WorldWideScience

Sample records for avoiding illuminating aircraft

  1. Laser illumination of helicopters : a comparative analysis with fixed-wing aircraft for the period 1980 - 2011.

    Science.gov (United States)

    2013-04-01

    INTRODUCTION. Laser illuminations of aircraft have resulted in pilots reporting distraction, disruption, disorientation, adverse visual effects, and operational problems that put at risk the safety of the aircraft and those onboard. FAA Order 7400.2 ...

  2. Safety and Convergence Analysis of Intersecting Aircraft Flows Under Decentralized Collision Avoidance

    Science.gov (United States)

    Dallal, Ahmed H.

    Safety is an essential requirement for air traffic management and control systems. Aircraft are not allowed to get closer to each other than a specified safety distance, to avoid any conflicts and collisions between aircraft. Forecast analysis predicts a tremendous increase in the number of flights. Subsequently, automated tools are needed to help air traffic controllers resolve air born conflicts. In this dissertation, we consider the problem of conflict resolution of aircraft flows with the assumption that aircraft are flowing through a fixed specified control volume at a constant speed. In this regard, several centralized and decentralized resolution rules have been proposed for path planning and conflict avoidance. For the case of two intersecting flows, we introduce the concept of conflict touches, and a collaborative decentralized conflict resolution rule is then proposed and analyzed for two intersecting flows. The proposed rule is also able to resolved airborne conflicts that resulted from resolving another conflict via the domino effect. We study the safety conditions under the proposed conflict resolution and collision avoidance rule. Then, we use Lyapunov analysis to analytically prove the convergence of conflict resolution dynamics under the proposed rule. The analysis show that, under the proposed conflict resolution rule, the system of intersecting aircraft flows is guaranteed to converge to safe, conflict free, trajectories within a bounded time. Simulations are provided to verify the analytically derived conclusions and study the convergence of the conflict resolution dynamics at different encounter angles. Simulation results show that lateral deviations taken by aircraft in each flow, to resolve conflicts, are bounded, and aircraft converged to safe and conflict free trajectories, within a finite time.

  3. Mixed-Integer Nonlinear Programming for Aircraft Conflict Avoidance by Sequentially Applying Velocity and Heading Angle Changes

    OpenAIRE

    Cafieri , Sonia; Omheni , Riadh

    2016-01-01

    International audience; We consider the problem of aircraft conflict avoidance in Air Traffic Management systems. Given an initial configuration of a number of aircraft sharing the same airspace, the main goal of conflict avoidance is to guarantee that a minimum safety distance between each pair of aircraft is always respected during their flights. We consider aircraft separation achieved by heading angle deviations, and propose a mixed 0-1 nonlinear optimization model, that is then combined ...

  4. [Micron]ADS-B Detect and Avoid Flight Tests on Phantom 4 Unmanned Aircraft System

    Science.gov (United States)

    Arteaga, Ricardo; Dandachy, Mike; Truong, Hong; Aruljothi, Arun; Vedantam, Mihir; Epperson, Kraettli; McCartney, Reed

    2018-01-01

    Researchers at the National Aeronautics and Space Administration Armstrong Flight Research Center in Edwards, California and Vigilant Aerospace Systems collaborated for the flight-test demonstration of an Automatic Dependent Surveillance-Broadcast based collision avoidance technology on a small unmanned aircraft system equipped with the uAvionix Automatic Dependent Surveillance-Broadcast transponder. The purpose of the testing was to demonstrate that National Aeronautics and Space Administration / Vigilant software and algorithms, commercialized as the FlightHorizon UAS"TM", are compatible with uAvionix hardware systems and the DJI Phantom 4 small unmanned aircraft system. The testing and demonstrations were necessary for both parties to further develop and certify the technology in three key areas: flights beyond visual line of sight, collision avoidance, and autonomous operations. The National Aeronautics and Space Administration and Vigilant Aerospace Systems have developed and successfully flight-tested an Automatic Dependent Surveillance-Broadcast Detect and Avoid system on the Phantom 4 small unmanned aircraft system. The Automatic Dependent Surveillance-Broadcast Detect and Avoid system architecture is especially suited for small unmanned aircraft systems because it integrates: 1) miniaturized Automatic Dependent Surveillance-Broadcast hardware; 2) radio data-link communications; 3) software algorithms for real-time Automatic Dependent Surveillance-Broadcast data integration, conflict detection, and alerting; and 4) a synthetic vision display using a fully-integrated National Aeronautics and Space Administration geobrowser for three dimensional graphical representations for ownship and air traffic situational awareness. The flight-test objectives were to evaluate the performance of Automatic Dependent Surveillance-Broadcast Detect and Avoid collision avoidance technology as installed on two small unmanned aircraft systems. In December 2016, four flight tests

  5. Real-Time Autonomous Obstacle Avoidance for Low-Altitude Fixed-Wing Aircraft

    Science.gov (United States)

    Owlia, Shahboddin

    The GeoSurv II is an Unmanned Aerial Vehicle (UAV) being developed by Carleton University and Sander Geophysics. This thesis is in support of the GeoSurv II project. The objective of the GeoSurv II project is to create a fully autonomous UAV capable of performing geophysical surveys. In order to achieve this level of autonomy, the UAV, which due to the nature of its surveys flies at low altitude, must be able to avoid potential obstacles such as trees, powerlines, telecommunication towers, etc. Developing a method to avoid these obstacles is the objective of this thesis. The literature is rich in methods for trajectory planning and mid-air collision avoidance with other aircraft. In contrast, in this thesis, a method for avoiding static obstacles that are not known a priori is developed. The potential flow theory and panel method are borrowed from fluid mechanics and are employed to generate evasive maneuvers when obstacles are encountered. By means of appropriate modelling of obstacles, the aircraft's constraints are taken into account such that the evasive maneuvers are feasible for the UAV. Moreover, the method is developed with consideration of the limitations of obstacle detection in GeoSurv II. Due to the unavailability of the GeoSurv II aircraft, and the lack of a complete model for GeoSurv II, the method developed is implemented on the non-linear model of the Aerosonde UAV. The Aerosonde model is then subjected to various obstacle scenarios and it is seen that the UAV successfully avoids the obstacles.

  6. A survey of autonomous vision-based See and Avoid for Unmanned Aircraft Systems

    Science.gov (United States)

    Mcfadyen, Aaron; Mejias, Luis

    2016-01-01

    This paper provides a comprehensive review of the vision-based See and Avoid problem for unmanned aircraft. The unique problem environment and associated constraints are detailed, followed by an in-depth analysis of visual sensing limitations. In light of such detection and estimation constraints, relevant human, aircraft and robot collision avoidance concepts are then compared from a decision and control perspective. Remarks on system evaluation and certification are also included to provide a holistic review approach. The intention of this work is to clarify common misconceptions, realistically bound feasible design expectations and offer new research directions. It is hoped that this paper will help us to unify design efforts across the aerospace and robotics communities.

  7. Optimal control approaches for aircraft conflict avoidance using speed regulation : a numerical study

    OpenAIRE

    Cellier , Loïc; Cafieri , Sonia; Messine , Frederic

    2013-01-01

    International audience; In this paper a numerical study is provided to solve the aircraft conflict avoidance problem through velocity regulation maneuvers. Starting from optimal controlbased model and approaches in which aircraft accelerations are the controls, and by applying the direct shooting technique, we propose to study two different largescale nonlinear optimization problems. In order to compare different possibilities of implementation, two environments (AMPL and MATLAB) and determin...

  8. Air Traffic Controller Acceptability of Unmanned Aircraft System Detect-and-Avoid Thresholds

    Science.gov (United States)

    Mueller, Eric R.; Isaacson, Douglas R.; Stevens, Derek

    2016-01-01

    A human-in-the-loop experiment was conducted with 15 retired air traffic controllers to investigate two research questions: (a) what procedures are appropriate for the use of unmanned aircraft system (UAS) detect-and-avoid systems, and (b) how long in advance of a predicted close encounter should pilots request or execute a separation maneuver. The controller participants managed a busy Oakland air route traffic control sector with mixed commercial/general aviation and manned/UAS traffic, providing separation services, miles-in-trail restrictions and issuing traffic advisories. Controllers filled out post-scenario and post-simulation questionnaires, and metrics were collected on the acceptability of procedural options and temporal thresholds. The states of aircraft were also recorded when controllers issued traffic advisories. Subjective feedback indicated a strong preference for pilots to request maneuvers to remain well clear from intruder aircraft rather than deviate from their IFR clearance. Controllers also reported that maneuvering at 120 seconds until closest point of approach (CPA) was too early; maneuvers executed with less than 90 seconds until CPA were more acceptable. The magnitudes of the requested maneuvers were frequently judged to be too large, indicating a possible discrepancy between the quantitative UAS well clear standard and the one employed subjectively by manned pilots. The ranges between pairs of aircraft and the times to CPA at which traffic advisories were issued were used to construct empirical probability distributions of those metrics. Given these distributions, we propose that UAS pilots wait until an intruder aircraft is approximately 80 seconds to CPA or 6 nmi away before requesting a maneuver, and maneuver immediately if the intruder is within 60 seconds and 4 nmi. These thresholds should make the use of UAS detect and avoid systems compatible with current airspace procedures and controller expectations.

  9. On Solving Aircraft Conflict Avoidance Using Deterministic Global Optimization (sBB) Codes

    OpenAIRE

    Cafieri , Sonia; Messine , Frédéric; Touhami , Ahmed

    2016-01-01

    International audience; In this paper, some improvements of spatial Branch and Bound (sBB) algorithms are discussed to solve aircraft conflict avoidance problems formulated as MINLP. We propose a new quadratic convex relaxation technique based on affine arithmetic. Moreover, a branching strategy is also proposedfor the considered problem. Preliminary numerical results validates the proposed approach

  10. Analysis of Radar and ADS-B Influences on Aircraft Detect and Avoid (DAA Systems

    Directory of Open Access Journals (Sweden)

    William Semke

    2017-09-01

    Full Text Available Detect and Avoid (DAA systems are complex communication and locational technologies comprising multiple independent components. DAA technologies support communications between ground-based and space-based operations with aircraft. Both manned and unmanned aircraft systems (UAS rely on DAA communication and location technologies for safe flight operations. We examined the occurrence and duration of communication losses between radar and automatic dependent surveillance–broadcast (ADS-B systems with aircraft operating in proximate airspace using data collected during actual flight operations. Our objectives were to identify the number and duration of communication losses for both radar and ADS-B systems that occurred within a discrete time period. We also investigated whether other unique communication behavior and anomalies were occurring, such as reported elevation deviations. We found that loss of communication with both radar and ADS-B systems does occur, with variation in the length of communication losses. We also discovered that other unexpected behaviors were occurring with communications. Although our data were gathered from manned aircraft, there are also implications for UAS that are operating within active airspaces. We are unaware of any previously published work on occurrence and duration of communication losses between radar and ADS-B systems.

  11. Design and development of a unit element microstrip antenna for aircraft collision avoidance system

    Science.gov (United States)

    De, Debajit; Sahu, Prasanna Kumar

    2017-10-01

    Aircraft/traffic alert and collision avoidance system (ACAS/TCAS) is an airborne system which is designed to provide the service as a last defense equipment for avoiding mid-air collisions between the aircraft. In the existing system, four monopole stub-elements are used as ACAS directional antenna and one blade type element is used as ACAS omnidirectional antenna. The existing ACAS antenna has some drawbacks such as low gain, large beamwidth, frequency and beam tuning/scanning issues etc. Antenna issues like unwanted signals reception may create difficulties to identify the possible threats. In this paper, the focus is on the design and development of a unit element microstrip antenna which can be used for ACAS application and to overcome the possible limitations associated with the existing techniques. Two proposed antenna models are presented here, which are single feed and dual feed microstrip dual patch slotted antenna. These are designed and simulated in CST Microwave Studio tool. The performance and other antenna characteristics have been explored from the simulation results followed by the antenna fabrication and measurement. A good reflection coefficient, Voltage Standing Wave Ratio (VSWR), narrow beamwidth, perfect directional radiation pattern, high gain and directivity make this proposed antenna a good candidate for this application.

  12. Exploration of the Trade Space Between Unmanned Aircraft Systems Descent Maneuver Performance and Sense-and-Avoid System Performance Requirements

    Science.gov (United States)

    Jack, Devin P.; Hoffler, Keith D.; Johnson, Sally C.

    2014-01-01

    A need exists to safely integrate Unmanned Aircraft Systems (UAS) into the United States' National Airspace System. Replacing manned aircraft's see-and-avoid capability in the absence of an onboard pilot is one of the key challenges associated with safe integration. Sense-and-avoid (SAA) systems will have to achieve yet-to-be-determined required separation distances for a wide range of encounters. They will also need to account for the maneuver performance of the UAS they are paired with. The work described in this paper is aimed at developing an understanding of the trade space between UAS maneuver performance and SAA system performance requirements, focusing on a descent avoidance maneuver. An assessment of current manned and unmanned aircraft performance was used to establish potential UAS performance test matrix bounds. Then, near-term UAS integration work was used to narrow down the scope. A simulator was developed with sufficient fidelity to assess SAA system performance requirements. The simulator generates closest-point-of-approach (CPA) data from the wide range of UAS performance models maneuvering against a single intruder with various encounter geometries. Initial attempts to model the results made it clear that developing maneuver performance groups is required. Discussion of the performance groups developed and how to know in which group an aircraft belongs for a given flight condition and encounter is included. The groups are airplane, flight condition, and encounter specific, rather than airplane-only specific. Results and methodology for developing UAS maneuver performance requirements are presented for a descent avoidance maneuver. Results for the descent maneuver indicate that a minimum specific excess power magnitude can assure a minimum CPA for a given time-to-go prediction. However, smaller amounts of specific excess power may achieve or exceed the same CPA if the UAS has sufficient speed to trade for altitude. The results of this study will

  13. Algorithms for Collision Detection Between a Point and a Moving Polygon, with Applications to Aircraft Weather Avoidance

    Science.gov (United States)

    Narkawicz, Anthony; Hagen, George

    2016-01-01

    This paper proposes mathematical definitions of functions that can be used to detect future collisions between a point and a moving polygon. The intended application is weather avoidance, where the given point represents an aircraft and bounding polygons are chosen to model regions with bad weather. Other applications could possibly include avoiding other moving obstacles. The motivation for the functions presented here is safety, and therefore they have been proved to be mathematically correct. The functions are being developed for inclusion in NASA's Stratway software tool, which allows low-fidelity air traffic management concepts to be easily prototyped and quickly tested.

  14. Analysis of Automated Aircraft Conflict Resolution and Weather Avoidance

    Science.gov (United States)

    Love, John F.; Chan, William N.; Lee, Chu Han

    2009-01-01

    This paper describes an analysis of using trajectory-based automation to resolve both aircraft and weather constraints for near-term air traffic management decision making. The auto resolution algorithm developed and tested at NASA-Ames to resolve aircraft to aircraft conflicts has been modified to mitigate convective weather constraints. Modifications include adding information about the size of a gap between weather constraints to the routing solution. Routes that traverse gaps that are smaller than a specific size are not used. An evaluation of the performance of the modified autoresolver to resolve both conflicts with aircraft and weather was performed. Integration with the Center-TRACON Traffic Management System was completed to evaluate the effect of weather routing on schedule delays.

  15. Do supersonic aircraft avoid contrails?

    Directory of Open Access Journals (Sweden)

    A. Stenke

    2008-02-01

    Full Text Available The impact of a potential future fleet of supersonic aircraft on contrail coverage and contrail radiative forcing is investigated by means of simulations with the general circulation model ECHAM4.L39(DLR including a contrail parameterization. The model simulations consider air traffic inventories of a subsonic fleet and of a combined fleet of sub- and supersonic aircraft for the years 2025 and 2050, respectively. In case of the combined fleet, part of the subsonic fleet is replaced by supersonic aircraft. The combined air traffic scenario reveals a reduction in contrail cover at subsonic cruise levels (10 to 12 km in the northern extratropics, especially over the North Atlantic and North Pacific. At supersonic flight levels (18 to 20 km, contrail formation is mainly restricted to tropical regions. Only in winter is the northern extratropical stratosphere above the 100 hPa level cold enough for the formation of contrails. Total contrail coverage is only marginally affected by the shift in flight altitude. The model simulations indicate a global annual mean contrail cover of 0.372% for the subsonic and 0.366% for the combined fleet in 2050. The simulated contrail radiative forcing is most closely correlated to the total contrail cover, although contrails in the tropical lower stratosphere are found to be optically thinner than contrails in the extratropical upper troposphere. The global annual mean contrail radiative forcing in 2050 (2025 amounts to 24.7 mW m−2 (9.4 mW m−2 for the subsonic fleet and 24.2 mW m−2 (9.3 mW m−2 for the combined fleet. A reduction of the supersonic cruise speed from Mach 2.0 to Mach 1.6 leads to a downward shift in contrail cover, but does not affect global mean total contrail cover and contrail radiative forcing. Hence the partial substitution of subsonic air traffic leads to a shift of contrail occurrence from mid to low latitudes, but the resulting change in

  16. Unmanned Aircraft Systems Detect and Avoid System: End-to-End Verification and Validation Simulation Study of Minimum Operations Performance Standards for Integrating Unmanned Aircraft into the National Airspace System

    Science.gov (United States)

    Ghatas, Rania W.; Jack, Devin P.; Tsakpinis, Dimitrios; Sturdy, James L.; Vincent, Michael J.; Hoffler, Keith D.; Myer, Robert R.; DeHaven, Anna M.

    2017-01-01

    As Unmanned Aircraft Systems (UAS) make their way to mainstream aviation operations within the National Airspace System (NAS), research efforts are underway to develop a safe and effective environment for their integration into the NAS. Detect and Avoid (DAA) systems are required to account for the lack of "eyes in the sky" due to having no human on-board the aircraft. The technique, results, and lessons learned from a detailed End-to-End Verification and Validation (E2-V2) simulation study of a DAA system representative of RTCA SC-228's proposed Phase I DAA Minimum Operational Performance Standards (MOPS), based on specific test vectors and encounter cases, will be presented in this paper.

  17. Java Architecture for Detect and Avoid Extensibility and Modeling

    Science.gov (United States)

    Santiago, Confesor; Mueller, Eric Richard; Johnson, Marcus A.; Abramson, Michael; Snow, James William

    2015-01-01

    Unmanned aircraft will equip with a detect-and-avoid (DAA) system that enables them to comply with the requirement to "see and avoid" other aircraft, an important layer in the overall set of procedural, strategic and tactical separation methods designed to prevent mid-air collisions. This paper describes a capability called Java Architecture for Detect and Avoid Extensibility and Modeling (JADEM), developed to prototype and help evaluate various DAA technological requirements by providing a flexible and extensible software platform that models all major detect-and-avoid functions. Figure 1 illustrates JADEM's architecture. The surveillance module can be actual equipment on the unmanned aircraft or simulators that model the process by which sensors on-board detect other aircraft and provide track data to the traffic display. The track evaluation function evaluates each detected aircraft and decides whether to provide an alert to the pilot and its severity. Guidance is a combination of intruder track information, alerting, and avoidance/advisory algorithms behind the tools shown on the traffic display to aid the pilot in determining a maneuver to avoid a loss of well clear. All these functions are designed with a common interface and configurable implementation, which is critical in exploring DAA requirements. To date, JADEM has been utilized in three computer simulations of the National Airspace System, three pilot-in-the-loop experiments using a total of 37 professional UAS pilots, and two flight tests using NASA's Predator-B unmanned aircraft, named Ikhana. The data collected has directly informed the quantitative separation standard for "well clear", safety case, requirements development, and the operational environment for the DAA minimum operational performance standards. This work was performed by the Separation Assurance/Sense and Avoid Interoperability team under NASA's UAS Integration in the NAS project.

  18. Interactive Dynamic Volume Illumination with Refraction and Caustics.

    Science.gov (United States)

    Magnus, Jens G; Bruckner, Stefan

    2018-01-01

    In recent years, significant progress has been made in developing high-quality interactive methods for realistic volume illumination. However, refraction - despite being an important aspect of light propagation in participating media - has so far only received little attention. In this paper, we present a novel approach for refractive volume illumination including caustics capable of interactive frame rates. By interleaving light and viewing ray propagation, our technique avoids memory-intensive storage of illumination information and does not require any precomputation. It is fully dynamic and all parameters such as light position and transfer function can be modified interactively without a performance penalty.

  19. Long Range Aircraft Trajectory Prediction

    OpenAIRE

    Magister, Tone

    2009-01-01

    The subject of the paper is the improvement of the aircraft future trajectory prediction accuracy for long-range airborne separation assurance. The strategic planning of safe aircraft flights and effective conflict avoidance tactics demand timely and accurate conflict detection based upon future four–dimensional airborne traffic situation prediction which is as accurate as each aircraft flight trajectory prediction. The improved kinematics model of aircraft relative flight considering flight ...

  20. Impact of Tactical and Strategic Weather Avoidance on Separation Assurance

    Science.gov (United States)

    Refai, Mohamad S.; Windhorst, Robert

    2011-01-01

    The ability to keep flights away from weather hazards while maintaining aircraft-to-aircraft separation is critically important. The Advanced Airspace Concept is an automation concept that implements a ground-based strategic conflict resolution algorithm for management of aircraft separation. The impact of dynamic and uncertain weather avoidance on this concept is investigated. A strategic weather rerouting system is integrated with the Advanced Airspace Concept, which also provides a tactical weather avoidance algorithm, in a fast time simulation of the Air Transportation System. Strategic weather rerouting is used to plan routes around weather in the 20 minute to two-hour time horizon. To address forecast uncertainty, flight routes are revised at 15 minute intervals. Tactical weather avoidance is used for short term trajectory adjustments (30 minute planning horizon) that are updated every minute to address any weather conflicts (instances where aircraft are predicted to pass through weather cells) that are left unresolved by strategic weather rerouting. The fast time simulation is used to assess the impact of tactical weather avoidance on the performance of automated conflict resolution as well as the impact of strategic weather rerouting on both conflict resolution and tactical weather avoidance. The results demonstrate that both tactical weather avoidance and strategic weather rerouting increase the algorithm complexity required to find aircraft conflict resolutions. Results also demonstrate that tactical weather avoidance is prone to higher airborne delay than strategic weather rerouting. Adding strategic weather rerouting to tactical weather avoidance reduces total airborne delays for the reported scenario by 18% and reduces the number of remaining weather violations by 13%. Finally, two features are identified that have proven important for strategic weather rerouting to realize these benefits; namely, the ability to revise reroutes and the use of maneuvers

  1. Defense Strategy of Aircraft Confronted with IR Guided Missile

    Directory of Open Access Journals (Sweden)

    Hesong Huang

    2017-01-01

    Full Text Available Surface-type infrared (IR decoy can simulate the IR characteristics of the target aircraft, which is one of the most effective equipment to confront IR guided missile. In the air combat, the IR guided missile poses a serious threat to the aircraft when it comes from the front of target aircraft. In this paper, firstly, the model of aircraft and surface-type IR decoy is established. To ensure their authenticity, the aircraft maneuver and radiation models based on real data of flight and exhaust system radiation in the state of different heights and different speeds are established. Secondly, the most effective avoidance maneuver is simulated when the missile comes from the front of the target aircraft. Lastly, combining maneuver with decoys, the best defense strategy is analysed when the missile comes from the front of aircraft. The result of simulation, which is authentic, is propitious to avoid the missile and improve the survivability of aircraft.

  2. Airborne Collision Detection and Avoidance for Small UAS Sense and Avoid Systems

    Science.gov (United States)

    Sahawneh, Laith Rasmi

    The increasing demand to integrate unmanned aircraft systems (UAS) into the national airspace is motivated by the rapid growth of the UAS industry, especially small UAS weighing less than 55 pounds. Their use however has been limited by the Federal Aviation Administration regulations due to collision risk they pose, safety and regulatory concerns. Therefore, before civil aviation authorities can approve routine UAS flight operations, UAS must be equipped with sense-and-avoid technology comparable to the see-and-avoid requirements for manned aircraft. The sense-and-avoid problem includes several important aspects including regulatory and system-level requirements, design specifications and performance standards, intruder detecting and tracking, collision risk assessment, and finally path planning and collision avoidance. In this dissertation, our primary focus is on developing an collision detection, risk assessment and avoidance framework that is computationally affordable and suitable to run on-board small UAS. To begin with, we address the minimum sensing range for the sense-and-avoid (SAA) system. We present an approximate close form analytical solution to compute the minimum sensing range to safely avoid an imminent collision. The approach is then demonstrated using a radar sensor prototype that achieves the required minimum sensing range. In the area of collision risk assessment and collision prediction, we present two approaches to estimate the collision risk of an encounter scenario. The first is a deterministic approach similar to those been developed for Traffic Alert and Collision Avoidance (TCAS) in manned aviation. We extend the approach to account for uncertainties of state estimates by deriving an analytic expression to propagate the error variance using Taylor series approximation. To address unanticipated intruders maneuvers, we propose an innovative probabilistic approach to quantify likely intruder trajectories and estimate the probability of

  3. Design study of general aviation collision avoidance system

    Science.gov (United States)

    Bates, M. R.; Moore, L. D.; Scott, W. V.

    1972-01-01

    The selection and design of a time/frequency collision avoidance system for use in general aviation aircraft is discussed. The modifications to airline transport collision avoidance equipment which were made to produce the simpler general aviation system are described. The threat determination capabilities and operating principles of the general aviation system are illustrated.

  4. Unmanned Aircraft Systems Human-in-the-Loop Controller and Pilot Acceptability Study: Collision Avoidance, Self-Separation, and Alerting Times (CASSAT)

    Science.gov (United States)

    Comstock, James R., Jr.; Ghatas, Rania W.; Vincent, Michael J.; Consiglio, Maria C.; Munoz, Cesar; Chamberlain, James P.; Volk, Paul; Arthur, Keith E.

    2016-01-01

    The Federal Aviation Administration (FAA) has been mandated by the Congressional funding bill of 2012 to open the National Airspace System (NAS) to Unmanned Aircraft Systems (UAS). With the growing use of unmanned systems, NASA has established a multi-center "UAS Integration in the NAS" Project, in collaboration with the FAA and industry, and is guiding its research efforts to look at and examine crucial safety concerns regarding the integration of UAS into the NAS. Key research efforts are addressing requirements for detect-and-avoid (DAA), self-separation (SS), and collision avoidance (CA) technologies. In one of a series of human-in-the-loop experiments, NASA Langley Research Center set up a study known as Collision Avoidance, Self-Separation, and Alerting Times (CASSAT). The first phase assessed active air traffic controller interactions with DAA systems and the second phase examined reactions to the DAA system and displays by UAS Pilots at a simulated ground control station (GCS). Analyses of the test results from Phase I and Phase II are presented in this paper. Results from the CASSAT study and previous human-in-the-loop experiments will play a crucial role in the FAA's establishment of rules, regulations, and procedures to safely, efficiently, and effectively integrate UAS into the NAS.

  5. Investigating Traffic Avoidance Maneuver Preferences of Unmanned Aircraft Operators

    Science.gov (United States)

    2016-06-13

    aircraft in the NAS under instrument flight rules ( IFR ), in radio communications with ATC, and with a traffic display highlighting traffic within 80...Lincoln Laboratory developed uncorrelated encounter model [13] for evaluation of a preliminary pilot model. The UAS was assumed to be on an IFR ...Vol. 59, No. 1, Human Factors and Ergonomics Society, Santa Monica, CA, 2015, pp. 45-49. [10] Rorie, R. C., Fern, L., and Shively R. J., “The impact

  6. Fighter/Attack Automatic Collision Avoidance Systems Business Case

    National Research Council Canada - National Science Library

    Mapes, Peter B

    2006-01-01

    .... This study concludes that implementation of Automatic Collision Avoidance Systems (Auto-CAS) in F-16, F/A-18, F/A-22, and F-35 aircraft would save aircrew lives and preserve, and enhance combat capability.

  7. An Evaluation of Detect and Avoid (DAA) Displays for Unmanned Aircraft Systems: The Effect of Information Level and Display Location on Pilot Performance

    Science.gov (United States)

    Fern, Lisa; Rorie, R. Conrad; Pack, Jessica S.; Shively, R. Jay; Draper, Mark H.

    2015-01-01

    A consortium of government, industry and academia is currently working to establish minimum operational performance standards for Detect and Avoid (DAA) and Control and Communications (C2) systems in order to enable broader integration of Unmanned Aircraft Systems (UAS) into the National Airspace System (NAS). One subset of these performance standards will need to address the DAA display requirements that support an acceptable level of pilot performance. From a pilot's perspective, the DAA task is the maintenance of self separation and collision avoidance from other aircraft, utilizing the available information and controls within the Ground Control Station (GCS), including the DAA display. The pilot-in-the-loop DAA task requires the pilot to carry out three major functions: 1) detect a potential threat, 2) determine an appropriate resolution maneuver, and 3) execute that resolution maneuver via the GCS control and navigation interface(s). The purpose of the present study was to examine two main questions with respect to DAA display considerations that could impact pilots' ability to maintain well clear from other aircraft. First, what is the effect of a minimum (or basic) information display compared to an advanced information display on pilot performance? Second, what is the effect of display location on UAS pilot performance? Two levels of information level (basic, advanced) were compared across two levels of display location (standalone, integrated), for a total of four displays. The authors propose an eight-stage pilot-DAA interaction timeline from which several pilot response time metrics can be extracted. These metrics were compared across the four display conditions. The results indicate that the advanced displays had faster overall response times compared to the basic displays, however, there were no significant differences between the standalone and integrated displays. Implications of the findings on understanding pilot performance on the DAA task, the

  8. Aircraft route planning based on digital map pre-treatment

    Directory of Open Access Journals (Sweden)

    Ran ZHEN

    2015-04-01

    Full Text Available Aiming at the flight path project in low complicated airspace, the influence of terrain conditions and surface threatening to aircraft flight are studied. Through the analysis of digital map and static threat, the paper explores the processing method of the digital map, and uses the Hermite function to process the map smoothly, reducing the searching range of optimal trajectory. By designing the terrain following, terrain avoidance and the way of avoiding a threat, the safety of aircraft can be guaranteed. In-depth analysis of particle swarm optimization (PSO algorithm realizes the three dimensional paths project before the aircraft performs a task. Through simulation, the difference of the maps before and after processing is shown, and offline programming of the three dimensional optimal path is achieved.

  9. Fibre illumination system

    DEFF Research Database (Denmark)

    2012-01-01

    Source: EP2426402A The invention relates to a fibre illumination module and system for the collection and delivery of daylight for illumination purposes. The fibre illumination module comprises a plurality of collector elements, each collector element comprising an input fibre having a first end......-directional arrangement. The fibre illumination system comprises a fibre illumination module of the above-mentioned type. By the invention, daylight may be exploited for the illumination of remote interior spaces of buildings in order to save energy, and improve the well-being of users in both housing and working...

  10. Small UAV Automatic Ground Collision Avoidance System Design Considerations and Flight Test Results

    Science.gov (United States)

    Sorokowski, Paul; Skoog, Mark; Burrows, Scott; Thomas, SaraKatie

    2015-01-01

    The National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center Small Unmanned Aerial Vehicle (SUAV) Automatic Ground Collision Avoidance System (Auto GCAS) project demonstrated several important collision avoidance technologies. First, the SUAV Auto GCAS design included capabilities to take advantage of terrain avoidance maneuvers flying turns to either side as well as straight over terrain. Second, the design also included innovative digital elevation model (DEM) scanning methods. The combination of multi-trajectory options and new scanning methods demonstrated the ability to reduce the nuisance potential of the SUAV while maintaining robust terrain avoidance. Third, the Auto GCAS algorithms were hosted on the processor inside a smartphone, providing a lightweight hardware configuration for use in either the ground control station or on board the test aircraft. Finally, compression of DEM data for the entire Earth and successful hosting of that data on the smartphone was demonstrated. The SUAV Auto GCAS project demonstrated that together these methods and technologies have the potential to dramatically reduce the number of controlled flight into terrain mishaps across a wide range of aviation platforms with similar capabilities including UAVs, general aviation aircraft, helicopters, and model aircraft.

  11. Optimal Recovery Trajectories for Automatic Ground Collision Avoidance Systems (Auto GCAS)

    Science.gov (United States)

    Suplisson, Angela W.

    The US Air Force recently fielded the F-16 Automatic Ground Collision Avoidance System (Auto GCAS). This system meets the operational requirements of being both aggressive and timely, meaning that extremely agile avoidance maneuvers will be executed at the last second to avoid the ground. This small window of automatic operation maneuvering in close proximity to the ground makes the problem challenging. There currently exists no similar Auto GCAS for manned military 'heavy' aircraft with lower climb performance such as transport, tanker, or bomber aircraft. The F-16 Auto GCAS recovery is a single pre-planned roll to wings-level and 5-g pull-up which is very effective for fighters due to their high g and climb performance, but it is not suitable for military heavy aircraft. This research proposes a new optimal control approach to the ground collision avoidance problem for heavy aircraft by mapping the aggressive and timely requirements of the automatic recovery to the optimal control formulation which includes lateral maneuvers around terrain. This novel mapping creates two ways to pose the optimal control problem for Auto GCAS; one as a Max Distance with a Timely Trigger formulation and the other as a Min Control with an Aggressive Trigger formulation. Further, the optimal path and optimal control admitted by these two formulations are demonstrated to be equivalent at the point the automatic recovery is initiated for the simplified 2-D case. The Min Control formulation was demonstrated to have faster computational speed and was chosen for the 3-D case. Results are presented for representative heavy aircraft scenarios against 3-D digital terrain. The Min Control formulation was then compared to a Multi-Trajectory Auto GCAS with five pre-planned maneuvers. Metrics were developed to quantify the improvement from using an optimal approach versus the pre-planned maneuvers. The proposed optimal Min Control method was demonstrated to require less control or trigger later

  12. Surface color perception under two illuminants: the second illuminant reduces color constancy

    Science.gov (United States)

    Yang, Joong Nam; Shevell, Steven K.

    2003-01-01

    This study investigates color perception in a scene with two different illuminants. The two illuminants, in opposite corners, simultaneously shine on a (simulated) scene with an opaque dividing wall, which controls how much of the scene is illuminated by each source. In the first experiment, the height of the dividing wall was varied. This changed the amount of each illuminant reaching objects on the opposite side of the wall. Results showed that the degree of color constancy decreased when a region on one side of the wall had cues to both illuminants, suggesting that cues from the second illuminant are detrimental to color constancy. In a later experiment, color constancy was found to improve when the specular highlight cues from the second illuminant were altered to be consistent with the first illuminant. This corroborates the influence of specular highlights in surface color perception, and suggests that the reduced color constancy in the first experiment is due to the inconsistent, though physically correct, cues from the two illuminants.

  13. Alternative Packaging for Back-Illuminated Imagers

    Science.gov (United States)

    Pain, Bedabrata

    2009-01-01

    An alternative scheme has been conceived for packaging of silicon-based back-illuminated, back-side-thinned complementary metal oxide/semiconductor (CMOS) and charge-coupled-device image-detector integrated circuits, including an associated fabrication process. This scheme and process are complementary to those described in "Making a Back-Illuminated Imager With Back-Side Connections" (NPO-42839), NASA Tech Briefs, Vol. 32, No. 7 (July 2008), page 38. To avoid misunderstanding, it should be noted that in the terminology of imaging integrated circuits, "front side" or "back side" does not necessarily refer to the side that, during operation, faces toward or away from a source of light or other object to be imaged. Instead, "front side" signifies that side of a semiconductor substrate upon which the pixel pattern and the associated semiconductor devices and metal conductor lines are initially formed during fabrication, and "back side" signifies the opposite side. If the imager is of the type called "back-illuminated," then the back side is the one that faces an object to be imaged. Initially, a back-illuminated, back-side-thinned image-detector is fabricated with its back side bonded to a silicon handle wafer. At a subsequent stage of fabrication, the front side is bonded to a glass wafer (for mechanical support) and the silicon handle wafer is etched away to expose the back side. The frontside integrated circuitry includes metal input/output contact pads, which are rendered inaccessible by the bonding of the front side to the glass wafer. Hence, one of the main problems is to make the input/output contact pads accessible from the back side, which is ultimately to be the side accessible to the external world. The present combination of an alternative packaging scheme and associated fabrication process constitute a solution of the problem.

  14. Collision Avoidance Functional Requirements for Step 1. Revision 6

    Science.gov (United States)

    2006-01-01

    This Functional Requirements Document (FRD) describes the flow of requirements from the high level operational objectives down to the functional requirements specific to cooperative collision avoidance for high altitude, long endurance unmanned aircraft systems. These are further decomposed into performance and safety guidelines that are backed up by analysis or references to various documents or research findings. The FRD should be considered when establishing future policies, procedures, and standards pertaining to cooperative collision avoidance.

  15. Knowledge-based scheduling of arrival aircraft

    Science.gov (United States)

    Krzeczowski, K.; Davis, T.; Erzberger, H.; Lev-Ram, I.; Bergh, C.

    1995-01-01

    A knowledge-based method for scheduling arrival aircraft in the terminal area has been implemented and tested in real-time simulation. The scheduling system automatically sequences, assigns landing times, and assigns runways to arrival aircraft by utilizing continuous updates of aircraft radar data and controller inputs. The scheduling algorithms is driven by a knowledge base which was obtained in over two thousand hours of controller-in-the-loop real-time simulation. The knowledge base contains a series of hierarchical 'rules' and decision logic that examines both performance criteria, such as delay reduction, as well as workload reduction criteria, such as conflict avoidance. The objective of the algorithms is to devise an efficient plan to land the aircraft in a manner acceptable to the air traffic controllers. This paper will describe the scheduling algorithms, give examples of their use, and present data regarding their potential benefits to the air traffic system.

  16. Live Aircraft Encounter Visualization at FutureFlight Central

    Science.gov (United States)

    Murphy, James R.; Chinn, Fay; Monheim, Spencer; Otto, Neil; Kato, Kenji; Archdeacon, John

    2018-01-01

    Researchers at the National Aeronautics and Space Administration (NASA) have developed an aircraft data streaming capability that can be used to visualize live aircraft in near real-time. During a joint Federal Aviation Administration (FAA)/NASA Airborne Collision Avoidance System flight series, test sorties between unmanned aircraft and manned intruder aircraft were shown in real-time at NASA Ames' FutureFlight Central tower facility as a virtual representation of the encounter. This capability leveraged existing live surveillance, video, and audio data streams distributed through a Live, Virtual, Constructive test environment, then depicted the encounter from the point of view of any aircraft in the system showing the proximity of the other aircraft. For the demonstration, position report data were sent to the ground from on-board sensors on the unmanned aircraft. The point of view can be change dynamically, allowing encounters from all angles to be observed. Visualizing the encounters in real-time provides a safe and effective method for observation of live flight testing and a strong alternative to travel to the remote test range.

  17. Extending Whole Slide Imaging: Color Darkfield Internal Reflection Illumination (DIRI for Biological Applications.

    Directory of Open Access Journals (Sweden)

    Yoshihiro Kawano

    Full Text Available Whole slide imaging (WSI is a useful tool for multi-modal imaging, and in our work, we have often combined WSI with darkfield microscopy. However, traditional darkfield microscopy cannot use a single condenser to support high- and low-numerical-aperture objectives, which limits the modality of WSI. To overcome this limitation, we previously developed a darkfield internal reflection illumination (DIRI microscope using white light-emitting diodes (LEDs. Although the developed DIRI is useful for biological applications, substantial problems remain to be resolved. In this study, we propose a novel illumination technique called color DIRI. The use of three-color LEDs dramatically improves the capability of the system, such that color DIRI (1 enables optimization of the illumination color; (2 can be combined with an oil objective lens; (3 can produce fluorescence excitation illumination; (4 can adjust the wavelength of light to avoid cell damage or reactions; and (5 can be used as a photostimulator. These results clearly illustrate that the proposed color DIRI can significantly extend WSI modalities for biological applications.

  18. Interactive Near-Field Illumination for Photorealistic Augmented Reality with Varying Materials on Mobile Devices.

    Science.gov (United States)

    Rohmer, Kai; Buschel, Wolfgang; Dachselt, Raimund; Grosch, Thorsten

    2015-12-01

    At present, photorealistic augmentation is not yet possible since the computational power of mobile devices is insufficient. Even streaming solutions from stationary PCs cause a latency that affects user interactions considerably. Therefore, we introduce a differential rendering method that allows for a consistent illumination of the inserted virtual objects on mobile devices, avoiding delays. The computation effort is shared between a stationary PC and the mobile devices to make use of the capacities available on both sides. The method is designed such that only a minimum amount of data has to be transferred asynchronously between the participants. This allows for an interactive illumination of virtual objects with a consistent appearance under both temporally and spatially varying real illumination conditions. To describe the complex near-field illumination in an indoor scenario, HDR video cameras are used to capture the illumination from multiple directions. In this way, sources of illumination can be considered that are not directly visible to the mobile device because of occlusions and the limited field of view. While our method focuses on Lambertian materials, we also provide some initial approaches to approximate non-diffuse virtual objects and thereby allow for a wider field of application at nearly the same cost.

  19. Formal Methods in Air Traffic Management: The Case of Unmanned Aircraft Systems

    Science.gov (United States)

    Munoz, Cesar A.

    2015-01-01

    As the technological and operational capabilities of unmanned aircraft systems (UAS) continue to grow, so too does the need to introduce these systems into civil airspace. Unmanned Aircraft Systems Integration in the National Airspace System is a NASA research project that addresses the integration of civil UAS into non-segregated airspace operations. One of the major challenges of this integration is the lack of an onboard pilot to comply with the legal requirement that pilots see and avoid other aircraft. The need to provide an equivalent to this requirement for UAS has motivated the development of a detect and avoid (DAA) capability to provide the appropriate situational awareness and maneuver guidance in avoiding and remaining well clear of traffic aircraft. Formal methods has played a fundamental role in the development of this capability. This talk reports on the formal methods work conducted under NASA's Safe Autonomous System Operations project in support of the development of DAA for UAS. This work includes specification of low-level and high-level functional requirements, formal verification of algorithms, and rigorous validation of software implementations. The talk also discusses technical challenges in formal methods research in the context of the development and safety analysis of advanced air traffic management concepts.

  20. Environmental compatibility of CRYOPLANE the cryogenic-fuel aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Klug, H.G. [Daimler Benz Aerospace Airbus, Hamburg (Germany)

    1997-12-31

    `CRYOPLANE` is the project name for an aircraft powered by cryogenic fuel, either liquid natural gas (LNG, mainly consisting of methane) or liquid hydrogen (LH{sub 2}). Emission of CO{sub 2}, unburnt hydrocarbons, soot and sulfur will be completely avoided by hydrogen combustion: LH{sub 2} is an extremely pure liquid. Emission of water as a primary combustion product is increased by a factor of 2.6. Exhaust gases behind hydrogen engines contain more water than behind kerosene engines, and hence can form contrails under a wider range of atmospheric conditions. Liquid hydrogen fueled aircraft promise big advantages relative to kerosene aircraft in terms of environmental compatibility. (R.P.)

  1. Environmental compatibility of CRYOPLANE the cryogenic-fuel aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Klug, H G [Daimler Benz Aerospace Airbus, Hamburg (Germany)

    1998-12-31

    `CRYOPLANE` is the project name for an aircraft powered by cryogenic fuel, either liquid natural gas (LNG, mainly consisting of methane) or liquid hydrogen (LH{sub 2}). Emission of CO{sub 2}, unburnt hydrocarbons, soot and sulfur will be completely avoided by hydrogen combustion: LH{sub 2} is an extremely pure liquid. Emission of water as a primary combustion product is increased by a factor of 2.6. Exhaust gases behind hydrogen engines contain more water than behind kerosene engines, and hence can form contrails under a wider range of atmospheric conditions. Liquid hydrogen fueled aircraft promise big advantages relative to kerosene aircraft in terms of environmental compatibility. (R.P.)

  2. Lighting system with illuminance control

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to an illumination control system comprising a plurality of outdoor luminaries and a motorized service vehicle. Each luminaire comprises a controllable light source producing a light illuminance. The motorized service vehicle comprises a light sensor configured...... to detect the light illuminance generated by the controllable light source at the motorized service vehicle. The motorized service vehicle computes light illuminance data based on the detected light illuminance and transmits these to the outdoor luminaire through a wireless communication link or stores...... the light illuminance data on a data recording device of the motorized service vehicle. The outdoor luminaire receives may use the light illuminance data to set or adjust a light illuminance of the controllable light source....

  3. METHOD FOR OPTIMAL RESOLUTION OF MULTI-AIRCRAFT CONFLICTS IN THREE-DIMENSIONAL SPACE

    Directory of Open Access Journals (Sweden)

    Denys Vasyliev

    2017-03-01

    Full Text Available Purpose: The risk of critical proximities of several aircraft and appearance of multi-aircraft conflicts increases under current conditions of high dynamics and density of air traffic. The actual problem is a development of methods for optimal multi-aircraft conflicts resolution that should provide the synthesis of conflict-free trajectories in three-dimensional space. Methods: The method for optimal resolution of multi-aircraft conflicts using heading, speed and altitude change maneuvers has been developed. Optimality criteria are flight regularity, flight economy and the complexity of maneuvering. Method provides the sequential synthesis of the Pareto-optimal set of combinations of conflict-free flight trajectories using multi-objective dynamic programming and selection of optimal combination using the convolution of optimality criteria. Within described method the following are defined: the procedure for determination of combinations of aircraft conflict-free states that define the combinations of Pareto-optimal trajectories; the limitations on discretization of conflict resolution process for ensuring the absence of unobservable separation violations. Results: The analysis of the proposed method is performed using computer simulation which results show that synthesized combination of conflict-free trajectories ensures the multi-aircraft conflict avoidance and complies with defined optimality criteria. Discussion: Proposed method can be used for development of new automated air traffic control systems, airborne collision avoidance systems, intelligent air traffic control simulators and for research activities.

  4. Optimization of decision making to avoid stochastically predicted air traffic conflicts

    Directory of Open Access Journals (Sweden)

    В.М. Васильєв

    2005-01-01

    Full Text Available  The method of decision-making optimization on planning an aircraft trajectory to avoid potential conflict with restricted minimal level of separation standard is proposed. Evaluation and monitoring the conflict probability are made using the probabilistic composite method.

  5. Strategic Conflict Detection and Resolution Using Aircraft Intent Information

    Science.gov (United States)

    Porretta, Marco; Schuster, Wolfgang; Majumdar, Arnab; Ochieng, Washington

    A number of automated decision support tools will be required in the future air traffic management system to enable continued provision of safe and efficient services in increasingly congested skies. In particular, Conflict Detection and Resolution (CDR) tools should allow for early detection of possible conflicts and propose safe and efficient resolution manoeuvres to avoid loss of separation. However, current approaches in the open literature not only use different levels of aircraft intent information but also make a number of assumptions on models of aircraft motion. Furthermore, information relevant to aircraft performance is often not considered with the consequence of the resulting resolution strategies being potentially unreliable. This paper presents an enhanced, strategic, pairwise, performance-based and distributed CDR algorithm. It accounts for the weaknesses of current approaches by using the maximum level of aircraft intent information together with a novel trajectory prediction model. Numerical results for representative conflict scenarios show that the proposed CDR method is able to generate conflict-free trajectories for participating aircraft while taking into account the actual aircraft capabilities to perform the recommended resolution manoeuvres.

