WorldWideScience

Sample records for axions

  1. Cosmic axions

    International Nuclear Information System (INIS)

    Sikivie, P.

    1984-01-01

    Axion physics is briefly reviewed, including the constraints on the axion decay constant from laboratory experiments, from stellar evolution and from the cosmological axion energy density. Experiments to detect axions emitted by the sun or axions floating about in the halo of our galaxy are discussed. 19 references

  2. Tidal streams from axion miniclusters and direct axion searches

    CERN Document Server

    Tinyakov, Peter; Zioutas, Konstantin

    2016-01-19

    In some axion dark matter models a dominant fraction of axions resides in dense small-scale substructures, axion miniclusters. A fraction of these substructures is disrupted and forms tidal streams where the axion density may still be an order of magnitude larger than the average. We discuss implications of these streams for the direct axion searches. We estimate the fraction of disrupted miniclusters and the parameters of the resulting streams, and find that stream-crossing events would occur at a rate of about $1/(20 {\\rm yr})$ for 2-3 days, during which the signal in axion detectors would be amplified by a factor $\\sim 10$. These estimates suggest that the effect of the tidal disruption of axion miniclusters may be important for direct axion searches and deserves a more thorough study.

  3. ''Invisible'' axion detectors

    International Nuclear Information System (INIS)

    Sikivie, P.

    1985-01-01

    A brief review is given of various ideas which have been put forth to detect ''invisible'' axions, i.e., axions with f/sub a/ between 3 x 10 7 GeV and 2 x 10 12 GeV. These experiments would attempt to detect the axions which constitute the halo of our galaxy or axions which are emitted by our sun; or they would attempt to detect the force mediated by virtual axions. Various relevant axion parameters are given as f/sub a/. Among the experiments described are: galactic axion detector using a cavity; ''spin coupled'' axion detection; axion to photon conversion in an inhomogeneous static magnetic field; and macroscopic forces mediated by axions. 27 refs

  4. Stellar axion models

    Energy Technology Data Exchange (ETDEWEB)

    Nowakowski, Daniel; Kuster, Markus; Meister, Claudia V.; Fuelbert, Florian; Hoffmann, Dieter H.H. [TU Darmstadt (Germany). Institut fuer Kernphysik; Weiss, Achim [Max-Planck-Institut fuer Astrophysik, Garching (Germany)

    2010-07-01

    An axion helioscope is typically operated to observe the sun as an axion source. Additional pointings at celestial sources, e.g. stars in other galaxies, result in possible detections of axions from distant galactic objects. For the observation of supplementary axion sources we therefore calculate the thereotical axion flux from distant stars by extending axionic flux models for the axion Primakoff effect in the sun to other main sequence stars. The main sequence star models used for our calculations are based on full stellar structure calculations. To deduce the effective axion flux of stellar objects incident on the Earth the All-Sky catalogue was used to obtain the spectral class and distance of the stars treated. Our calculations of the axion flux in the galactic plane show that for a zero age main sequence star an maximum axion flux of {phi}{sub a}=303.43 cm{sup -2}s{sup -1} could be expected. Furthermore we present estimates of axion fluxes from time-evolved stars.

  5. Future axion searches with the International Axion Observatory (IAXO)

    CERN Document Server

    Irastorza, I G; Cantatore, G; Carmona, J M; Caspi, S; Cetin, S A; Christensen, F E; Dael, A; Dafni, T; Davenport, M; Derbin, A V; Desch, K; Diago, A; Döbrich, B; Dudarev, A; Eleftheriadis, C; Fanourakis, G; Ferrer-Ribas, E; Galán, J; García, J A; Garza, J.G; Geralis, T; Gimeno, B; Giomataris, I; Gninenko, S; Gómez, H; Guendelman, E; Hailey, C J; Hiramatsu, T; Hoffmann, D H H; Horns, D; Iguaz, F J; Isern, J; Jakobsen, A C; Jaeckel, J; Jakovčić, K; Kaminski, J; Kawasaki, M; Krčmar, M; Krieger, C; Lakić, B; Lindner, A; Liolios, A; Luzón, G; Ortega, I; Papaevangelou, T; Pivovaroff, M J; Raffelt, G; Redondo, J; Ringwald, A; Russenschuck, S; Ruz, J; Saikawa, K; Savvidis, I; Sekiguchi, T; Shilon, I; Sikivie, P; Silva, H; Kate, H ten; Tomas, A; Troitsky, S; Vafeiadis, T; Bibber, K van; Vedrine, P; Villar, J A; Vogel, J K; Walckiers, L; Wester, W; Yildiz, S C; Zioutas, K

    2013-01-01

    The International Axion Observatory (IAXO) is a new generation axion helioscope aiming at a sensitivity to the axion-photon coupling of gaγ few × 10−12 GeV−1, i.e. 1–1.5 orders of magnitude beyond the one achieved by CAST, currently the most sensitive axion helioscope. The main elements of IAXO are an increased magnetic field volume together with extensive use of x-ray focusing optics and low background detectors, innovations already successfully tested in CAST. Additional physics cases of IAXO could include the detection of electron-coupled axions invoked to explain the white dwarf cooling, relic axions, and a large variety of more generic axion-like particles (ALPs) and other novel excitations at the low-energy frontier of elementary particle physics.

  6. Axions

    International Nuclear Information System (INIS)

    Rosenfeld, R.

    1985-01-01

    The Peccei-Quinn symmetry is a possible solution to the strong C.P. violation problem resulting from instantons contributions. It is the objective of this dissertation to study models which incorporate the Paccei-Ouinn symmetry as well as its consequences, for instance, the exiatence of a Goldstone pseudoboson named axion and the appearence of topologically satble structures generated at the spontaneous breakdown of the Peccei-Quinn symmetry. We also study the interchanged between axion models and Cosmology, particularly the influence of axions on the process of galsxy formation. (author) [pt

  7. Do axions need inflation?

    International Nuclear Information System (INIS)

    Davis, R.L.; Shellard, E.P.S.; Massachusetts Inst. of Tech., Cambridge

    1989-01-01

    Without inflation the energy density of relic axions in a Robertson-Walker universe arises not from coherent oscillations of a zero-momentum mode but from radiative decay of axion strings. An estimate of the upper bound on the PQ scale coming from these axions is in conflict with the lower bound from SN1987a. We present analytical and numerical evidence supporting this estimate. If true, then the axion needs inflation. With inflation the axion is safe, but the motivation for axion search experiments is weakened. (orig.)

  8. Pinning down the axion

    International Nuclear Information System (INIS)

    Dabholkar, A.; Quashnock, J.M.

    1990-01-01

    Davis has argued that, without inflation, the decay of axionic strings is the primary source of axions. This implies a cosmological lower bound on the axion mass of 10 -5 to 10 -3 eV. In order to obtain a sharper bound it is essential to know the spectrum of emitted axions and the detailed motion of a global string strongly coupled to the axionic field. To this end, we obtain self-consistent, renormalized equations that describe the dynamics of a radiating global string interacting with its surrounding axionic field. We describe the numerical formalism for evolving string trajectories using these equations. From the numerical and analytical evidence we argue that, with appropriate renormalization, the motion of an interacting cosmic string loop can be well approximated by the motion of a free Nambu-Goto string. This implies a lower bound for the axion mass of 10 -3 eV. Together with the recent upper bound of 4x10 -4 eV from the supernova SN1987a, this marginally rules out the invisible axion, or at least pins down the axion mass to a very narrow window around 10 -3 eV. This still leaves open the window around 2 eV for hardronic axions, but in that case the axion is no longer a serious dark matter candidate. (orig.)

  9. Axions-motivation, limits and searches

    International Nuclear Information System (INIS)

    Raffelt, G G

    2007-01-01

    The axion solution of the strong CP problem provides a number of possible windows to physics beyond the standard model, notably in the form of searches for solar axions and for galactic axion dark matter, but in a broader context also inspires searches for axion-like particles in pure laboratory experiments. We briefly review the motivation for axions, astrophysical limits, their possible cosmological role, and current searches for axions and axion-like particles

  10. Future axion searches with the International Axion Observatory (IAXO)

    DEFF Research Database (Denmark)

    Irastorza, I G; Avignone, F T; Cantatore, G

    2013-01-01

    are an increased magnetic field volume together with extensive use of x-ray focusing optics and low background detectors, innovations already successfully tested in CAST. Additional physics cases of IAXO could include the detection of electron-coupled axions invoked to explain the white dwarf cooling, relic axions......, and a large variety of more generic axion-like particles (ALPs) and other novel excitations at the low-energy frontier of elementary particle physics....

  11. The Tokyo axion helioscope

    International Nuclear Information System (INIS)

    Ohta, R.; Akimoto, Y.; Inoue, Y.; Minowa, M.; Mizumoto, T.; Moriyama, S.; Namba, T.; Takasu, Y.; Yamamoto, A.

    2012-01-01

    The Tokyo Axion Helioscope experiment aims to detect axions which are produced in the solar core. The helioscope uses a strong magnetic field in order to convert axions into X-ray photons and has a mounting to follow the sun very accurately. The photons are detected by an X-ray detector which is made of 16 PIN-photodiodes. In addition, a gas container and a gas regulation system are adopted for recovering the coherence between axions and photons in the conversion region giving sensitivity to axions with masses up to 2 eV. In this paper, we report on the technical detail of the Tokyo Axion Helioscope.

  12. Prospects for the CERN Axion Solar Telescope Sensitivity to 14.4 keV Axions

    CERN Document Server

    Jakovcic, K; Aune, S; Avignone, F T; Barth, K; Belov, A; Beltrn, B; Bruninger, H; Carmona, J M; Cebrin, S; Collar, J I; Dafni, T; Davenport, M; Di Lella, L; Eleftheriadis, C; Fanourakis, G K; Ferrer-Ribas, E; Fischer, H; Franz, J; Friedrich, P; Geralis, T; Giomataris, Ioanis; Gninenko, S; Hasinoff, M D; Heinsius, F H; Hoffmann, Dieter H H; Irastorza, I G; Jacoby, J; Kang, D; Knigsmann, K; Kotthaus, R; Krcmar, M; Kousouris, a K; Kuster, M; Laki, B; Lasseur, C; Liolios, A; Ljubici, A; Lutz, G; Luzn, G; Miller, D W; Morales, A; Morales, J; Ortiz, A; Papaevangelou, T; Placci, A; Raffelt, G; Ruz, J; Riege, H; Semertzidis, Y K; Serpico, Pasquale Dario; Stewart, o L; Vieira, J D; Villar, J; Vogel, J; Walckiers, L; Zioutas, K; Jakovcic, Kresimir

    2007-01-01

    The CERN Axion Solar Telescope (CAST) is searching for solar axions using the 9.0 T strong and 9.26 m long transverse magnetic field of a twin aperture LHC test magnet, where axions could be converted into X-rays via reverse Primakoff process. Here we explore the potential of CAST to search for 14.4 keV axions that could be emitted from the Sun in M1 nuclear transition between the first, thermally excited state, and the ground state of 57Fe nuclide. Calculations of the expected signals, with respect to the axion-photon coupling, axion-nucleon coupling and axion mass, are presented in comparison with the experimental sensitivity.

  13. Search for Invisible Axion Dark Matter with the Axion Dark Matter Experiment.

    Science.gov (United States)

    Du, N; Force, N; Khatiwada, R; Lentz, E; Ottens, R; Rosenberg, L J; Rybka, G; Carosi, G; Woollett, N; Bowring, D; Chou, A S; Sonnenschein, A; Wester, W; Boutan, C; Oblath, N S; Bradley, R; Daw, E J; Dixit, A V; Clarke, J; O'Kelley, S R; Crisosto, N; Gleason, J R; Jois, S; Sikivie, P; Stern, I; Sullivan, N S; Tanner, D B; Hilton, G C

    2018-04-13

    This Letter reports the results from a haloscope search for dark matter axions with masses between 2.66 and 2.81  μeV. The search excludes the range of axion-photon couplings predicted by plausible models of the invisible axion. This unprecedented sensitivity is achieved by operating a large-volume haloscope at subkelvin temperatures, thereby reducing thermal noise as well as the excess noise from the ultralow-noise superconducting quantum interference device amplifier used for the signal power readout. Ongoing searches will provide nearly definitive tests of the invisible axion model over a wide range of axion masses.

  14. Hydrogen axion star: metallic hydrogen bound to a QCD axion BEC

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yang; Barger, Vernon; Berger, Joshua [Department of Physics, University of Wisconsin-Madison,1150 University Ave, Madison, WI 53706 (United States)

    2016-12-23

    As a cold dark matter candidate, the QCD axion may form Bose-Einstein condensates, called axion stars, with masses around 10{sup −11} M{sub ⊙}. In this paper, we point out that a brand new astrophysical object, a Hydrogen Axion Star (HAS), may well be formed by ordinary baryonic matter becoming gravitationally bound to an axion star. We study the properties of the HAS and find that the hydrogen cloud has a high pressure and temperature in the center and is likely in the liquid metallic hydrogen state. Because of the high particle number densities for both the axion star and the hydrogen cloud, the feeble interaction between axion and hydrogen can still generate enough internal power, around 10{sup 13} W×(m{sub a}/5 meV){sup 4}, to make these objects luminous point sources. High resolution ultraviolet, optical and infrared telescopes can discover HAS via black-body radiation.

  15. ADMX Dark-Matter Axion Search

    International Nuclear Information System (INIS)

    Rosenberg, Leslie J.

    2004-01-01

    The axion, a hypothetical elementary particle, emerged from a compelling solution to the Strong-CP Problem in QCD. Subsequently, the axion was recognized to be a good Cold Dark Matter candidate. Although dark-matter axions have only feeble couplings to matter and radiation, these axions may be detected through resonant conversion of axions into microwave photons in a high-Q cavity threaded by a strong static magnetic field. This technique is at present the only means whereby dark-matter axions with plausible couplings may be detected at the required sensitivity. This talk describes recent results from the Axion Dark Matter Experiment (ADMX), now the world's most sensitive search for axions. There will also be a short overview of the ADMX upgrade, which promises sensitivity to even the more feebly coupled dark matter axions even should they make up only a minority fraction of the local dark matter halo

  16. Axion Searches, Old and New

    CERN Multimedia

    CERN. Geneva

    2005-01-01

    Outline of the lecture: Constraints from laboratory searches and astrophysics, axion cosmology, the cavity detector of dark matter axions, solar axion searches, laser experiments, a telescope search, macroscopic forces mediated by axions.

  17. Dark-matter QCD-axion searches

    International Nuclear Information System (INIS)

    Rosenberg, Leslie J

    2010-01-01

    The axion is a hypothetical elementary particle appearing in a simple and elegant extension to the Standard Model of particle physics that cancels otherwise huge CP-violating effects in QCD; this extension has a broken U(1) axial symmetry, where the resulting Goldstone Boson is the axion. A light axion of mass 10 -(6-3) eV (the so-called i nvisible axion ) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. However, such an axion would be a compelling dark-matter candidate and is therefore a target of a number of searches. Compared to other dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This restricted search space allows for 'definitive' searches, where non-observation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches employ a wide range of technologies and techniques, from astrophysical observations to laboratory electromagnetic signal detection. For some experiments, sensitivities are have reached likely dark-matter axion couplings and masses. This is a brief and selective overview of axion searches. With only very limited space, I briefly describe just two of the many experiments that are searching for dark-matter axions.

  18. Inflationary Axion Cosmology

    Science.gov (United States)

    Wilczek, Frank; Turner, Michael S.

    1990-09-01

    If Peccei-Quinn (PQ) symmetry is broken after inflation, the initial axion angle is a random variable on cosmological scales; based on this fact, estimates of the relic-axion mass density give too large a value if the axion mass is less than about 10-6 eV. This bound can be evaded if the Universe underwent inflation after PQ symmetry breaking and if the observable Universe happens to be a region where the initial axion angle was atypically small, .1 . (ma/10-6eV)0.59. We show consideration of fluctuations induced during inflation severely constrains the latter alternative.

  19. The Next Generation of Axion Helioscopes: The International Axion Observatory (IAXO)

    DEFF Research Database (Denmark)

    Vogel, J.K.; Armengaud, E.; Avignone, F.T.

    2015-01-01

    The International Axion Observatory (IAXO) is a proposed 4th-generation axion helioscope with the primary physics research goal to search for solar axions via their Primakoff conversion into photons of 1 – 10 keV energies in a strong magnetic field. IAXO will achieve a sensitivity to the axion-ph...... low background x-ray detectors. The magnet will be built into a structure with elevation and azimuth drives that will allow solar tracking for 12hours each day. This contribution is a summary of our papers [1–3] and we refer to these for further details....

  20. Inflationary axion cosmology

    International Nuclear Information System (INIS)

    Turner, M.S.; Wilczek, F.

    1991-01-01

    If Peccei-Quinn (PQ) symmetry is broken after inflation, the initial axion angle is a random variable on cosmological scales; based on this fact, estimates of the relic-axion mass density give too large a value if the axion mass is less than about 10 -6 eV. This bound can be evaded if the Universe underwent inflation after PQ symmetry breaking and if the observable Universe happens to be a region where the initial axion angle was atypically small, θ 1 approx-lt[m a /10 -6 eV 0.59 .] We show consideration of fluctuations induced during inflation severely constrains the latter alternative

  1. Experimental Axion Review

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Axions are a natural consequence of the Peccei-Quinn mechanism, the most compelling solution to the strong-CP problem. Similar axion-like particles (ALPs) also appear in a number of possible extensions of the Standard Model, notably in string theories. Both axions and ALPs are very well motivated candidates for the Dark Matter, and in addition would be copiously produced at the stellar cores. Some anomalous astrophysical observations could be hinting the existence of these particles. They are object of increasing interest by experimentalists. I will briefly review the motivation to search for axions and ALPs, as well as the current status and future prospects of the experimental landscape.

  2. Axions in inflationary cosmology

    International Nuclear Information System (INIS)

    Linde, A.

    1991-01-01

    The problem of the cosmological constraints on the axion mass is re-examined. It is argued that in the context of inflationary cosmology the constraint m a > or approx.10 -5 eV can be avoided even when the axion perturbations produced during inflation are taken into account. It is shown also that in most axion models the effective parameter f a rapidly changes during inflation. This modifies some earlier statements concerning isothermal perturbations in the axion cosmology. A hybrid inflation scenario is proposed which combines some advantages of chaotic inflation with specific features of new and/or extended inflation. Its implications for the axion cosmology are discussed. (orig.)

  3. Axions: a review

    International Nuclear Information System (INIS)

    Davier, M.

    1987-05-01

    The axion particle is the experimental consequence of a particular way to restore P conservation into the QCD theory. The standard axion phenomenology proceeds on a scale given by the electroweak symmetry breaking. Such an axion is ruled out experimentally. Recently, observation of monochromatic peaks in e ± production in heavy-ion collisions at GSI Darmstadt has motivated some re-examination of the situation. There appears to be no way to save the notion of an axion at the electroweak scale. Furthermore, experiments with electron beam-dumps have proven, together with g-2 measurements that the GSI effect cannot be explained in terms of a fundamental particle coupled to the e + e - channel

  4. The Astrophobic Axion arXiv

    CERN Document Server

    Di Luzio, Luca; Nardi, Enrico; Panci, Paolo; Ziegler, Robert

    We propose a class of axion models with generation dependent Peccei-Quinn charges for the known fermions that allow to suppress the axion couplings to nucleons and electrons. Astrophysical limits are thus relaxed, allowing for axion masses up to ${\\cal O}(0.1)$ eV. The axion-photon coupling remains instead sizeable, so that next generation helioscopes will be able to probe this scenario. Astrophobia unavoidably implies flavor violating axion couplings, so that experimental limits on flavour-violating processes can provide complementary probes. The astrophobic axion can be a viable dark matter candidate in the heavy mass window, and can also account for anomalous energy loss in stars.

  5. Invisible Axions and Large-Radius Compactifications

    CERN Document Server

    Dienes, Keith R.; Gherghetta, Tony; Dienes, Keith R.; Dudas, Emilian; Gherghetta, Tony

    2000-01-01

    We study some of the novel effects that arise when the QCD axion is placed in the ``bulk'' of large extra spacetime dimensions. First, we find that the mass of the axion can become independent of the energy scale associated with the breaking of the Peccei-Quinn symmetry. This implies that the mass of the axion can be adjusted independently of its couplings to ordinary matter, thereby providing a new method of rendering the axion invisible. Second, we discuss the new phenomenon of laboratory axion oscillations (analogous to neutrino oscillations), and show that these oscillations cause laboratory axions to ``decohere'' extremely rapidly as a result of Kaluza-Klein mixing. This decoherence may also be a contributing factor to axion invisibility. Third, we discuss the role of Kaluza-Klein axions in axion-mediated processes and decays, and propose several experimental tests of the higher-dimensional nature of the axion. Finally, we show that under certain circumstances, the presence of an infinite tower of Kaluza...

  6. Dark matter in axion landscape

    Directory of Open Access Journals (Sweden)

    Ryuji Daido

    2017-02-01

    Full Text Available If there are a plethora of axions in nature, they may have a complicated potential and create an axion landscape. We study a possibility that one of the axions is so light that it is cosmologically stable, explaining the observed dark matter density. In particular we focus on a case in which two (or more shift-symmetry breaking terms conspire to make the axion sufficiently light at the potential minimum. In this case the axion has a flat-bottomed potential. In contrast to the case in which a single cosine term dominates the potential, the axion abundance as well as its isocurvature perturbations are significantly suppressed. This allows an axion with a rather large mass to serve as dark matter without fine-tuning of the initial misalignment, and further makes higher-scale inflation to be consistent with the scenario.

  7. Dark matter axions '96

    International Nuclear Information System (INIS)

    Sikivie, P.

    1996-01-01

    This report discusses why axions have been postulated to exist, what cosmology implies about their presence as cold dark matter in the galactic halo, how axions might be detected in cavities wherein strong magnetic fields stimulate their conversion into photons, and relations between axions' energy spectra and galactic halos' properties

  8. Resonantly Enhanced Axion-Photon Regeneration

    CERN Document Server

    Sikivie, P; Van Bibber, K; Bibber, Karl van

    2007-01-01

    We point out that photon regeneration-experiments that search for the axion, or axion-like particles, may be resonantly enhanced by employing matched Fabry-Perot optical cavities encompassing both the axion production and conversion magnetic field regions. Compared to a simple photon regeneration experiment, which uses the laser in a single-pass geometry, this technique can result in a gain in rate of order ${\\cal F}^2$, where ${\\cal F}$ is the finesse of the cavities. This gain could feasibly be $10^{(10-12)}$, corresponding to an improvement in sensitivity in the axion-photon coupling, $g_{a\\gamma\\gamma}$ , of order ${\\cal F}^{1/2} \\sim 10^{(2.5-3)}$, permitting a practical purely laboratory search to probe axion-photon couplings not previously excluded by stellar evolution limits, or solar axion searches.

  9. Axions in astrophysics and cosmology

    International Nuclear Information System (INIS)

    Sikivie, P.

    1984-07-01

    Axion models often have a spontaneously broken exact discrete symmetry. In that case, they have discretely degenerate vacua and hence domain walls. The properties of the domain walls, the cosmological catastrophe they produce and the ways in which this catastrophe may be avoided are explained. Cosmology and astrophysics provide arguments that imply the axion decay constant should lie in the range 10 8 GeV less than or equal to f/sub a/ less than or equal to 10 12 GeV. Reasons are given why axions are an excellent candidate to constitute the dark matter of galactic halos. Using the coupling of the axions to the electromagnetic field, detectors are described to look for axions floating about in the halo of our galaxy and for axions emitted by the sun

  10. Windows on the axion

    International Nuclear Information System (INIS)

    Turner, M.S.

    1989-04-01

    Peccei-Quinn symmetry with attendant axion is a most compelling, and perhaps the most minimal, extension of the standard model, as it provides a very elegant solution to the nagging strong CP-problem associated with the Θ vacuum structure of QCD. However, particle physics gives little guidance as to the axion mass; a priori, the plausible values span the range: 10/sup /minus/12/ eV /approx lt/ m/sub a/ /approx lt/ 10 6 eV, some 18 orders-of-magnitude. Axions have a host of interesting astrophysical and cosmological effects, including, modifying the evolution of stars of all types (our sun, red giants, white dwarfs, and neutron stars), contributing significantly to the mass density of the Universe today, and producing detectable line radiation through the decays of relic axions. Consideration of these effects has probed 14 orders-of-magnitude in axion mass, and has left open only two windows for further exploration: 10/sup /minus/6/ eV /approx lt/ m/sub a/ /approx lt/ 10/sup /minus/3/ eV and 1 eV /approx lt/ m/sub a/ /approx lt/ 5 eV (hadronic axions only). Both these windows are accessible to experiment, and a variety of very interesting experiments, all of which involve ''heavenly axions,'' are being planned or are underway. 58 refs., 6 figs., 1 tab

  11. Dark-matter QCD-axion searches.

    Science.gov (United States)

    Rosenberg, Leslie J

    2015-10-06

    In the late 20th century, cosmology became a precision science. Now, at the beginning of the next century, the parameters describing how our universe evolved from the Big Bang are generally known to a few percent. One key parameter is the total mass density of the universe. Normal matter constitutes only a small fraction of the total mass density. Observations suggest this additional mass, the dark matter, is cold (that is, moving nonrelativistically in the early universe) and interacts feebly if at all with normal matter and radiation. There's no known such elementary particle, so the strong presumption is the dark matter consists of particle relics of a new kind left over from the Big Bang. One of the most important questions in science is the nature of this dark matter. One attractive particle dark-matter candidate is the axion. The axion is a hypothetical elementary particle arising in a simple and elegant extension to the standard model of particle physics that nulls otherwise observable CP-violating effects (where CP is the product of charge reversal C and parity inversion P) in quantum chromo dynamics (QCD). A light axion of mass 10(-(6-3)) eV (the invisible axion) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. However, such an axion is a compelling dark-matter candidate and is therefore a target of a number of searches. Compared with other particle dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This focused search range allows for definitive searches, where a nonobservation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches use a wide range of technologies, and the experiment sensitivities are now reaching likely dark-matter axion couplings and masses. This article is a selective overview of the current generation of sensitive axion searches. Not all techniques and experiments

  12. Photon - axion conversions in a periodic electromagnetic field with axion frequency

    International Nuclear Information System (INIS)

    Dang Van Soa

    1998-09-01

    The conversion of photons into axions in a periodic external electromagnetic field with axion frequency is considered in detail by Feynman methods. The differential cross sections are given. It is shown that there is a resonant conversion for the considered process. (author)

  13. Stellar recipes for axion hunters

    International Nuclear Information System (INIS)

    Giannotti, Maurizio; Ringwald, Andreas; Saikawa, Ken'ichi

    2017-08-01

    There are a number of observational hints from astrophysics which point to the existence of stellar energy losses beyond the ones accounted for by neutrino emission. These excessive energy losses may be explained by the existence of a new sub-keV mass pseudoscalar Nambu-Goldstone boson with tiny couplings to photons, electrons, and nucleons. An attractive possibility is to identify this particle with the axion - the hypothetical pseudo Nambu-Goldstone boson predicted by the Peccei-Quinn solution to the strong CP problem. We explore this possibility in terms of a DFSZ-type axion and of a KSVZ-type axion/majoron, respectively. Both models allow a good global fit to the data, prefering an axion mass around 10 meV. We show that future axion experiments - the fifth force experiment ARIADNE and the helioscope IAXO - can attack the preferred mass range from the lower and higher end, respectively. An axion in this mass range can also be the main constituent of dark matter.

  14. Stellar recipes for axion hunters

    Energy Technology Data Exchange (ETDEWEB)

    Giannotti, Maurizio [Barry Univ., Miami Shores, FL (United States). Physical Sciences; Irastorza, Igor G. [Zaragoza Univ. (Spain). Dept. de Fisica Teorica; Redondo, Javier [Zaragoza Univ. (Spain). Dept. de Fisica Teorica; Max-Planck-Institut fuer Physik, Muenchen (Germany); Ringwald, Andreas; Saikawa, Ken' ichi [DESY, Hamburg (Germany). Theory Group

    2017-08-15

    There are a number of observational hints from astrophysics which point to the existence of stellar energy losses beyond the ones accounted for by neutrino emission. These excessive energy losses may be explained by the existence of a new sub-keV mass pseudoscalar Nambu-Goldstone boson with tiny couplings to photons, electrons, and nucleons. An attractive possibility is to identify this particle with the axion - the hypothetical pseudo Nambu-Goldstone boson predicted by the Peccei-Quinn solution to the strong CP problem. We explore this possibility in terms of a DFSZ-type axion and of a KSVZ-type axion/majoron, respectively. Both models allow a good global fit to the data, prefering an axion mass around 10 meV. We show that future axion experiments - the fifth force experiment ARIADNE and the helioscope IAXO - can attack the preferred mass range from the lower and higher end, respectively. An axion in this mass range can also be the main constituent of dark matter.

  15. Searches for Astrophysical and Cosmological Axions

    International Nuclear Information System (INIS)

    Asztalos, S J; Rosenberg, L J; van Bibber, K; Sikivie, P; Zioutas, K

    2006-01-01

    The axion remains, after nearly 30 years, the most compelling and elegant solution to the strong-CP problem, i.e. why this symmetry is protected in QCD in spite of CP violation elsewhere. The axion is expected to be extremely light, and possess extraordinarily feeble couplings to matter and radiation. Because of its small couplings, the axion has defied experimental confirmation and is unlikely to be discovered in conventional laboratory experiments (i.e. production-detection). Nevertheless, a sufficiently light axion would have been produced abundantly in the Big Bang and is an excellent candidate for the dark matter of the Universe. Through the axion's two-photon coupling, implying axion-photon mixing in an external electromagnetic field, galactic halo axions may be feasibly detected by their resonant conversion to RF photons in a microwave cavity permeated by magnetic field with current technology. Over the past decade experiments have already set interesting limits in mass and coupling; upgrades in progress to photon detection schemes at or below the standard quantum limit will soon enable definitive searches. Similarly, axions produced in the solar burning core might be detectable by their conversion to x-rays in a magnetic helioscope. Indeed current published limits already equal the best bounds on axion-photon coupling inferred from the concordance of stellar evolution models and observations, from horizontal branch stars. Significant improvements in both the mass range and sensitivity of the axion helioscope technique will be forthcoming in the next few years. This report will first summarize the theoretical background of the axion, and laboratory, astrophysical and cosmological limits on its mass and couplings. Cavity microwave searches for cosmic axions will then be reviewed, focusing on the current large-scale experiments (ADMX in the US; CARRACK in Japan), and their enabling technologies (HFET and SQUID amplifiers; Rydberg-atom single-quantum detection

  16. The Search of Axion Dark Matter

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    The axion provides a solution to the strong CP problem and is a cold dark matter candidate. I will review the limits on the axion from particle physics, stellar evolution and cosmology. The various constraints suggest that the axion mass is in the micro-eV to milli-eV range. In this range, axions contribute significantly to the energy density of the universe in the form of cold dark matter. Dark matter axions can be searched for on Earth by stimulating their conversion to microwave photons in an electromagnetic cavity permeated by a strong magnetic field. Using this technique, limits on the local halo density have been placed by the Axion Dark Matter experiment at Lawrence Livermore National Laboratory. I will give a status report on ADMX and its upgrade presently under construction. I will also discuss the results from solar axion searches (Tokyo helioscope, CAST) and laser experiments (PVLAS).

  17. Dilute and dense axion stars

    Science.gov (United States)

    Visinelli, Luca; Baum, Sebastian; Redondo, Javier; Freese, Katherine; Wilczek, Frank

    2018-02-01

    Axion stars are hypothetical objects formed of axions, obtained as localized and coherently oscillating solutions to their classical equation of motion. Depending on the value of the field amplitude at the core |θ0 | ≡ | θ (r = 0) |, the equilibrium of the system arises from the balance of the kinetic pressure and either self-gravity or axion self-interactions. Starting from a general relativistic framework, we obtain the set of equations describing the configuration of the axion star, which we solve as a function of |θ0 |. For small |θ0 | ≲ 1, we reproduce results previously obtained in the literature, and we provide arguments for the stability of such configurations in terms of first principles. We compare qualitative analytical results with a numerical calculation. For large amplitudes |θ0 | ≳ 1, the axion field probes the full non-harmonic QCD chiral potential and the axion star enters the dense branch. Our numerical solutions show that in this latter regime the axions are relativistic, and that one should not use a single frequency approximation, as previously applied in the literature. We employ a multi-harmonic expansion to solve the relativistic equation for the axion field in the star, and demonstrate that higher modes cannot be neglected in the dense regime. We interpret the solutions in the dense regime as pseudo-breathers, and show that the life-time of such configurations is much smaller than any cosmological time scale.

  18. Prospects for axion detection in natural SUSY with mixed axion-higgsino dark matter: back to invisible?

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Kyu Jung [Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS), Daejeon 34051 (Korea, Republic of); Baer, Howard; Serce, Hasan, E-mail: kyujungbae@ibs.re.kr, E-mail: baer@nhn.ou.edu, E-mail: serce@ou.edu [Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States)

    2017-06-01

    Under the expectation that nature is natural, we extend the Standard Model to include SUSY to stabilize the electroweak sector and PQ symmetry to stabilize the QCD sector. Then natural SUSY arises from a Kim-Nilles solution to the SUSY μ problem which allows for a little hierarchy where μ∼ f {sub a} {sup 2}/ M {sub P} {sub ∼} 100−300 GeV while the SUSY particle mass scale m {sub SUSY}∼ 1−10 TeV >> μ. Dark matter then consists of two particles: a higgsino-like WIMP and a SUSY DFSZ axion. The range of allowed axion mass values m {sub a} depends on the mixed axion-higgsino relic density. The range of m {sub a} is actually restricted in this case by limits on WIMPs from direct and indirect detection experiments. We plot the expected axion detection rate at microwave cavity experiments. The axion-photon-photon coupling is severely diminished by charged higgsino contributions to the anomalous coupling. In this case, the axion may retreat, at least temporarily, back into the regime of near invisibility. From our results, we urge new ideas for techniques which probe both deeper and more broadly into axion coupling versus axion mass parameter space.

  19. Backreacted axion field ranges in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Baume, Florent; Palti, Eran [Institut für Theoretische Physik, Ruprecht-Karls-Universität, Philosophenweg 19, Heidelberg, 69120 (Germany)

    2016-08-05

    String theory axions are interesting candidates for fields whose potential might be controllable over super-Planckian field ranges and therefore as possible candidates for inflatons in large field inflation. Axion monodromy scenarios are setups where the axion shift symmetry is broken by some effect such that the axion can traverse a large number of periods potentially leading to super-Planckian excursions. We study such scenarios in type IIA string theory where the axion shift symmetry is broken by background fluxes. In particular we calculate the backreaction of the energy density induced by the axion vacuum expectation value on its own field space metric. We find universal behaviour for all the compactifications studied where up to a certain critical axion value there is only a small backreaction effect. Beyond the critical value the backreaction is strong and implies that the proper field distance as measured by the backreacted metric increases at best logarithmically with the axion vev, thereby placing strong limitations on extending the field distance any further. The critical axion value can be made arbitrarily large by the choice of fluxes. However the backreaction of these fluxes on the axion field space metric ensures a precise cancellation such that the proper field distance up to the critical axion value is flux independent and remains sub-Planckian. We also study an axion alignment scenario for type IIA compactifications on a twisted torus with four fundamental axions mixing to leave an axion with an effective decay constant which is flux dependent. There is a choice of fluxes for which the alignment parameter controlling the effective decay constant is unconstrained by tadpoles and can in principle lead to an arbitrarily large effective decay constant. However we show that these fluxes backreact on the fundamental decay constants so as to precisely cancel any enhancement leaving a sub-Planckian effective decay constant.

  20. Axions and Their Relatives

    CERN Multimedia

    CERN. Geneva

    2005-01-01

    A summary of the status of axions and axion-like particles will be given. Special attention is devoted to the recent results of the PVLAS collaboration, which are in conflict with CAST data and with astrophysical constraints. Solutions to this puzzle and the implications for new physics are dicussed. The subject of axion-like particles as dark matter will be included in the lecture. Finally some new results on new forces mediated by light scalars are debated.

  1. Can Radio Telescopes Find Axions?

    Science.gov (United States)

    Kohler, Susanna

    2017-08-01

    In the search for dark matter, the most commonly accepted candidates are invisible, massive particles commonly referred to as WIMPs. But as time passes and we still havent detected WIMPs, alternative scenarios are becoming more and more appealing. Prime among these is the idea of axions.A Bizarre ParticleThe Italian PVLAS is an example of a laboratory experiment that attempted to confirm the existence of axions. [PVLAS]Axions are a type of particle first proposed in the late 1970s. These theorized particles arose from a new symmetry introduced to solve ongoing problems with the standard model for particle physics, and they were initially predicted to have more than a keV in mass. For this reason, their existence was expected to be quickly confirmed by particle-detector experiments yet no detections were made.Today, after many unsuccessful searches, experiments and theory tell us that if axions exist, their masses must lie between 10-610-3 eV. This is minuscule an electrons mass is around 500,000 eV, and even neutrinos are on the scale of a tenth of an eV!But enough of anything, even something very low-mass, can weigh a lot. If they are real, then axions were likely created in abundance during the Big Bang and unlike heavier particles, they cant decay into anything lighter, so we would expect them all to still be around today. Our universe could therefore be filled with invisible axions, potentially providing an explanation for dark matter in the form of many, many tiny particles.Artists impression of the central core of proposed Square Kilometer Array antennas. [SKA/Swinburne Astronomy Productions]How Do We Find Them?Axions barely interact with ordinary matter and they have no electric charge. One of the few ways we can detect them is with magnetic fields: magnetic fields can change axions to and from photons.While many studies have focused on attempting to detect axions in laboratory experiments, astronomy provides an alternative: we can search for cosmological

  2. Non-Abelian strings and axions

    International Nuclear Information System (INIS)

    Gorsky, A.; Shifman, M.; Yung, A.

    2006-01-01

    We address two distinct but related issues: (i) the impact of (two-dimensional) axions in a two-dimensional theory known to model confinement, the CP(N-1) model; (ii) bulk axions in four-dimensional Yang-Mills theory supporting non-Abelian strings. In the first case n, n kinks play the role of 'quarks'. They are known to be confined. We show that introduction of axions leads to deconfinement (at very large distances). This is akin to the phenomenon of wall liberation in four-dimensional Yang-Mills theory. In the second case we demonstrate that the bulk axion does not liberate confined (anti)monopoles, in contradistinction with the two-dimensional model. A novel physical effect which we observe is the axion radiation caused by monopole-antimonopole pairs attached to the non-Abelian strings

  3. Black hole formation from axion stars

    Energy Technology Data Exchange (ETDEWEB)

    Helfer, Thomas; Marsh, David J.E.; Clough, Katy; Fairbairn, Malcolm; Lim, Eugene A. [King' s College London, Strand, London, WC2R 2LS (United Kingdom); Becerril, Ricardo, E-mail: thomas.1.helfer@kcl.ac.uk, E-mail: david.marsh@kcl.ac.uk, E-mail: katy.clough@phys.uni-goettingen.de, E-mail: malcolm.fairbairn@kcl.ac.uk, E-mail: eugene.lim@kcl.ac.uk, E-mail: becerril@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, CP 58040 Morelia, Michoacán (Mexico)

    2017-03-01

    The classical equations of motion for an axion with potential V (φ)= m {sub a} {sup 2} f {sub a} {sup 2} [1−cos (φ/ f {sub a} )] possess quasi-stable, localized, oscillating solutions, which we refer to as ''axion stars''. We study, for the first time, collapse of axion stars numerically using the full non-linear Einstein equations of general relativity and the full non-perturbative cosine potential. We map regions on an ''axion star stability diagram', parameterized by the initial ADM mass, M {sub ADM}, and axion decay constant, f {sub a} . We identify three regions of the parameter space: i) long-lived oscillating axion star solutions, with a base frequency, m {sub a} , modulated by self-interactions, ii) collapse to a BH and iii) complete dispersal due to gravitational cooling and interactions. We locate the boundaries of these three regions and an approximate ''triple point' ( M {sub TP}, f {sub TP}) ∼ (2.4 M {sub pl}{sup 2}/ m {sub a} ,0.3 M {sub pl}). For f {sub a} below the triple point BH formation proceeds during winding (in the complex U(1) picture) of the axion field near the dispersal phase. This could prevent astrophysical BH formation from axion stars with f {sub a} || M {sub pl}. For larger f {sub a} ∼> f {sub TP}, BH formation occurs through the stable branch and we estimate the mass ratio of the BH to the stable state at the phase boundary to be O(1) within numerical uncertainty. We discuss the observational relevance of our findings for axion stars as BH seeds, which are supermassive in the case of ultralight axions. For the QCD axion, the typical BH mass formed from axion star collapse is M {sub BH} ∼ 3.4 ( f {sub a} /0.6 M {sub pl}){sup 1.2} M {sub ⊙}.

  4. Alternative dark matter candidates. Axions

    International Nuclear Information System (INIS)

    Ringwald, Andreas

    2017-01-01

    The axion is arguably one of the best motivated candidates for dark matter. For a decay constant >or similar 10 9 GeV, axions are dominantly produced non-thermally in the early universe and hence are ''cold'', their velocity dispersion being small enough to fit to large scale structure. Moreover, such a large decay constant ensures the stability at cosmological time scales and its behaviour as a collisionless fluid at cosmological length scales. Here, we review the state of the art of axion dark matter predictions and of experimental efforts to search for axion dark matter in laboratory experiments.

  5. Planck-scale corrections to axion models

    International Nuclear Information System (INIS)

    Barr, S.M.; Seckel, D.

    1992-01-01

    It has been argued that quantum gravitational effects will violate all nonlocal symmetries. Peccei-Quinn symmetries must therefore be an ''accidental'' or automatic consequence of local gauge symmetry. Moreover, higher-dimensional operators suppressed by powers of M Pl are expected to explicitly violate the Peccei-Quinn symmetry. Unless these operators are of dimension d≥10, axion models do not solve the strong CP problem in a natural fashion. A small gravitationally induced contribution to the axion mass has little if any effect on the density of relic axions. If d=10, 11, or 12 these operators can solve the axion domain-wall problem, and we describe a simple class of Kim-Shifman-Vainshtein-Zakharov axion models where this occurs. We also study the astrophysics and cosmology of ''heavy axions'' in models where 5≤d≤10

  6. Anomaly mediation deformed by axion

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Kazunori, E-mail: kazunori@hep-th.phys.s.u-tokyo.ac.jp [Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa 277-8583 (Japan); Yanagida, Tsutomu T. [Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa 277-8583 (Japan)

    2013-05-13

    We show that in supersymmetric axion models the axion supermultiplet obtains a sizable F-term due to a non-supersymmetric dynamics and it generally gives the gaugino masses comparable to the anomaly mediation contribution. Thus the gaugino mass relation predicted by the anomaly mediation effect can be significantly modified in the presence of axion to solve the strong CP problem.

  7. CAST constraints on the axion-electron coupling

    CERN Document Server

    Barth, K.; Beltran, B.; Bräuninger, H.; Carmona, J.M.; Collar, J.I.; Dafni, T.; Davenport, M.; Di Lella, L.; Eleftheriadis, C.; Englhauser, J.; Fanourakis, G.; Ferrer-Ribas, E.; Fischer, H.; Franz, J.; Friedrich, P.; Galan, J.; Garcia, J.A.; Geralis, T.; Giomataris, I.; Gninenko, S.; Gomez, H.; Hasinoff, M.D.; Heinsius, F.H.; Hoffmann, D.H.H.; Irastorza, I.G.; Jacoby, J.; Jakovcic, K.; Kang, D.; Königsmann, K.; Kotthaus, R.; Kousouris, K.; Krcmar, M.; Kuster, M.; Lakic, B.; Liolios, A.; Ljubicic, A.; Lutz, G.; Luzon, G.; Miller, D.W.; Papaevangelou, T.; Pivovaroff, M.J.; Raffelt, G.; Redondo, J.; Riege, H.; Rodriguez, A.; Ruz, J.; Savvidis, I.; Semertzidis, Y.; Stewart, L.; Van Bibber, K.; Vieira, J.D.; Villar, J.A.; Vogel, J.K.; Walckiers, L.; Zioutas, K.

    2013-01-01

    In non-hadronic axion models, which have a tree-level axion-electron interaction, the Sun produces a strong axion flux by bremsstrahlung, Compton scattering, and axio-recombination, the "BCA processes." Based on a new calculation of this flux, including for the first time axio-recombination, we derive limits on the axion-electron Yukawa coupling g_ae and axion-photon interaction strength g_ag using the CAST phase-I data (vacuum phase). For m_a < 10 meV/c2 we find g_ag x g_ae< 8.1 x 10^-23 GeV^-1 at 95% CL. We stress that a next-generation axion helioscope such as the proposed IAXO could push this sensitivity into a range beyond stellar energy-loss limits and test the hypothesis that white-dwarf cooling is dominated by axion emission.

  8. Search for Axions with the CDMS Experiment

    International Nuclear Information System (INIS)

    CDMS Collaboration

    2009-01-01

    We report on the first axion search results from the Cryogenic Dark Matter Search (CDMS) experiment at the Soudan Underground Laboratory. An energy threshold of 2 keV for electron-recoil events allows a search for possible solar axion conversion into photons or local Galactic axion conversion into electrons in the germanium crystal detectors. The solar axion search sets an upper limit on the Primakov coupling g aγγ of 2.4 x 10 ?9 GeV -1 at the 95% confidence level for an axion mass less than 0.1 keV/c 2 . This limit benefits from the first precise measurement of the absolute crystal plane orientations in this type of experiment. The Galactic axion search analysis sets a world-leading experimental upper limit on the axio-electric coupling g a# bar e# e of 1.4 x 10 -12 at the 90% confidence level for an axion mass of 2.5 keV/c 2 . This analysis excludes an interpretation of the DAMA annual modulation result in terms of Galactic axion interactions for axion masses above 1.4 keV/c 2

  9. High-temperature axion potential

    International Nuclear Information System (INIS)

    Dowrick, N.J.; McDougall, N.A.

    1989-01-01

    We investigate the possibility of new terms in the high-temperature axion potential arising from the dynamical nature of the axion field and from higher-order corrections to the θ dependence in the free energy of the quark-gluon plasma. We find that the dynamical nature of the axion field does not affect the potential but that the higher-order effects lead to new terms in the potential which are larger than the term previously considered. However, neither the magnitude nor the sign of the potential can be calculated by a perturbative expansion of the free energy since the coupling is too large. We show that a change in the magnitude of the potential does not significantly affect the bound on the axion decay constant but that the sign of the potential is of crucial importance. By investigating the formal properties of the functional integral within the instanton dilute-gas approximation, we find that the sign of the potential does not change and that the minimum remains at θ=0. We conclude that the standard calculation of the axion energy today is not significantly modified by this investigation

  10. Search for solar axions with mass around 1 eV using coherent conversion of axions into photons

    International Nuclear Information System (INIS)

    Inoue, Y.; Akimoto, Y.; Ohta, R.; Mizumoto, T.; Yamamoto, A.; Minowa, M.

    2008-01-01

    A search for solar axions has been performed using an axion helioscope which is equipped with a 2.3-m long 4 T superconducting magnet, a gas container to hold dispersion-matching gas, PIN-photodiode X-ray detectors, and a telescope mount mechanism to track the sun. A mass region around m a =1 eV was newly explored. From the absence of any evidence, analysis sets a limit on axion-photon coupling constant to be g aγγ -10 GeV -1 for the axion mass of 0.84 a aγγ -m a parameter region of the preferred axion models with a magnetic helioscope

  11. Alternative dark matter candidates. Axions

    Energy Technology Data Exchange (ETDEWEB)

    Ringwald, Andreas

    2017-01-15

    The axion is arguably one of the best motivated candidates for dark matter. For a decay constant >or similar 10{sup 9} GeV, axions are dominantly produced non-thermally in the early universe and hence are ''cold'', their velocity dispersion being small enough to fit to large scale structure. Moreover, such a large decay constant ensures the stability at cosmological time scales and its behaviour as a collisionless fluid at cosmological length scales. Here, we review the state of the art of axion dark matter predictions and of experimental efforts to search for axion dark matter in laboratory experiments.

  12. Axion: Mass -- Dark Matter Abundance Relation

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The axion is a hypothetical particle which would explain why QCD is approximately T-conserving, and is also an excellent Cold Dark Matter candidate. It should be possible to make a clean theoretical prediction relating the dark matter density in axions and the axion mass (under reasonable assumptions about inflation). But the axion's early-Universe dynamics, which establish its density as dark matter, are unexpectedly rich in a way which is only starting to yield to quantitative numerical study.

  13. Axions and the anthropic principle

    International Nuclear Information System (INIS)

    Dowrick, N.; McDougall, N.A.

    1988-01-01

    We consider the possibility that the axion density in the Universe today may be constrained by the anthropic requirement that life should have evolved. If this were the case, the force of the usual cosmological bound on the axion decay constant would be greatly lessened. However, we find no mechanism by which excessive axion energy density could prevent the condensation of matter into potentially life-nurturing structures

  14. Conceptual Design of the International Axion Observatory (IAXO)

    CERN Document Server

    Armengaud, E; Betz, M; Brax, P; Brun, P; Cantatore, G; Carmona, J M; Carosi, G P; Caspers, F; Caspi, S; Cetin, S A; Chelouche, D; Christensen, F E; Dael, A; Dafni, T; Davenport, M; Derbin, A V; Desch, K; Diago, A; Döbrich, B; Dratchnev, I; Dudarev, A; Eleftheriadis, C; Fanourakis, G; Ferrer-Ribas, E; Galán, J; García, J A; Garza, J G; Geralis, T; Gimeno, B; Giomataris, I; Gninenko, S; Gómez, H; González-Díaz, D; Guendelman, E; Hailey, C J; Hiramatsu, T; Hoffmann, D H H; Horns, D; Iguaz, F J; Irastorza, I G; Isern, J; Imai, K; Jakobsen, A C; Jaeckel, J; Jakovčić, K; Kaminski, J; Kawasaki, M; Karuza, M; Krčmar, M; Kousouris, K; Krieger, C; Lakić, B; Limousin, O; Lindner, A; Liolios, A; Luzón, G; Matsuki, S; Muratova, V N; Nones, C; Ortega, I; Papaevangelou, T; Pivovaroff, M J; Raffelt, G; Redondo, J; Ringwald, A; Russenschuck, S; Ruz, J; Saikawa, K; Savvidis, I; Sekiguchi, T; Semertzidis, Y K; Shilon, I; Sikivie, P; Silva, H; Kate, H ten; Tomas, A; Troitsky, S; Vafeiadis, T; Bibber, K van; Vedrine, P; Villar, J A; Vogel, J K; Walckiers, L; Weltman, A; Wester, W; Yildiz, S C; Zioutas, K

    2014-01-01

    The International Axion Observatory (IAXO) will be a forth generation axion helioscope. As its primary physics goal, IAXO will look for axions or axion-like particles (ALPs) originating in the Sun via the Primakoff conversion of the solar plasma photons. In terms of signal-to-noise ratio, IAXO will be about 4-5 orders of magnitude more sensitive than CAST, currently the most powerful axion helioscope, reaching sensitivity to axion-photon couplings down to a few $\\times 10^{-12}$ GeV$^{-1}$ and thus probing a large fraction of the currently unexplored axion and ALP parameter space. IAXO will also be sensitive to solar axions produced by mechanisms mediated by the axion-electron coupling $g_{ae}$ with sensitivity $-$for the first time$-$ to values of $g_{ae}$ not previously excluded by astrophysics. With several other possible physics cases, IAXO has the potential to serve as a multi-purpose facility for generic axion and ALP research in the next decade. In this paper we present the conceptual design of IAXO, w...

  15. Stellar recipes for axion hunters

    Energy Technology Data Exchange (ETDEWEB)

    Giannotti, Maurizio [Physical Sciences, Barry University, 11300 NE 2nd Ave., Miami Shores, FL 33161 (United States); Irastorza, Igor G.; Redondo, Javier [Departamento de Física Teórica, Universidad de Zaragoza, Pedro Cerbuna 12, E-50009, Zaragoza (Spain); Ringwald, Andreas; Saikawa, Ken' ichi, E-mail: mgiannotti@barry.edu, E-mail: igor.irastorza@cern.ch, E-mail: jredondo@unizar.es, E-mail: andreas.ringwald@desy.de, E-mail: kenichi.saikawa@desy.de [Theory Group, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg (Germany)

    2017-10-01

    There are a number of observational hints from astrophysics which point to the existence of stellar energy losses beyond the ones accounted for by neutrino emission. These excessive energy losses may be explained by the existence of a new sub-keV mass pseudoscalar Nambu-Goldstone boson with tiny couplings to photons, electrons, and nucleons. An attractive possibility is to identify this particle with the axion—the hypothetical pseudo Nambu-Goldstone boson predicted by the Peccei-Quinn solution to the strong CP problem. We explore this possibility in terms of a DFSZ-type axion and of a KSVZ-type axion/majoron, respectively. Both models allow a good global fit to the data, prefering an axion mass around 10 meV. We show that future axion experiments—the fifth force experiment ARIADNE and the helioscope IAXO—can attack the preferred mass range from the lower and higher end, respectively. An axion in this mass range can also be the main constituent of dark matter.

  16. The axion mass in modular invariant supergravity

    International Nuclear Information System (INIS)

    Butter, Daniel; Gaillard, Mary K.

    2005-01-01

    When supersymmetry is broken by condensates with a single condensing gauge group, there is a nonanomalous R-symmetry that prevents the universal axion from acquiring a mass. It has been argued that, in the context of supergravity, higher dimension operators will break this symmetry and may generate an axion mass too large to allow the identification of the universal axion with the QCD axion. We show that such contributions to the axion mass are highly suppressed in a class of models where the effective Lagrangian for gaugino and matter condensation respects modular invariance (T-duality)

  17. Axions...The search continues

    International Nuclear Information System (INIS)

    Krauss, L.M.

    1986-01-01

    Axion physics relates to the following areas discussed at the Theoretical Advanced Study Institute: 1. Topology; 2. Anomalies; 3. Current Algebra, Chiral Lagrangians; 4. Effective Lagrangians; 5. Dark Matter; 6. Inflation, Early Universe; 7. ''String'' Theories; 8. New Physics at Collider Energies-Technicolor; 9. Rare Kaon Decays; 10. Experimental Probes of High Energy Physics. In the course of this paper, the authors review axion physics, from its origins in theory, to the prospects for detection. In doing this, he demonstrates, using axions as an example, how particle physics manages to turn seemingly obscure mathematical formalism into the stuff from which experiments are born

  18. Cosmological problems with multiple axion-like fields

    International Nuclear Information System (INIS)

    Mack, Katherine J.; Steinhardt, Paul J.

    2011-01-01

    Incorporating the QCD axion and simultaneously satisfying current constraints on the dark matter density and isocurvature fluctuations requires non-minimal fine-tuning of inflationary parameters or the axion misalignment angle (or both) for Peccei-Quinn symmetry-breaking scales f a > 10 12 GeV. To gauge the degree of tuning in models with many axion-like fields at similar symmetry-breaking scales and masses, as may occur in string theoretic models that include a QCD axion, we introduce a figure of merit F that measures the fractional volume of allowed parameter space: the product of the slow roll parameter ε and each of the axion misalignment angles, θ 0 . For a single axion, F∼ −11 is needed to avoid conflict with observations. We show that the fine tuning of F becomes exponentially more extreme in the case of numerous axion-like fields. Anthropic arguments are insufficient to explain the fine tuning because the bulk of the anthropically allowed parameter space is observationally ruled out by limits on the cosmic microwave background isocurvature modes. Therefore, this tuning presents a challenge to the compatibility of string-theoretic models with light axions and inflationary cosmology

  19. In the footsteps of axions or the like

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    Axions were invented to solve the strong CP-problem and are one of the leading dark matter particle candidates. Axions could be copiously produced in the Sun. In magnetic fields they can oscillate to photons and vice versa. The axion helioscope CAST uses an LHC magnet to convert solar axions to X-rays. Also, in the solar atmosphere the large scale magnetic fields reach occasionally several kGauss. Assuming the CAST working principle occurring there much more efficiently, it could explain the unexpected appearance of X-rays (from axions) or disappearance of light (into axions). Such processes can be behind persisting solar mysteries, suggesting the participation of a) solar magnetic fields, and b) radiatively decaying massive particles. Enigmatic behaviour leading to solar X-ray emission, coronal heating, flares, sunspots, etc. is considered as evidence of overlooked signature of axions or other particles with similar properties. New solar axion searches in the lab and with space X-ray telescopes, have been mo...

  20. Probing eV-scale axions with CAST

    CERN Document Server

    Ruz, J

    2009-01-01

    CAST (CERN Axion Solar Telescope) is a helioscope looking for axions coming from the solar core to the Earth. The experiment, located at CERN, is based on the Primakoff effect and uses a magnetic field of 9 Tesla provided by a decommissioned LHC magnet. CAST is able to follow the Sun during sunrise and sunset having four X-ray detectors mounted on both ends of the magnet to look for photons from axion-to-photon conversions. During its First Phase, which concluded in 2004, CAST searched for axions with masses up to 0.02 eV. By using a buffer gas the coherence needed to scan for axions with masses up to 1.20 eV is re-established in CAST’s Second Phase. This technique enables the experiment to study the theoretical regions for axions. During the years 2005 and 2006, the use of 4He has already enabled the search for axions with masses up to 0.39 eV. Up to present time, CAST has upgraded its experimental setup to operate with 3He in the magnetic field.

  1. Axion searches at CERN with the CAST Telescope

    CERN Document Server

    Eleftheriadis, Christos; Arik, E.; Autiero, D.; Avignone, F.; Barth, K.; Bingol, E.; Brauninger, H.; Brodzinski, R.; Carmona, J.; Chesi, E.; Cebrian, S.; Cetin, S.; Cipolla, G.; Collar, J.; Creswick, R.; Dafni, T.; Davenport, M.; De Oliveira, R.; Dedoussis, S.; Delbart, A.; Di Lella, L.; Fanourakis, G.; Farach, H.; Fischer, H.; Formenti, F.; Geralis, T.; Giomataris, I.; Gninenko, S.; Goloubev, N.; Hartmann, R.; Hasinoff, M.; Hoffmann, D.; Irastorza, I.G.; Jacoby, J.; Kang, D.; Konigsmann, Kay; Kotthaus, R.; Krcmar, M; Kuster, M.; Lakic, B.; Liolios, A.; Ljubicic, A.; Lutz, G.; Luzon, G.; Miley, H.; Morales, A.; Morales, J.; Mutterer, M.; Nikolaidis, A.; Ortiz, A.; Papaevangelou, T.; Placci, A.; Raffelt, G.; Riege, H.; Sarsa, M.; Savvidis, I.; Schopper, R.; Semertzidis, I.; Spano, C.; Vasileiou, V.; Villar, J.; Vullierme, B.; Walckiers, L.; Zachariadou, K.; Zioutas, K.

    2003-01-01

    The CERN Axion Solar Telescope (CAST) searches for axions coming from photon to axion conversion in the sun's core, as stated by the Primakoff effect. Axions arise in particle physics as a consequence of the breaking of Peccei-Quinn symmetry which has been introduced as a solution to the strong CP problem. As cosmological axions they are candidates for at least some part of cold Dark Matter.They are also expected to be produced copiously in stellar interiors with energies as high as the thermal photons undergoing photon to axion conversion. In our sun the axion energy spectrum peaks at about 4.4 keV, extending up to 10 keV. CAST collected preliminary data in 2002 and data taking with its full capability will start in the beginning of 2003.

  2. Conceptual design of the International Axion Observatory (IAXO)

    DEFF Research Database (Denmark)

    Armengaud, E.; Avignone, F. T.; Betz, M.

    2014-01-01

    The International Axion Observatory (IAXO) will be a forth generation axion helioscope. As its primary physics goal, IAXO will look for axions or axion-like particles (ALPs) originating in the Sun via the Primakoff conversion of the solar plasma photons. In terms of signal-to-noise ratio, IAXO wi...

  3. Search for sub-eV mass solar axions by the CERN Axion Solar Telescope with 3He buffer gas.

    Science.gov (United States)

    Arik, M; Aune, S; Barth, K; Belov, A; Borghi, S; Bräuninger, H; Cantatore, G; Carmona, J M; Cetin, S A; Collar, J I; Dafni, T; Davenport, M; Eleftheriadis, C; Elias, N; Ezer, C; Fanourakis, G; Ferrer-Ribas, E; Friedrich, P; Galán, J; García, J A; Gardikiotis, A; Gazis, E N; Geralis, T; Giomataris, I; Gninenko, S; Gómez, H; Gruber, E; Guthörl, T; Hartmann, R; Haug, F; Hasinoff, M D; Hoffmann, D H H; Iguaz, F J; Irastorza, I G; Jacoby, J; Jakovčić, K; Karuza, M; Königsmann, K; Kotthaus, R; Krčmar, M; Kuster, M; Lakić, B; Laurent, J M; Liolios, A; Ljubičić, A; Lozza, V; Lutz, G; Luzón, G; Morales, J; Niinikoski, T; Nordt, A; Papaevangelou, T; Pivovaroff, M J; Raffelt, G; Rashba, T; Riege, H; Rodríguez, A; Rosu, M; Ruz, J; Savvidis, I; Silva, P S; Solanki, S K; Stewart, L; Tomás, A; Tsagri, M; van Bibber, K; Vafeiadis, T; Villar, J A; Vogel, J K; Yildiz, S C; Zioutas, K

    2011-12-23

    The CERN Axion Solar Telescope (CAST) has extended its search for solar axions by using (3)He as a buffer gas. At T=1.8 K this allows for larger pressure settings and hence sensitivity to higher axion masses than our previous measurements with (4)He. With about 1 h of data taking at each of 252 different pressure settings we have scanned the axion mass range 0.39 eV≲m(a)≲0.64 eV. From the absence of excess x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of g(aγ)≲2.3×10(-10) GeV(-1) at 95% C.L., the exact value depending on the pressure setting. Kim-Shifman-Vainshtein-Zakharov axions are excluded at the upper end of our mass range, the first time ever for any solar axion search. In the future we will extend our search to m(a)≲1.15 eV, comfortably overlapping with cosmological hot dark matter bounds.

  4. The search for axion dark matter

    International Nuclear Information System (INIS)

    Sikivie, P.

    1998-01-01

    This talk reviews the original motivation for the axion as a solution to the strong CP problem and the constraints that have been placed on the axion by experimental searches and by astrophysical and cosmological considerations. As a result of the bounds, the axion mass is presently restricted to a window extending from about 10 -2 ampersand hthinsp;eV to about 10 -6 ampersand hthinsp;eV. In this window, axions are a form of cold dark matter. It is possible to detect galactic halo axions by stimulating their conversion to photons in a laboratory magnetic field. I close-quote ll report on two experiments of this type, one at Lawrence Livermore National Laboratory and the other at Kyoto University. I close-quote ll also discuss what can be learned about the structure of our galactic halo if a signal is found. copyright 1998 American Institute of Physics

  5. Future cosmological sensitivity for hot dark matter axions

    CERN Document Server

    Archidiacono, Maria; Hamann, Jan; Hannestad, Steen; Raffelt, Georg; Wong, Yvonne Y Y

    2015-01-01

    We study the potential of a future, large-volume photometric survey to constrain the axion mass $m_a$ in the hot dark matter limit. Future surveys such as Euclid will have significantly more constraining power than current observations for hot dark matter. Nonetheless, the lowest accessible axion masses are limited by the fact that axions lighter than $\\sim 0.15$ eV decouple before the QCD epoch, assumed here to occur at a temperature $T_{\\rm QCD} \\sim 170$ MeV; this leaves an axion population of such low density that its late-time cosmological impact is negligible. For larger axion masses, $m_a \\gtrsim 0.15$ eV, where axions remain in equilibrium until after the QCD phase transition, we find that a Euclid-like survey combined with Planck CMB data can detect $m_a$ at very high significance. Our conclusions are robust against assumptions about prior knowledge of the neutrino mass. Given that the proposed IAXO solar axion search is sensitive to $m_a\\lesssim 0.2$ eV, the axion mass range probed by cosmology is n...

  6. Axion-dilation black holes

    International Nuclear Information System (INIS)

    Kallosh, R.

