Sample records for axonal transport deficits

  1. In vivo axonal transport deficits in a mouse model of fronto-temporal dementia

    Tabassum Majid


    Discussion: In our study, we identified the presence of age-dependent axonal transport deficits beginning at 3 months of age in rTg4510 mice. We correlated these deficits at 3 months to the presence of hyperphosphorylated tau in the brain and the presence within the olfactory epithelium. We observed tau pathology not only in the soma of these neurons but also within the axons and processes of these neurons. Our characterization of axonal transport in this tauopathy model provides a functional time point that can be used for future therapeutic interventions.

  2. The genetics of axonal transport and axonal transport disorders.

    Jason E Duncan


    Full Text Available Neurons are specialized cells with a complex architecture that includes elaborate dendritic branches and a long, narrow axon that extends from the cell body to the synaptic terminal. The organized transport of essential biological materials throughout the neuron is required to support its growth, function, and viability. In this review, we focus on insights that have emerged from the genetic analysis of long-distance axonal transport between the cell body and the synaptic terminal. We also discuss recent genetic evidence that supports the hypothesis that disruptions in axonal transport may cause or dramatically contribute to neurodegenerative diseases.

  3. Neurofilament Polymer Transport in Axons

    Yan, Yanping; Brown, Anthony


    Neurofilament proteins are known to be transported along axons by slow axonal transport, but the form in which they move is controversial. In previous studies on cultured rat sympathetic neurons, we found that green fluorescent protein-tagged neurofilament proteins move predominantly in the form of filamentous structures, and we proposed that these structures are single neurofilament polymers. In the present study, we have tested this hypothesis by using a rapid perfusion technique to capture...

  4. Mitochondrial Transport and Docking in Axons

    Cai, Qian; Sheng, Zu-Hang


    Proper transport and distribution of mitochondria in axons and at synapses are critical for the normal physiology of neurons. Mitochondria in axons display distinct motility patterns and undergo saltatory and bidirectional movement, where mitochondria frequently stop, start moving again, and change direction. While approximately one-third of axonal mitochondria are mobile in mature neurons, a large proportion remains stationary. Their net movement is significantly influenced by recruitment to...

  5. Dynamics of mitochondrial transport in axons

    Robert Francis Niescier


    Full Text Available The polarized structure and long neurites of neurons pose a unique challenge for proper mitochondrial distribution. It is widely accepted that mitochondria move from the cell body to axon ends and vice versa; however, we have found that mitochondria originating from the axon ends moving in the retrograde direction never reach to the cell body, and only a limited number of mitochondria moving in the anterograde direction from the cell body arrive at the axon ends of mouse hippocampal neurons. Furthermore, we have derived a mathematical formula using the Fokker-Planck equation to characterize features of mitochondrial transport, and the equation could determine altered mitochondrial transport in axons overexpressing parkin. Our analysis will provide new insights into the dynamics of mitochondrial transport in axons of normal and unhealthy neurons.

  6. Dynamics of Mitochondrial Transport in Axons.

    Niescier, Robert F; Kwak, Sang Kyu; Joo, Se Hun; Chang, Karen T; Min, Kyung-Tai


    The polarized structure and long neurites of neurons pose a unique challenge for proper mitochondrial distribution. It is widely accepted that mitochondria move from the cell body to axon ends and vice versa; however, we have found that mitochondria originating from the axon ends moving in the retrograde direction never reach to the cell body, and only a limited number of mitochondria moving in the anterograde direction from the cell body arrive at the axon ends of mouse hippocampal neurons. Furthermore, we have derived a mathematical formula using the Fokker-Planck equation to characterize features of mitochondrial transport, and the equation could determine altered mitochondrial transport in axons overexpressing parkin. Our analysis will provide new insights into the dynamics of mitochondrial transport in axons of normal and unhealthy neurons. PMID:27242435

  7. Axonal transport of ribonucleoprotein particles (vaults).

    Li, J Y; Volknandt, W; Dahlstrom, A; Herrmann, C; Blasi, J; Das, B; Zimmermann, H


    RNA was previously shown to be transported into both dendritic and axonal compartments of nerve cells, presumably involving a ribonucleoprotein particle. In order to reveal potential mechanisms of transport we investigated the axonal transport of the major vault protein of the electric ray Torpedo marmorata. This protein is the major protein component of a ribonucleoprotein particle (vault) carrying a non-translatable RNA and has a wide distribution in the animal kingdom. It is highly enriched in the cholinergic electromotor neurons and similar in size to synaptic vesicles. The axonal transport of vaults was investigated by immunofluorescence, using the anti-vault protein antibody as marker, and cytofluorimetric scanning, and was compared to that of the synaptic vesicle membrane protein SV2 and of the beta-subunit of the F1-ATPase as a marker for mitochondria. Following a crush significant axonal accumulation of SV2 proximal to the crush could first be observed after 1 h, that of mitochondria after 3 h and that of vaults after 6 h, although weekly fluorescent traces of accumulations of vault protein were observed in the confocal microscope as early as 3 h. Within the time-period investigated (up to 72 h) the accumulation of all markers increased continuously. Retrograde accumulations also occurred, and the immunofluorescence for the retrograde component, indicating recycling, was weaker than that for the anterograde component, suggesting that more than half of the vaults are degraded within the nerve terminal. High resolution immunofluorescence revealed a granular structure-in accordance with the biochemical characteristics of vaults. Of interest was the observation that the increase of vault immunoreactivity proximal to the crush accelerated with time after crushing, while that of SV2-containing particles appeared to decelerate, indicating that the crush procedure with time may have induced perikaryal alterations in the production and subsequent export to the axon

  8. Oxidative stress inhibits axonal transport: implications for neurodegenerative diseases

    Fang Cheng


    Full Text Available Abstract Background Reactive oxygen species (ROS released by microglia and other inflammatory cells can cause axonal degeneration. A reduction in axonal transport has also been implicated as a cause of axonal dystrophies and neurodegeneration, but there is a paucity of experimental data concerning the effects of ROS on axonal transport. We used live cell imaging to examine the effects of hydrogen peroxide on the axonal transport of mitochondria and Golgi-derived vesicles in cultured rat hippocampal neurons. Results Hydrogen peroxide rapidly inhibited axonal transport, hours before any detectable changes in mitochondrial morphology or signs of axonal degeneration. Mitochondrial transport was affected earlier and was more severely inhibited than the transport of Golgi-derived vesicles. Anterograde vesicle transport was more susceptible to peroxide inhibition than retrograde transport. Axonal transport partially recovered following removal of hydrogen peroxide and local application of hydrogen peroxide inhibited transport, suggesting that the effects were not simply a result of nerve cell death. Sodium azide, an ATP synthesis blocker, had similar effects on axonal transport, suggesting that ATP depletion may contribute to the transport inhibition due to hydrogen peroxide. Conclusions These results indicate that inhibition of axonal transport is an early consequence of exposure to ROS and may contribute to subsequent axonal degeneration.

  9. Synaptic Democracy and Vesicular Transport in Axons

    Bressloff, Paul C.; Levien, Ethan


    Synaptic democracy concerns the general problem of how regions of an axon or dendrite far from the cell body (soma) of a neuron can play an effective role in neuronal function. For example, stimulated synapses far from the soma are unlikely to influence the firing of a neuron unless some sort of active dendritic processing occurs. Analogously, the motor-driven transport of newly synthesized proteins from the soma to presynaptic targets along the axon tends to favor the delivery of resources to proximal synapses. Both of these phenomena reflect fundamental limitations of transport processes based on a localized source. In this Letter, we show that a more democratic distribution of proteins along an axon can be achieved by making the transport process less efficient. This involves two components: bidirectional or "stop-and-go" motor transport (which can be modeled in terms of advection-diffusion), and reversible interactions between motor-cargo complexes and synaptic targets. Both of these features have recently been observed experimentally. Our model suggests that, just as in human societies, there needs to be a balance between "efficiency" and "equality".

  10. The impact of motor axon misdirection and attrition on behavioral deficit following experimental nerve injuries.

    Jacob Daniel de Villiers Alant

    Full Text Available Peripheral nerve transection and neuroma-in-continuity injuries are associated with permanent functional deficits, often despite successful end-organ reinnervation. Axonal misdirection with non-specific reinnervation, frustrated regeneration and axonal attrition are believed to be among the anatomical substrates that underlie the poor functional recovery associated with these devastating injuries. Yet, functional deficits associated with axonal misdirection in experimental neuroma-in-continuity injuries have not yet been studied. We hypothesized that experimental neuroma-in-continuity injuries would result in motor axon misdirection and attrition with proportional persistent functional deficits. The femoral nerve misdirection model was exploited to assess major motor pathway misdirection and axonal attrition over a spectrum of experimental nerve injuries, with neuroma-in-continuity injuries simulated by the combination of compression and traction forces in 42 male rats. Sciatic nerve injuries were employed in an additional 42 rats, to evaluate the contribution of axonal misdirection to locomotor deficits by a ladder rung task up to 12 weeks. Retrograde motor neuron labeling techniques were utilized to determine the degree of axonal misdirection and attrition. Characteristic histological neuroma-in-continuity features were demonstrated in the neuroma-in-continuity groups and poor functional recovery was seen despite successful nerve regeneration and muscle reinnervation. Good positive and negative correlations were observed respectively between axonal misdirection (p<.0001, r(2=.67, motor neuron counts (attrition (p<.0001, r(2=.69 and final functional deficits. We demonstrate prominent motor axon misdirection and attrition in neuroma-in-continuity and transection injuries of mixed motor nerves that contribute to the long-term functional deficits. Although widely accepted in theory, to our knowledge, this is the first experimental evidence to

  11. Non-Cell-Autonomous Regulation of Retrograde Motoneuronal Axonal Transport in an SBMA Mouse Model

    Halievski, Katherine; Kemp, Michael Q.; Breedlove, S. Marc; Miller, Kyle E.


    Abstract Defects in axonal transport are seen in motoneuronal diseases, but how that impairment comes about is not well understood. In spinal bulbar muscular atrophy (SBMA), a disorder linked to a CAG/polyglutamine repeat expansion in the androgen receptor (AR) gene, the disease-causing AR disrupts axonal transport by acting in both a cell-autonomous fashion in the motoneurons themselves, and in a non-cell-autonomous fashion in muscle. The non-cell-autonomous mechanism is suggested by data from a unique “myogenic” transgenic (TG) mouse model in which an AR transgene expressed exclusively in skeletal muscle fibers triggers an androgen-dependent SBMA phenotype, including defects in retrograde transport. However, motoneurons in this TG model retain the endogenous AR gene, leaving open the possibility that impairments in transport in this model also depend on ARs in the motoneurons themselves. To test whether non-cell-autonomous mechanisms alone can perturb retrograde transport, we generated male TG mice in which the endogenous AR allele has the testicular feminization mutation (Tfm) and, consequently, is nonfunctional. Males carrying the Tfm allele alone show no deficits in motor function or axonal transport, with or without testosterone treatment. However, when Tfm males carrying the myogenic transgene (Tfm/TG) are treated with testosterone, they develop impaired motor function and defects in retrograde transport, having fewer retrogradely labeled motoneurons and deficits in endosomal flux based on time-lapse video microscopy of living axons. These findings demonstrate that non-cell-autonomous disease mechanisms originating in muscle are sufficient to induce defects in retrograde transport in motoneurons. PMID:27517091

  12. In vivo imaging of axonal transport using MRI: aging and Alzheimer's disease

    MRI using manganese as a trans-synaptic axonal tracing agent can unveil dynamics of axonal transport in living subjects. We use this technology to test the hypotheses if impaired axonal transport is a significant pathophysiological process in aging and early Alzheimer's disease (AD) and in part accounting for ''selective vulnerability'' of projection neurons in AD. To allow quantitative assessment of axonal transport in vivo, we developed voxel-based statistical mapping technology as well as a tracer kinetic modeling method based on mass transport for manganese-enhanced MRI to estimate axonal transport rates in aging rats and AD transgenic mice. These techniques demonstrated manganese-enhanced signal changes in axonal projections of the olfactory tract and decreased axonal transport rates in rodent models of aging and AD. Altered axonal transport may be a critical pathophysiological process in aging and AD. Manganese-enhanced MRI provides exciting opportunities for the investigations of altered axonal transport in AD and related disorders. (orig.)

  13. Slowing of the axonal transport of neurofilament proteins during development

    We examined age-dependent changes in neurofilament transport in motor axons of the rat sciatic nerve. SDS-PAGE and gel fluorography confirmed that the distribution of labeled neurofilament triplet protein coincides with the major slow component a (SCa) wave in these neurons. The velocity of neurofilament transport was calculated on the basis of the location of the 50th percentile of radioactivity in this wave 33 days after motor neurons were labeled by the intraspinal administration of [3H]leucine and [3H]lysine. Overall, the velocity fell from 1.95 mm/day at 3 weeks of age to 1.12 mm/day at 20 weeks. Between 3 and 10 weeks, it fell at a 6-fold higher rate (0.096 mm/day/week) than between 10 and 20 weeks (0.016 mm/day/week). We also found a marked change in the shape of the slow component wave during development. It appeared to consist of several overlapping peaks moving at slightly different velocities in animals 10 weeks of age or less as compared to a single slower moving peak at 20 weeks. We propose that the velocity of slow axonal transport reflects the level of maturation of the neuron, and that the presence of several overlapping peaks of transported radioactivity in the sciatic nerve of younger animals reflects the presence of several populations of motor axons at different stages of development. We also discuss the relationship between changes in the velocity of neurofilament transport and alterations in the composition of the cytoskeleton that occur as the axon grows in caliber during postnatal development

  14. Axonal Transport Impairment in Chemotherapy-Induced Peripheral Neuropathy

    Gabriella Nicolini


    Full Text Available Chemotherapy-Induced Peripheral Neuropathy (CIPN is a dose-limiting side effect of several antineoplastic drugs which significantly reduces patients’ quality of life. Although different molecular mechanisms have been investigated, CIPN pathobiology has not been clarified yet. It has largely been recognized that Dorsal Root Ganglia are the main targets of chemotherapy and that the longest nerves are the most damaged, together with fast axonal transport. Indeed, this bidirectional cargo-specific transport has a pivotal role in neuronal function and its impairment is involved in several neurodegenerative and neurodevelopmental diseases. Literature data demonstrate that, despite different mechanisms of action, all antineoplastic agents impair the axonal trafficking to some extent and the severity of the neuropathy correlates with the degree of damage on this bidirectional transport. In this paper, we will examine the effect of the main old and new chemotherapeutic drug categories on axonal transport, with the aim of clarifying their potential mechanisms of action, and, if possible, of identifying neuroprotective strategies, based on the knowledge of the alterations induced by each drugs.

  15. Tau phosphorylation affects its axonal transport and degradation

    Rodríguez-Martín, Teresa; Cuchillo-Ibáñez, Inmaculada; Noble, Wendy; Nyenya, Fanon; Anderton, Brian H; Hanger, Diane P.


    Phosphorylated forms of microtubule-associated protein tau accumulate in neurofibrillary tangles in Alzheimer's disease. To investigate the effects of specific phosphorylated tau residues on its function, wild type or phosphomutant tau was expressed in cells. Elevated tau phosphorylation decreased its microtubule binding and bundling, and increased the number of motile tau particles, without affecting axonal transport kinetics. In contrast, reducing tau phosphorylation enhanced the amount of ...

  16. Automated kymograph analysis for profiling axonal transport of secretory granules.

    Mukherjee, Amit; Jenkins, Brian; Fang, Cheng; Radke, Richard J; Banker, Gary; Roysam, Badrinath


    This paper describes an automated method to profile the velocity patterns of small organelles (BDNF granules) being transported along a selected section of axon of a cultured neuron imaged by time-lapse fluorescence microscopy. Instead of directly detecting the granules as in conventional tracking, the proposed method starts by generating a two-dimensional spatio-temporal map (kymograph) of the granule traffic along an axon segment. Temporal sharpening during the kymograph creation helps to highlight granule movements while suppressing clutter due to stationary granules. A voting algorithm defined over orientation distribution functions is used to refine the locations and velocities of the granules. The refined kymograph is analyzed using an algorithm inspired from the minimum set cover framework to generate multiple motion trajectories of granule transport paths. The proposed method is computationally efficient, robust to significant levels of noise and clutter, and can be used to capture and quantify trends in transport patterns quickly and accurately. When evaluated on a collection of image sequences, the proposed method was found to detect granule movement events with 94% recall rate and 82% precision compared to a time-consuming manual analysis. Further, we present a study to evaluate the efficacy of velocity profiling by analyzing the impact of oxidative stress on granule transport in which the fully automated analysis correctly reproduced the biological conclusion generated by manual analysis. PMID:21330183

  17. In vivo imaging of axonal transport using MRI: aging and Alzheimer's disease

    Minoshima, Satoshi [University of Washington, Departments of Radiology and Bioengineering, 1959 N.E. Pacific Street, RR215, Box 357115, Seattle, WA (United States); Cross, Donna [University of Washington, Department of Radiology, 1959 N.E. Pacific Street, RR215, Box 357115, Seattle, WA (United States)


    MRI using manganese as a trans-synaptic axonal tracing agent can unveil dynamics of axonal transport in living subjects. We use this technology to test the hypotheses if impaired axonal transport is a significant pathophysiological process in aging and early Alzheimer's disease (AD) and in part accounting for ''selective vulnerability'' of projection neurons in AD. To allow quantitative assessment of axonal transport in vivo, we developed voxel-based statistical mapping technology as well as a tracer kinetic modeling method based on mass transport for manganese-enhanced MRI to estimate axonal transport rates in aging rats and AD transgenic mice. These techniques demonstrated manganese-enhanced signal changes in axonal projections of the olfactory tract and decreased axonal transport rates in rodent models of aging and AD. Altered axonal transport may be a critical pathophysiological process in aging and AD. Manganese-enhanced MRI provides exciting opportunities for the investigations of altered axonal transport in AD and related disorders. (orig.)

  18. Regeneration of motor axons in the rat sciatic nerve studied by labeling with axonally transported radioactive proteins

    Labeling regenerating axons with axonally transported radioactive proteins provides information about the location of the entire range of axons from the fastest growing ones to those which are trapped in the scar. This technique has been used to study the regeneration of motor axons in the rat sciatic nerve after a crush lesion. From 2 to 14 days after the crush the lumbar spinal cord was exposed by laminectomy and multiple injections of [3H]proline were made stereotactically in the ventral horn. Twenty-four hours later the nerves were removed and the distribution of radioactivity along the nerve was measured by liquid scintillation counting. There was a peak of radioactivity in the regenerating axons distal to the crush due to an accumulation of label in the tips of these axons. After a delay of 3.2 +- 0.2 (S.E.) days, this peak advanced down the nerve at a rate of 3.0 +- 0.1 (S.E.) mm/day. The leading edge of this peak, which marks the location of the endings of the most rapidly growing labeled fibers, moved down the nerve at a rate of 4.4 +- 0.2 mm/day after a delay of 2.1 +- 0.2 days; this is the same time course as that of the most rapidly regenerating sensory axons in the rat sciatic nerve, measured by the pinch test. Another peak of radioactivity at the crush site, presumed to represent the ends of unregenerated axons or misdirected sprouts, declined rapidly during the first week, and more slowly thereafter. (Auth.)

  19. Axonal Transport Proteomics Reveals Mobilization of Translation Machinery to the Lesion Site in Injured Sciatic Nerve*

    Michaelevski, Izhak; Medzihradszky, Katalin F.; Lynn, Aenoch; Burlingame, Alma L.; Fainzilber, Mike


    Investigations of the molecular mechanisms underlying responses to nerve injury have highlighted the importance of axonal transport systems. To obtain a comprehensive view of the protein ensembles associated with axonal transport in injured axons, we analyzed the protein compositions of axoplasm concentrated at ligatures following crush injury of rat sciatic nerve. LC-MS/MS analyses of iTRAQ-labeled peptides from axoplasm distal and proximal to the ligation sites revealed protein ensembles tr...

  20. Axonal transport of proteoglycans to the goldfish optic tectum

    The study addressed the question of whether 35SO4 labeled molecules that have been delivered to the goldfish optic nerve terminals by rapid axonal transport include soluble proteoglycans. For analysis, tectal homogenates were subfractionated into a soluble fraction (soluble after centrifugation at 105,000 g), a lysis fraction (soluble after treatment with hypotonic buffer followed by centrifugation at 105,000 g) and a final 105,000 g pellet fraction. The soluble fraction contained 25.7% of incorporated radioactivity and upon DEAE chromatography was resolved into a fraction of sulfated glycoproteins eluting at 0-0.32 M NaCl and containing 39.5% of total soluble label and a fraction eluting at 0.32-0.60 M NaCl containing 53.9% of soluble label. This latter fraction was included on columns of Sepharose CL-6B with or without 4 M guanidine and after pronase digestion was found to have 51% of its radioactivity contained in the glycosaminoglycans (GAGs) heparan sulfate and chondroitin (4 or 6) sulfate in the ratio of 70% to 30%. Mobility of both intact proteoglycans and constituent GAGs on Sepharose CL-6B indicated a size distribution that is smaller than has been observed for proteoglycans and GAGs from cultured neuronal cell lines. Similar analysis of lysis fraction, containing 11.5% of incorporated 35SO4, showed a mixture of heparan sulfate and chondroitin sulfate containing proteoglycans, apparent free heparan sulfate and few, if any, sulfated glycoproteins. Overall, the results support the hypothesis that soluble proteoglycans are among the molecules axonally transported in the visual system


    The effects of acrylamide on fast axonal transport have been measured primarily using the indirect methods of isotope or enzyme accumulation. e report the first direct evaluation of the effects of sub-chronic acrylamide dosing (150, 300 or 500 mg/kg total dose) on the fast axonal...

  2. Mild fluid percussion injury in mice produces evolving selective axonal pathology and cognitive deficits relevant to human brain injury.

    Spain, Aisling; Daumas, Stephanie; Lifshitz, Jonathan; Rhodes, Jonathan; Andrews, Peter J D; Horsburgh, Karen; Fowler, Jill H


    Mild traumatic brain injury (TBI) accounts for up to 80% of clinical TBI and can result in cognitive impairment and white matter damage that may develop and persist over several years. Clinically relevant models of mild TBI for investigation of neurobiological changes and the development of therapeutic strategies are poorly developed. In this study we investigated the temporal profile of axonal and somal injury that may contribute to cognitive impairments in a mouse model of mild TBI. Neuronal perikaryal damage (hematoxylin and eosin and Fluoro-Jade C), myelin integrity (myelin basic protein and myelin-associated glycoprotein), and axonal damage (amyloid precursor protein), were evaluated by immunohistochemistry at 4 h, 24 h, 72 h, 4 weeks, and 6 weeks after mild lateral fluid percussion brain injury (0.9 atm; righting time 167 +/- 15 sec). At 3 weeks post-injury spatial reference learning and memory were tested in the Morris water maze (MWM). Levels of damage to neuronal cell bodies were comparable in the brain-injured and sham groups. Myelin integrity was minimally altered following injury. Clear alterations in axonal damage were observed at various time points after injury. Axonal damage was localized to the cingulum at 4 h post-injury. At 4 and 6 weeks post-injury, axonal damage was evident in the external capsule, and was seen at 6 weeks in the dorsal thalamic nuclei. At 3 weeks post-injury, injured mice showed an impaired ability to learn the water maze task, suggesting injury-induced alterations in search strategy learning. The evolving localization of axonal damage points to ongoing degeneration after injury that is concomitant with a deficit in learning. PMID:20528171


    Although autoradiography has demonstrated local incorporation of [3H]inositol into axonal phospholipids after intraneural injection (Gould, 1976; Gould et at., 1987b), retrograde axonal transport of phosphatidylinositol has only been demonstrated after injection of lipid precurso...

  4. Alterations in axonal transport motor proteins in sporadic and experimental Parkinson’s disease

    Chu, Yaping; Morfini, Gerardo A.; Langhamer, Lori B.; He, Yinzhen; Brady, Scott T.; KORDOWER, JEFFREY H.


    The progressive loss of the nigrostriatal pathway is a distinguishing feature of Parkinson’s disease. As terminal field loss seems to precede cell body loss, we tested whether alterations of axonal transport motor proteins would be early features in Parkinson’s disease. There was a decline in axonal transport motor proteins in sporadic Parkinson’s disease that preceded other well-known nigral cell-related pathology such as phenotypic downregulation of dopamine. Reductions in conventional kine...

  5. Quantification of Retrograde Axonal Transport in the Rat Optic Nerve by Fluorogold Spectrometry

    van Oterendorp, Christian; Sgouris, Stavros; Bach, Michael; Martin, Gottfried; Biermann, Julia; Jordan, Jens F.; Lagrèze, Wolf A


    Purpose Disturbed axonal transport is an important pathogenic factor in many neurodegenerative diseases, such as glaucoma, an eye disease characterised by progressive atrophy of the optic nerve. Quantification of retrograde axonal transport in the optic nerve usually requires labour intensive histochemical techniques or expensive equipment for in vivo imaging. Here, we report on a robust alternative method using Fluorogold (FG) as tracer, which is spectrometrically quantified in retinal tissu...

  6. Neurofilament subunit (NFL) head domain phosphorylation regulates axonal transport of neurofilaments.

    Yates, Darran M


    Neurofilaments are the intermediate filaments of neurons and are synthesised in neuronal cell bodies and then transported through axons. Neurofilament light chain (NFL) is a principal component of neurofilaments, and phosphorylation of NFL head domain is believed to regulate the assembly of neurofilaments. However, the role that NFL phosphorylation has on transport of neurofilaments is poorly understood. To address this issue, we monitored axonal transport of phosphorylation mutants of NFL. We mutated four known phosphorylation sites in NFL head domain to either preclude phosphorylation, or mimic permanent phosphorylation. Mutation to preclude phosphorylation had no effect on transport but mutation of three sites to mimic permanent phosphorylation inhibited transport. Mutation of all four sites together to mimic permanent phosphorylation proved especially potent at inhibiting transport and also disrupted neurofilament assembly. Our results suggest that NFL head domain phosphorylation is a regulator of neurofilament axonal transport.

  7. Anterograde transport blockade precedes deficits in retrograde transport in the visual projection of the DBA/2J mouse model of glaucoma

    Christine M Dengler-Crish


    Full Text Available Axonal transport deficits have been reported as an early pathology in several neurodegenerative disorders, including glaucoma. However, the progression and mechanisms of these deficits are poorly understood. Previous work suggests that anterograde transport is affected earlier and to a larger degree than retrograde transport, yet this has never been examined directly in vivo. Using combined anterograde and retrograde tract tracing methods, we examined the time-course of anterograde and retrograde transport deficits in the retinofugal projection in pre-glaucomatous (3 month-old and glaucomatous (9-13 month old DBA/2J mice. DBA/2J-Gpnmb+ mice were used as a control strain and were shown to have similar retinal ganglion cell densities as C57BL/6J control mice—a strain commonly investigated in the field of vision research. Using cholera toxin-B injections into the eye and FluoroGold injections into the superior colliculus (SC, we were able to measure anterograde and retrograde transport in the primary visual projection. In DBA/2J, anterograde transport from the retina to superior colliculus (SC was decreased by 69% in the 9-10 month-old age group, while retrograde transport was only reduced by 23% from levels seen in pre-glaucomatous mice. Despite this minor reduction, retrograde transport remained largely intact in these glaucomatous age groups until 13-months of age. These findings indicate that axonal transport deficits occur in semi-functional axons that are still connected to their brain targets. Structural persistence as determined by presence of estrogen-related receptor beta label in the superficial SC was maintained beyond time-points where reductions in retrograde transport occurred, also supporting that transport deficits may be due to physiological or functional abnormalities as opposed to overt structural loss.

  8. Axonal transport and incorporation of radioactivity after injection of N-[3H]acetyl-D-mannosamine into rat mesencephalon

    A study has been performed to demonstrate the possibility of incorporation of sialic acid into nerve endings of the rubrospinal tract after antegrade axonal transport. Young adult rats received injections of N-[3H]acetyl-D-mannosamine into the red nucleus and axonal transport of the tritiated compounds along the axons of afferent and efferent connections of the red nucleus was studied and the transported material was analysed. Light microscopic autoradiography and biochemical methods were used. (Auth./C.F.)

  9. Effects of p-xylene inhalation on axonal transport in the rat retinal ganglion cells

    Although the solvent xylene is suspected of producing nervous system dysfunction in animals and humans, little is known regarding the neurochemical consequences of xylene inhalation. The intent of this study was to determine the effect of intermittent, acute, and subchronic p-xylene exposure on the axonal transport of proteins and glycoproteins within the rat retinofugal tract. A number of different exposure regimens were tested ranging from 50 ppm for a single 6-hr exposure to 1600 ppm 6 hr/day, 5 days/week, for a total of 8 exposure days. Immediately following removal from the inhalation chambers rats were injected intraocularly with [35S]methionine and [3H]fucose (to label retinal proteins and glycoproteins, respectively) and the axonal transport of labeled macromolecules to axons (optic nerve and optic tract) and nerve endings (lateral geniculate body and superior colliculus) was examined 20 hr after precursor injection. Only relatively severe exposure regimens (i.e., 800 or 1600 ppm 6 hr/day, 5 days/week, for 1.5 weeks) produced significant reductions in axonal transport; there was a moderate reduction in the axonal transport of 35S-labeled proteins in the 800-ppm-treated group which was more widespread in the 1600 ppm-treated group. Transport of 3H-labeled glycoproteins was less affected. Assessment of retinal metabolism immediately after isotope injection indicated that the rate of precursor uptake was not reduced in either treatment group. Furthermore, rapid transport was still substantially reduced in animals exposed to 1600 ppm p-xylene and allowed a 13-day withdrawal period. These data indicate that p-xylene inhalation decreases rapid axonal transport supplied to the projections of the rat retinal ganglion cells immediately after cessation of inhalation exposure and that this decreased transport is still apparent 13 days after the last exposure

  10. Tri-partite complex for axonal transport drug delivery achieves pharmacological effect

    Frederickson Martyn


    Full Text Available Abstract Background Targeted delivery of pharmaceutical agents into selected populations of CNS (Central Nervous System neurons is an extremely compelling goal. Currently, systemic methods are generally used for delivery of pain medications, anti-virals for treatment of dermatomal infections, anti-spasmodics, and neuroprotectants. Systemic side effects or undesirable effects on parts of the CNS that are not involved in the pathology limit efficacy and limit clinical utility for many classes of pharmaceuticals. Axonal transport from the periphery offers a possible selective route, but there has been little progress towards design of agents that can accomplish targeted delivery via this intraneural route. To achieve this goal, we developed a tripartite molecular construction concept involving an axonal transport facilitator molecule, a polymer linker, and a large number of drug molecules conjugated to the linker, then sought to evaluate its neurobiology and pharmacological behavior. Results We developed chemical synthesis methodologies for assembling these tripartite complexes using a variety of axonal transport facilitators including nerve growth factor, wheat germ agglutinin, and synthetic facilitators derived from phage display work. Loading of up to 100 drug molecules per complex was achieved. Conjugation methods were used that allowed the drugs to be released in active form inside the cell body after transport. Intramuscular and intradermal injection proved effective for introducing pharmacologically effective doses into selected populations of CNS neurons. Pharmacological efficacy with gabapentin in a paw withdrawal latency model revealed a ten fold increase in half life and a 300 fold decrease in necessary dose relative to systemic administration for gabapentin when the drug was delivered by axonal transport using the tripartite vehicle. Conclusion Specific targeting of selected subpopulations of CNS neurons for drug delivery by axonal

  11. Reduced axonal transport in Parkinson's disease cybrid neurites is restored by light therapy

    De Taboada Luis


    Full Text Available Abstract Background It has been hypothesized that reduced axonal transport contributes to the degeneration of neuronal processes in Parkinson's disease (PD. Mitochondria supply the adenosine triphosphate (ATP needed to support axonal transport and contribute to many other cellular functions essential for the survival of neuronal cells. Furthermore, mitochondria in PD tissues are metabolically and functionally compromised. To address this hypothesis, we measured the velocity of mitochondrial movement in human transmitochondrial cybrid "cytoplasmic hybrid" neuronal cells bearing mitochondrial DNA from patients with sporadic PD and disease-free age-matched volunteer controls (CNT. The absorption of low level, near-infrared laser light by components of the mitochondrial electron transport chain (mtETC enhances mitochondrial metabolism, stimulates oxidative phosphorylation and improves redox capacity. PD and CNT cybrid neuronal cells were exposed to near-infrared laser light to determine if the velocity of mitochondrial movement can be restored by low level light therapy (LLLT. Axonal transport of labeled mitochondria was documented by time lapse microscopy in dopaminergic PD and CNT cybrid neuronal cells before and after illumination with an 810 nm diode laser (50 mW/cm2 for 40 seconds. Oxygen utilization and assembly of mtETC complexes were also determined. Results The velocity of mitochondrial movement in PD cybrid neuronal cells (0.175 +/- 0.005 SEM was significantly reduced (p Conclusion The results from this study support our proposal that axonal transport is reduced in sporadic PD and that a single, brief treatment with near-infrared light can restore axonal transport to control levels. These results are the first demonstration that LLLT can increase axonal transport in model human dopaminergic neuronal cells and they suggest that LLLT could be developed as a novel treatment to improve neuronal function in patients with PD.

  12. Improvement of cobalt-transport in axons by complexing agents.

    Gallyas, F; Lénárd, L; Lázár, G


    The use of the cobalt technique is limited by the fact that cobaltous ions travel within axons for a shorter distance than do other intracellular markers. In the present experiments different organic cobaltous complexes were tested in the rat's sciatic nerve. Cobaltous complexes containing ornithine, threonine, lysine or Girard's reagent travelled two or three times further than did the cobaltous ions alone. Using the lysine complex in the frog's visual system, very fine terminals were observed which have never been demonstrated with other techniques. The possible use of other metal complexes as intracellular markers are also discussed. PMID:19605220

  13. Effect of MSH/ACTH peptides on fast axonal transport in intact and regenerating sciatic nerves

    Fast axonal transport was examined in intact rats treated with ACTH 4-10 or ACTH 4-9 (ORG 2766), hypophysectomized rats, adrenalectomized rats, and in ACTH 4-10 treated rats with crushed regenerating sciatic nerves by injecting 3H-leucine into the ventral horn region of the spinal cord. The distance traveled by the transported activity along the sciatic nerve and the rate of fast axonal transport were not significantly altered as a result of treatment with ACTH 4-10, ACTH 4-9 (ORG 2766), hypophysectomy, or adrenalectomy. Treatment with ACTH 4-9 (ORG 2766) at concentrations of 1 μg/Kg /day and 10 μg/Kg/day caused significant reductions (62% and 64% respectively) in the crest height of the fast axonal transport curve as compared to 0.9% saline treated control animals. No significant differences were found in comparing the distance, rate, slope, or crest height of ACTH 4-10 treated animals with crushed regenerating (7 or 14d) sciatic nerves to control animals. In the group of animals in days, the amount of radiolabeled activity was significantly increased in the ACTH 4-10 treated animals as compared to control animals. The results indicate that during regeneration the peptide acts to prolong the initially high levels of synthetic activity which occur in regenerating axons


    Retrograde axonal transport of phosphatidylcholine (PC) in the sciatic nerve has been demonstrated only after injection of lipid precursors into the cell body regions (Armstrong et al. 1985). icroinjection of [methyl-3H]choline into the sciatic nerve results in extensive incorpor...