  6. Detect and Avoid (DAA) Automation Maneuver Study

    Science.gov (United States)

    2017-02-01

    GUY A. FRENCH JOSEPH C. PRICE, MAJ, USAF Work Unit Manager Acting Chief, Supervisory Control and Cognition Branch Supervisory Control and Cognition...19a. NAME OF RESPONSIBLE PERSON (Monitor) a. REPORT Unclassified b. ABSTRACT Unclassified c. THIS PAGE Unclassified Guy French 19b. TELEPHONE...the ability to detect and safely avoid other aircraft in flight ( Cook & Davis, 2013). In order to increase UAS flight safety and support UAS

  7. Smartphone snapshot mapping of skin chromophores under triple-wavelength laser illumination

    Science.gov (United States)

    Spigulis, Janis; Oshina, Ilze; Berzina, Anna; Bykov, Alexander

    2017-09-01

    Chromophore distribution maps are useful tools for skin malformation severity assessment and for monitoring of skin recovery after burns, surgeries, and other interactions. The chromophore maps can be obtained by processing several spectral images of skin, e.g., captured by hyperspectral or multispectral cameras during seconds or even minutes. To avoid motion artifacts and simplify the procedure, a single-snapshot technique for mapping melanin, oxyhemoglobin, and deoxyhemoglobin of in-vivo skin by a smartphone under simultaneous three-wavelength (448-532-659 nm) laser illumination is proposed and examined. Three monochromatic spectral images related to the illumination wavelengths were extracted from the smartphone camera RGB image data set with respect to crosstalk between the RGB detection bands. Spectral images were further processed accordingly to Beer's law in a three chromophore approximation. Photon absorption path lengths in skin at the exploited wavelengths were estimated by means of Monte Carlo simulations. The technique was validated clinically on three kinds of skin lesions: nevi, hemangiomas, and seborrheic keratosis. Design of the developed add-on laser illumination system, image-processing details, and the results of clinical measurements are presented and discussed.

  8. Obstacle detection and avoiding of quadcopter

    Science.gov (United States)

    Wang, Dizhong; Lin, Jiajian

    2017-10-01

    Recent years, the flight control technology over quadcopter has been boosted vigorously and acquired the comprehensive application in a variety of industries. However, it is prominent for there to be problems existed in the stable and secure flight with the development of its autonomous flight. Through comparing with the characteristics of ultrasonic ranging and laser Time-of-Flight(abbreviated to ToF) distance as well as vision measurement and its related sensors, the obstacle detection and identification sensors need to be installed in order to effectively enhance the safety flying for aircraft, which is essential for avoiding the dangers around the surroundings. That the major sensors applied to objects perception at present are distance measuring instruments which based on the principle and application of non-contact detection technology . Prior to acknowledging the general principles of flight and obstacle avoiding, the aerodynamics modeling of the quadcopter and its object detection means has been initially determined on this paper. Based on such premise, this article emphasized on describing and analyzing the research on obstacle avoiding technology and its application status, and making an expectation for the trend of its development after analyzing the primary existing problems concerning its accuracy object avoidance.

  9. Aircraft Weather Mitigation for the Next Generation Air Transportation System

    Science.gov (United States)

    Stough, H. Paul, III

    2007-01-01

    Atmospheric effects on aviation are described by Mahapatra (1999) as including (1) atmospheric phenomena involving air motion - wind shear and turbulence; (2) hydrometeorological phenomena - rain, snow and hail; (3) aircraft icing; (4) low visibility; and (5) atmospheric electrical phenomena. Aircraft Weather Mitigation includes aircraft systems (e.g. airframe, propulsion, avionics, controls) that can be enacted (by a pilot, automation or hybrid systems) to suppress and/or prepare for the effects of encountered or unavoidable weather or to facilitate a crew operational decision-making process relative to weather. Aircraft weather mitigation can be thought of as a continuum (Figure 1) with the need to avoid all adverse weather at one extreme and the ability to safely operate in all weather conditions at the other extreme. Realistic aircraft capabilities fall somewhere between these two extremes. The capabilities of small general aviation aircraft would be expected to fall closer to the "Avoid All Adverse Weather" point, and the capabilities of large commercial jet transports would fall closer to the "Operate in All Weather Conditions" point. The ability to safely operate in adverse weather conditions is dependent upon the pilot s capabilities (training, total experience and recent experience), the airspace in which the operation is taking place (terrain, navigational aids, traffic separation), the capabilities of the airport (approach guidance, runway and taxiway lighting, availability of air traffic control), as well as the capabilities of the airplane. The level of mitigation may vary depending upon the type of adverse weather. For example, a small general aviation airplane may be equipped to operate "in the clouds" without outside visual references, but not be equipped to prevent airframe ice that could be accreted in those clouds.

  10. Split-illumination electron holography

    Energy Technology Data Exchange (ETDEWEB)

    Tanigaki, Toshiaki; Aizawa, Shinji; Suzuki, Takahiro; Park, Hyun Soon [Advanced Science Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Inada, Yoshikatsu [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Sendai 980-8577 (Japan); Matsuda, Tsuyoshi [Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Taniyama, Akira [Corporate Research and Development Laboratories, Sumitomo Metal Industries, Ltd., Amagasaki, Hyogo 660-0891 (Japan); Shindo, Daisuke [Advanced Science Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Sendai 980-8577 (Japan); Tonomura, Akira [Advanced Science Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa 904-0495 (Japan); Central Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395 (Japan)

    2012-07-23

    We developed a split-illumination electron holography that uses an electron biprism in the illuminating system and two biprisms (applicable to one biprism) in the imaging system, enabling holographic interference micrographs of regions far from the sample edge to be obtained. Using a condenser biprism, we split an electron wave into two coherent electron waves: one wave is to illuminate an observation area far from the sample edge in the sample plane and the other wave to pass through a vacuum space outside the sample. The split-illumination holography has the potential to greatly expand the breadth of applications of electron holography.

  11. Split-illumination electron holography

    International Nuclear Information System (INIS)

    Tanigaki, Toshiaki; Aizawa, Shinji; Suzuki, Takahiro; Park, Hyun Soon; Inada, Yoshikatsu; Matsuda, Tsuyoshi; Taniyama, Akira; Shindo, Daisuke; Tonomura, Akira

    2012-01-01

    We developed a split-illumination electron holography that uses an electron biprism in the illuminating system and two biprisms (applicable to one biprism) in the imaging system, enabling holographic interference micrographs of regions far from the sample edge to be obtained. Using a condenser biprism, we split an electron wave into two coherent electron waves: one wave is to illuminate an observation area far from the sample edge in the sample plane and the other wave to pass through a vacuum space outside the sample. The split-illumination holography has the potential to greatly expand the breadth of applications of electron holography.

  12. Chromatic illumination discrimination ability reveals that human colour constancy is optimised for blue daylight illuminations.

    Directory of Open Access Journals (Sweden)

    Bradley Pearce

    Full Text Available The phenomenon of colour constancy in human visual perception keeps surface colours constant, despite changes in their reflected light due to changing illumination. Although colour constancy has evolved under a constrained subset of illuminations, it is unknown whether its underlying mechanisms, thought to involve multiple components from retina to cortex, are optimised for particular environmental variations. Here we demonstrate a new method for investigating colour constancy using illumination matching in real scenes which, unlike previous methods using surface matching and simulated scenes, allows testing of multiple, real illuminations. We use real scenes consisting of solid familiar or unfamiliar objects against uniform or variegated backgrounds and compare discrimination performance for typical illuminations from the daylight chromaticity locus (approximately blue-yellow and atypical spectra from an orthogonal locus (approximately red-green, at correlated colour temperature 6700 K, all produced in real time by a 10-channel LED illuminator. We find that discrimination of illumination changes is poorer along the daylight locus than the atypical locus, and is poorest particularly for bluer illumination changes, demonstrating conversely that surface colour constancy is best for blue daylight illuminations. Illumination discrimination is also enhanced, and therefore colour constancy diminished, for uniform backgrounds, irrespective of the object type. These results are not explained by statistical properties of the scene signal changes at the retinal level. We conclude that high-level mechanisms of colour constancy are biased for the blue daylight illuminations and variegated backgrounds to which the human visual system has typically been exposed.

  13. UAS Integration in the NAS: Detect and Avoid

    Science.gov (United States)

    Shively, Jay

    2018-01-01

    This presentation will cover the structure of the unmanned aircraft systems (UAS) integration into the national airspace system (NAS) project (UAS-NAS Project). The talk also details the motivation of the project to help develop standards for a detect-and-avoid (DAA) system, which is required in order to comply with requirements in manned aviation to see-and-avoid other traffic so as to maintain well clear. The presentation covers accomplishments reached by the project in Phase 1 of the research, and touches on the work to be done in Phase 2. The discussion ends with examples of the display work developed as a result of the Phase 1 research.

  14. Realtime global illumination using compressed pre-computed indirect illumination textures

    DEFF Research Database (Denmark)

    Bahnsen, Chris; Martin dit Neuville, Antoine; Pedersen, Casper

    2012-01-01

    and added to the direct illumination to produce the total illumination. Depending on the type of image produced, the algorithm allows a camera to move, and even objects to be added or modified at runtime to some extent. Finally, we will see that the amount of data to store and process can also be reduced...

  15. The Impact of Suggestive Maneuver Guidance on UAS Pilots Performing the Detect and Avoid Function

    Science.gov (United States)

    Rorie, Conrad; Fern, Lisa; Shively, Jay

    2016-01-01

    This presentation discusses the results of a recent UAS Integration into the NAS human-in-the-loop simulation. In the study, 16 active UAS pilots flew a UAS through civil airspace and were tasked with maintaining well clear from other aircraft in the area. Pilots performed the task with four different detect and avoid (DAA) traffic displays, each of which varied in the form of guidance it provided to pilots The present findings focus on how the different displays impacted pilots' measured response to scripted conflicts with their aircraft. Measured response is made up of several components, each of which help inform our understanding of the pilots' role in the overall detect and avoid task.

  16. Predicting Ground Illuminance

    Science.gov (United States)

    Lesniak, Michael V.; Tregoning, Brett D.; Hitchens, Alexandra E.

    2015-01-01

    Our Sun outputs 3.85 x 1026 W of radiation, of which roughly 37% is in the visible band. It is directly responsible for nearly all natural illuminance experienced on Earth's surface, either in the form of direct/refracted sunlight or in reflected light bouncing off the surfaces and/or atmospheres of our Moon and the visible planets. Ground illuminance, defined as the amount of visible light intercepting a unit area of surface (from all incident angles), varies over 7 orders of magnitude from day to night. It is highly dependent on well-modeled factors such as the relative positions of the Sun, Earth, and Moon. It is also dependent on less predictable factors such as local atmospheric conditions and weather.Several models have been proposed to predict ground illuminance, including Brown (1952) and Shapiro (1982, 1987). The Brown model is a set of empirical data collected from observation points around the world that has been reduced to a smooth fit of illuminance against a single variable, solar altitude. It provides limited applicability to the Moon and for cloudy conditions via multiplicative reduction factors. The Shapiro model is a theoretical model that treats the atmosphere as a three layer system of light reflectance and transmittance. It has different sets of reflectance and transmittance coefficients for various cloud types.In this paper we compare the models' predictions to ground illuminance data from an observing run at the White Sands missile range (data was obtained from the United Kingdom's Meteorology Office). Continuous illuminance readings were recorded under various cloud conditions, during both daytime and nighttime hours. We find that under clear skies, the Shapiro model tends to better fit the observations during daytime hours with typical discrepancies under 10%. Under cloudy skies, both models tend to poorly predict ground illuminance. However, the Shapiro model, with typical average daytime discrepancies of 25% or less in many cases

  17. Dynamic Model and Analysis of Asymmetric Telescopic Wing for Morphing Aircraft

    Directory of Open Access Journals (Sweden)

    Chen Lili

    2016-01-01

    Full Text Available Morphing aircraft has been the research hot topics of new concept aircrafts in aerospace engineering. Telescopic wing is an important morphing technology for morphing aircraft. This paper describes the dynamic equations and kinematic equations based on theorem of momentum and theorem of moment of momentum, which are available for all morphing aircrafts. Meanwhile,as simplified , dynamic equations for rectangular telescopic wing are presented. In order to avoid the complexity using aileron to generate rolling moment , an new idea that asymmetry of wings can generate roll moment is introduced. Finally, roll performance comparison of asymmetric wing and aileron deflection shows that asymmetric telescopic wing can provide the required roll control moment as aileron, and in some cases, telescopic wing has the superior roll performance.

  18. Comparison of two structured illumination techniques based on different 3D illumination patterns

    Science.gov (United States)

    Shabani, H.; Patwary, N.; Doblas, A.; Saavedra, G.; Preza, C.

    2017-02-01

    Manipulating the excitation pattern in optical microscopy has led to several super-resolution techniques. Among different patterns, the lateral sinusoidal excitation was used for the first demonstration of structured illumination microscopy (SIM), which provides the fastest SIM acquisition system (based on the number of raw images required) compared to the multi-spot illumination approach. Moreover, 3D patterns that include lateral and axial variations in the illumination have attracted more attention recently as they address resolution enhancement in three dimensions. A threewave (3W) interference technique based on coherent illumination has already been shown to provide super-resolution and optical sectioning in 3D-SIM. In this paper, we investigate a novel tunable technique that creates a 3D pattern from a set of multiple incoherently illuminated parallel slits that act as light sources for a Fresnel biprism. This setup is able to modulate the illumination pattern in the object space both axially and laterally with adjustable modulation frequencies. The 3D forward model for the new system is developed here to consider the effect of the axial modulation due to the 3D patterned illumination. The performance of 3D-SIM based on 3W interference and the tunable system are investigated in simulation and compared based on two different criteria. First, restored images obtained for both 3D-SIM systems using a generalized Wiener filter are compared to determine the effect of the illumination pattern on the reconstruction. Second, the effective frequency response of both systems is studied to determine the axial and lateral resolution enhancement that is obtained in each case.

  19. Effects of illuminants and illumination time on lettuce growth, yield and nutritional quality in a controlled environment

    Science.gov (United States)

    Shen, Y. Z.; Guo, S. S.; Ai, W. D.; Tang, Y. K.

    2014-07-01

    Effects of illuminants and illumination time on the growth of lettuce were researched. Red-blue light-emitting diodes (LEDs, 90% red light +10% blue light) and white light fluorescent (WF) lamps were compared as the illuminants for plant cultivation. Under each type of illuminant, lettuce was grown at 4 illumination times: 12 h, 16 h, 20 h and 24 h, with the same light intensity of 600 μmolm-2s-1. The leaf net photosynthetic rate (Pn) under the two illuminants was comparable but the shape of lettuce was obviously affected by the illuminant. The WF lamps produced more compact plant, while red-blue LED resulted in less but longer leaves. However, the total leaf area was not significantly affected by the illuminant. The red-blue LED produced nearly same aboveground biomass with far less energy consumption relative to WF lamps. The underground biomass was lowered under red-blue LED in comparison with WF lamps. Red-blue LED could improve the nutritional quality of lettuce by increasing the concentration of soluble sugar and vitamin C (VC) and reducing the concentration of nitrate. Under each type of illuminant, longer illumination time resulted in higher Pn, more leaves and larger leaf area. The total chlorophyll concentration increased while the concentration ratio of chlorophyll a/b decreased with the extension of illumination time. Illumination time had highly significant positive correlation with biomass. Moreover, when total daily light input was kept the same, longer illumination time increased the biomass significantly as well. In addition, longer illumination time increased the concentration of crude fiber, soluble sugar and VC and reduced the concentration of nitrate. In summary, red-blue LEDs and 24 h illumination time were demonstrated to be more suitable for lettuce cultivation in the controlled environment.

  20. Daylight illumination-color-contrast tables for full-form objects naturally illuminated objects

    CERN Document Server

    Nagel, M

    1978-01-01

    Daylight Illumination-Color-Contrast Tables for Full-form Objects is the result of a major computational project concerning the illumination, color, and contrast conditions in naturally illuminated objects. The project from which this two-chapter book is derived is originally conceived in support of the various remote sensing and image processing activities of the Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt, Oberpfaffenhofen, West Germany DFVLR, in particular, those depending on the quantitative photometric and colorimetric evaluation of photographs and other environmental

  1. Optimal Collision Avoidance Trajectories for Unmanned/Remotely Piloted Aircraft

    Science.gov (United States)

    2014-12-26

    collocation method to solve this problem and then analyzes these results for di↵erent collision avoidance scenarios. iv To my beautiful “ Proverbs 31” wife... le ( d e g ) Optimal Control JOCA Baseline 0 10 20 30 40 50 60 0.8 1 1.2 1.4 N z Control time (sec) N z Optimal Control JOCA Baseline (b...Optimal Control JOCA Baseline (a) Trajectory Deviation 0 10 20 30 40 50 60 70 −20 −10 0 10 20 µ Control time (sec) a n g le ( d e g

  2. Natural light illumination system.

    Science.gov (United States)

    Whang, Allen Jong-Woei; Chen, Yi-Yung; Yang, Shu-Hua; Pan, Po-Hsuan; Chou, Kao-Hsu; Lee, Yu-Chi; Lee, Zong-Yi; Chen, Chi-An; Chen, Cheng-Nan

    2010-12-10

    In recent years, green energy has undergone a lot of development and has been the subject of many applications. Many research studies have focused on illumination with sunlight as a means of saving energy and creating healthy lighting. Natural light illumination systems have collecting, transmitting, and lighting elements. Today, most daylight collectors use dynamic concentrators; these include Sun tracking systems. However, this design is too expensive to be cost effective. To create a low-cost collector that can be easily installed on a large building, we have designed a static concentrator, which is prismatic and cascadable, to collect sunlight for indoor illumination. The transmission component uses a large number of optical fibers. Because optical fibers are expensive, this means that most of the cost for the system will be related to transmission. In this paper, we also use a prismatic structure to design an optical coupler for coupling n to 1. With the n-to-1 coupler, the number of optical fibers necessary can be greatly reduced. Although this new natural light illumination system can effectively guide collected sunlight and send it to the basement or to other indoor places for healthy lighting, previously there has been no way to manage the collected sunlight when lighting was not desired. To solve this problem, we have designed an optical switch and a beam splitter to control and separate the transmitted light. When replacing traditional sources, the lighting should have similar characteristics, such as intensity distribution and geometric parameters, to those of traditional artificial sources. We have designed, simulated, and optimized an illumination lightpipe with a dot pattern to redistribute the collected sunlight from the natural light illumination system such that it equals the qualities of a traditional lighting system. We also provide an active lighting module that provides lighting from the natural light illumination system or LED auxiliary

  3. Illumination normalization of face image based on illuminant direction estimation and improved Retinex.

    Directory of Open Access Journals (Sweden)

    Jizheng Yi

    Full Text Available Illumination normalization of face image for face recognition and facial expression recognition is one of the most frequent and difficult problems in image processing. In order to obtain a face image with normal illumination, our method firstly divides the input face image into sixteen local regions and calculates the edge level percentage in each of them. Secondly, three local regions, which meet the requirements of lower complexity and larger average gray value, are selected to calculate the final illuminant direction according to the error function between the measured intensity and the calculated intensity, and the constraint function for an infinite light source model. After knowing the final illuminant direction of the input face image, the Retinex algorithm is improved from two aspects: (1 we optimize the surround function; (2 we intercept the values in both ends of histogram of face image, determine the range of gray levels, and stretch the range of gray levels into the dynamic range of display device. Finally, we achieve illumination normalization and get the final face image. Unlike previous illumination normalization approaches, the method proposed in this paper does not require any training step or any knowledge of 3D face and reflective surface model. The experimental results using extended Yale face database B and CMU-PIE show that our method achieves better normalization effect comparing with the existing techniques.

  4. Illumination normalization of face image based on illuminant direction estimation and improved Retinex.

    Science.gov (United States)

    Yi, Jizheng; Mao, Xia; Chen, Lijiang; Xue, Yuli; Rovetta, Alberto; Caleanu, Catalin-Daniel

    2015-01-01

    Illumination normalization of face image for face recognition and facial expression recognition is one of the most frequent and difficult problems in image processing. In order to obtain a face image with normal illumination, our method firstly divides the input face image into sixteen local regions and calculates the edge level percentage in each of them. Secondly, three local regions, which meet the requirements of lower complexity and larger average gray value, are selected to calculate the final illuminant direction according to the error function between the measured intensity and the calculated intensity, and the constraint function for an infinite light source model. After knowing the final illuminant direction of the input face image, the Retinex algorithm is improved from two aspects: (1) we optimize the surround function; (2) we intercept the values in both ends of histogram of face image, determine the range of gray levels, and stretch the range of gray levels into the dynamic range of display device. Finally, we achieve illumination normalization and get the final face image. Unlike previous illumination normalization approaches, the method proposed in this paper does not require any training step or any knowledge of 3D face and reflective surface model. The experimental results using extended Yale face database B and CMU-PIE show that our method achieves better normalization effect comparing with the existing techniques.

  5. Method and System for Dynamic Automated Corrections to Weather Avoidance Routes for Aircraft in En Route Airspace

    Science.gov (United States)

    McNally, B. David (Inventor); Erzberger, Heinz (Inventor); Sheth, Kapil (Inventor)

    2015-01-01

    A dynamic weather route system automatically analyzes routes for in-flight aircraft flying in convective weather regions and attempts to find more time and fuel efficient reroutes around current and predicted weather cells. The dynamic weather route system continuously analyzes all flights and provides reroute advisories that are dynamically updated in real time while the aircraft are in flight. The dynamic weather route system includes a graphical user interface that allows users to visualize, evaluate, modify if necessary, and implement proposed reroutes.

  6. Diffraction analysis of customized illumination technique

    Science.gov (United States)

    Lim, Chang-Moon; Kim, Seo-Min; Eom, Tae-Seung; Moon, Seung Chan; Shin, Ki S.

    2004-05-01

    Various enhancement techniques such as alternating PSM, chrome-less phase lithography, double exposure, etc. have been considered as driving forces to lead the production k1 factor towards below 0.35. Among them, a layer specific optimization of illumination mode, so-called customized illumination technique receives deep attentions from lithographers recently. A new approach for illumination customization based on diffraction spectrum analysis is suggested in this paper. Illumination pupil is divided into various diffraction domains by comparing the similarity of the confined diffraction spectrum. Singular imaging property of individual diffraction domain makes it easier to build and understand the customized illumination shape. By comparing the goodness of image in each domain, it was possible to achieve the customized shape of illumination. With the help from this technique, it was found that the layout change would not gives the change in the shape of customized illumination mode.

  7. Do Wild Great Tits Avoid Exposure to Light at Night?

    Directory of Open Access Journals (Sweden)

    Maaike de Jong

    Full Text Available Studies of wild populations have provided important insights into the effects of artificial light at night on organisms, populations and ecosystems. However, in most studies the exact amount of light at night individuals are exposed to remains unknown. Individuals can potentially control their nighttime light exposure by seeking dark spots within illuminated areas. This uncertainty makes it difficult to attribute effects to a direct effect of light at night, or to indirect effects, e.g., via an effect of light at night on food availability. In this study, we aim to quantify the nocturnal light exposure of wild birds in a previously dark forest-edge habitat, experimentally illuminated with three different colors of street lighting, in comparison to a dark control. During two consecutive breeding seasons, we deployed male great tits (Parus major with a light logger measuring light intensity every five minutes over a 24h period. We found that three males from pairs breeding in brightly illuminated nest boxes close to green and red lamp posts, were not exposed to more artificial light at night than males from pairs breeding further away. This suggests, based on our limited sample size, that these males could have been avoiding light at night by choosing a roosting place with a reduced light intensity. Therefore, effects of light at night previously reported for this species in our experimental set-up might be indirect. In contrast to urban areas where light is omnipresent, bird species in non-urban areas may evade exposure to nocturnal artificial light, thereby avoiding direct consequences of light at night.

  8. Illumination influences working memory: an EEG study.

    Science.gov (United States)

    Park, Jin Young; Min, Byoung-Kyong; Jung, Young-Chul; Pak, Hyensou; Jeong, Yeon-Hong; Kim, Eosu

    2013-09-05

    Illumination conditions appear to influence working efficacy in everyday life. In the present study, we obtained electroencephalogram (EEG) correlates of working-memory load, and investigated how these waveforms are modulated by illumination conditions. We hypothesized that illumination conditions may affect cognitive performance. We designed an EEG study to monitor and record participants' EEG during the Sternberg working memory task under four different illumination conditions. Illumination conditions were generated with a factorial design of two color-temperatures (3000 and 7100 K) by two illuminance levels (150 and 700 lx). During a working memory task, we observed that high illuminance led to significantly lower frontal EEG theta activity than did low illuminance. These differences persisted despite no significant difference in task performance between illumination conditions. We found that the latency of an early event-related potential component, such as N1, was significantly modulated by the illumination condition. The fact that the illumination condition affects brain activity but not behavioral performance suggests that the lighting conditions used in the present study did not influence the performance stage of behavioral processing. Nevertheless, our findings provide objective evidence that illumination conditions modulate brain activity. Further studies are necessary to refine the optimal lighting parameters for facilitating working memory. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Quantum Illumination with Noiseless Linear Amplifier

    International Nuclear Information System (INIS)

    Zhang Sheng-Li; Wang -Kun; Guo Jian-Sheng; Shi Jian-Hong

    2015-01-01

    Quantum illumination, that is, quantum target detection, is to detect the potential target with two-mode quantum entangled state. For a given transmitted energy, the quantum illumination can achieve a target-detection probability of error much lower than the illumination scheme without entanglement. We investigate the usefulness of noiseless linear amplification (NLA) for quantum illumination. Our result shows that NLA can help to substantially reduce the number of quantum entangled states collected for joint measurement of multi-copy quantum state. Our analysis on the NLA-assisted scheme could help to develop more efficient schemes for quantum illumination. (paper)

  10. Biological Effects Of Artificial Illumination

    Science.gov (United States)

    Corth, Richard

    1980-10-01

    We are increasingly being warned of the possible effects of so called "polluted" light, that is light that differs in spectral content from that of sunlight. We should be concerned, we are told, because all animals and plants have evolved under this natural daylight and therefore any difference between that illuminant and the artificial illuminants that are on the market today, is suspect. The usual presentation of the differences between the sunlight and the artificial illuminants are as shown in Figure 1. Here we are shown the spectral power distribution of sunlight and Cool White fluorescent light. The spectral power distributions of each have been normalized to some convenient wavelength so that each can be seen and easily compared on the same figure. But this presentation is misleading for one does not experience artificial illuminants at the same intensity as one experiences sunlight. Sunlight intensities are ordinarily found to be in the 8000 to 10,000 footcandle range whereas artificial illuminants are rarely experienced at intensity levels greater than 100 footcandles. Therefore a representative difference between the two types of illumination conditions is more accurately represented as in Figure 2. Thus if evolutionary adaptations require that humans and other animals be exposed to sunlight to ensure wellbeing, it is clear that one must be exposed to sunlight intensities. It is not feasible to expect that artificially illuminated environments will be lit to the same intensity as sunlight

  11. Systematic analysis of aircraft separation requirements

    Science.gov (United States)

    Ennis, Rachelle Lea

    2005-12-01

    Minimum separation standards are necessary for safety in the air traffic control system. At the same time, minimum separation standards constrain the flow of air traffic and cause delays that translate to millions of dollars in fuel costs. Two necessary separation standards are defined. Then, practical methods for calculating the minimum required size of these separation standards are presented. First, the protected zone is considered. The protected zone represents a region around a given aircraft that no other aircraft should penetrate for the safety of both aircraft. It defines minimum separation requirements. Three major components of the protected zone and their interplays are identified: a vortex region, a safety buffer region, and a state-uncertainty region. A systematic procedure is devised for the analysis of the state-uncertainty region. In particular, models of trajectory controls are developed that can be used to represent different modes of pilot and/or autopilot controls, such as path feedback and non-path feedback. Composite protected zones under various conditions are estimated, and effective ways to reduce sizes of protected zones for advanced air traffic management are examined. In order to maintain minimum separation standards between two aircraft, proper avoidance maneuvers must be initiated before their relative separation reaches the minimum separation due to aircraft dynamics, controller and pilot response delays, etc. The concept of the required action threshold is presented. It is defined as the advanced time for which the conflict resolution process must begin in order to maintain minimum separation requirements. Five main segments in the process of conflict resolution are identified, discussed, and modeled: state information acquisition, comprehension and decision, communication, pilot response, and aircraft maneuver. Each of the five segments is modeled via a time constant. Time estimates for the first four segments are obtained from

  12. Quasi-ADS-B Based UAV Conflict Detection and Resolution to Manned Aircraft

    Directory of Open Access Journals (Sweden)

    Chin E. Lin

    2015-01-01

    Full Text Available A Conflict Detection and Resolution (CD&R system for manned/unmanned aerial vehicle (UAV based on Automatic Dependent Surveillance-Broadcast (ADS-B concept is designed and verified in this paper. The 900 MHz XBee-Pro is selected as data transponder to broadcast flight information among participating aircraft in omnirange. Standard Compact Position Report (CPR format packet data are automatically broadcasted by ID sequencing under Quasi-ADS-B mechanism. Time Division Multiple Access (TDMA monitoring checks the designated time slot and reallocates the conflict ID. This mechanism allows the transponder to effectively share data with multiple aircraft in near airspace. The STM32f103 microprocessor is designed to handle RF, GPS, and flight data with Windows application on manned aircraft and ground control station simultaneously. Different conflict detection and collision avoidance algorithms can be implemented into the system to ensure flight safety. The proposed UAV/CD&R using Quasi-ADS-B transceiver is tested using ultralight aircraft flying at 100–120 km/hr speed in small airspace for mission simulation. The proposed hardware is also useful to additional applications to mountain hikers for emergency search and rescue. The fundamental function by the proposed UAV/CD&R using Quasi-ADS-B is verified with effective signal broadcasting for surveillance and efficient collision alert and avoidance performance to low altitude flights.

  13. Weather Avoidance Guidelines for NASA Global Hawk High-Altitude UAS

    Science.gov (United States)

    Cecil, Daniel J.; Zipser, Edward J.; Velden, Chris; Monette, Sarah; Heymsfield, Gerry; Braun, Scott; Newman, Paul; Black, Pete; Black, Michael; Dunion, Jason

    2014-01-01

    NASA operates two Global Hawk unmanned aircraft systems for Earth Science research projects. In particular, they are used in the Hurricane and Severe Storm Sentinel (HS3) project during 2012, 2013, and 2014 to take measurements from the environment around tropical cyclones, and from directly above tropical cyclones. There is concern that strict adherence to the weather avoidance rules used in 2012 may sacrifice the ability to observe important science targets. We have proposed modifications to these weather avoidance rules that we believe will improve the ability to observe science targets without compromising aircraft safety. The previous guidelines, used in 2012, specified: Do not approach thunderstorms within 25 nm during flight at FL500 or below. When flying above FL500: Do not approach reported lightning within 25NM in areas where cloud tops are reported at FL500 or higher. Aircraft should maintain at least 10000 ft vertical separation from reported lightning if cloud tops are below FL500. No over-flight of cumulus tops higher than FL500. No flight into forecast or reported icing conditions. No flight into forecast or reported moderate or severe turbulence Based on past experience with high-altitude flights over tropical cyclones, we have recommended changing this guidance to: Do not approach thunderstorms within 25 nm during flight at FL500 or below. Aircraft should maintain at least 5000 ft vertical separation from significant convective cloud tops except: a) When cloud tops above FL500: In the event of reported significant lightning activity or indicators of significant overshooting tops, do not approach within 10-25 nm, depending on pilot discretion and advice from Mission Scientist. b) When cloud tops are below FL500, maintain 10000 ft separation from reported significant lightning or indicators of significant overshooting tops. No flight into forecasted or reported icing conditions. No flight into forecasted or reported moderate or severe turbulence The

  14. Understanding avoidant leadership in health care: findings from a secondary analysis of two qualitative studies.

    Science.gov (United States)

    Jackson, Debra; Hutchinson, Marie; Peters, Kath; Luck, Lauretta; Saltman, Deborah

    2013-04-01

    To illuminate ways that avoidant leadership can be enacted in contemporary clinical settings. Avoidance is identified in relation to laissez-faire leadership and passive avoidant leadership. However, the nature and characteristics of avoidance and how it can be enacted in a clinical environment are not detailed. This paper applied secondary analysis to data from two qualitative studies. We have identified three forms of avoidant leader response: placating avoidance, where leaders affirmed concerns but abstained from action; equivocal avoidance, where leaders were ambivalent in their response; and hostile avoidance, where the failure of leaders to address concerns escalated hostility towards the complainant. Through secondary analysis of two existing sets of data, we have shed new light on avoidant leaderships and how it can be enacted in contemporary clinical settings. Further work needs to be undertaken to better understand this leadership style. We recommend that organizations ensure that all nurse leaders are aware of how best to respond to concerns of wrongdoing and that mechanisms are created to ensure timely feedback is provided about the actions taken. © 2012 Blackwell Publishing Ltd.

  15. Identifying tacit strategies in aircraft maneuvers

    Science.gov (United States)

    Lewis, Charles M.; Heidorn, P. B.

    1991-01-01

    Two machine-learning methods are presently used to characterize the avoidance strategies used by skilled pilots in simulated aircraft encounters, and a general framework for the characterization of the strategic components of skilled behavior via qualitative representation of situations and responses is presented. Descriptions of pilot maneuvers that were 'conceptually equivalent' were ascertained by a concept-learning algorithm in conjunction with a classifier system that employed a generic algorithm; satisficing and 'buggy' strategies were thereby revealed.

  16. Real-Time Hardware-in-the-Loop Laboratory Testing for Multisensor Sense and Avoid Systems

    Directory of Open Access Journals (Sweden)

    Giancarmine Fasano

    2013-01-01

    Full Text Available This paper focuses on a hardware-in-the-loop facility aimed at real-time testing of architectures and algorithms of multisensor sense and avoid systems. It was developed within a research project aimed at flight demonstration of autonomous non-cooperative collision avoidance for Unmanned Aircraft Systems. In this framework, an optionally piloted Very Light Aircraft was used as experimental platform. The flight system is based on multiple-sensor data integration and it includes a Ka-band radar, four electro-optical sensors, and two dedicated processing units. The laboratory test system was developed with the primary aim of prototype validation before multi-sensor tracking and collision avoidance flight tests. System concept, hardware/software components, and operating modes are described in the paper. The facility has been built with a modular approach including both flight hardware and simulated systems and can work on the basis of experimentally tested or synthetically generated scenarios. Indeed, hybrid operating modes are also foreseen which enable performance assessment also in the case of alternative sensing architectures and flight scenarios that are hardly reproducible during flight tests. Real-time multisensor tracking results based on flight data are reported, which demonstrate reliability of the laboratory simulation while also showing the effectiveness of radar/electro-optical fusion in a non-cooperative collision avoidance architecture.

  17. Illumination estimation via thin-plate spline interpolation.

    Science.gov (United States)

    Shi, Lilong; Xiong, Weihua; Funt, Brian

    2011-05-01

    Thin-plate spline interpolation is used to interpolate the chromaticity of the color of the incident scene illumination across a training set of images. Given the image of a scene under unknown illumination, the chromaticity of the scene illumination can be found from the interpolated function. The resulting illumination-estimation method can be used to provide color constancy under changing illumination conditions and automatic white balancing for digital cameras. A thin-plate spline interpolates over a nonuniformly sampled input space, which in this case is a training set of image thumbnails and associated illumination chromaticities. To reduce the size of the training set, incremental k medians are applied. Tests on real images demonstrate that the thin-plate spline method can estimate the color of the incident illumination quite accurately, and the proposed training set pruning significantly decreases the computation.

  18. RESEARCH OF NIGHT LIGHT EFFECTS ON COLORIMETRIC CHARACTERISTICS OF IMAGE PERCEIVED BY THE PILOT IN AN AIRCRAFT COCKPIT

    Directory of Open Access Journals (Sweden)

    I. O. Zharinov

    2015-09-01

    Full Text Available Subject of Research. The influence of radiation spectra from the source of artificial night light on colorimetric characteristics of image perceived by the pilot in the aircraft cockpit has been studied. The image is displayed on the LCD screen of multifunctional color indication equipment unit. Night illumination of the cockpit is performed with the use of artificial lamps of red, green, blue and, rarely, white light. Method. Any given color to be displayed on the screen is perceived by an observer differently with presence and absence of external illumination. When external light of white color is used, perceived color depends upon color temperature of the light source; if illumination source has any arbitrary spectral characteristics, then perceivable color depends upon whole spectral content of the used source. The color, perceived by an observer, is formed as the mixture of the color displayed on the screen (image element color with the color presented by diffuse reflection of external illumination source from the surface of the screen. The brightness of both colors is added. Mathematical expressions, that define calculation rule for chromaticity coordinates of color perceived by an observer, are based on the Grassmann’s law of additive color mixing. Quantitative analysis of the effect, caused by radiation spectra from an external source of artificial light on color gamut area, corresponding to image, perceived by an observer, has been performed through simulation in MathCad 15.0. Main Results. It was shown, that the color palette of on-board indication equipment, obtained on automated working place for any preset source of external illumination of fluorescent spectrum, corresponding to white light, is not usable correctly in the aircraft night flight mode. An observer loses ability to perceive properly saturated primary colors of red and blue in the case of green-blue light source of external illumination; and the same issue occurs with

  19. Dynamic thermal model of photovoltaic cell illuminated by laser beam

    Science.gov (United States)

    Liu, Xiaoguang; Hua, Wenshen; Guo, Tong

    2015-07-01

    Photovoltaic cell is one of the most important components of laser powered unmanned aerial vehicle. Illuminated by high power laser beam, photovoltaic cell temperature increases significantly, which leads to efficiency drop, or even physical damage. To avoid such situation, the temperature of photovoltaic cell must be predicted precisely. A dynamic thermal model of photovoltaic cell is established in this paper, and the relationships between photovoltaic cell temperature and laser power, wind speed, ambient temperature are also analyzed. Simulation result indicates that illuminated by a laser beam, the temperature of photovoltaic cell rises gradually and reach to a constant maximum value. There is an approximately linear rise in photovoltaic cell temperature as the laser flux gets higher. The higher wind speed is, the stronger forced convection is, and then the lower photovoltaic cell temperature is. But the relationship between photovoltaic cell temperature and wind speed is not linear. Photovoltaic cell temperature is proportional to the ambient temperature. For each increase of 1 degree of ambient temperature, there is approximate 1 degree increase in photovoltaic cell temperature. The result will provide fundamentals to take reasonable measures to control photovoltaic cell temperature.

  20. Application of an ADS-B Sense and Avoid Algorithm

    Science.gov (United States)

    Arteaga, Ricardo; Kotcher, Robert; Cavalin, Moshe; Dandachy, Mohammed

    2016-01-01

    The National Aeronautics and Space Administration Armstrong Flight Research Center in Edwards, California is leading a program aimed towards integrating unmanned aircraft system into the national airspace system (UAS in the NAS). The overarching goal of the program is to reduce technical barriers associated with related safety issues as well as addressing challenges that will allow UAS routine access to the national airspace. This research paper focuses on three novel ideas: (1) A design of an integrated UAS equipped with Automatic Dependent Surveillance-Broadcast that constructs a more accurate state-based airspace model; (2) The use of Stratway Algorithm in a real-time environment; and (3) The verification and validation of sense and avoid performance and usability test results which provide a pilot's perspective on how our system will benefit the UAS in the NAS program for both piloted and unmanned aircraft.

  1. Image illumination enhancement with an objective no-reference measure of illumination assessment based on Gaussian distribution mapping

    Directory of Open Access Journals (Sweden)

    Gholamreza Anbarjafari

    2015-12-01

    Full Text Available Illumination problems have been an important concern in many image processing applications. The pattern of the histogram on an image introduces meaningful features; hence within the process of illumination enhancement, it is important not to destroy such information. In this paper we propose a method to enhance image illumination using Gaussian distribution mapping which also keeps the information laid on the pattern of the histogram on the original image. First a Gaussian distribution based on the mean and standard deviation of the input image will be calculated. Simultaneously a Gaussian distribution with the desired mean and standard deviation will be calculated. Then a cumulative distribution function of each of the Gaussian distributions will be calculated and used in order to map the old pixel value onto the new pixel value. Another important issue in the field of illumination enhancement is absence of a quantitative measure for the assessment of the illumination of an image. In this research work, a quantitative measure indicating the illumination state, i.e. contrast level and brightness of an image, is also proposed. The measure utilizes the estimated Gaussian distribution of the input image and the Kullback-Leibler Divergence (KLD between the estimated Gaussian and the desired Gaussian distributions to calculate the quantitative measure. The experimental results show the effectiveness and the reliability of the proposed illumination enhancement technique, as well as the proposed illumination assessment measure over conventional and state-of-the-art techniques.

  2. Conceptual model for collision detection and avoidance for runway incursion prevention

    Science.gov (United States)

    Latimer, Bridgette A.

    The Federal Aviation Administration (FAA), National Transportation and Safety Board (NTSB), National Aeronautics and Space Administration (NASA), numerous corporate entities, and research facilities have each come together to determine ways to make air travel safer and more efficient. These efforts have resulted in the development of a concept known as the Next Generation (Next Gen) of Aircraft or Next Gen. The Next Gen concept promises to be a clear departure from the way in which aircraft operations are performed today. The Next Gen initiatives require that modifications are made to the existing National Airspace System (NAS) concept of operations, system level requirements, software (SW) and hardware (HW) requirements, SW and HW designs and implementations. A second example of the changes in the NAS is the shift away from air traffic controllers having the responsibility for separation assurance. In the proposed new scheme of free flight, each aircraft would be responsible for assuring that it is safely separated from surrounding aircraft. Free flight would allow the separation minima for enroute aircraft to be reduced from 2000 nautical miles (nm) to 1000 nm. Simply put "Free Flight is a concept of air traffic management that permits pilots and controllers to share information and work together to manage air traffic from pre-flight through arrival without compromising safety [107]." The primary goal of this research project was to create a conceptual model that embodies the essential ingredients needed for a collision detection and avoidance system. This system was required to operate in two modes: air traffic controller's perspective and pilot's perspective. The secondary goal was to demonstrate that the technologies, procedures, and decision logic embedded in the conceptual model were able to effectively detect and avoid collision risks from both perspectives. Embodied in the conceptual model are five distinct software modules: Data Acquisition, State

  3. Dynamic Weather Routes: A Weather Avoidance Concept for Trajectory-Based Operations

    Science.gov (United States)

    McNally, B. David; Love, John

    2011-01-01

    The integration of convective weather modeling with trajectory automation for conflict detection, trial planning, direct routing, and auto resolution has uncovered a concept that could help controllers, dispatchers, and pilots identify improved weather routes that result in significant savings in flying time and fuel burn. Trajectory automation continuously and automatically monitors aircraft in flight to find those that could potentially benefit from improved weather reroutes. Controllers, dispatchers, and pilots then evaluate reroute options to assess their suitability given current weather and traffic. In today's operations aircraft fly convective weather avoidance routes that were implemented often hours before aircraft approach the weather and automation does not exist to automatically monitor traffic to find improved weather routes that open up due to changing weather conditions. The automation concept runs in real-time and employs two keysteps. First, a direct routing algorithm automatically identifies flights with large dog legs in their routes and therefore potentially large savings in flying time. These are common - and usually necessary - during convective weather operations and analysis of Fort Worth Center traffic shows many aircraft with short cuts that indicate savings on the order of 10 flying minutes. The second and most critical step is to apply trajectory automation with weather modeling to determine what savings could be achieved by modifying the direct route such that it avoids weather and traffic and is acceptable to controllers and flight crews. Initial analysis of Fort Worth Center traffic suggests a savings of roughly 50% of the direct route savings could be achievable.The core concept is to apply trajectory automation with convective weather modeling in real time to identify a reroute that is free of weather and traffic conflicts and indicates enough time and fuel savings to be considered. The concept is interoperable with today

  4. Aerial vehicles collision avoidance using monocular vision

    Science.gov (United States)

    Balashov, Oleg; Muraviev, Vadim; Strotov, Valery

    2016-10-01

    In this paper image-based collision avoidance algorithm that provides detection of nearby aircraft and distance estimation is presented. The approach requires a vision system with a single moving camera and additional information about carrier's speed and orientation from onboard sensors. The main idea is to create a multi-step approach based on a preliminary detection, regions of interest (ROI) selection, contour segmentation, object matching and localization. The proposed algorithm is able to detect small targets but unlike many other approaches is designed to work with large-scale objects as well. To localize aerial vehicle position the system of equations relating object coordinates in space and observed image is solved. The system solution gives the current position and speed of the detected object in space. Using this information distance and time to collision can be estimated. Experimental research on real video sequences and modeled data is performed. Video database contained different types of aerial vehicles: aircrafts, helicopters, and UAVs. The presented algorithm is able to detect aerial vehicles from several kilometers under regular daylight conditions.

  5. "Chrono-functional milk": The difference between melatonin concentrations in night-milk versus day-milk under different night illumination conditions.

    Science.gov (United States)

    Asher, A; Shabtay, A; Brosh, A; Eitam, H; Agmon, R; Cohen-Zinder, M; Zubidat, A E; Haim, A

    2015-01-01

    Pineal melatonin (MLT) is produced at highest levels during the night, under dark conditions. We evaluated differences in MLT-concentration by comparing daytime versus night time milk samples, from two dairy farms with different night illumination conditions: (1) natural dark (Dark-Night); (2) short wavelength Artificial Light at Night (ALAN, Night-Illuminated). Samples were collected from 14 Israeli Holstein cows from each commercial dairy farm at 04:30 h ("Night-milk") 12:30 h ("Day-milk") and analyzed for MLT-concentration. In order to study the effects of night illumination conditions on cows circadian rhythms, Heart Rate (HR) daily rhythms were recorded. MLT-concentrations of Night-milk samples from the dark-night group were significantly (p Night-illuminated conditions (30.70 ± 1.79 and 17.81 ± 0.33 pg/ml, respectively). Interestingly, night illumination conditions also affected melatonin concentrations at daytime where under Dark-Night conditions values are significantly (p Night-Illuminated conditions, (5.36 ± 0.33 and 3.30 ± 0.18 pg/ml, respectively). There were no significant differences between the two treatments in the milk yield and milk composition except somatic cell count (SCC), which was significantly lower (p = 0.02) in the Dark-Night group compared with the Night-Illuminated group. Cows in both groups presented a significant (p night illuminated cows feeding and milking time are the "time keeper", while in the Dark-night cows, HR rhythms were entrained by the light/dark cycle. The higher MLT-concentration in Dark-night cows with the lower SCC values calls upon farmers to avoid exposure of cows to ALAN. Therefore, under Dark-night conditions milk quality will improve by lowering SCC values where separation between night and day of such milk can produce chrono-functional milk, naturally rich with MLT.

  6. Real-time global illumination on mobile device

    Science.gov (United States)

    Ahn, Minsu; Ha, Inwoo; Lee, Hyong-Euk; Kim, James D. K.

    2014-02-01

    We propose a novel method for real-time global illumination on mobile devices. Our approach is based on instant radiosity, which uses a sequence of virtual point lights in order to represent the e ect of indirect illumination. Our rendering process consists of three stages. With the primary light, the rst stage generates a local illumination with the shadow map on GPU The second stage of the global illumination uses the re ective shadow map on GPU and generates the sequence of virtual point lights on CPU. Finally, we use the splatting method of Dachsbacher et al 1 and add the indirect illumination to the local illumination on GPU. With the limited computing resources in mobile devices, a small number of virtual point lights are allowed for real-time rendering. Our approach uses the multi-resolution sampling method with 3D geometry and attributes simultaneously and reduce the total number of virtual point lights. We also use the hybrid strategy, which collaboratively combines the CPUs and GPUs available in a mobile SoC due to the limited computing resources in mobile devices. Experimental results demonstrate the global illumination performance of the proposed method.

  7. Active illumination and appearance model for face alignment

    DEFF Research Database (Denmark)

    Kahraman, Fatih; Gokmen, M.; Darkner, Sune

    2010-01-01

    Illumination conditions have an explicit effect on the performance of face recognition systems. In particular, varying the illumination upon the face imposes such, complex effects that the identification often fails to provide a stable performance level. In this paper, we propose an approach......, integrating face identity and illumination models in order to reach acceptable and stable face recognition rates. For this purpose, Active Appearance Model (A AM) and illumination model of faces are combined in order to obtain an illumination invariant face localization. The proposed method is an integrated......, is sufficient. There is no need to build complex models for illumination. As a result, this paper has presented a simple and efficient method for face modeling and face alignment in order to increase the performance of face localization by means of the proposed illumination invariant AIA method for face...