    1993-01-01

    In this talk some essential features of stringy black holes are described. The author considers charged U(1) and U(1) x U(1) four-dimensional axion-dilaton black holes. The Hawking temperature and the entropy of all solutions are shown to be simple functions of the squares of supercharges, defining the positivity bounds. Spherically symmetric and multi black hole solutions are presented. The extreme solutions with zero entropy (holons) represent a ground state of the theory and are characterized by elementary dilaton, axion, electric, and magnetic charges. The attractive gravitational and axion-dilaton force is balanced by the repulsive electromagnetic force. The author discusses the possibility of splitting of nearly extreme black holes. 11 refs

  7. New solar axion search using the CERN Axion Solar Telescope with 4He filling

    Science.gov (United States)

    Arik, M.; Aune, S.; Barth, K.; Belov, A.; Bräuninger, H.; Bremer, J.; Burwitz, V.; Cantatore, G.; Carmona, J. M.; Cetin, S. A.; Collar, J. I.; Da Riva, E.; Dafni, T.; Davenport, M.; Dermenev, A.; Eleftheriadis, C.; Elias, N.; Fanourakis, G.; Ferrer-Ribas, E.; Galán, J.; García, J. A.; Gardikiotis, A.; Garza, J. G.; Gazis, E. N.; Geralis, T.; Georgiopoulou, E.; Giomataris, I.; Gninenko, S.; Gómez Marzoa, M.; Hasinoff, M. D.; Hoffmann, D. H. H.; Iguaz, F. J.; Irastorza, I. G.; Jacoby, J.; Jakovčić, K.; Karuza, M.; Kavuk, M.; Krčmar, M.; Kuster, M.; Lakić, B.; Laurent, J. M.; Liolios, A.; Ljubičić, A.; Luzón, G.; Neff, S.; Niinikoski, T.; Nordt, A.; Ortega, I.; Papaevangelou, T.; Pivovaroff, M. J.; Raffelt, G.; Rodríguez, A.; Rosu, M.; Ruz, J.; Savvidis, I.; Shilon, I.; Solanki, S. K.; Stewart, L.; Tomás, A.; Vafeiadis, T.; Villar, J.; Vogel, J. K.; Yildiz, S. C.; Zioutas, K.; CAST Collaboration

    2015-07-01

    The CERN Axion Solar Telescope (CAST) searches for a →γ conversion in the 9 T magnetic field of a refurbished LHC test magnet that can be directed toward the Sun. Two parallel magnet bores can be filled with helium of adjustable pressure to match the x-ray refractive mass mγ to the axion search mass ma. After the vacuum phase (2003-2004), which is optimal for ma≲0.02 eV , we used 4He in 2005-2007 to cover the mass range of 0.02-0.39 eV and 3He in 2009-2011 to scan from 0.39 to 1.17 eV. After improving the detectors and shielding, we returned to 4He in 2012 to investigate a narrow ma range around 0.2 eV ("candidate setting" of our earlier search) and 0.39-0.42 eV, the upper axion mass range reachable with 4He, to "cross the axion line" for the KSVZ model. We have improved the limit on the axion-photon coupling to ga γ<1.47 ×10-10 GeV-1 (95% C.L.), depending on the pressure settings. Since 2013, we have returned to the vacuum and aim for a significant increase in sensitivity.

  8. On the possibility of large axion moduli spaces

    Energy Technology Data Exchange (ETDEWEB)

    Rudelius, Tom [Jefferson Physical Laboratory, Harvard University,Cambridge, MA 02138 (United States)

    2015-04-28

    We study the diameters of axion moduli spaces, focusing primarily on type IIB compactifications on Calabi-Yau three-folds. In this case, we derive a stringent bound on the diameter in the large volume region of parameter space for Calabi-Yaus with simplicial Kähler cone. This bound can be violated by Calabi-Yaus with non-simplicial Kähler cones, but additional contributions are introduced to the effective action which can restrict the field range accessible to the axions. We perform a statistical analysis of simulated moduli spaces, finding in all cases that these additional contributions restrict the diameter so that these moduli spaces are no more likely to yield successful inflation than those with simplicial Kähler cone or with far fewer axions. Further heuristic arguments for axions in other corners of the duality web suggest that the difficulty observed in http://dx.doi.org/10.1088/1475-7516/2003/06/001 of finding an axion decay constant parametrically larger than M{sub p} applies not only to individual axions, but to the diagonals of axion moduli space as well. This observation is shown to follow from the weak gravity conjecture of http://dx.doi.org/10.1088/1126-6708/2007/06/060, so it likely applies not only to axions in string theory, but also to axions in any consistent theory of quantum gravity.

  9. On supersymmetric effective theories of axion

    Energy Technology Data Exchange (ETDEWEB)

    Higaki, Tetsutaro [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kitano, Ryuichiro [Tohoku Univ., Sendai (Japan). Dept. of Physics

    2011-04-15

    We study effective theories of an axion in spontaneously broken supersymmetric theories. We consider a system where the axion supermultiplet is directly coupled to a supersymmetry breaking sector whereas the standard model sector is communicated with those sectors through loops of messenger fields. The gaugino masses and the axion-gluon coupling necessary for solving the strong CP problem are both obtained by the same effective interaction. We discuss cosmological constraints on this framework. (orig.)

  10. Universal constraints on axions from inflation

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Ricardo Z.; Sloth, Martin S. [CP-Origins, Center for Cosmology and Particle Physics Phenomenology,University of Southern Denmark, Campusvej 55, 5230 Odense M (Denmark)

    2014-12-19

    We consider the presence of an axion like particle, σ, with a generic CP violating axial coupling of the form (α σ/f)FF-tilde, where F{sub μν} is the gauge field strength of a generic abelian U(1) gauge group, not necessarily associated with the standard electromagnetism, and f is the decay constant of the axion. It has previously been demonstrated that if the axion is identified with the inflaton, such an interaction can lead to measurable cosmological signatures (non-Gaussian modifications of the curvature perturbation spectrum) depending on the parameter ξ=α σ-dot /(fH). In the present paper we will show that the generation of curvature perturbation at horizon crossing due to the axial coupling has a universal form and remains unmodified in terms of the ξ parameter even if the axion, σ, is not identified with the inflaton. As a consequence, it does not appear to be possible to generate CMB tensor perturbations through this mechanism, larger than the vacuum ones, without violating the observational constraints unless we combine this mechanism with a curvaton or if the σ field becomes heavy and decays during inflation. Even in this last case there are non-trivial constraints coming from the slow-roll evolution of the curvature perturbation on super horizon scales which should be taken into account. We also comment on implications for inflationary models where axions play an important role as, for example, models of natural inflation where more than one axion are included and models where the curvaton is an axion.

  11. A search for axions and massive neutrinos

    CERN Multimedia

    2002-01-01

    This experiment relies on the production of a strong, contamination-free (10$ ^{-12} $) source of radioactive $^{125}$I at the ISOLDE facility. Technical developments to achieve the necessary beam intensity are in progress. \\\\ \\\\The possible emission of axions in the 35.5 keV M1 transition of the $^{125}$Te daughter isotope is searched for by the axion analogue of the Mössbauer effect, i.e. the axion resonance absorption in a $^{125}$Te resonance absorber. For this purpose all other radiation emitted from the source is shielded by a non-resonant absorber, which is transparent, however, to axions. The resonance absorption is detected by measurement of subsequently emitted X-rays. A sensitivity to the axion emission branching ratio in the nuclear decay of 10$ ^{-7} $ is strived for.

  12. Search for Solar Axions with the CAST-Experiment

    CERN Document Server

    Vogel, J.; Aune, S.; Autiero, D.; Barth, K.; Belov, A.; Beltran, B.; Borghi, S.; Bourlis, G.; Boydag, F. S.; Brauninger, H.; Carmona, J.; Cebrian, S.; Cetin, S. A.; Collar, J.I.; Dafni, T.; Davenport, M.; Di Lella, L.; Dogan, O. B.; Elefheriadis, C.; Elias, N.; Fanourakis, G.; Ferrer-Ribas, E.; Fisher, H.; Franz, J.; Galan, J.; Geralis, T.; Giomataris, I.; Gninenko, S.; Gomez, H.; Hasinoff, M.; Heinsius, H.; Hikmet, I.; Hoffmann, D. H. H.; Irastorza, I. G.; Jacoby, J.; Jakovcic, K.; Kang, D.; Konigsmann, K.; Kotthaus, R.; Krcmar, M.; Kousouris, K.; Kuster, M.; Lakic, B.; Lasseur, C.; Liolios, A.; Ljubicic, A.; Lutz, G.; Luzon, G.; Miller, D.; Morales, J.; Niinikoski, T.; Nordt, A.; Ortiz, A.; Papaevangelou, T.; Pivovaroff, M.; Placci, A.; Raffelt, G.; Riege, H.; Rodriguez, A.; Ruz, J.; Savvidis, I.; Semertzidis, Y.; Serpico, P.; Soufli, R.; Stewart, L.; Tzamarias, S.; Van Bibber, K.; Villar, J.; Walckiers, L.; Zioutas, K.; Morales, A.

    2008-01-01

    Solar axions can be produced in the Sun via the so-called Primakoff effect. The CERN Axion Solar Telescope (CAST) uses an LHC prototype magnet of about 9 T to reconvert these axions into photons. The magnet is able to follow the Sun for about 3 hours per day. Three different X-Ray detectors are mounted on its ends to detect photons from axion-to-photon conversion: a Time Projection Chamber (TPC), a MICROMEGAS (MICROMEsh GAseous Structure) and a Charge Coupled Device (CCD). For the CCD an X-ray focusing device is used to improve the signal-to-background ratio significantly. With the completion of CAST'S first phase, the current limits on the coupling constant gaγ for axion masses up to 0.02 eV have been improved. In its second phase, CAST extends the axion mass range by filling the magnet with a buffer gas. Masses up to about 0.4 eV have already been covered and thus the experiment is entering the regions favored by axion models. This paper will present the status of CAST'S second phase.

  13. Structure formation and microlensing with axion miniclusters

    Science.gov (United States)

    Fairbairn, Malcolm; Marsh, David J. E.; Quevillon, Jérémie; Rozier, Simon

    2018-04-01

    If the symmetry breaking responsible for axion dark matter production occurs during the radiation-dominated epoch in the early Universe, then this produces large amplitude perturbations that collapse into dense objects known as axion miniclusters. The characteristic minicluster mass, M0, is set by the mass inside the horizon when axion oscillations begin. For the QCD axion M0˜10-10 M⊙, however, for an axionlike particle, M0 can approach M⊙ or higher. Using the Press-Schechter formalism we compute the mass function of halos formed by hierarchical structure formation from these seeds. We compute the concentrations and collapse times of these halos and show that they can grow to be as massive as 1 06M0. Within the halos, miniclusters likely remain tightly bound, and we compute their gravitational microlensing signal taking the fraction of axion dark matter collapsed into miniclusters, fMC, as a free parameter. A large value of fMC severely weakens constraints on axion scenarios from direct detection experiments. We take into account the non-Gaussian distribution of sizes of miniclusters and determine how this affects the number of microlensing events. We develop the tools to consider microlensing by an extended mass function of nonpointlike objects, and we use microlensing data to place the first observational constraints on fMC. This opens a new window for the potential discovery of the axion.

  14. Dark matter axions and caustic rings

    International Nuclear Information System (INIS)

    Sikivie, P.

    1997-01-01

    This report contains discussions on the following topics: the strong CP problem; dark matter axions; the cavity detector of galactic halo axions; and caustic rings in the density distribution of cold dark matter halos

  15. Evidence for inflation in an axion landscape

    Science.gov (United States)

    Nath, Pran; Piskunov, Maksim

    2018-03-01

    We discuss inflation models within supersymmetry and supergravity frameworks with a landscape of chiral superfields and one U(1) shift symmetry which is broken by non-perturbative symmetry breaking terms in the superpotential. We label the pseudo scalar component of the chiral fields axions and their real parts saxions. Thus in the models only one combination of axions will be a pseudo-Nambu-Goldstone-boson which will act as the inflaton. The proposed models constitute consistent inflation for the following reasons: the inflation potential arises dynamically with stabilized saxions, the axion decay constant can lie in the sub-Planckian region, and consistency with the Planck data is achieved. The axion landscape consisting of m axion pairs is assumed with the axions in each pair having opposite charges. A fast roll-slow roll splitting mechanism for the axion potential is proposed which is realized with a special choice of the axion basis. In this basis the 2 m coupled equations split into 2 m - 1 equations which enter in the fast roll and there is one unique linear combination of the 2 m fields which controls the slow roll and thus the power spectrum of curvature and tensor perturbations. It is shown that a significant part of the parameter space exists where inflation is successful, i.e., N pivot = [50, 60], the spectral index n s of curvature perturbations, and the ratio r of the power spectrum of tensor perturbations and curvature perturbations, lie in the experimentally allowed regions given by the Planck experiment. Further, it is shown that the model allows for a significant region of the parameter space where the effective axion decay constant can lie in the sub-Planckian domain. An analysis of the tensor spectral index n t is also given and the future experimental data which constraints n t will further narrow down the parameter space of the proposed inflationary models. Topics of further interest include implications of the model for gravitational waves

  16. Solar axion search with the CAST experiment

    CERN Document Server

    Aune, S.

    2008-01-01

    The CAST (CERN Axion Solar Telescope) experiment is searching for solar axions by their conversion into photons inside the magnet pipe of an LHC dipole. The analysis of the data recorded during the first phase of the experiment with vacuum in the magnet pipes has resulted in the most restrictive experimental limit on the coupling constant of axions to photons. In the second phase, CAST is operating with a buffer gas inside the magnet pipes in order to extent the sensitivity of the experiment to higher axion masses. We will present the first results on the $^4{He}$ data taking as well as the system upgrades that have been operated in the last year in order to adapt the experiment for the $^3{He}$ data taking. Expected sensitivities on the coupling constant of axions to photons will be given for the recent $^3{He}$ run just started in March 2008.

  17. Dynamical clockwork axions

    Science.gov (United States)

    Coy, Rupert; Frigerio, Michele; Ibe, Masahiro

    2017-10-01

    The clockwork mechanism is a novel method for generating a large separation between the dynamical scale and interaction scale of a theory. We demonstrate how the mechanism can arise from a sequence of strongly-coupled sectors. This framework avoids elementary scalar fields as well as ad hoc continuous global symmetries, both of which are subject to serious stability issues. The clockwork factor, q, is determined by the consistency of the strong dynamics. The preserved global U(1) of the clockwork appears as an accidental symmetry, resulting from discrete or U(1) gauge symmetries, and it is spontaneously broken by the chiral condensates. We apply such a dynamical clockwork to construct models with an effectively invisible QCD axion from TeV-scale strong dynamics. The axion couplings are determined by the localisation of the Standard Model interactions along the clockwork sequence. The TeV spectrum includes either coloured hadrons or vector-like quarks. Dark matter can be accounted for by the axion or the lightest neutral baryons, which are accidentally stable.

  18. Axions as hot and cold dark matter

    International Nuclear Information System (INIS)

    Jeong, Kwang Sik; Kawasaki, Masahiro; Tokyo Univ., Kashiwa; Takahashi, Fuminobu; Tokyo Univ., Kashiwa

    2013-10-01

    The presence of a hot dark matter component has been hinted at 3σ by a combination of the results from different cosmological observations. We examine a possibility that pseudo Nambu- Goldstone bosons account for both hot and cold dark matter components. We show that the QCD axions can do the job for the axion decay constant f a 10 ) GeV, if they are produced by the saxion decay and the domain wall annihilation. We also investigate the cases of thermal QCD axions, pseudo Nambu-Goldstone bosons coupled to the standard model sector through the Higgs portal, and axions produced by modulus decay.

  19. Axions as hot and cold dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwang Sik [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kawasaki, Masahiro [Tokyo Univ., Kashiwa (Japan). Inst. for Cosmic Ray Research; Tokyo Univ., Kashiwa (Japan). Kavli IPMU, TODIAS; Takahashi, Fuminobu [Tohoku Univ., Sendai (Japan). Dept. of Physics; Tokyo Univ., Kashiwa (Japan). Kavli IPMU, TODIAS

    2013-10-15

    The presence of a hot dark matter component has been hinted at 3{sigma} by a combination of the results from different cosmological observations. We examine a possibility that pseudo Nambu- Goldstone bosons account for both hot and cold dark matter components. We show that the QCD axions can do the job for the axion decay constant f{sub a}axions, pseudo Nambu-Goldstone bosons coupled to the standard model sector through the Higgs portal, and axions produced by modulus decay.

  20. Axion dark matter and the 21-cm signal

    OpenAIRE

    Sikivie, Pierre

    2018-01-01

    It was shown in ref. [1] that cold dark matter axions reach thermal contact with baryons, and therefore cool them, shortly after the axions thermalize among themselves and form a Bose-Einstein condensate. The recent observation by the EDGES collaboration of a baryon temperature at cosmic dawn lower than expected under "standard" assumptions is interpreted as new evidence that the dark matter is axions, at least in part. Baryon cooling by dark matter axions is found to be consistent with the o...

  1. The hunt for axions

    International Nuclear Information System (INIS)

    Ringwald, Andreas

    2015-06-01

    Many theoretically well-motivated extensions of the Standard Model of particle physics predict the existence of the axion and further ultralight axion-like particles. They may constitute the mysterious dark matter in the universe and solve some puzzles in stellar and high-energy astrophysics. There are new, relatively small experiments around the globe, which started to hunt for these elusive particles and complement the accelerator based search for physics beyond the Standard Model.

  2. The hunt for axions

    Energy Technology Data Exchange (ETDEWEB)

    Ringwald, Andreas

    2015-06-15

    Many theoretically well-motivated extensions of the Standard Model of particle physics predict the existence of the axion and further ultralight axion-like particles. They may constitute the mysterious dark matter in the universe and solve some puzzles in stellar and high-energy astrophysics. There are new, relatively small experiments around the globe, which started to hunt for these elusive particles and complement the accelerator based search for physics beyond the Standard Model.

  3. First Axion Results from the XENON100 Experiment

    CERN Document Server

    Aprile, E.; Alfonsi, M.; Arisaka, K.; Arneodo, F.; Auger, M.; Balan, C.; Barrow, P.; Baudis, L.; Bauermeister, B.; Behrens, A.; Beltrame, P.; Bokeloh, K.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Cardoso, J.M.R.; Colijn, A.P.; Contreras, H.; Cussonneau, J.P.; Decowski, M.P.; Duchovni, E.; Fattori, S.; Ferella, A.D.; Fulgione, W.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L.W.; Grignon, C.; Gross, E.; Hampel, W.; Itay, R.; Kaether, F.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R.F.; Calloch, M. Le; Lellouch, D.; Levy, C.; Lindemann, S.; Lindner, M.; Lopes, J.A.M.; Lung, K.; Lyashenko, A.; Macmullin, S.; Marrodan Undagoitia, T.; Masbou, J.; Massoli, F.V.; Mayani Paras, D.; Melgarejo Fernandez, A. J.; Meng, Y.; Messina, M.; Miguez, B.; Molinario, A.; Murra, M.; Naganoma, J.; Oberlack, U.; Orrigo, S.E.A.; Pantic, E.; Persiani, R.; Piastra, F.; Pienaar, J.; Plante, G.; Priel, N.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; dos Santos, J. M. F.; Sartorelli, G.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Simgen, H.; Teymourian, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Vitells, O.; Wang, H.; Weber, M.; Weinheimer, C.

    2014-09-09

    We present the first results of searches for axions and axion-like-particles with the XENON100 experiment. The axion-electron coupling constant, $g_{Ae}$, has been tested by exploiting the axio-electric effect in liquid xenon. A profile likelihood analysis of 224.6 live days $\\times$ 34 kg exposure has shown no evidence for a signal. By rejecting $g_{Ae}$, larger than $7.7 \\times 10^{-12}$ (90% CL) in the solar axion search, we set the best limit to date on this coupling. In the frame of the DFSZ and KSVZ models, we exclude QCD axions heavier than 0.3 eV/c$^2$ and 80 eV/c$^2$, respectively. For axion-like-particles, under the assumption that they constitute the whole abundance of dark matter in our galaxy, we constrain $g_{Ae}$, to be lower than $1 \\times 10^{-12}$ (90% CL) for masses between 5 and 10 keV/c$^2$.

  4. Dielectric haloscopes: sensitivity to the axion dark matter velocity

    Energy Technology Data Exchange (ETDEWEB)

    Millar, Alexander J.; Redondo, Javier; Steffen, Frank D., E-mail: millar@mpp.mpg.de, E-mail: jredondo@unizar.es, E-mail: steffen@mpp.mpg.de [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany)

    2017-10-01

    We study the effect of the axion dark matter velocity in the recently proposed dielectric haloscopes, a promising avenue to search for well-motivated high mass (40–400 μeV) axions. We describe non-zero velocity effects for axion-photon mixing in a magnetic field and for the phenomenon of photon emission from interfaces between different dielectric media. As velocity effects are only important when the haloscope is larger than about 20% of the axion de Broglie wavelength, for the planned MADMAX experiment with 80 dielectric disks the velocity dependence can safely be neglected. However, an augmented MADMAX or a second generation experiment would be directionally sensitive to the axion velocity, and thus a sensitive measure of axion astrophysics.

  5. Axion mass limits from pulsar x rays

    International Nuclear Information System (INIS)

    Morris, D.E.

    1984-12-01

    Axions thermally emitted by a neutron star would be converted into x rays in the strong magnetic field surrounding the star. An improvement in the observational upper limit of pulsed x rays from the Vela pulsar (PSR 0833-45) by a factor of 12 would constrain the axion mass M/sub a/ -3 eV if the core is non-superfluid and at temperature T/sub c/ greater than or equal to 2 x 10 8 K. If the core is superfluid throughout, an improvement factor of 240 would be needed to provide the same constraint on the axion mass, while in the absence of superfluidity, an improvement factor of 200 could constrain M/sub a/ -4 eV. A search for modulated hard x rays from PSR 1509-58 or other young pulsars at presently attainable sensitivities may enable the setting of an upper limit for the axion mass. Observation of hard x rays from a very young hot pulsar with T/sub c/ greater than or equal to 7 x 10 8 K could set a firm bound on the axion mass, since neutron superfluidity is not expected above this temperature. The remaining axion mass range 6 x 10 -4 eV > M/sub a/ > 10 -5 eV (the cosmological lower bound) can be covered by an improved Sikivie type laboratory cavity detector for relic axions constituting the galactic halo. 48 refs

  6. Detection of a Hypercharge Axion in ATLAS

    CERN Document Server

    Elfgren, E

    This Master of Science thesis treats the hypercharge axion, which is a hypothetical pseudo-scalar particle with electroweak interactions. First, the theoretical context and the motivations for this study are discussed. In short, the hypercharge axion is introduced to explain the dominance of matter over antimatter in the universe and the existence of large-scale magnetic fields. Second, the phenomenological properties are analyzed and the distinguishing marks are underlined. These are basically the products of photons and $Z^0$s with high transverse momenta and invariant mass equal to that of the axion. Third, the simulation is carried out with two photons producing the axion which decays into $Z^0$s and/or photons. The event simulation is run through the simulator ATLFAST of ATLAS (A Toroidal Large Hadron Collider ApparatuS) at CERN. Finally, the characteristics of the axion decay are analyzed and the criteria for detection are presented. A study of the background is also included. The result is that for cer...

  7. Axion experiment makes its debut

    CERN Multimedia

    Dumé, Belle

    2004-01-01

    An experiment built from components recycled from other experiments has put new limits on the properties of particles that might be the "dark matter" that makes up about 25% of the universe. The CERN Axion Solar telescope (CAST) was built to search for exotic particles called axions that might be produced inside the sun (1 page)

  8. Search for Solar Axions by the CERN Axion Solar Telescope with He3 Buffer Gas: Closing the Hot Dark Matter Gap

    Science.gov (United States)

    Arik, M.; Aune, S.; Barth, K.; Belov, A.; Borghi, S.; Bräuninger, H.; Cantatore, G.; Carmona, J. M.; Cetin, S. A.; Collar, J. I.; Da Riva, E.; Dafni, T.; Davenport, M.; Eleftheriadis, C.; Elias, N.; Fanourakis, G.; Ferrer-Ribas, E.; Friedrich, P.; Galán, J.; García, J. A.; Gardikiotis, A.; Garza, J. G.; Gazis, E. N.; Geralis, T.; Georgiopoulou, E.; Giomataris, I.; Gninenko, S.; Gómez, H.; Gómez Marzoa, M.; Gruber, E.; Guthörl, T.; Hartmann, R.; Hauf, S.; Haug, F.; Hasinoff, M. D.; Hoffmann, D. H. H.; Iguaz, F. J.; Irastorza, I. G.; Jacoby, J.; Jakovčić, K.; Karuza, M.; Königsmann, K.; Kotthaus, R.; Krčmar, M.; Kuster, M.; Lakić, B.; Lang, P. M.; Laurent, J. M.; Liolios, A.; Ljubičić, A.; Luzón, G.; Neff, S.; Niinikoski, T.; Nordt, A.; Papaevangelou, T.; Pivovaroff, M. J.; Raffelt, G.; Riege, H.; Rodríguez, A.; Rosu, M.; Ruz, J.; Savvidis, I.; Shilon, I.; Silva, P. S.; Solanki, S. K.; Stewart, L.; Tomás, A.; Tsagri, M.; van Bibber, K.; Vafeiadis, T.; Villar, J.; Vogel, J. K.; Yildiz, S. C.; Zioutas, K.; CAST Collaboration

    2014-03-01

    The CERN Axion Solar Telescope has finished its search for solar axions with He3 buffer gas, covering the search range 0.64 eV≲ma≲1.17 eV. This closes the gap to the cosmological hot dark matter limit and actually overlaps with it. From the absence of excess x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of gaγ≲3.3×10-10 GeV-1 at 95% C.L., with the exact value depending on the pressure setting. Future direct solar axion searches will focus on increasing the sensitivity to smaller values of gaγ, for example by the currently discussed next generation helioscope International AXion Observatory.

  9. Generating a synthetic axion signal for cold cark matter axion searches using microwave cavities

    CERN Document Server

    AUTHOR|(CDS)2108502; Miceli, Lino

    2017-01-01

    We demonstrated that an axion signal in a RF resonator can be synthesized and controlled with commercially available instrumentation. Although this signal needs refinements, it can be customized to the needs of a specific cold dark matter axion search experiment. Since the modulator in the setup has arbitrary function generator capabilities, this apparatus is already capable to produce the necessary refinements, for instance a maxwellian line shape.

  10. Constraining axion dark matter with Big Bang Nucleosynthesis

    International Nuclear Information System (INIS)

    Blum, Kfir; D'Agnolo, Raffaele Tito; Lisanti, Mariangela; Safdi, Benjamin R.

    2014-01-01

    We show that Big Bang Nucleosynthesis (BBN) significantly constrains axion-like dark matter. The axion acts like an oscillating QCD θ angle that redshifts in the early Universe, increasing the neutron–proton mass difference at neutron freeze-out. An axion-like particle that couples too strongly to QCD results in the underproduction of 4 He during BBN and is thus excluded. The BBN bound overlaps with much of the parameter space that would be covered by proposed searches for a time-varying neutron EDM. The QCD axion does not couple strongly enough to affect BBN

  11. Constraining axion dark matter with Big Bang Nucleosynthesis

    Science.gov (United States)

    Blum, Kfir; D'Agnolo, Raffaele Tito; Lisanti, Mariangela; Safdi, Benjamin R.

    2014-10-01

    We show that Big Bang Nucleosynthesis (BBN) significantly constrains axion-like dark matter. The axion acts like an oscillating QCD θ angle that redshifts in the early Universe, increasing the neutron-proton mass difference at neutron freeze-out. An axion-like particle that couples too strongly to QCD results in the underproduction of 4He during BBN and is thus excluded. The BBN bound overlaps with much of the parameter space that would be covered by proposed searches for a time-varying neutron EDM. The QCD axion does not couple strongly enough to affect BBN.

  12. Cosmological abundance of the QCD axion coupled to hidden photons

    Science.gov (United States)

    Kitajima, Naoya; Sekiguchi, Toyokazu; Takahashi, Fuminobu

    2018-06-01

    We study the cosmological evolution of the QCD axion coupled to hidden photons. For a moderately strong coupling, the motion of the axion field leads to an explosive production of hidden photons by tachyonic instability. We use lattice simulations to evaluate the cosmological abundance of the QCD axion. In doing so, we incorporate the backreaction of the produced hidden photons on the axion dynamics, which becomes significant in the non-linear regime. We find that the axion abundance is suppressed by at most O (102) for the decay constant fa =1016GeV, compared to the case without the coupling. For a sufficiently large coupling, the motion of the QCD axion becomes strongly damped, and as a result, the axion abundance is enhanced. Our results show that the cosmological upper bound on the axion decay constant can be relaxed by a few hundred for a certain range of the coupling to hidden photons.

  13. Planckian axions and the Weak Gravity Conjecture

    International Nuclear Information System (INIS)

    Bachlechner, Thomas C.; Long, Cody; McAllister, Liam

    2016-01-01

    Several recent works http://dx.doi.org/10.1088/1475-7516/2015/09/020, http://dx.doi.org/10.1007/JHEP08(2015)032, http://dx.doi.org/10.1007/JHEP10(2015)023 have claimed that the Weak Gravity Conjecture (WGC) excludes super-Planckian displacements of axion fields, and hence large-field axion inflation, in the absence of monodromy. We argue that in theories with N≫1 axions, super-Planckian axion diameters D are readily allowed by the WGC. We clarify the nontrivial relationship between the kinetic matrix K — unambiguously defined by its form in a Minkowski-reduced basis — and the diameter of the axion fundamental domain, emphasizing that in general the diameter is not solely determined by the eigenvalues f_1"2≤…≤f_N"2 of K: the orientations of the eigenvectors with respect to the identifications imposed by instantons must be incorporated. In particular, even if one were to impose the condition f_N M_p_l does not immediately imply the existence of unsuppressed higher harmonic contributions to the potential. Finally, we argue that in effective axion-gravity theories, the zero-form version of the WGC can be satisfied by gravitational instantons that make negligible contributions to the potential.

  14. Results on axion physics from the CAST Experiment at CERN

    CERN Document Server

    Eleftheriadis, Christos A; Aune, S; Barth, K; Belov, A; Beltran, B; Bräuninger, H; Carmona, J; Cebrián, S; Collar, J I; Dafni, T; Davenport, M; Di Lella, L; Englhauser, J; Fanourakis, G K; Ferrer-Ribas, E; Fischer, H; Franz, J; Friedrich, P; Geralis, T; Giomataris, Ioanis; Gninenko, S; Gomez, H; Hasinoff, M; Heinsius, F H; Hoffmann, D H H; Irastorza, I G; Jacoby, J; Jakovcic, K; Kang, D; Königsmann, K C; Kotthaus, R; Krcmar, M; Kousouris, K; Kuster, M; Laki, B; Lasseur, C; Liolios, A; Ljubicic, cA; Lutz, G; Luzón, G; Miller, D; Morales, A; Morales, J; Nordt, A; Ortiz, A; Papaevangelou, T; Placci, A; Raffelt, G; Riege1, H; Rodríguez, A; Ruz, J; Savvidis, I; Semertzidis, Y K; Serpico, Pasquale Dario; Stewart, L; Villar, J; Vogel, J; Walckiers, L; Zioutas, K

    2007-01-01

    Axions are expected to be produced in the sun via the Primakoff process. They may be detected through the inverse process in the laboratory, under the influence of a strong magnetic field, giving rise to X-rays of energies in the range of a few keV. Such an Axion detector is the CERN Axion Solar Telescope (CAST), collecting data since 2003. Results have been published, pushing the axion-photon coupling g$_{a\\gamma}$ below the 10$^{-10}$ GeV$^{-1}$ limit at 95% CL, for axion masses less than 0.02 eV. This limit is nearly an order of magnitude lower than previous experimental limits and surpassed for the first time limits set from astrophysical arguments based on the energy-loss concept. The experiment is currently exploring axion masses in the range of 0.02 eV $< m_a <$ 1.1 eV. In the next run, currently under preparation, the axion mass explored will be extended up to the limit of 1.1 eV, testing for the first time the region of theoretical axion models with the axion helioscope method.

  15. Axions: on the way to invisibility

    International Nuclear Information System (INIS)

    Girardi, G.

    1982-01-01

    We present a survey of the theoretical motivation which lead to the axion and we summarize its properties. A brief account of the experimental situation is given, which in addition to cosmological constraints imposes to the axion the way of invisibility in Grand Unified Theories

  16. Search for solar axions by the CERN axion solar telescope with 3He buffer gas: closing the hot dark matter gap.

    Science.gov (United States)

    Arik, M; Aune, S; Barth, K; Belov, A; Borghi, S; Bräuninger, H; Cantatore, G; Carmona, J M; Cetin, S A; Collar, J I; Da Riva, E; Dafni, T; Davenport, M; Eleftheriadis, C; Elias, N; Fanourakis, G; Ferrer-Ribas, E; Friedrich, P; Galán, J; García, J A; Gardikiotis, A; Garza, J G; Gazis, E N; Geralis, T; Georgiopoulou, E; Giomataris, I; Gninenko, S; Gómez, H; Gómez Marzoa, M; Gruber, E; Guthörl, T; Hartmann, R; Hauf, S; Haug, F; Hasinoff, M D; Hoffmann, D H H; Iguaz, F J; Irastorza, I G; Jacoby, J; Jakovčić, K; Karuza, M; Königsmann, K; Kotthaus, R; Krčmar, M; Kuster, M; Lakić, B; Lang, P M; Laurent, J M; Liolios, A; Ljubičić, A; Luzón, G; Neff, S; Niinikoski, T; Nordt, A; Papaevangelou, T; Pivovaroff, M J; Raffelt, G; Riege, H; Rodríguez, A; Rosu, M; Ruz, J; Savvidis, I; Shilon, I; Silva, P S; Solanki, S K; Stewart, L; Tomás, A; Tsagri, M; van Bibber, K; Vafeiadis, T; Villar, J; Vogel, J K; Yildiz, S C; Zioutas, K

    2014-03-07

    The CERN Axion Solar Telescope has finished its search for solar axions with (3)He buffer gas, covering the search range 0.64 eV ≲ ma ≲ 1.17 eV. This closes the gap to the cosmological hot dark matter limit and actually overlaps with it. From the absence of excess x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of gaγ ≲ 3.3 × 10(-10)  GeV(-1) at 95% C.L., with the exact value depending on the pressure setting. Future direct solar axion searches will focus on increasing the sensitivity to smaller values of gaγ, for example by the currently discussed next generation helioscope International AXion Observatory.

  17. Universal constraints on axions from inflation

    DEFF Research Database (Denmark)

    Ferreira, R. Z.; Sloth, M. S.

    2014-01-01

    -roll evolution of the curvature perturbation on super horizon scales which should be taken into account. We also comment on implications for inflationary models where axions play an important role as, for example, models of natural inflation where more than one axion are included and models where the curvaton...... that the generation of curvature perturbation at horizon crossing due to the axial coupling has a universal form and remains unmodified in terms of the xi parameter even if the axion, sigma, is not identified with the inflaton. As a consequence, it does not appear to be possible to generate CMB tensor perturbations...

  18. The CERN axion solar telescope (CAST)

    International Nuclear Information System (INIS)

    Aalseth, C.E.; Arik, E.; Autiero, D.; Avignone, F.T.; Barth, K.; Bowyer, S.M.; Brauninger, H.; Brodzinski, R.L.; Carmona, J.M.; Cebrian, S.; Celebi, G.; Cetin, S.; Collar, J.I.; Creswick, R.; Delbart, A.; Delattre, M.; DiLella, L.; De Oliveira, R.; Eleftheriadis, Ch.; Erdutan, N.; Fanourakis, G.; Farach, H.A.; Fiorini, C.; Geralis, Th.; Giomataris, I.; Girard, T.A.; Gninenko, S.N.; Golubev, N.A.; Hasinoff, M.; Hoffmann, D.; Irastorza, I.G.; Jacoby, J.; Jeanneau, F.; Knopf, M.A.; Kovzelev, A.V.; Kotthaus, R.; Krcmar, M.; Krecak, Z.; Lakic, B.; Liolios, A.; Ljubicic, A.; Lutz, G.; Longoni, A.; Luzon, G.; Mailov, A.; Matveev, V.A.; Miley, H.S.; Morales, A.; Morales, J.; Mutterer, M.; Nikolaidis, A.; Nussinov, S.; Ortiz, A.; Pitts, W.K.; Placci, A.; Postoev, V.E.; Raffelt, G.G.; Riege, H.; Sampieto, M.; Sarsa, M.; Savvidis, I.; Stipcevic, M.; Thomas, C.W.; Thompson, R.C.; Valco, P.; Villar, J.A.; Villierme, B.; Walckiers, L.; Wilcox, W.; Zachariadou, K.; Zioutas, K.

    2002-01-01

    A decommissioned LHC test magnet is being prepared as the CERN Axion Solar Telescope (CAST) experiment. The magnet has a field of 9.6 Tesla and length of 10 meters. It is being mounted on a platform to track the sun over ±8 deg. vertically and ±45 deg. , horizontally. A sensitivity in axion-photon coupling gαγγ -11 GeV -1 can be reached for m α ≤ 10 -2 eV, and with a gas filled tube-can reach gαγγ ≤ 10 -10 GeV -1 for axion masses m α < 2eV

  19. Axion-photon conversion in space and in low symmetrical dielectric crystals

    International Nuclear Information System (INIS)

    Gorelik, V S

    2016-01-01

    The opportunities of axions detection as the result of axion-photon conversion processes in the space and in low symmetrical dielectric crystals are discussed. In accordance with the modern theory predictions, axions are pseudoscalar vacuum particles having very small (0.001-1.0 meV) rest energy. The possibility of axions conversion into photons and vice-versa processes in vacuum at the presence of outer magnetic field has been analyzed before. Pseudoscalar (axion type) modes are existing in some types of crystals. Polar pseudoscalar lattice and exciton modes in low symmetrical crystals are strongly interacted with axions. In this work, optical excitation of axion-type modes in low symmetrical crystals is proposed for observation of axion - photon conversion processes. Instead of outer magnetic field, the crystalline field of such crystals may be used. The experimental schemes for axion-photon conversion processes observation with recording the secondary emission of luminescence, infrared or Stimulated Raman Scattering in some dielectric crystals are discussed. (paper)

  20. A possible laboratory test for the axions

    International Nuclear Information System (INIS)

    Ramachandran, G.; Vinay Deepak, H.S.; Thomas, Sujith; Raghunath, C.; Cowsik, R.

    2011-01-01

    The axion is a hypothetical light boson with spin zero which was introduced theoretically more than 3 decades ago, following the Peccei-Quinn solution to the strong CP problem. The axion is one amongst the candidates for dark matter along with neutrinos, WIMPS, SIMPS, CHAMPS and Super heavy particles which could possibly be detected by neutrino facilities like IceCube. The purpose of the present contribution is to suggest a laboratory test for the existence of axions

  1. An argument that the dark matter is axions

    International Nuclear Information System (INIS)

    Sikivie, P.

    2014-01-01

    An argument is presented that the dark matter is axions, at least in part. It has 3 steps. First, axions behave differently from the other forms of cold dark matter because they form a re-thermalizing Bose-Einstein condensate (BEC)). Second, there is a tool to distinguish axion BEC from the other dark matter candidates on the basis of observation, namely the study of the inner caustics of galactic halos. Third, the observational evidence for caustic rings of dark matter is consistent in every aspect with axion BEC, but not with the other proposed forms of dark matter. (author)

  2. Constraining axion dark matter with Big Bang Nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Kfir; D' Agnolo, Raffaele Tito [Institute for Advanced Study, Princeton, NJ 08540 (United States); Lisanti, Mariangela; Safdi, Benjamin R. [Department of Physics, Princeton University, Princeton, NJ 08544 (United States)

    2014-10-07

    We show that Big Bang Nucleosynthesis (BBN) significantly constrains axion-like dark matter. The axion acts like an oscillating QCD θ angle that redshifts in the early Universe, increasing the neutron–proton mass difference at neutron freeze-out. An axion-like particle that couples too strongly to QCD results in the underproduction of {sup 4}He during BBN and is thus excluded. The BBN bound overlaps with much of the parameter space that would be covered by proposed searches for a time-varying neutron EDM. The QCD axion does not couple strongly enough to affect BBN.

  3. Constraining axion dark matter with Big Bang Nucleosynthesis

    Directory of Open Access Journals (Sweden)

    Kfir Blum

    2014-10-01

    Full Text Available We show that Big Bang Nucleosynthesis (BBN significantly constrains axion-like dark matter. The axion acts like an oscillating QCD θ angle that redshifts in the early Universe, increasing the neutron–proton mass difference at neutron freeze-out. An axion-like particle that couples too strongly to QCD results in the underproduction of He4 during BBN and is thus excluded. The BBN bound overlaps with much of the parameter space that would be covered by proposed searches for a time-varying neutron EDM. The QCD axion does not couple strongly enough to affect BBN.

  4. Probing eV-scale axions with CAST

    CERN Document Server

    Arik, E.; Autiero, D.; Barth, K.; Belov, A.; Beltran, B.; Borghi, S.; Bourlis, G.; Boydag, F.S.; Brauninger, H.; Carmona, J.M.; Cebrian, S.; Cetin, S.A.; Collar, J.I.; Dafni, T.; Davenport, M.; Di Lella, L.; Dogan, O.B.; Eleftheriadis, C.; Elias, N.; Fanourakis, G.; Ferrer-Ribas, E.; Fischer, H.; Friedrich, P.; Franz, J.; Galan, J.; Geralis, T.; Giomataris, I.; Gninenko, S.; Gomez, H.; Hartmann, R.; Hasinoff, M.; Heinsius, F.H.; Hikmet, I.; Hoffmann, D.H.H.; Irastorza, I.G.; Jacoby, J.; Jakovcic, K.; Kang, D.; Konigsmann, Kay; Kotthaus, R.; Krcmar, M.; Kousouris, K.; Kuster, M.; Lakic, B.; Lasseur, C.; Liolios, A.; Ljubicic, A.; Lutz, G.; Luzon, G.; Miller, D.; Morales, J.; Niinikoski, T.; Nordt, A.; Ortiz, A.; Papaevangelou, T.; Pivovaroff, M.J.; Placci, A.; Raffelt, G.; Riege, H.; Rodriguez, A.; Ruz, J.; Savvidis, I.; Semertzidis, Y.; Serpico, P.; Soufli, R.; Stewart, L.; van Bibber, K.; Villar, J.; Vogel, J.; Walckiers, L.; Zioutas, K.

    2009-01-01

    We have searched for solar axions or other pseudoscalar particles that couple to two photons by using the CERN Axion Solar Telescope (CAST) setup. Whereas we previously have reported results from CAST with evacuated magnet bores (Phase I), setting limits on lower mass axions, here we report results from CAST where the magnet bores were filled with \\hefour gas (Phase II) of variable pressure. The introduction of gas generated a refractive photon mass $m_\\gamma$, thereby achieving the maximum possible conversion rate for those axion masses \\ma that match $m_\\gamma$. With 160 different pressure settings we have scanned \\ma up to about 0.4 eV, taking approximately 2 h of data for each setting. From the absence of excess X-rays when the magnet was pointing to the Sun, we set a typical upper limit on the axion-photon coupling of $\\gag\\lesssim 2.17\\times 10^{-10} {\\rm GeV}^{-1}$ at 95% CL for $\\ma \\lesssim 0.4$ eV, the exact result depending on the pressure setting. The excluded parameter range covers realistic axio...

  5. Cavity Microwave Searches for Cosmological Axions

    CERN Multimedia

    CERN. Geneva

    2005-01-01

    The lecture will cover the searches for dark matter axions based on the microwave cavity experiment of Sikivie. The topics will begin with a brief overview of halo dark matter, and the axion as a candidate. The principle of resonant conversion of axions in an external magnetic field will be described, and practical considerations in optimizing the experiment as a signal-to-noise problem. A major focus of the lecture will be the two complementary strategies for ultra-low noise detection of the microwave photons - the "photon-as-wave" approach (i.e. conventional heterojunction amplifiers and soon quantum-limited SQUID devices), and "photon-as-particle" (i.e. Rydberg-atom single-quantum detection). Experimental results will be presented; these experiments have already reached well into the range of sensitivity to exclude plausible axion models, for limited ranges of mass. The lecture will conclude with a discussion of future plans and challenges for the microwave ca...

  6. The strong CP problem and the visibility of invisible axions

    International Nuclear Information System (INIS)

    Buchmueller, W.

    1986-12-01

    The main subject of these lectures are general properties of axions and recent suggestions of how to detect invisible axions. After a brief review of the strong CP problem and the Peccei-Quinn mechanism in sects. 2 and 3, we discuss axion properties by means of an effective lagrangian approach in sect. 4. Experimental bounds on axion production and decays are reviewed in sect. 5. Sect. 6 deals briefly with the recently proposed variant axion models, and in sect. 7 we discuss the possible relevance of supersymmetry to the strong CP problem. In sect. 8 we then review the different proposals for the detection of invisible axions. Some conclusions are given in sect. 9. (orig./HSI)

  7. Axion inflation in F-theory

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, Thomas W.

    2014-12-12

    We study the dynamics of axion-like fields in F-theory and suggest that they can serve as inflatons in models of natural inflation. The axions arise from harmonic three-forms on the F-theory compactification space and parameterize a complex torus that varies over the geometric moduli space. In particular, this implies that the axion decay constants depend on the complex structure moduli that can be fixed by background fluxes. This might allow tuning them to be super-Planckian in a controlled way and allow for interesting single field inflationary models. We argue that this requires a localization of the three-forms near regions of strong string coupling, analogously to the reasoning that GUT physics requires the use of F-theory. These models can admit a tensor to scalar ratio r>0.1.

  8. Axionic membranes

    International Nuclear Information System (INIS)

    Aurilia, A.; Spallucci, E.

    1992-01-01

    A metal ring removed from a soap-water solution encloses a film of soap which can be mathematically described as a minimal surface having the ring as its only boundary. This is known to everybody. In this letter we suggest a relativistic extension of the above fluidodynamic system where the soap film is replaced by a Kalb-Ramand gauge potential B μν (x) and the ring by a closed string. The interaction between the B μν field and the string current excites a new configuration of the system consisting of a relativistic membrane bounded by the string. We call such a classical solution of the equation of motion an axionic membrane. As a dynamical system, the axionic membrane admits a Hamilton-Jacobi formulation which is an extension of the HJ theory of electromagnetic strings. (orig.)

  9. First results from a second generation galactic axion experiment

    CERN Document Server

    Hagmann, C A; Stoeffl, W; Van Bibber, K; Daw, E J; McBride, J; Peng, H; Rosenberg, L J; Xin, H; La Veigne, J D; Sikivie, P; Sullivan, N; Tanner, D B; Moltz, D M; Nezrick, F A; Turner, M; Golubev, N A; Kravchuk, L V

    1996-01-01

    We report first results from a large scale search for dark matter axions. The experiment probes axion masses of 1.3-13 micro-eV at a sensitivity which is about 50 times higher than previous pilot experiments. We have already scanned part of this mass range at a sensitivity better than required to see at least one generic axion model, the KSVZ axion. Data taking at full sensitivity commenced in February 1996 and scanning the proposed mass range will require three years.

  10. QCD Axion Dark Matter with a Small Decay Constant

    Science.gov (United States)

    Co, Raymond T.; Hall, Lawrence J.; Harigaya, Keisuke

    2018-05-01

    The QCD axion is a good dark matter candidate. The observed dark matter abundance can arise from misalignment or defect mechanisms, which generically require an axion decay constant fa˜O (1011) GeV (or higher). We introduce a new cosmological origin for axion dark matter, parametric resonance from oscillations of the Peccei-Quinn symmetry breaking field, that requires fa˜(108- 1011) GeV . The axions may be warm enough to give deviations from cold dark matter in large scale structure.

  11. Dark matter through the axion portal

    International Nuclear Information System (INIS)

    Nomura, Yasunori; Thaler, Jesse

    2009-01-01

    Motivated by the galactic positron excess seen by PAMELA and ATIC/PPB-BETS, we propose that dark matter is a TeV-scale particle that annihilates into a pseudoscalar 'axion'. The positron excess and the absence of an antiproton or gamma ray excess constrain the axion mass and branching ratios. In the simplest realization, the axion is associated with a Peccei-Quinn symmetry, in which case it has a mass around 360-800 MeV and decays into muons. We present a simple and predictive supersymmetric model implementing this scenario, where both the Higgsino and dark matter obtain masses from the same source of TeV-scale spontaneous symmetry breaking.

  12. Axions from cooling compact stars: pair-breaking processes

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jochen; Sedrakian, Armen [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik

    2013-07-01

    Once formed in a supernova explosion, a neutron star cools rapidly via neutrino emission during the first 10{sup 4}-10{sup 5} years of its life-time. Here we compute the axion emission rate from baryonic components of a star at temperatures below their respective critical temperatures T{sub c} for normal-superfluid phase transition. The axion production is driven by a charge neutral weak process, associated with Cooper pair breaking and recombination. The requirement that the axion cooling does not overshadow the neutrino cooling yields a lower bound on the axion decay constant f{sub a} > 6 x 10{sup 9} T{sup -1}{sub c9} GeV, with T{sub c9} = T{sub c}/10{sup 9} K. This translates into an upper bound on the axion mass m{sub a} < 10{sup -3} T{sub c9} eV.

  13. Axions from cooling compact stars: Pair-breaking processes

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jochen [Institute for Theoretical Physics, J.W. Goethe-University, D-60438 Frankfurt am Main (Germany); Sedrakian, Armen, E-mail: sedrakian@th.physik.uni-frankfurt.de [Institute for Theoretical Physics, J.W. Goethe-University, D-60438 Frankfurt am Main (Germany)

    2013-01-02

    Once formed in a supernova explosion, a neutron star cools rapidly via neutrino emission during the first 10{sup 4}-10{sup 5} yr of its life-time. Here we compute the axion emission rate from baryonic components of a star at temperatures below their respective critical temperatures T{sub c} for normal-superfluid phase transition. The axion production is driven by a charge neutral weak process, associated with Cooper pair breaking and recombination. The requirement that the axion cooling does not overshadow the neutrino cooling puts a lower bound on the axion decay constant f{sub a}>6 Multiplication-Sign 10{sup 9}T{sub c9}{sup -1} GeV, with T{sub c9}=T{sub c}/10{sup 9} K. This translates into an upper bound on the axion mass m{sub a}<10{sup -3}T{sub c9} eV.

  14. Broadband and Resonant Approaches to Axion Dark Matter Detection.

    Science.gov (United States)

    Kahn, Yonatan; Safdi, Benjamin R; Thaler, Jesse

    2016-09-30

    When ultralight axion dark matter encounters a static magnetic field, it sources an effective electric current that follows the magnetic field lines and oscillates at the axion Compton frequency. We propose a new experiment to detect this axion effective current. In the presence of axion dark matter, a large toroidal magnet will act like an oscillating current ring, whose induced magnetic flux can be measured by an external pickup loop inductively coupled to a SQUID magnetometer. We consider both resonant and broadband readout circuits and show that a broadband approach has advantages at small axion masses. We estimate the reach of this design, taking into account the irreducible sources of noise, and demonstrate potential sensitivity to axionlike dark matter with masses in the range of 10^{-14}-10^{-6}  eV. In particular, both the broadband and resonant strategies can probe the QCD axion with a GUT-scale decay constant.

  15. The search for solar axions in the CAST experiment

    CERN Document Server

    Kang, Donghwa; Arsov, V.; Aune, S.; Autiero, D.; Avignone, F.T.; Barth, K.; Belov, A.; Beltran, B.; Brauninger, H.; Carmona, J.M.; Cebrian, S.; Chesi, E.; Collar, J.I.; Creswick, R.; Dafni, T.; Davenport, M.; Di Lella, L.; Eleftheriadis, C.; Englhauser, J.; Fanourakis, G.; Farach, H.; Ferrer, E.; Fischer, H.; Franz, J.; Friedrich, P.; Geralis, T.; Giomataris, I.; Gninenko, S.; Goloubev, N.; Hasinoff, M.D.; Heinsius, F.H.; Hoffmann, D.H.H.; Irastorza, I.G.; Jacoby, J.; Konigsmann, Kay; Kotthaus, R.; Krcmar, M.; Kousouris, K.; Kuster, M.; Lakic, B.; Lasseur, C.; Liolios, A.; Ljubicic, A.; Lutz, G.; Luzlon, G.; Miller, David Wilkins; Morales, A.; Morales, J.; Mutterer, M.; Nikolaidis, A.; Ortiz, A.; Papaevangelou, T.; Placci, A.; Raffelt, G.; Ruz, J.; Riege, H.; Sarsa, M.L.; Savvidis, I.; Serpico, P.; Semertzidis, Y.; Stewart, L.; Vieira, J.D.; Villar, J.; Vogel, J.; Walckiers, L.; Zachariadou, K.; Zioutas, K.; Kang, Donghwa

    2006-01-01

    The CAST (CERN Axion Solar Telescope) experiment at CERN searches for solar axions with energies in the keV range. It is possible that axions are produced in the core of the sun by the interaction of thermal photons with virtual photons of strong electromagnetic fields. In this experiment, the solar axions can be reconverted to photons in the transversal field of a 9 Tesla superconducting magnet. At both ends of the 10m-long dipole magnet three different X-ray detectors were installed, which are sensitive in the interesting photon energy range. Preliminary results from the analysis of the 2004 data are presented: g$_{a\\gamma}<0.9\\times10^{-10}$ GeV$^{-1}$ at 95% C.L. for axion masses m$_{a} <$ 0.02 eV. At the end of 2005, data started to be taken with a buffer gas in the magnet pipes in order to extend the sensitivity to axion masses up to 0.8 eV.

  16. A Piezoelectrically Tuned RF-Cavity Search for Dark Matter Axions

    Science.gov (United States)

    Boutan, Christian

    The Axion is a well motivated hypothetical elementary particle that must exist in nature if the strong CP problem of QCD is explained by the spontaneous breaking of a Peccei-Quinn symmetry. Not only would the discovery of the axion solve deep issues in QCD, an axion with a mass of mueV - meV could account for most or all of the missing mass in our galaxy and finally reveal the composition of dark matter. The Axion Dark Matter experiment (ADMX) seeks to resolve these two critical problems in physics by looking for the resonant conversion of dark-matter axions to microwave photons in a strong magnetic field. Utilizing state of the art electronics and dilution refrigerator cryogenics, ADMX is the world's leading haloscope search for axions - able to discover or rule out even the most pessimistically coupled QCD axions. With multi- TM0n0 functionality and with the commissioning of the new high-frequency Sidecar experiment, ADMX is also sensitive to a wide range of plausible axion masses. Here I motivate axions as ideal dark matter candidates, review techniques for detecting them and give a detailed description of the ADMX experiment. I discuss my contributions to the construction of the ADMX dual-channel receiver, which is the most sensitive microwave receiver on earth. I discuss the data acquisition, data taking and real-time analysis software. The primary focus of this work, however, is the ADMX Sidecar experiment which is a miniature axion haloscope that fits inside of the ADMX insert and has the capability of searching for axion masses between 16mueV - 24mueV on the TM0n0 and 26.4 - 30mueV on the TM 020. I discuss analysis of the Sidecar data and exclude axion-to-two-photon coupling gagammagamma matter. Over a narrow subsection of this range, 22.89 - 22.95mueV (˜15 MHz) I set a stricter limit gagammagamma < 10-12 GeV-1.

  17. Axion forces, gravity experiments and T violation

    International Nuclear Information System (INIS)

    Moody, J.E.

    1984-01-01

    A variety of light, weakly-coupled bosons have recently been suggested. Among them is the axion. This thesis considers the possibility of detecting axions or other light bosons via the macroscopic forces they mediate. The motivation for the axion is reviewed along with a detailed calculation of its mass and couplings. The microphysical basis of macroscopic forces is described and the three distinct axion force laws are thereby obtained. Of particular interest is the unique P and T violating monopole-dipole force. The magnitudes and ranges of axion forces are compared with the existing experimental limits. The possibilities for searching for (monopole) 2 , spin-spin and monopole-dipole forces are evaluated. Monopole-dipole experiments seem promising because the sensitive high-Q techniques of gravity wave research are applicable. Ultimate sensitivity, as limited by thermal noise, is evaluated for crystal oscillators and levitated systems. The very interesting problem of quantum uncertainty in weak force measurement is considered along with a way of getting around it called back action evasion. This is followed by a presentation of signal to noise analysis which folds together amplifier noise, quantum uncertainty, and Langevin noise

  18. Planckian axions in string theory

    International Nuclear Information System (INIS)

    Bachlechner, Thomas C.; Long, Cody; McAllister, Liam

    2015-01-01

    We argue that super-Planckian diameters of axion fundamental domains can arise in Calabi-Yau compactifications of string theory. In a theory with N axions θ i , the fundamental domain is a polytope defined by the periodicities of the axions, via constraints of the form −π√N. This result is robust in the presence of P>N constraints, while for P=N the diameter is further enhanced by eigenvector delocalization to N 3/2 f N . We directly verify our results in explicit Calabi-Yau compactifications of type IIB string theory. In the classic example with h 1,1 =51 where parametrically controlled moduli stabilization was demonstrated by Denef et al. in http://dx.doi.org/10.4310/ATMP.2005.v9.n6.a1, the largest metric eigenvalue obeys f N ≈0.013M pl . The random matrix analysis then predicts, and we exhibit, axion diameters ≈M pl for the precise vacuum parameters found in http://dx.doi.org/10.4310/ATMP.2005.v9.n6.a1. Our results provide a framework for pursuing large-field axion inflation in well-understood flux vacua.

  19. Axion helioscopes update: the status of CAST & IAXO

    DEFF Research Database (Denmark)

    Dafni, T; Iguaz, F. J.; Jakobsen, Anders Clemen

    2014-01-01

    Almost 35 years since their suggestion as a good solution to the strong CP-problem, axions remainone of the few viable candidates for the Dark Matter, although still eluding detection. Mostof the methods for their detection are based on their coupling to photons, one of the most sensitiveones being...... the helioscope technique. We report on the current status of the CERN Axion SolarTelescope and the future International Axion Observatory (IAXO). Recent results from the secondpart of CAST phase II, where the magnet bores were filled with 3He gas at variable pressureachieving sensibilities on the axion mass up...... to 1.2 eV, are presented. Currently, CAST is expectingto improve its sensitivity to solar axions with rest mass below 0.02 eV/c2 after the upgradeof the X-ray detectors and with the implementation of a second X-ray optic. At the same time,it is exploring other possibilities at the low energy physics...

  20. Non-thermal axion dark radiation and constraints

    International Nuclear Information System (INIS)

    Mazumdar, Anupam

    2016-07-01

    The Peccei-Quinn mechanism presents a neat solution to the strong CP problem. As a by-product, it provides an ideal dark matter candidate, ''the axion'', albeit with a tiny mass. Axions therefore can act as dark radiation if excited with large momenta after the end of inflation. Nevertheless, the recent measurement of relativistic degrees of freedom from cosmic microwave background radiation strictly constrains the abundance of such extra relativistic species. We show that ultra-relativistic axions can be abundantly produced if the Peccei-Quinn field was initially displaced from the minimum of the potential. This in lieu places an interesting constraint on the axion dark matter window with large decay constant which is expected to be probed by future experiments. Moreover, an upper bound on the reheating temperature can be placed, which further constrains the thermal history of our Universe.

  1. Axion oscillations and the quark-hadron phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Dowrick, N.; McDougall, N.A.

    1988-12-01

    We consider the possibility that the quark-hadron phase transition occurs when the axion field passes through the minimum of its potential during its oscillation cycle. If this were to occur, the axion field would gain no energy from the associated increase in mass thus permitting the cosmological bound on the axion decay constant to be raised. However, we find that the probability of this happening is small.

  2. Axion oscillations and the quark-hadron phase transition

    International Nuclear Information System (INIS)

    Dowrick, N.; McDougall, N.A.

    1988-01-01

    We consider the possibility that the quark-hadron phase transition occurs when the axion field passes through the minimum of its potential during its oscillation cycle. If this were to occur, the axion field would gain no energy from the associated increase in mass thus permitting the cosmological bound on the axion decay constant to be raised. However, we find that the probability of this happening is small. (orig.)

  3. Hierarchy in fermion masses and the phantom axion

    International Nuclear Information System (INIS)

    Nanopoulos, D.V.

    1981-01-01

    An SU(5) model is presented with hierarchical fermion masses without strong CP violation and with an almost unobservable axion. The key point is to ''tie'' the highly desirable U(1)sub(P-Q) symmetry to the symmetry needed for the fermion mass hierarchy. Since the symmetry is broken at super-high energies (10 15 GeV), the axion becomes super-difficult to detect. This is the Phantom Axion. (author)

  4. CMB probes on the correlated axion isocurvature perturbation

    International Nuclear Information System (INIS)

    Kadota, Kenji; Gong, Jinn-Ouk; Ichiki, Kiyotomo; Matsubara, Takahiko

    2015-01-01

    We explore the possible cosmological consequence of the gravitational coupling between the inflaton and axion-like fields. In view of the forthcoming cosmic microwave background (CMB) polarization and lensing data, we study the sensitivity of the CMB data on the cross-correlation between the curvature and axion isocurvature perturbations. Through a concrete example, we illustrate the explicit dependence of the scale dependent cross-correlation power spectrum on the axion parameters

  5. QCD Axion Dark Matter with a Small Decay Constant.

    Science.gov (United States)

    Co, Raymond T; Hall, Lawrence J; Harigaya, Keisuke

    2018-05-25

    The QCD axion is a good dark matter candidate. The observed dark matter abundance can arise from misalignment or defect mechanisms, which generically require an axion decay constant f_{a}∼O(10^{11})  GeV (or higher). We introduce a new cosmological origin for axion dark matter, parametric resonance from oscillations of the Peccei-Quinn symmetry breaking field, that requires f_{a}∼(10^{8}-10^{11})  GeV. The axions may be warm enough to give deviations from cold dark matter in large scale structure.

  6. Dark matter through the axion portal

    Science.gov (United States)

    Nomura, Yasunori; Thaler, Jesse

    2009-04-01

    Motivated by the galactic positron excess seen by PAMELA and ATIC/PPB-BETS, we propose that dark matter is a TeV-scale particle that annihilates into a pseudoscalar “axion.” The positron excess and the absence of an antiproton or gamma ray excess constrain the axion mass and branching ratios. In the simplest realization, the axion is associated with a Peccei-Quinn symmetry, in which case it has a mass around 360-800 MeV and decays into muons. We present a simple and predictive supersymmetric model implementing this scenario, where both the Higgsino and dark matter obtain masses from the same source of TeV-scale spontaneous symmetry breaking.

  7. Axion-photon conversion caused by dielectric interfaces: quantum field calculation

    Energy Technology Data Exchange (ETDEWEB)

    Ioannisian, Ara N. [Yerevan Physics Institute, Alikhanian Br. 2, 375036 Yerevan (Armenia); Kazarian, Narine [Institute for Theoretical Physics and Modeling, 375036 Yerevan (Armenia); Millar, Alexander J.; Raffelt, Georg G., E-mail: ara.ioannisyan@cern.ch, E-mail: narinkaz@gmail.com, E-mail: millar@mpp.mpg.de, E-mail: raffelt@mpp.mpg.de [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany)

    2017-09-01

    Axion-photon conversion at dielectric interfaces, immersed in a near-homogeneous magnetic field, is the basis for the dielectric haloscope method to search for axion dark matter. In analogy to transition radiation, this process is possible because the photon wave function is modified by the dielectric layers ('Garibian wave function') and is no longer an eigenstate of momentum. A conventional first-order perturbative calculation of the transition probability between a quantized axion state and these distorted photon states provides the microwave production rate. It agrees with previous results based on solving the classical Maxwell equations for the combined system of axions and electromagnetic fields. We argue that in general the average photon production rate is given by our result, independently of the detailed quantum state of the axion field. Moreover, our result provides a new perspective on axion-photon conversion in dielectric haloscopes because the rate is based on an overlap integral between unperturbed axion and photon wave functions, in analogy to the usual treatment of microwave-cavity haloscopes.