  15. Fast axonal transport of labeled proteins in motoneurons of exercise-trained rats

    In this study, the fast orthograde axonal transport of radiolabeled proteins was measured to determine the effects of endurance-running training on transport velocity and amounts of transported proteins in rat sciatic motoneurons. Female rats were subjected to a progressive running-training program for 10-12 wk. Twenty-four hours after the last training session, rats underwent right L4-L5 dorsal root ganglionectomy. The next day, 20 microCi of [3H]leucine was injected bilaterally in the vicinity of the motoneuronal cell bodies supplying the sciatic nerve, to study axonal transport parameters. Results showed that peak and average transport velocities of labeled proteins were significantly (P less than 0.05) increased by 22 and 29%, respectively, in the deafferented nerves of the runners as compared with controls. Moreover, the amount of total transported protein-bound radioactivity was increased in both left (40%) and right (37%) sciatic nerves of the runners. An exhaustive exercise session reduced (P less than 0.05) peak displacement (8%) and total transported protein-bound radioactivity (36%) in the sciatic nerves of control rats, whereas no changes were noticed in trained animals. The data suggest that chronic endurance running induces significant adaptations in the fast axonal transport of labeled proteins

  16. Axonal transport of enzymes and labeled proteins in experimental axonopathy induced by p-bromophenylacetylurea

    Axonal transport was studied by several techniques in the sciatic nerves of adult male Sprague-Dawley rats with neuropathy induced by treatment with p-bromophenylacetylurea (BPAU) in dimethylsulfoxide solution. Control rats were treated with solvent alone. BPAU, 200 mg/kg, induced severe muscle weakness in the hindlimbs, beginning after a latent period of 1 week and progressing to near total paralysis by 2 weeks. Axonal transport of the endogenous transmitter enzymes, acetylcholinesterase, dopamine-β-hydroxylase and choline acetyltransferase, was normal at both 2 and 15 days after administration of BPAU, as judged by the accumulation of enzyme activity above and below a set of double ligatures on the sciatic nerve. The velocity of fast anterograde transport of [35S]methionine labeled protein was also unaffected by BPAU. However, 4 abnormalities of transport were detected in BPAU treated rats. These abnormalities are discussed. (Auth.)

  17. A comparative quantitative assessment of axonal and dendritic mRNA transport in maturing hippocampal neurons.

    Gunja K Pathak

    Full Text Available Translation of mRNA in axons and dendrites enables a rapid supply of proteins to specific sites of localization within the neuron. Distinct mRNA-containing cargoes, including granules and mitochondrial mRNA, are transported within neuronal projections. The distributions of these cargoes appear to change during neuronal development, but details on the dynamics of mRNA transport during these transitions remain to be elucidated. For this study, we have developed imaging and image processing methods to quantify several transport parameters that can define the dynamics of RNA transport and localization. Using these methods, we characterized the transport of mitochondrial and non-mitochondrial mRNA in differentiated axons and dendrites of cultured hippocampal neurons varying in developmental maturity. Our results suggest differences in the transport profiles of mitochondrial and non-mitochondrial mRNA, and differences in transport parameters at different time points, and between axons and dendrites. Furthermore, within the non-mitochondrial mRNA pool, we observed two distinct populations that differed in their fluorescence intensity and velocity. The net axonal velocity of the brighter pool was highest at day 7 (0.002±0.001 µm/s, mean ± SEM, raising the possibility of a presynaptic requirement for mRNA during early stages of synapse formation. In contrast, the net dendritic velocity of the brighter pool increased steadily as neurons matured, with a significant difference between day 12 (0.0013±0.0006 µm/s and day 4 (-0.003±0.001 µm/s suggesting a postsynaptic role for mRNAs in more mature neurons. The dim population showed similar trends, though velocities were two orders of magnitude higher than of the bright particles. This study provides a baseline for further studies on mRNA transport, and has important implications for the regulation of neuronal plasticity during neuronal development and in response to neuronal injury.

  18. The myriad roles of Miro in the nervous system: axonal transport of mitochondria and beyond

    Lee, Kyu-Sun; Lu, Bingwei


    Mitochondrial rho GTPase (Miro) is a mitochondrial outer membrane protein containing two GTPase domains and two helix-loop-helix Ca2+-binding domains called EF hands. Pioneering genetic studies in Drosophila first revealed a key function of Miro in regulating the axonal transport of mitochondria, during which Miro forms a multi-protein transport complex with Milton and Kinesin heavy chain (KHC) to link trafficking mitochondria with the microtubule (MT) cytoskeleton. Recent studies showed that...

  19. The Myriad Roles of Miro in the Nervous System: Axonal Transport of Mitochondria and Beyond

    Bingwei Lu


    Mitochondrial rho GTPase (Miro) is a mitochondrial outer membrane protein containing two GTPase domains and two helix-loop-helix Ca2+-binding domains called EF hands. Pioneering genetic studies in Drosophila first revealed a key function of Miro in regulating the axonal transport of mitochondria, during which Miro forms a multi-protein transport complex with Milton and Kinesin heavy chain (KHC) to link trafficking mitochondria with the microtubule cytoskeleton. Recent studies showed that thro...

  20. 4S RNA is transported axonally in normal and regenerating axons of the sciatic nerves of rats

    Experiments were designed to determine if following injection of [3H]uridine into the lumbar spinal cord of the rat, [3H]RNA could be demonstrated within axons of the sciatic nerve, and if 4S RNA is the predominant predominant RNA species present in these axons. (Auth.)

  1. Assessment of retinal ganglion cell damage in glaucomatous optic neuropathy: Axon transport, injury and soma loss.

    Nuschke, Andrea C; Farrell, Spring R; Levesque, Julie M; Chauhan, Balwantray C


    Glaucoma is a disease characterized by progressive axonal pathology and death of retinal ganglion cells (RGCs), which causes structural changes in the optic nerve head and irreversible vision loss. Several experimental models of glaucomatous optic neuropathy (GON) have been developed, primarily in non-human primates and, more recently and commonly, in rodents. These models provide important research tools to study the mechanisms underlying glaucomatous damage. Moreover, experimental GON provides the ability to quantify and monitor risk factors leading to RGC loss such as the level of intraocular pressure, axonal health and the RGC population. Using these experimental models we are able to gain a better understanding of GON, which allows for the development of potential neuroprotective strategies. Here we review the advantages and disadvantages of the relevant and most often utilized methods for evaluating axonal degeneration and RGC loss in GON. Axonal pathology in GON includes functional disruption of axonal transport (AT) and structural degeneration. Horseradish peroxidase (HRP), rhodamine-B-isothiocyanate (RITC) and cholera toxin-B (CTB) fluorescent conjugates have proven to be effective reporters of AT. Also, immunohistochemistry (IHC) for endogenous AT-associated proteins is often used as an indicator of AT function. Similarly, structural degeneration of axons in GON can be investigated via changes in the activity and expression of key axonal enzymes and structural proteins. Assessment of axonal degeneration can be measured by direct quantification of axons, qualitative grading, or a combination of both methods. RGC loss is the most frequently quantified variable in studies of experimental GON. Retrograde tracers can be used to quantify RGC populations in rodents via application to the superior colliculus (SC). In addition, in situ IHC for RGC-specific proteins is a common method of RGC quantification used in many studies. Recently, transgenic mouse models

  2. Calsyntenin-1 shelters APP from proteolytic processing during anterograde axonal transport

    Martin Steuble


    Endocytosis of amyloid-β precursor protein (APP is thought to represent the major source of substrate for the production of the amyloidogenic Aβ peptide by the β-secretase BACE1. The irreversible nature of proteolytic cleavage implies the existence of an efficient replenishment route for APP from its sites of synthesis to the cell surface. We recently found that APP exits the trans-Golgi network in intimate association with calsyntenin-1, a transmembrane cargo-docking protein for Kinesin-1-mediated vesicular transport. Here we characterized the function of calsyntenin-1 in neuronal APP transport using selective immunoisolation of intracellular trafficking organelles, immunocytochemistry, live-imaging, and RNAi. We found that APP is co-transported with calsyntenin-1 along axons to early endosomes in the central region of growth cones in carriers that exclude the α-secretase ADAM10. Intriguingly, calsyntenin-1/APP organelles contained BACE1, suggesting premature cleavage of APP along its anterograde path. However, we found that APP contained in calsyntenin-1/APP organelles was stable. We further analyzed vesicular trafficking of APP in cultured hippocampal neurons, in which calsyntenin-1 was reduced by RNAi. We found a markedly increased co-localization of APP and ADAM10 in axons and growth cones, along with increased proteolytic processing of APP and Aβ secretion in these neurons. This suggested that the reduced capacity for calsyntenin-1-dependent APP transport resulted in mis-sorting of APP into additional axonal carriers and, therefore, the premature encounter of unprotected APP with its ectodomain proteases. In combination, our results characterize calsyntenin-1/APP organelles as carriers for sheltered anterograde axonal transport of APP.

  3. Disruption of mitochondrial DNA replication in Drosophila increases mitochondrial fast axonal transport in vivo.

    Rehan M Baqri

    Full Text Available Mutations in mitochondrial DNA polymerase (pol gamma cause several progressive human diseases including Parkinson's disease, Alper's syndrome, and progressive external ophthalmoplegia. At the cellular level, disruption of pol gamma leads to depletion of mtDNA, disrupts the mitochondrial respiratory chain, and increases susceptibility to oxidative stress. Although recent studies have intensified focus on the role of mtDNA in neuronal diseases, the changes that take place in mitochondrial biogenesis and mitochondrial axonal transport when mtDNA replication is disrupted are unknown. Using high-speed confocal microscopy, electron microscopy and biochemical approaches, we report that mutations in pol gamma deplete mtDNA levels and lead to an increase in mitochondrial density in Drosophila proximal nerves and muscles, without a noticeable increase in mitochondrial fragmentation. Furthermore, there is a rise in flux of bidirectional mitochondrial axonal transport, albeit with slower kinesin-based anterograde transport. In contrast, flux of synaptic vesicle precursors was modestly decreased in pol gamma-alpha mutants. Our data indicate that disruption of mtDNA replication does not hinder mitochondrial biogenesis, increases mitochondrial axonal transport, and raises the question of whether high levels of circulating mtDNA-deficient mitochondria are beneficial or deleterious in mtDNA diseases.

  4. Pharmacological characterization of axonally transported (125I)-alpha-bungatoxin binding sites in rat sciatic nerve

    The authors attempt to label the putative receptors as they are axonally transported in peripheral nerves. With the use of an innovative autoradiographic technique, this approach as enabled the investigation of the pharmacological properties of the toxin-binding site interaction. The tissue sections from adult male rat sciatic nerves were incubated for 60 min at room temperature in phosphate buffer saline containing 2 nM I 125-alpha-BuTX with or without displacer. A bright field micrograph as well as dark field autoradiograph is illustrated of a ligated (12 hr.) rat sciatic nerve section incubated with I 125-alpha-BuTX. If one presumes that axonally transported I 125-alpha-BuTX binding sites correspond to receptors whose destination is the presynaptic membrane, then the data presented in this study may provide a pharmacological basis for differentiating pre- and postsynaptic sites of action of cholinergic drugs on the mammalian neuromuscular junction

  5. Axon Transport and Neuropathy: Relevant Perspectives on the Etiopathogenesis of Familial Dysautonomia.

    Tourtellotte, Warren G


    Peripheral neuropathies are highly prevalent and are most often associated with chronic disease, side effects from chemotherapy, or toxic-metabolic abnormalities. Neuropathies are less commonly caused by genetic mutations, but studies of the normal function of mutated proteins have identified particular vulnerabilities that often implicate mitochondrial dynamics and axon transport mechanisms. Hereditary sensory and autonomic neuropathies are a group of phenotypically related diseases caused by monogenic mutations that primarily affect sympathetic and sensory neurons. Here, I review evidence to indicate that many genetic neuropathies are caused by abnormalities in axon transport. Moreover, in hereditary sensory and autonomic neuropathies. There may be specific convergence on gene mutations that disrupt nerve growth factor signaling, upon which sympathetic and sensory neurons critically depend. PMID:26724390

  6. Berberine Attenuates Axonal Transport Impairment and Axonopathy Induced by Calyculin A in N2a Cells

    Xiaofeng Liu; Jie Zhou; Morad Dirhem Naji Abid; Huanhuan Yan; Hao Huang; Limin Wan; Zuohua Feng; Juan Chen


    Berberine is a primary component of the most functional extracts of Coptidis rhizome used in traditional Chinese medicine for centuries. Recent reports indicate that Berberine has the potential to prevent and treat Alzheimer's disease (AD). The previous studies reported that Calyculin A (CA) impaired the axonal transport in neuroblastoma-2a (N2a) cells. Berberine attenuated tau hyperphosphorylation and cytotoxicity induced by CA. Our study aimed at investigating the effects of Berberine on th...

  7. Analysis of axonal transport and molecular chaperones during neurodegeneration in drosophila

    Sinadinos, Christopher


    Neuronal dysfunction and cell death occurs during neurodegeneration. Animal models that express human disease genes and show neurodegenerative-like pathologies are widely used to study particular molecular systems in early neurodegenerative changes. Axonal transport (AT) is perturbed in several prevalent neurodegenerative diseases. The development of a Huntington’s Disease (HD) model in Drosophila melanogaster larvae is described, in which disease gene expression is directed to motor neurons ...

  8. Release of axonally transported material from an in vitro amphibian sciatic nerve preparation

    The rapid axonal transport of a pulse of [35S]methionine-labelled material was used to study the release of transported material from amphibian nerve maintained in vitro. Following creation of a moving pulse of activity in a dorsal root ganglion-sciatic nerve preparation, the ganglion was removed and the nerve placed in a three-compartment tray, the section of nerve in the middle compartment containing no truncated branches (unbranched section). All three compartments were filled with a saline solution that in some studies contained nonradioactive methionine (1.0 mmol/L). Analysis of studies in which nonradioactive methionine was absent revealed that labelled material appeared in the bathing solution of the end compartments that contained truncated branches, but not in the solution of the middle (unbranched) compartment. The quantity of label released in the branched compartments was approximately 6% of that remaining in the corresponding section of nerve following an 18-20 h incubation period. However, when nonradioactive methionine was present, all compartments showed an additional activity in the bathing solution of approximately 10% of that remaining in the nerve. In another study in which a position-sensitive detector of ionizing radiation was used to monitor progress of the pulse, it was found that activity did not enter the bathing solution of a compartment prior to the pulse of activity. It is concluded that in the absence of methionine from the bathing solution, axonally transported material is released only from regions of nerve that contain severed axons; however, the presence of methionine allows transported material to be released from nerve containing intact axons. Ultrafiltration studies and thin-layer chromatography revealed the majority of material released to be of low-molecular weight (less than 30,000 daltons) and not free [35S]methionine

  9. Quantification of retrograde axonal transport in the rat optic nerve by fluorogold spectrometry.

    Christian van Oterendorp

    Full Text Available PURPOSE: Disturbed axonal transport is an important pathogenic factor in many neurodegenerative diseases, such as glaucoma, an eye disease characterised by progressive atrophy of the optic nerve. Quantification of retrograde axonal transport in the optic nerve usually requires labour intensive histochemical techniques or expensive equipment for in vivo imaging. Here, we report on a robust alternative method using Fluorogold (FG as tracer, which is spectrometrically quantified in retinal tissue lysate. METHODS: To determine parameters reflecting the relative FG content of a sample FG was dissolved in retinal lysates at different concentrations and spectra were obtained. For validation in vivo FG was injected uni- or bilaterally into the superior colliculus (SC of Sprague Dawley rats. The retinal lysate was analysed after 3, 5 and 7 days to determine the time course of FG accumulation in the retina (n = 15. In subsequent experiments axona transport was impaired by optic nerve crush (n = 3, laser-induced ocular hypertension (n = 5 or colchicine treatment to the SC (n = 10. RESULTS: Spectrometry at 370 nm excitation revealed two emission peaks at 430 and 610 nm. We devised a formula to calculate the relative FG content (c(FG, from the emission spectrum. c(FG is proportional to the real FG concentration as it corrects for variations of retinal protein concentration in the lysate. After SC injection, c(FG monotonously increases with time (p = 0.002. Optic nerve axonal damage caused a significant decrease of c(FG (crush p = 0.029; hypertension p = 0.025; colchicine p = 0.006. Lysates are amenable to subsequent protein analysis. CONCLUSIONS: Spectrometrical FG detection in retinal lysates allows for quantitative assessment of retrograde axonal transport using standard laboratory equipment. It is faster than histochemical techniques and may also complement morphological in vivo analyses.

  10. Demyelination induces transport of ribosome-containing vesicles from glia to axons: evidence from animal models and MS patient brains.

    Shakhbazau, Antos; Schenk, Geert J; Hay, Curtis; Kawasoe, Jean; Klaver, Roel; Yong, V Wee; Geurts, Jeroen J G; van Minnen, Jan


    Glial cells were previously proven capable of trafficking polyribosomes to injured axons. However, the occurrence of such transfer in the general pathological context, such as demyelination-related diseases, needs further evidence. Since this may be a yet unidentified universal contributor to axonal survival, we study putative glia-axonal ribosome transport in response to demyelination in animal models and patients in both peripheral and central nervous system. In the PNS we investigate whether demyelination in a rodent model has the potential to induce ribosome transfer. We also probe the glia-axonal ribosome supply by implantation of transgenic Schwann cells engineered to produce fluorescent ribosomes in the same demyelination model. We furthermore examine the presence of axonal ribosomes in mouse experimental autoimmune encephalomyelitis (EAE), a well-established model for multiple sclerosis (MS), and in human MS autopsy brain material. We provide evidence for increased axonal ribosome content in a pharmacologically demyelinated sciatic nerve, and demonstrate that at least part of these ribosomes originate in the transgenic Schwann cells. In the CNS one of the hallmarks of MS is demyelination, which is associated with severe disruption of oligodendrocyte-axon interaction. Here, we provide evidence that axons from spinal cords of EAE mice, and in the MS human brain contain an elevated amount of axonal ribosomes compared to controls. Our data provide evidence that increased axonal ribosome content in pathological axons is at least partly due to glia-to-axon transfer of ribosomes, and that demyelination in the PNS and in the CNS is one of the triggers capable to initiate this process. PMID:27115494

  11. Axonal Transport and Neurodegeneration: How Marine Drugs Can Be Used for the Development of Therapeutics

    White, Joseph A.; Banerjee, Rupkatha; Gunawardena, Shermali


    Unlike virtually any other cells in the human body, neurons are tasked with the unique problem of transporting important factors from sites of synthesis at the cell bodies, across enormous distances, along narrow-caliber projections, to distally located nerve terminals in order to maintain cell viability. As a result, axonal transport is a highly regulated process whereby necessary cargoes of all types are packaged and shipped from one end of the neuron to the other. Interruptions in this finely tuned transport have been linked to many neurodegenerative disorders including Alzheimer’s (AD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS) suggesting that this pathway is likely perturbed early in disease progression. Therefore, developing therapeutics targeted at modifying transport defects could potentially avert disease progression. In this review, we examine a variety of potential compounds identified from marine aquatic species that affect the axonal transport pathway. These compounds have been shown to function in microtubule (MT) assembly and maintenance, motor protein control, and in the regulation of protein degradation pathways, such as the autophagy-lysosome processes, which are defective in many degenerative diseases. Therefore, marine compounds have great potential in developing effective treatment strategies aimed at early defects which, over time, will restore transport and prevent cell death. PMID:27213408

  12. Riluzole protects against glutamate-induced slowing of neurofilament axonal transport.

    Stevenson, Alison


    Riluzole is the only drug approved for the treatment of amyotrophic lateral sclerosis (ALS) but its precise mode of action is not properly understood. Damage to axonal transport of neurofilaments is believed to be part of the pathogenic mechanism in ALS and this has been linked to defective glutamate handling and increased phosphorylation of neurofilament side-arm domains. Here, we show that riluzole protects against glutamate-induced slowing of neurofilament transport. Protection is associated with decreased neurofilament side-arm phosphorylation and inhibition of the activities of two neurofilament kinases, ERK and p38 that are activated in ALS. Thus, the anti-glutamatergic properties of riluzole include protection against glutamate-induced changes to neurofilament phosphorylation and transport.

  13. Axonal transport of cadmium in the olfactory nerve of the pike

    109Cd2+ was applied in the olfactory chambers of pikes (Esox lucius) and the dynamics of the axoplasmic flow of the metal was determined in the olfactory nerves by gamma spectrometry and autoradiography. The results showed that the 109Cd2+ is transported at a constant rate along the olfactory nerves. The profile of the 109Cd2+ in the nerves showed a wave front of transported metal followed by a saddle region. When the nasal chambers were washed 2 hr after application of the 109Cd2+ well-defined transport peaks for the metal were seen in the olfactory axons. The maximal velocity for the transport of 109Cd2+, which corresponds to the movement of the wave front, was 2.38±0.10 mm/hr (mean±S.E.) at the experimental temperature (10 deg. C). The average velocity for the transport of the 109Cd2+, which corresponds to the peak apex movement of the wave, was 2.18±0.05 mm/hr (mean ±S.E.) at 10 deg. C. The tranported 109Cd2+ was strongly accumulated in the anterior parts of the olfactory bulbs, whereas in other brain areas the levels of the metal remained low. Autoradiography of a pike exposed to 109Cd2+ via the water showed a strong labelling in the receptor-cell-containing olfactory rosettes, whereas other structures in the olfactory chambers were only weakly labelled. The accumulation and axonal transport in the olfactory neurons may be noxious and constitute an important component in the toxicology of cadmium in fish, and this may apply also to some other heavy metals. (author)

  14. Ndel1-derived peptides modulate bidirectional transport of injected beads in the squid giant axon

    Michal Segal


    Bidirectional transport is a key issue in cellular biology. It requires coordination between microtubule-associated molecular motors that work in opposing directions. The major retrograde and anterograde motors involved in bidirectional transport are cytoplasmic dynein and conventional kinesin, respectively. It is clear that failures in molecular motor activity bear severe consequences, especially in the nervous system. Neuronal migration may be impaired during brain development, and impaired molecular motor activity in the adult is one of the hallmarks of neurodegenerative diseases leading to neuronal cell death. The mechanisms that regulate or coordinate kinesin and dynein activity to generate bidirectional transport of the same cargo are of utmost importance. We examined how Ndel1, a cytoplasmic dynein binding protein, may regulate non-vesicular bidirectional transport. Soluble Ndel1 protein, Ndel1-derived peptides or control proteins were mixed with fluorescent beads, injected into the squid giant axon, and the bead movements were recorded using time-lapse microscopy. Automated tracking allowed for extraction and unbiased analysis of a large data set. Beads moved in both directions with a clear bias to the anterograde direction. Velocities were distributed over a broad range and were typically slower than those associated with fast vesicle transport. Ironically, the main effect of Ndel1 and its derived peptides was an enhancement of anterograde motion. We propose that they may function primarily by inhibition of dynein-dependent resistance, which suggests that both dynein and kinesin motors may remain engaged with microtubules during bidirectional transport.

  15. The Myriad Roles of Miro in the Nervous System: Axonal Transport of Mitochondria and Beyond

    Bingwei Lu


    Full Text Available Mitochondrial rho GTPase (Miro is a mitochondrial outer membrane protein containing two GTPase domains and two helix-loop-helix Ca2+-binding domains called EF hands. Pioneering genetic studies in Drosophila first revealed a key function of Miro in regulating the axonal transport of mitochondria, during which Miro forms a multi-protein transport complex with Milton and Kinesin heavy chain (KHC to link trafficking mitochondria with the microtubule cytoskeleton. Recent studies showed that through binding to the EF hands of Miro and causing conformational changes of Miro and alteration of protein-protein interactions within the transport complex, Ca2+ can alter the engagement of mitochondria with the microtubule (MT/kinesin network, offering one mechanism to match mitochondrial distribution with neuronal activity. Despite the importance of the Miro/Milton/Kinesin complex in regulating mitochondrial transport in metazoans, not all components of the transport complex are conserved in lower organisms, and transport-independent functions of Miro are emerging. Here we review the diverse functions of the evolutionarily conserved Miro proteins that are relevant to the development, maintenance, and functioning of the nervous system and discuss the potential contribution of Miro dysfunction to the pathogenesis of diseases of the nervous system.

  16. Quantitative measurements and modeling of cargo–motor interactions during fast transport in the living axon

    The kinesins have long been known to drive microtubule-based transport of sub-cellular components, yet the mechanisms of their attachment to cargo remain a mystery. Several different cargo-receptors have been proposed based on their in vitro binding affinities to kinesin-1. Only two of these—phosphatidyl inositol, a negatively charged lipid, and the carboxyl terminus of the amyloid precursor protein (APP-C), a trans-membrane protein—have been reported to mediate motility in living systems. A major question is how these many different cargo, receptors and motors interact to produce the complex choreography of vesicular transport within living cells. Here we describe an experimental assay that identifies cargo–motor receptors by their ability to recruit active motors and drive transport of exogenous cargo towards the synapse in living axons. Cargo is engineered by derivatizing the surface of polystyrene fluorescent nanospheres (100 nm diameter) with charged residues or with synthetic peptides derived from candidate motor receptor proteins, all designed to display a terminal COOH group. After injection into the squid giant axon, particle movements are imaged by laser-scanning confocal time-lapse microscopy. In this report we compare the motility of negatively charged beads with APP-C beads in the presence of glycine-conjugated non-motile beads using new strategies to measure bead movements. The ensuing quantitative analysis of time-lapse digital sequences reveals detailed information about bead movements: instantaneous and maximum velocities, run lengths, pause frequencies and pause durations. These measurements provide parameters for a mathematical model that predicts the spatiotemporal evolution of distribution of the two different types of bead cargo in the axon. The results reveal that negatively charged beads differ from APP-C beads in velocity and dispersion, and predict that at long time points APP-C will achieve greater progress towards the presynaptic

  17. Acrylamide Retards the Slow Axonal Transport of Neurofilaments in Rat Cultured Dorsal Root Ganglia Neurons and the Corresponding Mechanisms.

    An, Lihong; Li, Guozhen; Si, Jiliang; Zhang, Cuili; Han, Xiaoying; Wang, Shuo; Jiang, Lulu; Xie, Keqin


    Chronic acrylamide (ACR) exposure induces peripheral-central axonopathy in occupational workers and laboratory animals, but the underlying mechanisms remain unclear. In this study, we first investigated the effects of ACR on slow axonal transport of neurofilaments in cultured rat dorsal root ganglia (DRG) neurons through live-cell imaging approach. Then for the underlying mechanisms exploration, the protein level of neurofilament subunits, motor proteins kinesin and dynein, and dynamitin subunit of dynactin in DRG neurons were assessed by western blotting and the concentrations of ATP was detected using ATP Assay Kit. The results showed that ACR treatment results in a dose-dependent decrease of slow axonal transport of neurofilaments. Furthermore, ACR intoxication significantly increases the protein levels of the three neurofilament subunits (NF-L, NF-M, NF-H), kinesin, dynein, and dynamitin subunit of dynactin in DRG neurons. In addition, ATP level decreased significantly in ACR-treated DRG neurons. Our findings indicate that ACR exposure retards slow axonal transport of NF-M, and suggest that the increase of neurofilament cargoes, motor proteins, dynamitin of dynactin, and the inadequate ATP supply contribute to the ACR-induced retardation of slow axonal transport. PMID:26721510


    Rapid axonal transport of glycoproteins was examined in the retinofugal projections of hypothermic and normothermic adult male Long-Evans hooded rats previously receiving intraocular injections of (3H)fucose. The amount of retinal fucosylation appeared normal in the hypothermic a...

  19. Axonal transport of rubidium and thallium in the olfactory nerve of mice

    Following intranasal administration of radioactive 86Rb+ and 201Tl+ in mice, we observed this direct transport via the olfactory nerve pathway. The 86RbCl and 201TlCl solutions were administered to two groups of mice, the unilateral intranasal and intravenous administration groups. After sacrifice, their heads were divided into the right and left side, which were then subdivided into seven parts; the nasal mucosa and brain regions were separated. Following the unilateral intranasal administration, uptake after 6 h by the olfactory bulb was significantly higher on the ipsilateral side (86Rb, 0.7 %dose; 201Tl, 0.5 %dose) than on the contralateral side (86Rb, 0.08 %dose; 201Tl, 0.15 %dose). Moreover, the 86Rb and 201Tl that accumulated in the olfactory bulb were gradually transported to other brain regions of the olfactory tract, the telencephalon and the diencephalon on the side corresponding to the nostril used for administration. Significant differences were observed between the right and left side of the brain regions 6 and 12 h after administration. Further, 201Tl autoradiography clearly showed striped patterns of dense accumulation, localized in the region around the glomerular layer and granule cell layer of the olfactory bulb and around the olfactory cortex. These results provide clear evidence of axonal transport via the olfactory nerve pathway, from nasal cavity to the olfactory bulb, as well as to the olfactory cortex through the synaptic junctions. The olfactory transport of the 86Rb+ and 201Tl+ is thought to represent the behavior of K+ in the olfactory system

  20. Increased slow transport in axons of regenerating newt limbs after a nerve conditioning lesion made prior to amputation

    The first part of this study shows that axonal density is constant in the limb stump of the next proximal to the area of traumatic nerve degeneration caused by limb amputation. The results of the second part of this work reveal that a nerve conditioning lesion made two weeks prior to amputation is associated with accelerated limb regeneration and that this accelerated limb regeneration is accompanied by an earlier arrival of axons. This is the first demonstration of naturally occurring limb regeneration being enhanced. In this study SCb cytoskeletal proteins were identified and measured using SDS-PAGE and liquid scintillation counting. Proteins were measured at 7, 14, 21, and 28 days after 35S-methionine injection and the normal rate of SCb transport determined to be 0.19 mm/day. A single axotomy does not enhance the rate of SCb transport but does increase the amount of labeled SCb proteins that are transported. When a conditioning lesion is employed prior to limb amputation and SCb proteins are measured at 7, 14, and 21 days after injection, there is a twofold acceleration in the rate of SCb transport and an increase in the amount of SCb proteins transported in conditioned axons

  1. Endosome-mediated retrograde axonal transport of P2X3 receptor signals in primary sensory neurons

    Xu-Qiao Chen; BinWang; Chengbiao Wu; Jin Pan; Bo Yuan; Yuan-Yuan Su; Xing-Yu Jiang; Xu Zhang; Lan Bao


    Neurotrophins and their receptors adopt signaling endosomes to transmit retrograde signals.However,the mechanisms of retrograde signaling for other ligand/receptor systems are poorly understood.Here,we report that the signals of the purinergic (P)2X3 receptor,an ATP-gated ion channel are retrogradely transported in dorsal root ganglion (DRG) neuron axons.We found that Rab5,a small GTPase,controls the early sorting of P2X3 receptors into endosomes,while Rab7 mediates the fast retrograde transport of P2X3 receptors.Intraplantar injection and axonal application into the microfluidic chamber of α,β-methylene-ATP (α,β-MeATP),a P2X selective agonist,enhanced the endocytosis and retrograde transport of P2X3 receptors.The α,β-MeATP-induced Ca2+ influx activated a pathway comprised of protein kinase C,rat sarcoma viral oncogene and extracellular signal-regulated protein kinase (ERK),which associated with endocytic P2X3 receptors to form signaling endosomes.Disruption of the lipid rafts abolished the α,β-MeATP-induced ERK phosphorylation,endocytosis and retrograde transport of P2X3 receptors.Furthermore,treatment of peripheral axons with α,β-MeATP increased the activation level of ERK and cAMP response element-binding protein in the cell bodies of DRG neurons and enhanced neuronal excitability.Impairment of either microtubule-based axonal transport in vivo or dynein function in vitro blocked α,β-MeATP-induced retrograde signals.These results indicate that P2X3 receptor-activated signals are transmitted via retrogradely transported endosomes in primary sensory neurons and provide a novel signaling mechanism for ligand-gated channels.


    Pattern reversal evoked potentials (PREPs), flash evoked potentials (FEPs), optic nerve axonal transport, and body temperature were measured in hooded rats treated with either saline or the formamidine insecticide/acaricide, chlordimeform (CDM). Rats receiving CDM had low body te...

  3. Deficit


    UCL's former provost, Sir Derek Roberts, has been drafted in for a year to run the college. UCL is expected to have a 6 million pounds deficit this year and up to a 10 million pounds deficit next year. Sir Christopher Llewellyn-Smith took over at UCL nearly 4 years ago and decided then that the finanical situation was serious enough to warrant a reduction in the vast expansion policy undertaken by his predecessor (1 page).

  4. The RNA binding and transport proteins staufen and fragile X mental retardation protein are expressed by rat primary afferent neurons and localize to peripheral and central axons.