  8. Building Toward an Unmanned Aircraft System Training Strategy

    Science.gov (United States)

    2014-01-01

    and fly at altitudes higher than commercial airlines do. They file instrument flight rules flight plans. However, BAMS-D and Triton do not...incorporate sense-and-avoid technology, and conflicts can exist with visual flight rules aircraft in the airspace. Airspace issues exist at some Navy training...MODS, Washington, DC, February 2011, p. 1 of 10. 164 Peter La Franchi , “Directory: Unmanned Air Vehicles,” Flight International, June 21st, 2005, p. 56

  9. American Illuminations

    DEFF Research Database (Denmark)

    Nye, David

    Illuminated fêtes and civic celebrations began in Renaissance Italy and spread through the courts of Europe. Their fireworks, torches, lamps, and special effects glorified the monarch, marked the birth of a prince, or celebrated military victory. Nineteenth-century Americans rejected such monarch...

  10. Collision Avoidance for Airport Traffic Concept Evaluation

    Science.gov (United States)

    Jones, Denise R.; Prinzel, Lawrence J., III; Otero, Sharon D.; Barker, Glover D.

    2009-01-01

    An initial Collision Avoidance for Airport Traffic (CAAT) concept for the Terminal Maneuvering Area (TMA) was evaluated in a simulation study at the National Aeronautics and Space Administration (NASA) Langley Research Center. CAAT is being designed to enhance surface situation awareness and provide cockpit alerts of potential conflicts during runway, taxi, and low altitude air-to-air operations. The purpose of the study was to evaluate the initial concept for an aircraft-based method of conflict detection and resolution (CD&R) in the TMA focusing on conflict detection algorithms and alerting display concepts. This paper gives an overview of the CD&R concept, simulation study, and test results.

  11. Catalyzed reactions at illuminated semiconductor interfaces

    International Nuclear Information System (INIS)

    Wrighton, M.S.

    1984-01-01

    Many desirable minority carrier chemical redox processes are too slow to compete with e - -h + recombination at illuminated semiconductor/liquid electrolyte junction interfaces. Reductions of H 2 O to H 2 or CO 2 to compounds having C--H bonds are too slow to compete with e - -h + recombination at illuminated p-type semiconductors, for example. Approaches to improve the rate of the desired processes involving surface modification techniques are described. Photoanodes are plagued by the additional problem of oxidative decomposition under illumination with > or =E/sub g/ illumination. The photo-oxidation of Cl - , Br - , and H 2 O is considered to illustrate the concepts involved. Proof of concept experiments establish that catalysis can be effective in dramatically improving direct solar fuel production; efficiencies of >10% have been demonstrated

  12. Illuminance: Computerized simulation

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, A

    1991-03-01

    One of the main objectives of a graphics work-station is to create images that are as realistic as possible. This paper reviews and assesses the state-of-the-art in the field of illuminance simulation. The techniques examined are: ray tracing, in which illuminance in a given ambient is calculated in an approximate way by tracing individual rays of light; the 'radiosity' (a term combining surface radiancy and reflectivity) method, based on the calculation of the ambient's thermodynamics and which considers the effects of different surface colours; progressive improvement, in which 'radiosity' is calculated step by step with increasing levels of detail. The Gouraud and Phong methods of representing the effects of shade are also compared.

  13. A Reference Software Architecture to Support Unmanned Aircraft Integration in the National Airspace System

    Science.gov (United States)

    2012-07-01

    and Avoid ( SAA ) testbed that provides some of the core services . This paper describes the general architecture and a SAA testbed implementation that...that provides data and software services to enable a set of Unmanned Aircraft (UA) platforms to operate in a wide range of air domains which may...implemented by MIT Lincoln Laboratory in the form of a Sense and Avoid ( SAA ) testbed that provides some of the core services . This paper describes the general

  14. Development of flying spot illumination system for stage lighting

    Science.gov (United States)

    Asakawa, Hisashi; Ishii, Katsunori; Koshiro, Hikari; Baba, Junko; Wakaki, Moriaki

    2014-02-01

    The system to control the area of illumination is important for the luminaires used for stages and TV studios. Presently the methods to change the distance between a lamp and lenses, or to use a zooming projection of the aperture illuminated by the lamp are used to control the area. However, these methods require many optical components or mechanical components. Moreover, the energy of the light source is partially consumed by the absorption of the shutter on adjusting the illumination area. On the other hand, the control of the illuminance over the illuminated area is not possible by the methods. In this study, we developed the lighting system which enables to control both the illuminated area and the illuminance distribution within the area by scanning the beam from a LED array light source. The area of illumination was expanded along one dimension by scanning the LED beam using a rotating polygon mirror. The selection of the illuminated width and the control of the illuminance distribution were achieved by synchronizing the pulse width modulation (PWM) control of the LED with the rotation of the mirror using a time sharing control. As a result, various illuminance distributions can be realized at real time by using software control for the luminaire. The developed system has the merits of compact and high efficiency.

  15. Illumination correction in psoriasis lesions images

    DEFF Research Database (Denmark)

    Maletti, Gabriela Mariel; Ersbøll, Bjarne Kjær

    2003-01-01

    An approach to automatically correct illumination problems in dermatological images is presented. The illumination function is estimated after combining the thematic map indicating skin-produced by an automated classification scheme- with the dermatological image data. The user is only required t...

  16. AN ILLUMINATION INVARIANT TEXTURE BASED FACE RECOGNITION

    Directory of Open Access Journals (Sweden)

    K. Meena

    2013-11-01

    Full Text Available Automatic face recognition remains an interesting but challenging computer vision open problem. Poor illumination is considered as one of the major issue, since illumination changes cause large variation in the facial features. To resolve this, illumination normalization preprocessing techniques are employed in this paper to enhance the face recognition rate. The methods such as Histogram Equalization (HE, Gamma Intensity Correction (GIC, Normalization chain and Modified Homomorphic Filtering (MHF are used for preprocessing. Owing to great success, the texture features are commonly used for face recognition. But these features are severely affected by lighting changes. Hence texture based models Local Binary Pattern (LBP, Local Derivative Pattern (LDP, Local Texture Pattern (LTP and Local Tetra Patterns (LTrPs are experimented under different lighting conditions. In this paper, illumination invariant face recognition technique is developed based on the fusion of illumination preprocessing with local texture descriptors. The performance has been evaluated using YALE B and CMU-PIE databases containing more than 1500 images. The results demonstrate that MHF based normalization gives significant improvement in recognition rate for the face images with large illumination conditions.

  17. LightForce: An Update on Orbital Collision Avoidance Using Photon Pressure

    Science.gov (United States)

    Stupl, Jan; Mason, James; De Vries, Willem; Smith, Craig; Levit, Creon; Marshall, William; Salas, Alberto Guillen; Pertica, Alexander; Olivier, Scot; Ting, Wang

    2012-01-01

    We present an update on our research on collision avoidance using photon-pressure induced by ground-based lasers. In the past, we have shown the general feasibility of employing small orbit perturbations, induced by photon pressure from ground-based laser illumination, for collision avoidance in space. Possible applications would be protecting space assets from impacts with debris and stabilizing the orbital debris environment. Focusing on collision avoidance rather than de-orbit, the scheme avoids some of the security and liability implications of active debris removal, and requires less sophisticated hardware than laser ablation. In earlier research we concluded that one ground based system consisting of a 10 kW class laser, directed by a 1.5 m telescope with adaptive optics, could avoid a significant fraction of debris-debris collisions in low Earth orbit. This paper describes our recent efforts, which include refining our original analysis, employing higher fidelity simulations and performing experimental tracking tests. We investigate the efficacy of one or more laser ground stations for debris-debris collision avoidance and satellite protection using simulations to investigate multiple case studies. The approach includes modeling of laser beam propagation through the atmosphere, the debris environment (including actual trajectories and physical parameters), laser facility operations, and simulations of the resulting photon pressure. We also present the results of experimental laser debris tracking tests. These tests track potential targets of a first technical demonstration and quantify the achievable tracking performance.

  18. Anisotropic Density Estimation in Global Illumination

    DEFF Research Database (Denmark)

    Schjøth, Lars

    2009-01-01

    Density estimation employed in multi-pass global illumination algorithms gives cause to a trade-off problem between bias and noise. The problem is seen most evident as blurring of strong illumination features. This thesis addresses the problem, presenting four methods that reduce both noise...

  19. Real time global illumination using the GPU

    OpenAIRE

    Bengtsson, Morgan

    2010-01-01

    Global illumination is an important factor when striving for photo realism in computergraphics. This thesis describes why this is the case, and why global illumination is considered acomplex problem to solve. The problem becomes even more demanding when considering realtime purposes. Resent research has proven it possible to produce global illumination in realtime. Therefore the subject of this thesis is to compare and evaluate a number of those methods. An implementation is presented based o...

  20. Tailored reflectors for illumination.

    Science.gov (United States)

    Jenkins, D; Winston, R

    1996-04-01

    We report on tailored reflector design methods that allow the placement of general illumination patterns onto a target plane. The use of a new integral design method based on the edge-ray principle of nonimaging optics gives much more compact reflector shapes by eliminating the need for a gap between the source and the reflector profile. In addition, the reflectivity of the reflector is incorporated as a design parameter. We show the performance of design for constant irradiance on a distant plane, and we show how a leading-edge-ray method may be used to achieve general illumination patterns on nearby targets.

  1. Spiritual Art: A Study of Illuminated Drawings

    Directory of Open Access Journals (Sweden)

    Fatemeh Kateb

    2017-12-01

    Full Text Available Illumination can be seen as a collection of exquisite and novel designs that painters and illumination-workers use to make religious, scientific, cultural, historical, and other collections of work beautiful. The professionals of illumination use these techniques in books to beautifully virtualize the golden pages of the eternal literature and the religious texts of their homeland. In this way, the sides and margins of the pages are decorated with designs of Islimi (arabesque branches, stems, flowers, and Cathay (Khataei leaves. Illuminations like paintings have various schools and periods, such as the Seljuk, Bukhara, Timurid, Safavid, Qajar schools, with further branches within each school. The illuminations of different periods represent the states and spirits of those eras. However, the illustrated paintings have been performed in the primary state in each school and era with some minor differences in colors and designs, and it can be said that the basis of the illustrated designs are three geometric shapes of the square, circle and triangle, and the combination of these three shapes. In this article, we try to study illumination drawings in terms of the spiritual dimension and its effect on the soul and psych. Furthermore; we will study the spiritual nature of the motifs in order to achieve a deeper understanding of the spirit of Islamic art.

  2. Tolerancing a lens for LED uniform illumination

    Science.gov (United States)

    Ryu, Jieun; Sasian, Jose

    2017-08-01

    A method to evaluate tolerance sensitivities for lenses used to produce uniform illumination is presented. Closed form surfaces are used to define optical surfaces and relative illumination is calculated from light etendue considerations.

  3. Open LED Illuminator: A Simple and Inexpensive LED Illuminator for Fast Multicolor Particle Tracking in Neurons

    Science.gov (United States)

    Bosse, Jens B.; Tanneti, Nikhila S.; Hogue, Ian B.; Enquist, Lynn W.

    2015-01-01

    Dual-color live cell fluorescence microscopy of fast intracellular trafficking processes, such as axonal transport, requires rapid switching of illumination channels. Typical broad-spectrum sources necessitate the use of mechanical filter switching, which introduces delays between acquisition of different fluorescence channels, impeding the interpretation and quantification of highly dynamic processes. Light Emitting Diodes (LEDs), however, allow modulation of excitation light in microseconds. Here we provide a step-by-step protocol to enable any scientist to build a research-grade LED illuminator for live cell microscopy, even without prior experience with electronics or optics. We quantify and compare components, discuss our design considerations, and demonstrate the performance of our LED illuminator by imaging axonal transport of herpes virus particles with high temporal resolution. PMID:26600461

  4. Open LED Illuminator: A Simple and Inexpensive LED Illuminator for Fast Multicolor Particle Tracking in Neurons.

    Directory of Open Access Journals (Sweden)

    Jens B Bosse

    Full Text Available Dual-color live cell fluorescence microscopy of fast intracellular trafficking processes, such as axonal transport, requires rapid switching of illumination channels. Typical broad-spectrum sources necessitate the use of mechanical filter switching, which introduces delays between acquisition of different fluorescence channels, impeding the interpretation and quantification of highly dynamic processes. Light Emitting Diodes (LEDs, however, allow modulation of excitation light in microseconds. Here we provide a step-by-step protocol to enable any scientist to build a research-grade LED illuminator for live cell microscopy, even without prior experience with electronics or optics. We quantify and compare components, discuss our design considerations, and demonstrate the performance of our LED illuminator by imaging axonal transport of herpes virus particles with high temporal resolution.

  5. Nonimaging optical illumination system

    Energy Technology Data Exchange (ETDEWEB)

    Winston, R.; Ries, H.

    2000-02-01

    A nonimaging illumination optical device for producing a selected far field illuminance over an angular range. The optical device includes a light source, a light reflecting surface, and a family of light edge rays defined along a reference line with the reflecting surface defined in terms of the reference line 104 as a parametric function R(t) where t is a scalar parameter position and R(t) = k(t) + Du(t) where k(t) is a parameterization of the reference line 104, and D is a distance from a point on the reference line 104 to the reflection surface 108 along the desired edge ray through the point.

  6. FAULT DIAGNOSIS OF AN AIRCRAFT CONTROL SURFACES WITH AN AUTOMATED CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    Blessing D. Ogunvoul

    2017-01-01

    Full Text Available This article is devoted to studying of fault diagnosis of an aircraft control surfaces using fault models to identify specific causes. Such failures as jamming, vibration, extreme run out and performance decrease are covered.It is proved that in case of an actuator failure or flight control structural damage, the aircraft performance decreases significantly. Commercial aircraft frequently appear in the areas of military conflicts and terrorist activity, where the risk of shooting attack is high, for example in Syria, Iraq, South Sudan etc. Accordingly, it is necessary to create and assess the fault model to identify the flight control failures.The research results demonstrate that the adequate fault model is the first step towards the managing the challenges of loss of aircraft controllability. This model is also an element of adaptive failure-resistant management model.The research considers the relationship between the parameters of an i th state of a control surface and its angular rate, also parameters classification associated with specific control surfaces in order to avoid conflict/inconsistency in the determination of a faulty control surface and its condition.The results of the method obtained in this article can be used in the design of an aircraft automated control system for timely identification of fault/failure of a specific control surface, that would contribute to an effective role aimed at increasing the survivability of an aircraft and increasing the acceptable level of safety due to loss of control.

  7. Database on aircraft accidents

    International Nuclear Information System (INIS)

    Nishio, Masahide; Koriyama, Tamio

    2012-09-01

    The Reactor Safety Subcommittee in the Nuclear Safety and Preservation Committee published the report 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' as the standard method for evaluating probability of aircraft crash into nuclear reactor facilities in July 2002. In response to the report, Japan Nuclear Energy Safety Organization has been collecting open information on aircraft accidents of commercial airplanes, self-defense force (SDF) airplanes and US force airplanes every year since 2003, sorting out them and developing the database of aircraft accidents for latest 20 years to evaluate probability of aircraft crash into nuclear reactor facilities. This year, the database was revised by adding aircraft accidents in 2010 to the existing database and deleting aircraft accidents in 1991 from it, resulting in development of the revised 2011 database for latest 20 years from 1991 to 2010. Furthermore, the flight information on commercial aircrafts was also collected to develop the flight database for latest 20 years from 1991 to 2010 to evaluate probability of aircraft crash into reactor facilities. The method for developing the database of aircraft accidents to evaluate probability of aircraft crash into reactor facilities is based on the report 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' described above. The 2011 revised database for latest 20 years from 1991 to 2010 shows the followings. The trend of the 2011 database changes little as compared to the last year's one. (1) The data of commercial aircraft accidents is based on 'Aircraft accident investigation reports of Japan transport safety board' of Ministry of Land, Infrastructure, Transport and Tourism. 4 large fixed-wing aircraft accidents, 58 small fixed-wing aircraft accidents, 5 large bladed aircraft accidents and 114 small bladed aircraft accidents occurred. The relevant accidents for evaluating

  8. Determination of allowable time for decision making in Collision Avoidance Systems in Free Flight Environment

    Directory of Open Access Journals (Sweden)

    В.П. Харченко

    2004-01-01

    Full Text Available  A method of a sequential time evaluation of choice of variant and decision making to avoid predicted dangerous approach of the aircraft at implementation of Free Flight concept in air traffic management is presented. Expressions for an evaluation of boundary instants by using the spline method are derived. Interval estimation is given by calculation of a confidence time interval.

  9. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Manufacture of new aircraft, aircraft... Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b) and (c) of this section, no person may manufacture a new aircraft, aircraft engine, or propeller based on...

  10. Analysis of image plane's Illumination in Image-forming System

    International Nuclear Information System (INIS)

    Duan Lihua; Zeng Yan'an; Zhang Nanyangsheng; Wang Zhiguo; Yin Shiliang

    2011-01-01

    In the detection of optical radiation, the detecting accuracy is affected by optic power distribution of the detector's surface to a large extent. In addition, in the image-forming system, the quality of the image is greatly determined by the uniformity of the image's illumination distribution. However, in the practical optical system, affected by the factors such as field of view, false light and off axis and so on, the distribution of the image's illumination tends to be non uniform, so it is necessary to discuss the image plane's illumination in image-forming systems. In order to analyze the characteristics of the image-forming system at a full range, on the basis of photometry, the formulas to calculate the illumination of the imaging plane have been summarized by the numbers. Moreover, the relationship between the horizontal offset of the light source and the illumination of the image has been discussed in detail. After that, the influence of some key factors such as aperture angle, off-axis distance and horizontal offset on illumination of the image has been brought forward. Through numerical simulation, various theoretical curves of those key factors have been given. The results of the numerical simulation show that it is recommended to aggrandize the diameter of the exit pupil to increase the illumination of the image. The angle of view plays a negative role in the illumination distribution of the image, that is, the uniformity of the illumination distribution can be enhanced by compressing the angle of view. Lastly, it is proved that telecentric optical design is an effective way to advance the uniformity of the illumination distribution.

  11. Infrared Illuminated CdZnTe detectors with improved performance

    International Nuclear Information System (INIS)

    Ivanov, V.; Loutchanski, A.; Dorogov, P.; Khinoverov, S.

    2013-06-01

    It was found that IR illumination of a properly chosen wavelength and intensity can significantly improve spectrometric characteristics of CdZnTe quasi-hemispherical detectors [1]. Improving of the spectrometric characteristics is due to improvement of uniformity of charge collection by the detector volume. For operation at room temperature the optimal wavelength of IR illumination is about 940 nm, but for operation at lower temperature of -20 deg. C the optimal wavelengths of IR illumination is about 1050 nm. Infrared illumination can be performed using conventional low-power IR LEDs. Application of SMD LEDs allows produce miniature detection probes with IR illuminated CdZnTe detectors. We have fabricated and tested a variety of detection probes with CdZnTe quasi-hemispherical detectors from the smallest with volumes of 1-5 mm 3 to larger with volumes of 1.5 cm 3 and 4.0 cm 3 . The use of IR illumination significantly improves spectrometric characteristics of the probes operating at room temperature, especially probes with detectors of large volumes. The probe with the detector of 4 cm 3 without IR illumination had energy resolution of 24.2 keV at 662 keV and of 12.5 keV with IR illumination. (authors)

  12. Database on aircraft accidents

    International Nuclear Information System (INIS)

    Nishio, Masahide; Koriyama, Tamio

    2013-11-01

    The Reactor Safety Subcommittee in the Nuclear Safety and Preservation Committee published 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' as the standard method for evaluating probability of aircraft crash into nuclear reactor facilities in July 2002. In response to this issue, Japan Nuclear Energy Safety Organization has been collecting open information on aircraft accidents of commercial airplanes, self-defense force (SDF) airplanes and US force airplanes every year since 2003, sorting out them and developing the database of aircraft accidents for the latest 20 years to evaluate probability of aircraft crash into nuclear reactor facilities. In this report the database was revised by adding aircraft accidents in 2011 to the existing database and deleting aircraft accidents in 1991 from it, resulting in development of the revised 2012 database for the latest 20 years from 1992 to 2011. Furthermore, the flight information on commercial aircrafts was also collected to develop the flight database for the latest 20 years from 1992 to 2011 to evaluate probability of aircraft crash into reactor facilities. The method for developing the database of aircraft accidents to evaluate probability of aircraft crash into reactor facilities is based on the report 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' described above. The 2012 revised database for the latest 20 years from 1992 to 2011 shows the followings. The trend of the 2012 database changes little as compared to the last year's report. (1) The data of commercial aircraft accidents is based on 'Aircraft accident investigation reports of Japan transport safety board' of Ministry of Land, Infrastructure, Transport and Tourism. The number of commercial aircraft accidents is 4 for large fixed-wing aircraft, 58 for small fixed-wing aircraft, 5 for large bladed aircraft and 99 for small bladed aircraft. The relevant accidents

  13. Illumination compensation in ground based hyperspectral imaging

    Science.gov (United States)

    Wendel, Alexander; Underwood, James

    2017-07-01

    Hyperspectral imaging has emerged as an important tool for analysing vegetation data in agricultural applications. Recently, low altitude and ground based hyperspectral imaging solutions have come to the fore, providing very high resolution data for mapping and studying large areas of crops in detail. However, these platforms introduce a unique set of challenges that need to be overcome to ensure consistent, accurate and timely acquisition of data. One particular problem is dealing with changes in environmental illumination while operating with natural light under cloud cover, which can have considerable effects on spectral shape. In the past this has been commonly achieved by imaging known reference targets at the time of data acquisition, direct measurement of irradiance, or atmospheric modelling. While capturing a reference panel continuously or very frequently allows accurate compensation for illumination changes, this is often not practical with ground based platforms, and impossible in aerial applications. This paper examines the use of an autonomous unmanned ground vehicle (UGV) to gather high resolution hyperspectral imaging data of crops under natural illumination. A process of illumination compensation is performed to extract the inherent reflectance properties of the crops, despite variable illumination. This work adapts a previously developed subspace model approach to reflectance and illumination recovery. Though tested on a ground vehicle in this paper, it is applicable to low altitude unmanned aerial hyperspectral imagery also. The method uses occasional observations of reference panel training data from within the same or other datasets, which enables a practical field protocol that minimises in-field manual labour. This paper tests the new approach, comparing it against traditional methods. Several illumination compensation protocols for high volume ground based data collection are presented based on the results. The findings in this paper are

  14. Multirole cargo aircraft options and configurations. [economic analysis

    Science.gov (United States)

    Conner, D. W.; Vaughan, J. C., III

    1979-01-01

    A future requirements and advanced market evaluation study indicates derivatives of current wide-body aircraft, using 1980 advanced technology, would be economically attractive through 2008, but new dedicated airfreighters incorporating 1990 technology, would offer little or no economic incentive. They would be economically attractive for all payload sizes, however, if RD and T costs could be shared in a joint civil/military arrangement. For the 1994-2008 cargo market, option studies indicate Mach 0.7 propfans would be economically attractive in trip cost, aircraft price and airline ROI. Spanloaders would have an even lower price and higher ROI but would have a relatively high trip cost because of aerodynamic inefficiencies. Dedicated airfreighters using propfans at Mach 0.8 cruise, laminar flow control, or cryofuels, would not provide any great economic benefits. Air cushion landing gear configurations are identified as an option for avoiding runway constraints on airport requirements and/or operational constraints are noted.

  15. Optimal LED-based illumination control via distributed convex optimization

    NARCIS (Netherlands)

    Aslam, Muhammad; Hermans, R.M.; Pandharipande, A.; Lazar, M.; Boje, Edward; Xia, Xiaohua

    2014-01-01

    Achieving illumination and energy consumption targets is essential in indoor lighting design. The provision of localized illumination to occupants, and the utilization of natural light and energy-efficient light-emitting diode (LED) luminaires can help meet both objectives. Localized illumination

  16. Real-time Global Illumination by Simulating Photon Mapping

    DEFF Research Database (Denmark)

    Larsen, Bent Dalgaard

    2004-01-01

    This thesis introduces a new method for simulating photon mapping in realtime. The method uses a variety of both CPU and GPU based algorithms for speeding up the different elements in global illumination. The idea behind the method is to calculate each illumination element individually in a progr......This thesis introduces a new method for simulating photon mapping in realtime. The method uses a variety of both CPU and GPU based algorithms for speeding up the different elements in global illumination. The idea behind the method is to calculate each illumination element individually...... in a progressive and efficient manner. This has been done by analyzing the photon mapping method and by selecting efficient methods, either CPU based or GPU based, which replaces the original photon mapping algorithms. We have chosen to focus on the indirect illumination and the caustics. In our method we first...... divide the photon map into several photon maps in order to make local updates possible. Then indirect illumination is added using light maps that are selectively updated by using selective photon tracing on the CPU. The final gathering step is calculated by using fragment programs and GPU based...

  17. Nonimaging optical illumination system

    Science.gov (United States)

    Winston, Roland; Ries, Harald

    1996-01-01

    A nonimaging illumination optical device for producing a selected far field illuminance over an angular range. The optical device includes a light source 102, a light reflecting surface 108, and a family of light edge rays defined along a reference line 104 with the reflecting surface 108 defined in terms of the reference line 104 as a parametric function R(t) where t is a scalar parameter position and R(t)=k(t)+Du(t) where k(t) is a parameterization of the reference line 104, and D is a distance from a point on the reference line 104 to the reflection surface 108 along the desired edge ray through the point.

  18. FLIGHT EXPERT RISK ASSESSMENT OF AIRCRAFT GROUP AT THEIR PROXIMITY USING A PROGRAM-MANAGER

    Directory of Open Access Journals (Sweden)

    D. A. Mikhaylin

    2017-01-01

    Full Text Available The paper presents an approach to solving the problem of aircraft flight safety. External threats in the form of aircraft-offenders are considered. The algorithm of collision danger coefficients with aircraft-offenders is presented, оn the basis of which the side-program manager of flight safety monitoring is formed.Two danger coefficients in the horizontal and vertical planes are introduced. Based on various flight situations four possible decisions are offered: absence of any aircraft activity, flight level change, deviation in the horizontal plane and both in vertical and horizontal planes. For each case the formulas of double evaluation are received. They take into account different parameters of aircraft relative motion. Based on these estimates it is possible to build a final expert evaluation for the considered flight situations. It is implemented in the onboard program-manager. The structure of the program is presented. At the program-manager output the expected minimized risk evaluation and the selected alternative of the avoidance of aircraft from the meeting point are formed. The paper presents a detailed description of the procedures to test the performance of the program-manager algorithms. The initial conditions for different flight situations are provided. The simulation results of the algorithm are given. The danger coefficients comparison when performing maneuvers to prevent dangerous approach and in their absence is illustrated. It is shown that the maneuver implementation recommended by program-manager algorithms decreases the resulting danger coefficient. Particular attention was paid to aircraft landing, especially if the landing area had several conflicting aircraft.

  19. Color constancy by characterization of illumination chromaticity

    Science.gov (United States)

    Nikkanen, Jarno T.

    2011-05-01

    Computational color constancy algorithms play a key role in achieving desired color reproduction in digital cameras. Failure to estimate illumination chromaticity correctly will result in invalid overall colour cast in the image that will be easily detected by human observers. A new algorithm is presented for computational color constancy. Low computational complexity and low memory requirement make the algorithm suitable for resource-limited camera devices, such as consumer digital cameras and camera phones. Operation of the algorithm relies on characterization of the range of possible illumination chromaticities in terms of camera sensor response. The fact that only illumination chromaticity is characterized instead of the full color gamut, for example, increases robustness against variations in sensor characteristics and against failure of diagonal model of illumination change. Multiple databases are used in order to demonstrate the good performance of the algorithm in comparison to the state-of-the-art color constancy algorithms.

  20. Weld pool visual sensing without external illumination

    DEFF Research Database (Denmark)

    Liu, Jinchao; Fan, Zhun; Olsen, Soren Ingvor

    2011-01-01

    Visual sensing in arc welding has become more and more important, but still remains challenging because of the harsh environment with extremely strong illumination from the arc. This paper presents a low-cost camera-based sensor system, without using external Illumination, but nevertheless able...

  1. Optical design applications for enhanced illumination performance

    Science.gov (United States)

    Gilray, Carl; Lewin, Ian

    1995-08-01

    Nonimaging optical design techniques have been applied in the illumination industry for many years. Recently however, powerful software has been developed which allows accurate simulation and optimization of illumination devices. Wide experience has been obtained in using such design techniques for practical situations. These include automotive lighting where safety is of greatest importance, commercial lighting systems designed for energy efficiency, and numerous specialized applications. This presentation will discuss the performance requirements of a variety of illumination devices. It will further cover design methodology and present a variety of examples of practical applications for enhanced system performance.

  2. Wide-area SWIR arrays and active illuminators

    Science.gov (United States)

    MacDougal, Michael; Hood, Andrew; Geske, Jon; Wang, Chad; Renner, Daniel; Follman, David; Heu, Paula

    2012-01-01

    We describe the factors that go into the component choices for a short wavelength (SWIR) imager, which include the SWIR sensor, the lens, and the illuminator. We have shown the factors for reducing dark current, and shown that we can achieve well below 1.5 nA/cm2 for 15 μm devices at 7°C. We have mated our InGaAs detector arrays to 640x512 readout integrated integrated circuits (ROICs) to make focal plane arrays (FPAs). In addition, we have fabricated high definition 1920x1080 FPAs for wide field of view imaging. The resulting FPAs are capable of imaging photon fluxes with wavelengths between 1 and 1.6 microns at low light levels. The dark current associated with these FPAs is extremely low, exhibiting a mean dark current density of 0.26 nA/cm2 at 0°C. FLIR has also developed a high definition, 1920x1080, 15 um pitch SWIR sensor. In addition, FLIR has developed laser arrays that provide flat illumination in scenes that are normally light-starved. The illuminators have 40% wall-plug efficiency and provide low-speckle illumination, provide artifact-free imagery versus conventional laser illuminators.

  3. Meeting of Experts on NASA's Unmanned Aircraft System (UAS) Integration in the National Airspace Systems (NAS) Project

    Science.gov (United States)

    Wolfe, Jean; Bauer, Jeff; Bixby, C.J.; Lauderdale, Todd; Shively, Jay; Griner, James; Hayhurst, Kelly

    2010-01-01

    Topics discussed include: Aeronautics Research Mission Directorate Integrated Systems Research Program (ISRP) and UAS Integration in the NAS Project; UAS Integration into the NAS Project; Separation Assurance and Collision Avoidance; Pilot Aircraft Interface Objectives/Rationale; Communication; Certification; and Integrated Tests and Evaluations.

  4. Content adaptive illumination for Fourier ptychography.

    Science.gov (United States)

    Bian, Liheng; Suo, Jinli; Situ, Guohai; Zheng, Guoan; Chen, Feng; Dai, Qionghai

    2014-12-01

    Fourier ptychography (FP) is a recently reported technique, for large field-of-view and high-resolution imaging. Specifically, FP captures a set of low-resolution images, under angularly varying illuminations, and stitches them together in the Fourier domain. One of FP's main disadvantages is its long capturing process, due to the requisite large number of incident illumination angles. In this Letter, utilizing the sparsity of natural images in the Fourier domain, we propose a highly efficient method, termed adaptive Fourier ptychography (AFP), which applies content adaptive illumination for FP, to capture the most informative parts of the scene's spatial spectrum. We validate the effectiveness and efficiency of the reported framework, with both simulated and real experiments. Results show that the proposed AFP could shorten the acquisition time of conventional FP, by around 30%-60%.

  5. Energy efficient LED layout optimization for near-uniform illumination

    Science.gov (United States)

    Ali, Ramy E.; Elgala, Hany

    2016-09-01

    In this paper, we consider the problem of designing energy efficient light emitting diodes (LEDs) layout while satisfying the illumination constraints. Towards this objective, we present a simple approach to the illumination design problem based on the concept of the virtual LED. We formulate a constrained optimization problem for minimizing the power consumption while maintaining a near-uniform illumination throughout the room. By solving the resulting constrained linear program, we obtain the number of required LEDs and the optimal output luminous intensities that achieve the desired illumination constraints.

  6. Advanced split-illumination electron holography without Fresnel fringes

    International Nuclear Information System (INIS)

    Tanigaki, Toshiaki; Aizawa, Shinji; Park, Hyun Soon; Matsuda, Tsuyoshi; Harada, Ken; Shindo, Daisuke

    2014-01-01

    Advanced split-illumination electron holography was developed by employing two biprisms in the illuminating system to split an electron wave into two coherent waves and two biprisms in the imaging system to overlap them. A focused image of an upper condenser-biprism filament was formed on the sample plane, and all other filaments were placed in its shadow. This developed system makes it possible to obtain precise reconstructed object waves without modulations due to Fresnel fringes, in addition to holograms of distant objects from reference waves. - Highlights: • Advanced split-illumination electron holography without Fresnel fringes is developed. • Two biprisms are installed in illuminating system of microscope. • High-precision holographic observations of an area locating far from the sample edge become possible

  7. Advanced split-illumination electron holography without Fresnel fringes

    Energy Technology Data Exchange (ETDEWEB)

    Tanigaki, Toshiaki, E-mail: tanigaki-toshiaki@riken.jp [Center for Emergent Matter Science (CEMS), RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Aizawa, Shinji; Park, Hyun Soon [Center for Emergent Matter Science (CEMS), RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Matsuda, Tsuyoshi [Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Harada, Ken [Central Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395 (Japan); Shindo, Daisuke [Center for Emergent Matter Science (CEMS), RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Sendai 980-8577 (Japan)

    2014-02-01

    Advanced split-illumination electron holography was developed by employing two biprisms in the illuminating system to split an electron wave into two coherent waves and two biprisms in the imaging system to overlap them. A focused image of an upper condenser-biprism filament was formed on the sample plane, and all other filaments were placed in its shadow. This developed system makes it possible to obtain precise reconstructed object waves without modulations due to Fresnel fringes, in addition to holograms of distant objects from reference waves. - Highlights: • Advanced split-illumination electron holography without Fresnel fringes is developed. • Two biprisms are installed in illuminating system of microscope. • High-precision holographic observations of an area locating far from the sample edge become possible.

  8. Advanced Air Data Systems for Commercial Aircraft

    Science.gov (United States)

    2006-01-01

    It is possible to get a crude estimate of wind speed and direction while driving a car at night in the rain, with the motion of the raindrop reflections in the headlights providing clues about the wind. The clues are difficult to interpret, though, because of the relative motions of ground, car, air, and raindrops. More subtle interpretation is possible if the rain is replaced by fog, because the tiny droplets would follow the swirling currents of air around an illuminated object, like, for example, a walking pedestrian. Microscopic particles in the air (aerosols) are better for helping make assessments of the wind, and reflective air molecules are best of all, providing the most refined measurements. It takes a bright light to penetrate fog, so it is easy to understand how other factors, like replacing the headlights with the intensity of a searchlight, can be advantageous. This is the basic principle behind a lidar system. While a radar system transmits a pulse of radiofrequency energy and interprets the received reflections, a lidar system works in a similar fashion, substituting a near-optical laser pulse. The technique allows the measurement of relative positions and velocities between the transmitter and the air, which allows measurements of relative wind and of air temperature (because temperature is associated with high-frequency random motions on a molecular level). NASA, as well as the National Oceanic and Atmospheric Administration (NOAA), have interests in this advanced lidar technology, as much of their explorative research requires the ability to measure winds and turbulent regions within the atmosphere. Lidar also shows promise for providing warning of turbulent regions within the National Airspace System to allow commercial aircraft to avoid encounters with turbulence and thereby increase the safety of the traveling public. Both agencies currently employ lidar and optical sensing for a variety of weather-related research projects, such as analyzing

  9. Diffuse-Illumination Systems for Growing Plants

    Science.gov (United States)

    May, George; Ryan, Robert

    2010-01-01

    Agriculture in both terrestrial and space-controlled environments relies heavily on artificial illumination for efficient photosynthesis. Plant-growth illumination systems require high photon flux in the spectral range corresponding with plant photosynthetic active radiation (PAR) (400 700 nm), high spatial uniformity to promote uniform growth, and high energy efficiency to minimize electricity usage. The proposed plant-growth system takes advantage of the highly diffuse reflective surfaces on the interior of a sphere, hemisphere, or other nearly enclosed structure that is coated with highly reflective materials. This type of surface and structure uniformly mixes discrete light sources to produce highly uniform illumination. Multiple reflections from within the domelike structures are exploited to obtain diffuse illumination, which promotes the efficient reuse of photons that have not yet been absorbed by plants. The highly reflective surfaces encourage only the plant tissue (placed inside the sphere or enclosure) to absorb the light. Discrete light sources, such as light emitting diodes (LEDs), are typically used because of their high efficiency, wavelength selection, and electronically dimmable properties. The light sources are arranged to minimize shadowing and to improve uniformity. Different wavelengths of LEDs (typically blue, green, and red) are used for photosynthesis. Wavelengths outside the PAR range can be added for plant diagnostics or for growth regulation

  10. Large Volume, Behaviorally-relevant Illumination for Optogenetics in Non-human Primates.

    Science.gov (United States)

    Acker, Leah C; Pino, Erica N; Boyden, Edward S; Desimone, Robert

    2017-10-03

    This protocol describes a large-volume illuminator, which was developed for optogenetic manipulations in the non-human primate brain. The illuminator is a modified plastic optical fiber with etched tip, such that the light emitting surface area is > 100x that of a conventional fiber. In addition to describing the construction of the large-volume illuminator, this protocol details the quality-control calibration used to ensure even light distribution. Further, this protocol describes techniques for inserting and removing the large volume illuminator. Both superficial and deep structures may be illuminated. This large volume illuminator does not need to be physically coupled to an electrode, and because the illuminator is made of plastic, not glass, it will simply bend in circumstances when traditional optical fibers would shatter. Because this illuminator delivers light over behaviorally-relevant tissue volumes (≈ 10 mm 3 ) with no greater penetration damage than a conventional optical fiber, it facilitates behavioral studies using optogenetics in non-human primates.

  11. Illuminating Chaucer through Poetry, Manuscript Illuminations, and a Critical Rap Album

    Science.gov (United States)

    Lynch, Tom Liam

    2007-01-01

    Drawing connections between Chaucer, Eminem, and social issues, New York City high school teacher Tom Liam Lynch helped students become familiar with "The Canterbury Tales." Students wrote poems of rhymed couplets about today's social and political issues, created illuminated manuscripts, and recorded a rap CD. A book and album were…

  12. IODC 2014 Illumination design problem: the Cinderella Lamp

    Science.gov (United States)

    Cassarly, William J.

    2014-12-01

    For the 3rd time, the International Optical Design Conference (IODC) included an Illumination Design contest. This year, the contest involved designing the illuminator to project the 1950 Walt Disney "Cinderella" movie using a box of optical knick-knacks. The goal of the problem was to provide the highest screen lumens with greater than 30% uniformity. There were 12 entries from 3 different countries. Three different commercial optical/illumination design packages were used. The winning solution, provided by Alois Herkommer, provided 371 screen lumens.

  13. Interactive indirect illumination using adaptive multiresolution splatting.

    Science.gov (United States)

    Nichols, Greg; Wyman, Chris

    2010-01-01

    Global illumination provides a visual richness not achievable with the direct illumination models used by most interactive applications. To generate global effects, numerous approximations attempt to reduce global illumination costs to levels feasible in interactive contexts. One such approximation, reflective shadow maps, samples a shadow map to identify secondary light sources whose contributions are splatted into eye space. This splatting introduces significant overdraw that is usually reduced by artificially shrinking each splat's radius of influence. This paper introduces a new multiresolution approach for interactively splatting indirect illumination. Instead of reducing GPU fill rate by reducing splat size, we reduce fill rate by rendering splats into a multiresolution buffer. This takes advantage of the low-frequency nature of diffuse and glossy indirect lighting, allowing rendering of indirect contributions at low resolution where lighting changes slowly and at high-resolution near discontinuities. Because this multiresolution rendering occurs on a per-splat basis, we can significantly reduce fill rate without arbitrarily clipping splat contributions below a given threshold-those regions simply are rendered at a coarse resolution.

  14. Wood's lamp illumination (image)

    Science.gov (United States)

    A Wood's lamp emits ultraviolet light and can be a diagnostic aid in determining if someone has a fungal ... is an infection on the area where the Wood's lamp is illuminating, the area will fluoresce. Normally ...

  15. AutoGNI, the Robot Under the Aircraft Floor: An Automated System for Sampling Giant Aerosol Particles by Impaction in the Free Airstream Outside a Research Aircraft

    Science.gov (United States)

    Jensen, J. B.; Schwenz, K.; Aquino, J.; Carnes, J.; Webster, C.; Munnerlyn, J.; Wissman, T.; Lugger, T.

    2017-12-01

    Giant sea-salt aerosol particles, also called Giant Cloud Condensation Nuclei (GCCN), have been proposed as a means of rapidly forming precipitation sized drizzle drops in warm marine clouds (e.g., Jensen and Nugent, 2017). Such rare particles are best sampled from aircraft in air below cloud base, where normal laser optical instruments have too low sample volume to give statistically significant samples of the large particle tail. An automated sampling system (the AutoGNI) has been built to operate from inside a pressurized aircraft. Under the aircraft floor, a pressurized vessel contains 32 custom-built polycarbonate microscope slides. Using robotics with 5 motor drives and 18 positioning switches, the AutoGNI can take slides from their holding cassettes, pass them onto a caddy in an airfoil that extends 200 mm outside the aircraft, where they are exposed in the free airstream, thus avoiding the usual problems with large particle losses in air intakes. Slides are typically exposed for 10-30 s in the marine boundary layer, giving sample volumes of about 100-300 L or more. Subsequently the slides are retracted into the pressure vessel, stored and transported for laboratory microscope image analysis, in order to derive size-distribution histograms. While the aircraft is flying, the AutoGNI system is remotely controlled from a laptop on the ground, using an encrypted commercial satellite connection to the NSF/NCAR GV research aircraft's main server, and onto the AutoGNI microprocessor. The sampling of such GCCN is becoming increasingly important in order to provide complete input data for model calculations of aerosol-cloud interactions and their feedbacks in climate prediction. The AutoGNI has so far been sampling sea-salt GCCN in the Magellan Straight during the 2016 ORCAS project and over the NW Pacific during the 2017 ARISTO project, both from the NSF/NCAR GV research aircraft. Sea-salt particle sizes of 1.4 - 32 μm dry diameter have been observed.

  16. Advanced illumination control algorithm for medical endoscopy applications

    Science.gov (United States)

    Sousa, Ricardo M.; Wäny, Martin; Santos, Pedro; Morgado-Dias, F.

    2015-05-01

    CMOS image sensor manufacturer, AWAIBA, is providing the world's smallest digital camera modules to the world market for minimally invasive surgery and one time use endoscopic equipment. Based on the world's smallest digital camera head and the evaluation board provided to it, the aim of this paper is to demonstrate an advanced fast response dynamic control algorithm of the illumination LED source coupled to the camera head, over the LED drivers embedded on the evaluation board. Cost efficient and small size endoscopic camera modules nowadays embed minimal size image sensors capable of not only adjusting gain and exposure time but also LED illumination with adjustable illumination power. The LED illumination power has to be dynamically adjusted while navigating the endoscope over changing illumination conditions of several orders of magnitude within fractions of the second to guarantee a smooth viewing experience. The algorithm is centered on the pixel analysis of selected ROIs enabling it to dynamically adjust the illumination intensity based on the measured pixel saturation level. The control core was developed in VHDL and tested in a laboratory environment over changing light conditions. The obtained results show that it is capable of achieving correction speeds under 1 s while maintaining a static error below 3% relative to the total number of pixels on the image. The result of this work will allow the integration of millimeter sized high brightness LED sources on minimal form factor cameras enabling its use in endoscopic surgical robotic or micro invasive surgery.

  17. Model-Based Illumination Correction for Face Images in Uncontrolled Scenarios

    NARCIS (Netherlands)

    Boom, B.J.; Spreeuwers, Lieuwe Jan; Veldhuis, Raymond N.J.

    2009-01-01

    Face Recognition under uncontrolled illumination conditions is partly an unsolved problem. Several illumination correction methods have been proposed, but these are usually tested on illumination conditions created in a laboratory. Our focus is more on uncontrolled conditions. We use the Phong model

  18. UAS in the NAS: Survey Responses by ATC, Manned Aircraft Pilots, and UAS Pilots

    Science.gov (United States)

    Comstock, James R., Jr.; McAdaragh, Raymon; Ghatas, Rania W.; Burdette, Daniel W.; Trujillo, Anna C.

    2014-01-01

    NASA currently is working with industry and the Federal Aviation Administration (FAA) to establish future requirements for Unmanned Aircraft Systems (UAS) flying in the National Airspace System (NAS). To work these issues NASA has established a multi-center "UAS Integration in the NAS" project. In order to establish Ground Control Station requirements for UAS, the perspective of each of the major players in NAS operations was desired. Three on-line surveys were administered that focused on Air Traffic Controllers (ATC), pilots of manned aircraft, and pilots of UAS. Follow-up telephone interviews were conducted with some survey respondents. The survey questions addressed UAS control, navigation, and communications from the perspective of small and large unmanned aircraft. Questions also addressed issues of UAS equipage, especially with regard to sense and avoid capabilities. From the civilian ATC and military ATC perspectives, of particular interest are how mixed operations (manned / UAS) have worked in the past and the role of aircraft equipage. Knowledge gained from this information is expected to assist the NASA UAS Integration in the NAS project in directing research foci thus assisting the FAA in the development of rules, regulations, and policies related to UAS in the NAS.

  19. Design and simulation of double annular illumination mode for microlithography

    Science.gov (United States)

    Song, Qiang; Zhu, Jing; Yang, Baoxi; Liu, Lei; Wang, Jun; Huang, Huijie

    2013-08-01

    Methods of generating various illumination patterns remain as an attractive and important micro-optics research area for the development of resolution enhancement in advanced lithography system. In the current illumination system of lithography machine, off-axis illumination is widely used as an effective approach to enhance the resolution and increase the depth of focus (DOF). This paper proposes a novel illumination mode generation unit, which transform conventional mode to double annular shaped radial polarized (DARP) mode for improving the resolution of micro-lithography. Through LightToolsTM software simulation, double annular shaped mode is obtained from the proposed generation unit. The mathematical expressions of the radius variation of inner and outer rings are deduced. The impacts of conventional and dual concentric annular illumination pattern on critical dimension uniformity were simulated on an isolated line, square hole and corner. Lithography performance was compared between DARP illumination mode and corresponding single annular modes under critical dimension of 45nm. As a result, DARP illumination mode can improve the uniformity of aerial image at 45nm node through pitch varied in 300-500 nm to a certain extent.

  20. An Active Illumination and Appearance (AIA) Model for Face Alignment

    DEFF Research Database (Denmark)

    Kahraman, Fatih; Gokmen, Muhittin; Darkner, Sune

    2007-01-01

    Face recognition systems are typically required to work under highly varying illumination conditions. This leads to complex effects imposed on the acquired face image that pertains little to the actual identity. Consequently, illumination normalization is required to reach acceptable recognition...... rates in face recognition systems. In this paper, we propose an approach that integrates the face identity and illumination models under the widely used Active Appearance Model framework as an extension to the texture model in order to obtain illumination-invariant face localization...

  1. Multiple Illuminant Colour Estimation via Statistical Inference on Factor Graphs.

    Science.gov (United States)

    Mutimbu, Lawrence; Robles-Kelly, Antonio

    2016-08-31

    This paper presents a method to recover a spatially varying illuminant colour estimate from scenes lit by multiple light sources. Starting with the image formation process, we formulate the illuminant recovery problem in a statistically datadriven setting. To do this, we use a factor graph defined across the scale space of the input image. In the graph, we utilise a set of illuminant prototypes computed using a data driven approach. As a result, our method delivers a pixelwise illuminant colour estimate being devoid of libraries or user input. The use of a factor graph also allows for the illuminant estimates to be recovered making use of a maximum a posteriori (MAP) inference process. Moreover, we compute the probability marginals by performing a Delaunay triangulation on our factor graph. We illustrate the utility of our method for pixelwise illuminant colour recovery on widely available datasets and compare against a number of alternatives. We also show sample colour correction results on real-world images.