  8. Search for solar axions the CAST experiment at CERN

    CERN Document Server

    Beltran, Berta; Arsov, V.; Aune, S.; Autiero, D.; Avignone, F.; Barth, K.; Belov, A.; Brauninger, H.; Carmona, J.M.; Cebrian, S.; Chesi, E.; Collar, J.I.; Creswick, R.; Dafni, T.; Davenport, M.; Di Lella, L.; Eleftheriadis, C.; Englhauser, J.; Fanourakis, G.; Farach, H.; Ferrer, E.; Fischer, H.; Franz, J.; Friedrich, P.; Geralis, T.; Giomataris, I.; Gninenko, S.; Goloubev, N.; Hartmann, R.; Hasinoff, M.D.; Heinsius, F.H.; Hoffmann, D.H.H.; Irastorza, I.G.; Jacoby, J.; Kang, D.; Konigsmann, Kay; Kotthaus, R.; Krcmar, M.; Kousouris, K.; Kuster, M.; Lakic, B.; Lasseur, C.; Liolios, A.; Ljubicic, A.; Lutz, G.; Luzon, G.; Miller, David Wilkins; Morales, A.; Morales, J.; Mutterer, M.; Nikolaidis, A.; Ortiz, A.; Papaevangelou, T.; Placci, A.; Raffelt, G.; Ruz, J.; Riege, H.; Sarsa, M.L.; Savvidis, I.; Serber, W.; Serpico, P.; Semertzidis, Y.; Stewart, L.; Vieira, J.D.; Villar, J.; Walckiers, L.; Zachariadou, K.; Zioutas, K.; Beltran, Berta

    2006-01-01

    Hypothetical axion-like particles with a two-photon interaction would be produced in the sun by the Primakoff process. In a laboratory magnetic field they would be transformed into X-rays with energies of a few keV. The CAST experiment at CERN is using a decommissioned LHC magnet as an axion helioscope in order to search for these axion-like particles. The analysis of the 2003 data has shown no signal above the background, thus implying an upper limit to the axion-photon coupling < 1.16*10^{-10} GeV^{-1} at 95% CL for m_{a} <~ 0.02 eV. The stable operation of the experiment during 2004 data taking allow us to anticipate that this value will be improved. At the end of 2005 we expect to start with the so-called second phase of CAST, when the magnet pipes will be filled with a buffer gas so that the axion-photon coherence will be extended. In this way we will be able to search for axions with masses up to 1 eV.

  9. Small field axion inflation with sub-Planckian decay constant

    Energy Technology Data Exchange (ETDEWEB)

    Kadota, Kenji [Center for Theoretical Physics of the Universe, Institute for Basic Science,Daejeon 305-811 (Korea, Republic of); Kobayashi, Tatsuo [Department of Physics, Hokkaido University,Sapporo 060-0810 (Japan); Oikawa, Akane [Department of Physics, Waseda University,Tokyo 169-8555 (Japan); Omoto, Naoya [Department of Physics, Hokkaido University,Sapporo 060-0810 (Japan); Otsuka, Hajime [Department of Physics, Waseda University,Tokyo 169-8555 (Japan); Tatsuishi, Takuya H. [Department of Physics, Hokkaido University,Sapporo 060-0810 (Japan)

    2016-10-10

    We study an axion inflation model recently proposed within the framework of type IIB superstring theory, where we pay a particular attention to a sub-Planckian axion decay constant. Our axion potential can lead to the small field inflation with a small tensor-to-scalar ratio, and a typical reheating temperature can be as low as GeV.

  10. A viable axion model

    International Nuclear Information System (INIS)

    Peccei, R.D.; Wu Taitsun; Yanagida, T.

    1986-02-01

    We discuss whether an axion like excitation can be the source for the monoenergetic positrons observed at GSI. Although a direct extension of the original Peccei Quinn model is experimentally ruled out, it is possible to construct an alternative model which avoids all previous axion bounds, involving quarkonia decays, K decays, nuclear decays and beam dump experiments. The model predicts, at some level, the possibility of flavor changing interactions involving charmed quarks and suggests an appealing regularity for the quark and lepton masses. The expectations of the model for resonant e + e - scattering are briefly discussed. (orig.)

  11. Axion excursions of the landscape during inflation

    Science.gov (United States)

    Palma, Gonzalo A.; Riquelme, Walter

    2017-07-01

    Because of their quantum fluctuations, axion fields had a chance to experience field excursions traversing many minima of their potentials during inflation. We study this situation by analyzing the dynamics of an axion field ψ , present during inflation, with a periodic potential given by v (ψ )=Λ4[1 -cos (ψ /f )]. By assuming that the vacuum expectation value of the field is stabilized at one of its minima, say, ψ =0 , we compute every n -point correlation function of ψ up to first order in Λ4 using the in-in formalism. This computation allows us to identify the distribution function describing the probability of measuring ψ at a particular amplitude during inflation. Because ψ is able to tunnel between the barriers of the potential, we find that the probability distribution function consists of a non-Gaussian multimodal distribution such that the probability of measuring ψ at a minimum of v (ψ ) different from ψ =0 increases with time. As a result, at the end of inflation, different patches of the Universe are characterized by different values of the axion field amplitude, leading to important cosmological phenomenology: (a) Isocurvature fluctuations induced by the axion at the end of inflation could be highly non-Gaussian. (b) If the axion defines the strength of standard model couplings, then one is led to a concrete realization of the multiverse. (c) If the axion corresponds to dark matter, one is led to the possibility that, within our observable Universe, dark matter started with a nontrivial initial condition, implying novel signatures for future surveys.

  12. On the 3-form formulation of axion potentials from D-brane instantons

    Energy Technology Data Exchange (ETDEWEB)

    García-Valdecasas, Eduardo [Instituto de Física Teórica UAM-CSIC,C/Nicolás Cabrera 13-15, Campus de Cantoblanco, 28049 Madrid (Spain); Departamento de Física Teórica, Universidad Autónoma de Madrid,Campus de Cantoblanco, 28049 Madrid (Spain); Uranga, Angel [Instituto de Física Teórica UAM-CSIC,C/Nicolás Cabrera 13-15, Campus de Cantoblanco, 28049 Madrid (Spain)

    2017-02-16

    The study of axion models and quantum corrections to their potential has experienced great progress by phrasing the axion potential in terms of a 3-form field eating up the 2-form field dual to the axion. Such reformulation of the axion potential has been described for axion monodromy models and for axion potentials from non-perturbative gauge dynamics. In this paper we propose a 3-form description of the axion potentials from non-gauge D-brane instantons. Interestingly, the required 3-form field does not arise in the underlying geometry, but rather shows up in the KK compactification in the generalized geometry obtained when the backreaction of the D-brane instanton is taken into account.

  13. Testing the Rotation Stage in the ARIADNE Axion Experiment

    Science.gov (United States)

    Dargert, Jordan; Lohmeyer, Chloe; Harkness, Mindy; Cunningham, Mark; Fosbinder-Elkins, Harry; Geraci, Andrew; Ariadne Collaboration

    2017-04-01

    The Axion Resonant InterAction Detection Experiment (ARIADNE) will search for the Peccei-Quinn (PQ) axion, a hypothetical particle that is a dark matter candidate. Using a new technique based on Nuclear Magnetic Resonance, this new method can probe well into the allowed PQ axion mass range. Additionally, it does not rely on cosmological assumptions, meaning that the PQ Axion would be sourced locally. Our project relies on the stability of a rotating segmented source mass and superconducting magnetic shielding. Superconducting shielding is essential for limiting magnetic noise, thus allowing a feasible level of sensitivity required for PQ Axion detection. Progress on testing the stability of the rotary mechanism will be reported, and the design for the superconducting shielding in the experiment will be discussed, along with plans for moving the experiment forward. NSF Grant PHY-1509176.

  14. X-ray optics for axion helioscopes

    DEFF Research Database (Denmark)

    Jakobsen, Anders Clemen; Pivovaroff, Michael J.; Christensen, Finn Erland

    2013-01-01

    A method of optimizing grazing incidence x-ray coatings in ground based axion helioscopes is presented. Software has been been developed to find the optimum coating when taking both axion spectrum and Micromegas detector quantum efficiency into account. A comparison of the relative effective area...... of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only....

  15. Search for Solar Axions by the CERN Axion Solar Telescope with 3 He Buffer Gas: Closing the Hot Dark Matter Gap

    CERN Document Server

    Arik, M.; Barth, K.; Belov, A.; Borghi, S.; Bräuninger, H.; Cantatore, G.; Carmona, J.M.; Cetin, S.A.; Collar, J.I.; Da Riva, E.; Dafni, T.; Davenport, M.; Eleftheriadis, C.; Elias, N.; Fanourakis, G.; Ferrer-Ribas, E.; Friedrich, P.; Galán, J.; García, J.A.; Gardikiotis, A.; Garza, J.G.; Gazis, E.N.; Geralis, T.; Georgiopoulou, E.; Giomataris, I.; Gninenko, S.; Gómez, H.; Gómez Marzoa, M.; Gruber, E.; Guthörl, T.; Hartmann, R.; Hauf, S.; Haug, F.; Hasinoff, M.D.; Hoffmann, D.H.H.; Iguaz, F.J.; Irastorza, I.G.; Jacoby, J.; Jakovčić, K.; Karuza, M.; Königsmann, K.; Kotthaus, R.; Krčmar, M.; Kuster, M.; Lakić, B.; Lang, P.M.; Laurent, J.M.; Liolios, A.; Ljubičić, A.; Lozza, V.; Luzón, G.; Neff, S.; Niinikoski, T.; Nordt, A.; Papaevangelou, T.; Pivovaroff, M.J.; Raffelt, G.; Riege, H.; Rodríguez, A.; Rosu, M.; Ruz, J.; Savvidis, I.; Shilon, I.; Silva, P.S.; Solanki, S.K.; Stewart, L.; Tomás, A.; Tsagri, M.; van Bibber, K.; Vafeiadis, T.; Villar, J.; Vogel, J.K.; Yildiz, S.C.; Zioutas, K.

    2014-01-01

    The CERN Axion Solar Telescope (CAST) has finished its search for solar axions with 3^He buffer gas, covering the search range 0.64 eV < m_a <1.17 eV. This closes the gap to the cosmological hot dark matter limit and actually overlaps with it. From the absence of excess X-rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of g_ag < 3.3 x 10^{-10} GeV^{-1} at 95% CL, with the exact value depending on the pressure setting. Future direct solar axion searches will focus on increasing the sensitivity to smaller values of g_a, for example by the currently discussed next generation helioscope IAXO.

  16. Searching for axion-like particles with active-galactic nuclei

    International Nuclear Information System (INIS)

    Burrage, Clare; Davis, Anne-Christine; Shaw, Douglas J.

    2009-12-01

    Strong mixing between photons and axion-like particles in the magnetic fields of clusters of galaxies induces a scatter in the observed luminosities of compact sources in the cluster. This is used to construct a new test for axion-like particles; applied to observations of active galactic nuclei it is strongly suggestive of the existence of a light axion-like particle. (orig.)

  17. Searching for axion-like particles with active-galactic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Burrage, Clare [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Davis, Anne-Christine [Centre for Mathematical Sciences, Cambridge (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics; Shaw, Douglas J. [Queen Mary Univ. of London (United Kingdom). Astronomy Unit, School of Mathematical Sciences

    2009-12-15

    Strong mixing between photons and axion-like particles in the magnetic fields of clusters of galaxies induces a scatter in the observed luminosities of compact sources in the cluster. This is used to construct a new test for axion-like particles; applied to observations of active galactic nuclei it is strongly suggestive of the existence of a light axion-like particle. (orig.)

  18. Searching for axions and ALPs from string theory

    Energy Technology Data Exchange (ETDEWEB)

    Ringwald, Andreas

    2012-09-15

    We review searches for closed string axions and axion-like particles (ALPs) in IIB string flux compactifications. For natural values of the background fluxes and TeV scale gravitino mass, the moduli stabilisation mechanism of the LARGE Volume Scenario predicts the existence of a QCD axion candidate with intermediate scale decay constant, f{sub a} {proportional_to}10{sup 9/12} GeV, associated with the small cycles wrapped by the branes hosting the visible sector, plus a nearly massless and nearly decoupled ALP associated with the LARGE cycle. In setups where the visible sector branes are wrapping more than the minimum number of two intersecting cycles, there are more ALPs which have approximately the same decay constant and coupling to the photon as the QCD axion candidate, but which are exponentially lighter. There are exciting phenomenological opportunities to search for these axions and ALPs in the near future. For f{sub a} {proportional_to}10{sup 11/12} GeV, the QCD axion can be the dominant part of dark matter and be detected in haloscopes exploiting microwave cavities. For f{sub a} {proportional_to}10{sup 9/10} GeV, the additional ALPs could explain astrophysical anomalies and be searched for in the upcoming generation of helioscopes and light-shining-through-a-wall experiments.

  19. Harmful axions in superstring models

    International Nuclear Information System (INIS)

    Choi, K.; Kim, J.E.

    1985-01-01

    We show in this paper that the existing superstring models, E 8 x E 8 and O(32), have the axion decay constant problem. It is either 300 GeV or 10 16 GeV, which are outside the cosmologically allowed region. It is also pointed out that the invisible axion with 10 8 GeV 12 GeV is a necessity for all theories which have an effective interaction (PHIsub(n)/Msub(Pl))F tilde below the Planck scale. (orig.)

  20. Update of axion CDM energy density

    International Nuclear Information System (INIS)

    Huh, Ji-Haeng

    2008-01-01

    We update cosmological bound on axion model. The contribution from the anharmonic effect and the newly introduced initial overshoot correction are considered. We present an explicit formula for the axion relic density in terms of the QCD scale Λ QCD , the current quark masses m q 's and the Peccei-Quinn scale F a , including firstly introduced 1.85 factor which is from the initial overshoot.

  1. In quest of axionic hairs in quasars

    Science.gov (United States)

    Banerjee, Indrani; Mandal, Bhaswati; SenGupta, Soumitra

    2018-03-01

    The presence of axionic field can provide plausible explanation to several long standing problems in physics such as dark matter and dark energy. The pseudo-scalar axion whose derivative corresponds to the Hodge dual of the Kalb-Ramond field strength in four dimensions plays crucial roles in explaining several astrophysical and cosmological observations. Therefore, the detection of axionic hairs/Kalb-Ramond field which appears as closed string excitations in the heterotic string spectrum may provide a profound insight to our understanding of the current universe. The current level of precision achieved in solar-system based tests employed to test general relativity, is not sufficient to detect the presence of axion. However, the near horizon regime of quasars where the curvature effects are maximum seems to be a natural laboratory to probe such additions to the matter sector. The continuum spectrum emitted from the accretion disk around quasars encapsulates the imprints of the background spacetime and hence acts as a storehouse of information regarding the nature of gravitational interaction in extreme situations. The surfeit of data available in the electromagnetic domain provides a further motivation to explore such systems. Using the optical data for eighty Palomar Green quasars we demonstrate that the theoretical estimates of optical luminosity explain the observations best when the axionic field is assumed to be absent. However, axion which violates the energy condition seems to be favored by observations which has several interesting consequences. Error estimators, including reduced χ2, Nash-Sutcliffe efficiency, index of agreement and modified versions of the last two are used to solidify our conclusion and the implications of our result are discussed.

  2. Radio-loud magnetars as detectors for axions and axion-like particles

    International Nuclear Information System (INIS)

    Guendelman, E.I.; Chelouche, D.

    2011-01-01

    We show that, by studying the arrival times of radio pulses from highly-magnetized transient beamed sources, it may be possible to detect light pseudo-scalar particles, such as axions and axion-like particles, whose existence could have considerable implications for the strong-CP problem of QCD as well as the dark matter problem in cosmology. Specifically, such light bosons may be detected with a much greater sensitivity, over a broad particle mass range, than is currently achievable by terrestrial experiments, and using indirect astrophysical considerations. The observable effect was discussed in Chelouche & Guendelman (2009), and is akin to the Stern-Gerlach experiment: the splitting of a photon beam naturally arises when finite coupling exists between the electro-magnetic field and the axion field. The splitting angle of the light beams linearly depends on the photon wavelength, the size of the magnetized region, and the magnetic field gradient in the transverse direction to the propagation direction of the photons. If radio emission in radio-loud magnetars is beamed and originates in regions with strong magnetic field gradients, then splitting of individual pulses may be detectable. We quantify the effect for a simplified model for magnetars, and search for radio beam splitting in the 2GHz radio light curves of the radio loud magnetar XTEJ1810-197. (author)

  3. Tunneling in axion monodromy

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Jon; Cottrell, William; Shiu, Gary; Soler, Pablo [Department of Physics, University of Wisconsin,Madison, WI 53706 (United States)

    2016-10-06

    The Coleman formula for vacuum decay and bubble nucleation has been used to estimate the tunneling rate in models of axion monodromy in recent literature. However, several of Coleman’s original assumptions do not hold for such models. Here we derive a new estimate with this in mind using a similar Euclidean procedure. We find that there are significant regions of parameter space for which the tunneling rate in axion monodromy is not well approximated by the Coleman formula. However, there is also a regime relevant to large field inflation in which both estimates parametrically agree. We also briefly comment on the applications of our results to the relaxion scenario.

  4. What is the magnetic Weak Gravity Conjecture for axions

    Energy Technology Data Exchange (ETDEWEB)

    Hebecker, Arthur; Henkenjohann, Philipp [Institute for Theoretical Physics, University of Heidelberg (Germany); Witkowski, Lukas T. [APC, Universite Paris 7, CNRS/IN2P3, CEA/IRFU, Obs. de Paris, Sorbonne Paris Cite, Paris (France)

    2017-03-15

    The electric Weak Gravity Conjecture demands that axions with large decay constant f couple to light instantons. The resulting large instantonic corrections pose problems for natural inflation. We explore an alternative argument based on the magnetic Weak Gravity Conjecture for axions, which we try to make more precise. Roughly speaking, it demands that the minimally charged string coupled to the dual 2-form-field exists in the effective theory. Most naively, such large-f strings curve space too much to exist as static solutions, thus ruling out large-f axions. More conservatively, one might allow non-static string solutions to play the role of the required charged objects. In this case, topological inflation would save the superplanckian axion. Furthermore, a large-f axion may appear in the low-energy effective theory based on two subplanckian axions in the UV. The resulting effective string is a composite object built from several elementary strings and domain walls. It may or may not satisfy the magnetic Weak Gravity Conjecture depending on how strictly the latter is interpreted and on the cosmological dynamics of this composite object, which remain to be fully understood. Finally, we recall that large-field brane inflation is naively possible in the codimension-one case. We show how string-theoretic back-reaction closes this apparent loophole of large-f (non-periodic) pseudo-axions. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Axion searches with microwave filters: the RADES project

    Science.gov (United States)

    Álvarez Melcón, Alejandro; Arguedas Cuendis, Sergio; Cogollos, Cristian; Díaz-Morcillo, Alejandro; Döbrich, Babette; Gallego, Juan Daniel; Gimeno, Benito; Irastorza, Igor G.; José Lozano-Guerrero, Antonio; Malbrunot, Chloé; Navarro, Pablo; Peña Garay, Carlos; Redondo, Javier; Vafeiadis, Theodoros; Wuensch, Walter

    2018-05-01

    We propose, design and construct a variant of the conventional axion haloscope concept that could be competitive in the search for dark matter axions of masses in the decade 10–100 μeV. Theses masses are located somewhat above the mass range in which existing experiments have reached sensitivity to benchmark QCD axion models. Our haloscope consists of an array of small microwave cavities connected by rectangular irises, in an arrangement commonly used in radio-frequency filters. The size of the unit cavity determines the main resonant frequency, while the possibility to connect a large number of cavities allows to reach large detection volumes. We develop the theoretical framework of the detection concept, and present design prescriptions to optimize detection capabilities. We describe the design and realization of a first small-scale prototype of this concept, called Relic Axion Detector Exploratory Setup (RADES). It consists of a copper-coated stainless steel five-cavities microwave filter with the detecting mode operating at around 8.4 GHz. This structure has been electromagnetically characterized at 2 K and 298 K, and it is now placed in ultra-high vacuum in one of the twin-bores of the 9 T CAST dipole magnet at CERN. We describe the data acquisition system developed for relic axion detection, and present preliminary results of the electromagnetic properties of the microwave filter, which show the potential of filters to reach QCD axion window sensitivity at X-band frequencies.

  6. Phenomenology and Astrophysics of Gravitationally-Bound Condensates of Axion-Like Particles

    Energy Technology Data Exchange (ETDEWEB)

    Eby, Joshua Armstrong [Univ. of Cincinnati, OH (United States)

    2017-01-01

    Light, spin-0 particles are ubiquitous in theories of physics beyond the Standard Model, and many of these make good candidates for the identity of dark matter. One very well-motivated candidate of this type is the axion. Due to their small mass and adherence to Bose statistics, axions can coalesce into heavy, gravitationally-bound condensates known as boson stars, also known as axion stars (in particular). In this work, we outline our recent progress in attempts to determine the properties of axion stars. We begin with a brief overview of the Standard Model, axions, and bosonic condensates in general. Then, in the context of axion stars, we will present our recent work, which includes: numerical estimates of the macroscopic properties (mass, radius, and particle number) of gravitationally stable axion stars; a calculation of their decay lifetime through number-changing interactions; an analysis of the gravitational collapse process for very heavy states; and an investigation of the implications of axion stars as dark matter. The basic conclusions of our work are that weakly-bound axion stars are only stable up to some calculable maximum mass, whereas states with larger masses collapse to a small radius, but do not form black holes. During collapse, a rapidly increasing binding energy implies a fast rate of decay to relativistic particles, giving rise to a Bosenova. Axion stars that are otherwise stable could be caused to collapse either by accretion of free particles to masses above the maximum, or through astrophysical collisions; in the latter case, we estimate the rate of collisions and the parameter space relevant to induced collapse.

  7. Chiral primordial blue tensor spectra from the axion-gauge couplings

    Energy Technology Data Exchange (ETDEWEB)

    Obata, Ippei, E-mail: obata@tap.scphys.kyoto-u.ac.jp [Department of Physics, Kyoto University, Kyoto, 606-8502 (Japan)

    2017-06-01

    We suggest the new feature of primordial gravitational waves sourced by the axion-gauge couplings, whose forms are motivated by the dimensional reduction of the form field in the string theory. In our inflationary model, as an inflaton we adopt two types of axion, dubbed the model-independent axion and the model-dependent axion, which couple with two gauge groups with different sign combination each other. Due to these forms both polarization modes of gauge fields are amplified and enhance both helicies of tensor modes during inflation. We point out the possibility that a primordial blue-tilted tensor power spectra with small chirality are provided by the combination of these axion-gauge couplings, intriguingly both amplitudes and chirality are potentially testable by future space-based gravitational wave interferometers such as DECIGO and BBO project.

  8. Search for solar axions with CsI(Tl) crystal detectors

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Y.S. [Center for Underground Physics, Institute for Basic Science (IBS), Daejon 34047 (Korea, Republic of); Park, H.K. [Center for Underground Physics, Institute for Basic Science (IBS), Daejon 34047 (Korea, Republic of); Basic Science, IBS-UST School, Daejeon 34047 (Korea, Republic of); Bhang, H.; Choi, J.H. [Department of Physics and Astronomy, Seoul National University, Seoul 08826 (Korea, Republic of); Collaboration: The KIMS collaboration

    2016-06-01

    The results of a search for solar axions from the Korea Invisible Mass Search (KIMS) experiment at the Yangyang Underground Laboratory are presented. Low-energy electron-recoil events would be produced by conversion of solar axions into electrons via the axio-electric effect in CsI(Tl) crystals. Using data from an exposure of 34,596 kg⋅days, we set a 90 % confidence level upper limit on the axion-electron coupling, g{sub ae}, of 1.39×10{sup −11} for an axion mass less than 1 keV/c{sup 2}. This limit is lower than the indirect solar neutrino bound, and fully excludes QCD axions heavier than 0.48 eV/c{sup 2} and 140.9 eV/c{sup 2} for the DFSZ and KSVZ models respectively.

  9. Sensitivity of proposed search for axion-induced magnetic field using optically pumped magnetometers

    Science.gov (United States)

    Chu, P.-H.; Duffy, L. D.; Kim, Y. J.; Savukov, I. M.

    2018-04-01

    We investigate the sensitivity of a search for the oscillating current induced by axion dark matter in an external magnetic field using optically pumped magnetometers. This experiment is based upon the LC circuit (circuit with inductor and capacitor) axion detection concept of Sikivie et al. [Phys. Rev. Lett. 112, 131301 (2014), 10.1103/PhysRevLett.112.131301]. The modification of Maxwell's equations caused by the axion-photon coupling results in a minute magnetic field oscillating at a frequency equal to the axion mass, in the presence of an external magnetic field. The axion-induced magnetic field could be searched for using a LC circuit amplifier with an optically pumped magnetometer, the most sensitive cryogen-free magnetic-field sensor, in a room-temperature experiment, avoiding the need for a complicated and expensive cryogenic system. We discuss how an existing magnetic resonance imaging experiment can be modified to search for axions in a previously unexplored part of the parameter space. Our existing detection setup, optimized for magnetic resonance imagining, is already sensitive to an axion-photon coupling of 10-7 GeV-1 for an axion mass near 3 ×10-10 eV , which is already limited by astrophysical processes and solar axion searches. We show that realistic modifications, and optimization of the experiment for axion detection, can probe the axion-photon coupling up to 4 orders of magnitude beyond the current best limit, for axion masses between 10-11 and 10-7 eV .

  10. The Superconducting Toroid for the New International AXion Observatory (IAXO)

    CERN Document Server

    Shilon, I.; Silva, H.; Wagner, U.; ten Kate, H.H.J.

    2013-01-01

    IAXO, the new International AXion Observatory, will feature the most ambitious detector for solar axions to date. Axions are hypothetical particles which were postulated to solve one of the puzzles arising in the standard model of particle physics, namely the strong CP (Charge conjugation and Parity) problem. This detector aims at achieving a sensitivity to the coupling between axions and photons of one order of magnitude beyond the limits of the current detector, the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a high-magnetic field distributed over a very large volume to convert solar axions to detectable X-ray photons. Inspired by the ATLAS barrel and end-cap toroids, a large superconducting toroid is being designed. The toroid comprises eight, one meter wide and twenty one meters long racetrack coils. The assembled toroid is sized 5.2 m in diameter and 25 m in length and its mass is about 250 tons. The useful field in the bores is 2.5 T while the peak magnetic field in the windings is 5....

  11. Conversion and Operation of CAST as a massive axion detector

    CERN Document Server

    Elias, Nuno; Bordalo, Paula

    2010-01-01

    The axion was postulated after an elegant solution proposed by R. Peccei and H. Quinn to solve the strong CP problem of Quantum Chromodynamics. The CAST experiment searches for axions created in the core of the Sun. It uses an LHC superconducting prototype magnet to trigger the axion conversion into detectable X-ray photons. During its First Phase, with the magnetic field region kept under vacuum, CAST searched with high sensitivity for axion masses up to 0.02 eV/c2, for higher values the conversion coherence is lost. This thesis reflects the work that allows CAST to extend its search up to axion masses of 1 eV/c2. To restore the lost coherence a buffer gas is introduced in the magnet cold bores, such that the photon arising from the Primakoff conversion acquires an effective mass. The axion mass can be effectively scanned by fine tuning the gas density. The conversion of the experiment required the study, design and construction of a complex gas handling system to deal with a rare helium isotope, 3He. It rep...

  12. A Solar Axion Search Using a Decommissioned LHC Test Magnet

    CERN Multimedia

    Lozza, V; Christensen, F E; Jakobsen, A C; Neff, S H; Carmona martinez, J M; Giomataris, I; Krcmar, M; Vafeiadis, T; Luzon marco, G M; Gracia garza, J; Lakic, B; Cantatore, G; Solanki, S K; Ozbey, A; Davenport, M; Funk, W; Desch, K K; Villar, J A; Jakovcic, K; Eleftheriadis, C; Diago ortega, A; Zioutas, K; Gardikiotis, A; Cetin, S A; Hasinoff, M D; Hoffmann, D; Laurent, J; Castel pablo, J F; Gninenko, S; Ferrer ribas, E; Liolios, A; Anastasopoulos, V; Kaminski, J; Dafni, T; Garcia irastorza, I; Ruiz choliz, E; Pivovaroff, M J; Krieger, C; Lutz, G; Fanourakis, G; Ruz armendariz, J; Vogel, J K

    2002-01-01

    Previous solar axion searches have been carried out in Brookhaven (1990) and in Tokyo (2000- ), tracking the Sun with a dipole magnet. QCD inspired axions should be produced after the Big Bang, being thus candidates for the dark matter. The Sun is a very useful source of weakly interacting particles for fundamental research. Axions can be produced also in the Sun's core through the scattering of thermal photons in the Coulomb field of electric charges (Primakoff effect). In a transverse magnetic field the Primakoff effect can work in reverse, coherently converting the solar axions or other axion-like particles (ALPS) back into X-ray photons in the keV range. The conversion efficiency increases with $(B⋅L)^2$. In the CAST experiment an LHC prototype dipole magnet (B = 9 T and L = 10 m) with straight beam pipes provides a conversion efficiency exceeding that of the two earlier solar axion telescopes by almost a factor of 100. This magnet is mounted on a moving platform and coupled to both gas filled and soli...

  13. CrossRef The CERN Axion Solar Telescope

    CERN Document Server

    Hasinoff, M D; Arik, E; Autiero, D; Avignone, F; Barth, K; Bingol, E; Brauninger, H; Brodzinski, R; Carmona, J; Chesi, E; Cebrian, S; Cetin, S; Collar, J; Creswick, R; Dafni, T; De Oliveira, R; Dedoussis, S; Delbart, A; Di Lella, L; Eleftheriadis, C; Fanourakis, G; Farach, H; Fischer, H; Formenti, F; Geralis, T; Giomataris, I; Gninenko, S; Goloubev, N; Hartmann, R; Hoffmann, D; Irastorza, I G; Jacoby, J; Kang, D; Konigsmann, K; Kotthaus, R; Krcmar, M; Kuster, M; Lakic, B; Liolios, A; LJubicic, A; Lutz, G; Luzon, G; Miley, H; Morales, A; Morales, J; Mutterer, M; Nikolaidis, A; Ortiz, A; Papaevangelou, T; Placci, A; Raffelt, G; Riege, H; Sarsa, M; Savvidis, I; Schopper, R; Semertzidis, I; Spano, C; Villar, J; Vullierme, B; Walckiers, L; Zachariadou, K; Zioutas, K

    2003-01-01

    The CAST experiment at CERN is using a decommissioned LHC prototype magnet to search for solar axions through their Primakoff conversion into x-ray photons. The magnet (B = 9.0 Tesla, L = 10 m) can track the sun each day for a total exposure time of ~180 minutes (sunrise + sunset). We expect to reach a sensitivity in axion-photon coupling, gaγγ ≲ 5 × 10-11 GeV-1 for ma ≲ 10-2 eV after ˜1 year's running time. By filling the beam tube with 4He or 3He gas we should be able to extend the sensitive axion mass region into the eV mass range.

  14. The International Axion Observatory IAXO. Letter of Intent to the CERN SPS committee

    CERN Document Server

    Irastorza, Igor G; Avignone, F. T.; Betz, M.; Brax, P.; Brun, P.; Cantatore, G.; Carmona, J. M.; Carosi, G. P.; Caspers, F.; Caspi, S.; Cetin, S. A.; Chelouche, D.; Christensen, F. E.; Dael, A.; Dafni, T.; Davenport, M.; Derbin, A.V.; Desch, K.; Diago, A.; Dobrich, B. D.; Dratchnev, I.; Dudarev, A.; Eleftheriadis, C.; Fanourakis, G.; Ferrer-Ribas, E.; Galan, J.; Garcia, J. A.; Garza, J. G.; Geralis, T.; Gimeno, B.; Giomataris, I.; Gninenko, S.; Gomez, H.; Gonzalez-Diaz, D.; Guendelman, E.; Hailey, C. J.; Hiramatsu, T.; Hoffmann, D. H. H.; Horns, D.; Iguaz, F. J.; Isern, J.; Imai, K.; Jakobsen, A. C.; Jaeckel, J.; Jakovcic, K.; Kaminski, J.; Kawasaki, M.; Karuza, M.; Krcmar, M.; Kousouris, K.; Krieger, C.; Lakic, B.; Limousin, O.; Lindner, A.; Liolios, A.; Luzon, G.; Matsuki, S.; Muratova, V. N.; Nones, C.; Ortega, I.; Papaevangelou, T.; Pivovaroff, M. J.; Raffelt, G.; Redondo, J.; Ringwald, A.; Russenschuck, S.; Ruz, J.; Saikawa, K.; Savvidis, I.; Sekiguchi, T.; Semertzidis, Y. K.; Shilon, I.; Sikivie, P.; Silva, H.; Kate, H. ten; Tomas, A.; Troitsky, S.; Vafeiadis, T.; van Bibber, K.; Vedrine, P.; Villar, J. A.; Vogel, J. K.; Walckiers, L.; Weltman, A.; Wester, W.; Yildiz, S. C.; Zioutas, K.; CERN. Geneva. SPS and PS Experiments Committee; SPSC

    2013-01-01

    This Letter of Intent describes IAXO, the International Axion Observatory, a proposed 4th generation axion helioscope. As its primary physics goal, IAXO will look for axions or axion-like particles (ALPs) originating in the Sun via the Primakoff conversion of the solar plasma photons. In terms of signal to background ratio, IAXO will be about 4-5 orders of magnitude more sensitive than CAST, which means that this instrument will reach sensitivity to axion-photon couplings down to a few $\\times 10^{-12}$ GeV$^{-1}$. IAXO has the potential for the discovery of axions and other ALPs, since it will deeply enter into unexplored parameter space. At the very least it will firmly exclude a large region of this space of high cosmological and astrophysical relevance. In particular it will probe a large fraction of the high mass part (1 meV to 1 eV) of the QCD axion allowed window. Additional physics cases for IAXO include the possibility of detecting solar axions produced by mechanisms mediated by the axion-electron co...

  15. Supernova 1987A Constraints on Sub-GeV Dark Sectors, Millicharged Particles, the QCD Axion, and an Axion-like Particle

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jae Hyeok [YITP, Stony Brook; Essig, Rouven [YITP, Stony Brook; McDermott, Samuel D. [Fermilab

    2018-03-02

    We consider the constraints from Supernova 1987A on particles with small couplings to the Standard Model. We discuss a model with a fermion coupled to a dark photon, with various mass relations in the dark sector; millicharged particles; dark-sector fermions with inelastic transitions; the hadronic QCD axion; and an axion-like particle that couples to Standard Model fermions with couplings proportional to their mass. In the fermion cases, we develop a new diagnostic for assessing when such a particle is trapped at large mixing angles. Our bounds for a fermion coupled to a dark photon constrain small couplings and masses <200 MeV, and do not decouple for low fermion masses. They exclude parameter space that is otherwise unconstrained by existing accelerator-based and direct-detection searches. In addition, our bounds are complementary to proposed laboratory searches for sub-GeV dark matter, and do not constrain several "thermal" benchmark-model targets. For a millicharged particle, we exclude charges between 10^(-9) to a few times 10^(-6) in units of the electron charge; this excludes parameter space to higher millicharges and masses than previous bounds. For the QCD axion and an axion-like particle, we apply several updated nuclear physics calculations and include the energy dependence of the optical depth to accurately account for energy loss at large couplings. We rule out a hadronic axion of mass between 0.1 and a few hundred eV, or equivalently bound the PQ scale between a few times 10^4 and 10^8 GeV, closing the hadronic axion window. For an axion-like particle, our bounds disfavor decay constants between a few times 10^5 GeV up to a few times 10^8 GeV. In all cases, our bounds differ from previous work by more than an order of magnitude across the entire parameter space. We also provide estimated systematic errors due to the uncertainties of the progenitor.

  16. The next phase of the Axion Dark Matter eXperiment

    Science.gov (United States)

    Carosi, Gianpaolo; Asztalos, S.; Hagmann, C.; Kinion, D.; van Bibber, K.; Hotz, M.; Lyapustin, D.; Rosenberg, L.; Rybka, G.; Wagner, A.; Hoskins, J.; Martin, C.; Sikivie, P.; Sullivan, N.; Tanner, D.; Bradley, R.; Clarke, J.; ADMX Collaboration

    2011-04-01

    Axions are a well motivated dark matter candidate which may be detected by their resonant conversion to photons in the presence of a large static magnetic field. The Axion Dark Matter eXperiment recently finished a search for DM axions using a new ultralow noise microwave receiver based on a SQUID amplifier. The success of this precursor experiment has paved the way for a definitive axion search which will see the system noise temperature lowered from 1.8 K to 100 mK, dramatically increasing sensitivity to even pessimistic axion models as well as increasing scan speed. Here we discuss the implementation of this next experimental phase. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. arXiv New CAST Limit on the Axion-Photon Interaction

    CERN Document Server

    Anastassopoulos, V.; Barth, K.; Belov, A.; Bräuninger, H.; Cantatore, G.; Carmona, J.M.; Castel, J.F.; Cetin, S.A.; Christensen, F.; Collar, J.I.; Dafni, T.; Davenport, M.; Decker, T.A.; Dermenev, A.; Desch, K.; Eleftheriadis, C.; Fanourakis, G.; Ferrer-Ribas, E.; Fischer, H.; Garć ia, J.A.; Gardikiotis, A.; Garza, J.G.; Gazis, E.N.; Geralis, T.; Giomataris, I.; Gninenko, S.; Hailey, C.J.; Hasinoff, M.D.; Hoffmann, D.H.H.; Iguaz, F.J.; Irastorza, Igor Garcia; Jakobsen, A.; Jacoby, J.; Jakovčí c, K.; Kaminski, J.; Karuza, M.; Kralj, N.; Krčmar, M.; Kostoglou, S.; Krieger, Ch.; Lakić, B.; Laurent, J.M.; Liolios, A.; Ljubičić, A.; Luzón, G.; Maroudas, M.; Miceli, L.; Neff, S.; Ortega, I.; Papaevangelou, T.; Paraschou, K.; Pivovaroff, M.J.; Raffelt, G.; Rosu, M.; Ruz, J.; Ruiz Chóliz, E.; Savvidis, I.; Schmidt, S.; Semertzidis, Y.K.; Solanki, S.K.; Stewart, L.; Vafeiadis, T.; Vogel, J.K.; Yildiz, S.C.; Zioutas, K.

    2017-05-01

    During 2003--2015, the CERN Axion Solar Telescope (CAST) has searched for $a\\to\\gamma$ conversion in the 9 T magnetic field of a refurbished LHC test magnet that can be directed toward the Sun. In its final phase of solar axion searches (2013--2015), CAST has returned to evacuated magnet pipes, which is optimal for small axion masses. The absence of a significant signal above background provides a world leading limit of $g_{a\\gamma} < 0.66 \\times 10^{-10} {\\rm GeV}^{-1}$ (95% C.L.) on the axion-photon coupling strength for $m_a \\lesssim 0.02$ eV. Compared with the first vacuum phase (2003--2004), the sensitivity was vastly increased with low-background x-ray detectors and a new x-ray telescope. These innovations also serve as pathfinders for a possible next-generation axion helioscope.

  18. First results from the CERN Axion Solar Telescope (CAST)

    CERN Document Server

    Andriamonje, Samuel A; Aune, S; Autiero, D; Barth, K; Belov, A; Beltran, B; Bräuninger, H; Carmona, J M; Cebrián, S; Chesi, Enrico Guido; Collar, J I; Creswick, R; Dafni, T; Davenport, M; Di Lella, L; Englhauser, J; Fanourakis, G K; Farach, H A; Ferrer, E; Fischer, H; Franz, J; Friedrich, P; Geralis, T; Giomataris, Ioanis; Gninenko, S; Goloubev, N; Hasinoff, M D; Heinsius, F H; Hoffmann, Dieter H H; Irastorza, I G; Jacoby, J; Kang, D; Königsmann, K C; Kotthaus, R; Krcmar, M; Kousouris, K; Kuster, M; Lakic, B; Lasseur, C; Liolios, A; Ljubicic, A; Lutz, Gerhard; Luzón, G; Miller, D W; Morales, A; Mutterer, M; Nikolaidis, A; Ortiz, A; Papaevangelou, T; Placci, A; Raffelt, Georg G; Ruz, J; Riege, H; Sarsa, M L; Savvidis, I; Serber, W; Serpico, Pasquale Dario; Semertzidis, Y K; Vieira, J D; Villar, José Angel; Walckiers, L; Zachariadou, K; Zioutas, Konstantin

    2005-01-01

    Hypothetical axion-like particles with a two-photon interaction would be produced in the Sun by the Primakoff process. In a laboratory magnetic field (``axion helioscope'') they would be transformed into X-rays with energies of a few keV. Using a decommissioned LHC test magnet, CAST has been running for about 6 months during 2003. The first results from the analysis of these data are presented here. No signal above background was observed, implying an upper limit to the axion-photon coupling < 1.16 10^{-10} GeV^-1 at 95% CL for m_a <~0.02 eV. This limit is comparable to the limit from stellar energy-loss arguments and considerably more restrictive than any previous experiment in this axion mass range.

  19. Results and perspectives of the solar axion search with the CAST experiment

    CERN Document Server

    Ferrer Ribas, E.; Aunes, S.; Barth, K.; Belov, A.; Borghi, S.; Brauninger, H.; Cantatore, G.; Carmona, J.M.; Cetin, S.A.; Collar, J.I.; Dafni, T.; Davenport, M.; Eleftheriadis, C.; Elias, N.; Ezer, C.; Fanourakis, G.; Friedrich, P.; Galan, J.; Garcia, J.A.; Gardikiotis, A.; Gazis, E.N.; Geralis, T.; Giomataris, I.; Gninenko, S.; Gomez, H.; Gruber, E.; Guthorl, T.; Hartmann, R.; Haug, F.; Hasinoff, M.D.; Hoffmann, D.H.H.; Iguaz, F.J.; Irastorza, I.G.; Jacoby, J.; Jakovcic, K.; Karuza, M.; Konigsmann, K.; Kotthaus, R.; Krcmar, M.; Kuster, M.; Lakic, B.; Laurent, J.M.; Liolios, A.; Ljubicic, A.; Lozza, V.; Lutz, G.; Luzon, G.; Morales, J.; Niinikoski, T.; Nordt, A.; Papaevangelou, T.; Pivovaroff, M.J.; Raffelt, G.; Rashba, T.; Riege, H.; Rodriguez, A.; Rosu, M.; Ruz, J.; Savvidis, I.; Silva, P.S.; Solanki, S.K.; Stewart, L.; Tomas, A.; Tsagri, M.; van Bibber, K.; Vafeiadis, T.; Villar, J.; Vogel, J.K.; Yildiz, S.C.; Zioutas, K.

    2012-01-01

    The status of the solar axion search with the CERN Axion Solar Telescope (CAST) will be presented. Recent results obtained by the use of $^3$He as a buffer gas has allowed us to extend our sensitivity to higher axion masses than our previous measurements with $^4$He. With about 1 h of data taking at each of 252 different pressure settings we have scanned the axion mass range 0.39 eV$ \\le m_{a} \\le $ 0.64 eV. From the absence of an excess of x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of g$_{a\\gamma} \\le 2.3\\times 10^{-10}$ GeV$^{-1}$ at 95% C.L., the exact value depending on the pressure setting. CAST published results represent the best experimental limit on the photon couplings to axions and other similar exotic particles dubbed WISPs (Weakly Interacting Slim Particles) in the considered mass range and for the first time the limit enters the region favored by QCD axion models. Preliminary sensitivities for axion masses up to 1.16 eV will also be s...

  20. Axion as a Cold Dark Matter Candidate: Proof to Fully Nonlinear Order

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyerim [Center for Large Telescope, Korea Astronomy and Space Science Institute, Daejon (Korea, Republic of); Hwang, Jai-chan [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu (Korea, Republic of); Park, Chan-Gyung [Division of Science Education and Institute of Fusion Science, Chonbuk National University, Jeonju (Korea, Republic of)

    2017-09-01

    We present proof of the axion as a cold dark matter (CDM) candidate to the fully nonlinear order perturbations based on Einstein’s gravity. We consider the axion as a coherently oscillating massive classical scalar field without interaction. We present the fully nonlinear and exact, except for ignoring the transverse-tracefree tensor-type perturbation, hydrodynamic equations for an axion fluid in Einstein’s gravity. We show that the axion has the characteristic pressure and anisotropic stress; the latter starts to appear from the second-order perturbation. But these terms do not directly affect the hydrodynamic equations in our axion treatment. Instead, what behaves as the effective pressure term in relativistic hydrodynamic equations is the perturbed lapse function and the relativistic result coincides exactly with the one known in the previous non-relativistic studies. The effective pressure term leads to a Jeans scale that is of the solar-system scale for conventional axion mass. As the fully nonlinear and relativistic hydrodynamic equations for an axion fluid coincide exactly with the ones of a zero-pressure fluid in the super-Jeans scale, we have proved the CDM nature of such an axion in that scale.

  1. Heavy axions from strong broken horizontal gauge symmetry

    International Nuclear Information System (INIS)

    Elliott, T.; King, S.F.

    1993-01-01

    We study the consequences of the existence and breaking of a Peccei-Quinn symmetry within the context of a dynamical model of electroweak symmetry breaking based on broken gauged flavour symmetries. We perform an estimate of the axion mass by including flavour instanton effects and show that, for low cut-offs, the axion is sufficiently massive to prevent it from being phenomenologically unacceptable. We conclude with an examination of the strong CP problem and show that our axion cannot solve the problem, though we indicate ways in which the model can be extended so that the strong CP problem is solved. (orig.)

  2. Suppressing the QCD axion abundance by hidden monopoles

    International Nuclear Information System (INIS)

    Kawasaki, Masahiro

    2015-11-01

    We study the Witten effect of hidden monopoles on the QCD axion dynamics, and show that its abundance as well as isocurvature perturbations can be significantly suppressed if there is a sufficient amount of hidden monopoles. When the hidden monopoles make up a significant fraction of dark matter, the Witten effect suppresses the abundance of axion with the decay constant smaller than 10 12 GeV. The cosmological domain wall problem of the QCD axion can also be avoided, relaxing the upper bound on the decay constant when the Peccei-Quinn symmetry is spontaneously broken after inflation.

  3. Results and perspectives of the Solar axion search with the CAST experiment

    International Nuclear Information System (INIS)

    Ferrer Ribas, E.; Aune, S.; Arik, M.

    2014-01-01

    The status of the solar axion search with the CERN Axion Solar Telescope (CAST) will be presented. The detection principle is based on the coupling of an incoming axion to a virtual photon provided by the transverse field of an intense dipole magnet, being transformed into a real, detectable photon that carries the energy and the momentum of the original axion. The magnet can be filled with a buffer gas providing an effective mass to the photon. Recent results obtained by the use of 3 He as a buffer gas has allowed us to extend our sensitivity to higher axion masses than our previous measurements with 4 He. With about 1 hour of data taking at each of 252 different pressure settings we have scanned the axion mass range 0.30 eV ≤ m a ≤ 0.64 eV. From the absence of an excess of X rays when the magnet was pointing to the sun we set a typical upper limit on the axion-photon coupling of g aγ ≤2.3*10 -10 GeV -1 at 95% C.L., the exact value depending on the pressure setting. CAST published results represent the best experimental limit on the photon couplings to axions and other similar exotic particles dubbed WISPs (Weakly Interacting Slim Particles) in the considered mass range and for the first time the limit enters the region favored by QCD axion models. Preliminary sensitivities for axion masses up to 1.16 eV will also be shown teaching mean upper limits on the axion-photon coupling of g aγ ≤3.5*10 -10 GeV -1 at 95% C.L. Expected sensibilities for the extension of the CAST program up to 2014 will be presented. Moreover long term options for a new helio-scope experiment will be evoked

  4. Cosmological axion and a quark nugget dark matter model

    Science.gov (United States)

    Ge, Shuailiang; Liang, Xunyu; Zhitnitsky, Ariel

    2018-02-01

    We study a dark matter (DM) model offering a very natural explanation of two (naively unrelated) problems in cosmology: the observed relation ΩDM˜Ωvisible and the observed asymmetry between matter and antimatter in the Universe, known as the "baryogenesis" problem. In this framework, both types of matter (dark and visible) have the same QCD origin, form at the same QCD epoch, and are proportional to one and the same dimensional parameter of the system, ΛQCD, which explains how these two naively distinct problems could be intimately related, and could be solved simultaneously within the same framework. More specifically, the DM in this model is composed by two different ingredients: the (well-studied) DM axions and the (less-studied) quark nuggets made of matter or antimatter. We focus on the quantitative analysis of the relation between these two distinct components contributing to the dark sector of the theory determined by ΩDM≡[ΩDM(nuggets)+ΩDM(axion)] . We argue that the nuggets' DM component always traces the visible matter density, i.e., ΩDM(nuggets)˜Ωvisible , and this feature is not sensitive to the parameters of the system such as the axion mass ma or the misalignment angle θ0. It should be contrasted with conventional axion production mechanisms due to the misalignment when ΩDM(axion) is highly sensitive to the axion mass ma and the initial misalignment angle θ0. We also discuss the constraints on this model related to the inflationary scale HI, nonobservation of the isocurvature perturbations and the tensor modes. We also comment on some constraints related to various axion search experiments.

  5. Possible resonance effect of axionic dark matter in Josephson junctions.

    Science.gov (United States)

    Beck, Christian

    2013-12-06

    We provide theoretical arguments that dark-matter axions from the galactic halo that pass through Earth may generate a small observable signal in resonant S/N/S Josephson junctions. The corresponding interaction process is based on the uniqueness of the gauge-invariant axion Josephson phase angle modulo 2π and is predicted to produce a small Shapiro steplike feature without externally applied microwave radiation when the Josephson frequency resonates with the axion mass. A resonance signal of so far unknown origin observed by C. Hoffmann et al. [Phys. Rev. B 70, 180503(R) (2004)] is consistent with our theory and can be interpreted in terms of an axion mass m(a)c2=0.11  meV and a local galactic axionic dark-matter density of 0.05  GeV/cm3. We discuss future experimental checks to confirm the dark-matter nature of the observed signal.

  6. Solving the tension between high-scale inflation and axion isocurvature perturbations

    International Nuclear Information System (INIS)

    Higaki, Tetsutaro; Takahashi, Fuminobu; Tokyo Univ., Kashiwa

    2014-03-01

    The BICEP2 experiment determined the Hubble parameter during inflation to be about 10 14 GeV. Such high inflation scale is in tension with the QCD axion dark matter if the Peccei-Quinn (PQ) symmetry remains broken during and after inflation, because too large axion isocurvature perturbations would be generated. The axion isocurvature perturbations can be suppressed if the axion acquires a sufficiently heavy mass during inflation. We show that this is realized if the PQ symmetry is explicitly broken down to a discrete symmetry and if the breaking is enhanced during inflation. We also show that, even when the PQ symmetry becomes spontaneously broken after inflation, such a temporarily enhanced PQ symmetry breaking relaxes the constraint on the axion decay constant.

  7. F-term stabilization of odd axions in LARGE volume scenario

    International Nuclear Information System (INIS)

    Gao, Xin; Shukla, Pramod

    2014-01-01

    In the context of the LARGE volume scenario, stabilization of axionic moduli is revisited. This includes both even and odd axions with their scalar potential being generated by F-term contributions via various tree-level and non-perturbative effects like fluxed E3-brane instantons and fluxed poly-instantons. In all the cases, we estimate the decay constants and masses of the axions involved

  8. Unified models of the QCD axion and supersymmetry breaking

    Directory of Open Access Journals (Sweden)

    Keisuke Harigaya

    2017-08-01

    Full Text Available Similarities between the gauge meditation of supersymmetry breaking and the QCD axion model suggest that they originate from the same dynamics. We present a class of models where supersymmetry and the Peccei–Quinn symmetry are simultaneously broken. The messengers that mediate the effects of these symmetry breakings to the Standard Model are identical. Since the axion resides in the supersymmetry breaking sector, the saxion and the axino are heavy. We show constraints on the axion decay constant and the gravitino mass.

  9. Quantitative analysis of the thermal damping of coherent axion oscillations

    International Nuclear Information System (INIS)

    Turner, M.S.

    1985-01-01

    Unruh and Wald have recently discussed a new mechanism for damping coherent axion oscillations, ''thermal damping,'' which occurs due to the temperature dependence of the axion mass and neutrino viscosity. We investigate the effect quantitatively and find that the present energy density in axions can be written as rho/sub a/ = rho/sub a0//(1+J/sub UW/), where rho/sub a/0 is what the axion energy density would be in the absence of the thermal-damping effect and J/sub UW/ is an integral whose integrand depends upon (dm/sub a//dT) 2 . As a function of f(equivalentPeccei-Quinn symmetry-breaking scale) J/sub UW/ achieves its maximum value for f/sub PQ/approx. =3 x 10 12 GeV; unless the axion mass turn-on is very sudden, Vertical Bar(T/m/sub a/)(dm/sub a//dT)Vertical Bar>>1, J/sub UW/ is <<1, implying that this damping mechanism is not significant

  10. Cosmological bounds on sub-MeV mass axions

    DEFF Research Database (Denmark)

    Cadamuro, Davide; Hannestad, Steen; Raffelt, Georg

    2011-01-01

    Axions with mass ma >~ 0.7 eV are excluded by cosmological precision data because they provide too much hot dark matter. While for ma >~ 20 eV the a → 2γ lifetime drops below the age of the universe, we show that the cosmological exclusion range can be extended to 0.7eV lesssim ma lesssim 300 ke......V, primarily by the cosmic deuterium abundance: axion decays would strongly modify the baryon-to-photon ratio at BBN relative to the one at CMB decoupling. Additional arguments include neutrino dilution relative to photons by axion decays and spectral CMB distortions. Our new cosmological constraints...

  11. Axion production from Landau quantization in the strong magnetic field of magnetars

    Science.gov (United States)

    Maruyama, Tomoyuki; Balantekin, A. Baha; Cheoun, Myung-Ki; Kajino, Toshitaka; Mathews, Grant J.

    2018-04-01

    We utilize an exact quantum calculation to explore axion emission from electrons and protons in the presence of the strong magnetic field of magnetars. The axion is emitted via transitions between the Landau levels generated by the strong magnetic field. The luminosity of axions emitted by protons is shown to be much larger than that of electrons and becomes stronger with increasing matter density. Cooling by axion emission is shown to be much larger than neutrino cooling by the Urca processes. Consequently, axion emission in the crust may significantly contribute to the cooling of magnetars. In the high-density core, however, it may cause heating of the magnetar.

  12. The quest for an intermediate-scale accidental axion and further ALPs

    International Nuclear Information System (INIS)

    Dias, A.G.; Nishi, C.C.; Machado, A.C.B.; Vaudrevange, P.

    2014-03-01

    The recent detection of the cosmic microwave background polarimeter experiment BICEP2 of tensor fluctuations in the B-mode power spectrum basically excludes all plausible axion models where its decay constant is above 10 13 GeV. Moreover, there are strong theoretical, astrophysical, and cosmological motivations for models involving, in addition to the axion, also axion-like particles (ALPs), with decay constants in the intermediate scale range, between 10 9 GeV and 10 13 GeV. Here, we present a general analysis of models with an axion and further ALPs and derive bounds on the relative size of the axion and ALP photon (and electron) coupling. We discuss what we can learn from measurements of the axion and ALP photon couplings about the fundamental parameters of the underlying ultraviolet completion of the theory. For the latter we consider extensions of the Standard Model in which the axion and the ALP(s) appear as pseudo Nambu-Goldstone bosons from the breaking of global chiral U(1) (Peccei-Quinn (PQ)) symmetries, occuring accidentally as low energy remnants from exact discrete symmetries. In such models, the axion and the further ALP are protected from disastrous explicit symmetry breaking effects due to Planck-scale suppressed operators. The scenarios considered exploit heavy right handed neutrinos getting their mass via PQ symmetry breaking and thus explain the small mass of the active neutrinos via a seesaw relation between the electroweak and an intermediate PQ symmetry breaking scale. We show some models that can accommodate simultaneously an axion dark matter candidate, an ALP explaining the anomalous transparency of the universe for γ-rays, and an ALP explaining the recently reported 3.55 keV gamma line from galaxies and clusters of galaxies, if the respective decay constants are of intermediate scale.

  13. The quest for an intermediate-scale accidental axion and further ALPs

    Energy Technology Data Exchange (ETDEWEB)

    Dias, A.G.; Nishi, C.C. [Univ. Federal do ABC - UFABC, Sao Paulo (Brazil); Machado, A.C.B. [Teorica-Univ. Estadual Paulista, Sao Paulo (Brazil). Instituto de Fisica; Ringwald, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Vaudrevange, P. [Technische Univ. Muenchen, Garching (Germany). Excellence Cluster Universe

    2014-03-15

    The recent detection of the cosmic microwave background polarimeter experiment BICEP2 of tensor fluctuations in the B-mode power spectrum basically excludes all plausible axion models where its decay constant is above 10{sup 13} GeV. Moreover, there are strong theoretical, astrophysical, and cosmological motivations for models involving, in addition to the axion, also axion-like particles (ALPs), with decay constants in the intermediate scale range, between 10{sup 9} GeV and 10{sup 13} GeV. Here, we present a general analysis of models with an axion and further ALPs and derive bounds on the relative size of the axion and ALP photon (and electron) coupling. We discuss what we can learn from measurements of the axion and ALP photon couplings about the fundamental parameters of the underlying ultraviolet completion of the theory. For the latter we consider extensions of the Standard Model in which the axion and the ALP(s) appear as pseudo Nambu-Goldstone bosons from the breaking of global chiral U(1) (Peccei-Quinn (PQ)) symmetries, occuring accidentally as low energy remnants from exact discrete symmetries. In such models, the axion and the further ALP are protected from disastrous explicit symmetry breaking effects due to Planck-scale suppressed operators. The scenarios considered exploit heavy right handed neutrinos getting their mass via PQ symmetry breaking and thus explain the small mass of the active neutrinos via a seesaw relation between the electroweak and an intermediate PQ symmetry breaking scale. We show some models that can accommodate simultaneously an axion dark matter candidate, an ALP explaining the anomalous transparency of the universe for γ-rays, and an ALP explaining the recently reported 3.55 keV gamma line from galaxies and clusters of galaxies, if the respective decay constants are of intermediate scale.

  14. Axion cold dark matter in nonstandard cosmologies

    International Nuclear Information System (INIS)

    Visinelli, Luca; Gondolo, Paolo

    2010-01-01

    We study the parameter space of cold dark matter axions in two cosmological scenarios with nonstandard thermal histories before big bang nucleosynthesis: the low-temperature reheating (LTR) cosmology and the kination cosmology. If the Peccei-Quinn symmetry breaks during inflation, we find more allowed parameter space in the LTR cosmology than in the standard cosmology and less in the kination cosmology. On the contrary, if the Peccei-Quinn symmetry breaks after inflation, the Peccei-Quinn scale is orders of magnitude higher than standard in the LTR cosmology and lower in the kination cosmology. We show that the axion velocity dispersion may be used to distinguish some of these nonstandard cosmologies. Thus, axion cold dark matter may be a good probe of the history of the Universe before big bang nucleosynthesis.

  15. Solar X-rays from Axions: Rest-Mass Dependent Signatures

    CERN Document Server

    Zioutas, Konstantin; Semertzidis, Yannis; Papaevangelou, Thomas; Gardikiotis, Antonios; Dafni, Theopisti; Anastassopoulos, Vassilis

    2010-01-01

    The spectral shape of solar X-rays is a power law. The more active the Sun is, the less steep the distribution. This behaviour can be explained by axion regeneration to X-rays occurring ~400km deep into the photosphere. Their down-comptonization reproduces the measured spectral shape, pointing at axions with rest mass m_a~17 meV/c2, without contradicting astrophysical-laboratory limits. Directly measured soft X-ray spectra from the extremely quiet Sun during 2009 (SphinX mission), though hitherto overlooked, fitt the axion scenario.

  16. The Axion Dark-Matter eXperiment (ADMX): Recent Results

    International Nuclear Information System (INIS)

    Rosenberg, Leslie J.

    2010-01-01

    The axion is a hypothetical elementary particle whose existence would explain the baffling absence of CP violation in the strong interactions. It's properties in addition make it a good dark-matter candidate. Even though dark-matter axions would make up the overwhelming majority of mass in the universe, they are extraordinarily difficult to detect. We have developed a detector, ADMX, for dark-matter axions that is at heart an exquisitely sensitive detector of electromagnetic radiation. This talk will describe the progress we have made in this experimental search.

  17. Vacuum selection on axionic landscapes

    International Nuclear Information System (INIS)

    Wang, Gaoyuan; Battefeld, Thorsten

    2016-01-01

    We compute the distribution of minima that are reached dynamically on multi-field axionic landscapes, both numerically and analytically. Such landscapes are well suited for inflationary model building due to the presence of shift symmetries and possible alignment effects (the KNP mechanism). The resulting distribution of dynamically reached minima differs considerably from the naive expectation based on counting all vacua. These differences are more pronounced in the presence of many fields due to dynamical selection effects: while low lying minima are preferred as fields roll down the potential, trajectories are also more likely to get trapped by one of the many nearby minima. We show that common analytic arguments based on random matrix theory in the large D-limit to estimate the distribution of minima are insufficient for quantitative arguments pertaining to the dynamically reached ones. This discrepancy is not restricted to axionic potentials. We provide an empirical expression for the expectation value of such dynamically reached minimas' height and argue that the cosmological constant problem is not alleviated in the absence of anthropic arguments. We further comment on the likelihood of inflation on axionic landscapes in the large D-limit

  18. Invisible axion in the hidden sector of no-scale supergravity

    International Nuclear Information System (INIS)

    Sato, Hikaru

    1987-01-01

    We propose a new axion model which incorporates the U(1) PQ symmetry into a hidden sector, as well as an observable sector, of no-scale supergravity models. The axion is a spin-zero field in the hidden sector. The U(1) PQ symmetry is naturally embedded in the family symmetry of the no-scale models. Invisible axions live in the gravity hidden sector without conflict with the cosmological and astrophysical constraints. (orig.)

  19. Probing axions with the neutrino signal from the next galactic supernova

    International Nuclear Information System (INIS)

    Fischer, Tobias; Giannotti, Maurizio; Payez, Alexandre; Ringwald, Andreas

    2016-05-01

    We study the impact of axion emission in simulations of massive star explosions, as an additional source of energy loss complementary to the standard neutrino emission. The inclusion of this channel shortens the cooling time of the nascent protoneutron star and hence the duration of the neutrino signal. We treat the axion-matter coupling strength as a free parameter to study its impact on the protoneutron star evolution as well as on the neutrino signal. We furthermore analyze the observability of the enhanced cooling in current and next-generation underground neutrino detectors, showing that values of the axion mass m a >or similar 8 x 10 -3 eV can be probed. Therefore a galactic supernova neutrino observation would provide a valuable possibility to probe axion masses in a range within reach of the planned helioscope experiment, the International Axion Observatory (IAXO).

  20. The QUAX proposal: a search of galactic axion with magnetic materials

    CERN Document Server

    Ruoso, Giuseppe; Ortolan, Antonello; Pengo, Ruggero; Braggio, Caterina; Carugno, Giovanni; Gallo, Carmelo Sebastiano; Speake, Clive C.

    2016-06-09

    Aim of the QUAX (QUaerere AXion) proposal is to exploit the interaction of cosmological axions with the spin of electrons in a magnetized sample. Their effect is equivalent to the application of an oscillating rf field with frequency and amplitude which are fixed by axion mass and coupling constant, respectively. The rf receiver module of the QUAX detector consists of magnetized samples with the Larmor resonance frequency tuned to the axion mass by a polarizing static magnetic field. The interaction of electrons with the axion-equivalent rf field produces oscillations in the total magnetization of the samples. To amplify such a tiny field, a pump field at the same frequency is applied in a direction orthogonal to the polarizing field. The induced oscillatory magnetization along the polarizing field is measured by a SQUID amplifier operated at its quantum noise level.

  1. Exploring 0.1–10 eV axions with a new helioscope concept

    International Nuclear Information System (INIS)

    Galán, J.; Dafni, T.; Iguaz, F.J.

    2015-01-01

    We explore the possibility to develop a new axion helioscope type, sensitive to the higher axion mass region favored by axion models. We propose to use a low background large volume TPC immersed in an intense magnetic field. Contrary to traditional tracking helioscopes, this detection technique takes advantage of the capability to directly detect the photons converted on the buffer gas which defines the axion mass sensitivity region, and does not require pointing the magnet to the Sun. The operation flexibility of a TPC to be used with different gas mixtures (He, Ne, Xe, etc.) and pressures (from 10 mbar to 10 bar) will allow to enhance sensitivity for axion masses from few meV to several eV. We present different helioscope data taking scenarios, considering detection efficiency and axion absorption probability, and show the sensitivities reachable with this technique to be few × 10 −11  GeV −1 for a 5 T, m 3 scale TPC. We show that a few years program taking data with such setup would allow to probe the KSVZ axion model for axion masses above 0∼> 10 meV

  2. arXiv Axion-photon conversion caused by dielectric interfaces: quantum field calculation

    CERN Document Server

    Ioannisian, Ara N.; Millar, Alexander J.; Raffelt, Georg G.