    Price, T J; Flores, C M; Cervero, F; Hargreaves, K M


    Neuronal proteins have been traditionally viewed as being derived solely from the soma; however, accumulating evidence indicates that dendritic and axonal sites are capable of a more autonomous role in terms of new protein synthesis. Such extra-somal translation allows for more rapid, on-demand regulation of neuronal structure and function than would otherwise be possible. While mechanisms of dendritic RNA transport have been elucidated, it remains unclear how RNA is trafficked into the axon for this purpose. Primary afferent neurons of the dorsal root (DRG) and trigeminal (TG) ganglia have among the longest axons in the neuraxis and such axonal protein synthesis would be advantageous, given the greater time involved for protein trafficking to occur via axonal transport. Therefore, we hypothesized that these primary sensory neurons might express proteins involved in RNA transport. Rat DRG and TG neurons expressed staufen (stau) 1 and 2 (detected at the mRNA level) and stau2 and fragile x mental retardation protein (FMRP; detected at the protein level). Stau2 mRNA was also detected in human TG neurons. Stau2 and FMRP protein were localized to the sciatic nerve and dorsal roots by immunohistochemistry and to dorsal roots by Western blot. Stau2 and FMRP immunoreactivities colocalized with transient receptor potential channel type 1 immunoreactivity in sensory axons of the sciatic nerve and dorsal root, suggesting that these proteins are being transported into the peripheral and central terminals of nociceptive sensory axons. Based on these findings, we propose that stau2 and FMRP proteins are attractive candidates to subserve RNA transport in sensory neurons, linking somal transcriptional events to axonal translation. PMID:16809002

  5. Concentration dependence of rapid axonal transport: a study of the transport kinetics of [35S]methionine-labeled protein in postganglionic sympathetic fibers of the bullfrog

    The kinetics of transport of radiolabeled proteins in sympathetic axons of the bullfrog sciatic nerve were examined after injection of [35S]methionine into the S9 sympathetic ganglion. Under resting conditions at 20 degrees C, the fastest moving material was carried distally at 5.7 +/- 0.3 mm/hr. Various manipulations of temperature in the proximal part of the nerve were used to alter the amount of protein transported into the distal region, which was always kept at 20 degrees C. The velocity in this test region was found to increase to over 9 mm/hr when material that had accumulated at a cold block for 4 hr was released by rewarming. This acceleration was transient, and base line velocity was regained after 2 hr. In order to increase the local concentration of transported protein by a second method, the proximal part of several nerves was warmed to 28 degrees C. Maximal transport velocity in the 20 degrees C test region rose to 6.2 +/- 0.12 mm/hr. To decrease the local concentration of transported protein, the proximal part of other nerves was cooled to 15 degrees C. Maximal transport velocity in the 20 degrees C test region fell to 4.7 +/- 0.7 mm/hr. We conclude that there is a small but real tendency for the velocity of rapid axonal transport in this neural system to be positively related to the availability of material suitable for transport

  6. Dopamine Transporter Genotype Conveys Familial Risk of Attention-Deficit/Hyperactivity Disorder through Striatal Activation

    Durston, Sarah; Fossella, John A.; Mulder, Martijn J.; Casey B. J.; Ziermans, Tim B.; Vessaz, M. Nathalie; Van Engeland, Herman


    The study examines the effect of the dopamine transporter (DAT1) genotype in attention-deficit/hyperactivity disorder (ADHD). The results confirm that DAT1 translates the genetic risk of ADHD through striatal activation.

  7. Distal retinal ganglion cell axon transport loss and activation of p38 MAPK stress pathway following VEGF-A antagonism.

    Foxton, R; Osborne, A; Martin, K R; Ng, Y-S; Shima, D T


    There is increasing evidence that VEGF-A antagonists may be detrimental to neuronal health following ocular administration. Here we investigated firstly the effects of VEGF-A neutralization on retinal neuronal survival in the Ins2(Akita) diabetic and JR5558 spontaneous choroidal neovascularization (CNV) mice, and then looked at potential mechanisms contributing to cell death. We detected elevated apoptosis in the ganglion cell layer in both these models following VEGF-A antagonism, indicating that even when vascular pathologies respond to treatment, neurons are still vulnerable to reduced VEGF-A levels. We observed that retinal ganglion cells (RGCs) seemed to be the cells most susceptible to VEGF-A antagonism, so we looked at anterograde transport in these cells, due to their long axons requiring optimal protein and organelle trafficking. Using cholera toxin B-subunit tracer studies, we found a distal reduction in transport in the superior colliculus following VEGF-A neutralization, which occurred prior to net RGC loss. This phenomenon of distal transport loss has been described as a feature of early pathological changes in glaucoma, Alzheimer's and Parkinson's disease models. Furthermore, we observed increased phosphorylation of p38 MAPK and downstream Hsp27 stress pathway signaling in the retinas from these experiments, potentially providing a mechanistic explanation for our findings. These experiments further highlight the possible risks of using VEGF-A antagonists to treat ocular neovascular disease, and suggest that VEGF-A may contribute to the maintenance and function of axonal transport in neurons of the retina. PMID:27148685

  8. Outsourcing CREB translation to axons to survive

    Lin, Andrew C; Holt, Christine E.


    Nerve growth factor induces sensory neuron survival via retrograde signalling from the axon to the cell body. Local translation of the transcription factor CREB in the axon, followed by its transport to the nucleus, is involved in this process.

  9. Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery.

    Mazarakis, N D; Azzouz, M; Rohll, J B; Ellard, F M; Wilkes, F J; Olsen, A L; Carter, E E; Barber, R D; Baban, D F; Kingsman, S M; Kingsman, A J; O'Malley, K; Mitrophanous, K A


    In this report it is demonstrated for the first time that rabies-G envelope of the rabies virus is sufficient to confer retrograde axonal transport to a heterologous virus/vector. After delivery of rabies-G pseudotyped equine infectious anaemia virus (EIAV) based vectors encoding a marker gene to the rat striatum, neurons in regions distal from but projecting to the injection site, such as the dopaminergic neurons of the substantia nigra pars compacta, become transduced. This retrograde transport to appropriate distal neurons was also demonstrated after delivery to substantia nigra, hippocampus and spinal cord and did not occur when vesicular stomatitis virus glycoprotein (VSV-G) pseudotyped vectors were delivered to these sites. In addition, peripheral administration of rabies-G pseudotyped vectors to the rat gastrocnemius muscle leads to gene transfer in motoneurons of lumbar spinal cord. In contrast the same vector pseudotyped with VSV-G transduced muscle cells surrounding the injection site, but did not result in expression in any cells in the spinal cord. Long-term expression was observed after gene transfer in the nervous system and a minimal immune response which, together with the possibility of non-invasive administration, greatly extends the utility of lentiviral vectors for gene therapy of human neurological disease. PMID:11590128

  10. Analysis of the apparent biphasic axonal transport kinetics of fucosylated glycoproteins

    Following intraocular injection of [3H]fucose, the accumulation of transported radioactivity arriving at the superior colliculus peaks within a few hours and decays with a time course of hours. Then, over a period of several days, radioactivity again accumulates at the superior colliculus and then decays with a half-life of days. Such data have been interpreted as evidence for both a group of rapidly released, rapidly transported glycoproteins (first peak) and a group of slowly released but rapidly transported glycoproteins (second peak). This supposition was investigated by studying in more detail the metabolism of some individual fucosylated proteins in both the retina and superior colliculus. It was noted that much of the radioactivity incorporated in fucosylated glycoproteins at the retina was rapidly metabolized, while the remainder of the fucosylated moieties had a metabolic half-life on the order of days. In other experiments [35S]methionine was injected intraocularly, the metabolism in the retina was examined and a study was made of the kinetics of transport to the superior colliculus of the peptide backbone of these same individual proteins. In contrast to the two waves of accumulation of radioactivity from [3H]fucose, accumulation of radioactivity of the peptide backbone of the same glycoproteins was monophasic. The author's explanation of these data involves the presence of two types of fucose moieties on the peptides. One group of fucose moieties is labile and is lost from the peptide backbone over a period of hours. Other fucose moieties are approximately as metabolically stable as the peptide backbones to which they are attached. The actual peptide backbones of the glycoproteins are committed to rapid transport over a period of several days

  11. In vivo labelling and axonal transport of monoamine oxidase in the rat basal ganglia using radioactive pargyline

    The enzyme monoamine oxidase was labelled in the rat striatum or substantia nigra with locally injected radioactive pargyline. The binding was prevented by a pretreatment with non-radioactive pargyline, or with a combination of clorgyline and deprenyl. Most of the MAO labelled with 3H-pargyline was of the B-type, but also some MAO-A was labelled, as shown in rats pretreated with clorgyline or deprenyl separately. Seven days after the injection of (3H)-pargyline into the striatum a significant labelling was observed in the substantia nigra. This labelling was clorgyline sensitive, indicating type A MAO, and was not present when striatal neurons were destroyed with kainic acid. Labelling of the striatum following 3H-pargyline injection into the substantia nigra was also less in kainate intoxicated striata. Damage of nigral dopamine neurons with 6-hydroxydopmaine did not influence the distribution of the label. Thus by using 3H-pargyline, specific labelling and axonal transport of type A MAO in striatal neurons projecting to the substantia nigra was demonstrated. (Author)

  12. A temporal variation in nonneuronal protein synthesis in dorsal root ganglia and nerve and its significance to studies of axonal transport

    Protein synthesis and fast axonal transport were studied in vitro using dorsal root ganglia (DRG)-sciatic nerve preparations from the amphibian Xenopus laevis. It was observed that the rate of incorporation of [3H]leucine into protein in DRG and isolated segments of nerve began to increase 9 to 11 h after killing the animal, attaining at 13 to 17 h a maximum of 5- to 10-times preincrease (less than 9 h) values. At the same time as an increase in the rate of incorporation began, synthesis commenced in DRG and nerve exposed to cycloheximide (125 micrograms/ml). Whereas cycloheximide reduced fast axonal transport to 1 to 3% of control values in preparations maintained 20 to 24 h in vitro, cycloheximide reduced incorporation in DRG to only 80% of control values. N-terminal labeling studies showed that both the increased incorporation and cycloheximide-insensitive incorporation resulted from protein synthesis. Autoradiographic and incorporation studies indicated that nonneuronal cells situated in the ganglion capsule and perineural sheath of the nerve were responsible for both the increased incorporation and cycloheximide-insensitive synthesis. The findings have implications for the study of axonal transport

  13. Axon degeneration and PGC-1α-mediated protection in a zebrafish model of α-synuclein toxicity

    Kelley C. O’Donnell


    Full Text Available α-synuclein (aSyn expression is implicated in neurodegenerative processes, including Parkinson’s disease (PD and dementia with Lewy bodies (DLB. In animal models of these diseases, axon pathology often precedes cell death, raising the question of whether aSyn has compartment-specific toxic effects that could require early and/or independent therapeutic intervention. The relevance of axonal pathology to degeneration can only be addressed through longitudinal, in vivo monitoring of different neuronal compartments. With current imaging methods, dopaminergic neurons do not readily lend themselves to such a task in any vertebrate system. We therefore expressed human wild-type aSyn in zebrafish peripheral sensory neurons, which project elaborate superficial axons that can be continuously imaged in vivo. Axonal outgrowth was normal in these neurons but, by 2 days post-fertilization (dpf, many aSyn-expressing axons became dystrophic, with focal varicosities or diffuse beading. Approximately 20% of aSyn-expressing cells died by 3 dpf. Time-lapse imaging revealed that focal axonal swelling, but not overt fragmentation, usually preceded cell death. Co-expressing aSyn with a mitochondrial reporter revealed deficits in mitochondrial transport and morphology even when axons appeared overtly normal. The axon-protective protein Wallerian degeneration slow (WldS delayed axon degeneration but not cell death caused by aSyn. By contrast, the transcriptional coactivator PGC-1α, which has roles in the regulation of mitochondrial biogenesis and reactive-oxygen-species detoxification, abrogated aSyn toxicity in both the axon and the cell body. The rapid onset of axonal pathology in this system, and the relatively moderate degree of cell death, provide a new model for the study of aSyn toxicity and protection. Moreover, the accessibility of peripheral sensory axons will allow effects of aSyn to be studied in different neuronal compartments and might have utility in

  14. Sorting of Dendritic and Axonal Vesicles at the Pre-axonal Exclusion Zone

    Ginny G. Farías


    Full Text Available Polarized sorting of newly synthesized proteins to the somatodendritic and axonal domains of neurons occurs by selective incorporation into distinct populations of vesicular transport carriers. An unresolved issue is how the vesicles themselves are sorted to their corresponding neuronal domains. Previous studies concluded that the axon initial segment (AIS is an actin-based filter that selectively prevents passage of somatodendritic vesicles into the axon. We find, however, that most somatodendritic vesicles fail to enter the axon at a more proximal region in the axon hillock, herein referred to as the pre-axonal exclusion zone (PAEZ. Forced coupling of a somatodendritic cargo protein to an axonally directed kinesin is sufficient to drive transport of whole somatodendritic vesicles through the PAEZ toward the distal axon. Based on these findings, we propose that polarized sorting of transport vesicles occurs at the PAEZ and depends on the ability of the vesicles to acquire an appropriately directed microtubule motor.

  15. Effects of proton irradiation of the lumbar intumescence on intra-axonal transport of acetylcholine and cholinergic enzymes in rat sciatic nerve

    The content and intra-axonal transport of acetylcholine (ACh) and the cholinergic enzymes cholineacetyl-transferase (CAT) and ACh-esterase (AChE) in sciatic nerve were investigated in rats following single dose proton irradiation of the lumbar intumescence of the spinal cord with 60 Gy or 200 Gy. One, 7 or 30 days after irradiation nerve-crush operations were performed 12 hours before killing and the levels of ACh and enzyme activities in nerve segments relative to the crushes were estimated by biologic (ACh) to chemical (enzyme) methods. The results indicate that alterations in intra-neuronal dynamics of ACh and related enzymes are not a major cause for the development of neurologic symptoms of the motor system after irradiation, and that descending myelinated axons are of minor importance for the regulation of cholinergic substances in rat motor nerves. (Auth.)

  16. Coordinating gene expression and axon assembly to control axon growth: potential role of GSK3 signaling

    Fengquan Zhou


    Full Text Available Axon growth requires coordinated regulation of gene expression in the neuronal soma, anterograde transport of synthesized raw materials along the axon, and assembly of cytoskeleton and membranes in the nerve growth cone. Glycogen synthase kinase 3 (GSK3 signaling has recently been shown to play key roles in regulation of axonal transport and cytoskeletal assembly during axon growth. GSK3 signaling is also known to regulate gene expression via controlling the functions of many transcription factors, suggesting that GSK3 may be an important regulator of gene transcription supporting axon growth. Here we will review signaling pathways that control local axon assembly at the growth cone and gene expression in the soma during developmental or regenerative axon growth and discuss the potential involvement of GSK3 signaling in these processes, with a particular focus on how GSK3 signaling modulates the function of axon growth-associated transcription factors.

  17. Association of attention-deficit disorder and the dopamine transporter gene

    Cook, E.H. Jr.; Stein, M.A.; Krasowski, M.D.; Cox, N.J.; Olkon, D.M.; Kieffer, J.E.; Leventhal, B.L. [Univ. of Chicago, IL (United States)


    Attention-deficit hyperactivity disorder (ADHD) has been shown to be familial and heritable, in previous studies. As with most psychiatric disorders, examination of pedigrees has not revealed a consistent Mendelian mode of transmission. The response of ADHD patients to medications that inhibit the dopamine transporter, including methylphenidate, amphetamine, pemoline, and bupropion, led us to consider the dopamine transporter as a primary candidate gene for ADHD. To avoid effects of population stratification and to avoid the problem of classification of relatives with other psychiatric disorders as affected or unaffected, we used the haplotype-based haplotype relative risk (HHRR) method to test for association between a VNTR polymorphism at the dopamine transporter locus (DAT1) and DSM-III-R-diagnosed ADHD (N = 49) and undifferentiated attention-deficit disorder (UADD) (N = 8) in trios composed of father, mother, and affected offspring. HHRR analysis revealed significant association between ADHS/UADD and the 480-bp DAT1 allele (X{sup 2} 7.51, 1 df, P = .006). When cases of UADD were dropped from the analysis, similar results were found (X{sup 2} 7.29, 1 df, P = .007). If these findings are replicated, molecular analysis of the dopamine transporter gene may identify mutations that increase susceptibility to ADHD/UADD. Biochemical analysis of such mutations may lead to development of more effective therapeutic interventions. 36 refs., 4 tabs.

  18. Axonal tubulin and axonal microtubules: biochemical evidence for cold stability


    Nerve extracts containing tubulin labeled by axonal transport were analyzed by electrophoresis and differential extraction. We found that a substantial fraction of the tubulin in the axons of the retinal ganglion cell of guinea pigs is not solubilized by conventional methods for preparation of microtubules from whole brain. In two-dimensional polyacrylamide gel electrophoresis this cold-insoluble tubulin was biochemically distinct from tubulin obtained from whole brain microtubules prepared b...

  19. Isolation and analyses of axonal ribonucleoprotein complexes.

    Doron-Mandel, Ella; Alber, Stefanie; Oses, Juan A; Medzihradszky, Katalin F; Burlingame, Alma L; Fainzilber, Mike; Twiss, Jeffery L; Lee, Seung Joon


    Cytoskeleton-dependent RNA transport and local translation in axons are gaining increased attention as key processes in the maintenance and functioning of neurons. Specific axonal transcripts have been found to play roles in many aspects of axonal physiology including axon guidance, axon survival, axon to soma communication, injury response and regeneration. This axonal transcriptome requires long-range transport that is achieved by motor proteins carrying transcripts as messenger ribonucleoprotein (mRNP) complexes along microtubules. Other than transport, the mRNP complex plays a major role in the generation, maintenance, and regulation of the axonal transcriptome. Identification of axonal RNA-binding proteins (RBPs) and analyses of the dynamics of their mRNPs are of high interest to the field. Here, we describe methods for the study of interactions between RNA and proteins in axons. First, we describe a protocol for identifying binding proteins for an RNA of interest by using RNA affinity chromatography. Subsequently, we discuss immunoprecipitation (IP) methods allowing the dissection of protein-RNA and protein-protein interactions in mRNPs under various physiological conditions. PMID:26794529

  20. Axon Regeneration in the Peripheral and Central Nervous Systems

    Huebner, Eric A.; Strittmatter, Stephen M


    Axon regeneration in the mature mammalian central nervous system (CNS) is extremely limited after injury. Consequently, functional deficits persist after spinal cord injury (SCI), traumatic brain injury, stroke, and related conditions that involve axonal disconnection. This situation differs from that in the mammalian peripheral nervous system (PNS), where long- distance axon regeneration and substantial functional recovery can occur in the adult. Both extracellular molecules and the intrinsi...

  1. Polyols in grape berry: transport and metabolic adjustments as a physiological strategy for water-deficit stress tolerance in grapevine.

    Conde, Artur; Regalado, Ana; Rodrigues, Diana; Costa, J Miguel; Blumwald, Eduardo; Chaves, M Manuela; Gerós, Hernâni


    Polyols are important metabolites that often function as carbon and energy sources and/or osmoprotective solutes in some plants. In grapevine, and in the grape berry in particular, the molecular aspects of polyol transport and metabolism and their physiological relevance are virtually unknown to date. Here, the biochemical function of a grapevine fruit mesocarp polyol transporter (VvPLT1) was characterized after its heterologous expression in yeast. This H(+)-dependent plasma membrane carrier transports mannitol (K m=5.4mM) and sorbitol (K m=9.5mM) over a broad range of polyols and monosaccharides. Water-deficit stress triggered an increase in the expression of VvPLT1 at the fully mature stage, allowing increased polyol uptake into pulp cells. Plant polyol dehydrogenases are oxireductases that reversibly oxidize polyols into monosaccharides. Mannitol catabolism in grape cells (K m=30.1mM mannitol) and mature berry mesocarps (K m=79mM) was, like sorbitol dehydrogenase activity, strongly inhibited (50-75%) by water-deficit stress. Simultaneously, fructose reduction into polyols via mannitol and sorbitol dehydrogenases was stimulated, contributing to their higher intracellular concentrations in water-deficit stress. Accordingly, the concentrations of mannitol, sorbitol, galactinol, myo-inositol, and dulcitol were significantly higher in berry mesocarps from water-deficit-stressed Tempranillo grapevines. Metabolomic profiling of the berry pulp by GC-TOF-MS also revealed many other changes in its composition induced by water deficit. The impact of polyols on grape berry composition and plant response to water deficit stress, via modifications in polyol transport and metabolism, was analysed by integrating metabolomics with transcriptional analysis and biochemical approaches. PMID:25433029

  2. The serotonin transporter gene polymorphism 5-HTTLPR moderates the effects of stress on attention-deficit/hyperactivity disorder

    van der Meer, Dennis; Hartman, Catharina A.; Richards, Jennifer; Bralten, Janita B.; Franke, Barbara; Oosterlaan, Jaap; Heslenfeld, Dirk J.; Faraone, Stephen V.; Buitelaar, Jan K.; Hoekstra, Pieter J.


    IntroductionThe role of the serotonin transporter gene polymorphism 5-HTTLPR in attention-deficit/hyperactivity disorder (ADHD) is unclear. Heterogeneity of findings may be explained by gene-environment interactions (GxE), as it has been suggested that S-allele carriers are more reactive to psychoso

  3. Neurofilament spacing, phosphorylation, and axon diameter in regenerating and uninjured lamprey axons.

    Pijak, D S; Hall, G F; Tenicki, P J; Boulos, A S; Lurie, D I; Selzer, M E


    uncut GRAs but were also highly phosphorylated. Thus, in the lamprey, NF phosphorylation may not control axon diameter directly through electrorepulsive charges that increase NF sidearm extension and NF spacing. It is possible that phosphorylation of NFs normally influences axon diameter through indirect mechanisms, such as the slowing of NF transport and the formation of a stationary cytoskeletal lattice, as has been proposed by others. Such a mechanism could be overridden during regeneration, when a more compact, phosphorylated NF backbone might add mechanical stiffness that promotes the advance of the neurite tip within a restricted central nervous system environment. PMID:8744444

  4. Localization of Axonal Motor Molecules Machinery in Neurodegenerative Disorders

    Fulvio Florenzano


    Full Text Available Axonal transport and neuronal survival depend critically on active transport and axon integrity both for supplying materials and communication to different domains of the cell body. All these actions are executed through cytoskeleton, transport and regulatory elements that appear to be disrupted in neurodegenerative diseases. Motor-driven transport both supplies and clears distal cellular portions with proteins and organelles. This transport is especially relevant in projection and motor neurons, which have long axons to reach the farthest nerve endings. Thus, any disturbance of axonal transport may have severe consequences for neuronal function and survival. A growing body of literature indicates the presence of alterations to the motor molecules machinery, not only in expression levels and phosphorylation, but also in their subcellular distribution within populations of neurons, which are selectively affected in the course of neurodegenerative diseases. The implications of this altered subcellular localization and how this affects axon survival and neuronal death still remain poorly understood, although several hypotheses have been suggested. Furthermore, cytoskeleton and transport element localization can be selectively disrupted in some disorders suggesting that specific loss of the axonal functionality could be a primary hallmark of the disorder. This can lead to axon degeneration and neuronal death either directly, through the functional absence of essential axonal proteins, or indirectly, through failures in communication among different cellular domains. This review compares the localization of cytoskeleton and transport elements in some neurodegenerative disorders to ask what aspects may be essential for axon survival and neuronal death.

  5. Computing along the axon

    Chen Haiming; Tseren-Onolt Ishdorj; Gheorghe Pǎun


    A special form of spiking neural P systems, called axon P systems, corresponding to the activity of Ranvier nodes of neuron axon, is considered and a class of SN-like P systems where the computation is done along the axon is introduced and their language generative power is investigated.

  6. Altered tryptophan and alanine transport in fibroblasts from boys with attention-deficit/hyperactivity disorder (ADHD): an in vitro study

    Vumma Ravi; Fernell Elisabeth; Landgren Magnus; Johansson Jessica; Åhlin Arne; Bjerkenstedt Lars; Venizelos Nikolaos


    Abstract Background The catecholaminergic and serotonergic neurotransmitter systems are implicated in the pathophysiology of attention-deficit/hyperactivity disorder (ADHD). The amino acid tyrosine is the precursor for synthesis of the catecholamines dopamine and norepinephrine, while tryptophan is the precursor of serotonin. A disturbed transport of tyrosine, as well as other amino acids, has been found in a number of other psychiatric disorders, such as schizophrenia, bipolar disorder and a...

  7. Dopamine Transporter Genotype and Stimulant Side Effect Factors in Youth Diagnosed with Attention-Deficit/Hyperactivity Disorder

    Gruber, Reut; Joober, Ridha; Grizenko, Natalie; Leventhal, Bennett L.; Cook, Edwin H.; Stein, Mark A.


    The dopamine transporter locus (DAT1) has been studied as a risk factor for attention-deficit/hyperactivity disorder (ADHD) and in pharmacogenetic studies of stimulant response. Several prospective studies have reported an association between the homozygous 9 repeat allele of the DAT1 3′ untranslated region (UTR) variable number tandem repeat (VNTR) (DAT1 3′) and decreased efficacy of methylphenidate (MPH). We hypothesized that children with the 9/9 genotype would display higher rates of spec...

  8. Axonal transport of labelled proteins and increased functional activity in sciatic nerve of the frog Rana hexadactyla in vitro

    In vitro speed of fast moving labelled protein fraction was investigated in the lumbar 8 nerve of R.hexadactyla during normal and electrical stimulation conditions. 3H-leucine labelled oroteins moved in a proximo-distal direction at a speed of 144 mm/day at 25 deg C. No change was observed in the rate of proteins transported in stimulated nerves but the amount of protein bound radioactivity increased over stimulation. In ligature experiments, amount of labelled proteins accumulating at a ligature was higher in stimulated nerves. Electrical stimulation of nerve resulted in an increase in protein synthetic rate in the respective ganglion. (author)

  9. Altered tryptophan and alanine transport in fibroblasts from boys with attention-deficit/hyperactivity disorder (ADHD: an in vitro study

    Vumma Ravi


    Full Text Available Abstract Background The catecholaminergic and serotonergic neurotransmitter systems are implicated in the pathophysiology of attention-deficit/hyperactivity disorder (ADHD. The amino acid tyrosine is the precursor for synthesis of the catecholamines dopamine and norepinephrine, while tryptophan is the precursor of serotonin. A disturbed transport of tyrosine, as well as other amino acids, has been found in a number of other psychiatric disorders, such as schizophrenia, bipolar disorder and autism, when using the fibroblast cell model. Hence, the aim of this study was to explore whether children with ADHD may have disturbed amino acid transport. Methods Fibroblast cells were cultured from skin biopsies obtained from 14 boys diagnosed with ADHD and from 13 matching boys without a diagnosis of a developmental disorder. Transport of the amino acids tyrosine, tryptophan and alanine across the cell membrane was measured by the cluster tray method. The kinetic parameters, maximal transport capacity (Vmax and affinity constant (Km were determined. Any difference between the two groups was analyzed by Student's unpaired t-test or the Mann Whitney U test. Results The ADHD group had significantly decreased Vmax (p = 0.039 and Km (increased affinity (p = 0.010 of tryptophan transport in comparison to controls. They also had a significantly higher Vmaxof alanine transport (p = 0.031, but the Km of alanine transport did not differ significantly. There were no significant differences in any of the kinetic parameters regarding tyrosine transport in fibroblasts for the ADHD group. Conclusions Tryptophan uses the same transport systems in both fibroblasts and at the blood brain barrier (BBB. Hence, a decreased transport capacity of tryptophan implies that less tryptophan is being transported across the BBB in the ADHD group. This could lead to deficient serotonin access in the brain that might cause disturbances in both the serotonergic and the catecholaminergic

  10. Motor Axon Pathfinding

    Bonanomi, Dario; Pfaff, Samuel L


    Motor neurons are functionally related, but represent a diverse collection of cells that show strict preferences for specific axon pathways during embryonic development. In this article, we describe the ligands and receptors that guide motor axons as they extend toward their peripheral muscle targets. Motor neurons share similar guidance molecules with many other neuronal types, thus one challenge in the field of axon guidance has been to understand how the vast complexity of brain connection...

  11. Defective lysosomal proteolysis and axonal transport are early pathogenic events that worsen with age leading to increased APP metabolism and synaptic Abeta in transgenic APP/PS1 hippocampus

    Torres Manuel


    Full Text Available Abstract Background Axonal pathology might constitute one of the earliest manifestations of Alzheimer disease. Axonal dystrophies were observed in Alzheimer’s patients and transgenic models at early ages. These axonal dystrophies could reflect the disruption of axonal transport and the accumulation of multiple vesicles at local points. It has been also proposed that dystrophies might interfere with normal intracellular proteolysis. In this work, we have investigated the progression of the hippocampal pathology and the possible implication in Abeta production in young (6 months and aged (18 months PS1(M146L/APP(751sl transgenic mice. Results Our data demonstrated the existence of a progressive, age-dependent, formation of axonal dystrophies, mainly located in contact with congophilic Abeta deposition, which exhibited tau and neurofilament hyperphosphorylation. This progressive pathology was paralleled with decreased expression of the motor proteins kinesin and dynein. Furthermore, we also observed an early decrease in the activity of cathepsins B and D, progressing to a deep inhibition of these lysosomal proteases at late ages. This lysosomal impairment could be responsible for the accumulation of LC3-II and ubiquitinated proteins within axonal dystrophies. We have also investigated the repercussion of these deficiencies on the APP metabolism. Our data demonstrated the existence of an increase in the amyloidogenic pathway, which was reflected by the accumulation of hAPPfl, C99 fragment, intracellular Abeta in parallel with an increase in BACE and gamma-secretase activities. In vitro experiments, using APPswe transfected N2a cells, demonstrated that any imbalance on the proteolytic systems reproduced the in vivo alterations in APP metabolism. Finally, our data also demonstrated that Abeta peptides were preferentially accumulated in isolated synaptosomes. Conclusion A progressive age-dependent cytoskeletal pathology along with a reduction of

  12. Motoneuron axon pathfinding errors in zebrafish: Differential effects related to concentration and timing of nicotine exposure

    Menelaou, Evdokia; Paul, Latoya T. [Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 (United States); Perera, Surangi N. [Joseph J. Zilber School of Public Health, University of Wisconsin — Milwaukee, Milwaukee, WI 53205 (United States); Svoboda, Kurt R., E-mail: [Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 (United States); Joseph J. Zilber School of Public Health, University of Wisconsin — Milwaukee, Milwaukee, WI 53205 (United States)


    Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMNs). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15–30 μM). Previous work showed that the paralytic mutant zebrafish known as sofa potato exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at different developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window. - Highlights: • Embryonic nicotine exposure can specifically affect secondary motoneuron axons in a dose-dependent manner.

  13. Determinants of axonal regeneration

    Frisén, J


    Axons often regrow to their targets and lost functions may be restored after an injury in the peripheral nervous system. In contrast, axonal regeneration is generally very limited after injuries in the central nervous system, and functional impairment is usually permanent. The regenerative capacity depends on intrinsic neuronal factors as weil as the interaction of neurons with other cells. Glial cells may, in different situations, either support or inhibit axo...

  14. Gamma aminobutyric acid transporter subtype 1 gene knockout mice: a new model for attention deficit/hyperactivity disorder

    Ping Yang; Guoqiang Cai; Youqing Cai; Jian Fei; Guoxiang Liu


    Attention deficit/hyperactivity disorder (ADHD) is characterized by hyperactivity,impaired sustained attention,impulsivity,and is usually accompanied by varying degrees of learning difficulties and lack of motor coordination.However,the pathophysiology and etiology of ADHD remain inconclusive so far.Our previous studies have demonstrated that the gamma aminobutyric acid transporter subtype 1 (GAT1) gene knockout (ko) mouse (gat1-/-)is hyperactive and exhibited impaired memory performance in the Morris water maze.In the current study,we found that the gat1-/-mice showed low levels of attentional focusing and increased impulsivity.In addition,the gat1-/-mice displayed ataxia characterized by defects in motor coordination and balance skills.The hyperactivity in the ko mice was reduced by both methylphenidate and amphetamine.Collectively,these results suggest that GAT1 ko mouse is a new animal model for ADHD studying and GAT1 may be a new target to treat ADHD.

  15. Protein phosphorylation: Localization in regenerating optic axons

    A number of axonal proteins display changes in phosphorylation during goldfish optic nerve regeneration. (1) To determine whether the phosphorylation of these proteins was closely linked to their synthesis in the retinal ganglion cell body, cycloheximide was injected intraocularly into goldfish whose optic nerves had been regenerating for 3 weeks. Cycloheximide reduced the incorporation of [3H]proline and 32P orthophosphate into total nerve protein by 84% and 46%, respectively. Of the 20 individual proteins examined, 17 contained less than 15% of the [3H]proline label measured in corresponding controls, whereas 18 proteins contained 50% or more of the 32P label, suggesting that phosphorylation was largely independent of synthesis. (2) To determine whether the proteins were phosphorylated in the ganglion cell axons, axonal transport of proteins was blocked by intraocular injection of vincristine. Vincristine reduced [3H]proline labeling of total protein by 88% and 32P labeling by 49%. Among the individual proteins [3H]proline labeling was reduced by 90% or more in 18 cases but 32P labeling was reduced only by 50% or less. (3) When 32P was injected into the cranial cavity near the ends of the optic axons, all of the phosphoproteins were labeled more intensely in the optic tract than in the optic nerve. These results suggest that most of the major phosphoproteins that undergo changes in phosphorylation in the course of regeneration are phosphorylated in the optic axons

  16. Methylphenidate Treatment in Adolescent Rats with an Attention Deficit/Hyperactivity Disorder Phenotype: Cocaine Addiction Vulnerability and Dopamine Transporter Function

    Harvey, Roxann C; Sen, Sucharita; Deaciuc, Agripina; Dwoskin, Linda P; Kantak, Kathleen M


    Appropriate animal models of attention deficit/hyperactivity disorder (ADHD) and drug reinforcement allow investigation of possible underlying biological bases of ADHD and its comorbidity with cocaine addiction. Toward this end, spontaneously hypertensive rats (SHRs) exhibiting an ADHD phenotype were compared with Wistar-Kyoto (WKY) and Wistar (WIS) rats. Initially, 1.5 mg/kg oral methylphenidate or vehicle was administered between postnatal days 28 and 55, and acquisition of visual discrimination learning was examined. After discontinuing adolescent treatments, adult rats were evaluated for cocaine self-administration and dopamine transporter (DAT) function in the prefrontal cortex (PFC) and striatum. During adolescence, SHRs showed deficits in visual discrimination relative to WKY and WIS rats when non-medicated. Methylphenidate improved visual discrimination only in SHRs. Compared with WKY and WIS rats, SHRs with previous methylphenidate treatment acquired cocaine self-administration faster, identified cocaine as a highly efficacious reinforcer by displaying an upward shift in the cocaine dose–response function, and showed the greatest motivation to self-administer cocaine by exhibiting the highest progressive ratio breakpoints. In the PFC, the maximal dopamine uptake (Vmax) at DAT was decreased in SHRs and increased in WKY and WIS rats by previous methylphenidate treatment. The affinity (Km) for dopamine at DAT in the PFC was not different between strains, nor was Vmax or Km altered in the striatum by previous methylphenidate treatment in any strain. Methylphenidate-induced decreases in dopamine clearance by DAT in the PFC may underlie increased cocaine self-administration in SHRs. These preclinical findings suggest that caution should be exercised when methylphenidate is prescribed for first-time treatment of ADHD in adolescent patients, as cocaine addiction vulnerability may be augmented. PMID:21150910

  17. Water Deficit Enhances C Export to the Roots in Arabidopsis thaliana Plants with Contribution of Sucrose Transporters in Both Shoot and Roots.