  2. Propulsion controlled aircraft computer

    Science.gov (United States)

    Cogan, Bruce R. (Inventor)

    2010-01-01

    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  3. Combining Illumination Normalization Methods for Better Face Recognition

    NARCIS (Netherlands)

    Boom, B.J.; Tao, Q.; Spreeuwers, Lieuwe Jan; Veldhuis, Raymond N.J.

    2009-01-01

    Face Recognition under uncontrolled illumination conditions is partly an unsolved problem. There are two categories of illumination normalization methods. The first category performs a local preprocessing, where they correct a pixel value based on a local neighborhood in the images. The second

  4. The Proposed Use of Unmanned Aerial System Surrogate Research Aircraft for National Airspace System Integration Research

    Science.gov (United States)

    Howell, Charles T., III

    2011-01-01

    Research is needed to determine what procedures, aircraft sensors and other systems will be required to allow Unmanned Aerial Systems (UAS) to safely operate with manned aircraft in the National Airspace System (NAS). This paper explores the use of Unmanned Aerial System (UAS) Surrogate research aircraft to serve as platforms for UAS systems research, development, and flight testing. These aircraft would be manned with safety pilots and researchers that would allow for flight operations almost anywhere in the NAS without the need for a Federal Aviation Administration (FAA) Certificate of Authorization (COA). With pilot override capability, these UAS Surrogate aircraft would be controlled from ground stations like true UAS s. It would be possible to file and fly these UAS Surrogate aircraft in the NAS with normal traffic and they would be better platforms for real world UAS research and development over existing vehicles flying in restricted ranges or other sterilized airspace. These UAS surrogate aircraft could be outfitted with research systems as required such as computers, state sensors, video recording, data acquisition, data link, telemetry, instrumentation, and Automatic Dependent Surveillance-Broadcast (ADS-B). These surrogate aircraft could also be linked to onboard or ground based simulation facilities to further extend UAS research capabilities. Potential areas for UAS Surrogate research include the development, flight test and evaluation of sensors to aide in the process of air traffic "see-and-avoid". These and other sensors could be evaluated in real-time and compared with onboard human evaluation pilots. This paper examines the feasibility of using UAS Surrogate research aircraft as test platforms for a variety of UAS related research.

  5. Automatic Quadcopter Control Avoiding Obstacle Using Camera with Integrated Ultrasonic Sensor

    Science.gov (United States)

    Anis, Hanafi; Haris Indra Fadhillah, Ahmad; Darma, Surya; Soekirno, Santoso

    2018-04-01

    Automatic navigation on the drone is being developed these days, a wide variety of types of drones and its automatic functions. Drones used in this study was an aircraft with four propellers or quadcopter. In this experiment, image processing used to recognize the position of an object and ultrasonic sensor used to detect obstacle distance. The method used to trace an obsctacle in image processing was the Lucas-Kanade-Tomasi Tracker, which had been widely used due to its high accuracy. Ultrasonic sensor used to complement the image processing success rate to be fully detected object. The obstacle avoidance system was to observe at the program decisions from some obstacle conditions read by the camera and ultrasonic sensors. Visual feedback control based PID controllers are used as a control of drones movement. The conclusion of the obstacle avoidance system was to observe at the program decisions from some obstacle conditions read by the camera and ultrasonic sensors.

  6. Illumination engineering design with nonimaging optics

    CERN Document Server

    Koshel, R John

    2012-01-01

    This book brings together experts in the field who present material on a number of important and growing topics including lighting, displays, solar concentrators. The first chapter provides an overview of the field of nonimagin and illumination optics. Included in this chapter are terminology, units, definitions, and descriptions of the optical components used in illumination systems. The next two chapters provide material within the theoretical domain, including etendue, etendue squeezing, and the skew invariant. The remaining chapters focus on growing applications. This entire field of

  7. Influence of illumination on the output characteristics in pentacene thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yow-Jon, E-mail: rzr2390@yahoo.com.tw; Huang, Bo-Chieh

    2013-10-01

    The influence of illumination on the output characteristics of pentacene-based organic thin film transistors (OTFTs) was researched in this study. It is shown that light illumination may lead to an increase in the drain current, shifting the threshold voltage towards positive gate–source voltages. This is because of the light-induced acceptor activation, which is a new concept for illumination-dependent output characteristics of OTFTs. However, the field-effect mobility is insensitive to light illumination. It is found that electron trapping is responsible for the experimentally observed illumination-dependent output behavior of charge transport in OTFTs. - Highlights: • Light illumination may lead to an increase in the drain current. • This is because of the light-induced acceptor activation. • The field-effect mobility is insensitive to light illumination. • Electron trapping is responsible for the illumination-dependent output behavior.

  8. Automatic residue removal for high-NA extreme illumination

    Science.gov (United States)

    Moon, James; Nam, Byong-Sub; Jeong, Joo-Hong; Kong, Dong-Ho; Nam, Byung-Ho; Yim, Dong Gyu

    2007-10-01

    An epidemic for smaller node has been that, as the device architecture shrinks, lithography process requires high Numerical Aperture (NA), and extreme illumination system. This, in turn, creates many lithography problems such as low lithography process margin (Depth of Focus, Exposure Latitude), unstable Critical Dimension (CD) uniformity and restricted guideline for device design rule and so on. Especially for high NA, extreme illumination such as immersion illumination systems, above all the related problems, restricted design rule due to forbidden pitch is critical and crucial issue. This forbidden pitch is composed of numerous optical effects but majority of these forbidden pitch compose of photo resist residue and these residue must be removed to relieve some room for already tight design rule. In this study, we propose automated algorithm to remove photo resist residue due to high NA and extreme illumination condition. This algorithm automatically self assembles assist patterns based on the original design layout, therefore insuring the safety and simplicity of the generated assist pattern to the original design and removes any resist residue created by extreme illumination condition. Also we tested our automated algorithm on full chip FLASH memory device and showed the residue removal effect by using commercial verification tools as well as on actual test wafer.

  9. Predicting daylight illuminance on inclined surfaces using sky luminance data

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.H.W.; Lau, C.C.S.; Lam, J.C. [City University of Hong Kong, Kowloon (China). Dept. of Building and Construction

    2005-07-01

    Daylight illuminance, particularly on vertical surfaces, plays a major role in determining and evaluating the daylighting performance of a building. In many parts of the world, however, the basic daylight illuminance data for various vertical planes are not always readily available. The usual method to obtain diffuse illuminance on tilted planes would be based on inclined surface models using data from the horizontal measurements. Alternatively, the diffuse illuminance on a sloping plane can be computed by integrating the luminance distribution of the sky 'seen' by the plane. This paper presents an approach to estimate the vertical outdoor illuminance from sky luminance data and solar geometry. Sky luminance data recorded from January 1999 to December 2001 in Hong Kong and generated by two well-known sky luminance models (Kittler and Perez) were used to compute the outdoor illuminance for the four principal vertical planes (N, E, S and W). The performance of this approach was evaluated against data measured in the same period. Statistical analysis indicated that using sky luminance distributions to predict outdoor illuminance can give reasonably good agreement with measured data for all vertical surfaces. The findings provide an accurate alternative to determine the amount of daylight on vertical as well as other inclined surfaces when sky luminance data are available. (author)

  10. A back-illuminated megapixel CMOS image sensor

    Science.gov (United States)

    Pain, Bedabrata; Cunningham, Thomas; Nikzad, Shouleh; Hoenk, Michael; Jones, Todd; Wrigley, Chris; Hancock, Bruce

    2005-01-01

    In this paper, we present the test and characterization results for a back-illuminated megapixel CMOS imager. The imager pixel consists of a standard junction photodiode coupled to a three transistor-per-pixel switched source-follower readout [1]. The imager also consists of integrated timing and control and bias generation circuits, and provides analog output. The analog column-scan circuits were implemented in such a way that the imager could be configured to run in off-chip correlated double-sampling (CDS) mode. The imager was originally designed for normal front-illuminated operation, and was fabricated in a commercially available 0.5 pn triple-metal CMOS-imager compatible process. For backside illumination, the imager was thinned by etching away the substrate was etched away in a post-fabrication processing step.

  11. Small transport aircraft technology

    Science.gov (United States)

    Williams, L. J.

    1983-01-01

    Information on commuter airline trends and aircraft developments is provided to upgrade the preliminary findings of a NASA-formed small transport aircraft technology (STAT) team, established to determine whether the agency's research and development programs could help commuter aircraft manufacturers solve technical problems related to passenger acceptance and use of 19- to 50-passenger aircraft. The results and conclusions of the full set of completed STAT studies are presented. These studies were performed by five airplane manufacturers, five engine manufacturers, and two propeller manufacturers. Those portions of NASA's overall aeronautics research and development programs which are applicable to commuter aircraft design are summarized. Areas of technology that might beneficially be expanded or initiated to aid the US commuter aircraft manufacturers in the evolution of improved aircraft for the market are suggested.

  12. Laser fusion target illumination optimization with consideration of the beam divergence

    International Nuclear Information System (INIS)

    Grzanna, J.; Schoennagel, H.

    1982-09-01

    Using a focusing system with a great focal length it is demonstrated that the radiation divergence considerably influences the illumination optimization. If the channel beam is composed of several single beams, there are two optimum illumination variants: the channel beam tangent and the single beam tangent illumination. Further, it is shown that the illumination channel distribution function can vary in the central region without any effect on the illumination uniformity. The deviation at the periphery is more critical. The most homogeneous illumination and favourable energy transfer would be obtained by low radiation divergence and optimum lateral and axial defocusing of the single beam imaging a suitable near-field intensity pattern on the target surface. It is emphasized that the estimation was made without considering the plasma parameters and the dynamic variation in time. (author)

  13. Dynamic Control Based Photovoltaic Illuminating System

    Directory of Open Access Journals (Sweden)

    Zhang Chengkai

    2016-01-01

    Full Text Available Smart LED illumination system can use the power from whether the photovoltaic cell or the power grid automatically based on the SOC (State Of Charge of the photovoltaic cell. This paper proposes a feedback control of the photovoltaic cells and a dynamic control strategy for the Energy system. The dynamic control strategy is used to determine the switching state of the photovoltaic cell based on the illumination load in the past one hour and the battery capacity. These controls are manifested by experimental prototype that the control scheme is correct and effective.

  14. Effects of chromatic image statistics on illumination induced color differences.

    Science.gov (United States)

    Lucassen, Marcel P; Gevers, Theo; Gijsenij, Arjan; Dekker, Niels

    2013-09-01

    We measure the color fidelity of visual scenes that are rendered under different (simulated) illuminants and shown on a calibrated LCD display. Observers make triad illuminant comparisons involving the renderings from two chromatic test illuminants and one achromatic reference illuminant shown simultaneously. Four chromatic test illuminants are used: two along the daylight locus (yellow and blue), and two perpendicular to it (red and green). The observers select the rendering having the best color fidelity, thereby indirectly judging which of the two test illuminants induces the smallest color differences compared to the reference. Both multicolor test scenes and natural scenes are studied. The multicolor scenes are synthesized and represent ellipsoidal distributions in CIELAB chromaticity space having the same mean chromaticity but different chromatic orientations. We show that, for those distributions, color fidelity is best when the vector of the illuminant change (pointing from neutral to chromatic) is parallel to the major axis of the scene's chromatic distribution. For our selection of natural scenes, which generally have much broader chromatic distributions, we measure a higher color fidelity for the yellow and blue illuminants than for red and green. Scrambled versions of the natural images are also studied to exclude possible semantic effects. We quantitatively predict the average observer response (i.e., the illuminant probability) with four types of models, differing in the extent to which they incorporate information processing by the visual system. Results show different levels of performance for the models, and different levels for the multicolor scenes and the natural scenes. Overall, models based on the scene averaged color difference have the best performance. We discuss how color constancy algorithms may be improved by exploiting knowledge of the chromatic distribution of the visual scene.

  15. Spiral wobbling beam illumination uniformity in HIF fuel target implosion

    Directory of Open Access Journals (Sweden)

    Kawata S.

    2013-11-01

    Full Text Available A few % wobbling-beam illumination nonuniformity is realized in heavy ion inertial confinement fusion (HIF throughout the heavy ion beam (HIB driver pulse by a newly introduced spiraling beam axis motion in the first two rotations. The wobbling HIB illumination was proposed to realize a uniform implosion in HIF. However, the initial imprint of the wobbling HIBs was a serious problem and introduces a large unacceptable energy deposition nonuniformity. In the wobbling HIBs illumination, the illumination nonuniformity oscillates in time and space. The oscillating-HIB energy deposition may produce a time-dependent implosion acceleration, which reduces the Rayleigh-Taylor (R-T growth [Laser Part. Beams 11, 757 (1993, Nuclear Inst. Methods in Phys. Res. A 606, 152 (2009, Phys. Plasmas 19, 024503 (2012] and the implosion nonuniformity. The wobbling HIBs can be generated in HIB accelerators and the oscillating frequency may be several 100 MHz ∼ 1 GHz [Phys. Rev. Lett. 104, 254801 (2010]. Three-dimensional HIBs illumination computations present that the few % wobbling HIBs illumination nonuniformity oscillates with the same wobbling HIBs frequency.

  16. Adaptive Ambient Illumination Based on Color Harmony Model

    Science.gov (United States)

    Kikuchi, Ayano; Hirai, Keita; Nakaguchi, Toshiya; Tsumura, Norimichi; Miyake, Yoichi

    We investigated the relationship between ambient illumination and psychological effect by applying a modified color harmony model. We verified the proposed model by analyzing correlation between psychological value and modified color harmony score. Experimental results showed the possibility to obtain the best color for illumination using this model.

  17. Comparative analysis of face recognition techniques with illumination variation

    International Nuclear Information System (INIS)

    Jondhale, K C; Waghmare, L M

    2010-01-01

    Illumination variation is one of the major challenges in the face recognition. To deal with this problem, this paper presents comparative analysis of three different techniques. First, the DCT is employed to compensate for illumination variations in the logarithm domain. Since illumination variation lies mainly in the low frequency band, an appropriate number of DCT coefficients are truncated to reduce the variations under different lighting conditions. The nearest neighbor classifier based on Euclidean distance is employed for classification. Second, the performance of PCA is checked on normalized image. PCA is a technique used to reduce multidimensional data sets to a lower dimension for analysis. Third, LDA based methods gives a satisfactory result under controlled lighting condition. But its performance under large illumination variation is not satisfactory. So, the performance of LDA is checked on normalized image. Experimental results on the Yale B and ORL database show that the proposed approach of application of PCA and LDA on normalized dataset improves the performance significantly for the face images with large illumination variations.

  18. [An assembly line lighting survey analysis and its optimal illumination range research].

    Science.gov (United States)

    Yang, Xin-ning; Xu, Yan; DU, Wei-wei; Cao, Lei; Wang, Sheng; Dong, Xue-mei; Lu, Hou-han; Chen, Song-gen; Cao, Xiao-ou; Zhang, Long-lian; He, Li-hua

    2011-06-18

    To investigate and analyze present conditions of the assembling line illumination in our country, and to set the recommended values of illuminance standard. Questionnaires and field surveys were used in this investigation. A total of 752 workers from seven factories in textile, shoes and electronics industries were selected for the questionnaire survey and site measurement, and corresponding analyses made with SPSS 13.0 statistic software. Uniformity of illumination, definition in working face, general satisfactory degrees, asthenopia were significantly correlated with each other. Assembly line illuminances for five different visual characteristics were recommended in this paper. The illuminances were 500-1 000-1 500 lx, 300-500-1 000 lx, 200-300-750 lx, 100-300-500 lx, 50-100-200 lx, respectively. Present conditions of the assembling line illumination are less than satisfactory, uniformity of illumination is on the low side, and there is no assembling line illuminance standard for general satisfactory degrees and asthenopia of workers. The related work should be further improved.

  19. Autonomous Aircraft Operations using RTCA Guidelines for Airborne Conflict Management

    Science.gov (United States)

    Krishnamurthy, Karthik; Wing, David J.; Barmore, Bryan E.; Barhydt, Richard; Palmer, Michael T.; Johnson, Edward J.; Ballin, Mark G.; Eischeid, Todd M.

    2003-01-01

    A human-in-the-loop experiment was performed at the NASA Langley Research Center to study the feasibility of DAG-TM autonomous aircraft operations in highly constrained airspace. The airspace was constrained by a pair of special-use airspace (SUA) regions on either side of the pilot's planned route. Traffic flow management (TFM) constraints were imposed as a required time of arrival and crossing altitude at an en route fix. Key guidelines from the RTCA Airborne Conflict Management (ACM) concept were applied to autonomous aircraft operations for this experiment. These concepts included the RTCA ACM definitions of distinct conflict detection and collision avoidance zones, and the use of a graded system of conflict alerts for the flight crew. Three studies were conducted in the course of the experiment. The first study investigated the effect of hazard proximity upon pilot ability to meet constraints and solve conflict situations. The second study investigated pilot use of the airborne tools when faced with an unexpected loss of separation (LOS). The third study explored pilot interactions in an over-constrained conflict situation, with and without priority rules dictating who should move first. Detailed results from these studies were presented at the 5th USA/Europe Air Traffic Management R&D Seminar (ATM2003). This overview paper focuses on the integration of the RTCA ACM concept into autonomous aircraft operations in highly constrained situations, and provides an overview of the results presented at the ATM2003 seminar. These results, together with previously reported studies, continue to support the feasibility of autonomous aircraft operations.

  20. Analytic Solution to the Problem of Aircraft Electric Field Mill Calibration

    Science.gov (United States)

    Koshak, W. J.

    2003-12-01

    possible to solve for a single 2m-vector b that provides all other needed variables (i.e., the unknown fair weather field, the unknown aircraft charge, and the unknown matrix M). To avoid retrieving the trivial solution b = 0, appropriate external constraints are applied. Numerical tests of the solution, effects of measurement errors, and studies of solution non-uniqueness are ongoing as of this writing.

  1. The possible ocular hazards of LED dental illumination applications.

    Science.gov (United States)

    Stamatacos, Catherine; Harrison, Janet L

    2013-01-01

    The use of high-intensity illumination via Light-Emitting Diode (LED) headlamps is gaining in popularity with dentists and student dentists. Practitioners are using LED headlamps together with magnifying loupes, overhead LED illumination and fiber-optic dental handpieces for long periods of time. Although most manufacturers of these LED illuminators advertise that their devices emit "white" light, these still consist of two spectral bands--the blue spectral band, with its peak at 445 nm, and the green with its peak at 555 nm. While manufacturers suggest that their devices emit "white" light, spectral components of LED lights from different companies are significantly different. Dental headlamp manufacturers strive to create a white LED, and they advertise that this type of light emitted from their product offers bright white-light illumination. However, the manufacturing of a white LED light is done through selection of a white LED-type based on the peak blue strength in combination with the green peak strength and thus creating a beam-forming optic, which determines the beam quality. Some LED illuminators have a strong blue-light component versus the green-light component. Blue-light is highly energized and is close in the color spectrum to ultraviolet-light. The hazards of retinal damage with the use of high-intensity blue-lights has been well-documented. There is limited research regarding the possible ocular hazards of usage of high-intensity illuminating LED devices. Furthermore, the authors have found little research, standards, or guidelines examining the possible safety issues regarding the unique dental practice setting consisting of the combined use of LED illumination systems. Another unexamined component is the effect of high-intensity light reflective glare and magnification back to the practitioner's eyes due to the use of water during dental procedures. Based on the result of Dr. Janet Harrison's observations of beginning dental students in a

  2. Improved illumination system of laparoscopes using an aspherical lens array.

    Science.gov (United States)

    Wu, Rengmao; Qin, Yi; Hua, Hong

    2016-06-01

    The current fiber-based illumination systems of laparoscopes are unable to uniformly illuminate a large enough area in abdomen due to the limited numerical aperture (NA) of the fiber bundle. Most energy is concentrated in a small region at the center of the illumination area. This limitation becomes problematic in laparoscopes which require capturing a wide field of view. In this paper, we propose an aspherical lens array which is used to direct the outgoing rays from the fiber bundle of laparoscope to produce a more uniformly illuminated, substantially larger field coverage than standalone fiber source. An intensity feedback method is developed to design the aspherical lens unit for extended non-Lambertian sources, which is the key to the design of this lens array. By this method, the lens unit is obtained after only one iteration, and the lens array is constructed by Boolean operation. Then, the ray-tracing technique is used to verify the design. Further, the lens array is fabricated and experimental tests are performed. The results clearly show that the well-illuminated area is increased to about 0.107m(2) from 0.02m(2) (about 5x larger than a standard fiber illumination source). More details of the internal organs can be clearly observed under this improved illumination condition, which also reflects the significant improvement in the optical performance of the laparoscope.

  3. Nonuniformity mitigation of beam illumination in heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Kawata, S; Noguchi, K; Suzuki, T; Kurosaki, T; Barada, D; Ogoyski, A I; Zhang, W; Xie, J; Zhang, H; Dai, D

    2014-01-01

    In inertial fusion, a target DT fuel should be compressed to typically 1000 times the solid density. The target implosion nonuniformity is introduced by a driver beam’s illumination nonuniformity, for example. The target implosion should be robust against the implosion nonuniformities. In this paper, the requirement for implosion uniformity is first discussed. The implosion non-uniformity should be less than a few percent. The implosion dynamics is also briefly reviewed in heavy ion inertial fusion (HIF). Heavy ions deposit their energy inside the target energy absorber, and the energy deposition layer is rather thick, depending on the ion particle energy. Then nonuniformity mitigation mechanisms of the heavy ion beam (HIB) illumination in HIF are discussed. A density valley appears in the energy absorber, and the large-scale density valley also works as a radiation energy confinement layer, which contributes to a radiation energy smoothing. In HIF, wobbling heavy ion beam illumination was also introduced to realize a uniform implosion. The wobbling HIB axis oscillation is precisely controlled. In the wobbling HIBs’ illumination, the illumination nonuniformity oscillates in time and space on an HIF target. The oscillating-HIB energy deposition may contribute to the reduction of the HIBs’ illumination nonuniformity by its smoothing effect on the HIB illumination nonuniformity and also by a growth mitigation effect on the Rayleigh–Taylor instability. (invited comment)

  4. Reflectance, illumination, and appearance in color constancy.

    Science.gov (United States)

    McCann, John J; Parraman, Carinna; Rizzi, Alessandro

    2014-01-01

    We studied color constancy using a pair of identical 3-D Color Mondrian displays. We viewed one 3-D Mondrian in nearly uniform illumination, and the other in directional, nonuniform illumination. We used the three dimensional structures to modulate the light falling on the painted surfaces. The 3-D structures in the displays were a matching set of wooden blocks. Across Mondrian displays, each corresponding facet had the same paint on its surface. We used only 6 chromatic, and 5 achromatic paints applied to 104 block facets. The 3-D blocks add shadows and multiple reflections not found in flat Mondrians. Both 3-D Mondrians were viewed simultaneously, side-by-side. We used two techniques to measure correlation of appearance with surface reflectance. First, observers made magnitude estimates of changes in the appearances of identical reflectances. Second, an author painted a watercolor of the 3-D Mondrians. The watercolor's reflectances quantified the changes in appearances. While constancy generalizations about illumination and reflectance hold for flat Mondrians, they do not for 3-D Mondrians. A constant paint does not exhibit perfect color constancy, but rather shows significant shifts in lightness, hue and chroma in response to the structure in the nonuniform illumination. Color appearance depends on the spatial information in both the illumination and the reflectances of objects. The spatial information of the quanta catch from the array of retinal receptors generates sensations that have variable correlation with surface reflectance. Models of appearance in humans need to calculate the departures from perfect constancy measured here. This article provides a dataset of measurements of color appearances for computational models of sensation.

  5. Reflectance, illumination, and appearance in color constancy

    Directory of Open Access Journals (Sweden)

    John J. McCann

    2014-01-01

    Full Text Available We studied color constancy using a pair of identical 3-D Color Mondrian displays. We viewed one 3-D Mondrian in nearly uniform illumination, and the other in directional, nonuniform illumination. We used the three dimensional structures to modulate the light falling on the painted surfaces. The 3-D structures in the displays were a matching set of wooden blocks. Across Mondrian displays, each corresponding facet had the same paint on its surface. We used only 6 chromatic, and 5 achromatic paints applied to 104 block facets. The 3-D blocks add shadows and multiple reflections not found in flat Mondrians. Both 3-D Mondrians were viewed simultaneously, side-by-side. We used two techniques to measure correlation of appearance with surface reflectance. First, observers made magnitude estimates of changes in the appearances of identical reflectances. Second, an author painted a watercolor of the 3-D Mondrians. The watercolor’s reflectances quantified the changes in appearances. While constancy generalizations about illumination and reflectance hold for flat Mondrians, they do not for 3-D Mondrians. A constant paint does not exhibit perfect color constancy, but rather shows significant shifts in lightness, hue and chroma in response to the structure in the nonuniform illumination. Color appearance depends on the spatial information in both the illumination and the reflectances of objects. The spatial information of the quanta catch from the array of retinal receptors generates sensations that have variable correlation with surface reflectance. Models of appearance in humans need to calculate the departures from perfect constancy measured here. This article provides a dataset of measurements of color appearances for computational models of sensation.

  6. Lighting design for globally illuminated volume rendering.

    Science.gov (United States)

    Zhang, Yubo; Ma, Kwan-Liu

    2013-12-01

    With the evolution of graphics hardware, high quality global illumination becomes available for real-time volume rendering. Compared to local illumination, global illumination can produce realistic shading effects which are closer to real world scenes, and has proven useful for enhancing volume data visualization to enable better depth and shape perception. However, setting up optimal lighting could be a nontrivial task for average users. There were lighting design works for volume visualization but they did not consider global light transportation. In this paper, we present a lighting design method for volume visualization employing global illumination. The resulting system takes into account view and transfer-function dependent content of the volume data to automatically generate an optimized three-point lighting environment. Our method fully exploits the back light which is not used by previous volume visualization systems. By also including global shadow and multiple scattering, our lighting system can effectively enhance the depth and shape perception of volumetric features of interest. In addition, we propose an automatic tone mapping operator which recovers visual details from overexposed areas while maintaining sufficient contrast in the dark areas. We show that our method is effective for visualizing volume datasets with complex structures. The structural information is more clearly and correctly presented under the automatically generated light sources.

  7. Illumination non-uniformity of spirally wobbling beam in heavy ion fusion

    International Nuclear Information System (INIS)

    Suzuki, T.; Noguchi, K.; Kurosaki, T.; Barada, D.; Kawata, S.; Ma, Y. Y.; Ogoyski, A.I.

    2016-01-01

    In inertial confinement fusion, the driver beam illumination non-uniformity leads a degradation of fusion energy output. The illumination non-uniformity allowed is less than a few percent in inertial fusion target implosion. Heavy ion beam (HIB) accelerator provides a capability to oscillate a beam axis with a high frequency. The wobbling beams may provide a new method to reduce or smooth the beam illumination non-uniformity. In this paper the HIBs wobbling illumination scheme was optimized. (paper)

  8. Lunar South Pole Illumination: Review, Reassessment, and Power System Implications

    Science.gov (United States)

    Fincannon, James

    2007-01-01

    This paper reviews past analyses and research related to lunar south pole illumination and presents results of independent illumination analyses using an analytical tool and a radar digital elevation model. The analysis tool enables assessment at most locations near the lunar poles for any time and any year. Average illumination fraction, energy storage duration, solar/horizon terrain elevation profiles and illumination fraction profiles are presented for various highly illuminated sites which have been identified for manned or unmanned operations. The format of the data can be used by power system designers to develop mass optimized solar and energy storage systems. Data are presented for the worse case lunar day (a critical power planning bottleneck) as well as three lunar days during lunar south pole winter. The main site under consideration by present lunar mission planners (on the Crater Shackleton rim) is shown to have, for the worse case lunar day, a 0.71 average illumination fraction and 73 to 117 hours required for energy storage (depending on power system type). Linking other sites and including towers at either site are shown to not completely eliminate the need for energy storage.

  9. Automated Field-of-View, Illumination, and Recognition Algorithm Design of a Vision System for Pick-and-Place Considering Colour Information in Illumination and Images.

    Science.gov (United States)

    Chen, Yibing; Ogata, Taiki; Ueyama, Tsuyoshi; Takada, Toshiyuki; Ota, Jun

    2018-05-22

    Machine vision is playing an increasingly important role in industrial applications, and the automated design of image recognition systems has been a subject of intense research. This study has proposed a system for automatically designing the field-of-view (FOV) of a camera, the illumination strength and the parameters in a recognition algorithm. We formulated the design problem as an optimisation problem and used an experiment based on a hierarchical algorithm to solve it. The evaluation experiments using translucent plastics objects showed that the use of the proposed system resulted in an effective solution with a wide FOV, recognition of all objects and 0.32 mm and 0.4° maximal positional and angular errors when all the RGB (red, green and blue) for illumination and R channel image for recognition were used. Though all the RGB illumination and grey scale images also provided recognition of all the objects, only a narrow FOV was selected. Moreover, full recognition was not achieved by using only G illumination and a grey-scale image. The results showed that the proposed method can automatically design the FOV, illumination and parameters in the recognition algorithm and that tuning all the RGB illumination is desirable even when single-channel or grey-scale images are used for recognition.

  10. Hybrid daylight/light-emitting diode illumination system for indoor lighting.

    Science.gov (United States)

    Ge, Aiming; Qiu, Peng; Cai, Jinlin; Wang, Wei; Wang, Junwei

    2014-03-20

    A hybrid illumination method using both daylight and light-emitting diodes (LEDs) for indoor lighting is presented in this study. The daylight can be introduced into the indoor space by a panel-integration system. The daylight part and LEDs are combined within a specific luminaire that can provide uniform illumination. The LEDs can be turned on and dimmed through closed-loop control when the daylight illuminance is inadequate. We simulated the illumination and calculated the indoor lighting efficiency of our hybrid daylight and LED lighting system, and compared this with that of LED and fluorescent lighting systems. Simulation results show that the efficiency of the hybrid daylight/LED illumination method is better than that of LED and traditional lighting systems, under the same lighting conditions and lighting time; the method has hybrid lighting average energy savings of T5 66.28%, and that of the LEDs is 41.62%.

  11. Determination of illuminants representing typical white light emitting diodes sources

    DEFF Research Database (Denmark)

    Jost, S.; Ngo, M.; Ferrero, A.

    2017-01-01

    is to develop LED-based illuminants that describe typical white LED products based on their Spectral Power Distributions (SPDs). Some of these new illuminants will be recommended in the update of the CIE publication 15 on colorimetry with the other typical illuminants, and among them, some could be used......Solid-state lighting (SSL) products are already in use by consumers and are rapidly gaining the lighting market. Especially, white Light Emitting Diode (LED) sources are replacing banned incandescent lamps and other lighting technologies in most general lighting applications. The aim of this work...... to complement the CIE standard illuminant A for calibration use in photometry....

  12. Laser sources for object illumination

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, G.F. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The considerations which formulate the specifications for a laser illuminator are explained, using the example of an underwater object. Depending on the parameters which define the scenario, widely varying laser requirements result.

  13. Improving Shadow Suppression for Illumination Robust Face Recognition

    KAUST Repository

    Zhang, Wuming

    2017-10-13

    2D face analysis techniques, such as face landmarking, face recognition and face verification, are reasonably dependent on illumination conditions which are usually uncontrolled and unpredictable in the real world. An illumination robust preprocessing method thus remains a significant challenge in reliable face analysis. In this paper we propose a novel approach for improving lighting normalization through building the underlying reflectance model which characterizes interactions between skin surface, lighting source and camera sensor, and elaborates the formation of face color appearance. Specifically, the proposed illumination processing pipeline enables the generation of Chromaticity Intrinsic Image (CII) in a log chromaticity space which is robust to illumination variations. Moreover, as an advantage over most prevailing methods, a photo-realistic color face image is subsequently reconstructed which eliminates a wide variety of shadows whilst retaining the color information and identity details. Experimental results under different scenarios and using various face databases show the effectiveness of the proposed approach to deal with lighting variations, including both soft and hard shadows, in face recognition.

  14. Predicting visibility of aircraft.

    Directory of Open Access Journals (Sweden)

    Andrew Watson

    Full Text Available Visual detection of aircraft by human observers is an important element of aviation safety. To assess and ensure safety, it would be useful to be able to be able to predict the visibility, to a human observer, of an aircraft of specified size, shape, distance, and coloration. Examples include assuring safe separation among aircraft and between aircraft and unmanned vehicles, design of airport control towers, and efforts to enhance or suppress the visibility of military and rescue vehicles. We have recently developed a simple metric of pattern visibility, the Spatial Standard Observer (SSO. In this report we examine whether the SSO can predict visibility of simulated aircraft images. We constructed a set of aircraft images from three-dimensional computer graphic models, and measured the luminance contrast threshold for each image from three human observers. The data were well predicted by the SSO. Finally, we show how to use the SSO to predict visibility range for aircraft of arbitrary size, shape, distance, and coloration.

  15. Difference in opalescence of restorative materials by the illuminant.

    Science.gov (United States)

    Yu, Bin; Lee, Yong-Keun

    2009-08-01

    To determine the differences in the opalescence parameter (OP) of indirect and direct resin composites, veneer ceramics and bovine enamel relative to the CIE standard illuminants D65, A and F2. BelleGlass NG (indirect resin; 10 shades) and Estelite Sigma (direct resin; 12 shades), and 4 shades of veneer ceramics were investigated. Bovine enamel was used as a reference. Reflected and transmitted colors of specimens were measured relative to the illuminants D65, A and F2 with a reflection spectrophotometer. OP values relative to the three illuminants [OP(D65), OP(A) and OP(F2)], difference in OP (DeltaOP) and OP difference ratio relative to OP(D65) [DeltaOP/OP(D65)] by the change of illuminants were calculated. Within each restorative material, DeltaOP and DeltaOP/OP(D65) values were analyzed with two-way analysis of variance (ANOVA), with the fixed factors of the shade designation and the combination of illuminants (alpha=0.05). DeltaOP and DeltaOP/OP(D65) values were influenced by the two factors within each restorative material based on two-way ANOVA. High opalescent materials showed higher DeltaOP values. OP(D65) was lower than OP(F2) and OP(A) values. Restorative materials showed lower DeltaOP/OP(D65) values than bovine enamel. Correlation coefficients between OP values relative to different illuminants were higher than 0.961 (Popalescence properties as compared with natural tooth enamel.

  16. Effects of illumination on image reconstruction via Fourier ptychography

    Science.gov (United States)

    Cao, Xinrui; Sinzinger, Stefan

    2017-12-01

    The Fourier ptychographic microscopy (FPM) technique provides high-resolution images by combining a traditional imaging system, e.g. a microscope or a 4f-imaging system, with a multiplexing illumination system, e.g. an LED array and numerical image processing for enhanced image reconstruction. In order to numerically combine images that are captured under varying illumination angles, an iterative phase-retrieval algorithm is often applied. However, in practice, the performance of the FPM algorithm degrades due to the imperfections of the optical system, the image noise caused by the camera, etc. To eliminate the influence of the aberrations of the imaging system, an embedded pupil function recovery (EPRY)-FPM algorithm has been proposed [Opt. Express 22, 4960-4972 (2014)]. In this paper, we study how the performance of FPM and EPRY-FPM algorithms are affected by imperfections of the illumination system using both numerical simulations and experiments. The investigated imperfections include varying and non-uniform intensities, and wavefront aberrations. Our study shows that the aberrations of the illumination system significantly affect the performance of both FPM and EPRY-FPM algorithms. Hence, in practice, aberrations in the illumination system gain significant influence on the resulting image quality.

  17. Impact of aircraft systems within aircraft operation: A MEA trajectory optimisation study

    OpenAIRE

    Seresinhe, R.

    2014-01-01

    Air transport has been a key component of the socio-economic globalisation. The ever increasing demand for air travel and air transport is a testament to the success of the aircraft. But this growing demand presents many challenges. One of which is the environmental impact due to aviation. The scope of the environmental impact of aircraft can be discussed from many viewpoints. This research focuses on the environmental impact due to aircraft operation. Aircraft operation causes...

  18. Aircraft to aircraft intercomparison during SEMAPHORE

    Science.gov (United States)

    Lambert, Dominique; Durand, Pierre

    1998-10-01

    During the Structure des Echanges Mer-Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherche Expérimentale (SEMAPHORE) experiment, performed in the Azores region in 1993, two French research aircraft were simultaneously used for in situ measurements in the atmospheric boundary layer. We present the results obtained from one intercomparison flight between the two aircraft. The mean parameters generally agree well, although the temperature has to be slightly shifted in order to be in agreement for the two aircraft. A detailed comparison of the turbulence parameters revealed no bias. The agreement is good for variances and is satisfactory for fluxes and skewness. A thorough study of the errors involved in flux computation revealed that the greatest accuracy is obtained for latent heat flux. Errors in sensible heat flux are considerably greater, and the worst results are obtained for momentum flux. The latter parameter, however, is more accurate than expected from previous parameterizations.

  19. Macular photostress and visual experience between microscope and intracameral illumination during cataract surgery.

    Science.gov (United States)

    Seo, Hyejin; Nam, Dong Heun; Lee, Jong Yeon; Park, Su Jin; Kim, Yu Jeong; Kim, Seong-Woo; Chung, Tae-Young; Inoue, Makoto; Kim, Terry

    2018-02-01

    To evaluate macular photostress and visual experience between coaxial microscope illumination versus oblique intracameral illumination during cataract surgery. Gachon University Gil Hospital, Incheon, South Korea. Prospective case series. Consecutive patients who had cataract surgery using microscope illumination and intracameral illumination were included. The patients were asked to complete a questionnaire (seeing strong lights, feeling photophobia, feeling startled (fright) when seeing lights, seeing any colors, seeing any instruments or surgical procedures, and estimating intraoperative visual function) designed to describe their cataract surgery experience. The images projected on the retina of the model eye (rear view) with artificial opaque fragments in the anterior chamber during simulating cataract surgery were compared between the 2 illumination types. Sixty patients completed the questionnaire. Scores for strong lights, photophobia, fright, and color perception were significantly higher with microscope illumination than with intracameral illumination (all P microscope illumination (13 [21.7%]). In the rear-view images created in a model eye, only the bright microscope light in the center was seen without any lens image in the microscope illumination. However, in the intracameral illumination, the less bright light from the light pipe in the periphery and the lens fragments were seen more clearly. In a view of the patients' visual experience, oblique intracameral illumination caused less subjective photostress and was preferred over coaxial microscope illumination. Objective findings from the model-eye experiment correlated to the result of visual experience. Copyright © 2018 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  20. Spectrally optimal illuminations for diabetic retinopathy detection in retinal imaging

    Science.gov (United States)

    Bartczak, Piotr; Fält, Pauli; Penttinen, Niko; Ylitepsa, Pasi; Laaksonen, Lauri; Lensu, Lasse; Hauta-Kasari, Markku; Uusitalo, Hannu

    2017-04-01

    Retinal photography is a standard method for recording retinal diseases for subsequent analysis and diagnosis. However, the currently used white light or red-free retinal imaging does not necessarily provide the best possible visibility of different types of retinal lesions, important when developing diagnostic tools for handheld devices, such as smartphones. Using specifically designed illumination, the visibility and contrast of retinal lesions could be improved. In this study, spectrally optimal illuminations for diabetic retinopathy lesion visualization are implemented using a spectrally tunable light source based on digital micromirror device. The applicability of this method was tested in vivo by taking retinal monochrome images from the eyes of five diabetic volunteers and two non-diabetic control subjects. For comparison to existing methods, we evaluated the contrast of retinal images taken with our method and red-free illumination. The preliminary results show that the use of optimal illuminations improved the contrast of diabetic lesions in retinal images by 30-70%, compared to the traditional red-free illumination imaging.

  1. IR Image upconversion using band-limited ASE illumination fiber sources.

    Science.gov (United States)

    Maestre, H; Torregrosa, A J; Capmany, J

    2016-04-18

    We study the field-of-view (FOV) of an upconversion imaging system that employs an Amplified Spontaneous Emission (ASE) fiber source to illuminate a transmission target. As an intermediate case between narrowband laser and thermal illumination, an ASE fiber source allows for higher spectral intensity than thermal illumination and still keeps a broad wavelength spectrum to take advantage of an increased non-collinear phase-matching angle acceptance that enlarges the FOV of the upconversion system when compared to using narrowband laser illumination. A model is presented to predict the angular acceptance of the upconverter in terms of focusing and ASE spectral width and allocation. The model is experimentally checked in case of 1550-630 nm upconversion.

  2. Bessel light sheet structured illumination microscopy

    Science.gov (United States)

    Noshirvani Allahabadi, Golchehr

    Biomedical study researchers using animals to model disease and treatment need fast, deep, noninvasive, and inexpensive multi-channel imaging methods. Traditional fluorescence microscopy meets those criteria to an extent. Specifically, two-photon and confocal microscopy, the two most commonly used methods, are limited in penetration depth, cost, resolution, and field of view. In addition, two-photon microscopy has limited ability in multi-channel imaging. Light sheet microscopy, a fast developing 3D fluorescence imaging method, offers attractive advantages over traditional two-photon and confocal microscopy. Light sheet microscopy is much more applicable for in vivo 3D time-lapsed imaging, owing to its selective illumination of tissue layer, superior speed, low light exposure, high penetration depth, and low levels of photobleaching. However, standard light sheet microscopy using Gaussian beam excitation has two main disadvantages: 1) the field of view (FOV) of light sheet microscopy is limited by the depth of focus of the Gaussian beam. 2) Light-sheet images can be degraded by scattering, which limits the penetration of the excitation beam and blurs emission images in deep tissue layers. While two-sided sheet illumination, which doubles the field of view by illuminating the sample from opposite sides, offers a potential solution, the technique adds complexity and cost to the imaging system. We investigate a new technique to address these limitations: Bessel light sheet microscopy in combination with incoherent nonlinear Structured Illumination Microscopy (SIM). Results demonstrate that, at visible wavelengths, Bessel excitation penetrates up to 250 microns deep in the scattering media with single-side illumination. Bessel light sheet microscope achieves confocal level resolution at a lateral resolution of 0.3 micron and an axial resolution of 1 micron. Incoherent nonlinear SIM further reduces the diffused background in Bessel light sheet images, resulting in

  3. Optimal sun-shading design for enhanced daylight illumination of subtropical classrooms

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Ming-Chin [Architecture and Building Research Institute, MOI (China); Chiang, Che-Ming [Department of Architecture, National Cheng-Kung University, Tainan 701 (China); Chou, Po-Cheng [Department of Interior Design, Shu-Te University, No. 59 Hun-Shan Road, Yenchau 82445, Kaohsiung County (China); Chang, Kuei-Feng [Department of Real Estate Management, National Pingtung Institute of Commerce (China); Lee, Chia-Yen [Department of Mechanical and Automation Engineering, Da-Yeh University, Changhua 515 (China)

    2008-07-01

    This study investigates the feasibility of fitting windows with sun-shadings in order to minimize the lighting power costs in daylight-illuminated classrooms lit from a single side in subtropical regions. An IES-CPC model is created of a representative classroom in Taiwan, and a series of simulations is performed to determine the average illuminance value and the uniformity of the illuminance distribution in the classroom under various lighting conditions with no sun-shadings fitted to the window. The numerical results are found to be in good agreement with the experimental measurements obtained using an array of nine-channel photometers. Having confirmed the validity of the simulation scheme, the illumination properties of four different sun-shading designs are considered. The results show that a double-layered sun-shading represents the optimal sun-shading design in terms of achieving a uniform illumination distribution within the classroom. Given appropriate physical dimensions, this daylight access device achieves the minimum illuminance requirement of 500 lx and improves the lighting uniformity ratio from 0.25-0.35 to 0.40-0.42. Furthermore, using this sun-shading device, the required illuminance ratio of 0.5 can be obtained simply by switching on one of the three rows of lights in the classroom. Accordingly, the daylight access device not only improves the illuminance conditions within the classroom, but also reduces the lighting power cost by 71.5% compared to the case where all of the lights are turned on. (author)

  4. A biologically inspired scale-space for illumination invariant feature detection

    International Nuclear Information System (INIS)

    Vonikakis, Vasillios; Chrysostomou, Dimitrios; Kouskouridas, Rigas; Gasteratos, Antonios

    2013-01-01

    This paper presents a new illumination invariant operator, combining the nonlinear characteristics of biological center-surround cells with the classic difference of Gaussians operator. It specifically targets the underexposed image regions, exhibiting increased sensitivity to low contrast, while not affecting performance in the correctly exposed ones. The proposed operator can be used to create a scale-space, which in turn can be a part of a SIFT-based detector module. The main advantage of this illumination invariant scale-space is that, using just one global threshold, keypoints can be detected in both dark and bright image regions. In order to evaluate the degree of illumination invariance that the proposed, as well as other, existing, operators exhibit, a new benchmark dataset is introduced. It features a greater variety of imaging conditions, compared to existing databases, containing real scenes under various degrees and combinations of uniform and non-uniform illumination. Experimental results show that the proposed detector extracts a greater number of features, with a high level of repeatability, compared to other approaches, for both uniform and non-uniform illumination. This, along with its simple implementation, renders the proposed feature detector particularly appropriate for outdoor vision systems, working in environments under uncontrolled illumination conditions. (paper)

  5. Geometry of illumination, luminance contrast, and gloss perception.

    Science.gov (United States)

    Leloup, Frédéric B; Pointer, Michael R; Dutré, Philip; Hanselaer, Peter

    2010-09-01

    The influence of both the geometry of illumination and luminance contrast on gloss perception has been examined using the method of paired comparison. Six achromatic glass samples having different lightness were illuminated by two light sources. Only one of these light sources was visible in reflection by the observer. By separate adjustment of the intensity of both light sources, the luminance of both the reflected image and the adjacent off-specular surroundings could be individually varied. It was found that visual gloss appraisal did not correlate with instrumentally measured specular gloss; however, psychometric contrast seemed to be a much better correlate. It has become clear that not only the sample surface characteristics determine gloss perception: the illumination geometry could be an even more important factor.

  6. Social-Ecological Soundscapes: Examining Aircraft-Harvester-Caribou Conflict in Arctic Alaska

    Science.gov (United States)

    Stinchcomb, Taylor R.

    quantify interactions and provide baseline data that may foster mitigation discourses among stakeholders. In Chapter 2, I employed a soundscape-ecology approach to address concerns about aircraft activity expressed by the Alaska Native community of Nuiqsut. Nuiqsut faces the greatest volume of aircraft activity of any community in Arctic Alaska because of its proximity to intensive oil and gas activity. However, information on when and where these aircraft are flying is unavailable to residents, managers, and researchers. I worked closely with Nuiqsut residents to deploy acoustic monitoring systems along important caribou harvest corridors during the peak of caribou harvest, from early June through late August 2016. This method successfully captured aircraft sound and the community embraced my science for addressing local priorities. I found aircraft activity levels near Nuiqsut and surrounding oil developments (12 daily events) to be approximately six times greater than in areas over 30 km from the village (two daily events). Aircraft sound disturbance was 26 times lower in undeveloped areas (Noise Free Interval =13 hrs) than near human development (NFI = 0.5 hrs). My study provided baseline data on aircraft activity and noise levels. My research could be used by stakeholders and managers to develop conflict avoidance agreements and minimize interference with traditional harvest practices. Soundscape methods could be adapted to rural regions across Alaska that may be experiencing conflict with aircraft or other sources of noise that disrupt human-wildlife interactions. By quantifying aircraft activity using a soundscape approach, I demonstrated a novel application of an emerging field in ecology and provided the first scientific data on one dimension of a larger social-ecological system. Future soundscape studies should be integrated with research on both harvester and caribou behaviors to understand how the components within this system are interacting over space and

  7. Broadband spectrally dynamic solid state illumination source

    Energy Technology Data Exchange (ETDEWEB)

    Nicol, David B; Asghar, Ali; Gupta, Shalini; Kang, Hun; Pan, Ming [Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA 30332-0250 (United States); Strassburg, Martin [Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA 30332-0250 (United States); Georgia State University, Department of Physics and Astronomy, Atlanta, GA 30302-4106 (United States); Summers, Chris; Ferguson, Ian T [Georgia Institute of Technology, School of Materials Science and Engineering, Atlanta, GA 30332 (United States)

    2006-06-15

    Solid state lighting has done well recently in niche markets such as signage and displays, however, no available SSL technologies incorporate all the necessary attributes for general illumination. Development of a novel solid state general illumination source is discussed here. Two LEDs emitting at two distinct wavelengths can be monolithically grown and used to excite two or more phosphors with varied excitation spectra. The combined phosphorescence spectrum can then be controlled by adjusting the relative intensities of the two LED emissions. Preliminary phosphor analysis shows such a scheme to be viable for use in a spectrally dynamic broadband general illumination source. A tunnel junction is envisioned as a means of current spreading in a buried layer for three terminal operation. However, tunnel junction properties in GaN based materials are not well understood, and require further optimization to be practical devices. Preliminary results on GaN tunnel junctions are presented here as well. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Effect of ultraviolet illumination on metal oxide resistive memory

    KAUST Repository

    Duran Retamal, Jose Ramon

    2014-12-22

    We investigate the photoelectrical and resistive switching properties of Pt/ZnO/Pt capacitor operated in unipolar mode under ultraviolet (UV) illumination. The oxygen photodesorption under UV illumination explains the photoconduction observed in initial and high resistance states. Meanwhile, oxygen readsorption at surface-related defects justifies the different photoresponses dynamics in both states. Finally, UV illumination significantly reduces the variations of resistance in high resistance state, set voltage and reset voltage by 58%, 33%, and 25%, respectively, stabilizing Pt/ZnO/Pt capacitor. Our findings in improved switching uniformity via UV light give physical insight into designing resistive memory devices.

