; Konopka, Martin; Stich, Ivan; Marx, Dominik

    2007-03-01

    Using density functional techniques we study mechanochemistry of the azobenzene molecule. Azobenzene is an optically switchable molecule. Laser light is normally used to achieve molecular switching between the cis and trans isomers. We use mechanochemistry to achieve the switching. Thiolate-gold bond can used to exert mechanical energy on the molecule bonded between two gold electrodes in static AFM apparatus. Our model consists of two realistic gold electrodes bridged by dithioazobenzene. We find that pulling the transisomer leads just to formation of gold nanowires and mechanical breakage of the electrodes. However, mechanochemistry with modest applied forces leads to cis trans reisomerization via rotation mechanism. Contrary, use of simple constraints instead of realistic gold electrodes, leads to cis trans reisomerization, albeit with significantly larger applied forces and via inversion mechanism. Important experimental and theoretical ramifications of these simulations will be discussed.

  10. Synthesis and Characterization of Photo-Responsive Thermotropic Liquid Crystals Based on Azobenzene

    Directory of Open Access Journals (Sweden)

    Runmiao Yang

    2018-03-01

    Full Text Available A series of new thermotropic liquid crystals (LCs containing azobenzene units was synthesized. The structures of the compounds were characterized by means of NMR and FTIR spectroscopy. Their mesomorphic behaviors were investigated via differential scanning calorimetry (DSC and polarizing optical microscopy (POM. Based on the POM and DSC measurements, the optical properties of the Razo-ester were tested using UV-vis spectroscopy. The azobenzene side chain displayed a strong ability to influence the formation of thermotropic LCs.

  11. Direct and Versatile Synthesis of Red-Shifted Azobenzenes

    NARCIS (Netherlands)

    Hansen, Mickel J.; Lerch, Michael M.; Szymanski, Wiktor; Feringa, Ben L.

    2016-01-01

    A straightforward synthesis of azobenzenes with bathochromically-shifted absorption bands is presented. It employs an ortho-lithiation of aromatic substrates, followed by a coupling reaction with aryldiazonium salts. The products are obtained with good to excellent yields after simple purification.

  12. Spectroscopic enhancement in nanoparticles embedded glasses

    Energy Technology Data Exchange (ETDEWEB)

    Sahar, M. R., E-mail: mrahim057@gmail.com; Ghoshal, S. K., E-mail: mrahim057@gmail.com [Advanced Optical Material Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Johor (Malaysia)

    2014-09-25

    This presentation provides an overview of the recent progress in the enhancement of the spectroscopic characteristics of the glass embedded with nanoparticles (NPs). Some of our research activities with few significantly new results are highlighted and facilely analyzed. The science and technology dealing with the manipulation of the physical properties of rare earth doped inorganic glasses by embedding metallic NPs or nanoclusters produce the so-called 'nanoglass'. Meanwhile, the spectroscopic enhancement relates the intensity of the luminescence measured at certain transition. The enhancement which expectedly due to the 'plasmonics wave' (referring to the coherent coupling of photons to free electron oscillations called plasmon) occurs at the interface between a conductor and a dielectric. Plasmonics being an emerging concept in advanced optical material of nanophotonics has given this material the ability to exploit the optical response at nanoscale and opened up a new avenue in metal-based glass optics. There is a vast array of plasmonic NPs concepts yet to be explored, with applications spanning solar cells, (bio) sensing, communications, lasers, solid-state lighting, waveguides, imaging, optical data transfer, display and even bio-medicine. Localized surface plasmon resonance (LSPR) can enhance the optical response of nanoglass by orders of magnitude as observed. The luminescence enhancement and surface enhanced Raman scattering (SERS) are new paradigm of research. The enhancement of luminescence due to the influence of metallic NPs is the recurring theme of this paper.

  13. Carrier transport in flexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) polymer layer

    International Nuclear Information System (INIS)

    Son, Dong-Ick; Park, Dong-Hee; Choi, Won Kook; Cho, Sung-Hwan; Kim, Won-Tae; Kim, Tae Whan

    2009-01-01

    The bistable effects of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) (PMMA) polymer single layer by using flexible polyethylene terephthalate (PET) substrates were investigated. Transmission electron microscopy (TEM) images revealed that ZnO nanoparticles were formed inside the PMMA polymer layer. Current-voltage (I-V) measurement on the Al/ZnO nanoparticles embedded in an insulating PMMA polymer layer/ITO/PET structures at 300 K showed a nonvolatile electrical bistability behavior with a flat-band voltage shift due to the existence of the ZnO nanoparticles, indicative of trapping, storing, and emission of charges in the electronic states of the ZnO nanoparticles. The carrier transport mechanism of the bistable behavior for the fabricated organic bistable device (OBD) structures is described on the basis of the I-V results by analyzing the effect of space charge.

  14. Optical properties of metal nanoparticles embedded in amorphous silicon analysed using discrete dipole approximation

    Science.gov (United States)

    Fantoni, Alessandro; Fernandes, Miguel; Vygranenko, Yuri; Vieira, Manuela; Oliveira-Silva, Rui P.; Prazeres, D. M. F.; Ribeiro, Ana P. C.; Alegria, Elisabete C. B. A.

    2018-02-01

    Localized surface plasmons (LSP) can be excited in metal nanoparticles (NP) by UV, visible or NIR light and are described as coherent oscillation of conduction electrons. Taking advantage of the tunable optical properties of NPs, we propose the realization of a plasmonic structure, based on the LSP interaction of NP with an embedding matrix of amorphous silicon. This study is directed to define the characteristics of NP and substrate necessary to the development of a LSP proteomics sensor that, once provided immobilized antibodies on its surface, will screen the concentration of selected antigens through the determination of LSPR spectra and peaks of light absorption. Metals of interest for NP composition are: Aluminium and Gold. Recent advances in nanoparticle production techniques allow almost full control over shapes and size, permitting full control over their optical and plasmonic properties and, above all, over their responsive spectra. Analytical solution is only possible for simple NP geometries, therefore our analysis, is realized recurring to computer simulation using the Discrete Dipole Approximation method (DDA). In this work we use the free software DDSCAT to study the optical properties of metal nanoparticles embedded in an amorphous silicon matrix, as a function of size, shape, aspect-ratio and metal type. Experimental measurements realized with arrays of metal nanoparticles are compared with the simulations.

  15. Controlled swelling and adsorption properties of polyacrylate/montmorillonite composites

    Energy Technology Data Exchange (ETDEWEB)

    Natkanski, Piotr [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Kustrowski, Piotr, E-mail: kustrows@chemia.uj.edu.pl [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Bialas, Anna; Piwowarska, Zofia [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Michalik, Marek [Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, 30-063 Krakow (Poland)

    2012-10-15

    A series of novel polyacrylate/montmorillonite composites was synthesized by in situ polymerization in aqueous slurry of clay. Dissociated (obtained by adding ammonium or sodium hydroxide) and undissociated forms of acrylic acid were used as monomers in the hydrogel synthesis. The structure and composition of the samples were studied by powder X-ray diffraction, diffuse reflectance infra-red Fourier transform spectroscopy, thermogravimetry and elemental analysis. It has been found that the kind of monomer influences strongly the location of a polymer chain in the formed composite. Complete intercalation of hydrogel into the interlayer space of montmorillonite was observed for sodium polyacrylate, whereas polyacrylic acid and ammonium polyacrylate mainly occupied the outer surface of the clay. The position of hydrogel determined the swelling and adsorption properties of the studied composites. The important factor influencing the kinetics of Fe(III) cation adsorption was pH. The analysis of adsorption isotherms allowed to propose the mechanism of Fe(III) cation adsorption. Highlights: Black-Right-Pointing-Pointer Polyacrylate hydrogels can be introduced into the interlayers of clay. Black-Right-Pointing-Pointer The position of hydrogel in the composite depends on the polymer type. Black-Right-Pointing-Pointer Ammonium polyacrylate places outside the clay, sodium one is intercalated into it. Black-Right-Pointing-Pointer Swelling and adsorption capacities can be controlled by the polymer position. Black-Right-Pointing-Pointer High adsorption efficiency in Fe(III) removal was observed.

  16. Electrochemical supercapacitor electrode material based on polyacrylic acid/polypyrrole/silver composite

    International Nuclear Information System (INIS)

    Patil, Dipali S.; Pawar, Sachin A.; Devan, Rupesh S.; Gang, Myeng Gil; Ma, Yuon-Ron; Kim, Jin Hyeok; Patil, Pramod S.

    2013-01-01

    Highlights: • Polyacrylic acid/polypyrrole/silver composite prepared by chemical polymerization method. • The presence of Ag nanoparticles on PPY spherical granules provides the least resistance path to electron. • The specific capacitance about 145 F g −1 and 226 F g −1 observed for PPY/PAA and PPY/PAA/Ag samples, respectively. • The higher specific energy 7.18 Wh kg −1 and 17.45 Wh kg −1 observed for PPY/PAA and PPY/PAA/Ag respectively at current density of 0.5 mA cm −2 . -- Abstract: In the present work, we have synthesized polypyrrole (PPY)/polyacrylic acid (PAA)/silver (Ag) composite electrodes by chemical polymerization via a simple and cost effective dip coating technique for supercapacitor application. Fourier transform-infrared, Fourier transform-Raman, X-ray photoelectron and energy dispersive X-ray spectroscopy techniques are used for the phase identification. Surface morphology of the films is examined by field emission scanning electron microscopy, which revealed granular structure for PPY, spherical interlaced granules for PPY/PAA and granules with bright spots of Ag nanoparticles for the PPY/PAA/Ag composites. The supercapacitive behavior of the electrodes is tested in three electrode system with 0.1 M H 2 SO 4 electrolyte by using cyclic voltammetery and charge discharge test. The highest specific capacitance 226 F g −1 at 10 mV s −1 and energy density of 17.45 Wh kg −1 at 0.5 mA cm −2 is obtained for the PPY/PAA/Ag composite electrodes. Present work demonstrates an easy way of improving specific capacitance of the polymer electrodes. Thus the work will open a new avenue for designing low cost high performance devices for better supercapacitors

  17. The fabrication of nanopatterns with Au nanoparticles-embedded micelles via nanoimprint lithography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung-Pil; Kim, Eun-Uk; Koh, Haeng-Deog; Kang, Nam-Goo; Jung, Gun-Young; Lee, Jae-Suk, E-mail: gyjung@gist.ac.k, E-mail: jslee@gist.ac.k [Department of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro (Oryong-dong), Buk-gu Gwangju 500-712 (Korea, Republic of)

    2009-09-09

    We fabricated nanopatterns with Au nanoparticles-embedded micelles (Au-micelles) by self-assembly of block copolymers via nanoimprint lithography. The micelle structure prepared by self-assembled block copolymers was used as a template for the synthesis of Au nanoparticles (Au NPs). Au NPs were synthesized in situ inside the micelles of polystyrene-block-poly(2-vinylpyridine) (PS- b-P2VP). Au-micelles were arranged on the trenches of the polymer template, which was imprinted by nanoimprint lithography. The fabrication of line-type and dot-type nanopatterns was carried out by the combined method. In addition, multilayer nanopatterns of the Au-micelles were also proposed.

  18. Recovery of thermal-degraded ZnO photodetector by embedding nano silver oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Zhan-Shuo [Institute of Microelectronics, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Hung, Fei-Yi, E-mail: fyhung@mail.ncku.edu.tw [Institute of Nanotechnology and Microsystems Engineering, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Chen, Kuan-Jen [Institute of Nanotechnology and Microsystems Engineering, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); The Instrument Center, National Cheng Kung University, Tainan 701, Taiwan (China); Chang, Shoou-Jinn [Institute of Microelectronics, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Institute of Microelectronics and Department of Electrical Engineering, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Hsieh, Wei-Kang; Liao, Tsai-Yu; Chen, Tse-Pu [Institute of Microelectronics, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China)

    2013-08-15

    The degraded performance of annealed ZnO-based photodetector can be recovered by embedding Ag{sub 2}O nanoparticles resulted from the transformation of as-deposited Ag layer. After thermal treatment, the electrons were attracted at the interface between ZnO and Ag{sub 2}O. The excess Ag{sup +} ions form the cluster to incorporate into the interstitial sites of ZnO lattice to create a larger amount of lattice defects for the leakage path. The photo-current of ZnO film with Ag{sub 2}O nanoparticles is less than annealed ZnO film because the photo-induced electrons would flow into Ag{sub 2}O side. ZnO photodetector with the appropriate Ag{sub 2}O nanoparticles possesses the best rejection ratio.

  19. Ferroelectric nanoparticle-embedded sponge structure triboelectric generators

    Science.gov (United States)

    Park, Daehoon; Shin, Sung-Ho; Yoon, Ick-Jae; Nah, Junghyo

    2018-05-01

    We report high-performance triboelectric nanogenerators (TENGs) employing ferroelectric nanoparticles (NPs) embedded in a sponge structure. The ferroelectric BaTiO3 NPs inside the sponge structure play an important role in increasing surface charge density by polarized spontaneous dipoles, enabling the packaging of TENGs even with a minimal separation gap. Since the friction surfaces are encapsulated in the packaged device structure, it suffers negligible performance degradation even at a high relative humidity of 80%. The TENGs also demonstrated excellent mechanical durability due to the elasticity and flexibility of the sponge structure. Consequently, the TENGs can reliably harvest energy even under harsh conditions. The approach introduced here is a simple, effective, and reliable way to fabricate compact and packaged TENGs for potential applications in wearable energy-harvesting devices.

  20. Cobalt nanoparticles deposited and embedded in AlN: Magnetic, magneto-optical, and morphological properties

    International Nuclear Information System (INIS)

    Huttel, Y.; Gomez, H.; Clavero, C.; Cebollada, A.; Armelles, G.; Navarro, E.; Ciria, M.; Benito, L.; Arnaudas, J.I.; Kellock, A.J.

    2004-01-01

    We present a structural, morphological, magnetic, and magneto-optical study of cobalt nanoparticles deposited on 50 A ring AlN/c-sapphire substrates and embedded in an AlN matrix. The dependence of the properties of Co nanoclusters deposited on AlN with growth temperature and amount of deposited Co are studied and discussed. Also we directly compare the properties of as grown and AlN embedded Co nanoclusters and show that the AlN matrix has a strong impact on their magnetic and magneto-optical properties

  1. Radiation Induced Polyvinylpyrrolidone/Polyacrylic Acid Nano-Gel Formation for Biomedical Applications

    International Nuclear Information System (INIS)

    AbdEl-Rehim, H.; Hegazy, E.A.; Eid, A.; Amr; Ali, A.

    2010-01-01

    Adopting polyvinylpyrrolidone as template macromolecules and acrylic acid (AA) as monomers, at a concentration ranged from .05 to 1.5%, pH sensitive nano-particle colloids were successfully prepared via template polymerization using gamma radiation in which polymerization of the monomer and self-assembly between the polymer and the template take place simultaneously. The self-assembly was driven by specific interactions between PVP and PAA produced in-situ, leading to PVP/PAAc nano-particles with insoluble inter-polymer complexes. Dynamic light scattering technique was used to indicate size shrinkage and surface charge increase of the PVP/PAAc nano-particles. Many factors affecting the PVP/PAAc nano-particle size such as irradiation dose rate, exposure dose, irradiation temperature and atmosphere, PVP MWt, and feed composition and concentration were investigated. It was found that the reactant feed composition and irradiation temperatures have a great influence on particle size of the prepared nanogel. The structure and morphology of the nano-particles were characterized by FT-IR, UV, viscometry and AFM methods. The structure stability of the nano-particles was studied at different pH solutions. The nano-particles exhibit excellent pH response. When pH changed from acid to base, the particles‘ volume expanded 100 times depending on the irradiation dose at which the nanogel was prepared. The prepared nanogel was loaded with flutamide anticancer drug in the presence of ethanol-water mixture solution and the amount of loaded flutamide was determined. The prepared nano scale polyvinylpyrrolidone/polyacrylic acid bio-polymeric system loaded with flutamide drug is being investigated as anticancer target drug. Also this system will be tested for the treatment of dry-eye-syndrome. (author)

  2. Radiation Induced Polyvinylpyrrolidone/Polyacrylic Acid Nano-Gel Formation for Biomedical Applications

    Energy Technology Data Exchange (ETDEWEB)

    AbdEl-Rehim, H.; Hegazy, E. A.; Eid, A.; Amr,; Ali, A., E-mail: ha_rehim@hotmail.com [National Centre for Radiation Research, Research Centre (NCRRT), Atomic Energy Authority NCRRT, P.O.Box 29, Nasr City, Cairo (Egypt)

    2010-07-01

    Adopting polyvinylpyrrolidone as template macromolecules and acrylic acid (AA) as monomers, at a concentration ranged from .05 to 1.5%, pH sensitive nano-particle colloids were successfully prepared via template polymerization using gamma radiation in which polymerization of the monomer and self-assembly between the polymer and the template take place simultaneously. The self-assembly was driven by specific interactions between PVP and PAA produced in-situ, leading to PVP/PAAc nano-particles with insoluble inter-polymer complexes. Dynamic light scattering technique was used to indicate size shrinkage and surface charge increase of the PVP/PAAc nano-particles. Many factors affecting the PVP/PAAc nano-particle size such as irradiation dose rate, exposure dose, irradiation temperature and atmosphere, PVP MWt, and feed composition and concentration were investigated. It was found that the reactant feed composition and irradiation temperatures have a great influence on particle size of the prepared nanogel. The structure and morphology of the nano-particles were characterized by FT-IR, UV, viscometry and AFM methods. The structure stability of the nano-particles was studied at different pH solutions. The nano-particles exhibit excellent pH response. When pH changed from acid to base, the particles‘ volume expanded 100 times depending on the irradiation dose at which the nanogel was prepared. The prepared nanogel was loaded with flutamide anticancer drug in the presence of ethanol-water mixture solution and the amount of loaded flutamide was determined. The prepared nano scale polyvinylpyrrolidone/polyacrylic acid bio-polymeric system loaded with flutamide drug is being investigated as anticancer target drug. Also this system will be tested for the treatment of dry-eye-syndrome. (author)

  3. Photoinduced Circular Anisotropy in Side-Chain Azobenzene Polyesters

    DEFF Research Database (Denmark)

    Nikolova, L.; Todorov, T.; Ivanov, M.

    1997-01-01

    We report for the first time the inducing of large circular anisotropy in previously unoriented films of side-chain azobenzene polyesters on illumination with circularly polarized light at a wavelength of 488 nm. The circular dichroism and optical activity are measured simultaneously in real time...

  4. Synthesis of copper polyacrylate nanocomposites by gamma irradiation

    International Nuclear Information System (INIS)

    Casalme, Loida Olores

    2005-04-01

    This research involves the synthesis of copper nanoparticles with controlled size by the application of gamma radiation with varying polyacrylic acid (PAA) and CuSO 4 concentration. An alternative and convenient method was done which employs Co 60 irradiation of solutions of copper salt and PAA with irradiation dose of 1.6, 3.6, 6.4, and 9.2 MRad. The effect of polymer and copper sulfate's initial concentrations as well as the effect of the presence of alcohol as radical scavenger and the presence of ethylenediaminetetraacetic acid as stabilizer were evaluated. Characterization of nanocomposite properties such as plasmon resonance band, fluorescence, and particle morphology and size were determined. Layer-by-layer assembly of Cu-PAA nanocomposites and polydiallyl dimethyl ammonium chloride (PDDA) was also constructed. Stability of the synthesized copper-PAA nanocomposites in terms of the disappearance of plasmon band with time was evaluated. (Author)

  5. Nanoparticle Additives for Multiphase Systems: Synthesis, Formulation and Characterization

    Science.gov (United States)

    2012-01-01

    identify the types of chemical bonds on a molecule. The window material was ZnSe with a DTGS KBr detector. Potassium bromide (KBr) was used as pellet...is known, as is γSV for the polyacrylate (39.1 mN/m, measured from Zisman’s plot, as composition of the acrylate monomer is larger than the...pyramid surfaces. Since the volume fraction of polyacrylate in the nanocomposite film was larger than the volume fraction of nanoparticles, the

  6. Poly(Acrylic Acid-b-Styrene) Amphiphilic Multiblock Copolymers as Building Blocks for the Assembly of Discrete Nanoparticles

    Science.gov (United States)

    Greene, Anna C.; Zhu, Jiahua; Pochan, Darrin J.; Jia, Xinqiao; Kiick, Kristi L.

    2011-01-01

    In order to expand the utility of current polymeric micellar systems, we have developed amphiphilic multiblock copolymers containing alternating blocks of poly(acrylic acid) and poly(styrene). Heterotelechelic poly(tert-butyl acrylate-b-styrene) diblock copolymers containing an α-alkyne and an ω-azide were synthesized by atom transfer radical polymerization (ATRP), allowing control over the molecular weight while maintaining narrow polydispersity indices. The multiblock copolymers were constructed by copper-catalyzed azide-alkyne cycloaddition of azide-alkyne end functional diblock copolymers which were then characterized by 1H NMR, FT-IR and SEC. The tert-butyl moieties of the poly(tert-butyl acrylate-b-styrene) multiblock copolymers were easily removed to form the poly(acrylic acid-b-styrene) multiblock copolymer ((PAA-PS)9), which contained up to 9 diblock repeats. The amphiphilic multiblock (PAA-PS)9 (Mn = 73.3 kg/mol) was self-assembled by dissolution into tetrahydrofuran and extensive dialysis against deionized water for 4 days. The critical micelle concentration (CMC) for (PAA-PS)9 was determined by fluorescence spectroscopy using pyrene as a fluorescent probe and was found to be very low at 2 × 10-4 mg/mL. The (PAA-PS)9 multiblock was also analyzed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The hydrodynamic diameter of the particles was found to be 11 nm. Discrete spherical particles were observed by TEM with an average particle diameter of 14 nm. The poly(acrylic acid) periphery of the spherical particles should allow for future conjugation of biomolecules. PMID:21552373

  7. Positronic probe of vacancy defects on surfaces of Au nanoparticles embedded in MgO

    International Nuclear Information System (INIS)

    Xu, Jun; Moxom, J.; Somieski, B.; White, C. W.; Mills, A. P.; Suzuki, R.; Ishibashi, S.

    2001-01-01

    Clusters of four atomic vacancies were found in Au nanoparticle-embedded MgO by positron lifetime spectroscopy [Phys. Rev. Lett. 83, 4586 (1999)]. These clusters were also suggested to locate at the surface of Au nanoparticles by one-detector measurements of Doppler broadening of annihilation radiation. In this work we provide evidence, using two-detector coincidence experiments of Doppler broadening (2D-DBAR), to clarify that these vacancy clusters reside on the surfaces of Au nanoparticles. This work also demonstrates a method for identifying defects at nanomaterials interfaces: a combination of both positron lifetime spectroscopy, which tells the type of the defects, and 2D-DBAR measurements, which reveals chemical environment of the defects

  8. Positronic probe of vacancy defects on surfaces of Au nanoparticles embedded in MgO

    Science.gov (United States)

    Xu, Jun; Moxom, J.; Somieski, B.; White, C. W.; Mills, A. P., Jr.; Suzuki, R.; Ishibashi, S.

    2001-09-01

    Clusters of four atomic vacancies were found in Au nanoparticle-embedded MgO by positron lifetime spectroscopy [Phys. Rev. Lett. 83, 4586 (1999)]. These clusters were also suggested to locate at the surface of Au nanoparticles by one-detector measurements of Doppler broadening of annihilation radiation. In this work we provide evidence, using two-detector coincidence experiments of Doppler broadening (2D-DBAR), to clarify that these vacancy clusters reside on the surfaces of Au nanoparticles. This work also demonstrates a method for identifying defects at nanomaterials interfaces: a combination of both positron lifetime spectroscopy, which tells the type of the defects, and 2D-DBAR measurements, which reveals chemical environment of the defects.

  9. Light scattering measurement of sodium polyacrylate products

    Science.gov (United States)

    Lama, Nisha; Norwood, David; Boone, Steven; Massie-Boyer, Valerie

    2015-03-01

    In the presentation, we will describe the use of a multi-detector HPLC incorporating the DAWN EOS multi-angle laser light scattering (MALLS) detector to measure the properties such as molecular weight, RMS radius, contour and persistence length and polydispersity of sodium polyacrylate products. The samples of sodium polyacrylate are used in various industries as thickening agents, coating dispersants, artificial snow, laundry detergent and disposable diapers. Data and results obtained from the experiment will be presented.

  10. Ultrafine Sn nanoparticles embedded in shell of N-doped hollow carbon spheres as high rate anode for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Dou, Peng; Cao, Zhenzhen; Wang, Chao; Zheng, Jiao [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Xu, Xinhua, E-mail: xhxutju@gmail.com [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China)

    2017-05-15

    Highlights: • Dynamic covalent bond in polymeric nanoparticles is used to induce hollow Sn{sup 4+}-MOPs. • Ultrafine Sn nanoparticles uniformly embedded in shell of N-doped hollow carbon spheres is successfully synthesized by pyrolysis of the Sn{sup 4+}-MOPs precursor. • The composite exhibits superior cycle stability and rate capacity. - Abstract: A novel reversible interaction in polymeric nanoparticles is used to induce hollow Sn{sup 4+}-MOPs. Then ultrafine Sn nanoparticles uniformly embedded in shell of N-doped hollow carbon spheres is successfully synthesized by pyrolysis of the Sn{sup 4+}-MOPs precursor. In this architecture, the N-doped carbon shells can effectively avoid the direct exposure of embedded Sn nanoparticles to the electrolyte and efficiently accommodate the volume change of Sn nanoparticles. Furthermore, the hollow structure of carbon sphere can prevent Sn nanoparticles aggregation over repeated cycling and shorten the diffusion path of both electrons and ions. As a consequence, this N-doped hollow Sn/C anode delivers a reversible capacity of 606 mA h g{sup −1} at a current density of 0.2 A g{sup −1} after 250 cycles and a reversible capacity of 221 mA h g{sup −1} even at a much higher current density of 10 A g{sup −1}, which are much better than those of pure Sn nanoparticles. The desirable cyclic stability and rate capability were attributed to the unique architecture that provided fast pathway for electron transport and simultaneously solved the major issues of Sn-based anodes, such as pulverization, aggregation and loss of electrical contact.

  11. In Situ Synthesis of Metal Nanoparticle Embedded Hybrid Soft Nanomaterials.

    Science.gov (United States)

    Divya, Kizhmuri P; Miroshnikov, Mikhail; Dutta, Debjit; Vemula, Praveen Kumar; Ajayan, Pulickel M; John, George

    2016-09-20

    The allure of integrating the tunable properties of soft nanomaterials with the unique optical and electronic properties of metal nanoparticles has led to the development of organic-inorganic hybrid nanomaterials. A promising method for the synthesis of such organic-inorganic hybrid nanomaterials is afforded by the in situ generation of metal nanoparticles within a host organic template. Due to their tunable surface morphology and porosity, soft organic materials such as gels, liquid crystals, and polymers that are derived from various synthetic or natural compounds can act as templates for the synthesis of metal nanoparticles of different shapes and sizes. This method provides stabilization to the metal nanoparticles by the organic soft material and advantageously precludes the use of external reducing or capping agents in many instances. In this Account, we exemplify the green chemistry approach for synthesizing these materials, both in the choice of gelators as soft material frameworks and in the reduction mechanisms that generate the metal nanoparticles. Established herein is the core design principle centered on conceiving multifaceted amphiphilic soft materials that possess the ability to self-assemble and reduce metal ions into nanoparticles. Furthermore, these soft materials stabilize the in situ generated metal nanoparticles and retain their self-assembly ability to generate metal nanoparticle embedded homogeneous organic-inorganic hybrid materials. We discuss a remarkable example of vegetable-based drying oils as host templates for metal ions, resulting in the synthesis of novel hybrid nanomaterials. The synthesis of metal nanoparticles via polymers and self-assembled materials fabricated via cardanol (a bioorganic monomer derived from cashew nut shell liquid) are also explored in this Account. The organic-inorganic hybrid structures were characterized by several techniques such as UV-visible spectroscopy, scanning electron microscopy (SEM), and

  12. Microscopic theory of light-induced deformation in amorphous side-chain azobenzene polymers.

    Science.gov (United States)

    Toshchevikov, V; Saphiannikova, M; Heinrich, G

    2009-04-16

    We propose a microscopic theory of light-induced deformation of side-chain azobenzene polymers taking into account the internal structure of polymer chains. Our theory is based on the fact that interaction of chromophores with the polarized light leads to the orientation anisotropy of azobenzene macromolecules which is accompanied by the appearance of mechanical stress. It is the first microscopic theory which provides the value of the light-induced stress larger than the yield stress. This result explains a possibility for the inscription of surface relief gratings in glassy side-chain azobenzene polymers. For some chemical architectures, elongation of a sample demonstrates a nonmonotonic behavior with the light intensity and can change its sign (a stretched sample starts to be uniaxially compressed), in agreement with experiments. Using a viscoplastic approach, we show that the irreversible strain of a sample, which remains after the light is switched off, decreases with increasing temperature and can disappear at certain temperature below the glass transition temperature. This theoretical prediction is also confirmed by recent experiments.

  13. Nonvolatile flexible organic bistable devices fabricated utilizing CdSe/ZnS nanoparticles embedded in a conducting poly N-vinylcarbazole polymer layer

    International Nuclear Information System (INIS)

    Son, Dong-Ick; Kim, Ji-Hwan; Park, Dong-Hee; Choi, Won Kook; Li, Fushan; Ham, Jung Hun; Kim, Tae Whan

    2008-01-01

    The bistable effects of CdSe/ZnS nanoparticles embedded in a conducting poly N-vinylcarbazole (PVK) polymer layer by using flexible poly-vinylidene difluoride (PVDF) and polyethylene terephthalate (PET) substrates were investigated. Transmission electron microscopy (TEM) images revealed that CdSe/ZnS nanoparticles were formed inside the PVK polymer layer. Current-voltage (I-V) measurement on the Al/[CdSe/ZnS nanoparticles+ PVK]/ITO/PVDF and Al/[CdSe/ZnS nanoparticles+ PVK ]/ITO/PET structures at 300 K showed a nonvolatile electrical bistability behavior with a flat-band voltage shift due to the existence of the CdSe/ZnS nanoparticles, indicative of trapping, storing and emission of charges in the electronic states of the CdSe nanoparticles. A bistable behavior for the fabricated organic bistable device (OBD) structures is described on the basis of the I-V results. These results indicate that OBDs fabricated by embedding inorganic CdSe/ZnS nanoparticles in a conducting polymer matrix on flexible substrates are prospects for potential applications in flexible nonvolatile flash memory devices

  14. Photoisomers of Azobenzene Star with a Flat Core: Theoretical Insights into Multiple States from DFT and MD Perspective.

    Science.gov (United States)

    Koch, Markus; Saphiannikova, Marina; Santer, Svetlana; Guskova, Olga

    2017-09-21

    This study focuses on comparing physical properties of photoisomers of an azobenzene star with benzene-1,3,5-tricarboxamide core. Three azobenzene arms of the molecule undergo a reversible trans-cis isomerization upon UV-vis light illumination giving rise to multiple states from the planar all-trans one, via two mixed states to the kinked all-cis isomer. Employing density functional theory, we characterize the structural and photophysical properties of each state indicating a role the planar core plays in the coupling between azobenzene chromophores. To characterize the light-triggered switching of solvophilicity/solvophobicity of the star, the difference in solvation free energy is calculated for the transfer of an azobenzene star from its gas phase to implicit or explicit solvents. For the latter case, classical all-atom molecular dynamics simulations of aqueous solutions of azobenzene star are performed employing the polymer consistent force field to shed light on the thermodynamics of explicit hydration as a function of the isomerization state and on the structuring of water around the star. From the analysis of two contributions to the free energy of hydration, the nonpolar van der Waals and the electrostatic terms, it is concluded that isomerization specificity largely determines the polarity of the molecule and the solute-solvent electrostatic interactions. This convertible hydrophilicity/hydrophobicity together with readjustable occupied volume and the surface area accessible to water, affects the self-assembly/disassembly of the azobenzene star with a flat core triggered by light.

  15. Preparation of magnetic nanoparticles embedded in polystyrene microspheres

    International Nuclear Information System (INIS)

    Nguyen Hoang Hai; Nguyen Hoang Luong; Nguyen Chau; Ngo Quy Tai

    2009-01-01

    Superparamagnetic particles are widely used for biological applications such as cell separation. The size of the particles is normally in the range of 10 - 20 nm which is much smaller than the size of a cell. Therefore small particles create small force which is not strong enough to separate the cells from solution. Superparamagnetic nanoparticles embedded in Polystyrene microspheres (magnetic beads) are very useful for cell separation. Magnetic beads have been prepared by solvent evaporation of an emulsion. The beads with size of 0.2 μm - 1.0 μm have a saturation magnetization of 10 - 25 emu/g. The change of the amount of surfactants, volatile solvent, magnetic particles resulted to the change of size, magnetic properties of the magnetic beads.

  16. Molecular modeling studies of interactions between sodium polyacrylate polymer and calcite surface

    Energy Technology Data Exchange (ETDEWEB)

    Ylikantola, A. [University of Jyväskylä, Department of Chemistry, P.O. Box 35, University of Jyväskylä, FI-40014 (Finland); Linnanto, J., E-mail: juha.m.linnanto@gmail.com [University of Jyväskylä, Department of Chemistry, P.O. Box 35, University of Jyväskylä, FI-40014 (Finland); University of Tartu, Institute of Physics, Riia 142, EE-51014 Tartu (Estonia); Knuutinen, J.; Oravilahti, A. [University of Jyväskylä, Department of Chemistry, P.O. Box 35, University of Jyväskylä, FI-40014 (Finland); Toivakka, M. [Åbo Akademi University, Laboratory of Paper Coating and Converting and Center for Functional Materials, FI-20500 Turku/Åbo (Finland)

    2013-07-01

    The interactions between calcite pigment and sodium polyacrylate dispersing agent, widely used in papermaking as paper coating components, were investigated using classical force field and quantum chemical approaches. The objective was to understand interactions between the calcite surface and sodium polyacrylate polymer at 300 K using molecular dynamics simulations. A quantum mechanical ab initio Hartree–Fock method was also used to obtain detailed information about the sodium polyacrylate polymer structure. The effect of water molecules (moisture) on the interactions was also examined. Calculations showed that molecular weight, branching and the orientation of sodium polyacrylate polymers influence the interactions between the calcite surface and the polymer. The force field applied, and also water molecules, were found to have an impact on all systems studied. Ab initio Hartree–Fock calculations indicated that there are two types of coordination between sodium atoms and carboxylate groups of the sodium polyacrylate polymer, inter- and intra-carboxylate group coordination. In addition, ab initio Hartree–Fock calculations of the structure of the sodium polyacrylate polymer produced important information regarding interactions between the polymers and carboxylated styrene-butadiene latex particles.

  17. High-performance liquid chromatography separation of unsaturated organic compounds by a monolithic silica column embedded with silver nanoparticles.

    Science.gov (United States)

    Zhu, Yang; Morisato, Kei; Hasegawa, George; Moitra, Nirmalya; Kiyomura, Tsutomu; Kurata, Hiroki; Kanamori, Kazuyoshi; Nakanishi, Kazuki

    2015-08-01

    The optimization of a porous structure to ensure good separation performances is always a significant issue in high-performance liquid chromatography column design. Recently we reported the homogeneous embedment of Ag nanoparticles in periodic mesoporous silica monolith and the application of such Ag nanoparticles embedded silica monolith for the high-performance liquid chromatography separation of polyaromatic hydrocarbons. However, the separation performance remains to be improved and the retention mechanism as compared with the Ag ion high-performance liquid chromatography technique still needs to be clarified. In this research, Ag nanoparticles were introduced into a macro/mesoporous silica monolith with optimized pore parameters for high-performance liquid chromatography separations. Baseline separation of benzene, naphthalene, anthracene, and pyrene was achieved with the theoretical plate number for analyte naphthalene as 36,000 m(-1). Its separation function was further extended to cis/trans isomers of aromatic compounds where cis/trans stilbenes were chosen as a benchmark. Good separation of cis/trans-stilbene with separation factor as 7 and theoretical plate number as 76,000 m(-1) for cis-stilbene was obtained. The trans isomer, however, is retained more strongly, which contradicts the long- established retention rule of Ag ion chromatography. Such behavior of Ag nanoparticles embedded in a silica column can be attributed to the differences in the molecular geometric configuration of cis/trans stilbenes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Controlled Sol-Gel Transitions of a Thermoresponsive Polymer in a Photoswitchable Azobenzene Ionic Liquid as a Molecular Trigger.

    Science.gov (United States)

    Wang, Caihong; Hashimoto, Kei; Tamate, Ryota; Kokubo, Hisashi; Watanabe, Masayoshi

    2018-01-02

    Producing ionic liquids (ILs) that function as molecular trigger for macroscopic change is a challenging issue. Photoisomerization of an azobenzene IL at the molecular level evokes a macroscopic response (light-controlled mechanical sol-gel transitions) for ABA triblock copolymer solutions. The A endblocks, poly(2-phenylethyl methacrylate), show a lower critical solution temperature in the IL mixture containing azobenzene, while the B midblock, poly(methyl methacrylate), is compatible with the mixture. In a concentrated polymer solution, different gelation temperatures were observed in it under dark and UV conditions. Light-controlled sol-gel transitions were achieved by a photoresponsive solubility change of the A endblocks upon photoisomerization of the azobenzene IL. Therefore, an azobenzene IL as a molecular switch can tune the self-assembly of a thermoresponsive polymer, leading to macroscopic light-controlled sol-gel transitions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Graphene hydrogels with embedded metal nanoparticles as efficient catalysts in 4-nitrophenol reduction and methylene blue decolorization

    Directory of Open Access Journals (Sweden)

    Żelechowska Kamila

    2016-12-01

    Full Text Available Synthesis and characterization of the graphene hydrogels with three different metallic nanoparticles, that is Au, Ag and Cu, respectively is presented. Synthesized in a one-pot approach graphene hydrogels with embedded metallic nanoparticles were tested as heterogeneous catalysts in a model reaction of 4-nitrophenol reduction. The highest activity was obtained for graphene hydrogel with Cu nanoparticles and additional reaction of methylene blued degradation was evaluated using this system. The obtained outstanding catalytic activity arises from the synergistic effect of graphene and metallic nanoparticles. The hydrogel form of the catalyst benefits in the easiness in separation from the reaction mixture (for example using tweezers and reusability.

  20. Capacitance characteristics of metal-oxide-semiconductor capacitors with a single layer of embedded nickel nanoparticles for the application of nonvolatile memory

    International Nuclear Information System (INIS)

    Wei, Li; Ling, Xu; Wei-Ming, Zhao; Hong-Lin, Ding; Zhong-Yuan, Ma; Jun, Xu; Kun-Ji, Chen

    2010-01-01

    This paper reports that metal-oxide-semiconductor (MOS) capacitors with a single layer of Ni nanoparticles were successfully fabricated by using electron-beam evaporation and rapid thermal annealing for application to nonvolatile memory. Experimental scanning electron microscopy images showed that Ni nanoparticles of about 5 nm in diameter were clearly embedded in the SiO 2 layer on p-type Si (100). Capacitance–voltage measurements of the MOS capacitor show large flat-band voltage shifts of 1.8 V, which indicate the presence of charge storage in the nickel nanoparticles. In addition, the charge-retention characteristics of MOS capacitors with Ni nanoparticles were investigated by using capacitance–time measurements. The results showed that there was a decay of the capacitance embedded with Ni nanoparticles for an electron charge after 10 4 s. But only a slight decay of the capacitance originating from hole charging was observed. The present results indicate that this technique is promising for the efficient formation or insertion of metal nanoparticles inside MOS structures. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  1. Super electron donor-mediated reductive transformation of nitrobenzenes: a novel strategy to synthesize azobenzenes and phenazines.

    Science.gov (United States)

    Nozawa-Kumada, Kanako; Abe, Erina; Ito, Shungo; Shigeno, Masanori; Kondo, Yoshinori

    2018-05-02

    The transformation of nitrobenzenes into azobenzenes by pyridine-derived super electron donor 2 is described. This method provides an efficient synthesis of azobenzenes because of not requiring the use of expensive transition-metals, toxic or flammable reagents, or harsh conditions. Moreover, when using 2-fluoronitrobenzenes as substrates, phenazines were found to be obtained. The process affords a novel synthesis of phenazines.

  2. Exchange bias of Ni nanoparticles embedded in an antiferromagnetic IrMn matrix

    International Nuclear Information System (INIS)

    Kuerbanjiang, Balati; Herr, Ulrich; Wiedwald, Ulf; Haering, Felix; Ziemann, Paul; Biskupek, Johannes; Kaiser, Ute

    2013-01-01

    The magnetic properties of Ni nanoparticles (Ni-NPs) embedded in an antiferromagnetic IrMn matrix were investigated. The Ni-NPs of 8.4 nm mean diameter were synthesized by inert gas aggregation. In a second processing step, the Ni-NPs were in situ embedded in IrMn films or SiO x films under ultrahigh vacuum (UHV) conditions. Findings showed that Ni-NPs embedded in IrMn have an exchange bias field H EB = 821 Oe at 10 K, and 50 Oe at 300 K. The extracted value of the exchange energy density is 0.06 mJ m −2 at 10 K, which is in good accordance with the results from multilayered thin film systems. The Ni-NPs embedded in SiO x did not show exchange bias. As expected for this particle size, they are superparamagnetic at T = 300 K. A direct comparison of the Ni-NPs embedded in IrMn or SiO x reveals an increase of the blocking temperature from 210 K to around 400 K. The coercivity of the Ni-NPs exchange coupled to the IrMn matrix at 10 K is 8 times larger than the value for Ni-NPs embedded in SiO x . We studied time-dependent remanent magnetization at different temperatures. The relaxation behavior is described by a magnetic viscosity model which reflects a rather flat distribution of energy barriers. Furthermore, we investigated the effects of different field cooling processes on the magnetic properties of the embedded Ni-NPs. Exchange bias values fit to model calculations which correlate the contribution of the antiferromagnetic IrMn matrix to its grain size. (paper)

  3. Synthesis of Gold Nanoparticle-Embedded Silver Cubic Mesh Nanostructures Using AgCl Nanocubes for Plasmonic Photocatalysis.

    Science.gov (United States)

    Joo, Jang Ho; Kim, Byung-Ho; Lee, Jae-Seung

    2017-11-01

    A novel room-temperature aqueous synthesis for gold nanoparticle-embedded silver cubic mesh nanostructures using AgCl templates via a template-assisted coreduction method is developed. The cubic AgCl templates are coreduced in the presence of AuCl 4 - and Ag + , resulting in the reduction of AuCl 4 - into gold nanoparticles on the outer region of AgCl templates, followed by the reduction of AgCl and Ag + into silver cubic mesh nanostructures. Removal of the template clearly demonstrates the delicately designed silver mesh nanostructures embedded with gold nanoparticles. The synthetic mechanism, structural properties, and surface functionalization are spectroscopically investigated. The plasmonic photocatalysis of the cubic mesh nanostructures for the degradation of organic pollutants and removal of highly toxic metal ions is investigated; the photocatalytic activity of the cubic mesh nanostructures is superior to those of conventional TiO 2 catalysts and they are catalytically functional even in natural water, owing to their high surface area and excellent chemical stability. The synthetic development presented in this study can be exploited for the highly elaborate, yet, facile design of nanomaterials with outstanding properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Polyacrylic acid-coated cerium oxide nanoparticles: An oxidase mimic applied for colorimetric assay to organophosphorus pesticides.

    Science.gov (United States)

    Zhang, Shi-Xiang; Xue, Shi-Fan; Deng, Jingjing; Zhang, Min; Shi, Guoyue; Zhou, Tianshu

    2016-11-15

    It is important and urgent to develop reliable and highly sensitive methods that can provide on-site and rapid detection of extensively used organophosphorus pesticides (OPs) for their neurotoxicity. In this study, we developed a novel colorimetric assay for the detection of OPs based on polyacrylic acid-coated cerium oxide nanoparticles (PAA-CeO2) as an oxidase mimic and OPs as inhibitors to suppress the activity of acetylcholinesterase (AChE). Firstly, highly dispersed PAA-CeO2 was prepared in aqueous solution, which could catalyze the oxidation of TMB to produce a color reaction from colorless to blue. And the enzyme of AChE was used to catalyze the substrate of acetylthiocholine (ATCh) to produce thiocholine (TCh). As a thiol-containing compound with reducibility, TCh can decrease the oxidation of TMB catalyzed by PAA-CeO2. Upon incubated with OPs, the enzymatic activity of AChE was inhibited to produce less TCh, resulting in more TMB catalytically oxidized by PAA-CeO2 to show an increasing blue color. The two representative OPs, dichlorvos and methyl-paraoxon, were tested using our proposed assay. The novel assay showed notable color change in a concentration-dependent manner, and as low as 8.62 ppb dichlorvos and 26.73 ppb methyl-paraoxon can be readily detected. Therefore, taking advantage of such oxidase-like activity of PAA-CeO2, our proposed colorimetric assay can potentially be a screening tool for the precise and rapid evaluation of the neurotoxicity of a wealth of OPs. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Influence of hydrogen bonding on the generation and stabilization

    Indian Academy of Sciences (India)

    Induction and stabilization of liquid crystallinity through hydrogen bonding (HB) are now well-established. Interesting observations made on the influence of HB on LC behaviour of amido diol-based poly(esteramide)s, poly(esteramide)s containing nitro groups and azobenzene mesogen-based polyacrylates will be ...

  6. Preparation and icephobic properties of polymethyltrifluoropropylsiloxane–polyacrylate block copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaohui; Zhao, Yunhui [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China); Li, Hui [School of Chemistry and Chemical Engineering, Shandong Key Laboratory of Fluorine Chemistry and Chemical Engineering Materials, University of Jinan, Jinan 250022 (China); Yuan, Xiaoyan, E-mail: xyuan28@yahoo.com [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China)

    2014-10-15

    Highlights: • PMTFPS–b-polyacrylate copolymers in five different compositions were synthesized. • Enrichment of PMTFPS amounts at the surface made high F/Si value. • Icing delay time was related to the surface roughness. • Ice shear strength was decreased by the synergistic effect of silicone and fluorine. - Abstract: Five polymethyltrifluoropropylsiloxane (PMTFPS)–polyacrylate block copolymers (PMTFPS–b-polyacrylate) were synthesized by free radical polymerization of methyl methacrylate, n-butyl acrylate and hydroxyethyl methacrylate using PMTFPS macroazoinitiator (PMTFPS-MAI) in range of 10–50 mass percentages. The morphology, surface chemical composition and wettability of the prepared copolymer films were investigated by transmission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and water contact angle measurement. Delayed icing time and ice shear strength of the films were also detected for the icephobic purpose. The surface morphologies of the copolymers were different from those of the bulk because of the migration of the PMTFPS segments to the air interface during the film formation. Maximal delayed icing time (186 s at −15 °C) and reduction of the ice shear strength (301 ± 10 kPa) which was significantly lower than that of polyacrylates (804 ± 37 kPa) were achieved when the content of PMTFPS-MAI was 20 wt%. The icephobicity of the copolymers was attributed primarily to the enrichment of PMTFPS on the film surface and synergistic effect of both silicone and fluorine. Thus, the results show that the PMTFPS–b-polyacrylate copolymer can be used as icephobic coating materials potentially.

  7. Deposition of Polymer Thin Films on ZnO Nanoparticles by a Plasma Treatment

    Science.gov (United States)

    2001-11-01

    exchange for removing metal ions frori water. If on the surface of these nanoparticles, an extremely thin layer of polyacrylic filr can be coated by a...plasma treatment. The polyacrylic film will react with metallic ions in water. As a result of the high surface-to-volume ratio of these narioparticles, the...experiments performed on a JEM 2010F. In FFIR experiment, potassium bromide(KBr) of 99%+ purity was obtained from Aldrich Chemical Company Inc

  8. Polymer-embedded stannic oxide nanoparticles as humidity sensors

    International Nuclear Information System (INIS)

    Hatamie, Shadie; Dhas, Vivek; Kale, B.B.; Mulla, I.S.; Kale, S.N.

    2009-01-01

    Stannic oxide (SnO 2 ) nanoparticles have been suspended in polyvinyl alcohol (PVA) matrix in different PVA:SnO 2 molar ratios ranging from 1:1 to 1:5 using simple chemical route. This suspension was deposited on ceramic substrate and upon drying was carefully detached from the substrate. SnO 2 -embedded self-standing, transparent and flexible thin films were hence synthesized. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques show the rutile tetragonal structure of SnO 2 with particle size ∼ 5 nm. UV-Visible spectroscopy demonstrates the band gap of 3.9 eV, which does not alter when embedded in polymer. Fourier transform infrared spectroscopy (FTIR) reveals that the properties of SnO 2 do not modify due to incorporation in the PVA matrix. The structures work as excellent humidity sensors at room temperature. For a critical PVA:SnO 2 molar ratio of 1:3, the resistance changes to five times of magnitude in 92% humidity within fraction of second when compared with resistance at 11% humidity. The sample regains its original resistance almost instantaneously after being removed from humid chamber. Nanodimensions of SnO 2 particles and percolation mechanism related to transport through polymer matrix and water molecule as a carrier has been used to understand the mechanism.

  9. Magnetite nanoparticles coated with alkyne-containing polyacrylates for click chemistry

    Science.gov (United States)

    Socaci, Crina; Rybka, Miriam; Magerusan, Lidia; Nan, Alexandrina; Turcu, Rodica; Liebscher, Jürgen

    2013-06-01

    New magnetic core shell nanoparticles were synthesized consisting of magnetite cores and poly-( O-propargyl acrylate) shells. Strong fixing of the shells was achieved by primary anchoring phosphates or α-dihydroxydiphosphonates containing acrylate or methacrylate functionalities. The magnetic nanoparticles are attractive as supports for a variety of function which can be easily introduced by Cu-catalyzed alkyne azide cycloaddition (CuAAC, a click reaction). In this way, also the loading of the magnetic nanoparticles with propargyl units was determined by reaction with 4-azidoacetophenone and analysis of the supernatant. In order to demonstrate the attractiveness of the magnetic nanoparticles a novel azido-containing conjugate with biotin as recognition function and dansyl as fluorescence marker was introduced by CuAAC reaction. All NP show superparamagnetic behavior with high-saturation magnetization values and were further characterized by FTIR, photoelectron spectroscopy and TEM.

  10. Magnetite nanoparticles coated with alkyne-containing polyacrylates for click chemistry

    International Nuclear Information System (INIS)

    Socaci, Crina; Rybka, Miriam; Magerusan, Lidia; Nan, Alexandrina; Turcu, Rodica; Liebscher, Jürgen

    2013-01-01

    New magnetic core shell nanoparticles were synthesized consisting of magnetite cores and poly-(O-propargyl acrylate) shells. Strong fixing of the shells was achieved by primary anchoring phosphates or α-dihydroxydiphosphonates containing acrylate or methacrylate functionalities. The magnetic nanoparticles are attractive as supports for a variety of function which can be easily introduced by Cu-catalyzed alkyne azide cycloaddition (CuAAC, a click reaction). In this way, also the loading of the magnetic nanoparticles with propargyl units was determined by reaction with 4-azidoacetophenone and analysis of the supernatant. In order to demonstrate the attractiveness of the magnetic nanoparticles a novel azido-containing conjugate with biotin as recognition function and dansyl as fluorescence marker was introduced by CuAAC reaction. All NP show superparamagnetic behavior with high-saturation magnetization values and were further characterized by FTIR, photoelectron spectroscopy and TEM.

  11. Magnetite nanoparticles coated with alkyne-containing polyacrylates for click chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Socaci, Crina [National Institute of Research and Development for Isotopic and Molecular Technologies (Romania); Rybka, Miriam [Humboldt-University Berlin, Department of Chemistry (Germany); Magerusan, Lidia; Nan, Alexandrina; Turcu, Rodica; Liebscher, Juergen, E-mail: liebscher@chemie.hu-berlin.de [National Institute of Research and Development for Isotopic and Molecular Technologies (Romania)

    2013-06-15

    New magnetic core shell nanoparticles were synthesized consisting of magnetite cores and poly-(O-propargyl acrylate) shells. Strong fixing of the shells was achieved by primary anchoring phosphates or {alpha}-dihydroxydiphosphonates containing acrylate or methacrylate functionalities. The magnetic nanoparticles are attractive as supports for a variety of function which can be easily introduced by Cu-catalyzed alkyne azide cycloaddition (CuAAC, a click reaction). In this way, also the loading of the magnetic nanoparticles with propargyl units was determined by reaction with 4-azidoacetophenone and analysis of the supernatant. In order to demonstrate the attractiveness of the magnetic nanoparticles a novel azido-containing conjugate with biotin as recognition function and dansyl as fluorescence marker was introduced by CuAAC reaction. All NP show superparamagnetic behavior with high-saturation magnetization values and were further characterized by FTIR, photoelectron spectroscopy and TEM.

  12. MS-XANES studies on the interface effect of semiconductor InSb nanoparticles embedded in a-SiO2 matrix

    International Nuclear Information System (INIS)

    Chen Dongliang; Wu Ziyu; Wei Shiqiang

    2006-01-01

    The interface effect of semiconductor InSb nanoparticles (NPs) embedded in a-SiO 2 matrix was investigated via multi-scattering XANES simulations. The results show that the white line increase and broadening to higher energies of InSb NPs embedded in a-SiO 2 host matrix are mainly due to the interaction of InSb NPs and a-SiO 2 matrix. It can be interpreted as both a local single-site effect on μ 0 (E) due to the effect of a-SiO 2 matrix on Sb intra-atomic potential and the increase in 5p-hole population due to 5p-electron depletion in Sb for the InSb NPs embedded in SiO 2 matrix. On the other hand, our result reveals evidently that it is not reasonable to estimate the 5p-hole counts only according to the intensity of the white line due to the interface effect of nanoparticles. (authors)

  13. Photoinduced macroscopic chiral structures in a series of azobenzene copolyesters

    DEFF Research Database (Denmark)

    Nedelchev, L.; Nikolova, L.; Matharu, A.

    2002-01-01

    A study of the propagation of elliptically polarized light and the resulting formation of macroscopic chiral structures in a series of azobenzene side-chain copolyesters, in which the morphology is varied from liquid crystalline to amorphous, is reported. Real-time measurements are presented...

  14. Molecularly Engineered Azobenzene Derivatives for High Energy Density Solid-State Solar Thermal Fuels.

    Science.gov (United States)

    Cho, Eugene N; Zhitomirsky, David; Han, Grace G D; Liu, Yun; Grossman, Jeffrey C

    2017-03-15

    Solar thermal fuels (STFs) harvest and store solar energy in a closed cycle system through conformational change of molecules and can release the energy in the form of heat on demand. With the aim of developing tunable and optimized STFs for solid-state applications, we designed three azobenzene derivatives functionalized with bulky aromatic groups (phenyl, biphenyl, and tert-butyl phenyl groups). In contrast to pristine azobenzene, which crystallizes and makes nonuniform films, the bulky azobenzene derivatives formed uniform amorphous films that can be charged and discharged with light and heat for many cycles. Thermal stability of the films, a critical metric for thermally triggerable STFs, was greatly increased by the bulky functionalization (up to 180 °C), and we were able to achieve record high energy density of 135 J/g for solid-state STFs, over a 30% improvement compared to previous solid-state reports. Furthermore, the chargeability in the solid state was improved, up to 80% charged from 40% charged in previous solid-state reports. Our results point toward molecular engineering as an effective method to increase energy storage in STFs, improve chargeability, and improve the thermal stability of the thin film.

  15. The growth and electronic structure of azobenzene-based functional molecules on layered crystals

    International Nuclear Information System (INIS)

    Iwicki, J; Ludwig, E; Buck, J; Kalläne, M; Kipp, L; Rossnagel, K; Köhler, F; Herges, R

    2012-01-01

    In situ ultraviolet photoelectron spectroscopy is used to study the growth of ultrathin films of azobenzene-based functional molecules (azobenzene, Disperse Orange 3 and a triazatriangulenium platform with an attached functional azo-group) on the layered metal TiTe 2 and on the layered semiconductor HfS 2 at liquid nitrogen temperatures. Effects of intermolecular interactions, of the substrate electronic structure, and of the thermal energy of the sublimated molecules on the growth process and on the adsorbate electronic structure are identified and discussed. A weak adsorbate-substrate interaction is particularly observed for the layered semiconducting substrate, holding the promise of efficient molecular photoswitching.

  16. XMCD study of CoPt nanoparticles embedded in MgO and amorphous carbon matrices

    International Nuclear Information System (INIS)

    Tournus, F.; Blanc, N.; Tamion, A.; Ohresser, P.; Perez, A.; Dupuis, V.

    2008-01-01

    We report the synthesis and characterization of CoPt nanoparticles, using X-ray magnetic circular dichroism (XMCD) at the Co L 2,3 edges. Clusters are produced in ultra-high vacuum conditions, following a physical route, and embedded in non-metallic matrices: MgO and amorphous carbon (a-C). In MgO, Co atoms are partially oxidized, which goes with a μ L /μ S enhancement. On the contrary, a-C appears as a very suitable matrix. In particular, annealing of CoPt cluster embedded in a-C is able to promote L 1 0 chemical order, without alteration of the sample. This transformation, which has been directly evidenced by transmission electron microscopy observations, is accompanied by a striking augmentation of μ S , μ L and the μ L /μ S ratio of Co. The presence of Pt leads to an enhanced Co magnetic moment, as compared to Co bulk, even for the chemically disordered alloy. Moreover, the high value of 1.91μ B /at. measured for μ S is unusual for Co and must be a signature of chemical order in CoPt alloy nanoparticles

  17. Photopiezoelectric Composites of Azobenzene-Functionalized Polyimides and Polyvinylidene Fluoride (Postprint)

    Science.gov (United States)

    2014-10-01

    as evident in the calculated chromophore number density (CND) as well as the measured absorption coeffi cient (α) over the range of azobenzene...Hiraoka , S. Kubo , J.-I. Mamiya , M. Kinoshita , T. Ikeda , A. Shishido , ACS Macro Lett. 2011 , 1 , 96 . [16] J. Cviklinski , A

  18. Photovoltaic Properties and Ultrafast Plasmon Relaxation Dynamics of Diamond-Like Carbon Nanocomposite Films with Embedded Ag Nanoparticles.

    Science.gov (United States)

    Meškinis, Šarūnas; Peckus, Domantas; Vasiliauskas, Andrius; Čiegis, Arvydas; Gudaitis, Rimantas; Tamulevičius, Tomas; Yaremchuk, Iryna; Tamulevičius, Sigitas

    2017-12-01

    Ultrafast relaxation dynamics of diamond-like carbon (DLC) films with embedded Ag nanoparticles (DLC:Ag) and photovoltaic properties of heterojunctions consisting of DLC:Ag and crystalline silicon (DLC:Ag/Si) were investigated by means of transient absorption (TAS) spectroscopy and photovoltaic measurements. The heterojunctions using both p type and n type silicon were studied. It was found that TAS spectra of DLC:Ag films were dependent on the used excitation wavelength. At wavelengths where Ag nanoparticles absorbed light most intensively, only DLC signal was registered. This result is in good accordance with an increase of the DLC:Ag/Si heterojunction short circuit current and open circuit voltage with the excitation wavelength in the photovoltaic measurements. The dependence of the TAS spectra of DLC:Ag films and photovoltaic properties of DLC:Ag/Si heterostructures on the excitation wavelength was explained as a result of trapping of the photoexcited hot charge carriers in DLC matrix. The negative photovoltaic effect was observed for DLC:Ag/p-Si heterostructures and positive ("conventional") for DLC:Ag/n-Si ones. It was explained by the excitation of hot plasmonic holes in the Ag nanoparticles embedded into DLC matrix. Some decrease of DLC:Ag/Si heterostructures photovoltage as well as photocurrent with DLC:Ag film thickness was observed, indicating role of the interface in the charge transfer process of photocarriers excited in Ag nanoparticles.

  19. Improved Dielectric Properties of Polyvinylidene Fluoride Nanocomposite Embedded with Poly(vinylpyrrolidone)-Coated Gold Nanoparticles

    KAUST Repository

    Toor, Anju

    2017-01-25

    A novel nanocomposite dielectric was developed by embedding polyvinylpyrrolidone (PVP)-encapsulated gold (Au) nanoparticles in the polyvinylidene fluoride (PVDF) polymer matrix. The surface functionalization of Au nanoparticles with PVP facilitates favorable interaction between the particle and polymer phase, enhancing nanoparticle dispersion. To study the effect of entropic interactions on particle dispersion, nanocomposites with two different particle sizes (5 and 20 nm in diameter) were synthesized and characterized. A uniform particle distribution was observed for nanocomposite films consisting of 5 nm Au particles, in contrast to the film with 20 nm particles. The frequency-dependent dielectric permittivity and the loss tangent were studied for the nanocomposite films. These results showed the effectiveness of PVP ligand in controlling the agglomeration of Au particles in the PVDF matrix. Moreover, the study showed the effect of particle concentration on their spatial distribution in the polymer matrix and the dielectric properties of nanocomposite films.