    Durand, Mickaël; Porcheron, Benoît; Hennion, Nils; Maurousset, Laurence; Lemoine, Rémi; Pourtau, Nathalie


    Root high plasticity is an adaptation to its changing environment. Water deficit impairs growth, leading to sugar accumulation in leaves, part of which could be available to roots via sucrose (Suc) phloem transport. Phloem loading is widely described in Arabidopsis (Arabidopsis thaliana), while unloading in roots is less understood. To gain information on leaf-to-root transport, a soil-based culture system was developed to monitor root system architecture in two dimensions. Under water deficit (50% of soil water-holding capacity), total root length was strongly reduced but the depth of root foraging and the shape of the root system were less affected, likely to improve water uptake. (14)CO2 pulse-chase experiments confirmed that water deficit enhanced carbon (C) export to the roots, as suggested by the increased root-to-shoot ratio. The transcript levels of AtSWEET11 (for sugar will eventually be exported transporter), AtSWEET12, and AtSUC2 (for Suc carrier) genes, all three involved in Suc phloem loading, were significantly up-regulated in leaves of water deficit plants, in accordance with the increase in C export from the leaves to the roots. Interestingly, the transcript levels of AtSUC2 and AtSWEET11 to AtSWEET15 were also significantly higher in stressed roots, underlying the importance of Suc apoplastic unloading in Arabidopsis roots and a putative role for these Suc transporters in Suc unloading. These data demonstrate that, during water deficit, plants respond to growth limitation by allocating relatively more C to the roots to maintain an efficient root system and that a subset of Suc transporters is potentially involved in the flux of C to and in the roots. PMID:26802041

  18. Neurofilament gene expression: a major determinant of axonal caliber

    Within the wide spectrum of axonal diameters occurring in mammalian nerve fibers, each class of neurons has a relatively restricted range of axonal calibers. The control of caliber has functional significance because diameter is the principal determinant of conduction velocity in myelinated nerve fibers. Previous observations support the hypothesis that neurofilaments (NF) are major intrinsic determinants of axonal caliber in large myelinated nerve fibers. Following interruption of axons (axotomy) by crushing or cutting a peripheral nerve, caliber is reduced in the proximal axonal stumps, which extend from the cell bodies to the site of axotomy. This reduction in axonal caliber in the proximal stumps is associated with a selective diminution in the amount of NF protein undergoing slow axonal transport in these axons, with a decrease in axonal NF content, and with reduced conduction velocity. The present report demonstrates that changes in axonal caliber after axotomy correlate with a selective alteration in NF gene expression. Hybridization with specific cDNAs was used to measure levels of mRNA encoding the 68-kDa neurofilament protein (NF68), β-tubulin, and actin in lumbar sensory neurons of rat at various times after crushing the sciatic nerve. Between 4 and 42 days after axotomy by nerve crush, the levels of NF68 mRNA were reduced 2- to 3-fold. At the same times, the levels of tubulin and actin mRNAs were increased several-fold. These findings support the hypothesis that the expression of a single set of neuron-specific genes (encoding NF) directly determines axonal caliber, a feature neuronal morphology with important consequences for physiology and behavior

  19. Cognitive and olfactory deficits in Machado-Joseph disease: a dopamine transporter study.

    Braga-Neto, Pedro; Felicio, Andre C; Hoexter, Marcelo Q; Pedroso, José Luiz; Dutra, Lívia Almeida; Alessi, Helena; Minett, Thaís; Santos-Galduroz, Ruth F; da Rocha, Antônio José; Garcia, Lucas A L; Bertolucci, Paulo Henrique F; Bressan, Rodrigo A; Barsottini, Orlando Graziani Povoas


    Cognitive and olfactory impairments have been demonstrated in patients with Machado-Joseph disease (MJD), and a possible relationship with dopaminergic dysfunction is implicated. However, there is still controversy regarding the pattern of striatal dopaminergic dysfunction in patients with MJD. In this study, we investigated whether these patients had different dopamine transporter (DAT) densities as compared to healthy subjects, and correlated these data with cognitive performance and sense of smell. Twenty-two MJD patients and 20 control subjects were enrolled. The neuropsychological assessment comprised the spatial span, symbol search, picture completion, stroop color word test, trail making test and phonemic verbal fluency test. The 16-item Sniffin' Sticks was used to evaluate odor identification. DAT imaging was performed using the SPECT radioligand [(99m)Tc]-TRODAT-1, alongside with Magnetic Resonance imaging. Patients with MJD showed significantly lower DAT density in the caudate (1.34 ± 0.27 versus 2.02 ± 0.50, p system involvement or of cerebellum neurodegeneration exerting a direct influence on cognitive and sensorial information processing in MJD. PMID:22575233

  20. Possible association of norepinephrine transporter -3081(A/T polymorphism with methylphenidate response in attention deficit hyperactivity disorder

    Shin Min-Sup


    Full Text Available Abstract Background Attention-deficit/hyperactivity disorder (ADHD is a heritable disorder characterized by symptoms of inattention and/or hyperactivity/impulsivity. Methylphenidate (MPH has been shown to block the norepinephrine transporter (NET, and genetic investigations have demonstrated that the norepinephrine transporter gene (SLC6A2 is associated with ADHD. The aims of this study were to examine the association of the SLC6A2 -3081(A/T and G1287A polymorphisms with MPH response in ADHD. Methods This study enrolled 112 children and adolescents with ADHD. A response criterion was defined based on the Clinical Global Impression-Improvement (CGI-I score, and the ADHD Rating Scale-IV (ARS score was also assessed at baseline and 8 weeks after MPH treatment. Results We found that the subjects who had the T allele as one of the alleles (A/T or T/T genotypes at the -3081(A/T polymorphism showed a better response to MPH treatment than those with the A/A genotype as measured by the CGI-I. We also found a trend towards a difference in the change of the total ARS scores and hyperactivity/impulsivity subscores between subjects with and without the T allele. No significant association was found between the genotypes of the SLC6A2 G1287A polymorphism and response to ADHD treatment. Conclusion Our findings provide evidence for the involvement of the -3081(A/T polymorphism of SLC6A2 in the modulation of the effectiveness of MPH treatment in ADHD.

  1. The contributions of myelin and axonal caliber to transverse relaxation time in shiverer and neurofilament-deficient mouse models

    Dyakin, Victor V.; Chen, Yuanxin; Branch, Craig A.; Veeranna; Yuan, Aidong; Rao, Mala; Kumar, Asok; Peterhoff, Corrinne M.; Nixon, Ralph A


    White matter disorders can involve injury to myelin or axons but the respective contribution of each to clinical course is difficult to evaluate non-invasively. Here, to develop a paradigm for further investigations of axonal pathology by MRI, we compared two genetic mouse models exhibiting relatively selective axonal or myelin deficits using quantitative MRI relaxography of the transverse relaxation times (T2) in vivo and ultrastructural morphometry. In HM-DKO mice, which lack genes encoding...

  2. Adolescence methylphenidate treatment in a rodent model of attention deficit/hyperactivity disorder: Dopamine transporter function and cellular distribution in adulthood

    Somkuwar, Sucharita S.; Darna, Mahesh; Kantak, Kathleen M.; Dwoskin, Linda P.


    Attention deficit/hyperactivity disorder (ADHD) is attributed to dysfunction of the prefrontal cortex. Methylphenidate, an inhibitor of dopamine and norepinephrine transporters (DAT and NET, respectively), is a standard treatment for ADHD. The Spontaneously Hypertensive Rat (SHR) is a well-established animal model of ADHD. Our previous results showed that methylphenidate treatment in adolescent SHR enhanced cocaine self-administration during adulthood, and alterations in DAT function in prefr...

  3. Axonal PPARγ promotes neuronal regeneration after injury.

    Lezana, Juan Pablo; Dagan, Shachar Y; Robinson, Ari; Goldstein, Ronald S; Fainzilber, Mike; Bronfman, Francisca C; Bronfman, Miguel


    PPARγ is a ligand-activated nuclear receptor best known for its involvement in adipogenesis and glucose homeostasis. PPARγ activity has also been associated with neuroprotection in different neurological disorders, but the mechanisms involved in PPARγ effects in the nervous system are still unknown. Here we describe a new functional role for PPARγ in neuronal responses to injury. We found both PPAR transcripts and protein within sensory axons and observed an increase in PPARγ protein levels after sciatic nerve crush. This was correlated with increased retrograde transport of PPARγ after injury, increased association of PPARγ with the molecular motor dynein, and increased nuclear accumulation of PPARγ in cell bodies of sensory neurons. Furthermore, PPARγ antagonists attenuated the response of sensory neurons to sciatic nerve injury, and inhibited axonal growth of both sensory and cortical neurons in culture. Thus, axonal PPARγ is involved in neuronal injury responses required for axonal regeneration. Since PPARγ is a major molecular target of the thiazolidinedione (TZD) class of drugs used in the treatment of type II diabetes, several pharmaceutical agents with acceptable safety profiles in humans are available. Our findings provide motivation and rationale for the evaluation of such agents for efficacy in central and peripheral nerve injuries. PMID:26446277

  4. Brain gangliosides in axon-myelin stability and axon regeneration

    Schnaar, Ronald L.


    Gangliosides, sialic acid-bearing glycosphingolipids, are expressed at high abundance and complexity in the brain. Altered ganglioside expression results in neural disorders, including seizures and axon degeneration. Brain gangliosides function, in part, by interacting with a ganglioside-binding lectin, myelin-associated glycoprotein (MAG). MAG, on the innermost wrap of the myelin sheath, binds to gangliosides GD1a and GT1b on axons. MAG-ganglioside binding ensures optimal axon-myelin cell-ce...

  5. Dopamine transporter genotype and stimulant side effect factors in youth diagnosed with attention-deficit/hyperactivity disorder.

    Gruber, Reut; Joober, Ridha; Grizenko, Natalie; Leventhal, Bennett L; Cook, Edwin H; Stein, Mark A


    The dopamine transporter locus (DAT1) has been studied as a risk factor for attention-deficit/hyperactivity disorder (ADHD) and in pharmacogenetic studies of stimulant response. Several prospective studies have reported an association between the homozygous 9 repeat allele of the DAT1 3' untranslated region (UTR) variable number tandem repeat (VNTR) (DAT1 3') and decreased efficacy of methylphenidate (MPH). We hypothesized that children with the 9/9 genotype would display higher rates of specific stimulant side effects. Data on adverse events and DAT1 3' genotypes were combined from two, double-blind, placebo-controlled, crossover studies of MPH conducted in child psychiatric outpatient clinics in Montreal and Washington, D.C. There were 177 participants, 5-16 years old (mean age = 8.99, standard deviation [SD] = 2), with ADHD. Parents completed the Stimulant Side Effect Scale (SERS) after a week of placebo and a week of MPH treatment. Principal components analysis of the SERS resulted in three factors: Emotionality, Somatic Complaints, and Over-focused. Children with the 9/9 genotype displayed higher scores on the Emotionality factor during placebo than children with the 9/10 and the 10/10 genotype, and their Emotionality scores increased further during MPH treatment (F[2,151] = 3.24, p side effects. Children with the 9/10 genotype displayed less severe stimulant side-effect ratings than either of the homozygous groups, who each displayed increased susceptibility to different types of adverse events. Preliminary evidence suggests that pharmacogenetic analysis using DAT1 variants shows promise for identifying individuals at increased or decreased risk for poor tolerability. PMID:19519258

  6. Attention deficit/hyperactivity disorder: is there a correlation between dopamine transporter density and cerebral blood flow?

    da Silva, Neivo; Szobot, Claudia M; Anselmi, Carlos E; Jackowski, Andrea P; Chi, Shih M; Hoexter, Marcelo Q; Anselmi, Osvaldo E; Pechansky, Flavio; Bressan, Rodrigo A; Rohde, Luis A


    Attention deficit/hyperactivity disorder (ADHD) is one of the most frequent behavioral problems in school-age children. Although the etiology remains unclear, the involvement of the dopaminergic system has been suggested by genetic studies that report an overexpression of the dopamine transporter (DAT) gene. In spite of these abnormalities being directly related to the decrease of dopamine (DA) in the striatum (STR), abnormalities in brain perfusion have also been observed in cortical-subcortical structures. Functional neuroimaging studies have suggested that the DA concentration may cause changes in the cerebral blood flow (CBF). The objective of our study was to evaluate the relationship between DAT density in STR and cortical-subcortical impairment in CBF. Based on the hypothesis that there is a correlation between DA availability and brain perfusion, we postulated that individuals with ADHD, with a higher DAT density in the basal ganglia, will have lower perfusion in the fronto-striatal-cerebellar networks. We used Tc-99m TRODAT-1 SPECT to measure DAT density and Tc-99m ECD SPECT to assess brain perfusion. Ten adolescents diagnosed with ADHD by Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria were investigated. Analysis with Statistical Parametric Mapping 5 corrected for multiple comparisons, using small volume correction, showed a significant negative correlation between the DAT density in the STR and CBF in the cingulate gyrus, frontal lobe, temporal lobe, and cerebellum (pFDR <0.01). Our findings suggest that higher DAT density in the STR was associated with a decrease in the regional CBF in the cortical and subcortical attention network. PMID:21716015

  7. Dopamine transporter density of the basal ganglia in children with attention deficit hyperactivity disorder assessed with I-123 IPT SPECT

    Ryu, Won Gee; Kim, Tae Hoon; Ryu, Young Hoon; Yun, Mi Jin; Lee, Jong Doo; Cheon, Keun Ah [College of Medicine, Yonsei Univ., Seoul (Korea, Republic of); Chi, Dae Yoon [College of Medicine, Inha Univ., Incheon (Korea, Republic of); Kim, Jong Ho; Choi, Tae Hyun [School of Medicine, Gachon Univ., Gachon (Korea, Republic of)


    Attention deficit hyperactivity disorder (ADHD) has been known as psychiatric disorder in childhood associated with dopamine dysregulation. In present study, we investigated changes in dopamine transporter (DAT) density of the basal ganglias using I-123 N-(3-iodopropen-2-yl) -2-carbomethoxy-3beta-(4-chlorphenyl) tropane (I-123 IPT) SPECT in children with ADHD before and after methylphenidate treatment. Nine drug-naive children with ADHD and seven normal children were included in the study. We performed brain SPECT two hours after the intravenous administration of I-123 IPT and made both quantitative and qualitative analyses using the obtained SPECT data, which were reconstructed for the assessment of specific/nonspecific DAT binding ratios in the basal ganglia. All children with ADHD reperformed (123I)IPT SPECT after treatment with methylphenidate (0.7mg/kg/d) during about 8 weeks. SPECT data reconstructed for the assessment of specific/nonspecific DAT binding ratio of the basal ganglia were compared between before and after treatment methyphenidate. We investigated correlation between the change of ADHD symptom severity assessed with ADHD rating scale-IV and specific/nonspecific DAT binding ratio of basal ganglia. Children with ADHD had a significantly greater specific/nonspecific DAT binding ratio of the basal ganglia comparing to normal children (Right : z = 2.057, p = 0.041 ; Left : z = 2.096, p = 0.032). Under treatment with methylphenidate in all children with ADHD, specific/nonspecific DAT binding ratio of both ganglia decreased significantly greater than before treatment with methylphenidate (Right : t = 3.239, p = 0.018 ; Left : t = 3.133, p 0.020). However, no significant correlation between the change of ADHD symptom severity scores and specific/nonspecific DAT binding ratio of the basal ganglia were found. These findings support the complex dysregulation of the dopaminergic neurotransmitter system in children with ADHD.

  8. Possible effect of norepinephrine transporter polymorphisms on methylphenidate-induced changes in neuropsychological function in attention-deficit hyperactivity disorder

    Park Subin


    Full Text Available Abstract Background Dysregulation of noradrenergic system may play important roles in pathophysiology of attention-deficit/hyperactivity disorder (ADHD. We examined the relationship between polymorphisms in the norepinephrine transporter SLC6A2 gene and attentional performance before and after medication in children with ADHD. Methods Fifty-three medication-naïve children with ADHD were genotyped and evaluated using the continuous performance test (CPT. After 8-weeks of methylphenidate treatment, these children were evaluated by CPT again. We compared the baseline CPT measures and the post-treatment changes in the CPT measures based on the G1287A and the A-3081T polymorphisms of SLC6A2. Results There was no significant difference in the baseline CPT measures associated with the G1287A or A-3081T polymorphisms. After medication, however, ADHD subjects with the G/G genotype at the G1287A polymorphism showed a greater decrease in the mean omission error scores (p = 0.006 than subjects with the G/A or A/A genotypes, and subjects with the T allele at the A-3081T polymorphism (T/T or A/T showed a greater decrease in the mean commission error scores (p = 0.003 than those with the A/A genotypes. Conclusions Our results provide evidence for the possible role of the G1287A and A-3081T genotypes of SLC6A2 in methylphenidate-induced improvement in attentional performance and support the noradrenergic hypothesis for the pathophysiology of ADHD.

  9. Dopamine transporter density of the basal ganglia in children with attention deficit hyperactivity disorder assessed with I-123 IPT SPECT

    Attention deficit hyperactivity disorder (ADHD) has been known as psychiatric disorder in childhood associated with dopamine dysregulation. In present study, we investigated changes in dopamine transporter (DAT) density of the basal ganglias using I-123 N-(3-iodopropen-2-yl) -2-carbomethoxy-3beta-(4-chlorphenyl) tropane (I-123 IPT) SPECT in children with ADHD before and after methylphenidate treatment. Nine drug-naive children with ADHD and seven normal children were included in the study. We performed brain SPECT two hours after the intravenous administration of I-123 IPT and made both quantitative and qualitative analyses using the obtained SPECT data, which were reconstructed for the assessment of specific/nonspecific DAT binding ratios in the basal ganglia. All children with ADHD reperformed (123I)IPT SPECT after treatment with methylphenidate (0.7mg/kg/d) during about 8 weeks. SPECT data reconstructed for the assessment of specific/nonspecific DAT binding ratio of the basal ganglia were compared between before and after treatment methyphenidate. We investigated correlation between the change of ADHD symptom severity assessed with ADHD rating scale-IV and specific/nonspecific DAT binding ratio of basal ganglia. Children with ADHD had a significantly greater specific/nonspecific DAT binding ratio of the basal ganglia comparing to normal children (Right : z = 2.057, p = 0.041 ; Left : z = 2.096, p = 0.032). Under treatment with methylphenidate in all children with ADHD, specific/nonspecific DAT binding ratio of both ganglia decreased significantly greater than before treatment with methylphenidate (Right : t = 3.239, p = 0.018 ; Left : t = 3.133, p 0.020). However, no significant correlation between the change of ADHD symptom severity scores and specific/nonspecific DAT binding ratio of the basal ganglia were found. These findings support the complex dysregulation of the dopaminergic neurotransmitter system in children with ADHD

  10. Microfluidic control of axonal guidance

    Gu, Ling; Black, Bryan; Ordonez, Simon; Mondal, Argha; Jain, Ankur; Mohanty, Samarendra


    The precision of axonal pathfinding and the accurate formation of functional neural circuitry are crucial for an organism during development as well as during adult central and peripheral nerve regeneration. While chemical cues are believed to be primarily responsible for axonal pathfinding, we hypothesize that forces due to localized fluid flow may directly affect neuronal guidance during early organ development. Here, we report direct evidence of fluid flow influencing axonal migration, producing turning angles of up to 90°. Microfluidic flow simulations indicate that an axon may experience significant bending force due to cross-flow, which may contribute to the observed axonal turning. This method of flow-based guidance was successfully used to fasciculate one advancing axon onto another, showcasing the potential of this technique to be used for the formation of in vitro neuronal circuits.

  11. Co-Localization of Sodium Channel Na[v]1.6 and the Sodium--Calcium Exchanger at Sites of Axonal Injury in the Spinal Cord in EAE

    Craner, Matthew J.; Hains, Bryan C.; Lo, Albert C.; Black, Joel A.; Waxman, Stephen G.


    Axonal degeneration contributes to the development of non-remitting neurological deficits and disability in multiple sclerosis, but the molecular mechanisms that underlie axonal loss in multiple sclerosis are not clearly understood. Studies of white matter axonal injury have demonstrated that voltage-gated sodium channels can provide a route for…

  12. Membrane turnover and receptor trafficking in regenerating axons.

    Hausott, Barbara; Klimaschewski, Lars


    Peripheral axonal regeneration requires surface-expanding membrane addition. The continuous incorporation of new membranes into the axolemma allows the pushing force of elongating microtubules to drive axonal growth cones forwards. Hence, a constant supply of membranes and cytoskeletal building blocks is required, often for many weeks. In human peripheral nerves, axonal tips may be more than 1 m away from the neuronal cell body. Therefore, in the initial phase of regeneration, membranes are derived from pre-existing vesicles or synthesised locally. Only later stages of axonal regeneration are supported by membranes and proteins synthesised in neuronal cell bodies, considering that the fastest anterograde transport mechanisms deliver cargo at 20 cm/day. Whereas endocytosis and exocytosis of membrane vesicles are balanced in intact axons, membrane incorporation exceeds membrane retrieval during regeneration to compensate for the loss of membranes distal to the lesion site. Physiological membrane turnover rates will not be established before the completion of target reinnervation. In this review, the current knowledge on membrane traffic in axonal outgrowth is summarised, with a focus on endosomal vesicles as the providers of membranes and carriers of growth factor receptors required for initiating signalling pathways to promote the elongation and branching of regenerating axons in lesioned peripheral nerves. PMID:26222895

  13. Increased expression of the dopamine transporter leads to loss of dopamine neurons, oxidative stress and l-DOPA reversible motor deficits.

    Masoud, S T; Vecchio, L M; Bergeron, Y; Hossain, M M; Nguyen, L T; Bermejo, M K; Kile, B; Sotnikova, T D; Siesser, W B; Gainetdinov, R R; Wightman, R M; Caron, M G; Richardson, J R; Miller, G W; Ramsey, A J; Cyr, M; Salahpour, A


    The dopamine transporter is a key protein responsible for regulating dopamine homeostasis. Its function is to transport dopamine from the extracellular space into the presynaptic neuron. Studies have suggested that accumulation of dopamine in the cytosol can trigger oxidative stress and neurotoxicity. Previously, ectopic expression of the dopamine transporter was shown to cause damage in non-dopaminergic neurons due to their inability to handle cytosolic dopamine. However, it is unknown whether increasing dopamine transporter activity will be detrimental to dopamine neurons that are inherently capable of storing and degrading dopamine. To address this issue, we characterized transgenic mice that over-express the dopamine transporter selectively in dopamine neurons. We report that dopamine transporter over-expressing (DAT-tg) mice display spontaneous loss of midbrain dopamine neurons that is accompanied by increases in oxidative stress markers, 5-S-cysteinyl-dopamine and 5-S-cysteinyl-DOPAC. In addition, metabolite-to-dopamine ratios are increased and VMAT2 protein expression is decreased in the striatum of these animals. Furthermore, DAT-tg mice also show fine motor deficits on challenging beam traversal that are reversed with l-DOPA treatment. Collectively, our findings demonstrate that even in neurons that routinely handle dopamine, increased uptake of this neurotransmitter through the dopamine transporter results in oxidative damage, neuronal loss and l-DOPA reversible motor deficits. In addition, DAT over-expressing animals are highly sensitive to MPTP-induced neurotoxicity. The effects of increased dopamine uptake in these transgenic mice could shed light on the unique vulnerability of dopamine neurons in Parkinson's disease. PMID:25447236

  14. Axon-glia interaction and membrane traffic in myelin formation

    Robin eWhite


    Full Text Available In vertebrate nervous systems myelination of neuronal axons has evolved to increase conduction velocity of electrical impulses with minimal space and energy requirements. Myelin is formed by specialised glial cells which ensheath axons with a lipid-rich insulating membrane. Myelination is a multi-step process initiated by axon-glia recognition triggering glial polarisation followed by targeted myelin membrane expansion and compaction. Thereby, a myelin sheath of complex subdomain structure is established. Continuous communication between neurons and glial cells is essential for myelin maintenance and axonal integrity. A diverse group of diseases, from multiple sclerosis to schizophrenia, have been linked to malfunction of myelinating cells reflecting the physiological importance of the axon-glial unit. This review describes the mechanisms of axonal signal integration by oligodendrocytes emphasising the central role of the Src-family kinase Fyn during CNS myelination. Furthermore, we discuss myelin membrane trafficking with particular focus on endocytic recycling and the control of PLP (proteolipid protein transport by SNARE proteins. Finally, PLP mistrafficking is considered in the context of myelin diseases.

  15. gamma-Diketone neuropathy: axon atrophy and the role of cytoskeletal protein adduction.

    LoPachin, Richard M; DeCaprio, Anthony P


    Multifocal giant neurofilamentous axonal swellings and secondary distal degeneration have been historically considered the hallmark features of gamma-diketone neuropathy. Accordingly, research conducted over the past 25 years has been directed toward discerning mechanisms of axonal swelling. However, this neuropathological convention has been challenged by recent observations that swollen axons were an exclusive product of long-term 2.5-hexanedione (HD) intoxication at lower daily dose-rates (e.g., 175 mg/kg/day); that is, higher HD dose-rates (e.g., 400 mg/kg/day) produced neurological deficits in the absence of axonal swellings. The observation that neurological toxicity can be expressed without axonal swelling suggests that this lesion is not an important pathophysiological event. Instead, several research groups have now shown that axon atrophy is prevalent in nervous tissues of laboratory animals intoxicated over a wide range of HD dose-rates. The well-documented nerve conduction defects associated with axon atrophy, in conjunction with the temporal correspondence between this lesion and the onset of neurological deficits, strongly suggest that atrophy has pathophysiological significance. In this commentary, we present evidence that supports a pathognomonic role for axon atrophy in gamma-diketone neuropathy and suggests that the functional consequences of this lesion mediate the corresponding neurological toxicity. Previous research has demonstrated that HD interacts with proteins via formation of pyrrole adducts. We therefore discuss the possibility that this chemical process is essential to the mechanism of atrophy. Evidence presented in this review suggests that "distal axonopathy" is an inaccurate classification and future nosological schemes should be based on the apparent primacy of axon atrophy. PMID:15289087

  16. Local translation and directional steering in axons

    Lin, Andrew C; Holt, Christine E.


    The assembly of functional neural circuits in the developing brain requires neurons to extend axons to the correct targets. This in turn requires the navigating tips of axons to respond appropriately to guidance cues present along the axonal pathway, despite being cellular ‘outposts' far from the soma. Work over the past few years has demonstrated a critical role for local translation within the axon in this process in vitro, making axon guidance another process that requires spatially locali...

  17. Thiazolidinediones promote axonal growth through the activation of the JNK pathway.

    Rodrigo A Quintanilla

    Full Text Available The axon is a neuronal process involved in protein transport, synaptic plasticity, and neural regeneration. It has been suggested that their structure and function are profoundly impaired in neurodegenerative diseases. Previous evidence suggest that Peroxisome Proliferator-Activated Receptors-γ (PPARγ promote neuronal differentiation on various neuronal cell types. In addition, we demonstrated that activation of PPARγby thiazolidinediones (TZDs drugs that selectively activate PPARγ prevent neurite loss and axonal damage induced by amyloid-β (Aβ. However, the potential role of TZDs in axonal elongation and neuronal polarity has not been explored. We report here that the activation of PPARγ by TZDs promoted axon elongation in primary hippocampal neurons. Treatments with different TZDs significantly increased axonal growth and branching area, but no significant effects were observed in neurite elongation compared to untreated neurons. Treatment with PPARγ antagonist (GW 9662 prevented TZDs-induced axonal growth. Recently, it has been suggested that the c-Jun N-terminal kinase (JNK plays an important role regulating axonal growth and neuronal polarity. Interestingly, in our studies, treatment with TZDs induced activation of the JNK pathway, and the pharmacological blockage of this pathway prevented axon elongation induced by TZDs. Altogether, these results indicate that activation of JNK induced by PPARγactivators stimulates axonal growth and accelerates neuronal polarity. These novel findings may contribute to the understanding of the effects of PPARγ on neuronal differentiation and validate the use of PPARγ activators as therapeutic agents in neurodegenerative diseases.

  18. Completely assembled virus particles detected by transmission electron microscopy in proximal and mid-axons of neurons infected with herpes simplex virus type 1, herpes simplex virus type 2 and pseudorabies virus

    The morphology of alphaherpesviruses during anterograde axonal transport from the neuron cell body towards the axon terminus is controversial. Reports suggest that transport of herpes simplex virus type 1 (HSV-1) nucleocapsids and envelope proteins occurs in separate compartments and that complete virions form at varicosities or axon termini (subassembly transport model), while transport of a related alphaherpesvirus, pseudorabies virus (PRV) occurs as enveloped capsids in vesicles (assembled transport model). Transmission electron microscopy of proximal and mid-axons of primary superior cervical ganglion (SCG) neurons was used to compare anterograde axonal transport of HSV-1, HSV-2 and PRV. SCG cell bodies were infected with HSV-1 NS and 17, HSV-2 2.12 and PRV Becker. Fully assembled virus particles were detected intracellularly within vesicles in proximal and mid-axons adjacent to microtubules after infection with each virus, indicating that assembled virions are transported anterograde within axons for all three alphaherpesviruses.

  19. Functional deficits in glutamate transporters and astrocyte biophysical properties in a rodent model of focal cortical dysplasia

    Hablitz, John J.; Olsen, Michelle L.


    Cortical dysplasia is associated with intractable epilepsy and developmental delay in young children. Recent work with the rat freeze-induced focal cortical dysplasia (FCD) model has demonstrated that hyperexcitability in the dysplastic cortex is due in part to higher levels of extracellular glutamate. Astrocyte glutamate transporters play a pivotal role in cortical maintaining extracellular glutamate concentrations. Here we examined the function of astrocytic glutamate transporters in a FCD ...

  20. Functional deficits in glutamate transporters and astrocyte biophysical properties in a rodent model of focal cortical dysplasia

    John J Hablitz


    Full Text Available Cortical dysplasia is associated with intractable epilepsy and developmental delay in young children. Recent work with the rat freeze-induced focal cortical dysplasia (FCD model has demonstrated that hyperexcitability in the dysplastic cortex is due in part to higher levels of extracellular glutamate. Astrocyte glutamate transporters play a pivotal role in cortical maintaining extracellular glutamate concentrations. Here we examined the function of astrocytic glutamate transporters in a FCD model in rats. Neocortical freeze lesions were made in postnatal day (PN 1 rat pups and whole cell electrophysiological recordings and biochemical studies were performed at PN 21-28. Synaptically evoked glutamate transporter currents in astrocytes showed a near 10-fold reduction in amplitude compared to sham operated controls. Astrocyte glutamate transporter currents from lesioned animals were also significantly reduced when challenged exogenously applied glutamate. Reduced astrocytic glutamate transport clearance contributed to increased NMDA receptor-mediated current decay kinetics in lesioned animals. The electrophysiological profile of astrocytes in the lesion group was also markedly changed compared to sham operated animals. Control astrocytes demonstrate large-amplitude linear leak currents in response to voltage-steps whereas astrocytes in lesioned animals demonstrated significantly smaller voltage-activated inward and outward currents. Significant decreases in astrocyte resting membrane potential and increases in input resistance were observed in lesioned animals. However, Western blotting, immunohistochemistry and quantitative PCR demonstrated no differences in the expression of the astrocytic glutamate transporter GLT-1 in lesioned animals relative to controls. These data suggest that, in the absence of changes in protein or mRNA expression levels, functional changes in astrocytic glutamate transporters contribute to neuronal hyperexcitability in

  1. Axon density and axon orientation dispersion in children born preterm

    Kelly, Claire E.; Thompson, Deanne K.; Chen, Jian; Leemans, Alexander; Adamson, Christopher L.; Inder, Terrie E.; Cheong, Jeanie L Y; Doyle, Lex W.; Anderson, Peter J.


    Background Very preterm birth (VPT, <32 weeks' gestation) is associated with altered white matter fractional anisotropy (FA), the biological basis of which is uncertain but may relate to changes in axon density and/or dispersion, which can be measured using Neurite Orientation Dispersion and Density

  2. γ-diketone central neuropathy: quantitative morphometric analysis of axons in rat spinal cord white matter regions and nerve roots

    A quantitative analytical method was used to measure myelinated axon morphometric parameters (e.g., axon area, ratio of axon area/fiber area, and index of circularity) in rat nervous tissue during intoxication with 2,5-hexanedione (HD). Parameters were assessed in nerve roots (dorsal and ventral) and in ascending (gracile fasciculus and spinocerebellar tract) and descending (corticospinal and rubrospinal tracts) spinal cord white matter tracts (L4-L5) of rats intoxicated with HD at two different daily dose-rates (175 or 400 mg HD/kg/day, gavage). For each dose-rate, tissue was sampled at four neurological endpoints: unaffected, slight, moderate, and severe toxicity, as determined by gait analysis and measurements of grip strength. Results indicate that, regardless of the HD dose-rate, axon atrophy (reduced axon area) was a widespread, abundant effect that developed in concert with neurological deficits. The atrophy response occurred contemporaneously in both ascending and descending spinal tracts, which suggests that loss of caliber developed simultaneously along the proximodistal axon axis. In contrast, swollen axons were a numerically small component and were present in nerve roots and spinal tracts only during subchronic intoxication at the lower HD dose-rate (i.e., 175 mg/kg/day). Intoxication at the higher dose-rate (400 mg/kg/day) produced neurological deficits in the absence of axonal swellings. These observations in conjunction with our previous studies of HD-induced peripheral neuropathy (Toxicol. Appl. Pharmacol. 135 (1995) 58; and Toxicol. Appl. Pharmacol. 165 (2000) 127) indicate that axon atrophy, and not axonal swelling, is a primary neuropathic phenomenon

  3. Axon damage and repair in multiple sclerosis.

    Perry, V.H.; Anthony, D. C.