    2017-09-05

    Axion-photon conversion at dielectric interfaces, immersed in a near-homogeneous magnetic field, is the basis for the dielectric haloscope method to search for axion dark matter. In analogy to transition radiation, this process is possible because the photon wave function is modified by the dielectric layers ("Garibian wave function") and is no longer an eigenstate of momentum. A conventional first-order perturbative calculation of the transition probability between a quantized axion state and these distorted photon states provides the microwave production rate. It agrees with previous results based on solving the classical Maxwell equations for the combined system of axions and electromagnetic fields. We argue that in general the average photon production rate is given by our result, independently of the detailed quantum state of the axion field. Moreover, our result provides a new perspective on axion-photon conversion in dielectric haloscopes because the rate is based on an overlap integral between unpertu...

  3. Photoproduction of axions in a resonant electromagnetic cavity

    International Nuclear Information System (INIS)

    Dang Van Soa; Hoang Ngoc Long; Ha Huy Bang; Nguyen Mai Hung

    2000-09-01

    Photon-axion conversions in a resonant electromagnetic cavity with frequency equal to the axion mass are considered in detail by the Feynman diagram methods. The differential cross sections are presented and numerical evaluations are given. It is shown that there is a resonant conversion for the considered process. From our results, some estimates for experimental conditions are given. (author)

  4. Astrophysical axion bounds diminished by screening effects

    International Nuclear Information System (INIS)

    Raffelt, G.G.

    1986-01-01

    ''Invisible axions'' could be produced in stellar interiors through Compton- and Primakoff-type photoproduction and through bremsstrahlung processes. We point out that in a plasma screening effects lead to important reductions of these emission rates. Limits on the axion mass and interaction strength are thereby relaxed to values less restrictive than limits previously thought to be firm. For the case of the Sun the Primakoff rate is reduced by two orders of magnitude. This process is the dominant emission mechanism for Kim-Shifman-Vainshtein-Zakharov- (KSVZ) type axions which do not couple directly to electrons. The mass limit is then relaxed by an order of magnitude to m/sub a/ 2 β of the model equals unity. Our results can be easily translated to other hypothetical pseudoscalar particles if they are light compared with typical stellar temperatures

  5. Axion-dilaton domain walls and fake supergravity

    International Nuclear Information System (INIS)

    Sonner, Julian; Townsend, Paul K

    2007-01-01

    Dynamical systems methods are used to investigate domain-wall solutions of a two-parameter family of models in which gravity is coupled to an axion and to a dilaton with an exponential potential of either sign. A complete global analysis is presented for (i) constant axion and (ii) flat walls, including a study of bifurcations and a new exact domain-wall solution with non-constant axion. We reconsider 'fake-supergravity' issues in light of these results. We show, by example, how domain walls determine multi-valued superpotentials that branch at stationary points that are not stationary points of the potential, and we apply this result to potentials with anti-de Sitter vacua. We also show by example that 'adapted' truncation to a single-scalar model may be inconsistent, and we propose a 'generalized' fake-supergravity formalism that applies in some such cases

  6. Isocurvature forecast in the anthropic axion window

    CERN Document Server

    Hamann, J; Raffelt, G G; Wong, Y Y Y

    2009-01-01

    We explore the cosmological sensitivity to the amplitude of isocurvature fluctuations that would be caused by axions in the "anthropic window" where the axion decay constant f_a >> 10^12 GeV and the initial misalignment angle Theta_i << 1. In a minimal Lambda-CDM cosmology extended with subdominant scale-invariant isocurvature fluctuations, existing data constrain the isocurvature fraction to alpha < 0.09 at 95% C.L. If no signal shows up, Planck can improve this constraint to 0.042 while an ultimate CMB probe limited only by cosmic variance in both temperature and E-polarisation can reach 0.017, about a factor of five better than the current limit. In the parameter space of f_a and H_I (Hubble parameter during inflation) we identify a small region where axion detection remains within the reach of realistic cosmological probes.

  7. Limits on heavy axion production from the reaction n(p,a)d

    International Nuclear Information System (INIS)

    Enghardt, W.; Kaun, K.H.; Prade, H.; Bluemlein, J.; Lanius, K.

    1987-01-01

    A search has been made for the creation of shortlived axions in the isovector transition n(p,a)d decaying into e + e - -pairs. The production of Peccei-Quinn axions can be excluded for 1.21 a -2 (90% CL). Limits on variant axion models are derived. (author)

  8. Axion Searches in the Past, at Present, and in the Near Future

    CERN Document Server

    Battesti, R; Davoudiasl, H; Kuster, M; Pugnat, P; Rabadan, R; Ringwald, A; Spooner, N J C; Zioutas, K

    2008-01-01

    Theoretical axion models state that axions are very weakly interacting particles. In order to experimentally detect them, the use of colorful and inspired techniques becomes mandatory. There is a wide variety of experimental approaches that were developed during the last 30 years, most of them make use of the Primakoff effect, by which axions convert into photons in the presence of an electromagnetic field. We review the experimental techniques used to search for axions and will give an outlook on experiments planned for the near future.

  9. AXION DECAY AND ANISOTROPY OF NEAR-IR EXTRAGALACTIC BACKGROUND LIGHT

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yan; Chen, Xuelei [National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 (China); Cooray, Asantha; Mitchell-Wynne, Ketron [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Zemcov, Michael [Center for Detectors, School of Physics and Astronomy, Rochester Institute of Technology, Rochester, NY 14623 (United States); Smidt, Joseph [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-07-10

    The extragalactic background light (EBL) is composed of the cumulative radiation from all galaxies and active galactic nuclei over cosmic history. In addition to point sources, the EBL also contains information from diffuse sources of radiation. The angular power spectra of the near-infrared intensities could contain additional signals, and a complete understanding of the nature of the infrared (IR) background is still lacking in the literature. Here we explore the constraints that can be placed on particle decays, especially candidate dark matter (DM) models involving axions that trace DM halos of galaxies. Axions with a mass around a few electronvolts will decay via two photons with wavelengths in the near-IR band and will leave a signature in the IR background intensity power spectrum. Using recent power spectra measurements from the Hubble Space Telescope and the Cosmic Infrared Background Experiment, we find that the 0.6–1.6 μ m power spectra can be explained by axions with masses around 4 eV. The total axion abundance Ω{sub a} ≃ 0.05, and it is comparable to the baryon density of the universe. The suggested mean axion mass and abundance are not ruled out by existing cosmological observations. Interestingly, the axion model with a mass distribution is preferred by the data, which cannot be explained by the standard quantum chromodynamics theory and needs further discussion.

  10. Einstein-Maxwell-axion theory: dyon solution with regular electric field

    International Nuclear Information System (INIS)

    Balakin, Alexander B.; Zayats, Alexei E.

    2017-01-01

    In the framework of the Einstein-Maxwell-axion theory we consider static spherically symmetric solutions which describe a magnetic monopole in the axionic environment. These solutions are interpreted as the solutions for an axionic dyon, the electric charge of which is composite, i.e. in addition to the standard central electric charge it includes an effective electric charge induced by the axion-photon coupling. We focus on the analysis of those solutions which are characterized by the electric field regular at the center. Special attention is paid to the solutions with the electric field that is vanishing at the center, and that has the Coulombian asymptote, and thus displays an extremum at some distant sphere. Constraints on the electric and effective scalar charges of such an object are discussed. (orig.)

  11. Einstein-Maxwell-axion theory: dyon solution with regular electric field

    Energy Technology Data Exchange (ETDEWEB)

    Balakin, Alexander B.; Zayats, Alexei E. [Kazan Federal University, Department of General Relativity and Gravitation, Institute of Physics, Kazan (Russian Federation)

    2017-08-15

    In the framework of the Einstein-Maxwell-axion theory we consider static spherically symmetric solutions which describe a magnetic monopole in the axionic environment. These solutions are interpreted as the solutions for an axionic dyon, the electric charge of which is composite, i.e. in addition to the standard central electric charge it includes an effective electric charge induced by the axion-photon coupling. We focus on the analysis of those solutions which are characterized by the electric field regular at the center. Special attention is paid to the solutions with the electric field that is vanishing at the center, and that has the Coulombian asymptote, and thus displays an extremum at some distant sphere. Constraints on the electric and effective scalar charges of such an object are discussed. (orig.)

  12. N-flation with hierarchically light axions in string compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Cicoli, Michele [Dipartimento di Fisica ed Astronomia, Università di Bologna, via Irnerio 46, 40126 Bologna (Italy); Dutta, Koushik [Theory Division, Saha Institute of Nuclear Physics, 1/AF Salt Lake, Kolkata, 700064 (India); Maharana, Anshuman, E-mail: mcicoli@ictp.it, E-mail: koushik.dutta@saha.ac.in, E-mail: anshumanmaharana@hri.res.in [Harish Chandra Research Intitute, Chattnag Road, Jhunsi, Allahabad, 211019 (India)

    2014-08-01

    We propose a possible embedding of axionic N-flation in type IIB string compactifications where most of the Kähler moduli are stabilised by perturbative effects, and so are hierarchically heavier than the corresponding N>> 1 axions whose collective dynamics drives inflation. This is achieved in the framework of the LARGE Volume Scenario for moduli stabilisation. Our set-up can be used to realise a model of either large field inflation or quintessence, just by varying the volume of the internal space which controls the scale of the axionic potential. Both cases predict a very high scale of supersymmetry breaking. A fully explicit stringy embedding of N-flation would require control over dangerous back-reaction effects due to a large number of species. A viable reheating of the Standard Model degrees of freedom can be achieved after the end of inflation due to the perturbative decay of the N light axions which drive inflation.

  13. N-flation with hierarchically light axions in string compactifications

    International Nuclear Information System (INIS)

    Cicoli, Michele; Dutta, Koushik; Maharana, Anshuman

    2014-01-01

    We propose a possible embedding of axionic N-flation in type IIB string compactifications where most of the Kähler moduli are stabilised by perturbative effects, and so are hierarchically heavier than the corresponding N>> 1 axions whose collective dynamics drives inflation. This is achieved in the framework of the LARGE Volume Scenario for moduli stabilisation. Our set-up can be used to realise a model of either large field inflation or quintessence, just by varying the volume of the internal space which controls the scale of the axionic potential. Both cases predict a very high scale of supersymmetry breaking. A fully explicit stringy embedding of N-flation would require control over dangerous back-reaction effects due to a large number of species. A viable reheating of the Standard Model degrees of freedom can be achieved after the end of inflation due to the perturbative decay of the N light axions which drive inflation

  14. Gravitational waves from axion monodromy

    Energy Technology Data Exchange (ETDEWEB)

    Hebecker, Arthur; Jaeckel, Joerg; Rompineve, Fabrizio; Witkowski, Lukas T. [Institute for Theoretical Physics, University of Heidelberg,Philosophenweg 19, 69120 Heidelberg (Germany)

    2016-11-02

    Large field inflation is arguably the simplest and most natural variant of slow-roll inflation. Axion monodromy may be the most promising framework for realising this scenario. As one of its defining features, the long-range polynomial potential possesses short-range, instantonic modulations. These can give rise to a series of local minima in the post-inflationary region of the potential. We show that for certain parameter choices the inflaton populates more than one of these vacua inside a single Hubble patch. This corresponds to a dynamical phase decomposition, analogously to what happens in the course of thermal first-order phase transitions. In the subsequent process of bubble wall collisions, the lowest-lying axionic minimum eventually takes over all space. Our main result is that this violent process sources gravitational waves, very much like in the case of a first-order phase transition. We compute the energy density and peak frequency of the signal, which can lie anywhere in the mHz-GHz range, possibly within reach of next-generation interferometers. We also note that this “dynamical phase decomposition' phenomenon and its gravitational wave signal are more general and may apply to other inflationary or reheating scenarios with axions and modulated potentials.

  15. Search for Axions with Micromegas Detectors in the CERN CAST Experiment

    CERN Document Server

    YILDIZ, Suleyman Cenk

    The CAST experiment is searching for the axion, which is a light, weakly interacting pseudoscalar particle, that is proposed to solve the so called Strong Charge-Parity Problem. The axions CAST is looking for are produced from photons in the solar core and CAST aims to convert them back into photons in a superconducting LHC dipole magnet and detect the photons in the x-ray detectors attached to ends of each magnet bore. CAST uses three micromegas and a CCD detector and can track the Sun during sunset and sunrise. The two of the micromegas take tracking data during the sunset solar tracking, and were used for the first time in 2008. The analysis of the data taken in 2008 with these two detectors show no signal of axions, and new upper limits on the axion mass-coupling constant parameter space are established due to sensitivity of detectors for the axion mass range of $0.38\\eV$ to $0.65\\eV$.

  16. Studies on Axions as the Energy Source in Magnetar

    Indian Academy of Sciences (India)

    Pranita Das

    2017-11-23

    Nov 23, 2017 ... Abstract. Highly magnetized neutron stars known as magnetars are some of the most interesting objects in the Universe. Non-baryonic dark matter candidate axions are produced in the highly magnetized neutron star via Bremsstrahlung process in the highly dense medium. These axions thus produced are ...

  17. Axionic mirage mediation

    International Nuclear Information System (INIS)

    Nakamura, Shuntaro; Okumura, Ken-ichi; Yamaguchi, Masahiro

    2008-01-01

    Although mirage mediation is one of the most plausible mediation mechanisms of supersymmetry breaking, it suffers from two crucial problems. One is the μ/Bμ problem, and the second is the cosmological one. The former stems from the fact that the B parameter tends to be comparable with the gravitino mass, which is 2 orders of magnitude larger than the other soft masses. The latter problem is caused by the decay of the modulus whose branching ratio into the gravitino pair is sizable. In this paper, we propose a model of mirage mediation, in which Peccei-Quinn symmetry is incorporated. In this axionic mirage mediation, it is shown that the Peccei-Quinn symmetry breaking scale is dynamically determined around 10 10 GeV to 10 12 GeV due to the supersymmetry breaking effects, and the μ problem can be solved naturally. Furthermore, in our model, the lightest supersymmetric particle (LSP) is the axino, that is, the superpartner of the axion. The overabundance of the LSPs due to decays of the modulus/gravitino, which is the most serious cosmological difficulty in the mirage mediation, can be avoided if the axino is sufficiently light. The next-LSPs (NLSPs) produced by the gravitino decay eventually decay into the axino LSPs, yielding the dominant component of the axinos remaining today. It is shown that the axino with a mass of O(100) MeV is naturally realized, which can constitute the dark matter of the Universe, with a free-streaming length of the order of 0.1 Mpc. The saxion, the real scalar component of the axion supermultiplet, can also be cosmologically harmless due to the dilution of the modulus decay. The lifetime of the NLSP is relatively long, but much shorter than 1 sec, when the big-bang nucleosynthesis commences. The decay of the NLSP would provide intriguing collider signatures

  18. Enhanced axion-photon coupling in GUT with hidden photon

    Science.gov (United States)

    Daido, Ryuji; Takahashi, Fuminobu; Yokozaki, Norimi

    2018-05-01

    We show that the axion coupling to photons can be enhanced in simple models with a single Peccei-Quinn field, if the gauge coupling unification is realized by a large kinetic mixing χ = O (0.1) between hypercharge and unbroken hidden U(1)H. The key observation is that the U(1)H gauge coupling should be rather strong to induce such large kinetic mixing, leading to enhanced contributions of hidden matter fields to the electromagnetic anomaly. We find that the axion-photon coupling is enhanced by about a factor of 10-100 with respect to the GUT-axion models with E / N = 8 / 3.

  19. Probing the eV-mass range for solar axions with the CAST experiment

    International Nuclear Information System (INIS)

    Vogel, J.

    2009-01-01

    The CERN Axion Solar Telescope (CAST) is searching for solar axions, which could be produced in the core of the Sun via the so-called Primakoff effect. For this purpose, CAST uses a decommissioned LHC prototype magnet. In its magnetic field of 9 Tesla axions could be reconverted into X-ray photons. The magnet is mounted on a structure built to follow the Sun during sunrise and sunset for a total of about 3 hours per day. The analysis of the data acquired during the first phase of the experiment with vacuum in the magnetic field region yielded the most restrictive experimental upper limit on the axion-to-photon coupling constant for axion masses up to about 0.02 eV. In order to extend the sensitivity of the experiment to a wider mass range, the CAST experiment continued its search for axions with helium in the magnet bores. In this way it is possible to restore coherence for larger masses. Changing the pressure of the helium gas enables the experiment to scan different axion masses. In the first part of this second phase of CAST, helium-4 has been used and the axion mass region was extended up to 0.4 eV. Therefore the experiment enters the regions favored by axion models. In CAST's ongoing helium-3 phase the studied mass range is now further extended. We will present the final results of CAST's helium-4 phase. Furthermore the latest upgrades of the experiments will be shown and an outlook on CAST's status and prospects will be given. (author)

  20. Magnetogenesis from axion inflation

    Energy Technology Data Exchange (ETDEWEB)

    Adshead, Peter; Scully, Timothy R.; Sfakianakis, Evangelos I. [Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801 (United States); Giblin, John T., E-mail: adshead@illinois.edu, E-mail: giblinj@kenyon.edu, E-mail: tscully2@illinois.edu, E-mail: esfaki@illinois.edu [Department of Physics, Kenyon College, 201 North College Rd, Gambier, Ohio 43022 (United States)

    2016-10-01

    In this work we compute the production of magnetic fields in models of axion inflation coupled to the hypercharge sector of the Standard Model through a Chern-Simons interaction term. We make the simplest choice of a quadratic inflationary potential and use lattice simulations to calculate the magnetic field strength, helicity and correlation length at the end of inflation. For small values of the axion-gauge field coupling strength the results agree with no-backreaction calculations and estimates found in the literature. For larger couplings the helicity of the magnetic field differs from the no-backreaction estimate and depends strongly on the comoving wavenumber. We estimate the post-inflationary evolution of the magnetic field based on known results for the evolution of helical and non-helical magnetic fields. The magnetic fields produced by axion inflation with large couplings to U(1) {sub Y} can reach B {sub eff} ∼> 10{sup −16} G, exhibiting a field strength B {sub phys} ≈ 10{sup −13} G and a correlation length λ{sub phys} ≈10 pc. This result is insensitive to the exact value of the coupling, as long as the coupling is large enough to allow for instantaneous preheating. Depending on the assumptions for the physical processes that determine blazar properties, these fields can be found consistent with blazar observations based on the value of B {sub eff}. Finally, the intensity of the magnetic field for large coupling can be enough to satisfy the requirements for a recently proposed baryogenesis mechanism, which utilizes the chiral anomaly of the Standard Model.

  1. The GammeV suite of experimental searches for axion-like particles

    International Nuclear Information System (INIS)

    Steffen, Jason H.; Upadhye, Amol

    2009-01-01

    We report on the design and results of the GammeV search for axion-like particles and for chameleon particles. We also discuss plans for an improved experiment to search for chameleon particles, one which is sensitive to both cosmological and power-law chameleon models. Plans for an improved axion-like particle search using coupled resonant cavities are also presented. This experiment will be more sensitive to axion-like particles than stellar astrophysical models or current helioscope experiments

  2. The 7 keV axion dark matter and the X-ray line signal

    International Nuclear Information System (INIS)

    Higaki, Tetsutaro; Takahashi, Fuminobu; Tokyo Univ., Kashiwa

    2014-03-01

    We propose a scenario where the saxion dominates the energy density of the Universe and reheats the standard model sector via the dilatonic coupling, while its axionic partner contributes to dark matter decaying into photons via the same operator in supersymmetry. Interestingly, for the axion mass m a ≅ 7 keV and the decay constant f a ≅10 14-15 GeV, the recently discovered X-ray line at 3.5 keV in the XMM Newton X-ray observatory data can be explained. We discuss various cosmological aspects of the 7 keV axion dark matter such as the production of axion dark matter, the saxion decay process, hot dark matter and isocurvature constraints on the axion dark matter, and the possible baryogenesis scenarios.

  3. Improving axion detection sensitivity in high purity germanium detector based experiments

    Science.gov (United States)

    Xu, Wenqin; Elliott, Steven

    2015-04-01

    Thanks to their excellent energy resolution and low energy threshold, high purity germanium (HPGe) crystals are widely used in low background experiments searching for neutrinoless double beta decay, e.g. the MAJORANA DEMONSTRATOR and the GERDA experiments, and low mass dark matter, e.g. the CDMS and the EDELWEISS experiments. A particularly interesting candidate for low mass dark matter is the axion, which arises from the Peccei-Quinn solution to the strong CP problem and has been searched for in many experiments. Due to axion-photon coupling, the postulated solar axions could coherently convert to photons via the Primakeoff effect in periodic crystal lattices, such as those found in HPGe crystals. The conversion rate depends on the angle between axions and crystal lattices, so the knowledge of HPGe crystal axis is important. In this talk, we will present our efforts to improve the HPGe experimental sensitivity to axions by considering the axis orientations in multiple HPGe crystals simultaneously. We acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program.

  4. Eclipses could clarify axion mystery

    CERN Multimedia

    2007-01-01

    "Physicists in Europe have proposed an outlandish experiment that could determine once and for all whether ultralight particles called axions - one of the leading candidates for dark matter - exist." (1/2 page)

  5. CAST search for sub-eV mass solar axions with $^{3}$He buffer gas

    CERN Document Server

    Aune, S; Belov, A; Borghi, S; Brauninger, H; Cantatore, G; Carmona, J M; Cetin, S A; Collar, J I; Dafni, T; Davenport, M; Eleftheriadis, C; Elias, N; Ezer, C; Fanourakis, G; Ferrer-Ribas, E; Friedrich, P; Galan, J; Garcia, J A; Gardikiotis, A; Gazis, E N; Geralis, T; Giomataris, I; Gninenko, S; Gomez, H; Gruber, E; Guthorl, T; Hartmann, R; Haug, F; Hasinoff, M D; Hoffmann, D H H; Iguaz, F J; Irastorza, I G; Jacoby, J; Jakovcic, K; Karuza, M; Konigsmann, K; Kotthaus, R; Krcmar, M; Kuster, M; Lakic, B; Laurent, J M; Liolios, A; Ljubicic, A; Lozza, V; Lutz, G; Luzon, G; Morales, J; Niinikoski, T; Nordt, A; Papaevangelou, T; Pivovaroff, M J; Raffelt, G; Rashba, T; Riege, H; Rodriguez, A; Rosu, M; Ruz, J; Savvidis, I; Silva, P S; Solanki, S.K; Stewart, L; Tomas, A; Tsagri, M; van Bibber, K; Vafeiadis, T; Villar, J A; Vogel, J K; Yildiz, S C; Zioutas, K

    2011-01-01

    The CERN Axion Solar Telescope (CAST) has extended its search for solar axions by using 3He as a buffer gas. At T=1.8 K this allows for larger pressure settings and hence sensitivity to higher axion masses than our previous measurements with 4He. With about 1 h of data taking at each of 252 different pressure settings we have scanned the axion mass range 0.39 eV < m_a < 0.64 eV. From the absence of excess X-rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of g_ag < 2.3 x 10^{-10} GeV^{-1} at 95% CL, the exact value depending on the pressure setting. KSVZ axions are excluded at the upper end of our mass range, the first time ever for any solar axion search. In future we will extend our search to m_a < 1.15 eV, comfortably overlapping with cosmological hot dark matter bounds.

  6. Suche nach solaren Axionen mit dem CCD-Detektor in CAST (CERN Axion Solar Telescope)

    CERN Document Server

    Kang, Donghwa

    2007-01-01

    The CERN Axion Solar Telescope (CAST) experiment at CERN searches for solar axions with energies in the keV range. Axions could be produced in the Sun's core by the interaction of thermal photons with virtual photons of the strong electromagnetic field. In this experiment, the solar axions can be converted to photons in the field of a 9 Tesla superconducting magnet. At both ends of the 10 m long dipole magnet, three different X-ray detectors were installed, which are sensitive in the interesting photon energy range. This thesis is devoted to the determination of an upper limit on the axion-photon coupling constant g$_{a\\gamma}$. The analysis is based on the data taken by the CCD detector in the CAST experiment during the years 2003 and 2004. First results of the 2003 data taking were published showing no significant signal above background. However, these results constrain the upper limit of the axion-photon coupling constant by a factor 5 compared to previous axion search experiments. Moreover, the result of...

  7. New solar axion search in CAST with $^4$He filling

    CERN Document Server

    Arik, M; Barth, K; Belov, A; Brauninger, H; Bremer, J; Burwitz, V; Cantatore, G; Carmona, J M; Cetin, S A; Collar, J I; Da Riva, E; Dafni, T; Davenport, M; Dermenev, A; Eleftheriadis, C; Elias, N; Fanourakis, G; Ferrer-Ribas, E; Galan, J; Garcia, J A; Gardikiotis, A.; Garza, J G; Gazis, E N; Geralis, T; Georgiopoulou, E; Giomataris, I; Gninenko, S; Marzoa, M Gomez; Hasinoff, M D; Hoffmann, D H H; Iguaz, F J; Irastorza, I G; Jacoby, J; K.Jakovcic; Karuza, M; Kavuk, M; Krcmar, M; Kuster, M; Lakic, B; Laurent, J M; Liolios, A; Ljubicic, A; Luzon, G; Neff, S; Niinikoski, T; Nordt, A; Ortega, I; Papaevangelou, T; Pivovaroff, M .J; Raffelt, G; Rodriguez, A; Rosu, M; Ruz, J; Savvidis, I; Shilon, I; Solanki, S K; Stewart, L; Tomas, A; Vafeiadis, T; Villar, J; Vogel, J K; Yildiz, S C; Zioutas, K

    2015-01-01

    The CERN Axion Solar Telescope (CAST) searches for $a\\to\\gamma$ conversion in the 9 T magnetic field of a refurbished LHC test magnet that can be directed toward the Sun. Two parallel magnet bores can be filled with helium of adjustable pressure to match the X-ray refractive mass $m_\\gamma$ to the axion search mass $m_a$. After the vacuum phase (2003--2004), which is optimal for $m_a\\lesssim0.02$ eV, we used $^4$He in 2005--2007 to cover the mass range of 0.02--0.39 eV and $^3$He in 2009--2011 to scan from 0.39--1.17 eV. After improving the detectors and shielding, we returned to $^4$He in 2012 to investigate a narrow $m_a$ range around 0.2 eV ("candidate setting" of our earlier search) and 0.39--0.42 eV, the upper axion mass range reachable with $^4$He, to "cross the axion line" for the KSVZ model. We have improved the limit on the axion-photon coupling to $g_{a\\gamma}< 1.47\\times10^{-10} {\\rm GeV}^{-1}$ (95% C.L.), depending on the pressure settings. Since 2013, we have returned to vacuum and aim for a s...

  8. The 7 keV axion dark matter and the X-ray line signal

    Energy Technology Data Exchange (ETDEWEB)

    Higaki, Tetsutaro [KEK, Tsukuba (Japan). Theory Center; Jeong, Kwang Sik [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Takahashi, Fuminobu [Tohoku Univ., Sendai (Japan). Dept. of Physics; Tokyo Univ., Kashiwa (Japan). Kavli IPMU, TODIAS

    2014-03-15

    We propose a scenario where the saxion dominates the energy density of the Universe and reheats the standard model sector via the dilatonic coupling, while its axionic partner contributes to dark matter decaying into photons via the same operator in supersymmetry. Interestingly, for the axion mass m{sub a} ≅ 7 keV and the decay constant f{sub a} ≅10{sup 14-15} GeV, the recently discovered X-ray line at 3.5 keV in the XMM Newton X-ray observatory data can be explained. We discuss various cosmological aspects of the 7 keV axion dark matter such as the production of axion dark matter, the saxion decay process, hot dark matter and isocurvature constraints on the axion dark matter, and the possible baryogenesis scenarios.

  9. A New Signal Model for Axion Cavity Searches from N -body Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Lentz, Erik W.; Rosenberg, Leslie J. [Physics Department, University of Washington, Seattle, WA 98195-1580 (United States); Quinn, Thomas R.; Tremmel, Michael J., E-mail: lentze@phys.washington.edu, E-mail: ljrosenberg@phys.washington.edu, E-mail: trq@astro.washington.edu, E-mail: mjt29@astro.washington.edu [Astronomy Department, University of Washington, Seattle, WA 98195-1580 (United States)

    2017-08-20

    Signal estimates for direct axion dark matter (DM) searches have used the isothermal sphere halo model for the last several decades. While insightful, the isothermal model does not capture effects from a halo’s infall history nor the influence of baryonic matter, which has been shown to significantly influence a halo’s inner structure. The high resolution of cavity axion detectors can make use of modern cosmological structure-formation simulations, which begin from realistic initial conditions, incorporate a wide range of baryonic physics, and are capable of resolving detailed structure. This work uses a state-of-the-art cosmological N -body+Smoothed-Particle Hydrodynamics simulation to develop an improved signal model for axion cavity searches. Signal shapes from a class of galaxies encompassing the Milky Way are found to depart significantly from the isothermal sphere. A new signal model for axion detectors is proposed and projected sensitivity bounds on the Axion DM eXperiment (ADMX) data are presented.

  10. Academic Training: Joint ILIAS-CAST-CERN Axion Training at CERN

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME 30 November, 1 and 2 December PLACE - DETAILS: http://agenda.cern.ch/fullAgenda.php?ida=a056218 Joint ILIAS-CAST-CERN Axion Training at CERN The ILIAS (Integrated Large Infrastructure for Astroparticle Science) is co-organising a 3 day academic training session together with the CAST collaboration and the CERN Academic Training Programme on physics related to axion research, including open discussions between theorists and experimentalists. The intention of the lectures is to provide academic training for scientists engaged in axion research and to facilitate the often missing link between experiment and theory with the aim of encouraging young researchers to communicate with experts in the field. The lectures include topics which are not regularly covered by standard lectures at universities and should lead to a deeper understanding of the physics related to axions, which covers a broad field from QCD to astrophysics and cosmology. There will be an opportunity for ...

  11. arXiv Axion Searches with Microwave Filters: the RADES project

    CERN Document Server

    Melcón, Alejandro Álvarez; Cogollos, Cristian; Díaz-Morcillo, Alejandro; Döbrich, Babette; Gallego, Juan Daniel; Gimeno, Benito; Irastorza, Igor G.; Lozano-Guerrero, Antonio José; Malbrunot, Chloé; Navarro, Pablo; Peña-Garay, Carlos; Redondo, Javier; Vafeiadis, Theodoros; Wuensch, Walter

    2018-05-14

    We propose, design and construct a variant of the conventional axion haloscope concept that could be competitive in the search for dark matter axions of masses in the decade 10–100 μeV. Theses masses are located somewhat above the mass range in which existing experiments have reached sensitivity to benchmark QCD axion models. Our haloscope consists of an array of small microwave cavities connected by rectangular irises, in an arrangement commonly used in radio-frequency filters. The size of the unit cavity determines the main resonant frequency, while the possibility to connect a large number of cavities allows to reach large detection volumes. We develop the theoretical framework of the detection concept, and present design prescriptions to optimize detection capabilities. We describe the design and realization of a first small-scale prototype of this concept, called Relic Axion Detector Exploratory Setup (RADES). It consists of a copper-coated stainless steel five-cavities microwave filter with the detec...

  12. Mixed axion-wino dark matter

    Directory of Open Access Journals (Sweden)

    Kyu Jung Bae

    2015-07-01

    Full Text Available A variety of supersymmetric models give rise to a split mass spectrumcharacterized by very heavy scalars but sub-TeV gauginos, usually with awino-like LSP. Such models predict a thermally-produced underabundance ofwino-like WIMP dark matter so that non-thermal DM production mechanisms arenecessary.We examine the case where theories with a wino-like LSP are augmented by aPeccei-Quinn sector including an axion-axino-saxion supermultiplet in either theSUSY KSVZ or SUSY DFSZ models and with/without saxion decays to axions/axinos.We show allowed ranges of PQ breaking scale f_a for various cases which aregenerated by solving the necessary coupled Boltzmann equations.We also present results for a model with radiatively-driven naturalnessbut with a wino-like LSP.

  13. Searching for Axions from Celestial Objects with the X-Ray Telescope at CAST

    CERN Document Server

    Guthörl, T

    2009-01-01

    The CAST (CERN Solar Axion Telescope) experiment is designed to detect axions from the sun by making use of the inverse Primakoff effekt i.e. reconversion of axions into X-ray photons under the influence of a strong magnetic field. In order to track the sun the magnet used is mounted to a moveable device. This movability can also be used to track celestial objects of interest such as the galactic centre or Scorpio X-1, which is the brightest X-ray source besides the sun. The data gained with the CCD detector during trackings of these objects are analysed in this work. Since no signal above background can be observed an upper limit on the free parameter flux times axion-photon coupling constant^2 is determined. This upper limit in turn can be used to calculate a maximum energy loss due to axion emission for both the galactic centre and Sco X-1. The results presented in this work imply that e.g. the galactic centre can emit axions with up to 10^42 W without being detected by CAST.

  14. Axion dark matter and Planck favor non-minimal couplings to gravity

    Energy Technology Data Exchange (ETDEWEB)

    Folkerts, Sarah, E-mail: sarah.folkerts@lmu.de [Arnold Sommerfeld Center, Ludwig-Maximilians-University, Theresienstr. 37, 80333 München (Germany); Germani, Cristiano, E-mail: cristiano.germani@lmu.de [Arnold Sommerfeld Center, Ludwig-Maximilians-University, Theresienstr. 37, 80333 München (Germany); Redondo, Javier, E-mail: javier.redondo@lmu.de [Arnold Sommerfeld Center, Ludwig-Maximilians-University, Theresienstr. 37, 80333 München (Germany); Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany)

    2014-01-20

    Constraints on inflationary scenarios and isocurvature perturbations have excluded the simplest and most generic models of dark matter based on QCD axions. Considering non-minimal kinetic couplings of scalar fields to gravity substantially changes this picture. The axion can account for the observed dark matter density avoiding the overproduction of isocurvature fluctuations. Finally, we show that assuming the same non-minimal kinetic coupling to the axion (dark matter) and to the standard model Higgs boson (inflaton) provides a minimal picture of early time cosmology.

  15. Photon - axion conversion cross sections in an electromagnetic field

    International Nuclear Information System (INIS)

    Dang Van Soa; Ha Huy Bang

    1999-12-01

    Photon - axion conversions in static magnetic fields and in a periodic field with frequency equal to the axion mass are reconsidered in detail by Feynman methods. The differential cross sections are presented and numerical evaluations are given. It is shown that there is a resonant conversion for the considered process. Some estimates for experiments are given from our results. (author)

  16. An improved limit on the axion-photon coupling from the CAST experiment

    Energy Technology Data Exchange (ETDEWEB)

    Andriamonje, S.; Aune, S.; Dafni, T.; Ferrer Ribas, E.; Giomataris, I.; Irastorza, I.G. [CEA Saclay, DAPNIA, F-91191 Gif Sur Yvette, (France); Autiero, D.; Barth, K.; Davenport, M.; Di Lella, L.; Lasseur, C.; Papaevangelou, T.; Placci, A.; Stewart, L.; Walckiers, L.; Zioutas, K. [CERN, European Org Nucl Res, CH-1211 Geneva 23, (Switzerland); Belov, A.; Gninenko, S. [Russian Acad Sci, Inst Nucl Res, Moscow, (Russian Federation); Beltran, B.; Carmona, J.M.; Cebrian, S.; Gomez, H.; Irastorza, I.G.; Luzon, G.; Morales, A.; Morales, J.; Ortiz, A.; Rodriguez, A.; Ruz, J.; Villar, J. [Univ Zaragoza, Inst Fis Nucl and Altas Energias, Zaragoza, (Spain); Brauninger, H.; Englhauser, J.; Friedrich, P.; Kuster, M. [Max Planck Inst Extraterr Phys, D-85748 Garching, (Germany); Collar, J.I.; Miller, D.; Vieira, J. [Univ Chicago, Enrico Fermi Inst and KICP, Chicago, IL 60637 (United States); Dafni, T.; Hoffmann, D.H.H.; Kuster, M.; Riege, H. [Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, (Germany); Eleftheriadis, C.; Liolios, A.; Savvidis, I. [Aristotle Univ Thessaloniki, GR-54006 Thessaloniki, (Greece); Fanourakis, G.; Geralis, T.; Kousouris, K. [Natl Ctr Sci Res Demokritos, Athens, (Greece); Fischer, H.; Franz, J.; Heinsius, F.H.; Kang, D.; Konigsmann, K.; Vogel, J. [Univ Freiburg, Freiburg, (Germany)] (and others)

    2007-04-15

    We have searched for solar axions or similar particles that couple to two photons by using the CERN Axion Solar Telescope (CAST) set-up with improved conditions in all detectors. From the absence of excess x-rays when the magnet was pointing to the Sun, we set an upper limit on the axion-photon coupling of g{sub a{gamma}} {<=} 8.8 x 10{sup -11} GeV{sup -1} at 95% CL for m{sub a} {<=} 0.02 eV. This result is the best experimental limit over a broad range of axion masses and for m{sub a} {<=} 0.02 eV also supersedes the previous limit derived from energy-loss arguments on globular cluster stars. (authors)

  17. Experimental Search for Solar Axions via Coherent Primakoff Conversion in a Germanium Spectrometer

    CERN Document Server

    Avignone, F T; Brodzinski, R; Collar, J I; Creswick, R J; Di Gregorio, D E; Farach, H A; Gattone, A O; Guérard, C K; Hasenbalg, F; Huck, H; Miley, H S; Morales, A; Morales, J; Nussinov, S; De Solorzano, A O; Reeves, J H; Villar, J; Zioutas, Konstantin

    1998-01-01

    Results are reported of an experimental search for the unique, rapidly varying temporal pattern of solar axions coherently converting into photons via the Primakoff effect in a single crystal germanium detector. This conversion is predicted when axions are incident at a Bragg angle with a crystalline plane. The analysis of approximately 1.94 kg.yr of data from the 1 kg DEMOS detector in Sierra Grande, Argentina, yields a new laboratory bound on axion-photon coupling of $g_{a\\gamma \\gamma} < 2.7\\cdot 10^{-9}$ GeV$^{-1}$, independent of axion mass up to ~ 1 keV.

  18. Is it possible to explore Peccei-Quinn axions from frequency-dependence radiation dimming?

    International Nuclear Information System (INIS)

    Jimenez, Raul; Pena-Garay, Carlos; Verde, Licia

    2011-01-01

    We explore how the Peccei-Quinn (PQ) axion parameter space can be constrained by the frequency-dependence dimming of radiation from astrophysical objects. To do so we perform accurate calculations of photon-axion conversion in the presence of a variable magnetic field. We propose several tests where the PQ axion parameter space can be explored with current and future astronomical surveys: the observed spectra of isolated neutron stars, occultations of background objects by white dwarfs and neutron stars, the light-curves of eclipsing binaries containing a white dwarf. We find that the lack of dimming of the light-curve of a detached eclipsing white dwarf binary recently observed, leads to relevant constraints on the photon-axion conversion. Current surveys designed for Earth-like planet searches are well matched to strengthen and improve the constraints on the PQ axion using astrophysical objects radiation dimming.

  19. Limits on the abundance and coupling of cosmic axions

    International Nuclear Information System (INIS)

    DePanfilis, S.; Melissinos, A.C.; Moskowitz, B.E.

    1987-03-01

    We report preliminary results from a search for galactic axions in the mass range 4.5 -13 eV, we obtain the experimental limit (g/sub aγγ/m/sub a/) 2 rho/sub a/ -41 . The theoretical prediction is (g/sub aγγ/m/sub a/) 2 rho/sub a/ = 3.9 x 10 -44 with the local galactic axion density rho/sub a/ = 300 MeV/cm 3 . We have also searched for the presence of a continuous spectrum of light pseudoscalar particles; assuming that the local galactic axion density is composed of axions with masses uniformly distributed between 4.5 and 5.0 μeV, we find that g/sub aγγ/ -30 MeV/sup 1/2/ cm/sup 3/2/ ≅ 10 11 GeV -1 . Limits have also been set on the production of light pseudoscalar x particles; we find g/sub xγγ/ -24 MeV/sup 1/2/ cm/sup 3/2/ ≅ 10 -5 GeV -1 for 0< m/sub x/ ≤ 4μeV. 20 refs., 7 figs., 1 tab

  20. From axions to other WISPs

    Energy Technology Data Exchange (ETDEWEB)

    Ringwald, Andreas

    2008-10-15

    We illustrate, taking a top-down point of view, how axions and other very weakly interacting sub-eV particles (WISPs) arise in the course of compactification of the extra spatial dimensions in string/M-theory. (orig.)

  1. From axions to other WISPs

    International Nuclear Information System (INIS)

    Ringwald, Andreas

    2008-10-01

    We illustrate, taking a top-down point of view, how axions and other very weakly interacting sub-eV particles (WISPs) arise in the course of compactification of the extra spatial dimensions in string/M-theory. (orig.)

  2. Solar Axion search with Micromegas detectors in the CAST Experiment with $^{3}$He as buffer gas

    CERN Document Server

    García, Juan Antonio

    2015-01-01

    Axions are well motivated particles proposed in an extension of the Standard Model (SM) as a solution to the CP problem in strong interactions. On the other hand, there is the category of axion-like particles (ALPs) which appear in diverse extensions of the SM and share the same phenomenology of the axion. Axions and ALPs are hypothetical neutral particles that interact weakly with matter, being candidates to solve the Dark Matter problem. CAST, the CERN Axion Solar Telescope is looking for solar axions since 2003. CAST exploit the helioscope technique using a decommissioned LHC dipole magnet in which solar axions could be reconverted into photons. The magnet is mounted on a movable platform that allows tracking the Sun $\\sim$1.5 hours during sunset and during sunrise. The axion signal would be an excess of X-rays in the detectors located at the magnet bore ends and thus low background detectors are mandatory. Three of the four detectors operating at CAST are of the Micromegas type. The analysis of the data o...

  3. Spontaneous CP breaking and the axion potential: an effective Lagrangian approach

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    When we add to the model a generic axion field (in order to ensure CP at all values of $\\theta$) the above considerations have a bearing on the shape of the axion potential near the boundary of its periodicity interval. This ...

  4. Search for Solar Axions with the CCD Detector and X-ray Telescope at CAST Experiment

    CERN Document Server

    Rosu, Madalin Mihai; Zioutas, Konstantin

    2015-06-09

    The CERN Axion Solar Telescope (CAST) is an experiment that uses the world’s highest sensitivity Helioscope to date for solar Axions searches. Axions are weakly interacting pseudoscalar particles proposed to solve the so-called Strong Charge-Parity Problem of the Standard Model. The principle of detection is the inverse Primakoff Effect, which is a mechanism for converting the Axions into easily detectable X-ray photons in a strong transverse magnetic field. The solar Axions are produced due to the Primakoff effect in the hot and dense core of from the coupling of a real and a virtual photon. The solar models predict a peak Axion luminosity at an energy of 3 keV originating mostly from the inner 20% of the solar radius. Thus an intensity peak at an energy of 3 keV is also expected in the case of the X-ray radiation resulting from Axion conversion. CAST uses a high precision movement system for tracking the Sun twice a day with a LHC dipole twin aperture prototype magnet, 9.26 meters long and with a field of...

  5. Axion-like particle searches with sub-THz photons

    CERN Document Server

    Capparelli, L.; Ferretti, J.; Giazotto, F.; Polosa, A.D.; Spagnolo, P.

    2016-01-01

    We propose a variation, based on very low energy and extremely intense photon sources, on the well established technique of Light-Shining-through-Wall (LSW) experiments for axion-like particle searches. With radiation sources at 30 GHz, we compute that present laboratory exclusion limits on axion-like particles might be improved by at least four orders of magnitude, for masses m_a <~ 0.01~meV. This could motivate research and development programs on dedicated single-photon sub-THz detectors.

  6. Axion-assisted production of sterile neutrino dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Berlin, Asher; Hooper, Dan

    2017-04-12

    Sterile neutrinos can be generated in the early universe through oscillations with active neutrinos and represent a popular and well-studied candidate for our universe's dark matter. Stringent constraints from X-ray and gamma-ray line searches, however, have excluded the simplest of such models. In this letter, we propose a novel alternative to the standard scenario in which the mixing angle between the sterile and active neutrinos is a dynamical quantity, induced through interactions with a light axion-like field. As the energy density of the axion-like particles is diluted by Hubble expansion, the degree of mixing is reduced at late times, suppressing the decay rate and easily alleviating any tension with X-ray or gamma-ray constraints. We present a simple model which illustrates the phenomenology of this scenario, and also describe a framework in which the QCD axion is responsible for the production of sterile neutrinos in the early universe.

  7. A problem of the QCD axion in supergravity

    International Nuclear Information System (INIS)

    Endo, M.; Takahashi, F.; Tokyo Univ.; Yanagida, T.T.; Tokyo Univ.

    2007-12-01

    We point out that the QCD axion generally couples to all the gauge fields in nature through the Super-Weyl, Kaehler and sigma-model anomalies in supergravity. If supersymmetry is dynamically broken by the hidden-sector gauge interactions, the axion potential receives corrections due to the instanton in the hidden sector. We show that the supersymmetry breaking models are tightly constrained for the Peccei-Quinn mechanism to successfully solve the strong CP problem. In particular, the gravity mediation turns out to be strongly disfavored. (orig.)

  8. PBH dark matter from axion inflation

    Energy Technology Data Exchange (ETDEWEB)

    Domcke, Valerie; Pieroni, Mauro; Witkowski, Lukas T. [AstroParticule et Cosmologie, Université Paris Diderot, CNRS, CEA, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, F-75205 Paris Cedex 13 (France); Muia, Francesco, E-mail: valerie.domcke@apc.univ-paris7.fr, E-mail: francesco.muia@physics.ox.ac.uk, E-mail: mpieroni@apc.univ-paris7.fr, E-mail: lwitkow@apc.univ-paris7.fr [Paris Centre for Cosmological Physics, 10, rue Alice Domon et Léonie Duquet, F-75205 Paris Cedex 13 (France)

    2017-07-01

    Protected by an approximate shift symmetry, axions are well motivated candidates for driving cosmic inflation. Their generic coupling to the Chern-Simons term of any gauge theory gives rise to a wide range of potentially observable signatures, including equilateral non-Gaussianites in the CMB, chiral gravitational waves in the range of direct gravitational wave detectors and primordial black holes (PBHs). In this paper we revisit these predictions for axion inflation models non-minimally coupled to gravity. Contrary to the case of minimally coupled models which typically predict scale-invariant mass distributions for the generated PBHs at small scales, we demonstrate how broadly peaked PBH spectra naturally arises in this setup. For specific parameter values, all of dark matter can be accounted for by PBHs.

  9. First Searches for Axions and Axionlike Particles with the LUX Experiment

    Science.gov (United States)

    Akerib, D. S.; Alsum, S.; Aquino, C.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Brás, P.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chiller, A. A.; Chiller, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fallon, S. R.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Velan, V.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Xu, J.; Yazdani, K.; Young, S. K.; Zhang, C.; LUX Collaboration

    2017-06-01

    The first searches for axions and axionlike particles with the Large Underground Xenon experiment are presented. Under the assumption of an axioelectric interaction in xenon, the coupling constant between axions and electrons gAe is tested using data collected in 2013 with an exposure totaling 95 live days ×118 kg . A double-sided, profile likelihood ratio statistic test excludes gAe larger than 3.5 ×10-12 (90% C.L.) for solar axions. Assuming the Dine-Fischler-Srednicki-Zhitnitsky theoretical description, the upper limit in coupling corresponds to an upper limit on axion mass of 0.12 eV /c2 , while for the Kim-Shifman-Vainshtein-Zhakharov description masses above 36.6 eV /c2 are excluded. For galactic axionlike particles, values of gAe larger than 4.2 ×10-13 are excluded for particle masses in the range 1 - 16 keV /c2 . These are the most stringent constraints to date for these interactions.

  10. Search for axion production in Υ(1S) decays

    International Nuclear Information System (INIS)

    Fairfield, K.H.

    1988-06-01

    We present a search for axion production in radiative Υ(1S) decays using the Crystal Ball detector. We find no evidence for a signal and give a new upper limit, Br[Υ(1S)→a/degree/γ] < 4 /times/ 10/sup /minus/5/, for m/sub a/ < 2m/sub e/. Results from previous axion searches in both the Υ and J//psi/ systems are discussed and compared to theoretical predictions

  11. Axion as a non-WIMP dark matter candidate

    International Nuclear Information System (INIS)

    Saikawa, Ken'ichi

    2017-09-01

    The axion arises in well-motivated extensions of the Standard Model of particle physics and is regarded as an alternative to the weakly interacting massive particle paradigm to explain the nature of dark matter. In this contribution, we review theoretical aspects of dark matter axions, particularly focusing on recent developments in the estimation of their relic abundance. A closer look at their non-thermal production mechanisms in the early universe reveals the possibility of explaining the observed dark matter abundance in various mass ranges. The mass ranges predicted in various cosmological scenarios are briefly summarized.

  12. Ultrasensitive searches for the axion

    CERN Multimedia

    Van Bibber, Karl

    2006-01-01

    "The axion is a hypothetical particle with a mass possibly a trillion times lighter than an electron and exceedingly small couplings to ordinary matter. Yet experiments may soon detect its presence, either as dark matter or as a component of solar flux." (6 pages)

  13. The Weak Gravity Conjecture and the axionic black hole paradox

    Science.gov (United States)

    Hebecker, Arthur; Soler, Pablo

    2017-09-01

    In theories with a perturbatively massless 2-form (dual to an axion), a paradox may arise in the process of black hole evaporation. Schwarzschild black holes can support a non-trivial Wilson-line-type field, the integral of the 2-form around their horizon. After such an `axionic black hole' evaporates, the Wilson line must be supported by the corresponding 3-form field strength in the region formerly occupied by the black hole. In the limit of small axion decay-constant f, the energy required for this field configuration is too large. Thus, energy cannot be conserved in the process of black hole evaporation. The natural resolution of this paradox is through the presence of light strings, which allow the black hole to "shed" its axionic hair sufficiently early. This gives rise to a new Weak-Gravity-type argument in the 2-form context: small coupling, in this case f , enforces the presence of light strings or a low cutoff. We also discuss how this argument may be modified in situations where the weak coupling regime is achieved in the low-energy effective theory through an appropriate gauging of a model with a vector field and two 2-forms.

  14. Oscillations in the CMB from Axion Monodromy Inflation

    Energy Technology Data Exchange (ETDEWEB)

    Flauger, Raphael; /Texas U.; McAllister, Liam; Pajer, Enrico; /Cornell U., Phys. Dept.; Westphal, Alexander; /SLAC /Stanford U., Phys. Dept.; Xu, Gang; /Cornell U., Phys. Dept.

    2011-12-01

    We study the CMB observables in axion monodromy inflation. These well-motivated scenarios for inflation in string theory have monomial potentials over super-Planckian field ranges, with superimposed sinusoidal modulations from instanton effects. Such periodic modulations of the potential can drive resonant enhancements of the correlation functions of cosmological perturbations, with characteristic modulations of the amplitude as a function of wavenumber. We give an analytical result for the scalar power spectrum in this class of models, and we determine the limits that present data places on the amplitude and frequency of modulations. Then, incorporating an improved understanding of the realization of axion monodromy inflation in string theory, we perform a careful study of microphysical constraints in this scenario. We find that detectable modulations of the scalar power spectrum are commonplace in well-controlled examples, while resonant contributions to the bispectrum are undetectable in some classes of examples and detectable in others. We conclude that resonant contributions to the spectrum and bispectrum are a characteristic signature of axion monodromy inflation that, in favorable cases, could be detected in near-future experiments.

  15. Gauge-preheating and the end of axion inflation

    Energy Technology Data Exchange (ETDEWEB)

    Adshead, Peter; Sfakianakis, Evangelos I. [Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801 (United States); Giblin, John T. Jr.; Scully, Timothy R., E-mail: adshead@illinois.edu, E-mail: giblinj@kenyon.edu, E-mail: tscully2@illinois.edu, E-mail: esfaki@illinois.edu [Department of Physics, Kenyon College, 201 North College Rd, Gambier, Ohio 43022 (United States)

    2015-12-01

    We study the onset of the reheating epoch at the end of axion-driven inflation where the axion is coupled to an Abelian, U(1), gauge field via a Chern-Simons interaction term. We focus primarily on m{sup 2φ2} inflation and explore the possibility that preheating can occur for a range of coupling values consistent with recent observations and bounds on the overproduction of primordial black holes. We find that for a wide range of parameters preheating is efficient. In certain cases the inflaton transfers all of its energy to the gauge fields within a few oscillations. In most cases, we find that the gauge fields on sub-horizon scales end preheating in an unpolarized state due to the existence of strong rescattering between the inflaton and gauge-field modes. We also present a preliminary study of an axion monodromy model coupled to U(1) gauge fields, seeing a similarly efficient preheating behavior as well as indications that the coupling strength has an effect on the creation of oscillons.

  16. Gauge-preheating and the end of axion inflation

    International Nuclear Information System (INIS)

    Adshead, Peter; Sfakianakis, Evangelos I.; Giblin, John T. Jr.; Scully, Timothy R.

    2015-01-01

    We study the onset of the reheating epoch at the end of axion-driven inflation where the axion is coupled to an Abelian, U(1), gauge field via a Chern-Simons interaction term. We focus primarily on m 2φ2 inflation and explore the possibility that preheating can occur for a range of coupling values consistent with recent observations and bounds on the overproduction of primordial black holes. We find that for a wide range of parameters preheating is efficient. In certain cases the inflaton transfers all of its energy to the gauge fields within a few oscillations. In most cases, we find that the gauge fields on sub-horizon scales end preheating in an unpolarized state due to the existence of strong rescattering between the inflaton and gauge-field modes. We also present a preliminary study of an axion monodromy model coupled to U(1) gauge fields, seeing a similarly efficient preheating behavior as well as indications that the coupling strength has an effect on the creation of oscillons

  17. U-duality and symplectic formulation of dilaton-axion gravity

    International Nuclear Information System (INIS)

    Gal'tsov, D.V.; Kechkin, O.V.

    1995-07-01

    We study a bosonic four-dimensional effective action corresponding to the heterotic string compactified on a 6-torus (dilaton-axion gravity with one vector field) on a curved space-time manifold possessing a time-like Killing vector field. Previously an existence of the SO(2,3) ∼ Sp(4,R) global symmetry (U-duality) as well as the symmetric space property of the corresponding σ-model have been established following Neugebauer and Kramer approach. Here we present an explicit form of the Sp(4,R) generators in terms of coset variables and construct a representation of the coset in terms of the physical target space coordinates. Complex symmetric 2 x 2 matrix Z (''matrix dilaton - axion'') is then introduced for which U-duality takes the matrix valued SL(2,R) form. In terms of this matrix the theory is further presented as a Kaehler σ-model. This leads to a more concise 2 x 2 formulation which opens new ways to construct exact classical solution. New solution (corresponding to constant ImZ) is obtained which describes the system of point massless magnetic monopoles endowed with axion charges equal to minus monopole charges. In such a system mutual magnetic repulsion is exactly balanced by axion attraction so that the resulting space-time is locally flat but possess multiple Taub-NUT singularities. (author). 35 refs

  18. Search for solar axions with the X-ray telescope of the CAST experiment (phase II)

    International Nuclear Information System (INIS)

    Nordt, Annika

    2009-01-01

    The CAST (CERN Solar Axion Telescope) experiment is searching for solar axions by their conversion into photons inside a transverse magnetic field. So far, no solar axionsignal has been detected, but a new upper limit could be given (CAST Phase I). Since 2005, CAST entered in its second phase where it operates with a buffer gas ( 4 He) in the conversion region to extend the sensitivity of the experiment to higher axionmasses. For the first time it is possible to enter the theoretically favored axion massrange and to give an upper limit for this solar axion mass-range (>0.02 eV). This thesis is about the analysis of the X-ray telescope data Phase II with 4 He inside the magnet. The result for the coupling constant of axions to photons is: g αγγ -10 GeV -1 (95%C.L.) for m a =0.02-0.4 eV. (2) This result is better than any result that has been given before in this mass range for solar axions. (orig.)

  19. Supersymmetry with Radiatively-Driven Naturalness: Implications for WIMP and Axion Searches

    Directory of Open Access Journals (Sweden)

    Kyu Jung Bae

    2015-05-01

    Full Text Available By insisting on naturalness in both the electroweak and quantum chromodynamics (QCD sectors of the minimal supersymmetric standard model (MSSM, the portrait for dark matter production is seriously modified from the usual weakly interacting massive particle (WIMP miracle picture. In supersymmetry (SUSY models with radiatively-driven naturalness (radiative natural SUSY or radiative natural SUSY (RNS which include a Dine–Fischler–Srednicki–Zhitnitsky (DFSZ-like solution to the strong charge-conjugation-parity (CP and SUSY \\(\\mu\\ problems, dark matter is expected to be an admixture of both axions and higgsino-like WIMPs. The WIMP/axion abundance calculation requires simultaneous solution of a set of coupled Boltzmann equations which describe quasi-stable axinos and saxions. In most of parameter space, axions make up the dominant contribution of dark matter although regions of WIMP dominance also occur. We show the allowed range of Peccei-Quinn (PQ scale \\(f_a\\ and compare to the values expected to be probed by the axion dark matter search experiment (ADMX axion detector in the near future. We also show WIMP detection rates, which are suppressed from usual expectations, because now WIMPs comprise only a fraction of the total dark matter. Nonetheless, ton-scale noble liquid detectors should be able to probe the entirety of RNS parameter space. Indirect WIMP detection rates are less propitious since they are reduced by the square of the depleted WIMP abundance.

  20. Axions and polarisation of quasars

    International Nuclear Information System (INIS)

    Payez, A.; Cudell, J. R.; Hutsemekers, D.

    2008-01-01

    We present results showing that, thanks to axion-photon mixing in external magnetic fields, it is actually possible to produce an effect similar to the one needed to explain the large-scale coherent orientations of quasar polarisation vectors in visible light that have been observed in some regions of the sky

  1. Pierre Sikivie from the University of Florida invented the working principle of all magnetic axion telescopes, such as CAST.

    CERN Multimedia

    Claudia Marcelloni

    2006-01-01

    The possible existence of axions in the universe means that they are a candidate for (very) cold dark matter, as another axion pioneer, Pierre Sikivie, from the University of Florida explained during the first Joint ILIAS-CAST-CERN Axion Training workshop. He also described the technique that he invented in 1983 for detecting axions. The idea is that axions in the galactic halo may be resonantly converted to microwave photons in a cavity permeated by a strong magnetic field.

  2. An update on the Axion Helioscopes front: current activities at CAST and the IAXO project

    Science.gov (United States)

    Dafni, T.; Arik, M.; Armengaud, E.; Aune, S.; Avignone, F. T.; Barth, K.; Belov, A.; Betz, M.; Bräuninger, H.; Brax, P.; Breijnholt, N.; Brun, P.; Cantatore, G.; Carmona, J. M.; Carosi, G. P.; Caspers, F.; Caspi, S.; Cetin, S. A.; Chelouche, D.; Christensen, F. E.; Collar, J. I.; Dael, A.; Davenport, M.; Derbin, A. V.; Desch, K.; Diago, A.; Döbrich, B.; Dratchnev, I.; Dudarev, A.; Eleftheriadis, C.; Fanourakis, G.; Ferrer-Ribas, E.; Friedrich, P.; Galán, J.; García, J. A.; Gardikiotis, A.; Garza, J. G.; Gazis, E. N.; Georgiopoulou, E.; Geralis, T.; Gimeno, B.; Giomataris, I.; Gninenko, S.; Gómez, H.; González-Díaz, D.; Gruber, E.; Guendelman, E.; Guthörl, T.; Hailey, C. J.; Hartmann, R.; Hauf, S.; Haug, F.; Hasinoff, M. D.; Hiramatsu, T.; Hoffmann, D. H. H.; Horns, D.; Iguaz, F. J.; Irastorza, I. G.; Isern, J.; Imai, K.; Jacoby, J.; Jaeckel, J.; Jakobsen, A. C.; Jakovčić, K.; Kaminski, J.; Kawasaki, M.; Karuza, M.; Königsmann, K.; Kotthaus, R.; Krčmar, M.; Kousouris, K.; Krieger, C.; Kuster, M.; Lakić, B.; Laurent, J. M.; Limousin, O.; Lindner, A.; Liolios, A.; Ljubičić, A.; Luzón, G.; Matsuki, S.; Muratova, V. N.; Neff, S.; Niinikoski, T.; Nones, C.; Ortega, I.; Papaevangelou, T.; Pivovaroff, M. J.; Raffelt, G.; Redondo, J.; Riege, H.; Ringwald, A.; Rodríguez, A.; Rosu, M.; Russenschuck, S.; Ruz, J.; Saikawa, K.; Savvidis, I.; Sekiguchi, T.; Semertzidis, Y. K.; Shilon, I.; Sikivie, P.; Silva, H.; Solanki, S. K.; Stewart, L.; ten Kate, H. H. J.; Tomas, A.; Troitsky, S.; Vafeiadis, T.; van Bibber, K.; Vedrine, P.; Villar, J. A.; Vogel, J. K.; Walckiers, L.; Weltman, A.; Wester, W.; Yildiz, S. C.; Zioutas, K.

    2016-04-01

    Although they have not yet been detected, axions and axion-like particles (ALPs) continue to maintain the interest (even increasingly so) of the rare-event searches community as viable candidates for the Dark Matter of the Universe but also as a solution for several other puzzles of astrophysics. Their property of coupling to photons has inspired different experimental methods for their detection, one of which is the helioscope technique. The CERN Axion Solar Telescope (CAST) is the most sensitive helioscope built up to date and has recently published part of the latest data taken with the magnet bores gradually filled with 3He, probing the mass range up to 1.17 eV. The International AXion Observatory (IAXO) is being proposed as a facility where different axion studies can be performed, with the primary goal to study axions coming from the Sun. Designed to maximize sensitivity, it will improve the levels reached by CAST by almost 5 orders of magnitude in signal detection, that is more than one order of magnitude in terms of gaγ. Here we will summarize the most important aspects of the helioscopes, and focus mainly on IAXO, based on the recent papers [1, 2].

  3. Towards universal axion inflation and reheating in string theory

    Directory of Open Access Journals (Sweden)

    Ralph Blumenhagen

    2014-09-01

    Full Text Available The recent BICEP2 measurements of B-modes indicate a large tensor-to-scalar ratio in inflationary cosmology, which points towards trans-Planckian evolution of the inflaton. We propose possible string-theory realizations thereof. Schemes for natural and axion monodromy inflation are presented in the framework of the type IIB large volume scenario. The inflaton in both cases is given by the universal axion and its potential is generated by F-terms. Our models are shown to feature a natural mechanism for inflaton decay into predominantly Standard Model particles.

  4. Large volume axionic Swiss cheese inflation

    Science.gov (United States)

    Misra, Aalok; Shukla, Pramod

    2008-09-01

    Continuing with the ideas of (Section 4 of) [A. Misra, P. Shukla, Moduli stabilization, large-volume dS minimum without anti-D3-branes, (non-)supersymmetric black hole attractors and two-parameter Swiss cheese Calabi Yau's, arXiv: 0707.0105 [hep-th], Nucl. Phys. B, in press], after inclusion of perturbative and non-perturbative α corrections to the Kähler potential and (D1- and D3-) instanton generated superpotential, we show the possibility of slow roll axionic inflation in the large volume limit of Swiss cheese Calabi Yau orientifold compactifications of type IIB string theory. We also include one- and two-loop corrections to the Kähler potential but find the same to be subdominant to the (perturbative and non-perturbative) α corrections. The NS NS axions provide a flat direction for slow roll inflation to proceed from a saddle point to the nearest dS minimum.

  5. Large volume axionic Swiss cheese inflation

    International Nuclear Information System (INIS)

    Misra, Aalok; Shukla, Pramod

    2008-01-01

    Continuing with the ideas of (Section 4 of) [A. Misra, P. Shukla, Moduli stabilization, large-volume dS minimum without anti-D3-branes, (non-)supersymmetric black hole attractors and two-parameter Swiss cheese Calabi-Yau's, (arXiv: 0707.0105 [hep-th]), Nucl. Phys. B, in press], after inclusion of perturbative and non-perturbative α ' corrections to the Kaehler potential and (D1- and D3-) instanton generated superpotential, we show the possibility of slow roll axionic inflation in the large volume limit of Swiss cheese Calabi-Yau orientifold compactifications of type IIB string theory. We also include one- and two-loop corrections to the Kaehler potential but find the same to be subdominant to the (perturbative and non-perturbative) α ' corrections. The NS-NS axions provide a flat direction for slow roll inflation to proceed from a saddle point to the nearest dS minimum

  6. Phases of planar AdS black holes with axionic charge

    International Nuclear Information System (INIS)

    Caldarelli, Marco M.; Christodoulou, Ariana; Papadimitriou, Ioannis; Skenderis, Kostas

    2017-01-01

    Planar AdS black holes with axionic charge have finite DC conductivity due to momentum relaxation. We obtain a new family of exact asymptotically AdS 4 black branes with scalar hair, carrying magnetic and axion charge, and we study the thermodynamics and dynamic stability of these, as well as of a number of previously known electric and dyonic solutions with axion charge and scalar hair. The scalar hair for all solutions satisfy mixed boundary conditions, which lead to modified holographic Ward identities, conserved charges and free energy, relative to those following from the more standard Dirichlet boundary conditions. We show that properly accounting for the scalar boundary conditions leads to well defined first law and other thermodynamic relations. Finally, we compute the holographic quantum effective potential for the dual scalar operator and show that dynamical stability of the hairy black branes is equivalent to positivity of the energy density.