  20. Improved Dielectric Properties of Polyvinylidene Fluoride Nanocomposite Embedded with Poly(vinylpyrrolidone)-Coated Gold Nanoparticles

    KAUST Repository

    Toor, Anju; So, Hongyun; Pisano, Albert P.

    2017-01-01

    A novel nanocomposite dielectric was developed by embedding polyvinylpyrrolidone (PVP)-encapsulated gold (Au) nanoparticles in the polyvinylidene fluoride (PVDF) polymer matrix. The surface functionalization of Au nanoparticles with PVP facilitates favorable interaction between the particle and polymer phase, enhancing nanoparticle dispersion. To study the effect of entropic interactions on particle dispersion, nanocomposites with two different particle sizes (5 and 20 nm in diameter) were synthesized and characterized. A uniform particle distribution was observed for nanocomposite films consisting of 5 nm Au particles, in contrast to the film with 20 nm particles. The frequency-dependent dielectric permittivity and the loss tangent were studied for the nanocomposite films. These results showed the effectiveness of PVP ligand in controlling the agglomeration of Au particles in the PVDF matrix. Moreover, the study showed the effect of particle concentration on their spatial distribution in the polymer matrix and the dielectric properties of nanocomposite films.

  1. Photoresponsive Release from Azobenzene-Modified Single Cubic Crystal NaCl/Silica Particles

    Directory of Open Access Journals (Sweden)

    Xingmao Jiang

    2011-01-01

    Full Text Available Azobenzene ligands were uniformly anchored to the pore surfaces of nanoporous silica particles with single crystal NaCl using 4-(3-triethoxysilylpropylureidoazobenzene (TSUA. The functionalization delayed the release of NaCl significantly. The modified particles demonstrated a photocontrolled release by trans/cis isomerization of azobenzene moieties. The addition of amphiphilic solvents, propylene glycol (PG, propylene glycol propyl ether (PGPE, and dipropylene glycol propyl ether (DPGPE delayed the release in water, although the wetting behavior was improved and the delay is the most for the block molecules with the longest carbon chain. The speedup by UV irradiation suggests a strong dependence of diffusion on the switchable pore size. TGA, XRD, FTIR, and NMR techniques were used to characterize the structures.

  2. Recent advances towards azobenzene-based light-driven real-time information-transmitting materials

    Directory of Open Access Journals (Sweden)

    Jaume García-Amorós

    2012-07-01

    Full Text Available Photochromic switches that are able to transmit information in a quick fashion have attracted a growing interest within materials science during the last few decades. Although very fast photochromic switching materials working within hundreds of nanoseconds based on other chromophores, such as spiropyranes, have been successfully achieved, reaching such fast relaxation times for azobenzene-based photochromic molecular switches is still a challenge. This review focuses on the most recent achievements on azobenzene-based light-driven real-time information-transmitting systems. Besides, the main relationships between the structural features of the azo-chromophore and the thermal cis-to-trans isomerisation, the kinetics and mechanism are also discussed as a key point for reaching azoderivatives endowed with fast thermal back-isomerisation kinetics.

  3. Ab initio calculation of the electronic spectrum of azobenzene dyes and its impact on the design of optical data storage materials

    DEFF Research Database (Denmark)

    Åstrand, Per-Olof; Ramanujam, P.S.; Hvilsted, Søren

    2000-01-01

    Electronic excitation energies of 16 azobenzene dyes have been calculated by ab initio methods within the second-order polarization propagator approximation (SOPPA). Good agreement with expriment is found for the lowest singlet and triplet states for both the trans- and cis-azobenzene molecules......, the experimental singlet π → π* transitions are reproduced for a set of azobenzene dyes with different electron donor and acceptor groups and the correct shifts in excitation energy are obtained for the different substituents. It has also been demonstrated that ab initio methods can be used to determine suitable...

  4. In Situ X-Ray Diffraction Study on Surface Melting of Bi Nanoparticles Embedded in a SiO2 Matrix

    International Nuclear Information System (INIS)

    Chen Xiao-Ming; Huo Kai-Tuo; Liu Peng

    2014-01-01

    Bi nanoparticles embedded in a SiO 2 matrix were prepared via the high energy ball milling method. The melting behavior of Bi nanoparticles was studied by means of differential scanning calorimetry (DSC) and high-temperature in situ X-ray diffraction (XRD). DSC cannot distinguish the surface melting from ‘bulk’ melting of the Bi nanoparticles. The XRD intensity of the Bi nanoparticles decreases progressively during the in situ heating process. The variation in the normalized integrated XRD intensity versus temperature is related to the average grain size of Bi nanoparticles. Considering the effects of temperature on Debye—Waller factor and Lorentz-polarization factor, we discuss the XRD results in accordance with surface melting. Our results show that the in situ XRD technique is effective to explore the surface melting of nanoparticles

  5. Synthesis, characterization and degradation behavior of admicelled polyacrylate-natural rubber

    International Nuclear Information System (INIS)

    Pongpilaipruet, Angkana; Magaraphan, Rathanawan

    2015-01-01

    In order to improve weatherability of the cured natural rubber, the novel introduction of good ozone resistant polymers such as polyacrylates (poly(methyl acrylate) (PMA) or poly(methyl methacrylate) (PMMA)) into natural rubber (NR) by admicellar polymerization was investigated in this work. The admicellar polymerization to synthesize polyacrylate layer over the surface of NR latex particles was performed with varying monomer type (PMA and PMMA) and content (50 and 100 mM). The admicelled PMMA showed higher molecular weight than PMA. Fourier transform infrared spectra of the admicellar synthesized natural rubbers exhibited characteristic peaks of those polyacrylates. Micrographs from transmission electron and field emission scanning electron microscopes (FE-SEM) revealed the coatings of PMA and PMMA over the rubber particles, suggesting a core-shell structure. Thermogravimetric analysis revealed that the admicelled rubbers not only showed an improvement in heat stability but also a single decomposition temperature. After vulcanization, FE-SEM results showed the cured admicelled rubbers had phase transformation from core-shell to phase separation (aggregate domains of polyacrylate-rich phase) with smooth interface. This agreed well to their one glass transition temperature (∼−48 °C) which indicated good miscibility between NR and each polyacrylate. The cracks generated after exposure to ozone found in the admicelled rubbers were smaller than those in NR, suggesting better ozone resistance was achieved. Increasing monomer concentration led to less cracks or much better ozone resistance. Furthermore, changes in mechanical properties after ozone exposure of the admicelled PMA-NR were less than those of the admicelled PMMA-NR (having the same shell content) and the NR, respectively. - Highlights: • We use admicellar technique to add polyacrylates to NR in form of core-shell rubber. • This core-shell structure was physically formed as seen by the phase

  6. Synthesis, characterization and degradation behavior of admicelled polyacrylate-natural rubber

    Energy Technology Data Exchange (ETDEWEB)

    Pongpilaipruet, Angkana; Magaraphan, Rathanawan, E-mail: rathanawan.k@chula.ac.th

    2015-06-15

    In order to improve weatherability of the cured natural rubber, the novel introduction of good ozone resistant polymers such as polyacrylates (poly(methyl acrylate) (PMA) or poly(methyl methacrylate) (PMMA)) into natural rubber (NR) by admicellar polymerization was investigated in this work. The admicellar polymerization to synthesize polyacrylate layer over the surface of NR latex particles was performed with varying monomer type (PMA and PMMA) and content (50 and 100 mM). The admicelled PMMA showed higher molecular weight than PMA. Fourier transform infrared spectra of the admicellar synthesized natural rubbers exhibited characteristic peaks of those polyacrylates. Micrographs from transmission electron and field emission scanning electron microscopes (FE-SEM) revealed the coatings of PMA and PMMA over the rubber particles, suggesting a core-shell structure. Thermogravimetric analysis revealed that the admicelled rubbers not only showed an improvement in heat stability but also a single decomposition temperature. After vulcanization, FE-SEM results showed the cured admicelled rubbers had phase transformation from core-shell to phase separation (aggregate domains of polyacrylate-rich phase) with smooth interface. This agreed well to their one glass transition temperature (∼−48 °C) which indicated good miscibility between NR and each polyacrylate. The cracks generated after exposure to ozone found in the admicelled rubbers were smaller than those in NR, suggesting better ozone resistance was achieved. Increasing monomer concentration led to less cracks or much better ozone resistance. Furthermore, changes in mechanical properties after ozone exposure of the admicelled PMA-NR were less than those of the admicelled PMMA-NR (having the same shell content) and the NR, respectively. - Highlights: • We use admicellar technique to add polyacrylates to NR in form of core-shell rubber. • This core-shell structure was physically formed as seen by the phase

  7. Phenomenological understanding of dewetting and embedding of noble metal nanoparticles in thin films induced by ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, Jai, E-mail: jai.gupta1983@gmail.com [Department of Chemistry, MMH College (Ch. Charan Singh University Meerut), Ghaiziabad 201001 (India); Chemical Physics of Materials, Université Libre de Bruxelles, Campus de la Plaine, CP 243, B-1050 Bruxelles (Belgium); Tripathi, A. [Inter University Accelerator Centre, Aruna Asif Ali Marg, New Delhi 110067 (India); Gautam, Sanjeev; Chae, K.H.; Song, Jonghan [Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 136–791 (Korea, Republic of); Rigato, V. [INFN Laboratori Nazionali di Legnaro, Via Romea. 4, 35020 Legnaro, Padova (Italy); Tripathi, Jalaj [Department of Chemistry, MMH College (Ch. Charan Singh University Meerut), Ghaiziabad 201001 (India); Asokan, K. [Inter University Accelerator Centre, Aruna Asif Ali Marg, New Delhi 110067 (India)

    2014-10-15

    The present experimental work provides the phenomenological approach to understand the dewetting in thin noble metal films with subsequent formation of nanoparticles (NPs) and embedding of NPs induced by ion irradiation. Au/polyethyleneterepthlate (PET) bilayers were irradiated with 150 keV Ar ions at varying fluences and were studied using scanning electron microscopy (SEM) and cross-sectional transmission electron microscopy (X-TEM). Thin Au film begins to dewet from the substrate after irradiation and subsequent irradiation results in spherical nanoparticles on the surface that at a fluence of 5 × 10{sup 16} ions/cm{sup 2} become embedded into the substrate. In addition to dewetting in thin films, synthesis and embedding of metal NPs by ion irradiation, the present article explores fundamental thermodynamic principles that govern these events systematically under the effect of irradiation. The results are explained on the basis of ion induced sputtering, thermal spike inducing local melting and of thermodynamic driving forces by minimization of the system free energy where contributions of surface and interfacial energies are considered with subsequent ion induced viscous flow in substrate. - Highlights: • Phenomenological interpretation of dewetting and embedding of metal NPs in thin film. • Exploring fundamental thermodynamic principles under influence of ion irradiation. • Ion induced surface/interface microstructural changes using SEM/X-TEM. • Ion induced sputtering, thermal spike induced local melting. • Thermodynamic driving forces relate to surface and interfacial energies.

  8. Local piezoelectric response of ZnO nanoparticles embedded in a photosensitive polymer

    Energy Technology Data Exchange (ETDEWEB)

    Prashanthi, K.; Zhang, H.; Thundat, T. [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta (Canada); Ramgopal Rao, V. [Department of Electrical Engineering, Indian Institute of Technology, Bombay, Mumbai (India)

    2012-02-15

    Local piezoelectric properties of ZnO nanoparticles (NPs) embedded in a photo-epoxy polymer are investigated by piezoresponse force microscopy (PFM). Integrating ZnO NPs into a photosensitive SU-8 polymer matrix not only retains the highly desired piezoelectric properties of the ZnO, but also preserves photosensitivity and optical transparency of the SU-8 polymer. These results have strong implications for simple photolithography based low-cost fabrication of piezoelectric microelectromechanicalsystems (MEMS) and nanoelectromechanicalsystems (NEMS) in both sensing and energy harvesting applications. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Influence of polyacrylic ester and silica fume on the mechanical properties of mortar for repair application

    Directory of Open Access Journals (Sweden)

    Chaohua Jiang

    2016-12-01

    Full Text Available Experimental investigations on the influence of different amounts of polyacrylic ester and silica fumes on the mechanical properties of mortar such as the compressive strength, splitting tensile strength, bonding strength, and abrasion resistance are presented in this article. The results show that the compressive and splitting tensile strength of mortar can be improved with the addition of polyacrylic ester and silica fumes. Results obtained from both the direct tensile bond test and flexural bond test indicate that the addition of polyacrylic ester and silica fumes improves the bond strength significantly, and the enhancement is more obvious with polyacrylic ester paste as interfacial adhesives. Furthermore, mortar incorporation of polyacrylic ester and silica fumes shows superior abrasion resistance compared to the control mortar. Therefore, the correct combination of polyacrylic ester and silica fumes to produce mortars has been shown to have synergistic effects, which results in excellent properties including high bond strength and superior abrasion resistance. Mortars containing polyacrylic ester and silica fumes are ideal for repairing concrete especially for hydraulic concrete structure.

  10. Remote control of soft nano-objects by light using azobenzene containing surfactants

    Science.gov (United States)

    Santer, Svetlana

    2018-01-01

    We review recent progress in the field of light responsive soft nano-objects. These are systems the shape, size, surface area and surface energy of which can be easily changed by low-intensity external irradiation. Here we shall specifically focus on microgels, DNA molecules, polymer brushes and colloidal particles. One convenient way to render these objects photosensitive is to couple them via ionic and/or hydrophobic interactions with azobenzene containing surfactants in a non-covalent way. The advantage of this strategy is that these surfactants can make any type of charged object light responsive without the need for possibly complicated (and irreversible) chemical conjugation. In the following, we will exclusively discuss only photosensitive surfactant systems. These contain a charged head and a hydrophobic tail into which an azobenzene group is incorporated, which can undergo reversible photo-isomerization from a trans- to a cis-configuration under UV illumination. These kinds of photo-isomerizations occur on a picosecond timescale and are fully reversible. The two isomers in general possess different polarity, i.e. the trans-state is less polar with a dipole moment of usually close to 0 Debye, while the cis-isomer has a dipole moment up to 3 Debye or more, depending on additional phenyl ring substituents. As part of the hydrophobic tail of a surfactant molecule, the photo-isomerization also changes the hydrophobicity of the molecule as a whole and hence its solubility, surface energy, and strength of interaction with other substances. Being a molecular actuator, which converts optical energy in to mechanical work, the azobenzene group in the shape of surfactant molecule can be utilized in order to actuate matter on larger time and length scale. In this paper we show several interesting examples, where azobenzene containing surfactants play the role of a transducer mediating between different states of size, shape, surface energy and spatial arrangement of

  11. Dynamic actuation of glassy polymersomes through isomerization of a single azobenzene unit at the block copolymer interface

    Science.gov (United States)

    Molla, Mijanur Rahaman; Rangadurai, Poornima; Antony, Lucas; Swaminathan, Subramani; de Pablo, Juan J.; Thayumanavan, S.

    2018-06-01

    Nature has engineered exquisitely responsive systems where molecular-scale information is transferred across an interface and propagated over long length scales. Such systems rely on multiple interacting, signalling and adaptable molecular and supramolecular networks that are built on dynamic, non-equilibrium structures. Comparable synthetic systems are still in their infancy. Here, we demonstrate that the light-induced actuation of a molecularly thin interfacial layer, assembled from a hydrophilic- azobenzene -hydrophobic diblock copolymer, can result in a reversible, long-lived perturbation of a robust glassy membrane across a range of over 500 chemical bonds. We show that the out-of-equilibrium actuation is caused by the photochemical trans-cis isomerization of the azo group, a single chemical functionality, in the middle of the interfacial layer. The principles proposed here are implemented in water-dispersed nanocapsules, and have implications for on-demand release of embedded cargo molecules.

  12. Brittle and ductile adjustable cement derived from calcium phosphate cement/polyacrylic acid composites.

    Science.gov (United States)

    Chen, Wen-Cheng; Ju, Chien-Ping; Wang, Jen-Chyan; Hung, Chun-Cheng; Chern Lin, Jiin-Huey

    2008-12-01

    Bone filler has been used over the years in dental and biomedical applications. The present work is to characterize a non-dispersive, fast setting, modulus adjustable, high bioresorbable composite bone cement derived from calcium phosphate-based cement combined with polymer and binding agents. This cement, we hope, will not swell in simulated body fluid and keep the osteogenetic properties of the dry bone and avoid its disadvantages of being brittle. We developed a calcium phosphate cement (CPC) of tetracalcium phosphate/dicalcium phosphate anhydrous (TTCP/DCPA)-polyacrylic acid with tartaric acid, calcium fluoride additives and phosphate hardening solution. The results show that while composite, the hard-brittle properties of 25wt% polyacrylic acid are proportional to CPC and mixing with additives is the same as those of the CPC without polyacrylic acid added. With an increase of polyacrylic acid/CPC ratio, the 67wt% samples revealed ductile-tough properties and 100wt% samples kept ductile or elastic properties after 24h of immersion. The modulus range of this development was from 200 to 2600MPa after getting immersed in simulated body fluid for 24h. The TTCP/DCPA-polyacrylic acid based CPC demonstrates adjustable brittle/ductile strength during setting and after immersion, and the final reaction products consist of high bioresorbable monetite/brushite/calcium fluoride composite with polyacrylic acid.

  13. Optical Fiber Sensors Based on Nanoparticle-Embedded Coatings

    Directory of Open Access Journals (Sweden)

    Aitor Urrutia

    2015-01-01

    Full Text Available The use of nanoparticles (NPs in scientific applications has attracted the attention of many researchers in the last few years. The use of NPs can help researchers to tune the physical characteristics of the sensing coating (thickness, roughness, specific area, refractive index, etc. leading to enhanced sensors with response time or sensitivity better than traditional sensing coatings. Additionally, NPs also offer other special properties that depend on their nanometric size, and this is also a source of new sensing applications. This review focuses on the current status of research in the use of NPs within coatings in optical fiber sensing. Most used sensing principles in fiber optics are briefly described and classified into several groups: absorbance-based sensors, interferometric sensors, fluorescence-based sensors, fiber grating sensors, and resonance-based sensors, among others. For each sensor group, specific examples of the utilization of NP-embedded coatings in their sensing structure are reported.

  14. Soft-lithographic patterning of room temperaturesintering Ag nanoparticles on foil

    NARCIS (Netherlands)

    Moonen,P.F.; Bat,E.; Voorthuijzen, W.P.; Huskens, J.

    2013-01-01

    Room temperature-sintering, poly(acrylic acid)-capped silver nanoparticles (Ag-PAA NPs) were used in a wide range of nanofabrication methods to form metallic silver microstructures on flexible poly(ethylene terephthalate) (PET) substrates. Silver wires on top of PET foil were patterned by

  15. Nanosilica and Polyacrylate/Nanosilica: A Comparative Study of Acute Toxicity

    Directory of Open Access Journals (Sweden)

    Ying-Mei Niu

    2016-01-01

    Full Text Available We compared the acute toxicity of nanosilica and polyacrylate/nanosilica instillation in Wistar rats (n=60. Exposure to nanosilica and polyacrylate/nanosilica showed a 30% mortality rate. When compared with saline-treated rats, animals in both exposure groups exhibited a significant reduction of PO2 (P<0.05 at both 24 and 72 hr. after exposure. Both exposure groups exhibited a significant reduction of neutrophils in arterial blood compared to saline controls (P<0.05 24 hr. after exposure. The levels of blood ALT and LDH in exposed groups were found to be significantly increased (P<0.05 24 hr. following exposure. The exposed groups exhibited various degrees of pleural effusion and pericardial effusion. Our findings indicated respiratory exposure to polyacrylate/nanosilica and nanosilica is likely to cause multiple organ toxicity.

  16. Multigeometry Nanoparticle Engineering via Kinetic Control through Multistep assembly

    Science.gov (United States)

    Chen, Yingchao; Wang, Xiaojun; Zhang, Ke; Zhang, Fuwu; Mays, Jimmy; Wooley, Karen; Pochan, Darrin

    2014-03-01

    Organization of block copolymers into complicated multicompartment (MCM) and multigeometry (MGM) nanostructures is of increasing interest. Multistep, co-assembly methods resulting in kinetic control processing was used to produce complex nanoparticles that are not obtained via other assembly methods. Vesicle-cylinder, separate vesicle and cylinder, disk-cylinder, and mixed vesicle nanoparticles were constructed by binary blends of distinct diblock copolymers. Initially, the vesicle former polyacrylic acid-polyisoprene and cylinder former polyacrylic acid-polystyrene which share the same hydrophilic domain but immiscible hydrophobic domain were blended in THF. Secondly, dimaine molecules are added to associate with the common hydrophilic PAA. Importantly, and lastly, by tuning the kinetic addition rate of selective, miscible solvent water, the unlike hydrophobic blocks are kinetically trapped into one particle and eventually nanophase separate to form multiple compartments and multigeometries. The effective bottom-up multistep assembly strategies can be applied in other binary/ternary blends, in which new vesicle-sphere, disk-disk and cylinder-cylinder MCM/MGM nanoparticles were programed. We are grateful for the financial support from the National Science Funding DMR-0906815 (D.J.P. and K.L.W.) and NIST METROLOGY POCHAN 2012.

  17. Laser-assisted fabrication of gold nanoparticle-composed structures embedded in borosilicate glass

    Directory of Open Access Journals (Sweden)

    Nikolay Nedyalkov

    2017-11-01

    Full Text Available We present results on laser-assisted formation of two- and three-dimensional structures comprised of gold nanoparticles in glass. The sample material was gold-ion-doped borosilicate glass prepared by conventional melt quenching. The nanoparticle growth technique consisted of two steps – laser-induced defect formation and annealing. The first step was realized by irradiating the glass by nanosecond and femtosecond laser pulses over a wide range of fluences and number of applied pulses. The irradiation by nanosecond laser pulses (emitted by a Nd:YAG laser system induced defect formation, expressed by brown coloration of the glass sample, only at a wavelength of 266 nm. At 355, 532 and 1064 nm, no coloration of the sample was observed. The femtosecond laser irradiation at 800 nm also induced defects, again observed as brown coloration. The absorbance spectra indicated that this coloration was related to the formation of oxygen deficiency defects. After annealing, the color of the irradiated areas changed to pink, with a corresponding well-defined peak in the absorbance spectrum. We relate this effect to the formation of gold nanoparticles with optical properties defined by plasmon excitation. Their presence was confirmed by high-resolution TEM analysis. No nanoparticle formation was observed in the samples irradiated by nanosecond pulses at 355, 532 and 1064 nm. The optical properties of the irradiated areas were found to depend on the laser processing parameters; these properties were studied based on Mie theory, which was also used to correlate the experimental optical spectra and the characteristics of the nanoparticles formed. We also discuss the influence of the processing conditions on the characteristics of the particles formed and the mechanism of their formation and demonstrate the fabrication of structures composed of nanoparticles inside the glass sample. This technique can be used for the preparation of 3D nanoparticle systems

  18. Characterization and Antimicrobial Property of Poly(Acrylic Acid Nanogel Containing Silver Particle Prepared by Electron Beam

    Directory of Open Access Journals (Sweden)

    Jong-Bae Choi

    2013-05-01

    Full Text Available In this study, we developed a one step process to synthesize nanogel containing silver nanoparticles involving electron beam irradiation. Water-soluble silver nitrate powder is dissolved in the distilled water and then poly(acrylic acid (PAAc and hexane are put into this silver nitrate solution. These samples are irradiated by an electron beam to make the PAAc nanogels containing silver nanoparticles (Ag/PAAc nanogels. The nanoparticles were characterized by scanning electron microscopy (SEM and energy dispersive spectroscopy (EDS. In addition, the particle size and zeta-potential were confirmed by a particle size analyzer (PSA. The antibacterial properties of the nanogels were evaluated by paper diffusion test. The Ag/PAAc nanogels had an antibacterial effect against Escherichia coli and Staphylococcus aureus. The nanogels also demonstrated a good healing effect against diabetic ulcer. The size of the Ag/PAAc nanogels decreased with increasing irradiation doses, and the absolute value of the zeta potential increased with increasing irradiation doses. Also, the Ag/PAAc nanogels exhibited good antibacterial activity against both Gram-negative and Gram-positive bacteria. In in vivo wound healing, the Ag/PAAc nanogels have a good healing effect.

  19. Mechano-synthesis, structural and magnetic characterization, and heat release of α-Fe nanoparticles embedded in a wüstite matrix

    Energy Technology Data Exchange (ETDEWEB)

    Batista, S.O.S.; Morales, M.A.; Santos, W.C. dos; Iglesias, C.A. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, Urca, 22290-180 Rio de Janeiro, RJ (Brazil); Carriço, A.S. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil); Bohn, F., E-mail: felipebohn@gmail.com [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil); Medeiros, S.N. de [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil)

    2015-10-01

    We report a study of the structural and magnetic properties, as well as of the heat release, of an iron/wüstite composite, prepared from iron powder and water by high energy mechanical milling. We identify that the produced sample consists of α-Fe nanoparticles embedded in a wüstite matrix and has high stability in time. Moreover, we observe that it presents noticeable features, as exchange bias effect at low temperatures and, when an alternating magnetic field is applied, its temperature reaches ∼46 °C in ∼600 s. Thus, the results and the possibility of tuning the magnetic properties of α-Fe nanoparticles embedded in a wüstite matrix, through interface interactions, place this system as a very attractive candidate for biomedical applications such as magnetic hyperthermia agent for cancer therapy. - Highlights: • We investigate the structural and magnetic properties, as well as the heat release, of an iron/wüstite composite. • The samples are produced using high energy mechanical milling. • Fe nanoparticles embedded in a wüstite matrix have high stability in time. • When an alternating magnetic field is applied, the sample temperature increases up to ∼46°C. • The composite is an interesting candidate for biomedical applications, such as magnetic hyperthermia agent for cancer therapy.

  20. Photoinduced anisotropy in a family of amorphous azobenzene polyesters for optical storage

    DEFF Research Database (Denmark)

    Nedelchev, Lian; Matharu, Avtar S.; Hvilsted, Søren

    2003-01-01

    of E1aX polymers characterized by two-ring aromatic substituent in the main chain is a good candidate for optical data storage media. A recording energy of approximately 2 J/cm(2) is sufficient to induce high refractive-index modulations of Deltan = 0.13 in these materials, which is retained even......We investigate parameters associated with optical data storage in a variety of amorphous side-chain azobenzene-containing polyesters denoted as E1aX. The polyesters possess a common cyano-substituted azobenzene chromophore as a side chain, but differ in their main-chain polyester composition....... Seventeen different polymers from the E1aX family divided into four classes, depending on the type of the main-chain substituent (one-, two-, and three-ring aromatic or alicyclic) have been thoroughly investigated. Various parameters characterizing the photoinduced birefringence in these materials...

  1. INAA of polyacrylic hydrogels of pharmaceutical grade

    International Nuclear Information System (INIS)

    Ponta, C.; Salagean, M.; Pantelica, A.; Georgescu, I.I.

    1998-01-01

    Polyacrylic acid (PA) and its salts are promising biomaterials used in the pharmaceutical industry. They could be used as pharmaceutical additives, as a burn dressing and also in the slow released implants or trans-derma patch formulations. Polyacrylic acid of pharmaceutical grade can be obtained by gamma irradiation polymerization. The influence of the raw materials and of the technological procedure on the final product purity has been investigated by Instrumental Neutron Activation Analysis (INAA) method. The following materials have been analyzed by INAA: 1) acrylic acid of technical grade; 2) acrylic acid purified by double crystallisation; 3) NaOH of analytical grade; 4) CaCl-2·6H 2 O of pharmaceutical grade; 5) CaCl 2 ·2H 2 O of analytical grade; 6) granulated PANa; 7) ungranulated PANa; 8) ungranulated PANaCa; 9) PANaCa granulated by milling in IFIN-HH using the mill nr. 1; 10) PANaCa granulated by milling in Institute of Chemical and Pharmaceutical Research (ICPR); 11) PANaCa granulated by milling in IFIN-HH using the mill nr. 2. The first five samples, marked from 1 to 5, are raw materials and the other six samples, marked from 6 to 11, are the final polyacrylic structures processed by various technological procedures. The samples together with the appropriate reference materials have been irradiated at WWR-S reactor in a neutron flux of 2.5·10 12 cm -2 s -1 and the induced radioactivity was registered by a HPGe detector (EG/G ORTEC) of 30% efficiency and 2.1 keV resolution. The concentrations of As, Br, Ce, Co, Cr, Fe, La, Sb, Sc, Zn have been determined. For the final polyacrylic structures, except for granulated PANa (sample 6), only the elements Co, Cr, Fe, Sc, Zn were found at the following concentration levels: tens of ppm (Co), ppm (Zn), hundreds of ppb (Cr), tens of ppb (Co), ppb (Co, Sc), 10 -1 ppb (Sc). In the granulated PANa, in comparison with the other analyzed final products, similar concentration values were found for Fe, Sc and Zn

  2. Soft-lithographic patterning of room termperature-sintering Ag Nanoparticles on foil

    NARCIS (Netherlands)

    Moonen, P.; Bat, E.; Voorthuijzen, W. Pim; Huskens, Jurriaan

    2013-01-01

    Room temperature-sintering, poly(acrylic acid)-capped silver nanoparticles (Ag-PAA NPs) were used in a wide range of nanofabrication methods to form metallic silver microstructures on flexible poly(ethylene terephthalate) (PET) substrates. Silver wires on top of PET foil were patterned by

  3. Interaction of neptunium(V) with polyacrylic acid

    International Nuclear Information System (INIS)

    Kubota, Takumi; Tochiyama, Osamu; Yamazaki, Hiromichi; Sato, Nobuharu

    1996-01-01

    For the quantitative description of the interaction of actinoids with humic substances, it is necessary to clarify the effects of both polyelectrolyte and heterogeneous nature of humic substances. To estimate these effects separately, polyacrylic acid has been selected as representative of well-defined, homogenous polymeric weak acids, and its interaction with Np(V) has been investigated by a solvent extraction method. By expressing the effective concentration of the complexing ligand by the concentration of ionized carboxylate groups, the apparent complex formation constant has been obtained at several pH, ionic strength and average molecular weights. The results indicated that the apparent complex formation constant varied with the degree of ionization(α) of polyacrylic acid and that the manner of variation resembled that of its apparent proton association constant. (author)

  4. Propagation of polarized light through azobenzene polyester films

    DEFF Research Database (Denmark)

    Nedelchev, L; Matharu, A; Nikolova, Ludmila

    2002-01-01

    When elliptically polarized light of appropriate wavelength Corresponding to trans-cis-trans isomerisation process is incident on thin films of azobenzene polyesters, a helical structure is induced. We investigate the propagation of the exciting light beam (self-induced) as well as a probe light...... beam outside the absorption band through the polyester films. Investigations are carried out in one amorphous and one liquid crystalline polyester. We show that amorphous polyester after irradiation behaves like classical helical material....

  5. Intramolecular photoinduced electron-transfer in azobenzene-perylene diimide

    International Nuclear Information System (INIS)

    Feng Wen-Ke; Wang Shu-Feng; Gong Qi-Huang; Feng Yi-Yu; Feng Wei; Yi Wen-Hui

    2010-01-01

    This paper studies the intramolecular photoinduced electron-transfer (PET) of covalent bonded azobenzene-perylene diimide (AZO-PDI) in solvents by using steady-state and time-resolved fluorescence spectroscopy together with ultrafast transient absorption spectroscopic techniques. Fast fluorescence quenching is observed when AZO-PDI is excited at characteristic wavelengths of AZO and perylene moieties. Reductive electron-transfer with transfer rate faster than 10 11 s −1 is found. This PET process is also consolidated by femtosecond transient absorption spectra

  6. An active nano-supported interface designed from gold nanoparticles embedded on ionic liquid for depositing DNA

    International Nuclear Information System (INIS)

    Lu Liping; Kang Tianfang; Cheng Shuiyuan; Guo Xiurui

    2009-01-01

    The use of an active nano-interface designed from gold nanoparticles embedded on ionic liquid for DNA damage resulted from formalehyde (HCHO) is reported in this article. The active nano-interface was fabricated by depositing gold nanoparticles on the ionic liquid 1-butyl-3-methylimidazolium tetrafluroborate ([bmim][BF 4 ]). A glassy carbon electrode modified by this composite film was fabricated to immobilize DNA for probing into the damage resulted from HCHO. The modifying process was characterized by X-ray photoelectron spectroscopy, atomic force microscopy and electrochemistry involving electrochemical impedance spectroscopy. It was found that the modified film performs effectively in studying the DNA damage by electrocatalytic activity toward HCHO oxidation.

  7. Tuning the optical emission of MoS{sub 2} nanosheets using proximal photoswitchable azobenzene molecules

    Energy Technology Data Exchange (ETDEWEB)

    Li, Juan [Physik Department and NIM, Walter Schottky Institute, Technische Universität München, Am Coulombwall 4, Garching D-85748 (Germany); Physik Department E20, Technische Universität München, James-Franck-St. 1, Garching D-85748 (Germany); Wierzbowski, Jakob; Ceylan, Özlem; Klein, Julian; Anh, Tuan Le; Meggendorfer, Felix; Finley, Jonathan J.; Margapoti, Emanuela, E-mail: emanuela.margapoti@wsi.tum.de [Physik Department and NIM, Walter Schottky Institute, Technische Universität München, Am Coulombwall 4, Garching D-85748 (Germany); Nisic, Filippo; Dragonetti, Claudia [Dipartimento di Chimica, Università degli Studi di Milano and UdR dell' INSTM di Milano, Via Golgi 19, I-20133 Milano (Italy); Palma, Carlos-Andres; Barth, Johannes V. [Physik Department E20, Technische Universität München, James-Franck-St. 1, Garching D-85748 (Germany)

    2014-12-15

    We report photoluminescence measurements performed on monolayer- and two-layer-MoS{sub 2} placed on two types of mixed self-assembled monolayers (mSAMs) of photoswitchable azobenzene molecules. The two mSAMs differ via the electronegative character of the azobenzene derivatives. Thin layers of a transition metal dichalcogenide—MoS{sub 2}—were mechanically exfoliated on mSAM to allow for direct interaction between the molecules and the MoS{sub 2} layers. When the MoS{sub 2} nanosheet is in contact with the electropositive azobenzene molecules in trans configuration, an emission side band at lower energies and at low excitation powers suggest n-type doping. The photoisomerization of the molecules from trans to cis configuration lowers the doping, quenching the side band and enhancing the overall PL efficiency by a factor of ∼3. Opposite results were observed with the chlorinated, more electronegative molecules, exhibiting a reversed trend in the PL efficiency between trans and cis, but with an overall larger intensity. The type of doping induced by the two types of mSAMs was determined by Kelvin probe force microscopy technique.

  8. Cobalt magnetic nanoparticles embedded in carbon matrix: biofunctional validation

    Energy Technology Data Exchange (ETDEWEB)

    Krolow, Matheus Z., E-mail: matheuskrolow@ifsul.edu.br [Universidade Federal de Pelotas, Engenharia de Materiais, Centro de Desenvolvimento Tecnologico (Brazil); Monte, Leonardo G.; Remiao, Mariana H.; Hartleben, Claudia P.; Moreira, Angela N.; Dellagostin, Odir A. [Universidade Federal de Pelotas, Nucleo de Biotecnologia, Centro de Desenvolvimento Tecnologico (Brazil); Piva, Evandro [Universidade Federal de Pelotas, Faculdade de Odontologia (Brazil); Conceicao, Fabricio R. [Universidade Federal de Pelotas, Nucleo de Biotecnologia, Centro de Desenvolvimento Tecnologico (Brazil); Carreno, Neftali L. V. [Universidade Federal de Pelotas, Engenharia de Materiais, Centro de Desenvolvimento Tecnologico (Brazil)

    2012-09-15

    Carbon nanostructures and nanocomposites display versatile allotropic morphologies, physico-chemical properties and have a wide range of applications in mechanics, electronics, biotechnology, structural material, chemical processing, and energy management. In this study we report the synthesis, characterization, and biotechnological application of cobalt magnetic nanoparticles, with diameter approximately 15-40 nm, embedded in carbon structure (Co/C-MN). A single-step chemical process was used in the synthesis of the Co/C-MN. The Co/C-MN has presented superparamagnetic behavior at room temperature an essential property for immunoseparation assays carried out here. To stimulate interactions between proteins and Co/C-MN, this nanocomposite was functionalized with acrylic acid (AA). We have showed the bonding of different proteins onto Co/C-AA surface using immunofluorescence assay. A Co/C-AA coated with monoclonal antibody anti-pathogenic Leptospira spp. was able to capture leptospires, suggesting that it could be useful in immunoseparation assays.

  9. Cell type-specific response to high intracellular loading of polyacrylic acid-coated magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Lojk J

    2015-02-01

    Full Text Available Jasna Lojk,1 Vladimir B Bregar,1 Maruša Rajh,1 Katarina Miš,2 Mateja Erdani Kreft,3 Sergej Pirkmajer,2 Peter Veranič,3 Mojca Pavlin1 1Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, 2Institute of Pathophysiology, Faculty of Medicine, 3Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia Abstract: Magnetic nanoparticles (NPs are a special type of NP with a ferromagnetic, electron-dense core that enables several applications such as cell tracking, hyperthermia, and magnetic separation, as well as multimodality. So far, superparamagnetic iron oxide NPs (SPIONs are the only clinically approved type of metal oxide NPs, but cobalt ferrite NPs have properties suitable for biomedical applications as well. In this study, we analyzed the cellular responses to magnetic cobalt ferrite NPs coated with polyacrylic acid (PAA in three cell types: Chinese Hamster Ovary (CHO, mouse melanoma (B16 cell line, and primary human myoblasts (MYO. We compared the internalization pathway, intracellular trafficking, and intracellular fate of our NPs using fluorescence and transmission electron microscopy (TEM as well as quantified NP uptake and analyzed uptake dynamics. We determined cell viability after 24 or 96 hours’ exposure to increasing concentrations of NPs, and quantified the generation of reactive oxygen species (ROS upon 24 and 48 hours’ exposure. Our NPs have been shown to readily enter and accumulate in cells in high quantities using the same two endocytic pathways; mostly by macropinocytosis and partially by clathrin-mediated endocytosis. The cell types differed in their uptake rate, the dynamics of intracellular trafficking, and the uptake capacity, as well as in their response to higher concentrations of internalized NPs. The observed differences in cell responses stress the importance of evaluation of NP–cell interactions on several different cell types for better

  10. Large enhancement of Faraday rotation by localized surface plasmon resonance in Au nanoparticles embedded in Bi:YIG film

    International Nuclear Information System (INIS)

    Uchida, H.; Masuda, Y.; Fujikawa, R.; Baryshev, A.V.; Inoue, M.

    2009-01-01

    A large enhancement of the Faraday rotation, which is associated with localized surface plasmon resonance (LSPR), was obtained in a sample with Au nanoparticles embedded in a Bi-substituted yttrium iron garnet (Bi:YIG) film. On a quartz substrate, Au nanoparticles were formed by heating an Au thin film, and a Bi:YIG film was then deposited on them. A sample containing the Au nanoparticles produced by 1000 deg. C heating showed a resonant attenuation with narrower bandwidth in the transmission spectrum than nanoparticles of other samples formed by low-temperature heating. The sharp resonant Faraday rotation angle was 4.4 times larger than the estimated intrinsic Bi:YIG film at the LSPR wavelength; the angular difference was 0.14 deg. A discrepancy in the bandwidth between the transmission attenuation and the resonant Faraday rotation is discussed

  11. Anomalous Tunnel Magnetoresistance and Spin Transfer Torque in Magnetic Tunnel Junctions with Embedded Nanoparticles

    Science.gov (United States)

    Useinov, Arthur; Ye, Lin-Xiu; Useinov, Niazbeck; Wu, Te-Ho; Lai, Chih-Huang

    2015-01-01

    The tunnel magnetoresistance (TMR) in the magnetic tunnel junction (MTJ) with embedded nanoparticles (NPs) was calculated in range of the quantum-ballistic model. The simulation was performed for electron tunneling through the insulating layer with embedded magnetic and non-magnetic NPs within the approach of the double barrier subsystem connected in parallel to the single barrier one. This model can be applied for both MTJs with in-plane magnetization and perpendicular one. We also calculated the in-plane component of the spin transfer torque (STT) versus the applied voltage in MTJs with magnetic NPs and determined that its value can be much larger than in single barrier system (SBS) for the same tunneling thickness. The reported simulation reproduces experimental data of the TMR suppression and peak-like TMR anomalies at low voltages available in leterature. PMID:26681336

  12. Mechanized azobenzene-functionalized zirconium metal-organic framework for on-command cargo release.

    Science.gov (United States)

    Meng, Xiangshi; Gui, Bo; Yuan, Daqiang; Zeller, Matthias; Wang, Cheng

    2016-08-01

    Stimuli-responsive metal-organic frameworks (MOFs) have gained increasing attention recently for their potential applications in many areas. We report the design and synthesis of a water-stable zirconium MOF (Zr-MOF) that bears photoresponsive azobenzene groups. This particular MOF can be used as a reservoir for storage of cargo in water, and the cargo-loaded MOF can be further capped to construct a mechanized MOF through the binding of β-cyclodextrin with the azobenzene stalks on the MOF surface. The resulting mechanized MOF has shown on-command cargo release triggered by ultraviolet irradiation or addition of competitive agents without premature release. This study represents a simple approach to the construction of stimuli-responsive mechanized MOFs, and considering mechanized UiO-68-azo made from biocompatible components, this smart system may provide a unique MOF platform for on-command drug delivery in the future.

  13. Pt nanoparticles embedded on reduced graphite oxide with excellent electrocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, Gengan, E-mail: saravanan3che@gmail.com [Central University of Tamil Nadu, Department of Chemistry, Thiruvarur, 610101 (India); Mohan, Subramanian, E-mail: sanjnamohan@yahoo.com [EMFT Division, CSIR-Central Electrochemical Research Institute, Tamilnadu, Karaikudi 630 006 (India)

    2016-11-15

    Graphical abstract: RGO/Nano Pt: This study explore the electrocatalytic oxidation performance of reduced graphite oxide (RGO) anchored with nano Pt. This graphene composite reveal superior electrooxidation performance that is associated with the flexible RGO matrix and the uniform distribution of Pt particles, which enhances surface area, fast electron transfer, uniform particle size distribution; consequently, the RGO matrix provides more stability to Pt particles during electrooxidation process. Display Omitted - Highlights: • Greener electrochemical method applied to prepare well-dispersed Pt-rGO. • Pt-rGO large surface area excellent charge transfer better catalytic activity. • Low-cost highly efficient carbon-based electrodes for direct formic acid fuel cell. • rGO an excellent support to anchor Pt nanoparticles on its surface. • Pt-rGO distinctly enhanced current density towards formic acid electrooxidation. - Abstract: Economically viable electrochemical approach has been developed for the synthesis of Pt nanoparticles through electrodeposition technique on the surface of Reduced Graphite Oxide (RGO). Pt nanoparticles embedded Reduced Graphite Oxide on Glassy Carbon Electrode are employed (Pt-rGO/GCE) for electrooxidation of formic acid. Scanning Electron Microscopy (SEM) image and Transmission Electron Microscopy (TEM) image shows that reduced graphite oxide act as an excellent support to anchor the Pt nanoparticles. Cyclic voltammetry results confirmed that Pt-rGO/GCE enhanced current density as many folds than that of bare platinum electrode for electrooxidation of formic acid. X-ray diffraction (XRD) patterns for Pt-graphene composites illustrate that peaks at 69.15 and 23° for Pt (220) and graphene carbon (002) respectively. {sup 13}C NMR spectrum of the electrochemically reduced graphite oxide resonance contains only one peak at 133 ppm which retains graphitic sp{sup 2} carbon and does not contain any oxygenated carbon and the carbonyl

  14. 21 CFR 177.1211 - Cross-linked polyacrylate copolymers.

    Science.gov (United States)

    2010-04-01

    ... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1211 Cross-linked polyacrylate... shall be determined using size exclusion chromatography or an equivalent method. When conducting the...

  15. Understanding the effects of packing and chemical terminations on the optical excitations of azobenzene-functionalized self-assembled monolayers

    Science.gov (United States)

    Cocchi, Caterina; Draxl, Claudia

    2017-10-01

    In a first-principles study based on many-body perturbation theory, we analyze the optical excitations of azobenzene-functionalized self-assembled monolayers (SAMs) with increasing packing density and different terminations, considering for comparison the corresponding gas-phase molecules and dimers. Intermolecular coupling increases with the density of the chromophores independently of the functional groups. The intense π → π* resonance that triggers photo-isomerization is present in the spectra of isolated dimers and diluted SAMs, but it is almost completely washed out in tightly packed architectures. Intermolecular coupling is partially inhibited by mixing differently functionalized azobenzene derivatives, in particular when large groups are involved. In this way, the excitation band inducing the photo-isomerization process is partially preserved and the effects of dense packing partly counterbalanced. Our results suggest that a tailored design of azobenzene-functionalized SAMs which optimizes the interplay between the packing density of the chromophores and their termination can lead to significant improvements in the photo-switching efficiency of these systems.

  16. Nonlocal vibration of SWBNNT embedded in bundle of CNTs under a moving nanoparticle

    International Nuclear Information System (INIS)

    Ghorbanpour Arani, A.; Roudbari, M.A.; Amir, S.

    2012-01-01

    In this study, an analytical method of the small scale parameter on the vibration of single-walled Boron Nitride nanotube (SWBNNT) under a moving nanoparticle is presented. SWBNNT is embedded in bundle of carbon nanotubes (CNTs) which is simulated as Pasternak foundation. Using Euler-Bernoulli beam (EBB) model, Hamilton's principle and nonlocal piezoelasticity theory, the higher order governing equation is derived. The effects of electric field, elastic medium, slenderness ratio and small scale parameter are investigated on the vibration behavior of SWBNNT under a moving nanoparticle. Results indicate the importance of using surrounding elastic medium in decrease of normalized dynamic deflection. Indeed, the normalized dynamic deflection decreases with the increase of the elastic medium stiffness values. The electric field has significant role on the nondimensional fundamental frequencies, as a smart controller. The results of this work is hoped to be of use in design and manufacturing of smart nano-electro-mechanical devices in advanced medical applications such as drug delivery systems with great applications in biomechanics.

  17. Holographic recording of surface relief gratings in stilbene azobenzene derivatives at 633 nm

    International Nuclear Information System (INIS)

    Ozols, A; Saharov, D; Kokars, V; Kampars, V; Maleckis, A; Mezinskis, G; Pludons, A

    2010-01-01

    Holographic recording in stilbene azobenzene derivatives by He-Ne 633 nm laser light has been experimentally studied. It was found that surface relief gratings (SRG) can be recorded by red light. Usually shorter wavelengths are used to induce the trans-cis photo-isomerization in organic materials. SRG with 2 μm period and an amplitude of 130 nm have been recorded with 0.88 W/cm 2 light in about 20 minutes in amorphous films of 3-(4-(bis(2-(trityloxy)ethyl)amino)phenyl)-2-(4-(2-bromo-4-nitrophenyl) diazenyl)phenyl)acrylonitrile spin-coated on glass substrates. Self-diffraction efficiency up to 17.4% and specific recording energy down to 114 J/(cm 2 %) were measured. The recorded SRG were stable as proved by subsequent AFM measurements. The photo-induced changes in absorption spectra did not reveal noticeable signs of trans-cis transformations. Rather, spectrally uniform bleaching of the films took place. We conclude that a photothermally stimulated photo-destruction of chromophores is responsible for the SRG recording. The recording of stable SRG in the stilbene azobenzene derivatives we studied is accompanied by the recording of relaxing volume-phase gratings due to the photo-orientation of chromophores by the linearly polarized recording light. It should also be noted that holographic recording efficiency in stilbene azobenzene derivatives exhibit an unusual non-monotonic sample storage-time dependence presumably caused by the peculiarities of structural relaxation of the films.

  18. Characterization of titanium dioxide nanoparticles modified with polyacrylic acid and H2O2 for use as a novel radiosensitizer.

    Science.gov (United States)

    Morita, Kenta; Miyazaki, Serika; Numako, Chiya; Ikeno, Shinya; Sasaki, Ryohei; Nishimura, Yuya; Ogino, Chiaki; Kondo, Akihiko

    2016-12-01

    An induction of polyacrylic acid-modified titanium dioxide with hydrogen peroxide nanoparticles (PAA-TiO 2 /H 2 O 2 NPs) to a tumor exerted a therapeutic enhancement of X-ray irradiation in our previous study. To understand the mechanism of the radiosensitizing effect of PAA-TiO 2 /H 2 O 2 NPs, analytical observations that included DLS, FE-SEM, FT-IR, XAFS, and Raman spectrometry were performed. In addition, highly reactive oxygen species (hROS) which PAA-TiO 2 /H 2 O 2 NPs produced with X-ray irradiation were quantified by using a chemiluminescence method and a EPR spin-trapping method. We found that PAA-TiO 2 /H 2 O 2 NPs have almost the same characteristics as PAA-TiO 2 . Surprisingly, there were no significant differences in hROS generation. However, the existence of H 2 O 2 was confirmed in PAA-TiO 2 /H 2 O 2 NPs, because spontaneous hROS production was observed w/o X-ray irradiation. In addition, PAA-TiO 2 /H 2 O 2 NPs had a curious characteristic whereby they absorbed H 2 O 2 molecules and released them gradually into a liquid phase. Based on these results, the H 2 O 2 was continuously released from PAA-TiO 2 /H 2 O 2 NPs, and then released H 2 O 2 assumed to be functioned indirectly as a radiosensitizing factor.

  19. Transport of poly(acrylic acid) coated 2-line ferrihydrite nanoparticles in saturated aquifer sediments for environmental remediation

    Science.gov (United States)

    Xiang, Aishuang; Zhou, Sheng; Koel, Bruce E.; Jaffé, Peter R.

    2014-04-01

    Groundwater remediation using iron oxide and zero-valent iron nanoparticles (NPs) can be effective, but is limited in many applications due to the NP strong retention in groundwater-saturated porous media after injection, the passivation of the porous surface, and the high cost of nanomaterials versus macro scale iron. In this study, we investigated transport of bare and polymer-coated 2-line ferrihydrite NPs (30-300 nm) in saturated aquifer sediments. The influence of poly(acrylic acid) (PAA) polymer coatings was studied on the colloidal stability and transport in sediments packed column tests simulating groundwater flow in saturated sediments. In addition, the influence of calcium cations was investigated by transport measurements using sediments with calcium concentrations in the aqueous phase ranging from 0.5 (typical for most sediments) to 2 mM. Measurements were also made of zeta potential, hydrodynamic diameter, polymer adsorption and desorption properties, and bio-availability of PAA-coated NPs. We found that NP transport through the saturated aquifer sediments was improved by PAA coating and that the transport properties could be tuned by adjusting the polymer concentration. We further discovered that PAA coatings enhanced NP transport, compared to bare NPs, in all calcium-containing experiments tested, however, the presence of calcium always exhibited a negative effect on NP transport. In tests of bioavailability, the iron reduction rate of the coated and bare NPs by Geobacter sulfurreducens was the same, which shows that the PAA coating does not significantly reduce NP Fe(III) bioavailability. Our results demonstrate that much improved transport of iron oxide NP can be achieved in saturated aquifer sediments by introducing negatively charged polyelectrolytes and optimizing polymer concentrations, and furthermore, these coated NPs retain their bioavailability that is needed for applications in bio-environmental remediation.

  20. Cobalt magnetic nanoparticles embedded in carbon matrix: biofunctional validation

    International Nuclear Information System (INIS)

    Krolow, Matheus Z.; Monte, Leonardo G.; Remião, Mariana H.; Hartleben, Cláudia P.; Moreira, Ângela N.; Dellagostin, Odir A.; Piva, Evandro; Conceição, Fabricio R.; Carreño, Neftalí L. V.

    2012-01-01

    Carbon nanostructures and nanocomposites display versatile allotropic morphologies, physico-chemical properties and have a wide range of applications in mechanics, electronics, biotechnology, structural material, chemical processing, and energy management. In this study we report the synthesis, characterization, and biotechnological application of cobalt magnetic nanoparticles, with diameter approximately 15–40 nm, embedded in carbon structure (Co/C-MN). A single-step chemical process was used in the synthesis of the Co/C-MN. The Co/C-MN has presented superparamagnetic behavior at room temperature an essential property for immunoseparation assays carried out here. To stimulate interactions between proteins and Co/C-MN, this nanocomposite was functionalized with acrylic acid (AA). We have showed the bonding of different proteins onto Co/C-AA surface using immunofluorescence assay. A Co/C-AA coated with monoclonal antibody anti-pathogenic Leptospira spp. was able to capture leptospires, suggesting that it could be useful in immunoseparation assays.

  1. Natural Fe3O4 nanoparticles embedded zinc–tellurite glasses: Polarizability and optical properties

    International Nuclear Information System (INIS)

    Widanarto, W.; Sahar, M.R.; Ghoshal, S.K.; Arifin, R.; Rohani, M.S.; Hamzah, K.; Jandra, M.

    2013-01-01

    Modifying the optical behavior of zinc–tellurite glass by embedding magnetic nanoparticles has implication in nanophotonics. A series of zinc–tellurite glasses containing natural Fe 3 O 4 nanoparticles with composition (80 − x)TeO 2 ·xFe 3 O 4 ·20ZnO (0 ≤ x ≤ 2) in mol% are synthesized by melt quenching method and their optical properties are investigated using FTIR and UV–vis–NIR spectroscopies. Lorentz–Lorenz relations are exploited to determine the refractive index, molar refraction and electronic polarizability. The sharp absorption peaks of FTIR spectra show a shift from 667 cm −1 to 671 cm −1 in the presence of nanoparticles that increase the non-bridging oxygen, confirmed by the intensity change of the TeO 3 peak at 752 cm −1 . A new peak around 461 cm −1 is also observed which is attributed to the band characteristic of covalent Fe–O linkages. A decrease in the Urbach energy as much as 0.122 eV and the optical energy band gap with the increase of Fe 3 O 4 concentration (0.5–1.0 mol%) is evidenced. Electronic polarizability of the glasses increases with increasing Fe 3 O 4 nanoparticles concentration up to 1 mol%. Interestingly, the polarizability tends to decrease with the further increase of Fe 3 O 4 concentration at 2 mol%. The role of magnetic nanoparticles in influencing the structural and optical behavior are examined and understood. - Highlights: ► Incorporation of natural Fe 3 O 4 nanoparticles into the zinc–tellurite glass. ► Influence of magnetic nanoparticles in modifying structure and optical properties. ► Enhancement of refraction index and change in electronic polarizability

  2. A mononuclear uranium(IV) single-molecule magnet with an azobenzene radical ligand

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, Maria A.; Coutinho, Joana T.; Santos, Isabel C.; Marcalo, Joaquim; Almeida, Manuel; Pereira, Laura C.J. [C" 2TN, Instituto Superior Tecnico, Universidade de Lisboa, Bobadela (Portugal); Baldovi, Jose J.; Gaita-Arino, Alejandro; Coronado, Eugenio [Instituto de Ciencia Molecular, Universitat de Valencia, Paterna (Spain)

    2015-12-01

    A tetravalent uranium compound with a radical azobenzene ligand, namely, [{(SiMe_2NPh)_3-tacn}U{sup IV}(η{sup 2}-N{sub 2}Ph{sub 2{sup .}})] (2), was obtained by one-electron reduction of azobenzene by the trivalent uranium compound [U{sup III}{(SiMe_2NPh)_3-tacn}] (1). Compound 2 was characterized by single-crystal X-ray diffraction and {sup 1}H NMR, IR, and UV/Vis/NIR spectroscopy. The magnetic properties of 2 and precursor 1 were studied by static magnetization and ac susceptibility measurements, which for the former revealed single-molecule magnet behaviour for the first time in a mononuclear U{sup IV} compound, whereas trivalent uranium compound 1 does not exhibit slow relaxation of the magnetization at low temperatures. A first approximation to the magnetic behaviour of these compounds was attempted by combining an effective electrostatic model with a phenomenological approach using the full single-ion Hamiltonian. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Optoelectronic properties of four azobenzene-based iminopyridine ligands for photovoltaic application

    Directory of Open Access Journals (Sweden)

    Aziz El alamy

    2017-11-01

    Full Text Available Because of organic π-conjugated materials’ optoelectronic properties and potential applications in a wide range of electronic and optoelectronic devices, such as organic solar cells, these materials, including both polymers and oligomers, have been widely studied in recent years. This work reposts a theoretical study using the DFT method on four azobenzene-based iminopyridines. The theoretical ground-state geometry, electronic structure and optoelectronic parameters (highest occupied molecular orbital (HOMO, lowest unoccupied molecular orbital (LUMO energy levels, open-circuit voltage (Voc and oscillator strengths (O.S of the studied molecules were obtained using the density functional theory (DFT and time-dependent (TDDFT approaches. The effects of the structure length and substituents on the geometric and optoelectronic properties of these materials are discussed to investigate the relationship between the molecular structure and the optoelectronic properties. The results of this study are consistent with the experimental ones and suggest that these materials as good candidates for use in photovoltaic devices. Keywords: π-conjugated materials, azobenzene, optoelectronic properties, DFT calculations, HOMO-LUMO gap

  4. Circularly Polarized Light with Sense and Wavelengths To Regulate Azobenzene Supramolecular Chirality in Optofluidic Medium.

    Science.gov (United States)

    Wang, Laibing; Yin, Lu; Zhang, Wei; Zhu, Xiulin; Fujiki, Michiya

    2017-09-20

    Circularly polarized light (CPL) as a massless physical force causes absolute asymmetric photosynthesis, photodestruction, and photoresolution. CPL handedness has long been believed to be the determining factor in the resulting product's chirality. However, product chirality as a function of the CPL handedness, irradiation wavelength, and irradiation time has not yet been studied systematically. Herein, we investigate this topic using achiral polymethacrylate carrying achiral azobenzene as micrometer-size aggregates in an optofluidic medium with a tuned refractive index. Azobenzene chirality with a high degree of dissymmetry ratio (±1.3 × 10 -2 at 313 nm) was generated, inverted, and switched in multiple cycles by irradiation with monochromatic incoherent CPL (313, 365, 405, and 436 nm) for 20 s using a weak incoherent light source (≈ 30 μW·cm -2 ). Moreover, the optical activity was retained for over 1 week in the dark. Photoinduced chirality was swapped by the irradiating wavelength, regardless of whether the CPL sense was the same. This scenario is similar to the so-called Cotton effect, which was first described in 1895. The tandem choice of both CPL sense and its wavelength was crucial for azobenzene chirality. Our experimental proof and theoretical simulation should provide new insight into the chirality of CPL-controlled molecules, supramolecules, and polymers.

  5. What makes lithium substituted polyacrylic acid a better binder than polyacrylic acid for silicon-graphite composite anodes?

    Science.gov (United States)

    Hays, Kevin A.; Ruther, Rose E.; Kukay, Alexander J.; Cao, Pengfei; Saito, Tomonori; Wood, David L.; Li, Jianlin

    2018-04-01

    Lithium substituted polyacrylic acid (LiPAA) has previously been demonstrated as a superior binder over polyacrylic acid (PAA) for Si anodes, but from where does this enhanced performance arise? In this study, full cells are assembled with PAA and LiPAA based Si-graphite composite anodes that dried at temperatures from 100 °C to 200 °C. The performance of full cells containing PAA based Si-graphite anodes largely depend on the secondary drying temperature, as decomposition of the binder is correlated to increased electrode moisture and a rise in cell impedance. Full cells containing LiPAA based Si-graphite composite electrodes display better Coulombic efficiency than those with PAA, because of the electrochemical reduction of the PAA binder. This is identified by attenuated total reflectance Fourier transform infrared spectrometry and observed gassing during the electrochemical reaction. Coulombic losses from the PAA and Si SEI, along with depletion of the Si capacity in the anode results in progressive underutilization of the cathode and full cell capacity loss.