    It is well known that within long-standing multiple sclerosis (MS) lesions there is axonal loss but whether it is an early or late event has been more difficult to establish. The use of immunocytochemical methods that reveal axonal end-bulbs is a valuable approach to investigating acute axonal injury in human pathological material. The application of these techniques to multiple sclerosis tissue reveals evidence of axonal injury in acute lesions; the distribution of the end-bulbs in acute and...

  4. Interaction of Dopamine Transporter Gene and Observed Parenting Behaviors on Attention-Deficit/Hyperactivity Disorder: A Structural Equation Modeling Approach

    Li, James J.; Lee, Steve S.


    Emerging evidence suggests that some individuals may be simultaneously more responsive to the effects from environmental adversity "and" enrichment (i.e., differential susceptibility). Given that parenting behavior and a variable number tandem repeat polymorphism in the 3'untranslated region of the dopamine transporter (DAT1) gene…

  5. Zinc transporter 3 (ZnT3) gene deletion reduces spinal cord white matter damage and motor deficits in a murine MOG-induced multiple sclerosis model.

    Choi, Bo Young; Kim, In Yeol; Kim, Jin Hee; Kho, A Ra; Lee, Song Hee; Lee, Bo Eun; Sohn, Min; Koh, Jae-Young; Suh, Sang Won


    The present study aimed to evaluate the role of zinc transporter 3 (ZnT3) on multiple sclerosis (MS) pathogenesis. Experimental autoimmune encephalomyelitis (EAE), a disease model of multiple sclerosis, was induced by immunization with myelin oligodendrocyte glycoprotein (MOG35-55) in female mice. Three weeks after the initial immunization, demyelination, immune cell infiltration and blood brain barrier (BBB) disruption in the spinal cord were analyzed. Clinical signs of EAE first appeared on day 11 and reached a peak level on day 19 after the initial immunization. ZnT3 gene deletion profoundly reduced the daily clinical score of EAE. The ZnT3 gene deletion-mediated inhibition of the clinical course of EAE was accompanied by suppression of inflammation and demyelination in the spinal cord. The motor deficit accompanying neuropathological changes associated with EAE were mild in ZnT3 gene deletion mice. This reduction in motor deficit was accompanied by coincident reductions in demyelination and infiltration of encephalitogenic immune cells including CD4+ T cells, CD8+ T cells, CD20+ B cells and F4/80+ microglia in the spinal cord. These results demonstrate that ZnT3 gene deletion inhibits the clinical features and neuropathological changes associated with EAE. ZnT3 gene deletion also remarkably inhibited formation of EAE-associated aberrant synaptic zinc patches, matrix metalloproteinases-9 (MMP-9) activation and BBB disruption. Therefore, amelioration of EAE-induced clinical and neuropathological changes by ZnT3 gene deletion suggests that vesicular zinc may be involved in several steps of MS pathogenesis. PMID:27370228

  6. Human intraretinal myelination: Axon diameters and axon/myelin thickness ratios

    FitzGibbon, Thomas; Nestorovski, Zoran


    Purpose: Human intraretinal myelination of ganglion cell axons occurs in about 1% of the population. We examined myelin thickness and axon diameter in human retinal specimens containing myelinated retinal ganglion cell axons. Materials and Methods: Two eyes containing myelinated patches were prepared for electron microscopy. Two areas were examined in one retina and five in the second retina. Measurements were compared to normal retinal and optic nerve samples and the rabbit retina, which normally contains myelinated axons. Measurements were made using a graphics tablet. Results: Mean axon diameter of myelinated axons at all locations were significantly larger than unmyelinated axons (P ≤ 0.01). Myelinated axons within the patches were significantly larger than axons within the optic nerve (P < 0.01). The relationship between axon diameter/fiber diameter (the G-ratio) seen in the retinal sites differed from that in the nerve. G-ratios were higher and myelin thickness was positively correlated to axon diameter (P < 0.01) in the retina but negatively correlated to axon diameter in the nerve (P < 0.001). Conclusion: Intraretinally myelinated axons are larger than non-myelinated axons from the same population and suggests that glial cells can induce diameter changes in retinal axons that are not normally myelinated. This effect is more dramatic on intraretinal axons compared with the normal transition zone as axons enter the optic nerve and these changes are abnormal. Whether intraretinal myelin alters axonal conduction velocity or blocks axonal conduction remains to be clarified and these issues may have different clinical outcomes. PMID:24212308

  7. Local protein synthesis in neuronal axons: why and how we study

    Kim, Eunjin; Jung, Hosung


    Adaptive brain function and synaptic plasticity rely on dynamic regulation of local proteome. One way for the neuron to introduce new proteins to the axon terminal is to transport those from the cell body, which had long been thought as the only source of axonal proteins. Another way, which is the topic of this review, is synthesizing proteins on site by local mRNA translation. Recent evidence indicates that the axon stores a reservoir of translationally silent mRNAs and regulates their expre...

  8. Dealing with water deficit in Atta ant colonies: large ants scout for water while small ants transport it

    Antonio Carlos Da-Silva


    Leafcutter ants (Atta sexdens rubropilosa (Forel 1908 have an elaborate social organization, complete with caste divisions. Activities carried out by specialist groups contribute to the overall success and survival of the colony when it is confronted with environmental challenges such as dehydration. Ants detect variations in humidity inside the nest and react by activating several types of behavior that enhance water uptake and decrease water loss, but it is not clear whether or not a single caste collects water regardless of the cost of bringing this resource back to the colony. Accordingly, we investigated water collection activities in three colonies of Atta sexdens rubropilosa experimentally exposed to water stress. Specifically, we analyzed whether or not the same ant caste foraged for water, regardless of the absolute energetic cost (distance of transporting this resource back to the colony. Our experimental design offered water sources at 0 m, 1 m and 10 m from the nest. We studied the body size of ants near the water sources from the initial offer of water (time  =  0 to 120 min, and tested for specialization. We observed a reduction in the average size and variance of ants that corroborated the specialization hypothesis. Although the temporal course of specialization changed with distance, the final outcome was similar among distances. Thus, we conclude that, for this species, a specialist (our use of the word “specialist” does not mean exclusive task force is responsible for collecting water, regardless of the cost of transporting water back to the colony.

  9. Road Repair Deficit Reduction

    Astrīda Rijkure


    Dissertation Annotation. The aim of the dissertation is to explore resource allocation problems for motor roads, reveal positive aspects and drawbacks in road maintenance and resource allocation scheme, as well as elaborate proposals for decreasing the deficit of motor road repairs in Latvia. The paper is composed in three large sections, according to the tasks. In the first section the Author considers number of basic issues related to the meaning of the motor transport ...

  10. Quantifying mechanical force in axonal growth and guidance

    Ahmad Ibrahim Mahmoud Athamneh


    Full Text Available Mechanical force plays a fundamental role in neuronal development, physiology, and regeneration. In particular, research has shown that force is involved in growth cone-mediated axonal growth and guidance as well as stretch-induced elongation when an organism increases in size after forming initial synaptic connections. However, much of the details about the exact role of force in these fundamental processes remain unknown. In this review, we highlight (1 standing questions concerning the role of mechanical force in axonal growth and guidance and (2 different experimental techniques used to quantify forces in axons and growth cones. We believe that satisfying answers to these questions will require quantitative information about the relationship between elongation, forces, cytoskeletal dynamics, axonal transport, signaling, substrate adhesion, and stiffness contributing to directional growth advance. Furthermore, we address why a wide range of force values have been reported in the literature, and what these values mean in the context of neuronal mechanics. We hope that this review will provide a guide for those interested in studying the role of force in development and regeneration of neuronal networks.

  11. Early phenotype expression of cortical neurons: evidence that a subclass of migrating neurons have callosal axons.

    Schwartz, M. L.; Rakic, P.; Goldman-Rakic, P. S.


    The use of [3H]thymidine labeling in combination with various axonal transport tracers has revealed that a subset of migrating neurons in the fetal monkey cerebrum issue axons to the opposite cerebral hemisphere while still migrating to their final positions in the cortical plate. Other cortical neurons with the same "birthdate" (i.e., that underwent their last round of DNA synthesis on the same day) are not retrogradely labeled by tracer injections of the opposite hemisphere. These findings ...

  12. Dopamine transporter density in the basal ganglia assessed with {sup 123}I-IPT SPECT in children with attention deficit hyperactivity disorder

    Yoo, Y. H.; Cheon, K. A.; Yoon, M. J.; Kim, C. H.; Lee, J. D. [Yonsei University College of Medicine, Seoul (Korea, Republic of); Kim, H. H.; Choi, T. H. [Gachon Medical School, Incheon (Korea, Republic of)


    Attention deficit hyperactivity disorder (ADHD) is known as a psychiatric disorder in childhood associated with dopamine dysregulation. We investigated dopamine transporter (DAT) density in children with ADHD in the present study using {sup 123}I-IPT SPECT and postulated that an alteration in DAT density in the basal ganglia (BG) is responsible for dopaminergic dysfunction in children with ADHD. 9 durg-naive children with ADHD and 6 normal children were included in the study. We performed brain SPECT 2 hours after administration of {sup 123}I-IPT and made both quantitative and qualitative analyses for assessment of specific/nonspecific DAT binding ratio in the BG. We investigated the correlation between the severity scores of ADHD symptoms in children with ADHD assessed with ADHD rating scale and specific/nonspecific DAT binding ratio in the BG. Drug-naive children with ADHD showed a significantly incresed specific/nonspecific DAT binding ratio in the BG compared with normal children. Whereas, no significant correlation was found between severity scores of symptoms in children with ADHD and specific/nonspecific DAT binding ratio n the BG. Our findings support complex dysregulation of the dopaminergic neurotransmitter system in children with ADHD.

  13. Dopamine transporter density in the basal ganglia assessed with [{sup 123}I]IPT SPET in children with attention deficit hyperactivity disorder

    Cheon, Keun-Ah; Kim, Young-Kee; Namkoong, Kee; Kim, Chan-Hyung [Department of Psychiatry, College of Medicine, Yonsei University, Seoul (Korea); Ryu, Young Hoon; Lee, Jong Doo [Division of Nuclear Medicine, Department of Radiology, College of Medicine, Yonsei University, 146-92 Dogokdong, Gangnam-Gu, Seoul, 135-720 (Korea)


    Attention deficit hyperactivity disorder (ADHD) is a psychiatric disorder in childhood that is known to be associated with dopamine dysregulation. In this study, we investigated dopamine transporter (DAT) density in children with ADHD using iodine-123 labelled N-(3-iodopropen-2-yl)-2β-carbomethoxy-3β-(4-chlorophenyl) tropane ([{sup 123}I]IPT) single-photon emission tomography (SPET) and postulated that an alteration in DAT density in the basal ganglia is responsible for dopaminergic dysfunction in children with ADHD. Nine drug-naive children with ADHD and six normal children were included in the study. We performed brain SPET 2 h after the intravenous administration of [{sup 123}I]IPT and carried out both quantitative and qualitative analyses using the obtained SPET data, which were reconstructed for the assessment of the specific/non-specific DAT binding ratio in the basal ganglia. We then investigated the correlation between the severity scores of ADHD symptoms in children with ADHD assessed with ADHD rating scale-IV and the specific/non-specific DAT binding ratio in the basal ganglia. Drug-naive children with ADHD showed a significantly increased specific/non-specific DAT binding ratio in the basal ganglia compared with normal children. However, no significant correlation was found between the severity scores of ADHD symptoms in children with ADHD and the specific/non-specific DAT binding ratio in the basal ganglia. Our findings support the complex dysregulation of the dopaminergic neurotransmitter system in children with ADHD. (orig.)

  14. Dopamine transporter density in the basal ganglia assessed with 123I-IPT SPECT in children with attention deficit hyperactivity disorder

    Attention deficit hyperactivity disorder (ADHD) is known as a psychiatric disorder in childhood associated with dopamine dysregulation. We investigated dopamine transporter (DAT) density in children with ADHD in the present study using 123I-IPT SPECT and postulated that an alteration in DAT density in the basal ganglia (BG) is responsible for dopaminergic dysfunction in children with ADHD. 9 durg-naive children with ADHD and 6 normal children were included in the study. We performed brain SPECT 2 hours after administration of 123I-IPT and made both quantitative and qualitative analyses for assessment of specific/nonspecific DAT binding ratio in the BG. We investigated the correlation between the severity scores of ADHD symptoms in children with ADHD assessed with ADHD rating scale and specific/nonspecific DAT binding ratio in the BG. Drug-naive children with ADHD showed a significantly incresed specific/nonspecific DAT binding ratio in the BG compared with normal children. Whereas, no significant correlation was found between severity scores of symptoms in children with ADHD and specific/nonspecific DAT binding ratio n the BG. Our findings support complex dysregulation of the dopaminergic neurotransmitter system in children with ADHD

  15. Dopamine transporter density in the basal ganglia assessed with [123I]IPT SPET in children with attention deficit hyperactivity disorder

    Attention deficit hyperactivity disorder (ADHD) is a psychiatric disorder in childhood that is known to be associated with dopamine dysregulation. In this study, we investigated dopamine transporter (DAT) density in children with ADHD using iodine-123 labelled N-(3-iodopropen-2-yl)-2β-carbomethoxy-3β-(4-chlorophenyl) tropane ([123I]IPT) single-photon emission tomography (SPET) and postulated that an alteration in DAT density in the basal ganglia is responsible for dopaminergic dysfunction in children with ADHD. Nine drug-naive children with ADHD and six normal children were included in the study. We performed brain SPET 2 h after the intravenous administration of [123I]IPT and carried out both quantitative and qualitative analyses using the obtained SPET data, which were reconstructed for the assessment of the specific/non-specific DAT binding ratio in the basal ganglia. We then investigated the correlation between the severity scores of ADHD symptoms in children with ADHD assessed with ADHD rating scale-IV and the specific/non-specific DAT binding ratio in the basal ganglia. Drug-naive children with ADHD showed a significantly increased specific/non-specific DAT binding ratio in the basal ganglia compared with normal children. However, no significant correlation was found between the severity scores of ADHD symptoms in children with ADHD and the specific/non-specific DAT binding ratio in the basal ganglia. Our findings support the complex dysregulation of the dopaminergic neurotransmitter system in children with ADHD. (orig.)

  16. A preliminary report of the dopamine receptor D4 and the dopamine transporter 1 gene polymorphism and its association with attention deficit hyperactivity disorder

    Helmut Niederhofer


    Full Text Available Helmut Niederhofer1, Frauke Menzel2, Karl Göbel3, Brigitte Hackenberg4,5, Rainer Richter2,6, Maria Hildegard Walter2, Christian Gross7, Markus Huber8, Roger Pycha8, Hans-Jürgen Menzel9,101Ospedale Regionale di Bolzano, Via Guncina, Bolzano, Italia; 2Institute for Psychology, University of Innsbruck, Innsbruck, Austria; 3Freiburger Allee 67, Böblingen, Germany; 4University Clinic for Psychiatry, 9Institute for Medical Biology and Human Genetics, Medical University of Innsbruck, Innsbruck, Austria; 5University Clinic for Pediatrics, Medical University Vienna, Wien, Austria; 6Department of Psychosomatic Medice and Psychotherapy, University Hospital, Eppendorf, Hamburg, Germany; 7Institut für Heilpädagogik, Klessheimer Allee 81, Salzburg, Austria; 8Krankenhaus Bruneck, Bruneck, ItaliaAbstract: Attention deficit hyperactivity disorder (ADHD is one of the most prevalent childhood-onset psychiatric syndromes affecting 5%–10% of school-age children worldwide. Distortions in the catecholaminergic system seem to be responsible for this condition. Within this system there are several candidate genes, the dopamine receptor D4 (DRD4 and the dopamine transporter 1 (DAT1, with common polymorphism which might be associated with ADHD. We performed a family based association study with 36 trios and 19 parent proband pairs. All diagnoses were confirmed by the “Hypescheme” diagnostic computer program. In this study we did not observe an association of ADHD with DRD4 and DAT1 polymorphism neither by the haplotype relative risk (HRR method nor by the transmission disequilibrium test (TdT method. The odds ratio for the DRD4 7-allele was 1.01 and 0.94 for both statistical tests, respectively, and the respective odds ratio for the DAT1 6-allele were 0.91 and 0.88.Keywords: ADHD, dopamine receptor D4, dopamine transporter, haplotype relative risk, transmission disequilibrium test

  17. Exploring Temporospatial Changes in Glucose Metabolic Disorder, Learning, and Memory Dysfunction in a Rat Model of Diffuse Axonal Injury

    Jia LI; Gu, Lei; FENG, DONG-FU; Ding, Fang; Zhu, Guangyao; Rong, Jiandong


    Diffuse axonal injury (DAI) is the predominant effect of severe traumatic brain injury and contributes significantly to cognitive deficits. The mechanisms underlying these cognitive deficits are often associated with complex metabolic alterations. However, the relationships between temporospatial alterations in cerebral glucose metabolism and the pathophysiology of DAI-related learning and memory dysfunction are not yet completely understood. We used a small animal positron emission tomograph...

  18. Human fear acquisition deficits in relation to genetic variants of the corticotropin releasing hormone receptor 1 and the serotonin transporter.

    Ivo Heitland

    Full Text Available The ability to identify predictors of aversive events allows organisms to appropriately respond to these events, and failure to acquire these fear contingencies can lead to maladaptive contextual anxiety. Recently, preclinical studies demonstrated that the corticotropin-releasing factor and serotonin systems are interactively involved in adaptive fear acquisition. Here, 150 healthy medication-free human subjects completed a cue and context fear conditioning procedure in a virtual reality environment. Fear potentiation of the eyeblink startle reflex (FPS was measured to assess both uninstructed fear acquisition and instructed fear expression. All participants were genotyped for polymorphisms located within regulatory regions of the corticotropin releasing hormone receptor 1 (CRHR1 - rs878886 and the serotonin transporter (5HTTLPR. These polymorphisms have previously been linked to panic disorder and anxious symptomology and personality, respectively. G-allele carriers of CRHR1 (rs878886 showed no acquisition of fear conditioned responses (FPS to the threat cue in the uninstructed phase, whereas fear acquisition was present in C/C homozygotes. Moreover, carrying the risk alleles of both rs878886 (G-allele and 5HTTLPR (short allele was associated with increased FPS to the threat context during this phase. After explicit instructions regarding the threat contingency were given, the cue FPS and context FPS normalized in all genotype groups. The present results indicate that genetic variability in the corticotropin-releasing hormone receptor 1, especially in interaction with the 5HTTLPR, is involved in the acquisition of fear in humans. This translates prior animal findings to the human realm.

  19. Corpus Callosum Pathology as a Potential Surrogate Marker of Cognitive Impairment in Diffuse Axonal Injury.

    Ubukata, Shiho; Ueda, Keita; Sugihara, Genichi; Yassin, Walid; Aso, Toshihiko; Fukuyama, Hidenao; Murai, Toshiya


    Diffuse axonal injury is a major form of traumatic brain injury. Neuropsychological assessments and high-resolution structural MRI were conducted using T1-weighted and diffusion tensor imaging. This study included 10 patients with diffuse axonal injury (all men, mean age 30.8±10.5 years) and 12 age- and sex-matched normal control participants. Patients with diffuse axonal injury had widespread volume reductions and lower fractional anisotropy in the corpus callosum (CC) compared with controls. Furthermore, cognitive processing speed was associated with reductions in white matter volume and fractional anisotropy in the CC. These findings suggest that CC pathology may be a potential surrogate marker of the cognitive deficits in these patients. PMID:26569151

  20. Precursor and mature NGF live tracking: one versus many at a time in the axons.

    De Nadai, Teresa; Marchetti, Laura; Di Rienzo, Carmine; Calvello, Mariantonietta; Signore, Giovanni; Di Matteo, Pierluigi; Gobbo, Francesco; Turturro, Sabrina; Meucci, Sandro; Viegi, Alessandro; Beltram, Fabio; Luin, Stefano; Cattaneo, Antonino


    The classical view of nerve growth factor (NGF) action in the nervous system is linked to its retrograde axonal transport. However, almost nothing is known on the trafficking properties of its unprocessed precursor proNGF, characterized by different and generally opposite biological functions with respect to its mature counterpart. Here we developed a strategy to fluorolabel both purified precursor and mature neurotrophins (NTs) with a controlled stoichiometry and insertion site. Using a single particle tracking approach, we characterized the axonal transport of proNGF versus mature NGF in living dorsal root ganglion neurons grown in compartmentalized microfluidic devices. We demonstrate that proNGF is retrogradely transported as NGF, but with a lower flux and a different distribution of numbers of neurotrophins per vesicle. Moreover, exploiting a dual-color labelling technique, we analysed the transport of both NT forms when simultaneously administered to the axon tips. PMID:26829890

  1. Developmental hypothyroxinaemia induced by maternal mild iodine deficiency delays hippocampal axonal growth in the rat offspring.

    Wei, W; Wang, Y; Wang, Y; Dong, J; Min, H; Song, B; Teng, W; Xi, Q; Chen, J


    Iodine is essential for the biosynthesis of thyroid hormones, including triiodothyronine and thyroxine. Thyroid hormones are important for central nervous system development. Mild maternal iodine deficiency (ID)-induced hypothyroxinaemia causes neurological deficits and mental retardation of the foetus. However, the detailed mechanism underlying these deficits is still largely unknown. Given that the growth-associated protein of 43 kDa (GAP-43), semaphorin 3A (Sema3A) and the glycogen synthase kinase 3β (GSK3β)/collapsin response mediator protein 2 (CRMP2) pathway are essential for axonal development, we hypothesise that hippocampal axonal growth-related proteins may be impaired, which may contribute to hippocampal axonal growth delay in rat offspring exposed to maternal hypothyroxinaemia. To test this hypothesis, maternal hypothyroxinaemia models were established in Wistar rats using a mild ID diet. Besides a negative control group, two maternal hypothyroidism models were created with either a severe ID diet or methimazole in the water. Our results showed that maternal hypothyroxinaemia exposure delayed offspring axonal growth on gestational day 19, postnatal day (PN) 7, PN14 and PN21. Consistent with this, the mean intensity of hippocampal CRMP2 and Tau1 immunofluorescence axonal protein was reduced in the mild ID group. Moreover, maternal hypothyroxinaemia disrupted expressions of GAP-43 and Sema3A. Furthermore, the phosphorylation of GSK3β and CRMP2 was also affected in the treated offspring, implying a potential mechanism by which hypothyroxinaemia-exposure affects neurodevelopment. Taken together, our data support the hypothesis that maternal hypothyroxinaemia may impair axonal growth of the offspring. PMID:23763342

  2. AxonSeg: Open Source Software for Axon and Myelin Segmentation and Morphometric Analysis.

    Zaimi, Aldo; Duval, Tanguy; Gasecka, Alicja; Côté, Daniel; Stikov, Nikola; Cohen-Adad, Julien


    Segmenting axon and myelin from microscopic images is relevant for studying the peripheral and central nervous system and for validating new MRI techniques that aim at quantifying tissue microstructure. While several software packages have been proposed, their interface is sometimes limited and/or they are designed to work with a specific modality (e.g., scanning electron microscopy (SEM) only). Here we introduce AxonSeg, which allows to perform automatic axon and myelin segmentation on histology images, and to extract relevant morphometric information, such as axon diameter distribution, axon density and the myelin g-ratio. AxonSeg includes a simple and intuitive MATLAB-based graphical user interface (GUI) and can easily be adapted to a variety of imaging modalities. The main steps of AxonSeg consist of: (i) image pre-processing; (ii) pre-segmentation of axons over a cropped image and discriminant analysis (DA) to select the best parameters based on axon shape and intensity information; (iii) automatic axon and myelin segmentation over the full image; and (iv) atlas-based statistics to extract morphometric information. Segmentation results from standard optical microscopy (OM), SEM and coherent anti-Stokes Raman scattering (CARS) microscopy are presented, along with validation against manual segmentations. Being fully-automatic after a quick manual intervention on a cropped image, we believe AxonSeg will be useful to researchers interested in large throughput histology. AxonSeg is open source and freely available at: PMID:27594833

  3. Axonal regeneration through arterial grafts.

    Anderson, P. N.; Turmaine, M.


    The left common peroneal nerves of adult inbred mice were severed and allowed to regenerate through the lumina of Y-shaped tubes comprising grafts of abdominal aorta and its bifurcation. Very little regeneration took place within the grafts unless the distal nerve stump was inserted into one limb of the Y-tube. Using syngeneic grafts virtually all the axons regenerating through the lumen grew down the limb of the Y-tube containing the distal nerve. Using non-syngeneic grafts, however, a subst...

  4. The 1287 G/A polymorphism of the Norepinephrine Transporter gene (NET is involved in Commission Errors in Korean children with Attention Deficit Hyperactivity Disorder

    Cheon Keun-Ah


    Full Text Available Abstract Background Previous evidence supports the role of noradrenergic systems in ADHD, and norepinephrine transporter (NET is critical in regulating the noradrenergic system. The present study aimed to investigate the association between NET gene polymorphism and the performance measures of the Continuous Performance Test (CPT in Korean ADHD children. Methods Eighty-seven children (mean age = 9.23 ± 1.99 years with ADHD were recruited from a university hospital. Genotypes of G1287A of the NET gene (SLC6A2 were analyzed. All participants completed the CPT, with performance measures of omission errors, commission errors, reaction time and reaction standardization computed. The relationship between G1287A polymorphisms and CPT performance measures was examined. Results There were 46 subjects with the G/G genotype, 35 subjects with the G/A genotype and 6 subjects with the A/A genotype. Among the three groups, there were no significant differences in the performance of CPTs. When dichotomized according to whether the subjects have the rare allele or not, subjects with the homozygous G/G genotype showed significantly lower commission errors compared to those without G/G genotypes (by independent T-test, t = -2.18, p = 0.026. Discussion Our study found a significant association between commission errors of the CPT and the G1287A genotype of the NET gene in Korean ADHD children. These findings suggest a protective role of the G/G genotype of the NET polymorphisms in the deficits of response inhibition in ADHD children.

  5. Attention deficit hyperactivity disorder: binding of [{sup 99m}Tc]TRODAT-1 to the dopamine transporter before and after methylphenidate treatment

    Dresel, S.; LaFougere, C.; Brinkbaeumer, K.; Hahn, K.; Tatsch, K. [Dept. of Nuclear Medicine, Univ. of Munich (Germany); Krause, J.; Krause, K.-H. [Inst. for Psychiatry and Psychotherapy, Ottobrunn (Germany); Friedrich Baur Inst., Univ. of Munich (Germany); Kung, H.F. [Dept. of Radiology, Univ. of Pennsylvania (United States)


    Involvement of the dopaminergic system has been suggested in patients suffering from attention deficit hyperactivity disorder (ADHD) since the symptoms can be successfully treated with methylphenidate, a potent blocker of the dopamine transporter (DAT). This study reports the findings on the status of the DAT in adults with ADHD before and after commencement of treatment with methylphenidate, as measured using [{sup 99m}Tc]TRODAT-1. Seventeen patients (seven males, ten females, aged 21-64 years, mean 38 years) were examined before and after the initiation of methylphenidate treatment (3 x 5 mg/day). All subjects were injected with 800 MBq [{sup 99m}Tc]TRODAT-1 and imaged 3 h p.i. Single-photon emission tomography (SPET) scans were acquired using a triple-headed gamma camera. For semi-quantitative evaluation of the DAT, transverse slices corrected for attenuation were used to calculate specific binding in the striatum, with the cerebellum used as background [(STR-BKG)/BKG]. Data were compared with an age-matched control group. It was found that untreated patients presented with a significantly increased specific binding of [{sup 99m}Tc]TRODAT-1 to the DAT as compared with normal controls [(STR-BKG)/BKG: 1.43{+-}0.18 vs 1.22{+-}0.06, P<0.001]. Under treatment with methylphenidate, specific binding decreased significantly in all patients [(STR-BKG)/BKG: 1.00{+-}0.14, P<0.001]. Our findings suggest that the number of DAT binding sites is higher in drug-naive patients suffering from ADHD than in normal controls. The decrease in available DAT binding sites under treatment with methylphenidate correlates well with the improvement in clinical symptoms. The data of this study help to elucidate the complex dysregulation of the dopaminergic neurotransmitter system in patients suffering from ADHD and the effect of treatment with psychoactive drugs. (orig.)

  6. Attention deficit hyperactivity disorder: binding of [99mTc]TRODAT-1 to the dopamine transporter before and after methylphenidate treatment

    Involvement of the dopaminergic system has been suggested in patients suffering from attention deficit hyperactivity disorder (ADHD) since the symptoms can be successfully treated with methylphenidate, a potent blocker of the dopamine transporter (DAT). This study reports the findings on the status of the DAT in adults with ADHD before and after commencement of treatment with methylphenidate, as measured using [99mTc]TRODAT-1. Seventeen patients (seven males, ten females, aged 21-64 years, mean 38 years) were examined before and after the initiation of methylphenidate treatment (3 x 5 mg/day). All subjects were injected with 800 MBq [99mTc]TRODAT-1 and imaged 3 h p.i. Single-photon emission tomography (SPET) scans were acquired using a triple-headed gamma camera. For semi-quantitative evaluation of the DAT, transverse slices corrected for attenuation were used to calculate specific binding in the striatum, with the cerebellum used as background [(STR-BKG)/BKG]. Data were compared with an age-matched control group. It was found that untreated patients presented with a significantly increased specific binding of [99mTc]TRODAT-1 to the DAT as compared with normal controls [(STR-BKG)/BKG: 1.43±0.18 vs 1.22±0.06, P<0.001]. Under treatment with methylphenidate, specific binding decreased significantly in all patients [(STR-BKG)/BKG: 1.00±0.14, P<0.001]. Our findings suggest that the number of DAT binding sites is higher in drug-naive patients suffering from ADHD than in normal controls. The decrease in available DAT binding sites under treatment with methylphenidate correlates well with the improvement in clinical symptoms. The data of this study help to elucidate the complex dysregulation of the dopaminergic neurotransmitter system in patients suffering from ADHD and the effect of treatment with psychoactive drugs. (orig.)

  7. γ-Diketone Axonopathy: Analyses of Cytoskeletal Motors and Highways in CNS Myelinated Axons

    Zhang, Lihai; Gavin, Terrence; DeCaprio, Anthony P; LoPachin, Richard M.


    2,5-Hexanedione (HD) intoxication is associated with axon atrophy that might be responsible for the characteristic gait abnormalities, hindlimb skeletal muscle weakness and other neurological deficits that accompany neurotoxicity. Although previous mechanistic research focused on neurofilament triplet proteins (NFL, NFM, NFH), other cytoskeletal targets are possible. Therefore, to identify potential non-NF protein targets, we characterized the effects of HD on protein-protein interactions in ...

  8. Axonal interferon responses and alphaherpesvirus neuroinvasion

    Song, Ren

    Infection by alphaherpesviruses, including herpes simplex virus (HSV) and pseudorabies virus (PRV), typically begins at a peripheral epithelial surface and continues into the peripheral nervous system (PNS) that innervates this tissue. Inflammatory responses are induced at the infected peripheral site prior to viral invasion of the PNS. PNS neurons are highly polarized cells with long axonal processes that connect to distant targets. When the peripheral tissue is first infected, only the innervating axons are exposed to this inflammatory milieu, which include type I interferon (e.g. IFNbeta) and type II interferon (i.e. IFNgamma). IFNbeta can be produced by all types of cells, while IFNgamma is secreted by some specific types of immune cells. And both types of IFN induce antiviral responses in surrounding cells that express the IFN receptors. The fundamental question is how do PNS neurons respond to the inflammatory milieu experienced only by their axons. Axons must act as potential front-line barriers to prevent PNS infection and damage. Using compartmented cultures that physically separate neuron axons from cell bodies, I found that pretreating isolated axons with IFNbeta or IFNgamma significantly diminished the number of HSV-1 and PRV particles moving from axons to the cell bodies in an IFN receptor-dependent manner. Furthermore, I found the responses in axons are activated differentially by the two types of IFNs. The response to IFNbeta is a rapid, axon-only response, while the response to IFNgamma involves long distance signaling to the PNS cell body. For example, exposing axons to IFNbeta induced STAT1 phosphorylation (p-STAT1) only in axons, while exposure of axons to IFNgamma induced p-STAT1 accumulation in distant cell body nuclei. Blocking transcription in cell bodies eliminated IFNgamma-, but not IFNbeta-mediated antiviral effects. Proteomic analysis of IFNbeta- or IFNgamma-treated axons identified several differentially regulated proteins. Therefore

  9. Laminin/β1 integrin signal triggers axon formation by promoting microtubule assembly and stabilization

    Wen-Liang Lei; Shi-Ge Xing; Cai-Yun Deng; Xiang-Chun Ju; Xing-Yu Jiang; Zhen-Ge Luo


    Axon specification during neuronal polarization is closely associated with increased microtubule stabilization in one of the neurites of unpolarized neuron,but how this increased microtubule stability is achieved is unclear.Here,we show that extracellular matrix (ECM) component laminin promotes neuronal polarization via regulating directional microtubule assembly through β1 integrin (Itgb1).Contact with laminin coated on culture substrate or polystyrene beads was sufficient for axon specification of undifferentiated neurites in cultured hippocampal neurons and cortical slices.Active Itgb1 was found to be concentrated in laminin-contacting neurites.Axon formation was promoted and abolished by enhancing and attenuating Itgbl signaling,respectively.Interestingly,laminin contact promoted plus-end microtubule assembly in a manner that required Itgbl.Moreover,stabilizing microtubules partially prevented polarization defects caused by ltgbl downregulation.Finally,genetic ablation of ltgbl in dorsal telencephalic progenitors caused deficits in axon development of cortical pyramidal neurons.Thus,laminin/Itgb1 signaling plays an instructive role in axon initiation and growth,both in vitro and in vivo,through the regulation of microtubule assembly.This study has established a linkage between an extrinsic factor and intrinsic cytoskeletai dynamics during neuronal polarization.