  7. Phases of planar AdS black holes with axionic charge

    Energy Technology Data Exchange (ETDEWEB)

    Caldarelli, Marco M.; Christodoulou, Ariana [Mathematical Sciences and STAG Research Centre, University of Southampton,Highfield, Southampton SO17 1BJ (United Kingdom); Papadimitriou, Ioannis [SISSA and INFN - Sezione di Trieste,Via Bonomea 265, I 34136 Trieste (Italy); Skenderis, Kostas [Mathematical Sciences and STAG Research Centre, University of Southampton,Highfield, Southampton SO17 1BJ (United Kingdom)

    2017-04-03

    Planar AdS black holes with axionic charge have finite DC conductivity due to momentum relaxation. We obtain a new family of exact asymptotically AdS{sub 4} black branes with scalar hair, carrying magnetic and axion charge, and we study the thermodynamics and dynamic stability of these, as well as of a number of previously known electric and dyonic solutions with axion charge and scalar hair. The scalar hair for all solutions satisfy mixed boundary conditions, which lead to modified holographic Ward identities, conserved charges and free energy, relative to those following from the more standard Dirichlet boundary conditions. We show that properly accounting for the scalar boundary conditions leads to well defined first law and other thermodynamic relations. Finally, we compute the holographic quantum effective potential for the dual scalar operator and show that dynamical stability of the hairy black branes is equivalent to positivity of the energy density.

  8. Impact of ultralight axion self-interactions on the large scale structure of the Universe

    Science.gov (United States)

    Desjacques, Vincent; Kehagias, Alex; Riotto, Antonio

    2018-01-01

    Ultralight axions have sparked attention because their tiny mass m ˜10-22 eV , which leads to a kiloparsec-scale de Broglie wavelength comparable to the size of a dwarf galaxy, could alleviate the so-called small-scale crisis of massive cold dark matter (CDM) candidates. However, recent analyses of the Lyman-α forest power spectrum set a tight lower bound on their mass of m ≳10-21 eV which makes them much less relevant from an astrophysical point of view. An important caveat to these numerical studies is that they do not take into account self-interactions among ultralight axions. Furthermore, for axions which acquired a mass through nonperturbative effects, this self-interaction is attractive and, therefore, could counteract the quantum "pressure" induced by the strong delocalization of the particles. In this work, we show that even a tiny attractive interaction among ultralight axions can have a significant impact on the stability of cosmic structures at low redshift. After a brief review of known results about solitons in the absence of gravity, we discuss the stability of filamentary and pancakelike solutions when quantum pressure, attractive interactions and gravity are present. The analysis based on 1 degree of freedom, namely the breathing mode, reveals that pancakes are stable, while filaments are unstable if the mass per unit length is larger than a critical value. However, we show that pancakes are unstable against transverse perturbations. We expect this to be true for halos and filaments as well. Instabilities driven by the breathing mode will not be seen in the low column density Lyman-α forest unless the axion decay constant is extremely small, f ≲1013 GeV . Notwithstanding, axion solitonic cores could leave a detectable signature in the Lyman-α forest if the normalization of the unknown axion core—filament mass relation is ˜100 larger than it is for spherical halos. We hope our work motivates future numerical studies of the impact of axion

  9. A proposed search for dark-matter axions in the 0.6--16 μeV range

    International Nuclear Information System (INIS)

    Hagmann, C.; Turner, M.S.; Sikivie, P.; Sullivan, N.S.; Tanner, D.B.; Villa, F.

    1991-11-01

    A proposed experiment is described to search for dark-matter axions in the mass range 0.6--16 μeV. The method is based on the Primakoff conversion of axions into monochromatic microwave photons inside a tunable microwave cavity in a large volume high field magnet. This proposal capitalized on the availability of two Axicell magnets from the MFTF-B fusion machine at LLNL. Assuming a local dark-matter density in axions of ρ a = 0.3 GeV/cm 3 , the axion would be found or ruled out at the 97% c.1. in the above mass range in 48 months

  10. An axion-induced SM/MSSM Higgs landscape and the Weak Gravity Conjecture

    Energy Technology Data Exchange (ETDEWEB)

    Herráez, Alvaro; Ibáñez, Luis E. [Departamento de Física Teórica and Instituto de Física Teórica UAM/CSIC,Universidad Autónoma de Madrid,Cantoblanco, 28049 Madrid (Spain)

    2017-02-22

    We construct models in which the SM Higgs mass scans in a landscape. This is achieved by coupling the SM to a monodromy axion field through Minkowski 3-forms. The Higgs mass scans with steps given by δm{sub H}{sup 2}≃ημf, where μ and f are the axion mass and periodicity respectively, and η measures the coupling of the Higgs to the associated 3-form. The observed Higgs mass scale could then be selected on anthropic grounds. The monodromy axion may have a mass μ in a very wide range depending on the value of η, and the axion periodity f. For η≃1 and f≃10{sup 10} GeV , one has 10{sup −3} eV≲μ≲10{sup 3} eV, but ultralight axions with e.g. μ≃10{sup −17} eV are also possible. In a different realization we consider landscape models coupled to the MSSM. In the context of SUSY, 4-forms appear as being part of the auxiliary fields of SUSY multiplets. The scanning in the 4-forms thus translate into a landscape of vevs for the N=1 auxiliary fields and hence as a landscape for the soft terms. This could provide a rationale for the MSSM fine-tuning suggested by LHC data. In all these models there are 3-forms coupling to membranes which induce transitions between different vacua through bubble nucleation. The Weak Gravity Conjecture (WGC) set limits on the tension of these membranes and implies new physics thresholds well below the Planck scale. More generaly, we argue that in the case of string SUSY vacua in which the Goldstino multiplet contains a monodromy axion the WGC suggests a lower bound on the SUSY breaking scale m{sub 3/2}≳M{sub s}{sup 2}/M{sub p}.

  11. Axion cooling of white dwarfs

    OpenAIRE

    Isern, J.; Catalan, S.; Garcia--Berro, E.; Salaris, M.; Torres, S.

    2013-01-01

    The evolution of white dwarfs is a simple gravothermal process. This process can be tested in two ways, through the luminosity function of these stars and through the secular variation of the period of pulsation of those stars that are variable. Here we show how the mass of the axion can be constrained using the white dwarf luminosity function.

  12. Observational evidence for gravitationally trapped massive axion(-like) particles

    CERN Document Server

    Di Lella, L

    2003-01-01

    Several unexpected astrophysical observations can be explained by gravitationally captured massive axions or axion-like particles, which are produced inside the Sun or other stars and are accumulated over cosmic times. Their radiative decay in solar outer space would give rise to a `self-irradiation' of the whole star, providing the time-independent component of the corona heating source (we do not address here the flaring Sun). In analogy with the Sun-irradiated Earth atmosphere, the temperature and density gradient in the corona$-$chromosphere transition region is suggestive for an omnipresent irradiation of the Sun, which is the strongest evidence for the generic axion-like scenario. The same mechanism is compatible with phenomena like the solar wind, the X-rays from the dark-side of the Moon, the X-Ray Background Radiation, the diffuse X-ray excesses (below $\\sim 1$ keV), the non-cooling of oldest Stars, etc. A temperature of $\\sim 10^6$ K is observed in various places, while the radiative decay of a popu...

  13. Academic Training: Joint ILIAS-CAST-CERN Axion Training at CERN

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME 30 November, 1 and 2 December PLACE - DETAILS: http://agenda.cern.ch/fullAgenda.php?ida=a056218 Joint ILIAS-CAST-CERN Axion Training at CERN The ILIAS (Integrated Large Infrastructure for Astroparticle Science) is co-organising a 3 day academic training session together with the CAST collaboration and the CERN Academic Training Programme on physics related to axion research, including open discussions between theorists and experimentalists. The intention of the lectures is to provide academic training for scientists engaged in axion research and to facilitate the often missing link between experiment and theory with the aim of encouraging young researchers to communicate with experts in the field. The lectures include topics which are not regularly covered by standard lectures at universities and should lead to a deeper understanding of the physics related to axions, which covers a broad field from QCD to astrophysics and cosmology. There will be an opportunity for ...

  14. A proposed search for dark-matter axions in the 0.6--16 {mu}eV range

    Energy Technology Data Exchange (ETDEWEB)

    Hagmann, C. [California Univ., Berkeley, CA (United States). Dept. of Physics; Moltz, D.M. [Lawrence Berkeley Lab., CA (United States); Turner, M.S. [Chicago Univ., IL (United States). Dept. of Physics and Astronomy]|[Fermi National Accelerator Lab., Batavia, IL (United States); Sikivie, P.; Sullivan, N.S.; Tanner, D.B. [Florida Univ., Gainesville, FL (United States). Dept. of Physics; Bluele, A.I.; Geraskin, E.V.; Golubev, N.A.; Ishkin, V.V.; Kazachenko, O.V.; Kuzmin, V.; Polushkin, V.G. [AN SSSR, Moscow (USSR). Inst. Yadernykh Issledovanij; Anthony, P.L.; van Bibber, K.; Patrick, R.E.; Shen, S.; Slack, D.S.; Steele, J.V. [Lawrence Livermore National Lab., CA (United States); Villa, F. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1991-11-01

    A proposed experiment is described to search for dark-matter axions in the mass range 0.6--16 {mu}eV. The method is based on the Primakoff conversion of axions into monochromatic microwave photons inside a tunable microwave cavity in a large volume high field magnet. This proposal capitalized on the availability of two Axicell magnets from the MFTF-B fusion machine at LLNL. Assuming a local dark-matter density in axions of {rho}{sub a}= 0.3 GeV/cm{sup 3}, the axion would be found or ruled out at the 97% c.1. in the above mass range in 48 months.

  15. A proposed search for dark-matter axions in the 0. 6--16. mu. eV range

    Energy Technology Data Exchange (ETDEWEB)

    Hagmann, C. (California Univ., Berkeley, CA (United States). Dept. of Physics); Moltz, D.M. (Lawrence Berkeley Lab., CA (United States)); Turner, M.S. (Chicago Univ., IL (United States). Dept. of Physics and Astronomy Fermi National Accelerator Lab., Batavia, IL (United States)); Sikivie, P.; Sullivan, N.S.; Tanner, D.B. (Florida Univ., Gainesville, FL (United States). Dept. of Physics); Bluele, A.I

    1991-11-01

    A proposed experiment is described to search for dark-matter axions in the mass range 0.6--16 {mu}eV. The method is based on the Primakoff conversion of axions into monochromatic microwave photons inside a tunable microwave cavity in a large volume high field magnet. This proposal capitalized on the availability of two Axicell magnets from the MFTF-B fusion machine at LLNL. Assuming a local dark-matter density in axions of {rho}{sub a}= 0.3 GeV/cm{sup 3}, the axion would be found or ruled out at the 97% c.1. in the above mass range in 48 months.

  16. Recent Results of Search for Solar Axions Using Resonant Absorption by 83Kr nuclei

    Science.gov (United States)

    Derbin, A. V.; Drachnev, I. S.; Gangapshev, A. M.; Gavrilyuk, Yu M.; Kazalov, V. V.; Kobychev, V. V.; Kuzminov, V. V.; Muratova, V. N.; Panashenko, S. I.; Ratkevich, S. S.; Tekueva, D. A.; Unzhakov, E. V.; Yakimenko, S. P.

    2017-12-01

    A search for resonant absorption of the solar axion by 83Kr nuclei was performed using the proportional counter installed inside the low-background setup at the Baksan Neutrino Observatory. The obtained model independent upper limit on the combination of isoscalar and isovector axion-nucleon couplings |g 3 - g 0| ≤ 8.4 × 10-7 allowed us to set the new upper limit on the hadronic axion mass of mA ≤ 65 eV (95% C.L.) with the generally accepted values S=0.5 and z=0.56.

  17. Axions in cosmology and laboratory

    Indian Academy of Sciences (India)

    Axions are dark matter candidates [3]. Let us summarize how they are created. Consider the early Universe at high temperatures qcd ≪ T < f but with a broken PQ symmetry. In this period of the early Universe, we have a vacuum with θi = 0. In the expansion, the Universe cools down. When T ∼ qcd is reached, the vacuum ...

  18. Cosmologically safe QCD axion without fine-tuning

    International Nuclear Information System (INIS)

    Yamada, Masaki; Yanagida, Tsutomu T.; Yonekura, Kazuya

    2015-10-01

    Although QCD axion models are widely studied as solutions to the strong CP problem, they generically confront severe fine-tuning problems to guarantee the anomalous PQ symmetry. In this letter, we propose a simple QCD axion model without any fine-tunings. We introduce an extra dimension and a pair of extra quarks living on two branes separately, which is also charged under a bulk Abelian gauge symmetry. We assume a monopole condensation on our brane at an intermediate scale, which implies that the extra quarks develop the chiral symmetry breaking and the PQ symmetry is broken. In contrast to the original Kim's model, our model explains the origin of the PQ symmetry thanks to the extra dimension and avoids the cosmological domain wall problem because of the chiral symmetry breaking in the Abelian gauge theory.

  19. A proposed search for dark-matter axions in the 0.6--16 μeV range

    International Nuclear Information System (INIS)

    van Bibber, K.; Sikivie, P.; Sullivan, N.S.; Tanner, D.B.; Moltz, D.M.

    1991-03-01

    A proposed experiment is described to search for dark-matter axions in the mass range 0.6--16 μeV. The method is based on the Primakoff conversion of axions into monochromatic microwave photons inside a tunable microwave cavity in a large volume high field magnet, as described by Sikivie. This proposal capitalizes on the availability of two Axicell magnets from the decommissioned MFTF-B fusion machine at LLNL. Assuming a local dark-matter density in axions of ρ = 0.3 GeV/cm 3 , the axion would be found or ruled out at the 97% c.l. in the above mass range in 48 months. 13 refs., 6 figs., 2 tabs

  20. Axion production from gravitons off interacting 0-branes

    International Nuclear Information System (INIS)

    Hussain, F.; Iengo, R.; Nunez, C.

    1997-01-01

    We study axion-graviton scattering from a system of two D0-branes in a type II superstring theory, a process which does not occur on a single brane. The two D0-branes interact via the exchange of closed string states which form a cylinder joining them. By compactifying on the Z 3 orbifold we find a non-vanishing amplitude coming from the odd spin structure sector, thus from the exchanged RR states. We compute, in particular, the leading term of the amplitude at large distance from the branes, which corresponds to taking a field theory limit. This seems to suggest that the process takes place through the coupling of an axion to the RR states exchanged between the 0-branes. (orig.)

  1. Soft X-ray excess in the Coma cluster from a Cosmic Axion Background

    Energy Technology Data Exchange (ETDEWEB)

    Angus, Stephen; Conlon, Joseph P.; Marsh, M.C. David; Powell, Andrew J.; Witkowski, Lukas T., E-mail: stephen.angus@physics.ox.ac.uk, E-mail: j.conlon1@physics.ox.ac.uk, E-mail: david.marsh1@physics.ox.ac.uk, E-mail: andrew.powell2@physics.ox.ac.uk, E-mail: l.witkowski@thphys.uni-heidelberg.de [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom)

    2014-09-01

    We show that the soft X-ray excess in the Coma cluster can be explained by a cosmic background of relativistic axion-like particles (ALPs) converting into photons in the cluster magnetic field. We provide a detailed self-contained review of the cluster soft X-ray excess, the proposed astrophysical explanations and the problems they face, and explain how a 0.1- 1 keV axion background naturally arises at reheating in many string theory models of the early universe. We study the morphology of the soft excess by numerically propagating axions through stochastic, multi-scale magnetic field models that are consistent with observations of Faraday rotation measures from Coma. By comparing to ROSAT observations of the 0.2- 0.4 keV soft excess, we find that the overall excess luminosity is easily reproduced for g{sub aγγ} ∼ 2 × 10{sup -13} Ge {sup -1}. The resulting morphology is highly sensitive to the magnetic field power spectrum. For Gaussian magnetic field models, the observed soft excess morphology prefers magnetic field spectra with most power in coherence lengths on O(3 kpc) scales over those with most power on O(12 kpc) scales. Within this scenario, we bound the mean energy of the axion background to 50 eV∼< ( E{sub a} ) ∼< 250 eV, the axion mass to m{sub a} ∼< 10{sup -12} eV, and derive a lower bound on the axion-photon coupling g{sub aγγ} ∼> √(0.5/Δ N{sub eff}) 1.4 × 10{sup -13} Ge {sup -1}.

  2. Soft X-ray excess in the Coma cluster from a Cosmic Axion Background

    International Nuclear Information System (INIS)

    Angus, Stephen; Conlon, Joseph P.; Marsh, M.C. David; Powell, Andrew J.; Witkowski, Lukas T.

    2014-01-01

    We show that the soft X-ray excess in the Coma cluster can be explained by a cosmic background of relativistic axion-like particles (ALPs) converting into photons in the cluster magnetic field. We provide a detailed self-contained review of the cluster soft X-ray excess, the proposed astrophysical explanations and the problems they face, and explain how a 0.1- 1 keV axion background naturally arises at reheating in many string theory models of the early universe. We study the morphology of the soft excess by numerically propagating axions through stochastic, multi-scale magnetic field models that are consistent with observations of Faraday rotation measures from Coma. By comparing to ROSAT observations of the 0.2- 0.4 keV soft excess, we find that the overall excess luminosity is easily reproduced for g aγγ  ∼ 2 × 10 -13  Ge -1 . The resulting morphology is highly sensitive to the magnetic field power spectrum. For Gaussian magnetic field models, the observed soft excess morphology prefers magnetic field spectra with most power in coherence lengths on O(3 kpc) scales over those with most power on O(12 kpc) scales. Within this scenario, we bound the mean energy of the axion background to 50 eV∼< ( E a  ) ∼< 250 eV, the axion mass to m a  ∼< 10 -12  eV, and derive a lower bound on the axion-photon coupling g aγγ  ∼> √(0.5/Δ N eff ) 1.4 × 10 -13  Ge -1

  3. Some remarks about possible common footing of second-class currents and the axion

    International Nuclear Information System (INIS)

    Rodenberg, R.

    1981-01-01

    Both, second class currents (SCC) as well as the axion have a common footing mediated via the ''Higgs sector''. So far, both massive particles, the axion a 0 as well as B 0 , a possible candidate to represent SCC with msub(B) 0 approximately > 5 GeV belong in that sense to the same multiplet. (author)

  4. Leptogenesis scenarios for natural SUSY with mixed axion-higgsino dark matter

    International Nuclear Information System (INIS)

    Bae, Kyu Jung; Baer, Howard; Serce, Hasan; Zhang, Yi-Fan

    2016-01-01

    Supersymmetric models with radiatively-driven electroweak naturalness require light higgsinos of mass ∼ 100–300 GeV . Naturalness in the QCD sector is invoked via the Peccei-Quinn (PQ) axion leading to mixed axion-higgsino dark matter. The SUSY DFSZ axion model provides a solution to the SUSY μ problem and the Little Hierarchy μ|| m 3/2 may emerge as a consequence of a mismatch between PQ and hidden sector mass scales. The traditional gravitino problem is now augmented by the axino and saxion problems, since these latter particles can also contribute to overproduction of WIMPs or dark radiation, or violation of BBN constraints. We compute regions of the T R vs. m 3/2 plane allowed by BBN, dark matter and dark radiation constraints for various PQ scale choices f a . These regions are compared to the values needed for thermal leptogenesis, non-thermal leptogenesis, oscillating sneutrino leptogenesis and Affleck-Dine leptogenesis. The latter three are allowed in wide regions of parameter space for PQ scale f a∼  10 10 –10 12 GeV which is also favored by naturalness: f a  ∼ √μM P /λ μ  ∼ 10 10 –10 12 GeV . These f a values correspond to axion masses somewhat above the projected ADMX search regions

  5. Flavor connections and neutrino mass hierarchy in variant invisible axion models without domain wall problem

    International Nuclear Information System (INIS)

    Geng, C.Q.; Ng, J.N.

    1988-08-01

    New types of invisible axion model based on the recent variant axion models are presented. They belong to the N=1 type model and hence are free of domain wall problems. The Peccei-Quinn symmetry transformations are not totally generation and flavor blind, which may help in understanding the small values of electron and u-quark and large t-quark masses. The light neutrino mass pattern in the two Higgs singlet models can have a very different hierarchy that differs from the other type invisible axion model. (Author) (25 refs.)

  6. Search for low Energy solar Axions with CAST

    CERN Document Server

    Cantatore, Giovanni; Aune, S.; Autiero, D.; Barth, K.; Belov, A.; Beltran, B.; Borghi, S.; Boydag, F.S.; Brauninger, H.; Cantatore, G.; Carmona, J.M.; Cebrian, S.; Cetin, S.A.; Collar, J.I.; Dafni, T.; Davenport, M.; Di Lella, L.; Dogan, O.B.; Eleftheriadis, C.; Elias, N.; Fanourakis, G.; Ferrer-Ribas, E.; Fischer, H.; Franz, J.; Galan, J.; Gazis, E.; Geralis, T.; Giomataris, I.; Gninenko, S.; Gomez, H.; Hasinoff, M.; Heinsius, F.H.; Hikmet, I.; Hoffmann, D.H.H.; Irastorza, I.G.; Jacoby, J.; Jakovcic, K.; Kang, D.; Karageorgopoulou, T.; Karuza, M.; Konigsmann, Kay; Kotthaus, R.; Krcmar, M.; Kousouris, K.; Kuster, M.; Lakic, B.; Lasseur, C.; Liolios, A.; Ljubicic, A.; Lozza, V.; Lutz, G.; Luzon, G.; Miller, D.; Morales, A.; Morales, J.; Niinikoski, T.; Nordt, A.; Ortiz, A.; Papaevangelou, T.; Pivovaroff, M.; Placci, A.; Raiteri, G.; Raffelt, G.; Riege, H.; Rodriguez, A.; Ruz, J.; Savvidis, I.; Semertzidis, Y.; Serpico, P.; Solanki, S.K.; Soufli, R.; Stewart, L.; Tsagri, M.; van Bibber, K.; Villar, J.; Vogel, J.; Walckiers, L.; Zioutas, K.

    2008-01-01

    We have started the development of a detector system, sensitive to single photons in the eV energy range, to be suitably coupled to one of the CAST magnet ports. This system should open to CAST a window on possible detection of low energy Axion Like Particles emitted by the sun. Preliminary tests have involved a cooled photomultiplier tube coupled to the CAST magnet via a Galileian telescope and a switched 40 m long optical fiber. This system has reached the limit background level of the detector alone in ideal conditions, and two solar tracking runs have been performed with it at CAST. Such a measurement has never been done before with an axion helioscope. We will present results from these runs and briefly discuss future detector developments.

  7. The flux-scaling scenario. De Sitter uplift and axion inflation

    International Nuclear Information System (INIS)

    Blumenhagen, Ralph; Damian, Cesar; Herschmann, Daniela; Sun, Rui; Font, Anamaria

    2016-01-01

    Non-geometric flux-scaling vacua provide promising starting points to realize axion monodromy inflation via the F-term scalar potential. We show that these vacua can be uplifted to Minkowski and de Sitter by adding an D3-brane or a D-term containing geometric and non-geometric fluxes. These uplifted non-supersymmetric models are analyzed with respect to their potential to realize axion monodromy inflation self-consistently. Admitting rational values of the fluxes, we construct examples with the required hierarchy of mass scales. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. The flux-scaling scenario. De Sitter uplift and axion inflation

    Energy Technology Data Exchange (ETDEWEB)

    Blumenhagen, Ralph; Damian, Cesar; Herschmann, Daniela; Sun, Rui [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Muenchen (Germany); Font, Anamaria [Departamento de Fisica, Centro de Fisica Teorica y Computacional, Facultad de Ciencias, Universidad Central de Venezuela, Caracas (Venezuela, Bolivarian Republic of)

    2016-06-15

    Non-geometric flux-scaling vacua provide promising starting points to realize axion monodromy inflation via the F-term scalar potential. We show that these vacua can be uplifted to Minkowski and de Sitter by adding an D3-brane or a D-term containing geometric and non-geometric fluxes. These uplifted non-supersymmetric models are analyzed with respect to their potential to realize axion monodromy inflation self-consistently. Admitting rational values of the fluxes, we construct examples with the required hierarchy of mass scales. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Searching for axion stars and Q-balls with a terrestrial magnetometer network

    Energy Technology Data Exchange (ETDEWEB)

    Jackson Kimball, D. F. [Cal State, East Bay; Budker, D. [UC, Berkeley; Eby, J. [Fermilab; Pospelov, M. [Perimeter Inst. Theor. Phys.; Pustelny, S. [Jagiellonian U.; Scholtes, T. [Fribourg U.; Stadnik, Y. V. [Helmholtz Inst., Mainz; Weis, A. [Fribourg U.; Wickenbrock, A. [Mainz U.

    2017-10-11

    Light (pseudo-)scalar fields are promising candidates to be the dark matter in the Universe. Under certain initial conditions in the early Universe and/or with certain types of self-interactions, they can form compact dark-matter objects such as axion stars or Q-balls. Direct encounters with such objects can be searched for by using a global network of atomic magnetometers. It is shown that for a range of masses and radii not ruled out by existing observations, the terrestrial encounter rate with axion stars or Q-balls can be sufficiently high (at least once per year) for a detection. Furthermore, it is shown that a global network of atomic magnetometers is sufficiently sensitive to pseudoscalar couplings to atomic spins so that a transit through an axion star or Q-ball could be detected over a broad range of unexplored parameter space.

  10. The CERN Axion Solar Telescope (CAST): Status and Prospects

    Energy Technology Data Exchange (ETDEWEB)

    Irastorza, I. G.(Universidad de Zaragoza); Andriamonje, S (DAPNIA, Centre d' Etudes de Saclay); Arik, E (Bogazici Universitesi); Autiero, D (European Organization for Nuclear Research); Avignone, F T.(South Carolina, Univ Of); Barth, K (European Organization for Nuclear Research); Brauninger, H (Max-Planck-Institut fur Extraterrestrische Physik); Brodzinski, Ronald L.(BATTELLE (PACIFIC NW LAB)); Carmona, J. M.(Universidad de Zaragoza); Cebrian, S (Unknown); Cetin, S (Bogazici Universitesi); Collar, J I.(Chicago, University Of); Creswick, R (South Carolina, Univ Of); De Oliveira, R (European Organization for Nuclear Research); Delbart, A (Centre d' Etudes de Saclay); Di Lella, L (European Organization for Nuclear Research); Eleftheriadis, Ch (Aristotle University of Thessaloniki); Fanourakis, G (National Research Center for Physical Sciences, Demokritos, Greece); Farach, H A.(South Carolina, Univ Of); Fischer, H (Albert-Ludwigs-Universitat Freiburg); Formenti, F (European Org for Nuclear Research); Geralis, Th. (National Research Center for Physical Sciences, Demokritos, Greece); Giomataris, I (Centre d' Etudes de Saclay, Gif-Sur-Yvette, France); Gninenko, S. N.(Institue for Nuclear Research, Moscow, Russia); Goloubev, N (Institute for Nuclear Research); Hartman, R (Max-Planck-Institut fur Extraterrestrische Physik); Hasinoff, M (British Columbia,University of); Hoffmann, D (Technische Universitat Darmstadt); Jacoby, J (Technische Universitat Darmstadt); Kang, D (Albert-Ludwigs-Universitat Freiburg); Konigsmann, K (Albert-Ludwigs-Universitat Freiburg); Kotthaus, R (Max-Planck-Institut fur Physik, Muenchen, Germany); Krcmar, M (Ruder Boskovic Institute); Kuster, M (Max-Planck-Institute fur Extraterrestrische Physik); Lakic, B (Ruder Boskovic Institute, Zagreb, Croatia); Liolios, A (Universidade de Lisboa); Ljubicic, A (Ruder Boskovic Institute, Zagreb, Croatia); Lutz, G (Max-Planck-Institut fur Physik, Muenchen, Germany); Luzon, G (Universidad de Zaragoza); Miley, Harr

    2003-02-10

    The CAST experiment is being mounted at CERN. It will make use of a decommissioned LHC test magnet to look for solar axions through its conversion into Photons inside the magnetic field. The magnet has a field of 9.6 Tesla and length of 10 m and is installed in a platform which allows to move it+ or - 8 degrees vertically and+ or - 10 to the 11th power horizontally. According to these numbers we expect a sensitivity in axion-photon coupling gaT"~ ,~< 5 10 -11 GeV -1 for ma~< 0.02 eV, and with a gas filled tube ga~~< 10 -l GeV -a for ma~< 1 eV.

  11. Prospects for searching axion-like particle dark matter with dipole, toroidal and wiggler magnets

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Oliver K. [Yale Univ., New Haven, CT (United States). Dept. of Physics; Betz, Michael; Caspers, Fritz [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Jaeckel, Joerg [Institute for Particle Physics Phenomenology, Durham (United Kingdom); Lindner, Axel; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Semertzidis, Yannis [Brookhaven National Lab., Upton, NY (United States); Sikivie, Pierre [Florida Univ., Gainesville, FL (United States). Dept. of Physics; Zioutas, Konstantin [Patras Univ. (Greece)

    2011-10-15

    In this work we consider searches for dark matter made of axions or axion-like particles (ALPs) using resonant radio frequency cavities inserted into dipole magnets from particle accelerators, wiggler magnets developed for accelerator based advanced light sources, and toroidal magnets similar to those used in particle physics detectors. We investigate the expected sensitivity of such ALP dark matter detectors and discuss the engineering aspects of building and tuning them. Brief mention is also made of even stronger field magnets that are becoming available due to improvements in magnetic technology. It is concluded that new experiments utilizing already existing magnets could greatly enlarge the mass region in searches for axion-like dark matter particles. (orig.)

  12. Prospects for searching axion-like particle dark matter with dipole, toroidal and wiggler magnets

    International Nuclear Information System (INIS)

    Baker, Oliver K.; Jaeckel, Joerg; Lindner, Axel; Ringwald, Andreas; Semertzidis, Yannis; Sikivie, Pierre

    2011-10-01

    In this work we consider searches for dark matter made of axions or axion-like particles (ALPs) using resonant radio frequency cavities inserted into dipole magnets from particle accelerators, wiggler magnets developed for accelerator based advanced light sources, and toroidal magnets similar to those used in particle physics detectors. We investigate the expected sensitivity of such ALP dark matter detectors and discuss the engineering aspects of building and tuning them. Brief mention is also made of even stronger field magnets that are becoming available due to improvements in magnetic technology. It is concluded that new experiments utilizing already existing magnets could greatly enlarge the mass region in searches for axion-like dark matter particles. (orig.)

  13. Gamma-ray boxes from axion-mediated dark matter

    International Nuclear Information System (INIS)

    Ibarra, Alejandro; Gehler, Sergio López; Pato, Miguel; Lee, Hyun Min; Park, Wan-Il

    2013-01-01

    We compute the gamma-ray output of axion-mediated dark matter and derive the corresponding constraints set by recent data. In such scenarios the dark matter candidate is a Dirac fermion that pair-annihilates into axions and/or scalars. Provided that the axion decays (at least partly) into photons, these models naturally give rise to a box-shaped gamma-ray spectrum that may present two distinct phenomenological behaviours: a narrow box, resembling a line at half the dark matter mass, or a wide box, spanning an extensive energy range up to the dark matter mass. Remarkably, we find that in both cases a sizable gamma-ray flux is predicted for a thermal relic without fine-tuning the model parameters nor invoking boost factors. This large output is in line with recent Fermi-LAT observations towards the galactic centre region and is on the verge of being excluded. We then make use of the Fermi-LAT and H.E.S.S. data to derive robust, model-independent upper limits on the dark matter annihilation cross section for the narrow and wide box scenarios. H.E.S.S. constraints, in particular, turn out to match the ones from Fermi-LAT at hundreds of GeV and extend to multi-TeV masses. Future Čerenkov telescopes will likely probe gamma-ray boxes from thermal dark matter relics in the whole multi-TeV range, a region hardly accessible to direct detection, collider searches and other indirect detection strategies

  14. The pooltable analogy to axion physics

    International Nuclear Information System (INIS)

    Sikivie, P.

    1996-01-01

    An imaginary character named TSP finds himself in a playroom whose floor is tilted to one side. However, the pooltable in the playroom is horizontal. TSP wonders how this can be. In doing so, he embarks upon an intellectual journey which parallels that which has been travelled during the past two decades by physicists interested in the Strong CP Problem and axion physics

  15. The pooltable analogy to axion physics

    Energy Technology Data Exchange (ETDEWEB)

    Sikivie, P.

    1996-01-01

    An imaginary character named TSP finds himself in a playroom whose floor is tilted to one side. However, the pooltable in the playroom is horizontal. TSP wonders how this can be. In doing so, he embarks upon an intellectual journey which parallels that which has been travelled during the past two decades by physicists interested in the Strong CP Problem and axion physics.

  16. Spontaneous CP breaking in QCD and the axion potential: an effective Lagrangian approach

    Science.gov (United States)

    Di Vecchia, Paolo; Rossi, Giancarlo; Veneziano, Gabriele; Yankielowicz, Shimon

    2017-12-01

    Using the well-known low-energy effective Lagrangian of QCD — valid for small (non-vanishing) quark masses and a large number of colors — we study in detail the regions of parameter space where CP is spontaneously broken/unbroken for a vacuum angle θ = π. In the CP broken region there are first order phase transitions as one crosses θ = π, while on the (hyper)surface separating the two regions, there are second order phase transitions signalled by the vanishing of the mass of a pseudo Nambu-Goldstone boson and by a divergent QCD topological susceptibility. The second order point sits at the end of a first order line associated with the CP spontaneous breaking, in the appropriate complex parameter plane. When the effective Lagrangian is extended by the inclusion of an axion these features of QCD imply that standard calculations of the axion potential have to be revised if the QCD parameters fall in the above mentioned CP broken region, in spite of the fact that the axion solves the strong- CP problem. These last results could be of interest for axionic dark matter calculations if the topological susceptibility of pure Yang-Mills theory falls off sufficiently fast when temperature is increased towards the QCD deconfining transition.

  17. Brane solutions of gravity-dilaton-axion systems

    NARCIS (Netherlands)

    Bergshoeff, E; Collinucci, A; Gran, U; Roest, D; Vandoren, S; Lukierski, J; Sorokin, D

    2005-01-01

    We consider general properties of brane solutions of gravity-dilaton-axion systems. We focus on the case of 7-branes and instantons. In both cases we show that besides the standard solutions there are new deformed solutions whose charges take value in any of the three conjugacy classes of SL(2, R).

  18. First results with the experimental set-up at a Bugey reactor: neutrino oscillations, search of axions

    International Nuclear Information System (INIS)

    Hoummada, A.

    1982-07-01

    This work presents an experimental set-up at the Bugey PWR reactor to put into evidence neutrino oscillations. The first part describes a neutrino detector specially designed for the investigation of neutrino oscillations at two distances (13.50 m and 19 m) under the core of the reactor. Preliminary analysis are presented. The second part reports a search for axions, using the neutrino detector well-shielded volume. Created in competition with electro magnetic transitions, axion should be produced in abondance in the reactor core. This experiment excludes the existence of the axion of the standard model [fr

  19. QCD axion dark matter from long-lived domain walls during matter domination

    OpenAIRE

    Harigaya, Keisuke; Kawasaki, Masahiro

    2018-01-01

    The domain wall problem of the Peccei–Quinn mechanism can be solved if the Peccei–Quinn symmetry is explicitly broken by a small amount. Domain walls decay into axions, which may account for dark matter of the universe. This scheme is however strongly constrained by overproduction of axions unless the phase of the explicit breaking term is tuned. We investigate the case where the universe is matter-dominated around the temperature of the MeV scale and domain walls decay during this matter dom...

  20. Cosmological Higgs-Axion Interplay for a Naturally Small Electroweak Scale.

    Science.gov (United States)

    Espinosa, J R; Grojean, C; Panico, G; Pomarol, A; Pujolàs, O; Servant, G

    2015-12-18

    Recently, a new mechanism to generate a naturally small electroweak scale has been proposed. It exploits the coupling of the Higgs boson to an axionlike field and a long era in the early Universe where the axion unchains a dynamical screening of the Higgs mass. We present a new realization of this idea with the new feature that it leaves no sign of new physics at the electroweak scale, and up to a rather large scale, 10^{9}  GeV, except for two very light and weakly coupled axionlike states. One of the scalars can be a viable dark matter candidate. Such a cosmological Higgs-axion interplay could be tested with a number of experimental strategies.

  1. The context of the search for axions

    International Nuclear Information System (INIS)

    Morgan, D.

    1978-01-01

    Axions are here defined as possible new elementary particles of mass less than or comparable to electrons. It is stated that if they really exist their discovery would be a major scientific advance. The facts and the motivation underlying the recent search for these conjectured new particles are outlined in this review. 27 references. (Author)

  2. Lowering the background level and the energy threshold of Micromegas x-ray detectors for axion searches

    CERN Document Server

    Iguaz, F J; Aznar, F; Castel, J F; Dafni, T; Davenport, M; Ferrer-Ribas, E; Galan, J; Garcia, J A; Garza, J G; Giomataris, I; Irastorza, I G; Papaevangelou, T; Rodriguez, A; Tomas, A; Vafeiadis, T; Yildiz, S C

    2014-01-01

    Axion helioscopes search for solar axions by their conversion in x-rays in the presence of high magnetic fields. The use of low background x-ray detectors is an essential component contributing to the sensitivity of these searches. In this work, we review the recent advances on Micromegas detectors used in the CERN Axion Solar Telescope (CAST) and proposed for the future International Axion Observatory (IAXO). The actual setup in CAST has achieved background levels below 10$^{-6}$ keV$^{-1}$ cm$^{-2}$ s$^{-1}$, a factor 100 lower than the first generation of Micromegas detectors. This reduction is based on active and passive shielding techniques, the selection of radiopure materials, offline discrimination techniques and the high granularity of the readout. We describe in detail the background model of the detector, based on its operation at CAST site and at the Canfranc Underground Laboratory (LSC), as well as on Geant4 simulations. The best levels currently achieved at LSC are low than 10$^{-7}$ keV$^{-1}$ ...

  3. Axion monodromy inflation with warped KK-modes

    Energy Technology Data Exchange (ETDEWEB)

    Hebecker, Arthur; Moritz, Jakob; Witkowski, Lukas T. [Heidelberg Univ. (Germany). Inst. for Theoretical Physics; Westphal, Alexander [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2015-12-15

    We present a particularly simple model of axion monodromy inflation: Our axion is the lowest-lying KK-mode of the RR-2-form-potential C{sub 2} in the standard Klebanov-Strassler throat. One can think of this inflaton candidate as being defined by the integral of C{sub 2} over the S{sup 2} cycle of the throat. It obtains an exponentially small mass from the IR-region in which the S{sup 2} shrinks to zero size. Crucially, the S{sup 2} cycle has to be shared between two throats, such that the second locus where the S{sup 2} shrinks is also in a warped region. Well-known problems like the potentially dangerous back-reaction of brane/antibrane pairs and explicit supersymmetry breaking are not present in our scenario. The inflaton back-reaction on the geometry turns out to be controlled by the string coupling g{sub s}. We hope that our setting is simple enough for many critical consistency issues of large-field inflation in string theory to be addressed at a quantitative level.

  4. Axion monodromy inflation with warped KK-modes

    International Nuclear Information System (INIS)

    Hebecker, Arthur; Moritz, Jakob; Witkowski, Lukas T.

    2015-12-01

    We present a particularly simple model of axion monodromy inflation: Our axion is the lowest-lying KK-mode of the RR-2-form-potential C 2 in the standard Klebanov-Strassler throat. One can think of this inflaton candidate as being defined by the integral of C 2 over the S 2 cycle of the throat. It obtains an exponentially small mass from the IR-region in which the S 2 shrinks to zero size. Crucially, the S 2 cycle has to be shared between two throats, such that the second locus where the S 2 shrinks is also in a warped region. Well-known problems like the potentially dangerous back-reaction of brane/antibrane pairs and explicit supersymmetry breaking are not present in our scenario. The inflaton back-reaction on the geometry turns out to be controlled by the string coupling g s . We hope that our setting is simple enough for many critical consistency issues of large-field inflation in string theory to be addressed at a quantitative level.

  5. Axion monodromy inflation with warped KK-modes

    Science.gov (United States)

    Hebecker, Arthur; Moritz, Jakob; Westphal, Alexander; Witkowski, Lukas T.

    2016-03-01

    We present a particularly simple model of axion monodromy inflation: Our axion is the lowest-lying KK-mode of the RR-2-form-potential C2 in the standard Klebanov-Strassler throat. One can think of this inflaton candidate as being defined by the integral of C2 over the S2 cycle of the throat. It obtains an exponentially small mass from the IR-region in which the S2 shrinks to zero size. Crucially, the S2 cycle has to be shared between two throats, such that the second locus where the S2 shrinks is also in a warped region. Well-known problems like the potentially dangerous back-reaction of brane/antibrane pairs and explicit supersymmetry breaking are not present in our scenario. The inflaton back-reaction on the geometry turns out to be controlled by the string coupling gs. We hope that our setting is simple enough for many critical consistency issues of large-field inflation in string theory to be addressed at a quantitative level.

  6. Hierarchies in Quantum Gravity: Large Numbers, Small Numbers, and Axions

    Science.gov (United States)

    Stout, John Eldon

    Our knowledge of the physical world is mediated by relatively simple, effective descriptions of complex processes. By their very nature, these effective theories obscure any phenomena outside their finite range of validity, discarding information crucial to understanding the full, quantum gravitational theory. However, we may gain enormous insight into the full theory by understanding how effective theories with extreme characteristics--for example, those which realize large-field inflation or have disparate hierarchies of scales--can be naturally realized in consistent theories of quantum gravity. The work in this dissertation focuses on understanding the quantum gravitational constraints on these "extreme" theories in well-controlled corners of string theory. Axion monodromy provides one mechanism for realizing large-field inflation in quantum gravity. These models spontaneously break an axion's discrete shift symmetry and, assuming that the corrections induced by this breaking remain small throughout the excursion, create a long, quasi-flat direction in field space. This weakly-broken shift symmetry has been used to construct a dynamical solution to the Higgs hierarchy problem, dubbed the "relaxion." We study this relaxion mechanism and show that--without major modifications--it can not be naturally embedded within string theory. In particular, we find corrections to the relaxion potential--due to the ten-dimensional backreaction of monodromy charge--that conflict with naive notions of technical naturalness and render the mechanism ineffective. The super-Planckian field displacements necessary for large-field inflation may also be realized via the collective motion of many aligned axions. However, it is not clear that string theory provides the structures necessary for this to occur. We search for these structures by explicitly constructing the leading order potential for C4 axions and computing the maximum possible field displacement in all compactifications of

  7. Exploring the role of axions and other WISPs in the dark universe

    Energy Technology Data Exchange (ETDEWEB)

    Ringwald, Andreas

    2012-10-18

    Axions and other very weakly interacting slim particles (WISPs) may be non-thermally produced in the early universe and survive as constituents of the dark universe. We describe their theoretical motivation and their phenomenology. A huge region in parameter space spanned by their couplings to photons and their masses can give rise to the observed cold dark matter abundance. A wide range of experiments - direct dark matter searches exploiting microwave cavities, searches for solar axions or WISPs, and lightshining-through-a-wall searches - can probe large parts of this parameter space in the foreseeable future.

  8. Exploring the role of axions and other WISPs in the dark universe

    International Nuclear Information System (INIS)

    Ringwald, Andreas

    2012-01-01

    Axions and other very weakly interacting slim particles (WISPs) may be non-thermally produced in the early universe and survive as constituents of the dark universe. We describe their theoretical motivation and their phenomenology. A huge region in parameter space spanned by their couplings to photons and their masses can give rise to the observed cold dark matter abundance. A wide range of experiments - direct dark matter searches exploiting microwave cavities, searches for solar axions or WISPs, and lightshining-through-a-wall searches - can probe large parts of this parameter space in the foreseeable future.

  9. Systematics of axion inflation in Calabi-Yau hypersurfaces

    Energy Technology Data Exchange (ETDEWEB)

    Long, Cody; McAllister, Liam; Stout, John [Department of Physics, Cornell University,Ithaca, NY 14853 (United States)

    2017-02-03

    We initiate a comprehensive survey of axion inflation in compactifications of type IIB string theory on Calabi-Yau hypersurfaces in toric varieties. For every threefold with h{sup 1,1}≤4 in the Kreuzer-Skarke database, we compute the metric on Kähler moduli space, as well as the matrix of four-form axion charges of Euclidean D3-branes on rigid divisors. These charges encode the possibility of enlarging the field range via alignment. We then determine an upper bound on the inflationary field range Δϕ that results from the leading instanton potential, in the absence of monodromy. The bound on the field range in this ensemble is Δϕ≲0.3M{sub pl}, in a compactification where the smallest curve volume is (2π){sup 2}α{sup ′}, and we argue that the sigma model expansion is adequately controlled. The largest increase resulting from alignment is a factor ≈2.6. We also examine a set of threefolds with h{sup 1,1} up to 100 and characterize their axion charge matrices. While we find modest alignment in this ensemble, the maximum field range is ultimately suppressed by the volume of the internal space, which typically grows quickly with h{sup 1,1}. Furthermore, we find that many toric divisors are rigid — and the corresponding charge matrices are relatively trivial — at large h{sup 1,1}. It is therefore challenging to realize alignment via superpotentials generated only by Euclidean D3-branes, without taking into account the effects of flux, D7-branes, and orientifolding.

  10. Entropy of charged dilaton-axion black hole

    International Nuclear Information System (INIS)

    Ghosh, Tanwi; SenGupta, Soumitra

    2008-01-01

    Using the brick wall method, the entropy of the charged dilaton-axion black hole is determined for both asymptotically flat and nonflat cases. The entropy turns out to be proportional to the horizon area of the black hole confirming the Bekenstein-Hawking area-entropy formula for black holes. The leading order logarithmic corrections to the entropy are also derived for such black holes.

  11. D6-branes and axion monodromy inflation

    Energy Technology Data Exchange (ETDEWEB)

    Escobar, Dagoberto; Landete, Aitor; Marchesano, Fernando [Instituto de Física Teórica UAM-CSIC,Cantoblanco, 28049 Madrid (Spain); Regalado, Diego [Max-Planck-Institut für Physik,Föhringer Ring 6, 80805 Munich (Germany); Institute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena, Utrecht University,Leuvenlaan 4, 3584 CE Utrecht (Netherlands)

    2016-03-16

    We develop new scenarios of large field inflation in type IIA string compactifications in which the key ingredient is a D6-brane that creates a potential for a B-field axion. The potential has the multi-branched structure typical of F-term axion monodromy models and, near its supersymmetric minima, it is described by a 4d supergravity model of chaotic inflation with a stabiliser field. The same statement applies to the D6-brane Wilson line, which can also be considered as an inflaton candidate. We analyse both cases in the context of type IIA moduli stabilisation, finding an effective potential for the inflaton system and a simple mechanism to lower the inflaton mass with respect to closed string moduli stabilised by fluxes. Finally, we compute the B-field potential for trans-Planckian field values by means of the DBI action. The effect of Planck suppressed corrections is a flattened potential which, in terms of the compactification parameters, interpolates between linear and quadratic inflation. This renders the cosmological parameters of these models compatible with current experimental bounds, with the tensor-to-scalar ratio ranging as 0.08≲r≲0.12.

  12. Two-field axion-monodromy hybrid inflation model: Dante's Waterfall

    Science.gov (United States)

    Carone, Christopher D.; Erlich, Joshua; Sensharma, Anuraag; Wang, Zhen

    2015-02-01

    We describe a hybrid axion-monodromy inflation model motivated by the Dante's Inferno scenario. In Dante's Inferno, a two-field potential features a stable trench along which a linear combination of the two fields slowly rolls, rendering the dynamics essentially identical to that of single-field chaotic inflation. A shift symmetry allows for the Lyth bound to be effectively evaded as in other axion-monodromy models. In our proposal, the potential is concave downward near the origin and the inflaton trajectory is a gradual downward spiral, ending at a point where the trench becomes unstable. There, the fields begin falling rapidly towards the minimum of the potential and inflation terminates as in a hybrid model. We find parameter choices that reproduce observed features of the cosmic microwave background, and discuss our model in light of recent results from the BICEP2 and Planck experiments.

  13. Literature in Focus: "Axions: Theory, Cosmology, and Experimental Searches"

    CERN Document Server

    2009-01-01

    Axions are peculiar hypothetical particles that could both solve the CP problem of quantum chromodynamics and at the same time account for the dark matter of the universe. Based on a series of lectures by world experts in this field held at CERN, this volume provides a pedagogical introduction to the theory, cosmology and astrophysics of these fascinating particles and gives an up-to-date account of the status and prospect of ongoing and planned experimental searches. Learners and practitioners of astroparticle physics will find in this book both a concise introduction and a current reference work to a showcase topic that connects the "inner space" of the elementary particle world with the "outer space" of the universe at large. The book will be presented by Markus Kuster. "Axions: Theory, Cosmology, and Experimental Searches", edited by M. Kuster (Technische Universität Darmstadt), G. Raffelt (Max-Planck-Institu...

  14. Search for 14.4 keV solar axions emitted in the M1-transition of $^{57}$Fe nuclei with CAST

    CERN Document Server

    Andriamonje, S; Autiero, D; Barth, K; Belov, A; Beltrán, B; Bräuninger, H; Carmona, J M; Cebrián, S; Collar, J I; Dafni, T; Davenport, M; Di Lella, L; Eleftheriadis, C; Englhauser, J; Fanourakis, G K; Ferrer-Ribas, E; Fischer, H; Franz, J; Friedrich, P; Geralis, T; Giomataris, Yu; Gninenko, S; Gómez, H; Hasinoff, M; Heinsius, F H; Hoffmann, D H H; Irastorza, I G; Jacoby, J; Jakovčić, K; Kang, D; Königsmann, K C; Kotthaus, R; Krčmar, M; Kousouris, K; Kuster, M; Lakić, B; Lasseur, C; Liolios, A; Ljubičić, A; Lutz, G; Luzón, G; Miller, D; Morales, J; Ortiz, A; Papaevangelou, T; Placci, A; Raffelt, G; Riege, H; Rodríguez, A; Ruz, J; Savvidis, I; Semertzidis, Y; Serpico, P; Stewart, L; Vieira, J; Villar, J; Vogel, J; Walckiers, L; Zioutas, K

    2009-01-01

    We have searched for 14.4 keV solar axions or more general axion-like particles (ALPs), that may be emitted in the M1 nuclear transition of 57Fe, by using the axion-to-photon conversion in the CERN Axion Solar Telescope (CAST) with evacuated magnet bores (Phase I). From the absence of excess of the monoenergetic X-rays when the magnet was pointing to the Sun, we set model-independent constraints on the coupling constants of pseudoscalar particles that couple to two photons and to a nucleon g_{a\\gamma} |-1.19 g_{aN}^{0}+g_{aN}^{3}|<1.36\\times 10^{-16} GeV^{-1} for m_{a}<0.03 eV at the 95% confidence level.

  15. Axion cosmology, lattice QCD and the dilute instanton gas

    International Nuclear Information System (INIS)

    Borsanyi, S.; Fodor, Z.; Mages, S.W.; Nogradi, D.; Szabo, K.K.

    2015-08-01

    Axions are one of the most attractive dark matter candidates. The evolution of their number density in the early universe can be determined by calculating the topological susceptibility χ(T) of QCD as a function of the temperature. Lattice QCD provides an ab initio technique to carry out such a calculation. A full result needs two ingredients: physical quark masses and a controlled continuum extrapolation from non-vanishing to zero lattice spacings. We determine χ(T) in the quenched framework (infinitely large quark masses) and extrapolate its values to the continuum limit. The results are compared with the prediction of the dilute instanton gas approximation (DIGA). A nice agreement is found for the temperature dependence, whereas the overall normalization of the DIGA result still differs from the non-perturbative continuum extrapolated lattice results by a factor of order ten. We discuss the consequences of our findings for the prediction of the amount of axion dark matter.

  16. SM*A*S*H (Standard Model*Axion*Seesaw*Higgs portal inflation)

    International Nuclear Information System (INIS)

    Ringwald, Andreas

    2016-10-01

    We present a minimal model for particle physics and cosmology. The Standard Model (SM) particle content is extended by three right-handed SM-singlet neutrinos N_i and a vector-like quark Q, all of them being charged under a global lepton number and Peccei-Quinn (PQ) U(1) symmetry which is spontaneously broken by the vacuum expectation value υ_σ∝10"1"1 GeV of a SM-singlet complex scalar field σ. Five fundamental problems - neutrino oscillations, baryogenesis, dark matter, inflation, strong CP problem - are solved at one stroke in this model, dubbed ''SM*A*S*H'' (Standard Model*Axion*Seesaw*Higgs portal inflation). It can be probed decisively by upcoming cosmic microwave background and axion dark matter experiments.

  17. Studies on Axions as the Energy source in Magnetar

    Indian Academy of Sciences (India)

    61

    Highly magnetized neutron stars known as magnetars are some of the most interesting objects in the Universe. Non-baryonic dark matter candidate ax- ions are produced in the highly magnetized neutron star via bremsstrahlung process in the highly dense medium . These axions thus produced are then converted into ...

  18. An application of space technology to the terrestrial search for axions: the X-ray mirror telescope at CAST

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, Gerhard E-mail: gerhard.lutz@cern.ch; Braeuninger, H.; Englhauser, J.; Hartmann, R.; Kang, D.; Kotthaus, R.; Kuster, M.; Serber, W.; Strueder, L

    2004-02-01

    An X-ray mirror telescope consisting of a Wolter I type mirror assembly as used in X-ray astronomy and a new type X-ray CCD has been added to the CERN Axion Solar Telescope experiment. It will strongly improve the sensitivity in the search for axions, a so far elusive particle. The axion is predicted in order to explain the observed CP conservation in strong interaction which is not expected within the generally accepted 'standard model'. Construction and performance of the X-ray telescope are described. An improvement by two orders of magnitude in the signal over background S/B event ratio is estimated.

  19. An application of space technology to the terrestrial search for axions The X-ray mirror telescope at CAST

    CERN Document Server

    Lutz, Gerhard; Englhauser, J; Hartmann, R; Kang, D; Kotthaus, R; Kuster, M; Serber, W; Strüder, L

    2004-01-01

    An X-ray mirror telescope consisting of a Wolter I type mirror assembly as used in X-ray astronomy and a new type X-ray CCD has been added to the CERN Axion Solar Telescope experiment. It will strongly improve the sensitivity in the search for axions, a so far elusive particle. The axion is predicted in order to explain the observed CP conservation in strong interaction which is not expected within the generally accepted "standard model". Construction and performance of the X-ray telescope are described. An improvement by two orders of magnitude in the signal over background S/B event ratio is estimated.

  20. Axion inflation, proton decay, and leptogenesis in S U (5 )×U (1 )P Q

    Science.gov (United States)

    Boucenna, Sofiane M.; Shafi, Qaisar

    2018-04-01

    We implement inflation in a nonsupersymmetric S U (5 ) model based on a nonminimal coupling of the axion field to gravity. The isocurvature fluctuations are adequately suppressed, axions comprise the dark matter, proton lifetime estimates are of order 8 ×1034- 3 ×1035 yr , and the observed baryon asymmetry arises via nonthermal leptogenesis. The presence of low-scale colored scalars ensures unification of the Standard Model gauge couplings and also helps in stabilizing the electroweak vacuum.

  1. 5th Patras workshop on axions, WIMPs and WISPs (PATRAS 2009). Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Jaeckel, Joerg; Lindner, Axel; Redondo, Javier [eds.

    2010-06-15

    The following topics were dealt with: Direct searches for dark matter, indirect searches for WIMPS, photon generation and laser polarization experiments, direct axion signals, theoretic WISP developments. (HSI)

  2. 5th Patras workshop on axions, WIMPs and WISPs (PATRAS 2009). Proceedings

    International Nuclear Information System (INIS)

    Jaeckel, Joerg; Lindner, Axel; Redondo, Javier

    2010-06-01

    The following topics were dealt with: Direct searches for dark matter, indirect searches for WIMPS, photon generation and laser polarization experiments, direct axion signals, theoretic WISP developments. (HSI)

  3. Ultra Light Axionic Dark Matter: Galactic Halos and Implications for Observations with Pulsar Timing Arrays

    Science.gov (United States)

    de Martino, Ivan; Broadhurst, Tom; Tye, S.-H. Henry; Chiueh, Tzihong; Shive, Hsi-Yu; Lazkoz, Ruth

    2018-01-01

    The cold dark matter (CDM) paradigm successfully explains the cosmic structure over an enormous span of redshifts. However, it fails when probing the innermost regions of dark matter halos and the properties of the Milky Way's dwarf galaxy satellites. Moreover, the lack of experimental detection of Weakly Interacting Massive Particle (WIMP) favors alternative candidates such as light axionic dark matter that naturally arise in string theory. Cosmological N-body simulations have shown that axionic dark matter forms a solitonic core of size of ≃ 150 pc in the innermost region of the galactic halos. The oscillating scalar field associated to the axionic dark matter halo produces an oscillating gravitational potential that induces a time dilation of the pulse arrival time of ≃ 400 ns/(m_B/10^{-22} eV) for pulsar within such a solitonic core. Over the whole galaxy, the averaged predicted signal may be detectable with current and forthcoming pulsar timing array telescopes.

  4. Commissioning and First Operation of the Cryogenics for the CERN Axion Solar Telescope (CAST)

    CERN Document Server

    Barth, K; Passardi, Giorgio; Pezzetti, M; Pirotte, O; Stewart, L; Vullierme, B; Walckiers, L; Zioutas, Konstantin

    2004-01-01

    A new experiment, the CERN Axion Solar Telescope (CAST) was installed and commissioned in 2002. Its aim is to experimentally prove the existence of an as yet hypothetical particle predicted by theory as a solution of the strong CP problem and possible candidate for galactic dark matter. The heart of the detector consists of a decommissioned 10-m long LHC superconducting dipole prototype magnet, providing a magnetic field of up to 9.5 T. The whole telescope assembly is aligned with high precision to the core of the sun. If they exist, axions could be copiously produced in the core of the sun and converted into photons within the transverse magnetic field of the telescope. The converted low-energy solar axion spectrum, peaked around a mean energy of 4.4 keV, can then be focused by a special x-ray mirror system and detected by low-background photon detectors, installed on each end of the telescopes twin beam pipes. This paper describes the external and proximity cryogenic system and magnet commissioning as well ...

  5. Status report of the CERN light shining through the wall experiment with microwave axions and related aspects

    CERN Document Server

    Betz, M; Gasior, M; Thumm, M

    2012-01-01

    One way to proof or exclude the existence of axion like particles is a microwave light shining through the wall experiment. In this publication we will emphasize on the engineering aspects of such a setup, currently under development at CERN. One critical point, to achieve meaningful results, is the electromagnetic shielding between axion-emitter and -receiver cavity, which needs to be in the order of 300 dB to improve over existing experimental bounds. The RF leakage or electromagnetic crosstalk between both cavities must be well controlled and quantified during the complete duration of the experiment. A very narrow band (in the 10^-6 Hz range) homodyne detection method is used to reveal the axion signal from background thermal noise. The current status of the experiment is presented.

  6. Proceedings of the 4th Patras workshop on axions, WIMPs and WISPs

    Energy Technology Data Exchange (ETDEWEB)

    Lindner, Axel; Redondo, Javier; Ringwald, Andreas [eds.

    2008-08-15

    The following topics were dealt with: Physical foundations for WIMPs, axions, and WISPS, signals from astrophysical sources, direct searches for dark matter WIMPs, new theoretical developments, new experimental approaches. (HSI)

  7. Proceedings of the 4th Patras workshop on axions, WIMPs and WISPs

    International Nuclear Information System (INIS)

    Lindner, Axel; Redondo, Javier; Ringwald, Andreas

    2008-08-01

    The following topics were dealt with: Physical foundations for WIMPs, axions, and WISPS, signals from astrophysical sources, direct searches for dark matter WIMPs, new theoretical developments, new experimental approaches. (HSI)

  8. WISPers from the dark side. Radio probes of axions and hidden photons

    Energy Technology Data Exchange (ETDEWEB)

    Horns, Dieter [Hamburg Univ. (Germany). Inst. fuer Experimentalphysik; Lindner, Axel; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Lobanov, Andrei [Max-Planck-Institut fuer Radioastronomie, Bonn (Germany); Hamburg Univ. (Germany). Inst. fuer Experimentalphysik

    2013-09-15

    Measurements in the radio regime embrace a number of effective approaches for WISP searches, often covering unique or highly complementary ranges of the parameter space compared to those explored in other research domains. These measurements can be used to search for electromagnetic tracers of the hidden photon and axion oscillations, extending down to {proportional_to} 10{sup -19} eV the range of the hidden photon mass probed, and closing the last gaps in the strongly favoured 1-5 {mu}eV range for axion dark matter. This provides a strong impetus for several new initiatives in the field, including the WISP Dark Matter eXperiment (WISPDMX) and novel conceptual approaches for broad-band WISP searches in the 0.1-1000 {mu}eV range.

  9. Topology in the SU(Nf) chiral symmetry restored phase of unquenched QCD and axion cosmology

    Science.gov (United States)

    Azcoiti, Vicente

    2018-03-01

    The axion is one of the more interesting candidates to make the dark matter of the universe, and the axion potential plays a fundamental role in the determination of the dynamics of the axion field. Moreover, the way in which the U(1)A anomaly manifests itself in the chiral symmetry restored phase of QCD at high temperature could be tested when probing the QCD phase transition in relativistic heavy ion collisions. With these motivations, we investigate the physical consequences of the survival of the effects of the U(1)A anomaly in the chiral symmetric phase of QCD, and show that the free energy density is a singular function of the quark mass m, in the chiral limit, and that the σ and π susceptibilities diverge in this limit at any T ≥ Tc. We also show that the difference between the π and t;δ susceptibilities diverges in the chiral limit at any T ≥ Tc, a result that can be contrasted with the existing lattice calculations; and discuss on the generalization of these results to the Nf ≥ 3 model.

  10. Hypothetical Dark Matter/Axion rockets: What can be said about Dark Matter in terms of space physics propulsion

    International Nuclear Information System (INIS)

    Beckwith, Andrew

    2009-01-01

    This paper discusses dark matter (DM) particle candidates from non-supersymmetry (SUSY) processes and explores how a DM candidate particle in the 100-400 GeV range could be created. Thrust from DM particles is also proposed for Photon rocket and Axion rockets. It would use a magnetic field to convert DM particles to near photonlike particles in a chamber to create thrust from the discharge of the near-photon-like particles. The presence of DM particles would suggest that thrust from the emerging near-photon-like particle would be greater than with conventional photon rockets. This amplifies and improves on an 'axion rocket ramjet' for interstellar travel. It is assumed that the same methodology used in an axion ramjet could be used with DM, with perhaps greater thrust/power conversion efficiencies.

  11. 6th Patras workshop on axions, WIMPs and WISPs (PATRAS 2010). Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Baudis, Laura; Schumann, Marc (eds.)

    2010-11-15

    The following topics were dealt with: Axions, WIMPs, WISPs, and neutrinos in the universe, laboratory experimental searching for WISPs, astrophysical experimental searching for WISPs, direct and indirect detection of WIMPs, new ideas and developments, visions, large laboratories. (HSI)

  12. 6th Patras workshop on axions, WIMPs and WISPs (PATRAS 2010). Proceedings

    International Nuclear Information System (INIS)

    Baudis, Laura; Schumann, Marc

    2010-11-01

    The following topics were dealt with: Axions, WIMPs, WISPs, and neutrinos in the universe, laboratory experimental searching for WISPs, astrophysical experimental searching for WISPs, direct and indirect detection of WIMPs, new ideas and developments, visions, large laboratories. (HSI)

  13. Experimental bounds on ββ-decay, cold dark matter and solar axions with an ultralow background Ge detector

    International Nuclear Information System (INIS)

    Avignone, F.T. III; Ahlen, S.P.; Brodzinski, R.L.