  6. Antibacterial Properties of Silver Nanoparticles Embedded on Polyelectrolyte Hydrogels Based on α-Amino Acid Residues

    Directory of Open Access Journals (Sweden)

    Mario Casolaro

    2018-05-01

    Full Text Available Polyelectrolyte hydrogels bearing l-phenylalanine (PHE, l-valine (AVA, and l-histidine (Hist residues were used as scaffolds for the formation of silver nanoparticles by reduction of Ag+ ions with NaBH4. The interaction with the metal ion allowed a prompt collapse of the swollen hydrogel, due to the neutralization reaction of basic groups present on the polymer. The imidazole nitrogen of the hydrogel with Hist demonstrated greater complexing capacity with the Ag+ ion compared to the hydrogels with carboxyl groups. The subsequent reduction to metallic silver allowed for the restoration of the hydrogel’s degree of swelling to the starting value. Transmission electron microscopy (TEM and spectroscopic analyses showed, respectively, a uniform distribution of the 15 nm spherical silver nanoparticles embedded on the hydrogel and peak optical properties around a wavelength of 400 nm due to the surface plasmonic effect. Unlike native hydrogels, the composite hydrogels containing silver nanoparticles showed good antibacterial activity as gram+/gram− bactericides, and higher antifungal activity against S. cerevisiae.

  7. Photoresponsive Block Copolymers Containing Azobenzenes and Other Chromophores

    Directory of Open Access Journals (Sweden)

    Takaomi Kobayashi

    2010-01-01

    Full Text Available Photoresponsive block copolymers (PRBCs containing azobenzenes and other chromophores can be easily prepared by controlled polymerization. Their photoresponsive behaviors are generally based on photoisomerization, photocrosslinking, photoalignment and photoinduced cooperative motions. When the photoactive block forms mesogenic phases upon microphase separation of PRBCs, supramolecular cooperative motion in liquid-crystalline PRBCs enables them to self-organize into hierarchical structures with photoresponsive features. This offers novel opportunities to photocontrol microphase-separated nanostructures of well-defined PRBCs and extends their diverse applications in holograms, nanotemplates, photodeformed devices and microporous films.

  8. Rewritable azobenzene polyester for polarization holographic data storage

    DEFF Research Database (Denmark)

    Kerekes, A; Sajti, Sz.; Loerincz, Emoeke

    2000-01-01

    Optical storage properties of thin azobenzene side-chain polyester films were examined by polarization holographic measurements. The new amorphous polyester film is the candidate material for the purpose of rewritable holographic memory system. Temporal formation of anisotropic and topographic...... gratings was studied in case of films with and without a hard protective layer. We showed that the dominant contribution to the diffraction efficiency comes from the anisotropy in case of expositions below 1 sec even for high incident intensity. The usage of the same wavelength for writing, reading...

  9. Coupling Reagent for UV/vis Absorbing Azobenzene-Based Quantitative Analysis of the Extent of Functional Group Immobilization on Silica.

    Science.gov (United States)

    Choi, Ra-Young; Lee, Chang-Hee; Jun, Chul-Ho

    2018-05-18

    A methallylsilane coupling reagent, containing both a N-hydroxysuccinimidyl(NHS)-ester group and a UV/vis absorbing azobenzene linker undergoes acid-catalyzed immobilization on silica. Analysis of the UV/vis absorption band associated with the azobenzene group in the adduct enables facile quantitative determination of the extent of loading of the NHS groups. Reaction of NHS-groups on the silica surface with amine groups of GOx and rhodamine can be employed to generate enzyme or dye-immobilized silica for quantitative analysis.

  10. Hydrogels from Amorphous Calcium Carbonate and Polyacrylic Acid: Bio-Inspired Materials for "Mineral Plastics".

    Science.gov (United States)

    Sun, Shengtong; Mao, Li-Bo; Lei, Zhouyue; Yu, Shu-Hong; Cölfen, Helmut

    2016-09-19

    Given increasing environmental issues due to the large usage of non-biodegradable plastics based on petroleum, new plastic materials, which are economic, environmentally friendly, and recyclable are in high demand. One feasible strategy is the bio-inspired synthesis of mineral-based hybrid materials. Herein we report a facile route for an amorphous CaCO3 (ACC)-based hydrogel consisting of very small ACC nanoparticles physically cross-linked by poly(acrylic acid). The hydrogel is shapeable, stretchable, and self-healable. Upon drying, the hydrogel forms free-standing, rigid, and transparent objects with remarkable mechanical performance. By swelling in water, the material can completely recover the initial hydrogel state. As a matrix, thermochromism can also be easily introduced. The present hybrid hydrogel may represent a new class of plastic materials, the "mineral plastics". © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Imaging Si nanoparticles embedded in SiO2 layers by (S)TEM-EELS

    International Nuclear Information System (INIS)

    Schamm, S.; Bonafos, C.; Coffin, H.; Cherkashin, N.; Carrada, M.; Ben Assayag, G.; Claverie, A.; Tence, M.; Colliex, C.

    2008-01-01

    Fabrication of systems in which Si nanoparticles are embedded in a thin silica layer is today mature for non-volatile memory and opto-electronics applications. The control of the different parameters (position, size and density) of the nanoparticles population is a key point to optimize the properties of such systems. A review of dedicated transmission electron microscopy (TEM) methods, which can be used to measure these parameters, is presented with an emphasis on those relying on electron energy-loss spectroscopy (EELS). Defocused bright-field imaging can be used in order to determine topographic information of a whole assembly of nanoparticles, but it is not efficient for looking at individual nanoparticles. High-resolution electron imaging or dark-field imaging can be of help in the case of crystalline particles but they always provide underestimated values of the nanocrystals population. EELS imaging in the low-energy-loss domain around the Si plasmon peak, which gives rise to strong signals, is the only way to visualize all Si nanoparticles within a silica film and to perform reliable size and density measurements. Two complementary types of experiments are investigated and discussed more extensively: direct imaging with a transmission electron microscope equipped with an imaging filter (EFTEM) and indirect imaging from spectrum-imaging data acquired with a scanning transmission electron microscope equipped with a spectrometer (STEM-PEELS). The direct image (EFTEM) and indirect set of spectra (STEM-PEELS) are processed in order to deliver images where the contribution of the silica matrix is minimized. The contrast of the resulting images can be enhanced with adapted numerical filters for further morphometric analysis. The two methods give equivalent results, with an easier access for EFTEM and the possibility of a more detailed study of the EELS signatures in the case of STEM-PEELS. Irradiation damage in such systems is also discussed

  12. Fabrication and textural characterization of nanoporous carbon electrodes embedded with CuO nanoparticles for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Kumaresa P S; Dhawale, Dattatray S; Ariga, Katsuhiko; Vinu, Ajayan [International Center for Materials Nanoarchitectonics (MANA), World Premier International (WPI) Research Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Sivakumar, Thiripuranthagan [Department of Chemical Engineering, Anna University, Gundy, Chennai 600025 (India); Aldeyab, Salem S [Department of Chemistry, Petrochemicals Research Chair, Faculty of Science, King Saud University, PO Box 2455 Riyadh 11451 (Saudi Arabia); Zaidi, Javaid S M, E-mail: vinu.ajayan@nims.go.jp [Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2011-08-15

    We introduce a novel strategy of fabricating nanoporous carbons loaded with different amounts of CuO nanoparticles via a hard templating approach, using copper-containing mesoporous silica as the template and sucrose as the carbon source. The nature and dispersion of the CuO nanoparticles on the surface of the nanoporous carbons were investigated by x-ray diffraction (XRD), high-resolution scanning electron microscopy (HRSEM) and high-resolution transmission electron microscopy (HRTEM). XRD results reveal that nanoporous carbons with embedded CuO nanoparticles exhibit a well-ordered mesoporous structure, whereas the nitrogen adsorption measurements indicate the presence of excellent textural characteristics such as high surface area, large pore volume and uniform pore size distribution. The amount of CuO nanoparticles in the nanochannels of the nanoporous carbon could be controlled by simply varying the Si/Cu molar ratio of the mesoporous silica template. Morphological characterization by SEM and TEM reveals that high-quality CuO nanoparticles are distributed homogeneously within the nanoporous carbon framework. The supercapacitance behavior of the CuO-loaded nanoporous carbons was investigated. The material with a small amount of CuO in the mesochannels and high surface area affords a maximum specific capacitance of 300 F g{sup -1} at a 20 mV s{sup -1} scan rate in an aqueous electrolyte solution. A supercapacitor containing the CuO-loaded nanoporous carbon is highly stable and exhibits a long cycle life with 91% specific capacitance retained after 1000 cycles.

  13. Fabrication and textural characterization of nanoporous carbon electrodes embedded with CuO nanoparticles for supercapacitors

    Science.gov (United States)

    Prasad, Kumaresa P. S.; Dhawale, Dattatray S.; Sivakumar, Thiripuranthagan; Aldeyab, Salem S.; Zaidi, Javaid S. M.; Ariga, Katsuhiko; Vinu, Ajayan

    2011-08-01

    We introduce a novel strategy of fabricating nanoporous carbons loaded with different amounts of CuO nanoparticles via a hard templating approach, using copper-containing mesoporous silica as the template and sucrose as the carbon source. The nature and dispersion of the CuO nanoparticles on the surface of the nanoporous carbons were investigated by x-ray diffraction (XRD), high-resolution scanning electron microscopy (HRSEM) and high-resolution transmission electron microscopy (HRTEM). XRD results reveal that nanoporous carbons with embedded CuO nanoparticles exhibit a well-ordered mesoporous structure, whereas the nitrogen adsorption measurements indicate the presence of excellent textural characteristics such as high surface area, large pore volume and uniform pore size distribution. The amount of CuO nanoparticles in the nanochannels of the nanoporous carbon could be controlled by simply varying the Si/Cu molar ratio of the mesoporous silica template. Morphological characterization by SEM and TEM reveals that high-quality CuO nanoparticles are distributed homogeneously within the nanoporous carbon framework. The supercapacitance behavior of the CuO-loaded nanoporous carbons was investigated. The material with a small amount of CuO in the mesochannels and high surface area affords a maximum specific capacitance of 300 F g-1 at a 20 mV s-1 scan rate in an aqueous electrolyte solution. A supercapacitor containing the CuO-loaded nanoporous carbon is highly stable and exhibits a long cycle life with 91% specific capacitance retained after 1000 cycles.

  14. Fabrication and textural characterization of nanoporous carbon electrodes embedded with CuO nanoparticles for supercapacitors

    Directory of Open Access Journals (Sweden)

    Kumaresa P S Prasad, Dattatray S Dhawale, Thiripuranthagan Sivakumar, Salem S Aldeyab, Javaid S M Zaidi, Katsuhiko Ariga and Ajayan Vinu

    2011-01-01

    Full Text Available We introduce a novel strategy of fabricating nanoporous carbons loaded with different amounts of CuO nanoparticles via a hard templating approach, using copper-containing mesoporous silica as the template and sucrose as the carbon source. The nature and dispersion of the CuO nanoparticles on the surface of the nanoporous carbons were investigated by x-ray diffraction (XRD, high-resolution scanning electron microscopy (HRSEM and high-resolution transmission electron microscopy (HRTEM. XRD results reveal that nanoporous carbons with embedded CuO nanoparticles exhibit a well-ordered mesoporous structure, whereas the nitrogen adsorption measurements indicate the presence of excellent textural characteristics such as high surface area, large pore volume and uniform pore size distribution. The amount of CuO nanoparticles in the nanochannels of the nanoporous carbon could be controlled by simply varying the Si/Cu molar ratio of the mesoporous silica template. Morphological characterization by SEM and TEM reveals that high-quality CuO nanoparticles are distributed homogeneously within the nanoporous carbon framework. The supercapacitance behavior of the CuO-loaded nanoporous carbons was investigated. The material with a small amount of CuO in the mesochannels and high surface area affords a maximum specific capacitance of 300 F g-1 at a 20 mV s-1 scan rate in an aqueous electrolyte solution. A supercapacitor containing the CuO-loaded nanoporous carbon is highly stable and exhibits a long cycle life with 91% specific capacitance retained after 1000 cycles.

  15. Fabrication of silver nanoparticles embedded into polyvinyl alcohol (Ag/PVA) composite nanofibrous films through electrospinning for antibacterial and surface-enhanced Raman scattering (SERS) activities

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhijie; Wu, Yunping [National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004 (China); Wang, Zhihua, E-mail: zhwang@henu.edu.cn [College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004 (China); Zou, Xueyan; Zhao, Yanbao [National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004 (China); Sun, Lei, E-mail: sunlei@hneu.edu.cn [National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004 (China)

    2016-12-01

    Silver nanoparticle-embedded polyvinyl alcohol (PVA) nanofibers were prepared through electrospinning technique, using as antimicrobial agents and surface-enhanced Raman scattering (SERS) substrates. Ag nanoparticles (NPs) were synthesized in liquid phase, followed by evenly dispersing in PVA solution. After electrospinning of the mixed solution at room temperature, the PVA embedded with Ag NPs (Ag/PVA) composite nanofibers were obtained. The morphologies and structures of the as-synthesized Ag nanoparticles and Ag/PVA fibers were characterized by the techniques of transmission electron microscopy (TEM), X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV–vis), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Ag NPs have an average diameter of 13.8 nm, were found to be uniformly dispersed in PVA nanofibers. The Ag/PVA nanofibers provided robust antibacterial activities against both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) microorganisms. It's also found that Ag/PVA nanofibers make a significant contribution to the high sensitivity of SERS to 4-mercaptophenol (4-MPh) molecules. - Highlights: • Ag NPs embedded in the PVA electropun nanofibrous films were synthesized successfully. • The as-synthesized nanofibrous film mats exhibit excellent antibacterial properties and SERS activates. • The mechanism of antibacterial and SERS effects were proposed.

  16. Fabrication of silver nanoparticles embedded into polyvinyl alcohol (Ag/PVA) composite nanofibrous films through electrospinning for antibacterial and surface-enhanced Raman scattering (SERS) activities

    International Nuclear Information System (INIS)

    Zhang, Zhijie; Wu, Yunping; Wang, Zhihua; Zou, Xueyan; Zhao, Yanbao; Sun, Lei

    2016-01-01

    Silver nanoparticle-embedded polyvinyl alcohol (PVA) nanofibers were prepared through electrospinning technique, using as antimicrobial agents and surface-enhanced Raman scattering (SERS) substrates. Ag nanoparticles (NPs) were synthesized in liquid phase, followed by evenly dispersing in PVA solution. After electrospinning of the mixed solution at room temperature, the PVA embedded with Ag NPs (Ag/PVA) composite nanofibers were obtained. The morphologies and structures of the as-synthesized Ag nanoparticles and Ag/PVA fibers were characterized by the techniques of transmission electron microscopy (TEM), X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV–vis), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Ag NPs have an average diameter of 13.8 nm, were found to be uniformly dispersed in PVA nanofibers. The Ag/PVA nanofibers provided robust antibacterial activities against both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) microorganisms. It's also found that Ag/PVA nanofibers make a significant contribution to the high sensitivity of SERS to 4-mercaptophenol (4-MPh) molecules. - Highlights: • Ag NPs embedded in the PVA electropun nanofibrous films were synthesized successfully. • The as-synthesized nanofibrous film mats exhibit excellent antibacterial properties and SERS activates. • The mechanism of antibacterial and SERS effects were proposed.

  17. Exchange coupling mechanism for magnetization reversal and thermal stability of Co nanoparticles embedded in a CoO matrix

    International Nuclear Information System (INIS)

    Givord, Dominique; Skumryev, Vassil; Nogues, Josep

    2005-01-01

    A model providing a semi-quantitative account of the magnetic behavior of Co nanoparticles embedded in a CoO matrix is presented. The results confirm that exchange coupling at the interface between ferromagnetic (FM) and antiferromagnetic (AFM) nanostructures could provide an extra source of magnetic anisotropy, leading to thermal stability of the FM nanoparticles. It is shown that perpendicular coupling between the AFM and FM moments may result in large coercivities. The energy barrier, which works against reversal is due to the AFM susceptibility anisotropy. The experimentally observed exchange bias is tentatively ascribed to pre-existing intrinsic canting of the AFM moments at the interface

  18. The effects of magnetic nanoparticles embedded with SA/PVA and pH on chemical-mechanical polishing wastewater and magnetic particle regeneration and recycle

    Directory of Open Access Journals (Sweden)

    Chung-Fu Huang

    2017-12-01

    Full Text Available Experiments were conducted using sodium alginate (SA and polyvinyl alcohol (PVA as embedded materials for Fe3O4 magnetic nanoparticles (MNPs. The materials provided excellent protection to the embedded MNPs in low-pH conditions. This study observed and compared the adsorption capacity of the unaltered and embedded MNPs. At pH 3 and without additional magnetic fields, the wastewater turbidity removal rate of the embedded MNPs reached a maximum of 95%, similar to that of the unaltered MNPs. Moreover, this study examined the recyclability and reusability of the unaltered and embedded MNPs and discovered that the embedded MNPs could be reused up to seven times. Overall, the use of SA/PVA prevented MNPs from disintegrating and contaminating the wastewater through the dissolution of Fe ions. SA and PVA also increased the reusability of the unaltered MNPs.

  19. PtRu nanoparticles embedded in nitrogen doped carbon with highly stable CO tolerance and durability

    Science.gov (United States)

    Ling, Ying; Yang, Zehui; Yang, Jun; Zhang, Yunfeng; Zhang, Quan; Yu, Xinxin; Cai, Weiwei

    2018-02-01

    As is well known, the lower durability and sluggish methanol oxidation reaction (MOR) of PtRu alloy electrocatalyst blocks the commercialization of direct methanol fuel cells (DMFCs). Here, we design a new PtRu electrocatalyst, with highly stable CO tolerance and durability, in which the PtRu nanoparticles are embedded in nitrogen doped carbon layers derived from carbonization of poly(vinyl pyrrolidone). The newly fabricated electrocatalyst exhibits no loss in electrochemical surface area (ECSA) and MOR activity after potential cycling from 0.6-1.0 V versus reversible hydrogen electrode, while commercial CB/PtRu retains only 50% of its initial ECSA. Meanwhile, due to the same protective layers, the Ru dissolution is decelerated, resulting in stable CO tolerance. Methanol oxidation reaction (MOR) testing indicates that the activity of newly fabricated electrocatalyst is two times higher than that of commercial CB/PtRu, and the fuel cell performance of the embedded PtRu electrocatalyst was comparable to that of commercial CB/PtRu. The embedded PtRu electrocatalyst is applicable in real DMFC operation. This study offers important and useful information for the design and fabrication of durable and CO tolerant electrocatalysts.

  20. Enhanced antioxidant activity of gold nanoparticle embedded 3,6-dihydroxyflavone: a combinational study

    Science.gov (United States)

    Medhe, Sharad; Bansal, Prachi; Srivastava, Man Mohan

    2014-02-01

    The antioxidative effect of selected dietary compounds (3,6-dihydroxyflavone, lutein and selenium methyl selenocysteine) was determined in single and combination using DPPH (2,2-diphenyl-l-picrylhydrazyl), OH (hydroxyl), H2O2 (hydrogen peroxide) and NO (nitric oxide) radical scavenging assays. Radical scavenging effect of the dietary phytochemicals individually are found to be in the order: ascorbic acid (standard) > lutein > 3,6-dihydroxyflavone > selenium methyl selenocysteine, at concentration 100 μg/ml, confirmed by all the four bioassays (p nanotech enforcement of dietary phytochemicals shows the utility in the architecture of nanoparticle embedded phytoproducts having a wide range of applications in medical science.

  1. Evaluation of Hydrogels Based on Poloxamer 407 and Polyacrylic ...

    African Journals Online (AJOL)

    HP

    Keywords: Hydrogels, Gentamicin, Polyacrylic acid, Viscosity, Bioactivity, Poloxamer 407. Tropical Journal of Pharmaceutical Research is indexed by Science Citation Index (SciSearch), ... among others, have been made to determine its.

  2. Fabrication of narrow surface relief features in a side-chain azobenzene polyester with a scanning near-field microscope

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Holme, N. C. R.; Pedersen, M.

    2001-01-01

    We show that it is possible to fabricate topographic submicron features in a side-chain azobenzene polyester with a scanning near-field optical microscope, Through irradiation at a wavelength of 488 run at intensity levels of 12 W/cm(2), topographic features as narrow as 240 nm and as high as 6 nm...... have been reproducibly recorded in a thin film of the polyester. These observations are consistent with the fact that at low intensities peaks are produced evolving into formation of trenches at high intensities in the case of amorphous side-chain azobenzene polyesters. This may find applications...

  3. Gold nanoparticle-embedded silk protein-ZnO nanorod hybrids for flexible bio-photonic devices

    Science.gov (United States)

    Gogurla, Narendar; Kundu, Subhas C.; Ray, Samit K.

    2017-04-01

    Silk protein has been used as a biopolymer substrate for flexible photonic devices. Here, we demonstrate ZnO nanorod array hybrid photodetectors on Au nanoparticle-embedded silk protein for flexible optoelectronics. Hybrid samples exhibit optical absorption at the band edge of ZnO as well as plasmonic energy due to Au nanoparticles, making them attractive for selective UV and visible wavelength detection. The device prepared on Au-silk protein shows a much lower dark current and a higher photo to dark-current ratio of ∼105 as compared to the control sample without Au nanoparticles. The hybrid device also exhibits a higher specific detectivity due to higher responsivity arising from the photo-generated hole trapping by Au nanoparticles. Sharp pulses in the transient photocurrent have been observed in devices prepared on glass and Au-silk protein substrates due to the light induced pyroelectric effect of ZnO, enabling the demonstration of self-powered photodetectors at zero bias. Flexible hybrid detectors have been demonstrated on Au-silk/polyethylene terephthalate substrates, exhibiting characteristics similar to those fabricated on rigid glass substrates. A study of the performance of photodetectors with different bending angles indicates very good mechanical stability of silk protein based flexible devices. This novel concept of ZnO nanorod array photodetectors on a natural silk protein platform provides an opportunity to realize integrated flexible and self-powered bio-photonic devices for medical applications in near future.

  4. Study on the enhanced adsorption properties of lysozyme on polyacrylic acid modified TiO2 nano-adsorbents

    Science.gov (United States)

    Liu, Yufeng; Jin, Zu; Meng, Hao; Zhang, Xia

    2018-01-01

    The adsorption and immobilization of enzymes onto solid carriers has been focused on due to their many advantages, such as improved stability against a thermal or organic solvent and a good cycle usability. TiO2 nanoparticles is one of excellent nano-adsorbents owing to its excellent biocompatibility, non-inflammatory, and abundant surface hydroxyl groups, which are convenient to be combined with various functional groups. In this paper polyacrylic acid (PAA) modified TiO2 nanoparticles were synthesized through an in situ light-induced polymerization of acrylic acid on the surface of TiO2 nanoparticles. The structure and surface physicochemical properties of the PAA/TiO2 nanoparticles were characterized by TEM, XRD, FT-IR, Zeta potential measurements and TG-DSC. The experimental results showed that the isoelectric point of PAA/TiO2 significantly reduced to 1.82 compared with that of pure TiO2 nanoparticles (6.08). In the adsorption tests of lysozyme (Lyz), the PAA/TiO2 nanoparticles displayed enhanced adsorption activity compared with pristine TiO2. The maximum adsorption capacity of PAA/TiO2 for Lyz was 225.9 mg g-1 under the optimum conditions where the initial concentration of Lyz was 300 mg ml-1, the addition amount of PAA/TiO2 was 6.4 mg, the adsorption time was 30 min and the pH value was 7.0. The sodium dodecyl sulfate (SDS, 0.5%) presented the best efficiency (76.86%) in the removal of adsorbed Lyz, and the PAA/TiO2 nanoparticles showed excellent adsorption stability based on five cyclic adsorption-desorption tests. The fitting calculation results of the adsorption isotherm and the thermodynamics indicated the adsorption was an exothermic, entropy increasing, spontaneous and monomolecular layer adsorption process.

  5. Few-layer graphene sheets with embedded gold nanoparticles for electrochemical analysis of adenine

    Directory of Open Access Journals (Sweden)

    Biris AR

    2013-04-01

    Full Text Available Alexandru R Biris,1 Stela Pruneanu,1 Florina Pogacean,1 Mihaela D Lazar,1 Gheorghe Borodi,1 Stefania Ardelean,1 Enkeleda Dervishi,2 Fumiya Watanabe,2 Alexandru S Biris2 1National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania; 2Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, USA Abstract: This work describes the synthesis of few-layer graphene sheets embedded with various amounts of gold nanoparticles (Gr-Au-x over an Aux/MgO catalytic system (where x = 1, 2, or 3 wt%. The sheet-like morphology of the Gr-Au-x nanostructures was confirmed by transmission electron microscopy and high resolution transmission electron microscopy, which also demonstrated that the number of layers within the sheets varied from two to seven. The sample with the highest percentage of gold nanoparticles embedded within the graphitic layers (Gr-Au-3 showed the highest degree of crystallinity. This distinct feature, along with the large number of edge-planes seen in high resolution transmission electron microscopic images, has a crucial effect on the electrocatalytic properties of this material. The reaction yields (40%–50% and the final purity (96%–98% of the Gr-Au-x composites were obtained by thermogravimetric analysis. The Gr-Au-x composites were used to modify platinum substrates and subsequently to detect adenine, one of the DNA bases. For the bare electrode, no oxidation signal was recorded. In contrast, all of the modified electrodes showed a strong electrocatalytic effect, and a clear peak for adenine oxidation was recorded at approximately +1.05 V. The highest increase in the electrochemical signal was obtained using a platinum/Gr-Au-3-modified electrode. In addition, this modified electrode had an exchange current density (I0, obtained from the Tafel plot one order of magnitude higher than that of the bare platinum electrode, which also confirmed that

  6. Synthesis of magnetic nanoparticles: effects of polyelectrolyte concentration and pH

    Energy Technology Data Exchange (ETDEWEB)

    Urquijo, J. P., E-mail: jurquijo@fisica.udea.edu.co; Casanova, Herley; Garces, Javier; Morales, Alvaro L. [Universidad de Antioquia (Colombia)

    2011-11-15

    This study refers to the effect of sodium polyacrylate concentration (1 to 5 mass %) and pH (10 to 12) on the synthesis of magnetic nanoparticles (magnetite-maghemite) and their characterization by Moessbauer spectroscopy. The magnetic particles were obtained by coprecipitation method using iron chloride (II) and iron chloride (III) as precursor reagents and sodium polyacrylate as stabilizing agent. All samples showed Moessbauer broad resonance lines in typical doublet and sextets patterns of magnetite or maghemite with corresponding wide particle size distributions. The stability of magnetic particles was carried out by measuring particle sizes with dynamic light scattering (DLS). The z-average values for magnetic particles were in the range 24 to 590 nm and no significant change in size was observed on aging by leaving this material in air for 20 days. X-ray diffraction patterns showed characteristic peaks of the spinel structure and have an increase in their broadening as the pH decreases, effect that is dominated by the decrease in crystallite sizes. The nanoparticles showed to be magnetic at pH 12 and at room temperature.

  7. Controllable Negative Differential Resistance Behavior of an Azobenzene Molecular Device Induced by Different Molecule-Electrode Distances

    International Nuclear Information System (INIS)

    Fan Zhi-Qiang; Zhang Zhen-Hua; Qiu Ming; Deng Xiao-Qing; Tang Gui-Ping

    2012-01-01

    We report the ab initio calculations of transport behaviors of an azobenzene molecular device which is similar to the experimental configurations. The calculated results show that the transport behaviors of the device are sensitive to the molecule-electrode distance and the currents will drop rapidly when the molecule-electrode distance changes from 1.7 Å to 2.0 Å. More interestingly, the negative differential resistance behavior can be found in our device. Nevertheless, it is not the inherent property of an azobenzene molecular device but an effect of the molecule-electrode distance. Detailed analyses of the molecular projected self-consistent Hamiltonian states and the transmission spectra of the system reveal the physical mechanism of these behaviors. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  8. Fabrication of highly dispersed ZnO nanoparticles embedded in graphene nanosheets for high performance supercapacitors

    International Nuclear Information System (INIS)

    Fang, Linxia; Zhang, Baoliang; Li, Wei; Zhang, Jizhong; Huang, Kejing; Zhang, Qiuyu

    2014-01-01

    We report a facile strategy to synthesize ZnO-graphene nanocomposites as an advanced electrode material for high-performance supercapacitors. The ZnO-graphene nanocomposites have been fabricated via a facile, low-temperature in situ wet chemistry process. During this process, high dispersed ZnO nanoparticles are embedded in graphene nanosheets, leading to sandwich-structured ZnO-graphene nanocomposites. Thus, intimate interfacial contact between ZnO nanoparticles and graphene nanosheets are achieved, which facilitates electrochemical activity and enhance electrochemical properties due to fast electron transfer. The as-prepared ZnO-graphene nanocomposites exhibit a maximum specific capacitance of 786 F g −1 and excellent cycle life with capacity retention of about 92% after 500 cycles. This facile design and rational synthesis offers an effective strategy to enhance the electrochemical performance of supercapacitors and shows promising potential for large-scale application in energy storage

  9. Rheological and sensory properties of hydrophilic skin protection gels based on polyacrylates.

    Science.gov (United States)

    Kulawik-Pióro, Agnieszka; Kurpiewska, Joanna; Kułaszka, Agnieszka

    2018-03-01

    With the current increases in occupational skin diseases, literature data attesting the decreasing efficiency of barrier creams with respect to the manufacturer's declarations and legal regulations granting skin protection gels for employees, research is required to analyse and evaluate the recipes used for hydrophilic skin protection gels based on polyacrylates. This study investigated the rheological properties, pH and sensory perception of hydrophilic barrier gels based on polyacrylates. The acrylic acid derivatives used were good thickeners, and helped to form transparent gels of adequate durability. They could be used to create hydrophilic films on the surface of the skin to protect it against hydrophobic substances. A correlation was shown between the results of the rheological properties and the barrier properties of the gels. This confirms the possibility of monitoring the quality of the gels at the stage of recipe development. Polyacrylates are viable for use in industry to produce hydrophilic barrier creams suitable for skin protection.

  10. Synthesis, characterization and application of Lagerstroemia speciosa embedded magnetic nanoparticle for Cr(VI) adsorption from aqueous solution.

    Science.gov (United States)

    Srivastava, Shalini; Agrawal, Shashi Bhushan; Mondal, Monoj Kumar

    2017-05-01

    Lagerstroemia speciosa bark (LB) embedded magnetic nanoparticles were prepared by co-precipitation of Fe 2+ and Fe 3+ salt solution with ammonia and LB for Cr(VI) removal from aqueous solution. The native LB, magnetic nanoparticle (MNP), L. speciosa embedded magnetic nanoparticle (MNPLB) and Cr(VI) adsorbed MNPLB particles were characterized by SEM-EDX, TEM, BET-surface area, FT-IR, XRD and TGA methods. TEM analysis confirmed nearly spherical shape of MNP with an average diameter of 8.76nm and the surface modification did not result in the phase change of MNP as established by XRD analysis, while led to the formation of secondary particles of MNPLB with diameter of 18.54nm. Characterization results revealed covalent binding between the hydroxyl group of MNP and carboxyl group of LB particles and further confirmed its physico-chemical nature favorable for Cr(VI) adsorption. The Cr(VI) adsorption on to MNPLB particle as an adsorbent was tested under different contact time, initial Cr(VI) concentration, adsorbent dose, initial pH, temperature and agitation speed. The results of the equilibrium and kinetics of adsorption were well described by Langmuir isotherm and pseudo-second-order model, respectively. The thermodynamic parameters suggest spontaneous and endothermic nature of Cr(VI) adsorption onto MNPLB. The maximum adsorption capacity for MNPLB was calculated to be 434.78mg/g and these particles even after Cr(VI) adsorption were collected effortlessly from the aqueous solution by a magnet. The desorption of Cr(VI)-adsorbed MNPLB was found to be more than 93.72% with spent MNPLB depicting eleven successive adsorption-desorption cycles. Copyright © 2016. Published by Elsevier B.V.

  11. Assessing bio-available silver released from silver nanoparticles embedded in silica layers using the green algae Chlamydomonas reinhardtii as bio-sensors

    Energy Technology Data Exchange (ETDEWEB)

    Pugliara, Alessandro [nMat group-CEMES (Centre d' Elaboration de Matériaux et d' Etudes Structurales)-CNRS, Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, F-31055 Toulouse Cedex 4 (France); LAPLACE (LAboratoire PLAsma et Conversion d' Energie), Université de Toulouse, CNRS, UPS, INPT, 118 route de Narbonne, F-31062 Toulouse (France); Makasheva, Kremena; Despax, Bernard [LAPLACE (LAboratoire PLAsma et Conversion d' Energie), Université de Toulouse, CNRS, UPS, INPT, 118 route de Narbonne, F-31062 Toulouse (France); Bayle, Maxime; Carles, Robert; Benzo, Patrizio; BenAssayag, Gérard; Pécassou, Béatrice [nMat group-CEMES (Centre d' Elaboration de Matériaux et d' Etudes Structurales)-CNRS, Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, F-31055 Toulouse Cedex 4 (France); Sancho, Maria Carmen; Navarro, Enrique [IPE (Instituto Pirenaico de Ecología)-CSIC, Avda. Montañana 1005, Zaragoza 50059 (Spain); Echegoyen, Yolanda [I3A, Department of Analytical Chemistry, University of Zaragoza, C/ María de Luna 3, 50018, Zaragoza (Spain); Bonafos, Caroline, E-mail: bonafos@cemes.fr [nMat group-CEMES (Centre d' Elaboration de Matériaux et d' Etudes Structurales)-CNRS, Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, F-31055 Toulouse Cedex 4 (France)

    2016-09-15

    Silver nanoparticles (AgNPs) because of their strong antibacterial activity are widely used in health-care sector and industrial applications. Their huge surface-volume ratio enhances the silver release compared to the bulk material, leading to an increased toxicity for microorganisms sensitive to this element. This work presents an assessment of the toxic effect on algal photosynthesis due to small (size < 20 nm) AgNPs embedded in silica layers. Two physical approaches were originally used to elaborate the nanocomposite structures: (i) low energy ion beam synthesis and (ii) combined silver sputtering and plasma polymerization. These techniques allow elaboration of a single layer of AgNPs embedded in silica films at defined nanometer distances (from 0 to 7 nm) beneath the free surface. The structural and optical properties of the nanostructures were studied by transmission electron microscopy and optical reflectance. The silver release from the nanostructures after 20 h of immersion in buffered water was measured by inductively coupled plasma mass spectrometry and ranges between 0.02 and 0.49 μM. The short-term toxicity of Ag to photosynthesis of Chlamydomonas reinhardtii was assessed by fluorometry. The obtained results show that embedding AgNPs reduces the interactions with the buffered water free media, protecting the AgNPs from fast oxidation. The release of bio-available silver (impacting on the algal photosynthesis) is controlled by the depth at which AgNPs are located for a given host matrix. This provides a procedure to tailor the toxicity of nanocomposites containing AgNPs. - Highlights: • Controlled synthesis of 2D arrays of silver nanoparticles embedded in silica. • Assessing bio-available silver release using the green algae as bio-sensors. • The Ag release can be controlled by the distance nanoparticles/dielectric surface. • All the Ag released in solution is in the form of Ag{sup +} ions. • Toxicity comparable to similar concentrations of

  12. Static and ultrafast optical properties of nanolayered composites. Gold nanoparticles embedded in polyelectrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Kiel, Mareike

    2012-08-16

    In the course of this thesis gold nanoparticle/polyelectrolyte multilayer structures were prepared, characterized, and investigated according to their static and ultrafast optical properties. Using the dip-coating or spin-coating layer-by-layer deposition method, gold-nanoparticle layers were embedded in a polyelectrolyte environment with high structural perfection. Typical structures exhibit four repetition units, each consisting of one gold-particle layer and ten double layers of polyelectrolyte (cationic+anionic polyelectrolyte). The structures were characterized by X-ray reflectivity measurements, which reveal Bragg peaks up to the seventh order, evidencing the high stratification of the particle layers. In the same measurements pronounced Kiessig fringes were observed, which indicate a low global roughness of the samples. Atomic force microscopy (AFM) images verified this low roughness, which results from the high smoothing capabilities of polyelectrolyte layers. This smoothing effect facilitates the fabrication of stratified nanoparticle/polyelectrolyte multilayer structures, which were nicely illustrated in a transmission electron microscopy image. The samples' optical properties were investigated by static spectroscopic measurements in the visible and UV range. The measurements revealed a frequency shift of the reflectance and of the plasmon absorption band, depending on the thickness of the polyelectrolyte layers that cover a nanoparticle layer. When the covering layer becomes thicker than the particle interaction range, the absorption spectrum becomes independent of the polymer thickness. However, the reflectance spectrum continues shifting to lower frequencies (even for large thicknesses). The range of plasmon interaction was determined to be in the order of the particle diameter for 10 nm, 20 nm, and 150 nm particles. The transient broadband complex dielectric function of a multilayer structure was determined experimentally by ultrafast pump

  13. Natural Fe{sub 3}O{sub 4} nanoparticles embedded zinc–tellurite glasses: Polarizability and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Widanarto, W. [Physics Study Program, Jenderal Soedirman University, Jl. Dr. Soeparno 61, Purwokerto 53123 (Indonesia); Sahar, M.R., E-mail: rahimsahar@utm.my [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Skudai 81310 (Malaysia); Ghoshal, S.K.; Arifin, R.; Rohani, M.S.; Hamzah, K. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Skudai 81310 (Malaysia); Jandra, M. [FTI, University Teknologi Malaysia, Johor Bahru, Skudai 81310 (Malaysia)

    2013-02-15

    Modifying the optical behavior of zinc–tellurite glass by embedding magnetic nanoparticles has implication in nanophotonics. A series of zinc–tellurite glasses containing natural Fe{sub 3}O{sub 4} nanoparticles with composition (80 − x)TeO{sub 2}·xFe{sub 3}O{sub 4}·20ZnO (0 ≤ x ≤ 2) in mol% are synthesized by melt quenching method and their optical properties are investigated using FTIR and UV–vis–NIR spectroscopies. Lorentz–Lorenz relations are exploited to determine the refractive index, molar refraction and electronic polarizability. The sharp absorption peaks of FTIR spectra show a shift from 667 cm{sup −1} to 671 cm{sup −1} in the presence of nanoparticles that increase the non-bridging oxygen, confirmed by the intensity change of the TeO{sub 3} peak at 752 cm{sup −1}. A new peak around 461 cm{sup −1} is also observed which is attributed to the band characteristic of covalent Fe–O linkages. A decrease in the Urbach energy as much as 0.122 eV and the optical energy band gap with the increase of Fe{sub 3}O{sub 4} concentration (0.5–1.0 mol%) is evidenced. Electronic polarizability of the glasses increases with increasing Fe{sub 3}O{sub 4} nanoparticles concentration up to 1 mol%. Interestingly, the polarizability tends to decrease with the further increase of Fe{sub 3}O{sub 4} concentration at 2 mol%. The role of magnetic nanoparticles in influencing the structural and optical behavior are examined and understood. - Highlights: ► Incorporation of natural Fe{sub 3}O{sub 4} nanoparticles into the zinc–tellurite glass. ► Influence of magnetic nanoparticles in modifying structure and optical properties. ► Enhancement of refraction index and change in electronic polarizability.

  14. Current state and future prospect on polyacrylic scid based superabsorbent polymer. Polyacrylic sankei kokyusuisei polymer no genjo to kongo no tenkai

    Energy Technology Data Exchange (ETDEWEB)

    Shimomura, T.; Kobayashi, H. (Nippon Shokubai Kagaku Kogyo Co. Ltd., Osaka (Japan))

    1991-10-01

    A polymer that absorbs water vigorously and swells is called a superabsorbent polymer (SAP). This peculiar character has developed diverse applications including paper diapers, and its production showed a rapid growth to more than 200,000 tons (worldwide) in the past decade. This paper introduces the development and applications for polyacrylic acid-based SAP, a representative SAP. The research began in the U.S.A. in about the year 1976. For its characteristics suitable for paper diapers and cost advantages, the acrylate-based SAP has become accounting for the most at the present. The polymer is manufactured by polymerzation crosslinking of acrylic acid or sodium acrylate to produce polyacrylate crosslinked bodies. The polymer swells to 100 to 1000 times in deionized water, and turns into a hydrogel. Unlike a sponge, the swelled gel will not ooze out water even if pressed. However, its absorption performance decreases extremely in electrolytic aqueous solution, which is a problem for the future development. 17 refs., 5 figs., 7 tabs.

  15. Rheological and electrical properties of polymeric nanoparticle solutions and their influence on RBC suspensions

    Czech Academy of Sciences Publication Activity Database

    Antonova, N.; Koseva, N.; Kowalczyk, A.; Říha, Pavel; Ivanov, I.

    2014-01-01

    Roč. 24, č. 3 (2014), s. 35190 ISSN 1430-6395 Institutional support: RVO:67985874 Keywords : nanoparticles and RBC suspensions * poly(acrylic acid) * rheology * electrical conductivity Subject RIV: BK - Fluid Dynamics Impact factor: 1.078, year: 2014 http://www.ar.ethz.ch/TMPPDF/24308140293.696/ApplRheol_24_35190.pdf

  16. Prediction of the maximum absorption wavelength of azobenzene dyes by QSPR tools

    Science.gov (United States)

    Xu, Xuan; Luan, Feng; Liu, Huitao; Cheng, Jianbo; Zhang, Xiaoyun

    2011-12-01

    The maximum absorption wavelength ( λmax) of a large data set of 191 azobenzene dyes was predicted by quantitative structure-property relationship (QSPR) tools. The λmax was correlated with the 4 molecular descriptors calculated from the structure of the dyes alone. The multiple linear regression method (MLR) and the non-linear radial basis function neural network (RBFNN) method were applied to develop the models. The statistical parameters provided by the MLR model were R2 = 0.893, Radj2=0.893, qLOO2=0.884, F = 1214.871, RMS = 11.6430 for the training set; and R2 = 0.849, Radj2=0.845, qext2=0.846, F = 207.812, RMS = 14.0919 for the external test set. The RBFNN model gave even improved statistical results: R2 = 0.920, Radj2=0.919, qLOO2=0.898, F = 1664.074, RMS = 9.9215 for the training set, and R2 = 0.895, Radj2=0.892, qext2=0.895, F = 314.256, RMS = 11.6427 for the external test set. This theoretical method provides a simple, precise and an alternative method to obtain λmax of azobenzene dyes.

  17. Electrochemical lithiation performance and characterization of silicon-graphite composites with lithium, sodium, potassium, and ammonium polyacrylate binders.

    Science.gov (United States)

    Han, Zhen-Ji; Yamagiwa, Kiyofumi; Yabuuchi, Naoaki; Son, Jin-Young; Cui, Yi-Tao; Oji, Hiroshi; Kogure, Akinori; Harada, Takahiro; Ishikawa, Sumihisa; Aoki, Yasuhito; Komaba, Shinichi

    2015-02-07

    Poly(acrylic acid) (PAH), which is a water soluble polycarboxylic acid, is neutralized by adding different amounts of LiOH, NaOH, KOH, and ammonia (NH4OH) aqueous solutions to fix neutralization degrees. The differently neutralized polyacid, alkali and ammonium polyacrylates are examined as polymeric binders for the preparation of Si-graphite composite electrodes as negative electrodes for Li-ion batteries. The electrode performance of the Si-graphite composite depends on the alkali chemicals and neutralization degree. It is found that 80% NaOH-neutralized polyacrylate binder (a pH value of the resultant aqueous solution is ca. 6.7) is the most efficient binder to enhance the electrochemical lithiation and de-lithiation performance of the Si-graphite composite electrode compared to that of conventional PVdF and the other binders used in this study. The optimum polyacrylate binder highly improves the dispersion of active material in the composite electrode. The binder also provides the strong adhesion, suitable porosity, and hardness for the composite electrode with 10% (m/m) binder content, resulting in better electrochemical reversibility. From these results, the factors of alkali-neutralized polyacrylate binders affecting the electrode performance of Si-graphite composite electrodes are discussed.

  18. Synthesis of Au nanoparticles at the surface and embedded in carbonaceous matrix by 150 keV Ar ion irradiation

    International Nuclear Information System (INIS)

    Prakash, Jai; Tripathi, Jalaj; Tripathi, A; Kumar, P; Asokan, K; Avasthi, D K; Rigato, V; Pivin, J C; Chae, Keun Hwa; Gautam, Sanjeev

    2011-01-01

    We report on synthesis of spherical Au nanoparticles at the surface and embedded in carbonaceous matrix by 150 keV Ar ion irradiation of thin Au film on polyethyleneterepthlate (PET). The pristine and irradiated samples are characterized by Rutherford backscattering spectrometry (RBS), atomic force microscopy, scanning electron microscopy and transmission electron microscopy (TEM) techniques. RBS spectra reveal the sputtering of Au film and interface mixing, increasing with increasing fluence. Surface morphology shows that at the fluence of 5 x 10 15 ions cm -2 , dewetting of thin Au film begins and partially connected nanostructures are formed whereas, at the higher fluence of 5 x 10 16 ions cm -2 , isolated spherical Au nanoparticles (45 ± 20 nm) are formed at the surface. Cross-sectional TEM observations also evidence the Au nanoparticles at the surface and mixed metal-polymer region indicating the formation of nanocomposites with small Au nanoparticles. The results are explained by the crater formation, sputtering followed by dewetting of the thin Au film and interdiffusion at the interface, through molten zones due to thermal spike induced by Ar ions.

  19. Gold nanoparticles embedded in Ta 2 O 5 /Ta 3 N 5 as active visible-light plasmonic photocatalysts for solar hydrogen evolution

    KAUST Repository

    Luo, Yujing; Liu, Xiaoming; Tang, Xinghua; Luo, Yan; Zeng, Qianyao; Deng, Xiaolei; Ding, Shaolei; Sun, Yiqun

    2014-01-01

    Here, we demonstrate a new recreating photocatalytic activity of a Nano Au/Ta2O5 composite for hydrogen evolution from water as a visible-light-responsive plasmonic photocatalyst by embedding Au nanoparticles in a Ta2O5 host lattice. The Nano Au/Ta2

  20. MoS2 embedded TiO2 nanoparticles for concurrent role of adsorption and photocatalysis

    Science.gov (United States)

    Pal, Arnab; Jana, Tushar K.; Chatterjee, Kuntal

    2018-04-01

    In this work, MoS2 embedded TiO2 nanoparticles, synthesized through hydrothermal process, was successfully employed to remove organic pollutant dye like methylene blue(MB) through adsorption and as well as through photocatalysis under visible light irradiation. The system was characterized by structural and morphological study. The adsorption and photocatalytic study of MB were evaluated with different concentrations of dye in aqueous solution. This work brings the MoS2-TiO2 nanostructure as excellent adsorbent as well as efficient photocatalyst materials which can be used for organic dye removal towards waste-water treatment.

  1. Enhanced Wound Healing Using Topically Administered Nanoparticle Encapsulated siRNA

    Science.gov (United States)

    2013-11-01

    as guar or xanthan gum , inorganic gelatinizing agents, such as aluminum hydroxide or bentonites (termed thixotropic gel-formers), polyacrylic acid...agent for preparing a suitable base, or cellulose derivatives, such as guar or xanthan gum , inorganic gelatinizing agents, such as aluminum hydroxide...coconut oil; ii) preparation of a fine powder version of the coconut oil plus nanoparticles that melts on contact with living tissue; iii

  2. High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester

    DEFF Research Database (Denmark)

    Sánchez, C; Alcalá, R; Hvilsted, Søren

    2001-01-01

    High diffraction efficiencies have been achieved with polarization gratings recorded in thin films of an azobenzene side-chain liquid crystalline polyester by means of biphotonic processes. Efficiency values up to 30% have been reached after an induction period of 300 s and subsequent evolution...

  3. Silver nanoparticles embedded polymer sorbent for preconcentration of uranium from bio-aggressive aqueous media

    International Nuclear Information System (INIS)

    Das, Sadananda; Pandey, Ashok K.; Athawale, Anjali A.; Subramanian, M.; Seshagiri, T.K.; Khanna, Pawan K.; Manchanda, Vijay K.

    2011-01-01

    Adsorptive sorbent for bio-aggressive natural aqueous media like seawater was developed by one pot simultaneous synthesis of silver nanoparticles (Ag nps) and poly(ethylene glycol methacrylate phosphate) (PEGMP) by UV-initiator induced photo-polymerization. The photo-polymerization was carried out by irradiating N,N'-dimethylformamide (DMF) solution containing appropriate amounts of the functional monomer (ethylene glycol methacrylate phosphate), UV initiator (α,α'-dimethoxy-α-phenyl acetophenone), and Ag + ions with 365 nm UV light in a multilamps photoreactor. To increase mechanical strength, nano-composite sorbent (Ag-PEGMP) was also reinforced with thermally bonded non-woven poly(propylene) fibrous sheet. Transmission electron microscopy (TEM) of the nano-composite sorbent showed uniform distribution of spherical Ag nanoparticles with particles size ranging from 3 to 6 nm. The maximum amount of Ag 0 that could be anchored in the form of nanoparticles were 5 ± 1 and 10 ± 1 wt.% in self-supported PEGMP and poly(propylene) reinforced PEGMP matrices, respectively. Ag-PEGMP sorbent was found to be stable under ambient conditions for a period of six months. Ag-PEGMP composite sorbent did not exhibit growth at all after incubation with pre-grown Escherichia coli cells, and showed non-adherence of this bacteria to the composite. This indicated that composite sorbent has the bio-resistivity due to bacterial repulsion and bactericidal properties of Ag nanoparticles embedded in the PEGMP. Sorption of U(VI) in PEGMP and Ag-PEGMP nano-composite sorbents from well-stirred seawater was studied to explore the possibility of using it for uranium preconcentration from bio-aggressive aqueous streams. The nano-composite sorbent was used to preconcentrate U(VI) from a process aqueous waste stream.

  4. Biochemical and biomedical applications of multifunctional magnetic nanoparticles: a review

    International Nuclear Information System (INIS)

    Huang, Shih-Hung; Juang, Ruey-Shin

    2011-01-01

    Nanotechnology offers tremendous potential for future medical diagnosis and therapy. Various types of nanoparticles have been extensively studied for numerous biochemical and biomedical applications. Magnetic nanoparticles are well-established nanomaterials that offer controlled size, ability to be manipulated by an external magnetic field, and enhancement of contrast in magnetic resonance imaging. As a result, these nanoparticles could have many applications including bacterial detection, protein purification, enzyme immobilization, contamination decorporation, drug delivery, hyperthermia, etc. All these biochemical and biomedical applications require that these nanoparticles should satisfy some prerequisites including high magnetization, good stability, biocompatibility, and biodegradability. Because of the potential benefits of multimodal functionality in biomedical applications, in this account highlights some general strategies to generate magnetic nanoparticle-based multifunctional nanostructures. After these magnetic nanoparticles are conjugated with proper ligands (e.g., nitrilotriacetate), polymers (e.g., polyacrylic acid, chitosan, temperature- and pH-sensitive polymers), antibodies, enzymes, and inorganic metals (e.g., gold), such biofunctional magnetic nanoparticles exhibit many advantages in biomedical applications. In addition, the multifunctional magnetic nanoparticles have been widely applied in biochemical fields including enzyme immobilization and protein purification.

  5. Electrochemical characterizations on MnO2 supercapacitors with potassium polyacrylate and potassium polyacrylate-co-polyacrylamide gel polymer electrolytes

    KAUST Repository

    Lee, Kuang-Tsin; Lee, Jyh-Fu; Wu, Nae-Lih

    2009-01-01

    MnO2·nH2O supercapacitors with potassium polyacrylate (PAAK) and potassium polyacrylate-co-polyacrylamide (PAAK-co-PAAM) gel polymer electrolytes (GPEs) having the weight compositions of polymer:KCl:H2O = 9%:6.7%:84.3% have been characterized for their electrochemical performance. Compared with the liquid electrolyte (LE) counterpart, the GPE cells exhibit remarkable (∼50-130%) enhancement in specific capacitance of the oxide electrode, and the extent of the enhancement increases with increasing amount of the carboxylate groups in the polymers as well as with increasing oxide/electrolyte interfacial area. In situ X-ray absorption near-edge structure (XANES) analysis indicates that the oxide electrodes of the GPE cells possess higher Mn-ion valences and are subjected to greater extent of valence variation than that of the LE cell upon charging/discharging over the same potential range. Copolymerization of PAAK with PAAM greatly improves the cycling stability of the MnO2·nH2O electrode, and the improvement is attributable to the alkaline nature of the amino groups. Both GPEs exhibit ionic conductivities greater than 1.0 × 10-1 S cm-1 and are promising for high-rate applications. © 2009 Elsevier Ltd. All rights reserved.

  6. Electrochemical characterizations on MnO2 supercapacitors with potassium polyacrylate and potassium polyacrylate-co-polyacrylamide gel polymer electrolytes

    KAUST Repository

    Lee, Kuang-Tsin

    2009-11-01

    MnO2·nH2O supercapacitors with potassium polyacrylate (PAAK) and potassium polyacrylate-co-polyacrylamide (PAAK-co-PAAM) gel polymer electrolytes (GPEs) having the weight compositions of polymer:KCl:H2O = 9%:6.7%:84.3% have been characterized for their electrochemical performance. Compared with the liquid electrolyte (LE) counterpart, the GPE cells exhibit remarkable (∼50-130%) enhancement in specific capacitance of the oxide electrode, and the extent of the enhancement increases with increasing amount of the carboxylate groups in the polymers as well as with increasing oxide/electrolyte interfacial area. In situ X-ray absorption near-edge structure (XANES) analysis indicates that the oxide electrodes of the GPE cells possess higher Mn-ion valences and are subjected to greater extent of valence variation than that of the LE cell upon charging/discharging over the same potential range. Copolymerization of PAAK with PAAM greatly improves the cycling stability of the MnO2·nH2O electrode, and the improvement is attributable to the alkaline nature of the amino groups. Both GPEs exhibit ionic conductivities greater than 1.0 × 10-1 S cm-1 and are promising for high-rate applications. © 2009 Elsevier Ltd. All rights reserved.

  7. Disintegration of nano-embedded microparticles after deposition on mucus: A mechanistic study.

    Science.gov (United States)

    Ruge, Christian A; Bohr, Adam; Beck-Broichsitter, Moritz; Nicolas, Valérie; Tsapis, Nicolas; Fattal, Elias

    2016-03-01

    The conversion of colloidal drug carriers/polymeric nanoparticles into dry microparticulate powders (e.g., by spray-drying) is a prominent approach to overcome the aerodynamic limitations of these formulations for delivery via inhalation. However, to what extent such nano-embedded microparticles disintegrate into individual/intact nanoparticles after contacting relevant physiological media has so far not been addressed. Polymeric nanoparticles were spray-dried into nano-embedded microparticles (NEMs) using different amounts of trehalose as embedding matrix excipient. Formulations were characterized and then evaluated for their disintegration behavior after aerosolization onto model mucus. Although a rapid and complete aqueous redispersion was observed for specific excipient/nanoparticle weight ratios (i.e., greater than 1/1), the same formulations revealed no disintegration after deposition onto a static mucus layer. Double-labeled NEMs powders (i.e., dual color staining of polymeric nanoparticles and trehalose) demonstrated rapid matrix dissolution, while the nanoparticle aggregates persisted. When deposited onto agitated mucus, however, sufficient disintegration of NEMs into individual polymeric nanoparticles was observed. These findings indicate that mechanical forces are necessary to overcome the attraction between individual nanoparticles found within the NEMs. Thus, it remains questionable whether the lung mechanics (e.g., breathing, mucociliary clearance) acting on these formulations will contribute to the overall disintegration process. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. An analysis of the anisotropic and topographic gratings in a side-chain liquid crystalline azobenzene polyester

    DEFF Research Database (Denmark)

    Holme, N.C.R.; Nikolova, L.; Ramanujam, P.S.

    1997-01-01

    We have examined in detail the formation of surface relief structures in azobenzene polyesters formed by polarization holography with orthogonally circularly polarized laser beams, We show that it is possible to separate the contribution to the diffraction efficiency into an anisotropic part...

  9. Gold nanoparticles embedded in Ta 2 O 5 /Ta 3 N 5 as active visible-light plasmonic photocatalysts for solar hydrogen evolution

    KAUST Repository

    Luo, Yujing

    2014-07-10

    Here, we demonstrate a new recreating photocatalytic activity of a Nano Au/Ta2O5 composite for hydrogen evolution from water as a visible-light-responsive plasmonic photocatalyst by embedding Au nanoparticles in a Ta2O5 host lattice. The Nano Au/Ta2O 5 composite samples were prepared through a simple Pechini-type sol-gel process. Further nitridating Nano Au/Ta2O5 composite samples in ammonia flow at 1123 K yielded Nano Au/Ta3N 5 composite samples. The obtained Nano Au/Ta3N5 composite exhibited a significantly enhanced photocatalytic activity in the visible region for hydrogen evolution from water compared with blank Ta 3N5 nanoparticles. UV-visible diffuse reflectance spectra and photocatalytic activity measurements indicated that the excitation of surface plasmon resonance of Au nanoparticles is responsible for the new recreating photocatalytic activity of the Nano Au/Ta2O5 composite and significantly enhanced photocatalytic activity of the Nano Au/Ta3N5 composite for hydrogen evolution in the visible region, which might be ascribed to the charge transfer effect in Nano Au/Ta 2O5 composite and the synergetic effect of charge transfer and near-field electromagnetic effect in Nano Au/Ta3N5 composite induced by surface plasmon resonance of embedded Au nanoparticles. The current study could provide a new paradigm for designing plasmonic metal/semiconductor composite systems for photocatalytic, photovoltaic and other optoelectronic devices. © the Partner Organisations 2014.

  10. Conserving Coherence and Storing Energy during Internal Conversion: Photoinduced Dynamics of cis- and trans-Azobenzene Radical Cations

    KAUST Repository

    Munkerup, Kristin; Romanov, Dmitri A.; Bohinski, Timothy; Stephansen, Anne B.; Levis, Robert J.; Sø lling, Theis Ivan

    2017-01-01

    Light harvesting via energy storage in azobenzene has been a key topic for decades, and the process of energy distribution over the molecular degrees of freedom following photoexcitation remains to be understood. Dynamics of a photoexcited system

  11. Design of Tail-Clamp Peptide Nucleic Acid Tethered with Azobenzene Linker for Sequence-Specific Detection of Homopurine DNA

    Directory of Open Access Journals (Sweden)

    Shinjiro Sawada

    2017-10-01

    Full Text Available DNA carries genetic information in its sequence of bases. Synthetic oligonucleotides that can sequence-specifically recognize a target gene sequence are a useful tool for regulating gene expression or detecting target genes. Among the many synthetic oligonucleotides, tail-clamp peptide nucleic acid (TC-PNA offers advantages since it has two homopyrimidine PNA strands connected via a flexible ethylene glycol-type linker that can recognize complementary homopurine sequences via Watson-Crick and Hoogsteen base pairings and form thermally-stable PNA/PNA/DNA triplex structures. Here, we synthesized a series of TC-PNAs that can possess different lengths of azobenzene-containing linkers and studied their binding behaviours to homopurine single-stranded DNA. Introduction of azobenzene at the N-terminus amine of PNA increased the thermal stability of PNA-DNA duplexes. Further extension of the homopyrimidine PNA strand at the N-terminus of PNA-AZO further increased the binding stability of the PNA/DNA/PNA triplex to the target homopurine sequence; however, it induced TC-PNA/DNA/TC-PNA complex formation. Among these TC-PNAs, 9W5H-C4-AZO consisting of nine Watson-Crick bases and five Hoogsteen bases tethered with a beta-alanine conjugated azobenzene linker gave a stable 1:1 TC-PNA/ssDNA complex and exhibited good mismatch recognition. Our design for TC-PNA-AZO can be utilized for detecting homopurine sequences in various genes.

  12. A self-cleaning coating based on commercial grade polyacrylic latex modified by TiO2/Ag-exchanged-zeolite-A nanocomposite

    International Nuclear Information System (INIS)

    Nosrati, Rahimeh; Olad, Ali; Nofouzi, Katayoon

    2015-01-01

    Graphical abstract: - Highlights: • A novel nanocomposite coating based on polyacrylic was prepared. • Nanostructured TiO 2 /Ag-exchanged-zeolite-A composite material was prepared. • Prepared nanocomposite used as additive for modification of polyacrylic latex. • Modified coatings show self-cleaning and antibacterial properties. • Modified coatings show better stability in water in versus of unmodified polymer. - Abstract: The commercial grade polyacrylic latex was modified in order to prepare a self-cleaning coating. TiO 2 /Ag-exchanged-zeolite-A nanocomposite was prepared and used as additive in the matrix of polyacrylic latex to achieve a hydrophilic and photocatalytic coating. FTIR and UV–visible spectroscopy, X-ray diffraction patterns and FESEM were used to characterize the composition and structure of the nanocomposites and coatings. The acrylic coatings, were prepared by using of TiO 2 /Ag-exchanged-zeolite-A additive, had better UV and visible light absorption, hydrophilic, degradation of organic pollutants, stability in water and antimicrobial properties than pristine commercial grade polyacrylic latex coating. According to the results, the modified polyacrylic based coating containing 0.5 wt% of TiO 2 /Ag-exchanged-zeolite-A nanocomposite additive with TiO 2 to Ag-exchanged-zeolite-A ratio of 1:2 was the best coating considering most of useful properties such as small band gap and low water contact angle. The water contact angle for unmodified polyacrylic latex coating was 68° which was decreased to less than 10° in modified coating after 24 h LED lamp illumination

  13. Broadband reflection of polymer-stabilized chiral nematic liquid crystals induced by a chiral azobenzene compound.

    Science.gov (United States)

    Chen, Xingwu; Wang, Ling; Chen, Yinjie; Li, Chenyue; Hou, Guoyan; Liu, Xin; Zhang, Xiaoguang; He, Wanli; Yang, Huai

    2014-01-21

    A chiral nematic liquid crystal-photopolymerizable monomer-chiral azobenzene compound composite was prepared and then polymerized under UV irradiation. The reflection wavelength of the composite can be extended to cover the 1000-2400 nm range and also be adjusted to the visible light region by controlling the concentration of chiral compounds.