  9. Effect of ultraviolet illumination on metal oxide resistive memory

    KAUST Repository

    Duran Retamal, Jose Ramon; Kang, Chen-Fang; Ho, Chih-Hsiang; Ke, Jr-Jian; Chang, Wen-Yuan; He, Jr-Hau

    2014-01-01

    We investigate the photoelectrical and resistive switching properties of Pt/ZnO/Pt capacitor operated in unipolar mode under ultraviolet (UV) illumination. The oxygen photodesorption under UV illumination explains the photoconduction observed in initial and high resistance states. Meanwhile, oxygen readsorption at surface-related defects justifies the different photoresponses dynamics in both states. Finally, UV illumination significantly reduces the variations of resistance in high resistance state, set voltage and reset voltage by 58%, 33%, and 25%, respectively, stabilizing Pt/ZnO/Pt capacitor. Our findings in improved switching uniformity via UV light give physical insight into designing resistive memory devices.

  10. Short revolving wings enable hovering animals to avoid stall and reduce drag

    Science.gov (United States)

    Lentink, David; Kruyt, Jan W.; Heijst, Gertjan F.; Altshuler, Douglas L.

    2014-11-01

    Long and slender wings reduce the drag of airplanes, helicopters, and gliding animals, which operate at low angle of attack (incidence). Remarkably, there is no evidence for such influence of wing aspect ratio on the energetics of hovering animals that operate their wings at much higher incidence. High incidence causes aircraft wings to stall, hovering animals avoid stall by generating an attached vortex along the leading edge of their wings that elevates lift. Hypotheses that explain this capability include the necessity for a short radial distance between the shoulder joint and wing tip, measured in chord lengths, instead of the long tip-to-tip distance that elevates aircraft performance. This stems from how hovering animals revolve their wings around a joint, a condition for which the precise effect of aspect ratio on stall performance is unknown. Here we show that the attachment of the leading edge vortex is determined by wing aspect ratio with respect to the center of rotation-for a suite of aspect ratios that represent both animal and aircraft wings. The vortex remains attached when the local radius is shorter than 4 chord lengths, and separates outboard on more slender wings. Like most other hovering animals, hummingbirds have wing aspect ratios between 3 and 4, much stubbier than helicopters. Our results show this makes their wings robust against flow separation, which reduces drag below values obtained with more slender wings. This revises our understanding of how aspect ratio improves performance at low Reynolds numbers.

  11. Illumination Tolerance for Visual Navigation with the Holistic Min-Warping Method

    Directory of Open Access Journals (Sweden)

    Ralf Möller

    2014-02-01

    Full Text Available Holistic visual navigation methods are an emerging alternative to the ubiquitous feature-based methods. Holistic methods match entire images pixel-wise instead of extracting and comparing local feature descriptors. In this paper we investigate which pixel-wise distance measures are most suitable for the holistic min-warping method with respect to illumination invariance. Two novel approaches are presented: tunable distance measures—weighted combinations of illumination-invariant and illumination-sensitive terms—and two novel forms of “sequential” correlation which are only invariant against intensity shifts but not against multiplicative changes. Navigation experiments on indoor image databases collected at the same locations but under different conditions of illumination demonstrate that tunable distance measures perform optimally by mixing their two portions instead of using the illumination-invariant term alone. Sequential correlation performs best among all tested methods, and as well but much faster in an approximated form. Mixing with an additional illumination-sensitive term is not necessary for sequential correlation. We show that min-warping with approximated sequential correlation can successfully be applied to visual navigation of cleaning robots.

  12. Local Relation Map: A Novel Illumination Invariant Face Recognition Approach

    Directory of Open Access Journals (Sweden)

    Lian Zhichao

    2012-10-01

    Full Text Available In this paper, a novel illumination invariant face recognition approach is proposed. Different from most existing methods, an additive term as noise is considered in the face model under varying illuminations in addition to a multiplicative illumination term. High frequency coefficients of Discrete Cosine Transform (DCT are discarded to eliminate the effect caused by noise. Based on the local characteristics of the human face, a simple but effective illumination invariant feature local relation map is proposed. Experimental results on the Yale B, Extended Yale B and CMU PIE demonstrate the outperformance and lower computational burden of the proposed method compared to other existing methods. The results also demonstrate the validity of the proposed face model and the assumption on noise.

  13. Laser illuminated flat panel display

    Energy Technology Data Exchange (ETDEWEB)

    Veligdan, J.T.

    1995-12-31

    A 10 inch laser illuminated flat panel Planar Optic Display (POD) screen has been constructed and tested. This POD screen technology is an entirely new concept in display technology. Although the initial display is flat and made of glass, this technology lends itself to applications where a plastic display might be wrapped around the viewer. The display screen is comprised of hundreds of planar optical waveguides where each glass waveguide represents a vertical line of resolution. A black cladding layer, having a lower index of refraction, is placed between each waveguide layer. Since the cladding makes the screen surface black, the contrast is high. The prototype display is 9 inches wide by 5 inches high and approximately I inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  14. Fuel property effects on Navy aircraft fuel systems

    Science.gov (United States)

    Moses, C. A.

    1984-01-01

    Problems of ensuring compatibility of Navy aircraft with fuels that may be different than the fuels for which the equipment was designed and qualified are discussed. To avoid expensive requalification of all the engines and airframe fuel systems, methodologies to qualify future fuels by using bench-scale and component testing are being sought. Fuel blends with increasing JP5-type aromatic concentration were seen to produce less volume swell than an equivalent aromatic concentration in the reference fuel. Futhermore, blends with naphthenes, decalin, tetralin, and naphthalenes do not deviate significantly from the correlation line of aromatic blends, Similar results are found with tensile strenth and elongation. Other elastomers, sealants, and adhesives are also being tested.

  15. The relationship between ambient illumination and psychological factors in viewing of display Images

    Science.gov (United States)

    Iwanami, Takuya; Kikuchi, Ayano; Kaneko, Takashi; Hirai, Keita; Yano, Natsumi; Nakaguchi, Toshiya; Tsumura, Norimichi; Yoshida, Yasuhiro; Miyake, Yoichi

    2009-01-01

    In this paper, we have clarified the relationship between ambient illumination and psychological factors in viewing of display images. Psychological factors were obtained by the factor analysis with the results of the semantic differential (SD) method. In the psychological experiments, subjects evaluated the impressions of displayed images with changing ambient illuminating conditions. The illumination conditions were controlled by a fluorescent ceiling light and a color LED illumination which was located behind the display. We experimented under two kinds of conditions. One was the experiment with changing brightness of the ambient illumination. The other was the experiment with changing the colors of the background illumination. In the results of the experiment, two factors "realistic sensation, dynamism" and "comfortable," were extracted under different brightness of the ambient illumination of the display surroundings. It was shown that the "comfortable" was improved by the brightness of display surroundings. On the other hand, when the illumination color of surroundings was changed, three factors "comfortable," "realistic sensation, dynamism" and "activity" were extracted. It was also shown that the value of "comfortable" and "realistic sensation, dynamism" increased when the display surroundings were illuminated by the average color of the image contents.

  16. Portable Integrated Wireless Device Threat Assessment to Aircraft Radio Systems

    Science.gov (United States)

    Salud, Maria Theresa P.; Williams, Reuben A. (Technical Monitor)

    2004-01-01

    An assessment was conducted on multiple wireless local area network (WLAN) devices using the three wireless standards for spurious radiated emissions to determine their threat to aircraft radio navigation systems. The measurement process, data and analysis are provided for devices tested using IEEE 802.11a, IEEE 802.11b, and Bluetooth as well as data from portable laptops/tablet PCs and PDAs (grouping known as PEDs). A comparison was made between wireless LAN devices and portable electronic devices. Spurious radiated emissions were investigated in the radio frequency bands for the following aircraft systems: Instrument Landing System Localizer and Glideslope, Very High Frequency (VHF) Communication, VHF Omnidirectional Range, Traffic Collision Avoidance System, Air Traffic Control Radar Beacon System, Microwave Landing System and Global Positioning System. Since several of the contiguous navigation systems were grouped under one encompassing measurement frequency band, there were five measurement frequency bands where spurious radiated emissions data were collected for the PEDs and WLAN devices. The report also provides a comparison between emissions data and regulatory emission limit.

  17. Measurement of illumination exposure in postpartum women

    Directory of Open Access Journals (Sweden)

    Stein Martin T

    2003-05-01

    Full Text Available Abstract Background Low levels of light exposure at critical times are thought to cause seasonal affective disorder. Investigators, in studies demonstrating the usefulness of bright light therapy, also have implicated light's role in non-seasonal depression. The precise cause of postpartum depression has not been delineated, but it seemed possible that new mothers would spend reduced time in daylight. The goal of this study was to examine the levels of illumination experienced by postpartum mothers and to discover any relationship between light exposure and mood levels experienced during the postpartum period. Methods Fifteen postpartum women, who did not have any baseline indication of depression, wore a wrist device (Actillume for 72 hours to measure their exposure to light. At the end of the recording period, they completed a self-reported measure of mood. The mean light exposure of these postpartum women (expressed as the 24-hour average logarithm of illumination in lux was compared with that of a representative sample of women of comparable age, residence, and seasonal months of recording. Mood levels were then rank-ordered and tested for correlation with light exposure levels. Results There was no significant difference between the amount of light [log10lux] experienced by postpartum (1.01 SD 0.236 and control women (1.06 SD 0.285. Mood was not correlated with illumination in the postpartum sample. Conclusions Postpartum women in San Diego did not receive reduced light, nor was low mood related to low illumination.

  18. Associating crash avoidance maneuvers with driver attributes and accident characteristics: a mixed logit model approach.

    Science.gov (United States)

    Kaplan, Sigal; Prato, Carlo Giacomo

    2012-01-01

    The current study focuses on the propensity of drivers to engage in crash avoidance maneuvers in relation to driver attributes, critical events, crash characteristics, vehicles involved, road characteristics, and environmental conditions. The importance of avoidance maneuvers derives from the key role of proactive and state-aware road users within the concept of sustainable safety systems, as well as from the key role of effective corrective maneuvers in the success of automated in-vehicle warning and driver assistance systems. The analysis is conducted by means of a mixed logit model that represents the selection among 5 emergency lateral and speed control maneuvers (i.e., "no avoidance maneuvers," "braking," "steering," "braking and steering," and "other maneuvers) while accommodating correlations across maneuvers and heteroscedasticity. Data for the analysis were retrieved from the General Estimates System (GES) crash database for the year 2009 by considering drivers for which crash avoidance maneuvers are known. The results show that (1) the nature of the critical event that made the crash imminent greatly influences the choice of crash avoidance maneuvers, (2) women and elderly have a relatively lower propensity to conduct crash avoidance maneuvers, (3) drowsiness and fatigue have a greater negative marginal effect on the tendency to engage in crash avoidance maneuvers than alcohol and drug consumption, (4) difficult road conditions increase the propensity to perform crash avoidance maneuvers, and (5) visual obstruction and artificial illumination decrease the probability to carry out crash avoidance maneuvers. The results emphasize the need for public awareness campaigns to promote safe driving style for senior drivers and warning about the risks of driving under fatigue and distraction being comparable to the risks of driving under the influence of alcohol and drugs. Moreover, the results suggest the need to educate drivers about hazard perception, designing

  19. An overview of the Douglas Aircraft Company Aeroelastic Design Optimization Program (ADOP)

    Science.gov (United States)

    Dodd, Alan J.

    1989-01-01

    From a program manager's viewpoint, the history, scope and architecture of a major structural design program at Douglas Aircraft Company called Aeroelastic Design Optimization Program (ADOP) are described. ADOP was originally intended for the rapid, accurate, cost-effective evaluation of relatively small structural models at the advanced design level, resulting in improved proposal competitiveness and avoiding many costly changes later in the design cycle. Before release of the initial version in November 1987, however, the program was expanded to handle very large production-type analyses.

  20. Pulsed laser illumination of photovoltaic cells

    Science.gov (United States)

    Yater, Jane A.; Lowe, Roland A.; Jenkins, Phillip P.; Landis, Geoffrey A.

    1995-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic receivers to provide remote power. Both the radio-frequency (RF) and induction FEL produce pulsed rather than continuous output. In this work we investigate cell response to pulsed laser light which simulates the RF FEL format. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced compared to constant illumination at the same wavelength. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments indicates that the RF FEL pulse format yields more efficient photovoltaic conversion than does an induction FEL format.

  1. Accommodating multiple illumination sources in an imaging colorimetry environment

    Science.gov (United States)

    Tobin, Kenneth W., Jr.; Goddard, James S., Jr.; Hunt, Martin A.; Hylton, Kathy W.; Karnowski, Thomas P.; Simpson, Marc L.; Richards, Roger K.; Treece, Dale A.

    2000-03-01

    Researchers at the Oak Ridge National Laboratory have been developing a method for measuring color quality in textile products using a tri-stimulus color camera system. Initial results of the Imaging Tristimulus Colorimeter (ITC) were reported during 1999. These results showed that the projection onto convex sets (POCS) approach to color estimation could be applied to complex printed patterns on textile products with high accuracy and repeatability. Image-based color sensors used for on-line measurement are not colorimetric by nature and require a non-linear transformation of the component colors based on the spectral properties of the incident illumination, imaging sensor, and the actual textile color. Our earlier work reports these results for a broad-band, smoothly varying D65 standard illuminant. To move the measurement to the on-line environment with continuously manufactured textile webs, the illumination source becomes problematic. The spectral content of these light sources varies substantially from the D65 standard illuminant and can greatly impact the measurement performance of the POCS system. Although absolute color measurements are difficult to make under different illumination, referential measurements to monitor color drift provide a useful indication of product quality. Modifications to the ITC system have been implemented to enable the study of different light sources. These results and the subsequent analysis of relative color measurements will be reported for textile products.

  2. COMPARATIVE ANALYSIS OF TRANSPORT AIRCRAFT, BACKROUND FOR SHORT/ MEDIUM COURIER TRANSPORT AIRCRAFT PROCUREMENT

    Directory of Open Access Journals (Sweden)

    Matei POPA

    2010-03-01

    Full Text Available In accordance with Air Force requirements, the comparative analysis of short/medium transport aircraft comes to sustain procurement decision of short/medium transport aircraft. This paper presents, in short, the principles and the results of the comparative analysis for short/medium military transport aircraft.

  3. Estimation of luminous efficacy of daylight and illuminance for composite climate

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Jamil M.; Tiwari, G.N. [Center for Energy Studies, Indian Institute of Technology, Hauz Khas, New Delhi-16 (India)

    2010-07-01

    This Daylighting is one of the basic components of passive solar building design and its estimation is essential. In India there are a few available data of measured illuminance as in many regions of the world. The Indian climate is generally clear with overcast conditions prevailing through the months of July to September, which provides good potential to daylighting in buildings. Therefore, an analytical model that would encompass the weather conditions of New Delhi was selected. Hourly exterior horizontal and slope daylight availability has been estimated for New Delhi using daylight modeling techniques based on solar radiation data. A model to estimate interior illuminance was investigated and validated using experimental hourly inside illuminance data of an existing skylight integrated vault roof mud house in composite climate of New Delhi. The interior illuminance model was found in good agreement with experimental value of interior illuminance.

  4. A novel method for surface defect inspection of optic cable with short-wave infrared illuminance

    Science.gov (United States)

    Chen, Xiaohong; Liu, Ning; You, Bo; Xiao, Bin

    2016-07-01

    Intelligent on-line detection of cable quality is a crucial issue in optic cable factory, and defects on the surface of optic cable can dramatically depress cable grade. Manual inspection in optic cable quality cannot catch up with the development of optic cable industry due to its low detection efficiency and huge human cost. Therefore, real-time is highly demanded by industry in order to replace the subjective and repetitive process of manual inspection. For this reason, automatic cable defect inspection has been a trend. In this paper, a novel method for surface defect inspection of optic cable with short-wave infrared illuminance is presented. The special condition of short-wave infrared cannot only provide illumination compensation for the weak illumination environment, but also can avoid the problem of exposure when using visible light illuminance, which affects the accuracy of inspection algorithm. A series of image processing algorithms are set up to analyze cable image for the verification of real-time and veracity of the detection method. Unlike some existing detection algorithms which concentrate on the characteristics of defects with an active search way, the proposed method removes the non-defective areas of the image passively at the same time of image processing, which reduces a large amount of computation. OTSU algorithm is used to convert the gray image to the binary image. Furthermore, a threshold window is designed to eliminate the fake defects, and the threshold represents the considered minimum size of defects ε . Besides, a new regional suppression method is proposed to deal with the edge burrs of the cable, which shows the superior performance compared with that of Open-Close operation of mathematical morphological in the boundary processing. Experimental results of 10,000 samples show that the rates of miss detection and false detection are 2.35% and 0.78% respectively when ε equals to 0.5 mm, and the average processing period of one frame

  5. Characterization of the chlorophyll thermoluminescence afterglow in dark-adapted or far-red-illuminated plant leaves

    International Nuclear Information System (INIS)

    Miranda, T.; Ducruet, J.M.

    1995-01-01

    Far red illumination of photosynthetic material induces a delayed luminescence rise, or afterglow, which has been reported in plant leaves, protoplasts or intact chloroplasts and in algal cells. but does not occur in isolated thylakoids. The rise kinetics is accelerated by increasing temperature and we show, by slowly heating a leaf sample after a far-red illumination, that the afterglow emission can be optimally resolved as a sharp thermoluminescence band. Plant material was mainly pea (Pisum sativum L., cv Kazar and Merveille de Kelvedon) and cucumber (Cucumis sativus L., cv Marketer). Comparisons were done with rape, spinach, tobacco, avocado and maize. A 0.2 degree C-1s to 0.5 degree C-1s temperature gradient, started above 0 degree C after a far red illumination, revealed a new thermoluminescence AG band, peaking between 40 degree C and 50 degree C. It exhibited the characteristic properties of the luminescence afterglow recorded at a constant temperature. The AG band was very sensitive to short incubations at both freezing and moderately warm temperatures. Increasing duration of far red illumination caused two kinetically distinct effects on the AG band and on the B band (S-2S-3 Q-B- recombination), which can be ascribed to different behaviors of proton gradients in stroma and in grana lamellae, respectively. The induction of an afterglow by far red light lasted for several minutes in the dark, at 10 degree C. Flash sequences fired in these conditions confirmed the presence of S-2 and S-3 states stable in the dark, producing luminescence by recombination with back-transferred electrons. In some plant batches, an AG band could be induced by 2 or 3 flashes in the absence of far red light, which demonstrates that a metabolic state leading to AG emission may arise spontaneously in plant leaves. The strong temperature dependence of the AG emission is discussed in terms of heat-induced conformational changes in the thylakoid membrane. We conclude that

  6. SOLAR AIRCRAFT DESIGN

    OpenAIRE

    RAHMATI, Sadegh; GHASED, Amir

    2015-01-01

    Abstract. Generally domain Aircraft uses conventional fuel. These fuel having limited life, high cost and pollutant. Also nowadays price of petrol and other fuels are going to be higher, because of scarcity of those fuels. So there is great demand of use of non-exhaustible unlimited source of energy like solar energy. Solar aircraft is one of the ways to utilize solar energy. Solar aircraft uses solar panel to collect the solar radiation for immediate use but it also store the remaining part ...

  7. Simulation and comparison of the illuminance, uniformity, and efficiency of different forms of lighting used in basketball court illumination.

    Science.gov (United States)

    Sun, Wen-Shing; Tien, Chuen-Lin; Tsuei, Chih-Hsuan; Pan, Jui-Wen

    2014-10-10

    We simulate and compare the illuminance, uniformity, and efficiency of metal-halide lamps, white LED light sources, and hybrid light box designs combining sunlight and white LED lighting used for indoor basketball court illumination. According to the optical simulation results and our examination of real situations, we find that hybrid light box designs combining sunlight and white LEDs do perform better than either metal-halide lamps or white LED lights. An evaluation of the sunlight concentrator system used in our inverted solar cell shows that the energy consumption of stadium lighting can be reduced significantly.

  8. A Curious Problem with Using the Colour Checker Dataset for Illuminant Estimation

    OpenAIRE

    Finlayson, Graham; Hemrit, Ghalia; Gijsenij, Arjan; Gehler, Peter

    2017-01-01

    In illuminant estimation, we attempt to estimate the RGB of the light. We then use this estimate on an image to correct for the light's colour bias. Illuminant estimation is an essential component of all camera reproduction pipelines. How well an illuminant estimation algorithm works is determined by how well it predicts the ground truth illuminant colour. Typically, the ground truth is the RGB of a white surface placed in a scene. Over a large set of images an estimation error is calculated ...

  9. Noise tolerant illumination optimization applied to display devices

    Science.gov (United States)

    Cassarly, William J.; Irving, Bruce

    2005-02-01

    Display devices have historically been designed through an iterative process using numerous hardware prototypes. This process is effective but the number of iterations is limited by the time and cost to make the prototypes. In recent years, virtual prototyping using illumination software modeling tools has replaced many of the hardware prototypes. Typically, the designer specifies the design parameters, builds the software model, predicts the performance using a Monte Carlo simulation, and uses the performance results to repeat this process until an acceptable design is obtained. What is highly desired, and now possible, is to use illumination optimization to automate the design process. Illumination optimization provides the ability to explore a wider range of design options while also providing improved performance. Since Monte Carlo simulations are often used to calculate the system performance but those predictions have statistical uncertainty, the use of noise tolerant optimization algorithms is important. The use of noise tolerant illumination optimization is demonstrated by considering display device designs that extract light using 2D paint patterns as well as 3D textured surfaces. A hybrid optimization approach that combines a mesh feedback optimization with a classical optimizer is demonstrated. Displays with LED sources and cold cathode fluorescent lamps are considered.

  10. Multiple speckle illumination for optical-resolution photoacoustic imaging

    Science.gov (United States)

    Poisson, Florian; Stasio, Nicolino; Moser, Christophe; Psaltis, Demetri; Bossy, Emmanuel

    2017-03-01

    Optical-resolution photoacoustic microscopy offers exquisite and specific contrast to optical absorption. Conventional approaches generally involves raster scanning a focused spot over the sample. Here, we demonstrate that a full-field illumination approach with multiple speckle illumination can also provide diffraction-limited optical-resolution photoacoustic images. Two different proof-of-concepts are demonstrated with micro-structured test samples. The first approach follows the principle of correlation/ghost imaging,1, 2 and is based on cross-correlating photoacoustic signals under multiple speckle illumination with known speckle patterns measured during a calibration step. The second approach is a speckle scanning microscopy technique, which adapts the technique proposed in fluorescence microscopy by Bertolotti and al.:3 in our work, spatially unresolved photoacoustic measurements are performed for various translations of unknown speckle patterns. A phase-retrieval algorithm is used to reconstruct the object from the knowledge of the modulus of its Fourier Transform yielded by the measurements. Because speckle patterns naturally appear in many various situations, including propagation through biological tissue or multi-mode fibers (for which focusing light is either very demanding if not impossible), speckle-illumination-based photoacoustic microscopy provides a powerful framework for the development of novel reconstruction approaches, well-suited to compressed sensing approaches.2

  11. Separate effects of background and illumination on lightness

    Directory of Open Access Journals (Sweden)

    Zdravković Sunčica

    2007-01-01

    Full Text Available Four experiments attempted to establish an effect of context on lightness. Lightness is one of the dimensions of color and it varies from black to white. Most of our stimuli were inspired by simultaneous lightness contrast illusion. First two experiments contrast the size of an effect produced by the change of background color vs. the change in illumination. The third experiment deals with different type of illusions, where the effect is obtained through the appearance of multiple illumination levels. The last experiment takes into account the ratio of the target and the background. The results reveal the size of effects produced separately by the background color and illumination level and suggest the prime importance of background. Also there are other factors such as reflectance range in the scene, incremental and decremental targets, and 2D vs. 3D representation.

  12. Video repairing under variable illumination using cyclic motions.

    Science.gov (United States)

    Jia, Jiaya; Tai, Yu-Wing; Wu, Tai-Pang; Tang, Chi-Keung

    2006-05-01

    This paper presents a complete system capable of synthesizing a large number of pixels that are missing due to occlusion or damage in an uncalibrated input video. These missing pixels may correspond to the static background or cyclic motions of the captured scene. Our system employs user-assisted video layer segmentation, while the main processing in video repair is fully automatic. The input video is first decomposed into the color and illumination videos. The necessary temporal consistency is maintained by tensor voting in the spatio-temporal domain. Missing colors and illumination of the background are synthesized by applying image repairing. Finally, the occluded motions are inferred by spatio-temporal alignment of collected samples at multiple scales. We experimented on our system with some difficult examples with variable illumination, where the capturing camera can be stationary or in motion.

  13. Using color histogram normalization for recovering chromatic illumination-changed images.

    Science.gov (United States)

    Pei, S C; Tseng, C L; Wu, C C

    2001-11-01

    We propose a novel image-recovery method using the covariance matrix of the red-green-blue (R-G-B) color histogram and tensor theories. The image-recovery method is called the color histogram normalization algorithm. It is known that the color histograms of an image taken under varied illuminations are related by a general affine transformation of the R-G-B coordinates when the illumination is changed. We propose a simplified affine model for application with illumination variation. This simplified affine model considers the effects of only three basic forms of distortion: translation, scaling, and rotation. According to this principle, we can estimate the affine transformation matrix necessary to recover images whose color distributions are varied as a result of illumination changes. We compare the normalized color histogram of the standard image with that of the tested image. By performing some operations of simple linear algebra, we can estimate the matrix of the affine transformation between two images under different illuminations. To demonstrate the performance of the proposed algorithm, we divide the experiments into two parts: computer-simulated images and real images corresponding to illumination changes. Simulation results show that the proposed algorithm is effective for both types of images. We also explain the noise-sensitive skew-rotation estimation that exists in the general affine model and demonstrate that the proposed simplified affine model without the use of skew rotation is better than the general affine model for such applications.

  14. Aircraft operations management manual

    Science.gov (United States)

    1992-01-01

    The NASA aircraft operations program is a multifaceted, highly diverse entity that directly supports the agency mission in aeronautical research and development, space science and applications, space flight, astronaut readiness training, and related activities through research and development, program support, and mission management aircraft operations flights. Users of the program are interagency, inter-government, international, and the business community. This manual provides guidelines to establish policy for the management of NASA aircraft resources, aircraft operations, and related matters. This policy is an integral part of and must be followed when establishing field installation policy and procedures covering the management of NASA aircraft operations. Each operating location will develop appropriate local procedures that conform with the requirements of this handbook. This manual should be used in conjunction with other governing instructions, handbooks, and manuals.

  15. Transfer between Pose and Illumination Training in Face Recognition

    Science.gov (United States)

    Liu, Chang Hong; Bhuiyan, Md. Al-Amin; Ward, James; Sui, Jie

    2009-01-01

    The relationship between pose and illumination learning in face recognition was examined in a yes-no recognition paradigm. The authors assessed whether pose training can transfer to a new illumination or vice versa. Results show that an extensive level of pose training through a face-name association task was able to generalize to a new…

  16. Illumination Profile & Dispersion Variation Effects on Radial Velocity Measurements

    Science.gov (United States)

    Grieves, Nolan; Ge, Jian; Thomas, Neil B.; Ma, Bo; Li, Rui; SDSS-III

    2015-01-01

    The Multi-object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS) measures radial velocities using a fiber-fed dispersed fixed-delay interferometer (DFDI) with a moderate dispersion spectrograph. This setup allows a unique insight into the 2D illumination profile from the fiber on to the dispersion grating. Illumination profile investigations show large changes in the profile over time and fiber location. These profile changes are correlated with dispersion changes and long-term radial velocity offsets, a major problem within the MARVELS radial velocity data. Characterizing illumination profiles creates a method to both detect and correct radial velocity offsets, allowing for better planet detection. Here we report our early results from this study including improvement of radial velocity data points from detected giant planet candidates. We also report an illumination profile experiment conducted at the Kitt Peak National Observatory using the EXPERT instrument, which has a DFDI mode similar to MARVELS. Using profile controlling octagonal-shaped fibers, long term offsets over a 3 month time period were reduced from ~50 m/s to within the photon limit of ~4 m/s.

  17. Performance of Series Connected GaAs Photovoltaic Converters under Multimode Optical Fiber Illumination

    Directory of Open Access Journals (Sweden)

    Tiqiang Shan

    2014-01-01

    Full Text Available In many military and industrial applications, GaAs photovoltaic (PV converters are connected in series in order to generate the required voltage compatible with most common electronics. Multimode optical fibers are usually used to carry high-intensity laser and illuminate the series connected GaAs PV converters in real time. However, multimode optical fiber illumination has a speckled intensity pattern. The series connected PV array is extremely sensitive to nonuniform illumination; its performance is limited severely by the converter that is illuminated the least. This paper quantifies the effects of multimode optical fiber illumination on the performance of series connected GaAs PV converters, analyzes the loss mechanisms due to speckles, and discusses the maximum illumination efficiency. In order to describe the illumination dependent behavior detailedly, modeling of the series connected PV array is accomplished based on the equivalent circuit for PV cells. Finally, a series of experiments are carried out to demonstrate the theory analysis.

  18. Conceptual design of high speed supersonic aircraft: A brief review on SR-71 (Blackbird) aircraft

    Science.gov (United States)

    Xue, Hui; Khawaja, H.; Moatamedi, M.

    2014-12-01

    The paper presents the conceptual design of high-speed supersonic aircraft. The study focuses on SR-71 (Blackbird) aircraft. The input to the conceptual design is a mission profile. Mission profile is a flight profile of the aircraft defined by the customer. This paper gives the SR-71 aircraft mission profile specified by US air force. Mission profile helps in defining the attributes the aircraft such as wing profile, vertical tail configuration, propulsion system, etc. Wing profile and vertical tail configurations have direct impact on lift, drag, stability, performance and maneuverability of the aircraft. A propulsion system directly influences the performance of the aircraft. By combining the wing profile and the propulsion system, two important parameters, known as wing loading and thrust to weight ratio can be calculated. In this work, conceptual design procedure given by D. P. Raymer (AIAA Educational Series) is applied to calculate wing loading and thrust to weight ratio. The calculated values are compared against the actual values of the SR-71 aircraft. Results indicates that the values are in agreement with the trend of developments in aviation.

  19. Uniform illumination rendering using an array of LEDs: a signal processing perspective

    OpenAIRE

    Yang, Hongming; Bergmans, J.W.M.; Schenk, T.C.W.; Linnartz, J.P.M.G.; Rietman, R.

    2009-01-01

    An array of a large number of LEDs will be widely used in future indoor illumination systems. In this paper, we investigate the problem of rendering uniform illumination by a regular LED array on the ceiling of a room. We first present two general results on the scaling property of the basic illumination pattern, i.e., the light pattern of a single LED, and the setting of LED illumination levels, respectively. Thereafter, we propose to use the relative mean squared error as the cost function ...

  20. Direct design of achromatic lens for Lambertian sources in collimating illumination

    Science.gov (United States)

    Yin, Peng; Xu, Xiping; Jiang, Zhaoguo; Wang, Hongshu

    2017-10-01

    Illumination design used to redistribute the spatial energy distribution of light source is a key technique in lighting applications. However, there is still no effective illumination design method for the removing of the chromatic dispersion. What we present here is an achromatic lens design to enhance the efficiency and uniform illumination of white light-emitting diode (LED) with diffractive optical element (DOE). We employ the chromatic aberration value (deg) to measure the degree of chromatic dispersion in illumination systems. Monte Carlo ray tracing simulation results indicate that the chromatic dispersion of the modified achromatic collimator significantly decreases from 0.5 to 0.1 with LED chip size of 1.0mm×1.0mm and simulation efficiency of 90.73%, compared with the traditional collimator. Moreover, with different corrected wavelengths we compared different chromatic aberration values that followed with the changing pupil percent. The achromatic collimator provided an effective way to achieve white LED with low chromatic dispersion at high efficiency and uniform illumination.

  1. A fundamental study on the influence of the illuminant conditions for the visibility

    International Nuclear Information System (INIS)

    Fukui, Hirokazu; Ohuchi, Hiroko; Akagi, Sigefumi; Natori, Kazuyuki

    2002-01-01

    This research was done to explain the way of color combinations for the signs that are excellent in the visibility. The research was composed by three experiments, color naming experiment and the visibility experiment 1 and 2. In the color naming experiment, what kind of color combinations investigated whether a target color could be judged precisely under the various lighting illuminant. The visibility experiment 1 examined the various color combinations that became effective for the visibility under the illuminant. And, the visibility experiment 2 examined the color combinations that were effective for the visibility from the lighting illuminant and the illuminance. Yellow in white background, white in yellow background, purple in red background, purple in green background, as for these 4 color combinations, it became clear that it is the color combination which needed attention under all the lighting illuminants from the color naming experiment and the visibility experiment 1. In the visibility experiment 2, relative visual acuity became more than 0.7 in all the lighting illuminants if there was a ΔL * from the background and the target beyond 30 in the case of the illuminance of 5001x. And, when illuminance was 501x, it became clear that it become less than 0.7 by all the color schemes as for the relative visual acuity in all the lighting illuminants. (author)

  2. A fundamental study on the influence of the illuminant conditions for the visibility

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Hirokazu [Institute of Nuclear Safety System, Inc., Mihama, Fukui (Japan); Ohuchi, Hiroko; Akagi, Sigefumi; Natori, Kazuyuki [Japan Color Research Institute, Tokyo (Japan)

    2002-09-01

    This research was done to explain the way of color combinations for the signs that are excellent in the visibility. The research was composed by three experiments, color naming experiment and the visibility experiment 1 and 2. In the color naming experiment, what kind of color combinations investigated whether a target color could be judged precisely under the various lighting illuminant. The visibility experiment 1 examined the various color combinations that became effective for the visibility under the illuminant. And, the visibility experiment 2 examined the color combinations that were effective for the visibility from the lighting illuminant and the illuminance. Yellow in white background, white in yellow background, purple in red background, purple in green background, as for these 4 color combinations, it became clear that it is the color combination which needed attention under all the lighting illuminants from the color naming experiment and the visibility experiment 1. In the visibility experiment 2, relative visual acuity became more than 0.7 in all the lighting illuminants if there was a {delta}L{sup *} from the background and the target beyond 30 in the case of the illuminance of 5001x. And, when illuminance was 501x, it became clear that it become less than 0.7 by all the color schemes as for the relative visual acuity in all the lighting illuminants. (author)

  3. Water Vapor Sensors Go Sky-High to Assure Aircraft Safety

    Science.gov (United States)

    2006-01-01

    JPL used a special tunable diode laser, which NASA scientists could tune to different wavelengths, like a radio being tuned to different frequencies, to accurately target specific molecules and detect small traces of gas. This tunable diode laser was designed to emit near-infrared light at wavelengths absorbed by the gas or gases being detected. The light energy being absorbed by the target gas is related to the molecules present. This is usually measured in parts per million or parts per billion. Multiple measurements are made every second, making the system quick to respond to variations in the target gas. NASA scientists developed this technology as part of the 1999 Mars Polar Lander mission to explore the possibility of life-giving elements on Mars. NASA has since used the tunable diode laser-based gas sensor on aircraft and on balloons to successfully study weather and climate, global warming, emissions from aircraft, and numerous other areas where chemical gas analysis is needed. SpectraSensors, Inc., was formed in 1999 as a spinoff company of JPL, to commercialize tunable diode laser-based analyzers for industrial gas-sensing applications (Spinoff 2000). Now, the San Dimas, California-based firm has come back to the market with a new product featuring the NASA-developed instrument for atmospheric monitoring. This instrument is now helping aircraft avoid hazardous weather conditions and enabling the National Weather Service to provide more accurate weather forecasts.

  4. Fast linear method of illumination classification

    Science.gov (United States)

    Cooper, Ted J.; Baqai, Farhan A.

    2003-01-01

    We present a simple method for estimating the scene illuminant for images obtained by a Digital Still Camera (DSC). The proposed method utilizes basis vectors obtained from known memory color reflectance to identify the memory color objects in the image. Once the memory color pixels are identified, we use the ratios of the red/green and blue/green to determine the most likely illuminant in the image. The critical part of the method is to estimate the smallest set of basis vectors that closely represent the memory color reflectances. Basis vectors obtained from both Principal Component Analysis (PCA) and Independent Component Analysis (ICA) are used. We will show that only two ICA basis vectors are needed to get an acceptable estimate.

  5. Solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  6. Evaluation of High Density Air Traffic Operations with Automation for Separation Assurance, Weather Avoidance and Schedule Conformance

    Science.gov (United States)

    Prevot, Thomas; Mercer, Joey S.; Martin, Lynne Hazel; Homola, Jeffrey R.; Cabrall, Christopher D.; Brasil, Connie L.

    2011-01-01

    In this paper we discuss the development and evaluation of our prototype technologies and procedures for far-term air traffic control operations with automation for separation assurance, weather avoidance and schedule conformance. Controller-in-the-loop simulations in the Airspace Operations Laboratory at the NASA Ames Research Center in 2010 have shown very promising results. We found the operations to provide high airspace throughput, excellent efficiency and schedule conformance. The simulation also highlighted areas for improvements: Short-term conflict situations sometimes resulted in separation violations, particularly for transitioning aircraft in complex traffic flows. The combination of heavy metering and growing weather resulted in an increased number of aircraft penetrating convective weather cells. To address these shortcomings technologies and procedures have been improved and the operations are being re-evaluated with the same scenarios. In this paper we will first describe the concept and technologies for automating separation assurance, weather avoidance, and schedule conformance. Second, the results from the 2010 simulation will be reviewed. We report human-systems integration aspects, safety and efficiency results as well as airspace throughput, workload, and operational acceptability. Next, improvements will be discussed that were made to address identified shortcomings. We conclude that, with further refinements, air traffic control operations with ground-based automated separation assurance can routinely provide currently unachievable levels of traffic throughput in the en route airspace.

  7. Geometry of illumination, luminance contrast, and gloss perception

    OpenAIRE

    Leloup, Frédéric; Pointer, Michael R.; Dutré, Philip; Hanselaer, Peter

    2010-01-01

    The influence of both the geometry of illumination and luminance contrast on gloss perception has been examined using the method of paired comparison. Six achromatic glass samples having different lightness were illuminated by two light sources. Only one of these light sources was visible in reflection by the observer. By separate adjustment of the intensity of both light sources, the luminance of both the reflected image and the adjacent off-specular surroundings could be individually varied...

  8. A survey on electromagnetic interferences on aircraft avionics systems and a GSM on board system overview

    Science.gov (United States)

    Vinto, Natale; Tropea, Mauro; Fazio, Peppino; Voznak, Miroslav

    2014-05-01

    Recent years have been characterized by an increase in the air traffic. More attention over micro-economic and macroeconomic indexes would be strategic to gather and enhance the safety of a flight and customer needing, for communicating by wireless handhelds on-board aircrafts. Thus, European Telecommunications Standards Institute (ETSI) proposed a GSM On Board (GSMOBA) system as a possible solution, allowing mobile terminals to communicate through GSM system on aircraft, avoiding electromagnetic interferences with radio components aboard. The main issues are directly related with interferences that could spring-out when mobile terminals attempt to connect to ground BTS, from the airplane. This kind of system is able to resolve the problem in terms of conformance of Effective Isotropic Radiated Power (EIRP) limits, defined outside the aircraft, by using an On board BTS (OBTS) and modeling the relevant key RF parameters on the air. The main purpose of this work is to illustrate the state-of-the-art of literature and previous studies about the problem, giving also a good detail of technical and normative references.

  9. Impact of Conflict Avoidance Responsibility Allocation on Pilot Workload in a Distributed Air Traffic Management System

    Science.gov (United States)

    Ligda, Sarah V.; Dao, Arik-Quang V.; Vu, Kim-Phuong; Strybel, Thomas Z.; Battiste, Vernol; Johnson, Walter W.

    2010-01-01

    Pilot workload was examined during simulated flights requiring flight deck-based merging and spacing while avoiding weather. Pilots used flight deck tools to avoid convective weather and space behind a lead aircraft during an arrival into Louisville International airport. Three conflict avoidance management concepts were studied: pilot, controller or automation primarily responsible. A modified Air Traffic Workload Input Technique (ATWIT) metric showed highest workload during the approach phase of flight and lowest during the en-route phase of flight (before deviating for weather). In general, the modified ATWIT was shown to be a valid and reliable workload measure, providing more detailed information than post-run subjective workload metrics. The trend across multiple workload metrics revealed lowest workload when pilots had both conflict alerting and responsibility of the three concepts, while all objective and subjective measures showed highest workload when pilots had no conflict alerting or responsibility. This suggests that pilot workload was not tied primarily to responsibility for resolving conflicts, but to gaining and/or maintaining situation awareness when conflict alerting is unavailable.

  10. Accidents involving specialized aircraft in agriculture aerial spraying

    Directory of Open Access Journals (Sweden)

    Marcelo Boamorte Ravelli

    Full Text Available ABSTRACT: The great challenge for the practice of agricultural aviation has been to avoid accidents. Although, there are technological progress and high resources for safety, accidents continue to occur. The objective of this research was to analyze the influence and occurrence of factors in agricultural aviation accidents in Brazil recently. Based on research and technical - scientific papers written by researchers and aviation authorities, recommendations directed towards reducing the risks associated with this aircraft modality are assessed. The main factors responsible for accidents are normally operational errors and maneuvers that cause flight collisions, engine failures and altitude loss. Professional awareness and qualification converge towards the success of the agricultural pilot in the detection of inherent dangers or occasional in the various systems involved.

  11. Anti-glare LED lamps with adjustable illumination light field.

    Science.gov (United States)

    Chen, Yung-Sheng; Lin, Chung-Yi; Yeh, Chun-Ming; Kuo, Chie-Tong; Hsu, Chih-Wei; Wang, Hsiang-Chen

    2014-03-10

    We introduce a type of LED light-gauge steel frame lamp with an adjustable illumination light field that does not require a diffusion plate. Base on the Monte Carlo ray tracing method, this lamp has a good glare rating (GR) of 17.5 at 3050 lm. Compared with the traditional LED light-gauge steel frame lamp (without diffusion plate), the new type has low GR. The adjustability of the illumination light field could improve the zebra effect caused by the inadequate illumination light field of the lamp. Meanwhile, we adopt the retinal image analysis to discuss the influence of GR on vision. High GR could reflect stray light on the retinal image, which will reduce vision clarity and hasten the feeling of eye fatigue.

  12. Illuminance-based slat angle selection model for automated control of split blinds

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jia; Olbina, Svetlana [Rinker School of Building Construction, University of Florida, Gainesville, FL 32611-5703 (United States)

    2011-03-15

    Venetian blinds play an important role in controlling daylight in buildings. Automated blinds overcome some limitations of manual blinds; however, the existing automated systems mainly control the direct solar radiation and glare and cannot be used for controlling innovative blind systems such as split blinds. This research developed an Illuminance-based Slat Angle Selection (ISAS) model that predicts the optimum slat angles of split blinds to achieve the designed indoor illuminance. The model was constructed based on a series of multi-layer feed-forward artificial neural networks (ANNs). The illuminance values at the sensor points used to develop the ANNs were obtained by the software EnergyPlus trademark. The weather determinants (such as horizontal illuminance and sun angles) were used as the input variables for the ANNs. The illuminance level at a sensor point was the output variable for the ANNs. The ISAS model was validated by evaluating the errors in the calculation of the: 1) illuminance and 2) optimum slat angles. The validation results showed that the power of the ISAS model to predict illuminance was 94.7% while its power to calculate the optimum slat angles was 98.5%. For about 90% of time in the year, the illuminance percentage errors were less than 10%, and the percentage errors in calculating the optimum slat angles were less than 5%. This research offers a new approach for the automated control of split blinds and a guide for future research to utilize the adaptive nature of ANNs to develop a more practical and applicable blind control system. (author)

  13. Probabilistic BPRRC: Robust Change Detection against Illumination Changes and Background Movements

    Science.gov (United States)

    Yokoi, Kentaro

    This paper presents Probabilistic Bi-polar Radial Reach Correlation (PrBPRRC), a change detection method that is robust against illumination changes and background movements. Most of the traditional change detection methods are robust against either illumination changes or background movements; BPRRC is one of the illumination-robust change detection methods. We introduce a probabilistic background texture model into BPRRC and add the robustness against background movements including foreground invasions such as moving cars, walking people, swaying trees, and falling snow. We show the superiority of PrBPRRC in the environment with illumination changes and background movements by using three public datasets and one private dataset: ATON Highway data, Karlsruhe traffic sequence data, PETS 2007 data, and Walking-in-a-room data.

  14. Illumination normalization based on simplified local binary patterns for a face verification system

    NARCIS (Netherlands)

    Tao, Q.; Veldhuis, Raymond N.J.

    2007-01-01

    Illumination normalization is a very important step in face recognition. In this paper we propose a simple implementation of Local Binary Patterns, which effectively reduces the variability caused by illumination changes. In combination with a likelihood ratio classifier, this illumination

  15. Avian Information Systems: Developing Web-Based Bird Avoidance Models

    Directory of Open Access Journals (Sweden)

    Judy Shamoun-Baranes

    2008-12-01

    Full Text Available Collisions between aircraft and birds, so-called "bird strikes," can result in serious damage to aircraft and even in the loss of lives. Information about the distribution of birds in the air and on the ground can be used to reduce the risk of bird strikes and their impact on operations en route and in and around air fields. Although a wealth of bird distribution and density data is collected by numerous organizations, these data are not readily available nor interpretable by aviation. This paper presents two national efforts, one in the Netherlands and one in the United States, to develop bird avoidance nodels for aviation. These models integrate data and expert knowledge on bird distributions and migratory behavior to provide hazard maps in the form of GIS-enabled Web services. Both models are in operational use for flight planning and flight alteration and for airfield and airfield vicinity management. These models and their presentation on the Internet are examples of the type of service that would be very useful in other fields interested in species distribution and movement information, such as conservation, disease transmission and prevention, or assessment and mitigation of anthropogenic risks to nature. We expect that developments in cyber-technology, a transition toward an open source philosophy, and higher demand for accessible biological data will result in an increase in the number of biological information systems available on the Internet.

  16. Adapting existing training standards for unmanned aircraft: finding ways to train staff for unmanned aircraft operations

    CSIR Research Space (South Africa)

    Burger, CR

    2011-09-01

    Full Text Available - unmanned aircraft; pilot training. I. INTRODUCTION Unmanned aircraft offer flexibility not found in manned aircraft. They can be made smaller and cheaper to operate. They offer payload advantages relative to small manned aircraft. They can also perform... certificate to non-state users. To facilitate useful operations by UAs, future operations must be subject to no more than routine notification (e.g. an ATC flight plan), just like manned aircraft already are. Before such operations can be established, some...