    1986-01-01

    The PNL/USC ultralow background prototype Ge detector in the Homestake goldmine is being applied to searches for O nu ββ-decay, dark matter candidates and solar axions. An upper bound of 2.2 eV has been placed on the Majorana mass of the electron neutrino. The low energy data exclude particles with spin independent Z 0 exchange interactions having masses between 20 GeV and 5 TeV, as significant contributors to the cold dark matter of the halo of their galaxy. The existence of stable Dirac neutrinos more massive than 20 GeV is also excluded except for a narrow region around the Z 0 resonance. Finally, Dine-Fischler-Srednicki (DFS) axion models with F/2x/sub e/' ≤ 0.5 x10 7 GeV are ruled out by the maximum count rate attributable to solar axions

  14. Unifying inflation with the axion, dark matter, baryogenesis and the seesaw mechanism

    International Nuclear Information System (INIS)

    Ballesterose, Guillermo; Ringwald, Andreas; Tamarit, Carlos

    2016-08-01

    A minimal extension of the Standard Model (SM) providing a complete and consistent picture of particle physics and cosmology up to the Planck scale is presented. We add to the SM three right-handed SM-singlet neutrinos, a new vector-like color triplet fermion and a complex SM singlet scalar σ whose vacuum expectation value at ∝10"1"1 GeV breaks lepton number and a Peccei-Quinn symmetry simultaneously. Primordial inflaton is produced by a combination of σ and the SM Higgs. Baryogenesis proceeds via thermal leptogenesis. At low energies, the model reduces to the SM, augmented by seesaw-generated neutrino masses, plus the axion, which solves the strong CP problem and accounts for the dark matter in the Universe. The model can be probed decisively by the next generation of cosmic microwave background and axion dark matter experiments.

  15. Axion mediated photon to dark photon mixing

    Energy Technology Data Exchange (ETDEWEB)

    Ejlli, Damian [Novosibirsk State University, Department of Physics, Novosibirsk (Russian Federation); Laboratori Nazionali del Gran Sasso, Theory Group, Assergi, L' Aquila (Italy)

    2018-01-15

    The interaction between the dark/mirror sector and the ordinary sector is considered, where the two sectors interact with each other by sharing the same QCD axion field. This feature makes the mixing between ordinary and dark/mirror photons in ordinary and dark electromagnetic fields possible. Perturbative solutions of the equations of motion describing the evolution of fields in ordinary and dark external magnetic fields are found. User-friendly quantities such as transition probability rates and Stokes parameters are derived. Possible astrophysical and cosmological applications of this model are suggested. (orig.)

  16. Protecting the axion with local baryon number

    Science.gov (United States)

    Duerr, Michael; Schmidt-Hoberg, Kai; Unwin, James

    2018-05-01

    The Peccei-Quinn (PQ) solution to the Strong CP Problem is expected to fail unless the global symmetry U(1)PQ is protected from Planck-scale operators up to high mass dimension. Suitable protection can be achieved if the PQ symmetry is an automatic consequence of some gauge symmetry. We highlight that if baryon number is promoted to a gauge symmetry, the exotic fermions needed for anomaly cancellation can elegantly provide an implementation of the Kim-Shifman-Vainshtein-Zakharov 'hidden axion' mechanism with a PQ symmetry protected from Planck-scale physics.

  17. Optical Search for QED vacuum magnetic birefringence, Axions and photon Regeneration

    CERN Multimedia

    Pugnat, P; Hryczuk, A; Finger, M; Finger, M; Kral, M

    2007-01-01

    Since its prediction in 1936 by Euler, Heisenberg and Weisskopf in the earlier development of the Quantum Electrodynamic (QED) theory, the Vacuum Magnetic Birefringence (VMB) is still a challenge for optical metrology techniques. According to QED, the vacuum behaves as an optically active medium in the presence of an external magnetic field. It can be experimentally probed with a linearly polarized laser beam. After propagating through the vacuum submitted to a transverse magnetic field, the polarization of the laser beam will change to elliptical and the parameters of the polarization are directly related to fundamental constants such as the fine structure constant and the electron Compton wavelength. Contributions to the VMB could also arise from the existence of light scalar or pseudo-scalar particles like axions that couple to two photons and this would manifest itself as a sizeable deviation from the initial QED prediction. On one side, the interest in axion search, providing an answer to the strong-CP p...

  18. Entangled de Sitter from stringy axionic Bell pair I. An analysis using Bunch-Davies vacuum

    International Nuclear Information System (INIS)

    Choudhury, Sayantan; Panda, Sudhakar

    2018-01-01

    In this work, we study the quantum entanglement and compute entanglement entropy in de Sitter space for a bipartite quantum field theory driven by an axion originating from Type IIB string compactification on a Calabi-Yau three fold (CY 3 ) and in the presence of an NS5 brane. For this computation, we consider a spherical surface S 2 , which divides the spatial slice of de Sitter (dS 4 ) into exterior and interior sub-regions. We also consider the initial choice of vacuum to be Bunch-Davies state. First we derive the solution of the wave function of the axion in a hyperbolic open chart by constructing a suitable basis for Bunch-Davies vacuum state using Bogoliubov transformation. We then derive the expression for density matrix by tracing over the exterior region. This allows us to compute the entanglement entropy and Renyi entropy in 3 + 1 dimension. Furthermore, we quantify the UV-finite contribution of the entanglement entropy which contain the physics of long range quantum correlations of our expanding universe. Finally, our analysis complements the necessary condition for generating non-vanishing entanglement entropy in primordial cosmology due to the axion. (orig.)

  19. Entangled de Sitter from stringy axionic Bell pair I. An analysis using Bunch-Davies vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Sayantan [Inter-University Centre for Astronomy and Astrophysics, Pune (India); Tata Institute of Fundamental Research, Department of Theoretical Physics, Mumbai (India); Panda, Sudhakar [Institute of Physics, Bhubaneswar, Odisha (India); National Institute of Science Education and Research, Bhubaneswar, Odisha (India); Homi Bhabha National Institute, Mumbai (India)

    2018-01-15

    In this work, we study the quantum entanglement and compute entanglement entropy in de Sitter space for a bipartite quantum field theory driven by an axion originating from Type IIB string compactification on a Calabi-Yau three fold (CY{sup 3}) and in the presence of an NS5 brane. For this computation, we consider a spherical surface S{sup 2}, which divides the spatial slice of de Sitter (dS{sub 4}) into exterior and interior sub-regions. We also consider the initial choice of vacuum to be Bunch-Davies state. First we derive the solution of the wave function of the axion in a hyperbolic open chart by constructing a suitable basis for Bunch-Davies vacuum state using Bogoliubov transformation. We then derive the expression for density matrix by tracing over the exterior region. This allows us to compute the entanglement entropy and Renyi entropy in 3 + 1 dimension. Furthermore, we quantify the UV-finite contribution of the entanglement entropy which contain the physics of long range quantum correlations of our expanding universe. Finally, our analysis complements the necessary condition for generating non-vanishing entanglement entropy in primordial cosmology due to the axion. (orig.)

  20. Search for solar axions with the X-ray telescope of the CAST experiment (phase II); Suche nach solaren Axionen mit dem Roentgenteleskop des CAST-Experiments (Phase II)

    Energy Technology Data Exchange (ETDEWEB)

    Nordt, Annika

    2009-10-14

    The CAST (CERN Solar Axion Telescope) experiment is searching for solar axions by their conversion into photons inside a transverse magnetic field. So far, no solar axionsignal has been detected, but a new upper limit could be given (CAST Phase I). Since 2005, CAST entered in its second phase where it operates with a buffer gas ({sup 4}He) in the conversion region to extend the sensitivity of the experiment to higher axionmasses. For the first time it is possible to enter the theoretically favored axion massrange and to give an upper limit for this solar axion mass-range (>0.02 eV). This thesis is about the analysis of the X-ray telescope data Phase II with {sup 4}He inside the magnet. The result for the coupling constant of axions to photons is: g{sub {alpha}}{sub {gamma}}{sub {gamma}}<1.6-6.0 x 10{sup -10} GeV{sup -1} (95%C.L.) for m{sub a}=0.02-0.4 eV. (2) This result is better than any result that has been given before in this mass range for solar axions. (orig.)

  1. Reply to “Comment on ‘Axion induced oscillating electric dipole moments’”

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Christopher T.

    2017-03-28

    A recent paper of Flambaum, Roberts and Stadnik, [1], claims there is no induced oscillating electric dipole moment (OEDM), eg, for the electron, arising from the oscillating cosmic axion background via the anomaly. This claim is based upon the assumption that electric dipoles always be defined by their coupling to static (constant in time) electric fields. The relevant Feynman diagram, as computed by [1], then becomes a total divergence, and vanishes in momentum space. However, an OEDM does arise from the anomaly, coupled to time dependent electric fields. It shares the decoupling properties with the anomaly. The full action, in an arbitrary gauge, was computed in [2], [3]. It is nonvanishing with a time dependent outgoing photon, and yields physics, eg, electric dipole radiation of an electron immersed in a cosmic axion field.

  2. Experimental bounds on ββ-decay, cold dark matter and solar axions with an ultralow background Ge detector

    International Nuclear Information System (INIS)

    Avignone, F.T. III; Ahlen, S.P.; Brodzinski, R.L.

    1986-01-01

    The PNL/USC ultralow background prototype Ge detector in the Homestake goldmine is being applied to searches for 0 nu ββ-decay, dark matter candidates and solar axions. An upper bound of 2.2 eV has been placed on the Majorana mass of the electron neutrino. The low energy data exclude particles with spin independent Z 0 exchange interactions having masses between 20 GeV and 5 TeV as significant contributors to the cold dark matter of the halo of our galaxy. The existence of stable Dirac neutrinos more massive than 20 GeV is also excluded except for a narrow region around the Z 0 resonance. Finally, Dine-Fischler-Srednicki (DFS) axion models with F/2x'/sub e/ ≤ 0.5 x 10 7 GeV are ruled out by the maximum count rate attributable to solar axions. 36 refs., 11 figs

  3. Production and detection of axion-like particles in a HERA dipole magnet. Letter-of-intent for the ALPS experiment

    International Nuclear Information System (INIS)

    Ehret, K.; Knabbe, E.A.; Lindner, A.; Meyer, N.; Notz, D.; Ringwald, A.; Frede, M.; Kracht, D.; Wiedemann, G.

    2007-02-01

    Recently, the PVLAS collaboration has reported evidence for an anomalous rotation of the polarization of light in vacuum in the presence of a transverse magnetic field. This may be explained through the production of a new light spin-zero (axion-like) neutral particle coupled to two photons. In this letter-of-intent, we propose to test this hypothesis by setting up a photon regeneration experiment which exploits the photon beam of a high-power infrared laser, sent along the transverse magnetic field of a superconducting HERA dipole magnet. The proposed1 ALPS (Axion-Like Particle Search) experiment offers a window of opportunity for a rapid firm establishment or exclusion of the axion-like particle interpretation of the anomaly published by PVALS. It will also allow for the measurement of mass, parity, and coupling strength of this particle. (orig.)

  4. Minimal models for axion and neutrino

    Directory of Open Access Journals (Sweden)

    Y.H. Ahn

    2016-01-01

    Full Text Available The PQ mechanism resolving the strong CP problem and the seesaw mechanism explaining the smallness of neutrino masses may be related in a way that the PQ symmetry breaking scale and the seesaw scale arise from a common origin. Depending on how the PQ symmetry and the seesaw mechanism are realized, one has different predictions on the color and electromagnetic anomalies which could be tested in the future axion dark matter search experiments. Motivated by this, we construct various PQ seesaw models which are minimally extended from the (non- supersymmetric Standard Model and thus set up different benchmark points on the axion–photon–photon coupling in comparison with the standard KSVZ and DFSZ models.

  5. White dwarfs as physics laboratories: the case of axions

    OpenAIRE

    Isern, J.; Althaus, L.; Catalan, S.; Corsico, A.; Garcia-Berro, E.; Salaris, M.; Torres, S.

    2012-01-01

    White dwarfs are almost completely degenerate objects that cannot obtain energy from thermonuclear sources, so their evolution is just a gravothermal cooling process. Recent improvements in the accuracy and precision of the luminosity function and in pulsational data of variable white dwarfs suggest that they are cooling faster than expected from conventional theory. In this contribution we show that the inclusion of an additional cooling term due to axions able to interact with electrons wit...

  6. The quest for axions and other new light particles

    Energy Technology Data Exchange (ETDEWEB)

    Baker, K. [Yale Univ., New Haven, CT (United States). Physics Dept.; Cantatore, G. [Trieste Univ. (Italy); INFN Trieste (Italy); Cetin, S.A. [Dogus Univ., Istanbul (Turkey)] [and others; Collaboration: Working Group

    2013-05-15

    Standard Model extensions often predict low-mass and very weakly interacting particles, such as the axion. A number of small-scale experiments at the intensity/ precision frontier are actively searching for these elusive particles, complementing searches for physics beyond the Standard Model at colliders. Whilst a next generation of experiments will give access to a huge unexplored parameter space, a discovery would have a tremendous impact on our understanding of fundamental physics.

  7. The quest for axions and other new light particles

    International Nuclear Information System (INIS)

    Baker, K.; Cetin, S.A.

    2013-05-01

    Standard Model extensions often predict low-mass and very weakly interacting particles, such as the axion. A number of small-scale experiments at the intensity/ precision frontier are actively searching for these elusive particles, complementing searches for physics beyond the Standard Model at colliders. Whilst a next generation of experiments will give access to a huge unexplored parameter space, a discovery would have a tremendous impact on our understanding of fundamental physics.

  8. Fate of global symmetries in the Universe: QCD axion, quintessential axion and trans-Planckian inflaton decay constant

    Science.gov (United States)

    Kim, Jihn E.; Nam, Soonkeon; Semetzidis, Yannis K.

    2018-01-01

    Pseudoscalars appearing in particle physics are reviewed systematically. From the fundamental point of view at an ultraviolet completed theory, they can be light if they are realized as pseudo-Goldstone bosons of some spontaneously broken global symmetries. The spontaneous breaking scale is parametrized by the decay constant f. The global symmetry is defined by the lowest order terms allowed in the effective theory consistent with the gauge symmetry in question. Since any global symmetry is known to be broken at least by quantum gravitational effects, all pseudoscalars should be massive. The mass scale is determined by f and the explicit breaking terms ΔV in the effective potential and also anomaly terms ΔΛG4 for some non-Abelian gauge groups G. The well-known example by non-Abelian gauge group breaking is the potential for the “invisible” QCD axion, via the Peccei-Quinn symmetry, which constitutes a major part of this review. Even if there is no breaking terms from gauge anomalies, there can be explicit breaking terms ΔV in the potential in which case the leading term suppressed by f determines the pseudoscalar mass scale. If the breaking term is extremely small and the decay constant is trans-Planckian, the corresponding pseudoscalar can be a candidate for a “quintessential axion.” In general, (ΔV )1/4 is considered to be smaller than f, and hence the pseudo-Goldstone boson mass scales are considered to be smaller than the decay constants. In such a case, the potential of the pseudo-Goldstone boson at the grand unification scale is sufficiently flat near the top of the potential that it can be a good candidate for an inflationary model, which is known as “natural inflation.” We review all these ideas in the bosonic collective motion framework.

  9. A Micromegas-based low-background x-ray detector coupled to a slumped-glass telescope for axion research

    CERN Document Server

    Aznar, F; Christensen, F E; Dafni, T; Decker, T A; Ferrer-Ribas, E; Garcia, J A; Giomataris, I; Gracia, J G; Hailey, C J; Hill, R M; Iguaz, F J; Irastorza, I G; Jakobsen, A C; Luzon, G; Mirallas, H; Papaevangelou, T; Pivovaroff, M J; Ruz, J; Vafeiadis, T; Vogel, J K

    2015-01-01

    We report on the design, construction and operation of a low background x-ray detection line composed of a shielded Micromegas (micromesh gaseous structure) detector of the microbulk technique. The detector is made from radiopure materials and is placed at the focal point of a $\\sim$~5 cm diameter, 1.3 m focal-length, cone-approximation Wolter I x-ray telescope (XRT) comprised of thermally-formed (or "slumped") glass substrates deposited with multilayer coatings. The system has been conceived as a technological pathfinder for the future International Axion Observatory (IAXO), as it combines two of the techniques (optic and detector) proposed in the conceptual design of the project. It is innovative for two reasons: it is the first time an x-ray optic has been designed and fabricated specifically for axion research, and the first time a Micromegas detector has been operated with an x-ray optic. The line has been installed at one end of the CERN Axion Solar Telescope (CAST) magnet and is currently looking for s...

  10. Slow nucleation rates in chain inflation with QCD axions or monodromy

    International Nuclear Information System (INIS)

    Ashoorioon, Amjad; Freese, Katherine; Liu, James T.

    2009-01-01

    The previous proposal (by two of us) of chain inflation with the QCD axion is shown to fail. The proposal involved a series of fast tunneling events, yet here it is shown that tunneling is too slow. We calculate the bubble nucleation rates for phase transitions in the thick wall limit, approximating the barrier by a triangle. A similar problem arises in realization of chain inflation in the string landscape that uses series of minima along the monodromy staircase around the conifold point. The basic problem is that the minima of the potential are too far apart to allow rapid enough tunneling in these two models. We entertain the possibility of overcoming this problem by modifying the gravity sector to a Brans-Dicke theory. However, one would need extremely small values for the Brans-Dicke parameter in the early universe. Many successful alternatives exist, including other axions (with mass scales not set by QCD) or potentials with comparable heights and widths that do not suffer from the problem of slow tunneling and provide successful candidates for chain inflation.

  11. Wilson Fermions and Axion Electrodynamics in Optical Lattices

    International Nuclear Information System (INIS)

    Bermudez, A.; Martin-Delgado, M. A.; Mazza, L.; Rizzi, M.; Goldman, N.; Lewenstein, M.

    2010-01-01

    We show that ultracold Fermi gases in optical superlattices can be used as quantum simulators of relativistic lattice fermions in 3+1 dimensions. By exploiting laser-assisted tunneling, we find an analogue of the so-called naive Dirac fermions, and thus provide a realization of the fermion doubling problem. Moreover, we show how to implement Wilson fermions, and discuss how their mass can be inverted by tuning the laser intensities. In this regime, our atomic gas corresponds to a phase of matter where Maxwell electrodynamics is replaced by axion electrodynamics: a 3D topological insulator.

  12. Searching for axion-like-particles in the sky

    Energy Technology Data Exchange (ETDEWEB)

    Burrage, C. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany). Theory Group

    2009-06-15

    If dark energy couples to the fields of the standard model we can hope to detect or constrain it through non-gravitational effects. If the dark energy field couples to photons it behaves as an Axion-Like-Particle (ALP). ALPs mix with photons in the presence of magnetic fields and hence affect astronomical observations. We show that empirically established luminosity relations can be used as a new test for ALPs and that when applied to observations of active galactic nuclei this is highly suggestive of the existence of a very light ALP. (orig.)

  13. Effective cosmological constant within the expanding axion universe

    Energy Technology Data Exchange (ETDEWEB)

    Pierpoint, M.P., E-mail: M.Pierpoint@lboro.ac.uk; Kusmartsev, F.V., E-mail: F.Kusmartsev@lboro.ac.uk

    2014-09-12

    We show that the value of an effective cosmological constant, Λ{sub eff}, is influenced by the dimensionality of the space. Results were obtained in the framework of the axion model describing expansion of the inhomogeneous universe. Λ{sub eff} determines the tension of the space (i.e. elasticity), and is relaxed when extra dimensions are accessible. We demonstrate that the effective value of the cosmological constant may be tuned to be consistent with experimental observation. Inhomogeneities considered are representative of temperature fluctuations observed within the cosmic microwave background radiation.

  14. Searching for axion-like-particles in the sky

    International Nuclear Information System (INIS)

    Burrage, C.

    2009-06-01

    If dark energy couples to the fields of the standard model we can hope to detect or constrain it through non-gravitational effects. If the dark energy field couples to photons it behaves as an Axion-Like-Particle (ALP). ALPs mix with photons in the presence of magnetic fields and hence affect astronomical observations. We show that empirically established luminosity relations can be used as a new test for ALPs and that when applied to observations of active galactic nuclei this is highly suggestive of the existence of a very light ALP. (orig.)

  15. New micromegas for axion searches in CAST

    International Nuclear Information System (INIS)

    Dafni, T.; Aune, S.; Fanourakis, G.; Ferrer-Ribas, E.; Galan, J.; Gardikiotis, A.; Geralis, T.; Giomataris, I.; Gomez, H.; Iguaz, F.J.; Irastorza, I.G.; Luzon, G.; Morales, J.; Papaevangelou, T.; Rodriguez, A.; Ruz, J.; Tomas, A.; Vafeiadis, T.; Yildiz, S.C.

    2011-01-01

    Micromegas detectors have been taking data in the CAST experiment since 2002, occupying one opening (out of the two looking for sunrise axions) of the magnet and showing good performance and stability. Currently, three of the four X-ray detectors used in the experiment are micromegas. The new detectors are of the Microbulk technology, which have attracted a lot of attention because of the advantages they present, among them the low-material construction, high radiopurity and good energy resolution. Here, their performance during the last year will be commented. In particular, the low background levels reached in some detectors have triggered a set of studies in order to understand the effect.

  16. A search for the coherent production of axions in the milli eV range

    International Nuclear Information System (INIS)

    Cameron, R.; Melissinos, A.C.; Semertzidis, Y.; Cantatore, G.; Rizzo, C.; Ruoso, P.; Zavattini, E.; Halama, H.; Lazarus, D.M.; Prodell, A.; Nezrick, F.

    1991-01-01

    Axions provide a natural explanation for the absence of CP violation in the strong interaction. As weakly interacting light particles they are also candidates for the much sought after dark matter allegedly responsible for our lack of understanding of galactic dynamics. Beam dump, particle decay and astrophysical measurements carried out over the past decade have failed to provide positive evidence for their existence over a wide range of masses and coupling strengths. This experiment attempts to produce and detect scalar and pseudoscalar particles coherently produced through the interaction of laser photons with the virtual photons of the magnetic fields of superconducting dipole magnets as manifested by small changes in the polarization state of the laser light. A limit on the coupling of the axion to 2 photons of g aγγ -7 GeV - 1 was achieved. 8 refs., 3 figs

  17. An axion-like scalar field environment effect on binary black hole merger

    Science.gov (United States)

    Yang, Qing; Ji, Li-Wei; Hu, Bin; Cao, Zhou-Jian; Cai, Rong-Gen

    2018-06-01

    The environment, such as an accretion disk, could modify the signal of the gravitational wave from astrophysical black hole binaries. In this article, we model the matter field around intermediate-mass binary black holes by means of an axion-like scalar field and investigate their joint evolution. In detail, we consider equal mass binary black holes surrounded by a shell of axion-like scalar field both in spherically symmetric and non-spherically symmetric cases, and with different strengths of the scalar field. Our result shows that the environmental scalar field could essentially modify the dynamics. Firstly, in the spherically symmetric case, with increase of the scalar field strength, the number of circular orbits for the binary black hole is reduced. This means that the scalar field could significantly accelerate the merger process. Secondly, once the scalar field strength exceeds a certain critical value, the scalar field could collapse into a third black hole with its mass being larger than that of the binary. Consequently, the new black hole that collapses from the environmental scalar field could accrete the binary promptly and the binary collides head-on with each other. In this process, there is almost no quadrupole signal produced, and, consequently, the gravitational wave is greatly suppressed. Thirdly, when the scalar field strength is relatively smaller than the critical value, the black hole orbit could develop eccentricity through accretion of the scalar field. Fourthly, during the initial stage of the inspiral, the gravitational attractive force from the axion-like scalar field could induce a sudden turn in the binary orbits, hence resulting in a transient wiggle in the gravitational waveform. Finally, in the non-spherical case, the scalar field could gravitationally attract the binary moving toward the center of mass for the scalar field and slow down the merger process.

  18. 7th Patras workshop on axions, WIMPs and WISPs (PATRAS 2011). Proceedings

    International Nuclear Information System (INIS)

    Zioutas, Konstantin; Schumann, Marc

    2011-12-01

    The year 2011 was an exciting period to work on the ''dark side'' of the Universe. Several experimental claims of the direct detection of WIMP dark matter were challenged by the restrictive limits of several others. Dedicated experiments searching for axions, another well motivated dark matter candidate, and for axion-like particles continued to improve their limits and got an additional boost by puzzling astrophysical observations and new developments in theory. The LHC collected an unexpectedly large amount of data and started to produce results at an amazing speed. And finally, this year's Nobel price of physics was awarded to the observation of the accelerating expansion of the Universe, an effect which might be related to dark energy, whose nature remain among the biggest mysteries in physics. These exciting topics and many more important aspects of particle- and astroparticle physics were discussed between experimentalists and theorists at the 7th Patras Workshop on Axions, WIMPs, and WISPs. The workshop took place from June 27 - July 1, 2011, in the Royal Myconian and Myconian Imperial Resorts Hotels on the Greek island of Mykonos. As in the previous years, it was a very fruitful and lively meeting in an inspiring and open atmosphere, which allowed for many open and constructive discussions also on controversial topics. The scientific exchange, the beautiful scenery of the island, the venue itself, the food, an excursion to the ancient ruins of Delos, and finally an amazing conference dinner made this meeting really unique. The ''spirit'' of the workshop and its atmosphere cannot be brought to paper, but many of its scientific highlights are collected in these proceedings. We are looking forward to the 8th Patras Workshop, which will be held in Chicago (USA) July 18-22, 2012. It will be organized jointly by our US colleagues Andrei Afanasev (JLAB), Oliver Baker (Yale), and William Wester (FNAL).

  19. Thermal leptogenesis and the gravitino problem in the Asaka-Yanagida axion/axino dark matter scenario

    International Nuclear Information System (INIS)

    Baer, Howard; Lessa, Andre; Kraml, Sabine; Sekmen, Sezen

    2011-01-01

    A successful implementation of thermal leptogenesis requires the re-heat temperature after inflation T R to exceed ∼ 2 × 10 9 GeV. Such a high T R value typically leads to an overproduction of gravitinos in the early universe, which will cause conflicts, mainly with BBN constraints. Asaka and Yanagida (AY) have proposed that these two issues can be reconciled in the context of the Peccei-Quinn augmented MSSM (PQMSSM) if one adopts a mass hierarchy m(sparticle) > m(gravitino)>m(axino), with m(axino) ∼ keV. In this case, sparticle decays bypass the gravitino, and decay more quickly to the axino LSP, thus avoiding the BBN constraints. In addition, thermally produced gravitinos decay inertly to axion+axino, also avoiding BBN constraints. We calculate the relic abundance of mixed axion/axino dark matter in the AY scenario, and investigate under what conditions a value of T R sufficient for thermal leptogenesis can be generated. A high value of PQ breaking scale f a is needed to suppress overproduction of axinos, while a small vacuum misalignment angle θ i is needed to suppress overproduction of axions. The large value of f a results in late decaying neutralinos. We show that, to avoid BBN constraints, the AY scenario requires a rather low thermal abundance of neutralinos, while higher values of neutralino mass also help. We combine these constraint calculations along with entropy production from late decaying saxions, and find the saxion needs to be typically at least several times heavier than the gravitino. A successful implementation of the AY scenario suggests that LHC should discover a spectrum of SUSY particles consistent with weak scale supergravity; that the apparent neutralino abundance is low; that an axion direct detection signal (probably with m a in the sub-μeV range) may be possible, but no direct or indirect signals for WIMP dark matter should be observed

  20. Gravitational waves at interferometer scales and primordial black holes in axion inflation

    Energy Technology Data Exchange (ETDEWEB)

    García-Bellido, Juan [Instituto de Física Teórica UAM-CSIC, Universidad Autonóma de Madrid, Cantoblanco, Madrid, 28049 (Spain); Peloso, Marco; Unal, Caner, E-mail: juan.garciabellido@uam.es, E-mail: peloso@physics.umn.edu, E-mail: unal@physics.umn.edu [School of Physics and Astronomy, and Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, 55455 (United States)

    2016-12-01

    We study the prospects of detection at terrestrial and space interferometers, as well as at pulsar timing array experiments, of a stochastic gravitational wave background which can be produced in models of axion inflation. This potential signal, and the development of these experiments, open a new window on inflation on scales much smaller than those currently probed with Cosmic Microwave Background and Large Scale Structure measurements. The sourced signal generated in axion inflation is an ideal candidate for such searches, since it naturally grows at small scales, and it has specific properties (chirality and non-gaussianity) that can distinguish it from an astrophysical background. We study under which conditions such a signal can be produced at an observable level, without the simultaneous overproduction of scalar perturbations in excess of what is allowed by the primordial black hole limits. We also explore the possibility that scalar perturbations generated in a modified version of this model may provide a distribution of primordial black holes compatible with the current bounds, that can act as a seeds of the present black holes in the universe.

  1. Background study for the pn-CCD detector of CERN Axion Solar Telescope

    CERN Document Server

    Cebrián, S; Kuster, M.; Beltran, B.; Gomez, H.; Hartmann, R.; Irastorza, I. G.; Kotthaus, R.; Luzon, G.; Morales, J.; Ruz, J.; Struder, L.; Villar, J. A.

    2007-01-01

    The CERN Axion Solar Telescope (CAST) experiment searches for axions from the Sun converted into photons with energies up to around 10 keV via the inverse Primakoff effect in the high magnetic field of a superconducting Large Hadron Collider (LHC) prototype magnet. A backside illuminated pn-CCD detector in conjunction with an X-ray mirror optics is one of the three detectors used in CAST to register the expected photon signal. Since this signal is very rare and different background components (environmental gamma radiation, cosmic rays, intrinsic radioactive impurities in the set-up, ...) entangle it, a detailed study of the detector background has been undertaken with the aim to understand and further reduce the background level of the detector. The analysis is based on measured data taken during the Phase I of CAST and on Monte Carlo simulations of different background components. This study will show that the observed background level (at a rate of (8.00+-0.07)10^-5 counts/cm^2/s/keV between 1 and 7 keV) s...

  2. Standard Model-Axion-Seesaw-Higgs portal inflation. Five problems of particle physics and cosmology solved in one stroke

    International Nuclear Information System (INIS)

    Ballesteros, Guillermo; Ringwald, Andreas; Tamarit, Carlos

    2016-10-01

    We present a minimal extension of the Standard Model (SM) providing a consistent picture of particle physics from the electroweak scale to the Planck scale and of cosmology from inflation until today. Three right-handed neutrinos N_i, a new color triplet Q and a complex SM-singlet scalar σ, whose vacuum expectation value υ_σ∝10"1"1 GeV breaks lepton number and a Peccei-Quinn symmetry simultaneously, are added to the SM. At low energies, the model reduces to the SM, augmented by seesaw generated neutrino masses and mixing, plus the axion. The latter solves the strong CP problem and accounts for the cold dark matter in the Universe. The inflaton is comprised by a mixture of σ and the SM Higgs and reheating of the Universe after inflation proceeds via the Higgs portal. Baryogenesis occurs via thermal leptogenesis. Thus, five fundamental problems of particle physics and cosmology are solved at one stroke in this unified Standard Model-Axion-Seesaw-Higgs portal inflation (SMASH) model. It can be probed decisively by upcoming cosmic microwave background and axion dark matter experiments.

  3. Bifid Throats for Axion Monodromy Inflation

    International Nuclear Information System (INIS)

    Retolaza, Ander

    2015-04-01

    We construct a simple explicit local geometry providing a 'bifid throat' for 5-brane axion monodromy. A bifid throat is a throat that splits into two daughter throats in the IR, containing a homologous 2-cycle family reaching down into each daughter throat. Our example consists of a deformed Z 3 x Z 2 orbifold of the conifold, which provides us with an explicit holographic dual of the bifid throat including D3-branes and fractional 5-branes at the toric singularities of our setup. Having the holographic description in terms of the dual gauge theory allows us to address the effect of 5-brane-antibrane pair backreaction including the warping effects. This leads to the size of the backreaction being small and controllable after imposing proper normalization of the inflaton potential and hence the warping scales.

  4. Concept of multiple-cell cavity for axion dark matter search

    Science.gov (United States)

    Jeong, Junu; Youn, SungWoo; Ahn, Saebyeok; Kim, Jihn E.; Semertzidis, Yannis K.

    2018-02-01

    In cavity-based axion dark matter search experiments exploring high mass regions, multiple-cavity design is under consideration as a method to increase the detection volume within a given magnet bore. We introduce a new idea, referred to as a multiple-cell cavity, which provides various benefits including a larger detection volume, simpler experimental setup, and easier phase-matching mechanism. We present the characteristics of this concept and demonstrate the experimental feasibility with an example of a double-cell cavity.

  5. Realization of the Axion Insulator State in Quantum Anomalous Hall Sandwich Heterostructures

    Science.gov (United States)

    Xiao, Di; Jiang, Jue; Shin, Jae-Ho; Wang, Wenbo; Wang, Fei; Zhao, Yi-Fan; Liu, Chaoxing; Wu, Weida; Chan, Moses H. W.; Samarth, Nitin; Chang, Cui-Zu

    2018-02-01

    The "magnetoelectric effect" arises from the coupling between magnetic and electric properties in materials. The Z2 invariant of topological insulators (TIs) leads to a quantized version of this phenomenon, known as the topological magnetoelectric (TME) effect. This effect can be realized in a new topological phase called an "axion insulator" whose surface states are all gapped but the interior still obeys time reversal symmetry. We demonstrate such a phase using electrical transport measurements in a quantum anomalous Hall (QAH) sandwich heterostructure, in which two compositionally different magnetic TI layers are separated by an undoped TI layer. Magnetic force microscopy images of the same sample reveal sequential magnetization reversals of the top and bottom layers at different coercive fields, a consequence of the weak interlayer exchange coupling due to the spacer. When the magnetization is antiparallel, both the Hall resistance and Hall conductance show zero plateaus, accompanied by a large longitudinal resistance and vanishing longitudinal conductance, indicating the realization of an axion insulator state. Our findings thus show evidence for a phase of matter distinct from the established QAH state and provide a promising platform for the realization of the TME effect.

  6. 7th Patras workshop on axions, WIMPs and WISPs (PATRAS 2011). Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Zioutas, Konstantin; Schumann, Marc (eds.)

    2011-12-15

    The year 2011 was an exciting period to work on the ''dark side'' of the Universe. Several experimental claims of the direct detection of WIMP dark matter were challenged by the restrictive limits of several others. Dedicated experiments searching for axions, another well motivated dark matter candidate, and for axion-like particles continued to improve their limits and got an additional boost by puzzling astrophysical observations and new developments in theory. The LHC collected an unexpectedly large amount of data and started to produce results at an amazing speed. And finally, this year's Nobel price of physics was awarded to the observation of the accelerating expansion of the Universe, an effect which might be related to dark energy, whose nature remain among the biggest mysteries in physics. These exciting topics and many more important aspects of particle- and astroparticle physics were discussed between experimentalists and theorists at the 7th Patras Workshop on Axions, WIMPs, and WISPs. The workshop took place from June 27 - July 1, 2011, in the Royal Myconian and Myconian Imperial Resorts Hotels on the Greek island of Mykonos. As in the previous years, it was a very fruitful and lively meeting in an inspiring and open atmosphere, which allowed for many open and constructive discussions also on controversial topics. The scientific exchange, the beautiful scenery of the island, the venue itself, the food, an excursion to the ancient ruins of Delos, and finally an amazing conference dinner made this meeting really unique. The ''spirit'' of the workshop and its atmosphere cannot be brought to paper, but many of its scientific highlights are collected in these proceedings. We are looking forward to the 8th Patras Workshop, which will be held in Chicago (USA) July 18-22, 2012. It will be organized jointly by our US colleagues Andrei Afanasev (JLAB), Oliver Baker (Yale), and William Wester (FNAL).

  7. Supersymmetric SU(11), the invisible axion, and proton decay

    International Nuclear Information System (INIS)

    Alwis, S.P. de; Kim, J.E.

    1981-09-01

    We supersymmetrize the very attractive flavour unification model SU(11). As with other supersymmetric GUTs the gauge hierarchy problem is simplified, but we may also have observable (tausub(p) is approximately 10 33 yrs) proton decay. The required split multiplets are obtained by making the adjoint take a particular direction. Supersymmetry is broken softly at the TeV scale. There is a unique U(1)sub(A) symmetry, and hence there are no true Nambu-Goldstone bosons. The U(1)sub(A) is broken at the GUT scale and there result an invisible axion and neutrino masses. (author)

  8. HFSS Simulation on Cavity Coupling for Axion Detecting Experiment

    CERN Document Server

    Yeo, Beomki

    2015-01-01

    In the resonant cavity experiment, it is vital maximize signal power at detector with the minimized reflection from source. Return loss is minimized when the impedance of source and cavity are matched to each other and this is called impedance matching. Establishing tunable antenna on source is required to get a impedance matching. Geometry and position of antenna is varied depending on the electromagnetic eld of cavity. This research is dedicated to simulation to nd such a proper design of coupling antenna, especially for axion dark matter detecting experiment. HFSS solver was used for the simulation.

  9. Astrophysical hints of axion-like particles

    Science.gov (United States)

    Roncadelli, M.; Galanti, G.; Tavecchio, F.; Bonnoli, G.

    2015-01-01

    After reviewing three astrophysical hints of the existence of axion-like particles (ALPs), we describe in more detail a new similar hint involving flat spectrum radio quasars (FSRQs). Detection of FSRQs above about 20GeV pose a challenge to very-high-energy (VHE) astrophysics, because at those energies the ultraviolet emission from their broad line region should prevent photons produced by the central engine to leave the source. Although a few astrophysical explanations have been put forward, they are totally ad hoc. We show that a natural explanation instead arises within the conventional models of FSRQs provided that photon-ALP oscillations occur inside the source. Our analysis takes the FSRQ PKR 1222+206 as an example, and it looks tantalizing that basically the same choice of the free model parameters adopted in this case is consistent with those that provide the other three hints of the existence of ALPs.

  10. Dark Energy, QCD Axion, and Trans-Planckian-Inflaton Decay Constant

    Directory of Open Access Journals (Sweden)

    Jihn E. Kim

    2017-09-01

    Full Text Available Pseudoscalars appear frequently in particle spectra. They can be light if they appear as pseudo-Goldstone bosons from some spontaneously broken global symmetries with the decay constant f. Since any global symmetry is broken at least by quantum gravitational effects, all pseudoscalars are massive. The mass scale of a pseudoscalar is determined by the spontaneous symmetry breaking scale f of the corresponding global symmetry and the explicit breaking terms in the effective potential. The explicit breaking terms can arise from anomaly terms with some non-Abelian gauge groups among which the best-known example is the potential of the QCD axion. Even if there is no breaking terms from gauge anomalies, there can be explicit breaking terms in the potential in which case the leading term suppressed by f determines the pseudoscalar mass scale. If the breaking term is extremely small and the decay constant is trans-Planckian, the corresponding pseudoscalar can be a candidate for a quintessential axion. In the other extreme that the breaking scales are large, still the pseudo-Goldstone boson mass scales are in general smaller than the decay constants. In such a case, still the potential of the pseudo-Goldstone boson at the grand unification scale is sufficiently flat near the top of the potential that it can be a good candidate for an inflationary model. We review these ideas in the bosonic collective motion framework.

  11. Constraining resonant photon-axion conversions in the Early Universe

    International Nuclear Information System (INIS)

    Mirizzi, Alessandro; Redondo, Javier; Sigl, Guenter

    2009-05-01

    The presence of a primordial magnetic field would have induced resonant conversions between photons and axion-like particles (ALPs) during the thermal history of the Universe. These conversions would have distorted the blackbody spectrum of the cosmic microwave background (CMB). In this context, we derive bounds on the photon-ALP resonant conversions using the high precision CMB spectral data collected by the FIRAS instrument on board of the Cosmic Background Explorer. We obtain upper limits on the product of the photon-ALP coupling constant g times the magnetic field strength B down to gB -13 GeV -1 nG for ALP masses below the eV scale. (orig.)

  12. A large class of new gravitational and axionic backgrounds for four-dimensional superstrings

    CERN Document Server

    Kiritsis, Elias B; Lüst, Dieter

    1994-01-01

    A large class of new 4-D superstring vacua with non-trivial/singular geometries, spacetime supersymmetry and other background fields (axion, dilaton) are found. Killing symmetries are generic and are associated with non-trivial dilaton and antisymmetric tensor fields. Duality symmetries preserving N=2 superconformal invariance are employed to generate a large class of explicit metrics for non-compact 4-D Calabi-Yau manifolds with Killing symmetries.

  13. An update on the Axion Helioscopes front: Current activities at CAST and the IAXO project

    DEFF Research Database (Denmark)

    Dafni, T.; Arik, M.; Armengaud, E.

    2016-01-01

    . Their property of coupling to photons has inspired different experimental methods for their detection, one of which is the helioscope technique. The CERN Axion Solar Telescope (CAST) is the most sensitive helioscope built up to date and has recently published part of the latest data taken with the magnet bores...

  14. Axionic landscape for Higgs coupling near-criticality

    Science.gov (United States)

    Cline, James M.; Espinosa, José R.

    2018-02-01

    The measured value of the Higgs quartic coupling λ is peculiarly close to the critical value above which the Higgs potential becomes unstable, when extrapolated to high scales by renormalization group running. It is tempting to speculate that there is an anthropic reason behind this near-criticality. We show how an axionic field can provide a landscape of vacuum states in which λ scans. These states are populated during inflation to create a multiverse with different quartic couplings, with a probability distribution P that can be computed. If P is peaked in the anthropically forbidden region of Higgs instability, then the most probable universe compatible with observers would be close to the boundary, as observed. We discuss three scenarios depending on the Higgs vacuum selection mechanism: decay by quantum tunneling, by thermal fluctuations, or by inflationary fluctuations.

  15. Unconventional Ideas for Axion and Dark Matter Experiments

    CERN Document Server

    Caspers, Fritz

    2015-01-01

    In this contribution an entirely different way compared to conventional approaches for axion, hidden photon and dark matter (DM) detection is proposed for discussion. The idea is to use living plants which are known to be very sensitive to all kind of environmental parameters, as detectors. A possible observable in such living plants could be the natural bio-photon level, a kind of metabolism related chemoluminescence. Another observable might be morphological changes or systematic leave movements. However a big problem for such kind of experiment would be the availability of a known, controllable and calibrated DM source. The objective of this small paper is primarily to trigger a debate and not so much to present a well-defined and clearly structured proposal.

  16. On axionic field ranges, loopholes and the weak gravity conjecture

    International Nuclear Information System (INIS)

    Brown, Jon; Cottrell, William; Shiu, Gary; Soler, Pablo

    2016-01-01

    In this short note we clarify some aspects of the impact that the Weak Gravity Conjecture has on models of (generalized) natural inflation. We address in particular certain technical and conceptual concerns recently raised regarding the stringent constraints and conclusions found in our previous work http://dx.doi.org/10.1007/JHEP10(2015)023. We also point out the difficulties faced by attempts to evade these constraints. These new considerations improve the understanding of the quantum gravity constraints we found and further support the conclusion that it remains challenging for axions to drive natural inflation.

  17. Search for solar axion emission from $^7$Li and D(p,$\\gamma)^3$He nuclear decays with the CAST $\\gamma$-ray calorimeter

    CERN Document Server

    Andriamonje, S.; Autiero, D.; Barth, K.; Belov, A.; Beltran, B.; Brauninger, H.; Carmona, J.M.; Cebrian, S.; Collar, J.I.; Dafni, T.; Davenport, M.; Di Lella, L.; Eleftheriadis, C.; Englhauser, J.; Fanourakis, G.; Ferrer-Ribas, E.; Fischer, H.; Franz, J.; Friedrich, P.; Geralis, T.; Giomataris, I.; Gninenko, S.; Gomez, H.; Hasinoff, M.; Heinsius, F.H.; Hoffmann, D.H.H.; Irastorza, I.G.; Jacoby, J.; Jakovcic, K.; Kang, D.; Konigsmann, K.; Kotthaus, R.; Krcmar, M.; Kousouris, K.; Kuster, M.; Lakic, B.; Lasseur, C.; Liolios, A.; Ljubicic, A.; Lutz, G.; Luzon, G.; Miller, D.W.; Morales, J.; Ortiz, A.; Papaevangelou, T.; Placci, A.; Raffelt, G.; Riege, H.; Rodriguez, A.; Ruz, J.; Savvidis, I.; Semertzidis, Y.; Serpico, P.; Stewart, L.; Vieira, J.D.; Villar, J.; Vogel, J.; Walckiers, L.; Zioutas, K.

    2010-01-01

    We present the results of a search for a high-energy axion emission signal from 7Li (0.478 MeV) and D(p,gamma)3He (5.5 MeV) nuclear transitions using a low-background gamma-ray calorimeter during Phase I of the CAST experiment. These so-called "hadronic axions" could provide a solution to the long-standing strong-CP problem and can be emitted from the solar core from nuclear M1 transitions. This is the first such search for high-energy pseudoscalar bosons with couplings to nucleons conducted using a helioscope approach. No excess signal above background was found.

  18. Drifting oscillations in axion monodromy

    Energy Technology Data Exchange (ETDEWEB)

    Flauger, Raphael [Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); McAllister, Liam [Department of Physics, Cornell University, Ithaca, NY 14853 (United States); Silverstein, Eva [Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305 (United States); Westphal, Alexander, E-mail: flauger@physics.ucsd.edu, E-mail: mcallister@cornell.edu, E-mail: evas@stanford.edu, E-mail: alexander.westphal@desy.de [Theory Group, Deutsches Elektronen-Synchrotron DESY, D-22603 Hamburg (Germany)

    2017-10-01

    We study the pattern of oscillations in the primordial power spectrum in axion monodromy inflation, accounting for drifts in the oscillation period that can be important for comparing to cosmological data. In these models the potential energy has a monomial form over a super-Planckian field range, with superimposed modulations whose size is model-dependent. The amplitude and frequency of the modulations are set by the expectation values of moduli fields. We show that during the course of inflation, the diminishing energy density can induce slow adjustments of the moduli, changing the modulations. We provide templates capturing the effects of drifting moduli, as well as drifts arising in effective field theory models based on softly broken discrete shift symmetries, and we estimate the precision required to detect a drifting period. A non-drifting template suffices over a wide range of parameters, but for the highest frequencies of interest, or for sufficiently strong drift, it is necessary to include parameters characterizing the change in frequency over the e-folds visible in the CMB. We use these templates to perform a preliminary search for drifting oscillations in a part of the parameter space in the Planck nominal mission data.

  19. Drifting oscillations in axion monodromy

    International Nuclear Information System (INIS)

    Flauger, Raphael; Westphal, Alexander

    2014-12-01

    We study the pattern of oscillations in the primordial power spectrum in axion monodromy inflation, accounting for drifts in the oscillation period that can be important for comparing to cosmological data. In these models the potential energy has a monomial form over a super-Planckian field range, with superimposed modulations whose size is model-dependent. The amplitude and frequency of the modulations are set by the expectation values of moduli fields. We show that during the course of inflation, the diminishing energy density can induce slow adjustments of the moduli, changing the modulations. We provide templates capturing the effects of drifting moduli, as well as drifts arising in effective field theory models based on softly broken discrete shift symmetries, and we estimate the precision required to detect a drifting period. A non-drifting template suffices over a wide range of parameters, but for the highest frequencies of interest, or for sufficiently strong drift, it is necessary to include parameters characterizing the change in frequency over the e-folds visible in the CMB. We use these templates to perform a preliminary search for drifting oscillations in a part of the parameter space in the Planck nominal mission data.

  20. Unitarity bounds for gauged axionic interactions and the Green-Schwarz mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Coriano, C. [Universita del Salento and INFN Sezione di Lecce, Dipartimento di Fisica, Lecce (Italy); University of Crete, Department of Physics and Institute of Plasma Physics, Heraklion (Greece); Guzzi, M.; Morelli, S. [Universita del Salento and INFN Sezione di Lecce, Dipartimento di Fisica, Lecce (Italy)

    2008-06-15

    We analyze the effective actions of anomalous models in which a four-dimensional version of the Green-Schwarz mechanism is invoked for the cancellation of the anomalies, and we compare it with those models in which gauge invariance is restored by the presence of a Wess-Zumino term. Some issues concerning an apparent violation of unitarity of the mechanism, which requires Dolgov-Zakharov poles, are carefully examined, using a class of amplitudes studied in the past by Bouchiat-Iliopoulos-Meyer (BIM), and elaborating on previous studies. In the Wess-Zumino case we determine explicitly the unitarity bound using a realistic model of intersecting branes (the Madrid model) by studying the corresponding BIM amplitudes. This is shown to depend significantly on the Stueckelberg mass and on the coupling of the extra anomalous gauge bosons and allows one to identify standard-model-like regions (which are anomaly-free) from regions where the growth of certain amplitudes is dominated by the anomaly, separated by an inflection point, which could be studied at the LHC. The bound can even be around 5-10 TeV for a Z' mass around 1 TeV and varies sensitively with the anomalous coupling. The results for the WZ case are quite general and apply to all the models in which an axion-like interaction is introduced as a generalization of the Peccei-Quinn mechanism, with a gauged axion. (orig.)

  1. Constraining resonant photon-axion conversions in the Early Universe

    Energy Technology Data Exchange (ETDEWEB)

    Mirizzi, Alessandro [Max-Planck-Inst. fuer Physik (Werner-Heisenberg-Inst.), Muenchen (Germany); Redondo, Javier [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Sigl, Guenter [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik

    2009-05-15

    The presence of a primordial magnetic field would have induced resonant conversions between photons and axion-like particles (ALPs) during the thermal history of the Universe. These conversions would have distorted the blackbody spectrum of the cosmic microwave background (CMB). In this context, we derive bounds on the photon-ALP resonant conversions using the high precision CMB spectral data collected by the FIRAS instrument on board of the Cosmic Background Explorer. We obtain upper limits on the product of the photon-ALP coupling constant g times the magnetic field strength B down to gB

  2. An ultra-low-background detector for axion searches

    International Nuclear Information System (INIS)

    Aune, S; Ferrer Ribas, E; Giomataris, I; Mols, J P; Papaevangelou, T; Dafni, T; Lacarra, J Galan; Iguaz, F J; Irastorza, I G; Morales, J; Ruz, J; Tomas, A; Fanourakis, G; Geralis, T; Kousouris, K; Vafeiadis, T

    2009-01-01

    A low background Micromegas detector has been operating in the CAST experiment at CERN for the search of solar axions since the start of data taking in 2002. The detector, made out of low radioactivity materials, operated efficiently and achieved a very low level of background (5x10 -5 keV -1 -cm -2 -s -1 ) without any shielding. New manufacturing techniques (Bulk/Microbulk) have led to further improvement of the characteristics of the detector such as uniformity, stability and energy resolution. These characteristics, the implementation of passive shielding and the improvement of the analysis algorithms have dramatically reduced the background level (2x10 -7 keV -1 -cm -2 |s -1 ), improving thus the overall sensitivity of the experiment and opening new possibilities for future searches.

  3. Axionic D3-D7 Inflation

    CERN Document Server

    Burgess, C P; Postma, M

    2009-01-01

    We study the motion of a D3 brane moving within a Type IIB string vacuum compactified to 4D on K3 x T_2/Z_2 in the presence of D7 and O7 planes. We work within the effective 4D supergravity describing how the mobile D3 interacts with the lightest bulk moduli of the compactification, including the effects of modulus-stabilizing fluxes. We seek inflationary solutions to the resulting equations, performing our search numerically in order to avoid resorting to approximate parameterizations of the low-energy potential. We consider uplifting from D-terms and from the supersymmetry-breaking effects of anti-D3 branes. We find examples of slow-roll inflation (with anti-brane uplifting) with the mobile D3 moving along the toroidal directions, falling towards a D7-O7 stack starting from the antipodal point. The inflaton turns out to be a linear combination of the brane position and the axionic partner of the K3 volume modulus, and the similarity of the potential along the inflaton direction with that of racetrack inflat...

  4. Novel complete non-compact symmetries for the Wheeler-DeWitt equation in a wormhole scalar model and axion-dilaton string cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Cordero, Ruben; Granados, Victor D [Departamento de Fisica, Escuela Superior de Fisica y Matematicas del IPN, Unidad Profesional Adolfo Lopez Mateos, Edificio 9, 07738 Mexico DF (Mexico); Mota, Roberto D, E-mail: cordero@esfm.ipn.mx, E-mail: granados@esfm.ipn.mx, E-mail: rmotae@ipn.mx [Departamento de ICE de la Escuela Superior de IngenierIa Mecanica y Electrica del IPN, Unidad Culhuacan. Av. Santa Ana No 1000, San Francisco Culhuacan, Coyoacan Mexico DF, CP 04430 (Mexico)

    2011-09-21

    We find the full symmetries of the Wheeler-DeWitt equation for the Hawking and Page wormhole model and an axion-dilaton string cosmology. We show that the Wheeler-DeWitt Hamiltonian admits a U(1, 1) hidden symmetry for the Hawking and Page model and U(2, 1) for the axion-dilaton string cosmology. If we consider the existence of matter-energy renormalization, for each of these models we find that the Wheeler-DeWitt Hamiltonian accepts an additional SL(2, R) dynamical symmetry. In this case, we show that the SL(2, R) dynamical symmetry generators transform the states from one energy Hilbert eigensubspace to another. Some new wormhole-type solutions for both models are found.

  5. Total Energy of Charged Black Holes in Einstein-Maxwell-Dilaton-Axion Theory

    Directory of Open Access Journals (Sweden)

    Murat Korunur

    2012-01-01

    Full Text Available We focus on the energy content (including matter and fields of the Møller energy-momentum complex in the framework of Einstein-Maxwell-Dilaton-Axion (EMDA theory using teleparallel gravity. We perform the required calculations for some specific charged black hole models, and we find that total energy distributions associated with asymptotically flat black holes are proportional to the gravitational mass. On the other hand, we see that the energy of the asymptotically nonflat black holes diverge in a limiting case.

  6. Experimental upper limits for hadronic and axion decays of the T(1S)

    International Nuclear Information System (INIS)

    Niczyporuk, B.; Jakubowski, Z.; Zeludziewicz, T.; Folger, G.; Lurz, B.; Vogel, H.; Volland, U.; Wegener, H.; Coles, M.; Engler, A.; Kraemer, R.W.; Marlow, D.; Messing, F.; Rippich, C.; Youssef, S.; Fridman, A.; Alexander, G.; Av-Shalom, A.; Bella, G.; Grunhaus, J.; Langguth, W.; Scheer, M.; Bienlein, J.K.; Graumann, R.; Trost, H.J.; Schmitz, M.

    1982-10-01

    A search for the decays Y->rhoπ, Y->J/psiX and Y->γa (where X is undetermined and a is an axion) has been completed using the LENA detector at the DORIS storage ring. No evidence for any of these processes was found. For these decay modes we set branching fraction upper limits (90% C.L.) of 2.1 x 10 -3 , 2.0 x 10 -2 and 9.1 x 10 -4 , respectively. (orig.)

  7. An ultra-low-background detector for axion searches

    Energy Technology Data Exchange (ETDEWEB)

    Aune, S; Ferrer Ribas, E; Giomataris, I; Mols, J P; Papaevangelou, T [IRFU, Centre d' Etudes de Saclay, Gif sur Yvette CEDEX (France); Dafni, T; Lacarra, J Galan; Iguaz, F J; Irastorza, I G; Morales, J; Ruz, J; Tomas, A [Instituto de Fisica Nuclear y Altas EnergIas, Zaragoza (Spain); Fanourakis, G; Geralis, T; Kousouris, K [Institute of Nuclear Physics, NCSR Demokritos, Athens (Greece); Vafeiadis, T, E-mail: Thomas.Papaevangelou@cern.c [Physics Department, Aristotle University, Thessaloniki (Greece)

    2009-07-01

    A low background Micromegas detector has been operating in the CAST experiment at CERN for the search of solar axions since the start of data taking in 2002. The detector, made out of low radioactivity materials, operated efficiently and achieved a very low level of background (5x10{sup -5} keV{sup -1}-cm{sup -2}-s{sup -1}) without any shielding. New manufacturing techniques (Bulk/Microbulk) have led to further improvement of the characteristics of the detector such as uniformity, stability and energy resolution. These characteristics, the implementation of passive shielding and the improvement of the analysis algorithms have dramatically reduced the background level (2x10{sup -7} keV{sup -1}-cm{sup -2}|s{sup -1}), improving thus the overall sensitivity of the experiment and opening new possibilities for future searches.

  8. Alpenglow. A signature for chameleons in axion-like particle search experiments

    International Nuclear Information System (INIS)

    Ahlers, M.; Lindner, A.; Ringwald, A.; Schrempp, L.; Weniger, C.

    2007-10-01

    We point out that chameleon field theories might reveal themselves as an ''afterglow'' effect in axion-like particle search experiments due to chameleon-photon conversion in a magnetic field. We estimate the parameter space which is accessible by currently available technology and find that afterglow experiments could constrain this parameter space in a way complementary to gravitational and Casimir force experiments.In addition, one could reach photon-chameleon couplings which are beyond the sensitivity of common laser polarization experiments. We also sketch the idea of a Fabry-Perot cavity with chameleons which could increase the experimental sensitivity significantly. (orig.)

  9. Alpenglow. A signature for chameleons in axion-like particle search experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ahlers, M.; Lindner, A.; Ringwald, A.; Schrempp, L.; Weniger, C.

    2007-10-15

    We point out that chameleon field theories might reveal themselves as an ''afterglow'' effect in axion-like particle search experiments due to chameleon-photon conversion in a magnetic field. We estimate the parameter space which is accessible by currently available technology and find that afterglow experiments could constrain this parameter space in a way complementary to gravitational and Casimir force experiments.In addition, one could reach photon-chameleon couplings which are beyond the sensitivity of common laser polarization experiments. We also sketch the idea of a Fabry-Perot cavity with chameleons which could increase the experimental sensitivity significantly. (orig.)

  10. Thermalized axion inflation

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Ricardo Z.; Notari, Alessio, E-mail: rferreira@icc.ub.edu, E-mail: notari@ub.edu [Departament de Física Quàntica i Astrofísica i Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, Martí i Franquès, 1, E-08028, Barcelona (Spain)

    2017-09-01

    We analyze the dynamics of inflationary models with a coupling of the inflaton φ to gauge fields of the form φ F F-tilde / f , as in the case of axions. It is known that this leads to an instability, with exponential amplification of gauge fields, controlled by the parameter ξ= φ-dot /(2 fH ), which can strongly affect the generation of cosmological perturbations and even the background. We show that scattering rates involving gauge fields can become larger than the expansion rate H , due to the very large occupation numbers, and create a thermal bath of particles of temperature T during inflation. In the thermal regime, energy is transferred to smaller scales, radically modifying the predictions of this scenario. We thus argue that previous constraints on ξ are alleviated. If the gauge fields have Standard Model interactions, which naturally provides reheating, they thermalize already at ξ∼>2.9, before perturbativity constraints and also before backreaction takes place. In absence of SM interactions (i.e. for a dark photon), we find that gauge fields and inflaton perturbations thermalize if ξ∼>3.4; however, observations require ξ∼>6, which is above the perturbativity and backreaction bounds and so a dedicated study is required. After thermalization, though, the system should evolve non-trivially due to the competition between the instability and the gauge field thermal mass. If the thermal mass and the instabilities equilibrate, we expect an equilibrium temperature of T {sub eq} ≅ ξ H / g-bar where g-bar is the effective gauge coupling. Finally, we estimate the spectrum of perturbations if φ is thermal and find that the tensor to scalar ratio is suppressed by H /(2 T ), if tensors do not thermalize.

  11. Thermalized axion inflation

    Science.gov (United States)

    Ferreira, Ricardo Z.; Notari, Alessio

    2017-09-01

    We analyze the dynamics of inflationary models with a coupling of the inflaton phi to gauge fields of the form phi F tilde F/f, as in the case of axions. It is known that this leads to an instability, with exponential amplification of gauge fields, controlled by the parameter ξ= dot phi/(2fH), which can strongly affect the generation of cosmological perturbations and even the background. We show that scattering rates involving gauge fields can become larger than the expansion rate H, due to the very large occupation numbers, and create a thermal bath of particles of temperature T during inflation. In the thermal regime, energy is transferred to smaller scales, radically modifying the predictions of this scenario. We thus argue that previous constraints on ξ are alleviated. If the gauge fields have Standard Model interactions, which naturally provides reheating, they thermalize already at ξgtrsim2.9, before perturbativity constraints and also before backreaction takes place. In absence of SM interactions (i.e. for a dark photon), we find that gauge fields and inflaton perturbations thermalize if ξgtrsim3.4 however, observations require ξgtrsim6, which is above the perturbativity and backreaction bounds and so a dedicated study is required. After thermalization, though, the system should evolve non-trivially due to the competition between the instability and the gauge field thermal mass. If the thermal mass and the instabilities equilibrate, we expect an equilibrium temperature of Teq simeq ξ H/bar g where bar g is the effective gauge coupling. Finally, we estimate the spectrum of perturbations if phi is thermal and find that the tensor to scalar ratio is suppressed by H/(2T), if tensors do not thermalize.

  12. Holographic Fermions in Anisotropic Einstein-Maxwell-Dilaton-Axion Theory

    International Nuclear Information System (INIS)

    Kuang, Xiao-Mei; Fang, Li-Qing

    2015-01-01

    We investigate the properties of the holographic Fermionic system dual to an anisotropic charged black brane bulk in Einstein-Maxwell-Dilaton-Axion gravity theory. We consider the minimal coupling between the Dirac field and the gauge field in the bulk gravity theory and mainly explore the dispersion relation exponents of the Green functions of the dual Fermionic operators in the dual field theory. We find that along both the anisotropic and the isotropic directions the Fermi momentum will be effected by the anisotropy of the bulk theory. However, the anisotropy has influence on the dispersion relation which is almost linear for massless Fermions with charge q=2. The universal properties that the mass and the charge of the Fermi possibly correspond to nonlinear dispersion relation are also investigated

  13. Axion like particles and the inverse seesaw mechanism

    International Nuclear Information System (INIS)

    Carvajal, C.D.R.; Dias, A.G.; Nishi, C.C.; Sánchez-Vega, B.L.

    2015-01-01

    Light pseudoscalars known as axion like particles (ALPs) may be behind physical phenomena like the Universe transparency to ultra-energetic photons, the soft γ-ray excess from the Coma cluster, and the 3.5 keV line. We explore the connection of these particles with the inverse seesaw (ISS) mechanism for neutrino mass generation. We propose a very restrictive setting where the scalar field hosting the ALP is also responsible for generating the ISS mass scales through its vacuum expectation value on gravity induced nonrenormalizable operators. A discrete gauge symmetry protects the theory from the appearance of overly strong gravitational effects and discrete anomaly cancellation imposes strong constraints on the order of the group. The anomalous U(1) symmetry leading to the ALP is an extended lepton number and the protective discrete symmetry can be always chosen as a subgroup of a combination of the lepton number and the baryon number.

  14. Axion like particles and the inverse seesaw mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Carvajal, C.D.R.; Dias, A.G. [Universidade Federal do ABC, Centro de Ciências Naturais e Humanas,Av. dos Estados, 5001, 09210-580, Santo André, SP (Brazil); Nishi, C.C. [Maryland Center for Fundamental Physics, University of Maryland,College Park, MD 20742 (United States); Universidade Federal do ABC, Centro de Matemática, Computação e Cognição,Av. dos Estados, 5001, 09210-580, Santo André, SP (Brazil); Sánchez-Vega, B.L. [Argonne National Laboratory,9700 S. Cass Avenue, Argonne, Illinois 60439 (United States)

    2015-05-13

    Light pseudoscalars known as axion like particles (ALPs) may be behind physical phenomena like the Universe transparency to ultra-energetic photons, the soft γ-ray excess from the Coma cluster, and the 3.5 keV line. We explore the connection of these particles with the inverse seesaw (ISS) mechanism for neutrino mass generation. We propose a very restrictive setting where the scalar field hosting the ALP is also responsible for generating the ISS mass scales through its vacuum expectation value on gravity induced nonrenormalizable operators. A discrete gauge symmetry protects the theory from the appearance of overly strong gravitational effects and discrete anomaly cancellation imposes strong constraints on the order of the group. The anomalous U(1) symmetry leading to the ALP is an extended lepton number and the protective discrete symmetry can be always chosen as a subgroup of a combination of the lepton number and the baryon number.

  15. Natural Higgs-Flavor-Democracy Solution of the μ Problem of Supersymmetry and the QCD Axion

    Science.gov (United States)

    Kim, Jihn E.

    2013-07-01

    We show that the hierarchically small μ term in supersymmetric theories is a consequence of two identical pairs of Higgs doublets taking a democratic form for their mass matrix. We briefly discuss the discrete symmetry S2×S2 toward the democratic mass matrix. Then, we show that there results an approximate Peccei-Quinn symmetry and hence the value μ is related to the axion decay constant.