  14. Highly Water-Soluble Magnetic Nanoparticles as Novel Draw Solutes in Forward Osmosis for Water Reuse

    KAUST Repository

    Ling, Ming Ming

    2010-06-16

    Highly hydrophilic magnetic nanoparticles have been molecularly designed. For the first time, the application of highly water-soluble magnetic nanoparticles as novel draw solutes in forward osmosis (FO) was systematically investigated. Magnetic nanoparticles functionalized by various groups were synthesized to explore the correlation between the surface chemistry of magnetic nanoparticles and the achieved osmolality. We verified that magnetic nanoparticles capped with polyacrylic acid can yield the highest driving force and subsequently highest water flux among others. The used magnetic nanoparticles can be captured by the magnetic field and recycled back into the stream as draw solutes in the FO process. In addition, magnetic nanoparticles of different diameters were also synthesized to study the effect of particles size on FO performance. We demonstrate that the engineering of surface hydrophilicity and magnetic nanoparticle size is crucial in the application of nanoparticles as draw solutes in FO. It is believed that magnetic nanoparticles will soon be extensively used in this area. © 2010 American Chemical Society.

  15. X-ray reflectivity investgation of structure and kinetics of photoswitchable lipid monolayers

    DEFF Research Database (Denmark)

    Chatterjee, Kuntal; Haushahn, Björn; Shen, Chen

    The mechanical and dynamic properties of phospholipid membranes are of importance for important biological functions, such as switching of embedded proteins. In order to investigate these properties we study model systems in which amphiphilic photoswitchable molecules are integrated into Langmuir...... films of phospholipids. we have modified glycolipids to contain an azobenzene photoswitch between the chain and the head group and successfully embedded those in a monolayer of dipalmitoylphosphatidylcholine (DPPC). This allows us to reversibly change the azobenzene-glycolipid orientation between...

  16. Temporal formation of optical anisotropy and surface relief during polarization holographic recording in polymethylmethacrylate with azobenzene side groups

    Science.gov (United States)

    Sasaki, Tomoyuki; Izawa, Masahiro; Noda, Kohei; Nishioka, Emi; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2014-03-01

    The formation of polarization holographic gratings with both optical anisotropy and surface relief (SR) deformation was studied for polymethylmethacrylate with azobenzene side groups. Temporal contributions of isotropic and anisotropic phase gratings were simultaneously determined by observing transitional intensity and polarization states of the diffraction beams and characterizing by means of Jones calculus. To clarify the mechanism of SR deformation, cross sections of SR were characterized based on the optical gradient force model; experimental observations were in good agreement with the theoretical expectation. We clarified that the anisotropic phase change originating in the reorientation of the azobenzene side groups was induced immediately at the beginning of the holographic recording, while the response time of the isotropic phase change originating in the molecular migration due to the optical gradient force was relatively slow.

  17. Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels.

    Science.gov (United States)

    Kolpak, Alexie M; Grossman, Jeffrey C

    2011-08-10

    Solar thermal fuels, which reversibly store solar energy in molecular bonds, are a tantalizing prospect for clean, renewable, and transportable energy conversion/storage. However, large-scale adoption requires enhanced energy storage capacity and thermal stability. Here we present a novel solar thermal fuel, composed of azobenzene-functionalized carbon nanotubes, with the volumetric energy density of Li-ion batteries. Our work also demonstrates that the inclusion of nanoscale templates is an effective strategy for design of highly cyclable, thermally stable, and energy-dense solar thermal fuels.

  18. Controlled Pesticide Release from Porous Composite Hydrogels Based on Lignin and Polyacrylic Acid

    Directory of Open Access Journals (Sweden)

    Yajie Sun

    2016-01-01

    Full Text Available For the controlled release of pesticides, a novel composite porous hydrogel (LBPAA was prepared based on lignin and polyacrylic acid for use as the support frame of a pore structure for water delivery. The LBPAA was analyzed to determine its water-swelling and slow release properties. The controlled release properties of LBPAA were evaluated through experiments in relation to the cumulative release of pesticides, with particular emphasis on environmental effects and release models. The porous LBPAA hydrogel showed improved properties compared to polyacrylic acid, and could therefore be considered an efficient material for application in controlled release systems in agriculture.

  19. Effect of Grafted Hydroquinone on the Acid-Base Properties of Poly(acrylic acid in the Presence of Copper (II

    Directory of Open Access Journals (Sweden)

    Nabila Bensacia

    2015-01-01

    Full Text Available Potentiometric titration of poly(acrylic acid and hydroquinone-functionalized poly(acrylic acid was conducted in the presence of copper (II. The effects of hydroquinone functionalizing and copper (II complexing on the potentiometric titration of poly(acrylic acid were studied in an ionic environment and in its absence. Henderson-Hasselbalch equation was applied to assess its validity for this titration. Coordination number and the stability constants of the copper- (II-complexed polymers were determined, and results showed the formation of mostly monodentate and bidentate copper- (II-polymer complexes.

  20. 10,000 optical write, read, and erase cycles in an azobenzene sidechain liquid-crystalline polyester

    DEFF Research Database (Denmark)

    Holme, NCR; Ramanujam, P.S.; Hvilsted, Søren

    1996-01-01

    We show far what is believed to he the first time that it is possible tu generate 10,000 rapid write, read, and erase cycles optically in an azobenzene sidechain liquid-crystalline polyester. We do this by exposing the film alternately to visible light from an argon laser at 488 nm and ultraviolet...

  1. Synthesis and characterization of nano-SiO{sub 2} modified fluorine-containing polyacrylate emulsifier-free emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jianhua, E-mail: zhoujianh@21cn.com [College of Resource and Environment, Shaanxi University of Science and Technology, Xi’an 710021 (China); Shaanxi Research Institute of Agricultural Products Processing Technology, Xi’an 710021 (China); Chen, Xin; Duan, Hao; Ma, Jianzhong; Ma, Yurong [College of Resource and Environment, Shaanxi University of Science and Technology, Xi’an 710021 (China)

    2015-03-15

    Graphical abstract: Nano-SiO{sub 2} modified fluorine-containing polyacrylate emulsifier-free emulsion was synthesized by emulsifier-free emulsion polymerization and sol–gel process using ethyl silicate as precursor for nano-SiO{sub 2}. - Highlights: • Nano-SiO{sub 2} modified fluorine-containing polyacrylate emulsifier-free emulsion was successfully synthesized by emulsion polymerization using surfmer and sol–gel process. • The contact angle results showed that the finished fabric had an excellent water and oil repellency. • The nano-SiO{sub 2} modified fluorine-containing polyacrylate emulsifier-free emulsion proved to be highly solvent-resistant and water-resistant. • The transmission electron microscopy (TEM) indicated that the nano-SiO{sub 2} presented on the surface of latex particles. • The atomic force microscope (AFM) and energy dispersive X-ray spectrometer (EDX) confirmed that the hybrid film had a rough surface and the organic fluorine segment could migrate onto the film–air interface. - Abstract: Nano-SiO{sub 2} modified fluorine-containing polyacrylate emulsifier-free emulsion, consisting of methyl methacrylate, butyl acrylate, dodecafluoroheptyl methacrylate and ethyl silicate, was successfully synthesized by emulsion polymerization using surfmer and sol–gel process. When increasing ethyl silicate content, the latex centrifugal stability decreased, and the latex particle size increased. The contact angle results showed that the finished fabric had an excellent water and oil repellency. Furthermore, compared with fluorine-containing polyacrylate emulsifier-free emulsion, the obtained nano-SiO{sub 2} modified fluorine-containing polyacrylate emulsifier-free emulsion proved to be highly solvent-resistant and water-resistant. In addition, the transmission electron microscopy (TEM) indicated that the nano-SiO{sub 2} presented on the surface of latex particles. The atomic force microscope (AFM) and energy dispersive X-ray spectrometer

  2. Complex formation of calcium with humic acid and polyacrylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Kirishima, A.; Tanaka, K.; Niibori, Y.; Tochiyama, O. [Dept. of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku Univ., Sendai (Japan)

    2002-07-01

    In order to understand the migration behavior of radionuclides in the underground, it is also important to estimate the effect of the competing cations originally present in the groundwater. In this connection, the complexation of Ca(II) with Aldrich humic acid has been examined. For the study at trace concentrations ({proportional_to} 10{sup -10} M) of Ca(II), the solvent extraction of {sup 45}Ca with TTA and TOPO in cyclohexane has been used. At macro concentrations (10{sup -4} M) of Ca(II), the measurement of the free Ca{sup 2+} ion concentration with a calcium selective electrode has been conducted. To estimate the polyelectrolyte effect of humic acid separately from its heterogeneous composition effect, polyacrylic acid ([-CH{sub 2}CH(COOH)-]{sub n}) has been selected as a representative of the homogeneous polymeric weak acids and its complexation with Ca(II) has also been examined. The values of log {beta}{sub {alpha}} have been obtained at pH 5 {proportional_to} 7 in 0.1, 0.4 and 1.0 M NaCl, where {beta}{sub {alpha}} is the apparent formation constants defined by {beta}{sub {alpha}} = [ML]/([M][R]). In this definition, [ML] and [M] are the concentrations of bound and free Ca{sup 2+} respectively, [R] is the concentration of dissociated proton exchanging sites. log {beta}{sub {alpha}} of humate decreases from 2.19 {proportional_to} 2.92 (depending on pH and ionic strength 1.0 < I < 0.4) at pCa = 10 to 1.98 {proportional_to} 2.44 at pCa = 4, while the variation of pCa has no appreciable influence on the log {beta}{sub {alpha}} of polyacrylate (1.36 {proportional_to} 3.24 for I = 0.1 {proportional_to} 1.0). For both humate and polyacrylate, log {beta}{sub {alpha}} decreases linearly with log[Na{sup +}], where [Na{sup +}] is the bulk concentration of sodium ion. Their dependences of log {beta}{sub {alpha}} on ionic strength are stronger than those of log {beta} of monomeric carboxylates such as oxalate and EDTA, indicating the large electrostatic effect of

  3. Highly Stretchable and Conductive Silver Nanoparticle Embedded Graphene Flake Electrode Prepared by In situ Dual Reduction Reaction

    Science.gov (United States)

    Yoon, Yeoheung; Samanta, Khokan; Lee, Hanleem; Lee, Keunsik; Tiwari, Anand P.; Lee, Jihun; Yang, Junghee; Lee, Hyoyoung

    2015-09-01

    The emergence of stretchable devices that combine with conductive properties offers new exciting opportunities for wearable applications. Here, a novel, convenient and inexpensive solution process was demonstrated to prepare in situ silver (Ag) or platinum (Pt) nanoparticles (NPs)-embedded rGO hybrid materials using formic acid duality in the presence of AgNO3 or H2PtCl6 at low temperature. The reduction duality of the formic acid can convert graphene oxide (GO) to rGO and simultaneously deposit the positively charged metal ion to metal NP on rGO while the formic acid itself is converted to a CO2 evolving gas that is eco-friendly. The AgNP-embedded rGO hybrid electrode on an elastomeric substrate exhibited superior stretchable properties including a maximum conductivity of 3012 S cm-1 (at 0 % strain) and 322.8 S cm-1 (at 35 % strain). Its fabrication process using a printing method is scalable. Surprisingly, the electrode can survive even in continuous stretching cycles.

  4. Anti-cancer evaluation of quercetin embedded PLA nanoparticles synthesized by emulsified nanoprecipitation.

    Science.gov (United States)

    Pandey, Sanjeev K; Patel, Dinesh K; Thakur, Ravi; Mishra, Durga P; Maiti, Pralay; Haldar, Chandana

    2015-04-01

    This study was carried out to synthesize quercetin (Qt) embedded poly(lactic acid) (PLA) nanoparticles (PLA-Qt) and to evaluate anti-cancer efficacy of PLA-Qt by using human breast cancer cells. PLA-Qt were synthesized by using novel emulsified nanoprecipitation technique with varying dimension of 32 ± 8 to 152 ± 9 nm of PLA-Qt with 62 ± 3% (w/w) entrapment efficiency by varying the concentration of polymer, emulsifier, drug and preparation temperature. The dimension of PLA-Qt was measured through transmission electron microscopy indicating larger particle size at higher concentration of PLA. The release rate of Qt from PLA-Qt was found to be more sustained for larger particle dimension (152 ± 9 nm) as compared to smaller particle dimension (32 ± 8 nm). Interaction between Qt and PLA was verified through spectroscopic and calorimetric methods. Delayed diffusion and stronger interaction in PLA-Qt caused the sustained delivery of Qt from the polymer matrix. In vitro cytotoxicity study indicate the killing of ∼ 50% breast cancer cells in two days at 100 μg/ml of drug concentration while the ∼ 40% destruction of cells require 5 days for PLA-Qt (46 ± 6 nm; 20mg/ml of PLA). Thus our results propose anticancer efficacy of PLA-Qt nanoparticles in terms of its sustained release kinetics revealing novel vehicle for the treatment of cancer. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Synthesis and Characterization of Fe3O4 Magnetic Nanoparticles Coated with Carboxymethyl Chitosan Grafted Sodium Methacrylate

    Directory of Open Access Journals (Sweden)

    S. Asgari

    2014-01-01

    Full Text Available N-sodium acrylate-O-carboxymethyl chitosan [CMCH-g-PAA(Na] bound Fe3O4 nanoparticles were developed as a novel magnetic nanoparticles with an ionic structure that can be potentially used in many fields. CMCH-g-PAA (Na was obtained by grafting of sodium polyacrylate on O-carboxymethyl chitosan, which is an amphiphilic polyelectrolyte with the biocompatibility and biodegradability properties. According to the great interest for improving the stability of Fe3O4 nanoparticles, CMCH-g-PAA (Na was used as a stabilizer to prepare a well dispersed suspension of magnetic nanoparticle According to the results,the presence of CMCH-g-PAA(Na could eliminate agglomeration of magnetic nanoparticles without destroying the superparamagnetic  properties

  6. Influence of the substituent on azobenzene side-chain polyester optical storage materials

    DEFF Research Database (Denmark)

    Pedersen, M; Hvilsted, Søren; Holme, NCR

    1999-01-01

    , chloro, and bromo. C-13 NMR spectroscopic and molecular mass investigations substantiate good film forming characteristics. The optical storage performance of thin polyester films are investigated through polarization holography. The resulting diffraction efficiency is mapped and discussed as a function...... of irradiation power and exposure time. Polytetradecanedioates with cyano-, nitro-, methyl-, fluoro-, or trinuoromethyl-azobenzene reach more than 50% diffraction efficiency. Investigations of anisotropy induced at different temperatures reveal that the polyesters are only photosensitive in a narrow temperature...

  7. Photoswitchable nanoporous films by loading azobenzene in metal-organic frameworks of type HKUST-1.

    Science.gov (United States)

    Müller, Kai; Wadhwa, Jasmine; Singh Malhi, Jasleen; Schöttner, Ludger; Welle, Alexander; Schwartz, Heidi; Hermann, Daniela; Ruschewitz, Uwe; Heinke, Lars

    2017-07-13

    Photoswitchable metal-organic frameworks (MOFs) enable the dynamic remote control of their key properties. Here, a readily producible approach is presented where photochromic molecules, i.e. azobenzene (AB) and o-tetrafluoroazobenzene (tfAB), are loaded in MOF films of type HKUST-1. These nanoporous films, which can be reversibly switched with UV/visible or only visible light, have remote-controllable guest uptake properties.

  8. Optical characterization of CdS nanoparticles embedded into the comb-type amphiphilic graft copolymer

    Science.gov (United States)

    Kalaycı, Özlem A.; Duygulu, Özgür; Hazer, Baki

    2013-01-01

    This study refers to the synthesis and characterization of a novel organic/inorganic hybrid nanocomposite material containing cadmium sulfide (CdS) nanoparticles. For this purpose, a series of polypropylene (PP)-g-polyethylene glycol (PEG), PP-g-PEG comb-type amphiphilic graft copolymers were synthesized. PEGs with Mn = 400, 2000, 3350, and 8000 Da were used and the graft copolymers obtained were coded as PPEG400, PPEG2000, PPEG3350, and PPEG8000. CdS nanoparticles were formed in tetrahydrofuran solution of PP-g-PEG amphiphilic comb-type copolymer by the reaction between aqueous solutions of Na2S and Cd(CH3COO)2 simultaneously. Micelle formation of PPEG2000 comb-type amphiphilic graft copolymer in both solvent/non-solvent (petroleum ether-THF) by transmission electron microscopy (TEM). The optical characteristics, size morphology, phase analysis, and dispersion of CdS nanoparticles embedded in PPEG400, PPEG2000, PPEG3350, and PPEG8000 comb-type amphiphilic graft copolymer micelles were determined by high resolution TEM (HRTEM), energy dispersive spectroscopy, UV-vis spectroscopy, and fluorescence emission spectroscopy techniques. The aggregate size of PPEG2000-CdS is between 10 and 50 nm; however, in the case of PPEG400-CdS, PPEG3350-CdS, and PPEG8000-CdS samples, it is up to approximately 100 nm. The size of CdS quantum dots in the aggregates for PPEG2000 and PPEG8000 samples was observed as 5 nm by HRTEM analysis, and this result was also supported by UV-vis absorbance spectra and fluorescence emission spectra.

  9. Optical characterization of CdS nanoparticles embedded into the comb-type amphiphilic graft copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Kalayc Latin-Small-Letter-Dotless-I , Oezlem A. [Bulent Ecevit University, Department of Physics (Turkey); Duygulu, Oezguer [TUBITAK Marmara Research Center, Materials Institute (Turkey); Hazer, Baki, E-mail: bkhazer@karaelmas.edu.tr [Bulent Ecevit University, Department of Chemistry (Turkey)

    2013-01-15

    This study refers to the synthesis and characterization of a novel organic/inorganic hybrid nanocomposite material containing cadmium sulfide (CdS) nanoparticles. For this purpose, a series of polypropylene (PP)-g-polyethylene glycol (PEG), PP-g-PEG comb-type amphiphilic graft copolymers were synthesized. PEGs with Mn = 400, 2000, 3350, and 8000 Da were used and the graft copolymers obtained were coded as PPEG400, PPEG2000, PPEG3350, and PPEG8000. CdS nanoparticles were formed in tetrahydrofuran solution of PP-g-PEG amphiphilic comb-type copolymer by the reaction between aqueous solutions of Na{sub 2}S and Cd(CH{sub 3}COO){sub 2} simultaneously. Micelle formation of PPEG2000 comb-type amphiphilic graft copolymer in both solvent/non-solvent (petroleum ether-THF) by transmission electron microscopy (TEM). The optical characteristics, size morphology, phase analysis, and dispersion of CdS nanoparticles embedded in PPEG400, PPEG2000, PPEG3350, and PPEG8000 comb-type amphiphilic graft copolymer micelles were determined by high resolution TEM (HRTEM), energy dispersive spectroscopy, UV-vis spectroscopy, and fluorescence emission spectroscopy techniques. The aggregate size of PPEG2000-CdS is between 10 and 50 nm; however, in the case of PPEG400-CdS, PPEG3350-CdS, and PPEG8000-CdS samples, it is up to approximately 100 nm. The size of CdS quantum dots in the aggregates for PPEG2000 and PPEG8000 samples was observed as 5 nm by HRTEM analysis, and this result was also supported by UV-vis absorbance spectra and fluorescence emission spectra.

  10. Optical characterization of CdS nanoparticles embedded into the comb-type amphiphilic graft copolymer

    International Nuclear Information System (INIS)

    Kalaycı, Özlem A.; Duygulu, Özgür; Hazer, Baki

    2013-01-01

    This study refers to the synthesis and characterization of a novel organic/inorganic hybrid nanocomposite material containing cadmium sulfide (CdS) nanoparticles. For this purpose, a series of polypropylene (PP)-g-polyethylene glycol (PEG), PP-g-PEG comb-type amphiphilic graft copolymers were synthesized. PEGs with Mn = 400, 2000, 3350, and 8000 Da were used and the graft copolymers obtained were coded as PPEG400, PPEG2000, PPEG3350, and PPEG8000. CdS nanoparticles were formed in tetrahydrofuran solution of PP-g-PEG amphiphilic comb-type copolymer by the reaction between aqueous solutions of Na 2 S and Cd(CH 3 COO) 2 simultaneously. Micelle formation of PPEG2000 comb-type amphiphilic graft copolymer in both solvent/non-solvent (petroleum ether–THF) by transmission electron microscopy (TEM). The optical characteristics, size morphology, phase analysis, and dispersion of CdS nanoparticles embedded in PPEG400, PPEG2000, PPEG3350, and PPEG8000 comb-type amphiphilic graft copolymer micelles were determined by high resolution TEM (HRTEM), energy dispersive spectroscopy, UV–vis spectroscopy, and fluorescence emission spectroscopy techniques. The aggregate size of PPEG2000-CdS is between 10 and 50 nm; however, in the case of PPEG400-CdS, PPEG3350-CdS, and PPEG8000-CdS samples, it is up to approximately 100 nm. The size of CdS quantum dots in the aggregates for PPEG2000 and PPEG8000 samples was observed as 5 nm by HRTEM analysis, and this result was also supported by UV–vis absorbance spectra and fluorescence emission spectra.

  11. Measurement of respirable superabsorbent polyacrylate (SAP) dust by ethanol derivatization using gas chromatography-mass spectrometry (GC-MS) detection.

    Science.gov (United States)

    McCormack, Paul; Lemmo, John S; Macomber, Margaret; Holcomb, Mark L; Lieckfield, Robert

    2011-04-01

    Superabsorbent polyacrylate (SAP) is an important industrial chemical manufactured primarily as sodium polyacrylate but occasionally as potassium salt. It has many applications owing to its intrinsic physical property of very high water absorption, which can be more than 100 times it own weight. SAP is commonly used in disposable diapers and feminine hygiene products and is known by a number of synonyms-sodium polyacrylate, superabsorbent polyacrylate (SAP), polyacrylate absorbent (PA), and superabsorbent material (SAM). Germany and The Netherlands have adopted a nonbinding scientific guideline value 0.05 mg/m³ (8-hr time-weighted average, TWA) as the maximum allowable workplace concentration for the respirable dust of SAP (acrylate was developed and validated for the analysis of respirable superabsorbent polyacrylate dust collected on filter cassettes in the workplace environment. This method is an alternative to the commonly used sodium-based method, which is limited owing to potential interference by other sources of sodium from the workplace and laboratory environments. The alcohol derivatization method effectively eliminates sodium interference from several classes of sodium compounds, as shown by their purposeful introduction at two and six times the equivalent amount of SAP present in reference samples. The accuracy of the method, as determined by comparison with sodium analysis of known reference samples, was greater than 80% over the study range of 5-50 μg of SAP dust. The lower reporting limit of the method is 3.0 μg of SAP per sample, which is equivalent to 3 (μg/m³) for an 8-hr sampling period at the recommended flow rate of 2.2 L/min.

  12. Preparation and characterization of mucus-penetrating papain/poly(acrylic acid) nanoparticles for oral drug delivery applications

    International Nuclear Information System (INIS)

    Müller, Christiane; Leithner, Katharina; Hauptstein, Sabine; Hintzen, Fabian; Salvenmoser, Willi; Bernkop-Schnürch, Andreas

    2013-01-01

    Particle diffusion through the intestinal mucosal barrier is restricted by the viscoelastic and adhesive properties of the mucus gel layer, preventing their penetration to the underlying absorptive endothelial cells. To overcome this natural barrier, we developed nanoparticles which have a remarkable ability to cleave mucoglycoprotein substructures responsible for the structural and rheological properties of mucus. After rheological screening of various mucolytic proteases, nanoparticles composed of poly(acrylic acid) and papain were prepared and characterized regarding particle size and zeta potential. Analysis of nanoparticles showed mean diameters sub-200 nm (162.8–198.5 nm) and negative zeta potentials advancing the mobility in mucus gel. Using diffusion chamber studies and the rotating diffusion tubes method, we compared the transport rates of papain modified (PAPC) and unaltered poly(acrylic acid) (PAA) particles through freshly excised intestinal porcine mucus. Results of the diffusion assays demonstrated strongly enhanced permeation behavior of PAPC particles owing to local mucus disruption by papain. Improved transport rates, reduction in mucus viscosity and the retarded release of hydrophilic macromolecular compounds make proteolytic enzyme functionalized nanoparticles of substantial interest for improved targeted drug delivery at mucosal surfaces. Although cytotoxicity tests of the nanoparticles could not be performed, safety of papain and PAA was already verified making PAPC particles a promising candidate in the pharmaceutical field of research. The focus of the present study was the development of particles which penetrate the mucus barrier to approach the underlying epithelium. Improvements of particles that penetrate the mucus followed by cell uptake in this direction are ongoing.

  13. Preparation and characterization of mucus-penetrating papain/poly(acrylic acid) nanoparticles for oral drug delivery applications

    Science.gov (United States)

    Müller, Christiane; Leithner, Katharina; Hauptstein, Sabine; Hintzen, Fabian; Salvenmoser, Willi; Bernkop-Schnürch, Andreas

    2013-01-01

    Particle diffusion through the intestinal mucosal barrier is restricted by the viscoelastic and adhesive properties of the mucus gel layer, preventing their penetration to the underlying absorptive endothelial cells. To overcome this natural barrier, we developed nanoparticles which have a remarkable ability to cleave mucoglycoprotein substructures responsible for the structural and rheological properties of mucus. After rheological screening of various mucolytic proteases, nanoparticles composed of poly(acrylic acid) and papain were prepared and characterized regarding particle size and zeta potential. Analysis of nanoparticles showed mean diameters sub-200 nm (162.8-198.5 nm) and negative zeta potentials advancing the mobility in mucus gel. Using diffusion chamber studies and the rotating diffusion tubes method, we compared the transport rates of papain modified (PAPC) and unaltered poly(acrylic acid) (PAA) particles through freshly excised intestinal porcine mucus. Results of the diffusion assays demonstrated strongly enhanced permeation behavior of PAPC particles owing to local mucus disruption by papain. Improved transport rates, reduction in mucus viscosity and the retarded release of hydrophilic macromolecular compounds make proteolytic enzyme functionalized nanoparticles of substantial interest for improved targeted drug delivery at mucosal surfaces. Although cytotoxicity tests of the nanoparticles could not be performed, safety of papain and PAA was already verified making PAPC particles a promising candidate in the pharmaceutical field of research. The focus of the present study was the development of particles which penetrate the mucus barrier to approach the underlying epithelium. Improvements of particles that penetrate the mucus followed by cell uptake in this direction are ongoing.

  14. Structure of polyacrylic acid and polymethacrylic acid solutions: a small angle neutron scattering study

    Energy Technology Data Exchange (ETDEWEB)

    Moussaid, A. (Lab. d' Ultrasons et de Dynamique des Fluides Complexes, Univ. Louis Pasteur, 67 - Strasbourg (France)); Schosseler, F. (Lab. d' Ultrasons et de Dynamique des Fluides Complexes, Univ. Louis Pasteur, 67 - Strasbourg (France)); Munch, J.P. (Lab. d' Ultrasons et de Dynamique des Fluides Complexes, Univ. Louis Pasteur, 67 - Strasbourg (France)); Candau, S.J. (Lab. d' Ultrasons et de Dynamique des Fluides Complexes, Univ. Louis Pasteur, 67 - Strasbourg (France))

    1993-04-01

    The intensity scattered from polyacrylic acid and polymethacrylic acid solutions has been measured by small angle neutron scattering experiments. The influence of polymer concentration, ionization degree, temperature and salt content has been investigated. Results are in qualitative agreement with a model which predicts the existence of microphases in the unstable region of the phase diagram. Quantitative comparison with the theory is performed by fitting the theoretical structure factor to the experimental data. For a narrow range of ionization degrees nearly quantitative agreement with the theory is found for the polyacrylic acid system. (orig.).

  15. Structure of polyacrylic acid and polymethacrylic acid solutions : a small angle neutron scattering study

    Science.gov (United States)

    Moussaid, A.; Schosseler, F.; Munch, J. P.; Candau, S. J.

    1993-04-01

    The intensity scattered from polyacrylic acid and polymethacrylic acid solutions has been measured by small angle neutron scattering experiemnts. The influence of polymer concentration, ionization degree, temperature and salt content has been investigated. Results are in qualitative agreement with a model which predicts the existence of microphases in the unstable region of the phase diagram. Quantitative comparison with the theory is performed by fitting the theoretical structure factor to the experimental data. For a narrow range of ionizaiton degrees nearly quantitative agreement with the theory is found for the polyacrylic acide system.

  16. FDTD Modelling of Silver Nanoparticles Embedded in Phase Separation Interface of H-PDLC

    Directory of Open Access Journals (Sweden)

    Kun Gui

    2015-01-01

    Full Text Available We report localized surface plasmon resonance (LSPR of silver nanoparticles (NPs embedded in interface of phase separation of holographic polymer-dispersed liquid crystal (H-PDLC gratings using Finite-Difference Time Domain method. We show that silver NPs exhibit double resonance peak at the interface, and these peaks are influenced by the angle of incident light. We observe a blue shift of the wavelength of resonance peak as the incident angle increases. However, the location of silver NPs at the interface has nearly no effect on the wavelength of resonance peak. Also we show near-field and far-field properties surrounding silver NPs and find that field distribution can be controlled through rotation of incident angle. Therefore, LSPR properties of silver NPs within H-PDLC gratings can be excited by appropriate wavelength and angle of the incident light.

  17. A self-cleaning coating based on commercial grade polyacrylic latex modified by TiO{sub 2}/Ag-exchanged-zeolite-A nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Nosrati, Rahimeh, E-mail: ra.nosrati@gmail.com [Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Olad, Ali, E-mail: a.olad@yahoo.com [Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Nofouzi, Katayoon, E-mail: nofouzi@tabrizu.ac.ir [Faculty of Veterinary Medicine, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2015-08-15

    Graphical abstract: - Highlights: • A novel nanocomposite coating based on polyacrylic was prepared. • Nanostructured TiO{sub 2}/Ag-exchanged-zeolite-A composite material was prepared. • Prepared nanocomposite used as additive for modification of polyacrylic latex. • Modified coatings show self-cleaning and antibacterial properties. • Modified coatings show better stability in water in versus of unmodified polymer. - Abstract: The commercial grade polyacrylic latex was modified in order to prepare a self-cleaning coating. TiO{sub 2}/Ag-exchanged-zeolite-A nanocomposite was prepared and used as additive in the matrix of polyacrylic latex to achieve a hydrophilic and photocatalytic coating. FTIR and UV–visible spectroscopy, X-ray diffraction patterns and FESEM were used to characterize the composition and structure of the nanocomposites and coatings. The acrylic coatings, were prepared by using of TiO{sub 2}/Ag-exchanged-zeolite-A additive, had better UV and visible light absorption, hydrophilic, degradation of organic pollutants, stability in water and antimicrobial properties than pristine commercial grade polyacrylic latex coating. According to the results, the modified polyacrylic based coating containing 0.5 wt% of TiO{sub 2}/Ag-exchanged-zeolite-A nanocomposite additive with TiO{sub 2} to Ag-exchanged-zeolite-A ratio of 1:2 was the best coating considering most of useful properties such as small band gap and low water contact angle. The water contact angle for unmodified polyacrylic latex coating was 68° which was decreased to less than 10° in modified coating after 24 h LED lamp illumination.

  18. Opposite photo-induced deformations in azobenzene-containing polymers with different molecular architecture: Molecular dynamics study

    International Nuclear Information System (INIS)

    Ilnytskyi, Jaroslav M.; Neher, Dieter; Saphiannikova, Marina

    2011-01-01

    Photo-induced deformations in azobenzene-containing polymers (azo-polymers) are central to a number of applications, such as optical storage and fabrication of diffractive elements. The microscopic nature of the underlying opto-mechanical coupling is yet not clear. In this study, we address the experimental finding that the scenario of the effects depends on molecular architecture of the used azo-polymer. Typically, opposite deformations in respect to the direction of light polarization are observed for liquid crystalline and amorphous azo-polymers. In this study, we undertake molecular dynamics simulations of two different models that mimic these two types of azo-polymers. We employ hybrid force field modeling and consider only trans-isomers of azobenzene, represented as Gay-Berne sites. The effect of illumination on the orientation of the chromophores is considered on the level of orientational hole burning and emphasis is given to the resulting deformation of the polymer matrix. We reproduce deformations of opposite sign for the two models being considered here and discuss the relevant microscopic mechanisms in both cases.

  19. From photoluminescence emissions to plasmonic properties in platinum nanoparticles embedded in silica by ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Bornacelli, J., E-mail: jhbornacelli@gmail.com [Instituto de Física, Universidad Nacional Autónoma de México, 04510 México D.F. (Mexico); Silva-Pereyra, H.G. [IPICyT, Division de Materiales Avanzados, Camino a la presa San Jose 2055, San Luis Potosi, S.L.P. 78216 (Mexico); Rodríguez-Fernández, L. [Instituto de Física, Universidad Nacional Autónoma de México, 04510 México D.F. (Mexico); Avalos-Borja, M. [IPICyT, Division de Materiales Avanzados, Camino a la presa San Jose 2055, San Luis Potosi, S.L.P. 78216 (Mexico); Centro de Nanociencias y Nanotecnologia – Universidad Nacional Autónoma de México, A. Postal 2681, Ensenada, B.C. (Mexico); Oliver, A. [Instituto de Física, Universidad Nacional Autónoma de México, 04510 México D.F. (Mexico)

    2016-11-15

    We have studied photoluminescence emission and optical absorption from platinum nanoparticles (Pt-nps) embedded in a silica matrix obtained by ion implantation. The Pt ions were implanted at 2 MeV and the nanoclusters were nucleated after thermal treatment at 600, 800, and 1100 °C under two different atmospheres: argon gas and a reducing atmosphere compound of H{sub 2} and N{sub 2}. The luminescent spectrum is broader (400–600 nm) and is peaked at 530 nm, but its intensity decreases as the annealing temperature increases. However, at high annealing temperatures, a Mie resonance at 220 nm emerges in the absorption spectrum. We then observed a transition between two optical properties in a system of Pt-nps embedded in silica: from molecule-like properties such as photoluminescence emission to localized surface plasmon absorption. - Highlights: • Photoluminescence (PL) from ion-implanted Pt-nps in silica have been demonstrated. • PL properties depend on the temperature and atmosphere used to form Pt-nps in silica. • PL is quenched for samples with larger Pt-nps, however a Mie resonance appear. • Transition from molecule-like to bulk-like properties of Pt-nps in silica is reveled.

  20. Light scattering of thin azobenzene side-chain polyester layers

    DEFF Research Database (Denmark)

    Kerekes, Á.; Lörincz, E.; Ramanujam, P.S.

    2002-01-01

    Light scattering properties of liquid crystalline and amorphous azobenzene side-chain polyester layers used for optical data storage were examined by means of transmissive scatterometry. Comparative experiments show that the amorphous polyester has significantly lower light scattering...... characteristics than the liquid crystalline polyester. The amorphous samples have negligible polarization part orthogonal to the incident beam. the liquid crystalline samples have relative high orthogonal polarization part in light scattering, The light scattering results can be used to give a lower limit...... for the domain size in thin liquid crystalline polyester layers being responsible for the dominant light scattering. The characteristic domain Sizes obtained from the Fourier transformation of polarization microscopic Pictures confirm these values....

  1. A self-cleaning coating based on commercial grade polyacrylic latex modified by TiO2/Ag-exchanged-zeolite-A nanocomposite

    Science.gov (United States)

    Nosrati, Rahimeh; Olad, Ali; Nofouzi, Katayoon

    2015-08-01

    The commercial grade polyacrylic latex was modified in order to prepare a self-cleaning coating. TiO2/Ag-exchanged-zeolite-A nanocomposite was prepared and used as additive in the matrix of polyacrylic latex to achieve a hydrophilic and photocatalytic coating. FTIR and UV-visible spectroscopy, X-ray diffraction patterns and FESEM were used to characterize the composition and structure of the nanocomposites and coatings. The acrylic coatings, were prepared by using of TiO2/Ag-exchanged-zeolite-A additive, had better UV and visible light absorption, hydrophilic, degradation of organic pollutants, stability in water and antimicrobial properties than pristine commercial grade polyacrylic latex coating. According to the results, the modified polyacrylic based coating containing 0.5 wt% of TiO2/Ag-exchanged-zeolite-A nanocomposite additive with TiO2 to Ag-exchanged-zeolite-A ratio of 1:2 was the best coating considering most of useful properties such as small band gap and low water contact angle. The water contact angle for unmodified polyacrylic latex coating was 68° which was decreased to less than 10° in modified coating after 24 h LED lamp illumination.

  2. Glyconanobiotics: Novel carbohydrated nanoparticle antibiotics for MRSA and Bacillus anthracis

    OpenAIRE

    Abeylath, Sampath C.; Turos, Edward; Dickey, Sonja; Limb, Daniel V.

    2007-01-01

    This report describes the synthesis and evaluation of glycosylated polyacrylate nanoparticles that have covalently-bound antibiotics within their framework. The requisite glycosylated drug monomers were prepared from one of three known antibiotics, an N-sec-butylthio β-lactam, ciprofloxacin, and a penicillin, by acylation with 3-O-acryloyl-1,2-O-isopropylidene-5,6 bis((chlorosuccinyl)oxy)-D-glucofuranose (7) or 6-O-acetyl-3-O-acryloyl-1,2-O-isopropylidene-5-(chlorosuccinyl)oxy-α-D-glucofurano...

  3. Metagenomic analysis of microbial communities yields insight into impacts of nanoparticle design

    Science.gov (United States)

    Metch, Jacob W.; Burrows, Nathan D.; Murphy, Catherine J.; Pruden, Amy; Vikesland, Peter J.

    2018-01-01

    Next-generation DNA sequencing and metagenomic analysis provide powerful tools for the environmentally friendly design of nanoparticles. Herein we demonstrate this approach using a model community of environmental microbes (that is, wastewater-activated sludge) dosed with gold nanoparticles of varying surface coatings and morphologies. Metagenomic analysis was highly sensitive in detecting the microbial community response to gold nanospheres and nanorods with either cetyltrimethylammonium bromide or polyacrylic acid surface coatings. We observed that the gold-nanoparticle morphology imposes a stronger force in shaping the microbial community structure than does the surface coating. Trends were consistent in terms of the compositions of both taxonomic and functional genes, which include antibiotic resistance genes, metal resistance genes and gene-transfer elements associated with cell stress that are relevant to public health. Given that nanoparticle morphology remained constant, the potential influence of gold dissolution was minimal. Surface coating governed the nanoparticle partitioning between the bioparticulate and aqueous phases.

  4. Azobenzenes as light-controlled molecular electronic switches in nanoscale metal-molecule-metal junctions.

    Science.gov (United States)

    Mativetsky, Jeffrey M; Pace, Giuseppina; Elbing, Mark; Rampi, Maria A; Mayor, Marcel; Samorì, Paolo

    2008-07-23

    Conductance switching associated with the photoisomerization of azobenzene-based (Azo) molecules was observed in nanoscopic metal-molecule-metal junctions. The junctions were formed by using a conducting atomic force microscope (C-AFM) approach, where a metallic AFM tip was used to electrically contact a gold-supported Azo self-assembled monolayer. The measured 30-fold increase in conductance is consistent with the expected decrease in tunneling barrier length resulting from the conformational change of the Azo molecule.

  5. Sensitivity of photoelectron diffraction to conformational changes of adsorbed molecules: Tetra-tert-butyl-azobenzene/Au(111

    Directory of Open Access Journals (Sweden)

    A. Schuler

    2017-01-01

    Full Text Available Electron diffraction is a standard tool to investigate the atomic structure of surfaces, interfaces, and adsorbate systems. In particular, photoelectron diffraction is a promising candidate for real-time studies of structural dynamics combining the ultimate time resolution of optical pulses and the high scattering cross-sections for electrons. In view of future time-resolved experiments from molecular layers, we studied the sensitivity of photoelectron diffraction to conformational changes of only a small fraction of molecules in a monolayer adsorbed on a metallic substrate. 3,3′,5,5′-tetra-tert-butyl-azobenzene served as test case. This molecule can be switched between two isomers, trans and cis, by absorption of ultraviolet light. X-ray photoelectron diffraction patterns were recorded from tetra-tert-butyl-azobenzene/Au(111 in thermal equilibrium at room temperature and compared to patterns taken in the photostationary state obtained by exposing the surface to radiation from a high-intensity helium discharge lamp. Difference patterns were simulated by means of multiple-scattering calculations, which allowed us to determine the fraction of molecules that underwent isomerization.

  6. Photo-orientation of azobenzene side chain polymers parallel or perpendicular to the polarization of red HeNe light

    International Nuclear Information System (INIS)

    Kempe, Christian; Rutloh, Michael; Stumpe, Joachim

    2003-01-01

    The mechanism of the light-induced orientation process of azobenzene-containing polymers caused by irradiation with linearly polarized red light is investigated. This process is surprising because there is almost no absorption at 633 nm. Depending on the photochemical pre-treatment and the exposure time, the azobenzene moieties can undergo two different orientation processes resulting in either a parallel or a perpendicular orientation with respect to the electric field vector of the incident light. The fast orientation of the photochromic groups with their long axis in the direction of the light polarization requires a photochemical pre-treatment in which non-polarized UV light generates Z-isomers. Due to this procedure the film becomes 'photochemically activated' for the subsequent polarized irradiation with red light. But on continued exposure a second, much slower reorientation process occurs which establishes an orientation of the azobenzene groups perpendicular to the electric field vector. The fast mechanism is probably caused by an angle-selective photo-isomerization of the Z-isomers to the E-isomers, while the subsequent slow reorientation process is caused by the well-known conventional photo-orientation taking place via the accumulation of a number of photoselection steps and the rotational diffusion minimizing the absorbance of the E-isomer. This process occurs in the steady state but at this wavelength with a very small concentration of Z-isomers. The competing mechanisms take place in the same polymer film under almost identical irradiation conditions, differing only in the actual concentration of the Z-isomers

  7. Esophageal cancer treated by low dose irradiation, crescendo cisplatin and bleomycin polyacrylate pasta

    International Nuclear Information System (INIS)

    Mishina, Hitoshi; Okuyama, Shinichi; Lim, In-Su; Yamagata, Rin; Taima, Tadashi

    1983-01-01

    Eight patients with esophageal cancer were treated by a new treatment schedule consisting of low dose irradiation, crescendo cisplatin and bleomycin polyacrylate pasta. As monitored endoscopically, therapeutic responses were satisfactory : seven out of 8 patients have survived for a range of 3 to 20 months and still active at work or cancer-free. However, one patient suffered from a second malignancy of adenocarcinoma of the upper esophagus different from the initial squamous cell carcinoma at the lower esophagus which had successfully been treated 3 months before. The present therapeutic design aims at treatment of lymphatic spreads in the adjacent structures as well as the original tumor in the esophagus and submucosal invasions. It is basically a consecutive, multimodal integration of selective concentration of therapeutic effects (extensive radiotherapy, topical application of bleomycin polyacrylate pasta, lymphatic chasing with colloidal bleomycin, and spatial concentration of cisplatin as the result of radiation-induced inflammation), perpetuation of the repairable DNA damage, and biological amplifications (protection against esophageal perforation with polyacrylate coating, and specific cancer cell recruitment). Application of the present theraeputic design is being expanded to the treatment of cancer of other specific sites such as the head and neck tumors and rectal cancer with undeniable prospects. (author)

  8. Esophageal cancer treated by low dose irradiation, crescendo cisplatin and bleomycin polyacrylate pasta

    International Nuclear Information System (INIS)

    Mishina, Hitoshi; Okuyama, Shinichi; Lin, In-Su; Yamagata, Rin; Taima, Tadashi

    1982-01-01

    Eight patients with esophageal cancer were treated by a new treatment schedule consisting of low dose irradiation, crescendo cisplatin and bleomycin polyacrylate pasta. As monitored endoscopically, their therapeutic responses were satisfactory, and seven out of the eight survived for a range of 3 to 18 months and still active at work or ''cancer-free''. The seventh of the eight suffers from a second malignancy of adenocarcinoma of the cardia, different from the initial squamous cell carcinoma at the lower esophagus which had successfully been treated 3 months before. The present therapeutic design aims at treatment of lymphatic spreads in the adjacent structures as well as the original tumor in the esophagus and submucosal invasions. It is basically a consecutive, multimodal integration of selective concentration of therapeutic effects (extensive radiotherapy, topical application of bleomycin polyacrylate pasta, lymphatic chasing with colloidal bleomycin, and spatial concentration of cisplatin as the result of radiation-induced inflammations), perpetuation of the repairable DNA damage, and biological amplifications (protection against esophageal perforation with polyacrylate coating, and specific cancer cell recruitment). Application of the present therapeutic design is being expanded to treatment of cancer at other specific sites such as the head and neck tumors and rectal cancer with undeniable prospects. (author)

  9. Induction of mesenchymal stem cell chondrogenesis by polyacrylate substrates.

    Science.gov (United States)

    Glennon-Alty, Laurence; Williams, Rachel; Dixon, Simon; Murray, Patricia

    2013-04-01

    Mesenchymal stem cells (MSCs) can generate chondrocytes in vitro, but typically need to be cultured as aggregates in the presence of transforming growth factor beta (TGF-β), which makes scale-up difficult. Here we investigated if polyacrylate substrates modelled on the functional group composition and distribution of the Arg-Gly-Asp (RGD) integrin-binding site could induce MSCs to undergo chondrogenesis in the absence of exogenous TGF-β. Within a few days of culture on the biomimetic polyacrylates, both mouse and human MSCs, and a mesenchymal-like mouse-kidney-derived stem cell line, began to form multi-layered aggregates and started to express the chondrocyte-specific markers, Sox9, collagen II and aggrecan. Moreover, collagen II tended to be expressed in the centre of the aggregates, similarly to developing limb buds in vivo. Surface analysis of the substrates indicated that those with the highest surface amine content were most effective at promoting MSC chondrogenesis. These results highlight the importance of surface group functionality and the distribution of those groups in the design of substrates to induce MSC chondrogenesis. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Polyacrylic acids–bovine serum albumin complexation: Structure and dynamics

    International Nuclear Information System (INIS)

    Othman, Mohamed; Aschi, Adel; Gharbi, Abdelhafidh

    2016-01-01

    The study of the mixture of BSA with polyacrylic acids at different masses versus pH allowed highlighting the existence of two regimes of weak and strong complexation. These complexes were studied in diluted regime concentration, by turbidimetry, dynamic light scattering (DLS), zeta-potential measurements and nuclear magnetic resonance (NMR). We have followed the pH effect on the structure and properties of the complex. This allowed refining the interpretation of the phase diagram and understanding the observed phenomena. The NMR measurements allowed probing the dynamics of the constituents versus the pH. The computational method was used to precisely determine the electrostatic potential of BSA and how the polyelectrolyte binds to it at different pH. - Highlights: • Influence of physico-chemical parameters on the electrostatic interactions in the complex system (polyelectrolyte/protein). • Stabilization and encapsulation of biological macromolecules solution by mean of polyelectrolyte. • Properties and structure of mixture obtained by screening the charges of globular protein and at different masses of polyacrylic acids. • Dynamic of the constituents formed by complexes particles. • Evaluation of the electrostatic properties of bovine serum albumin versus pH through solution of the Poisson-Boltzmann equation.

  11. Preparation, Characterization and Analysis of Fouling Mechanisms of TiO2- Embedded PVDF Membranes

    Directory of Open Access Journals (Sweden)

    Yoones Jafarzadeh

    2017-01-01

    Full Text Available Titanium dioxide (TiO2-embedded polyvinylidene fluoride (PVDF mixed matrix membranes were prepared through a nonsolvent induced phase separation (NIPS method. The structure of the membranes was characterized by FESEM, EDX, water drop contact angle measurement, pure water flux and mean pore radius analysis. The results showed that the prepared membranes had asymmetric structures with macro-voids and the presence of TiO2 nanoparticles increased the size of macro-voids. Moreover, pure water flux increased from 41 kg/m2h to 162 kg/m2h the content of TiO2 nanoparticles increased from 1 wt% to 5 wt% as embedded membrane. The contact angle dropped from 100° for 1 wt% TiO2- embedded membrane to 69° for 5 wt% TiO2-embedded membrane, showing that the hydrophilicity of membranes increased by addition of inorganic TiO2 nanoparticles. The fouling behavior oftheprepared mixed matrix membranes was studied in filtration process of 1% humic acid solution. The results showed that fouling resistance of the membranes increased with higher content of TiO2 nanoparticles. The results of classic fouling modeling of membranes showed that for 2 and 5 wt% TiO2-embedded membranes the best fit of the data occurred with the intermediate blockage model whereas cake formation model was the dominant mechanism for other membranes. Moreover, the analysis of fouling mechanisms by combined models showed that cake filtration-intermediate blockage model was in good agreement with the experimental data for all membranes. Finally, the results showed that the rejection of membranes increased with the addition of TiO2 nanoparticles, and then decreased.

  12. Electrical conductivity and electromagnetic interference shielding characteristics of multiwalled carbon nanotube filled polyacrylate composite films

    International Nuclear Information System (INIS)

    Li Yong; Chen Changxin; Zhang Song; Ni Yuwei; Huang Jie

    2008-01-01

    Multiwalled carbon nanotubes (MWCNTs) were homogeneously dispersed in pure acrylic emulsion by ultrasonication to prepare MWCNT/polyacrylate composites applied on building interior wall for electromagnetic interference (EMI) shielding applications. The structure and surface morphology of the MWCNTs and MWCNT/polyacrylate composites were studied by field emission scanning microscopy (FESEM) and transmission electron microscopy (TEM). The electrical conductivity at room temperature and EMI shielding effectiveness (SE) of the composite films on concrete substrate with different MWCNT loadings were investigated and the measurement of EMI SE was carried out in two different frequency ranges of 100-1000 MHz (radio frequency range) and 8.2-12.4 GHz (X-band). The experimental results show that a low mass concentration of MWCNTs could achieve a high conductivity and the EMI SE of the MWCNT/polyacrylate composite films has a strong dependence on MWCNTs content in both two frequency ranges. The SE is higher in X-band than that in radio frequency range. For the composite films with 10 wt.% MWCNTs, the EMI SE of experiment agrees well with that of theoretical prediction in far field

  13. Biphotonic holographic gratings in azobenzene polyesters: Surface relief phenomena and polarization effects

    DEFF Research Database (Denmark)

    Sánchez, C.; Alcalá, R.; Hvilsted, Søren

    2000-01-01

    Biphotonic holographic gratings have been recorded in a side-chain azobenzene liquid crystalline polyester using a blue incoherent source and a He-Ne laser. Intensity gratings and the appearance of surface relief have been observed when two linearly polarized beams from a He-Ne laser are made...... to interfere on a film illuminated with blue light. Polarized holographic gratings are also created with two orthogonally circularly polarized He-Ne beams. All these gratings are stable in darkness but can be erased with blue light. (C) 2000 American Institute of Physics....

  14. Vertically oriented TiO(x)N(y) nanopillar arrays with embedded Ag nanoparticles for visible-light photocatalysis.

    Science.gov (United States)

    Jiang, Weitao; Ullah, Najeeb; Divitini, Giorgio; Ducati, Caterina; Kumar, R Vasant; Ding, Yucheng; Barber, Zoe H

    2012-03-27

    We present a straightforward method to produce highly crystalline, vertically oriented TiO(x)N(y) nanopillars (up to 1 μm in length) with a band gap in the visible-light region. This process starts with reactive dc sputtering to produce a TiN porous film, followed by a simple oxidation process at elevated temperatures in oxygen or air. By controlling the oxidation conditions, the band gap of the prepared TiO(x)N(y) can be tuned to different wavelength within the range of visible light. Furthermore, in order to inhibit carrier recombination to enhance the photocatalytic activity, Ag nanoparticles have been embedded into the nanogaps between the TiO(x)N(y) pillars by photoinduced reduction of Ag(+) (aq) irradiated with visible light. Transmission electron microscopy reveals that the Ag nanoparticles with a diameter of about 10 nm are uniformly dispersed along the pillars. The prepared TiO(x)N(y) nanopillar matrix and Ag:TiO(x)N(y) network show strong photocatalytic activity under visible-light irradiation, evaluated via degradation of Rhodamine B. © 2012 American Chemical Society

  15. Counterevidence to the ion hammering scenario as a driving force for the shape elongation of embedded nanoparticles

    Science.gov (United States)

    Amekura, H.; Okubo, N.; Tsuya, D.; Ishikawa, N.

    2017-08-01

    Counterevidence is provided in the ion-hammering scenario as a driving force for the shape elongation of embedded nanoparticles (NPs) under swift heavy ion irradiation (SHII). Ion-induced compaction and the hammering, which are both induced in silica under SHII, dominate at low and high fluences, respectively, causing a crossover between them around a fluence of ˜4 × 1012 ions/cm2. Nevertheless, the shape elongation of NPs detected by the optical dichroism exhibits nearly linear dependence in a wide fluence range between ˜1 × 1011 and 2 × 1013 ions/cm2, indicating that the hammering does not play an important role.

  16. MASS SPECTROMETRIC IDENTIFICATION OF AN AZOBENZENE DERIVATIVE PRODUCED BY SMECTITE-CATALYZED CONVERSION OF 3-AMINO-4-HYDROXPHENYLARSONIC ACID

    Science.gov (United States)

    We report here the first evidence of a possible mechanism for the formation of an azobenzene arsonic acid compound in the environment The compound was formed when 3-amino-4-hydroxyphenylarsonic acid (3-amino-HPAA) was added to aqueous suspensions of smectite clay The 3-amino-HPAA...

  17. Co@Co3O4 nanoparticle embedded nitrogen-doped carbon architectures as efficient bicatalysts for oxygen reduction and evolution reactions

    Science.gov (United States)

    Qi, Chunling; Zhang, Li; Xu, Guancheng; Sun, Zhipeng; Zhao, Aihua; Jia, Dianzeng

    2018-01-01

    The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) play crucial roles in efficient energy conversion and storage solutions. Here, Co@Co3O4 nanoparticle embedded nitrogen-doped carbon architectures (denoted as Co@Co3O4/NCs) are prepared via a simple two-step and in situ approach by carbonization and subsequent oxidation of Co-MOF containing high contents of carbon and nitrogen. When evaluated as electrocatalyst towards both ORR and OER in a KOH electrolyte solution, the as-fabricated Co@Co3O4/NC-2 exhibits similar ORR catalytic activity to the commercial Pt/C catalyst, but superior stability and good methanol tolerance. Furthermore, the as-fabricated catalysts also show promising catalytic activity for OER. The effective catalytic activities originate from the synergistic effects between well wrapped Co@Co3O4 nanoparticles and nitrogen doped carbon structures.

  18. NAA of ion exchanged sodium polyacrylate for monitoring air quality in the workplace

    International Nuclear Information System (INIS)

    Rigot, W.L.; Cutie, S.S.

    2000-01-01

    Sodium polyacrylate is a superabsorbent polymer (SAP) which is widely used in the manufacturing of disposable diapers. Workplace exposure to respirable dust produced from the handling of these polymers is becoming more of a concern as more data relating occupational exposures to health effects are becoming available. An approach that utilizes the fundamental ion exchange properties of the polymer combined with the sensitivity of instrumental neutron activation analysis has been developed which eliminates interferences from sodium species that are ubiquitous to manufacturing facilities. The technique involves exchanging the sodium that is associated with the polymer with europium and analyzing the exchanged polymer by neutron activation analysis. The technique is simple to run, provides excellent sensitivity and is specific to sodium polyacrylate. (author)

  19. Characterization of magnetic core-shell nanoparticles by fluxgate magnetorelaxometry, ac susceptibility, transmission electron microscopy and photon correlation spectroscopy-A comparative study

    International Nuclear Information System (INIS)

    Ludwig, Frank; Heim, Erik; Schilling, Meinhard

    2009-01-01

    We have compared the structure parameters of magnetic core-shell nanoparticles determined from fluxgate magnetorelaxometry measurements applying the moment superposition model with the results from other methods. For the characterization of the magnetic cores, the nanoparticles are immobilized by freeze-drying. The core size distribution estimated for superparamagnetic Fe 3 O 4 magnetic nanoparticles (MNPs) with polyacrylic acid shell agrees well with that from transmission electron microscopy measurements. The distribution of hydrodynamic diameters of nanoparticle suspensions estimated from magnetorelaxometry measurements is in good agreement with that obtained from ac susceptibility and photon correlation spectroscopy measurements. Advantages of magnetorelaxometry compared to the other two integral techniques are that it is fast and the signal is less dominated by larger particles.

  20. Silver nanoparticles embedded mesoporous SiO_2 nanosphere: an effective anticandidal agent against Candida albicans 077

    International Nuclear Information System (INIS)

    Qasim, M; Paik, P; Das, D; Singh, Braj R; Naqvi, A H

    2015-01-01

    Candida albicans is a diploid fungus that causes common infections such as denture stomatitis, thrush, urinary tract infections, etc. Immunocompromised patients can become severely infected by this fungus. Development of an effective anticandidal agent against this pathogenic fungus, therefore, will be very useful for practical application. In this work, Ag-embedded mesoporous silica nanoparticles (mSiO_2@AgNPs) have successfully been synthesized and their anticandidal activities against C. albicans have been studied. The mSiO_2@AgNPs nanoparticles (d ∼ 400 nm) were designed using pre-synthesized Ag nanoparticles and tetraethyl orthosilicate (TEOS) as a precursor for SiO_2 in the presence of cetyltrimethyl ammonium bromide (CTAB) as an easily removable soft template. A simple, cost-effective, and environmentally friendly approach has been adopted to synthesize silver (Ag) nanoparticles using silver nitrate and leaf extract of Azadirachta indica. The mesopores, with size-equivalent diameter of the micelles (d = 4–6 nm), were generated on the SiO_2 surface by calcination after removal of the CTAB template. The morphology and surface structure of mSiO_2@AgNPs were characterized through x-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), particle size analysis (PSA), atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), Brunauer–Emmett–Teller (BET) and high-resolution transmission electron microscopy (HRTEM). The HRTEM micrograph reveals the well-ordered mesoporous structure of the SiO_2 sphere. The antifungal activities of mSiO_2@AgNPs on the C. albicans cell have been studied through microscopy and are seen to increase with increasing dose of mSiO_2@AgNPs, suggesting mSiO_2@AgNPs to be a potential antifungal agent for C. albicans 077. (paper)

  1. Characteristics of Sodium Polyacrylate/Nano-Sized Carbon Hydrogel for Biomedical Patch.

    Science.gov (United States)

    Park, Jong-Kyu; Seo, Sun-Kyo; Cho, Seungkwan; Kim, Han-Sung; Lee, Chi-Hwan

    2018-03-01

    Conductive hydrogels were prepared for biomedical patch in order to improve the electrical conductivity. Sodium polyacrylate and nano-sized carbon were mixed and fabricated by aqueous solution gelation process in various contents of nano-sized carbon with 0.1, 0.5, 1.0 and 2.0 wt%. Sodium polyacrylate/nano-sized carbon conductive hydrogels were investigated by molecular structure, surface morphology and electrical conductivity. The conductivity of the hydrogel/nano-sized carbon conductive hydrogel proved to be 10% higher than conductive hydrogel without nano-sized carbon. However, it was founded that conductive hydrogels with nano-sized carbon content from 0.5 up to 2.0 wt% were remarkably decreased. This may be due to the non-uniform distribution of nano-sized carbon, resulting from agglomerates of nano-sized carbon. The developed hydrogel is intended for use in the medical and cosmetic fields that is applicable to supply micro-current from device to human body.

  2. Small Angle Neutron Scattering experiments on ``side-on fixed"" liquid crystal polyacrylates

    Science.gov (United States)

    Leroux, N.; Keller, P.; Achard, M. F.; Noirez, L.; Hardouin, F.