  10. Chlorpyrifos and chlorpyrifos-oxon inhibit axonal growth by interfering with the morphogenic activity of acetylcholinesterase

    A primary role of acetylcholinesterase (AChE) is regulation of cholinergic neurotransmission by hydrolysis of synaptic acetylcholine. In the developing nervous system, however, AChE also functions as a morphogenic factor to promote axonal growth. This raises the question of whether organophosphorus pesticides (OPs) that are known to selectively bind to and inactivate the enzymatic function of AChE also interfere with its morphogenic function to perturb axonogenesis. To test this hypothesis, we exposed primary cultures of sensory neurons derived from embryonic rat dorsal root ganglia (DRG) to chlorpyrifos (CPF) or its oxon metabolite (CPFO). Both OPs significantly decreased axonal length at concentrations that had no effect on cell viability, protein synthesis or the enzymatic activity of AChE. Comparative analyses of the effects of CPF and CPFO on axonal growth in DRG neurons cultured from AChE nullizygous (AChE-/-) versus wild type (AChE+/+) mice indicated that while these OPs inhibited axonal growth in AChE+/+ DRG neurons, they had no effect on axonal growth in AChE-/- DRG neurons. However, transfection of AChE-/- DRG neurons with cDNA encoding full-length AChE restored the wild type response to the axon inhibitory effects of OPs. These data indicate that inhibition of axonal growth by OPs requires AChE, but the mechanism involves inhibition of the morphogenic rather than enzymatic activity of AChE. These findings suggest a novel mechanism for explaining not only the functional deficits observed in children and animals following developmental exposure to OPs, but also the increased vulnerability of the developing nervous system to OPs

  11. Uptake of nerve growth factor along peripheral and spinal axons of primary sensory neurons

    To investigate the distribution of nerve growth factor (NGF) receptors on peripheral and central axons, [125I]NGF was injected into the sciatic nerve or spinal cord of adult rats. Accumulation of [125I]NGF in lumbar dorsal root ganglia was monitored by gamma emission counting and radioautography. [125I]NGF, injected endoneurially in small quantities, was taken into sensory axons by a saturable process and was transported retrogradely to their cell bodies at a maximal rate of 2.5 to 7.5 mm/hr. Because very little [125I]NGF reached peripheral terminals, the results were interpreted to indicate that receptors for NGF are present on nonterminal segments of sensory axons. The specificity and high affinity of NGF uptake were illustrated by observations that negligible amounts of gamma activity accumulated in lumbar dorsal root ganglia after comparable intraneural injection of [125I] cytochrome C or [125I]oxidized NGF. Similar techniques were used to demonstrate avid internalization and retrograde transport of [125I]NGF by intraspinal axons arising from dorsal root ganglia. Following injection of [125I]NGF into lumbar or cervical regions of the spinal cord, neuronal perikarya were clearly labeled in radioautographs of lumbar dorsal root ganglia. Sites for NGF uptake on primary sensory neurons in the adult rat are not restricted to peripheral axon terminals but are extensively distributed along both peripheral and central axons. Receptors on axons provide a mechanism whereby NGF supplied by glia could influence neuronal maintenance or axonal regeneration

  12. Axon reflexes in human cold exposed fingers

    Daanen, H.A.M.; Ducharme, M.B.


    Exposure of fingers to severe cold induces cold induced vasodilation (CIVD). The mechanism of CIVD is still debated. The original theory states that an axon reflex causes CIVD. To test this hypothesis, axon reflexes were evoked by electrical stimulation of the middle fingers of hands immersed in wat

  13. Cable energy function of cortical axons.

    Ju, Huiwen; Hines, Michael L; Yu, Yuguo


    Accurate estimation of action potential (AP)-related metabolic cost is essential for understanding energetic constraints on brain connections and signaling processes. Most previous energy estimates of the AP were obtained using the Na(+)-counting method, which seriously limits accurate assessment of metabolic cost of ionic currents that underlie AP conduction along the axon. Here, we first derive a full cable energy function for cortical axons based on classic Hodgkin-Huxley (HH) neuronal equations and then apply the cable energy function to precisely estimate the energy consumption of AP conduction along axons with different geometric shapes. Our analytical approach predicts an inhomogeneous distribution of metabolic cost along an axon with either uniformly or nonuniformly distributed ion channels. The results show that the Na(+)-counting method severely underestimates energy cost in the cable model by 20-70%. AP propagation along axons that differ in length may require over 15% more energy per unit of axon area than that required by a point model. However, actual energy cost can vary greatly depending on axonal branching complexity, ion channel density distributions, and AP conduction states. We also infer that the metabolic rate (i.e. energy consumption rate) of cortical axonal branches as a function of spatial volume exhibits a 3/4 power law relationship. PMID:27439954

  14. Cable energy function of cortical axons

    Ju, Huiwen; Hines, Michael L.; Yu, Yuguo


    Accurate estimation of action potential (AP)-related metabolic cost is essential for understanding energetic constraints on brain connections and signaling processes. Most previous energy estimates of the AP were obtained using the Na+-counting method, which seriously limits accurate assessment of metabolic cost of ionic currents that underlie AP conduction along the axon. Here, we first derive a full cable energy function for cortical axons based on classic Hodgkin-Huxley (HH) neuronal equations and then apply the cable energy function to precisely estimate the energy consumption of AP conduction along axons with different geometric shapes. Our analytical approach predicts an inhomogeneous distribution of metabolic cost along an axon with either uniformly or nonuniformly distributed ion channels. The results show that the Na+-counting method severely underestimates energy cost in the cable model by 20–70%. AP propagation along axons that differ in length may require over 15% more energy per unit of axon area than that required by a point model. However, actual energy cost can vary greatly depending on axonal branching complexity, ion channel density distributions, and AP conduction states. We also infer that the metabolic rate (i.e. energy consumption rate) of cortical axonal branches as a function of spatial volume exhibits a 3/4 power law relationship. PMID:27439954

  15. Neuronal Development: SAD Kinases Make Happy Axons

    Xing, Lei; Newbern, Jason M.; Snider, William D


    The polarity proteins LKB1 and SAD-A/B are key regulators of axon specification in the developing cerebral cortex. Recent studies now show that this mechanism cannot be generalized to other classes of neurons: instead, SAD-A/B functions downstream of neurotrophin signaling in sensory neurons to mediate a later stage of axon development — arborization in the target field.

  16. Early events in axon/dendrite polarization.

    Cheng, Pei-lin; Poo, Mu-ming


    Differentiation of axons and dendrites is a critical step in neuronal development. Here we review the evidence that axon/dendrite formation during neuronal polarization depends on the intrinsic cytoplasmic asymmetry inherited by the postmitotic neuron, the exposure of the neuron to extracellular chemical factors, and the action of anisotropic mechanical forces imposed by the environment. To better delineate the functions of early signals among a myriad of cellular components that were shown to influence axon/dendrite formation, we discuss their functions by distinguishing their roles as determinants, mediators, or modulators and consider selective degradation of these components as a potential mechanism for axon/dendrite polarization. Finally, we examine whether these early events of axon/dendrite formation involve local autocatalytic activation and long-range inhibition, as postulated by Alan Turing for the morphogenesis of patterned biological structure. PMID:22715881

  17. SNTF immunostaining reveals previously undetected axonal pathology in traumatic brain injury.

    Johnson, Victoria E; Stewart, William; Weber, Maura T; Cullen, D Kacy; Siman, Robert; Smith, Douglas H


    Diffuse axonal injury (DAI) is a common feature of severe traumatic brain injury (TBI) and may also be a predominant pathology in mild TBI or "concussion". The rapid deformation of white matter at the instant of trauma can lead to mechanical failure and calcium-dependent proteolysis of the axonal cytoskeleton in association with axonal transport interruption. Recently, a proteolytic fragment of alpha-II spectrin, "SNTF", was detected in serum acutely following mild TBI in patients and was prognostic for poor clinical outcome. However, direct evidence that this fragment is a marker of DAI has yet to be demonstrated in either humans following TBI or in models of mild TBI. Here, we used immunohistochemistry (IHC) to examine for SNTF in brain tissue following both severe and mild TBI. Human severe TBI cases (survival <7d; n = 18) were compared to age-matched controls (n = 16) from the Glasgow TBI archive. We also examined brains from an established model of mild TBI at 6, 48 and 72 h post-injury versus shams. IHC specific for SNTF was compared to that of amyloid precursor protein (APP), the current standard for DAI diagnosis, and other known markers of axonal pathology including non-phosphorylated neurofilament-H (SMI-32), neurofilament-68 (NF-68) and compacted neurofilament-medium (RMO-14) using double and triple immunofluorescent labeling. Supporting its use as a biomarker of DAI, SNTF immunoreactive axons were observed at all time points following both human severe TBI and in the model of mild TBI. Interestingly, SNTF revealed a subpopulation of degenerating axons, undetected by the gold-standard marker of transport interruption, APP. While there was greater axonal co-localization between SNTF and APP after severe TBI in humans, a subset of SNTF positive axons displayed no APP accumulation. Notably, some co-localization was observed between SNTF and the less abundant neurofilament subtype markers. Other SNTF positive axons, however, did not co-localize with any

  18. Dysregulated axonal RNA translation in amyotrophic lateral sclerosis.

    Yasuda, Kyota; Mili, Stavroula


    Amyotrophic lateral sclerosis (ALS) is an adult-onset motor neuron disease that has been associated with a diverse array of genetic changes. Prominent among these are mutations in RNA-binding proteins (RBPs) or repeat expansions that give rise to toxic RNA species. RBPs are additionally central components of pathologic aggregates that constitute a disease hallmark, suggesting that dysregulation of RNA metabolism underlies disease progression. In the context of neuronal physiology, transport of RNAs and localized RNA translation in axons are fundamental to neuronal survival and function. Several lines of evidence suggest that axonal RNA translation is a central process perturbed by various pathogenic events associated with ALS. Dysregulated translation of specific RNA groups could underlie feedback effects that connect and reinforce disease manifestations. Among such candidates are RNAs encoding proteins involved in the regulation of microtubule dynamics. Further understanding of axonally dysregulated RNA targets and of the feedback mechanisms they induce could provide useful therapeutic insights. WIREs RNA 2016, 7:589-603. doi: 10.1002/wrna.1352 For further resources related to this article, please visit the WIREs website. PMID:27038103

  19. Extra-neurohypophyseal axonal projections from individual vasopressin-containing magnocellular neurons in rat hypothalamus

    Fernando Jauregui Huerta


    Full Text Available Conventional neuroanatomical, immunohistochemical techniques and electrophysiological recording, as well as in vitro labeling methods may fail to detect long range extra-neurohypophyseal-projecting axons from vasopressin (AVP-containing magnocellular neurons (magnocells in the hypothalamic paraventricular nucleus (PVN. Here, we used in vivo extracellular recording, juxtacellular labeling, post hoc anatomo-immunohistochemical analysis and camera lucida reconstruction to address this question. We demonstrate that all well-labeled AVP immunopositive neurons inside the PVN possess main axons joining the tract of Greving and multi-axon-like processes, as well as axonal collaterals branching very near to the somata, which project to extra-neurohypophyseal regions. The detected regions in this study include the medial and lateral preoptical area, suprachiasmatic nucleus, lateral habenula, medial and central amygdala and the conducting systems, such as stria medullaris, the fornix and the internal capsule. Expression of vesicular glutamate transporter 2 was observed in axon-collaterals. These results, in congruency with several previous reports in the literature, provided unequivocal evidence that AVP magnocells have an uncommon feature of possessing multiple axon-like processes emanating from somata or proximal dendrites. Furthermore, the long-range non-neurohypophyseal projections are more common than an “occasional” phenomenon as previously thought.

  20. Miro, MCU, and calcium: bridging our understanding of mitochondrial movement in axons

    Karen Chang


    Full Text Available Neurons are extremely polarized structures with long axons and dendrites, which require proper distribution of mitochondria and maintenance of mitochondrial dynamics for neuronal functions and survival. Indeed, recent studies show that various neurological disorders are linked to mitochondrial transport in neurons. Mitochondrial anterograde transport is believed to deliver metabolic energy to synaptic terminals where energy demands are high, while mitochondrial retrograde transport is required to repair or remove damaged mitochondria in axons. It has been suggested that Ca2+ plays a key role in regulating mitochondrial transport by altering the configuration of mitochondrial protein, miro. However, molecular mechanisms that regulate mitochondrial transport in neurons still are not well characterized. In this review, we will discuss the roles of miro in mitochondrial transport and how the recently identified components of the mitochondrial calcium uniporter add to our current model of mitochondrial mobility regulation.

  1. Dopamine and Serotonin Transporter Genotypes Moderate Sensitivity to Maternal Expressed Emotion: The Case of Conduct and Emotional Problems in Attention Deficit/Hyperactivity Disorder

    Sonuga-Barke, Edmund J. S.; Oades, Robert D.; Psychogiou, Lamprini; Chen, Wai; Franke, Barbara; Buitelaar, Jan; Banaschewski, Tobias; Ebstein, Richard P.; Gil, Michael; Anney, Richard; Miranda, Ana; Roeyers, Herbert; Rothenberger, Aribert; Sergeant, Joseph; Steinhausen, Hans Christoph; Thompson, Margaret; Asherson, Philip; Faraone, Stephen V.


    Background: Mothers' positive emotions expressed about their children with attention deficit/hyperactivity disorder (ADHD) are associated with a reduced likelihood of comorbid conduct problems (CP). We examined whether this association with CP, and one with emotional problems (EMO), is moderated by variants within three genes, previously reported…

  2. Endoplasmic reticulum sorting and kinesin-1 command the targeting of axonal GABAB receptors.

    Viviana Valdés

    Full Text Available In neuronal cells the intracellular trafficking machinery controls the availability of neurotransmitter receptors at the plasma membrane, which is a critical determinant of synaptic strength. Metabotropic γ amino-butyric acid (GABA type B receptors (GABA(BRs are neurotransmitter receptors that modulate synaptic transmission by mediating the slow and prolonged responses to GABA. GABA(BRs are obligatory heteromers constituted by two subunits, GABA(BR1 and GABA(BR2. GABA(BR1a and GABA(BR1b are the most abundant subunit variants. GABA(BR1b is located in the somatodendritic domain whereas GABA(BR1a is additionally targeted to the axon. Sushi domains located at the N-terminus of GABA(BR1a constitute the only difference between both variants and are necessary and sufficient for axonal targeting. The precise targeting machinery and the organelles involved in sorting and transport have not been described. Here we demonstrate that GABA(BRs require the Golgi apparatus for plasma membrane delivery but that axonal sorting and targeting of GABA(BR1a operate in a pre-Golgi compartment. In the axon GABA(BR1a subunits are enriched in the endoplasmic reticulum (ER, and their dynamic behavior and colocalization with other secretory organelles like the ER-to-Golgi intermediate compartment (ERGIC suggest that they employ a local secretory route. The transport of axonal GABA(BR1a is microtubule-dependent and kinesin-1, a molecular motor of the kinesin family, determines axonal localization. Considering that progression of GABA(BRs through the secretory pathway is regulated by an ER retention motif our data contribute to understand the role of the axonal ER in non-canonical sorting and targeting of neurotransmitter receptors.

  3. Genetics Home Reference: giant axonal neuropathy

    ... in giant axonal neuropathy: new insights into disease mechanisms. Muscle Nerve. 2012 Aug;46(2):246-56. ... with a qualified healthcare professional . About Genetics Home Reference Site Map Contact Us Selection Criteria for Links ...

  4. Targeting Experimental Autoimmune Encephalomyelitis Lesions to a Predetermined Axonal Tract System Allows for Refined Behavioral Testing in an Animal Model of Multiple Sclerosis

    Kerschensteiner, Martin; Stadelmann, Christine; Buddeberg, Bigna S.; Merkler, Doron; Bareyre, Florence M.; Anthony, Daniel C.; Linington, Christopher; Brück, Wolfgang; Schwab, Martin E.


    In multiple sclerosis (MS) the structural damage to axons determines the persistent clinical deficit patients acquire during the course of the disease. It is therefore important to test therapeutic strategies that can prevent or reverse this structural damage. The conventional animal model of MS, experimental autoimmune encephalomyelitis (EAE), typically shows disseminated inflammation in the central nervous system, which leads to a clinical deficit that cannot be directly attributed to a def...

  5. Evaluation of diffuse axonal injury in traumatic brain injury - Valoración del daño axonal difuso en los traumatismos cráneo-encefálicos

    Carme Junqué


    Full Text Available Diffuse axonal injury (DAI in traumaticbrain injury (TBI is produced by primary and secondarymechanisms of axonal damage. DAI is the responsibleof neuropsychological impairments associatedto moderate and diffuse TBI such as deficits in attention,memory, speed of mental processing and executivefunctions. Clinical magnetic resonance imagingallows to identify traumatic microbleeds using T2*and to quantify indirect signs of DAI such as the ventricularvolumes of corpus callosum surface. Diffusiontensor imaging (DTI is the most suitable techniqueto identify and to quantify DAI in TBI patients. Thefractional anisotropy (FA values have been found sensitiveto DAI even in mild TBI and correlate withseverity parameters such as Glasgow coma scale andpost-traumatic amnesia. FA values changes over timebut it remains as a permanent TBI sequel even in children.The mean whole brain FA and corpus callosummeasures have shown significant correlations with theclassical neuropsychological deficits seen in TBIpatients with DAI.

  6. A retrograde apoptotic signal originating in NGF-deprived distal axons of rat sympathetic neurons in compartmented cultures

    Sue-Ann Mok; Karen Lund; Robert B Campenot


    Previous investigations of retrograde survival signaling by nerve growth factor (NGF) and other neurotrophins have supported diverse mechanisms, but all proposed mechanisms have in common the generation of survival sig-nals retrogradely transmitted to the neuronal cell bodies. We report the finding of a retrograde apoptotic signal in axons that is suppressed by local NGF signaling. NGF withdrawal from distal axons alone was sufficient to activate the pro-apoptotic transcription factor, c-jnn, in the cell bodies. Providing NGF directly to cell bodies, thereby restor-ing a source of NGF-induced survival signals, could not prevent c-jun activation caused by NGF withdrawal from the distal axons. This is evidence that c-jun is not activated due to loss of survival signals at the cell bodies. Moreover, blocking axonal transport with colchicine inhibited c-jun activation caused by NGF deprivation suggesting that a retrogradely transported pro-apoptotic signal, rather than loss of a retrogradely transported survival signal, caused c-jun activation. Additional experiments showed that activation of c-jun, pro-caspase-3 cleavage, and apoptosis were blocked by the protein kinase C inhibitors, rottlerin and chelerythrine, only when applied to distal axons suggesting that they block the axon-specific pro-apoptotic signal. The rottlerin-sensitive mechanism was found to regulate glyco-gen synthase kinase 3 (GSK3) activity. The effect of siRNA knockdown, and pharmacological inhibition of GSK3 sug-gests that GSK3 is required for apoptosis caused by NGF deprivation and may function as a retrograde carrier of the axon apoptotic signal. The existence of a retrograde death signaling system in axons that is suppressed by neurotro-phins has broad implications for neurodevelopment and for discovering treatments for neurodegenerative diseases and neurotrauma.

  7. How Schwann Cells Sort Axons: New Concepts.

    Feltri, M Laura; Poitelon, Yannick; Previtali, Stefano Carlo


    Peripheral nerves contain large myelinated and small unmyelinated (Remak) fibers that perform different functions. The choice to myelinate or not is dictated to Schwann cells by the axon itself, based on the amount of neuregulin I-type III exposed on its membrane. Peripheral axons are more important in determining the final myelination fate than central axons, and the implications for this difference in Schwann cells and oligodendrocytes are discussed. Interestingly, this choice is reversible during pathology, accounting for the remarkable plasticity of Schwann cells, and contributing to the regenerative potential of the peripheral nervous system. Radial sorting is the process by which Schwann cells choose larger axons to myelinate during development. This crucial morphogenetic step is a prerequisite for myelination and for differentiation of Remak fibers, and is arrested in human diseases due to mutations in genes coding for extracellular matrix and linkage molecules. In this review we will summarize progresses made in the last years by a flurry of reverse genetic experiments in mice and fish. This work revealed novel molecules that control radial sorting, and contributed unexpected ideas to our understanding of the cellular and molecular mechanisms that control radial sorting of axons. PMID:25686621

  8. Analysis of YFP(J16)-R6/2 reporter mice and postmortem brains reveals early pathology and increased vulnerability of callosal axons in Huntington's disease.

    Gatto, Rodolfo G; Chu, Yaping; Ye, Allen Q; Price, Steven D; Tavassoli, Ehsan; Buenaventura, Andrea; Brady, Scott T; Magin, Richard L; Kordower, Jeffrey H; Morfini, Gerardo A


    Cumulative evidence indicates that the onset and severity of Huntington's disease (HD) symptoms correlate with connectivity deficits involving specific neuronal populations within cortical and basal ganglia circuits. Brain imaging studies and pathological reports further associated these deficits with alterations in cerebral white matter structure and axonal pathology. However, whether axonopathy represents an early pathogenic event or an epiphenomenon in HD remains unknown, nor is clear the identity of specific neuronal populations affected. To directly evaluate early axonal abnormalities in the context of HD in vivo, we bred transgenic YFP(J16) with R6/2 mice, a widely used HD model. Diffusion tensor imaging and fluorescence microscopy studies revealed a marked degeneration of callosal axons long before the onset of motor symptoms. Accordingly, a significant fraction of YFP-positive cortical neurons in YFP(J16) mice cortex were identified as callosal projection neurons. Callosal axon pathology progressively worsened with age and was influenced by polyglutamine tract length in mutant huntingtin (mhtt). Degenerating axons were dissociated from microscopically visible mhtt aggregates and did not result from loss of cortical neurons. Interestingly, other axonal populations were mildly or not affected, suggesting differential vulnerability to mhtt toxicity. Validating these results, increased vulnerability of callosal axons was documented in the brains of HD patients. Observations here provide a structural basis for the alterations in cerebral white matter structure widely reported in HD patients. Collectively, our data demonstrate a dying-back pattern of degeneration for cortical projection neurons affected in HD, suggesting that axons represent an early and potentially critical target for mhtt toxicity. PMID:26123489

  9. Calpain activity promotes the sealing of severed giant axons

    Godell, Christopher M.; Smyers, Mark E.; Eddleman, Christopher S.; Ballinger, Martis L.; Fishman, Harvey M.; Bittner, George D.


    A barrier (seal) must form at the cut ends of a severed axon if a neuron is to survive and eventually regenerate. Following severance of crayfish medial giant axons in physiological saline, vesicles accumulate at the cut end and form a barrier (seal) to ion and dye diffusion. In contrast, squid giant axons do not seal, even though injury-induced vesicles form after axonal transection and accumulate at cut axonal ends. Neither axon seals in Ca2+-free salines. The addition of calpain to the bat...

  10. Imaging axonal degeneration and repair in pre-clinical animal models of multiple sclerosis

    Soumya S Yandamuri


    Full Text Available Multiple sclerosis (MS is a central nervous system (CNS disease characterized by chronic neuroinflammation, demyelination, and axonal damage. Infiltration of activated lymphocytes and myeloid cells are thought to be primarily responsible for white matter damage and axonopathy. Over time, this neurologic damage manifests clinically as debilitating motor and cognitive symptoms. Existing MS therapies focus on symptom relief and delay of disease progression through reduction of neuroinflammation. However, long-term strategies to remyelinate, protect, or regenerate axons have remained elusive, posing a challenge to treating progressive forms of MS. Preclinical mouse models and techniques such as immunohistochemistry, flow cytometry, and genomic and proteomic analysis have provided advances in our understanding of discrete time-points of pathology following disease induction. More recently, in vivo and in situ two-photon microscopy (2P has made it possible to visualize continuous real-time cellular behavior and structural changes occurring within the CNS during neuropathology. Research utilizing 2P imaging to study axonopathy in neuroinflammatory demyelinating disease has focused on five areas: (1 axonal morphologic changes (2 organelle transport and health, (3 relationship to inflammation, (4 neuronal excitotoxicity, and (5 regenerative therapies. 2P imaging may also be used to identify novel therapeutic targets via identification and clarification of dynamic cellular and molecular mechanisms of axonal regeneration and remyelination. Here, we review tools that have made 2P accessible for imaging neuropathologies and advances in our understanding of axonal degeneration and repair in preclinical models of demyelinating diseases.

  11. Increased expression of the dopamine transporter leads to loss of dopamine neurons, oxidative stress and L-DOPA reversible motor deficits

    Masoud, ST; Vecchio, LM; Bergeron, Y; Hossain, MM; Nguyen, LT; Bermejo, MK; Kile, B; Sotnikova, TD; Siesser, WB; Gainetdinov, Rr; Wightman, RM; Caron, MG; Richardson, JR; Miller, GW; Ramsey, AJ


    The dopamine transporter is a key protein responsible for regulating dopamine homeostasis. Its function is to transport dopamine from the extracellular space into the presynaptic neuron. Studies have suggested that accumulation of dopamine in the cytosol can trigger oxidative stress and neurotoxicity. Previously, ectopic expression of the dopamine transporter was shown to cause damage in non-dopaminergic neurons due to their inability to handle cytosolic dopamine. However, it is unknown wheth...

  12. Microfluidic device for unidirectional axon growth

    Malishev, E.; Pimashkin, A.; Gladkov, A.; Pigareva, Y.; Bukatin, A.; Kazantsev, V.; Mukhina, I.; Dubina, M.


    In order to better understand the communication and connectivity development of neuron networks, we designed microfluidic devices with several chambers for growing dissociated neuronal cultures from mice fetal hippocampus (E18). The chambers were connected with microchannels providing unidirectional axonal growth between “Source” and “Target” neural sub-networks. Experiments were performed in a hippocampal cultures plated in a poly-dimethylsiloxane (PDMS) microfluidic chip, aligned with a 60 microelectrode array (MEA). Axonal growth through microchannels was observed with brightfield, phase-contrast and fluorescence microscopy, and after 7 days in vitro electrical activity was recorded. Visual inspection and spike propagation analysis showed the predominant axonal growth in microchannels in a direction from “Source” to “Target”.

  13. Diverse modes of axon elaboration in the developing neocortex.


    Full Text Available The development of axonal arbors is a critical step in the establishment of precise neural circuits, but relatively little is known about the mechanisms of axonal elaboration in the neocortex. We used in vivo two-photon time-lapse microscopy to image axons in the neocortex of green fluorescent protein-transgenic mice over the first 3 wk of postnatal development. This period spans the elaboration of thalamocortical (TC and Cajal-Retzius (CR axons and cortical synaptogenesis. Layer 1 collaterals of TC and CR axons were imaged repeatedly over time scales ranging from minutes up to days, and their growth and pruning were analyzed. The structure and dynamics of TC and CR axons differed profoundly. Branches of TC axons terminated in small, bulbous growth cones, while CR axon branch tips had large growth cones with numerous long filopodia. TC axons grew rapidly in straight paths, with frequent interstitial branch additions, while CR axons grew more slowly along tortuous paths. For both types of axon, new branches appeared at interstitial sites along the axon shaft and did not involve growth cone splitting. Pruning occurred via retraction of small axon branches (tens of microns, at both CR and TC axons or degeneration of large portions of the arbor (hundreds of microns, for TC axons only. The balance between growth and retraction favored overall growth, but only by a slight margin. Given the identical layer 1 territory upon which CR and TC axons grow, the differences in their structure and dynamics likely reflect distinct intrinsic growth programs for axons of long projection neurons versus local interneurons.

  14. Automated Axon Counting in Rodent Optic Nerve Sections with AxonJ

    Zarei, Kasra; Scheetz, Todd E.; Christopher, Mark; Miller, Kathy; Hedberg-Buenz, Adam; Tandon, Anamika; Anderson, Michael G.; Fingert, John H.; Abràmoff, Michael David


    We have developed a publicly available tool, AxonJ, which quantifies the axons in optic nerve sections of rodents stained with paraphenylenediamine (PPD). In this study, we compare AxonJ’s performance to human experts on 100x and 40x images of optic nerve sections obtained from multiple strains of mice, including mice with defects relevant to glaucoma. AxonJ produced reliable axon counts with high sensitivity of 0.959 and high precision of 0.907, high repeatability of 0.95 when compared to a gold-standard of manual assessments and high correlation of 0.882 to the glaucoma damage staging of a previously published dataset. AxonJ allows analyses that are quantitative, consistent, fully-automated, parameter-free, and rapid on whole optic nerve sections at 40x. As a freely available ImageJ plugin that requires no highly specialized equipment to utilize, AxonJ represents a powerful new community resource augmenting studies of the optic nerve using mice. PMID:27226405

  15. Attention deficit hyperactivity disorder

    Doğangün, Burak; Yavuz, Mesut


    Attention deficit hyperactivity disorder is characterized by excessive overactiviy inattention and impulsiveness It is reported that attention deficit hyperactivity disorder affects 5 12 of children worldwide It has significant negative effects on psychological and social development and academic functioning of the children if it remains nbsp; untreated The etiology of attention deficit hyperactivity disorder is unknown Genetic neurodevelopmental neurophysiological and psychosocial factors ar...

  16. MSC p43 required for axonal development in motor neurons

    Zhu, Xiaodong; Liu, Yang; Yin, Yanqing; Shao, Aiyun; Zhang, Bo; Kim, Sunghoon; Zhou, Jiawei


    Neuron connectivity and correct neural function largely depend on axonal integrity. Neurofilaments (NFs) constitute the main cytoskeletal network maintaining the structural integrity of neurons and exhibit dynamic changes during axonal and dendritic growth. However, the mechanisms underlying axonal development and maintenance remain poorly understood. Here, we identify that multisynthetase complex p43 (MSC p43) is essential for NF assembly and axon maintenance. The MSC p43 protein was predominantly expressed in central neurons and interacted with NF light subunit in vivo. Mice lacking MSC p43 exhibited axon degeneration in motor neurons, defective neuromuscular junctions, muscular atrophy, and motor dysfunction. Furthermore, MSC p43 depletion in mice caused disorganization of the axonal NF network. Mechanistically, MSC p43 is required for maintaining normal phosphorylation levels of NFs. Thus, MSC p43 is indispensable in maintaining axonal integrity. Its dysfunction may underlie the NF disorganization and axon degeneration associated with motor neuron degenerative diseases. PMID:19717447

  17. Functions of axon guidance molecules in synapse formation

    Chen, Shih-Yu; Cheng, Hwai-Jong


    Axon guidance and synapse formation are important developmental events for establishing a functional neuronal circuitry. These two related cellular processes occur in a coordinated fashion but previous studies from multiple model organisms seemed to suggest that axon guidance and synapse formation are mediated by distinct molecular cues. Thus, axon guidance molecules are responsible for guiding the navigating axon toward its target area, while other adhesion or ligand-receptor molecules speci...

  18. Morphometry of Axons in Optic Nerves of Siamese's Twins

    Xinzu Gu; Zhenping Zhang; Qi Lin; Jiongji Liang; Wenyu Lu; Xiulan Ye; A A Sadun


    Purpose: To observe the development of optic nerve, we examined four optic nerves from Siameses Twins by absolute counts of axons.Methods: Mean axon diameter, mean axon density, totally axonal population and optic nerve area were noted for each optic nerve. The mean axon diameter and the mean axon density were compared between paraxial (inner sectors)and cortical (outer sectors)areas of the nerves.Results: More myelinated axons were seen in the inner sectors as compared to the outer sectors(average 11 axons/1 000 μm2 in inner sectors and 34 axons/l 000 μm2 in outer sectors( P=0. 036) . The myelinated fibers were also smaller(63 microns) in the outer sectors as compared to the inner sectors(72 microns) ( P = 0. 001 ). The average cross sectors area for the four 40 week stage optical nerves of Siamese Twins was 3.32 × 103 as compared to 1 million axons for 32-week-old normals.Conclusion: Our finding of fewer axonal number and small myelinated fibers in the Siamese Twins suggests hypoplasia. Myelination was more abnormal in the paraxial optic nerve than that in the peripheral sectors, suggesting anomalous development of optic nerve peripherally and delayed developnent centrally. Axonal density is higher in inner sectors than that in outer sectors, suggesting delayed development of the outer nerve sector.

  19. Electrokinetic confinement of axonal growth for dynamically configurable neural networks.

    Honegger, Thibault; Scott, Mark A; Yanik, Mehmet F; Voldman, Joel


    Axons in the developing nervous system are directed via guidance cues, whose expression varies both spatially and temporally, to create functional neural circuits. Existing methods to create patterns of neural connectivity in vitro use only static geometries, and are unable to dynamically alter the guidance cues imparted on the cells. We introduce the use of AC electrokinetics to dynamically control axonal growth in cultured rat hippocampal neurons. We find that the application of modest voltages at frequencies on the order of 10(5) Hz can cause developing axons to be stopped adjacent to the electrodes while axons away from the electric fields exhibit uninhibited growth. By switching electrodes on or off, we can reversibly inhibit or permit axon passage across the electrodes. Our models suggest that dielectrophoresis is the causative AC electrokinetic effect. We make use of our dynamic control over axon elongation to create an axon-diode via an axon-lock system that consists of a pair of electrode 'gates' that either permit or prevent axons from passing through. Finally, we developed a neural circuit consisting of three populations of neurons, separated by three axon-locks to demonstrate the assembly of a functional, engineered neural network. Action potential recordings demonstrate that the AC electrokinetic effect does not harm axons, and Ca(2+) imaging demonstrated the unidirectional nature of the synaptic connections. AC electrokinetic confinement of axonal growth has potential for creating configurable, directional neural networks. PMID:23314575

  20. Spatial temperature gradients guide axonal outgrowth

    Black, Bryan; Vishwakarma, Vivek; Dhakal, Kamal; Bhattarai, Samik; Pradhan, Prabhakar; Jain, Ankur; Kim, Young-Tae; Mohanty, Samarendra


    Formation of neural networks during development and regeneration after injury depends on accuracy of axonal pathfinding, which is primarily believed to be influenced by chemical cues. Recently, there is growing evidence that physical cues can play crucial role in axonal guidance. However, detailed mechanism involved in such guidance cues is lacking. By using weakly-focused near-infrared continuous wave (CW) laser microbeam in the path of an advancing axon, we discovered that the beam acts as a repulsive guidance cue. Here, we report that this highly-effective at-a-distance guidance is the result of a temperature field produced by the near-infrared laser light absorption. Since light absorption by extracellular medium increases when the laser wavelength was red shifted, the threshold laser power for reliable guidance was significantly lower in the near-infrared as compared to the visible spectrum. The spatial temperature gradient caused by the near-infrared laser beam at-a-distance was found to activate temperature-sensitive membrane receptors, resulting in an influx of calcium. The repulsive guidance effect was significantly reduced when extracellular calcium was depleted or in the presence of TRPV1-antagonist. Further, direct heating using micro-heater confirmed that the axonal guidance is caused by shallow temperature-gradient, eliminating the role of any non-photothermal effects.