  16. Axionic black branes in the k -essence sector of the Horndeski model

    Science.gov (United States)

    Cisterna, Adolfo; Hassaine, Mokhtar; Oliva, Julio; Rinaldi, Massimiliano

    2017-12-01

    We construct new black brane solutions in the context of Horndeski gravity, in particular, in its K-essence sector. These models are supported by axion scalar fields that depend only on the horizon coordinates. The dynamics of these fields is determined by a K-essence term that includes the standard kinetic term X and a correction of the form Xk. We find both neutral and charged exact and analytic solutions in D -dimensions, which are asymptotically anti-de Sitter. Then, we describe in detail the thermodynamical properties of the four-dimensional solutions and we compute the dual holographic DC conductivity.

  17. Spin-dependent potentials, axion-like particles and Lorentz-symmetry violation. Beyond the Standard Model phenomenology at the low-energy frontier of physics

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcanti Malta, Pedro

    2017-06-27

    It is well known that the Standard Model is not complete and many of the theories that seek to extend it predict new phenomena that may be accessible in low-energy settings. This thesis deals with some of these, namely, novel spin-dependent interparticle potentials, axion-like particles and Lorentz-symmetry violation. In Part I we discuss the spin-dependent potentials that arise due to the exchange of a topologically massive mediator, and also pursue a comparative study between spin-1/2 and spin-1 sources. In Part II we treat massive axion-like particles that may be copiously produced in core-collapse supernovae, thus leading to a non-standard flux of gamma rays. Using SN 1987A and the fact that after its observation no extra gamma-ray signal was detected, we are able to set robust limits on the parameter space of axion-like particles with masses in the 10 keV - 100 MeV range. Finally, in Part III we investigate the effects of Lorentz-breaking backgrounds in QED. We discuss two scenarios: a modification in the Maxwell sector via the Carroll-Field-Jackiw term and a new non-minimal coupling between electrons and photons. We are able to set upper limits on the coefficients of the backgrounds by using laboratory-based measurements.

  18. Finding the chiral gravitational wave background of an axion-S U (2 ) inflationary model using CMB observations and laser interferometers

    Science.gov (United States)

    Thorne, Ben; Fujita, Tomohiro; Hazumi, Masashi; Katayama, Nobuhiko; Komatsu, Eiichiro; Shiraishi, Maresuke

    2018-02-01

    A detection of B-mode polarization of the cosmic microwave background (CMB) anisotropies would confirm the presence of a primordial gravitational wave background (GWB). In the inflation paradigm, this would be an unprecedented probe of the energy scale of inflation as it is directly proportional to the power spectrum of the GWB. However, similar tensor perturbations can be produced by the matter fields present during inflation, breaking the simple relationship between energy scale and the tensor-to-scalar ratio r . It is therefore important to find ways of distinguishing between the generation mechanisms of the GWB. Without doing a full model selection, we analyze the detectability of a new axion-S U (2 ) gauge field model by calculating the signal-to-noise ratio of future CMB and interferometer observations sensitive to the chirality of the tensor spectrum. We forecast the detectability of the resulting CMB temperature and B-mode (TB) or E-mode and B-mode (EB) cross-correlation by the LiteBIRD satellite, considering the effects of residual foregrounds, gravitational lensing, and assess the ability of such an experiment to jointly detect primordial TB and EB spectra and self-calibrate its polarimeter. We find that LiteBIRD will be able to detect the chiral signal for r*>0.03 , with r* denoting the tensor-to-scalar ratio at the peak scale, and that the maximum signal-to-noise ratio for r*advanced stage of a LISA-like mission, which is designed to be sensitive to the intensity and polarization of the GWB. We find that such experiments would complement CMB observations as they would be able to detect the chirality of the GWB with high significance on scales inaccessible to the CMB. We conclude that CMB two-point statistics are limited in their ability to distinguish this model from a conventional vacuum fluctuation model of GWB generation, due to the fundamental limits on their sensitivity to parity violation. In order to test the predictions of such a model as

  19. Surface theorem for the Chern-Simons axion coupling

    DEFF Research Database (Denmark)

    Olsen, Thomas; Taherinejad, Maryam; Vanderbilt, David

    2017-01-01

    The Chern-Simons axion coupling of a bulk insulator is only defined modulo a quantum of e2/h. The quantized part of the coupling is uniquely defined for a bounded insulating sample, but it depends on the specific surface termination.Working in a slab geometry and representing the valence bands...... in terms of hybridWannier functions, we show how to determine that quantized part from the excess Chern number of the hybridWannier sheets located near the surface of the slab. The procedure is illustrated for a tight-binding model consisting of coupled quantum anomalous Hall layers. By slowly modulating...... the model parameters it is possible to transfer one unit of Chern number from the bottom to the top surface over the course of a cyclic evolution of the bulk Hamiltonian, changing the surface anomalous Hall conductivity by a quantum of conductance e2/h. When the evolution of the surface Hamiltonian is also...

  20. A signature for chameleons in axion-like particle search experiments

    Energy Technology Data Exchange (ETDEWEB)

    Weniger, Christoph [DESY Hamburg (Germany)

    2008-07-01

    Scalar-Tensor theories are well known and viable generalizations of General Relativity. In recent publications, it was shown that these theories can satisfy all astronomical bounds even if the scalar field couples to matter much stronger than gravity. This is due to the fact that the effective mass of the scalar field strongly depends on the density of the ambient matter. We point out that these strongly coupled fields, which were dubbed chameleons, might reveal themselves as an aefterglow'' effect in axion-like particle search experiments due to chameleon photon conversion in a magnetic field. We estimate the parameter space which is accessible by currently available technology and find that afterglow experiments could constrain this parameter space in a way complementary to gravitational and Casimir force experiments.

  1. Searching for Axion-Like Particles with X-ray Polarimeters

    Directory of Open Access Journals (Sweden)

    Francesca Day

    2018-04-01

    Full Text Available X-ray telescopes are an exceptional tool for searching for new fundamental physics. In particular, X-ray observations have already placed world-leading bounds on the interaction between photons and axion-like particles (ALPs. ALPs are hypothetical new ultra-light particles motivated by string theory models. They can also act as dark matter and dark energy, and provide a solution to the strong CP problem. In a background magnetic field, ALPs and photons may interconvert. This leads to energy dependent modulations in both the flux and polarisation of the spectra of point sources shining through large magnetic fields. The next generation of polarising X-ray telescopes will offer new detection possibilities for ALPs. Here we present techniques and projected bounds for searching for ALPs with X-ray polarimetry. We demonstrate that upcoming X-ray polarimetry missions have the potential to place world-leading bounds on ALPs.

  2. Recognizing Axionic Dark Matter by Compton and de Broglie Scale Modulation of Pulsar Timing.

    Science.gov (United States)

    De Martino, Ivan; Broadhurst, Tom; Tye, S-H Henry; Chiueh, Tzihong; Schive, Hsi-Yu; Lazkoz, Ruth

    2017-12-01

    Light axionic dark matter, motivated by string theory, is increasingly favored for the "no weakly interacting massive particle era". Galaxy formation is suppressed below a Jeans scale of ≃10^{8}  M_{⊙} by setting the axion mass to m_{B}∼10^{-22}  eV, and the large dark cores of dwarf galaxies are explained as solitons on the de Broglie scale. This is persuasive, but detection of the inherent scalar field oscillation at the Compton frequency ω_{B}=(2.5  months)^{-1}(m_{B}/10^{-22}  eV) would be definitive. By evolving the coupled Schrödinger-Poisson equation for a Bose-Einstein condensate, we predict the dark matter is fully modulated by de Broglie interference, with a dense soliton core of size ≃150  pc, at the Galactic center. The oscillating field pressure induces general relativistic time dilation in proportion to the local dark matter density and pulsars within this dense core have detectably large timing residuals of ≃400  nsec/(m_{B}/10^{-22}  eV). This is encouraging as many new pulsars should be discovered near the Galactic center with planned radio surveys. More generally, over the whole Galaxy, differences in dark matter density between pairs of pulsars imprints a pairwise Galactocentric signature that can be distinguished from an isotropic gravitational wave background.

  3. Search for solar Axion Like Particles in the low energy range at CAST

    International Nuclear Information System (INIS)

    Cantatore, G.; Karuza, M.; Lozza, V.; Raiteri, G.

    2010-01-01

    Axion Like Particles (ALPs) could be continuously produced in the Sun via the Primakoff process. The ALP flux could be seen on Earth by observing the photons produced by the ALP decay. The expected energy distribution of reconverted photons is peaked at 3 keV. There could be, however, a low energy tail due to various processes active in the Sun. We report results of the first test measurements in the low energy range performed at CAST along with a description of the experimental setup. Future detector developments are discussed and preliminary results on a liquid nitrogen cooled Avalanche Photodiode are presented.

  4. Repeating pulsed magnet system for axion-like particle searches and vacuum birefringence experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, T., E-mail: yamazaki@icepp.s.u-tokyo.ac.jp [International Center for Elementary Particle Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Inada, T.; Namba, T. [International Center for Elementary Particle Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Asai, S. [Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Kobayashi, T. [International Center for Elementary Particle Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Matsuo, A.; Kindo, K. [The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8581 (Japan); Nojiri, H. [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2016-10-11

    We have developed a repeating pulsed magnet system which generates magnetic fields of about 10 T in a direction transverse to an incident beam over a length of 0.8 m with a repetition rate of 0.2 Hz. Its repetition rate is by two orders of magnitude higher than usual pulsed magnets. It is composed of four low resistance racetrack coils and a 30 kJ transportable capacitor bank as a power supply. The system aims at axion-like particle searches with a pulsed light source and vacuum birefringence measurements. We report on the details of the system and its performances.

  5. A low-background Micromegas detector for axion searches

    CERN Document Server

    Andriamonje, Samuel A; Dafni, T; Delagnes, E; Fanourakis, G K; Ferrer-Ribas, Esther; Geralis, T; Giomataris, Ioanis; Kousouris, K; Papaevangelou, T; Zachariadou, K

    2004-01-01

    A micropattern low-background detector based on the Micromegas technology has been designed and constructed for the CERN Axion Search experiment CAST. The detector is made of low natural radioactivity materials and has a two-dimensional readout with X-Y strip structure. It is operated with an Argon/Isobutane (95%/5%) mixture and is controlled by a VME data acquisition system. The detector is sensitive to photons in the energy range of 1-10 keV, it has a linear response, excellent stability and a very good energy resolution (14% FWHM at 5.9 keV). This device has been in stable operation since October 2002, taking data during the running periods of the CAST experiment. At the end of summer 2003, the detector was upgraded with a flash ADC readout of the grid signal to further improve its background rejection capability. The currently achieved background rate under normal operation is about 2.0 multiplied by 10 **-**5 events/keV/cm**2/s with better than 85% software efficiency.

  6. New ideas for axion like particle dark matter search

    CERN Multimedia

    Betz, Michael; Zioutas, Konstantin

    2012-01-01

    In the context of finding suitable large magnets for RF and microwave axion search, the Tore supra ring had been proposed. This Tokamak which could probably be made available for DM search has a huge volume and a strong magnetic field (30000 liter and 4.5 Tesla). It appears on a first glance, as an interesting candidate for this kind of experiment. One can find a suitable microwave mode which meets the condition that the RF electric field is parallel to the magnetostatic field. The eigenfrequency field pattern and Q factor for this mode and a few adjacent ones are calculated the some field patterns shown graphically. The use of the torus type cavity is not restricted to the Tore Supra. It can in principle be applied to any torus type structure also scaled up toward smaller dimensions and higher frequencies. In the second part of the slide presentation some alternatives and other cavity magnet concepts are shown and discussed.

  7. Axion-like particles: possible hints and constraints from the high-energy Universe

    International Nuclear Information System (INIS)

    Brun, Pierre

    2013-01-01

    The high-energy Universe is potentially a great laboratory for searching new light bosons such as axion-like particles (ALPs). Cosmic sources are indeed the scene of violent phenomena that involve strong magnetic field and/or very long baselines, where the effects of the mixing of photons with ALPs could lead to observable effects. Two examples are archetypal of this fact, that are the Universe opacity to gamma-rays and the imprints of astrophysical magnetic turbulence in the energy spectra of high-energy sources. In the first case, hints for the existence of ALPs can be proposed whereas the second one is used to put constraints on the ALP mass and coupling to photons

  8. Measurement of the magnetically-induced QED birefringence of the vacuum and an improved search for laboratory axions: Technical report. Project definition study of the use of assets and facilities of the Superconducting Super Collider Laboratory

    International Nuclear Information System (INIS)

    Lee, S.A.; Fairbank, W.M. Jr.; Toki, W.H.; Kraushaar, P.F. Jr.; Jaffery, T.S.

    1994-01-01

    The Colorado State Collaboration has studied the feasibility of a high sensitivity QED birefringence/axion search measurement. The objective of this work is to measure, for the first time, the birefringence induced in the vacuum on a light beam travelling in a powerful magnetic field. The same experimental setup also allows a highly sensitive search for axion or axion-like particles. The experiment would combined custom-designed optical heterodyne interferometry with a string of six SSC prototype superconducting dipole magnets at the N-15 site of the SSC Laboratory. With these powerful laser tools, sensitivity advances of 10 7 to 10 9 over previous optical experiments will be possible. The proposed experiment will be able to measure the QED light-by-light scattering effect with a 0.5% accuracy. The increased sensitivity for the axion-two photon interaction will result in a bound on this process rivaling the results based on astrophysical arguments. In the technical report the authors address the scientific significance of these experiments and examine the limiting technical parameters which control their feasibility. The proposed optical/electronic scheme is presented in the context of a background of the known and projected systematic problems which will confront any serious attempt to make such measurements

  9. Can gravitational instantons really constrain axion inflation?

    Energy Technology Data Exchange (ETDEWEB)

    Hebecker, Arthur; Mangat, Patrick [Institut für Theoretische Physik, Universität Heidelberg,Philosophenweg 19, D-69120 Heidelberg (Germany); Theisen, Stefan [Max-Planck-Institut für Gravitationsphysik,Albert-Einstein-Institut, 14476 Golm (Germany); Witkowski, Lukas T. [Institut für Theoretische Physik, Universität Heidelberg,Philosophenweg 19, D-69120 Heidelberg (Germany)

    2017-02-20

    Axions play a central role in inflationary model building and other cosmological applications. This is mainly due to their flat potential, which is protected by a global shift symmetry. However, quantum gravity is known to break global symmetries, the crucial effect in the present context being gravitational instantons or Giddings-Strominger wormholes. We attempt to quantify, as model-independently as possible, how large a scalar potential is induced by this general quantum gravity effect. We pay particular attention to the crucial issue which solutions can or cannot be trusted in the presence of a moduli-stabilisation and a Kaluza-Klein scale. An important conclusion is that, due to specific numerical prefactors, the effect is surprisingly small even in UV-completions with the highest possible scale offered by string theory. As we go along, we discuss in detail Euclidean wormholes, cored and extremal instantons, and how the latter arise from 5d Reissner-Nordström black holes. We attempt to dispel possible doubts that wormholes contribute to the scalar potential by an explicit calculation. We analyse the role of stabilised dilaton-like moduli. Finally, we argue that Euclidean wormholes may be the objects satisfying the Weak Gravity Conjecture extended to instantons.

  10. Axion-like particle imprint in cosmological very-high-energy sources

    International Nuclear Information System (INIS)

    Domínguez, A.; Sánchez-Conde, M.A.; Prada, F.

    2011-01-01

    Discoveries of very high energy (VHE) photons from distant blazars suggest that, after correction by extragalactic background light (EBL) absorption, there is a flatness or even a turn-up in their spectra at the highest energies that cannot be easily explained by the standard framework. Here, it is shown that a possible solution to this problem is achieved by assuming the existence of axion-like particles (ALPs) with masses ∼ 1 neV. The ALP scenario is tested making use of observations of the highest redshift blazars known in the VHE energy regime, namely 3C 279, 3C 66A, PKS 1222+216 and PG 1553+113. In all cases, better fits to the observed spectra are found when including ALPs rather than considering EBL only. Interestingly, quite similar critical energies for photon/ALP conversions are also derived, independently of the source considered

  11. Spin precession experiments for light axionic dark matter

    Science.gov (United States)

    Graham, Peter W.; Kaplan, David E.; Mardon, Jeremy; Rajendran, Surjeet; Terrano, William A.; Trahms, Lutz; Wilkason, Thomas

    2018-03-01

    Axionlike particles are promising candidates to make up the dark matter of the Universe, but it is challenging to design experiments that can detect them over their entire allowed mass range. Dark matter in general, and, in particular, axionlike particles and hidden photons, can be as light as roughly 10-22 eV (˜10-8 Hz ), with astrophysical anomalies providing motivation for the lightest masses ("fuzzy dark matter"). We propose experimental techniques for direct detection of axionlike dark matter in the mass range from roughly 10-13 eV (˜102 Hz ) down to the lowest possible masses. In this range, these axionlike particles act as a time-oscillating magnetic field coupling only to spin, inducing effects such as a time-oscillating torque and periodic variations in the spin-precession frequency with the frequency and direction of these effects set by the axion field. We describe how these signals can be measured using existing experimental technology, including torsion pendulums, atomic magnetometers, and atom interferometry. These experiments demonstrate a strong discovery capability, with future iterations of these experiments capable of pushing several orders of magnitude past current astrophysical bounds.

  12. Current status of top-specific variant axion model

    Science.gov (United States)

    Chiang, Cheng-Wei; Fukuda, Hajime; Takeuchi, Michihisa; Yanagida, Tsutomu T.

    2018-02-01

    The invisible variant axion model is one of the very attractive models which solves the strong C P problem but does not provoke the domain wall problem. At the electroweak scale, this model requires at least two Higgs doublets, one of which carries a nonzero Peccei-Quinn (PQ) charge and the other is neutral. We consider a scenario where only the right-handed top quark is charged under the PQ symmetry and couples with the PQ-charged Higgs doublet. As a general prediction of this model, the top quark can decay to the observed standard model-like Higgs boson h and the charm or up quark, t →h c /u , which recently exhibited slight excesses at LHC run-I and run-II and will soon be testable at the LHC run-II. If the rare top decay excess stays at the observed central value, we show that tan β ˜1 or smaller is preferred by the Higgs data. The chiral nature of the Higgs flavor-changing interaction is a distinctive feature of this model and testable using the angular distribution of the t →c h decays at the LHC.

  13. Constraints on Massive Axion-Like Particles from X-ray Observations of NGC1275

    Science.gov (United States)

    Chen, Linhan; Conlon, Joseph P.

    2018-06-01

    If axion-like particles (ALPs) exist, photons can convert to ALPs on passage through regions containing magnetic fields. The magnetised intracluster medium of large galaxy clusters provides a region that is highly efficient at ALP-photon conversion. X-ray observations of Active Galactic Nuclei (AGNs) located within galaxy clusters can be used to search for and constrain ALPs, as photon-ALP conversion would lead to energy-dependent quasi-sinusoidal modulations in the X-ray spectrum of an AGN. We use Chandra observations of the central AGN of the Perseus Cluster, NGC1275, to place bounds on massive ALPs up to ma ˜ 10-11eV, extending previous work that used this dataset to constrain massless ALPs.

  14. Using the full power of the cosmic microwave background to probe axion dark matter

    Science.gov (United States)

    Hložek, Renée; Marsh, David J. E.; Grin, Daniel

    2018-05-01

    The cosmic microwave background (CMB) places stringent constraints on models of dark matter (DM), and on the initial conditions of the Universe. The full Planck data set is used to test the possibility that some fraction of the DM is composed of ultralight axions (ULAs). This represents the first use of CMB lensing to test the ULA model. We find no evidence for a ULA component in the mass range 10-33 ≤ ma ≤ 10-24 eV. We put percent-level constraints on the ULA contribution to the DM, improving by up to a factor of two compared using temperature anisotropies alone. Axion DM also provides a low-energy window on to the physics of inflation through isocurvature perturbations. We perform the first systematic investigation into the parameter space of ULA isocurvature, using an accurate isocurvature transfer function at all ma values. We precisely identify a `window of co-existence' for 10-25 eV ≤ ma ≤ 10-24 eV where the data allow, simultaneously, a {˜ }10 {per cent} contribution of ULAs to the DM, and {˜ } 1 {per cent} contributions of isocurvature and tensor modes to the CMB power. ULAs in this window (and all lighter ULAs) are shown to be consistent with a large inflationary Hubble parameter, HI ˜ 1014 GeV. The window of co-existence will be fully probed by proposed CMB Stage-IV observations with increased accuracy in the high-ℓ lensing power and low-ℓ E- and B-mode polarizations. If ULAs in the window exist, this could allow for two independent measurements of HI in the CMB using isocurvature, and the tensor contribution to B modes.

  15. Reionization during the dark ages from a cosmic axion background

    Energy Technology Data Exchange (ETDEWEB)

    Evoli, Carmelo [Gran Sasso Science Institute, Viale Francesco Crispi 7, 67100 L' Aquila (Italy); Leo, Matteo [Institute for Particle Physics Phenomenology, Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Mirizzi, Alessandro [Dipartimento Interateneo di Fisica ' ' Michelangelo Merlin' ' , Via Amendola 173, 70126 Bari (Italy); Montanino, Daniele, E-mail: carmelo.evoli@gssi.infn.it, E-mail: matteo.leo@durham.ac.uk, E-mail: alessandro.mirizzi@ba.infn.it, E-mail: daniele.montanino@le.infn.it [Dipartimento di Matematica e Fisica ' ' Ennio De Giorgi' ' , Via Arnesano, 73100 Lecce (Italy)

    2016-05-01

    Recently it has been pointed out that a cosmic background of relativistic axion-like particles (ALPs) would be produced by the primordial decays of heavy fields in the post-inflation epoch, contributing to the extra-radiation content in the Universe today. Primordial magnetic fields would trigger conversions of these ALPs into sub-MeV photons during the dark ages. This photon flux would produce an early reionization of the Universe, leaving a significant imprint on the total optical depth to recombination τ. Using the current measurement of τ and the limit on the extra-radiation content Δ N {sub eff} by the Planck experiment we put a strong bound on the ALP-photon conversions. Namely we obtain upper limits on the product of the photon-ALP coupling constant g {sub a} {sub γ} times the magnetic field strength B down to g {sub a} {sub γ} B ∼> 6 × 10{sup −18} GeV{sup −1} nG for ultralight ALPs.

  16. Collider probes of axion-like particles

    Science.gov (United States)

    Bauer, Martin; Neubert, Matthias; Thamm, Andrea

    2017-12-01

    Axion-like particles (ALPs), which are gauge-singlets under the Standard Model (SM), appear in many well-motivated extensions of the SM. Describing the interactions of ALPs with SM fields by means of an effective Lagrangian, we discuss ALP decays into SM particles at one-loop order, including for the first time a calculation of the a → πππ decay rates for ALP masses below a few GeV. We argue that, if the ALP couples to at least some SM particles with couplings of order (0.01 - 1) TeV-1, its mass must be above 1 MeV. Taking into account the possibility of a macroscopic ALP decay length, we show that large regions of so far unconstrained parameter space can be explored by searches for the exotic, on-shell Higgs and Z decays h → Za, h → aa and Z → γa in Run-2 of the LHC with an integrated luminosity of 300 fb-1. This includes the parameter space in which ALPs can explain the anomalous magnetic moment of the muon. Considering subsequent ALP decays into photons and charged leptons, we show that the LHC provides unprecedented sensitivity to the ALP-photon and ALP-lepton couplings in the mass region above a few MeV, even if the relevant ALP couplings are loop suppressed and the a → γγ and a → ℓ+ℓ- branching ratios are significantly less than 1. We also discuss constraints on the ALP parameter space from electroweak precision tests.

  17. Anomalous leptonic U(1) symmetry: Syndetic origin of the QCD axion, weak-scale dark matter, and radiative neutrino mass

    Science.gov (United States)

    Ma, Ernest; Restrepo, Diego; Zapata, Óscar

    2018-01-01

    The well-known leptonic U(1) symmetry of the Standard Model (SM) of quarks and leptons is extended to include a number of new fermions and scalars. The resulting theory has an invisible QCD axion (thereby solving the strong CP problem), a candidate for weak-scale dark matter (DM), as well as radiative neutrino masses. A possible key connection is a color-triplet scalar, which may be produced and detected at the Large Hadron Collider.

  18. Tuning and backreaction in F-term axion monodromy inflation

    Directory of Open Access Journals (Sweden)

    Arthur Hebecker

    2015-05-01

    Full Text Available We continue the development of axion monodromy inflation, focusing in particular on the backreaction of complex structure moduli. In our setting, the shift symmetry comes from a partial large complex structure limit of the underlying type IIB orientifold or F-theory fourfold. The coefficient of the inflaton term in the superpotential has to be tuned small to avoid conflict with Kähler moduli stabilisation. To allow such a tuning, this coefficient necessarily depends on further complex structure moduli. At large values of the inflaton field, these moduli are then in danger of backreacting too strongly. To avoid this, further tunings are necessary. In weakly coupled type IIB theory at the orientifold point, implementing these tunings appears to be difficult if not impossible. However, fourfolds or models with mobile D7-branes provide enough structural freedom. We calculate the resulting inflaton potential and study the feasibility of the overall tuning given the limited freedom of the flux landscape. Our preliminary investigations suggest that, even imposing all tuning conditions, the remaining choice of flux vacua can still be large enough for such models to provide a promising path to large-field inflation in string theory.

  19. A 3.55 keV hint for decaying axion-like particle dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Jaeckel, Joerg [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Redondo, Javier [Muenchen Univ. (Germany). Arnold Sommerfeld Center; Max-Planck-Institut fuer Physik, Muenchen (Germany); Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2014-02-15

    Recently, indications for an emission line at 3.55 keV have been found in the combined spectra of a large number of galaxy clusters and also in Andromeda. This line could not be identified with any known spectral line. It is tempting to speculate that it has its origin in the decay of a particle contributing all or part of the dark matter. In this note we want to point out that axion-like particles being all or part of the dark matter are an ideal candidate to produce such a feature. More importantly the parameter values necessary are quite feasible in extensions of the Standard Model based on string theory and could be linked up to a variety of other intriguing phenomena, which also potentially allow for new tests of this speculation.

  20. A 3.55 keV hint for decaying axion-like particle dark matter

    International Nuclear Information System (INIS)

    Jaeckel, Joerg; Ringwald, Andreas

    2014-02-01

    Recently, indications for an emission line at 3.55 keV have been found in the combined spectra of a large number of galaxy clusters and also in Andromeda. This line could not be identified with any known spectral line. It is tempting to speculate that it has its origin in the decay of a particle contributing all or part of the dark matter. In this note we want to point out that axion-like particles being all or part of the dark matter are an ideal candidate to produce such a feature. More importantly the parameter values necessary are quite feasible in extensions of the Standard Model based on string theory and could be linked up to a variety of other intriguing phenomena, which also potentially allow for new tests of this speculation.

  1. A microwave paraphoton and axion detection experiment with 300 dB electromagnetic shielding at 3 GHz

    CERN Document Server

    Betz, M

    2012-01-01

    For the microwave equivalent of “light shining through the wall” (LSW) experiments, a sensitive microwave detector and very high electromagnetic shielding is required. The screening attenuation between the axion generating cavity and the nearby detection cavity should be greater than 300 dB, in order to improve over presently existing exclusion limits. To achieve these goals in practice, a “box in a box” concept was utilized for shielding the detection cavity, while a vector signal analyzer was used as a microwave receiver with a very narrow resolution bandwidth in the order of a few micro-Hz. This contribution will present the experimental layout and the results to date.

  2. A Micromegas-based low-background x-ray detector coupled to a slumped-glass telescope for axion research

    DEFF Research Database (Denmark)

    Aznar, F.; Castel, J.; Christensen, F. E.

    2015-01-01

    We report on the design, construction and operation of a low background x-ray detection line composed of a shielded Micromegas detector of the microbulk technology. The detector is made from radiopure materials and is placed at the focal point of a ~ 5 cm diameter, 1.5 m focal-length, cone......-approximation Wolter I x-ray telescope (XRT) assembled from thermally-formed (or "slumped") glass substrates deposited with multilayer coatings. The system has been conceived as a technological pathfinder for the future International Axion Observatory (IAXO), as it combines two of the techniques (optic and detector...

  3. White dwarf axions, PAMELA data, and flipped-SU(5)

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Kyu Jung [Department of Physics and Astronomy and Center for Theoretical Physics, Seoul National University, Seoul 151-747 (Korea, Republic of); Huh, Ji-Haeng [Department of Physics and Astronomy and Center for Theoretical Physics, Seoul National University, Seoul 151-747 (Korea, Republic of)], E-mail: jhhuh@phya.snu.ac.kr; Kim, Jihn E. [Department of Physics and Astronomy and Center for Theoretical Physics, Seoul National University, Seoul 151-747 (Korea, Republic of)], E-mail: jekim@ctp.snu.ac.kr; Kyae, Bumseok [Department of Physics and Astronomy and Center for Theoretical Physics, Seoul National University, Seoul 151-747 (Korea, Republic of)], E-mail: bskyae@gmail.com; Viollier, Raoul D. [Institute of Theoretical Physics and Astrophysics, Department of Physics, University of Cape Town, Private Bag, Rondebosch 7701 (South Africa)

    2009-08-11

    Recently, there are two hints arising from physics beyond the standard model. One is a possible energy loss mechanism due to emission of very weakly interacting light particles from white dwarf stars, with a coupling strength {approx}0.7x10{sup -13}, and another is the high energy positrons observed by the PAMELA satellite experiment. We construct a supersymmetric flipped-SU(5) model, SU(5)xU(1){sub X} with appropriate additional symmetries, [U(1){sub H}]{sub gauge}x[U(1){sub R}xU(1){sub {gamma}}]{sub global}xZ{sub 2}, such that these are explained by a very light electrophilic axion of mass 0.5 meV from the spontaneously broken U(1){sub {gamma}} and two component cold dark matters from Z{sub 2} parity. We show that in the flipped-SU(5) there exists a basic mechanism for allowing excess positrons through the charged SU(5) singlet leptons, but not allowing antiproton excess due to the absence of the SU(5) singlet quarks. We show the discovery potential of the charged SU(5) singlet E at the LHC experiments by observing the electron and positron spectrum. With these symmetries, we also comment on the mass hierarchy between the top and bottom quarks.

  4. Physical process version of the first law of thermodynamics for black holes in Einstein-Maxwell axion-dilaton gravity

    Energy Technology Data Exchange (ETDEWEB)

    Rogatko, Marek [Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin (Poland)

    2002-07-21

    We derive general formulae for the first-order variation of the ADM mass and angular momentum for the linear perturbations of a stationary background in Einstein-Maxwell axion-dilaton gravity which is the low-energy limit of the heterotic string theory. All these variations were expressed in terms of the perturbed matter energy-momentum tensor and the perturbed charge current density. Combining these expressions, we reached at the form of the physical process version of the first law of black-hole dynamics for the stationary black holes in the considered theory which is a strong support for the cosmic censorship hypothesis.

  5. Recent breakthrough and outlook in constraining the non-Newtonian gravity and axion-like particles from Casimir physics

    Energy Technology Data Exchange (ETDEWEB)

    Klimchitskaya, G.L. [Central Astronomical Observatory at Pulkovo of the Russian Academy of Sciences, Saint Petersburg (Russian Federation); Peter the Great Saint Petersburg Polytechnic University, Institute of Physics, Nanotechnology and Telecommunications, Saint Petersburg (Russian Federation)

    2017-05-15

    The strongest constraints on the Yukawa-type corrections to Newton's gravitational law and on the coupling constants of axion-like particles to nucleons, following from recently performed experiments of Casimir physics, are presented. Specifically, the constraints obtained from measurements of the lateral and normal Casimir forces between sinusoidally corrugated surfaces, and from the isoelectronic experiment are considered, and the ranges of their greatest strength are refined. Minor modifications in the experimental setups are proposed which allow for strengthening the resultant constraints up to an order of magnitude. The comparison with some weaker constraints derived in the Casimir regime is also made. (orig.)

  6. Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator.

    Science.gov (United States)

    Wu, Liang; Salehi, M; Koirala, N; Moon, J; Oh, S; Armitage, N P

    2016-12-02

    Topological insulators have been proposed to be best characterized as bulk magnetoelectric materials that show response functions quantized in terms of fundamental physical constants. Here, we lower the chemical potential of three-dimensional (3D) Bi 2 Se 3 films to ~30 meV above the Dirac point and probe their low-energy electrodynamic response in the presence of magnetic fields with high-precision time-domain terahertz polarimetry. For fields higher than 5 tesla, we observed quantized Faraday and Kerr rotations, whereas the dc transport is still semiclassical. A nontrivial Berry's phase offset to these values gives evidence for axion electrodynamics and the topological magnetoelectric effect. The time structure used in these measurements allows a direct measure of the fine-structure constant based on a topological invariant of a solid-state system. Copyright © 2016, American Association for the Advancement of Science.

  7. Revised constraints and Belle II sensitivity for visible and invisible axion-like particles

    International Nuclear Information System (INIS)

    Dolan, Matthew J.; Kahlhoefer, Felix

    2017-09-01

    Light pseudoscalars interacting pre-dominantly with Standard Model gauge bosons (so-called axion-like particles or ALPs) occur frequently in extensions of the Standard Model. In this work we review and update existing constraints on ALPs in the keV to GeV mass region from colliders, beam dump experiments and astrophysics. We furthermore provide a detailed calculation of the expected sensitivity of Belle II, which can search for visibly and invisibly decaying ALPs, as well as long-lived ALPs. The Belle II sensitivity is found to be substantially better than previously estimated, covering wide ranges of relevant parameter space. In particular, Belle II can explore an interesting class of dark matter models, in which ALPs mediate the interactions between the Standard Model and dark matter. In these models, the relic abundance can be set via resonant freeze-out, leading to a highly predictive scenario consistent with all existing constraints but testable with single-photon searches at Belle II in the near future.

  8. Axion phenomenology and θ-dependence from N{sub f}=2+1 lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bonati, Claudio; D’Elia, Massimo; Mariti, Marco [Dipartimento di Fisica dell’Università di Pisa, Largo Pontecorvo 3, I-56127 Pisa (Italy); INFN sezione di Pisa,Largo Pontecorvo 3, I-56127 Pisa (Italy); Martinelli, Guido [Dipartimento di Fisica dell’Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, I-00185 Roma (Italy); INFN Sezione di Roma La Sapienza,Piazzale Aldo Moro 5, I-00185 Roma (Italy); Mesiti, Michele [Dipartimento di Fisica dell’Università di Pisa, Largo Pontecorvo 3, I-56127 Pisa (Italy); INFN sezione di Pisa,Largo Pontecorvo 3, I-56127 Pisa (Italy); Negro, Francesco [INFN sezione di Pisa,Largo Pontecorvo 3, I-56127 Pisa (Italy); Sanfilippo, Francesco [School of Physics and Astronomy, University of Southampton,SO17 1BJ Southampton (United Kingdom); Villadoro, Giovanni [Abdus Salam International Centre for Theoretical Physics,Strada Costiera 11, 34151, Trieste (Italy)

    2016-03-22

    We investigate the topological properties of N{sub f}=2+1 QCD with physical quark masses, both at zero and finite temperature. We adopt stout improved staggered fermions and explore a range of lattice spacings a∼0.05−0.12 fm. At zero temperature we estimate both finite size and finite cut-off effects, comparing our continuum extrapolated results for the topological susceptibility χ with predictions from chiral perturbation theory. At finite temperature, we explore a region going from T{sub c} up to around 4 T{sub c}, where we provide continuum extrapolated results for the topological susceptibility and for the fourth moment of the topological charge distribution. While the latter converges to the dilute instanton gas prediction the former differs strongly both in the size and in the temperature dependence. This results in a shift of the axion dark matter window of almost one order of magnitude with respect to the instanton computation.

  9. Revised constraints and Belle II sensitivity for visible and invisible axion-like particles

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, Matthew J. [Melbourne Univ. (Australia). ARC Centre of Excellence for Particle Physics at the Terascale; Ferber, Torben [British Columbia Univ., Vancouver, BC (Canada). Dept. of Physics and Astronomy; Hearty, Christopher [British Columbia Univ., Vancouver, BC (Canada). Dept. of Physics and Astronomy; Institute of Particle Physics, Vancouver, BC (Canada); Kahlhoefer, Felix [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); RWTH Aachen Univ. (Germany). Inst. for Theoretical Particle Physics and Cosmology; Schmidt-Hoberg, Kai [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2017-09-15

    Light pseudoscalars interacting pre-dominantly with Standard Model gauge bosons (so-called axion-like particles or ALPs) occur frequently in extensions of the Standard Model. In this work we review and update existing constraints on ALPs in the keV to GeV mass region from colliders, beam dump experiments and astrophysics. We furthermore provide a detailed calculation of the expected sensitivity of Belle II, which can search for visibly and invisibly decaying ALPs, as well as long-lived ALPs. The Belle II sensitivity is found to be substantially better than previously estimated, covering wide ranges of relevant parameter space. In particular, Belle II can explore an interesting class of dark matter models, in which ALPs mediate the interactions between the Standard Model and dark matter. In these models, the relic abundance can be set via resonant freeze-out, leading to a highly predictive scenario consistent with all existing constraints but testable with single-photon searches at Belle II in the near future.

  10. The scalar-scalar-tensor inflationary three-point function in the axion monodromy model

    Science.gov (United States)

    Chowdhury, Debika; Sreenath, V.; Sriramkumar, L.

    2016-11-01

    The axion monodromy model involves a canonical scalar field that is governed by a linear potential with superimposed modulations. The modulations in the potential are responsible for a resonant behavior which gives rise to persisting oscillations in the scalar and, to a smaller extent, in the tensor power spectra. Interestingly, such spectra have been shown to lead to an improved fit to the cosmological data than the more conventional, nearly scale invariant, primordial power spectra. The scalar bi-spectrum in the model too exhibits continued modulations and the resonance is known to boost the amplitude of the scalar non-Gaussianity parameter to rather large values. An analytical expression for the scalar bi-spectrum had been arrived at earlier which, in fact, has been used to compare the model with the cosmic microwave background anisotropies at the level of three-point functions involving scalars. In this work, with future applications in mind, we arrive at a similar analytical template for the scalar-scalar-tensor cross-correlation. We also analytically establish the consistency relation (in the squeezed limit) for this three-point function. We conclude with a summary of the main results obtained.

  11. The scalar-scalar-tensor inflationary three-point function in the axion monodromy model

    International Nuclear Information System (INIS)

    Chowdhury, Debika; Sriramkumar, L.; Sreenath, V.

    2016-01-01

    The axion monodromy model involves a canonical scalar field that is governed by a linear potential with superimposed modulations. The modulations in the potential are responsible for a resonant behavior which gives rise to persisting oscillations in the scalar and, to a smaller extent, in the tensor power spectra. Interestingly, such spectra have been shown to lead to an improved fit to the cosmological data than the more conventional, nearly scale invariant, primordial power spectra. The scalar bi-spectrum in the model too exhibits continued modulations and the resonance is known to boost the amplitude of the scalar non-Gaussianity parameter to rather large values. An analytical expression for the scalar bi-spectrum had been arrived at earlier which, in fact, has been used to compare the model with the cosmic microwave background anisotropies at the level of three-point functions involving scalars. In this work, with future applications in mind, we arrive at a similar analytical template for the scalar-scalar-tensor cross-correlation. We also analytically establish the consistency relation (in the squeezed limit) for this three-point function. We conclude with a summary of the main results obtained.

  12. Revisiting the SN1987A gamma-ray limit on ultralight axion-like particles

    International Nuclear Information System (INIS)

    Payez, Alexandre; Ringwald, Andreas; Evoli, Carmelo; Mirizzi, Alessandro; Fischer, Tobias; Giannotti, Maurizio

    2014-10-01

    We revise the bound from the supernova SN1987A on the coupling of ultralight axion-like particles (ALPs) to photons. In a core-collapse supernova, ALPs would be emitted via the Primakoff process, and eventually convert into gamma rays in the magnetic field of the Milky Way. The lack of a gamma-ray signal in the GRS instrument of the SMM satellite in coincidence with the observation of the neutrinos emitted from SN1987A therefore provides a strong bound on their coupling to photons. Due to the large uncertainty associated with the current bound, we revise this argument, based on state-of-the-art physical inputs both for the supernova models and for the Milky-Way magnetic field. Furthermore, we provide major amendments, such as the consistent treatment of nucleon-degeneracy effects and of the reduction of the nuclear masses in the hot and dense nuclear medium of the supernova. With these improvements, we obtain a new upper limit on the photon-ALP coupling: g aγ -12 GeV -1 , for m a -10 eV, and we also give its dependence at larger ALP masses m a . Moreover, we discuss how much the Fermi-LAT satellite experiment could improve this bound, should a close-enough supernova explode in the near future.

  13. Axions and anomaly-mediated interactions: the Green-Schwarz and Wess-Zumino vertices at higher orders and g-2 of the muon

    International Nuclear Information System (INIS)

    Armillis, Roberta; Coriano, Claudio; Guzzi, Marco; Morelli, Simone

    2008-01-01

    We present a study of the mechanism of anomaly cancellation using only transverse invariant amplitudes on anomaly diagrams at higher perturbative orders. The method is the realization of the Green-Schwarz (GS) mechanism at field theory level, which restores the Ward identities by a subtraction of the anomaly pole. Some of the properties of the GS vertex are analyzed both in the context of unitarity and of the organization of the related perturbative expansion. We investigate the role played by the GS and the Wess-Zumino vertices in the anomalous magnetic moment of the muon and in the hyperfine splitting of muonium, which are processes that can be accompanied by the exchange of a virtual anomalous extra Z prime and an axion-like particle.

  14. Revisiting the SN1987A gamma-ray limit on ultralight axion-like particles

    Energy Technology Data Exchange (ETDEWEB)

    Payez, Alexandre; Ringwald, Andreas [Theory group, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg (Germany); Evoli, Carmelo; Mirizzi, Alessandro [II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg (Germany); Fischer, Tobias [Institute for Theoretical Physics, University of Wroc\\law, Pl. M. Borna 9, 50-204 Wroc\\law (Poland); Giannotti, Maurizio, E-mail: alexandre.payez@desy.de, E-mail: carmelo.evoli@desy.de, E-mail: fischer@ift.uni.wroc.pl, E-mail: mgiannotti@barry.edu, E-mail: alessandro.mirizzi@desy.de, E-mail: andreas.ringwald@desy.de [Physical Sciences, Barry University, 11300 NE 2nd Ave., Miami Shores, FL 33161 (United States)

    2015-02-01

    We revise the bound from the supernova SN1987A on the coupling of ultralight axion-like particles (ALPs) to photons. In a core-collapse supernova, ALPs would be emitted via the Primakoff process, and eventually convert into gamma rays in the magnetic field of the Milky Way. The lack of a gamma-ray signal in the GRS instrument of the SMM satellite in coincidence with the observation of the neutrinos emitted from SN1987A therefore provides a strong bound on their coupling to photons. Due to the large uncertainty associated with the current bound, we revise this argument, based on state-of-the-art physical inputs both for the supernova models and for the Milky-Way magnetic field. Furthermore, we provide major amendments, such as the consistent treatment of nucleon-degeneracy effects and of the reduction of the nuclear masses in the hot and dense nuclear medium of the supernova. With these improvements, we obtain a new upper limit on the photon-ALP coupling: g{sub aγ} ∼< 5.3 × 10{sup -12} GeV{sup -1}, for m{sub a} ∼< 4.4 × 10{sup -10} eV, and we also give its dependence at larger ALP masses m{sub a}. Moreover, we discuss how much the Fermi-LAT satellite experiment could improve this bound, should a close-enough supernova explode in the near future.

  15. Gravitational waves in axion inflation: implications for CMB and small-scales interferometer measurements

    Science.gov (United States)

    Unal, Caner; Peloso, Marco; Sorbo, Lorenzo; Garcia-Bellido, Juan

    2017-01-01

    A strong experimental effort is ongoing to detect the primordial gravitational waves (GW) generated during inflation from their impact on the Cosmic Microwave Background (CMB). This effort is motivated by the direct relation between the amplitude of GW signal and the energy scale of inflation, in the standard case of GW production from vacuum. I will discuss the robustness of this relation and the conditions under which particle production mechanisms during inflation can generate a stronger GW signal than the vacuum one. I will present a concrete model employing a coupling between a rolling axion and a gauge field, that can produce a detectable GW signal for an arbitrarily small inflation scale, respecting bounds from back-reaction, perturbativity, and the gaussianity of the measured density perturbations. I will show how the GW produced by this mechanism can be distinguished from the vacuum ones by their spectral dependence and statistical properties. I will finally discuss the possibility of detecting an inflationary GW signal at terrestrial (AdvLIGO) and space (LISA) interferometers. Such experiments are sensitive to the modes much smaller than the ones corresponding to CMB and Large Scale Structure, presenting a unique observational window on the final stages of inflation. The work of C.U. is s supported by a Doctoral Dissertation Fellowship from the Graduate School of the University of Minnesota.

  16. Revisiting the SN1987A gamma-ray limit on ultralight axion-like particles

    Energy Technology Data Exchange (ETDEWEB)

    Payez, Alexandre; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Evoli, Carmelo; Mirizzi, Alessandro [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Fischer, Tobias [Wroclaw Univ. (Poland). Inst. for Theoretical Physics; Giannotti, Maurizio [Barry Univ., Miami Shores, FL (United States). Physical Sciences

    2014-10-15

    We revise the bound from the supernova SN1987A on the coupling of ultralight axion-like particles (ALPs) to photons. In a core-collapse supernova, ALPs would be emitted via the Primakoff process, and eventually convert into gamma rays in the magnetic field of the Milky Way. The lack of a gamma-ray signal in the GRS instrument of the SMM satellite in coincidence with the observation of the neutrinos emitted from SN1987A therefore provides a strong bound on their coupling to photons. Due to the large uncertainty associated with the current bound, we revise this argument, based on state-of-the-art physical inputs both for the supernova models and for the Milky-Way magnetic field. Furthermore, we provide major amendments, such as the consistent treatment of nucleon-degeneracy effects and of the reduction of the nuclear masses in the hot and dense nuclear medium of the supernova. With these improvements, we obtain a new upper limit on the photon-ALP coupling: g{sub aγ}

  17. Latest results of cast and future prospects

    CERN Document Server

    Vafeiadis, Theodoros

    2014-01-01

    CERN Axion Solar Telescope (CAST) is currently the most sensitive axion helioscope designed to search for axions and axion-like particles produced in the Sun. CAST completed successfully the second part of CAST phase II where the magnet bores were lled with 3He gas at variable pressure scanning axion masses up to 1.2 eV In the absence of signal it has set the best experimental limit on the axion-photon coupling constant over a broad range of axion masses. In 2013 CAST has improved its sensitivity to solar axions with rest mass below 0.02 eV by upgrading the Micromegas detectors and it will continue in 2014 with the implementation of a second X-ray optic and a new type detector (InGRID). In addition, CAST has extended its sensitivity into the sub-keV energy range using a silicon detector (SDD), to search for solar chameleons. Thus, CAST also became sensitive to dark energy particles. A new generation axion helioscope (IAXO) aims to improve the current axion-photon coupling by 1-1.5 orders of magnitude. This wi...

  18. On the dark radiation problem in the axiverse

    Energy Technology Data Exchange (ETDEWEB)

    Gorbunov, Dmitry; Tokareva, Anna, E-mail: gorby@ms2.inr.ac.ru, E-mail: tokareva@ms2.inr.ac.ru [Institute for Nuclear Research of Russian Academy of Sciences, 117312 Moscow (Russian Federation)

    2017-06-01

    String scenarios generically predict that we live in a so called axiverse: the Universe with about a hundred of light axion species which are decoupled from the Standard Model particles. However, the axions can couple to the inflaton which leads to their production after inflation. Then, these axions remain in the expanding Universe contributing to the dark radiation component, which is severely bounded from present cosmological data. We place a general constraint on the axion production rate and apply it to several variants of reasonable inflaton-to-axion couplings. The limit merely constrains the number of ultralight axions and the relative strength of inflaton-to-axion coupling. It is valid in both large and small field inflationary models irrespectively of the axion energy scales and masses. Thus, the limit is complementary to those associated with the Universe overclosure and axion isocurvature fluctuations. In particular, a hundred of axions is forbidden if inflaton universally couples to all the fields at reheating. In the case of gravitational sector being responsible for the reheating of the Universe (which is a natural option in all inflationary models with modified gravity), the axion production can be efficient. We find that in the Starobinsky R {sup 2}-inflation even a single axion (e.g. the standard QCD-axion) is in tension with the Planck data, making the model inconsistent with the axiverse. The general conclusion is that an inflation with inefficient reheating mechanism and low reheating temperature may be in tension with the presence of light scalars.

  19. Status and perspectives of the CAST experiment

    CERN Document Server

    Lakic, B; Aune, S; Barth, K; Belov, A; Borghi, S; Brauninger, H; Cantatore, G; Carmona, J M; Cetin, S A; Collar, J I; Dafni, T; Davenport, M; Eleftheriadis, C; Elias, N; Ezer, C; Fanourakis, G; Ferrer-Ribas, E; Friedrich, P; Galan, J; Garcia, J A; Gardikiotis, A; Gazis, E N; Geralis, T; Giomataris, I; Gninenko, S; Gomez, H; Gruber, E; Guthorl, T; Hartmann, R; Haug, F; Hasinoff, M D; Hoffmann, D H H; Iguaz, F J; Irastorza, I G; Jacoby, J; Jakovcic, K; Karuza, M; Konigsmann, K; Kotthaus, R; Krcmar, M; Kuster, M; Laurent, J M; Liolios, A; Ljubicic, A; Lozza, V; Lutz, G; Luzon, G; Morales, J; Niinikoski, T; Nordt, A; Papaevangelou, T; Pivovaroff, M J; Raffelt, G; Rashba, T; Riege, H; Rodriguez, A; Rosu, M; Ruz, J; Savvidis, I; Silva, P S; Solanki, S K; Stewart, L; Tomas, A; Tsagri, M; van Bibber, K; Vafeiadis, T; Villar, J; Vogel, J K; Yildiz, S C; Zioutas, K

    2012-01-01

    The CERN Axion Solar Telescope (CAST) is currently the most sensitive axion helioscope designed to search for axions produced by the Primakoff process in the solar core. CAST is using a Large Hadron Collider (LHC) test magnet where axions could be converted into X-rays with energies up to 10 keV. During the phase I, the experiment operated with vacuum inside the magnet bores and covered axion masses up to 0.02 eV. In the phase II, the magnet bores were filled with a buffer gas (first (4)He and later (3)He) at various densities in order to extend the sensitivity to higher axion masses (up to f .18 eV). The phase II data taking was completed in 2011. So far, no evidence of axion signal has been found and CAST set the most restrictive experimental limit on the axion-photon coupling constant over a broad range of axion masses. The latest CAST results with (3)He data in the mass range 0.39 eV < ma < 0.64 eV will be presented.

  20. The type IIB string axiverse and its low-energy phenomenology

    International Nuclear Information System (INIS)

    Cicoli, Michele; Goodsell, Mark D.; Ringwald, Andreas

    2012-06-01

    We study closed string axions in type IIB orientifold compactifications. We show that for natural values of the background fluxes the moduli stabilisation mechanism of the LARGE Volume Scenario (LVS) gives rise to an axiverse characterised by the presence of a QCD axion plus many light axion-like particles whose masses are logarithmically hierarchical. We study the phenomenological features of the LVS axiverse, deriving the masses of the axions and their couplings to matter and gauge fields. We also determine when closed string axions can solve the strong CP problem, and analyse the first explicit examples of semi-realistic models with stable moduli and a QCD axion candidate which is not eaten by an anomalous Abelian gauge boson. We discuss the impact of the choice of inflationary scenario on the LVS axiverse, and summarise the astrophysical, cosmological and experimental constraints upon it. Moreover, we show how models can be constructed with additional light axion-like particles that could explain some intriguing astrophysical anomalies, and could be searched for in the next generation of axion helioscopes and light-shining-through-a-wall experiments.

  1. The type IIB string axiverse and its low-energy phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Cicoli, Michele [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); INFN, Sezione di Trieste (Italy); Goodsell, Mark D. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-06-15

    We study closed string axions in type IIB orientifold compactifications. We show that for natural values of the background fluxes the moduli stabilisation mechanism of the LARGE Volume Scenario (LVS) gives rise to an axiverse characterised by the presence of a QCD axion plus many light axion-like particles whose masses are logarithmically hierarchical. We study the phenomenological features of the LVS axiverse, deriving the masses of the axions and their couplings to matter and gauge fields. We also determine when closed string axions can solve the strong CP problem, and analyse the first explicit examples of semi-realistic models with stable moduli and a QCD axion candidate which is not eaten by an anomalous Abelian gauge boson. We discuss the impact of the choice of inflationary scenario on the LVS axiverse, and summarise the astrophysical, cosmological and experimental constraints upon it. Moreover, we show how models can be constructed with additional light axion-like particles that could explain some intriguing astrophysical anomalies, and could be searched for in the next generation of axion helioscopes and light-shining-through-a-wall experiments.

  2. Ultralight particle dark matter

    International Nuclear Information System (INIS)

    Ringwald, A.

    2013-10-01

    We review the physics case for very weakly coupled ultralight particles beyond the Standard Model, in particular for axions and axion-like particles (ALPs): (i) the axionic solution of the strong CP problem and its embedding in well motivated extensions of the Standard Model; (ii) the possibility that the cold dark matter in the Universe is comprised of axions and ALPs; (iii) the ALP explanation of the anomalous transparency of the Universe for TeV photons; and (iv) the axion or ALP explanation of the anomalous energy loss of white dwarfs. Moreover, we present an overview of ongoing and near-future laboratory experiments searching for axions and ALPs: haloscopes, helioscopes, and light-shining-through-a-wall experiments.

  3. Ultralight particle dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Ringwald, A.

    2013-10-15

    We review the physics case for very weakly coupled ultralight particles beyond the Standard Model, in particular for axions and axion-like particles (ALPs): (i) the axionic solution of the strong CP problem and its embedding in well motivated extensions of the Standard Model; (ii) the possibility that the cold dark matter in the Universe is comprised of axions and ALPs; (iii) the ALP explanation of the anomalous transparency of the Universe for TeV photons; and (iv) the axion or ALP explanation of the anomalous energy loss of white dwarfs. Moreover, we present an overview of ongoing and near-future laboratory experiments searching for axions and ALPs: haloscopes, helioscopes, and light-shining-through-a-wall experiments.

  4. The X-ray Telescope of the CAST Experiment

    CERN Document Server

    Kotthaus, Rainer; Friedrich, P.; Kang, D.; Hartmann, R.; Kuster, M.; Lutz, G.; Strüder, L.

    2005-01-01

    The CERN Axion Solar Telescope (CAST) searches for solar axions employing a 9 Tesla superconducting dipole magnet equipped with 3 independent detection systems for X-rays from axion-photon conversions inside the 10 m long magnetic field. Results of the first 6 months of data taking in 2003 imply a 95 % CL upper limit on the axion-photon coupling constant of 1.16x10(-10) GeV(-1) for axion masses < 0.02 eV. The most sensitive detector of CAST is a X-ray telescope consisting of a Wolter I type mirror system and a fully depleted pn-CCD as focal plane detector. Exploiting the full potential of background suppression by focussing X-rays emerging from the magnet bore, the axion sensitivity obtained with telescope data taken in 2004, for the first time in a controlled laboratory experiment, will supersede axion constraints derived from stellar energy loss arguments.

  5. Search for new photon couplings in a magnetic field

    International Nuclear Information System (INIS)

    Cameron, R.E.

    1992-01-01

    Of great interest to particle physics is the question of the existence of new, light, pseudoscalar (or scalar) particles. In particular, the existence of a light pseudoscalar boson, known as the axion, would prove a solution to the strong CP problem. These particles, which must be very weakly coupled to ordinary matter, could also be the missing matter in the universe. The author attempted to produce axions in the laboratory by shining a laser beam through a transverse magnetic field. Only light polarized parallel to the magnetic field produces axions, so the polarization state of the light was carefully controlled. To increase the production of axions, the author constructed a multipass optical cavity that makes the light travel as much as 4 km through the magnetic field region. Using two different methods to detect the production of axions, limits were set on the axion coupling to two photons. In the first experiment, the change in polarization of the light was measured. To do this, the author constructed an ellipsometer, which could measure changes in polarization angle as small as 4 x 10 -11 rad. From the absence of an optical rotation due to the production of axions, it was possible to set a limit on axion coupling to two photons of g aγγ -7 GeV -1 . In the second experiment the author attempted to more directly measure the production of axions. In this case the axions were reconverted to photons, and the regenerated photons were counted by a low dark current photomultiplier tube. No photons in excess of the dark current were detected and the limit on axion coupling to two photons from this experiment is g aγγ -7 GeV -1

  6. pn-CCDs in a Low-Background Environment: Detector Background of the CAST X-ray Telescope

    CERN Document Server

    Kuster, M.; Rodriquez, A.; Kotthaus, R.; Brauninger, H.; Franz, J.; Friedrich, P.; Hartmann, R.; Kang, D.; Lutz, G.; Struder, L.

    2005-01-01

    The CAST experiment at CERN (European Organization of Nuclear Research) searches for axions from the sun. The axion is a pseudoscalar particle that was motivated by theory thirty years ago, with the intention to solve the strong CP problem. Together with the neutralino, the axion is one of the most promising dark matter candidates. The CAST experiment has been taking data during the last two years, setting an upper limit on the coupling of axions to photons more restrictive than from any other solar axion search in the mass range below 0.1 eV. In 2005 CAST will enter a new experimental phase extending the sensitivity of the experiment to higher axion masses. The CAST experiment strongly profits from technology developed for high energy physics and for X-ray astronomy: A superconducting prototype LHC magnet is used to convert potential axions to detectable X-rays in the 1-10 keV range via the inverse Primakoff effect. The most sensitive detector system of CAST is a spin-off from space technology, a Wolter I ty...

  7. Hints of an axion-like particle mixing in the GeV gamma-ray blazar data?

    Energy Technology Data Exchange (ETDEWEB)

    Mena, Olga [IFIC, Universidad de Valencia-CSIC, E-46071, Valencia (Spain); Razzaque, Soebur, E-mail: omena@ific.uv.es, E-mail: srazzaque@uj.ac.za [Department of Physics, University of Johannesburg, PO Box 524, Auckland Park 2006 (South Africa)

    2013-11-01

    Axion-Like Particles (ALPs), if exist in nature, are expected to mix with photons in the presence of an external magnetic field. The energy range of photons which undergo strong mixing with ALPs depends on the ALP mass, on its coupling with photons as well as on the external magnetic field and particle density configurations. Recent observations of blazars by the Fermi Gamma-Ray Space Telescope in the 0.1–300 GeV energy range show a break in their spectra in the 1–10 GeV range. We have modeled this spectral feature for the flat-spectrum radio quasar 3C454.3 during its November 2010 outburst, assuming that a significant fraction of the gamma rays convert to ALPs in the large scale jet of this blazar. Using theoretically motivated models for the magnetic field and particle density configurations in the kiloparsec scale jet, outside the broad-line region, we find an ALP mass m{sub a} ∼ (1−3)⋅10{sup −7} eV and coupling g{sub aγ} ∼ (1−3)⋅10{sup −10} GeV{sup −1} after performing an illustrative statistical analysis of spectral data in four different epochs of emission. The precise values of m{sub a} and g{sub aγ} depend weakly on the assumed particle density configuration and are consistent with the current experimental bounds on these quantities. We apply this method and ALP parameters found from fitting 3C454.3 data to another flat-spectrum radio quasar PKS1222+216 (4C+21.35) data up to 400 GeV, as a consistency check, and found good fit. We find that the ALP-photon mixing effect on the GeV spectra may not be washed out for any reasonable estimate of the magnetic field in the intergalactic media.

  8. Planetary Produced Axionlike Particles and Gamma-Ray Flashes

    International Nuclear Information System (INIS)

    Liolios, Anastasios

    2008-01-01

    Axion-like particles could be created in nuclear disintegrations and deexitations of natural radionuclides present in the interior of the planets. For the Earth and the other planets with a surrounding magnetosphere, axion production could result to gamma and X-ray emission, originating from axion to photon conversion in the planetary magnetic fields. The estimated planetary axion fluxes as well as the related gamma ray fluxes from Earth and the giant planets of our solar system are given along with the axion coupling to ordinary matter. A possible connection with the enigmatic Terrestrial Gamma-ray Flashes (TGFs) discovered in 1994 by CGRO/BATSE and also detected with the RHESSI satellite, is also discussed.

  9. More on cosmological constraints on spontaneous R-symmetry breaking models

    International Nuclear Information System (INIS)

    Hamada, Yuta; Kobayashi, Tatsuo; Kamada, Kohei; Ecole Polytechnique Federale de Lausanne; Ookouchi, Yutaka

    2013-10-01

    We study the spontaneous R-symmetry breaking model and investigate the cosmological constraints on this model due to the pseudo Nambu-Goldstone boson, R-axion. We consider the R-axion which has relatively heavy mass in order to complement our previous work. In this regime, model parameters, R-axions mass and R-symmetry breaking scale, are constrained by Big Bang Nucleosynthesis and overproduction of the gravitino produced from R-axion decay and thermal plasma. We find that the allowed parameter space is very small for high reheating temperature. For low reheating temperature, the U(1) R breaking scale f a is constrained as f a 12-14 GeV regardless of the value of R-axion mass.

  10. External conference: Geneva University

    CERN Multimedia

    2007-01-01

    ECOLE DE PHYSIQUE Département de physique nucléaire et corspusculaire 24, Quai Ernest-Ansermet 1211 GENEVE 4 - Tél : 022 379 62 73 - Fax: 022 379 69 92 Monday 11 June 2007 COLLOQUE DE LA SECTION DE PHYSIQUE at 17:00 - Stückelberg Auditorium The CERN Axion Solar Telescope (CAST). Motivation, concept, results and potential implications Prof. Konstantin ZIOUTAS / University of Patras/Greece & CERN and CAST-spokesperson Axion is one of the leading dark matter particle candidates. The last few years axion searches are in the spotlight. The physics motivation will be presented. Particles like the axions should be produced also in Stars like our Sun. In magnetic fields axions can coherently oscillate to photons and vice versa (Primakoff effect). CAST searches for solar axions pointing a recycled LHC magnet towards the Sun, and, it provides new results since 2002. Its working principle might well be already at work in outer space, asking for an alternative, though exotic, point of view for certain myst...

  11. Final Report for the ADMX Phase 2a Project at the University of Washington

    International Nuclear Information System (INIS)

    Rosenberg, Leslie J.

    2015-01-01

    This is a final report of the ADMX (Axion Dark Matter eXperiment) Phase 2a program. This program is a project allowing for a sensitive axion dark-matter search at higher axion masses. The Phase 2a program also prepares the project for lower temperature anticipated in later operations. The Phase 2a program includes sensitive data-taking operations at two cavity modes, TM010 and TM020, allowing for faster data-taking operations and extending the search to higher and plausible dark-matter axion masses.

  12. More on cosmological constraints on spontaneous R-symmetry breaking models

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Yuta; Kobayashi, Tatsuo [Kyoto Univ. (Japan). Dept. of Physics; Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ecole Polytechnique Federale de Lausanne (Switzerland). Inst. de Theorie des Phenomenes Physiques; Ookouchi, Yutaka [Kyushu Univ., Fukuoka (Japan). Faculty of Arts and Science

    2013-10-15

    We study the spontaneous R-symmetry breaking model and investigate the cosmological constraints on this model due to the pseudo Nambu-Goldstone boson, R-axion. We consider the R-axion which has relatively heavy mass in order to complement our previous work. In this regime, model parameters, R-axions mass and R-symmetry breaking scale, are constrained by Big Bang Nucleosynthesis and overproduction of the gravitino produced from R-axion decay and thermal plasma. We find that the allowed parameter space is very small for high reheating temperature. For low reheating temperature, the U(1){sub R} breaking scale f{sub a} is constrained as f{sub a}<10{sup 12-14} GeV regardless of the value of R-axion mass.