    1993-08-01

    Small Angle Neutron Scattering experiments were carried out on liquid crystalline “side-on fixed” polyacrylates : we observe that the polymer backbone adopts a prolate conformation in the nematic phase. Such anisotropy of the global backbone is larger for smaller spacer length. In every case we measure at low temperatures a large chain extension as previously described in polysiloxanes. Par diffusion des neutrons aux petits angles nous observons que la chaîne de polyacrylates “en haltère” adopte une conformation type prolate en phase nématique. Son anisotropie est d'autant plus grande que l'espaceur est plus court. Dans tous les cas, nous retrouvons à basse température la forte extension de la chaîne polymère qui fut d'abord révélée dans les polysiloxanes.

  3. Driving degradation within biodegradable polymers with embedded nanoparticles

    Science.gov (United States)

    Gorga, Russell; Firestone, Gabriel; Fontecha, Daniela; Bochinski, Jason; Clarke, Laura

    The ability to controllably trigger breaking of chemical bonds enables a substance that has robust material properties during use but can be re-worked or deteriorated upon command. Photothermal heating creates intense local heat at isolated nanoparticle locations within a sample and can result in very different material responses than those achievable with conventional (uniform) heating. In this process, irradiation with visible light resonant with the nanoparticle's surface plasmon resonance results in dramatic local heating of the particles and the surrounding material. This work studies intentional thermal degradation of poly ethyl cyanoacrylate-starch composites doped with metal nanoparticles, and explores differences in degradation speed, efficiency, and resultant mechanical properties when heated via the photothermal effect. This work was supported by the National Science Foundation, Grant #: CMMI-1462966.

  4. Synthesis and thermal behavior of telechelic poly(butadiene)diols with azobenzene-based liquid-crystalline units in side chains

    Czech Academy of Sciences Publication Activity Database

    Poláková, Lenka; Sedláková, Zdeňka; Látalová, Petra

    2010-01-01

    Roč. 64, č. 4 (2010), s. 315-326 ISSN 0170-0839 R&D Projects: GA ČR GA202/09/2078 Institutional research plan: CEZ:AV0Z40500505 Keywords : azobenzene mesogens * radical addition * poly(butadiene)diols Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.215, year: 2010

  5. A NIR-remote controlled upconverting nanoparticle: an improved tool for living cell dye-labeling

    International Nuclear Information System (INIS)

    Zheng, Bin; Gong, Xiaoqun; Wang, Hanjie; Wang, Sheng; Chang, Jin; Wang, Huiquan; Li, Wei; Tan, Jian

    2015-01-01

    In living cells, due to the selective permeability and complicated cellular environment, the uptake efficiency and fluorescence decay of organic dyes during dye-labeling may be influenced, which may eventually result in poor fluorescent imaging. In this work, a protocol of UCNs@mSiO_2-(FA and Azo) core–shell nanocarriers was designed and prepared successfully. The core–shell nanocarriers were assembled from two parts, including a mesoporous silica shell surface modified by folate (FA) and azobenzene (Azo), and an upconverting nanocrystal (UCN) core. The mesoporous silica shell is used for loading organic dyes and conjugating folate which helps to enhance the cellular uptake of nanocarriers. The UCN core works as a transducer to convert near infrared (NIR) light to local UV and visible light to activate a back-and-forth wagging motion of azobenzene molecules on the surface, while the azobenzene acts as a molecular impeller for propelling the release of organic dyes. The nanocarriers of loading organic dyes can maintain the stability of the fluorescent imaging effect better than free organic dyes. The experimental results show that with the help of the nanoparticle, cell uptake efficiency of the model dyes of rhodamine and 4′, 6-diamidino-2-phenylindole (DAPI) was significantly improved. The release of dyes can only be triggered by NIR light exposure and their quantity is highly dependent on the duration of NIR light exposure, thus realizing NIR-regulated dye release spatiotemporally. Our work may open a novel avenue for precisely controlling UCN-based living cell imaging in biotechnology and diagnostics, as well as studying cell dynamics, cell–cell interactions, and tissue morphogenesis. (paper)

  6. Organic bistable memory devices based on MoO3 nanoparticle embedded Alq3 structures

    Science.gov (United States)

    Abhijith, T.; Kumar, T. V. Arun; Reddy, V. S.

    2017-03-01

    Organic bistable memory devices were fabricated by embedding a thin layer of molybdenum trioxide (MoO3) between two tris-(8-hydroxyquinoline)aluminum (Alq3) layers. The device exhibited excellent switching characteristics with an ON/OFF current ratio of 1.15 × 103 at a read voltage of 1 V. The device showed repeatable write-erase capability and good stability in both the conductance states. These conductance states are non-volatile in nature and can be obtained by applying appropriate voltage pulses. The effect of MoO3 layer thickness and its location in the Alq3 matrix on characteristics of the memory device was investigated. The field emission scanning electron microscopy (FE-SEM) images of the MoO3 layer revealed the presence of isolated nanoparticles. Based on the experimental results, a mechanism has been proposed for explaining the conductance switching of fabricated devices.

  7. High electrochemical performance of RuO_2–Fe_2O_3 nanoparticles embedded ordered mesoporous carbon as a supercapacitor electrode material

    International Nuclear Information System (INIS)

    Xiang, Dong; Yin, Longwei; Wang, Chenxiang; Zhang, Luyuan

    2016-01-01

    The electrode materials RuO_2 or RuO_2–Fe_2O_3 nanoparticle embedded OMC (ordered mesoporous carbon) are prepared by the method of impregnation and heating in situ. The mesoporous structure optimized the electron and proton conducting pathways, leading to the enhanced capacitive performances of the composite materials. The average nanoparticle size of RuO_2 and RuO_2–Fe_2O_3 is 2.54 and 1.96 nm, respectively. The fine RuO_2–Fe_2O_3 nanoparticles are dispersed evenly in the pore channel wall of the two-dimensional mesoporous carbon without blocking the mesoporous channel, and they have a higher specific surface area, a larger pore volume, a proper pore size and a small charge transfer impedance value. The special electrochemical capacitance of RuO_2–Fe_2O_3/OMC tested in acid electrolyte (H_2SO_4) is measured to be as high as 1668 F g"−"1, which is higher than that of RuO_2/OMC. Meanwhile, the supercapacitor properties of the RuO_2–Fe_2O_3/OMC composites show a good cycling performance of 93% capacitance retention (3000 cycles), a better reversibility, a higher energy density (134 Wh kg"−"1) and power density (4000 W kg"−"1). The composite electrode of RuO_2–Fe_2O_3/OMC, which combines a double layer capacitance with pseudo-capacitance, is proved to be suitable for ideal high performance electrode material of a hybrid supercapacitor application. - Highlights: • The nanocomposites of RuO_2–Fe_2O_3/OMC are prepared by impregnation and heating in situ. • The fine RuO_2–Fe_2O_3 nanoparticles distribute in the pore channel wall of OMC. • We discuss a reversible redox reaction mechanism of RuO_2–Fe_2O_3/OMC in acid solutions. • RuO_2–Fe_2O_3 nanoparticles embedded OMC shows a higher supercapacitive performance.

  8. Atomic force and optical near-field microscopic investigations of polarization holographic gratings in a liquid crystalline azobenzene side-chain polyester

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Holme, N.C.R.; Hvilsted, S.

    1996-01-01

    Atomic force and scanning near-field optical microscopic investigations have been carried out on a polarization holographic grating recorded in an azobenzene side-chain Liquid crystalline polyester. It has been found that immediately following laser irradiation, a topographic surface grating...

  9. Improving the sensitivity of immunoassay based on MBA-embedded Au@SiO2 nanoparticles and surface enhanced Raman spectroscopy

    Science.gov (United States)

    Wei, Chao; Xu, Min-Min; Fang, Cong-Wei; Jin, Qi; Yuan, Ya-Xian; Yao, Jian-Lin

    2017-03-01

    Traditional "sandwich" structure immunoassay is mainly based on the self-assembly of "antibody on solid substrate-antigen-antibody with nanotags" architectures, and the sensitivity of this strategy is critically depended on the surface enhanced Raman scattering (SERS) activities and stability of nanotags. Therefore, the rational design and fabrication on the SERS nanotags attracts the common interests to the bio-related detecting and imaging. Herein, silica encapsulated Au with mercaptobenzoic acid (MBA) core-shell nanoparticles (Au-MBA@SiO2) are fabricated instead of the traditional naked Au or Ag nanoparticles for the SERS-based immunoassay on human and mouse IgG antigens. The MBA molecules facilitate the formation of continuous pinhole-free silica shell and are also used as SERS labels. The silica shell is employed to protect MBA labels and to isolate Au core from the ambient solution for blocking the aggregation. This shell also played the similar role to BSA in inhibiting the nonspecific bindings, which allowed the procedures for constructing "sandwich" structures to be simplified. All of these merits of the Au-MBA@SiO2 brought the high performance in the related immunoassay. Benefiting from the introduction of silica shell to encapsulate MBA labels, the detection sensitivity was improved by about 1- 2 orders of magnitude by comparing with the traditional approach based on naked Au-MBA nanoparticles. This kind of label-embedded core-shell nanoparticles could be developed as the versatile nanotags for the bioanalysis and bioimaging.

  10. The influence of mannitol on morphology and disintegration of spray-dried nano-embedded microparticles.

    Science.gov (United States)

    Torge, Afra; Grützmacher, Philipp; Mücklich, Frank; Schneider, Marc

    2017-06-15

    Nano-embedded microparticles represent a promising approach to deliver nanoparticles to the lungs. Microparticles with an appropriate aerodynamic diameter enable an application by dry powder inhaler and the transport of nanoparticles into the airways. By disintegration after deposition, nanoparticles can be released to exhibit their advantages such as a sustained drug release and delivery of the drug across the mucus barrier. The use of an appropriate matrix excipient to embed the nanoparticles is essential for the necessary disintegration and release of nanoparticles. In this context we investigated the influence of mannitol on the morphology, aerodynamic properties and disintegration behavior of nano-embedded microparticles. PLGA nanoparticles and mannitol were spray dried each as sole component and in combination in three different ratios. An influence of the mannitol content on the morphology was observed. Pure mannitol microparticles were solid and spherical, while the addition of nanoparticles resulted in raisin-shaped hollow particles. The different morphologies can be explained by diffusion processes of the compounds described by the Péclet-number. All powders showed suitable aerodynamic properties. By dispersion of the powders in simulated lung fluid, initial nanoparticle sizes could be recovered for samples containing mannitol. The fraction of redispersed nanoparticles was increased with increasing mannitol content. To evaluate the disintegration under conditions with higher comparability to the in vivo situation, spray-dried powders were exposed to >90% relative humidity. The disintegration behavior was monitored by analyzing roughness values by white light interferometry and supporting SEM imaging. The exposure to high relative humidity was shown to be sufficient for disintegration of the microparticles containing mannitol, releasing morphologically unchanged nanoparticles. With increasing mannitol content, the disintegration occurred faster and to a

  11. Electrical memory features of ferromagnetic CoFeAlSi nano-particles embedded in metal-oxide-semiconductor matrix

    International Nuclear Information System (INIS)

    Lee, Ja Bin; Kim, Ki Woong; Lee, Jun Seok; An, Gwang Guk; Hong, Jin Pyo

    2011-01-01

    Half-metallic Heusler material Co 2 FeAl 0.5 Si 0.5 (CFAS) nano-particles (NPs) embedded in metal-oxide-semiconductor (MOS) structures with thin HfO 2 tunneling and MgO control oxides were investigated. The CFAS NPs were prepared by rapid thermal annealing. The formation of well-controlled CFAS NPs on thin HfO 2 tunneling oxide was confirmed by atomic force microscopy (AFM). Memory characteristics of CFAS NPs in MOS devices exhibited a large memory window of 4.65 V, as well as good retention and endurance times of 10 5 cycles and 10 9 s, respectively, demonstrating the potential of CFAS NPs as promising candidates for use in charge storage.

  12. Synthesis and nonlinear optical properties of zirconia-protected gold nanoparticles embedded in sol-gel derived silica glass

    Science.gov (United States)

    Le Rouge, A.; El Hamzaoui, H.; Capoen, B.; Bernard, R.; Cristini-Robbe, O.; Martinelli, G.; Cassagne, C.; Boudebs, G.; Bouazaoui, M.; Bigot, L.

    2015-05-01

    A new approach to dope a silica glass with gold nanoparticles (GNPs) is presented. It consisted in embedding zirconia-coated GNPs in a silica sol to form a doped silica gel. Then, the sol-doped nanoporous silica xerogel is densified leading to the formation of a glass monolith. The spectral position and shape of the surface plasmon resonance (SPR) reported around 520 nm remain compatible with small spherical GNPs in a silica matrix. The saturable absorption behavior of this gold/zirconia-doped silica glass has been evidenced by Z-scan technique. A second-order nonlinear absorption coefficient β of about -13.7 cm GW-1 has been obtained at a wavelength near the SPR of the GNPs.

  13. Surface relief grating formation on a single crystal of 4-(dimethylamino)azobenzene

    International Nuclear Information System (INIS)

    Nakano, Hideyuki; Tanino, Takahiro; Shirota, Yasuhiko

    2005-01-01

    Surface relief grating (SRG) formation on an organic single crystal by irradiation with two coherent laser beams has been demonstrated by using 4-(dimethylamino)azobenzene (DAAB). It was found that the SRG formation was greatly depending upon both the coordination of the crystal and the polarization of the writing beams. The dependence of the polarization of writing beams on the SRG formation using the single crystal was found to be quite different from that reported for amorphous polymers and photochromic amorphous molecular materials, suggesting that the mechanism of the SRG formation on the organic crystal is somewhat different from that on amorphous materials

  14. Highly sensitive colorimetric detection of glucose in a serum based on DNA-embeded Au@Ag core–shell nanoparticles

    International Nuclear Information System (INIS)

    Kang, Fei; Xu, Kun; Hou, Xiangshu

    2015-01-01

    Glucose is a key energy substance in diverse biology and closely related to the life activities of the organism. To develop a simple and sensitive method for glucose detection is extremely urgent but still remains a key challenge. Herein, we report a colorimetric glucose sensor in a homogeneous system based on DNA-embedded core–shell Au@Ag nanoparticles. In this assay, a glucose substrate was first catalytically oxidized by glucose oxidase to produce H 2 O 2 which would further oxidize and gradually etch the outer silver shell of Au@Ag nanoparticles. Afterwards, the solution color changed from yellow to red and the surface plasmon resonance (SPR) band of Au@Ag nanoparticles declined and red-shifted from 430 to 516 nm. Compared with previous silver-based glucose colorimetric detection strategies, the distinctive SPR band change is superior to the color variation, which is critical to the high sensitivity of this assay. Benefiting from the outstanding optical property, robust stability and well-dispersion of the core–shell Au@AgNPs hybrid, this colorimetric assay obtained a detection limit of glucose as low as 10 nM, which is at least a 10-fold improvement over other AgNPs-based procedures. Moreover, this optical biosensor was successfully employed to the determination of glucose in fetal bovine serum. (paper)

  15. Hydrophilic block copolymer-directed growth of lanthanum hydroxide nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Bouyer, F.; Sanson, N.; Gerardin, C. [Laboratoire de Materiaux Catalytiques et Catalyse en Chimie Organique, UMR 5618 CNRS-ENSCM-UM1, FR 1878, Institut Gerhardt, 34 - Montpellier (France); Destarac, M. [Centre de Recherches Rhodia Aubervilliers, 93 - Aubervilliers (France)

    2006-03-15

    Stable hairy lanthanum hydroxide nano-particles were synthesized in water by performing hydrolysis and condensation reactions of lanthanum cations in the presence of double hydrophilic poly-acrylic acid-b-polyacrylamide block copolymers (PAA-b-PAM). In the first step, the addition of asymmetric PAA-b-PAM copolymers (M{sub w,PAA} {<=} M{sub w,PAM}) to lanthanum salt solutions, both at pH = 5.5, induces the formation of monodispersed micellar aggregates, which are predominantly isotropic. The core of the hybrid aggregates is constituted of a lanthanum polyacrylate complex whose formation is due to bidentate coordination bonding between La{sup 3+} and acrylate groups, as shown by ATR-FTIR experiments and pH measurements. The size of the micellar aggregates depends on the molecular weight of the copolymer but is independent of the copolymer to metal ratio in solution. In the second step, the hydrolysis of lanthanum ions is induced by addition of a strong base such as sodium hydroxide. Either flocculated suspensions or stable anisotropic or spherical nano-particles of lanthanum hydrolysis products were obtained depending on the metal complexation ratio [acrylate]/[La]. The variation of that parameter also enables the control of the size of the core-corona nano-particles obtained by lanthanum hydroxylation. The asymmetry degree of the copolymer was shown to influence both the size and the shape of the particles. Elongated particles with a high aspect ratio, up to 10, were obtained with very asymmetric copolymers (M{sub w,PAM}/M{sub w,PAA}{>=}10) while shorter rice grain-like particles were obtained with a less asymmetric copolymer. The asymmetry degree also influences the value of the critical metal complexation degree required to obtain stable colloidal suspensions of polymer-stabilized lanthanum hydroxide. (authors)

  16. Fabrication and Properties of polyacrylic acid by ionic surfactant disturbance method

    Science.gov (United States)

    Lawan, S.; Osotchan, T.; Chuajiw, W.; Subannajui, K.

    2017-09-01

    The formation of polymeric materials can be achieved by several methods such as melting and casting, screw extrusion, cross-linking of resin or rubber in a mold, and so on. In this work, the polyacrylic acid is formed by using the emulsion disturbance method. Despite extensively used in the colour painting and coating industries, acrylic emulsion can be processed into a foam and powder configuration by a reaction between acrylic emulsion and salt. The solidification hardly changes the volume between liquid emulsion and solidified polymer which means the final structure of polyacrylic acid is filled with opened air cells. The opened air cell structure is confirmed by the result from scanning electron microscopy. The chemical analysis and crystallography of acrylic powder and foam are examined by Fourier-transform infrared spectroscopy and X-ray diffraction respectively. The phase transformation and Thermal stability are studied by differential scanning calorimetry and thermo gravimetric analysis. Moreover, the mechanical properties of acrylic foam were observed by tensile, compressive and hardness test. In addition to the basic property analysis, acrylic foam was also used in the particle filtration application.

  17. Induction of mesenchymal stem cell chondrogenesis by polyacrylate substrates

    OpenAIRE

    Glennon-Alty, Laurence; Williams, Rachel; Dixon, Simon; Murray, Patricia

    2013-01-01

    Mesenchymal stem cells (MSCs) can generate chondrocytes in vitro, but typically need to be cultured as aggregates in the presence of transforming growth factor beta (TGF-?), which makes scale-up difficult. Here we investigated if polyacrylate substrates modelled on the functional group composition and distribution of the Arg-Gly-Asp (RGD) integrin-binding site could induce MSCs to undergo chondrogenesis in the absence of exogenous TGF-?. Within a few days of culture on the biomimetic polyacry...

  18. On the role of specific interactions in the diffusion of nanoparticles in aqueous polymer solutions.

    Science.gov (United States)

    Mun, Ellina A; Hannell, Claire; Rogers, Sarah E; Hole, Patrick; Williams, Adrian C; Khutoryanskiy, Vitaliy V

    2014-01-14

    Understanding nanoparticle diffusion within non-Newtonian biological and synthetic fluids is essential in designing novel formulations (e.g., nanomedicines for drug delivery, shampoos, lotions, coatings, paints, etc.), but is presently poorly defined. This study reports the diffusion of thiolated and PEGylated silica nanoparticles, characterized by small-angle neutron scattering, in solutions of various water-soluble polymers such as poly(acrylic acid) (PAA), poly(N-vinylpyrrolidone) (PVP), poly(ethylene oxide) (PEO), and hydroxyethylcellulose (HEC) probed using NanoSight nanoparticle tracking analysis. Results show that the diffusivity of nanoparticles is affected by their dimensions, medium viscosity, and, in particular, the specific interactions between nanoparticles and the macromolecules in solution; strong attractive interactions such as hydrogen bonding hamper diffusion. The water-soluble polymers retarded the diffusion of thiolated particles in the order PEO > PVP > PAA > HEC whereas for PEGylated silica particles retardation followed the order PAA > PVP = HEC > PEO. In the absence of specific interactions with the medium, PEGylated nanoparticles exhibit enhanced mobility compared to their thiolated counterparts despite some increase in their dimensions.

  19. Quasicubic α-Fe{sub 2}O{sub 3} nanoparticles embedded in TiO{sub 2} thin films grown by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tamm, Aile [Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu (Estonia); Seinberg, Liis [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Kozlova, Jekaterina [Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu (Estonia); Link, Joosep [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Pikma, Piret [University of Tartu, Institute of Chemistry, Ravila 14A, 50411 Tartu (Estonia); Stern, Raivo [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Kukli, Kaupo [Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu (Estonia); Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki (Finland)

    2016-08-01

    Monodispersed quasicubic α-Fe{sub 2}O{sub 3} nanoparticles were synthesized from ferric nitrite (Fe(NO{sub 3}){sub 3}), N,N-dimethyl formamide and poly(N-vinyl-2-pyrrolidone). Layers of nanoparticles were attached to HF-etched Si substrates by dip coating and subsequently embedded in thin titanium oxide films grown by atomic layer deposition from TiCl{sub 4} and H{sub 2}O. The deposition of TiO{sub 2} onto Fe{sub 2}O{sub 3} nanoparticles covered the nanoparticles uniformly and anatase phase of TiO{sub 2} was observed in Si/Fe{sub 2}O{sub 3}/TiO{sub 2} nanostructures. In Si/Fe{sub 2}O{sub 3}/TiO{sub 2} nanostructure magnetic domains, observable by magnetic force microscopy, were formed and these nanostructures implied ferromagnetic-like behavior at room temperature with the saturative magnetization and coercivity of 10 kA/m. - Highlights: • Cubic-shaped iron oxide crystallites were supported by thin titanium oxide films. • The process chemistry applied allowed formation of heterogeneous composite. • Atomic layer deposition of titanium oxide on nanocubes was uniform and conformal. • The nanostructures formed can be regarded as magnetically susceptible materials.

  20. AND logic-like pH- and light-dual controlled drug delivery by surface modified mesoporous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Junwei; He, Zhaoshuai; Li, Biao; Cheng, Tanyu, E-mail: tycheng@shnu.edu.cn; Liu, Guohua

    2017-04-01

    Recently, the controlled drug delivery system has become a potential platform for biomedical application. Herein, we developed a pH and light-dual controlled cargo release system exhibiting AND logic based on MCM-41 mesoporous silica nanoparticles, which was surface modified using β-cyclodextrin (β-CD) with imine bond and azobenzene derivative. The complex of β-CD and azobenzene derivative effectively blocked the cargo delivery in pH = 7.0 phosphate buffered saline (PBS) solution without 365 nm UV light irradiation. The cargo was fully released when both factors of acidic environment (pH = 5.0 PBS) and 365 nm UV light irradiation were satisfied, meanwhile only very little cargo was delivered if one factor was satisfied. The result also demonstrates that the opening/closing of the gate and the release of the cargo in small portions can be controlled. - Highlights: • A pH and light-dual controlled cargo release system exhibiting AND logic is developed. • The delivery system can release the cargo in small potions by controlling the opening/closing of the gate. • The delivery system realizes the controlled release in zebrafish.

  1. Calculated photo-isomerization efficiencies of functionalized azobenzene derivatives in solar energy materials: azo-functional organic linkers for porous coordinated polymers

    Czech Academy of Sciences Publication Activity Database

    Neukirch, A.J.; Park, J.; Zobač, Vladimír; Wang, H.; Jelínek, Pavel; Prezhdo, O.V.; Zhou, H.-C.; Lewis, J.P.

    2015-01-01

    Roč. 27, č. 13 (2015), s. 134208 ISSN 0953-8984 R&D Projects: GA ČR(CZ) GA14-02079S Institutional support: RVO:68378271 Keywords : photoisomerization * azobenzene * metal -organic frameworks * molecular switches Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.209, year: 2015

  2. Cyclodextrin-Based [1]Rotaxanes on Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Yanli Zhao

    2012-08-01

    Full Text Available Transformation of mechanically interlocked molecules (e.g., rotaxanes and catenanes into nanoscale materials or devices is an important step towards their real applications. In our current work, an azobenzene-modified β-cyclodextrin (β-CD derivative that can form a self-inclusion complex in aqueous solution was prepared. The self-included β-CD derivative was then functionalized onto a gold nanoparticle (AuNP surface via a ligand-exchange reaction in aqueous solution, leading to the formation of AuNP-[1]rotaxane hybrids. Corresponding non-self-included β-CD derivative functionalized AuNPs were also developed in a DMF/H2O mixture solution for control experiments. These hybrids were fully characterized by UV-vis and circular dichroism spectroscopies, together with transmission electron microscopy (TEM. The competitive binding behavior of the hybrids with an adamantane dimer was investigated.

  3. Matrix-assisted peptide synthesis on nanoparticles.

    Science.gov (United States)

    Khandadash, Raz; Machtey, Victoria; Weiss, Aryeh; Byk, Gerardo

    2014-09-01

    We report a new method for multistep peptide synthesis on polymeric nanoparticles of differing sizes. Polymeric nanoparticles were functionalized via their temporary embedment into a magnetic inorganic matrix that allows multistep peptide synthesis. The matrix is removed at the end of the process for obtaining nanoparticles functionalized with peptides. The matrix-assisted synthesis on nanoparticles was proved by generating various biologically relevant peptides. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

  4. Synthesis of Ag and Au nanoparticles embedded in carbon film: Optical, crystalline and topography analysis

    Science.gov (United States)

    Gholamali, Hediyeh; Shafiekhani, Azizollah; Darabi, Elham; Elahi, Seyed Mohammad

    2018-03-01

    Atomic force microscopy (AFM) images give valuable information about surface roughness of thin films based on the results of power spectral density (PSD) through the fast Fourier transform (FFT) algorithms. In the present work, AFM data are studied for silver and gold nanoparticles (Ag NPs a-C: H and Au NPs a-C: H) embedded in amorphous hydrogenated carbon films and co-deposited on glass substrate via of RF-Sputtering and RF-Plasma Enhanced Chemical Vapor Deposition methods. Here, the working gas is acetylene and the targets are Ag and Au. While time and power are constant, the only variable parameter in this study is initial pressure. In addition, the crystalline structure of Ag NPs a-C: H and Au NPs a-C: H are studied using X-ray diffraction (XRD). UV-visible spectrophotometry will also investigate optical properties and localized surface plasmon resonance (LSPR) of samples.

  5. In situ atomic force microscopy studies of reversible light-induced switching of surface roughness and adhesion in azobenzene-containing PMMA films

    International Nuclear Information System (INIS)

    Mueller, M.; Gonzalez-Garcia, Y.; Pakula, C.; Zaporojtchenko, V.; Strunskus, T.; Faupel, F.; Herges, R.; Zargarani, D.; Magnussen, O.M.

    2011-01-01

    Thin films in the range 40-80 nm of a blend of PMMA with an azobenzene derivative have been studied directly during UV and blue light irradiation by atomic force microscopy (AFM), revealing highly reversible changes in the surface roughness and the film adhesion. UV light induces an ∼80% increase in surface roughness, whereas illumination by blue light completely reverses these changes. Based on the observed surface topography and transition kinetics a reversible mass flow mechanisms is suggested, where the polarity changes upon switching trigger a wetting-dewetting transition in a surface segregation layer of the chromophore. Similar AFM measurements of the pull-off force indicate a decrease upon UV and an increase after blue light illumination with a complex kinetic behavior: a rapid initial change, attributed to the change in the cis isomer fraction of the azobenzene derivative, and a more gradual change, indicative of slow structural reorganization.

  6. Phase and electrical properties of PZT thin films embedded with CuO nano-particles by a hybrid sol-gel route

    Science.gov (United States)

    Sreesattabud, Tharathip; Gibbons, Brady J.; Watcharapasorn, Anucha; Jiansirisomboon, Sukanda

    2013-07-01

    Pb(Zr0.52Ti0.48)O3 or PZT thin films embedded with CuO nano-particles were successfully prepared by a hybrid sol-gel process. In this process, CuO (0, 0.1, 0.2, 0.3, 0.4, 0.5 and 1 wt. %) nanopowder was suspended in an organometallic solution of PZT, and then coated on platinised silicon substrate using a spin-coating technique. The influence of CuO nano-particles' dispersion on the phase of PZT thin films was investigated. XRD results showed a perovskite phase in all films. At the CuO concentration of 0.4-1 wt. %, a second phase was observed. The addition of CuO nano-particles affected the orientation of PZT thin films. The addition was also found to reduce the ferroelectric properties of PZT thin films. However, at 0.2 wt. % CuO concentration, the film exhibited good ferroelectric properties similar to those of PZT films. In addition, the fatigue retention properties of the PZT/CuO system was observed, and it showed 14% fatigue at 108 switching bipolar pulse cycles while the fatigue in PZT thin films was found to be 17% at the same switching bipolar pulse cycles.

  7. Photoorientation phenomena and structural properties of photochromic liquid crystalline azobenzene-containing polymethacrylate films with different spacer lengths

    Czech Academy of Sciences Publication Activity Database

    Bobrovsky, A.; Shibaev, V.; Piryazev, A.; Anokhin, D.V.; Ivanov, D.A.; Sinitsyna, O.; Hamplová, Věra; Kašpar, Miroslav; Bubnov, Alexej M.

    2017-01-01

    Roč. 218, č. 16 (2017), s. 1-10, č. článku 1700127. ISSN 1022-1352 R&D Projects: GA ČR GA16-12150S; GA MŠk(CZ) LH15305 Institutional support: RVO:68378271 Keywords : photoorientation phenomena * azobenzene * photo-optical properties * liquid crystal * photochromic materials Subject RIV: JJ - Other Materials OBOR OECD: Nano-materials (production and properties) Impact factor: 2.500, year: 2016

  8. High-concentration copper nanoparticles synthesis process for screen-printing conductive paste on flexible substrate

    International Nuclear Information System (INIS)

    Tam, Sze Kee; Ng, Ka Ming

    2015-01-01

    This study presents a method for the synthesis of copper nanoparticles, which are poised to replace silver nanoparticles in some application areas of printed electronics. This method offers three advantages. Firstly, copper loading in the synthesis reaction can be as high as 1 M, offering high productivity in large-scale production. Secondly, the size of the copper nanoparticles can be controlled from 12 to 99 nm. Thirdly, the surface polarity of the particles can be modified. Thus, a tailor-made product can be synthesized. The synthesis of copper nanoparticles coated with various capping agents, including dodecanethiol, lauric acid, nonanoic acid, polyacrylic acid, and polyvinyl pyrrolidone, was demonstrated. The nonanoic acid-coated copper nanoparticles were formulated as a screen-printing conductive paste. The particles were readily dispersed in terpineol, and the paste could be screen printed onto flexible polyester. The electrical resistivity of patterns after a low-temperature (120 °C) sintering treatment was around 5.8 × 10 −5  Ω cm.Graphical Abstract

  9. High-concentration copper nanoparticles synthesis process for screen-printing conductive paste on flexible substrate

    Energy Technology Data Exchange (ETDEWEB)

    Tam, Sze Kee; Ng, Ka Ming, E-mail: kekmng@ust.hk [The Hong Kong University of Science and Technology, Department of Chemical and Biomolecular Engineering (Hong Kong)

    2015-12-15

    This study presents a method for the synthesis of copper nanoparticles, which are poised to replace silver nanoparticles in some application areas of printed electronics. This method offers three advantages. Firstly, copper loading in the synthesis reaction can be as high as 1 M, offering high productivity in large-scale production. Secondly, the size of the copper nanoparticles can be controlled from 12 to 99 nm. Thirdly, the surface polarity of the particles can be modified. Thus, a tailor-made product can be synthesized. The synthesis of copper nanoparticles coated with various capping agents, including dodecanethiol, lauric acid, nonanoic acid, polyacrylic acid, and polyvinyl pyrrolidone, was demonstrated. The nonanoic acid-coated copper nanoparticles were formulated as a screen-printing conductive paste. The particles were readily dispersed in terpineol, and the paste could be screen printed onto flexible polyester. The electrical resistivity of patterns after a low-temperature (120 °C) sintering treatment was around 5.8 × 10{sup −5} Ω cm.Graphical Abstract.

  10. Extraction of metal cations by polyterephthalamide microcapsules containing a poly(acrylic acid) gel.

    Science.gov (United States)

    Laguecir, A; Ernst, B; Frère, Y; Danicher, L; Burgard, M

    2002-01-01

    Polyterephthalamide microcapsules containing a poly(acrylic acid) gel as a macromolecular ligand (PAA-CAPS) were prepared using an original two step polymerization process in a water-in-oil inverse emulsion system. A polyamide microcapsule containing acrylic acid, initiator and cross-linking agent, is formed by interfacial polycondensation of terephthaloyl dichloride with hexamethylenediamine. In situ radical polymerization of the microcapsule core acrylic acid is initiated to obtain encapsulated poly(acrylic acid) gel. Reference polyamide microcapsules, i.e. without ligand (CAPS), were also synthesized. The mean diameter of synthesized microcapsules was 210 microm, and the microcapsule wall thickness was evaluated by SEM and TEM observations of microcapsule cross-section cuts. The microcapsule water content was determined by thermogravimetric experiments. The extractabilities of Cu(II), Ni(II), Co(II) and Zn(II) into PAA-CAPS were examined. The stripping of the various cations can be promoted in diluted hydrochloric acid solutions.

  11. Toxicity of Nanoparticles Embedded in Paints Compared with Pristine Nanoparticles in Mice

    Science.gov (United States)

    Smulders, Stijn; Luyts, Katrien; Brabants, Gert; Landuyt, Kirsten Van; Kirschhock, Christine; Smolders, Erik; Golanski, Luana; Vanoirbeek, Jeroen; Hoet, Peter HM

    2014-01-01

    The unique physical and chemical properties of nanomaterials have led to their increased use in many industrial applications, including as a paint additive. For example, titanium dioxide (TiO2) engineered nanoparticles (ENPs) have well-established anti-UV, self-cleaning, and air purification effects. Silver (Ag) ENPs are renowned for their anti-microbial capabilities and silicon dioxide (SiO2) ENPs are used as fire retardants and anti-scratch coatings. In this study, the toxic effects and biodistribution of three pristine ENPs (TiO2, Ag, and SiO2), three aged paints containing ENPs (TiO2, Ag, and SiO2) along with control paints without ENPs were compared. BALB/c mice were oropharyngeally aspirated with ENPs or paint particles (20 μg/aspiration) once a week for 5 weeks and sacrificed either 2 or 28 days post final aspiration treatment. A bronchoalveolar lavage was performed and systemic blood toxicity was evaluated to ascertain cell counts, induction of inflammatory cytokines, and key blood parameters. In addition, the lung, liver, kidney, spleen, and heart were harvested and metal concentrations were determined. Exposure to pristine ENPs caused subtle effects in the lungs and negligible alterations in the blood. The most pronounced toxic effects were observed after Ag ENPs exposure; an increased neutrophil count and a twofold increase in pro-inflammatory cytokine secretion (keratinocyte chemoattractant (KC) and interleukin-1ß (IL-1ß)) were identified. The paint containing TiO2 ENPs did not modify macrophage and neutrophil counts, but mildly induced KC and IL-1ß. The paints containing Ag or SiO2 did not show significant toxicity. Biodistribution experiments showed distribution of Ag and Si outside the lung after aspiration to respectively pristine Ag or SiO2 ENPs. In conclusion, we demonstrated that even though direct exposure to ENPs induced some toxic effects, once they were embedded in a complex paint matrix little to no adverse toxicological effects were

  12. Conserving Coherence and Storing Energy during Internal Conversion: Photoinduced Dynamics of cis- and trans-Azobenzene Radical Cations

    KAUST Repository

    Munkerup, Kristin

    2017-10-24

    Light harvesting via energy storage in azobenzene has been a key topic for decades, and the process of energy distribution over the molecular degrees of freedom following photoexcitation remains to be understood. Dynamics of a photoexcited system can exhibit high degrees of non-ergodicity when it is driven by just a few degrees of freedom. Typically, an internal conversion leads to the loss of such localization of dynamics, as the intramolecular energy becomes statistically redistributed over all molecular degrees of freedom. Here, we present a unique case where the excitation energy remains localized even subsequent to internal conversion. Strong-field ionization is used to prepare cis- and trans-azobenzene radical cations on the D1 surface with little excess energy, at the equilibrium neutral geometry. These D1 ions are preferably formed because in this case D1 and D0 switch place in the presence of the strong laser field. The post-ionization dynamics is dictated by the potential energy landscape. The D1 surface is steep downhill along the cis/trans isomerization coordinate and towards a common minimum shared by the two isomers in the region of D1/D0 conical intersection. Coherent cis/trans torsional motion along this coordinate is manifested in the ion transients by a cosine modulation. In this scenario, D0 becomes populated with molecules that are energized mainly along the cis-trans isomerization coordinate, with the kinetic energy above the cis-trans inter-conversion barrier. These activated azobenzene molecules easily cycle back and forth along the D0 surface, and give rise to several periods of modulated signal before coherence is lost. This persistent localization of the internal energy during internal conversion is provided by the steep downhill potential energy surface, small initial internal energy content, and a strong hole-lone pair interaction that drives the molecule along the cis-trans isomerization coordinate to facilitate the transition between

  13. Actuation response of polyacrylate dielectric elastomers

    DEFF Research Database (Denmark)

    Kofod, G.; Kornbluh, R.; Pelrine, R.

    2001-01-01

    Polyacrylate dielectric elastomers have yielded extremely large strain and elastic energy density suggesting that they are useful for many actuator applications. A thorough understanding of the physics underlying the mechanism of the observed response to an electric field can help develop improved......, though there are discrepancies. Further analysis suggests that these arise mostly from imperfect manufacture of the actuators, though there is a small contribution from an explicitly electrostrictive behavior of the acrylic adhesive. Measurements of the dielectric constant of stretched polymer reveal...... that the dielectric constant drops, when the polymer is strained, indicating the existence of a small electrostrictive effect. Finally, measurements of the electric breakdown field were made. These also show a dependence upon the strain. In the unstrained state the breakdown field is 20 WV/m, which grows to 218MV...

  14. Excited-state Raman spectroscopy with and without actinic excitation: S1 Raman spectra of trans-azobenzene

    International Nuclear Information System (INIS)

    Dobryakov, A. L.; Quick, M.; Ioffe, I. N.; Granovsky, A. A.; Ernsting, N. P.; Kovalenko, S. A.

    2014-01-01

    We show that femtosecond stimulated Raman spectroscopy can record excited-state spectra in the absence of actinic excitation, if the Raman pump is in resonance with an electronic transition. The approach is illustrated by recording S 1 and S 0 spectra of trans-azobenzene in n-hexane. The S 1 spectra were also measured conventionally, upon nπ* (S 0 → S 1 ) actinic excitation. The results are discussed and compared to earlier reports

  15. Magnetic nanoparticles in medical nanorobotics

    Energy Technology Data Exchange (ETDEWEB)

    Martel, Sylvain, E-mail: sylvain.martel@polymtl.ca [Polytechnique Montréal, NanoRobotics Laboratory, Department of Computer and Software Engineering, Institute of Biomedical Engineering (Canada)

    2015-02-15

    Medical nanorobotics is a field of robotics that exploits the physics at the nanoscale to implement new functionalities in untethered robotic agents aimed for ultimate operations in constrained physiological environments of the human body. The implementation of such new functionalities is achieved by embedding specific nano-components in such robotic agents. Because magnetism has been and still widely used in medical nanorobotics, magnetic nanoparticles (MNP) in particular have shown to be well suited for this purpose. To date, although such magnetic nanoparticles play a critical role in medical nanorobotics, no literature has addressed specifically the use of MNP in medical nanorobotic agents. As such, this paper presents a short introductory tutorial and review of the use of magnetic nanoparticles in the field of medical nanorobotics with some of the related main functionalities that can be embedded in nanorobotic agents.

  16. Solution Construction of Multigeometry Nanoparticles and Multicompartment Superstructures from Block Copolymer Mixtures

    Science.gov (United States)

    Zhu, Jiahua; Zhang, Shiyi; Wooley, Karen; Pochan, Darrin

    2013-03-01

    Novel soft objects with both compositional and geometric complexity at nanoscale have been constructed through solution supramolecular assembly from block copolymer mixtures due to their non-ergodic character. The mixture is composed of two block copolymers with distinctive hydrophobic blocks but the same poly(acrylic acid) hydrophilic block. First, multigeometry nanoparticles, due to segregation of unlike block copolymer molecules into multiple subdomains trapped within the same micelle-like structures, have been assembled in tetrahydrofuran/water solution. Through carefully designed molecular architecture, mixing ratio and pathway kinetics, both size and shape of subdomains can be controlled to produce a novel class of multigeometry nanoparticles, including sphere-sphere, sphere-cylinder, cylinder-cylinder, cylinder-disk, and sphere-disk hybrid nanoparticles. Second, hierarchical multicompartment superstructures including particle chains, rings and other nano to micro cluster formations, have been built up from pre-formed multigeometry nanoparticles by taking advantage of their surface anisotropy and the controlled particle-particle association. The interparticle association can be achieved via either covalent or non-covalent bindings due to different post-polymerization chemical modifications with hydroxyethyl acrylate or crown ether functionalities, respectively.

  17. Reversible change of birefringence sign by optical and thermal processes in an azobenzene polymethacrylate

    International Nuclear Information System (INIS)

    Rodriguez, F.J.; Sanchez, C.; Villacampa, B.; Alcala, R.; Cases, R.; Millaruelo, M.; Oriol, L.

    2005-01-01

    Birefringence (Δn) induced in an azobenzene polymethacrylate by combination of biphotonic and thermotropic processes has subsequently been changed in sign by room temperature illumination with linearly polarized blue light. The sign of Δn can be reversed again, by simply heating up the film to 100 deg. C. This change of Δn between positive and negative values can be repeated several times. Besides, by appropriate choice of film thickness and blue light irradiation conditions the same absolute value for positive and negative Δn values can be obtained

  18. Azobenzene Modified Imidacloprid Derivatives as Photoswitchable Insecticides: Steering Molecular Activity in a Controllable Manner

    Science.gov (United States)

    Xu, Zhiping; Shi, Lina; Jiang, Danping; Cheng, Jiagao; Shao, Xusheng; Li, Zhong

    2015-10-01

    Incorporating the photoisomerizable azobenzene into imidacloprid produced a photoswitchable insecticidal molecule as the first neonicotinoid example of remote control insecticide performance with spatiotemporal resolution. The designed photoswitchable insecticides showed distinguishable activity against Musca both in vivo and in vitro upon irradiation. Molecular docking study further suggested the binding difference of the two photoisomers. The generation of these photomediated insecticides provides novel insight into the insecticidal activity facilitating further investigation on the functions of insect nicotinic acetylcholine receptors and opens a novel way to control and study insect behavior on insecticide poisoning using light.

  19. Nickel adsorption by sodium polyacrylate-grafted activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Ewecharoen, A. [Division of Biotechnology, School of Bioresources and Technology, King Mongkut' s University of Technology Thonburi, 83 Moo 8 Thakham, Bangkhuntien, Bangkok 10150 (Thailand); Thiravetyan, P., E-mail: paitip@hotmail.com [Division of Biotechnology, School of Bioresources and Technology, King Mongkut' s University of Technology Thonburi, 83 Moo 8 Thakham, Bangkhuntien, Bangkok 10150 (Thailand); Wendel, E.; Bertagnolli, H. [Institut fuer Physikalische Chemie, Universitaet Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany)

    2009-11-15

    A novel sodium polyacrylate grafted activated carbon was produced by using gamma radiation to increase the number of functional groups on the surface. After irradiation the capacity for nickel adsorption was studied and found to have increased from 44.1 to 55.7 mg g{sup -1}. X-ray absorption spectroscopy showed that the adsorbed nickel on activated carbon and irradiation-grafted activated carbon was coordinated with 6 oxygen atoms at 2.04-2.06 A. It is proposed that this grafting technique could be applied to other adsorbents to increase the efficiency of metal adsorption.

  20. Antiviral Activity of Polyacrylic and Polymethacrylic Acids

    Science.gov (United States)

    De Somer, P.; De Clercq, E.; Billiau, A.; Schonne, E.; Claesen, M.

    1968-01-01

    Polyacrylic acid (PAA) and polymethacrylic acid (PMAA) were investigated for their antiviral properties in tissue culture. Compared to other related polyanions, as dextran sulfate, polystyrene sulfonate, polyvinyl sulfate, and polyphloroglucinol phosphate, PAA and PMAA were found to be significantly more antivirally active and less cytotoxic. PMAA added 24 hr prior to virus inoculation inhibited viral growth most efficiently but it was still effective when added 3 hr after infection. Neither a direct irreversible action on the virus nor inhibition of virus penetration into the cell could explain the antiviral activity of PMAA. PMAA inhibited the adsorption of the virus to the host cell and suppressed the one-cycle viral synthesis in tissue cultures inoculated with infectious RNA. PMID:4302187

  1. Memory effects in annealed hybrid gold nanoparticles/block copolymer bilayers

    Directory of Open Access Journals (Sweden)

    Ruffino Francesco

    2011-01-01

    Full Text Available Abstract We report on the use of the self-organization process of sputtered gold nanoparticles on a self-assembled block copolymer film deposited by horizontal precipitation Langmuir-Blodgett (HP-LB method. The morphology and the phase-separation of a film of poly-n-butylacrylate-block-polyacrylic acid (PnBuA-b-PAA were studied at the nanometric scale by using atomic force microscopy (AFM and Time of Flight Secondary Ion Mass Spectrometry (TOF-SIMS. The templating capability of the PnBuA-b-PAA phase-separated film was studied by sputtering gold nanoparticles (NPs, forming a film of nanometric thickness. The effect of the polymer chain mobility onto the organization of gold nanoparticle layer was assessed by heating the obtained hybrid PnBuA-b-PAA/Au NPs bilayer at T >Tg. The nanoparticles' distribution onto the different copolymer domains was found strongly affected by the annealing treatment, showing a peculiar memory effect, which modifies the AFM phase response of the Au NPs layer onto the polar domains, without affecting their surfacial composition. The effect is discussed in terms of the peculiar morphological features induced by enhanced mobility of polymer chains on the Au NPs layer.

  2. Synthesis and characterization of fluorinated polyacrylate latex emulsified with novel surfactants.

    Science.gov (United States)

    Zhang, Cuifeng; Xu, Tingting; Bao, Zhongbin; Chen, Lijun

    2017-01-01

    The fluorinated polyacrylate latex were successfully prepared with semi- continuous seeded emulsion polymerization of butyl acrylate (BA), methyl methacrylate (MMA) and hexafluorobutyl methacrylate (HFMA) which was initiated with potassium persulfate (KPS) initiator and emulsified with the novel mixed surfactants of sodium lauryl glutamate (SLG) and alkylphenol ethoxylates (OP-10). The structure of the resultant latex was confirmed by Fourier transform infrared spectroscopy (FTIR). The particle size of the latex was measured by Zetatrac dynamic light scattering detector. The film of latex was tested by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and contact angle (CA). The optimum conditions of preparing the novel fluorinated polyacrylate latex are optimized and the results are as follows: the amount of emulsifiers is 4.0%; mass ratio of SLG to OP-10 is 1:1, the amount of the initiator is 0.6%. The mass ratio of MMA to BA is 1:1 and the amount of HFMA is 7.0%. In this case, the conversion is high and the polymerization stability is good. In addition, the water resistance and thermal properties of the latex films were improved significantly in comparison with the film of the latex prepared without the fluorinated monomer.

  3. Novel DiR and SPIO nanoparticles embedded PEG-PLGA nanobubbles as a multimodalimaging contrast agent.

    Science.gov (United States)

    Luo, Binhua; Zhang, Huajie; Liu, Xuhan; Rao, Rong; Wu, Yun; Liu, Wei

    2015-01-01

    Fluorescence dye DiR and superparamagnetic iron oxide nanoparticles (SPIONs) embedded in PEG-PLGA nanobubbles (DiR-SPIO-NBs) were produced using double emulsion method on a membrane of Shirasu porous glass (SPG). The nanobubbles encapsulated with DiR and SPIONs had a liquid core (perfluoropentane) and a PEG-PLGA shell. DiR-SPIO-NBs showed biocompatibility based on MTT cytotoxicity and hemolysis studies. The PFP encapsulated in the nanobubbles experienced phase transition under ultrasonic irradation. Nanobubbles dispersed well in saline over 3 months, and the relaxivity was 127.9 mM(-1)s(-1), suggesting that it could be used as a contrast agent in MRI. The MR and fluorescence images in vivo demonstrated that the signal intensity in the spleen and liver was significantly enhanced with the treatment of nanobubbles. In addition, results of ultrasound images suggested that the nanobubbles had persistent contrast ability. In conclusion, nanobubbles could be utilized as an US/MRI/fluorescence contrast agent.

  4. Antimicrobial azobenzene compounds and their potential use in biomaterials

    Science.gov (United States)

    Sessa, L.; Concilio, S.; Iannelli, P.; De Santis, F.; Porta, A.; Piotto, S.

    2016-04-01

    We recently synthesized a class of active compounds with azobenzene structure [1] and lowest in silico toxicity values. The antimicrobial activity of these molecules and their thermal stability are very promising and indicate that they may have interesting and therapeutically significant applications. This work aims to develop new materials with antibacterial and antifungal activity inserting different percentages of synthetic antimicrobial azo compounds in commercial polymer matrices. We realized thin films using solvent casting and melt compounding techniques. The obtained materials retained the proprieties of the pure matrices. This means that azo dye dissolved in the matrix does not influence the thermal behavior and the morphology of the material. Tested films exhibited the capability to inhibit biofilms formation of S. aureus and C. albicans. Spectrophotometric investigation of the azo compound released from the polymer matrices confirmed that the realized materials might be interesting for biomedical tools, antibacterial surfaces, and films for active packaging.

  5. Symmetric and Asymmetric Magnetic Tunnel Junctions with Embedded Nanoparticles: Effects of Size Distribution and Temperature on Tunneling Magnetoresistance and Spin Transfer Torque.

    Science.gov (United States)

    Useinov, Arthur; Lin, Hsiu-Hau; Lai, Chih-Huang

    2017-08-21

    The problem of the ballistic electron tunneling is considered in magnetic tunnel junction with embedded non-magnetic nanoparticles (NP-MTJ), which creates additional conducting middle layer. The strong temperature impact was found in the system with averaged NP diameter d av  tunneling magnetoresistance (TMR) voltage behaviors. The low temperature approach also predicts step-like TMR and quantized in-plane spin transfer torque (STT) effects. The robust asymmetric STT respond is found due to voltage sign inversion in NP-MTJs with barrier asymmetry. Furthermore, it is shown how size distribution of NPs as well as quantization rules modify the spin-current filtering properties of the nanoparticles in ballistic regime. Different quantization rules for the transverse component of the wave vector are considered to overpass the dimensional threshold (d av  ≈ 1.8 nm) between quantum well and bulk-assisted states of the middle layer.

  6. Interferometric investigation and simulation of refractive index in glass matrixes containing nanoparticles of varying sizes

    Energy Technology Data Exchange (ETDEWEB)

    Feeney, Michael Gerard; Ince, Rabia; Yukselici, Mehmet Hikmet; Allahverdi, Cagdas

    2011-07-01

    The relationship between refractive index and nanoparticle radii of cadmium selenide (CdSe) nanoparticles embedded within glass matrixes was investigated experimentally and by simulations. A homemade automated Michelson interferometer arrangement employing a rotating table and a He-Ne laser source at a wavelength of 632.8 nm determined the refractive index versus nanoparticle radii of embedded cadmium selenide (CdSe) nanoparticles. The refractive index was found to decrease linearly with nanoparticle radius increase. However, one sample showed a step increase in refractive index; on spectroscopic analysis, it was found that its resonant wavelength matched that of the He-Ne source wavelength. The simulations showed that two conditions caused the step increase in refractive index: low plasma frequency and matched sample and source resonances. This simple interferometer setup defines a new method of determining the radii of nanoparticles embedded in substrates and enables refractive index tailoring by modification of exact annealing conditions.

  7. Cooperative light-induced molecular movements of highly ordered azobenzene self-assembled monolayers.

    Science.gov (United States)

    Pace, Giuseppina; Ferri, Violetta; Grave, Christian; Elbing, Mark; von Hänisch, Carsten; Zharnikov, Michael; Mayor, Marcel; Rampi, Maria Anita; Samorì, Paolo

    2007-06-12

    Photochromic systems can convert light energy into mechanical energy, thus they can be used as building blocks for the fabrication of prototypes of molecular devices that are based on the photomechanical effect. Hitherto a controlled photochromic switch on surfaces has been achieved either on isolated chromophores or within assemblies of randomly arranged molecules. Here we show by scanning tunneling microscopy imaging the photochemical switching of a new terminally thiolated azobiphenyl rigid rod molecule. Interestingly, the switching of entire molecular 2D crystalline domains is observed, which is ruled by the interactions between nearest neighbors. This observation of azobenzene-based systems displaying collective switching might be of interest for applications in high-density data storage.

  8. Superparamagnetic iron oxide polyacrylic acid coated γ-Fe{sub 2}O{sub 3} nanoparticles do not affect kidney function but cause acute effect on the cardiovascular function in healthy mice

    Energy Technology Data Exchange (ETDEWEB)

    Iversen, Nina K., E-mail: nina.iversen@biology.au.dk [Zoophysiology, Department of Biological Sciences, Aarhus University (Denmark); Interdisciplinary Nanoscience Center, Aarhus University (Denmark); Frische, Sebastian [Department of Biomedicine, Aarhus University (Denmark); Thomsen, Karen [Interdisciplinary Nanoscience Center, Aarhus University (Denmark); Laustsen, Christoffer; Pedersen, Michael [MR Research Center, Aarhus University Hospital, Aarhus University (Denmark); Hansen, Pernille B.L.; Bie, Peter [Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark (Denmark); Fresnais, Jérome [Physicochimie des Electrolytes, Colloïdes et Sciences Analytiques (PECSA) UMR 7195 CNRS-UPMC-ESPCI, 4 place Jussieu, 75252 Paris Cedex 05 (France); Berret, Jean-Francois [Matière et Systèmes Complexes, UMR 7057 CNRS Université Denis Diderot Paris-VII, Bâtiment Condorcet, 10 rue Alice Domon et Léonie Duquet, 75205 Paris (France); Baatrup, Erik [Zoophysiology, Department of Biological Sciences, Aarhus University (Denmark); Interdisciplinary Nanoscience Center, Aarhus University (Denmark); Wang, Tobias [Zoophysiology, Department of Biological Sciences, Aarhus University (Denmark)

    2013-01-15

    This study describes the distribution of intravenously injected polyacrylic acid (PAA) coated γ-Fe{sub 2}O{sub 3} NPs (10 mg kg{sup −1}) at the organ, cellular and subcellular levels in healthy BALB/cJ mice and in parallel addresses the effects of NP injection on kidney function, blood pressure and vascular contractility. Magnetic resonance imaging (MRI) and transmission electron microscopy (TEM) showed accumulation of NPs in the liver within 1 h after intravenous infusion, accommodated by intracellular uptake in endothelial and Kupffer cells with subsequent intracellular uptake in renal cells, particularly the cytoplasm of the proximal tubule, in podocytes and mesangial cells. The renofunctional effects of NPs were evaluated by arterial acid–base status and measurements of glomerular filtration rate (GFR) after instrumentation with chronically indwelling catheters. Arterial pH was 7.46 ± 0.02 and 7.41 ± 0.02 in mice 0.5 h after injections of saline or NP, and did not change over the next 12 h. In addition, the injections of NP did not affect arterial PCO{sub 2} or [HCO{sub 3}{sup −}] either. Twenty-four and 96 h after NP injections, the GFR averaged 0.35 ± 0.04 and 0.35 ± 0.01 ml min{sup −1} g{sup −1}, respectively, values which were statistically comparable with controls (0.29 ± 0.02 and 0.33 ± 0.1 ml{sup –1} min{sup –1} 25 g{sup –1}). Mean arterial blood pressure (MAP) decreased 12–24 h after NP injections (111.1 ± 11.5 vs 123.0 ± 6.1 min{sup −1}) associated with a decreased contractility of small mesenteric arteries revealed by myography to characterize endothelial function. In conclusion, our study demonstrates that accumulation of superparamagnetic iron oxide nanoparticles does not affect kidney function in healthy mice but temporarily decreases blood pressure. -- Highlights: ► PAA coated γ-Fe{sub 2}O{sub 3} nanoparticles were injected intravenously into healthy mice. ► We examine the distribution and physiological effects of

  9. Synthesis and characterization of amylose grafted poly(acrylic acid) and its application in ammonia adsorption.

    Science.gov (United States)

    Chen, Qing; Yu, Haojie; Wang, Li; Abdin, Zain-Ul; Yang, Xinpeng; Wang, Junhua; Zhou, Weidong; Zhang, Hongtao; Chen, Xiao

    2016-11-20

    Amylose grafted poly(acrylic acid) (Am-g-PAA) was synthesized by graft copolymerization of amylose with acrylic acid. The structure of Am-g-PAA was confirmed by (1)H NMR and FT-IR spectra. The morphology, crystallinity and thermal properties of amylose and Am-g-PAA were investigated by SEM, XRD and TGA, respectively. The highest degree of substitution (DS) of carboxyl group was 1.96 which was obtained after reacted for 1h at 60°C. Acrylic acid to anhydroglucose mole ratio for DS was 19.81. It was found that a large number of carboxyl groups were grafted on the backbone of amylose. It was also found that ammonia adsorption capacity of amylose increased by grafting poly(acrylic acid) on the backbone of amylose. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Embedded scattering eigenstates using resonant metasurfaces

    Science.gov (United States)

    Krasnok, Alex; Alú, Andrea

    2018-06-01

    Optical embedded eigenstates (EEs) are localized modes of an open structure that are compatible to radiation, yet they have infinite lifetime and diverging quality factors. Their realization in nanostructures finite in all dimensions is inherently challenging, because they require materials with extreme electromagnetic properties. Here we explore the realization of these bound states in the continuum using ultrathin metasurfaces composed of arrays of nanoparticles. We first show that arrays of lossless nanoparticles can realize the condition for EEs, and then explore the use of Ag nanoparticles coated with gain media shells to compensate material loss and revive the EE despite realistic loss in plasmonic materials. We discuss the possible experimental realization of the proposed structures, and provide useful guidelines for practical implementation in nanophotonics systems with largely enhanced light–matter interactions. These metasurfaces may lead to highly efficient lasers, filters, frequency comb generation and sensors.

  11. Enhancement of efficiency by embedding ZnS and Mn-doped ZnS nanoparticles in P3HT:PCBM hybrid solid state solar cells

    Science.gov (United States)

    Jabeen, Uzma; Adhikari, Tham; Shah, Syed Mujtaba; Nunzi, Jean-Michel; Badshah, Amin; Ahmad, Iqbal

    2017-06-01

    Zinc sulphide (ZnS) and Mn-doped ZnS nanoparticles were synthesized by wet chemical method. The synthesized nanoparticles were characterized by UV-visible, fluorescence, X-ray diffraction (XRD), fourier transform infra-red (FTIR) spectrometer, field emission scanning electron microscope (FESEM) and high resolution transmission electron microscope (HRTEM). Scanning electron microscope (SEM) was used to find particle size while chemical composition of the synthesized materials was investigated by EDAX. UV-visible absorption spectrum of Mn-doped ZnS was slightly shifted to lower wavelength with respect to the un-doped zinc sulphide with decrease in the size of nanoparticles. Consequently, the band gap was tuned from 3.04 to 3.13 eV. The photoluminescence (PL) emission positioned at 597 nm was ascribed to 4T1 → 6A1 transition within the 3d shell of Mn2+. X-ray diffraction (XRD) analysis revealed that the synthesized nanomaterials existed in cubic crystalline state. The effect of embedding un-doped and doped ZnS nanoparticles in the active layer and changing the ratio of PCBM ([6, 6]-phenyl-C61-butyric acid methyl ester) to nanoparticles on the performance of hybrid solar cell was studied. The device with active layer consisting of poly(3-hexylthiophene) (P3HT), [6, 6]-phenyl-C61-butyric acid methyl ester (PCBM), and un-doped ZnS nanoparticles combined in the ratio of (1:0.5:0.5) attained an efficiency of 2.42% which was found 71% higher than the reference device under the same conditions but not containing nanoparticles. Replacing ZnS nanoparticles with Mn-doped ZnS had a little effect on the enhancement of efficiency. The packing behavior and morphology of blend of nanoparticles with P3HT:PCBM were examined using atomic force microscope (AFM) and XRD. Contribution to the topical issue "Materials for Energy harvesting, conversion and storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  12. A reversible conductivity modulation of azobenzene-based ionic liquids in aqueous solutions using UV/vis light.