  17. Illumination Conditions of the Lunar Polar Regions Using LOLA Topography

    Science.gov (United States)

    Mazarico, E.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.; Torrence, M. H.

    2011-01-01

    We use high-resolution altimetry data obtained by the Lunar Orbiter Laser Altimeter instrument onboard the Lunar Reconnaissance Orbiter to characterize present illumination conditions in the polar regions of the Moon. Compared to previous studies, both the spatial and temporal extent of the simulations are increased significantly, as well as the coverage (fill ratio) of the topographic maps used, thanks to the 28 Hz firing rate of the five-beam instrument. We determine the horizon elevation in a number of directions based on 240 m-resolution polar digital elevation models reaching down to 75 latitude. The illumination of both polar regions extending to 80 can be calculated for any geometry from those horizon longitudinal profiles. We validated our modeling with recent Lunar Reconnaissance Orbiter Wide-Angle Camera images. We assessed the extent of permanently shadowed regions (PSRs, defined as areas that never receive direct solar illumination), and obtained total areas generally larger than previous studies (12,866 and 16,055 km2, in the north and south respectively). We extended our direct illumination model to account for singly-scattered light, and found that every PSR does receive some amount of scattered light during the year. We conducted simulations over long periods (several 18.6-years lunar precession cycles) with a high temporal resolution (6 h), and identified the most illuminated locations in the vicinity of both poles. Because of the importance of those sites for exploration and engineering considerations, we characterized their illumination more precisely over the near future. Every year, a location near the Shackleton crater rim in the south polar region is sunlit continuously for 240 days, and its longest continuous period in total darkness is about 1.5 days. For some locations small height gains ( 10 m) can dramatically improve their average illumination and reduce the night duration, rendering some of those particularly attractive energy-wise as

  18. 40 CFR 87.6 - Aircraft safety.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Aircraft safety. 87.6 Section 87.6... POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES General Provisions § 87.6 Aircraft safety. The provisions of... met within the specified time without creating a safety hazard. ...

  19. Generation of realistic scene using illuminant estimation and mixed chromatic adaptation

    Science.gov (United States)

    Kim, Jae-Chul; Hong, Sang-Gi; Kim, Dong-Ho; Park, Jong-Hyun

    2003-12-01

    The algorithm of combining a real image with a virtual model was proposed to increase the reality of synthesized images. Currently, synthesizing a real image with a virtual model facilitated the surface reflection model and various geometric techniques. In the current methods, the characteristics of various illuminants in the real image are not sufficiently considered. In addition, despite the chromatic adaptation plays a vital role for accommodating different illuminants in the two media viewing conditions, it is not taken into account in the existing methods. Thus, it is hardly to get high-quality synthesized images. In this paper, we proposed the two-phase image synthesis algorithm. First, the surface reflectance of the maximum high-light region (MHR) was estimated using the three eigenvectors obtained from the principal component analysis (PCA) applied to the surface reflectances of 1269 Munsell samples. The combined spectral value, i.e., the product of surface reflectance and the spectral power distributions (SPDs) of an illuminant, of MHR was then estimated using the three eigenvectors obtained from PCA applied to the products of surface reflectances of Munsell 1269 samples and the SPDs of four CIE Standard Illuminants (A, C, D50, D65). By dividing the average combined spectral values of MHR by the average surface reflectances of MHR, we could estimate the illuminant of a real image. Second, the mixed chromatic adaptation (S-LMS) using an estimated and an external illuminants was applied to the virtual-model image. For evaluating the proposed algorithm, experiments with synthetic and real scenes were performed. It was shown that the proposed method was effective in synthesizing the real and the virtual scenes under various illuminants.

  20. Disparity Map Generation from Illumination Variant Stereo Images Using Efficient Hierarchical Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Viral H. Borisagar

    2014-01-01

    Full Text Available A novel hierarchical stereo matching algorithm is presented which gives disparity map as output from illumination variant stereo pair. Illumination difference between two stereo images can lead to undesirable output. Stereo image pair often experience illumination variations due to many factors like real and practical situation, spatially and temporally separated camera positions, environmental illumination fluctuation, and the change in the strength or position of the light sources. Window matching and dynamic programming techniques are employed for disparity map estimation. Good quality disparity map is obtained with the optimized path. Homomorphic filtering is used as a preprocessing step to lessen illumination variation between the stereo images. Anisotropic diffusion is used to refine disparity map to give high quality disparity map as a final output. The robust performance of the proposed approach is suitable for real life circumstances where there will be always illumination variation between the images. The matching is carried out in a sequence of images representing the same scene, however in different resolutions. The hierarchical approach adopted decreases the computation time of the stereo matching problem. This algorithm can be helpful in applications like robot navigation, extraction of information from aerial surveys, 3D scene reconstruction, and military and security applications. Similarity measure SAD is often sensitive to illumination variation. It produces unacceptable disparity map results for illumination variant left and right images. Experimental results show that our proposed algorithm produces quality disparity maps for both wide range of illumination variant and invariant stereo image pair.

  1. Nonthermal Effects of Photon Illumination on Surface Diffusion

    International Nuclear Information System (INIS)

    Ditchfield, R.; Llera-Rodriguez, D.; Seebauer, E.G.

    1998-01-01

    Nonthermal influences of photon illumination on surface diffusion at high temperatures have been measured experimentally for the first time. Activation energies and preexponential factors for diffusion of germanium and indium on silicon change substantially in response to illumination by photons having energies greater than the substrate band gap. Results depend on doping type. Ionization of surface vacancies by photogenerated charge carriers seems to play a key role. The results have significant implications for aspects of microelectronics fabrication governed by surface mobility. copyright 1998 The American Physical Society

  2. Examining the Relationship Between Passenger Airline Aircraft Maintenance Outsourcing and Aircraft Safety

    Science.gov (United States)

    Monaghan, Kari L.

    The problem addressed was the concern for aircraft safety rates as they relate to the rate of maintenance outsourcing. Data gathered from 14 passenger airlines: AirTran, Alaska, America West, American, Continental, Delta, Frontier, Hawaiian, JetBlue, Midwest, Northwest, Southwest, United, and USAir covered the years 1996 through 2008. A quantitative correlational design, utilizing Pearson's correlation coefficient, and the coefficient of determination were used in the present study to measure the correlation between variables. Elements of passenger airline aircraft maintenance outsourcing and aircraft accidents, incidents, and pilot deviations within domestic passenger airline operations were analyzed, examined, and evaluated. Rates of maintenance outsourcing were analyzed to determine the association with accident, incident, and pilot deviation rates. Maintenance outsourcing rates used in the evaluation were the yearly dollar expenditure of passenger airlines for aircraft maintenance outsourcing as they relate to the total airline aircraft maintenance expenditures. Aircraft accident, incident, and pilot deviation rates used in the evaluation were the yearly number of accidents, incidents, and pilot deviations per miles flown. The Pearson r-values were calculated to measure the linear relationship strength between the variables. There were no statistically significant correlation findings for accidents, r(174)=0.065, p=0.393, and incidents, r(174)=0.020, p=0.793. However, there was a statistically significant correlation for pilot deviation rates, r(174)=0.204, p=0.007 thus indicating a statistically significant correlation between maintenance outsourcing rates and pilot deviation rates. The calculated R square value of 0.042 represents the variance that can be accounted for in aircraft pilot deviation rates by examining the variance in aircraft maintenance outsourcing rates; accordingly, 95.8% of the variance is unexplained. Suggestions for future research include

  3. Local and Global Illumination in the Volume Rendering Integral

    Energy Technology Data Exchange (ETDEWEB)

    Max, N; Chen, M

    2005-10-21

    This article is intended as an update of the major survey by Max [1] on optical models for direct volume rendering. It provides a brief overview of the subject scope covered by [1], and brings recent developments, such as new shadow algorithms and refraction rendering, into the perspective. In particular, we examine three fundamentals aspects of direct volume rendering, namely the volume rendering integral, local illumination models and global illumination models, in a wavelength-independent manner. We review the developments on spectral volume rendering, in which visible light are considered as a form of electromagnetic radiation, optical models are implemented in conjunction with representations of spectral power distribution. This survey can provide a basis for, and encourage, new efforts for developing and using complex illumination models to achieve better realism and perception through optical correctness.

  4. Numerical analysis of lateral illumination lightpipes using elliptical grooves

    Science.gov (United States)

    Sánchez-Guerrero, Guillermo E.; Viera-González, Perla M.; Martínez-Guerra, Edgar; Ceballos-Herrera, Daniel E.

    2017-09-01

    Lightpipes are used for illumination in applications such as back-lighting or solar cell concentrators due to the high irradiance uniformity, but its optimal design requires several parameters. This work presents a procedure to design a square lightpipe to control the light-extraction on its lateral face using commercial LEDs placed symmetrically in the lightpipe frontal face. We propose the use of grooves using total internal reflection placed successively in the same face of extraction to control the area of emission. The LED area of emission is small compared with the illuminated area, and, as expected, the lateral face total power is attenuated. These grooves reduce the optical elements in the system and can control areas of illumination. A mathematical and numerical analysis are presented to determine the dependencies on the light-extraction.

  5. System for indicating fuel-efficient aircraft altitude

    Science.gov (United States)

    Gary, B. L. (Inventor)

    1984-01-01

    A method and apparatus are provided for indicating the altitude at which an aircraft should fly so the W/d ratio (weight of the aircraft divided by the density of air) more closely approaches the optimum W/d for the aircraft. A passive microwave radiometer on the aircraft is directed at different angles with respect to the horizon to determine the air temperature, and therefore the density of the air, at different altitudes. The weight of the aircraft is known. The altitude of the aircraft is changed to fly the aircraft at an altitude at which is W/d ratio more closely approaches the optimum W/d ratio for that aircraft.

  6. 150 Passenger Commercial Aircraft

    Science.gov (United States)

    Bucovsky, Adrian; Romli, Fairuz I.; Rupp, Jessica

    2002-01-01

    It has been projected that the need for a short-range mid-sized, aircraft is increasing. The future strategy to decrease long-haul flights will increase the demand for short-haul flights. Since passengers prefer to meet their destinations quickly, airlines will increase the frequency of flights, which will reduce the passenger load on the aircraft. If a point-to-point flight is not possible, passengers will prefer only a one-stop short connecting flight to their final destination. A 150-passenger aircraft is an ideal vehicle for these situations. It is mid-sized aircraft and has a range of 3000 nautical miles. This type of aircraft would market U.S. domestic flights or inter-European flight routes. The objective of the design of the 150-passenger aircraft is to minimize fuel consumption. The configuration of the aircraft must be optimized. This aircraft must meet CO2 and NOx emissions standards with minimal acquisition price and operating costs. This report contains all the work that has been performed for the completion of the design of a 150 passenger commercial aircraft. The methodology used is the Technology Identification, Evaluation, and Selection (TIES) developed at Georgia Tech Aerospace Systems Design laboratory (ASDL). This is an eight-step conceptual design process to evaluate the probability of meeting the design constraints. This methodology also allows for the evaluation of new technologies to be implemented into the design. The TIES process begins with defining the problem with a need established and a market targeted. With the customer requirements set and the target values established, a baseline concept is created. Next, the design space is explored to determine the feasibility and viability of the baseline aircraft configuration. If the design is neither feasible nor viable, new technologies can be implemented to open up the feasible design space and allow for a plausible solution. After the new technologies are identified, they must be evaluated

  7. Color of illumination during growth affects LHCII chiral macroaggregates in pea plant leaves.

    Science.gov (United States)

    Gussakovsky, Eugene E; Shahak, Yosepha; Schroeder, Dana F

    2007-02-01

    To determine whether the color of illumination under which plants are grown, affects the structure of photosynthetic antennae, pea plants were grown under either blue-enriched, red-enriched, or white light. Carotenoid content of isolated chloroplasts was found to be insensitive to the color of illumination during growth, while chlorophyll a/b ratio in chloroplasts isolated from young illuminated leaves showed susceptibility to color. Color of illumination affects the LHCII chiral macroaggregates in intact leaves and isolated chloroplasts, providing light-induced alteration of the handedness of the LHCII chiral macroaggregate, as measured with circular dichroism and circularly polarized luminescence. The susceptibility of handedness to current illumination (red light excitation of chlorophyll fluorescence) is dependent on the color under which the plants were grown, and was maximal for the red-enriched illumination. We propose the existence of a long-term (growth period) color memory, which influences the susceptibility of the handedness of LHCII chiral macroaggregates to current light.

  8. Piloted "Well Clear" Performance Evaluation of Detect-and-Avoid Systems with Suggestive Guidance

    Science.gov (United States)

    Mueller, Eric R.; Santiago, Confesor; Watza, Spencer

    2016-01-01

    This study evaluated the performance of four prototype unmanned aircraft detect-and-avoid (DAA) display configurations, each with different informational elements driven by alerting and guidance algorithms. Sixteen unmanned aircraft pilots flew each combination of the display configurations, with half being given zero DAA surveillance sensor uncertainty and the other half experiencing errors that were comparable, and in some cases slightly better than, errors that were measured in DAA system flight tests. The displays that showed intruder alert information in altitude and heading bands had significantly fewer losses of well clear compared with alternative displays that lacked that information. This difference was significant from a statistical and practical perspective: those losses that did occur lasted for shorter periods and did not penetrate as far into the geometric "separation cylinder" as those in the non-banded displays. A modest level of DAA surveillance sensor uncertainty did not affect the proportion of losses of well clear or their severity. It is recommended that DAA traffic displays implement a band-type display in order to improve the safety of UAS operations in the National Airspace System. Finally, this report provides pilot response time distributions for responding to DAA alerts.

  9. Super-resolution thermographic imaging using blind structured illumination

    Science.gov (United States)

    Burgholzer, Peter; Berer, Thomas; Gruber, Jürgen; Mayr, Günther

    2017-07-01

    Using an infrared camera for thermographic imaging allows the contactless temperature measurement of many surface pixels simultaneously. From the measured surface data, the structure below the surface, embedded inside a sample or tissue, can be reconstructed and imaged, if heated by an excitation light pulse. The main drawback in active thermographic imaging is the degradation of the spatial resolution with the imaging depth, which results in blurred images for deeper lying structures. We circumvent this degradation by using blind structured illumination combined with a non-linear joint sparsity reconstruction algorithm. We demonstrate imaging of a line pattern and a star-shaped structure through a 3 mm thick steel sheet with a resolution four times better than the width of the thermal point-spread-function. The structured illumination is realized by parallel slits cut in an aluminum foil, where the excitation coming from a flashlight can penetrate. This realization of super-resolution thermographic imaging demonstrates that blind structured illumination allows thermographic imaging without high degradation of the spatial resolution for deeper lying structures. The groundbreaking concept of super-resolution can be transferred from optics to diffusive imaging by defining a thermal point-spread-function, which gives the principle resolution limit for a certain signal-to-noise ratio, similar to the Abbe limit for a certain optical wavelength. In future work, the unknown illumination pattern could be the speckle pattern generated by a short laser pulse inside a light scattering sample or tissue.

  10. On the illumination of neutron star accretion discs

    Science.gov (United States)

    Wilkins, D. R.

    2018-03-01

    The illumination of the accretion disc in a neutron star X-ray binary by X-rays emitted from (or close to) the neutron star surface is explored through general relativistic ray tracing simulations. The applicability of the canonical suite of relativistically broadened emission line models (developed for black holes) to discs around neutron stars is evaluated. These models were found to describe well emission lines from neutron star accretion discs unless the neutron star radius is larger than the innermost stable orbit of the accretion disc at 6 rg or the disc is viewed at high inclination, above 60° where shadowing of the back side of the disc becomes important. Theoretical emissivity profiles were computed for accretion discs illuminated by hotspots on the neutron star surfaces, bands of emission and emission by the entirety of the hot, spherical star surface and in all cases, the emissivity profile of the accretion disc was found to be well represented by a single power law falling off slightly steeper than r-3. Steepening of the emissivity index was found where the emission is close to the disc plane and the disc can appear truncated when illuminated by a hotspot at high latitude. The emissivity profile of the accretion disc in Serpens X-1 was measured and found to be consistent with a single unbroken power law with index q=3.5_{-0.4}^{+0.3}, suggestive of illumination by the boundary layer between the disc and neutron star surface.

  11. Spectral-Efficiency - Illumination Pareto Front for Energy Harvesting Enabled VLC System

    KAUST Repository

    Abdelhady, Amr Mohamed Abdelaziz; Amin, Osama; Chaaban, Anas; Alouini, Mohamed-Slim

    2017-01-01

    . The adopted optical system provides users with illumination and data communication services. The outdoor optical design objective is to maximize the illumination, while the communication design objective is to maximize the spectral efficiency (SE). The design

  12. Ambient light-based optical biosensing platform with smartphone-embedded illumination sensor.

    Science.gov (United States)

    Park, Yoo Min; Han, Yong Duk; Chun, Hyeong Jin; Yoon, Hyun C

    2017-07-15

    We present a hand-held optical biosensing system utilizing a smartphone-embedded illumination sensor that is integrated with immunoblotting assay method. The smartphone-embedded illumination sensor is regarded as an alternative optical receiver that can replaces the conventional optical analysis apparatus because the illumination sensor can respond to the ambient light in a wide range of wavelengths, including visible and infrared. To demonstrate the biosensing applicability of our system employing the enzyme-mediated immunoblotting and accompanying light interference, various types of ambient light conditions including outdoor sunlight and indoor fluorescent were tested. For the immunoblotting assay, the biosensing channel generating insoluble precipitates as an end product of the enzymatic reaction is fabricated and mounted on the illumination sensor of the smartphone. The intensity of penetrating light arrives on the illumination sensor is inversely proportional to the amount of precipitates produced in the channel, and these changes are immediately analyzed and quantified via smartphone software. In this study, urinary C-terminal telopeptide fragment of type II collagen (uCTX-II), a biomarker of osteoarthritis diagnosis, was tested as a model analyte. The developed smartphone-based sensing system efficiently measured uCTX-II in the 0-5ng/mL concentration range with a high sensitivity and accuracy under various light conditions. These assay results show that the illumination sensor-based optical biosensor is suitable for point-of-care testing (POCT). Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Real-time particle tracking at 10,000 fps using optical fiber illumination.

    Science.gov (United States)

    Otto, Oliver; Czerwinski, Fabian; Gornall, Joanne L; Stober, Gunter; Oddershede, Lene B; Seidel, Ralf; Keyser, Ulrich F

    2010-10-25

    We introduce optical fiber illumination for real-time tracking of optically trapped micrometer-sized particles with microsecond time resolution. Our light source is a high-radiance mercury arc lamp and a 600 μm optical fiber for short-distance illumination of the sample cell. Particle tracking is carried out with a software implemented cross-correlation algorithm following image acquisition from a CMOS camera. Our image data reveals that fiber illumination results in a signal-to-noise ratio usually one order of magnitude higher compared to standard Köhler illumination. We demonstrate position determination of a single optically trapped colloid with up to 10,000 frames per second over hours. We calibrate our optical tweezers and compare the results with quadrant photo diode measurements. Finally, we determine the positional accuracy of our setup to 2 nm by calculating the Allan variance. Our results show that neither illumination nor software algorithms limit the speed of real-time particle tracking with CMOS technology.

  14. Converting a conventional wired-halogen illuminated indirect ophthalmoscope to a wireless-light emitting diode illuminated indirect ophthalmoscope in less than 1000/- rupees

    Directory of Open Access Journals (Sweden)

    Mihir Kothari

    2015-01-01

    Full Text Available Aim: To report the "do it yourself" method of converting an existing wired-halogen indirect ophthalmoscope (IO to a wireless-light emitting diode (LED IO and report the preferences of the patients and the ophthalmologists. Subjects and Methods: In this prospective observational study, a conventional IO was converted to wireless-LED IO using easily available, affordable electrical components. Conventional and the converted IO were then used to perform photo-stress test and take the feedback of subjects and the ophthalmologists regarding its handling and illumination characteristics. Results: The cost of conversion to wireless-LED was 815/- rupees. Twenty-nine subjects, mean age 34.3 ΁ 10 years with normal eyes were recruited in the study. Between the two illumination systems, there was no statistical difference in the magnitude of the visual acuity loss and the time to recovery of acuity and the bleached vision on photo-stress test, although the visual recovery was clinically faster with LED illumination. The heat sensation was more with halogen illumination than the LED (P = 0.009. The ophthalmologists rated wireless-LED IO higher than wired-halogen IO on the handling, examination comfort, patient′s visual comfort and quality of the image. Twenty-two (81% ophthalmologists wanted to change over to wireless-LED IO. Conclusions: Converting to wireless-LED IO is easy, cost-effective and preferred over a wired-halogen indirect ophthalmoscope.

  15. Converting a conventional wired-halogen illuminated indirect ophthalmoscope to a wireless-light emitting diode illuminated indirect ophthalmoscope in less than 1000/- rupees.

    Science.gov (United States)

    Kothari, Mihir; Kothari, Kedar; Kadam, Sanjay; Mota, Poonam; Chipade, Snehal

    2015-01-01

    To report the "do it yourself" method of converting an existing wired-halogen indirect ophthalmoscope (IO) to a wireless-light emitting diode (LED) IO and report the preferences of the patients and the ophthalmologists. In this prospective observational study, a conventional IO was converted to wireless-LED IO using easily available, affordable electrical components. Conventional and the converted IO were then used to perform photo-stress test and take the feedback of subjects and the ophthalmologists regarding its handling and illumination characteristics. The cost of conversion to wireless-LED was 815/- rupees. Twenty-nine subjects, mean age 34.3 [formula in text] 10 years with normal eyes were recruited in the study. Between the two illumination systems, there was no statistical difference in the magnitude of the visual acuity loss and the time to recovery of acuity and the bleached vision on photo-stress test, although the visual recovery was clinically faster with LED illumination. The heat sensation was more with halogen illumination than the LED (P = 0.009). The ophthalmologists rated wireless-LED IO higher than wired-halogen IO on the handling, examination comfort, patient's visual comfort and quality of the image. Twenty-two (81%) ophthalmologists wanted to change over to wireless-LED IO. Converting to wireless-LED IO is easy, cost-effective and preferred over a wired-halogen indirect ophthalmoscope.

  16. Fettered aircraft for using wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Hoeppner, H.; Horvath, E.; Ulrich, S.

    1980-08-28

    The invention concerns an aircraft tethered by cables, whose balloon-shaped central body produces static and aerodynamic upthrust and which carries turbines, which are used to convert wind energy and to drive the aircraft. The purpose of the invention is to provide an aircraft, which will keep wind energy plant at the optimum height. A new type of aircraft is used to solve the problem, which, according to the invention, combines static upthrust, the production of aerodynamic upthrust, wind energy conversion, energy transport and forward drive in a technically integrated aircraft. If the use of windpower is interrupted, then if necessary the drive together with a remote control system provides controlled free flight of the aircraft. One variant of the object of the invention consists of a central, balloon-shaped body for upthrust, in which there are wind turbines driving electrical generators. According to the invention the motors required to start the wind turbines are of such dimensions that they will drive the turbines in free flight of the aircraft and thus provide forward drive of the aircraft. A power generating unit, consisting of an internal combustion engine and the starter motors switched over to generator operation is used to provide house service supplies for control and regulation of the aircraft.

  17. Illumination sensing in LED lighting systems based on frequency-division multiplexing

    NARCIS (Netherlands)

    Yang, Hongming; Bergmans, J.W.M.; Schenk, T.C.W.

    2009-01-01

    Recently, light emitting diode (LED) based illumination systems have attracted considerable research interest. Such systems normally consist of a large number of LEDs. In order to facilitate the control of such high-complexity system, a novel signal processing application, namely illumination

  18. Effect of Illumination on Ocular Status Modifications Induced by Short-Term 3D TV Viewing

    Directory of Open Access Journals (Sweden)

    Yuanyuan Chen

    2017-01-01

    Full Text Available Objectives. This study aimed to compare changes in ocular status after 3D TV viewing under three modes of illumination and thereby identify optimal illumination for 3D TV viewing. Methods. The following measures of ocular status were assessed: the accommodative response, accommodative microfluctuation, accommodative facility, relative accommodation, gradient accommodative convergence/accommodation (AC/A ratio, phoria, and fusional vergence. The observers watched 3D television for 90 minutes through 3D shutter glasses under three illumination modes: A, complete darkness; B, back illumination (50 lx; and C, front illumination (130 lx. The ocular status of the observers was assessed both before and after the viewing. Results. After 3D TV viewing, the accommodative response and accommodative microfluctuation were significantly changed under illumination Modes A and B. The near positive fusional vergence decreased significantly after the 90-minute 3D viewing session under each illumination mode, and this effect was not significantly different among the three modes. Conclusions. Short-term 3D viewing modified the ocular status of adults. The least amount of such change occurred with front illumination, suggesting that this type of illumination is an appropriate mode for 3D shutter TV viewing.

  19. AN ILLUMINATION INVARIANT FACE RECOGNITION BY ENHANCED CONTRAST LIMITED ADAPTIVE HISTOGRAM EQUALIZATION

    Directory of Open Access Journals (Sweden)

    A. Thamizharasi

    2016-05-01

    Full Text Available Face recognition system is gaining more importance in social networks and surveillance. The face recognition task is complex due to the variations in illumination, expression, occlusion, aging and pose. The illumination variations in image are due to changes in lighting conditions, poor illumination, low contrast or increased brightness. The variations in illumination adversely affect the quality of image and recognition accuracy. The illumination variations in face image have to be pre-processed prior to face recognition. The Contrast Limited Adaptive Histogram Equalization (CLAHE is an image enhancement technique popular in enhancing medical images. The proposed work is to create illumination invariant face recognition system by enhancing Contrast Limited Adaptive Histogram Equalization technique. This method is termed as “Enhanced CLAHE”. The efficiency of Enhanced CLAHE is tested using Fuzzy K Nearest Neighbour classifier and fisher face subspace projection method. The face recognition accuracy percentage rate, Equal Error Rate and False Acceptance Rate at 1% are calculated. The performance of CLAHE and Enhanced CLAHE methods is compared. The efficiency of the Enhanced CLAHE method is tested with three public face databases AR, Yale and ORL. The Enhanced CLAHE has very high recognition accuracy percentage rate when compared to CLAHE.

  20. Standards for illumination of digital prints and photographs

    International Nuclear Information System (INIS)

    Green, Phil

    2010-01-01

    Standards for illuminating digital prints and photographs have a number of quite different applications. In the graphic arts industry, the main applications are defined as appraisal and critical comparison, for which 500lux and 2000lux are specified in ISO 3664. In the museum world much lower levels of illumination are imposed when artefacts are considered to be prone to damage from such exposure. For display and storage of photographic prints, BS 5454:2000 is applicable and specifies maximum levels of 50 lux and 200 lux respectively. While these standards provide recommendations for exposure to radiant energy with the goal of limiting damage to materials and maximising visual discrimination, there is a need for more data on the radiative damage spectrum for the materials used in digital prints and photographs and other artefacts, and on the viewing conditions which can maximise visual performance for specific tasks. It is recommended that radiative exposure is measured in watts per square metre instead of lux to give a better indication of the propensity for radiative damage of a given illumination source.

  1. Aircraft Capability Management

    Science.gov (United States)

    Mumaw, Randy; Feary, Mike

    2018-01-01

    This presentation presents an overview of work performed at NASA Ames Research Center in 2017. The work concerns the analysis of current aircraft system management displays, and the initial development of an interface for providing information about aircraft system status. The new interface proposes a shift away from current aircraft system alerting interfaces that report the status of physical components, and towards displaying the implications of degradations on mission capability. The proposed interface describes these component failures in terms of operational consequences of aircraft system degradations. The research activity was an effort to examine the utility of different representations of complex systems and operating environments to support real-time decision making of off-nominal situations. A specific focus was to develop representations that provide better integrated information to allow pilots to more easily reason about the operational consequences of the off-nominal situations. The work is also seen as a pathway to autonomy, as information is integrated and understood in a form that automated responses could be developed for the off-nominal situations in the future.

  2. Essentials of aircraft armaments

    CERN Document Server

    Kaushik, Mrinal

    2017-01-01

    This book aims to provide a complete exposure about armaments from their design to launch from the combat aircraft. The book details modern ammunition and their tactical roles in warfare. The proposed book discusses aerodynamics, propulsion, structural as well as navigation, control, and guidance of aircraft armament. It also introduces the various types of ammunition developed by different countries and their changing trends. The book imparts knowledge in the field of design, and development of aircraft armaments to aerospace engineers and covers the role of the United Nations in peacekeeping and disarmament. The book will be very useful to researchers, students, and professionals working in design and manufacturing of aircraft armaments. The book will also serve air force and naval aspirants, and those interested in working on defence research and developments organizations. .

  3. Research on generating various polarization-modes in polarized illumination system

    Science.gov (United States)

    Huang, Jinping; Lin, Wumei; Fan, Zhenjie

    2013-08-01

    With the increase of the numerical aperture (NA), the polarization of light affects the imaging quality of projection lens more significantly. On the contrary, according to the mask pattern, the resolution of projection lens can be improved by using the polarized illumination. That is to say, using the corresponding polarized beam (or polarization-mode) along with the off-axis illumination will improve the resolution and the imaging quality of the of projection lens. Therefore, the research on the generation of various polarization modes and its conversion methods become more and more important. In order to realize various polarization modes in polarized illumination system, after read a lot of references, we provide a way that fitting for the illumination system with the wavelength of 193nm.Six polarization-modes and a depolarized mode are probably considered. Wave-plate stack is used to generate linearly polarization-mode, which have a higher degree polarization. In order to generate X-Y and Y-X polarization mode, the equipment consisting of four sectors of λ/2 wave plate was used. We combined 16 sectors of λ/2 wave plate which have different orientations of the "slow" axis to generate radial and azimuthal polarization. Finally, a multi-polarization control device was designed. Using the kind of multi-polarization control device which applying this method could help to choose the polarization modes conveniently and flexibility for the illumination system.

  4. Iterative Adaptive Sampling For Accurate Direct Illumination

    National Research Council Canada - National Science Library

    Donikian, Michael

    2004-01-01

    This thesis introduces a new multipass algorithm, Iterative Adaptive Sampling, for efficiently computing the direct illumination in scenes with many lights, including area lights that cause realistic soft shadows...

  5. Parallel hierarchical global illumination

    Energy Technology Data Exchange (ETDEWEB)

    Snell, Quinn O. [Iowa State Univ., Ames, IA (United States)

    1997-10-08

    Solving the global illumination problem is equivalent to determining the intensity of every wavelength of light in all directions at every point in a given scene. The complexity of the problem has led researchers to use approximation methods for solving the problem on serial computers. Rather than using an approximation method, such as backward ray tracing or radiosity, the authors have chosen to solve the Rendering Equation by direct simulation of light transport from the light sources. This paper presents an algorithm that solves the Rendering Equation to any desired accuracy, and can be run in parallel on distributed memory or shared memory computer systems with excellent scaling properties. It appears superior in both speed and physical correctness to recent published methods involving bidirectional ray tracing or hybrid treatments of diffuse and specular surfaces. Like progressive radiosity methods, it dynamically refines the geometry decomposition where required, but does so without the excessive storage requirements for ray histories. The algorithm, called Photon, produces a scene which converges to the global illumination solution. This amounts to a huge task for a 1997-vintage serial computer, but using the power of a parallel supercomputer significantly reduces the time required to generate a solution. Currently, Photon can be run on most parallel environments from a shared memory multiprocessor to a parallel supercomputer, as well as on clusters of heterogeneous workstations.

  6. Effect of illumination on photoluminescence properties of porous silicon

    International Nuclear Information System (INIS)

    Naddaf, M.; Hamadeh, H.

    2008-11-01

    Porous silicon (PS) layers were formed by photo-electrochemical etching of both p-type and n-type single crystal wafers in HF based solution. During the etching process, the silicon wafer was illuminated by a halogen lamp light guided by an optical fiber through a monochromator or diode lasers at different power density and wavelengths (480,533,580 and 635 nm). The optical and structural properties of the prepared PS samples have been investigated by using temperature dependent photoluminescence (PL) spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, contact angle (CA) measurements, optical microscope and atomic force microscope (AFM). Beside the strong red-yellow PL band, a blue PL band has been observed only in the PS samples formed under the illumination with low power and short wavelengths (480-580 nm) light. In the near infrared (IR) spectral range, a new PL band at 850 nm was observed in p-type PS samples, which prepared under darkness or illumination with 635 nm of low power light. Temperature dependent PL measurements showed that, in contrast to the main IR PL band at around 1100 nm, the intensity of this new band increases on increasing the temperature. These changes in the PL properties was correlated with the illumination induced-structural and morphological modifications in the PS skeleton. In particular, the FTIR analysis showed that the chemical groups and bonds constituting the PS skeleton, such as, SiH, SiO bonds and silanol SiOH group play key role in deciding the PL emission intensity and blue shift. The study proved that the illumination parameters during the photo-electrochemical etching process can be utilized for tailoring a porous layer with novel optical and structural properties. (Authors)

  7. Effect of illumination on photoluminescence properties of porous silicon

    International Nuclear Information System (INIS)

    Naddaf, M.; Hamadeh, H.

    2009-01-01

    Porous silicon (PS) layers were formed by photo-electrochemical etching of both p-type and n-type single crystal wafers in HF based solution. During the etching process, the silicon wafer was illuminated by a halogen lamp light guided by an optical fiber through a monochromator or diode lasers at different power density and wavelengths (480,533,580 and 635 nm). The optical and structural properties of the prepared PS samples have been investigated by using temperature dependent photoluminescence (PL) spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, contact angle (CA) measurements, optical microscope and atomic force microscope (AFM). Beside the strong red-yellow PL band, a blue PL band has been observed only in the PS samples formed under the illumination with low power and short wavelengths (480-580 nm) light. In the near infrared (IR) spectral range, a new PL band at 850 nm was observed in p-type PS samples, which prepared under darkness or illumination with 635 nm of low power light. Temperature dependent PL measurements showed that, in contrast to the main IR PL band at around 1100 nm, the intensity of this new band increases on increasing the temperature. These changes in the PL properties was correlated with the illumination induced-structural and morphological modifications in the PS skeleton. In particular, the FTIR analysis showed that the chemical groups and bonds constituting the PS skeleton, such as, SiH, SiO bonds and silanol SiOH group play key role in deciding the PL emission intensity and blue shift. The study proved that the illumination parameters during the photo-electrochemical etching process can be utilized for tailoring a porous layer with novel optical and structural properties. (Authors)

  8. Verification of simple illuminance based measures for indication of discomfort glare from windows

    DEFF Research Database (Denmark)

    Karlsen, Line Røseth; Heiselberg, Per Kvols; Bryn, Ida

    2015-01-01

    predictions of discomfort glare from windows already in the early design stage when decisions regarding the façade are taken. This study focus on verifying if simple illuminance based measures like vertical illuminance at eye level or horizontal illuminance at the desk are correlated with the perceived glare...... reported by 44 test subjects in a repeated measure design occupant survey and if the reported glare corresponds with the predictions from the simple Daylight Glare Probability (DGPs) model. Large individual variations were seen in the occupants’ assessment of glare in the present study. Yet, the results...... confirm that there is a statistically significant correlation between both vertical eye illuminance and horizontal illuminance at the desk and the occupants’ perception of glare in a perimeter zone office environment, which is promising evidence towards utilizing such simple measures for indication...

  9. Predictors of avoiding medical care and reasons for avoidance behavior.

    Science.gov (United States)

    Kannan, Viji Diane; Veazie, Peter J

    2014-04-01

    Delayed medical care has negative health and economic consequences; interventions have focused on appraising symptoms, with limited success in reducing delay. To identify predictors of care avoidance and reasons for avoiding care. Using the Health Information National Trends Survey (2007), we conducted logistic regressions to identify predictors of avoiding medical visits deemed necessary by the respondents; and, we then conducted similar analyses on reasons given for avoidance behavior. Independent variables included geographic, demographic, socioeconomic, personal health, health behavior, health care system, and cognitive characteristics. Approximately one third of adults avoided doctor visits they had deemed necessary. Although unadjusted associations existed, avoiding needed care was not independently associated with geographic, demographic, and socioeconomic characteristics. Avoidance behavior is characterized by low health self-efficacy, less experience with both quality care and getting help with uncertainty about health, having your feelings attended to by your provider, no usual source of care, negative affect, smoking daily, and fatalistic attitude toward cancer. Reasons elicited for avoidance include preference for self-care or alternative care, dislike or distrust of doctors, fear or dislike of medical treatments, time, and money; respondents also endorsed discomfort with body examinations, fear of having a serious illness, and thoughts of dying. Distinct predictors distinguish each of these reasons. Interventions to reduce patient delay could be improved by addressing the health-related behavioral, belief, experiential, and emotional traits associated with delay. Attention should also be directed toward the interpersonal communications between patients and providers.

  10. Automatic illumination compensation device based on a photoelectrochemical biofuel cell driven by visible light

    Science.gov (United States)

    Yu, You; Han, Yanchao; Xu, Miao; Zhang, Lingling; Dong, Shaojun

    2016-04-01

    Inverted illumination compensation is important in energy-saving projects, artificial photosynthesis and some forms of agriculture, such as hydroponics. However, only a few illumination adjustments based on self-powered biodetectors that quantitatively detect the intensity of visible light have been reported. We constructed an automatic illumination compensation device based on a photoelectrochemical biofuel cell (PBFC) driven by visible light. The PBFC consisted of a glucose dehydrogenase modified bioanode and a p-type semiconductor cuprous oxide photocathode. The PBFC had a high power output of 161.4 μW cm-2 and an open circuit potential that responded rapidly to visible light. It adjusted the amount of illumination inversely irrespective of how the external illumination was changed. This rational design of utilizing PBFCs provides new insights into automatic light adjustable devices and may be of benefit to intelligent applications.Inverted illumination compensation is important in energy-saving projects, artificial photosynthesis and some forms of agriculture, such as hydroponics. However, only a few illumination adjustments based on self-powered biodetectors that quantitatively detect the intensity of visible light have been reported. We constructed an automatic illumination compensation device based on a photoelectrochemical biofuel cell (PBFC) driven by visible light. The PBFC consisted of a glucose dehydrogenase modified bioanode and a p-type semiconductor cuprous oxide photocathode. The PBFC had a high power output of 161.4 μW cm-2 and an open circuit potential that responded rapidly to visible light. It adjusted the amount of illumination inversely irrespective of how the external illumination was changed. This rational design of utilizing PBFCs provides new insights into automatic light adjustable devices and may be of benefit to intelligent applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00759g

  11. Method of controlling illumination device based on current-voltage model

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to an illumination device comprising a number of LEDs, means for receiving an input signal, means for generating an activation signal for at least one of the LEDs based on the input signal. The illumination device comprises further means for obtaining the voltage...... and the colorimetric properties of said light emitted by LED. The present invention relates also to a method of controlling and a meted of calibrating such illumination device....... across and current through the LED and the means for generating the activation signal is adapted to generate the activating signal based on the voltage, the current and a current- voltage model related to LED. The current-voltage model defines a relationship between the current, the voltage...

  12. Light-Emitting Diode-Based Illumination System for In Vitro Photodynamic Therapy

    Directory of Open Access Journals (Sweden)

    Defu Chen

    2012-01-01

    Full Text Available The aim of this study is to develop a light-emitting diode- (LED- based illumination system that can be used as an alternative light source for in vitro photodynamic therapy (PDT. This illumination system includes a red LED array composed of 70 LEDs centered at 643 nm, an air-cooling unit, and a specific-designed case. The irradiance as a function of the irradiation distance between the LED array and the sample, the homogeneity and stability of irradiation, and the effect of long-time irradiation on culture medium temperature were characterized. Furthermore, the survival rate of the CNE1 cells that sensitized with 5-aminolevulinic acid after PDT treatment was evaluated to demonstrate the efficiency of the new LED-based illumination system. The obtained results show that the LED-based illumination system is a promising light source for in vitro PDT that performed in standard multiwell plate.

  13. The model of illumination-transillumination for image enhancement of X-ray images

    Energy Technology Data Exchange (ETDEWEB)

    Lyu, Kwang Yeul [Shingu College, Sungnam (Korea, Republic of); Rhee, Sang Min [Kangwon National Univ., Chuncheon (Korea, Republic of)

    2001-06-01

    In digital image processing, the homomorphic filtering approach is derived from an illumination - reflectance model of the image. It can also be used with an illumination-transillumination model X-ray film. Several X-ray images were applied to enhancement with histogram equalization and homomorphic filter based on an illumination-transillumination model. The homomorphic filter has proven theoretical claim of image density range compression and balanced contrast enhancement, and also was found a valuable tool to process analog X-ray images to digital images.

  14. A spectral image processing algorithm for evaluating the influence of the illuminants on the reconstructed reflectance

    Science.gov (United States)

    Toadere, Florin

    2017-12-01

    A spectral image processing algorithm that allows the illumination of the scene with different illuminants together with the reconstruction of the scene's reflectance is presented. Color checker spectral image and CIE A (warm light 2700 K), D65 (cold light 6500 K) and Cree TW Series LED T8 (4000 K) are employed for scene illumination. Illuminants used in the simulations have different spectra and, as a result of their illumination, the colors of the scene change. The influence of the illuminants on the reconstruction of the scene's reflectance is estimated. Demonstrative images and reflectance showing the operation of the algorithm are illustrated.

  15. Hydrogen Storage for Aircraft Applications Overview

    Science.gov (United States)

    Colozza, Anthony J.; Kohout, Lisa (Technical Monitor)

    2002-01-01

    Advances in fuel cell technology have brought about their consideration as sources of power for aircraft. This power can be utilized to run aircraft systems or even provide propulsion power. One of the key obstacles to utilizing fuel cells on aircraft is the storage of hydrogen. An overview of the potential methods of hydrogen storage was compiled. This overview identifies various methods of hydrogen storage and points out their advantages and disadvantages relative to aircraft applications. Minimizing weight and volume are the key aspects to storing hydrogen within an aircraft. An analysis was performed to show how changes in certain parameters of a given storage system affect its mass and volume.

  16. Structural Health Management of Damaged Aircraft Structures Using the Digital Twin Concept

    Science.gov (United States)

    Seshadri, Banavara R.; Krishnamurthy, Thiagarajan

    2017-01-01

    The development of multidisciplinary integrated Structural Health Management (SHM) tools will enable accurate detection, and prognosis of damaged aircraft under normal and adverse conditions during flight. As part of the digital twin concept, methodologies are developed by using integrated multiphysics models, sensor information and input data from an in-service vehicle to mirror and predict the life of its corresponding physical twin. SHM tools are necessary for both damage diagnostics and prognostics for continued safe operation of damaged aircraft structures. The adverse conditions include loss of control caused by environmental factors, actuator and sensor faults or failures, and structural damage conditions. A major concern in these structures is the growth of undetected damage/cracks due to fatigue and low velocity foreign object impact that can reach a critical size during flight, resulting in loss of control of the aircraft. To avoid unstable, catastrophic propagation of damage during a flight, load levels must be maintained that are below a reduced load-carrying capacity for continued safe operation of an aircraft. Hence, a capability is needed for accurate real-time predictions of damage size and safe load carrying capacity for structures with complex damage configurations. In the present work, a procedure is developed that uses guided wave responses to interrogate damage. As the guided wave interacts with damage, the signal attenuates in some directions and reflects in others. This results in a difference in signal magnitude as well as phase shifts between signal responses for damaged and undamaged structures. Accurate estimation of damage size, location, and orientation is made by evaluating the cumulative signal responses at various pre-selected sensor locations using a genetic algorithm (GA) based optimization procedure. The damage size, location, and orientation is obtained by minimizing the difference between the reference responses and the

  17. Investigation of the behaviour of a LILW superficial repository under aircraft impact

    International Nuclear Information System (INIS)

    Lo Frano, Rosa; Stefanini, Lorenzo

    2016-01-01

    Highlights: • Safety assessment of a LILW superficial repository. • Investigation of the consequences of an aircraft impact with fuel burning. • Experimental material properties. • Numerical simulation of aircraft impact with fuel burning accident by MSC.MARC"© code. • Demonstration that the overall integrity resulted is guaranteed. - Abstract: Safety and security are the two fundamental aspects to guarantee when designing a LILW superficial repository. Because of its safety concern, we have to prove, and build confidence in, the primary and secondary consequences of the crashing will be acceptable. These goals are obtained generally by means of safety assessment supported by calculations. This study is intended to investigate the performance of a superficial repository subjected to aircraft impact and fuel burning. To the purpose a superficial repository similar to that of El Cabril has been considered. Moreover to be confident the facility is safe and that the consequences of such a type of accident on the environment and humans are negligible, an appropriate safety assessment was carried out. The potential damage that aircraft impact could bring into the repository has been therefore analysed and discussed. To attain the intent load functions, calculated according to the Riera approach, and the maximum temperature reached by fuel during its combustion have been considered. FEM (thermo-mechanical) simulations have been done, by MSC"© Marc code, assuming damaging phenomena of concrete and material properties variation with the temperature. The obtained results showed that an empty superficial repository with a wall thickness, ranging from 0.7 to 1 m, is not sufficient to avoid penetration. Nevertheless even in presence of a reduced strength and of (cone) cracking and plugging, the overall integrity resulted guaranteed.

  18. Investigation of the behaviour of a LILW superficial repository under aircraft impact

    Energy Technology Data Exchange (ETDEWEB)

    Lo Frano, Rosa, E-mail: rosa.lofrano@ing.unipi.it; Stefanini, Lorenzo

    2016-04-15

    Highlights: • Safety assessment of a LILW superficial repository. • Investigation of the consequences of an aircraft impact with fuel burning. • Experimental material properties. • Numerical simulation of aircraft impact with fuel burning accident by MSC.MARC{sup ©} code. • Demonstration that the overall integrity resulted is guaranteed. - Abstract: Safety and security are the two fundamental aspects to guarantee when designing a LILW superficial repository. Because of its safety concern, we have to prove, and build confidence in, the primary and secondary consequences of the crashing will be acceptable. These goals are obtained generally by means of safety assessment supported by calculations. This study is intended to investigate the performance of a superficial repository subjected to aircraft impact and fuel burning. To the purpose a superficial repository similar to that of El Cabril has been considered. Moreover to be confident the facility is safe and that the consequences of such a type of accident on the environment and humans are negligible, an appropriate safety assessment was carried out. The potential damage that aircraft impact could bring into the repository has been therefore analysed and discussed. To attain the intent load functions, calculated according to the Riera approach, and the maximum temperature reached by fuel during its combustion have been considered. FEM (thermo-mechanical) simulations have been done, by MSC{sup ©} Marc code, assuming damaging phenomena of concrete and material properties variation with the temperature. The obtained results showed that an empty superficial repository with a wall thickness, ranging from 0.7 to 1 m, is not sufficient to avoid penetration. Nevertheless even in presence of a reduced strength and of (cone) cracking and plugging, the overall integrity resulted guaranteed.

  19. Some health effects of aircraft noise with special reference to shift work.

    Science.gov (United States)

    Rizk, Sanaa A M; Sharaf, Nevin E; Mahdy-Abdallah, Heba; ElGelil, Khalid S Abd

    2016-06-01

    Aircraft noise is an environmental stressor. A positive relationship exists between noise and high blood pressure. Shift work is an additional hazardous working condition with negative effect on the behavior attitude of workers. This study aimed at investigating some health hazards for shift work on workers at Cairo International Airport (CIA), Egypt, as a strategic work place, with more than one stressor. Assessment of noise effects were carried out in four working sites at the airport besides control sites. The average noise level in the exposure sites was 106.5 dB compared with 54 dB at the control sites. The study comprised a group of 200 male workers exposed to aircraft noise and 110 male workers not exposed to noise as control group. All workers had full general medical examination after filling specially formulated questionnaire. Hearing impairment, raised blood pressure, headaches, disturbed sleep, and symptoms of anxiety were more prominent among the exposed workers than the control. Symptoms of upper respiratory tract were reported among night shifters of both groups with high tendency for smoking. Thus, night-shift workers at CIA work under more than one stressor. Hypertension and smoking might act as intermediate factors on the causal pathway of complaints, making aircraft noise and night shift acting as two synergistic stressors. Airport workers are in need for aggressive hearing conservation programs. Organization of the working hours schedule is mandatory to avoid excessive noise exposure. © The Author(s) 2014.