  13. Note on moduli stabilization, supersymmetry breaking and axiverse

    Energy Technology Data Exchange (ETDEWEB)

    Higaki, Tetsutaro [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kobayashi, Tatsuo [Kyoto Univ. (Japan). Dept. of Physics

    2011-06-15

    We study properties of moduli stabilization in the four dimensional N=1 supergravity theory with heavy moduli and would-be saxion-axion multiplets including light string-theoretic axions. We give general formulation for the scenario that heavy moduli and saxions are stabilized while axions remain light, assuming that moduli are stabilized near the supersymmetric solution. One can find stable vacuum, i.e. nontachyonic saxions, in the non-supersymmetric Minkowski vacua. We also discuss the cases, where the moduli are coupled to the supersymmetry breaking sector and/or moduli have contributions to supersymmetry breaking. Furthermore we study the models with axions originating from matter-like fields. Our analysis on moduli stabilization is applicable even if there are not light axion multiplets. (orig.)

  14. arXiv Black hole superradiance and polarization-dependent bending of light

    CERN Document Server

    Plascencia, Alexis D.

    2018-04-27

    An inhomogeneous pseudo-scalar field configuration behaves like an optically active medium. Consequently, if a light ray passes through an axion cloud surrounding a Kerr black hole, it may experience a polarization-dependent bending. We explore the size and relevance of such effect considering both the QCD axion and a generic axion-like particle.

  15. arXiv Black hole superradiance and polarization-dependent bending of light

    CERN Document Server

    Plascencia, Alexis D.

    2017-01-01

    An inhomogeneous pseudo-scalar field configuration behaves like an optically active medium. Consequently, if a light ray passes through an axion cloud surrounding a Kerr black hole, it may experience a polarization-dependent bending. We explore the size and relevance of such effect considering both the QCD axion and a generic axion-like particle.

  16. CAST reaches milestone but keeps on searching

    CERN Multimedia

    CERN Courier (september 2011 issue)

    2011-01-01

    After eight years of searching for the emission of a dark matter candidate particle, the axion, from the Sun, the CERN Axion Solar Telescope (CAST) has fulfilled its original physics programme.   Members of the CAST collaboration in July, together with dipole-based helioscope. CAST, the world’s most sensitive axion helioscope, points a recycled prototype LHC dipole magnet at the Sun at dawn and dusk, looking for the conversion of axions to X-rays. It incorporates four state-of-the-art X-ray detectors: three Micromegas detectors and a pn-CCD imaging camera attached to a focusing X-ray telescope that was recovered from the German space programme (see CERN Courier April 2010).  Over the years, CAST has operated with the magnet bores - the location of the axion conversion - in different conditions: first in vacuum, covering axion masses up to 20 meV/c2, and then with a buffer gas (4He and later 3He) at various densities, finally reaching the goal of 1.17 eV/c2 on 22 ...

  17. CASTing light on dark matter particles

    CERN Multimedia

    2005-01-01

    CERN's CAST collaboration recently released first results from its search for solar axions, a candidate dark matter particle. Though they haven't found any axions yet, they have done much to narrow the hunt. The CAST experiment. Physicists think the universe is permeated with dark matter, particles that don't emit or absorb radiation and so are invisible to traditional telescopes. So far no one has found direct signs of dark matter. A different breed of telescope, however, may be able to see such particles. CERN's Axion Solar Telescope (CAST), currently the world's only working axion helioscope, is a superconducting test magnet from the Large Hadron Collider (LHC) that has been refurbished and outfitted with X-ray detectors, plus a focusing mirror system for X-rays that was recovered from the German space program. CAST stares into the sun in search of particles called axions, one of the leading candidates for dark matter. On 9 November, the CAST collaboration released the results of their first experimen...

  18. Relaxion monodromy and the Weak Gravity Conjecture

    International Nuclear Information System (INIS)

    Ibáñez, L.E.; Montero, M.; Uranga, A.M.; Valenzuela, I.

    2016-01-01

    The recently proposed relaxion models require extremely large trans-Planckian axion excursions as well as a potential explicitly violating the axion shift symmetry. The latter property is however inconsistent with the axion periodicity, which corresponds to a gauged discrete shift symmetry. A way to make things consistent is to use monodromy, i.e. both the axion and the potential parameters transform under the discrete shift symmetry. The structure is better described in terms of a 3-form field C_μ_ν_ρ coupling to the SM Higgs through its field strength F_4. The 4-form also couples linearly to the relaxion, in the Kaloper-Sorbo fashion. The extremely small relaxion-Higgs coupling arises in a see-saw fashion as g≃F_4/f, with f being the axion decay constant. We discuss constraints on this type of constructions from membrane nucleation and the Weak Gravity Conjecture. The latter requires the existence of membranes, whose too fast nucleation could in principle drive the theory out of control, unless the cut-off scale is lowered. This allows to rule out the simplest models with the QCD axion as relaxion candidate on purely theoretical grounds. We also discuss possible avenues to embed this structure into string theory.

  19. Relaxion monodromy and the Weak Gravity Conjecture

    Energy Technology Data Exchange (ETDEWEB)

    Ibáñez, L.E.; Montero, M. [Departamento de Física Teórica, Facultad de CienciasUniversidad Autónoma de Madrid, 28049 Madrid (Spain); Instituto de Física Teórica IFT-UAM/CSIC,C/ Nicolás Cabrera 13-15, Campus de Cantoblanco, 28049 Madrid (Spain); Uranga, A.M. [Instituto de Física Teórica IFT-UAM/CSIC,C/ Nicolás Cabrera 13-15, Campus de Cantoblanco, 28049 Madrid (Spain); Valenzuela, I. [Max-Planck-Institut fur Physik,Fohringer Ring 6, 80805 Munich (Germany); Institute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena,Utrecht University,Leuvenlaan 4, 3584 CE Utrecht (Netherlands)

    2016-04-05

    The recently proposed relaxion models require extremely large trans-Planckian axion excursions as well as a potential explicitly violating the axion shift symmetry. The latter property is however inconsistent with the axion periodicity, which corresponds to a gauged discrete shift symmetry. A way to make things consistent is to use monodromy, i.e. both the axion and the potential parameters transform under the discrete shift symmetry. The structure is better described in terms of a 3-form field C{sub μνρ} coupling to the SM Higgs through its field strength F{sub 4}. The 4-form also couples linearly to the relaxion, in the Kaloper-Sorbo fashion. The extremely small relaxion-Higgs coupling arises in a see-saw fashion as g≃F{sub 4}/f, with f being the axion decay constant. We discuss constraints on this type of constructions from membrane nucleation and the Weak Gravity Conjecture. The latter requires the existence of membranes, whose too fast nucleation could in principle drive the theory out of control, unless the cut-off scale is lowered. This allows to rule out the simplest models with the QCD axion as relaxion candidate on purely theoretical grounds. We also discuss possible avenues to embed this structure into string theory.

  20. Any Light Particle Search (ALPS)

    Science.gov (United States)

    Spector, Aaron; Any Light Particle Search (ALPS) Collaboration

    2016-03-01

    High power laser fields enabled by technologies developed for ground-based gravitational-wave observatories open up new opportunities for fundamental physics studies. One of these options is the search for axions and axion-like particles in a pure laboratory experiment. The axion is a solution to the strong CP-problem and a potential dark matter candidate. The axion has also been proposed as an additional channel to cool stars as well as a potential explanation for the TeV transparency problem. The German-US ALPS collaboration is setting up a light-shining-through-walls (LSW) experiment at DESY. LSW experiments are based on the simple idea that a high power laser field traversing a static magnetic field will transform partly into a relativistic axion field. This axion field will travel through an opaque wall into a second static magnetic field region where it turns partly back into an electromagnetic wave field with the same frequency as the laser. The ALPS collaboration is working towards a large scale LSW experiment at DESY in Hamburg, Germany. I will report on the status of the ALPS experiment. This work is supported by the Deutsche Forschungsgemeinschaft, PRISMA, the Helmholtz Association, the National Science Foundation and the Heising-Simons Foundation.

  1. Scientific Assessment Group for Experiments in Non-Accelerator Physics (SAGENAP)

    Science.gov (United States)

    1997-03-01

    substantial non- baryonic component to dark matter . Dark matter candidates include Weakly Interacting Massive Particles (WTMPs), axions, light...Currently, axions are also of interest as one of the prime candidates for non- baryonic dark matter . Axions with a mass in the region of 10Ś -10ŗ eV...issues in the non-accelerator program, such as the study of solar and atmospheric neutrino oscillations, the pursuit of dark matter , and the study of

  2. Research program in elementary particle theory: Outstanding junior investigator program

    International Nuclear Information System (INIS)

    Bowick, M.J.

    1989-01-01

    This report briefly discusses the following topics: high-temperature strings; axionic black holes and wormholes; equations of motion for massless modes as vanishing curvature; vertex algebras and string theory; and massive axions

  3. CAST with its micromegas detector installed.

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    The CERN Axion Solar Telescope (CAST) uses a prototype LHC dipole magnet to search for very weakly interacting neutral particles called axions, which should originate in the core of the Sun. The magnet converts the solar axions to photons which are then detected by an X-ray detector based on Micromegas technology. CAST's Micromegas detector has now been installed. Photos 01 02: General view of the CAST experiment with the Micromegas detector in place. Photo 03: Close-up of the micromegas set-up.

  4. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Dark matter; axion; magnetar; SGRs; AXPs . ... Non-baryonic dark matter candidate axions are produced in the highly magnetized neutron star via Bremsstrahlung process in the highly ... Articles are also visible in Web of Science immediately.

  5. Cosmological constraints on spontaneous R-symmetry breaking models

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Yuta; Kobayashi, Tatsuo [Kyoto Univ. (Japan). Dept. of Physics; Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ookouchi, Yutaka [Kyoto Univ. (Japan). Dept. of Physics; Kyoto Univ. (Japan). The Hakubi Center for Advanced Research and Dept. of Physics

    2012-11-15

    We study general constraints on spontaneous R-symmetry breaking models coming from the cosmological effects of the pseudo Nambu-Goldstone bosons, R-axions. They are substantially produced in the early Universe and may cause several cosmological problems. We focus on relatively long-lived R-axions and find that in a wide range of parameter space, models are severely constrained. In particular, R-axions with mass less than 1 MeV are generally ruled out for relatively high reheating temperature, T{sub R}>10 GeV.

  6. Transplanckian censorship and global cosmic strings

    International Nuclear Information System (INIS)

    Dolan, Matthew J.; Draper, Patrick; Kozaczuk, Jonathan; Patel, Hiren

    2017-01-01

    Large field excursions are required in a number of axion models of inflation. These models also possess global cosmic strings, around which the axion follows a path mirroring the inflationary trajectory. Cosmic strings are thus an interesting theoretical laboratory for the study of transplanckian field excursions. We describe connections between various effective field theory models of axion monodromy and study the classical spacetimes around their supercritical cosmic strings. For small decay constants fM p /f, the EFT is under control and the string cores undergo topological inflation, which may be either of exponential or power-law type. We show that the exterior spacetime is nonsingular and equivalent to a decompactifying cigar geometry, with the radion rolling in a potential generated by axion flux. Signals are able to circumnavigate infinite straight strings in finite but exponentially long time, t∼e Δa/M p . For finite loops of supercritical string in asymptotically flat space, we argue that if topological inflation occurs, then topological censorship implies transplanckian censorship, or that external observers are forbidden from threading the loop and observing the full excursion of the axion.

  7. Transplanckian censorship and global cosmic strings

    Science.gov (United States)

    Dolan, Matthew J.; Draper, Patrick; Kozaczuk, Jonathan; Patel, Hiren

    2017-04-01

    Large field excursions are required in a number of axion models of inflation. These models also possess global cosmic strings, around which the axion follows a path mirroring the inflationary trajectory. Cosmic strings are thus an interesting theoretical laboratory for the study of transplanckian field excursions. We describe connections be-tween various effective field theory models of axion monodromy and study the classical spacetimes around their supercritical cosmic strings. For small decay constants f M p /f , the EFT is under control and the string cores undergo topological inflation, which may be either of exponential or power-law type. We show that the exterior spacetime is nonsingular and equivalent to a decompactifying cigar geometry, with the radion rolling in a potential generated by axion flux. Signals are able to circumnavigate infinite straight strings in finite but exponentially long time, t ˜ e Δ a/ M p . For finite loops of supercritical string in asymptotically flat space, we argue that if topological inflation occurs, then topological censorship implies transplanckian censorship, or that external observers are forbidden from threading the loop and observing the full excursion of the axion.

  8. Transplanckian censorship and global cosmic strings

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, Matthew J. [ARC Centre of Excellence for Particle Physics at the Terascale,School of Physics, University of Melbourne,Melbourne, 3010 (Australia); Draper, Patrick; Kozaczuk, Jonathan; Patel, Hiren [Amherst Center for Fundamental Interactions, Department of Physics,University of Massachusetts,Amherst, MA 01003 (United States)

    2017-04-21

    Large field excursions are required in a number of axion models of inflation. These models also possess global cosmic strings, around which the axion follows a path mirroring the inflationary trajectory. Cosmic strings are thus an interesting theoretical laboratory for the study of transplanckian field excursions. We describe connections between various effective field theory models of axion monodromy and study the classical spacetimes around their supercritical cosmic strings. For small decay constants fM{sub p}/f, the EFT is under control and the string cores undergo topological inflation, which may be either of exponential or power-law type. We show that the exterior spacetime is nonsingular and equivalent to a decompactifying cigar geometry, with the radion rolling in a potential generated by axion flux. Signals are able to circumnavigate infinite straight strings in finite but exponentially long time, t∼e{sup Δa/M{sub p}}. For finite loops of supercritical string in asymptotically flat space, we argue that if topological inflation occurs, then topological censorship implies transplanckian censorship, or that external observers are forbidden from threading the loop and observing the full excursion of the axion.

  9. Search for a spin-dependent short-range force between nucleons with a 3He/129Xe clock-comparison experiment

    International Nuclear Information System (INIS)

    Tullney, Kathlynne

    2014-01-01

    The standard model (SM) of particle physics describes all known particles and their interactions. However, the SM leaves many issues unresolved. For example, it only includes three of the four fundamental forces and does not clarify the question why in the strong interaction CP symmetry is violated due to its non-trivial vacuum structure is predicted (Θ-term), but experimentally unverifiable. The latter one is known as the strong CP-problem of quantum chromodynamics (QCD) and is solved by the Peccei-Quinn-Weinberg-Wilczek theory. This theory predicts a new and almost massless boson which is known as the axion. The axion feebly interacts with matter and therefore it is a good candidate for cold dark matter, too. Axions are produced by the Primakoff-effect, i.e. by conversion of photons which are scattered in the electromagnetic field, e.g. of atoms. The inverse Primakoff-effect, which converts axions to photons again, can be used for direct detection of galactic, solar, or laboratory axions. Cosmological and astrophysical observations constrain the mass of the axion from a few μeV to some meV (''axion mass window''). If the axion exists, then it mediates a CP violating, spin-dependent, short-range interaction between a fermion and the spin of another fermion. By verification of this interaction, the axion can be detected indirectly. In the framework of the present thesis an experiment to search for this spindependent short-range interaction was performed in the magnetically shielded room BMSR-2 of the Physikalisch-Technische Bundesanstalt Berlin. An ultra-sensitive low-field co-magnetometer was employed which is based on the detection of free precession of 3 He and 129 Xe nuclear spins using SQUIDs as low-noise magnetic flux detectors. The two nuclear spin polarized gases are filled into a glass cell which is immersed in a low magnetic field of about B 0 = 0.35 μT with absolute field gradients in the order of pT/cm. The spin precession frequencies of 3 He and 129

  10. Imprints of quantum gravity on large field inflation and reheating

    Energy Technology Data Exchange (ETDEWEB)

    Rompineve Sorbello, Fabrizio

    2017-04-18

    In this thesis we investigate the feasibility and phenomenology of transplanckian field displacements during Inflation as well as the production of very light fields during Reheating. We begin by focusing on realisations of axion inflation in the complex structure moduli sector of Type IIB String Theory (ST) flux compactifications. Firstly, we analyse the problem of backreaction of complex structure moduli on the inflationary trajectory in a concrete model of axion monodromy inflation. Secondly, we propose a realisation of natural inflation where the inflaton arises as a combination of two axions. In both cases we find sufficiently flat inflationary potentials over a limited, but transplanckian field range. However, our realisation of axion monodromy inflation requires a potentially large, though realisable, number of tunings to ensure that the inflationary shift symmetry is only weakly broken. The consequences of the Weak Gravity Conjecture (WGC) for axion monodromy inflation are then explored. We find that the conjecture provides a bound on the inflationary field range, but does not forbid transplanckian displacements. Moreover, we provide a strategy to generalise the WGC to general p-form gauge theories in ST. Finally, we focus on the physics of the early post-inflationary phase. We show that axion monodromy inflation can lead to a phase decomposition, followed by the radiation of potentially detectable gravitational waves. We also propose a strategy to evade the overproduction of Dark Radiation in the Large Volume Scenario of moduli stabilisation, by means of flavour branes wrapping the bulk cycle of the compactification manifold.

  11. New CAST limit on the axion–photon interaction

    DEFF Research Database (Denmark)

    Anastassopoulos, V.; Aune, S.; Barth, K.

    2017-01-01

    Hypothetical low-mass particles, such as axions, provide a compelling explanation for the dark matter in the universe. Suchparticles are expected to emerge abundantly from the hot interior of stars. To test this prediction, the CERN Axion SolarTelescope (CAST) uses a 9 T refurbished Large Hadron...... Collider test magnet directed towards the Sun. In the strong magneticfield, solar axions can be converted to X-ray photons which can be recorded by X-ray detectors. In the 2013–2015 run, thanksto low-background detectors and a new X-ray telescope, the signal-to-noise ratio was increased by about a factor...

  12. The X-ray Telescope of CAST

    CERN Document Server

    Kuster, M.; Cebrian, S.; Davenport, M.; Elefteriadis, C.; Englhauser, J.; Fischer, H.; Franz, J.; Friedrich, P.; Hartmann, R.; Heinsius, F.H.; Hoffmann, D.H.H.; Hoffmeister, G.; Joux, J.N.; Kang, D.; Konigsmann, Kay; Kotthaus, R.; Papaevangelou, T.; Lasseur, C.; Lippitsch, A.; Lutz, G.; Morales, J.; Rodriguez, A.; Struder, L.; Vogel, J.; Zioutas, K.

    2007-01-01

    The Cern Axion Solar Telescope (CAST) is in operation and taking data since 2003. The main objective of the CAST experiment is to search for a hypothetical pseudoscalar boson, the axion, which might be produced in the core of the sun. The basic physics process CAST is based on is the time inverted Primakoff effect, by which an axion can be converted into a detectable photon in an external electromagnetic field. The resulting X-ray photons are expected to be thermally distributed between 1 and 7 keV. The most sensitive detector system of CAST is a pn-CCD detector combined with a Wolter I type X-ray mirror system. With the X-ray telescope of CAST a background reduction of more than 2 orders off magnitude is achieved, such that for the first time the axion photon coupling constant g_agg can be probed beyond the best astrophysical constraints g_agg < 1 x 10^-10 GeV^-1.

  13. The CAST time projection chamber

    International Nuclear Information System (INIS)

    Autiero, D; Beltran, B; Carmona, J M; Cebrian, S; Chesi, E; Davenport, M; Delattre, M; Di Lella, L; Formenti, F; Irastorza, I G; Gomez, H; Hasinoff, M; Lakic, B; Luzon, G; Morales, J; Musa, L; Ortiz, A; Placci, A; Rodrigurez, A; Ruz, J; Villar, J A; Zioutas, K

    2007-01-01

    One of the three x-ray detectors of the CERN Axion Solar Telescope (CAST) experiment searching for solar axions is a time projection chamber (TPC) with a multi-wire proportional counter (MWPC) as a readout structure. Its design has been optimized to provide high sensitivity to the detection of the low intensity x-ray signal expected in the CAST experiment. A low hardware threshold of 0.8 keV is set to a safe level during normal data taking periods, and the overall efficiency for the detection of photons coming from conversion of solar axions is 62%. Shielding has been installed around the detector, lowering the background level to 4.10 x 10 -5 counts cm -2 s -1 keV -1 between 1 and 10 keV. During phase I of the CAST experiment the TPC has provided robust and stable operation, thus contributing with a competitive result to the overall CAST limit on axion-photon coupling and mass

  14. Low Background Micromegas in CAST

    CERN Document Server

    Garza, J.G.; Aznar, F.; Calvet, D.; Castel, J.F.; Christensen, F.E.; Dafni, T.; Davenport, M.; Decker, T.; Ferrer-Ribas, E.; Galán, J.; García, J.A.; Giomataris, I.; Hill, R.M.; Iguaz, F.J.; Irastorza, I.G.; Jakobsen, A.C.; Jourde, D.; Mirallas, H.; Ortega, I.; Papaevangelou, T.; Pivovaroff, M.J.; Ruz, J.; Tomás, A.; Vafeiadis, T.; Vogel, J.K.

    2015-11-16

    Solar axions could be converted into x-rays inside the strong magnetic field of an axion helioscope, triggering the detection of this elusive particle. Low background x-ray detectors are an essential component for the sensitivity of these searches. We report on the latest developments of the Micromegas detectors for the CERN Axion Solar Telescope (CAST), including technological pathfinder activities for the future International Axion Observatory (IAXO). The use of low background techniques and the application of discrimination algorithms based on the high granularity of the readout have led to background levels below 10$^{-6}$ counts/keV/cm$^2$/s, more than a factor 100 lower than the first generation of Micromegas detectors. The best levels achieved at the Canfranc Underground Laboratory (LSC) are as low as 10$^{-7}$ counts/keV/cm$^2$/s, showing good prospects for the application of this technology in IAXO. The current background model, based on underground and surface measurements, is presented, as well as ...

  15. On a connection between the limit set of the Moebius-Klein transformation, periodic continued fractions, El Naschie's topological theory of high energy particle physics and the possibility of a new axion-like particle

    International Nuclear Information System (INIS)

    Marek-Crnjac, L.

    2004-01-01

    In the present work we first give a general representation of the derivatives of the irrational number phi, for instance ((1)/(phi)), ((1)/(phi 2 )), ((1)/(phi 3 )) etc., as periodic continued fractions. Any irrational number can then be expanded in an infinite continued fraction. The limit set of the Kleinian transformation acting on the E-infinity Cantorian spacetime turned out to be this set of periodic continued fractions, consequently the vacuum of the E-infinity is described by this limit set. As discussed by El Naschie, every particle can be interpreted geometrically as a scaling of another. This is done using the topology of hyperbolic Kleinian space of VAK, which is nothing but our limit set. Here we will present the ratios of the theoretical masses of certain elementary particles to that of some chosen particles in term of phi. Many of these masses are quite close to integer multiples of the mass of a chosen particle. Finally we discuss the possibility of new transfinite, axion-like particles as discussed recently by Krauss and El Naschie [Quintessence, Vintage, London, 1999

  16. Low Background Micromegas in CAST

    DEFF Research Database (Denmark)

    Garza, J G; Aune, S.; Aznar, F.

    2014-01-01

    Solar axions could be converted into x-rays inside the strong magnetic field of an axion helioscope, triggering the detection of this elusive particle. Low background x-ray detectors are an essential component for the sensitivity of these searches. We report on the latest developments of the Micr...

  17. GammeV: a milli-eV particle search at Fermilab

    International Nuclear Information System (INIS)

    Wester, William Carl III

    2008-01-01

    GammeV is an experiment conducted at Fermilab that employs the light shining through a wall technique to search for axion-like particles and employs a particle in a jar technique to search for dilaton-like chameleon particles. We obtain limits on the coupling of photons to an axion-like particle that extend previous limits for both scalars and pseudoscalars in the milli-eV mass range. We are able to exclude the axion-like particle interpretation of the anomalous PVLAS 2006 result by more than 5 standard deviations. We also present results on a search for chameleons and set limits on their possible coupling to photons

  18. Non-perturbative scalar potential inspired by type IIA strings on rigid CY

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrov, Sergei [Laboratoire Charles Coulomb (L2C), UMR 5221, CNRS-Université de Montpellier,F-34095, Montpellier (France); Ketov, Sergei V. [Department of Physics, Tokyo Metropolitan University,1-1 Minami-ohsawa, Hachioji-shi, Tokyo 192-0397 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (IPMU), The University of Tokyo,Chiba 277-8568 (Japan); Institute of Physics and Technology, Tomsk Polytechnic University,30 Lenin Ave., Tomsk 634050 (Russian Federation); Wakimoto, Yuki [Department of Physics, Tokyo Metropolitan University,1-1 Minami-ohsawa, Hachioji-shi, Tokyo 192-0397 (Japan)

    2016-11-10

    Motivated by a class of flux compactifications of type IIA strings on rigid Calabi-Yau manifolds, preserving N=2 local supersymmetry in four dimensions, we derive a non-perturbative potential of all scalar fields from the exact D-instanton corrected metric on the hypermultiplet moduli space. Applying this potential to moduli stabilization, we find a discrete set of exact vacua for axions. At these critical points, the stability problem is decoupled into two subspaces spanned by the axions and the other fields (dilaton and Kähler moduli), respectively. Whereas the stability of the axions is easily achieved, numerical analysis shows instabilities in the second subspace.

  19. Gaseous time projection chambers for rare event detection: results from the T-REX project. II. Dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Irastorza, I.G.; Aznar, F.; Castel, J., E-mail: igor.irastorza@cern.ch, E-mail: faznar@unizar.es, E-mail: jfcastel@unizar.es [Grupo de Física Nuclear y Astropartículas, Departamento de Física Teórica, Universidad de Zaragoza, C/ P. Cerbuna 12, Zaragoza, 50009 Spain (Spain); and others

    2016-01-01

    As part of the T-REX project, a number of R and D and prototyping activities have been carried out during the last years to explore the applicability of gaseous Time Projection Chambers (TPCs) with Micromesh Gas Structures (Micromegas) in rare event searches like double beta decay, axion research and low-mass WIMP searches. While in the companion paper we focus on double beta decay, in this paper we focus on the results regarding the search for dark matter candidates, both axions and WIMPs. Small (few cm wide) ultra-low background Micromegas detectors are used to image the axion-induced x-ray signal expected in axion helioscopes like the CERN Axion Solar Telescope (CAST) experiment. Background levels as low as 0.8 × 10{sup −6} counts keV{sup −1} cm{sup −2} s{sup −1} have already been achieved in CAST while values down to ∼10{sup −7} counts keV{sup −1} cm{sup −2} s{sup −1} have been obtained in a test bench placed underground in the Laboratorio Subterráneo de Canfranc (LSC). Prospects to consolidate and further reduce these values down to ∼10{sup −8} counts keV{sup −1} cm{sup −2} s{sup −1} will be described. Such detectors, placed at the focal point of x-ray telescopes in the future International Axion Observatory (IAXO), would allow for 10{sup 5} better signal-to-noise ratio than CAST, and search for solar axions with g{sub a}γ down to few 10{sup 12} GeV{sup −1}, well into unexplored axion parameter space. In addition, a scaled-up version of these TPCs, properly shielded and placed underground, can be competitive in the search for low-mass WIMPs. The TREX-DM prototype, with ∼ 0.300 kg of Ar at 10 bar, or alternatively ∼ 0.160 kg of Ne at 10 bar, and energy threshold well below 1 keV, has been built to test this concept. We will describe the main technical solutions developed, as well as the results from the commissioning phase on surface. The anticipated sensitivity of this technique might reach ∼10{sup −44} cm{sup 2} for

  20. Mixing of photons with light pseudoscalars in time-dependent magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Arias, Paola; Arza, Ariel; Gamboa, Jorge [Universidad de Santiago de Chile, Departmento de Fisica, Santiago (Chile)

    2016-11-15

    The effects of an external time-dependent magnetic field in the conversion probability of photon- to axion-like particles are studied. Our findings show that for a certain time regime, the amplitude of the produced axion-like field can be enlarged with respect to the static case, thus enhancing the probability of conversion. (orig.)

  1. CAST Status Report to the SPSC for the 119th Meeting

    CERN Document Server

    Karuza, Marin

    2015-01-01

    A status report for the CAST experiment in the year 2015 is presented. It includes the current status of the experiment concerning the detection of solar axions as well as the status of the proposed activities concerning relic axions and chameleons as a candidate particles invented to solve the mystery of the dark energy.

  2. Winding out of the Swamp: Evading the weak gravity conjecture with F-term winding inflation?

    Directory of Open Access Journals (Sweden)

    Arthur Hebecker

    2015-09-01

    Full Text Available We present a new model of large field inflation along a winding trajectory in the field space of two axionic fields, where the “axions” originate from the complex structure moduli sector of a Calabi–Yau 3-fold at large complex structure. The winding trajectory arises from fixing one combination of axions by bulk fluxes and allows for a transplanckian effective field range. The inflaton potential arises from small “instantonic” corrections to the geometry and realises natural inflation. By working in a regime of large complex structure for two complex structure moduli the inflaton potential can be made subdominant without severe tuning. We also discuss the impact of the recent ‘no-go theorems’ for transplanckian axion periodicities on our work. Interestingly, our setup seems to realise a loophole pointed out in arXiv:1503.00795 and arXiv:1503.04783: our construction is a candidate for a string theory model of large field inflation which is consistent with the mild form of the weak gravity conjecture for axions.

  3. Successful magnet quench test for CAST.

    CERN Multimedia

    Brice Maximilien

    2002-01-01

    The CERN Axion Solar Telescope (CAST) consists of a prototype LHC dipole magnet with photon detectors at each end. It searches for very weakly interacting neutral particles called axions, which should originate in the core of the Sun. The telescope, located at Point 8, can move vertically within its wheeled platform, which travels horizontally along tracks in the floor. In this way, the telescope can view the Sun at sunrise through one end and at sunset through the other end. It has been cooled down to below 1.8 K and reached ~95% of its final magnetic field of 9 tesla before a quench was induced to test the whole cryogenic system under such conditions. The cryogenic system responded as expected to the magnet quench and CAST is now ready to start its three-year search for solar axions. Photos 01 & 02 : Members of the LHC cryogenics team pose in front of the axion telescope on the day of the first quench test, together with some of the CAST collaboration.

  4. The X-ray mirror telescope and the pn-CCD detector of CAST

    CERN Document Server

    Kuster, M; Englhauser, J; Franz, J; Friedrich, P; Hartmann, R; Kang, D; Kotthaus, R; Lutz, Gerhard; Moralez, J; Serber, W; Strüder, L

    2004-01-01

    The Cern Axion Solar Telescope - CAST - uses a prototype 9 Tesla LHC superconducting dipole magnet to search for a hypothetical pseudoscalar particle, the axion, which was proposed by theory in the 1980s to solve the strong CP problem and which could be a dark matter candidate. In CAST a strong magnetic field is used to convert the solar axions to detectable photons via inverse Primakoff effect. The resulting X-rays are thermally distributed in the energy range of 1-7 keV and can be observed with conventional X-ray detectors. The most sensitive detector system of CAST is a pn-CCD detector originally developed for XMM-Newton combined with a Wolter I type X-ray mirror system. The combination of a focusing X-ray optics and a state of the art pn-CCD detector which combines high quantum efficiency, good spacial and energy resolution, and low background improves the sensitivity of the CAST experiment such that for the first time the axion photon coupling constant can be probed beyond the best astrophysical constrai...

  5. The x-ray telescope of CAST

    Energy Technology Data Exchange (ETDEWEB)

    Kuster, M [Technische Universitaet Darmstadt, IKP, Schlossgartenstrasse 9, D-64289 Darmstadt (Germany); Braeuninger, H [Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Cebrian, S [Laboratorio de Fisica Nuclear y Altas Energias, Universidad de Zaragoza, E-50009 Zaragoza (Spain)] (and others)

    2007-06-15

    The CERN Axion Solar Telescope (CAST) has been in operation and taking data since 2003. The main objective of the CAST experiment is to search for a hypothetical pseudoscalar boson, the axion, which might be produced in the core of the sun. The basic physics process CAST is based on is the time inverted Primakoff effect, by which an axion can be converted into a detectable photon in an external electromagnetic field. The resulting x-ray photons are expected to be thermally distributed between 1 and 7 keV. The most sensitive detector system of CAST is a pn-CCD detector combined with a Wolter I type x-ray mirror system. With the x-ray telescope of CAST a background reduction of more than 2 orders of magnitude is achieved, such that for the first time the axion photon coupling constant g{sub a{gamma}}{sub {gamma}} can be probed beyond the best astrophysical constraints g{sub a{gamma}}{sub {gamma}} < 1 x 10{sup -10} GeV{sup -1}.

  6. Dark Matter remains obscure

    CERN Multimedia

    Fabio Capello

    2011-01-01

    It is one of the hidden secrets that literally surround the Universe. Experiments have shown no result so far because trying to capture particles that do not seem to interact with ordinary matter is no trivial exercise. The OSQAR experiment at CERN is dedicated to the search for axions, one of the candidates for Dark Matter. For its difficult challenge, OSQAR counts on one of the world’s most powerful magnets borrowed from the LHC. In a recent publication, the OSQAR collaboration was able to confirm that no axion signal appears out of the background. In other words: the quest is still on.   The OSQAR experiment installed in the SM18 hall. (Photo by F. Capello) The OSQAR “Light Shining Through a Wall” experiment was officially launched in 2007 with the aim of detecting axions, that is, particles that might be the main components of Dark Matter. OSQAR uses the powerful LHC dipole magnet to intensify the predicted photon-axion conversions in the presence of strong m...

  7. Cooling System for a Frame-Store PN-CCD Detector for Low Background Application

    CERN Document Server

    Pereira, H; Santos Silva, P; Kuster, M; Lang, P

    2012-01-01

    The astroparticle physics experiment CERN Axion Solar Telescope (CAST) aims to detect hypothetical axions or axion-like particles produced in the Sun by the Primakoff process. A Large Hadron Collider (LHC) prototype superconducting dipole magnet provides a 9 T transverse magnetic field for the conversion of axions into detectable X-ray photons. These photons are detected with an X-ray telescope and a novel type of frame-store CCD detector built from radio-pure materials, installed in the optics focal plane. A novel type of cooling system has been designed and built based on krypton-filled cryogenic heat pipes, made out of oxygen-free radiopure copper, and a Stirling cryocooler as cold source. The heat pipes provide an efficient thermal coupling between the cryocooler and the CCD which is kept at stable temperatures between 150 and 230 K within an accuracy of 0.1 K. A graded-Z radiation shield, also serving as a gas cold-trap operated at 120 K, is implemented to reduce the surface contamination of the CCD wind...

  8. Galaxy Clusters as Tele-ALP-scopes

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Axion-like particles have good theoretical motivation and are characterized by conversion to photons in astrophysical magnetic fields. Galaxy clusters are the most efficient convertors of axion-like particles to photons in the universe. I discuss the physics and phenomenology of ALPs, and describe their astrophysical implications, with particular reference to the recently observed 3.5 keV X-ray line that is a candidate for a dark matter decay line. I discuss interpretations of this line in terms of dark matter decaying to an axion-like particle, that then converts to a photon in cluster magnetic fields, and describe the compatibility of this scenario with data and the different phenomenology for cool-core and non-cool-core clusters.

  9. Runaway relaxion monodromy

    Science.gov (United States)

    McAllister, Liam; Schwaller, Pedro; Servant, Geraldine; Stout, John; Westphal, Alexander

    2018-02-01

    We examine the relaxion mechanism in string theory. An essential feature is that an axion winds over N ≫ 1 fundamental periods. In string theory realizations via axion monodromy, this winding number corresponds to a physical charge carried by branes or fluxes. We show that — in the context of NS5-brane axion monodromy — this charge backreacts on the compact space, ruining the structure of the relaxion action. In particular, the barriers generated by strong gauge dynamics have height ∝ e - N , so the relaxion does not stop when the Higgs acquires a vev. Backreaction of monodromy charge can therefore spoil the relaxion mechanism. We comment on the limitations of technical naturalness arguments in this context.

  10. Axino dark matter in mirage mediation

    International Nuclear Information System (INIS)

    Nakamura, Shuntaro; Okumura, Ken-ichi; Yamaguchi, Masahiro

    2009-01-01

    The mirage mediation of supersymmetry breaking is a phenomenologically quite interesting possibility, however, it suffers from two major problems: the moduli-induced gravitino problem and the μ-Bμ problem. In this paper, we propose that the axionic extension of mirage mediation, axionic mirage mediation can solve both problems simultaneously. We address the cosmological consequences of the scenario extensively.

  11. A Thermote, a Novel Thermal Element Simplifying the Finding of a Medium's Entropy Emerges as a Sensible Dark Matter Candidate from Primordial Black Holes with a Mass in Range of Axion's, a Leading Candidate

    Science.gov (United States)

    Feria, Erlan H.

    2017-06-01

    Black holes acting as dark matter have been predicted, e.g., via a duality theory in (Feria 2011, Proc. IEEE Int’l Conf. on SMC, Alaska, USA) and via observations in (Kashlinsky 2016, AJL). Here a thermote, a novel thermal element simplifying the finding of a medium’s entropy, emerges as a dark matter candidate from primordial black holes with a mass in range of axion's, a leading candidate. The thermote energy, eT, is defined as the average thermal energy contributed to a particle’s motion by the medium’s degrees of freedom (DoF) and is thus given by eT=NDoFkBT/2 where NDoF is the DoF number (e.g., NDoF=2 for a black-hole since only in its event-horizon particle motions can occur) and kBT/2 is the thermal energy contributed by each degree of freedom (kB is the Boltzmann constant and T is temperature). The entropy S of a spherical homogeneous medium is then simply stated as S=(kB/2)E/eT where E=Mc2 is the medium's rest-energy, with M its point-mass and c the speed of light, and eT=NDoFkBT/2 is the thermote's kinetic-energy. This simple equation naturally surfaced from a rest/kinetic or retention/motion mass-energy duality theory where, e.g., black-holes and vacuums form together such a duality with black holes offering the least resistance to mass-energy rest, or retention, and vacuums offering the least resistance to mass-energy kinetics, or motions. In turn, this duality theory has roots in the universal cybernetics duality principle (UCDP) stating “synergistic physical and mathematical dualities arise in efficient system designs” (Feria 2014, http://dx.doi.org/10.1117/2.1201407.005429, SPIE Newsroom). Our thermote based entropy finding method is applicable to spherical homogeneous mediums such as black-holes, photon-gases, and flexible-phase (Feria 2016, Proc. IEEE Int’l Conf. on Smart Cloud, Columbia University, NY, USA), where the thermote of a primordial black hole, with NDoF=2 and a CMB radiation temperature of T=2.725 kelvin, emerges as a

  12. Collapse of a self-gravitating Bose-Einstein condensate with attractive self-interaction

    Science.gov (United States)

    Chavanis, Pierre-Henri

    2016-10-01

    We study the collapse of a self-gravitating Bose-Einstein condensate with attractive self-interaction. Equilibrium states in which the gravitational attraction and the attraction due to the self-interaction are counterbalanced by the quantum pressure (Heisenberg's uncertainty principle) exist only below a maximum mass Mmax=1.012 ℏ/√{G m |as| } where asMmax the system is expected to collapse and form a black hole. We study the collapse dynamics by making a Gaussian ansatz for the wave function and reducing the problem to the study of the motion of a particle in an effective potential. We find that the collapse time scales as (M /Mmax-1 )-1 /4 for M →Mmax+ and as M-1 /2 for M ≫Mmax. Other analytical results are given above and below the critical point corresponding to a saddle-node bifurcation. We apply our results to QCD axions with mass m =10-4 eV /c2 and scattering length as=-5.8 ×10-53 m for which Mmax=6.5 ×10-14M⊙ and R =3.3 ×10-4R⊙. We confirm our previous claim that bosons with attractive self-interaction, such as QCD axions, may form low mass stars (axion stars or dark matter stars) but cannot form dark matter halos of relevant mass and size. These mini axion stars could be the constituents of dark matter. They can collapse into mini black holes of mass ˜10-14M⊙ in a few hours. In that case, dark matter halos would be made of mini black holes. We also apply our results to ultralight axions with mass m =1.93 ×10-20 eV /c2 and scattering length as=-8.29 ×10-60 fm for which Mmax=0.39 ×1 06M⊙ and R =33 pc . These ultralight axions could cluster into dark matter halos. Axionic dark matter halos with attractive self-interaction can collapse into supermassive black holes of mass ˜1 06M⊙ (similar to those reported at the center of galaxies) in about one million years. We point out the limitations of the Gaussian ansatz to describe the late stages of the collapse dynamics. We also mention the possibility that, instead of forming a black hole

  13. Reason for SU(6) grand unification

    International Nuclear Information System (INIS)

    Kim, J.E.

    1981-08-01

    An SU(6) model can naturally guarantee strong CP invariance. This also includes Georgi and Glashow's SU(5) model. The axion in this model can be either invisible or visible, depending on the symmetry breaking scheme. The invisible axion is identical to a Majoron. Also, there exists a relationship between 24sub(H) and 45sub(H) of SU(5). (author)

  14. Dynamical relaxation of the CP phases in next-to-minimal supersymmetry

    International Nuclear Information System (INIS)

    Demir, D.A.

    1999-11-01

    After promoting the phases of the soft masses to dynamical fields corresponding to Goldstone bosons of spontaneously broken global symmetries in the supersymmetry breaking sector, the next-to-minimal supersymmetric model is found to solve the μ problem and the strong CP problem simultaneously with an invisible axion. The domain wall problem persists in the form of axionic domain formation. Relaxation dynamics of the physical CP-violating phases is determined only by the short-distance physics and their relaxation values are not necessarily close to the CP-conserving points. Consequently, the solution of tile supersymmetric CP problem may require heavy enough superpartners and nonminimal flavor structures, where the latter may be also relevant for avoiding the formation of axionic domain walls. (author)

  15. CAST Physics Proposal to SPSC

    CERN Document Server

    CAST, Collaboration

    2011-01-01

    The CAST experiment has the potential to search for solar axions (dark matter particle candidates) or other particles with similar coupling. E.g., paraphtons (Hidden Sector), chameleons (dark energy), while considering the possibility whether CAST could be transformed to an antenna for relic axions with rest mass up to 0.1 to 1meV. While axion searches suggest detectors with lower background, paraphoton and chameleon searches require detectors with sub-keV threshold energy and the use of transparent windows in front of the Micromegas detectors, which cover 3 out of the 4 CAST magnet exits. Ongoing theoretical estimates and experimental investigations will define the priorities of the suggested 4 physics items of this proposal for the period 2012-2014.

  16. Dimming supernovae without cosmic acceleration

    International Nuclear Information System (INIS)

    Csaki, Csaba; Terning, John; Kaloper, Nemanja

    2002-01-01

    We present a simple model where photons propagating in extragalactic magnetic fields can oscillate into very light axions. The oscillations may convert some of the photons, departing a distant supernova, into axions, making the supernova appear dimmer and hence more distant than it really is. Averaging over different configurations of the magnetic field we find that the dimming saturates at about one-third of the light from the supernovae at very large redshifts. This results in a luminosity distance versus redshift curve almost indistinguishable from that produced by the accelerating Universe, if the axion mass and coupling scale are m∼10 -16 eV , M∼4x10 11 GeV . This phenomenon may be an alternative to the accelerating Universe for explaining supernova observations

  17. Lattice investigations of the QCD phase diagram

    International Nuclear Information System (INIS)

    Guenther, Jana

    2016-01-01

    To understand the physics in the early universe as well as in heavy ion collisions a throughout understanding of the theory of strong interaction, quantum chromodynamics (QCD), is important. Lattice QCD provides a tool to study it from first principles. However due to the sign problem direct simulations with physical conditions are at the moment limited to zero chemical potential. In this thesis I present a circumvention of this problem. We can gain information on the QCD phase diagram and the equation of state from analytical continuation of results extracted from simulations at imaginary chemical potential. The topological susceptibility is very expensive to compute in Lattice QCD. However it provides an important ingredient for the estimation of the axion mass. The axion is a possible candidate for a dark matter, which plays in important role in the understanding of our universe. In this thesis I discuss two techniques that make it possible to determine the topological susceptibility and allow for an estimation of the axion mass. I then use this mass restrain to analyze the idea of an experiment to detect axions with a dielectric mirror.

  18. Natural PQ symmetry in the 3-3-1 model with a minimal scalar sector

    International Nuclear Information System (INIS)

    Vega, Bruce Lehmann Sanchez; Garcia, Juan Carlos Montero

    2011-01-01

    Full text: In the framework of a 3-3-1 model with a minimal scalar sector we make a detailed study concerning the implementation of the PQ symmetry in order to solve the strong CP problem. For the original version of the model, with only two scalar triplets, we show that the entire Lagrangian is invariant under a PQ-like symmetry but no axion is produced since an U(1) subgroup remains unbroken. Although in this case the strong CP problem can still be solved, the solution is largely disfavored since three quark states are left massless to all orders in perturbation theory. The addition of a third scalar triplet removes the massless quark states but the resulting axion is visible. In order to become realistic the model must be extended to account for massive quarks and invisible axion. We show that the addition of a scalar singlet together with a ZN discrete gauge symmetry can successfully accomplish these tasks and protect the axion field against quantum gravitational effects. To make sure that the protecting discrete gauge symmetry is anomaly free we use a discrete version of the Green-Schwarz mechanism. (author)

  19. Natural Peccei-Quinn symmetry in the 3-3-1 model with a minimal scalar sector

    International Nuclear Information System (INIS)

    Montero, J. C.; Sanchez-Vega, B. L.

    2011-01-01

    In the framework of a 3-3-1 model with a minimal scalar sector we make a detailed study concerning the implementation of the Peccei-Quinn symmetry in order to solve the strong CP problem. For the original version of the model, with only two scalar triplets, we show that the entire Lagrangian is invariant under a Peccei-Quinn-like symmetry but no axion is produced since a U(1) subgroup remains unbroken. Although in this case the strong CP problem can still be solved, the solution is largely disfavored since three quark states are left massless to all orders in perturbation theory. The addition of a third scalar triplet removes the massless quark states but the resulting axion is visible. In order to become realistic the model must be extended to account for massive quarks and an invisible axion. We show that the addition of a scalar singlet together with a Z N discrete gauge symmetry can successfully accomplish these tasks and protect the axion field against quantum gravitational effects. To make sure that the protecting discrete gauge symmetry is anomaly-free we use a discrete version of the Green-Schwarz mechanism.

  20. Lattice investigations of the QCD phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Jana

    2016-12-15

    To understand the physics in the early universe as well as in heavy ion collisions a throughout understanding of the theory of strong interaction, quantum chromodynamics (QCD), is important. Lattice QCD provides a tool to study it from first principles. However due to the sign problem direct simulations with physical conditions are at the moment limited to zero chemical potential. In this thesis I present a circumvention of this problem. We can gain information on the QCD phase diagram and the equation of state from analytical continuation of results extracted from simulations at imaginary chemical potential. The topological susceptibility is very expensive to compute in Lattice QCD. However it provides an important ingredient for the estimation of the axion mass. The axion is a possible candidate for a dark matter, which plays in important role in the understanding of our universe. In this thesis I discuss two techniques that make it possible to determine the topological susceptibility and allow for an estimation of the axion mass. I then use this mass restrain to analyze the idea of an experiment to detect axions with a dielectric mirror.

  1. Axion stations

    CERN Multimedia

    2006-01-01

    The problem of the amount of visible stuff in the universe that is far smaller than is needed to account for the apparent effects of gravity. In particular, galaxies behave as though they are much heavier than they actually look. (1/2 page)

  2. Can the periodic spectral modulations observed in 236 Sloan Sky Survey stars be due to dark matter effects?

    Science.gov (United States)

    Tamburini, Fabrizio; Licata, Ignazio

    2017-09-01

    The search for dark matter (DM) is one of the most active and challenging areas of current research. Possible DM candidates are ultralight fields such as axions and weak interacting massive particles (WIMPs). Axions piled up in the center of stars are supposed to generate matter/DM configurations with oscillating geometries at a very rapid frequency, which is a multiple of the axion mass m B (Brito et al (2015); Brito et al (2016)). Borra and Trottier (2016) recently found peculiar ultrafast periodic spectral modulations in 236 main sequence stars in the sample of 2.5 million spectra of galactic halo stars of the Sloan Digital Sky Survey (˜1% of main sequence stars in the F-K spectral range) that were interpreted as optical signals from extraterrestrial civilizations, suggesting them as possible candidates for the search for extraterrestrial intelligence (SETI) program. We argue, instead, that this could be the first indirect evidence of bosonic axion-like DM fields inside main sequence stars, with a stable radiative nucleus, where a stable DM core can be hosted. These oscillations were not observed in earlier stellar spectral classes probably because of the impossibility of starting a stable oscillatory regime due to the presence of chaotic motions in their convective nuclei. The axion mass values, (50< {m}B< 2.4× {10}3) μ {eV}, obtained from the frequency range observed by Borra and Trottier, (0.6070< f< 0.6077) THz, agree with the recent theoretical results from high-temperature lattice quantum chromodynamics (Borsanyi et al (2016); Borsanyi et al (2016b)).

  3. Status report of the CAST Experiment & Running in 2013-2014

    CERN Document Server

    Papaevangelou, T

    2012-01-01

    The CAST experiment has been taking data since 2003 providing the most restrictive experimental limits on the axion-photon coupling for a broad range of rest mass. During 2012 the magnet cold bores were filled with He-4 for a new scan of axion masses around 0.4 eV in a theoretically motivated region of the parameter space. For the following two years CAST is planning to revisit the vacuum phase with enhanced sensitivity for axion searches but also lower detector threshold, which will allow to enter the new territory for solar WISPs in the sub-keV range, where also particles like chameleons are expected to appear. In this document we give the status report of 2012 run, and the physics motivation and running plans for 2013-2014.

  4. Horndeski gravity and the violation of reverse isoperimetric inequality

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xing-Hui; Lu, Wen-Tian; Lue, H. [Beijing Normal University, Department of Physics, Center for Advanced Quantum Studies, Beijing (China); Liu, Hai-Shan [Zhejiang University of Technology, Institute for Advanced Physics and Mathematics, Hangzhou (China)

    2017-11-15

    We consider Einstein-Horndeski-Maxwell gravity, together with a cosmological constant and multiple Horndeski axions. We construct charged AdS planar black holes in general dimensions where the Horndeski axions span over the planar directions. We analyze the thermodynamics and obtain the black hole volumes. We show that the reverse isoperimetric inequality can be violated, implying that these black holes can store information more efficiently than the Schwarzschild black hole. (orig.)

  5. The dual formulation of cosmic strings and vortices

    CERN Document Server

    Lee, Ki-Myeong

    1993-01-01

    We study four dimensional systems of global, axionic and local strings. By using the path integral formalism, we derive the dual formulation of these systems, where Goldstone bosons, axions and missive vector bosons are described by antisymmetric tensor fields, and strings appear as a source for these tensor fields. We show also how magnetic monopoles attached to local strings are described in the dual formulation. We conclude with some remarks.

  6. The TPC shielding of the CAST experiment

    International Nuclear Information System (INIS)

    Ruz, J; Luzon, G; Beltran, B; Carmona, J M; Cebrian, S; Gomez, H; Irastorza, I G; Morales, J; Ortiz de Solorzano, A; RodrIguez, A; Villar, J A

    2006-01-01

    Sunset solar axions traversing the intense magnetic field of the CERN Axion Solar Telescope (CAST) experiment may be detected in a TPC detector, placed at one side of the magnet, as point-like X-rays signals. This signal could be masked, however, by the inhomogeneous radioactive background of materials and experimental site. Here we present the shielding built to reduce and homogenize the radioactive background levels of the TPC detector

  7. Studies of hypothetical and fundamental decay properties of positronium

    International Nuclear Information System (INIS)

    Wahl, W.

    1985-05-01

    For the solution of the CP problem in the standard theory of the strong interaction the existence of a neutral pseudoscalar boson was postulated which couples to quarks and leptons. If the mass of this so-called axion is smaller than two electron masses for orthopositronium 'o-Ps' the decay into one photon and axion is expected in concurrence to the standard decay into three photons. The detection of a monoenergetic photon would be an indication for this decay channel because the axion would only very weakly interact with matter. In the spectrum no lineshape of a monoenergetic photon is observed. From this results in dependence on the mass of a hypothetical particle and with a confidence limit of 90% for the branching ratio of o-Ps an upper limit which is in the range between 320 keV and 950 keV less than 10 -7 . Applied to the axion model an upper limit for the mass of the standard axion of 250 keV results. For the study of the fundamental decay properties of positronium the lifetime of o-Ps and the 3γ energy distribution of the decay quanta were measured. Furthermore the rare 4γ decay of para-positronium 'p-Ps' was searched for. The measured lifetime of o-Ps τ=141.2±1.2ns agrees well with the theoretical value. Calculations on the 3γ energy distribution are confirmed. For the 4γ decay of p-Ps predicted by QED with a branching ratio of ≅ 1.5x10 -6 an upper limit of 2x10 -5 results. (orig./HSI) [de

  8. On natural inflation and moduli stabilisation in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Palti, Eran [Institut für Theoretische Physik, Ruprecht-Karls-Universität, Philosophenweg 19, Heidelberg, 69120 (Germany)

    2015-10-28

    Natural inflation relies on the existence of an axion decay constant which is super-Planckian. In string theory only sub-Planckian axion decay constants have been found in any controlled regime. However in field theory it is possible to generate an enhanced super-Planckian decay constant by an appropriate aligned mixing between axions with individual sub-Planckian decay constants. We study the possibility of such a mechanism in string theory. In particular we construct a new realisation of an alignment scenario in type IIA string theory compactifications on a Calabi-Yau where the alignment is induced through fluxes. Within field theory the original decay constants are taken to be independent of the parameters which induce the alignment. In string theory however they are moduli dependent quantities and so interact gravitationally with the physics responsible for the mixing. We show that this gravitational effect of the fluxes on the moduli can precisely cancel any enhancement of the effective decay constant. This censorship of an effective super-Planckian decay constant depends on detailed properties of Calabi-Yau moduli spaces and occurs for all the examples and classes that we study. We expand these results to a general superpotential assuming only that the axion superpartners are fixed supersymmetrically and are able to show for a large class of Calabi-Yau manifolds, but not all, that the cancellation effect occurs and is independent of the superpotential. We also study simple models where the moduli are fixed non-supersymmetrically and find that similar cancellation behaviour can emerge. Finally we make some comments on a possible generalisation to axion monodromy inflation models.

  9. Novel topological effects in dense QCD in a magnetic field

    Science.gov (United States)

    Ferrer, E. J.; de la Incera, V.

    2018-06-01

    We study the electromagnetic properties of dense QCD in the so-called Magnetic Dual Chiral Density Wave phase. This inhomogeneous phase exhibits a nontrivial topology that comes from the fermion sector due to the asymmetry of the lowest Landau level modes. The nontrivial topology manifests in the electromagnetic effective action via a chiral anomaly term θFμνF˜μν, with a dynamic axion field θ given by the phase of the Dual Chiral Density Wave condensate. The coupling of the axion with the electromagnetic field leads to several macroscopic effects that include, among others, an anomalous, nondissipative Hall current, an anomalous electric charge, magnetoelectricity, and the formation of a hybridized propagating mode known as an axion polariton. Connection to topological insulators and Weyls semimetals, as well as possible implications for heavy-ion collisions and neutron stars are all highlighted.

  10. A flux-scaling scenario for high-scale moduli stabilization in string theory

    Directory of Open Access Journals (Sweden)

    Ralph Blumenhagen

    2015-08-01

    Full Text Available Tree-level moduli stabilization via geometric and non-geometric fluxes in type IIB orientifolds on Calabi–Yau manifolds is investigated. The focus is on stable non-supersymmetric minima, where all moduli are fixed except for some massless axions. The scenario includes the purely axionic orientifold-odd moduli. A set of vacua allowing for parametric control over the moduli vacuum expectation values and their masses is presented, featuring a specific scaling with the fluxes. Uplift mechanisms and supersymmetry breaking soft masses on MSSM-like D7-branes are discussed as well. This scenario provides a complete effective framework for realizing the idea of F-term axion monodromy inflation in string theory. It is argued that, with all masses close to the Planck and GUT scales, one is confronted with working at the threshold of controlling all mass hierarchies.

  11. A flux-scaling scenario for high-scale moduli stabilization in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Blumenhagen, Ralph [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Font, Anamaría [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Arnold Sommerfeld Center for Theoretical Physics, LMU, Theresienstr. 37, 80333 München (Germany); Fuchs, Michael [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Herschmann, Daniela, E-mail: herschma@mpp.mpg.de [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Plauschinn, Erik [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Sekiguchi, Yuta; Wolf, Florian [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Arnold Sommerfeld Center for Theoretical Physics, LMU, Theresienstr. 37, 80333 München (Germany)

    2015-08-15

    Tree-level moduli stabilization via geometric and non-geometric fluxes in type IIB orientifolds on Calabi–Yau manifolds is investigated. The focus is on stable non-supersymmetric minima, where all moduli are fixed except for some massless axions. The scenario includes the purely axionic orientifold-odd moduli. A set of vacua allowing for parametric control over the moduli vacuum expectation values and their masses is presented, featuring a specific scaling with the fluxes. Uplift mechanisms and supersymmetry breaking soft masses on MSSM-like D7-branes are discussed as well. This scenario provides a complete effective framework for realizing the idea of F-term axion monodromy inflation in string theory. It is argued that, with all masses close to the Planck and GUT scales, one is confronted with working at the threshold of controlling all mass hierarchies.

  12. Distinguishing Little-Higgs product and simple group models at the LHC and ILC

    International Nuclear Information System (INIS)

    Kilian, W.; Rainwater, D.

    2006-09-01

    We propose a means to discriminate between the two basic variants of Little Higgs models, the Product Group and Simple Group models, at the next generation of colliders. It relies on a special coupling of light pseudoscalar particles present in Little Higgs models, the pseudo-axions, to the Z and the Higgs boson, which is present only in Simple Group models. We discuss the collider phenomenology of the pseudo-axion in the presence of such a coupling at the LHC, where resonant production and decay of either the Higgs or the pseudo-axion induced by that coupling can be observed for much of parameter space. The full allowed range of parameters, including regions where the observability is limited at the LHC, is covered by a future ILC, where double scalar production would be a golden channel to look for. (orig.)

  13. Distinguishing Little-Higgs product and simple group models at the LHC and ILC

    Energy Technology Data Exchange (ETDEWEB)

    Kilian, W. [Siegen Univ. (Gesamthochschule) (Germany). Fachbereich 7 - Physik]|[Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Rainwater, D. [Rochester Univ., NY (United States). Dept. of Physics and Astronomy; Reuter, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2006-09-15

    We propose a means to discriminate between the two basic variants of Little Higgs models, the Product Group and Simple Group models, at the next generation of colliders. It relies on a special coupling of light pseudoscalar particles present in Little Higgs models, the pseudo-axions, to the Z and the Higgs boson, which is present only in Simple Group models. We discuss the collider phenomenology of the pseudo-axion in the presence of such a coupling at the LHC, where resonant production and decay of either the Higgs or the pseudo-axion induced by that coupling can be observed for much of parameter space. The full allowed range of parameters, including regions where the observability is limited at the LHC, is covered by a future ILC, where double scalar production would be a golden channel to look for. (orig.)

  14. GammeV: results and future plans at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Wester, William; /Fermilab

    2010-05-01

    GammeV is an axion-like particle photo regeneration experiment that employs the light shining through a wall technique. We obtain limits on the coupling of a photon to an axion-like particle that extend previous limits for both scalar and pseudoscalar particles in the milli-eV mass range. We have reconfigured our apparatus to search for chameleon particles. We describe the current results and future plans for similar activities at Fermilab.

  15. Search for photon regeneration in a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ruoso, G.; Cameron, R.; Cantatore, G.; Melissinos, A.C.; Semertzidis, Y. (Rochester Univ., NY (United States). Dept. of Physics and Astronomy); Halama, H.J.; Lazarus, D.M.; Prodell, A.G. (Brookhaven National Lab., Upton, NY (United States)); Nezrick, F. (Fermi National Accelerator Lab., Batavia, IL (United States)); Rizzo, C.; Zavattini, E. (Trieste Univ. (Italy). Ist. di Fisica Istituto Nazionale di Fisica Nucleare, Trieste (Italy))

    1992-12-01

    We have searched for the regeneration of photons propagating in a transverse magnetic field. Such an effect would reveal the existence of light scalar or pseudoscalar particles such as the axion that couple to two photons. We obtain for this coupling the limit g{sub a{gamma}{gamma}}<(1.3 . 10{sup 6} GeV){sup -1}, provided the axion mass m{sub a}< or approx.10{sup -3} eV. (orig.).

  16. Towards natural inflation in string theory

    International Nuclear Information System (INIS)

    Ben-Dayan, Ido; Pedro, Francisco G.; Westphal, Alexander

    2014-07-01

    We provide type IIB string embeddings of two axion variants of natural inflation. We use a combination of RR 2 form axions as the inflaton field and have its potential generated by non perturbative effects in the superpotential. Besides giving rise to inflation, the models developed take into account the stabilization of the compact space, both in the KKLT and large volume scenario regimes, an essential condition for any semi-realistic model of string inflation.

  17. Lattice QCD for cosmology

    International Nuclear Information System (INIS)

    Borsanyi, Sz.; Kampert, K.H.; Fodor, Z.; Forschungszentrum Juelich; Eoetvoes Univ., Budapest

    2016-06-01

    We present a full result for the equation of state (EoS) in 2+1+1 (up/down, strange and charm quarks are present) flavour lattice QCD. We extend this analysis and give the equation of state in 2+1+1+1 flavour QCD. In order to describe the evolution of the universe from temperatures several hundreds of GeV to the MeV scale we also include the known effects of the electroweak theory and give the effective degree of freedoms. As another application of lattice QCD we calculate the topological susceptibility (χ) up to the few GeV temperature region. These two results, EoS and χ, can be used to predict the dark matter axion's mass in the post-inflation scenario and/or give the relationship between the axion's mass and the universal axionic angle, which acts as a initial condition of our universe.

  18. Study of the Magnetically Induced QED Birefringence of the Vacuum in experiment OSQAR

    CERN Document Server

    AUTHOR|(CDS)2083980

    Classical electrodynamics in a vacuum is a linear theory and does not foresee photon-photon scattering or other nonlinear effects between electromagnetic fields. In 1936 Euler, Heisenberg and Weisskopf put framework, in the earliest development of quantum electrodynamics (QED), that vacuum can behave as a birefringent medium in the presence of the external transverse magnetic field. This phenomenon is known as Vacuum Magnetic Birefringence (VMB) and it is still challenging for optical metrology since the first calculations in 1970. When linearly polarized light travels through the strong transverse magnetic field in vacuum, the polarization state of the light would change to elliptical. The difference in the refraction indexes of the ordinary and extraordinary ray is directly related to fundamental constants, such as fine structure constant or Compton wavelength. Contributions to VMB could also arise from the existence of light scalar or pseudoscalar particles, such as axions or axions like particles. Axions ...

  19. New CAST limit on the axion–photon interaction

    International Nuclear Information System (INIS)

    Anastassopoulos, V.; Aune, S.; Barth, K.; Belov, A.; Bräuninger, H.

    2017-01-01

    Hypothetical low-mass particles, such as axions, provide a compelling explanation for the dark matter in the universe. Such particles are expected to emerge abundantly from the hot interior of stars. To test this prediction, the CERN Axion Solar Telescope (CAST) uses a 9 T refurbished Large Hadron Collider test magnet directed towards the Sun. In the strong magnetic field, solar axions can be converted to X-ray photons which can be recorded by X-ray detectors. In the 2013–2015 run, thanks to low-background detectors and a new X-ray telescope, the signal-to-noise ratio was increased by about a factor of three. Here, we report the best limit on the axion–photon coupling strength (0.66 × 10 -10 GeV -1 at 95% confidence level) set by CAST, which now reaches similar levels to the most restrictive astrophysical bounds.

  20. The CAST Time Projection Chamber

    CERN Document Server

    Autiero, D.; Carmona, J.M.; Cebrian, S.; Chesi, E.; Davenport, M.; Delattre, M.; Di Lella, L.; Formenti, F.; Irastorza, I.G.; Gomez, H.; Hasinoff, M.; Lakic, B.; Luzon, G.; Morales, J.; Musa, L.; Ortiz, A.; Placci, A.; Rodriguez, A.; Ruz, J.; Villar, J.A.; Zioutas, K.

    2007-01-01

    One of the three X-ray detectors of the CAST experiment searching for solar axions is a Time Projection Chamber (TPC) with a multi-wire proportional counter (MWPC) as a readout structure. Its design has been optimized to provide high sensitivity to the detection of the low intensity X-ray signal expected in the CAST experiment. A low hardware threshold of 0.8 keV is safely set during normal data taking periods, and the overall efficiency for the detection of photons coming from conversion of solar axions is 62 %. Shielding has been installed around the detector, lowering the background level to 4.10 x 10^-5 counts/cm^2/s/keV between 1 and 10 keV. During phase I of the CAST experiment the TPC has provided robust and stable operation, thus contributing with a competitive result to the overall CAST limit on axion-photon coupling and mass.