  1. Early cellular signaling responses to axonal injury

    Wang Ai


    Full Text Available Abstract Background We have used optic nerve injury as a model to study early signaling events in neuronal tissue following axonal injury. Optic nerve injury results in the selective death of retinal ganglion cells (RGCs. The time course of cell death takes place over a period of days with the earliest detection of RGC death at about 48 hr post injury. We hypothesized that in the period immediately following axonal injury, there are changes in the soma that signal surrounding glia and neurons and that start programmed cell death. In the current study, we investigated early changes in cellular signaling and gene expression that occur within the first 6 hrs post optic nerve injury. Results We found evidence of cell to cell signaling within 30 min of axonal injury. We detected differences in phosphoproteins and gene expression within the 6 hrs time period. Activation of TNFα and glutamate receptors, two pathways that can initiate cell death, begins in RGCs within 6 hrs following axonal injury. Differential gene expression at 6 hrs post injury included genes involved in cytokine, neurotrophic factor signaling (Socs3 and apoptosis (Bax. Conclusion We interpret our studies to indicate that both neurons and glia in the retina have been signaled within 30 min after optic nerve injury. The signals are probably initiated by the RGC soma. In addition, signals activating cellular death pathways occur within 6 hrs of injury, which likely lead to RGC degeneration.

  2. Patterns of growth, axonal extension and axonal arborization of neuronal lineages in the developing Drosophila brain

    Larsen, Camilla; Shy, Diana; Spindler, Shana R; Fung, Siaumin; Pereanu, Wayne; Younossi -Hartenstein, Amelia; Hartenstein, Volker


    The Drosophila central brain is composed of approximately 100 paired lineages, with most lineages comprising 100–150 neurons. Most lineages have a number of important characteristics in common. Typically, neurons of a lineage stay together as a coherent cluster and project their axons into a coherent bundle visible from late embryo to adult. Neurons born during the embryonic period form the primary axon tracts (PATs) that follow stereotyped pathways in the neuropile. Apoptotic cell death remo...

  3. Speciifc effects of c-Jun NH2-terminal kinase-interacting protein 1 in neuronal axons

    Shu Tang; Qiang Wen; Xiao-jian Zhang; Quan-cheng Kan


    c-Jun NH2-terminal kinase (JNK)-interacting protein 3 plays an important role in brain-derived neurotrophic factor/tropomyosin-related kinase B (TrkB) anterograde axonal transport. It remains unclear whether JNK-interacting protein 1 mediates similar effects, or whether JNK-interacting protein 1 affects the regulation of TrkB anterograde axonal transport. In this study, we isolated rat embryonic hippocampus and cultured hippocampal neuronsin vitro. Coimmunoprecipitation results demonstrated that JNK-interacting protein 1 formed TrkB com-plexesin vitro andin vivo. Immunocytochemistry results showed that when JNK-interacting protein 1 was highly expressed, the distribution of TrkB gradually increased in axon terminals. However, the distribution of TrkB reduced in axon terminals after knocking out JNK-interact-ing protein 1. In addition, there were differences in distribution of TrkB after JNK-interacting protein 1 was knocked out compared with not. However, knockout of JNK-interacting protein 1 did not affect the distribution of TrkB in dendrites. These ifndings conifrm that JNK-inter-acting protein 1 can interact with TrkB in neuronal cells, and can regulate the transport of TrkB in axons, but not in dendrites.

  4. White-matter astrocytes, axonal energy metabolism, and axonal degeneration in multiple sclerosis

    Cambron, Melissa; D'Haeseleer, Miguel; Laureys, Guy; Clinckers, Ralph; Debruyne, Jan; De Keyser, Jacques


    In patients with multiple sclerosis (MS), a diffuse axonal degeneration occurring throughout the white matter of the central nervous system causes progressive neurologic disability. The underlying mechanism is unclear. This review describes a number of pathways by which dysfunctional astrocytes in MS might lead to axonal degeneration. White-matter astrocytes in MS show a reduced metabolism of adenosine triphosphate-generating phosphocreatine, which may impair the astrocytic sodium potassium pump and lead to a reduced sodium-dependent glutamate uptake. Astrocytes in MS white matter appear to be deficient in β2 adrenergic receptors, which are involved in stimulating glycogenolysis and suppressing inducible nitric oxide synthase (NOS2). Glutamate toxicity, reduced astrocytic glycogenolysis leading to reduced lactate and glutamine production, and enhanced nitric oxide (NO) levels may all impair axonal mitochondrial metabolism, leading to axonal degeneration. In addition, glutamate-mediated oligodendrocyte damage and impaired myelination caused by a decreased production of N-acetylaspartate by axonal mitochondria might also contribute to axonal loss. White-matter astrocytes may be considered as a potential target for neuroprotective MS therapies. PMID:22214904

  5. Mislocalization of neuronal mitochondria reveals regulation of Wallerian degeneration and NMNAT/WLDS-mediated axon protection independent of axonal mitochondria

    Kitay, Brandon M.; McCormack, Ryan; Wang, Yunfang; Tsoulfas, Pantelis; Zhai, R. Grace


    Axon degeneration is a common and often early feature of neurodegeneration that correlates with the clinical manifestations and progression of neurological disease. Nicotinamide mononucleotide adenylytransferase (NMNAT) is a neuroprotective factor that delays axon degeneration following injury and in models of neurodegenerative diseases suggesting a converging molecular pathway of axon self-destruction. The underlying mechanisms have been under intense investigation and recent reports suggest...

  6. AxonQuant: A Microfluidic Chamber Culture-Coupled Algorithm That Allows High-Throughput Quantification of Axonal Damage

    Yang Li


    Full Text Available Published methods for imaging and quantitatively analyzing morphological changes in neuronal axons have serious limitations because of their small sample sizes, and their time-consuming and nonobjective nature. Here we present an improved microfluidic chamber design suitable for fast and high-throughput imaging of neuronal axons. We developed the AxonQuant algorithm, which is suitable for automatic processing of axonal imaging data. This microfluidic chamber-coupled algorithm allows calculation of an ‘axonal continuity index' that quantitatively measures axonal health status in a manner independent of neuronal or axonal density. This method allows quantitative analysis of axonal morphology in an automatic and nonbiased manner. Our method will facilitate large-scale high-throughput screening for genes or therapeutic compounds for neurodegenerative diseases involving axonal damage. When combined with imaging technologies utilizing different gene markers, this method will provide new insights into the mechanistic basis for axon degeneration. Our microfluidic chamber culture-coupled AxonQuant algorithm will be widely useful for studying axonal biology and neurodegenerative disorders. © 2014 S. Karger AG, Basel

  7. Amyloid precursor protein-mediated endocytic pathway disruption induces axonal dysfunction and neurodegeneration.

    Xu, Wei; Weissmiller, April M; White, Joseph A; Fang, Fang; Wang, Xinyi; Wu, Yiwen; Pearn, Matthew L; Zhao, Xiaobei; Sawa, Mariko; Chen, Shengdi; Gunawardena, Shermali; Ding, Jianqing; Mobley, William C; Wu, Chengbiao


    The endosome/lysosome pathway is disrupted early in the course of both Alzheimer's disease (AD) and Down syndrome (DS); however, it is not clear how dysfunction in this pathway influences the development of these diseases. Herein, we explored the cellular and molecular mechanisms by which endosomal dysfunction contributes to the pathogenesis of AD and DS. We determined that full-length amyloid precursor protein (APP) and its β-C-terminal fragment (β-CTF) act though increased activation of Rab5 to cause enlargement of early endosomes and to disrupt retrograde axonal trafficking of nerve growth factor (NGF) signals. The functional impacts of APP and its various products were investigated in PC12 cells, cultured rat basal forebrain cholinergic neurons (BFCNs), and BFCNs from a mouse model of DS. We found that the full-length wild-type APP (APPWT) and β-CTF both induced endosomal enlargement and disrupted NGF signaling and axonal trafficking. β-CTF alone induced atrophy of BFCNs that was rescued by the dominant-negative Rab5 mutant, Rab5S34N. Moreover, expression of a dominant-negative Rab5 construct markedly reduced APP-induced axonal blockage in Drosophila. Therefore, increased APP and/or β-CTF impact the endocytic pathway to disrupt NGF trafficking and signaling, resulting in trophic deficits in BFCNs. Our data strongly support the emerging concept that dysregulation of Rab5 activity contributes importantly to early pathogenesis of AD and DS. PMID:27064279

  8. Quantitative analysis of microtubule transport in growing nerve processes

    Ma*, Ytao; Shakiryanova*, Dinara; Vardya, Irina;


    translocation of MT plus ends in the axonal shaft by expressing GFP-EB1 in Xenopus embryo neurons in culture. Formal quantitative analysis of MT assembly/disassembly indicated that none of the MTs in the axonal shaft were rapidly transported. Our results suggest that transport of axonal MTs is not required for...... delivery of newly synthesized tubulin to the growing nerve processes. Udgivelsesdato: 2004...

  9. Axon Membrane Skeleton Structure is Optimized for Coordinated Sodium Propagation

    Zhang, Yihao; Li, He; Tzingounis, Anastasios V; Lykotrafitis, George


    Axons transmit action potentials with high fidelity and minimal jitter. This unique capability is likely the result of the spatiotemporal arrangement of sodium channels along the axon. Super-resolution microscopy recently revealed that the axon membrane skeleton is structured as a series of actin rings connected by spectrin filaments that are held under entropic tension. Sodium channels also exhibit a periodic distribution pattern, as they bind to ankyrin G, which associates with spectrin. Here, we elucidate the relationship between the axon membrane skeleton structure and the function of the axon. By combining cytoskeletal dynamics and continuum diffusion modeling, we show that spectrin filaments under tension minimize the thermal fluctuations of sodium channels and prevent overlap of neighboring channel trajectories. Importantly, this axon skeletal arrangement allows for a highly reproducible band-like activation of sodium channels leading to coordinated sodium propagation along the axon.

  10. Axon position within the corpus callosum determines contralateral cortical projection.

    Zhou, Jing; Wen, Yunqing; She, Liang; Sui, Ya-Nan; Liu, Lu; Richards, Linda J; Poo, Mu-Ming


    How developing axons in the corpus callosum (CC) achieve their homotopic projection to the contralateral cortex remains unclear. We found that axonal position within the CC plays a critical role in this projection. Labeling of nearby callosal axons in mice showed that callosal axons were segregated in an orderly fashion, with those from more medial cerebral cortex located more dorsally and subsequently projecting to more medial contralateral cortical regions. The normal axonal order within the CC was grossly disturbed when semaphorin3A/neuropilin-1 signaling was disrupted. However, the order in which axons were positioned within the CC still determined their contralateral projection, causing a severe disruption of the homotopic contralateral projection that persisted at postnatal day 30, when the normal developmental refinement of contralateral projections is completed in wild-type (WT) mice. Thus, the orderly positioning of axons within the CC is a primary determinant of how homotopic interhemispheric projections form in the contralateral cortex. PMID:23812756

  11. Motor axon synapses on renshaw cells contain higher levels of aspartate than glutamate.

    Dannette S Richards

    Full Text Available Motoneuron synapses on spinal cord interneurons known as Renshaw cells activate nicotinic, AMPA and NMDA receptors consistent with co-release of acetylcholine and excitatory amino acids (EAA. However, whether these synapses express vesicular glutamate transporters (VGLUTs capable of accumulating glutamate into synaptic vesicles is controversial. An alternative possibility is that these synapses release other EAAs, like aspartate, not dependent on VGLUTs. To clarify the exact EAA concentrated at motor axon synapses we performed a quantitative postembedding colloidal gold immunoelectron analysis for aspartate and glutamate on motor axon synapses (identified by immunoreactivity to the vesicular acetylcholine transporter; VAChT contacting calbindin-immunoreactive (-IR Renshaw cell dendrites. The results show that 71% to 80% of motor axon synaptic boutons on Renshaw cells contained aspartate immunolabeling two standard deviations above average neuropil labeling. Moreover, VAChT-IR synapses on Renshaw cells contained, on average, aspartate immunolabeling at 2.5 to 2.8 times above the average neuropil level. In contrast, glutamate enrichment was lower; 21% to 44% of VAChT-IR synapses showed glutamate-IR two standard deviations above average neuropil labeling and average glutamate immunogold density was 1.7 to 2.0 times the neuropil level. The results were not influenced by antibody affinities because glutamate antibodies detected glutamate-enriched brain homogenates more efficiently than aspartate antibodies detecting aspartate-enriched brain homogenates. Furthermore, synaptic boutons with ultrastructural features of Type I excitatory synapses were always labeled by glutamate antibodies at higher density than motor axon synapses. We conclude that motor axon synapses co-express aspartate and glutamate, but aspartate is concentrated at higher levels than glutamate.

  12. Transport

    Transport is one of the major causes of environmental damage in Austria. Energy consumption, pollutants emissions, noise emissions, use of surfaces, sealing of surfaces, dissection of ecosystems and impact on landscape are the most significant environmental impacts caused by it. An overview of the transport development of passengers and freight in Austria is presented. Especially the energy consumption growth, carbon dioxide and nitrogen oxide emissions by type of transport, and the emissions development (HC, particle and carbon monoxide) of goods and passengers transport are analyzed covering the years 1980 - 1999. The health cost resulting from transport-related air pollution in Austria is given and measures to be taken for an effective control of the transport sector are mentioned. Figs. 8, Table 1. (nevyjel)

  13. The C-terminal domains of NF-H and NF-M subunits maintain axonal neurofilament content by blocking turnover of the stationary neurofilament network.

    Mala V Rao

    Full Text Available Newly synthesized neurofilaments or protofilaments are incorporated into a highly stable stationary cytoskeleton network as they are transported along axons. Although the heavily phosphorylated carboxyl-terminal tail domains of the heavy and medium neurofilament (NF subunits have been proposed to contribute to this process and particularly to stability of this structure, their function is still obscure. Here we show in NF-H/M tail deletion [NF-(H/M(tailΔ] mice that the deletion of both of these domains selectively lowers NF levels 3-6 fold along optic axons without altering either rates of subunit synthesis or the rate of slow axonal transport of NF. Pulse labeling studies carried out over 90 days revealed a significantly faster rate of disappearance of NF from the stationary NF network of optic axons in NF-(H/M(tailΔ mice. Faster NF disappearance was accompanied by elevated levels of NF-L proteolytic fragments in NF-(H/M(tailΔ axons. We conclude that NF-H and NF-M C-terminal domains do not normally regulate NF transport rates as previously proposed, but instead increase the proteolytic resistance of NF, thereby stabilizing the stationary neurofilament cytoskeleton along axons.

  14. Focal axonal swellings and associated ultrastructural changes attenuate conduction velocity in central nervous system axons: a computer modeling study.

    Kolaric, Katarina V; Thomson, Gemma; Edgar, Julia M; Brown, Angus M


    The constancy of action potential conduction in the central nervous system (CNS) relies on uniform axon diameter coupled with fidelity of the overlying myelin providing high-resistance, low capacitance insulation. Whereas the effects of demyelination on conduction have been extensively studied/modeled, equivalent studies on the repercussions for conduction of axon swelling, a common early pathological feature of (potentially reversible) axonal injury, are lacking. The recent description of experimentally acquired morphological and electrical properties of small CNS axons and oligodendrocytes prompted us to incorporate these data into a computer model, with the aim of simulating the effects of focal axon swelling on action potential conduction. A single swelling on an otherwise intact axon, as occurs in optic nerve axons of Cnp1 null mice caused a small decrease in conduction velocity. The presence of single swellings on multiple contiguous internodal regions (INR), as likely occurs in advanced disease, caused qualitatively similar results, except the dimensions of the swellings required to produce equivalent attenuation of conduction were significantly decreased. Our simulations of the consequences of metabolic insult to axons, namely, the appearance of multiple swollen regions, accompanied by perturbation of overlying myelin and increased axolemmal permeability, contained within a single INR, revealed that conduction block occurred when the dimensions of the simulated swellings were within the limits of those measured experimentally, suggesting that multiple swellings on a single axon could contribute to axonal dysfunction, and that increased axolemmal permeability is the decisive factor that promotes conduction block. PMID:24303138

  15. Early ultrastructural defects of axons and axon-glia junctions in mice lacking expression of Cnp1.

    Edgar, Julia M; McLaughlin, Mark; Werner, Hauke B; McCulloch, Mailis C; Barrie, Jennifer A; Brown, Angus; Faichney, Andrew Blyth; Snaidero, Nicolas; Nave, Klaus-Armin; Griffiths, Ian R


    Most axons in the central nervous system (CNS) are surrounded by a multilayered myelin sheath that promotes fast, saltatory conduction of electrical impulses. By insulating the axon, myelin also shields the axoplasm from the extracellular milieu. In the CNS, oligodendrocytes provide support for the long-term maintenance of myelinated axons, independent of the myelin sheath. Here, we use electron microscopy and morphometric analyses to examine the evolution of axonal and oligodendroglial changes in mice deficient in 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) and in mice deficient in both CNP and proteolipid protein (PLP/DM20). We show that CNP is necessary for the formation of a normal inner tongue process of oligodendrocytes that myelinate small diameter axons. We also show that axonal degeneration in Cnp1 null mice is present very early in postnatal life. Importantly, compact myelin formed by transplanted Cnp1 null oligodendrocytes induces the same degenerative changes in shiverer axons that normally are dysmyelinated but structurally intact. Mice deficient in both CNP and PLP develop a more severe axonal phenotype than either single mutant, indicating that the two oligodendroglial proteins serve distinct functions in supporting the myelinated axon. These observations support a model in which the trophic functions of oligodendrocytes serve to offset the physical shielding of axons by myelin membranes. PMID:19459211

  16. Dynamics of axon fasciculation in the presence of neuronal turnover

    Chaudhuri, Debasish; Mohanty, P K; Zapotocky, Martin


    We formulate and characterize a model aiming to describe the formation of fascicles of axons mediated by contact axon-axon interactions. The growing axons are represented as interacting directed random walks in two spatial dimensions. To mimic axonal turnover in the mammalian olfactory system, the random walkers are injected and removed at specified rates. In the dynamical steady state, the position-dependent distribution of fascicle sizes obeys a scaling law. We identify several distinct time scales that emerge from the dynamics, are sensitive functions of the microscopic parameters of the model, and can exceed the average axonal lifetime by orders of magnitude. We discuss our findings in terms of an analytically tractable, effective model of fascicle dynamics.

  17. Dysregulation of the Axonal Trafficking of Nuclear-encoded Mitochondrial mRNA alters Neuronal Mitochondrial Activity and Mouse Behavior

    Kar, Amar N.; Sun, Ching-Yu; Reichard, Kathryn; Gervasi, Noreen M.; Pickel, James; Nakazawa, Kazu; Gioio, Anthony E.; Kaplan, Barry B.


    Local translation of nuclear-encoded mitochondrial mRNAs is essential for mitochondrial activity, yet there is little insight into the role that axonal trafficking of these transcripts play in neuronal function and behavior. Previously, we identified a 38 nucleotide stem-loop structure (zipcode) in the 3′ untranslated region of the Cytochrome C oxidase IV (COXIV) mRNA that directs the transport of a reporter mRNA to the axon of superior cervical ganglion neurons (SCG). Over-expression of a ch...

  18. Axonal Protein Synthesis and the Regulation of Local Mitochondrial Function


    Axons and presynaptic nerve terminals of both invertebrate and mammalian SCG neurons contain a heterogeneous population of nuclear-encoded mitochondrial mRNAs and a local cytosolic protein synthetic system. Nearly one quarter of the total protein synthesized in these structural/functional domains of the neuron is destined for mitochondria. Acute inhibition of axonal protein synthesis markedly reduces the functional activity of mitochondria. The blockade of axonal protein into mitochondria had...

  19. Axonal protein synthesis and the regulation of local mitochondrial function

    Kaplan, B.B.; Gioio, A.E.; Hillefors, M.; Aschrafi, A.


    Axons and presynaptic nerve terminals of both invertebrate and mammalian SCG neurons contain a heterogeneous population of nuclear-encoded mitochondrial mRNAs and a local cytosolic protein synthetic system. Nearly one quarter of the total protein synthesized in these structural/functional domains of the neuron is destined for mitochondria. Acute inhibition of axonal protein synthesis markedly reduces the functional activity of mitochondria. The blockade of axonal protein into mitochondria had...

  20. Action potentials reliably invade axonal arbors of rat neocortical neurons

    Cox, Charles L.; Denk, Winfried; Tank, David W.; Svoboda, Karel


    Neocortical pyramidal neurons have extensive axonal arborizations that make thousands of synapses. Action potentials can invade these arbors and cause calcium influx that is required for neurotransmitter release and excitation of postsynaptic targets. Thus, the regulation of action potential invasion in axonal branches might shape the spread of excitation in cortical neural networks. To measure the reliability and extent of action potential invasion into axonal arbors, we have used two-photon...

  1. Axon diameter mapping in crossing fibers with diffusion MRI

    Zhang, Hui; Dyrby, Tim B; Alexander, Daniel C


    tissue than measures derived from diffusion tensor imaging. Most existing techniques for axon diameter mapping assume a single axon orientation in the tissue model, which limits their application to only the most coherently oriented brain white matter, such as the corpus callosum, where the single...... technique by establishing reasonable axon diameter indices in the crossing region at the interface of the cingulum and the corpus callosum....

  2. Axon target matching in the developing visual system

    Osterhout, Jessica A.


    The central nervous system (CNS) is made up of trillions of connections between specific sets of highly specialized neurons. How each individual neuron finds and connects to the correct synaptic partner remains an important and unresolved issue in neuroscience. Using the mouse visual system as a model I probed the cellular and molecular mechanisms that govern one of the key steps leading to CNS development: axon target matching. Axon target matching is the process by which axons to find and i...

  3. Myelin sheath survival after guanethidine-induced axonal degeneration


    Membrane-membrane interactions between axons and Schwann cells are required for initial myelin formation in the peripheral nervous system. However, recent studies of double myelination in sympathetic nerve have indicated that myelin sheaths continue to exist after complete loss of axonal contact (Kidd, G. J., and J. W. Heath. 1988. J. Neurocytol. 17:245-261). This suggests that myelin maintenance may be regulated either by diffusible axonal factors or by nonaxonal mechanisms. To test these hy...

  4. Axonal autophagy during regeneration of the rat sciatic nerve

    Kangrong Lu; Zhongxian Piao; Zhenxi Liu; Weiwang Gu; Wanshan Wang; Nngjie Piao


    BACKGROUND: The removal of degenerated axonal debris during Wallerian degeneration is very important for nerve regeneration. However, the mechanism by which debris is removed is not been completely understood. Considerable controversy remains as to the clearance pathway and cells that are involved. OBJECTIVE: To investigate axonal autophagy during removal of degenerated axonal debris by transecting the sciatic nerve in a rat Wallerian degeneration model.DESIGN, TIME AND SETTING: Experimental neuropathological analysis. The experiment was conducted at the Laboratory Animal Service Center of the Southern Medical University between January and June 2005. MATERIALS: Fifty-four adult, Wistar rats of either sex, weighing 180-250 g, were obtained from the Laboratory Animal Service Center of the Southern Medical University. Animals were randomly divided into nine groups of six rats. METHODS: Wallerian degeneration was induced by transecting the rat sciatic nerve, and tissue samples from the distal stump were obtained 0.2, 0.4, 1, 2, 3, 4, 7, 10, and 15 days post-transection. Ultrathin sections were prepared for electron microscopy to study ultrastructure and enzyme cytochemistry staining. MAIN OUTCOME MEASURES: Ultrastructure (axon body, autophagic body, and cystoskeleton) of axons and myelin sheaths observed with electron microscopy; acidic phosphatase activity detected by Gomori staining using electron microscopy. RESULTS: The major changes of degenerating axons after transection were axoplasm swelling and separation of axons from their myelin sheath between five hours and two days post-transection. At four days post-transection, the axoplasm condensed and axons were completely separated from the myelin sheath, forming dissociative axon bodies. Vacuoles of different sizes formed in axons during the early phase after lesion. Larger dissociative axon bodies were formed when the axons were completely separated from the myelin sheath during a late phase. The axolemma

  5. Effects of different nerve autografts on greater auricular nerve deficit in rabbits

    Shaozong Chen


    and 12 weeks, 2μ m sections were prepared, each stained with either HE or methylene blue to assess axon number and density, cross-section area, and myelin sheath thickness. ③Electrophysidogical tests: At 12 weeks, the bilateral GAN along with the nerve grafts of 4 animals in each group were exposed. Points A, B and C were marked on each specimen: point A: at the proximal GAN segment, 7 cm from the proximal anastomosis; point B: 0.5 cm from the proximal anastomosis; point C: at the distal GAN segment, 0.5 cm from the distal anastomosis. The whole nerve including nerve graft and proximal and distal GAN segments, as a block, was harvested and immersed in Ren's solution for several minutes until its excitability was stabilized. The specimen was then placed on the electrodes of the shield box to examine the action potential and conduction velocity on segment AB and AC with BL-420E+biologic function testing system. AC/AB would be the recovery rate of action potential on segment AC. ④Horseradish peroxidase (HRP) fascicle: At 12 weeks, at the site on the distal segment of GAN 1.0 cm from the distal anastomosis of nerve graft, the GAN was crushed by a pair of haemostatic forceps and HRP water solution was injected into the nerve. Two rabbits in GAN group, SN group and LFCN group, after having survived for 24 hours, 36 hours and 48 hours were selected. The C2 ganglion was exposed and the distance from C2 ganglion to HRP injection site was taken as the axoplasmic transport distance, from which, the axoplasmic transport velocity and the mean density of the labeled C2 ganglion cells were calculated.MAIN OUTCOME MEASURES: ①The greatest distance of nerve regeneration; ②the axon number and density, cross-section area, and myelin sheath thickness; ③the action potential and conduction velocity; ④the axoplasmic transport velocity and the mean density of the labeled C2 ganglion cells. RESULTS: All 42 experimental rabbits were involved in the final analysis. ①The greatest

  6. Focal axonal swellings and associated ultrastructural changes attenuate conduction velocity in central nervous system axons: a computer modeling study

    Kolaric, Katarina V; Thomson, Gemma; Edgar, Julia M; Brown, Angus M.


    The constancy of action potential conduction in the central nervous system (CNS) relies on uniform axon diameter coupled with fidelity of the overlying myelin providing high-resistance, low capacitance insulation. Whereas the effects of demyelination on conduction have been extensively studied/modeled, equivalent studies on the repercussions for conduction of axon swelling, a common early pathological feature of (potentially reversible) axonal injury, are lacking. The recent description of ex...

  7. Patterns of growth, axonal extension and axonal arborization of neuronal lineages in the developing Drosophila brain.

    Larsen, Camilla; Shy, Diana; Spindler, Shana R; Fung, Siaumin; Pereanu, Wayne; Younossi-Hartenstein, Amelia; Hartenstein, Volker


    The Drosophila central brain is composed of approximately 100 paired lineages, with most lineages comprising 100-150 neurons. Most lineages have a number of important characteristics in common. Typically, neurons of a lineage stay together as a coherent cluster and project their axons into a coherent bundle visible from late embryo to adult. Neurons born during the embryonic period form the primary axon tracts (PATs) that follow stereotyped pathways in the neuropile. Apoptotic cell death removes an average of 30-40% of primary neurons around the time of hatching. Secondary neurons generated during the larval period form secondary axon tracts (SATs) that typically fasciculate with their corresponding primary axon tract. SATs develop into the long fascicles that interconnect the different compartments of the adult brain. Structurally, we distinguish between three types of lineages: PD lineages, characterized by distinct, spatially separate proximal and distal arborizations; C lineages with arborizations distributed continuously along the entire length of their tract; D lineages that lack proximal arborizations. Arborizations of many lineages, in particular those of the PD type, are restricted to distinct neuropile compartments. We propose that compartments are "scaffolded" by individual lineages, or small groups thereof. Thereby, the relatively small number of primary neurons of each primary lineage set up the compartment map in the late embryo. Compartments grow during the larval period simply by an increase in arbor volume of primary neurons. Arbors of secondary neurons form within or adjacent to the larval compartments, resulting in smaller compartment subdivisions and additional, adult specific compartments. PMID:19538956

  8. Focal neurological deficits

    A focal neurologic deficit is a problem with nerve, spinal cord, or brain function. It affects a specific ... of the back, neck, or head Electromyogram (EMG)/ nerve conduction velocities (NCV) MRI of the back, neck, or head Spinal tap

  9. Understanding Attention Deficit Disorders.

    Villegas, Orlando; And Others

    This booklet provides basic information regarding attention deficit hyperactivity disorders (ADHD), in their separate modalities, with hyperactivity, impulsivity, and inattention. Explanations are offered concerning short attention span, impulsive behavior, hyperactivity, and beginning new activities before completing the previous one. Theories…

  10. Peripheral nerve: from the microscopic functional unit of the axon to the biomechanically loaded macroscopic structure.

    Topp, Kimberly S; Boyd, Benjamin S


    Peripheral nerves are composed of motor and sensory axons, associated ensheathing Schwann cells, and organized layers of connective tissues that are in continuity with the tissues of the central nervous system. Nerve fiber anatomy facilitates conduction of electrical impulses to convey information over a distance, and the length of these polarized cells necessitates regulated axonal transport of organelles and structural proteins for normal cell function. Nerve connective tissues serve a protective function as the limb is subjected to the stresses of myriad limb positions and postures. Thus, the tissues are uniquely arranged to control the local nerve fiber environment and modulate physical stresses. In this brief review, we describe the microscopic anatomy and physiology of peripheral nerve and the biomechanical properties that enable nerve to withstand the physical stresses of everyday life. PMID:22133662

  11. NDE1 and GSK3β Associate with TRAK1 and Regulate Axonal Mitochondrial Motility: Identification of Cyclic AMP as a Novel Modulator of Axonal Mitochondrial Trafficking.

    Ogawa, Fumiaki; Murphy, Laura C; Malavasi, Elise L V; O'Sullivan, Shane T; Torrance, Helen S; Porteous, David J; Millar, J Kirsty


    Mitochondria are essential for neuronal function, providing the energy required to power neurotransmission, and fulfilling many important additional roles. In neurons, mitochondria must be efficiently transported to sites, including synapses, where their functions are required. Neurons, with their highly elongated morphology, are consequently extremely sensitive to defective mitochondrial trafficking which can lead to neuronal ill-health/death. We recently demonstrated that DISC1 associates with mitochondrial trafficking complexes where it associates with the core kinesin and dynein adaptor molecule TRAK1. We now show that the DISC1 interactors NDE1 and GSK3β also associate robustly with TRAK1 and demonstrate that NDE1 promotes retrograde axonal mitochondrial movement. GSK3β is known to modulate axonal mitochondrial motility, although reports of its actual effect are conflicting. We show that, in our system, GSK3β promotes anterograde mitochondrial transport. Finally, we investigated the influence of cAMP elevation upon mitochondrial motility, and found a striking increase in mitochondrial motility and retrograde movement. DISC1, NDE1, and GSK3β are implicated as risk factors for major mental illness. Our demonstration that they function together within mitochondrial trafficking complexes suggests that defective mitochondrial transport may be a contributory disease mechanism in some cases of psychiatric disorder. PMID:26815013

  12. New insights into mRNA trafficking in axons

    Gumy, Laura; Katrukha, Eugene; Kapitein, Lukas; Hoogenraad, Casper


    In recent years, it has been demonstrated that mRNAs localize to axons of young and mature central and peripheral nervous system neurons in culture and in vivo. Increasing evidence is supporting a fundamental role for the local translation of these mRNAs in neuronal function by regulating axon growt

  13. Axonal accumulation of synaptic markers in APP transgenic Drosophila depends on the NPTY motif and is paralleled by defects in synaptic plasticity

    Rusu, Patricia; Jansen, Anna; Soba, Peter;


    Alzheimer's disease (AD) is characterized by neurofibrillary tangles and extracellular plaques, which consist mainly of beta-amyloid derived from the beta-amyloid precursor protein (APP). An additional feature of AD is axonopathy, which might contribute to impairment of cognitive functions....... Specifically, axonal transport defects have been reported in AD animal models, including mice and flies that overexpress APP and tau. Here we demonstrate that the APP-induced traffic jam of vesicles in peripheral nerves of Drosophila melanogaster larvae depends on the four residues NPTY motif in the APP...... intracellular domain. Furthermore, heterologous expression of Fe65 and JIP1b, scaffolding proteins interacting with the NPTY motif, also perturb axonal transport. Together, these data indicate that JIP1b or Fe65 may be involved in the APP-induced axonal transport defect. Moreover, we have characterized...

  14. Restoration of Visual Function by Enhancing Conduction in Regenerated Axons.

    Bei, Fengfeng; Lee, Henry Hing Cheong; Liu, Xuefeng; Gunner, Georgia; Jin, Hai; Ma, Long; Wang, Chen; Hou, Lijun; Hensch, Takao K; Frank, Eric; Sanes, Joshua R; Chen, Chinfei; Fagiolini, Michela; He, Zhigang


    Although a number of repair strategies have been shown to promote axon outgrowth following neuronal injury in the mammalian CNS, it remains unclear whether regenerated axons establish functional synapses and support behavior. Here, in both juvenile and adult mice, we show that either PTEN and SOCS3 co-deletion, or co-overexpression of osteopontin (OPN)/insulin-like growth factor 1 (IGF1)/ciliary neurotrophic factor (CNTF), induces regrowth of retinal axons and formation of functional synapses in the superior colliculus (SC) but not significant recovery of visual function. Further analyses suggest that regenerated axons fail to conduct action potentials from the eye to the SC due to lack of myelination. Consistent with this idea, administration of voltage-gated potassium channel blockers restores conduction and results in increased visual acuity. Thus, enhancing both regeneration and conduction effectively improves function after retinal axon injury. PMID:26771493

  15. Receptor Tyrosine Kinases: Molecular Switches Regulating CNS Axon Regeneration

    Vasanthy Vigneswara


    Full Text Available The poor or lack of injured adult central nervous system (CNS axon regeneration results in devastating consequences and poor functional recovery. The interplay between the intrinsic and extrinsic factors contributes to robust inhibition of axon regeneration of injured CNS neurons. The insufficient or lack of trophic support for injured neurons is considered as one of the major obstacles contributing to their failure to survive and regrow their axons after injury. In the CNS, many of the signalling pathways associated with neuronal survival and axon regeneration are regulated by several classes of receptor tyrosine kinases (RTK that respond to a variety of ligands. This paper highlights and summarises the most relevant recent findings pertinent to different classes of the RTK family of molecules, with a particular focus on elucidating their role in CNS axon regeneration.