  20. Effect of different illumination sources on reading and visual performance

    Directory of Open Access Journals (Sweden)

    Male Shiva Ram

    2018-01-01

    Conclusion: This study demonstrates the influence of illumination on reading rate; there were no significant differences between males and females under different illuminations, however, males preferred CFL and females preferred FLUO for faster reading and visual comfort. Interestingly, neither preferred LED or TUNG. Although energy-efficient, visual performance under LED is poor; it is uncomfortable for prolonged reading and causes early symptoms of fatigue.

  1. The Impact of Integrated Maneuver Guidance Information on UAS Pilots Performing the Detect and Avoid Task

    Science.gov (United States)

    Rorie, Conrad; Fern, Lisa

    2015-01-01

    The integrated human-in-the-loop (iHITL) simulation examined the effect of four different Detect-and-Avoid (DAA) display concepts on unmanned aircraft system (UAS) pilots' ability to maintain safe separation. The displays varied in the type and amount of guidance they provided to pilots. The study's background and methodology are discussed, followed by the 'measured response' data (i.e., pilots' end-to-end response time in reacting to traffic alerts on their DAA display). Results indicate that display type had a significant impact on how long pilot's spent interacting with the interface (i.e., edit times).

  2. Investigating the performance of reconstruction methods used in structured illumination microscopy as a function of the illumination pattern's modulation frequency

    Science.gov (United States)

    Shabani, H.; Sánchez-Ortiga, E.; Preza, C.

    2016-03-01

    Surpassing the resolution of optical microscopy defined by the Abbe diffraction limit, while simultaneously achieving optical sectioning, is a challenging problem particularly for live cell imaging of thick samples. Among a few developing techniques, structured illumination microscopy (SIM) addresses this challenge by imposing higher frequency information into the observable frequency band confined by the optical transfer function (OTF) of a conventional microscope either doubling the spatial resolution or filling the missing cone based on the spatial frequency of the pattern when the patterned illumination is two-dimensional. Standard reconstruction methods for SIM decompose the low and high frequency components from the recorded low-resolution images and then combine them to reach a high-resolution image. In contrast, model-based approaches rely on iterative optimization approaches to minimize the error between estimated and forward images. In this paper, we study the performance of both groups of methods by simulating fluorescence microscopy images from different type of objects (ranging from simulated two-point sources to extended objects). These simulations are used to investigate the methods' effectiveness on restoring objects with various types of power spectrum when modulation frequency of the patterned illumination is changing from zero to the incoherent cut-off frequency of the imaging system. Our results show that increasing the amount of imposed information by using a higher modulation frequency of the illumination pattern does not always yield a better restoration performance, which was found to be depended on the underlying object. Results from model-based restoration show performance improvement, quantified by an up to 62% drop in the mean square error compared to standard reconstruction, with increasing modulation frequency. However, we found cases for which results obtained with standard reconstruction methods do not always follow the same trend.

  3. Illumination and radiative cooling

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Shanhui; Raman, Aaswath Pattabhi; Zhu, Linxiao; Rephaeli, Eden

    2018-03-20

    Aspects of the present disclosure are directed to providing and/or controlling electromagnetic radiation. As may be implemented in accordance with one or more embodiments, an apparatus includes a first structure that contains an object, and a second structure that is transparent at solar wavelengths and emissive in the atmospheric electromagnetic radiation transparency window. The second structure operates with the first structure to pass light into the first structure for illuminating the object, and to radiatively cool the object while preserving the object's color.

  4. Sub-nanometer glass surface dynamics induced by illumination

    International Nuclear Information System (INIS)

    Nguyen, Duc; Nienhaus, Lea; Haasch, Richard T.; Lyding, Joseph; Gruebele, Martin

    2015-01-01

    Illumination is known to induce stress and morphology changes in opaque glasses. Amorphous silicon carbide (a-SiC) has a smaller bandgap than the crystal. Thus, we were able to excite with 532 nm light a 1 μm amorphous surface layer on a SiC crystal while recording time-lapse movies of glass surface dynamics by scanning tunneling microscopy (STM). Photoexcitation of the a-SiC surface layer through the transparent crystal avoids heating the STM tip. Up to 6 × 10 4 s, long movies of surface dynamics with 40 s time resolution and sub-nanometer spatial resolution were obtained. Clusters of ca. 3-5 glass forming units diameter are seen to cooperatively hop between two states at the surface. Photoexcitation with green laser light recruits immobile clusters to hop, rather than increasing the rate at which already mobile clusters hop. No significant laser heating was observed. Thus, we favor an athermal mechanism whereby electronic excitation of a-SiC directly controls glassy surface dynamics. This mechanism is supported by an exciton migration-relaxation-thermal diffusion model. Individual clusters take ∼1 h to populate states differently after the light intensity has changed. We believe the surrounding matrix rearranges slowly when it is stressed by a change in laser intensity, and clusters serve as a diagnostic. Such cluster hopping and matrix rearrangement could underlie the microscopic mechanism of photoinduced aging of opaque glasses

  5. Peer conflict avoidance: associations with loneliness, social anxiety, and social avoidance.

    Science.gov (United States)

    Johnson, H D; LaVoie, J C; Spenceri, M C; Mahoney-Wernli, M A

    2001-02-01

    Failure to resolve peer conflict is associated with children's reports of loneliness, social anxiety, and social avoidance. Although these relationships are well established, researchers have not examined the association between the avoidance of peer conflict and various adjustment characteristics. The current study examined the association between avoidance of conflict and measures of loneliness, social anxiety, and social avoidance for 59 pupils in Grade 4 (31 boys and 28 girls) and 47 in Grade 8 (22 boys and 25 girls). Volunteers indicated that conflict avoidance based on autonomy, e.g., independence issues, and interpersonal issues, e.g., closeness and cohesion, was associated with scores on loneliness for boys and girls, respectively. Conflict avoidance for emotional and physical well-being and fear of punishment was associated with increased reports of loneliness and social anxiety for children in Grade 4.

  6. Estimation of nuclear power plant aircraft hazards

    International Nuclear Information System (INIS)

    Gottlieb, P.

    1978-01-01

    The standard procedures for estimating aircraft risk to nuclear power plants provide a conservative estimate, which is adequate for most sites, which are not close to airports or heavily traveled air corridors. For those sites which are close to facilities handling large numbers of aircraft movements (airports or corridors), a more precise estimate of aircraft impact frequency can be obtained as a function of aircraft size. In many instances the very large commercial aircraft can be shown to have an acceptably small impact frequency, while the very small general aviation aircraft will not produce sufficiently serious impact to impair the safety-related functions. This paper examines the in between aircraft: primarily twin-engine, used for business, pleasure, and air taxi operations. For this group of aircraft the total impact frequency was found to be approximately once in one million years, the threshold above which further consideration of specific safety-related consequences would be required

  7. Scene independent real-time indirect illumination

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall; Christensen, Niels Jørgen; Falster, Peter

    2005-01-01

    A novel method for real-time simulation of indirect illumination is presented in this paper. The method, which we call Direct Radiance Mapping (DRM), is based on basal radiance calculations and does not impose any restrictions on scene geometry or dynamics. This makes the method tractable for rea...

  8. Aircraft Carrier Exposure Testing of Aircraft Materials

    National Research Council Canada - National Science Library

    Lee, Eui

    2004-01-01

    .... Test and control specimens were affixed on exposure racks and installed on aircraft carriers to compare adhesive bonding primers for aluminum and to determine the static property behavior of various...

  9. Structured illumination microscopy and its new developments

    Directory of Open Access Journals (Sweden)

    Jianling Chen

    2016-05-01

    Full Text Available Optical microscopy allows us to observe the biological structures and processes within living cells. However, the spatial resolution of the optical microscopy is limited to about half of the wavelength by the light diffraction. Structured illumination microscopy (SIM, a type of new emerging super-resolution microscopy, doubles the spatial resolution by illuminating the specimen with a patterned light, and the sample and light source requirements of SIM are not as strict as the other super-resolution microscopy. In addition, SIM is easier to combine with the other imaging techniques to improve their imaging resolution, leading to the developments of diverse types of SIM. SIM has great potential to meet the various requirements of living cells imaging. Here, we review the recent developments of SIM and its combination with other imaging techniques.

  10. Maintain and Regain Well Clear: Maneuver Guidance Designs for Pilots Performing the Detect-and-Avoid Task

    Science.gov (United States)

    Monk, Kevin J.; Roberts, Zachary

    2017-01-01

    In order to support the future expansion and integration of Unmanned Aircraft Systems (UAS), ongoing research efforts have sought to produce findings that inform the minimum display information elements required for acceptable UAS pilot response times and traffic avoidance. Previous simulations have revealed performance benefits associated with DAA displays containing predictive information and suggestive maneuver guidance tools in the form of banding. The present study investigated the impact of various maneuver guidance display configurations on detect-and-avoid (DAA) task performance in a simulated airspace environment. UAS pilots ability to maintain DAA well clear was compared between displays with either the presence or absence of green DAA bands, which indicated conflict-free flight regions. Additional display comparisons assessed pilots ability to regain DAA well clear with two different guidance presentations designed to aid in DAA well clear recovery during critical encounters. Performance implications and display considerations for future UAS DAA systems are discussed.

  11. The Illumination Model of the Valley Based on the Diffuse Reflect of Forest

    Directory of Open Access Journals (Sweden)

    He Guoliang

    2016-01-01

    Full Text Available In this paper, models are build to evaluate the impact of the forest on the valley’s illumination. Based on the assumes that all the light reach the ground comes from the diffuse reflection which comes from the sun directly and from the diffuse reflection of other points, One model is build to consider the impact of time and latitude on the direction of the sunlight. So we can get the direction of the sunlight at different time and latitude through the model. Besides, this paper develops a illumination model to evaluate the intensity of illumination of the ground. Combining the models above, this paper get a complete model which can not only evaluate the overall light intensity of the valley but also convert the light intensity to the intensity of illumination. Simulation of the intensity illumination of some basic terrains and finally gives a comprehensive results which is practical and close to the common sense.

  12. Identification of Aircraft Hazards

    International Nuclear Information System (INIS)

    K. Ashley

    2006-01-01

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7)

  13. Measurement of lateral charge diffusion in thick, fully depleted, back-illuminated CCDs

    Energy Technology Data Exchange (ETDEWEB)

    Karcher, Armin; Bebek, Christopher J.; Kolbe, William F.; Maurath, Dominic; Prasad, Valmiki; Uslenghi, Michela; Wagner, Martin

    2004-06-30

    Lateral charge diffusion in back-illuminated CCDs directly affects the point spread function (PSF) and spatial resolution of an imaging device. This can be of particular concern in thick, back-illuminated CCDs. We describe a technique of measuring this diffusion and present PSF measurements for an 800 x 1100, 15 mu m pixel, 280 mu m thick, back-illuminated, p-channel CCD that can be over-depleted. The PSF is measured over a wavelength range of 450 nm to 650 nm and at substrate bias voltages between 6 V and 80 V.

  14. Circular, explosion-proof lamp provides uniform illumination

    Science.gov (United States)

    1966-01-01

    Circular explosion-proof fluorescent lamp is fitted around a TV camera lens to provide shadowless illumination with a low radiant heat flux. The lamp is mounted in a transparent acrylic housing sealed with clear silicone rubber.

  15. Design of angle-resolved illumination optics using nonimaging bi-telecentricity for 193 nm scatterfield microscopy.

    Science.gov (United States)

    Sohn, Martin Y; Barnes, Bryan M; Silver, Richard M

    2018-03-01

    Accurate optics-based dimensional measurements of features sized well-below the diffraction limit require a thorough understanding of the illumination within the optical column and of the three-dimensional scattered fields that contain the information required for quantitative metrology. Scatterfield microscopy can pair simulations with angle-resolved tool characterization to improve agreement between the experiment and calculated libraries, yielding sub-nanometer parametric uncertainties. Optimized angle-resolved illumination requires bi-telecentric optics in which a telecentric sample plane defined by a Köhler illumination configuration and a telecentric conjugate back focal plane (CBFP) of the objective lens; scanning an aperture or an aperture source at the CBFP allows control of the illumination beam angle at the sample plane with minimal distortion. A bi-telecentric illumination optics have been designed enabling angle-resolved illumination for both aperture and source scanning modes while yielding low distortion and chief ray parallelism. The optimized design features a maximum chief ray angle at the CBFP of 0.002° and maximum wavefront deviations of less than 0.06 λ for angle-resolved illumination beams at the sample plane, holding promise for high quality angle-resolved illumination for improved measurements of deep-subwavelength structures using deep-ultraviolet light.

  16. 14 CFR 49.11 - FAA Aircraft Registry.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false FAA Aircraft Registry. 49.11 Section 49.11... AIRCRAFT TITLES AND SECURITY DOCUMENTS General § 49.11 FAA Aircraft Registry. To be eligible for recording, a conveyance must be mailed to the FAA Aircraft Registry, Department of Transportation, Post Office...

  17. Annoyance by aircraft noise and fear of overflying aircraft in relation to attitudes toward the environment and community

    Science.gov (United States)

    Loeb, M.; Moran, S. V.

    1977-01-01

    It has been suggested that expressions of annoyance attributable to aircraft noise may reflect in part fear of aircraft overflights and possible crashes. If this is true, then residents of areas where crashes have occurred should express more annoyance. To test this hypothesis, 50 residents of an Albany, New York area where an aircraft crash producing fatalities recently occurred and 50 residents of a comparable nearby area without such a history, were asked to respond to a 'Quality of Life Questionnaire.' Among the items were some designed to test annoyance by noise and fear of aircraft overflights. It was predicted that those in the crash area would express more fear and would more often identify aircraft as a noise source. These hypotheses were sustained. A near-replication was carried out in Louisville, Kentucky; results were much the same. Analyses indicated that for the crash-area groups, there was associating of aircraft fear and noise annoyance responses; this was true to an apparently lesser extent for non-crash groups. The greater annoyance of crash groups by aircraft community noise apparently does not carry over to situations in which aircraft noise is assessed in the laboratory.

  18. Improving the opto-microwave performance of SiGe/Si phototransistor through edge-illuminated structure

    Science.gov (United States)

    Tegegne, Z. G.; Viana, C.; Polleux, J. L.; Grzeskowiak, M.; Richalot, E.

    2016-03-01

    This paper demonstrates the experimental study of edge and top illuminated SiGe phototransistors (HPT) implemented using the existing industrial SiGe2RF Telefunken GmbH BiCMOS technology for opto-microwave (OM) applications using 850nm Multi-Mode Fibers (MMF). Its technology and structure are described. Two different optical window size HPTs with top illumination (5x5μm2, 10x10μm2) and an edge illuminated HPTs having 5μm x5μm size are presented and compared. A two-step post fabrication process was used to create an optical access on the edge of the HPT for lateral illumination with a lensed MMF through simple polishing and dicing techniques. We perform Opto-microwave Scanning Near-field Optical Microscopy (OM-SNOM) analysis on edge and top illuminated HPTs in order to observe the fastest and the highest sensitive regions of the HPTs. This analysis also allows understanding the parasitic effect from the substrate, and thus draws a conclusion on the design aspect of SiGe/Si HPT. A low frequency OM responsivity of 0.45A/W and a cutoff frequency, f-3dB, of 890MHz were measured for edge illuminated HPT. Compared to the top illuminated HPT of the same size, the edge illuminated HPT improves the f-3dB by a factor of more than two and also improves the low frequency responsivity by a factor of more than four. These results demonstrate that a simple etched HPT is still enough to achieve performance improvements compared to the top illuminated HPT without requiring a complex coupling structure. Indeed, it also proves the potential of edge coupled SiGe HPT in the ultra-low-cost silicon based optoelectronics circuits with a new approach of the optical packaging and system integration to 850nm MMF.

  19. The Aircraft Morphing Program

    Science.gov (United States)

    Wlezien, R. W.; Horner, G. C.; McGowan, A. R.; Padula, S. L.; Scott, M. A.; Silcox, R. J.; Simpson, J. O.

    1998-01-01

    In the last decade smart technologies have become enablers that cut across traditional boundaries in materials science and engineering. Here we define smart to mean embedded actuation, sensing, and control logic in a tightly coupled feedback loop. While multiple successes have been achieved in the laboratory, we have yet to see the general applicability of smart devices to real aircraft systems. The NASA Aircraft Morphing program is an attempt to couple research across a wide range of disciplines to integrate smart technologies into high payoff aircraft applications. The program bridges research in seven individual disciplines and combines the effort into activities in three primary program thrusts. System studies are used to assess the highest- payoff program objectives, and specific research activities are defined to address the technologies required for development of smart aircraft systems. In this paper we address the overall program goals and programmatic structure, and discuss the challenges associated with bringing the technologies to fruition.

  20. Smart aircraft fastener evaluation (SAFE) system: a condition-based corrosion detection system for aging aircraft

    Science.gov (United States)

    Schoess, Jeffrey N.; Seifert, Greg; Paul, Clare A.

    1996-05-01

    The smart aircraft fastener evaluation (SAFE) system is an advanced structural health monitoring effort to detect and characterize corrosion in hidden and inaccessible locations of aircraft structures. Hidden corrosion is the number one logistics problem for the U.S. Air Force, with an estimated maintenance cost of $700M per year in 1990 dollars. The SAFE system incorporates a solid-state electrochemical microsensor and smart sensor electronics in the body of a Hi-Lok aircraft fastener to process and autonomously report corrosion status to aircraft maintenance personnel. The long-term payoff for using SAFE technology will be in predictive maintenance for aging aircraft and rotorcraft systems, fugitive emissions applications such as control valves, chemical pipeline vessels, and industrial boilers. Predictive maintenance capability, service, and repair will replace the current practice of scheduled maintenance to substantially reduce operational costs. A summary of the SAFE concept, laboratory test results, and future field test plans is presented.

  1. Colour differences in Caucasian and Oriental women's faces illuminated by white LED sources.

    Science.gov (United States)

    Melgosa, M; Richard, N; Fernández-Maloigne, C; Xiao, K; de Clermont-Gallerande, H; Jost-Boissard, S; Okajima, K

    2018-04-10

    To provide an approach to facial contrast, analysing CIELAB colour differences (ΔE* ab,10 ) and its components in women's faces from two different ethnic groups, illuminated by modern white light-emitting diodes (LEDs) or traditional illuminants recommended by the International Commission on Illumination (CIE). We performed spectrophotometric measurements of spectral reflectance factors on forehead and cheek of 87 young healthy women (50 Caucasians and 37 Orientals), plus 5 commercial red lipsticks. We considered a set of 10 white LED illuminants, representative of technologies currently available on the market, plus 8 main illuminants currently recommended by the CIE, representative of conventional incandescent, daylight, and fluorescent light sources. Under each of these 18 illuminants we analysed the magnitude and components of ΔE* ab,10 between Caucasian and Oriental women (considering cheek and forehead), as well as for cheek-forehead and cheek-lipsticks in Caucasian and Oriental women. Colour-inconstancy indices for cheek, forehead, and lipsticks were computed, assuming D65 and A as reference illuminants. ΔE* ab,10 between forehead and cheek were quantitatively and qualitatively different in Orientals and Caucasians, but discrepancies with respect to average values for 18 illuminants were small (1.5% and 5.0% for Orientals and Caucasians, respectively). ΔE* ab,10 between Caucasians and Orientals were also quantitatively and qualitatively different both for forehead and cheek, and discrepancies with respect to average values were again small (1.0% and 3.9% for forehead and cheek, respectively). ΔE* ab,10 between lipsticks and cheek were at least 2 times higher than those between forehead and cheek. Regarding ΔE* ab,10 between lipsticks and cheeks, discrepancies with respect to average values were in the range 1.5% - 12.3%, although higher values of up to 54.2% were found for a white RGB LED. This white RGB LED provided the highest average colour

  2. Month-hour distributions of zenith luminance and diffuse illuminance in Madrid

    International Nuclear Information System (INIS)

    Soler, Alfonso; Gopinathan, Kannam K.; Robledo, Luis; Ruiz, Enrique

    2004-01-01

    Month-hour equal mean zenith luminance contours are obtained from one year of data of zenith luminance measurements for cloudless, overcast and partly cloudy skies and also when the combined data for all sky types are considered. For many hours in different months, the overcast sky luminance values are roughly about three times the cloudless sky luminance values and one and a half times the partly cloudy sky values. The dependence of month-hour equal mean zenith luminance contours on the ratio of global to extraterrestrial illuminance on a horizontal surface is also given. From equal mean zenith luminance contours, the approximate values of the mean zenith luminance for different sky conditions and different hours and months of the year can be easily obtained. Month-hour equal mean diffuse illuminance contours are obtained from diffuse illuminance measurements performed during the period 1992-1998. The dependence on solar altitude of the monthly average hourly values of diffuse illuminance is given and compared to the corresponding one obtained from data for Bet Dagan (Israel)

  3. 75 FR 41986 - Certification of Aircraft and Airmen for the Operation of Light-Sport Aircraft; Modifications to...

    Science.gov (United States)

    2010-07-20

    ...- Sport Aircraft; Modifications to Rules for Sport Pilots and Flight Instructors With a Sport Pilot Rating... rule; OMB approval of information collection. SUMMARY: This document announces the Office of Management... rule, ``Certification of Aircraft and Airmen for the Operation of Light-Sport Aircraft; Modifications...

  4. Constructal Theory and Aeroelastic Design of Flexible Flying Wing Aircraft

    Directory of Open Access Journals (Sweden)

    Pezhman Mardanpour

    2017-07-01

    Full Text Available The aeroelastic behavior of high-aspect-ratio very flexible flying wing is highly affected by the geometric nonlinearities of the aircraft structure. This paper reviews the findings on how these nonlinearities influence the structural and flight dynamics, and it shows that the aeroelastic flight envelope could significantly be extended with proper choices of design parameters such as engine placement. Moreover, in order to investigate the physics behind the effects of design parameters, constructal theory of design is reviewed. The constructal theory advances the philosophy of design as science, it states that the better structural design emerges when stress flow strangulation is avoided. Furthermore, it shows that airplanes, through their evolution, have obeyed theoretical allometric rules that unite their designs.

  5. Achieving uniform efficient illumination with multiple asymmetric compound parabolic luminaires

    Science.gov (United States)

    Gordon, Jeffrey M.; Kashin, Peter

    1994-01-01

    Luminaire designs based on multiple asymmetric nonimaging compound parabolic reflectors are proposed for 2-D illumination applications that require highly uniform far-field illuminance, while ensuring maximal lighting efficiency and sharp angular cutoffs. The new designs derive from recent advances in nonimaging secondary concentrators for line-focus solar collectors. The light source is not treated as a single entity, but rather is divided into two or more separate adjoining sources. An asymmetric compound parabolic luminaire is then designed around each half-source. Attaining sharp cutoffs requires relatively large reflectors. However, severe truncation of the reflectors renders these devices as compact as many conventional luminaires, at the penalty of a small fraction of the radiation being emitted outside the nominal cutoff. The configurations that maximize the uniformity of far-field illuminance offer significant improvements in flux homogeneity relative to alternative designs to date.

  6. Aircraft Cabin Environmental Quality Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Gundel, Lara; Kirchstetter, Thomas; Spears, Michael; Sullivan, Douglas

    2010-05-06

    The Indoor Environment Department at Lawrence Berkeley National Laboratory (LBNL) teamed with seven universities to participate in a Federal Aviation Administration (FAA) Center of Excellence (COE) for research on environmental quality in aircraft. This report describes research performed at LBNL on selecting and evaluating sensors for monitoring environmental quality in aircraft cabins, as part of Project 7 of the FAA's COE for Airliner Cabin Environmental Research (ACER)1 effort. This part of Project 7 links to the ozone, pesticide, and incident projects for data collection and monitoring and is a component of a broader research effort on sensors by ACER. Results from UCB and LBNL's concurrent research on ozone (ACER Project 1) are found in Weschler et al., 2007; Bhangar et al. 2008; Coleman et al., 2008 and Strom-Tejsen et al., 2008. LBNL's research on pesticides (ACER Project 2) in airliner cabins is described in Maddalena and McKone (2008). This report focused on the sensors needed for normal contaminants and conditions in aircraft. The results are intended to complement and coordinate with results from other ACER members who concentrated primarily on (a) sensors for chemical and biological pollutants that might be released intentionally in aircraft; (b) integration of sensor systems; and (c) optimal location of sensors within aircraft. The parameters and sensors were selected primarily to satisfy routine monitoring needs for contaminants and conditions that commonly occur in aircraft. However, such sensor systems can also be incorporated into research programs on environmental quality in aircraft cabins.

  7. Impact analysis of composite aircraft structures

    Science.gov (United States)

    Pifko, Allan B.; Kushner, Alan S.

    1993-01-01

    The impact analysis of composite aircraft structures is discussed. Topics discussed include: background remarks on aircraft crashworthiness; comments on modeling strategies for crashworthiness simulation; initial study of simulation of progressive failure of an aircraft component constructed of composite material; and research direction in composite characterization for impact analysis.

  8. 8 CFR 1280.21 - Seizure of aircraft.

    Science.gov (United States)

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Seizure of aircraft. 1280.21 Section 1280... REGULATIONS IMPOSITION AND COLLECTION OF FINES § 1280.21 Seizure of aircraft. Seizure of an aircraft under the... that its value is less than the amount of the fine which may be imposed. If seizure of an aircraft for...

  9. 8 CFR 280.21 - Seizure of aircraft.

    Science.gov (United States)

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Seizure of aircraft. 280.21 Section 280.21... OF FINES § 280.21 Seizure of aircraft. Seizure of an aircraft under the authority of section 239 of... than the amount of the fine which may be imposed. If seizure of an aircraft for violation of section...

  10. Feasibility Study on Passive-radar Detection of Space Targets Using Spaceborne Illuminators of Opportunity

    Directory of Open Access Journals (Sweden)

    Jiang Tie-zhen

    2015-01-01

    Full Text Available Space target surveillance generally uses active radars. To take full advantage of passive radars, the idea of using spaceborne illuminators of opportunity for space target detection is presented in this paper. Analysis of the detectable time and direct wave suppression shows that passive radar using spaceborne illuminators of opportunity can effectively detect a Low-Earth-Orbit (LEO target. Meanwhile, Ku and L band bi-static radar cross section of passive radars that use spaceborne illuminators of opportunity are presented by simulation, providing the basis of choosing space target forward scatter. Finally the key parameters, mainly system gain, accumulation time and radiation source selection are studied. Results show that system size using satellite TV signals as illuminators of opportunity is relatively small. These encouraging results should stimulate the development of passive radar detection of space targets using spaceborne illuminators of opportunity.

  11. GRAPHICAL MODELS OF THE AIRCRAFT MAINTENANCE PROCESS

    Directory of Open Access Journals (Sweden)

    Stanislav Vladimirovich Daletskiy

    2017-01-01

    Full Text Available The aircraft maintenance is realized by a rapid sequence of maintenance organizational and technical states, its re- search and analysis are carried out by statistical methods. The maintenance process concludes aircraft technical states con- nected with the objective patterns of technical qualities changes of the aircraft as a maintenance object and organizational states which determine the subjective organization and planning process of aircraft using. The objective maintenance pro- cess is realized in Maintenance and Repair System which does not include maintenance organization and planning and is a set of related elements: aircraft, Maintenance and Repair measures, executors and documentation that sets rules of their interaction for maintaining of the aircraft reliability and readiness for flight. The aircraft organizational and technical states are considered, their characteristics and heuristic estimates of connection in knots and arcs of graphs and of aircraft organi- zational states during regular maintenance and at technical state failure are given. It is shown that in real conditions of air- craft maintenance, planned aircraft technical state control and maintenance control through it, is only defined by Mainte- nance and Repair conditions at a given Maintenance and Repair type and form structures, and correspondingly by setting principles of Maintenance and Repair work types to the execution, due to maintenance, by aircraft and all its units mainte- nance and reconstruction strategies. The realization of planned Maintenance and Repair process determines the one of the constant maintenance component. The proposed graphical models allow to reveal quantitative correlations between graph knots to improve maintenance processes by statistical research methods, what reduces manning, timetable and expenses for providing safe civil aviation aircraft maintenance.

  12. Rectangular illumination using a secondary optics with cylindrical lens for LED street light.

    Science.gov (United States)

    Chen, Hsi-Chao; Lin, Jun-Yu; Chiu, Hsuan-Yi

    2013-02-11

    The illumination pattern of an LED street light is required to have a rectangular distribution at a divergence-angle ratio of 7:3 for economical illumination. Hence, research supplying a secondary optics with two cylindrical lenses was different from free-form curvature for rectangular illumination. The analytical solution for curvatures with different ratio rectangles solved this detail by light tracing and boundary conditions. Similarities between the experiments and the simulation for a single LED and a 9-LED module were analyzed by Normalized Cross Correlation (NCC), and the error rate was studied by the Root Mean Square (RMS). The tolerance of position must be kept under ± 0.2 mm in the x, y and z directions to ensure that the relative illumination is over 99%.

  13. A collision avoidance model for two-pedestrian groups: Considering random avoidance patterns

    Science.gov (United States)

    Zhou, Zhuping; Cai, Yifei; Ke, Ruimin; Yang, Jiwei

    2017-06-01

    Grouping is a common phenomenon in pedestrian crowds and group modeling is still an open challenging problem. When grouping pedestrians avoid each other, different patterns can be observed. Pedestrians can keep close with group members and avoid other groups in cluster. Also, they can avoid other groups separately. Considering this randomness in avoidance patterns, we propose a collision avoidance model for two-pedestrian groups. In our model, the avoidance model is proposed based on velocity obstacle method at first. Then grouping model is established using Distance constrained line (DCL), by transforming DCL into the framework of velocity obstacle, the avoidance model and grouping model are successfully put into one unified calculation structure. Within this structure, an algorithm is developed to solve the problem when solutions of the two models conflict with each other. Two groups of bidirectional pedestrian experiments are designed to verify the model. The accuracy of avoidance behavior and grouping behavior is validated in the microscopic level, while the lane formation phenomenon and fundamental diagrams is validated in the macroscopic level. The experiments results show our model is convincing and has a good expansibility to describe three or more pedestrian groups.

  14. Principles for Aircraft Energy Mapping

    OpenAIRE

    Berg, Frederick T N

    2013-01-01

    An increasing emphasis on energy eciency in aircraft systems has in recentyears led to greater interest in integrated design and optimisation withinthe industry. New tools are needed to understand, compare and manage energyuse of an aircraft throughout its design and operation. This thesis describes a new methodology to meet this need: aircraft exergy mapping.The choice of exergy, a 2nd law metric, to describe the energy ows is fundamental to the methodology, providing numerous advantages ove...

  15. NDT applications in the aircraft industry

    International Nuclear Information System (INIS)

    Aguilar, E.C.

    1994-01-01

    Non-destructive testing (NDT) in the aircraft industry is used primarily to detect process defects in the manufacturing stage and failure defects in the in-service stage. Inspection techniques such as X- or gamma ray radiography are used for examination. Eddy current and ultrasonic are applied for examination, fluorescent penetrant and magnetic particles are applied for examination of aircraft and engine. With the wide scope of application, this paper discussed one type of NDT that is much used in aircraft being the latest technique in aircraft manufacturing. 1 fig

  16. Composite materials for aircraft structures

    National Research Council Canada - National Science Library

    Baker, A. A; Dutton, Stuart; Kelly, Donald

    2004-01-01

    ... materials for aircraft structures / Alan Baker, Stuart Dutton, and Donald Kelly- 2nd ed. p. cm. - (Education series) Rev. ed. of: Composite materials for aircraft structures / edited by B. C. Hos...

  17. Relationship between Personality Traits and Endogenous Analgesia: The Role of Harm Avoidance.

    Science.gov (United States)

    Nahman-Averbuch, Hadas; Yarnitsky, David; Sprecher, Elliot; Granovsky, Yelena; Granot, Michal

    2016-01-01

    Whether psychological factors such as anxiety and pain catastrophizing levels influence the expression of endogenous analgesia in general and, more specifically, the conditioned pain modulation (CPM) response is still under debate. It may be assumed that other psychological characteristics also play a role in the CPM response. The neurotransmitters serotonin, dopamine, and norepinephrine are involved both in CPM, as well as personality traits such as harm avoidance (HA), novelty seeking (NS), and reward dependence (RD), which can be obtained by the Tridimensional Personality Questionnaire (TPQ). However, the associations between these traits (HA, NS, and RD) with endogenous analgesia revealed by CPM have not yet been explored. Healthy middle-age subjects (n = 28) completed the TPQ, Spielberger's State Anxiety Inventory, and the Pain Catastrophizing Scale and were assessed for CPM paradigms using thermal phasic temporal summation as the "test stimulus" and hand immersion into hot water bath (CPM water) or contact heat (CPM contact) for "conditioning stimulus." Higher levels of HA were associated with less-efficient CPM responses obtained by both paradigms: CPM water (r = 0.418, P = 0.027) and CPM contact (r = 0.374, P = 0.050). However, NS and RD were not associated with the other measurements. No significant relationship was observed between state anxiety and pain catastrophizing levels and the CPM responses. The relationship between the capacity of endogenous analgesia and the tendency to avoid aversive experience can be explained by mutual mechanisms involving similar neurotransmitters or brain areas. These findings illuminate the key role of harm avoidance obtained by the TPQ in determining the characteristics of pain modulation profile. © 2014 World Institute of Pain.

  18. IDENTIFICATION OF AIRCRAFT HAZARDS

    International Nuclear Information System (INIS)

    K.L. Ashley

    2005-01-01

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in the ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2004, Section 6.4.1). That determination was conservatively based on limited knowledge of flight data in the area of concern and on crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a Monitored Geologic Repository (MGR) at Yucca Mountain using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987, Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. NUREG-0800 is being used here as a reference because some of the same considerations apply. The intended use of this report is to provide inputs for further screening and analysis of the identified aircraft hazards based on the criteria that apply to Category 1 and 2 event sequence analyses as defined in 10 CFR 63.2 (see Section 4). The scope of this technical report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the MGR at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (see Section 7)

  19. Identification of Aircraft Hazards

    Energy Technology Data Exchange (ETDEWEB)

    K. Ashley

    2006-12-08

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7).

  20. 31 CFR 560.528 - Aircraft safety.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Aircraft safety. 560.528 Section 560..., Authorizations and Statements of Licensing Policy § 560.528 Aircraft safety. Specific licenses may be issued on a... the safety of civil aviation and safe operation of U.S.-origin commercial passenger aircraft. ...

  1. Controlled structures in laterally patterned barrier discharges by illumination of the semiconductor electrode

    International Nuclear Information System (INIS)

    Wild, R; Schumann, T; Stollenwerk, L

    2014-01-01

    In this contribution, we present a possibility to actively control emerging patterns in laterally extended barrier discharges. One of the barriers is a high-ohmic semiconductive GaAs electrode. As the electrode is illuminated from its plasma-far side, the voltage inside the plasma gap is increased. If the gap voltage becomes higher than the ignition voltage of the gas, a discharge is started. A corresponding electrical model is given. The lateral resolution of control for a laterally homogeneous discharge is investigated. It is found that the luminescence of the discharge is controlled by both a variation of illumination power density and a variation of the applied voltage. However, during an increase in the applied voltage, the discharge may become larger than the area of illumination. Further, an investigation of the patterned discharge control shows that the number of current spots depends on the illumination power density and the area of illumination. The behaviour of current spot appearance suggests an inhibitory influence, preventing a discharge in its immediate surrounding and limiting the total number of current spots. (paper)

  2. Temporal focusing-based widefield multiphoton microscopy with spatially modulated illumination for biotissue imaging.

    Science.gov (United States)

    Chang, Chia-Yuan; Lin, Cheng-Han; Lin, Chun-Yu; Sie, Yong-Da; Hu, Yvonne Yuling; Tsai, Sheng-Feng; Chen, Shean-Jen

    2018-01-01

    A developed temporal focusing-based multiphoton excitation microscope (TFMPEM) has a digital micromirror device (DMD) which is adopted not only as a blazed grating for light spatial dispersion but also for patterned illumination simultaneously. Herein, the TFMPEM has been extended to implement spatially modulated illumination at structured frequency and orientation to increase the beam coverage at the back-focal aperture of the objective lens. The axial excitation confinement (AEC) of TFMPEM can be condensed from 3.0 μm to 1.5 μm for a 50 % improvement. By using the TFMPEM with HiLo technique as two structured illuminations at the same spatial frequency but different orientation, reconstructed biotissue images according to the condensed AEC structured illumination are shown obviously superior in contrast and better scattering suppression. Picture: TPEF images of the eosin-stained mouse cerebellar cortex by conventional TFMPEM (left), and the TFMPEM with HiLo technique as 1.09 μm -1 spatially modulated illumination at 90° (center) and 0° (right) orientations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Videolaryngoscopes differ substantially in illumination of the oral cavity: A manikin study

    Directory of Open Access Journals (Sweden)

    Barbe MA Pieters

    2016-01-01

    Full Text Available Background and Aims: Insufficient illumination of the oral cavity during endotracheal intubation may result in suboptimal conditions. Consequently, suboptimal illumination and laryngoscopy may lead to potential unwanted trauma to soft tissues of the pharyngeal mucosa. We investigated illumination of the oral cavity by different videolaryngoscopes (VLS in a manikin model. Methods: We measured light intensity from the mouth opening of a Laerdal intubation trainer comparing different direct and indirect VLS at three occasions, resembling optimal to less-than-optimal intubation conditions; at the photographer′s dark room, in an operating theatre and outdoors in bright sunlight. Results: Substantial differences in luminance were detected between VLS. The use of LED light significantly improved light production. All VLS produced substantial higher luminance values in a well-luminated environment compared to the dark photographer′s room. The experiments outside-in bright sunlight-were interfered with by direct sunlight penetration through the synthetic material of the manikin, making correct measurement of luminance in the oropharynx invalid. Conclusion: Illumination of the oral cavity differs widely among direct and indirect VLS. The clinician should be aware of the possibility of suboptimal illumination of the oral cavity and the potential risk this poses for the patient.

  4. Research study on the effects of illumination on performance of control room tasks

    International Nuclear Information System (INIS)

    Silverman, E.B.; Horst, R.L.; Parris, H.L.; O'Brien, J.

    1990-01-01

    The illumination in the control rooms of many operating nuclear plants falls below the levels specified in the NUREG-0700 guidelines. However, these guidelines are based on human perception and performance data which were acquired under laboratory conditions and with tasks very different from those typically found in control rooms. The objective of the present studies was to gather empirical data regarding the levels of illumination sufficient for performing tasks analogous to those performed in control rooms. Several tasks were designed to engage the perceptual and cognitive processes that are representative of actual control room performance. In a computerized laboratory test-bed, subjects scanned edgewise meters, examined hard-copy X-Y plots to discern the value of the displayed function at specific coordinates, and proofread hard-copy plant procedures. In a power plant control room simulator, data were likewise collected in a meter reading task and similar tasks representing elements of specific job-performance measures. For each task, response time and accuracy were measured under a range of illumination levels. Subjective comfort ratings were also obtained for each illumination level. The results from both settings indicated that with decreasing illumination, increased errors and/or longer response times occurred only for levels below ten footcandles, if at all. These data suggest that adequate performance in control room tasks can be achieved at illumination levels below those recommended in NUREG-0700

  5. Development of Three-Dimensional Dental Scanning Apparatus Using Structured Illumination

    OpenAIRE

    Ahn, Jae Sung; Park, Anjin; Kim, Ju Wan; Lee, Byeong Ha; Eom, Joo Beom

    2017-01-01

    We demonstrated a three-dimensional (3D) dental scanning apparatus based on structured illumination. A liquid lens was used for tuning focus and a piezomotor stage was used for the shift of structured light. A simple algorithm, which detects intensity modulation, was used to perform optical sectioning with structured illumination. We reconstructed a 3D point cloud, which represents the 3D coordinates of the digitized surface of a dental gypsum cast by piling up sectioned images. We performed ...

  6. Design definition study of a lift/cruise fan technology V/STOL aircraft. Volume 1: Navy operational aircraft

    Science.gov (United States)

    1975-01-01

    Aircraft were designed and sized to meet Navy mission requirements. Five missions were established for evaluation: anti-submarine warfare (ASW), surface attack (SA), combat search and rescue (CSAR), surveillance (SURV), and vertical on-board delivery (VOD). All missions were performed with a short takeoff and a vertical landing. The aircraft were defined using existing J97-GE gas generators or reasonable growth derivatives in conjunction with turbotip fans reflecting LF460 type technology. The multipurpose aircraft configuration established for U.S. Navy missions utilizes the turbotip driven lift/cruise fan concept for V/STOL aircraft.

  7. Alternate Fuels for Use in Commercial Aircraft

    Science.gov (United States)

    Daggett, David L.; Hendricks, Robert C.; Walther, Rainer; Corporan, Edwin

    2008-01-01

    The engine and aircraft Research and Development (R&D) communities have been investigating alternative fueling in near-term, midterm, and far-term aircraft. A drop in jet fuel replacement, consisting of a kerosene (Jet-A) and synthetic fuel blend, will be possible for use in existing and near-term aircraft. Future midterm aircraft may use a biojet and synthetic fuel blend in ultra-efficient airplane designs. Future far-term engines and aircraft in 50-plus years may be specifically designed to use a low- or zero-carbon fuel. Synthetic jet fuels from coal, natural gas, or other hydrocarbon feedstocks are very similar in performance to conventional jet fuel, yet the additional CO2 produced during the manufacturing needs to be permanently sequestered. Biojet fuels need to be developed specifically for jet aircraft without displacing food production. Envisioned as midterm aircraft fuel, if the performance and cost liabilities can be overcome, biofuel blends with synthetic jet or Jet-A fuels have near-term potential in terms of global climatic concerns. Long-term solutions address dramatic emissions reductions through use of alternate aircraft fuels such as liquid hydrogen or liquid methane. Either of these new aircraft fuels will require an enormous change in infrastructure and thus engine and airplane design. Life-cycle environmental questions need to be addressed.

  8. Many-junction photovoltaic device performance under non-uniform high-concentration illumination

    Science.gov (United States)

    Valdivia, Christopher E.; Wilkins, Matthew M.; Chahal, Sanmeet S.; Proulx, Francine; Provost, Philippe-Olivier; Masson, Denis P.; Fafard, Simon; Hinzer, Karin

    2017-09-01

    A parameterized 3D distributed circuit model was developed to calculate the performance of III-V solar cells and photonic power converters (PPC) with a variable number of epitaxial vertically-stacked pn junctions. PPC devices are designed with many pn junctions to realize higher voltages and to operate under non-uniform illumination profiles from a laser or LED. Performance impacts of non-uniform illumination were greatly reduced with increasing number of junctions, with simulations comparing PPC devices with 3 to 20 junctions. Experimental results using Azastra Opto's 12- and 20-junction PPC illuminated by an 845 nm diode laser show high performance even with a small gap between the PPC and optical fiber output, until the local tunnel junction limit is reached.

  9. Aircraft gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Arai, M [Kawasaki Heavy Industries Ltd., Kobe (Japan)

    1995-03-01

    Recently the international relationship has been playing an important role in the research, development and production of the aircraft gas turbine. The YSX, which is supposed to be the 100-seat class commercial aircraft, has been planned by Japan Aircraft Development (JADC) as an international cooperative project. Recently many western aeroengine companies have offered the collaboration of small turbofan engines which would be installed on YSX to Japanese aeroengine companies (IHI, KHI and MHI). The YSX is powered by 16,000-20,000 1bs thrust class engines. As for medium turbofan engine (V2500), the V 2500 family of 22,000 to 30,000 1bs thrust has been developed since 1983 through international collaboration by seven aeroengine companies in five nations. In this paper, the recent Japan`s activities of the research, development and production with viewing the world-wide movement, are described. 6 figs.

  10. Hazards from aircraft

    International Nuclear Information System (INIS)

    Grund, J.E.; Hornyik, K.

    1975-01-01

    The siting of nuclear power plants has created innumerable environmental concerns. Among the effects of the ''man-made environment'' one of increasing importance in recent nuclear plant siting hazards analysis has been the concern about aircraft hazards to the nuclear plant. These hazards are of concern because of the possibility that an aircraft may have a malfunction and crash either near the plant or directly into it. Such a crash could be postulated to result, because of missile and/or fire effects, in radioactive releases which would endanger the public health and safety. The majority of studies related to hazards from air traffic have been concerned with the determination of the probability associated with an aircraft striking vulnerable portions of a given plant. Other studies have focused on the structural response to such a strike. This work focuses on the problem of strike probability. 13 references

  11. Aircraft Carriers

    DEFF Research Database (Denmark)

    Nødskov, Kim; Kværnø, Ole

    as their purchases of aircraft carrier systems, makes it more than likely that the country is preparing such an acquisition. China has territorial disputes in the South China Sea over the Spratly Islands and is also worried about the security of its sea lines of communications, by which China transports the majority......, submarines, aircraft and helicopters, is not likely to be fully operational and war-capable until 2020, given the fact that China is starting from a clean sheet of paper. The United States of America (USA), the United Kingdom (UK), Russia and India are currently building or have made decisions to build new...

  12. Perspectives on Highly Adaptive or Morphing Aircraft

    Science.gov (United States)

    McGowan, Anna-Maria R.; Vicroy, Dan D.; Busan, Ronald C.; Hahn, Andrew S.

    2009-01-01

    The ability to adapt to different flight conditions has been fundamental to aircraft design since the Wright Brothers first flight. Over a hundred years later, unconventional aircraft adaptability, often called aircraft morphing has become a topic of considerable renewed interest. In the past two decades, this interest has been largely fuelled by advancements in multi-functional or smart materials and structures. However, highly adaptive or morphing aircraft is certainly a cross-discipline challenge that stimulates a wide range of design possibilities. This paper will review some of the history of morphing aircraft including recent research programs and discuss some perspectives on this work.

  13. Small Transport Aircraft Technology /STAT/ Propulsion Study

    Science.gov (United States)

    Heldenbrand, R. W.; Baerst, C. F.; Rowse, J. H.

    1980-01-01

    The NASA Small Transport Aircraft Technology (STAT) Propulsion Study was established to identify technology requirements and define the research and development required for new commuter aircraft. Interim results of the studies defined mission and design characteristics for 30- and 50-passenger aircraft. Sensitivities were defined that relate changes in engine specific fuel consumption (SFC), weight, and cost (including maintenance) to changes in the aircraft direct operating cost (DOC), takeoff gross weight, and empty weight. A comparison of performance and economic characteristics is presented between aircraft powered by 1980 production engines and those powered by a 1990 advanced technology baseline engine.

  14. An illumination system for endoscopic applications

    DEFF Research Database (Denmark)

    2013-01-01

    The present disclosure relates to an illumination system for endoscopic applications comprising at least one substantially monochromatic light source having a predefined central wavelength between 400 and 500 nm or between 500 and 550 nm, an optical transmission path adapted to guide light emanat...... for photodynamic diagnosis and/or therapy of bladder cancer is further disclosed herein....

  15. Three-dimensional illumination procedure for photodynamic therapy of dermatology

    Science.gov (United States)

    Hu, Xiao-ming; Zhang, Feng-juan; Dong, Fei; Zhou, Ya

    2014-09-01

    Light dosimetry is an important parameter that affects the efficacy of photodynamic therapy (PDT). However, the irregular morphologies of lesions complicate lesion segmentation and light irradiance adjustment. Therefore, this study developed an illumination demo system comprising a camera, a digital projector, and a computing unit to solve these problems. A three-dimensional model of a lesion was reconstructed using the developed system. Hierarchical segmentation was achieved with the superpixel algorithm. The expected light dosimetry on the targeted lesion was achieved with the proposed illumination procedure. Accurate control and optimization of light delivery can improve the efficacy of PDT.