    Science.gov (United States)

    Li, Zhiyong; Yuan, Xiaoqing; Feng, Ying; Chen, Yongkui; Zhao, Yuling; Wang, Huiyong; Xu, Qingli; Wang, Jianji

    2018-05-09

    Photo-induced conductivity modulation of stimuli-responsive materials is of great importance from the viewpoint of fundamental research and technology. In this work, 5 new kinds of azobenzene-based photo-responsive ionic liquids were synthesized and characterized, and UV/vis light modulation of their conductivity was investigated in an aqueous solution. The factors affecting the conductivity modulation of the photo-responsive fluids, such as photo-isomerization efficiency, photo-regulation aggregation, concentration and chemical structure of the ionic liquids, were examined systematically. It was found that the conductivity of the ionic liquids in water exhibited a significant increase upon UV light irradiation and the ionic liquids with a shorter alkyl spacer in the cation showed a more remarkable photo-induced conductivity enhancement with a maximum increase of 150%. In addition, the solution conductivity was restored (or very close) to the initial value upon an alternative irradiation with visible light. Thus, the solution conductivity can be modulated using alternative irradiation with UV and visible light. Although the reversible photo-isomerization of the azobenzene group under UV/vis irradiation is the origin of the conductivity modulation, the photo-regulated aggregation of the ionic liquid in water is indispensable for the maximum degree of conductivity modulation because UV irradiation can weaken, even break the aggregated cis-isomers of the ionic liquids in an aqueous solution.

  13. Synthesis of gold nanorod-embedded polymeric nanoparticles by a nanoprecipitation method for use as photothermal agents

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eunjung; Choi, Jihye; Haam, Seungjoo [Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Yang, Jaemoon; Suh, Jin-Suck; Huh, Yong-Min, E-mail: ej.kim@yonsei.ac.k, E-mail: 177hum@yonsei.ac.k, E-mail: jjakji2@yonsei.ac.k, E-mail: jss@yuhs.a, E-mail: ymhuh@yuhs.a, E-mail: haam@yonsei.ac.k [Department of Radiology, College of Medicine, Yonsei University, Seoul 120-752 (Korea, Republic of)

    2009-09-09

    For the synthesis of biocompatible photothermal agents, gold nanorod-embedded polymeric nanoparticles (GPNs) were synthesized using a nanoprecipitation method. Uniform gold nanorods (GNRs), which are sensitive to a photothermal effect by near-infrared (NIR) light, with an aspect ratio of 4.0 were synthesized by a seed-mediated growth method. The hydroxyl groups of polycaprolactone diol (PCL diOH) were modified by esterification with mercaptopropionic acid to give a dithiol (polycaprolactone dithiol, PCL diSH) as a phase transfer and capping agent. Subsequently, hexadecyltrimethylammonium bromide (CTAB), a stabilizer of GNRs, was exchanged and/or removed by PCL diSH. PCL diSH-coated GNRs were further wrapped in a hydrophilic polymer, Pluronic F127, as a stabilizer. These newly formulated GPNs exhibit excellent stability in water and a maximum absorbance in the NIR region indicating a highly efficient surface plasmon resonance effect, phenomena useful for photothermal agents.

  14. Radiation synthesis and characterization of polyacrylic acid hydrogels

    International Nuclear Information System (INIS)

    Yang Mingcheng; Song Hongyan; Zhu Chengshen; He Suqin

    2007-01-01

    The pH-sensitive polyacrylic acid (PAA) hydrogels were synthesized by gamma-ray irradiation at an ambient temperature. The influences of dose, monomer concentration, cross-linking agent content, pH, and ionic strength on the swelling ratio (SR) of the PAA hydrogels were investigated in detail. The results show that the SR of the hydrogel decreases with an increase in the dose, monomer concentration, and cross-linking agent content. In alkaline solution, the SR of the hydrogels is much higher than that in acid solution. Also, the ionic strength can influence the SR of the hydrogels. The more the concentration, the lower the SR. (authors)

  15. Effects of polyacrylic acid additive on barium sulfate particle morphology

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jie; Liu, Dandan; Jiang, Hongkun; Wang, Jun; Jing, Xiaoyan; Chen, Rongrong [Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Zhu, Wenting [Department of Gastroenterology, Harbin Medical University Cancer Hospital, Harbin 150081 (China); Han, Shihui [Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Li, Wanyou [College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001 (China); Wei, Hao, E-mail: weihao7512@126.com [Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001 (China)

    2016-06-01

    In this paper, polyacrylic acid (PAA) was used as a growth modifier to control micron-sized barium sulfate particles via a simple precipitation reaction between sodium sulfate and barium chloride at ambient temperature. The barium sulfate particles were exhibited various morphologies, such as monodisperse spheres, ellipsoids, rose-like aggregates, etc. To better understand the formation mechanisms of the various morphologies of these particles, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and thermo-gravimetric analysis (TGA) were employed. It was found that the PAA concentration, pH, and Ba{sup 2+} and SO{sub 4}{sup 2−} ions concentrations were the most important parameters controlling the morphology of the BaSO{sub 4} particles. These parameters affected the BaSO{sub 4} morphology by influencing the interactions between the PAA carboxyl groups and inorganic ions and the conformation change of the PAA molecular chains. Moreover, this work attempts to provide a preliminary understanding of the formation of the spherical BaSO{sub 4} particles with the randomly coiled conformation of the polymer. - Highlights: • Polyacrylic acid (PAA) was used as a growth modifier to control micron-sized BaSO{sub 4} particles. • The PAA/BaSO{sub 4} particles were exhibited various morphologies. • Provide a preliminary understanding of the formation mechanism of BaSO{sub 4} particles.

  16. Physical-Mechanical Properties and Micromorphology of Calcium Cements Exposed to Polyacrylic and Phosphoric Acids.

    Science.gov (United States)

    de Souza, Gustavo Fernandes; Arrais, Ana Beatriz; Aragão, Cícero Flávio Soares; Ferreira, Isana Alvares; Borges, Boniek Castillo Dutra

    2018-01-01

    To evaluate if physical and mechanical properties of self-curing calcium hydroxide cements were affected by contact with polyacrylic and phosphoric acids. Resin-containing (Life (LF)) and resin-free (Hydro C (HyC)) materials were subjected to polyacrylic acid conditioning and rinsing (POL); phosphoric acid conditioning and rinsing (PHO); rinsing only; and no treatment ( n = 10). Water sorption/solubility, release of hydroxyl ions (pH), roughness (Ra), and impact resistance were evaluated. Additional samples ( n = 1) were prepared for scanning electron microscopy (SEM) analysis of the surface morphology. Data were analyzed by two-way ANOVA and Tukey post hoc test ( P < 0.05). Water sorption was significantly higher for LF when in contact with PHO and lower for POL ( P < 0.05). The mean solubility was higher with POL for both cements ( P < 0.05). PHO increased the mean surface roughness for HyC ( P < 0.01); a significant decrease was noted for LF after contact with both acids ( P < 0.01). PHO promoted lower release of hydroxyl ions on both cements ( P < 0.05). For LF, rinsing, PHO, and POL presented similar morphology, differing from the control group. For HyC, PHO and POL presented similar morphology, differing from the control group. PHO had a negative effect on the physical properties of the cements tested, except for the solubility test. POL affected roughness and solubility of HyC cement. Clinical procedures that require polyacrylic and phosphoric acid conditioning must be done carefully on self-curing calcium hydroxide cements in order to avoid negative impact on their properties.

  17. Synthesis of Novel Amphiphilic Azobenzenes and X-ray Scattering Studies of Their Langmuir Monolayers

    DEFF Research Database (Denmark)

    Sørensen, Thomas Just; Kjær, Kristian; Breiby, Dag Werner

    2008-01-01

    . At the air-water interface, the amphiphilic azobenzenes form noncrystalline but stable Langmuir films that display an unusual reversible monolayer collapse close to 35 mN/m. The structures and phase transitions were studied by X-ray reflectivity (XR) and grazing-incidence X-ray diffraction, both utilizing...... synchrotron radiation. Compression beyond the collapse point does not change the XR data, showing that the film is unchanged at the molecular level, even at areas less than half of that of the collapse. This leads to the conclusion that few macroscopic collapse sites are responsible for reversibly removing...

  18. Comprehensive investigation of core-shell dimer nanoparticles size, distance and thicknesses on performance of a hybrid organic-inorganic halide perovskite solar cell

    Science.gov (United States)

    Heidarzadeh, Hamid

    2018-03-01

    Significant performance enhancement in an ultrathin perovskite (CH3NH3PbI3) solar cell is done using plasmonic embedded core–shell dimer nanoparticles. Three-dimensional finite difference time-domain (FDTD) method is used. A perovskite absorber with a volume of 400 × 400 × 200 nm3 is considered. At first, a cell with one embedded nanoparticle is simulated. Absorptance of CH3NH3PbI3 absorber and gold nanoparticle are obtained. An optimization is done. Then a cell with embedded dimer nanoparticles is evaluated. The results show higher photocurrent enhancement for that in compared to a cell with one embedded nanoparticle. To further photocurrent enhancement, gold-SiO2 core–shell nanoparticles are used. Photocurrents of 23.37 mA cm‑2, 23.3 mA cm‑2, 22.5 mA cm‑2 and 21.47 mA cm‑2 are obtained for a cell with two embedded core–shell nanoparticles with core radius of 60 nm and shell thickness of 2 nm, 5 nm, 10 nm and 20 nm, respectively. It is important to mention that the photocurrent is 17.9 mA cm‑2 for reference cell and 19.8 mA cm‑2 for a cell with one embedded nanoparticle. Higher photocurrent is due to the near-field plasmonic effect.

  19. Nanoparticles Embedded in Amphiphilic Membranes for Carbon Dioxide Separation and Dehumidification.

    Science.gov (United States)

    Yong, Wai Fen; Ho, Yan Xun; Chung, Tai-Shung

    2017-10-23

    Polymers containing ethylene oxide (EO) groups have gained significant interest as the EO groups have favorable interactions with polar molecules such as H 2 O, quadrupolar molecules such as CO 2 , and metal ions. However, the main challenges of poly(ethylene oxide) (PEO) membranes are their weak mechanical properties and high crystallinity nature. The amphiphilic copolymer made from PEO terephthalate and poly(butylene terephthalate) (PEOT/PBT) comprises both hydrophilic and hydrophobic segments. The hydrophilic PEOT segment is thermosensitive, which facilities gas transports whereas the hydrophobic PBT segment is rigid, which provides mechanical robustness. This work demonstrates a new strategy to design amphiphilic mixed matrix membranes (MMMs) by incorporating zeolitic imidazolate framework, ZIF-71, into the PEOT/PBT copolymer. The resultant membrane shows an enhanced CO 2 permeability with an ideal CO 2 /N 2 selectivity surpassing the original PEOT/PBT and Robeson's Upper bound line. The nanoparticles-embedded amphiphilic membranes exhibit characteristics of high transparency and mechanical robustness. Mechanically strong composite hollow fiber membranes consisting of PEOT/PBT/ZIF-71 as the selective layer were also prepared. The resultant hollow fibers possess an excellent CO 2 permeance of 131 GPU (gas permeation units), CO 2 /N 2 selectivity of 52.6, H 2 O permeance of 9300 GPU and H 2 O/N 2 selectivity of 3700, showing great potential for industrial CO 2 capture and dehumidification. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Influence of UV irradiation on the blue and red light photoinduced processes in azobenzene polyesters

    DEFF Research Database (Denmark)

    Rodríguez, F.J.; Sánchez, C.; Villacampa, B.

    2004-01-01

    light that yields the films into the isotropic state at room temperature (RT) was compared with the quenching from temperatures above the isotropic transition temperature Ti. UV–visible spectra of the thermally quenched films show the presence of aggregates when measured at RT. We have found that UV......Birefringence induced in a series of liquid crystalline side-chain azobenzene polyesters with different substituent groups was investigated under irradiation with 488 and 633 nm linearly polarized lights. Two different initial conditions have been used: the effect of a previous irradiation with UV...

  1. UV-Curing of Nanoparticle Reinforced Acrylates

    International Nuclear Information System (INIS)

    Bauer, F.

    2006-01-01

    Polymer reinforcement by silica and alumina nanoparticles evidently yields improved surface hardness. Single mixing of nanoparticles into an acrylate formulations, however, leads to highly viscous solutions inappropriate for coating procedures. The incompatibility of inorganic fillers and organic polymers can be avoided by surface modification providing an interface between the two dissimilar materials. For example, vinyltrimethoxysilane (VTMO) can react via hydrolysis/condensation reactions with hydroxyl groups present on the inorganic surface and should bond via the polymerisation-active vinyl group to an acrylate resin through crosslinking reactions. Grafting reactions of surface OH groups and different trialkoxysilanes were studied by thermogravimetry, infrared, and multinuclear NMR spectroscopy. The copolymeri-zation of modified nanoparticles with the acrylate matrix has been investigated by 13 C NMR spectroscopy. UV curing under nitrogen inertization revealed a lower reactivity of vinyl groups of VTMO-modified silica compared to grafted methacryloxypropyl-trimethoxysilane (MEMO) which showed complete conversion of olefinic carbons (signals at 120 - 140 ppm). Under conditions of oxygen inhibition, the effect of the kind and the concentration of photoinitiator on the photopoly-merization reaction was studied. Compared to neat polyacrylate coatings the nanocomposite materials exhibit markedly improved properties, e.g., heat, scratch, and abrasion resistance. However, a much better abrasion resistance was obtained for coatings containing both silica nano-particles and corundum microparticles. In particular cases, radiation curing with 172 nm photons generated by Xe excimer was performed to obtain structured polymer surfaces, i.e., matting of the reinforced acrylate coatings

  2. Magnetic properties of GdMnO3 nanoparticles embedded in mesoporous silica

    Science.gov (United States)

    Tajiri, Takayuki; Mito, Masaki; Deguchi, Hiroyuki; Kohno, Atsushi

    2018-05-01

    Perovskite manganite GdMnO3 nanoparticles were synthesized using mesoporous silica as a template, and their magnetic properties and crystal structure were investigated. Powder X-ray diffraction data indicated successful synthesis of the GdMnO3 nanoparticles, with mean particle sizes of 13.9 and 20.9 nm. The lattice constants for the nanoparticles were slightly different from those for the bulk material and varied with the particle size. The magnetic transition temperatures for the nanoparticles were higher than those of the bulk crystal. The synthesized GdMnO3 nanoparticles exhibited superparamagnetic behaviors: The blocking temperature, coercive field, and transition temperature depended on the particle size. Magnetic measurements and crystal structure analysis suggest that the changes in the magnetic properties for GdMnO3 nanoparticles can be attributed to the modulation of the crystallographic structure.

  3. New photoresponsive (meth)acrylate (co)polymers containing azobenzene pendant sidegroups with carboxylic and dimethylamino substituents .2. Synthesis and characterization of polymers and copolymers

    NARCIS (Netherlands)

    Haitjema, HJ; Buruma, R; VanEkenstein, GORA; Tan, YY; Challa, G

    1996-01-01

    The title (co)polymers, used for our investigations on their photoresponsive behaviour were obtained by free radical (co)polymerization. The monomer was either an acrylate or a methacrylate to which an azobenzene group, modified with a para-placed dimethylamino or a carboxylic pendant group, was

  4. Structural and behavioral characteristics of radiolytically synthesized polyacrylic acid–polyacrylonitrile copolymeric hydrogels

    International Nuclear Information System (INIS)

    Bera, Anuradha; Misra, R.K.; Singh, Shailendra K.

    2013-01-01

    Copolymeric hydrogels of polyacrylic acid (PAA) – polyacrylonitrile (PAN) was radiolytically synthesized from their respective monomers with trimethyloltrimethacrylate (TMPTMA) as the crosslinker wherein both polymerization and crosslinking could be achieved in a single step reaction using 60 Co γ-radiation under varying doses and dose rates. The formation of the hydrogels was confirmed by their FT-IR analysis, while their thermal degradation patterns were investigated through thermogravimetric analysis in both the dry and swelled state. The water sorption studies showed rapid swelling behavior of these hydrogels, where swelling (%EWC) was found to be strongly dependent on the ratio of the two monomers in the hydrogels and the swelling kinetics dependent on the dose rates of hydrogel synthesis. These radiolytically synthesized hydrogels responded to electrical stimulus both in terms of the bending speed as well as bending angle under an applied voltage. The nature of the deformation was reversible and can be controlled through switching the voltage on and off. - Highlights: • Polyacrylic acid – polyacrilonitrile copolymeric hydrogel has been radiolytically synthesized. • Trimethyloltrimethacrylate (TMPTMA) used as crosslinker. • Hydrogel has been characterized and tested for electroresponsive character. • Bending angles and bending speed were found dependent upon applied voltage

  5. Excited-state Raman spectroscopy with and without actinic excitation: S{sub 1} Raman spectra of trans-azobenzene

    Energy Technology Data Exchange (ETDEWEB)

    Dobryakov, A. L.; Quick, M.; Ioffe, I. N.; Granovsky, A. A.; Ernsting, N. P.; Kovalenko, S. A. [Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin (Germany)

    2014-05-14

    We show that femtosecond stimulated Raman spectroscopy can record excited-state spectra in the absence of actinic excitation, if the Raman pump is in resonance with an electronic transition. The approach is illustrated by recording S{sub 1} and S{sub 0} spectra of trans-azobenzene in n-hexane. The S{sub 1} spectra were also measured conventionally, upon nπ* (S{sub 0} → S{sub 1}) actinic excitation. The results are discussed and compared to earlier reports.

  6. Characterization and effects of cross-linked potassium polyacrylate as soil amendment

    OpenAIRE

    Sanz Gómez, Jorge

    2016-01-01

    Falta palabras clave Cross-linked potassium polyacrylate (Luquasorb®1280R) is a granular anionic superabsorbent polymer with the ability to absorb large amounts of water. The objectives of this study were the physicochemical characterization of the material and its effects when used as soil amendment together with the evaluation of the impact on agronomical parameters when it was applied to processing varieties of tomato (Solanum lycopersicum L.) grown under Mediterranean climate condit...

  7. Theoretical evaluations of magnetic nanoparticle-enhanced heating on tumor embedded with large blood vessels during hyperthermia

    International Nuclear Information System (INIS)

    Wang, Q.; Deng, Z. S.; Liu, J.

    2012-01-01

    The large blood vessels surrounding the tumor would significantly result in heat sink, and thus seriously limit the thermal ablative area during tumor hyperthermia. Magnetic nanoparticle (MNP) was recently identified as an important heating enhancer to improve the treatment efficiency. It will not only help to absorb more energy under the irradiation of external magnetic field, but also can block the blood flow and subsequently weaken the heat sink effect of large vessels. In this study, these two critical factors, reserved to be undisclosed before in theory, were comprehensively investigated through three-dimensional numerical simulation. The results suggested that concerning the contribution to temperature increase in the tissues surrounding large vessel, the factor of blood flow blocking is more effective than that of energy absorption. Therefore, selective loading of MNPs to the target sites is expected to serve as a promising method to perform successful hyperthermia treatment for tumor tissues embedded with large blood vessels.

  8. Theoretical evaluations of magnetic nanoparticle-enhanced heating on tumor embedded with large blood vessels during hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q. [Tsinghua University, Department of Biomedical Engineering, School of Medicine (China); Deng, Z. S. [Chinese Academy of Sciences, Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry (China); Liu, J., E-mail: jliubme@tsinghua.edu.cn [Tsinghua University, Department of Biomedical Engineering, School of Medicine (China)

    2012-07-15

    The large blood vessels surrounding the tumor would significantly result in heat sink, and thus seriously limit the thermal ablative area during tumor hyperthermia. Magnetic nanoparticle (MNP) was recently identified as an important heating enhancer to improve the treatment efficiency. It will not only help to absorb more energy under the irradiation of external magnetic field, but also can block the blood flow and subsequently weaken the heat sink effect of large vessels. In this study, these two critical factors, reserved to be undisclosed before in theory, were comprehensively investigated through three-dimensional numerical simulation. The results suggested that concerning the contribution to temperature increase in the tissues surrounding large vessel, the factor of blood flow blocking is more effective than that of energy absorption. Therefore, selective loading of MNPs to the target sites is expected to serve as a promising method to perform successful hyperthermia treatment for tumor tissues embedded with large blood vessels.

  9. New photoresponsive (meth)acrylate (co)polymers containing azobenzene pendant sidegroups with carboxylic and dimethylamino substituents .1. Synthesis and characterization of the monomers

    NARCIS (Netherlands)

    Haitjema, HJ; Buruma, R; VanEkenstein, GORA; Tan, YY; Challa, G

    1996-01-01

    New azobenzene-based (az.b.) monomers with CO2H (acid) or N(CH3)(2) (basic) substituents were synthesized. For some of these compounds new synthetic routes had to be developed, especially for the az.b. monomers with a CO2H substituent (azoacids) where their synthesis, purification and (thermal)

  10. Azobenzene side-chain liquid crystalline polyesters with outstanding optical storage properties

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Pedersen, M; Holme, NCR

    1998-01-01

    A flexible azobenzene side-chain liquid crystalline (SCLC) polyester architecture employed for reversible optical storage is described. The modular design allows four structural parameters to be individually modified. These parameters: i- the methylene side-chain spacer length, ii- the substituent......,000 are routinely obtained by melt transesterification of the novel diols and selected diacid precursors (parameter iii). Prominent storage features include no prealignment of thin SCLC polyester films prior to the writing process, and sensitivity in a broad laser wavelength window (415-532 nm). Additionally...... sign of fatigue. The non-destructive read out is performed with red light (600-750 nm). Finally, erasing the information can be achieved by heating the polyester film to 80 degrees C or irradiating it briefly with UV-light. In the latter case at least 10,000 write, read and erase cycles are possible...

  11. Dynamically formed hydrous zirconium (IV) oxide-polyelectrolyte membranes. III: Poly(acrylic acid) and substituted poly(acrylic acid) homo, co and terpolymer membranes

    International Nuclear Information System (INIS)

    Van Reenen, A.J.; Sanderson, R.D.

    1989-01-01

    A series of acrylic acid and substituted acrylic acid homo, co and terpolymers was synthesised. These polymers were used as polyelectrolytes in dynamically formed hydrous zirconium (iv) oxide-polyelectrolyte membranes. Substitution of the acrylic acid α-hydrogen was done to increase the number of carboxylic acid groups per monomer unit and to change the acid strength of acrylic acid carboxylic acid group. None of these changes improved the salt rejection of these membranes over that of commercially used poly(acrylic acid). Improvement in rejection was found when a hydrophobic comonomer, vinyl acetate, was used in conjunction with acrylic acid in a copolymer dynamic membrane. 16 refs., 6 figs., 1 tab

  12. Biomimetic synthesis of hybrid hydroxyapatite nanoparticles using nanogel template for controlled release of bovine serum albumin.

    Science.gov (United States)

    Qin, Jinli; Zhong, Zhenyu; Ma, Jun

    2016-05-01

    A biomimetic method was used to prepare hybrid hydroxyapatite (HAP) nanoparticles with chitosan/polyacrylic acid (CS-PAA) nanogel. The morphology, structure, crystallinity, thermal properties and biocompatibility of the obtained hybrid nanogel-HAP nanoparticles have been characterized. In addition, bovine serum albumin (BSA) was used as a model protein to study the loading and release behaviors of the hybrid nanogel-HAP nanoparticles. The results indicated that the obtained HAP nanoparticles were agglomerated and the nanogel could regulate the formation of HAP. When the nanogel concentration decreased, different HAP crystal shapes and agglomerate structures were obtained. The loading amount of BSA reached 67.6 mg/g for the hybrid nanoparticles when the mineral content was 90.4%, which decreased when the nanogel concentration increased. The release profile of BSA was sustained in neutral buffer. Meanwhile, an initial burst release was found at pH 4.5 due to the desorption of BSA from the surface, followed by a slow release. The hemolysis percentage of the hybrid nanoparticles was close to the negative control, and these particles were non-toxic to bone marrow stromal stem cells. The results suggest that these hybrid nanogel-HAP nanoparticles are promising candidate materials for biocompatible drug delivery systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Interpolymer complexses of vinyl ether copolymer with polyacrylic and polymethacrylic acids

    Directory of Open Access Journals (Sweden)

    E. Shaikhutdinov

    2012-03-01

    Full Text Available The interactions between macromolecules of copolymers based on vinyl ethers (vinyl ether of monoethanolamine and vinyl buthyl ether and 2-acryloilamido-2-methylpropanesulphonic acid with polyacrylic and polymethacrylic acid and, as well as study the effect of interpolymer interactions in the adsorption of polymers at the aqueous solution-air interface were investigated. The observed synergistic increase in surface activity of macromolecules into polyelectrolyte mixtures explained by the formation of interpolymer complexes polyacid - copolymer.

  14. Synthesis and characterization of β-Ni(OH)2 embedded with MgO and ZnO nanoparticles as nanohybrids for energy storage devices

    Science.gov (United States)

    Kumar, C. R. Ravi; Santosh, M. S.; Nagaswarupa, H. P.; Prashantha, S. C.; Yallappa, S.; Kumar, M. R. Anil

    2017-06-01

    In this study, the electrode material (nickel hydroxide powder) has been synthesized by a co-precipitation method using sodium hydroxide and nickel sulphate as precipitator and nickel source, respectively. The obtained nickel hydroxide powder has been subsequently embedded with biosynthesized MgO and ZnO nanoparticles as nanohybrids, which have been investigated as a novel hybrid electrode material for power-storage applications. The powder x-ray diffraction pattern of nickel hydroxide (Ni(OH)2)-based nanohybrid materials reveals a typical β-phase. Fourier transform infrared spectroscopy confirms the embedded structures of nanohybrids and thermal stability by thermogravimetry and differential thermal) analysis. The electrochemical properties of these materials have been studied using cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The specific capacitance values are found to be 439, 1076, and 622 F g-1 for bare β-Ni(OH)2, and for β-Ni(OH)2 embedded with ZnO and MgO nanohybrids, respectively, at a scan rate of 10 mVs-1. The enhanced capacitance of nanohybrids is also evident from EIS measurements. Galvanostatic charge-discharge tests for these designed nanohybrids show excellent capacitance performance in battery and supercapacitor applications. These innovative results could be considered for the expansion of novel resources to scale for power-storage applications and may contribute to the development of this niche area at large.

  15. Improvement in soil and sorghum health following the application of polyacrylate polymers to a Cd-contaminated soil

    International Nuclear Information System (INIS)

    Guiwei, Q.; Varennes, A. de; Martins, L.L.; Mourato, M.P.; Cardoso, A.I.; Mota, A.M.; Pinto, A.P.; Goncalves, M.L.

    2010-01-01

    Contamination of soils with cadmium (Cd) is a serious global issue due to its high mobility and toxicity. We investigated the application of insoluble polyacrylate polymers to improve soil and plant health. Sorghum was grown in a Cd-contaminated sandy soil. Polyacrylate polymers at 0.2% (w/w) were added to half of the soil. Control soil without plants was also included in the experiment. Growth of sorghum was stimulated in the polymer-amended soil. The concentration of Cd in the shoots, and the activities of catalase and ascorbate peroxidase decreased in plants from polymer-amended soil compared with unamended control. The amount of CaCl 2 -extractable Cd in the polymer-amended soil was 55% of that in the unamended soil. The Cd extracted in sorghum shoots was 0.19 mg per plant grown on soil without polymer and 0.41 mg per plant grown on polymer-amended soil. The total amount of Cd removed from each pot corresponded to 1.5 and more than 6% of soil CaCl 2 -extractable Cd in unamended and polymer-amended soil, respectively. The activities of soil acid phosphatase, β-glucosidase, urease, protease and cellulase were greatest in polymer-amended soil with sorghum. In conclusion, the application of polyacrylate polymers to reduce the bioavailable Cd pool seems a promising method to enhance productivity and health of plants grown on Cd-contaminated soils.

  16. Investigation of bi-enzymatic reactor based on hybrid monolith with nanoparticles embedded and its proteolytic characteristics.

    Science.gov (United States)

    Shangguan, Lulu; Zhang, Lingyi; Xiong, Zhichao; Ren, Jun; Zhang, Runsheng; Gao, Fangyuan; Zhang, Weibing

    2015-04-03

    The bottom-up strategy of proteomic profiling study based on mass spectrometer (MS) has drawn high attention. However, conventional solution-based digestion could not satisfy the demands of highly efficient and complete high throughput proteolysis of complex samples. We proposed a novel bi-enzymatic reactor by immobilizing two different enzymes (trypsin/chymotrypsin) onto a mixed support of hybrid organic-inorganic monolith with SBA-15 nanoparticles embedded. Typsin and chymotrypsin were crossly immobilized onto the mixed support by covalent bonding onto the monolith with glutaraldehyde as bridge reagent and chelation via copper ion onto the nanoparticles, respectively. Compared with single enzymatic reactors, the bi-enzymatic reactor improved the overall functional analysis of membrane proteins of rat liver by doubling the number of identified peptides (from 1184/1010 with trypsin/chymotrypsin enzymatic reactors to 2891 with bi-enzymatic reactor), which led to more proteins identified with deep coverage (from 452/336 to 620); the efficiency of the bi-enzymatic reactor is also better than that of solution-based tandem digestion, greatly shorting the digestion time from 24h to 50s. Moreover, more transmembrane proteins were identified by bi-enzymatic reactor (106) compared with solution-based tandem digestion (95) with the same two enzymes and enzymatic reactors with single enzyme immobilized (75 with trypsin and 66 with chymotrypsin). The proteolytic characteristics of the bi-enzymatic reactors were evaluated by applying them to digestion of rat liver proteins. The reactors showed good digestion capability for proteins with different hydrophobicity and molecular weight. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Magnetic nanoparticles: synthesis, ordering and properties

    International Nuclear Information System (INIS)

    Vazquez, M.; Luna, C.; Morales, M.P.; Sanz, R.; Serna, C.J.; Mijangos, C.

    2004-01-01

    Polyol methods to synthesize nanoparticles and their arrays are firstly described. Magnetic nanoparticles self-assemble under particular conditions into spherical superstructures, like CoNi nanoparticles, or planar structures with hexagonal ordering, like FePt nanoparticles. Particles and their arrays are structurally analysed by techniques like TEM, X-ray, etc. Magnetic characterization is firstly performed by VSM magnetomer as a function of the nanoparticles size paying particular attention to the transition from multidomain to single-domain structures. Later on, magnetic exchange coupling effects are discussed including the temperature dependence of magnetic parameters as coercive and exchange bias fields, as well as the influence of field or zero-field cooling processes. Finally, magnetic polymers consisting of magnetic nanoparticles embedded into PVC polymeric matrix are prepared and magnetically analysed

  18. Characterization of abrasion-induced nanoparticle release from paints into liquids and air

    Science.gov (United States)

    Golanski, L.; Gaborieau, A.; Guiot, A.; Uzu, G.; Chatenet, J.; Tardif, F.

    2011-07-01

    Two standard methods for the characterization of the abrasion nanoparticle release into air and liquid from coatings containing nanoparticles were developed. Details of the abrasion processes and the measurement methods are shown. Paints were formulated in an industrial facility. Standard abrasion conditions in wet environments were simulated. The size distribution of the particles abraded into liquid was analyzed by a laser granulometer: submicrometric and micrometric particles were observed, but no nanometric particles. The nanoparticles released in liquid were deposited on filters for SEM (Scanning Electron Microscopy) analysis. No free or agglomerated nanoparticles were observed by SEM: nanoparticles seem to remain embedded in the paint matrix. The same coatings were abraded in the air using another standard method. The ELPI (Electrical Low Pressure Impactor) was used to determine the number size distribution of the dust generated. Abrasion is found to produce submicrometric and micrometric particles in the air but no nanoparticles. Further characterizations by SEM confirmed that no free or agglomerated nanoparticles were emitted: nanoparticles seem to remain embedded in the paint matrix.

  19. Characterization of abrasion-induced nanoparticle release from paints into liquids and air

    International Nuclear Information System (INIS)

    Golanski, L; Guiot, A; Uzu, G; Tardif, F; Gaborieau, A; Chatenet, J

    2011-01-01

    Two standard methods for the characterization of the abrasion nanoparticle release into air and liquid from coatings containing nanoparticles were developed. Details of the abrasion processes and the measurement methods are shown. Paints were formulated in an industrial facility. Standard abrasion conditions in wet environments were simulated. The size distribution of the particles abraded into liquid was analyzed by a laser granulometer: submicrometric and micrometric particles were observed, but no nanometric particles. The nanoparticles released in liquid were deposited on filters for SEM (Scanning Electron Microscopy) analysis. No free or agglomerated nanoparticles were observed by SEM: nanoparticles seem to remain embedded in the paint matrix. The same coatings were abraded in the air using another standard method. The ELPI (Electrical Low Pressure Impactor) was used to determine the number size distribution of the dust generated. Abrasion is found to produce submicrometric and micrometric particles in the air but no nanoparticles. Further characterizations by SEM confirmed that no free or agglomerated nanoparticles were emitted: nanoparticles seem to remain embedded in the paint matrix.

  20. Nanoparticle embedded enzymes for improved lateral flow sensors

    DEFF Research Database (Denmark)

    Özalp, Veli Cengiz; Zeydanlı, Uğur S.; Lunding, Anita

    2013-01-01

    -entrapped with Texas Red dextran inside porous polyacrylamide nanoparticles. In this system, enzymes are protected in the porous matrix of polyacrylamide which freely allows the diffusion of the analyte. The sensor is rapid and sensitive for quantification of hydrogen peroxide concentrations. A test solution...

  1. Bioinspired bioadhesive polymers: dopa-modified poly(acrylic acid) derivatives.

    Science.gov (United States)

    Laulicht, Bryan; Mancini, Alexis; Geman, Nathanael; Cho, Daniel; Estrellas, Kenneth; Furtado, Stacia; Hopson, Russell; Tripathi, Anubhav; Mathiowitz, Edith

    2012-11-01

    The one-step synthesis and characterization of novel bioinspired bioadhesive polymers that contain Dopa, implicated in the extremely adhesive byssal fibers of certain gastropods, is reported. The novel polymers consist of combinations of either of two polyanhydride backbones and one of three amino acids, phenylalanine, tyrosine, or Dopa, grafted as side chains. Dopa-grafted hydrophobic backbone polymers exhibit as much as 2.5 × the fracture strength and 2.8 × the tensile work of bioadhesion of a commercially available poly(acrylic acid) derivative as tested on live, excised, rat intestinal tissue. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Copper nanoparticles synthesis by gamma irradiation in chitosan aqueous system

    International Nuclear Information System (INIS)

    Shahrul Izwan Ahmad; Md Soot Ahmad; Shahidan Radiman

    2009-01-01

    A study on effect of chitosan concentration on the copper nanoparticles synthesis using gamma irradiation as source of reducing agent has been done at total absorbed dose of 50 kGy. The addition of ethanol is vital as scavenger of oxidation radical that eliminate the function of reducing agent produced by radiolysis process of gamma ray in water system. Transmission electron microscopy observations show the formation of copper nanoparticles embedded in chitosan matrix. As the concentration of chitosan increase the solution become darker and nanoparticles produced are densely, in order form with polydisperse size. While at the low concentration of chitosan, the color of solution become more reddish and the particles produced are monodisperse in size with regular shape and more orderly. The phase of pure copper nanoparticles embedded in the chitosan matrix was confirmed by X-ray diffraction. (Author)

  3. Thin films of metal-organic compounds and metal nanoparticle ...

    Indian Academy of Sciences (India)

    Optical limiting capability of the nanoparticle-embedded polymer film is demonstrated. Keywords. Polar crystal; uniaxial orientational order; thin film; second harmonic gen- eration; silver ... able content of metal nanoparticles would be of considerable value from an appli- ... polar chain and perpendicular to it [10].

  4. Substrate Size-Selective Catalysis with Zeolite-Encapsulated Gold Nanoparticles

    DEFF Research Database (Denmark)

    Laursen, Anders Bo; Højholt, Karen Thrane; Lundegaard, L.F.

    2010-01-01

    The Dark Crystal: A hybrid material is reported that is comprised of 1-2 nm sized gold nanoparticles, accessible only through zeolite micropores in a silicalite-1 crystal, as shown by three-dimensional TEM tomography (see picture). Calcination experiments indicate that the embedded nanoparticles...

  5. Tolnaftate-Loaded PolyacrylateElectrospun Nanofibers for an Impressive Regimen on Dermatophytosis

    Directory of Open Access Journals (Sweden)

    Shashi Kiran Misra

    2017-11-01

    Full Text Available Dermatophytosis, topical fungal infection is the most common cause of skin bug in the world, generally underestimated and ignored. It is commonly caused by immensely mortifying and keratinophilic fungal eukaryotes which invade keratinized tissues and generate different tinea diseases in Mediterranean countries. We herein fabricated nanofibers/scaffolds embedded with thiocarbamate derivative topical antifungal tolnaftatefor the first time to target the complete elimination of dermatophyte at the site of infection. In this regard, variable combinations of biocompatible Eudragit grades (ERL100 and ERS100 were selected to provide better adhesion on the site of dermatophytosis, ample absorption of exudates during treatment, and customized controlled drug release. Surface topography analysis indicated that the fabricated nanofibers were regular and defect-free, comprising distinct pockets with nanoscaled diameters. Characterization and compatibility studies of tolnaftate, polymers, and their nanofibers were performed through ATR-FTIR, TGA, and PXRD. Remarkable hydrophilicity and an excellent swelling index were obtained from a 3:1 ratio of ERL100/ERS100 electrospun D3 nanofibers, which is an essential benchmark for the fabrication of nanofibrous scaffolds for alleviating dermatophytosis. In vitro drug release investigation revealed that a nonwoven nanomesh of nanofibers could control the rate of drug release for 8 h. A microdilution assay exhibited inhibition of more than 95% viable cells of Trichophyton rubrum for 96 h. However, Microsporum species rigidly restricted the effect of bioactive antifungal nanofibers and hence showed resistance. In vivo activity on Trichophyton rubrum infected Swiss albino mice revealed complete inhibition of fungal pathogens on successive applications of D3 nanofibers for 7 days. This investigation suggests potential uses of tolnaftate loaded polyacrylate nanofibers as dressing materials/scaffolds for effective

  6. Poly(acrylic acid) modifying bentonite with in-situ polymerization for removing lead ions.

    Science.gov (United States)

    He, Y F; Zhang, L; Yan, D Z; Liu, S L; Wang, H; Li, H R; Wang, R M

    2012-01-01

    In this paper, a new kind of poly(acrylic acid) modified clay adsorbent, the poly(acrylic acid)/bentonite composite (PAA/HB) was prepared by in-situ polymerization, and utilized to remove lead(II) ions from solutions. The maximum adsorption of adsorbent is at pH 5 for metal ions, whereas the adsorption starts at pH 2. The effects of contact time (5-60 min), initial concentration of metal ions (200-1,000 mg/L) and adsorbent dosage (0.04-0.12 g/100 mL) have been reported in this article. The experimental data were investigated by means of kinetic and equilibrium adsorption isotherms. The kinetic data were analyzed by the pseudo-first-order and pseudo-second-order equation. The experimental data fitted the pseudo-second-order kinetic model very well. Langmuir and Freundlich isotherms were tried for the system to better understand the adsorption isotherm process. The maximal adsorption capacity of the lead(II) ions on the PAA/HB, as calculated from the Langmuir model, was 769.2 mg/g. The results in this study indicated that PAA/HB was an attractive candidate for removing lead(II) (99%).

  7. Controlling exchange bias in Co-CoOx nanoparticles by oxygen content

    OpenAIRE

    Kovylina, Miroslavna; del Muro, Montserrat Garcia; Konstantinovic, Zorica; Varela, Manuel; Iglesias, Oscar; Labarta, Amilcar; Batlle, Xavier

    2009-01-01

    We report on the occurrence of exchange bias on laser-ablated granular thin films composed of Co nanoparticles embedded in amorphous zirconia matrix. The deposition method allows controlling the degree of oxidation of the Co particles by tuning the oxygen pressure at the vacuum chamber (from 2x10^{-5} to 10^{-1} mbar). The nature of the nanoparticles embedded in the nonmagnetic matrix is monitored from metallic, ferromagnetic (FM) Co to antiferromagnetic (AFM) CoOx, with a FM/AFM intermediate...

  8. Symmetry Breaking by Surface Blocking: Synthesis of Bimorphic Silver Nanoparticles, Nanoscale Fishes and Apples

    Science.gov (United States)

    Cathcart, Nicole; Kitaev, Vladimir

    2016-09-01

    A powerful approach to augment the diversity of well-defined metal nanoparticle (MNP) morphologies, essential for MNP advanced applications, is symmetry breaking combined with seeded growth. Utilizing this approach enabled the formation of bimorphic silver nanoparticles (bi-AgNPs) consisting of two shapes linked by one regrowth point. Bi-AgNPs were formed by using an adsorbing polymer, poly(acrylic acid), PAA, to block the surface of a decahedral AgNP seed and restricting growth of new silver to a single nucleation point. First, we have realized 2-D growth of platelets attached to decahedra producing nanoscale shapes reminiscent of apples, fishes, mushrooms and kites. 1-D bimorphic growth of rods (with chloride) and 3-D bimorphic growth of cubes and bipyramids (with bromide) were achieved by using halides to induce preferential (100) stabilization over (111) of platelets. Furthermore, the universality of the formation of bimorphic nanoparticles was demonstrated by using different seeds. Bi-AgNPs exhibit strong SERS enhancement due to regular cavities at the necks. Overall, the reported approach to symmetry breaking and bimorphic nanoparticle growth offers a powerful methodology for nanoscale shape design.

  9. Using Ag-embedded TiO{sub 2} nanotubes array as recyclable SERS substrate

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Yunhan, E-mail: yhling@mail.tsinghua.edu.cn [Lab of Advanced Materials, School of Materials Science & Engineering, Tsinghua University, Beijing 100084 (China); Zhuo, Yuqing; Huang, Liang [Lab of Advanced Materials, School of Materials Science & Engineering, Tsinghua University, Beijing 100084 (China); Mao, Duolu [School of Physical and Electronic Information Engineering, Qinghai Nationalities University, Xining, Qinghai 810007 (China)

    2016-12-01

    Highlights: • Ag embedded nanoparticles inside nanotube have better SERS enhancement than surface cap. • Ag NPs reconstruction via self-migration with UV and humidity control. • Self-cleaning effects both on organic molecule photo-oxidation as well as Ag ions photo-reduction. - Abstract: A simple strategy for synthesizing Ag-loaded TiO{sub 2} nanotube film for use as multifunctional photocatalyst and recyclable surface-enhanced Raman scattering (SERS) substrate is introduced. Highly aligned TiO{sub 2} nanotube arrays (TNTA) prepared via electrochemical anodization were used as a 3D rough host for silver nanoparticles. Ag deposits were sputtered in a vacuum, and it was found that their morphologies were mainly influenced by the diameters of nanotubes and the UV irradiation induced aging process, especially the self-migration of silver along the tubular wall. SERS and the self-cleaning effect were observed using Rhodamine 6G (R6G) as the probe molecule. The results showed that narrow nanotube and silver nanoparticles embedment contributed significantly to both the phenomenal SERS and recyclability.

  10. Contactless, photoinitiated snap-through in azobenzene-functionalized polymers.

    Science.gov (United States)

    Shankar, M Ravi; Smith, Matthew L; Tondiglia, Vincent P; Lee, Kyung Min; McConney, Michael E; Wang, David H; Tan, Loon-Seng; White, Timothy J

    2013-11-19

    Photomechanical effects in polymeric materials and composites transduce light into mechanical work. The ability to control the intensity, polarization, placement, and duration of light irradiation is a distinctive and potentially useful tool to tailor the location, magnitude, and directionality of photogenerated mechanical work. Unfortunately, the work generated from photoresponsive materials is often slow and yields very small power densities, which diminish their potential use in applications. Here, we investigate photoinitiated snap-through in bistable arches formed from samples composed of azobenzene-functionalized polymers (both amorphous polyimides and liquid crystal polymer networks) and report orders-of-magnitude enhancement in actuation rates (approaching 10(2) mm/s) and powers (as much as 1 kW/m(3)). The contactless, ultra-fast actuation is observed at irradiation intensities focusing on isolating the role of sample geometry, mechanical properties of the materials, and photomechanical strain. Using light to trigger contactless, ultrafast actuation in an otherwise passive structure is a potentially versatile tool to use in mechanical design at the micro-, meso-, and millimeter scales as actuators, as well as switches that can be triggered from large standoff distances, impulse generators for microvehicles, microfluidic valves and mixers in laboratory-on-chip devices, and adaptive optical elements.

  11. High-Performance Li-Ion Capacitor Based on an Activated Carbon Cathode and Well-Dispersed Ultrafine TiO2 Nanoparticles Embedded in Mesoporous Carbon Nanofibers Anode.

    Science.gov (United States)

    Yang, Cheng; Lan, Jin-Le; Liu, Wen-Xiao; Liu, Yuan; Yu, Yun-Hua; Yang, Xiao-Ping

    2017-06-07

    A novel Li-ion capacitor based on an activated carbon cathode and a well-dispersed ultrafine TiO 2 nanoparticles embedded in mesoporous carbon nanofibers (TiO 2 @PCNFs) anode was reported. A series of TiO 2 @PCNFs anode materials were prepared via a scalable electrospinning method followed by carbonization and a postetching method. The size of TiO 2 nanoparticles and the mesoporous structure of the TiO 2 @PCNFs were tuned by varying amounts of tetraethyl orthosilicate (TEOS) to increase the energy density and power density of the LIC significantly. Such a subtle designed LIC displayed a high energy density of 67.4 Wh kg -1 at a power density of 75 W kg -1 . Meanwhile, even when the power density was increased to 5 kW kg -1 , the energy density can still maintain 27.5 Wh kg -1 . Moreover, the LIC displayed a high capacitance retention of 80.5% after 10000 cycles at 10 A g -1 . The outstanding electrochemical performance can be contributed to the synergistic effect of the well-dispersed ultrafine TiO 2 nanoparticles, the abundant mesoporous structure, and the conductive carbon networks.

  12. Polarographic investigation of complexing kinetics of polyacrylate anions with cadmium ions

    International Nuclear Information System (INIS)

    Avlyanov, Zh.K.; Kabanov, N.M.; Zezin, A.B.; Askarov, M.A.

    1990-01-01

    The processes which occur during the reduction of cadmium ions from polymer-metallic complexes (PMC) are studied for the purposes of polarographic investigation of complexing kinetics of polyacrylate anions (PAA) of different molecular masses with cadmium ions in KCl aqueous solutions. An expression is derived for establishing semiwave potential. PMC formation and dissociation reduction rate constants are calculated. It is shown that intramolecular reorderings required for the formation of a two-coordinate complex proceed much slower as compared to the diffusion of free ions

  13. Thermally stable nanoparticles on supports

    Science.gov (United States)

    Roldan Cuenya, Beatriz; Naitabdi, Ahmed R.; Behafarid, Farzad

    2012-11-13

    An inverse micelle-based method for forming nanoparticles on supports includes dissolving a polymeric material in a solvent to provide a micelle solution. A nanoparticle source is dissolved in the micelle solution. A plurality of micelles having a nanoparticle in their core and an outer polymeric coating layer are formed in the micelle solution. The micelles are applied to a support. The polymeric coating layer is then removed from the micelles to expose the nanoparticles. A supported catalyst includes a nanocrystalline powder, thin film, or single crystal support. Metal nanoparticles having a median size from 0.5 nm to 25 nm, a size distribution having a standard deviation .ltoreq.0.1 of their median size are on or embedded in the support. The plurality of metal nanoparticles are dispersed and in a periodic arrangement. The metal nanoparticles maintain their periodic arrangement and size distribution following heat treatments of at least 1,000.degree. C.

  14. Antibacterial effect of composite resins containing quaternary ammonium polyethyleneimine nanoparticles

    International Nuclear Information System (INIS)

    Yudovin-Farber, Ira; Beyth, Nurit; Weiss, Ervin I.; Domb, Abraham J.

    2010-01-01

    Quaternary ammonium polyethyleneimine (QA-PEI)-based nanoparticles were synthesized by crosslinking with dibromopentane followed by N-alkylation with various alkyl halides and further N-methylation with methyl iodide. Insoluble pyridinium-type particles were prepared by suspension polymerization of 4-vinyl pyridine followed by N-alkylation with alkyl halides. Polyamine-based nanoparticles embedded in restorative composite resin at 1% w/w were tested for antibacterial activity against Streptococcus mutans using direct contact test. Activity analysis revealed that the alkyl chain length of the QA-PEI nanoparticles plays a significant role in antibacterial activity of the reagent. The most potent compound was octyl-alkylated QA-PEI embedded in restorative composite resin at 1% w/w that totally inhibited S. mutans growth in 3-month-aged samples. This data indicates that restorative composite resin with antibacterial properties can be produced by the incorporation of QA-PEI nanoparticles.

  15. Antibacterial effect of composite resins containing quaternary ammonium polyethyleneimine nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Yudovin-Farber, Ira [Hebrew University of Jerusalem, Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Faculty of Medicine (Israel); Beyth, Nurit; Weiss, Ervin I. [Hebrew University of Jerusalem, Department of Prosthodontics, Faculty of Dentistry (Israel); Domb, Abraham J., E-mail: avid@ekmd.huji.ac.i [Hebrew University of Jerusalem, Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Faculty of Medicine (Israel)

    2010-02-15

    Quaternary ammonium polyethyleneimine (QA-PEI)-based nanoparticles were synthesized by crosslinking with dibromopentane followed by N-alkylation with various alkyl halides and further N-methylation with methyl iodide. Insoluble pyridinium-type particles were prepared by suspension polymerization of 4-vinyl pyridine followed by N-alkylation with alkyl halides. Polyamine-based nanoparticles embedded in restorative composite resin at 1% w/w were tested for antibacterial activity against Streptococcus mutans using direct contact test. Activity analysis revealed that the alkyl chain length of the QA-PEI nanoparticles plays a significant role in antibacterial activity of the reagent. The most potent compound was octyl-alkylated QA-PEI embedded in restorative composite resin at 1% w/w that totally inhibited S. mutans growth in 3-month-aged samples. This data indicates that restorative composite resin with antibacterial properties can be produced by the incorporation of QA-PEI nanoparticles.

  16. Hydrophobic silver nanoparticles trapped in lipid bilayers: Size distribution, bilayer phase behavior, and optical properties

    Directory of Open Access Journals (Sweden)

    Bothun Geoffrey D

    2008-11-01

    Full Text Available Abstract Background Lipid-based dispersion of nanoparticles provides a biologically inspired route to designing therapeutic agents and a means of reducing nanoparticle toxicity. Little is currently known on how the presence of nanoparticles influences lipid vesicle stability and bilayer phase behavior. In this work, the formation of aqueous lipid/nanoparticle assemblies (LNAs consisting of hydrophobic silver-decanethiol particles (5.7 ± 1.8 nm embedded within 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC bilayers is demonstrated as a function of the DPPC/Ag nanoparticle (AgNP ratio. The effect of nanoparticle loading on the size distribution, bilayer phase behavior, and bilayer fluidity is determined. Concomitantly, the effect of bilayer incorporation on the optical properties of the AgNPs is also examined. Results The dispersions were stable at 50°C where the bilayers existed in a liquid crystalline state, but phase separated at 25°C where the bilayers were in a gel state, consistent with vesicle aggregation below the lipid melting temperature. Formation of bilayer-embedded nanoparticles was confirmed by differential scanning calorimetry and fluorescence anisotropy, where increasing nanoparticle concentration suppressed the lipid pretransition temperature, reduced the melting temperature, and disrupted gel phase bilayers. The characteristic surface plasmon resonance (SPR wavelength of the embedded nanoparticles was independent of the bilayer phase; however, the SPR absorbance was dependent on vesicle aggregation. Conclusion These results suggest that lipid bilayers can distort to accommodate large hydrophobic nanoparticles, relative to the thickness of the bilayer, and may provide insight into nanoparticle/biomembrane interactions and the design of multifunctional liposomal carriers.

  17. Gold nanoparticles deposited on linker-free silicon substrate and embedded in aluminum Schottky contact.

    Science.gov (United States)

    Gorji, Mohammad Saleh; Razak, Khairunisak Abdul; Cheong, Kuan Yew

    2013-10-15

    Given the enormous importance of Au nanoparticles (NPs) deposition on Si substrates as the precursor for various applications, we present an alternative approach to deposit Au NPs on linker-free n- and p-type Si substrates. It is demonstrated that, all conditions being similar, there is a significant difference between densities of the deposited NPs on both substrates. The Zeta-potential and polarity of charges surrounding the hydroxylamine reduced seeded growth Au NPs, are determined by a Zetasizer. To investigate the surface properties of Si substrates, contact angle measurement is performed. Field-emission scanning electron microscope is then utilized to distinguish the NPs density on the substrates. Finally, Al/Si Schottky barrier diodes with embedded Au NPs are fabricated, and their structural and electrical characteristics are further evaluated using an energy-filtered transmission electron microscope and current-voltage measurements, respectively. The results reveal that the density of NPs is significantly higher on n-type Si substrate and consequently has more pronounced effects on the electrical characteristics of the diode. It is concluded that protonation of Si-OH group on Si surface in low pH is responsible for the immobilization of Au NPs, which eventually contributes to the lowering of barrier height and enhances the electrical characteristics. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Azobenzene mesogens mediated preparation of SnS nanocrystals encapsulated with in-situ N-doped carbon and their enhanced electrochemical performance for lithium ion batteries application

    International Nuclear Information System (INIS)

    Wang Meng; Zhou Yang; Chen Dongzhong; Duan Junfei

    2016-01-01

    In this work, azobenzene mesogen-containing tin thiolates have been synthesized, which possess ordered lamellar structures persistent to higher temperature and serve as liquid crystalline precursors. Based on the preorganized tin thiolate precursors, SnS nanocrystals encapsulated with in-situ N-doped carbon layer have been achieved through a simple solventless pyrolysis process with the azobenzene mesogenic thiolate precursor served as Sn, S, N, and C sources simultaneously. Thus prepared nanocomposite materials as anode of lithium ion batteries present a large specific capacity of 604.6 mAh·g −1 at a current density of 100 mA·g −1 , keeping a high capacity retention up to 96% after 80 cycles, and display high rate capability due to the synergistic effect of well-dispersed SnS nanocrystals and N-doped carbon layer. Such encouraging results shed a light on the controlled preparation of advanced nanocomposites based on liquid crystalline metallomesogen precursors and may boost their novel intriguing applications. (special topic)

  19. Nitrogen-Doped Hollow Carbon Spheres with Embedded Co Nanoparticles as Active Non-Noble-Metal Electrocatalysts for the Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Ruohao Xing

    2018-02-01

    Full Text Available Transition metal (Fe, Co, Ni complexes on carbon nanomaterials are promising candidates as electrocatalysts towards the oxygen reduction reaction (ORR. In this paper, nitrogen-doped hollow carbon spheres with embedded Co nanoparticles were successfully prepared via a controllable synthesis strategy. The morphology characterization shows that the hollow carbon spheres possess an average diameter of ~150 nm with a narrow size distribution and a shell thickness of ~14.5 nm. The content of N doping ranges from 2.1 to 6.6 at.% depending on the calcination temperature from 900 to 1050 °C. Compared with commercial Pt/C, the Co-containing nitrogen-doped hollow carbon spheres prepared at 900 °C (CoNHCS-900 as an ORR electrocatalyst shows a half-wave potential shift of only ∆E1/2 = 55 mV, but a superior stability of about 90.2% maintenance after 20,000 s in the O2-saturated 0.1 M KOH at a rotating speed of 1600 rpm. This could be ascribed to the synergistic effects of N-containing moieties, Co-Nx species, and Co nanoparticles, which significantly increase the density of active sites and promote the charge transfer during the ORR process.

  20. Hierarchical flower-like carbon nanosheet assembly with embedded hollow NiCo{sub 2}O{sub 4} nanoparticles for high- performance lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Ling; Qiu, Huajun; Luo, Pan; Li, Wenxiang; Zhang, Huijuan; Wang, Yu, E-mail: wangy@cqu.edu.cn

    2017-05-01

    Highlights: • Flower-like NiCo{sub 2}O{sub 4}@carbon nanosphere is firstly synthesized for Li-ion batteries. • The nanostructure exhibits the unique feature of hollow NiCo{sub 2}O{sub 4} nanoparticles embedded inside and graphitized carbon layers coating outside. • The sample reveals stable structure, large specific surface area and good electrical conductivity. • The composite exhibits superior rate capability, cycling capacity and excellent Coulombic efficiency. - Abstract: The fabrication of closely bounded metal oxides/carbon hybrid nano-structures is significant for its use in energy-related areas especially lithium ion batteries (LIBs). In this research, a flower-like carbon sphere with hollow NiCo{sub 2}O{sub 4} nanoparticles encapsulated inside the carbon thin nanopetal is fabricated by using a mixed basic carbonate nickel and cobalt sphere as the precursor and templates followed by the outer carbon membrane covering and two-step calcination process. When tested as anode material for LIBs, this flower-like carbon-based hybrid sphere demonstrates a significantly enhanced reversible capacity and cycling stability at various current densities.

  1. Characterizing Nanoparticles Reactivity: Structure-Photocatalytic Activity Relationship

    International Nuclear Information System (INIS)

    Piella, J; Bastús, N G; Casals, E; Puntes, V

    2013-01-01

    Nanoparticles are reactive, and their final interactions with the surrounding media are ultimately determined by their reactivity, which in turns depends on the nanoparticles morphology, surface chemistry and environment in which they are embedded. One simple and informative approach for the study of the reactivity of nanoparticles is the determination of their photocatalytic activity. In the present work, we briefly summarize the importance of different parameters such as the size, shape and agglomeration state on the photocatalytic activity of colloidal inorganic nanoparticles. The study of the use of nanoparticles as photocatalyts is relevant not only for its potential applications in environmental remediation issues but also it can provide relevant information about the role of these parameters at the nanoscale.

  2. Diffraction from polarization holographic gratings with surface relief in side-chain azobenzene polyesters

    DEFF Research Database (Denmark)

    Naydenova, I; Nikolova, L; Todorov, T

    1998-01-01

    We investigate the polarization properties of holographic gratings in side-chain azobenzene polyesters in which an anisotropic grating that is due to photoinduced linear and circular birefringence is recorded in the volume of the material and a relief grating appears on the surface. A theoretical...... model is proposed to explain the experimental results, making it possible to understand the influence of the different photoinduced effects. It is shown that at low intensity the polarization properties of the diffraction at these gratings are determined by the interaction of the linear and circular...... photobirefringences, and at larger intensity the influence of the surface relief dominates the effect of the circular anisotropy. Owing to the high recording efficiency of the polyesters, the +/-1-order diffracted waves change the polarization interference pattern during the holographic recording, resulting...

  3. Local Schottky contacts of embedded Ag nanoparticles in Al2O3/SiNx:H stacks on Si: a design to enhance field effect passivation of Si junctions.

    Science.gov (United States)

    Ibrahim Elmi, Omar; Cristini-Robbe, Odile; Chen, Minyu; Wei, Bin; Bernard, Rémy; Okada, Etienne; Yarekha, Dmitri A; Ouendi, Saliha; Portier, Xavier; Gourbilleau, Fabrice; Xu, Tao; Stievenard, Didier

    2018-04-26

    This paper describes an original design leading to the field effect passivation of Si n+-p junctions. Ordered Ag nanoparticle (Ag-NP) arrays with optimal size and coverage fabricated by means of nanosphere lithography and thermal evaporation, were embedded in ultrathin-Al2O3/SiNx:H stacks on the top of implanted Si n+-p junctions, to achieve effective surface passivation. One way to characterize surface passivation is to use photocurrent, sensitive to recombination centers. We evidenced an improvement of photocurrent by a factor of 5 with the presence of Ag nanoparticles. Finite-difference time-domain (FDTD) simulations combining with semi-quantitative calculations demonstrated that such gain was mainly due to the enhanced field effect passivation through the depleted region associated with the Ag-NPs/Si Schottky contacts. © 2018 IOP Publishing Ltd.

  4. Magneto-reactance based detection of MnO nanoparticle-embedded Lewis lung carcinoma cells

    Science.gov (United States)

    Devkota, J.; Howell, M.; Mukherjee, P.; Srikanth, H.; Mohapatra, S.; Phan, M. H.

    2015-05-01

    We demonstrate the capacity of detecting magnetically weak manganese oxide (MnO) nanoparticles and the Lewis lung carcinoma (LLC) cancer cells that have taken up these nanoparticles using a novel biosensor based on the magneto-reactance (MX) effect of a soft ferromagnetic amorphous ribbon with a microhole-patterned surface. While the magnetic moment of the MnO nanoparticles is relatively small, and a magneto-impedance based sensor fails to detect them in solution (0.05 mg/ml manganese oxide lipid micellar nanoparticles) and inside cells at low concentrations (8.25 × 104 cells/ml), the detection of these nanoparticles and the LLC cells containing them is achieved with the MX-based sensor, which, respectively, reaches the detection sensitivity of ˜3.6% and 2.8% as compared to the blank cells. Since the MnO nanoparticles are a promising contrast agent for magnetic resonance imaging (MRI) of lung cells, the MX-based biosensing technique can be developed as a pre-detection method for MRI of lung cancer cells.