  16. SnoN facilitates axonal regeneration after spinal cord injury.

    Jiun L Do

    Full Text Available Adult CNS neurons exhibit a reduced capacity for growth compared to developing neurons, due in part to downregulation of growth-associated genes as development is completed. We tested the hypothesis that SnoN, an embryonically regulated transcription factor that specifies growth of the axonal compartment, can enhance growth in injured adult neurons. In vitro, SnoN overexpression in dissociated adult DRG neuronal cultures significantly enhanced neurite outgrowth. Moreover, TGF-β1, a negative regulator of SnoN, inhibited neurite outgrowth, and SnoN over-expression overcame this inhibition. We then examined whether SnoN influenced axonal regeneration in vivo: indeed, expression of a mutant form of SnoN resistant to degradation significantly enhanced axonal regeneration following cervical spinal cord injury, despite peri-lesional upregulation of TGF-β1. Thus, a developmental mechanism that specifies extension of the axonal compartment also promotes axonal regeneration after adult CNS injury.

  17. Brain injury tolerance limit based on computation of axonal strain.

    Sahoo, Debasis; Deck, Caroline; Willinger, Rémy


    Traumatic brain injury (TBI) is the leading cause of death and permanent impairment over the last decades. In both the severe and mild TBIs, diffuse axonal injury (DAI) is the most common pathology and leads to axonal degeneration. Computation of axonal strain by using finite element head model in numerical simulation can enlighten the DAI mechanism and help to establish advanced head injury criteria. The main objective of this study is to develop a brain injury criterion based on computation of axonal strain. To achieve the objective a state-of-the-art finite element head model with enhanced brain and skull material laws, was used for numerical computation of real world head trauma. The implementation of new medical imaging data such as, fractional anisotropy and axonal fiber orientation from Diffusion Tensor Imaging (DTI) of 12 healthy patients into the finite element brain model was performed to improve the brain constitutive material law with more efficient heterogeneous anisotropic visco hyper-elastic material law. The brain behavior has been validated in terms of brain deformation against Hardy et al. (2001), Hardy et al. (2007), and in terms of brain pressure against Nahum et al. (1977) and Trosseille et al. (1992) experiments. Verification of model stability has been conducted as well. Further, 109 well-documented TBI cases were simulated and axonal strain computed to derive brain injury tolerance curve. Based on an in-depth statistical analysis of different intra-cerebral parameters (brain axonal strain rate, axonal strain, first principal strain, Von Mises strain, first principal stress, Von Mises stress, CSDM (0.10), CSDM (0.15) and CSDM (0.25)), it was shown that axonal strain was the most appropriate candidate parameter to predict DAI. The proposed brain injury tolerance limit for a 50% risk of DAI has been established at 14.65% of axonal strain. This study provides a key step for a realistic novel injury metric for DAI. PMID:27038501

  18. Low dose tubulin-binding drugs rescue peroxisome trafficking deficit in patient-derived stem cells in Hereditary Spastic Paraplegia

    Yongjun Fan


    Full Text Available Hereditary Spastic Paraplegia (HSP is a genetically heterogeneous group of disorders, diagnosed by progressive gait disturbances with muscle weakness and spasticity, for which there are no treatments targeted at the underlying pathophysiology. Mutations in spastin are a common cause of HSP. Spastin is a microtubule-severing protein whose mutation in mouse causes defective axonal transport. In human patient-derived olfactory neurosphere-derived (ONS cells, spastin mutations lead to lower levels of acetylated α-tubulin, a marker of stabilised microtubules, and to slower speed of peroxisome trafficking. Here we screened multiple concentrations of four tubulin-binding drugs for their ability to rescue levels of acetylated α-tubulin in patient-derived ONS cells. Drug doses that restored acetylated α-tubulin to levels in control-derived ONS cells were then selected for their ability to rescue peroxisome trafficking deficits. Automated microscopic screening identified very low doses of the four drugs (0.5 nM taxol, 0.5 nM vinblastine, 2 nM epothilone D, 10 µM noscapine that rescued acetylated α-tubulin in patient-derived ONS cells. These same doses rescued peroxisome trafficking deficits, restoring peroxisome speeds to untreated control cell levels. These results demonstrate a novel approach for drug screening based on high throughput automated microscopy for acetylated α-tubulin followed by functional validation of microtubule-based peroxisome transport. From a clinical perspective, all the drugs tested are used clinically, but at much higher doses. Importantly, epothilone D and noscapine can enter the central nervous system, making them potential candidates for future clinical trials.

  19. Prolyl Isomerase Pin1 Regulates Axon Guidance by Stabilizing CRMP2A Selectively in Distal Axons

    Balaštík, Martin; Zhou, X.Z.; Alberich-Jorda, Meritxell; Weissová, Romana; Žiak, Jakub; Pazyra-Murphy, M.F.; Cosker, K.E.; Machoňová, Olga; Kozmiková, Iryna; Chen, CH.; Pastorino, L.; Asara, J.M.; Cole, A.; Sutherland, C.; Segal, R. A.; Lu, K.P.


    Roč. 13, č. 4 (2015), s. 812-828. ISSN 2211-1247 R&D Projects: GA MŠk(CZ) LK11213; GA MŠk LK21307; GA ČR GA15-03796S; GA MŠk LO1419 Institutional support: RVO:68378050 Keywords : Pin1 * axon guidance * Semaphorin 3A Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 8.358, year: 2014

  20. Clinical features of diffuse axonal injury


    Objective: To analyze the mechanism of diffuse axonal injury (DAI) and study the relationship between DAI and brain concussion, brain contusion, and primary brain stem injury.Methods: The clinical data and iconographic characteristics of 56 patients with DAI were analyzed retrospectively.Results: Traffic accidents were the main cause of DAI. Among the 56 cases, 34 were injured for at least twice, and 71.43% of the patients were complicated with contusion.Conclusions: It is considered that DAI is a common pattern of primary brain injury, which is often underestimated. And DAI includes cerebral concussion and primary brain injury, and is often complicated by cerebral cortex contusion. Therefore, it is very simple and practical to divide primary brain injuries into local and diffuse injuries.

  1. Plasminogen deficiency causes reduced corticospinal axonal plasticity and functional recovery after stroke in mice.

    Zhongwu Liu

    Full Text Available Tissue plasminogen activator (tPA has been implicated in neurite outgrowth and neurological recovery post stroke. tPA converts the zymogen plasminogen (Plg into plasmin. In this study, using plasminogen knockout (Plg-/- mice and their Plg-native littermates (Plg+/+, we investigated the role of Plg in axonal remodeling and neurological recovery after stroke. Plg+/+ and Plg-/- mice (n = 10/group were subjected to permanent intraluminal monofilament middle cerebral artery occlusion (MCAo. A foot-fault test and a single pellet reaching test were performed prior to and on day 3 after stroke, and weekly thereafter to monitor functional deficit and recovery. Biotinylated dextran amine (BDA was injected into the left motor cortex to anterogradely label the corticospinal tract (CST. Animals were euthanized 4 weeks after stroke. Neurite outgrowth was also measured in primary cultured cortical neurons harvested from Plg+/+ and Plg-/- embryos. In Plg+/+ mice, the motor functional deficiency after stroke progressively recovered with time. In contrast, recovery in Plg-/- mice was significantly impaired compared to Plg+/+ mice (p0.82, p<0.01. Plg-/- neurons exhibited significantly reduced neurite outgrowth. Our data suggest that plasminogen-dependent proteolysis has a beneficial effect during neurological recovery after stroke, at least in part, by promoting axonal remodeling in the denervated spinal cord.

  2. Right Cortical and Axonal Structures Eliciting Ocular Deviation During Electrical Stimulation Mapping in Awake Patients.

    Montemurro, Nicola; Herbet, Guillaume; Duffau, Hugues


    To investigate the neural network underpinning eye movements, a cortical and subcortical intraoperative mapping using direct electrical stimulation (DES) was achieved in six awake patients during surgery for a right frontal low-grade glioma. We assessed the relationship between the occurrence of ocular deviation during both cortical and axonal DES and the anatomic location for each response. The corresponding stimulation sites were reported on a standard brain template for visual analysis and between-subjects comparisons. Our results showed that DES of the cortical frontal eye field (FEF) elicited horizontal (anterior FEF) or upward (posterior FEF) eye movements in 3 patients, supporting the fact that FEF comprises several distinct functional subregions. In addition, subcortical stimulation of the white matter tracts underneath the FEF evoked conjugate contraversive ocular deviation in 3 other patients. Interestingly, this region seems to be a crossroad between the fronto-striatal tract, the frontal aslant tract, the inferior fronto-occipital fascicle and the superior longitudinal fascicle. No deficits in eye movements were observed following surgery. To our knowledge, this is the first study reporting ocular deviation during axonal electrostimulation mapping of the white matter fibers in awake patients. Therefore, our original data issued from DES give new insights into the cortical and subcortical structures involved in the control of eye movements and their strong relationships with other functional pathways. PMID:27067598

  3. Astrocyte scar formation aids central nervous system axon regeneration.

    Anderson, Mark A; Burda, Joshua E; Ren, Yilong; Ao, Yan; O'Shea, Timothy M; Kawaguchi, Riki; Coppola, Giovanni; Khakh, Baljit S; Deming, Timothy J; Sofroniew, Michael V


    Transected axons fail to regrow in the mature central nervous system. Astrocytic scars are widely regarded as causal in this failure. Here, using three genetically targeted loss-of-function manipulations in adult mice, we show that preventing astrocyte scar formation, attenuating scar-forming astrocytes, or ablating chronic astrocytic scars all failed to result in spontaneous regrowth of transected corticospinal, sensory or serotonergic axons through severe spinal cord injury (SCI) lesions. By contrast, sustained local delivery via hydrogel depots of required axon-specific growth factors not present in SCI lesions, plus growth-activating priming injuries, stimulated robust, laminin-dependent sensory axon regrowth past scar-forming astrocytes and inhibitory molecules in SCI lesions. Preventing astrocytic scar formation significantly reduced this stimulated axon regrowth. RNA sequencing revealed that astrocytes and non-astrocyte cells in SCI lesions express multiple axon-growth-supporting molecules. Our findings show that contrary to the prevailing dogma, astrocyte scar formation aids rather than prevents central nervous system axon regeneration. PMID:27027288

  4. Intra-axonal myosin and actin in nerve regeneration.

    McQuarrie, Irvine G; Lund, Linda M


    A focused review of sciatic nerve regeneration in the rat model, based on research conducted by the authors, is presented. We examine structural proteins carried distally in the axon by energy-requiring motor enzymes, using protein chemistry and molecular biology techniques in combination with immunohistochemistry. Relevant findings from other laboratories are cited and discussed. The general conclusion is that relatively large amounts of actin and tubulin are required to construct a regenerating axon and that these materials mainly originate in the parent axon. The motor enzymes that carry these proteins forward as macromolecules include kinesin and dynein but probably also include myosin. PMID:19927086

  5. Axon guidance and neuronal migration research in China


    Proper migration of neuronal somas and axonal growth cones to designated locations in the developing brain is essential for the assembly of functional neuronal circuits.Rapid progress in research of axon guidance and neuronal migration has been made in the last twenty years.Chinese researchers began their exploration in this field ten years ago and have made significant contributions in clarifying the signal transduction of axon guidance and neuronal migration.Several unique experimental approaches,including the migration assay of single isolated neurons in response to locally delivered guidance cues,have been developed by Chinese neuroscientists to investigate the molecular machinery underlying these guidance events.

  6. Beyond the knowledge deficit

    Hansen, Janus Staffan; Holm, Lotte; Frewer, Lynn;


    The paper reviews psychological and social scientific research on lay attitudes to food risks. Many experts (scientists, food producers and public health advisors) regard public unease about food risks as excessive. This expert-lay discrepancy is often attributed to a 'knowledge deficit' among lay...

  7. Minocycline Transiently Reduces Microglia/Macrophage Activation but Exacerbates Cognitive Deficits Following Repetitive Traumatic Brain Injury in the Neonatal Rat.

    Hanlon, Lauren A; Huh, Jimmy W; Raghupathi, Ramesh


    Elevated microglial/macrophage-associated biomarkers in the cerebrospinal fluid of infant victims of abusive head trauma (AHT) suggest that these cells play a role in the pathophysiology of the injury. In a model of AHT in 11-day-old rats, 3 impacts (24 hours apart) resulted in spatial learning and memory deficits and increased brain microglial/macrophage reactivity, traumatic axonal injury, neuronal degeneration, and cortical and white-matter atrophy. The antibiotic minocycline has been effective in decreasing injury-induced microglial/macrophage activation while simultaneously attenuating cellular and functional deficits in models of neonatal hypoxic ischemia, but the potential for this compound to rescue deficits after impact-based trauma to the immature brain remains unexplored. Acute minocycline administration in this model of AHT decreased microglial/macrophage reactivity in the corpus callosum of brain-injured animals at 3 days postinjury, but this effect was lost by 7 days postinjury. Additionally, minocycline treatment had no effect on traumatic axonal injury, neurodegeneration, tissue atrophy, or spatial learning deficits. Interestingly, minocycline-treated animals demonstrated exacerbated injury-induced spatial memory deficits. These results contrast with previous findings in other models of brain injury and suggest that minocycline is ineffective in reducing microglial/macrophage activation and ameliorating injury-induced deficits following repetitive neonatal traumatic brain injury. PMID:26825312

  8. Genetics Home Reference: autosomal recessive axonal neuropathy with neuromyotonia

    ... neuromyotonia is a disorder that affects the peripheral nerves. Peripheral nerves connect the brain and spinal cord to muscles ... caused by damage to a particular part of peripheral nerves called axons , which are the extensions of nerve ...

  9. Internodal function in normal and regenerated mammalian axons

    Moldovan, M; Krarup, C


    AIM: Following Wallerian degeneration, peripheral myelinated axons have the ability to regenerate and, given a proper pathway, establish functional connections with targets. In spite of this capacity, the clinical outcome of nerve regeneration remains unsatisfactory. Early studies have found that...

  10. Syndecan Promotes Axon Regeneration by Stabilizing Growth Cone Migration

    Tyson J. Edwards


    Full Text Available Growth cones facilitate the repair of nervous system damage by providing the driving force for axon regeneration. Using single-neuron laser axotomy and in vivo time-lapse imaging, we show that syndecan, a heparan sulfate (HS proteoglycan, is required for growth cone function during axon regeneration in C. elegans. In the absence of syndecan, regenerating growth cones form but are unstable and collapse, decreasing the effective growth rate and impeding regrowth to target cells. We provide evidence that syndecan has two distinct functions during axon regeneration: (1 a canonical function in axon guidance that requires expression outside the nervous system and depends on HS chains and (2 an intrinsic function in growth cone stabilization that is mediated by the syndecan core protein, independently of HS. Thus, syndecan is a regulator of a critical choke point in nervous system repair.

  11. Abnormal growth of the corticospinal axons into the lumbar spinal cord of the hyt/hyt mouse with congenital hypothyroidism.

    Hsu, Jung-Yu C; Stein, Stuart A; Xu, Xiao-Ming


    Thyroid hormone deficiency may cause severe neurological disorders resulting from developmental deficits of the central nervous system. The mutant hyt/hyt mouse, characterized by fetal-onset, life-long hypothyroidism resulting from a point mutation of the thyroid-stimulating hormone receptor of the thyroid gland, displays a variety of abnormalities in motor behavior that are likely associated with dysfunctions of specific brain regions and a defective corticospinal tract (CST). To test the hypothesis that fetal and neonatal hypothyroidism cause abnormal CST development, the growth of the CST was investigated in hypothyroid hyt/hyt mice and their euthyroid progenitors, the BALB/cByJ mice. Anterograde labeling with biotinylated dextran amine demonstrated a decrease in the number of CST axons in the hyt/hyt mouse at the first lumbar level at postnatal day (P) 10. After retrograde tracing with fast blue (FB), fewer FB-labeled neurons were found in the motor cortex, the red nucleus, and the lateral vestibular nucleus of the hyt/hyt mouse. At the fourth lumbar level, the hyt/hyt mouse also showed smaller CST cross-sectional areas and significantly lower numbers of unmyelinated axons, myelinated axons, and growth cones within the CST during postnatal development. At P10, the hyt/hyt mouse demonstrated significantly lower immunoreactivity of embryonic neural cell adhesion molecule in the CST at the seventh cervical level, whereas the expression of growth-associated protein 43 remained unchanged. Our study demonstrated an abnormal development of the CST in the hyt/hyt mouse, manifested by reduced axon quantity and retarded growth pattern at the lumbar spinal cord. PMID:18543337

  12. Treadmill Training Promotes Axon Regeneration in Injured Peripheral Nerves

    Sabatier, Manning J.; Redmon, Natalie; Schwartz, Gail; English, Arthur W.


    Physical activity after spinal cord injury promotes improvements in motor function, but its effects following peripheral nerve injury are less clear. Although axons in peripheral nerves are known to regenerate better than those in the CNS, methods of accelerating regeneration are needed due to the slow overall rate of growth. Therefore we studied the effect of two weeks of treadmill locomotion on the growth of regenerating axons in peripheral nerves following injury. The common fibular nerves...

  13. Fcγ receptor-mediated inflammation inhibits axon regeneration.

    Gang Zhang

    Full Text Available Anti-glycan/ganglioside antibodies are the most common immune effectors found in patients with Guillain-Barré Syndrome, which is a peripheral autoimmune neuropathy. We previously reported that disease-relevant anti-glycan autoantibodies inhibited axon regeneration, which echo the clinical association of these antibodies and poor recovery in Guillain-Barré Syndrome. However, the specific molecular and cellular elements involved in this antibody-mediated inhibition of axon regeneration are not previously defined. This study examined the role of Fcγ receptors and macrophages in the antibody-mediated inhibition of axon regeneration. A well characterized antibody passive transfer sciatic nerve crush and transplant models were used to study the anti-ganglioside antibody-mediated inhibition of axon regeneration in wild type and various mutant and transgenic mice with altered expression of specific Fcγ receptors and macrophage/microglia populations. Outcome measures included behavior, electrophysiology, morphometry, immunocytochemistry, quantitative real-time PCR, and western blotting. We demonstrate that the presence of autoantibodies, directed against neuronal/axonal cell surface gangliosides, in the injured mammalian peripheral nerves switch the proregenerative inflammatory environment to growth inhibitory milieu by engaging specific activating Fcγ receptors on recruited monocyte-derived macrophages to cause severe inhibition of axon regeneration. Our data demonstrate that the antibody orchestrated Fcγ receptor-mediated switch in inflammation is one mechanism underlying inhibition of axon regeneration. These findings have clinical implications for nerve repair and recovery in antibody-mediated immune neuropathies. Our results add to the complexity of axon regeneration in injured peripheral and central nervous systems as adverse effects of B cells and autoantibodies on neural injury and repair are increasingly recognized.

  14. Modality-Specific Axonal Regeneration: Towards selective regenerative neural interfaces

    Mario I Romero


    Full Text Available Regenerative peripheral nerve interfaces have been proposed as viable alternatives for the natural control of robotic prosthetic devices. However, sensory and motor axons at the neural interface are of mixed submodality types, which difficult the specific recording from motor axons and the eliciting of precise sensory modalities through selective stimulation. Here we evaluated the possibility of using type-specific neurotrophins to preferentially entice the regeneration of defined axonal populations from transected peripheral nerves into separate compartments. Segregation of mixed sensory fibers from dorsal root ganglion neurons was evaluated in vitro by compartmentalized diffusion delivery of nerve growth factor (NGF and neurotrophin-3 (NT-3, to preferentially entice the growth of TrkA+ nociceptive and TrkC+ proprioceptive subsets of sensory neurons, respectively. The average axon length in the NGF channel increased 2.5 fold compared to that in saline or NT-3, whereas the number of branches increased 3 fold in the NT-3 channels. These results were confirmed using a 3-D “Y”-shaped in vitro assay showing that the arm containing NGF was able to entice a 5-fold increase in axonal length of unbranched fibers. To address if such segregation can be enticed in vivo, a “Y”-shaped tubing was used to allow regeneration of the transected adult rat sciatic nerve into separate compartments filled with either NFG or NT-3. A significant increase in the number of CGRP+ pain fibers were attracted towards the sural nerve, while N-52+ large diameter axons were observed in the tibial and NT-3 compartments. This study demonstrates the guided enrichment of sensory axons in specific regenerative chambers, and supports the notion that neurotrophic factors can be used to segregate sensory and perhaps motor axons in separate peripheral interfaces.

  15. Axonal integrity predicts cortical reorganisation following cervical injury

    Freund, P.; Wheeler-Kingshott, C.A.; Nagy, Z.; Gorgoraptis, N.; N. Weiskopf; Friston, K.; Thompson, A J; Hutton, C.


    Background Traumatic spinal cord injury (SCI) leads to disruption of axonal architecture and macroscopic tissue loss with impaired information flow between the brain and spinal cord—the presumed basis of ensuing clinical impairment. Objective The authors used a clinically viable, multimodal MRI protocol to quantify the axonal integrity of the cranial corticospinal tract (CST) and to establish how microstructural white matter changes in the CST are related to cross-sectional spinal cord area a...

  16. Axonal neuropathy associated with monoclonal gammopathy of undetermined significance

    GORSON, K.; Ropper, A.


    OBJECTIVE—The neuropathy associated with monoclonal gammopathy of undetermined significance (MGUS) is typically a predominantly demyelinating process that may have additional features of axonal degeneration. Sixteen patients with MGUS and a pure or predominantly axonal neuropathy are reported and compared with 20 consecutive patients with demyelinating neuropathy and MGUS who were seen during the same period.
METHODS—Retrospective review of a consecutive series of patients w...

  17. Changes in prefrontal axons may disrupt the network in autism

    Zikopoulos, Basilis; Barbas, Helen


    Neural communication is disrupted in autism by unknown mechanisms. Here we examined whether in autism there are changes in axons, which are the conduit for neural communication. We investigated single axons and their ultrastructure in the white matter of post-mortem human brain tissue below the anterior cingulate cortex (ACC), orbitofrontal (OFC), and lateral (LPFC) prefrontal cortices, which are associated with attention, social interactions, and emotions and have been consistently implicate...

  18. Axonal maintenance, glia, exosomes, and heat shock proteins

    Michael Tytell; Lasek, Raymond J.; Harold Gainer


    Of all cellular specializations, the axon is especially distinctive because it is a narrow cylinder of specialized cytoplasm called axoplasm with a length that may be orders of magnitude greater than the diameter of the cell body from which it originates. Thus, the volume of axoplasm can be much greater than the cytoplasm in the cell body. This fact raises a logistical problem with regard to axonal maintenance. Many of the components of axoplasm, such as soluble proteins and cytoskeleton, are...




    Numerous clinical conditions can be treated by neuromodulation of the peripheral nervous system (PNS). Typical electrical PNS therapies activate large diameter axons at lower electrical stimulus thresholds than small diameter axons. However, recent animal experiments with peripheral optogenetic neural stimulation (PONS) of myelinated axons expressing channelrhodopsin-2 (ChR2) have shown that this technique activates small diameter axons at lower irradiances than large diameter axons. We hypot...

  20. Spinal irradiation does not inhibit distal axonal sprouting

    In an attempt to determine the relative importance of the nerve cell body and of the axon in initiating and controlling axonal regeneration, nerve cell bodies were irradiated and the ability of the distal axon to sprout was examined. Mice were subjected to either 25 or 50 Gray (Gy) of x-irradiation localized to the lumbar spinal cord. After times varying from 1 day to 6 months after irradiation, a sublethal dose of botulinum toxin (BoTx) was injected into the calf muscles of one leg. The soleus muscle was examined histologically after times varying from 1 week to 6 months after injection, and BoTx-induced ultraterminal axonal sprouting was assessed by the number of motor endplates showing sprouts, the length of the sprouts, and the long term endplate morphology. Apart from some irradiated subgroups having slightly shorter sprout lengths, no significant differences were found between irradiated and nonirradiated groups. The results suggest either that the processes in the nerve cell body responsible for initiating and supporting axonal growth are resistant to large doses of irradiation, or that growth regulatory mechanisms in the distal axon are under local control

  1. Dynamics of signal propagation and collision in axons

    Follmann, Rosangela; Rosa, Epaminondas; Stein, Wolfgang


    Long-range communication in the nervous system is usually carried out with the propagation of action potentials along the axon of nerve cells. While typically thought of as being unidirectional, it is not uncommon for axonal propagation of action potentials to happen in both directions. This is the case because action potentials can be initiated at multiple "ectopic" positions along the axon. Two ectopic action potentials generated at distinct sites, and traveling toward each other, will collide. As neuronal information is encoded in the frequency of action potentials, action potential collision and annihilation may affect the way in which neuronal information is received, processed, and transmitted. We investigate action potential propagation and collision using an axonal multicompartment model based on the Hodgkin-Huxley equations. We characterize propagation speed, refractory period, excitability, and action potential collision for slow (type I) and fast (type II) axons. In addition, our studies include experimental measurements of action potential propagation in axons of two biological systems. Both computational and experimental results unequivocally indicate that colliding action potentials do not pass each other; they are reciprocally annihilated.

  2. Attention deficit hyperactivity disorder


    Over the last two decades, there have been numerous technical and methodological advances available to clinicians and researchers to better understand attention deficit hyperactivity disorder (ADHD) and its etiology. Despite the growing body of literature investigating the disorder’s pathophysiology, ADHD remains a complex psychiatric disorder to characterize. This chapter will briefly review the literature on ADHD, with a focus on its history, the current genetic insights, neurophysiologic t...

  3. Ultrastructural observation of effect of moderate hypothermia on axonal damage in an animal model of diffuse axonal injury

    孙晓川; 唐文渊; 郑履平


    Objective: To investigate the effect of moderate hypothermia on responses of axonal cytoskeleton to axonal injury in the acute stage of injury. Methods: Of fifteen adult guinea pigs, twelve animals were subjected to stretch injury to the right optic nerves and divided into the normothermic group (n=6) in which the animal's core temperature was maintained at 36.0-37.5℃ and the hypothermia group (n=6) in which the core temperature was reduced to 32.0-32.5℃ after stretch injury. Remaining three animals sustained no injury to the right optic nerves and served as control group. Half of injured animals (n=3) of either normothermic group or hypothermic group were killed at either 2 hours or 4 hours after injury. The ultrastructural changes of axonal cytoskeleton of the right optic nerve fibers from the animals were examined under a transmission electron microscope and analyzed by quantitative analysis with a computer image analysis system. Results: At 2 hours after stretch injury, there was a significant reduction in the mean number of microtubules (P<0.001), and a significant increase in the mean intermicrotubule spacing (P<0.05 or P<0.01) in axons of all sizes in normothermic animals. The mean number of neurofilaments also decreased statistically (P<0.01) in large and medium subgroups of axons in the same experimental group at 2 hours. By 4 hours, the large subgroup of axons in normothermic animals still demonstrated a significant decline in the mean number of microtubules (P<0.01) and an increase in the mean intermicrotubule spacing (P<0.05), while the medium and small subgroups of axons displayed a significant increase in the mean number of neurofilaments (P<0.05) and reduction in the mean interneurofilament spacing (P<0.05). On the contrary, either the mean number of microtubules and the mean intermicrotubule spacing, or the mean number of neurofilaments and interneurofilament spacing in axons of all sizes in hypothermic stretch-injured animals was not

  4. Ballistic deficit correction

    The EUROGAM data-acquisition has to handle a large number of events/s. Typical in-beam experiments using heavy-ion fusion reactions assume the production of about 50 000 compound nuclei per second deexciting via particle and γ-ray emissions. The very powerful γ-ray detection of EUROGAM is expected to produce high-fold event rates as large as 104 events/s. Such high count rates introduce, in a common dead time mode, large dead times for the whole system associated with the processing of the pulse, its digitization and its readout (from the preamplifier pulse up to the readout of the information). In order to minimize the dead time the shaping time constant τ, usually about 3 μs for large volume Ge detectors has to be reduced. Smaller shaping times, however, will adversely affect the energy resolution due to ballistic deficit. One possible solution is to operate the linear amplifier, with a somewhat smaller shaping time constant (in the present case we choose τ = 1.5 μs), in combination with a ballistic deficit compensator. The ballistic deficit can be corrected in different ways using a Gated Integrator, a hardware correction or even a software correction. In this paper we present a comparative study of the software and hardware corrections as well as gated integration

  5. Axonal synapses utilize multiple synaptic ribbons in the mammalian retina.

    Hong-Lim Kim

    Full Text Available In the mammalian retina, bipolar cells and ganglion cells which stratify in sublamina a of the inner plexiform layer (IPL show OFF responses to light stimuli while those that stratify in sublamina b show ON responses. This functional relationship between anatomy and physiology is a key principle of retinal organization. However, there are at least three types of retinal neurons, including intrinsically photosensitive retinal ganglion cells (ipRGCs and dopaminergic amacrine cells, which violate this principle. These cell types have light-driven ON responses, but their dendrites mainly stratify in sublamina a of the IPL, the OFF sublayer. Recent anatomical studies suggested that certain ON cone bipolar cells make axonal or ectopic synapses as they descend through sublamina a, thus providing ON input to cells which stratify in the OFF sublayer. Using immunoelectron microscopy with 3-dimensional reconstruction, we have identified axonal synapses of ON cone bipolar cells in the rabbit retina. Ten calbindin ON cone bipolar axons made en passant ribbon synapses onto amacrine or ganglion dendrites in sublamina a of the IPL. Compared to the ribbon synapses made by bipolar terminals, these axonal ribbon synapses were characterized by a broad postsynaptic element that appeared as a monad and by the presence of multiple short synaptic ribbons. These findings confirm that certain ON cone bipolar cells can provide ON input to amacrine and ganglion cells whose dendrites stratify in the OFF sublayer via axonal synapses. The monadic synapse with multiple ribbons may be a diagnostic feature of the ON cone bipolar axonal synapse in sublamina a. The presence of multiple ribbons and a broad postsynaptic density suggest these structures may be very efficient synapses. We also identified axonal inputs to ipRGCs with the architecture described above.

  6. Myelinated sensory and alpha motor axon regeneration in peripheral nerve neuromas

    Macias, M. Y.; Lehman, C. T.; Sanger, J. R.; Riley, D. A.


    Histochemical staining for carbonic anhydrase and cholinesterase (CE) activities was used to analyze sensory and motor axon regeneration, respectively, during neuroma formation in transected and tube-encapsulated peripheral nerves. Median-ulnar and sciatic nerves in the rodent model permitted testing whether a 4 cm greater distance of the motor neuron soma from axotomy site or intrinsic differences between motor and sensory neurons influenced regeneration and neuroma formation 10, 30, and 90 days later. Ventral root radiculotomy confirmed that CE-stained axons were 97% alpha motor axons. Distance significantly delayed axon regeneration. When distance was negligible, sensory axons grew out sooner than motor axons, but motor axons regenerated to a greater quantity. These results indicate regeneration differences between axon subtypes and suggest more extensive branching of motor axons within the neuroma. Thus, both distance from injury site to soma and inherent motor and sensory differences should be considered in peripheral nerve repair strategies.

  7. Regulation of Microtubule Dynamics in Axon Regeneration: Insights from C. elegans [version 1; referees: 3 approved

    Ngang Heok Tang


    Full Text Available The capacity of an axon to regenerate is regulated by its external environment and by cell-intrinsic factors. Studies in a variety of organisms suggest that alterations in axonal microtubule (MT dynamics have potent effects on axon regeneration. We review recent findings on the regulation of MT dynamics during axon regeneration, focusing on the nematode Caenorhabditis elegans. In C. elegans the dual leucine zipper kinase (DLK promotes axon regeneration, whereas the exchange factor for Arf6 (EFA-6 inhibits axon regeneration. Both DLK and EFA-6 respond to injury and control axon regeneration in part via MT dynamics. How the DLK and EFA-6 pathways are related is a topic of active investigation, as is the mechanism by which EFA-6 responds to axonal injury. We evaluate potential candidates, such as the MT affinity-regulating kinase PAR-1/MARK, in regulation of EFA-6 and axonal MT dynamics in regeneration.

  8. [Neuroleptic induced deficit syndrome].

    Szafrański, T


    Increasing interest in subjective aspects of therapy and rehabilitation focused the attention of psychiatrists, psychologists and psychopharmacologists on the mental side effects of neuroleptics. For the drug-related impairment of affective, cognitive and social function the name of neuroleptic-induced deficit syndrome (NIDS) is proposed. Patients with NIDS appear to be indifferent to the environmental stimuli, retarded and apathetic. They complain of feeling drugged and drowsy, weird, they suffer from lack of motivation, feel like "zombies". The paper presents description of NIDS and its differentiation from negative and depressive symptoms in schizophrenia and subjective perceiving of extrapyramidal syndromes. PMID:7652089

  9. Neurofibromatozis and Attention Deficit

    Mehmet ERYILMAZ et al.


    Full Text Available Neurofibromatosis type VI, a disease characterized by the presence of café-au-lait spots withoutthe presence of neurofibromas typically present in neurofibromatosis, as well as cognitivefunction and speech problems, often shows neurological involvement. We describe a case of a14-year-old child who has speech problems and isolated cafè-au-lait macules. We performedan IQ test on him and he scored 70 points. His problems started when he was approximately 5years old (school age. He was diagnosed with attention deficit disorder syndrome withouthyperactivity after neuropsychiatric investigation. We reported this case to improve recognitionof NF VI in children who have cognitive function problems.

  10. Functional complexity of the axonal growth cone: a proteomic analysis.

    Adriana Estrada-Bernal

    Full Text Available The growth cone, the tip of the emerging neurite, plays a crucial role in establishing the wiring of the developing nervous system. We performed an extensive proteomic analysis of axonal growth cones isolated from the brains of fetal Sprague-Dawley rats. Approximately 2000 proteins were identified at ≥ 99% confidence level. Using informatics, including functional annotation cluster and KEGG pathway analysis, we found great diversity of proteins involved in axonal pathfinding, cytoskeletal remodeling, vesicular traffic and carbohydrate metabolism, as expected. We also found a large and complex array of proteins involved in translation, protein folding, posttranslational processing, and proteasome/ubiquitination-dependent degradation. Immunofluorescence studies performed on hippocampal neurons in culture confirmed the presence in the axonal growth cone of proteins representative of these processes. These analyses also provide evidence for rough endoplasmic reticulum and reveal a reticular structure equipped with Golgi-like functions in the axonal growth cone. Furthermore, Western blot revealed the growth cone enrichment, relative to fetal brain homogenate, of some of the proteins involved in protein synthesis, folding and catabolism. Our study provides a resource for further research and amplifies the relatively recently developed concept that the axonal growth cone is equipped with proteins capable of performing a highly diverse range of functions.