  5. Energy breathing of nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Dynich, Raman A., E-mail: dynich@solo.by [Institute of Social Educational Technologies (Belarus)

    2015-06-15

    The paper considers the energy exchange process of the electromagnetic wave with a spherical metal nanoparticle. Based on the account of the temporal dependencies of electric and magnetic fields, the author presents an analytical dependence of the energy flow passing through the spherical surface. It is shown that the electromagnetic energy, localized in metal nanoparticles, is not a stationary value and periodically varies with time. A consequence of the energy nonstationarity is a nonradiating exit of the electromagnetic energy out of the nanoparticle. During the time equal to the period of wave oscillations, the electromagnetic energy is penetrating twice into the particle and quits it twice. The particle warms up because of the difference in the incoming and outgoing energies. Such “energy breathing” is presented for spherical Ag and Au nanoparticles with radii of 10 and 33 nm, respectively. Calculations were conducted for these nanoparticles embedded into the cell cytoplasm near the frequencies of their surface plasmon resonances.

  6. Development of thiolated poly(acrylic acid) microparticles for the nasal administration of exenatide.

    Science.gov (United States)

    Millotti, Gioconda; Vetter, Anja; Leithner, Katharina; Sarti, Federica; Shahnaz Bano, Gul; Augustijns, Patrick; Bernkop-Schnürch, Andreas

    2014-12-01

    The purpose of this study was to develop a microparticulate formulation for nasal delivery of exenatide utilizing a thiolated polymer. Poly(acrylic acid)-cysteine (PAA-cys) and unmodified PAA microparticles loaded with exenatide were prepared via coprecipitation of the drug and the polymer followed by micronization. Particle size, drug load and release of incorporated exenatide were evaluated. Permeation enhancing properties of the formulations were investigated on excised porcine respiratory mucosa. The viability of the mucosa was investigated by histological studies. Furthermore, ciliary beat frequency (CBF) studies were performed. Microparticles displayed a mean size of 70-80 µm. Drug encapsulation was ∼80% for both thiolated and non-thiolated microparticles. Exenatide was released from both thiolated and non-thiolated particles in comparison to exenatide in buffer only within 40 min. As compared to exenatide dissolved in buffer only, non-thiolated and thiolated microparticles resulted in a 2.6- and 4.7-fold uptake, respectively. Histological studies performed before and after permeation studies showed that the mucosa is not damaged during permeation studies. CBF studies showed that the formulations were cilio-friendly. Based on these results, poly(acrylic acid)-cysteine-based microparticles seem to be a promising approach starting point for the nasal delivery of exenatide.

  7. Investigation of Electrocoagulation Process Efficiency for Color Removal from Polyacrylic Textile Industrial astewater

    Directory of Open Access Journals (Sweden)

    2013-08-01

    Full Text Available Dyes due to coloring nature are appearance pollutants and destroys the transparency and aesthetic quality of surface waters even at relatively low concentration. Several processes have been used for dye removal from wastewater. In recent years, electrochemical methods have been successfully employed to treat dying wastewater.In this study, the electrocoagulation method with aluminum electrodes were used for polyacrylic textile wastewater treatment. COD of wastewater was 1400mg/l. This study was conducted in laboratory scale. The sample was placed in to the electrochemical reactor contains 4 electrodes. The electrodes were connected to a DC power supply. Then the effect of the three operational parameters, electrolysis time (20-60 minutes, electrical applied current (0.5-2.5 Ampere and pH (4-9 on color and COD removal efficiency has been investigated. The results showed that the color and COD removal efficiency is a direct relation with increasing of the reaction time and inverse relation with increase of pH. Optimum operation conditions were in applied current of 1.5 A, the retention time of 60 minutes and pH of 4. In this condition, color and COD removals were 86% and 85%, respectively. This study showed that electrocoagulation process is an effective and efficient method to treatment of polyacrylic textile wastewater.

  8. Magnetic and optical bistability in tetrairon(III) single molecule magnets functionalized with azobenzene groups.

    Science.gov (United States)

    Prasad, Thazhe Kootteri; Poneti, Giordano; Sorace, Lorenzo; Rodriguez-Douton, Maria Jesus; Barra, Anne-Laure; Neugebauer, Petr; Costantino, Luca; Sessoli, Roberta; Cornia, Andrea

    2012-07-21

    Tetrairon(III) complexes known as "ferric stars" have been functionalized with azobenzene groups to investigate the effect of light-induced trans-cis isomerization on single-molecule magnet (SMM) behaviour. According to DC magnetic data and EPR spectroscopy, clusters dispersed in polystyrene (4% w/w) exhibit the same spin (S = 5) and magnetic anisotropy as bulk samples. Ligand photoisomerization, achieved by irradiation at 365 nm, has no detectable influence on static magnetic properties. However, it induces a small but significant acceleration of magnetic relaxation as probed by AC susceptometry. The pristine behaviour can be almost quantitatively recovered by irradiation with white light. Our studies demonstrate that magnetic and optical bistability can be made to coexist in SMM materials, which are of current interest in molecular spintronics.

  9. Highly luminescent colloidal Eu(3)+-doped KZnF(3) nanoparticles for the selective and sensitive detection of Cu(II) ions.

    Science.gov (United States)

    Sarkar, Shyam; Chatti, Manjunath; Mahalingam, Venkataramanan

    2014-03-17

    This article describes a green synthetic approach to prepare water dispersible perovskite-type Eu3+-doped KZnF3 nanoparticles, carried out using environmentally friendly microwave irradiation at low temperature (85 8C) with water as a solvent. Incorporation of Eu3+ ions into the KZnF3 matrix is confirmed by strong red emission upon ultraviolet (UV) excitation of the nanoparticles. The nanoparticles are coated with poly(acrylic acid) (PAA), which enhances the dispersibility of the nanoparticles in hydrophilic solvents. The strong red emission from Eu3+ ions is selectively quenched upon addition of CuII ions, thus making the nanoparticles a potential CuII sensing material. This sensing ability is highly reversible by the addition of ethylenediaminetetraacetic acid (EDTA), with recovery of almost 90% of the luminescence. If the nanoparticles are strongly attached to a positively charged surface, dipping the surface in a CuII solution leads to the quenching of Eu3+ luminescence, which can be recovered after dipping in an EDTA solution. This process can be repeated for more than five cycles with only a slight decrease in the sensing ability. In addition to sensing, the strong luminescence from Eu3+-doped KZnF3 nanoparticles could be used as a tool for bioimaging.

  10. Silver nanoparticle deposition on inverse opal SiO2 films embedded in protective polypropylene micropits for SERS applications

    Science.gov (United States)

    Ammosova, Lena; Ankudze, Bright; Philip, Anish; Jiang, Yu; Pakkanen, Tuula T.; Pakkanen, Tapani A.

    2018-01-01

    Common methods to fabricate surface enhanced Raman scattering (SERS) substrates with controlled micro-nanohierarchy are often complex and expensive. In this study, we demonstrate a simple and cost effective method to fabricate SERS substrates with complex geometries. Microworking robot structuration is used to pattern a polypropylene (PP) substrate with micropits, facilitating protective microenvironment for brittle SiO2 inverse opal (IO) structure. Hierarchical SiO2 IO patterns were obtained using polystyrene (PS) spheres as a sacrificial template, and were selectively embedded into the hydrophilized PP micropits. The same microworking robot technique was subsequently used to deposit silver nanoparticle ink into the SiO2 IO cavities. The fabricated multi-level micro-nanohierarchy surface was studied to enhance Raman scattering of the 4-aminothiophenol (4-ATP) analyte molecule. The results show that the SERS performance of the micro-nanohierarchical substrate increases significantly the Raman scattering intensity compared to substrates with structured 2D surface geometries.

  11. COLOR STABILITY FOR WOOD PRODUCTS DURING USE: EFFECTS OF INORGANIC NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    Vincent Blanchard

    2011-04-01

    Full Text Available Despite significant progress having been achieved in recent years to improve wood’s durability, additional developments are still necessary to increase its color stability. ZnO and CeO2 nanoparticles were compared to UV absorbers (Tinuvin 477 DW, 292 and 5151 commonly used to stabilize the wood products color. Nanoparticles, with concentrations in the range 1 to 2 wt%, and UV absorbers, using concentrations advised by the manufacturer, were dispersed in a waterborne UV curable polyurethane/polyacrylate resin. Dispersions were carried out with a high speed mixer at 2,500 RPM with micro glass beads or not, depending on the form of the nanoparticles. Nanocomposite coatings were aged with a weather-o-meter (CI 3000+ - Atlas according ASTM G155. Color variations were measured with a colorimeter (BYK Gardner – Color Guide 45/0 working with the CIE L*a*b* system. The aim of the present study was to assess the effects of inorganic UV absorbers on the stabilization of color under indoor conditions. Results showed that nanoparticles (ZnO, CeO2 absorbed UV light frequencies in a manner similar to common organic molecules. Their efficiency was better at medium durations of light exposure, for which they could achieve the action of organic absorbers. Finally, the simultaneous use of both absorbers seems to create a protective synergy when degradation is due to UV energy alone.

  12. Hierarchically organized architecture of potassium hydrogen phthalate and poly(acrylic acid): toward a general strategy for biomimetic crystal design.

    Science.gov (United States)

    Oaki, Yuya; Imai, Hiroaki

    2005-12-28

    A hierarchically organized architecture in multiple scales was generated from potassium hydrogen phthalate crystals and poly(acrylic acid) based on our novel biomimetic approach with an exquisite association of polymers on crystallization.

  13. X-ray excited luminescence of polystyrene composites loaded with SrF{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Demkiv, T.M.; Halyatkin, O.O.; Vistovskyy, V.V. [Ivan Franko National University of Lviv, 8a Kyryla i Mefodiya St., 79005 Lviv (Ukraine); Hevyk, V.B. [Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska St., 76019 Ivano-Frankivsk (Ukraine); Yakibchuk, P.M. [Ivan Franko National University of Lviv, 8a Kyryla i Mefodiya St., 79005 Lviv (Ukraine); Gektin, A.V. [Institute for Scintillation Materials, NAS of Ukraine, 60 Lenina Ave, 61001 Kharkiv (Ukraine); Voloshinovskii, A.S. [Ivan Franko National University of Lviv, 8a Kyryla i Mefodiya St., 79005 Lviv (Ukraine)

    2017-03-01

    The polystyrene film nanocomposites of 0.3 mm thickness with embedded SrF{sub 2} nanoparticles up to 40 wt% have been synthesized. The luminescent and kinetic properties of the polystyrene composites with embedded SrF{sub 2} nanoparticles upon the pulse X-ray excitation have been investigated. The luminescence intensity of the pure polystyrene scintillator film significantly increases when it is loaded with the inorganic SrF{sub 2} nanoparticles. The film nanocomposites show fast (∼2.8 ns) and slow (∼700 ns) luminescence decay components typical for a luminescence of polystyrene activators (p-Terphenyl and POPOP) and SrF{sub 2} nanoparticles, respectively. It is revealed that the fast decay luminescence component of the polystyrene composites is caused by the excitation of polystyrene by the photoelectrons escaped from the nanoparticles due to photoeffect, and the slow component is caused by reabsorption of the self-trapped exciton luminescence of SrF{sub 2} nanoparticles by polystyrene.

  14. High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester

    International Nuclear Information System (INIS)

    Sanchez, C.; Alcala, R.; Hvilsted, S.; Ramanujam, P. S.

    2001-01-01

    High diffraction efficiencies have been achieved with polarization gratings recorded in thin films of an azobenzene side-chain liquid crystalline polyester by means of biphotonic processes. Efficiency values up to 30% have been reached after an induction period of 300 s and subsequent evolution with the sample in darkness. These values are at least two orders of magnitude higher than those previously reported for biphotonic recording. The gratings can be erased with unpolarized blue light and partial recovery of the diffraction efficiency has been observed after the erasure process when the sample is kept in darkness. Red light illumination of the erased film increases the recovered efficiency value and the recovery rate. [copyright] 2001 American Institute of Physics

  15. Silver incorporated polypyrrole/polyacrylic acid electrode for electrochemical supercapacitor

    Science.gov (United States)

    Patil, Dipali S.; Pawar, Sachin A.; Kamble, Archana S.; Patil, Pramod S.

    2013-06-01

    In the present work, we study Ag doping effect on the specific capacitance of Polypyrrole/Polyacrylic Acid (PPy/PAA). Ag incorporated films were prepared by simple chemical route. Fourier transform-infrared and Fourier transform-Raman techniques were used for the phase identification. Surface morphology of the films was examined by Field Emission scanning electron microscopy and revealed granular structure for PPY, attached granules for PPy/PAA and granules with bright spots of Ag particles for the PPy/PAA/Ag films. The supercapacitive behavior of the electrodes was tested in three electrode system with 0.1 M H2SO4 electrolyte by using cyclic voltammetry. The highest specific capacitance value 226 Fg-1 was observed for the PPy/PAA/Ag film.

  16. Pervaporation of alcohol-toluene mixtures through polymer blend membranes of poly(acrylic acid) and poly(vinyl alcohol)

    NARCIS (Netherlands)

    Park, H.C.; Park, H.; Meertens, R.M.; Meertens, R.M.; Mulder, M.H.V.; Smolders, C.A.; Smolders, C.A.

    1994-01-01

    Homogeneous membranes were prepared by blending poly(acrylic acid) with poly(vinyl alcohol). These blend membranes were evaluated for the selective separation of alcohols from toluene by pervaporation. The flux and selectivity of the membranes were determined both as a function of the blend

  17. Kinetic control of block copolymer self-assembly into multicompartment and novel geometry nanoparticles

    Science.gov (United States)

    Chen, Yingchao; Wang, Xiaojun; Zhang, Ke; Wooley, Karen; Mays, Jimmy; Percec, Virgil; Pochan, Darrin

    2012-02-01

    Micelles with the segregation of hydrophobic blocks trapped in the same nanoparticle core have been produced through co-self-assembly of two block copolymers in THF/water dilute solution. The dissolution of two block copolymer sharing the same polyacrylic acid PAA blocks in THF undergoes consequent aggregation and phase separation through either slow water titration or quick water addition that triggers the micellar formation. The combination and comparison of the two water addition kinetic pathways are the keys of forming multicompartment structures at high water content. Importantly, the addition of organic diamine provides for acid-base complexation with the PAA side chains which, in turn, plays the key role of trapping unlike hydrophobic blocks from different block copolymers into one nanoparticle core. The kinetic control of solution assembly can be applied to other molecular systems such as dendrimers as well as other block copolymer molecules. Transmission electron microscopy, cryogenic transmission electron microscopy, light scattering have been applied to characterize the micelle structures.

  18. Double-Layer Magnetic Nanoparticle-Embedded Silica Particles for Efficient Bio-Separation.

    Directory of Open Access Journals (Sweden)

    San Kyeong

    Full Text Available Superparamagnetic Fe3O4 nanoparticles (NPs based nanomaterials have been exploited in various biotechnology fields including biomolecule separation. However, slow accumulation of Fe3O4 NPs by magnets may limit broad applications of Fe3O4 NP-based nanomaterials. In this study, we report fabrication of Fe3O4 NPs double-layered silica nanoparticles (DL MNPs with a silica core and highly packed Fe3O4 NPs layers. The DL MNPs had a superparamagnetic property and efficient accumulation kinetics under an external magnetic field. Moreover, the magnetic field-exposed DL MNPs show quantitative accumulation, whereas Fe3O4 NPs single-layered silica nanoparticles (SL MNPs and silica-coated Fe3O4 NPs produced a saturated plateau under full recovery of the NPs. DL MNPs are promising nanomaterials with great potential to separate and analyze biomolecules.

  19. Controlled growth and shape formation of platinum nanoparticles and their electrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, Minoru [Department of Molecular Science and Technology, Faculty of Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan)]. E-mail: minaba@mail.doshisha.ac.jp; Ando, Miwa [Department of Molecular Science and Technology, Faculty of Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan); Hatanaka, Aoi [Department of Molecular Science and Technology, Faculty of Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan); Nomoto, Akihiro [Kyoto Prefecture Collaboration of Regional Entities, Keihanna Interaction Plaza Inc., Seika-cho, Soraku-gun, Kyoto 619-0237 (Japan); Faculty of Engineering, Osaka Prefecture University, Sakai, Osaka 669-8531 (Japan); Matsuzawa, Koichi [Kyoto Prefecture Collaboration of Regional Entities, Keihanna Interaction Plaza Inc., Seika-cho, Soraku-gun, Kyoto 619-0237 (Japan); Tasaka, Akimasa [Department of Molecular Science and Technology, Faculty of Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan); Kinumoto, Taro [Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Iriyama, Yasutoshi [Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Ogumi, Zempachi [Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan)

    2006-12-01

    Cubic Pt nanoparticles were prepared from a solution of K{sub 2}PtCl{sub 4} containing sodium polyacrylate as a capping reagent. The effects of the Pt/polymer molar ratio, the average molecular weight (M {sub w}) of the polymer, and reaction temperature on the shape and size were investigated. When the polymer of M {sub w} = 5100 was added at a molar ratio of Pt/polymer = 1/12, cubic platinum nanoparticles of an average size of 10.3 nm were predominantly formed (ca. 50% in number) at 25 deg. C. The electron diffraction pattern of the cubic nanoparticles revealed that they are single crystals with Pt {l_brace}1 0 0{r_brace} faces on the surface. The cubic nanoparticles were electrochemically active, and showed strong features of Pt {l_brace}1 0 0{r_brace} faces on cyclic voltammogram under argon atmosphere. After repeated potential cycling in the range 0.05-1.4 V, the features of Pt {l_brace}1 0 0{r_brace} were gradually lost, and changed to those of polycrystalline Pt. Rotating ring disk electrode measurements in O{sub 2}-saturated H{sub 2}SO{sub 4} solution revealed that the cubic nanoparticles had a high catalytic activity for oxygen reduction reaction (ORR). After polycrystallization by repeated potential cycling, the activity for ORR and hydrogen peroxide formation decreased slightly, which were attributed to the surface structural change from Pt {l_brace}1 0 0{r_brace} to polycrystalline.

  20. Enhanced resistive switching in forming-free graphene oxide films embedded with gold nanoparticles deposited by electrophoresis

    International Nuclear Information System (INIS)

    Khurana, Geetika; Kumar, Nitu; Katiyar, Ram S; Misra, Pankaj; Kooriyattil, Sudheendran; Scott, James F

    2016-01-01

    Forming-free resistive random access memory (ReRAM) devices having low switching voltages are a prerequisite for their commercial applications. In this study, the forming-free resistive switching characteristics of graphene oxide (GO) films embedded with gold nanoparticles (Au Nps), having an enhanced on/off ratio at very low switching voltages, were investigated for non-volatile memories. The GOAu films were deposited by the electrophoresis method and as-grown films were found to be in the low resistance state; therefore no forming voltage was required to activate the devices for switching. The devices having an enlarged on/off ratio window of ∼10"6 between two resistance states at low voltages (<1 V) for repetitive dc voltage sweeps showed excellent properties of endurance and retention. In these films Au Nps were uniformly dispersed over a large area that provided charge traps, which resulted in improved switching characteristics. Capacitance was also found to increase by a factor of ∼10, when comparing high and low resistance states in GOAu and pristine GO devices. Charge trapping and de-trapping by Au Nps was the mechanism responsible for the improved switching characteristics in the films. (paper)

  1. Immobilization of pH-sensitive CdTe Quantum Dots in a Poly(acrylate) Hydrogel for Microfluidic Applications

    Science.gov (United States)

    Franke, M.; Leubner, S.; Dubavik, A.; George, A.; Savchenko, T.; Pini, C.; Frank, P.; Melnikau, D.; Rakovich, Y.; Gaponik, N.; Eychmüller, A.; Richter, A.

    2017-04-01

    Microfluidic devices present the basis of modern life sciences and chemical information processing. To control the flow and to allow optical readout, a reliable sensor material that can be easily utilized for microfluidic systems is in demand. Here, we present a new optical readout system for pH sensing based on pH sensitive, photoluminescent glutathione capped cadmium telluride quantum dots that are covalently immobilized in a poly(acrylate) hydrogel. For an applicable pH sensing the generated hybrid material is integrated in a microfluidic sensor chip setup. The hybrid material not only allows in situ readout, but also possesses valve properties due to the swelling behavior of the poly(acrylate) hydrogel. In this work, the swelling property of the hybrid material is utilized in a microfluidic valve seat, where a valve opening process is demonstrated by a fluid flow change and in situ monitored by photoluminescence quenching. This discrete photoluminescence detection (ON/OFF) of the fluid flow change (OFF/ON) enables upcoming chemical information processing.

  2. Structure of polyacrylic acid and polymethacrylic acid solutions : a small angle neutron scattering study

    OpenAIRE

    Moussaid , A.; Schosseler , F.; Munch , J.; Candau , S.

    1993-01-01

    The intensity scattered from polyacrylic acid and polymethacrylic acid solutions has been measured by small angle neutron scattering experiemnts. The influence of polymer concentration, ionization degree, temperature and salt content has been investigated. Results are in qualitative agreement with a model which predicts the existence of microphases in the unstable region of the phase diagram. Quantitative comparison with the theory is performed by fitting the theoretical structure factor to t...

  3. A light-assisted in situ embedment of silver nanoparticles to prepare functionalized fabrics

    Directory of Open Access Journals (Sweden)

    Toh HS

    2017-11-01

    Full Text Available Her Shuang Toh,1 Roxanne Line Faure,2 Liyana Bte Mohd Amin,1 Crystal Yu Fang Hay,1 Saji George1,3 1Centre of Sustainable Nanotechnology, School of Chemical and Life Sciences, Nanyang Polytechnic, Singapore, Singapore; 2DUT Analyses Biologiques et Biochimiques, IUT Génie Biologique, Dijon, France; 3Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Sainte-Anne-de-Bellevue, QC, Canada Abstract: This article presents a simple, one-step, in situ generation of silver nanoparticle-functionalized fabrics with antibacterial properties, circumventing the conventional, multistep, time-consuming methods. Silver nanoparticle formation was studied with a library of capping agents (branched polyethylenimine [BPEI] of molecular weight [Mw] 10,000 and 25,000, polyvinylpyrrolidone, polyethylene glycol, polyvinylalcohol and citrate mixed with silver nitrate. The mixture was then exposed to an assortment of light wavelengths (ultraviolet, infrared and simulated solar light for studying the light-assisted synthesis of nanoparticles. The formation of nanoparticles corresponded with the reducing capabilities of the polymers wherein BPEI gave the best response. Notably, the irradiation wavelengths had little effect on the formation of the nanoparticle when the total irradiation energy was kept constant. The feasibility of utilizing this method for in situ nanoparticle synthesis on textile fabrics (towel [100% cotton], gauze [100% cotton], rayon, felt [100% polyester] and microfiber [15% nylon, 85% polyester] was verified by exposing the fabrics soaked in an aqueous solution of 1% (w/v AgNO3 and 1% (w/v BPEI (Mw 25,000 to light. The formation of nanoparticles on fabrics and their retention after washing was verified using scanning electron microscopy and quantified by inductively coupled plasma optical emission spectrometry. The functional property of the fabric as an antibacterial surface was successfully demonstrated using

  4. Facile and efficient room temperature solid state reaction enabled synthesis of antimony nanoparticles embedded within reduced graphene oxide for enhanced sodium-ion storage

    Science.gov (United States)

    Zhang, Xiukui; Wu, Ping; Jiang, Li; Zhang, Xiaofang; Shi, Hongxia; Zhu, Xiaoshu; Wei, Shaohua; Zhou, Yiming

    2018-06-01

    Herein, a very simple and cost-effective solid state reaction method is employed to obtain, for the first time, the antimony nanoparticles embedded within reduced graphene oxide matrices (designated as Sb/rGO). By directly grinding antimony chloride and sodium hydroxide together at room temperature in the presence of graphene oxide (GO), Sb4O5Cl2 precursor was quickly obtained, which is evenly incorporated in the graphene oxide matrices. After subsequent chemical reduction by NaBH4, the Sb/rGO composite was successfully synthesized. The as-prepared Sb/rGO composite consists of uniform Sb nanoparticles of sub-20 nm, all of which have been wrapped in and protected by the rGO matrices. The Sb nanoparticles serve as a sufficient sodium ion reservoir while the rGO matrices provide highly efficient pathways for transport of sodium ions and electrons. Moreover, the volume expansion of Sb during sodiation can be buffered in the rGO matrices. As a result, the Sb/rGO composite exhibits excellent electrochemical performance in sodium-ion batteries (SIBs), including an enhanced cycling stability with a highly reversible charge capacity of 455 mA h g-1 after 45 cycles at 100 mA g-1, and a coulombic efficiency exceeding 98% during cycling. The findings in the present work pave the way to not only synthesize the designated promising electrode materials for high performance SIBs, but also thoroughly understand the solid-state reaction.

  5. Back scattering involving embedded silicon nitride (SiN) nanoparticles for c-Si solar cells

    Science.gov (United States)

    Ghosh, Hemanta; Mitra, Suchismita; Siddiqui, M. S.; Saxena, A. K.; Chaudhuri, Partha; Saha, Hiranmay; Banerjee, Chandan

    2018-04-01

    A novel material, structure and method of synthesis for dielectric light trapping have been presented in this paper. First, the light scattering behaviour of silicon nitride nanoparticles have been theoretically studied in order to find the optimized size for dielectric back scattering by FDTD simulations from Lumerical Inc. The optical results have been used in electrical analysis and thereby, estimate the effect of nanoparticles on efficiency of the solar cells depending on substrate thickness. Experimentally, silicon nitride (SiN) nanoparticles have been formed using hydrogen plasma treatment on SiN layer deposited by Plasma Enhanced Chemical Vapour Deposition (PECVD). The size and area coverage of the nanoparticles were controlled by varying the working pressure, power density and treatment duration. The nanoparticles were integrated with partial rear contact c-Si solar cells as dielectric back reflector structures for the light trapping in thin silicon solar cells. Experimental results revealed the increases of current density by 2.7% in presence of SiN nanoparticles.

  6. MXP(M = Co/Ni)@carbon core-shell nanoparticles embedded in 3D cross-linked graphene aerogel derived from seaweed biomass for hydrogen evolution reaction.

    Science.gov (United States)

    Zhao, Wentong; Lu, Xiaoqing; Selvaraj, Manickam; Wei, Wei; Jiang, Zhifeng; Ullah, Nabi; Liu, Jie; Xie, Jimin

    2018-05-24

    Low-cost electrocatalysts play an important role in the hydrogen evolution reaction (HER). Particularly, transition metal phosphides (TMPs) are widely applied in the development of HER electrocatalysts. To improve the poor electrochemical reaction kinetics of HER, we introduce a facile way to synthesize carbon core-shell materials containing cobalt phosphide nanoparticles embedded in different graphene aerogels (GAs) (CoP@C-NPs/GA-x (x = 5, 10 and 20)) using seaweed biomass as precursors. The synthesized CoP@C-NPs/GA-5 exhibits efficient catalytic activity with small overpotentials of 120 and 225 mV at current densities of 10 mA cm-2, along with the low Tafel slopes of 57 and 66 mV dec-1, for HER in acidic and alkaline electrolytes, respectively. Compared with carbon aerogel (CA) containing cobalt phosphide nanoparticles (CoP-NPs@CA), the stability of CoP@C-NPs/GA-5 coated with carbon-shells (∼0.8 nm) was significantly improved in acidic electrolytes. We also prepared carbon core-shell materials containing nickel phosphide nanoparticles embedded in GA (Ni2P@C-NPs/GA) to further expand this synthetic route. The graphene-Ni2P@C aerogel shows a similar morphology and better catalytic activity for HER in acidic and alkaline electrolytes. In this work, the robust three-dimensional (3D) GA matrix with abundant open pores and large surface area provides unblocked channels for electrolyte contact and electronic transfer and enables very close contact between the catalyst and electrolyte. The MxP@C core-shell structure prevents the inactivation of MxP NPs during HER processes, and the thin graphene oxide (GO) layers and 3D CA together build up a 3D conductive matrix, which not only adjusts the volume expansion of MxP NPs as well as preventing their aggregation, but also provides a 3D conductive pathway for rapid charge transfer processes. The present synthetic strategy for phosphides via in situ phosphorization with 3D GA can be extended to other novel high

  7. Optical alignment control of polyimide molecules containing azobenzene in the backbone structure

    International Nuclear Information System (INIS)

    Sakamoto, Kenji; Usami, Kiyoaki; Sasaki, Toru; Kanayama, Takashi; Ushioda, Sukekatsu

    2004-01-01

    Using polarized infrared absorption spectroscopy, we have determined the orientation of the polyimide backbone structure in photo-alignment films for liquid crystals (LC). The polyimide used in this study contains azobenzene in the backbone structure. Photo-alignment treatment was performed on the corresponding polyamic acid film, using a light source of wavelength 340-500 nm. The polyamic acid film (∼16 nm thick) was first irradiated at normal incidence with linearly polarized light (LP-light) of 156 J/cm 2 , and then oblique angle irradiation of unpolarized light (UP-light) was performed in the plane of incidence perpendicular to the polarization direction of the LP-light. The UP-light exposure was varied up to 882 J/cm 2 . We found that the average inclination angle of the polyimide backbone structure, measured from the surface plane, increases almost linearly with UP-light exposure. On the other hand, the in-plane anisotropy induced by the first irradiation with LP-light decreases with the increase of UP-light exposure

  8. Manganese oxide electrochemical capacitor with potassium poly(acrylate) hydrogel electrolyte

    Science.gov (United States)

    Lee, Kuang-Tsin; Wu, Nae-Lih

    An aqueous gel electrolyte has for the first time been successfully applied to the MnO 2· nH 2O-based pseudocapacitive electrochemical capacitors (ECs). The gel electrolyte is made of potassium poly(acrylate) (PAAK) polymer and aqueous solution of KCl. With the selected composition, PAAK:KCl:H 2O = 9.0%:6.7%:84.3% by weight, the gel shows no fluidity, possessing an ionic conductivity in the order of 10 -1 S cm -1. The gel electrolyte has been found to give substantially higher specific capacitances than those in the liquid electrolyte with the same salt (KCl) composition (1 M) and high power capability (>10 kW/kg).

  9. Manganese oxide electrochemical capacitor with potassium poly(acrylate) hydrogel electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kuang-Tsin; Wu, Nae-Lih [Department of Chemical Engineering, National Taiwan University, Taipei 106 (China)

    2008-04-15

    An aqueous gel electrolyte has for the first time been successfully applied to the MnO{sub 2}.nH{sub 2}O-based pseudocapacitive electrochemical capacitors (ECs). The gel electrolyte is made of potassium poly(acrylate) (PAAK) polymer and aqueous solution of KCl. With the selected composition, PAAK:KCl:H{sub 2}O = 9.0%:6.7%:84.3% by weight, the gel shows no fluidity, possessing an ionic conductivity in the order of 10{sup -1} S cm{sup -1}. The gel electrolyte has been found to give substantially higher specific capacitances than those in the liquid electrolyte with the same salt (KCl) composition (1 M) and high power capability (>10 kW/kg). (author)

  10. Study on the prediction of visible absorption maxima of azobenzene compounds

    Science.gov (United States)

    Liu, Jun-na; Chen, Zhi-rong; Yuan, Shen-feng

    2005-01-01

    The geometries of azobenzene compounds are optimized with B3LYP/6-311G* method, and analyzed with nature bond orbital, then their visible absorption maxima are calculated with TD-DFT method and ZINDO/S method respectively. The results agree well with the observed values. It was found that for the calculation of visible absorption using ZINDO/S method could rapidly yield better results by adjusting OWFπ-π (the relationship between π-π overlap weighting factor) value than by the TD-DFT method. The method of regression showing the linear relationship between OWFπ-π and BLN-N (nitrogen-nitrogen bond lengths) as OWF π-π=−8.1537+6.5638BL N-N, can be explained in terms of quantum theory, and also be used for prediction of visible absorption maxima of other azobenzne dyes in the same series. This study on molecules’ orbital geometry indicates that their visible absorption maxima correspond to the electron transition from HOMO (the highest occupied molecular orbital) to LUMO (the lowest unoccupied molecular orbital). PMID:15909349

  11. Investigation of complexing equilibrium of polyacrylate-anion with cadmium ions by polarographic method

    Energy Technology Data Exchange (ETDEWEB)

    Avlyanov, Zh K; Kabanov, N M; Zezin, A B

    1985-01-01

    Polarographic investigation of cadmium complex with polyacrylate-anion in aqueous KCl solution is carried out. It is shown that the polarographic method allows one to define equilibrium constants of polymer metallic complex (PMC) formation even in the case when current magnitudes are defined by PMC dissociation reaction kinetic characteristics. The obtained equilibrium constants of stepped complexing provide the values of mean coordination PAAxCd complex number of approximately 1.5, that coincides with the value obtained by the potentiometric method.

  12. Investigation of complexing equilibrium of polyacrylate-anion with cadmium ions by polarographic method

    International Nuclear Information System (INIS)

    Avlyanov, Zh.K.; Kabanov, N.M.; Zezin, A.B.

    1985-01-01

    Polarographic investigation of cadmium complex with polyacrylate-anion in aqueous KCl solution is carried out. It is shown that the polarographic method allows one to define equilibrium constants of polymer metallic complex (PMC) formation even in the case, when current magnitudes are defined by PMC dissociation reaction kinetic characteristics. The obtained equilibrium constants of stepped complexing provide the values of mean coordination PAAxCd complex number of approximately 1.5, that coinsides with the value obtained by the potentiometric method

  13. Dielectric investigations under irradiation of photo chromic copolymers with azobenzene moieties in the side group

    International Nuclear Information System (INIS)

    Turky, G.; Stumpe, J.; Schonhals, A.

    2005-01-01

    Photo chromic polymers are promising materials for optical switching and image storage because the orientation of mesogens in thin films of these materials can be modified by light. Real time dielectric spectroscopy is applied to study the time dependence of the light induced trans/cis-isomerization process for polymethacrylate copolymer system. For the investigated azobenzene group it was found that the dipole moment of the Z state is greater than that of E state. Therefore normalized . increases with increasing irradiation time (E/Z isomerization) at different considered wavelengths. A steady state is reached after about 10000 s. The effect of irradiation reduces at longer and shorter wavelengths. Stretched exponential equation was used to describe the effect of irradiation time on the normalized permittivity

  14. Vacancy Clusters on Surfaces of Au Nanoparticles Embedded in MgO

    International Nuclear Information System (INIS)

    Xu, Jun; Mills, A. P. Jr.; Ueda, A.; Henderson, D. O.; Suzuki, R.; Ishibashi, S.

    1999-01-01

    MeV implantation of gold ions into MgO(100) followed by annealing is a method to form gold nanoparticles for obtaining modified optical properties. We show from variable-energy positron spectroscopy that clusters of 2 Mg and 2 O vacancies (v 4 ) are attached to the gold nanoparticle surfaces within the projected range (R p ) . We also find that v 4 vacancy clusters are created at depths less than R p , and extend into the region greater than R p due to damage induced by knock-on collisions. (c) 1999 The American Physical Society

  15. Subsurface thermal behaviour of tissue mimics embedded with large blood vessels during plasmonic photo-thermal therapy.

    Science.gov (United States)

    Paul, Anup; Narasimhan, Arunn; Das, Sarit K; Sengupta, Soujit; Pradeep, Thalappil

    2016-11-01

    The purpose of this study was to understand the subsurface thermal behaviour of a tissue phantom embedded with large blood vessels (LBVs) when exposed to near-infrared (NIR) radiation. The effect of the addition of nanoparticles to irradiated tissue on the thermal sink behaviour of LBVs was also studied. Experiments were performed on a tissue phantom embedded with a simulated blood vessel of 2.2 mm outer diameter (OD)/1.6 mm inner diameter (ID) with a blood flow rate of 10 mL/min. Type I collagen from bovine tendon and agar gel were used as tissue. Two different nanoparticles, gold mesoflowers (AuMS) and graphene nanostructures, were synthesised and characterised. Energy equations incorporating a laser source term based on multiple scattering theories were solved using finite element-based commercial software. The rise in temperature upon NIR irradiation was seen to vary according to the position of the blood vessel and presence of nanoparticles. While the maximum rise in temperature was about 10 °C for bare tissue, it was 19 °C for tissue embedded with gold nanostructures and 38 °C for graphene-embedded tissues. The axial temperature distribution predicted by computational simulation matched the experimental observations. A different subsurface temperature distribution has been obtained for different tissue vascular network models. The position of LBVs must be known in order to achieve optimal tissue necrosis. The simulation described here helps in predicting subsurface temperature distributions within tissues during plasmonic photo-thermal therapy so that the risks of damage and complications associated with in vivo experiments and therapy may be avoided.

  16. Dispersion and Stabilization of Photocatalytic TiO2 Nanoparticles in Aqueous Suspension for Coatings Applications

    Directory of Open Access Journals (Sweden)

    Siti Hajar Othman

    2012-01-01

    Full Text Available To produce titanium dioxide (TiO2 nanoparticle coatings, it is desirable that the nanoparticles are dispersed into a liquid solution and remain stable for a certain period of time. Controlling the dispersion and aggregation of the nanoparticles is crucial to exploit the advantages of the nanometer-sized TiO2 particles. In this work, TiO2 nanoparticles were dispersed and stabilized in aqueous suspensions using two common dispersants which were polyacrylic acid (PAA and ammonium polymethacrylate (Darvan C. The effect of parameters such as ultrasonication amplitude and type and amount of dispersants on the dispersibility and stability of the TiO2 aqueous suspensions were examined. Rupture followed by erosion was determined to be the main break up mechanisms when ultrasonication was employed. The addition of dispersant was found to produce more dispersed and more stabilized aqueous suspension. 3 wt.% of PAA with average molecular weight (Mw of 2000 g/mol (PAA 2000 was determined to produce the best and most stable dispersion. The suspensions were then coated on quartz glass, whereby the photocatalytic activity of the coatings was studied via the degradation of formaldehyde gas under UV light. The coatings were demonstrated to be photocatalytically active.

  17. Synthesis and characterization of TGA-capped CdTe nanoparticles embedded in PVA matrix

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, S.K.; Kaur, Ramneek; Sharma, Mamta [Panjab University, Department of Physics, Center of Advanced Study in Physics, Chandigarh (India)

    2014-10-25

    This paper reports the synthesis and characterization of TGA-capped CdTe nanoparticles and its nanocomposite in a PVA matrix prepared by ex situ technique. The crystallite sizes of the CdTe nanoparticles and nanocomposite calculated from X-ray diffraction patterns are 6.07 and 7.75 nm with hexagonal structure, respectively. The spherical nature of the CdTe nanoparticles is confirmed from transmission electron microscopy measurements. Fourier transform infrared spectroscopy shows good interaction between the CdTe nanoparticles and PVA matrix. The absorption and emission spectra have also been studied. The stability of the TGA-capped CdTe nanoparticles increases after dispersion in a PVA matrix. In electrical measurements, the dark conductivity and the steady-state photoconductivity of CdTe nanocomposite thin films have been studied. The effect of temperature and intensity on the transient photoconductivity of CdTe nanocomposite is also studied. The values of differential life time have been calculated from the decay of photocurrent with time. The non-exponential decay of photoconductivity is observed indicating that the traps exist at all the energies in the band gap, making these materials suitable for various optoelectronic devices. (orig.)

  18. Synthesis and characterization of TGA-capped CdTe nanoparticles embedded in PVA matrix

    International Nuclear Information System (INIS)

    Tripathi, S.K.; Kaur, Ramneek; Sharma, Mamta

    2015-01-01

    This paper reports the synthesis and characterization of TGA-capped CdTe nanoparticles and its nanocomposite in a PVA matrix prepared by ex situ technique. The crystallite sizes of the CdTe nanoparticles and nanocomposite calculated from X-ray diffraction patterns are 6.07 and 7.75 nm with hexagonal structure, respectively. The spherical nature of the CdTe nanoparticles is confirmed from transmission electron microscopy measurements. Fourier transform infrared spectroscopy shows good interaction between the CdTe nanoparticles and PVA matrix. The absorption and emission spectra have also been studied. The stability of the TGA-capped CdTe nanoparticles increases after dispersion in a PVA matrix. In electrical measurements, the dark conductivity and the steady-state photoconductivity of CdTe nanocomposite thin films have been studied. The effect of temperature and intensity on the transient photoconductivity of CdTe nanocomposite is also studied. The values of differential life time have been calculated from the decay of photocurrent with time. The non-exponential decay of photoconductivity is observed indicating that the traps exist at all the energies in the band gap, making these materials suitable for various optoelectronic devices. (orig.)

  19. Gamma-irradiation assisted seeded growth of Ag nanoparticles within PVA matrix

    International Nuclear Information System (INIS)

    Eisa, Wael H.; Abdel-Moneam, Yasser K.; Shaaban, Yasser; Abdel-Fattah, Atef A.; Abou Zeid, Amira M.

    2011-01-01

    Highlights: → Nucleation and growth must be two completely separated steps. → The amount of zerovalent nuclei can be controlled by varying the irradiation dose. → PVA act as physical barrier to inhibit aggregation or the growth of Ag nanoparticles. - Abstract: Polyvinyl alcohol (PVA)/Ag hybrid nanocomposites have been prepared from polymeric film of PVA and silver nitrate (AgNO 3 ). The silver nanoparticles were generated in PVA matrix by the reduction of silver ions with gamma-irradiation. UV-visible spectra showed a single peak at 422 nm, arising from the surface plasmon absorption of silver nanoparticles. The shifting of surface plasmon resonance peak after irradiation reveals that the gamma irradiation can be used as a size controlling agent for the preparation of silver nanoparticles embedded in PVA film. This result was in good agreement with the result obtained from TEM images. The TEM images showed the narrow size distribution of the obtained Ag nanoparticles with average particle size of 30 nm, which decreased to 17 nm with increasing irradiation dose. The X-ray diffraction analysis revealed that silver metal was present in face centered cubic (fcc) crystal structure. These results clearly indicate that monodispersed silver nanoparticles are embedded homogenously in PVA matrix.

  20. Laser oxidative pyrolysis synthesis and annealing of TiO{sub 2} nanoparticles embedded in carbon–silica shells/matrix

    Energy Technology Data Exchange (ETDEWEB)

    Fleaca, C.T. [National Institute for Plasma, Laser and Radiation Physics (NILPRP), Atomistilor 409, P.O. Box MG 36, R-077125 Magurele, Bucharest (Romania); “Politehnica” University of Bucharest, Physics Department, Independentei 313, Bucharest (Romania); Scarisoreanu, M., E-mail: monica.scarisoreanu@inflpr.ro [National Institute for Plasma, Laser and Radiation Physics (NILPRP), Atomistilor 409, P.O. Box MG 36, R-077125 Magurele, Bucharest (Romania); Morjan, I.; Luculescu, C.; Niculescu, A.-M.; Badoi, A. [National Institute for Plasma, Laser and Radiation Physics (NILPRP), Atomistilor 409, P.O. Box MG 36, R-077125 Magurele, Bucharest (Romania); Vasile, E. [“Politehnica” University of Bucharest, Faculty of Applied Chemistry and Materials Science, Department of Oxide Materials and Nanomaterials, Gh. Polizu 1-7, Bucharest (Romania); Kovacs, G. [“Babes-Boyai” University, Faculty of Chemistry and Chemical Engineering, Arany Janos 11, Cluj-Napoca (Romania)

    2015-05-01

    Highlights: • TiO{sub 2}-based nanocomposites were obtained by one-step laser oxidative pyrolysis. • Titania particles are surrounded by/embedded in carbon/silica shells/matrix. • They contain an anatase/rutile mixture with mean crystalline diameters up to 24 nm. • Their carbon content decreased with the increasing of introduced air coflow. • Their bandgap energy decreased due to the carbon incorporation. - Abstract: Titania nanoparticles containing a mixture of anatase and rutile phases (with mean crystalline sizes up to 24 nm) covered with/embedded in carbon/silica thin layers or matrix were obtained in a single step using laser oxidative pyrolysis. Titanium tetrachloride and hexamethyldisiloxane (HMDSO) vapors were separately introduced into the reaction zone – both together with the laser-absorbing agent (sensitizer) ethylene – which acts also as carbon source – and the oxidant (air) – through the inner and the concentric nozzle, respectively. By increasing the air flow through the annular nozzle, while keeping constant the TiC{sub 4}, inner air, HMDSO and C{sub 2}H{sub 4} flows, the atomic carbon concentration as well as the rutile to anatase ratio in the resulted nanopowders decrease. A much brighter and extended flame was observed for the experiment involving the greatest air flow. The Ti/Si atomic ratio in the resulted nanocomposites was higher than that from the introduced precursors (1.8), indicating a partial siloxane conversion to silica. The annealed powders (at 450 °C to further carbon content reducing) exhibit a lower bandgap energy than those of the reference sample without silica (and also lower than the commercial Degussa P25 nano-TiO{sub 2})

  1. Structure and Plasmonic Properties of Thin PMMA Layers with Ion-Synthesized Ag Nanoparticles

    DEFF Research Database (Denmark)

    Popok, Vladimir; Hanif, Muhammad; Mackova, Anna

    2015-01-01

    nanoparticles above the surface. The synthesized nanoparticles can be split into two groups: (i) located at the surface and (ii) fully embedded in the shallow layer. These two groups provide corresponding spectral bands related to localized surface plasmon resonance. The bands demonstrate considerable intensity...

  2. The calculation of surface free energy based on embedded atom method for solid nickel

    International Nuclear Information System (INIS)

    Luo Wenhua; Hu Wangyu; Su Kalin; Liu Fusheng

    2013-01-01

    Highlights: ► A new solution for accurate prediction of surface free energy based on embedded atom method was proposed. ► The temperature dependent anisotropic surface energy of solid nickel was obtained. ► In isotropic environment, the approach does not change most predictions of bulk material properties. - Abstract: Accurate prediction of surface free energy of crystalline metals is a challenging task. The theory calculations based on embedded atom method potentials often underestimate surface free energy of metals. With an analytical charge density correction to the argument of the embedding energy of embedded atom method, an approach to improve the prediction for surface free energy is presented. This approach is applied to calculate the temperature dependent anisotropic surface energy of bulk nickel and surface energies of nickel nanoparticles, and the obtained results are in good agreement with available experimental data.

  3. An optically transparent and flexible memory with embedded gold nanoparticles in a polymethylsilsesquioxane dielectric

    International Nuclear Information System (INIS)

    Ooi, P.C.; Aw, K.C.; Gao, W.; Razak, K.A.

    2013-01-01

    In this work, we demonstrated a simple fabrication route towards an optically transparent and flexible memory device. The device is simple and consists of a metal/insulator/semiconductor structure; namely MIS. The preliminary MIS study with gold nanoparticles embedded between the polymethylsilsesquioxane layers was fabricated on p-Si substrate and the capacitance versus voltage measurements confirmed the charge trapped capability of the fabricated MIS memory device. Subsequently, an optically transparent and flexible MIS memory device made from indium–tin-oxide coated polyethylene terephthalate substrate and pentacene was used to replace the opaque p-Si substrate as the active layer. Current versus voltage (I–V) plot of the transparent and flexible device shows the presence of hysteresis. In an I–V plot, three distinct regions have been identified and the transport mechanisms are explained. The fabricated optically transparent and mechanically flexible MIS memory device can be programmed and erased multiple times, similar to a flash memory. Mechanical characterization to determine the robustness of the flexible memory device was also conducted but failed to establish any relationship in this preliminary work as the effect was random. Hence, more work is needed to understand the reliability of this device, especially when they are subjected to mechanical stress. - Highlights: ► An optically transparent and mechanically flexible memory is presented. ► Electrical characteristics show reprogrammable memory similar to flash memory. ► Transport mechanisms are proposed and explained. ► Mechanical bending tests are conducted

  4. An optically transparent and flexible memory with embedded gold nanoparticles in a polymethylsilsesquioxane dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Ooi, P.C. [Mechanical Engineering, The University of Auckland (New Zealand); Aw, K.C., E-mail: k.aw@auckland.ac.nz [Mechanical Engineering, The University of Auckland (New Zealand); Gao, W. [Chemical and Materials Engineering, The University of Auckland (New Zealand); Razak, K.A. [School of Materials and Mineral Resources Engineering, Universiti Sains (Malaysia); NanoBiotechnology Research and Innovation, INFORMM, Universiti Sains (Malaysia)

    2013-10-01

    In this work, we demonstrated a simple fabrication route towards an optically transparent and flexible memory device. The device is simple and consists of a metal/insulator/semiconductor structure; namely MIS. The preliminary MIS study with gold nanoparticles embedded between the polymethylsilsesquioxane layers was fabricated on p-Si substrate and the capacitance versus voltage measurements confirmed the charge trapped capability of the fabricated MIS memory device. Subsequently, an optically transparent and flexible MIS memory device made from indium–tin-oxide coated polyethylene terephthalate substrate and pentacene was used to replace the opaque p-Si substrate as the active layer. Current versus voltage (I–V) plot of the transparent and flexible device shows the presence of hysteresis. In an I–V plot, three distinct regions have been identified and the transport mechanisms are explained. The fabricated optically transparent and mechanically flexible MIS memory device can be programmed and erased multiple times, similar to a flash memory. Mechanical characterization to determine the robustness of the flexible memory device was also conducted but failed to establish any relationship in this preliminary work as the effect was random. Hence, more work is needed to understand the reliability of this device, especially when they are subjected to mechanical stress. - Highlights: ► An optically transparent and mechanically flexible memory is presented. ► Electrical characteristics show reprogrammable memory similar to flash memory. ► Transport mechanisms are proposed and explained. ► Mechanical bending tests are conducted.

  5. Combined RBS and TEM characterization of nano-SiGe layers embedded in SiO2

    International Nuclear Information System (INIS)

    Kling, A.; Ortiz, M.I.; Sangrador, J.; Rodriguez, A.; Rodriguez, T.; Ballesteros, C.; Soares, J.C.

    2006-01-01

    Grazing incidence RBS has been tested as a technique to detect and characterize SiGe nanoparticles embedded in a SiO 2 matrix. Suitable structures were deposited by low pressure chemical vapour deposition and characterized by TEM and RBS. The layers containing nanoparticles have been modelled by stacks of sublayers consisting of SiGeO layers with compositions calculated according to presumed shapes, sizes, Si/Ge ratios and particle area densities and used as input for RUMP. The nanoparticle parameters obtained by fitting the experimental RBS spectra agree well with the findings by TEM. This demonstrates that RBS is a useful and fast technique to characterize this kind of structures

  6. Effects of sodium polyacrylate on water retention and infiltration capacity of a sandy soil

    OpenAIRE

    Zhuang, Wenhua; Li, Longguo; Liu, Chao

    2013-01-01

    Based on the laboratory study, the effects of sodium polyacrylate (SP) was investigated at 5 rates of 0, 0.08, 0.2, 0.5, and 1%, on water retention, saturated hydraulic conductivity(Ks), infiltration characteristic and water distribution profiles of a sandy soil. The results showed that water retention and available water capacity effectively increased with increasing SP rate. The Ks and the rate of wetting front advance and infiltration under certain pond infiltration was significantly reduc...

  7. Synthesis and Properties of IPN Hydrogels Based on Konjac Glucomannan and Poly(acrylic acid)

    Institute of Scientific and Technical Information of China (English)

    Bing LIU; Zhi Lan LIU; Ren Xi ZHUO

    2006-01-01

    Novel interpenetrating polymer network (IPN) hydrogels based on konjac glucomannan (KGM) and poly(acrylic acid) (PAA) were prepared by polymerization and cross-linking of acrylic acid (AA) in the pre-fabricated KGM gel. The IPN gel was analyzed by FT-IR. The studies on the equilibrium swelling ratio of IPN hydrogels revealed their sensitive response to environmental pH value. The results of in vitro degradation showed that the IPN hydrogels retain the enzymatic degradation character of KGM.

  8. Germanium nanoparticles grown at different deposition times for memory device applications

    International Nuclear Information System (INIS)

    Mederos, M.; Mestanza, S.N.M.; Lang, R.; Doi, I.; Diniz, J.A.

    2016-01-01

    In the present work, circular Metal-Oxide-Semiconductor capacitors with 200 μm of diameter and germanium (Ge) nanoparticles (NPs) embedded in the gate oxide are studied for memory applications. Optimal process parameters are investigated for Ge NPs growing by low pressure chemical vapor deposition at different deposition times. Photoluminescence measurements showed room-temperature size-dependent green-red region bands attributed to quantum confinement effects present in the NPs. High-frequency capacitance versus voltage measurements demonstrated the memory effects on the MOS structures due to the presence of Ge NPs in the gate oxide acting as discrete floating gates. Current versus voltage measurements confirmed the Fowler-Nordheim tunneling as the programming mechanism of the devices. - Highlights: • Ge nanoparticles with high density and uniforms sizes were obtained by LPCVD. • Room-temperature size-dependent bands of photoluminescence were observed. • MOS capacitors with Ge nanoparticles embedded in the oxide were fabricated. • Ge nanoparticles are the main responsible for the memory properties in the devices. • Fowler-Nordheim tunneling is the conduction mechanism observed on the devices.

  9. Germanium nanoparticles grown at different deposition times for memory device applications

    Energy Technology Data Exchange (ETDEWEB)

    Mederos, M., E-mail: melissa.mederos@gmail.com [Center for Semiconductor Components and Nanotechnology (CCSNano), University of Campinas (Unicamp), Rua João Pandia Calógeras 90, Campinas, CEP: 13083-870, São Paulo (Brazil); Mestanza, S.N.M. [Federal University of ABC (UFABC), Rua Santa Adélia 166, Bangu, Santo André, CEP: 09210-170, São Paulo (Brazil); Lang, R. [Institute of Science and Technology, Federal University of São Paulo (UNIFESP), Rua Talim, 330, São José dos Campos, CEP: 12231-280, São Paulo (Brazil); Doi, I.; Diniz, J.A. [Center for Semiconductor Components and Nanotechnology (CCSNano), University of Campinas (Unicamp), Rua João Pandia Calógeras 90, Campinas, CEP: 13083-870, São Paulo (Brazil); School of Electrical and Computer Engineering, University of Campinas (Unicamp), Av. Albert Einstein 400, Campinas, CEP: 13083-852, São Paulo (Brazil)

    2016-07-29

    In the present work, circular Metal-Oxide-Semiconductor capacitors with 200 μm of diameter and germanium (Ge) nanoparticles (NPs) embedded in the gate oxide are studied for memory applications. Optimal process parameters are investigated for Ge NPs growing by low pressure chemical vapor deposition at different deposition times. Photoluminescence measurements showed room-temperature size-dependent green-red region bands attributed to quantum confinement effects present in the NPs. High-frequency capacitance versus voltage measurements demonstrated the memory effects on the MOS structures due to the presence of Ge NPs in the gate oxide acting as discrete floating gates. Current versus voltage measurements confirmed the Fowler-Nordheim tunneling as the programming mechanism of the devices. - Highlights: • Ge nanoparticles with high density and uniforms sizes were obtained by LPCVD. • Room-temperature size-dependent bands of photoluminescence were observed. • MOS capacitors with Ge nanoparticles embedded in the oxide were fabricated. • Ge nanoparticles are the main responsible for the memory properties in the devices. • Fowler-Nordheim tunneling is the conduction mechanism observed on the devices.

  10. Silver oxide nanoparticles embedded silk fibroin spuns: Microwave mediated preparation, characterization and their synergistic wound healing and anti-bacterial activity.

    Science.gov (United States)

    Babu, Punuri Jayasekhar; Doble, Mukesh; Raichur, Ashok M

    2018-03-01

    The synergistic wound healing and antibacterial activity of silver oxide nanoparticles embedded silk fibroin (Ag 2 O-SF) spuns is reported here. UV-Vis spectro photometric analysis of these spuns showed the surface plasmon resonance (SPR) confirming the formation of the silver oxide nanoparticles (Ag 2 O NPs) on the surface of the silk fibroin (SF). Scanning electron microscope (SEM) and Differential scanning calorimetry (DSC) also confirmed the presence of Ag 2 O NPs on surface of SF. X-ray diffraction (XRD) analysis revealed the crystalline nature of both SF and Ag 2 O-SF. Fourier transform infrared spectroscopy (FT-IR) results showed the different forms of silk (I and II) and their corresponding protein (amide I, II, III) confirmations. Biodegradation study revealed insignificant changes in the morphology of Ag 2 O-SF spuns even after 14 days of immersion in phosphate buffered saline (PBS). Ag 2 O-SF spuns showed excellent antibacterial activity against both pathogen (S. aureus and M. tuberculosis) and non-pathogen (E. coli) bacteria. More importantly, In vitro wound healing (scratch assay) assay revealed fast migration of the T3T fibroblast cells through the scratch area treated with extract of Ag 2 O-SF spuns and the area was completely covered within 24 h. Cytotoxicity assay confirmed the biocompatible nature of the Ag 2 O-SF spuns, thus suggesting an ideal material for wound healing and anti-bacterial applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Influence of He/O2 atmospheric pressure plasma jet treatment on subsequent wet desizing of polyacrylate on PET fabrics

    International Nuclear Information System (INIS)

    Li Xuming; Lin Jun; Qiu Yiping

    2012-01-01

    The influence of He/O 2 atmospheric pressure plasma jet (APPJ) treatment on subsequent wet desizing of polyacrylate on PET fabrics was studied in the present paper. Weight loss results indicated that the weight loss increased with an increase of plasma treatment time. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) showed an increased surface roughness after the plasma treatment. SEM also showed that the fiber surfaces were as clean as unsized fibers after 35 s treatment followed by NaHCO 3 desizing. X-ray photoelectron spectroscopy (XPS) analysis indicated that oxygen-based functional groups increased for the plasma treated polyacrylate sized fabrics. The percent desizing ratio (PDR) results showed that more than 99% PDR was achieved after 65 s plasma treatment followed by a 5 min NaHCO 3 desizing. Compared to conventional wet desizing, indicating that plasma treatment could significantly reduce desizing time.

  12. Laser-generated plasma by carbon nanoparticles embedded into polyethylene

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Ceccio, G.; Cutroneo, Mariapompea

    2016-01-01

    Roč. 375, MAY (2016), s. 93-99 ISSN 0168-583X R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk(CZ) LM2011019 Institutional support: RVO:61389005 Keywords : carbon nanoparticles * laser-generated plasma * Time-of-flight measurements * advanced targets Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.109, year: 2016

  13. Enhancement in visible light-responsive photocatalytic activity by embedding Cu-doped ZnO nanoparticles on multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, M., E-mail: mzkhm73@gmail.com [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Ahmed, E., E-mail: profejaz@gmail.com [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Hong, Z.L.; Jiao, X.L. [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Abbas, T. [Institute of Industrial Control System, Rawalpindi (Pakistan); Khalid, N.R. [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2013-11-15

    Copper doped ZnO nanoparticles embedded on multi-walled carbon nanotubes (CNTs) were successfully synthesized using a facile, nontoxic sol method. The resulting visible light-responsive Cu-doped ZnO/CNTs composites were characterized using powder X-ray diffraction (XRD), high resolution transmission electron microscope (HR-TEM), transmission electron microscope (TEM), scanning electron microscope (SEM) with energy dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS) and Brunauer Emmett Teller (BET) surface area analyzer. Optical properties of Cu-doped ZnO/CNTs nanocomposites, studied using UV–vis diffuse reflectance spectroscopy and photoluminescence spectroscopy (PL), which exhibited extended light absorption in visible light region and possessed better charge separation capability, respectively as compared to Cu-doped ZnO, pure ZnO and ZnO/CNTs composite. The photocatalytic activity was tested by degradation of methyl orange (MO) dye under visible light irradiation. The results demonstrated that Cu-doped ZnO/CNTs nanocomposites effectively bleached out MO, showing an impressive photocatalytic enhancement over ZnO, commercial ZnO, Cu-doped ZnO nanoparticles and ZnO/CNTs nanocomposites. Chemical oxygen demand (COD) of textile wastewater was also measured before and after the photocatalysis experiment under sunlight to evaluate the mineralization of wastewater. The significant decrease in COD of the treated effluent revealed a complete destruction of the organic molecules along with color removal. This dramatically enhanced photoactivity of nanocomposite photocatalysts was attributed to greater adsorptivity of dyes, extended light absorption and increased charge separation efficiency due to excellent electrical properties of carbon nanotubes and the large surface area.

  14. NMR-based metabonomic analysis of MnO-embedded iron oxide nanoparticles as potential dual-modal contrast agents

    Science.gov (United States)

    Li, Jinquan; Zhou, Zijian; Feng, Jianghua; Cai, Shuhui; Gao, Jinhao; Chen, Zhong

    2014-05-01

    MnO-embedded iron oxide nanoparticles (MnIO-NPs) can be treated as potential dual-modal contrast agents. However, their overall bio-effects and potential toxicity remain unknown. In this study, the metabolic effects of MnIO-NPs (dosed at 1 and 5 mg Fe/kg) on Sprague-Dawley rats were investigated using metabonomic analysis, histopathological examination, and conventional biochemical analysis. The histological changes included a focal inflammation in the liver at high-dose and a slightly enlarged area of splenic white pulp after 48 h post-dose. Blood biochemical analysis showed that albumin, globulins, aspartate aminotransferase, lactate dehydrogenase, blood urea nitrogen, and glucose changed distinctly compared to the control. The metabonomic analysis of body fluids (serum and urine) and tissues (liver, kidney, and spleen) indicated that MnIO-NPs induced metabolic perturbation in rats including energy, nucleotides, amino acids and phospholipid metabolisms. Besides, the variations of supportive nutrients: valine, leucine, isoleucine, nicotinamide adenine dinucleotide (phosphate), and nicotinamide, and the conjugation substrates: glycine, taurine, glutamine, glutathione, and methyl donors (formate, sarcosine, dimethylglycine, choline, and betaine) were involved in detoxification reaction of MnIO-NPs. The obtained information would provide identifiable ground for the candidate selection and optimization.

  15. A novel C-shaped, gold nanoparticle coated, embedded polymer waveguide for localized surface plasmon resonance based detection.

    Science.gov (United States)

    Prabhakar, Amit; Mukherji, Soumyo

    2010-12-21

    In this study, a novel embedded optical waveguide based sensor which utilizes localized surface plasmon resonance of gold nanoparticles coated on a C-shaped polymer waveguide is being reported. The sensor, as designed, can be used as an analysis chip for detection of minor variations in the refractive index of its microenvironment, which makes it suitable for wide scale use as an affinity biosensor. The C-shaped waveguide coupled with microfluidic channel was fabricated by single step patterning of SU8 on an oxidized silicon wafer. The absorbance due to the localized surface plasmon resonance (LSPR) of SU8 waveguide bound gold nano particle (GNP) was found to be linear with refractive index changes between 1.33 and 1.37. A GNP coated C-bent waveguide of 200 μ width with a bend radius of 1 mm gave rise to a sensitivity of ~5 ΔA/RIU at 530 nm as compared to the ~2.5 ΔA/RIU (refractive index units) of the same dimension bare C-bend SU8 waveguide. The resolution of the sensor probe was ~2 × 10(-4) RIU.

  16. Gold nanoparticles as markers for fluorinated surfaces containing embedded amide groups

    Science.gov (United States)

    Ballarin, Barbara; Barreca, Davide; Bertola, Maurizio; Cristina Cassani, Maria; Carraro, Giorgio; Maccato, Chiara; Mignani, Adriana; Nanni, Daniele; Parise, Chiara; Ranieri, Silvia

    2018-05-01

    Indium tin oxide (ITO) substrates were functionalized with fluoroalkylsilanes (FAS) having formula RFC(O)N(R)(CH2)3Si(OMe)3 (1, R = H, RF = C5F11; 2, R = CH3, RF = C5F11;3, R = H, RF = C3F7) and containing embedded amide moieties between the perfluoroalkyl chain and the syloxanic moiety. Subsequently, Au nanoparticle deposition (AuNP) onto the ITO-FAS functionalized surfaces was carried out by immersion into a solution of citrate-stabilized AuNP. The ITO-FAS and AuNP/ITO-FAS modified systems were characterized by various complementary techniques and compared with AuNP/ITO modified with RF(CH2)2Si(OEt)3 (4, RF = C6F13), free from functional groups between the fluorinated tail and the syloxanic moiety. The results showed that only ITO glasses modified with 1, 2 and 3 displayed an oleophobic, as well as hydrophobic, behaviour and that the AuNP Surface Coverage (SC %) directly depended on the fluoroalkylsilane nature with the following trend: 60% ITO-2 > 16% ITO-3 > 9% ITO-1 > 3% ITO-4. The obtained results revealed that, in organosilane 2, the presence of a methyl group on the amide nitrogen increases the steric hindrance in the rotation around the Nsbnd CO bond, resulting in the co-presence of two stable conformers in comparable amounts. Their co-presence in solution, combined with the lack of intermolecular Nsbnd H⋯OCsbnd N hydrogen bonds among the anchored molecules, has dramatic influences on the functionalized ITO, yielding a disorderedly packed coating able to accommodate a large quantity of AuNP. These results indicate that AuNP can act as excellent probes to evaluate the coating layer quality but, at the same time, it is possible to tune the gold loading on electroactive surfaces depending on the chemical structure of the used fluorinated silane.

  17. Radiation Synthesis of Poly(N-Vinyl Pyrrolidone) Nanogels and Nanoscale Grafting of Poly(Acrylic Acid) from Cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Guven, Olgun; Isik, Semiha Duygu; Barsbay, Murat [Hacettepe University, Department of Chemistry, 06800 Ankara (Turkey)

    2010-07-01

    Ionizing radiation has long been known to be a very useful tool for the preparation of nanogels. Although preparation is straightforward, the control of the sizes of nanogels has been a challenging issue. This report shows the results of our work on using radiation for the synthesis of PVP nanogels in the range of 40-200nm by making use of the principles of solution thermodynamics of aqueous polymer solutions. Nanoscale grafting of responsive polymers however has been of scientific and industrial importance due to fine control of the molecular weight and molecular weight distribution of grafted polymers. The second part of this report deals with the grafting of poly(acrylic acid) onto the surface of cellulose, thus imparting pH response to the substrate. The use of radiation as a constant source of radical generation and Reversible-Addition-Fragmentation-Chain transfer agents for the control of free radical polymerization provided a full control over the molecular weight and distribution of poly(acrylic acid) grafts on cellulose. (author)

  18. Radiation Synthesis of Poly(N-Vinyl Pyrrolidone) Nanogels and Nanoscale Grafting of Poly(Acrylic Acid) from Cellulose

    International Nuclear Information System (INIS)

    Guven, Olgun; Isik, Semiha Duygu; Barsbay, Murat

    2010-01-01

    Ionizing radiation has long been known to be a very useful tool for the preparation of nanogels. Although preparation is straightforward, the control of the sizes of nanogels has been a challenging issue. This report shows the results of our work on using radiation for the synthesis of PVP nanogels in the range of 40-200nm by making use of the principles of solution thermodynamics of aqueous polymer solutions. Nanoscale grafting of responsive polymers however has been of scientific and industrial importance due to fine control of the molecular weight and molecular weight distribution of grafted polymers. The second part of this report deals with the grafting of poly(acrylic acid) onto the surface of cellulose, thus imparting pH response to the substrate. The use of radiation as a constant source of radical generation and Reversible-Addition-Fragmentation-Chain transfer agents for the control of free radical polymerization provided a full control over the molecular weight and distribution of poly(acrylic acid) grafts on cellulose. (author)

  19. Silver nanoparticles embedded in zeolite membranes: release of silver ions and mechanism of antibacterial action

    Science.gov (United States)

    Nagy, Amber; Harrison, Alistair; Sabbani, Supriya; Munson, Robert S; Dutta, Prabir K; Waldman, W James

    2011-01-01

    Background The focus of this study is on the antibacterial properties of silver nanoparticles embedded within a zeolite membrane (AgNP-ZM). Methods and Results These membranes were effective in killing Escherichia coli and were bacteriostatic against methicillin-resistant Staphylococcus aureus. E. coli suspended in Luria Bertani (LB) broth and isolated from physical contact with the membrane were also killed. Elemental analysis indicated slow release of Ag+ from the AgNP-ZM into the LB broth. The E. coli killing efficiency of AgNP-ZM was found to decrease with repeated use, and this was correlated with decreased release of silver ions with each use of the support. Gene expression microarrays revealed upregulation of several antioxidant genes as well as genes coding for metal transport, metal reduction, and ATPase pumps in response to silver ions released from AgNP-ZM. Gene expression of iron transporters was reduced, and increased expression of ferrochelatase was observed. In addition, upregulation of multiple antibiotic resistance genes was demonstrated. The expression levels of multicopper oxidase, glutaredoxin, and thioredoxin decreased with each support use, reflecting the lower amounts of Ag+ released from the membrane. The antibacterial mechanism of AgNP-ZM is proposed to be related to the exhaustion of antioxidant capacity. Conclusion These results indicate that AgNP-ZM provide a novel matrix for gradual release of Ag+. PMID:21931480

  20. Fabrication of Octahedral Gold Nanoparticle embedded Polymer Pattern based on Electron Irradiation and Thermal Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Nam; Lee, Hyeok Moo; Cho, Sung Oh [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2011-05-15

    Noble metal nanoparticles (NPs) such as gold (Au), silver, and copper have been a hot research issue due to their unique optical, electronic, and catalytic properties. On account of the size- and shape- dependent properties of the noble metal NPs, most researches are concentrated on tailoring sizes and shapes of the noble metal NPs. In particular, noble metal NPs with Platonic shapes such as tetrahedron, cube, octahedron, dodecahedron, and icosahedron have significant impact on a variety of applications including surface-enhancement spectroscopy, biochemical sensing, and nanodevice fabrication because sharp corners of the metals lead to high local electric-field enhancement. In addition, patterning or controlled assembly of noble metal NPs is indispensible for biological sensors, micro-/nano-electronic devices, photonic and photovoltaic devices, and surface-enhanced Raman scattering (SERS)-active substrates. Although Platonic noble metal NPs with well defined sizes have been intensively studied, patterning of Platonic noble metal NPs has been rarely demonstrated. Here, we present a strategy to fabricate patterned Au nano-octahedra embedded polymer films by selectively irradiating an electron beam onto HAuCl{sub 4}-loadaed poly(styrene-b-2-vinyl pyridine) (PS-b-P2VP) block copolymer (BCP) precursor films followed by thermal treatment. The BCP plays a important role for the patterning of the precursor film due to a cross-linking behavior under electron irradiation

  1. Dependences of the Tunnel Magnetoresistance and Spin Transfer Torque on the Sizes and Concentration of Nanoparticles in Magnetic Tunnel Junctions

    Science.gov (United States)

    Esmaeili, A. M.; Useinov, A. N.; Useinov, N. Kh.

    2018-01-01

    Dependences of the tunnel magnetoresistance and in-plane component of the spin transfer torque on the applied voltage in a magnetic tunnel junction have been calculated in the approximation of ballistic transport of conduction electrons through an insulating layer with embedded magnetic or nonmagnetic nanoparticles. A single-barrier magnetic tunnel junction with a nanoparticle embedded in an insulator forms a double-barrier magnetic tunnel junction. It has been shown that the in-plane component of the spin transfer torque in the double-barrier magnetic tunnel junction can be higher than that in the single-barrier one at the same thickness of the insulating layer. The calculations show that nanoparticles embedded in the tunnel junction increase the probability of tunneling of electrons, create resonance conditions, and ensure the quantization of the conductance in contrast to the tunnel junction without nanoparticles. The calculated dependences of the tunnel magnetoresistance correspond to experimental data demonstrating peak anomalies and suppression of the maximum magnetoresistances at low voltages.

  2. Lipid nanoparticle interactions and assemblies

    Science.gov (United States)

    Preiss, Matthew Ryan

    Novel liposome-nanoparticle assemblies (LNAs) provide a biologically inspired route for designing multifunctional bionanotheranostics. LNAs combine the benefits of lipids and liposomes to encapsulate, transport, and protect hydrophilic and hydrophobic therapeutics with functional nanoparticles. Functional nanoparticles endow LNAs with additional capabilities, including the ability to target diseases, triggered drug release, controlled therapeutic output, and diagnostic capabilities to produce a drug delivery system that can effectively and efficiently deliver therapeutics while reducing side effects. Not only could LNAs make existing drugs better, they could also provide an avenue to allow once promising non-approved drugs (rejected due to harmful side effects, inadequate pharmacokinetics, and poor efficacy) to be safely used through targeted and controlled delivery directly to the diseased site. LNAs have the potential to be stimuli responsive, delivering drugs on command by external (ultrasound, RF heating, etc.) or internal (pH, blood sugar, heart rate, etc.) stimuli. Individually, lipids and nanoparticles have been clinically approved for therapy, such as Doxil (a liposomal doxorubicin for cancer treatment), and diagnosis, such as Feridex (an iron oxide nanoparticle an MRI contrast enhancement agent for liver tumors). In order to engineer these multifunctional LNAs for theranostic applications, the interactions between nanoparticles and lipids must be better understood. This research sought to explore the formation, design, structures, characteristics, and functions of LNAs. To achieve this goal, different types of LNAs were formed, specifically magnetoliposomes, bilayer decorated LNAs (DLNAs), and lipid-coated magnetic nanoparticles (LMNPs). A fluorescent probe was embedded in the lipid bilayer of magnetoliposomes allowing the local temperature and membrane fluidity to be observed. When subjected to an electromagnetic field that heated the encapsulated iron

  3. Nano sand filter with functionalized nanoparticles embedded in anodic aluminum oxide templates

    OpenAIRE

    Phuong, NguyenThi; Andisetiawan, Anugrah; Van Lam, Do; Kim, Jeong Hwan; Choi, Doo-Sun; Whang, Kyung-Hyun; Nham, Jeasun; Lee, Yun Jung; Yoo, Yeong-Eun; Yoon, Jae Sung

    2016-01-01

    Since the ancient Egyptians had used sand as filter media for water purification, its principle has been inherited through generations and it is still being used now in industries. The sand filter consists of sand literally, and the voids within the sand bed are the pores for filtration. Here we present a filtration principle using nanoparticles, so that the voids between the nanoparticles can be considered as effective pores in nanoscale dimension. Anodic aluminum oxide (AAO) membrane has be...

  4. System with embedded drug release and nanoparticle degradation sensor showing efficient rifampicin delivery into macrophages.

    Science.gov (United States)

    Trousil, Jiří; Filippov, Sergey K; Hrubý, Martin; Mazel, Tomáš; Syrová, Zdeňka; Cmarko, Dušan; Svidenská, Silvie; Matějková, Jana; Kováčik, Lubomír; Porsch, Bedřich; Konefał, Rafał; Lund, Reidar; Nyström, Bo; Raška, Ivan; Štěpánek, Petr

    2017-01-01

    We have developed a biodegradable, biocompatible system for the delivery of the antituberculotic antibiotic rifampicin with a built-in drug release and nanoparticle degradation fluorescence sensor. Polymer nanoparticles based on poly(ethylene oxide) monomethyl ether-block-poly(ε-caprolactone) were noncovalently loaded with rifampicin, a combination that, to best of our knowledge, was not previously described in the literature, which showed significant benefits. The nanoparticles contain a Förster resonance energy transfer (FRET) system that allows real-time assessment of drug release not only in vitro, but also in living macrophages where the mycobacteria typically reside as hard-to-kill intracellular parasites. The fluorophore also enables in situ monitoring of the enzymatic nanoparticle degradation in the macrophages. We show that the nanoparticles are efficiently taken up by macrophages, where they are very quickly associated with the lysosomal compartment. After drug release, the nanoparticles in the cmacrophages are enzymatically degraded, with half-life 88±11 min. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Multiple functionalities of Ni nanoparticles embedded in carboxymethyl guar gum polymer: catalytic activity and superparamagnetism

    International Nuclear Information System (INIS)

    Sardar, Debasmita; Sengupta, Manideepa; Bordoloi, Ankur; Ahmed, Md. A.; Neogi, S.K.; Bandyopadhyay, Sudipta; Jain, Ruchi; Gopinath, Chinnakonda S.; Bala, Tanushree

    2017-01-01

    Highlights: • Ni nanoparticles were synthesized in polymer to form Ni-Polymer composite. • Ni nanoparticles retain their superparamagnetism in the composite. • Ni-Polymer composites showed catalytic activity. - Abstract: Composites comprising of metallic nanoparticles in polymer matrices have allured significant importance due to multifunctionalities. Here a simple protocol has been described to embed Ni nanoparticles in carboxymethyl guar gum (CMGG) polymer. The composite formation helps in the stabilization of Ni nanoparticles which are otherwise prone towards aerial oxidation. Further the nanoparticles retain their superparamagnetic nature and catalytic capacity. Ni-Polymer composite catalyses the reduction of 4-Nitrophenol to 4-Aminophenol very efficiently in presence of NaBH_4, attaining a complete conversion under some experimental conditions. Ni-Polymer composite is well characterized using UV–vis spectroscopy, FTIR, XPS, powder XRD, TGA, SEM and TEM. A detailed magnetic measurement using superconducting quantum interference device-vibrating sample magnetometer (SQUID-VSM) reveals superparamagnetic behaviour of the composite.

  6. Multiple functionalities of Ni nanoparticles embedded in carboxymethyl guar gum polymer: catalytic activity and superparamagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Sardar, Debasmita [Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India); Sengupta, Manideepa; Bordoloi, Ankur [Nano Catalysis, Catalytic Conversion and Process Division, CSIR—Indian Institute of Petroleum (IIP), Mohkampur, Dehradun 248005 (India); Ahmed, Md. A.; Neogi, S.K.; Bandyopadhyay, Sudipta [Department of Physics, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India); Jain, Ruchi; Gopinath, Chinnakonda S. [Catalysis Division and Center of Excellence on Surface Science, CSIR—National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008 (India); Bala, Tanushree, E-mail: tanushreebala@gmail.com [Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India)

    2017-05-31

    Highlights: • Ni nanoparticles were synthesized in polymer to form Ni-Polymer composite. • Ni nanoparticles retain their superparamagnetism in the composite. • Ni-Polymer composites showed catalytic activity. - Abstract: Composites comprising of metallic nanoparticles in polymer matrices have allured significant importance due to multifunctionalities. Here a simple protocol has been described to embed Ni nanoparticles in carboxymethyl guar gum (CMGG) polymer. The composite formation helps in the stabilization of Ni nanoparticles which are otherwise prone towards aerial oxidation. Further the nanoparticles retain their superparamagnetic nature and catalytic capacity. Ni-Polymer composite catalyses the reduction of 4-Nitrophenol to 4-Aminophenol very efficiently in presence of NaBH{sub 4}, attaining a complete conversion under some experimental conditions. Ni-Polymer composite is well characterized using UV–vis spectroscopy, FTIR, XPS, powder XRD, TGA, SEM and TEM. A detailed magnetic measurement using superconducting quantum interference device-vibrating sample magnetometer (SQUID-VSM) reveals superparamagnetic behaviour of the composite.

  7. Method for forming thermally stable nanoparticles on supports

    Science.gov (United States)

    Roldan Cuenya, Beatriz; Naitabdi, Ahmed R.; Behafarid, Farzad

    2013-08-20

    An inverse micelle-based method for forming nanoparticles on supports includes dissolving a polymeric material in a solvent to provide a micelle solution. A nanoparticle source is dissolved in the micelle solution. A plurality of micelles having a nanoparticle in their core and an outer polymeric coating layer are formed in the micelle solution. The micelles are applied to a support. The polymeric coating layer is then removed from the micelles to expose the nanoparticles. A supported catalyst includes a nanocrystalline powder, thin film, or single crystal support. Metal nanoparticles having a median size from 0.5 nm to 25 nm, a size distribution having a standard deviation .ltoreq.0.1 of their median size are on or embedded in the support. The plurality of metal nanoparticles are dispersed and in a periodic arrangement. The metal nanoparticles maintain their periodic arrangement and size distribution following heat treatments of at least 1,000.degree. C.

  8. Magnetic nanoparticles for bio-analytical applications

    Science.gov (United States)

    Yedlapalli, Sri Lakshmi

    Magnetic nanoparticles are widely being used in various fields of medicine, biology and separations. This dissertation focuses on the synthesis and use of magnetic nanoparticles for targeted drug delivery and analytical separations. The goals of this research include synthesis of biocompatible surface modified monodisperse superparamagnetic iron oxide nanoparticles (SPIONs) by novel techniques for targeted drug delivery and use of SPIONs as analytical sensing tools. Surface modification of SPIONs was performed with two different co-polymers: tri block co-polymer Pluronics and octylamine modified polyacrylic acid. Samples of SPIONs were subsequently modified with 4 different commercially available, FDA approved tri-block copolymers (Pluronics), covering a wide range of molecular weights (5.75-14.6 kDa). A novel, technically simpler and faster phase transfer approach was developed to surface modify the SPIONs with Pluronics for drug delivery and other biomedical applications. The hydrodynamic diameter and aggregation properties of the Pluronic modified SPIONs were studied by dynamic light scattering (DLS). The coverage of SPIONs with Pluronics was supported with IR Spectroscopy and characterized by Thermo gravimetric Analysis (TGA). The drug entrapment capacity of SPIONs was studied by UV-VIS spectroscopy using a hydrophobic carbocyanine dye, which serves as a model for hydrophobic drugs. These studies resulted in a comparison of physical properties and their implications for drug loading capacities of the four types of Pluronic coated SPIONs for drug delivery assessment. These drug delivery systems could be used for passive drug targeting. However, Pluronics lack the functional group necessary for bioconjugation and hence cannot achieve active targeting. SPIONs were functionalized with octylamine modified polyacrylic acid-based copolymer, providing water solubility and facile biomolecular conjugation. Epirubicin was loaded onto SPIONs and the drug entrapment was

  9. Ex situ integration of iron oxide nanoparticles onto the exfoliated expanded graphite flakes in water suspension

    Directory of Open Access Journals (Sweden)

    Jović Nataša

    2014-01-01

    Full Text Available Hybrid structures composed of exfoliated expanded graphite (EG and iron oxide nanocrystals have been produced by an ex situ process. The iron oxide nanoparticles coated with meso-2,3-dimercaptosuccinic acid (DMSA, or poly(acrylic acid (PAA were integrated onto the exfoliated EG flakes by mixing their aqueous suspensions at room temperature under support of 1-ethyl-3-(3-dimethylaminopropylcarbodiimide (EDC and N-hydroxysuccin-nimide (NHS. EG flakes have been used both, naked and functionalized with branched polyethylenimine (PEI. Complete integration of two constituents has been achieved and mainteined stable for more than 12 months. No preferential spatial distribution of anchoring sites for attachement of iron oxide nanoparticles has been observed, regardless EG flakes have been used naked or functionalized with PEI molecules. The structural and physico-chemical characteristics of the exfoliated expanded graphite and its hybrids nanostructures has been investigated by SEM, TEM, FTIR and Raman techniques. [Projekat Ministarstva nauke Republike Srbije, br. 45015

  10. Honeycomb-like thin films of polystyrene-block-poly(2-vinylpyridine) embedded with gold or silver nanoparticles formed at the planer liquid/liquid interface.

    Science.gov (United States)

    Wang, Di; Ma, Huihui; Chu, Chunxiao; Hao, Jingcheng; Liu, Hong-Guo

    2013-07-15

    Composite thin films of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) decorated with Au or Ag nanoclusters and nanoparticles were fabricated at the interfaces of chloroform solution of PS-b-P2VP and aqueous solutions of HAuCl4 or AgNO3. Transmission electron microscopy (TEM) investigations indicated that large area of a single-layer honeycomb structure was formed, which is composed of polygons (most of them are hexagons) whose walls look like spindles with the length of several hundreds of nanometers. Large amount of Au or Ag nanoparticles are embedded in the walls and the undersides of the honeycomb structures. The formation of these novel composite structures was attributed to the adsorption of block copolymer molecules and inorganic species of AuCl4(-) and Ag(+) ions at the liquid-liquid interface, the combination of the polymer molecules and the inorganic ions, and the self-assembly of the composite molecules. After UV-light irradiation and KBH4 aqueous solution treatment, the inorganic species were reduced completely, as confirmed by UV-vis spectra and X-ray photoelectron spectra. These composite films exhibited high catalytic activities for the reduction of 4-nitrophenol (4-NP) by KBH4 in aqueous solutions. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Blue- and red-emitting phosphor nanoparticles embedded in a porous matrix

    Energy Technology Data Exchange (ETDEWEB)

    Taghavinia, N. [Physics Department, Sharif University of Technology, Tehran P.O. Box 11365-9161, Tehran 14588 (Iran, Islamic Republic of) and Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran 14588 (Iran, Islamic Republic of)]. E-mail: taghavinia@sharif.edu; Lerondel, G. [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Univ. de Technologie de Troyes, 10010 Troyes cedex (France); Makino, H. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Yao, T. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2006-05-01

    Eu{sup 3+}- and Ce{sup 3+}-doped yttrium silicate, as well as Eu{sup 2+}-doped zinc silicate nanoparticles, were grown in a porous SiO{sub 2} matrix using an impregnation method. For Y{sub 2}Si{sub 2}O{sub 7}:Eu{sup 3+}, particles of about 50 nm size were obtained that exhibited several photoluminescence (PL) peaks in red. Different peaks showed slightly different decay times; however, their excitation mechanism was found the same. Increasing the Eu concentration increased the PL intensity while reducing the decay time. Y{sub 2}Si{sub 2}O{sub 7}:Ce{sup 3+} nanoparticles in the porous matrix showed bright blue emission, consisting of two peaks at 358 nm and 378 nm. Re-impregnation process was found effective in changing the relative intensity of the two peaks. Zn{sub 2}SiO{sub 4}:Eu{sup 2+} nanoparticles in porous glass consisted of amorphous particles of about 20 nm size inside the porous matrix. The luminescence was a broad peak centered at 418 nm. These phosphor systems, together with our previously reported Zn{sub 2}SiO{sub 4}:Mn{sup 2+} in porous SiO{sub 2} structure, comprise a red-green-blue system that can be used in display applications.

  12. Modified Polyacrylic Acid-Zinc Composites: Synthesis, Characterization and Biological Activity

    Directory of Open Access Journals (Sweden)

    Mohammed Rafi Shaik

    2016-02-01

    Full Text Available Polyacrylic acid (PAA is an important industrial chemical, which has been extensively applied in various fields, including for several biomedical purposes. In this study, we report the synthesis and modification of this polymer with various phenol imides, such as succinimide, phthalimide and 1,8-naphthalimide. The as-synthesized derivatives were used to prepare polymer metal composites by the reaction with Zn+2. These composites were characterized by using various techniques, including NMR, FT-IR, TGA, SEM and DSC. The as-prepared PAA-based composites were further evaluated for their anti-microbial properties against various pathogens, which include both Gram-positive and Gram-negative bacteria and different fungal strains. The synthesized composites have displayed considerable biocidal properties, ranging from mild to moderate activities against different strains tested.

  13. Preparation of CuS nanoparticles embedded in poly(vinyl alcohol ...

    Indian Academy of Sciences (India)

    WINTEC

    ray diffraction (XRD) analyses and electron diffraction pattern also revealed the forming of CuS crystal structure in the PVA fibres. Keywords. CuS nanoparticles; electrospinning; poly(vinyl alcohol). 1. Introduction. In the past decade, the preparation of low-dimensional semiconductor nanostructures has become a hotspot of.

  14. Influence of He/O{sub 2} atmospheric pressure plasma jet treatment on subsequent wet desizing of polyacrylate on PET fabrics

    Energy Technology Data Exchange (ETDEWEB)

    Li Xuming [Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); College of Textile and Clothing, Shaoxing University, Shaoxing 312000 (China); Lin Jun [Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Qiu Yiping, E-mail: ypqiu@dhu.edu.cn [Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China)

    2012-01-15

    The influence of He/O{sub 2} atmospheric pressure plasma jet (APPJ) treatment on subsequent wet desizing of polyacrylate on PET fabrics was studied in the present paper. Weight loss results indicated that the weight loss increased with an increase of plasma treatment time. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) showed an increased surface roughness after the plasma treatment. SEM also showed that the fiber surfaces were as clean as unsized fibers after 35 s treatment followed by NaHCO{sub 3} desizing. X-ray photoelectron spectroscopy (XPS) analysis indicated that oxygen-based functional groups increased for the plasma treated polyacrylate sized fabrics. The percent desizing ratio (PDR) results showed that more than 99% PDR was achieved after 65 s plasma treatment followed by a 5 min NaHCO{sub 3} desizing. Compared to conventional wet desizing, indicating that plasma treatment could significantly reduce desizing time.

  15. Giant Photogalvanic Effect in Noncentrosymmetric Plasmonic Nanoparticles

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Babicheva, Viktoriia; Evlyukhin, Andrey B.

    2014-01-01

    Photoelectric properties of noncentrosymmetric, similarly oriented metallic nanoparticles embedded in a homogeneous semiconductor matrix are theoretically studied. Because of the asymmetric shape of the nanoparticle boundary, photoelectron emission acquires a preferred direction, resulting......, but is several orders of magnitude stronger. Termed the giant plasmonic photogalvanic effect, the reported phenomenon is valuable for characterizing photoemission and photoconductive properties of plasmonic nanostructures and can find many uses for photodetection and photovoltaic applications....... in a photocurrent flow in that direction when nanoparticles are uniformly illuminated by a homogeneous plane wave. This effect is a direct analogy of the photogalvanic (or bulk photovoltaic) effect known to exist in media with noncentrosymmetric crystal structure, such as doped lithium niobate or bismuth ferrite...

  16. Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery.

    Science.gov (United States)

    Estelrich, Joan; Escribano, Elvira; Queralt, Josep; Busquets, Maria Antònia

    2015-04-10

    In this review, we discuss the recent advances in and problems with the use of magnetically-guided and magnetically-responsive nanoparticles in drug delivery and magnetofection. In magnetically-guided nanoparticles, a constant external magnetic field is used to transport magnetic nanoparticles loaded with drugs to a specific site within the body or to increase the transfection capacity. Magnetofection is the delivery of nucleic acids under the influence of a magnetic field acting on nucleic acid vectors that are associated with magnetic nanoparticles. In magnetically-responsive nanoparticles, magnetic nanoparticles are encapsulated or embedded in a larger colloidal structure that carries a drug. In this last case, an alternating magnetic field can modify the structure of the colloid, thereby providing spatial and temporal control over drug release.

  17. Flexible all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene and Mn3O4 nanoparticle/graphene paper electrodes.

    Science.gov (United States)

    Gao, Hongcai; Xiao, Fei; Ching, Chi Bun; Duan, Hongwei

    2012-12-01

    We report the design of all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene (CNTG) and Mn(3)O(4) nanoparticles/graphene (MG) paper electrodes with a polymer gel electrolyte of potassium polyacrylate/KCl. The composite paper electrodes with carbon nanotubes or Mn(3)O(4) nanoparticles uniformly intercalated between the graphene nanosheets exhibited excellent mechanical stability, greatly improved active surface areas, and enhanced ion transportation, in comparison with the pristine graphene paper. The combination of the two paper electrodes with the polymer gel electrolyte endowed our asymmetric supercapacitor of CNTG//MG an increased cell voltage of 1.8 V, a stable cycling performance (capacitance retention of 86.0% after 10,000 continuous charge/discharge cycles), more than 2-fold increase of energy density (32.7 Wh/kg) compared with the symmetric supercapacitors, and importantly a distinguished mechanical flexibility.

  18. Synthesis and controlled self-assembly of UV-responsive gold nanoparticles in block copolymer templates.

    Science.gov (United States)

    Song, Dong-Po; Wang, Xinyu; Lin, Ying; Watkins, James J

    2014-11-06

    We demonstrate the facile synthesis of gold nanoparticles (GNPs) functionalized by UV-responsive block copolymer ligands, poly(styrene)-b-poly(o-nitrobenzene acrylate)-SH (PS-b-PNBA-SH), followed by their targeted distribution within a lamellae-forming poly(styrene)-b-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer. The multilayer, micelle-like structure of the GNPs consists of a gold core, an inner PNBA layer, and an outer PS layer. The UV-sensitive PNBA segment can be deprotected into a layer containing poly(acrylic acid) (PAA) when exposed to UV light at 365 nm, which enables the simple and precise tuning of GNP surface properties from hydrophobic to amphiphilic. The GNPs bearing ligands of different chemical compositions were successfully and selectively incorporated into the PS-b-P2VP block copolymer, and UV light showed a profound influence on the spatial distributions of GNPs. Prior to UV exposure, GNPs partition along the interfaces of PS and P2VP domains, while the UV-treated GNPs are incorporated into P2VP domains as a result of hydrogen bond interactions between PAA on the gold surface and P2VP domains. This provides an easy way of controlling the arrangement of nanoparticles in polymer matrices by tailoring the nanoparticle surface using UV light.

  19. A approximate non-isothermal method to study kinetic processes controlled by a distribution of rate constants: the case of a photochromic azobenzene derivative dissolved in a polymer matrix

    Czech Academy of Sciences Publication Activity Database

    Janus, K.; Koshets, I. A.; Sworakowski, J.; Nešpůrek, Stanislav

    2002-01-01

    Roč. 12, č. 6 (2002), s. 1657-1663 ISSN 0959-9428 R&D Projects: GA AV ČR IAA1050901; GA ČR GA202/01/0518 Institutional research plan: CEZ:AV0Z4050913 Keywords : photochromism * bleaching kinetics * azobenzene Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.683, year: 2002

  20. Chemical modification of magnetite nanoparticles and preparation of acrylic-base magnetic nanocomposite particles via miniemulsion polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Mahdieh, Athar; Mahdavian, Ali Reza, E-mail: a.mahdavian@ippi.ac.ir; Salehi-Mobarakeh, Hamid

    2017-03-15

    Nowadays, magnetic nanocomposite particles have attracted many interests because of their versatile applications. A new method for chemical modification of Fe{sub 3}O{sub 4} nanoparticles with polymerizable groups is presented here. After synthesis of Fe{sub 3}O{sub 4} nanoparticles by co-precipitation method, they were modified sequentially with 3-aminopropyl triethoxysilane (APTES), acryloyl chloride (AC) and benzoyl chloride (BC) and all were characterized by FTIR, XRD, SEM and TGA analyses. Then the modified magnetite nanoparticles with unsaturated acrylic groups were copolymerized with methyl methacrylate (MMA), butyl acrylate (BA) and acrylic acid (AA) through miniemulsion polymerization. Although several reports exist on preparation of magnetite-base polymer particles, but the efficiency of magnetite encapsulationwith reasonable content and obtaining final stable latexes with limited aggregation ofFe{sub 3}O{sub 4} are still important issues. These were considered here by controlling reaction parameters. Hence, a seriesofmagneticnanocomposites latex particlescontaining different amounts of Fe{sub 3}O{sub 4} nanoparticles (0–10 wt%) were prepared with core-shell morphology and diameter below 200 nm and were characterized by FT-IR, DSC and TGA analyses. Their morphology and size distribution were studied by SEM, TEM and DLS analyses too. Magnetic properties of all products were also measuredby VSM analysis and the results revealed almost superparamagnetic properties for the obtained nanocomposite particles. - Highlights: • Chemical modification of magnetite nanoparticles. • Encapsulation of modified magnetite with acrylic copolymer. • Superparamagnetic Fe3O4/polyacrylic nanocomposite particles.

  1. Design and Fabrication of Microfiber Containing Gold Nanoparticles

    DEFF Research Database (Denmark)

    Jørgensen, Mette Marie; Wang, Guanghui; Hu, Dora Juan Juan

    2010-01-01

    We present a simple fabrication method for embedding gold nanoparticles (GNPs) in a microfiber with two main advantages. The GNPs are positioned within the microfiber securing maximum enhancement of the electrical field and protection of the GNPs from the surroundings; moreover incoupling losses...

  2. Ultra-fine CuO Nanoparticles Embedded in Three-dimensional Graphene Network Nano-structure for High-performance Flexible Supercapacitors

    International Nuclear Information System (INIS)

    Li, Yanrong; Wang, Xue; Yang, Qi; Javed, Muhammad Sufyan; Liu, Qipeng; Xu, Weina; Hu, Chenguo; Wei, Dapeng

    2017-01-01

    High conductivity, large specific surface area and excellent performance redox materials are urgently desired for improving electrochemical energy storage. However, with single redox material it is hard to achieve these properties. Herein, we develop ultra-fine CuO nanoparticles embedded in three-dimensional graphene network grown on carbon cloth (CuO/3DGN/CC) to construct a novel electrode material with advantages of high conductivity, large specific area and excellent redox activity for supercapacitor application. The CuO/3DGN/CC with different CuO mass ratios are utilized to fabricate supercapacitors and the optimized mass loading achieves the high areal capacitance of 2787 mF cm"−"2 and specific capacitance of 1539.8 F g"−"1 at current density of 6 mA cm"−"2 with good stability. In addition, a high-flexible solid-state symmetric supercapacitor is also fabricated by using this CuO/3DGN/CC composite. The device shows excellent electrochemical performance even at various bending angles indicating a promising application for wearable electronic devices, and two devices with area 2 × 4 cm"2 in series can light nine light emitting diodes for more than 3 minutes.

  3. Optoelectronic device with nanoparticle embedded hole injection/transport layer

    Science.gov (United States)

    Wang, Qingwu [Chelmsford, MA; Li, Wenguang [Andover, MA; Jiang, Hua [Methuen, MA

    2012-01-03

    An optoelectronic device is disclosed that can function as an emitter of optical radiation, such as a light-emitting diode (LED), or as a photovoltaic (PV) device that can be used to convert optical radiation into electrical current, such as a photovoltaic solar cell. The optoelectronic device comprises an anode, a hole injection/transport layer, an active layer, and a cathode, where the hole injection/transport layer includes transparent conductive nanoparticles in a hole transport material.

  4. In vitro free radical scavenging activity of platinum nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Aki; Kajita, Masashi; Kim, Juewon; Kanayama, Atsuhiro; Miyamoto, Yusei [Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Bioscience Building 402, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562 (Japan); Takahashi, Kyoko; Mashino, Tadahiko, E-mail: yusei74@k.u-tokyo.ac.j [Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512 (Japan)

    2009-11-11

    A polyacrylic acid (PAA)-protected platinum nanoparticle species (PAA-Pt) was prepared by alcohol reduction of hexachloroplatinate. The PAA-Pt nanoparticles were well dispersed and homogeneous in size with an average diameter of 2.0 {+-} 0.4 nm (n = 200). We used electron spin resonance to quantify the residual peroxyl radical AOO. generated from 2,2-azobis (2-aminopropane) dihydrochloride (AAPH) by thermal decomposition in the presence of O{sub 2} and a spectrophotometric method to quantify the residual 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. PAA-Pt scavenged these two radicals in a dose-dependent manner. Platinum was the functional component. PAA-Pt reduced the rate of oxygen consumption required for linoleic acid peroxidation initiated by AOO. generated from AAPH, indicating inhibition of the propagation of linolate peroxidation. A thiobarbituric acid test also revealed dose-dependent inhibition of the linolate peroxidation by PAA-Pt. Fifty micromolar platinum, as PAA-Pt, completely quenched 250 {mu}M DPPH radical for 5 min. Even when twice diluted in half, the PAA-Pt still quenched 100% of the 250 {mu}M DPPH radical. The scavenging activity of PAA-Pt is durable. These observations suggest that PAA-Pt is an efficient scavenger of free radicals.

  5. Antitumor activity of intratracheal inhalation of temozolomide (TMZ) loaded into gold nanoparticles and/or liposomes against urethane-induced lung cancer in BALB/c mice.

    Science.gov (United States)

    Hamzawy, Mohamed A; Abo-Youssef, Amira M; Salem, Heba F; Mohammed, Sameh A

    2017-11-01

    The current study aimed to develop gold nanoparticles (GNPs) and liposome-embedded gold nanoparticles (LGNPs) as drug carriers for temozolomide (TMZ) and investigate the possible therapeutic effects of intratracheal inhalation of nanoformulation of TMZ-loaded gold nanoparticles (TGNPs) and liposome-embedded TGNPs (LTGNPs) against urethane-induced lung cancer in BALB/c mice. Physicochemical characters and zeta potential studies for gold nanoparticles (GNPs) and liposome-embedded gold nanoparticles (LGNPs) were performed. The current study was conducted by inducing lung cancer chemically via repeated exposure to urethane in BALB/C mice. GNPs and LGNPs were exhibited in uniform spherical shape with adequate dispersion stability. GNPs and LGNPs showed no significant changes in comparison to control group with high safety profile, while TGNPs and LTGNPs succeed to improve all biochemical data and histological patterns. GNPs and LGNPs are promising drug carriers and succeeded in the delivery of small and efficient dose of temozolomide in treatment lung cancer. Antitumor activity was pronounced in animal-treated LTGNPs, these effects may be due to synergistic effects resulted from combination of temozolomide and gold nanoparticles and liposomes that may improve the drug distribution and penetration.

  6. Polyacrylate microspheres composite for all-solid-state reference electrodes.

    Science.gov (United States)

    Kisiel, Anna; Donten, Mikołaj; Mieczkowski, Józef; Rius-Ruiz, F Xavier; Maksymiuk, Krzysztof; Michalska, Agata

    2010-09-01

    A novel concept is proposed for the encapsulation of components within polyacrylate microspheres, prior to their incorporation into a membrane phase. Thus finer and better controlled dispersion of heterogeneous membrane components can be achieved. This concept was verified by using a poly(n-butyl acrylate) membrane-based reference electrode as an example. In this example the proper dispersion of solid constituents of the heterogeneous membrane and prevention of their leakage are both of primary importance. Potassium chloride-loaded poly(n-butyl acrylate) microspheres were prepared and then left in contact with silver nitrate to convert some of the KCl into AgCl. The material obtained was introduced into a poly(n-butyl acrylate) membrane. The reference electrode membranes obtained in this way were characterized with much more stable potential (both in different electrolytes and over time) compared with electrodes prepared by the direct introduction of KCl and AgCl to the membrane.

  7. Calculation of the surface free energy of fcc copper nanoparticles

    International Nuclear Information System (INIS)

    Jia Ming; Lai Yanqing; Tian Zhongliang; Liu Yexiang

    2009-01-01

    Using molecular dynamics simulations with the modified analytic embedded-atom method we calculate the Gibbs free energy and surface free energy for fcc Cu bulk, and further obtain the Gibbs free energy of nanoparticles. Based on the Gibbs free energy of nanoparticles, we have investigated the heat capacity of copper nanoparticles. Calculation results indicate that the Gibbs free energy and the heat capacity of nanoparticles can be divided into two parts: bulk quantity and surface quantity. The molar heat capacity of the bulk sample is lower compared with the molar heat capacity of nanoparticles, and this difference increases with the decrease in the particle size. It is also observed that the size effect on the thermodynamic properties of Cu nanoparticles is not really significant until the particle is less than about 20 nm. It is the surface atoms that decide the size effect on the thermodynamic properties of nanoparticles

  8. On red-shift of UV photoluminescence with decreasing size of silicon nanoparticles embedded in SiO2 matrix grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Chaturvedi, Amita; Joshi, M.P.; Rani, Ekta; Ingale, Alka; Srivastava, A.K.; Kukreja, L.M.

    2014-01-01

    Ensembles of silicon nanoparticles (Si-nps) embedded in SiO 2 matrix were grown by alternate ablation of Si and SiO 2 targets using KrF excimer laser based pulsed laser deposition (PLD). The sizes of Si-nps (mean size ranging from 1–5 nm) were controlled by varying the ablation time of silicon target. Transmission electron microscopy (TEM) along with selected area electron diffraction (SAED) and Raman spectroscopy were used to confirm the growth of silicon nanoparticles, its size variation with growth time and the crystalline quality of the grown nanoparticles. TEM analysis showed that mean size and size distribution of Si-nps increased with increase in the ablation time of Si target. Intense peaks ∼521 cm −1 in Raman analysis showed reasonably good crystalline quality of grown Si-nps. We observed asymmetric broadening of phonon line shapes which also redshift with decreasing size of Si-nps. Photoluminescence (PL) from these samples, obtained at room temperature, was broad band and consisted of three bands in UV and visible range. The intensity of PL band in UV spectral range (peak ∼3.2 eV) was strong compared to visible range bands (peaks ∼2.95 eV and ∼2.55 eV). We observed a small red-shift (∼0.07 eV) of peak position of UV range PL with the decrease in the mean sizes of Si-nps, while there was no appreciable size dependent shift of PL peak positions for other bands in the visible range. The width of UV PL band was also found to increase with decrease of Si-nps mean sizes. Based on the above observations of size dependent redshift of UV range PL band together with the PL lifetimes and PL excitation spectroscopy, the origin of UV PL band is attributed to the direct band transition at the Γ point of Si band structure. Visible range bands were ascribed as defect related transitions. The weak intensities of PL bands ∼2.95 eV and ∼2.55 eV suggested that Si nanoparticles grown by PLD were efficiently capped or passivated by SiO 2 with low density of

  9. Strong visible-light emission of ZnS nanocrystals embedded in sol-gel silica xerogel

    International Nuclear Information System (INIS)

    Yang Ping; Lue, M.-K.; Song, C.-F.; Zhou, G.-J.; Ai, Z.-P.; Xu Dong; Yuan, D.-R.; Cheng, X.-F.

    2003-01-01

    ZnS nanoparticles embedded in novel porous phosphor silica xerogel have been synthesized by sol-gel processing. Their fluorescence properties have been evaluated and compared with those of the Na + -doped and un-doped silica xerogels. Stable and strong visible-light emission of the doped samples has been observed. The relative fluorescence intensities of the samples doped with ZnS nanoparticles (S 2- ions have been obtained by the water solution of NaS) are the highest among all of the doped samples. Its relative fluorescence intensity is about 7.5 times of that of the un-doped silica xerogel and about 300 times of that of pure ZnS nanoparticles. The emission wavelength of the ZnS-doped and Na + -doped samples is the same as that of the un-doped silica xerogel and ZnS nanoparticles (λ em =440-450 nm). This high efficiency luminescence of the doped silica xerogels has been assigned to the luminescence centers of ZnS nanoparticles and Na + in the porous phosphorescence silica xerogel

  10. Optothermal Switching of Cholesteric Liquid Crystals: A Study of Azobenzene Derivatives and Laser Wavelengths

    Directory of Open Access Journals (Sweden)

    Tai-Chieh Huang

    2015-09-01

    Full Text Available The laser-initiated thermal (optothermal switching of cholesteric liquid crystals (CLCs is characterized by using different azobenzene (Azo derivatives and laser wavelengths. Under 405-nm laser irradiation, Azo-doped CLCs undergo phase transition from cholesteric to isotropic. No cis-to-trans photoisomerization occurs when the 405-nm laser irradiation is blocked because only a single laser is used. The fast response of Azo-doped CLCs under the on–off switching of the 405-nm laser occurs because of the optothermal effect of the system. The 660-nm laser, which cannot be used as irradiation to generate the trans–cis photoisomerization of Azo, is used in Anthraquinone (AQ-Azo-doped CLCs to examine the optothermal effect of doped Azo. The results show that the LC-like Azo derivative bearing two methyl groups ortho to the Azo moiety (A4 can greatly lower the clearing temperature and generate large amount of heat in AQ-A4-doped CLCs.

  11. Facile one-pot formulation of TRAIL-embedded paclitaxel-bound albumin nanoparticles for the treatment of pancreatic cancer.

    Science.gov (United States)

    Min, Sun Young; Byeon, Hyeong Jun; Lee, Changkyu; Seo, Jisoo; Lee, Eun Seong; Shin, Beom Soo; Choi, Han-Gon; Lee, Kang Choon; Youn, Yu Seok

    2015-10-15

    Nanoparticle albumin-bound (nab™) technology is an effective way of delivering hydrophobic chemotherapeutics. We developed a one-pot/one-step formulation of paclitaxel (PTX)-bound albumin nanoparticles with embedded tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/PTX HSA-NP) for the treatment of pancreatic cancer. TRAIL/PTX HSA-NPs were fabricated using a high-pressure homogenizer at a TRAIL feeding ratio of 0.2%, 1.0%, and 2.0%. TRAIL/PTX HSA-NPs were spherical and became larger in size (170-230 nm) with increasing TRAIL amount (0.2-2.0%). The loading efficiencies of PTX were in the range of ∼86.4% and significantly low at 2.0% TRAIL (60.4%). Specifically, the inhibitory concentrations (IC50) of TRAIL (1.0 or 2.0%)/PTX HSA-NPs were >20-fold lower than that of plain PTX-HSA NP (0.032±0.06, 0.022±0.005, and 0.96±0.15 ng/ml, respectively) in pancreatic Mia Paca-2 cells. Considering TRAIL loading, bioactivity, and particle size, TRAIL(1.0%)/PTX HSA-NPs were determined as the optimal candidate for further studies. TRAIL(1.0%)/PTX HSA-NPs displayed substantially greater apoptotic activity than plain PTX HSA-NP in both FACS and TUNEL analysis. The loaded PTX and TRAIL were gradually released from the TRAIL(1.0%)/PTX HSA-NPs until ∼24 h, which is considered to be a sufficient time for delivery to the tumor tissue. TRAIL(1.0%)/PTX HSA-NP displayed markedly more antitumor efficacy than plain PTX HSA-NP in Mia Paca-2 cell-xenografted mice in terms of tumor volume (size) and weight (213.9 mm(3) and 0.18 g vs. 1126.8 mm(3) and 0.80 g, respectively). These improved in vitro and in vivo performances were due to the combined synergistic effects of PTX and TRAIL. We believe that this TRAIL/PTX HSA-NP would have potential as a novel apoptosis-based anticancer agent. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Iron Oxide Nanoparticles for Magnetically-Guided and Magnetically-Responsive Drug Delivery

    Directory of Open Access Journals (Sweden)

    Joan Estelrich

    2015-04-01

    Full Text Available In this review, we discuss the recent advances in and problems with the use of magnetically-guided and magnetically-responsive nanoparticles in drug delivery and magnetofection. In magnetically-guided nanoparticles, a constant external magnetic field is used to transport magnetic nanoparticles loaded with drugs to a specific site within the body or to increase the transfection capacity. Magnetofection is the delivery of nucleic acids under the influence of a magnetic field acting on nucleic acid vectors that are associated with magnetic nanoparticles. In magnetically-responsive nanoparticles, magnetic nanoparticles are encapsulated or embedded in a larger colloidal structure that carries a drug. In this last case, an alternating magnetic field can modify the structure of the colloid, thereby providing spatial and temporal control over drug release.

  13. Effective pair potentials for spherical nanoparticles

    International Nuclear Information System (INIS)

    Van Zon, Ramses

    2009-01-01

    An effective description for rigid spherical nanoparticles in a fluid of point particles is presented. The points inside the nanoparticles and the point particles are assumed to interact via spherically symmetric additive pair potentials, while the distribution of points inside the nanoparticles is taken to be spherically symmetric and smooth. The resulting effective pair interactions between a nanoparticle and a point particle, as well as between two nanoparticles, are then given by spherically symmetric potentials. If overlap between particles is allowed, as can occur for some forms of the pair potentials, the effective potential generally has non-analytic points. It is shown that for each effective potential the expressions for different overlapping cases can be written in terms of one analytic auxiliary potential. Even when only non-overlapping situations are possible, the auxiliary potentials facilitate the formulation of the effective potentials. Effective potentials for hollow nanoparticles (appropriate e.g. for buckyballs) are also considered and shown to be related to those for solid nanoparticles. For hollow nanoparticles overlap is more physical, since this covers the case of a smaller particle embedded in a larger, hollow nanoparticle. Finally, explicit expressions are given for the effective potentials derived from basic pair potentials of power law and exponential form, as well as from the commonly used London–van der Waals, Morse, Buckingham, and Lennard-Jones potentials. The applicability of the latter is demonstrated by comparison with an atomic description of nanoparticles with an internal face centered cubic structure

  14. Multiple functionalities of Ni nanoparticles embedded in carboxymethyl guar gum polymer: catalytic activity and superparamagnetism

    Science.gov (United States)

    Sardar, Debasmita; Sengupta, Manideepa; Bordoloi, Ankur; Ahmed, Md. A.; Neogi, S. K.; Bandyopadhyay, Sudipta; Jain, Ruchi; Gopinath, Chinnakonda S.; Bala, Tanushree

    2017-05-01

    Composites comprising of metallic nanoparticles in polymer matrices have allured significant importance due to multifunctionalities. Here a simple protocol has been described to embed Ni nanoparticles in carboxymethyl guar gum (CMGG) polymer. The composite formation helps in the stabilization of Ni nanoparticles which are otherwise prone towards aerial oxidation. Further the nanoparticles retain their superparamagnetic nature and catalytic capacity. Ni-Polymer composite catalyses the reduction of 4-Nitrophenol to 4-Aminophenol very efficiently in presence of NaBH4, attaining a complete conversion under some experimental conditions. Ni-Polymer composite is well characterized using UV-vis spectroscopy, FTIR, XPS, powder XRD, TGA, SEM and TEM. A detailed magnetic measurement using superconducting quantum interference device-vibrating sample magnetometer (SQUID-VSM) reveals superparamagnetic behaviour of the composite.

  15. Phase Transition of Poly(acrylic acid-co-N-isopropylacrylamide) Core-shell Nanogels

    Science.gov (United States)

    Liu, Xiao-bing; Zhou, Jian-feng; Ye, Xiao-dong

    2012-08-01

    A series of poly(acrylic acid) macromolecular chain transfer agents with different molecular weights were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization and characterized by 1H NMR and gel permeation chromatography. Multiresponsive core-shell nanogels were prepared by dispersion polymerization of N-isopropylacrylamide in water using these poly(potassium acrylate) macro-RAFT agents as the electrosteric stabilizer. The size of the nanogels decreases with the amount of the macro-RAFT agent, indicating that the surface area occupied by per polyelectrolyte group is a critical parameter for stabilizing the nanogels. The volume phase transition and the zeta potentials of the nanogels in aqueous solutions were studied by dynamic light scattering and zetasizer analyzer, respectively.

  16. Encapsulation of cobalt nanoparticles in cross-linked-polymer cages

    Energy Technology Data Exchange (ETDEWEB)

    Hatamie, Shadie [Department of Electronic-Science, Fergusson College, Pune 411 004 (India); Dhole, S.D. [Department of Physics, University of Pune, Pune 411 007 (India); Ding, J. [Department of Materials Science and Engineering, National University of Singapore, 7, Engineering Drive 1, Singapore 117574 (Singapore); Kale, S.N. [Department of Electronic-Science, Fergusson College, Pune 411 004 (India)], E-mail: sangeetakale2004@gmail.com

    2009-07-15

    Nanoparticles embedded in polymeric cages give rise to interesting applications ranging from nanocatalysis to drug-delivery systems. In this context, we report on synthesis of cobalt (Co) nanoparticles trapped in polyvinyl alcohol (PVA) matrix to yield self-supporting magnetic films in PVA slime. A 20 nm, Co formed in FCC geometry encapsulated with a weak citrate coat when caged in PVA matrix exhibited persistence of magnetism and good radio-frequency response. Cross-linking of PVA chains to form cage-like structures to arrest Co nanoparticles therein, is believed to be the reason for oxide-free nature of Co, promising applications in biomedicine as well as in radio-frequency shielding.

  17. Transparent conductive oxide films embedded with plasmonic nanostructure for light-emitting diode applications.

    Science.gov (United States)

    Chuang, Shih-Hao; Tsung, Cheng-Sheng; Chen, Ching-Ho; Ou, Sin-Liang; Horng, Ray-Hua; Lin, Cheng-Yi; Wuu, Dong-Sing

    2015-02-04

    In this study, a spin coating process in which the grating structure comprises an Ag nanoparticle layer coated on a p-GaN top layer of InGaN/GaN light-emitting diode (LED) was developed. Various sizes of plasmonic nanoparticles embedded in a transparent conductive layer were clearly observed after the deposition of indium tin oxide (ITO). The plasmonic nanostructure enhanced the light extraction efficiency of blue LED. Output power was 1.8 times the magnitude of that of conventional LEDs operating at 350 mA, but retained nearly the same current-voltage characteristic. Unlike in previous research on surface-plasmon-enhanced LEDs, the metallic nanoparticles were consistently deposited over the surface area. However, according to microstructural observation, ITO layer mixed with Ag-based nanoparticles was distributed at a distance of approximately 150 nm from the interface of ITO/p-GaN. Device performance can be improved substantially by using the three-dimensional distribution of Ag-based nanoparticles in the transparent conductive layer, which scatters the propagating light randomly and is coupled between the localized surface plasmon and incident light internally trapped in the LED structure through total internal reflection.

  18. Fabrication and anti-frosting performance of super hydrophobic coating based on modified nano-sized calcium carbonate and ordinary polyacrylate

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hao [Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China); Tang Liming [Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China)], E-mail: tanglm@mail.tsinghua.edu.cn; Wu Xiaomin; Dai Wantian [Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Qiu Yipeng [Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China)

    2007-09-15

    Nano-sized calcium carbonate (CaCO{sub 3}) particles were modified by heptadecafluorodecyl trimethoxysilane under acidic water condition. An ordinary polyacrylate prepared via radical copolymerization of methyl methacrylate, butyl acrylate, acrylic acid and {beta}-hydroxyethyl methacrylate was used as the binder to form hydrophobic coatings with the modified CaCO{sub 3}. Super hydrophobic coating with water contact angle of 155{sup o} was obtained from modified CaCO{sub 3} and the polyacrylate at their weight ratio of 8/2 by a simple procedure. Based on surface analysis by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS), the super hydrophobicity can be attributed to both the surface microstructure and surface enrichment of fluoroalkyl chains. Due to a low water sliding angle, carbon black powder on super hydrophobic surface was easily removed by rolling water droplet. Furthermore, the anti-frosting performance of different surfaces was investigated, which indicated that the frost formed on superhydrophobic surface was greatly retarded compared with that on bare copper surface. The surface kept super hydrophobicity even after freezing-thawing treatment for 10 times.

  19. Photopolymerization Synthesis of Magnetic Nanoparticle Embedded Nanogels for Targeted Biotherapeutic Delivery

    Science.gov (United States)

    Denmark, Daniel J.

    Conventional therapeutic techniques treat the patient by delivering a biotherapeutic to the entire body rather than the target tissue. In the case of chemotherapy, the biotherapeutic is a drug that kills healthy and diseased cells indiscriminately which can lead to undesirable side effects. With targeted delivery, biotherapeutics can be delivered directly to the diseased tissue significantly reducing exposure to otherwise healthy tissue. Typical composite delivery devices are minimally composed of a stimuli responsive polymer, such as poly(N-isopropylacrylamide), allowing for triggered release when heated beyond approximately 32 °C, and magnetic nanoparticles which enable targeting as well as provide a mechanism for stimulus upon alternating magnetic field heating. Although more traditional methods, such as emulsion polymerization, have been used to realize these composite devices, the synthesis is problematic. Poisonous surfactants that are necessary to prevent agglomeration must be removed from the finished polymer, increasing the time and cost of the process. This study seeks to further explore non-toxic, biocompatible, non-residual, photochemical methods of creating stimuli responsive nanogels to advance the targeted biotherapeutic delivery field. Ultraviolet photopolymerization promises to be more efficient, while ensuring safety by using only biocompatible substances. The reactants selected for nanogel fabrication were N -isopropylacrylamide as monomer, methylene bisacrylamide as cross-linker, and Irgacure 2959 as ultraviolet photo-initiator. The superparamagnetic nanoparticles for encapsulation were approximately 10 nm in diameter and composed of magnetite to enable remote delivery and enhanced triggered release properties. Early investigations into the interactions of the polymer and nanoparticles employ a pioneering experimental setup, which allows for coincident turbidimetry and alternating magnetic field heating of an aqueous solution containing both

  20. Morphology Control of Platinum Nanoparticles and their Catalytic Properties

    International Nuclear Information System (INIS)

    Miyazaki, Akane; Balint, Ioan; Nakano, Yoshio

    2003-01-01

    Platinum nanoparticles with different morphology were prepared by reduction of K 2 PtCl 4 solution in the presence of different capping polymers. It was found that the shapes and the sizes of the Pt nanocrystals resulted were related to the kind of capping polymer used. When poly(vinylpyrrolidon) (PVP), poly(N-isopropylacrylamide) (NIPA) and sodium poly(acrylate) (SPA) were used as capping agents, the dominant shapes of the Pt nanocrystals observed by transmission electron microscopy were hexagonal (∼62%), square (∼67%) and triangular (∼41%), respectively. The average sizes of Pt nanocrystals were 6.9, 13.6 and 14.6 nm for capping polymers of PVP, NIPA and SPA, respectively. The colloidal Pt nanoparticles with different morphologies were supported on γ-Al 2 O 3 (1 wt.% Pt) and then their catalytic activity for NO reduction by CH 4 was tested in the 350-600 deg. C temperature range. Additionally, the catalytic activities of these alumina-supported Pt nanocrystals were compared with a conventional catalyst having the average size of Pt particles of ∼2.4 nm. Over the alumina-supported Pt nanocrystals as compared with the conventional Pt/Al 2 O 3 , it was observed that the NO/CH 4 reaction yields to NH 3 and CO decreased significantly and on the other hand, the yield to N 2 O increased. The experimental results are suggesting that the catalytic behavior can be tuned in a convenient way through the morphological control of the metal nanoparticles