  16. Prototype of a flat-panel photoreactor using TiO2 nanoparticles coated on transparent granules for the degradation of Methylene Blue under solar illumination

    Directory of Open Access Journals (Sweden)

    Sutisna

    2017-07-01

    Full Text Available The purpose of this work is to design a prototype of a flat-panel (FP photoreactor for wastewater treatment via solar illumination using TiO2 nano-photocatalysts. The TiO2 nanoparticles are initially coated on transparent plastic granules to avoid the difficulties associated with the recovery of nanoparticles after completing the treatment process. The coated granules were distributed in the space inside the reactor panel. The upper cover of the reactor is a transparent material that allows light penetration to activate the catalyst. Wastewater is circulated into the spaces between the coated granules. When exposed to solar illumination, photocatalytic reactions occur on nearly the entire surface of the coated granules. To test the reactor viability, we used technical grade TiO2 (for affordability and a solution of Methylene Blue (MB as a sample of wastewater. The photoreactor was tested for treating 30 L of MB solution with an initial concentration of 25 mg L−1. We observed that the reactor was able to degrade more than 98% of the MB in the solution after 48 h of solar illumination. The performance of the FP photoreactor was also improved by arranging several reactor panels in series. Using four panels, we observed that the complete decomposition of the same MB solution can be achieved within 10 h. The proposed FP photoreactor is a very promising alternative for use in decomposing recalcitrant organic pollutants in wastewater.

  17. Aircraft vulnerability analysis by modeling and simulation

    Science.gov (United States)

    Willers, Cornelius J.; Willers, Maria S.; de Waal, Alta

    2014-10-01

    Infrared missiles pose a significant threat to civilian and military aviation. ManPADS missiles are especially dangerous in the hands of rogue and undisciplined forces. Yet, not all the launched missiles hit their targets; the miss being either attributable to misuse of the weapon or to missile performance restrictions. This paper analyses some of the factors affecting aircraft vulnerability and demonstrates a structured analysis of the risk and aircraft vulnerability problem. The aircraft-missile engagement is a complex series of events, many of which are only partially understood. Aircraft and missile designers focus on the optimal design and performance of their respective systems, often testing only in a limited set of scenarios. Most missiles react to the contrast intensity, but the variability of the background is rarely considered. Finally, the vulnerability of the aircraft depends jointly on the missile's performance and the doctrine governing the missile's launch. These factors are considered in a holistic investigation. The view direction, altitude, time of day, sun position, latitude/longitude and terrain determine the background against which the aircraft is observed. Especially high gradients in sky radiance occur around the sun and on the horizon. This paper considers uncluttered background scenes (uniform terrain and clear sky) and presents examples of background radiance at all view angles across a sphere around the sensor. A detailed geometrical and spatially distributed radiometric model is used to model the aircraft. This model provides the signature at all possible view angles across the sphere around the aircraft. The signature is determined in absolute terms (no background) and in contrast terms (with background). It is shown that the background significantly affects the contrast signature as observed by the missile sensor. A simplified missile model is constructed by defining the thrust and mass profiles, maximum seeker tracking rate, maximum

  18. Daedalus Project's Light Eagle - Human powered aircraft

    Science.gov (United States)

    1987-01-01

    The Michelob Light Eagle is seen here in flight over Rogers Dry Lake at the NASA Dryden Flight Research Center, Edwards, California. The Light Eagle and Daedalus human powered aircraft were testbeds for flight research conducted at Dryden between January 1987 and March 1988. These unique aircraft were designed and constructed by a group of students, professors, and alumni of the Massachusetts Institute of Technology within the context of the Daedalus project. The construction of the Light Eagle and Daedalus aircraft was funded primarily by the Anheuser Busch and United Technologies Corporations, respectively, with additional support from the Smithsonian Air and Space Museum, MIT, and a number of other sponsors. To celebrate the Greek myth of Daedalus, the man who constructed wings of wax and feathers to escape King Minos, the Daedalus project began with the goal of designing, building and testing a human-powered aircraft that could fly the mythical distance, 115 km. To achieve this goal, three aircraft were constructed. The Light Eagle was the prototype aircraft, weighing 92 pounds. On January 22, 1987, it set a closed course distance record of 59 km, which still stands. Also in January of 1987, the Light Eagle was powered by Lois McCallin to set the straight distance, the distance around a closed circuit, and the duration world records for the female division in human powered vehicles. Following this success, two more aircraft were built, the Daedalus 87 and Daedalus 88. Each aircraft weighed approximately 69 pounds. The Daedalus 88 aircraft was the ship that flew the 199 km from the Iraklion Air Force Base on Crete in the Mediterranean Sea, to the island of Santorini in 3 hours, 54 minutes. In the process, the aircraft set new records in distance and endurance for a human powered aircraft. The specific areas of flight research conducted at Dryden included characterizing the rigid body and flexible dynamics of the Light Eagle, investigating sensors for an

  19. Illuminating Everyday Performances of Privilege and Oppression

    Science.gov (United States)

    Heuman, Amy N.

    2018-01-01

    Courses: Intercultural Communication, Interracial Communication, Gender and Communication, Introduction to Communication Course (within a unit on culture), and any courses encouraging critical analyses of power. Objectives: This activity will: illuminate the ways in which everyday performances of privilege and resulting oppressions connect with…

  20. Structural design for aircraft impact loading

    International Nuclear Information System (INIS)

    Schmidt, R.; Heckhausen, H.; Chen, C.; Rieck, P.J.; Lemons, G.W.

    1977-01-01

    The Soft Shell-Hardcore approach to nuclear power plant auxiliary structure design was developed to attenuate the crash effects of impacting aircraft. This report is an initial investigation into defining the important structural features involved that would allow the Soft Shell-Hardcore design to successfully sustain the postulated aircraft impact. Also specified for purposes of this study are aircraft impact locations and the type and velocity of impacting aircraft. The purpose of this initial investigation is to determine the feasibility of the two 0.5 m thick walls of the Soft Shell with the simplest possible mathematical model

  1. Fluorescence digital photography of acne using a light-emitting diode illuminator.

    Science.gov (United States)

    Ahn, Hyo Hyun; Kim, Soo Nam; Kye, Young Chul

    2006-11-01

    The fluorescence findings of several dermatological diseases, such as erythrasma, tinea versicolor, and acne are helpful for diagnosis and follow-up. However, many experience difficulty taking photographic images of fluorescence. The aim of this study was to develop a 405 nm light-emitting diode (LED) system for fluorescence digital photography of acne and to determine whether such a diode can be used to evaluate acne. Eight healthy acne patients were compared with controls by fluorescence digital photography using a digital camera equipped with a 405 nm LED illuminator. Digital photographs were taken by two different ways of exposure, i.e. appropriate exposure level and longer exposure. One side of the nose, cheek, and glabella was compared. The numbers and extents of fluorescence dots were counted and measured. As normal controls, seven individuals with apparent oiliness and no acne were enrolled. Red fluorescent facial dots were observed and photographed digitally using the 405 nm LED illuminator. These were more numerous and extensive on the glabella and cheeks of acne patients. Fluorescence digital photography of acne was successfully performed using a 405 nm LED illuminator. This illuminator could be used for acne evaluations.

  2. Hyperbolic umbilic caustics from oblate water drops with tilted illumination: Observations

    Science.gov (United States)

    Jobe, Oli; Thiessen, David B.; Marston, Philip L.

    2017-11-01

    Various groups have reported observations of hyperbolic umbilic diffraction catastrophe patterns in the far-field scattering by oblate acoustically levitated drops with symmetric illumination. In observations of that type the drop's symmetry axis is vertical and the illuminating light beam (typically an expanded laser beam) travels horizontally. In the research summarized here, scattering patterns in the primary rainbow region and drop measurements were recorded with vertically tilted laser beam illumination having a grazing angle as large as 4 degrees. The findings from these observations may be summarized as follows: (a) It remains possible to adjust the drop aspect ratio (diameter/height) = D/H so as to produce a V-shaped hyperbolic umbilic focal section (HUFS) in the far-field scattering. (b) The shift in the required D/H was typically an increase of less than 1% and was quadratic in the tilt. (c) The apex of the V-shaped HUFS was shifted vertically by an amount proportional to the tilt with a coefficient close to unity. The levitated drops had negligible up-down asymmetry. Our method of investigation should be useful for other generalized rainbows with tilted illumination.

  3. LED Uniform Illumination Using Double Linear Fresnel Lenses for Energy Saving

    Directory of Open Access Journals (Sweden)

    Ngoc Hai Vu

    2017-12-01

    Full Text Available We present a linear Fresnel lens design for light-emitting diode (LED uniform illumination applications. The LED source is an array of LEDs. An array of collimating lens is applied to collimate output from the LED array. Two linear Fresnel lenses are used to redistribute the collimated beam along two dimensions in the illumination area. Collimating lens and linear Fresnel lens surfaces are calculated by geometrical optics and nonimaging optics. The collimated beam output from the collimating lens array is divided into many fragments. Each fragment is refracted by a segment of Fresnel lens and distributed over the illumination area, so that the total beam can be distributed to the illumination target uniformly. The simulation results show that this design has a compact structure, high optical efficiency of 82% and good uniformity of 76.9%. Some consideration of the energy savings and optical performance are discussed by comparison with other typical light sources. The results show that our proposed LED lighting system can reduce energy consumption five-times in comparison to using a conventional fluorescent lamp. Our research is a strong candidate for low cost, energy savings for indoor and outdoor lighting applications.

  4. Direct illumination LED calibration for telescope photometry

    International Nuclear Information System (INIS)

    Barrelet, E.; Juramy, C.

    2008-01-01

    A calibration method for telescope photometry, based on the direct illumination of a telescope with a calibrated light source regrouping multiple LEDs, is proposed. Its purpose is to calibrate the instrument response. The main emphasis of the proposed method is the traceability of the calibration process and a continuous monitoring of the instrument in order to maintain a 0.2% accuracy over a period of years. Its specificity is to map finely the response of the telescope and its camera as a function of all light ray parameters. This feature is essential to implement a computer model of the instrument representing the variation of the overall light collection efficiency of each pixel for various filter configurations. We report on hardware developments done for SNDICE, the first application of this direct illumination calibration system which will be installed in Canada France Hawaii telescope (CFHT) for its leading supernova experiment (SNLS)

  5. GRAPHICAL MODELS OF THE AIRCRAFT MAINTENANCE PROCESS

    OpenAIRE

    Stanislav Vladimirovich Daletskiy; Stanislav Stanislavovich Daletskiy

    2017-01-01

    The aircraft maintenance is realized by a rapid sequence of maintenance organizational and technical states, its re- search and analysis are carried out by statistical methods. The maintenance process concludes aircraft technical states con- nected with the objective patterns of technical qualities changes of the aircraft as a maintenance object and organizational states which determine the subjective organization and planning process of aircraft using. The objective maintenance pro- cess is ...

  6. Hydraulic Actuators with Autonomous Hydraulic Supply for the Mainline Aircrafts

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov

    2014-01-01

    Full Text Available Applied in the aircraft control systems, hydraulic servo actuators with autonomous hydraulic supply, so-called, hydraulic actuators of integrated configuration, i.e. combination of a source of hydraulic power and its load in the single unit, are aimed at increasing control system reliability both owing to elimination of the pipelines connecting the actuator to the hydraulic supply source, and owing to avoidance of influence of other loads failure on the actuator operability. Their purpose is also to raise control system survivability by eliminating the long pipeline communications and their replacing for the electro-conductive power supply system, thus reducing the vulnerability of systems. The main reason for a delayed application of the hydraulic actuators in the cutting-edge aircrafts was that such aircrafts require hydraulic actuators of considerably higher power with considerable heat releases, which caused an unacceptable overheat of the hydraulic actuators. Positive and negative sides of the hydraulic actuators, their alternative options of increased reliability and survivability, local hydraulic systems as an advanced alternative to independent hydraulic actuators are considered.Now to use hydraulic actuators in mainline aircrafts is inexpedient since there are the unfairly large number of the problems reducing, first and last, safety of flights, with no essential weight and operational advantages. Still works to create competitive hydraulic actuators ought to be continued.Application of local hydraulic systems (LHS will allow us to reduce length of pressure head and drain pipelines and mass of pipelines, as well as to raise their general fail-safety and survivability. Application of the LHS principle will allow us to use a majority of steering drive advantages. It is necessary to allocate especially the following:- ease of meeting requirements for the non-local spread of the engine weight;- essentially reducing length and weight of

  7. A Grounded Theory Study of Aircraft Maintenance Technician Decision-Making

    Science.gov (United States)

    Norcross, Robert

    Aircraft maintenance technician decision-making and actions have resulted in aircraft system errors causing aircraft incidents and accidents. Aircraft accident investigators and researchers examined the factors that influence aircraft maintenance technician errors and categorized the types of errors in an attempt to prevent similar occurrences. New aircraft technology introduced to improve aviation safety and efficiency incur failures that have no information contained in the aircraft maintenance manuals. According to the Federal Aviation Administration, aircraft maintenance technicians must use only approved aircraft maintenance documents to repair, modify, and service aircraft. This qualitative research used a grounded theory approach to explore the decision-making processes and actions taken by aircraft maintenance technicians when confronted with an aircraft problem not contained in the aircraft maintenance manuals. The target population for the research was Federal Aviation Administration licensed aircraft and power plant mechanics from across the United States. Nonprobability purposeful sampling was used to obtain aircraft maintenance technicians with the experience sought in the study problem. The sample population recruitment yielded 19 participants for eight focus group sessions to obtain opinions, perceptions, and experiences related to the study problem. All data collected was entered into the Atlas ti qualitative analysis software. The emergence of Aircraft Maintenance Technician decision-making themes regarding Aircraft Maintenance Manual content, Aircraft Maintenance Technician experience, and legal implications of not following Aircraft Maintenance Manuals surfaced. Conclusions from this study suggest Aircraft Maintenance Technician decision-making were influenced by experience, gaps in the Aircraft Maintenance Manuals, reliance on others, realizing the impact of decisions concerning aircraft airworthiness, management pressures, and legal concerns

  8. Mission Analysis and Aircraft Sizing of a Hybrid-Electric Regional Aircraft

    Science.gov (United States)

    Antcliff, Kevin R.; Guynn, Mark D.; Marien, Ty V.; Wells, Douglas P.; Schneider, Steven J.; Tong, Michael T.

    2016-01-01

    The purpose of this study was to explore advanced airframe and propulsion technologies for a small regional transport aircraft concept (approximately 50 passengers), with the goal of creating a conceptual design that delivers significant cost and performance advantages over current aircraft in that class. In turn, this could encourage airlines to open up new markets, reestablish service at smaller airports, and increase mobility and connectivity for all passengers. To meet these study goals, hybrid-electric propulsion was analyzed as the primary enabling technology. The advanced regional aircraft is analyzed with four levels of electrification, 0 percent electric with 100 percent conventional, 25 percent electric with 75 percent conventional, 50 percent electric with 50 percent conventional, and 75 percent electric with 25 percent conventional for comparison purposes. Engine models were developed to represent projected future turboprop engine performance with advanced technology and estimates of the engine weights and flowpath dimensions were developed. A low-order multi-disciplinary optimization (MDO) environment was created that could capture the unique features of parallel hybrid-electric aircraft. It is determined that at the size and range of the advanced turboprop: The battery specific energy must be 750 watt-hours per kilogram or greater for the total energy to be less than for a conventional aircraft. A hybrid vehicle would likely not be economically feasible with a battery specific energy of 500 or 750 watt-hours per kilogram based on the higher gross weight, operating empty weight, and energy costs compared to a conventional turboprop. The battery specific energy would need to reach 1000 watt-hours per kilogram by 2030 to make the electrification of its propulsion an economically feasible option. A shorter range and/or an altered propulsion-airframe integration could provide more favorable results.

  9. Aircraft vulnerability analysis by modelling and simulation

    CSIR Research Space (South Africa)

    Willers, CJ

    2014-09-01

    Full Text Available attributable to misuse of the weapon or to missile performance restrictions. This paper analyses some of the factors affecting aircraft vulnerability and demonstrates a structured analysis of the risk and aircraft vulnerability problem. The aircraft...

  10. Measuring object shape by using in-plane electronic speckle pattern interferometry with divergent illumination

    International Nuclear Information System (INIS)

    Parra-Michel, Jorge; Martínez, Amalia; Rayas, J A; Anguiano-Morales, Marcelino

    2010-01-01

    Electronic speckle pattern interferometry is a useful technique for displacement, deformation and contouring measurements. Traditionally, for contouring measurements, collimated illumination with a constant sensitivity vector is used, and the surface area analysis is limited to the illuminated area. In some industrial applications, large surfaces require to be analyzed in restricted space conditions. Considering this situation, an optical system with divergent illumination for whole-field measurements can be used. It is known that displacement fields and the optical phase are related by the sensitivity vector. Therefore, to compute the sensitivity vector, illumination position and superficial shape need to be considered, a condition that becomes an impediment for surface contouring if the superficial shape is unknown. In this work, a simple iterative algorithm based on the Gauss–Seidel technique is presented to compute contouring measurements. Contouring measurements from both ESPI and a coordinate-measuring machine (CMM) are compared. In addition, a measurement comparison considering supposed collimated and divergent illumination is presented

  11. The importance of illumination in nest site choice and nest characteristics of cavity nesting birds.

    Science.gov (United States)

    Podkowa, Paweł; Surmacki, Adrian

    2017-05-02

    Light has a significant impact on many aspects of avian biology, physiology and behaviour. An increasing number of studies show that illumination may positively influences birds' offspring fitness by e.g. acceleration of embryo development, stimulation of skeleton growth or regulation of circadian rhythm. Because nest cavities have especially low illumination, suitable light levels may be especially important for species which nest there. We may therefore expect that birds breeding in relatively dim conditions should prefer brighter nest sites and/or evolve behavioral mechanisms to secure sufficient light levels in the nest. Using nest boxes with modified internal illumination, we experimentally tested whether light regime is a cue for nest site selection of secondary cavity-nesting species. Additionally, we investigated whether nest building strategies are tuned to internal illumination. Our results demonstrate that, nest boxes with elevated illumination were chosen twice as often as dark nest boxes. Moreover, birds built higher nests in dark nest boxes than birds in boxes with elevated illumination, which suggests a mechanism of compensating for low light conditions. Our results provide the first experimental support for the idea that nest site choice and nest building behaviour in cavity-nesting birds are influenced by ambient illumination.

  12. Assessment of illumination conditions in a single-pixel imaging configuration

    Science.gov (United States)

    Garoi, Florin; Udrea, Cristian; Damian, Cristian; Logofǎtu, Petre C.; Colţuc, Daniela

    2016-12-01

    Single-pixel imaging based on multiplexing is a promising technique, especially in applications where 2D detectors or raster scanning imaging are not readily applicable. With this method, Hadamard masks are projected on a spatial light modulator to encode an incident scene and a signal is recorded at the photodiode detector for each of these masks. Ultimately, the image is reconstructed on the computer by applying the inverse transform matrix. Thus, various algorithms were optimized and several spatial light modulators already characterized for such a task. This work analyses the imaging quality of such a single-pixel arrangement, when various illumination conditions are used. More precisely, the main comparison is made between coherent and incoherent ("white light") illumination and between two multiplexing methods, namely Hadamard and Scanning. The quality of the images is assessed by calculating their SNR, using two relations. The results show better images are obtained with "white light" illumination for the first method and coherent one for the second.

  13. DMD-based LED-illumination super-resolution and optical sectioning microscopy.

    Science.gov (United States)

    Dan, Dan; Lei, Ming; Yao, Baoli; Wang, Wen; Winterhalder, Martin; Zumbusch, Andreas; Qi, Yujiao; Xia, Liang; Yan, Shaohui; Yang, Yanlong; Gao, Peng; Ye, Tong; Zhao, Wei

    2013-01-01

    Super-resolution three-dimensional (3D) optical microscopy has incomparable advantages over other high-resolution microscopic technologies, such as electron microscopy and atomic force microscopy, in the study of biological molecules, pathways and events in live cells and tissues. We present a novel approach of structured illumination microscopy (SIM) by using a digital micromirror device (DMD) for fringe projection and a low-coherence LED light for illumination. The lateral resolution of 90 nm and the optical sectioning depth of 120 μm were achieved. The maximum acquisition speed for 3D imaging in the optical sectioning mode was 1.6×10(7) pixels/second, which was mainly limited by the sensitivity and speed of the CCD camera. In contrast to other SIM techniques, the DMD-based LED-illumination SIM is cost-effective, ease of multi-wavelength switchable and speckle-noise-free. The 2D super-resolution and 3D optical sectioning modalities can be easily switched and applied to either fluorescent or non-fluorescent specimens.

  14. Initial Study of An Effective Fast-Time Simulation Platform for Unmanned Aircraft System Traffic Management

    Science.gov (United States)

    Xue, Min; Rios, Joseph

    2017-01-01

    Small Unmanned Aerial Vehicles (sUAVs), typically 55 lbs and below, are envisioned to play a major role in surveilling critical assets, collecting important information, and delivering goods. Large scale small UAV operations are expected to happen in low altitude airspace in the near future. Many static and dynamic constraints exist in low altitude airspace because of manned aircraft or helicopter activities, various wind conditions, restricted airspace, terrain and man-made buildings, and conflict-avoidance among sUAVs. High sensitivity and high maneuverability are unique characteristics of sUAVs that bring challenges to effective system evaluations and mandate such a simulation platform different from existing simulations that were built for manned air traffic system and large unmanned fixed aircraft. NASA's Unmanned aircraft system Traffic Management (UTM) research initiative focuses on enabling safe and efficient sUAV operations in the future. In order to help define requirements and policies for a safe and efficient UTM system to accommodate a large amount of sUAV operations, it is necessary to develop a fast-time simulation platform that can effectively evaluate requirements, policies, and concepts in a close-to-reality environment. This work analyzed the impacts of some key factors including aforementioned sUAV's characteristics and demonstrated the importance of these factors in a successful UTM fast-time simulation platform.

  15. Experimental analysis and modeling of the IV characteristics of photovoltaic solar cells under solar spectrum spot illumination

    Energy Technology Data Exchange (ETDEWEB)

    Munji, M.K., E-mail: mathew.munji@nmmu.ac.z [Department of Physics, Nelson Mandela Metropolitan University, PO Box 7700 Port Elizabeth 6031 (South Africa); Dyk, E.E. van; Vorster, F.J. [Department of Physics, Nelson Mandela Metropolitan University, PO Box 7700 Port Elizabeth 6031 (South Africa)

    2009-12-01

    In this paper, some models that have been put forward to explain the characteristics of a photovoltaic solar cell device under solar spot-illumination are investigated. In the experimental procedure, small areas of the cell were selected and illuminated at different solar intensities. The solar cell open circuit voltage (V{sub oc}) and short circuit current (I{sub sc}) obtained at different illumination intensities was used to determine the solar cell ideality factor. By varying the illuminated area on the solar cell, changes in the ideality factor were studied. The ideality factor obtained increases with decreasing illumination surface ratio. The photo-generated current at the illuminated part of the cell is assumed to act as a dc source that injects charge carriers into the p-n junction of the whole solar cell while the dark region of the solar cell operates in a low space charge recombination regime with small diffusion currents. From this analysis, a different model of a spot illuminated cell that uses the variation of ideality factor with the illuminated area is proposed.

  16. Experimental analysis and modeling of the IV characteristics of photovoltaic solar cells under solar spectrum spot illumination

    International Nuclear Information System (INIS)

    Munji, M.K.; Dyk, E.E. van; Vorster, F.J.

    2009-01-01

    In this paper, some models that have been put forward to explain the characteristics of a photovoltaic solar cell device under solar spot-illumination are investigated. In the experimental procedure, small areas of the cell were selected and illuminated at different solar intensities. The solar cell open circuit voltage (V oc ) and short circuit current (I sc ) obtained at different illumination intensities was used to determine the solar cell ideality factor. By varying the illuminated area on the solar cell, changes in the ideality factor were studied. The ideality factor obtained increases with decreasing illumination surface ratio. The photo-generated current at the illuminated part of the cell is assumed to act as a dc source that injects charge carriers into the p-n junction of the whole solar cell while the dark region of the solar cell operates in a low space charge recombination regime with small diffusion currents. From this analysis, a different model of a spot illuminated cell that uses the variation of ideality factor with the illuminated area is proposed.

  17. Color and illuminance level of lighting can modulate willingness to eat bell peppers.

    Science.gov (United States)

    Hasenbeck, Aimee; Cho, Sungeun; Meullenet, Jean-François; Tokar, Tonya; Yang, Famous; Huddleston, Elizabeth A; Seo, Han-Seok

    2014-08-01

    Food products are often encountered under colored lighting, particularly in restaurants and retail stores. However, relatively little attention has been paid to whether the color of ambient lighting can affect consumers' motivation for consumption. This study aimed to determine whether color (Experiment 1) and illuminance level (Experiment 2) of lighting can influence consumers' liking of appearance and their willingness to eat bell peppers. For red, green, and yellow bell peppers, yellow and blue lighting conditions consistently increased participants' liking of appearance the most and the least, respectively. Participants' willingness to consume bell peppers increased the most under yellow lighting and the least under blue lighting. In addition, a dark condition (i.e. low level of lighting illuminance) decreased liking of appearance and willingness to eat the bell peppers compared to a bright condition (i.e. high level of lighting illuminance). Our findings demonstrate that lighting color and illuminance level can influence consumers' hedonic impression and likelihood to consume bell peppers. Furthermore, the influences of color and illuminance level of lighting appear to be dependent on the surface color of bell peppers. © 2013 Society of Chemical Industry.

  18. Analyses of Aircraft Responses to Atmospheric Turbulence

    NARCIS (Netherlands)

    Van Staveren, W.H.J.J.

    2003-01-01

    The response of aircraft to stochastic atmospheric turbulence plays an important role in aircraft-design (load calculations), Flight Control System (FCS) design and flight-simulation (handling qualities research and pilot training). In order to simulate these aircraft responses, an accurate

  19. Common factors in the withdrawal of European aircraft manufacturers from the regional aircraft market

    NARCIS (Netherlands)

    Heerkens, Johannes M.G.; de Bruijn, E.J.; Steenhuis, H.J.

    2010-01-01

    We investigate whether there were common causes for the withdrawal from the regional aircraft market of three established manufacturers (BAE Systems, Fokker and Saab), while competitors thrived. We focus on the markets for 50- and 100-seat aircraft. One cause concerning the 50-seat market was the

  20. From 2D to 3D: Using Illumination Cones to Build 3d Face Model

    International Nuclear Information System (INIS)

    Xiao, S S; Jin, M

    2006-01-01

    To solve the problem derivate by lighting condition and position of the camera, a new method using illumination cones to build 3d face model has been proposed. Due to illumination variability, the same object can show dramatic difference even as being viewed in fixed pose. To handle this variability, an object recognition system must employ a representation that is either invariant to, or can model this variability. The proposed technique presents an appearance-based method for modeling the variability due to illumination in the images of objects. The method differs from past appearance-based methods. Evenmore, a small set of training images is used to generate a representation that the illumination cone models the complete set of images of an object with Lambertian reflectance surface under a combination of arbitrary point light sources at infinity. After building up the illumination cones, researches focus on how to present the 3d model of the face. Combining illumination and texture feature to build up 3d model of the face make it easy solving the problem in recognition of face under different pose

  1. Uniform illumination rendering using an array of LEDs: a signal processing perspective

    NARCIS (Netherlands)

    Yang, Hongming; Bergmans, J.W.M.; Schenk, T.C.W.; Linnartz, J.P.M.G.; Rietman, R.

    2009-01-01

    An array of a large number of LEDs will be widely used in future indoor illumination systems. In this paper, we investigate the problem of rendering uniform illumination by a regular LED array on the ceiling of a room. We first present two general results on the scaling property of the basic

  2. Illumination technique for the relative calibration of the ASTRI SST-2M camera

    Energy Technology Data Exchange (ETDEWEB)

    Rodeghiero, Gabriele, E-mail: gabriele.rodeghiero@studenti.unipd.it [Department of Physics and Astronomy, University of Padova, Vicolo dell' Osservatorio 5, 35100 PD (Italy); Catalano, Osvaldo; Segreto, Alberto [INAF IASF Palermo, Via Ugo La Malfa 153, 90146 PA (Italy); De Caprio, Vincenzo [INAF OACN, Salita Moiariello, 16, 80131 Napoli, NA (Italy); Giro, Enrico; Lessio, Luigi [INAF OAPD, Vicolo dell' Osservatorio 5, 35100 PD (Italy); Conconi, Paolo; Canestrari, Rodolfo [INAF OAB, Via E. Bianchi 46, 23807 Merate, LC (Italy)

    2014-11-11

    We present a new illumination technique for the camera relative gain calibration of the ASTRI SST-2M Cherenkov telescope. The camera illumination is achieved by means of an optical fiber that diffuses the light inside a protective PMMA window above the focal plane. We report the encouraging results of the development tests carried out on two PMMA window prototypes illuminated by a standard optical fiber. We checked also the reliability of the method by a series of ray tracing simulations for different scattering models and PMMA window shapes finding good agreement with experimental results.

  3. Illumination technique for the relative calibration of the ASTRI SST-2M camera

    International Nuclear Information System (INIS)

    Rodeghiero, Gabriele; Catalano, Osvaldo; Segreto, Alberto; De Caprio, Vincenzo; Giro, Enrico; Lessio, Luigi; Conconi, Paolo; Canestrari, Rodolfo

    2014-01-01

    We present a new illumination technique for the camera relative gain calibration of the ASTRI SST-2M Cherenkov telescope. The camera illumination is achieved by means of an optical fiber that diffuses the light inside a protective PMMA window above the focal plane. We report the encouraging results of the development tests carried out on two PMMA window prototypes illuminated by a standard optical fiber. We checked also the reliability of the method by a series of ray tracing simulations for different scattering models and PMMA window shapes finding good agreement with experimental results

  4. Real-time terminal area trajectory planning for runway independent aircraft

    Science.gov (United States)

    Xue, Min

    The increasing demand for commercial air transportation results in delays due to traffic queues that form bottlenecks along final approach and departure corridors. In urban areas, it is often infeasible to build new runways, and regardless of automation upgrades traffic must remain separated to avoid the wakes of previous aircraft. Vertical or short takeoff and landing aircraft as Runway Independent Aircraft (RIA) can increase passenger throughput at major urban airports via the use of vertiports or stub runways. The concept of simultaneous non-interfering (SNI) operations has been proposed to reduce traffic delays by creating approach and departure corridors that do not intersect existing fixed-wing routes. However, SNI trajectories open new routes that may overfly noise-sensitive areas, and RIA may generate more noise than traditional jet aircraft, particularly on approach. In this dissertation, we develop efficient SNI noise abatement procedures applicable to RIA. First, we introduce a methodology based on modified approximated cell-decomposition and Dijkstra's search algorithm to optimize longitudinal plane (2-D) RIA trajectories over a cost function that minimizes noise, time, and fuel use. Then, we extend the trajectory optimization model to 3-D with a k-ary tree as the discrete search space. We incorporate geography information system (GIS) data, specifically population, into our objective function, and focus on a practical case study: the design of SNI RIA approach procedures to Baltimore-Washington International airport. Because solutions were represented as trim state sequences, we incorporated smooth transition between segments to enable more realistic cost estimates. Due to the significant computational complexity, we investigated alternative more efficient optimization techniques applicable to our nonlinear, non-convex, heavily constrained, and discontinuous objective function. Comparing genetic algorithm (GA) and adaptive simulated annealing (ASA

  5. Robust Crop and Weed Segmentation under Uncontrolled Outdoor Illumination

    Directory of Open Access Journals (Sweden)

    Hong Y. Jeon

    2011-06-01

    Full Text Available An image processing algorithm for detecting individual weeds was developed and evaluated. Weed detection processes included were normalized excessive green conversion, statistical threshold value estimation, adaptive image segmentation, median filter, morphological feature calculation and Artificial Neural Network (ANN. The developed algorithm was validated for its ability to identify and detect weeds and crop plants under uncontrolled outdoor illuminations. A machine vision implementing field robot captured field images under outdoor illuminations and the image processing algorithm automatically processed them without manual adjustment. The errors of the algorithm, when processing 666 field images, ranged from 2.1 to 2.9%. The ANN correctly detected 72.6% of crop plants from the identified plants, and considered the rest as weeds. However, the ANN identification rates for crop plants were improved up to 95.1% by addressing the error sources in the algorithm. The developed weed detection and image processing algorithm provides a novel method to identify plants against soil background under the uncontrolled outdoor illuminations, and to differentiate weeds from crop plants. Thus, the proposed new machine vision and processing algorithm may be useful for outdoor applications including plant specific direct applications (PSDA.

  6. Coating strategy for enhancing illumination uniformity in a lithographic condenser

    International Nuclear Information System (INIS)

    Gaines, D.P.; Vernon, S.P.; Sommargren, G.E.; Kania, D.R.

    1995-01-01

    A three-element Koehler condenser system has been fabricated, characterized, and integrated into an EUV lithographic system. The multilayer coatings deposited on the optics were designed to provide optimal radiation transport efficiency and illumination uniformity. Extensive EUV characterization measurements performed on the individual optics and follow-on system measurements indicated that the condenser was operating close to design goals. Multilayer d-spacings were within 0.05 nm of specifications, and reflectances were approximately 60%. Illumination uniformity was better than ±10%. The broadband transport efficiency was 11%

  7. UAS Air Traffic Controller Acceptability Study. 2; Evaluating Detect and Avoid Technology and Communication Delays in Simulation

    Science.gov (United States)

    Comstock, James R., Jr.; Ghatas, Rania W.; Consiglio, Maria C.; Chamberlain, James P.; Hoffler, Keith D.

    2015-01-01

    This study evaluated the effects of communications delays and winds on air traffic controller ratings of acceptability of horizontal miss distances (HMDs) for encounters between Unmanned Aircraft Systems (UAS) and manned aircraft in a simulation of the Dallas-Ft. Worth (DFW) airspace. Fourteen encounters per hour were staged in the presence of moderate background traffic. Seven recently retired controllers with experience at DFW served as subjects. Guidance provided to the UAS pilots for maintaining a given HMD was provided by information from Detect and Avoid (DAA) self-separation algorithms (Stratway+) displayed on the Multi-Aircraft Control System. This guidance consisted of amber "bands" on the heading scale of the UAS navigation display indicating headings that would result in a loss of well clear between the UAS and nearby traffic. Winds tested were successfully handled by the DAA algorithms and did not affect the controller acceptability ratings of the HMDs. Voice communications delays for the UAS were also tested and included one-way delay times of 0, 400, 1200, and 1800 msec. For longer communications delays, there were changes in strategy and communications flow that were observed and reported by the controllers. The aim of this work is to provide useful information for guiding future rules and regulations applicable to flying UAS in the NAS. Information from this study will also be of value to the Radio Technical Commission for Aeronautics (RTCA) Special Committee 228 - Minimum Performance Standards for UAS.

  8. Advanced technology for future regional transport aircraft

    Science.gov (United States)

    Williams, L. J.

    1982-01-01

    In connection with a request for a report coming from a U.S. Senate committee, NASA formed a Small Transport Aircraft Technology (STAT) team in 1978. STAT was to obtain information concerning the technical improvements in commuter aircraft that would likely increase their public acceptance. Another area of study was related to questions regarding the help which could be provided by NASA's aeronautical research and development program to commuter aircraft manufacturers with respect to the solution of technical problems. Attention is given to commuter airline growth, current commuter/region aircraft and new aircraft in development, prospects for advanced technology commuter/regional transports, and potential benefits of advanced technology. A list is provided of a number of particular advances appropriate to small transport aircraft, taking into account small gas turbine engine component technology, propeller technology, three-dimensional wing-design technology, airframe aerodynamics/propulsion integration, and composite structure materials.

  9. Multiple projection optical diffusion tomography with plane wave illumination

    International Nuclear Information System (INIS)

    Markel, Vadim A; Schotland, John C

    2005-01-01

    We describe a new data collection scheme for optical diffusion tomography in which plane wave illumination is combined with multiple projections in the slab imaging geometry. Multiple projection measurements are performed by rotating the slab around the sample. The advantage of the proposed method is that the measured data are more compatible with the dynamic range of most commonly used detectors. At the same time, multiple projections improve image quality by mutually interchanging the depth and transverse directions, and the scanned (detection) and integrated (illumination) surfaces. Inversion methods are derived for image reconstructions with extremely large data sets. Numerical simulations are performed for fixed and rotated slabs

  10. Establishment Of Illumination System For Investigation Of Monochromatic Lights Combination Effects On In Vitro Plant Growth

    International Nuclear Information System (INIS)

    Le Tien Thanh; Le Ngoc Trieu; Nguyen Tuong Mien; Huynh Thi Trung; Phan Quoc Minh

    2014-01-01

    Super blue and red light LEDs and other electric, electronic components are used to design and establish 11 independent illumination systems, each system can arbitrarily control to operate at 55 molarities of illumination which are different from together in monochromatic lights combination and total illumination intensity based on the microcontrollers. Programs for loading to microcontrollers were created to base on theoretical calculation and experimental correction. The illumination cycles can be controlled by setting the timer. These 11 systems and another fluorescent light illumination were used to execute the experiment for investigation the effects of monochromatic lights combination on in vitro shoot proliferation stage in Chrysanthemum and Phalaenopsis orchid. Results from this experiment showed that illumination intensity of 400 lux is suitable for chrysanthemum, 750 lux is suitable for Phalaenopsis orchid and rate of 70% red light-30% blue light are suitable for both kinds of these plants. (author)

  11. The use of holographic and diffractive optics for optimized machine vision illumination for critical dimension inspection

    Science.gov (United States)

    Lizotte, Todd E.; Ohar, Orest

    2004-02-01

    Illuminators used in machine vision applications typically produce non-uniform illumination onto the targeted surface being observed, causing a variety of problems with machine vision alignment or measurement. In most circumstances the light source is broad spectrum, leading to further problems with image quality when viewed through a CCD camera. Configured with a simple light bulb and a mirrored reflector and/or frosted glass plates, these general illuminators are appropriate for only macro applications. Over the last 5 years newer illuminators have hit the market including circular or rectangular arrays of high intensity light emitting diodes. These diode arrays are used to create monochromatic flood illumination of a surface that is to be inspected. The problem with these illumination techniques is that most of the light does not illuminate the desired areas, but broadly spreads across the surface, or when integrated with diffuser elements, tend to create similar shadowing effects to the broad spectrum light sources. In many cases a user will try to increase the performance of these illuminators by adding several of these assemblies together, increasing the intensity or by moving the illumination source closer or farther from the surface being inspected. In this case these non-uniform techniques can lead to machine vision errors, where the computer machine vision may read false information, such as interpreting non-uniform lighting or shadowing effects as defects. This paper will cover a technique involving the use of holographic / diffractive hybrid optical elements that are integrated into standard and customized light sources used in the machine vision industry. The bulk of the paper will describe the function and fabrication of the holographic/diffractive optics and how they can be tailored to improve illuminator design. Further information will be provided a specific design and examples of it in operation will be disclosed.

  12. Ultraviolet excitation of remote phosphor with symmetrical illumination used in dual-sided liquid-crystal display.

    Science.gov (United States)

    Huang, Hsin-Tao; Tsai, Chuang-Chuang; Huang, Yi-Pai

    2010-08-01

    The UV-excited flat lighting (UFL) technique differs from conventional fluorescent lamp or LED illumination. It involves using a remote phosphor film to convert the wavelength of UV light to visible light, achieving high brightness and planar and uniform illumination. In particular, UFL can accomplish compact size, low power consumption, and symmetrical dual-sided illumination. Additionally, UFL utilizes a thermal radiation mechanism to release the large amount of heat that is generated upon illumination without thermal accumulation. These characteristics of the UFL technique can motivate a wide range of lighting applications in thin-film transistor LCD backlighting or general lighting.

  13. Higher threat avoidance costs reduce avoidance behaviour which in turn promotes fear extinction in humans.

    Science.gov (United States)

    Rattel, Julina A; Miedl, Stephan F; Blechert, Jens; Wilhelm, Frank H

    2017-09-01

    Theoretical models specifying the underlying mechanisms of the development and maintenance of anxiety and related disorders state that fear responses acquired through classical Pavlovian conditioning are maintained by repeated avoidance behaviour; thus, it is assumed that avoidance prevents fear extinction. The present study investigated behavioural avoidance decisions as a function of avoidance costs in a naturalistic fear conditioning paradigm. Ecologically valid avoidance costs - manipulated between participant groups - were represented via time-delays during a detour in a gamified computer task. After differential acquisitions of shock-expectancy to a predictive conditioned stimulus (CS+), participants underwent extinction where they could either take a risky shortcut, while anticipating shock signaled by the CS+, or choose a costly avoidance option (lengthy detour); thus, they were faced with an approach-avoidance conflict. Groups with higher avoidance costs (longer detours) showed lower proportions of avoiders. Avoiders gave heightened shock-expectancy ratings post-extinction, demonstrating 'protecting from extinction', i.e. failure to extinguish. Moreover, there was an indirect effect of avoidance costs on protection from extinction through avoidance behaviour. No moderating role of trait-anxiety was found. Theoretical implications of avoidance behaviour are discussed, considering the involvement of instrumental learning in the maintenance of fear responses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. What #theDress reveals about the role of illumination priors in color perception and color constancy.

    Science.gov (United States)

    Aston, Stacey; Hurlbert, Anya

    2017-08-01

    The disagreement between people who named #theDress (the Internet phenomenon of 2015) "blue and black" versus "white and gold" is thought to be caused by individual differences in color constancy. It is hypothesized that observers infer different incident illuminations, relying on illumination "priors" to overcome the ambiguity of the image. Different experiences may drive the formation of different illumination priors, and these may be indicated by differences in chronotype. We assess this hypothesis, asking whether matches to perceived illumination in the image and/or perceived dress colors relate to scores on the morningness-eveningness questionnaire (a measure of chronotype). We find moderate correlations between chronotype and illumination matches (morning types giving bluer illumination matches than evening types) and chronotype and dress body matches, but these are significant only at the 10% level. Further, although inferred illumination chromaticity in the image explains variation in the color matches to the dress (confirming the color constancy hypothesis), color constancy thresholds obtained using an established illumination discrimination task are not related to dress color perception. We also find achromatic settings depend on luminance, suggesting that subjective white point differences may explain the variation in dress color perception only if settings are made at individually tailored luminance levels. The results of such achromatic settings are inconsistent with their assumed correspondence to perceived illumination. Finally, our results suggest that perception and naming are disconnected, with observers reporting different color names for the dress photograph and their isolated color matches, the latter best capturing the variation in the matches.

  15. Improving Shadow Suppression for Illumination Robust Face Recognition

    KAUST Repository

    Zhang, Wuming; Zhao, Xi; Morvan, Jean-Marie; Chen, Liming

    2017-01-01

    surface, lighting source and camera sensor, and elaborates the formation of face color appearance. Specifically, the proposed illumination processing pipeline enables the generation of Chromaticity Intrinsic Image (CII) in a log chromaticity space which

  16. Control of Next Generation Aircraft and Wind Turbines

    Science.gov (United States)

    Frost, Susan

    2010-01-01

    The first part of this talk will describe some of the exciting new next generation aircraft that NASA is proposing for the future. These aircraft are being designed to reduce aircraft fuel consumption and environmental impact. Reducing the aircraft weight is one approach that will be used to achieve these goals. A new control framework will be presented that enables lighter, more flexible aircraft to maintain aircraft handling qualities, while preventing the aircraft from exceeding structural load limits. The second part of the talk will give an overview of utility-scale wind turbines and their control. Results of collaboration with Dr. Balas will be presented, including new theory to adaptively control the turbine in the presence of structural modes, with the focus on the application of this theory to a high-fidelity simulation of a wind turbine.

  17. An internally illuminated monolith reactor: Pros and cons relative to a slurry reactor

    NARCIS (Netherlands)

    Carneiro, Joana T.; Carneiro, J.T.; Berger, Rob; Moulijn, Jacob A.; Mul, Guido

    2009-01-01

    In the present study, kinetic models for the photo-oxidation of cyclohexane in two different photoreactor systems are discussed: a top illumination reactor (TIR) representative of a slurry reactor, and the so-called internally illuminated monolith reactor (IIMR) representing a reactor containing

  18. A Transient Dopamine Signal Represents Avoidance Value and Causally Influences the Demand to Avoid

    Science.gov (United States)

    Pultorak, Katherine J.; Schelp, Scott A.; Isaacs, Dominic P.; Krzystyniak, Gregory

    2018-01-01

    Abstract While an extensive literature supports the notion that mesocorticolimbic dopamine plays a role in negative reinforcement, recent evidence suggests that dopamine exclusively encodes the value of positive reinforcement. In the present study, we employed a behavioral economics approach to investigate whether dopamine plays a role in the valuation of negative reinforcement. Using rats as subjects, we first applied fast-scan cyclic voltammetry (FSCV) to determine that dopamine concentration decreases with the number of lever presses required to avoid electrical footshock (i.e., the economic price of avoidance). Analysis of the rate of decay of avoidance demand curves, which depict an inverse relationship between avoidance and increasing price, allows for inference of the worth an animal places on avoidance outcomes. Rapidly decaying demand curves indicate increased price sensitivity, or low worth placed on avoidance outcomes, while slow rates of decay indicate reduced price sensitivity, or greater worth placed on avoidance outcomes. We therefore used optogenetics to assess how inducing dopamine release causally modifies the demand to avoid electrical footshock in an economic setting. Increasing release at an avoidance predictive cue made animals more sensitive to price, consistent with a negative reward prediction error (i.e., the animal perceives they received a worse outcome than expected). Increasing release at avoidance made animals less sensitive to price, consistent with a positive reward prediction error (i.e., the animal perceives they received a better outcome than expected). These data demonstrate that transient dopamine release events represent the value of avoidance outcomes and can predictably modify the demand to avoid. PMID:29766047

  19. Low-Light-Level InGaAs focal plane arrays with and without illumination

    Science.gov (United States)

    Macdougal, Michael; Geske, Jon; Wang, Chad; Follman, David

    2010-04-01

    Short wavelength IR imaging using InGaAs-based FPAs is shown. Aerius demonstrates low dark current in InGaAs detector arrays with 15 μm pixel pitch. The same material is mated with a 640x 512 CTIA-based readout integrated circuit. The resulting FPA is capable of imaging photon fluxes with wavelengths between 1 and 1.6 microns at low light levels. The mean dark current density on the FPAs is extremely low at 0.64 nA/cm2 at 10°C. Noise due to the readout can be reduced from 95 to 57 electrons by using off-chip correlated double sampling (CDS). In addition, Aerius has developed laser arrays that provide flat illumination in scenes that are normally light-starved. The illuminators have 40% wall-plug efficiency and provide speckle-free illumination, provide artifact-free imagery versus conventional laser illuminators.

  20. Rolled-Up Nanotech: Illumination-Controlled Hydrofluoric Acid Etching of AlAs Sacrificial Layers

    Directory of Open Access Journals (Sweden)

    Costescu Ruxandra

    2009-01-01

    Full Text Available Abstract The effect of illumination on the hydrofluoric acid etching of AlAs sacrificial layers with systematically varied thicknesses in order to release and roll up InGaAs/GaAs bilayers was studied. For thicknesses of AlAs below 10 nm, there were two etching regimes for the area under illumination: one at low illumination intensities, in which the etching and releasing proceeds as expected and one at higher intensities in which the etching and any releasing are completely suppressed. The “etch suppression” area is well defined by the illumination spot, a feature that can be used to create heterogeneously etched regions with a high degree of control, shown here on patterned samples. Together with the studied self-limitation effect, the technique offers a way to determine the position of rolled-up micro- and nanotubes independently from the predefined lithographic pattern.

  1. Applications of 'edge-on' illuminated porous plate detectors for diagnostic X-ray imaging

    CERN Document Server

    Shikhaliev, P M

    2002-01-01

    Scanning X-ray imaging systems for non-invasive diagnostics have several advantages over conventional imaging systems using area detectors. They significantly reduce the detected scatter radiation, cover large areas and potentially provide high spatial resolution. Applications of one-dimensional gaseous detectors and 'edge-on' illuminated silicon strip detectors for scanning imaging systems are currently under intensive investigation. The purpose of this work is to investigate 'edge-on' illuminated Porous Plate (PP) detectors for applications in diagnostic X-ray imaging. MicroChannel Plate (MCP), which is a common type of PP, has previously been investigated as a detector in surface-on illumination mode for medical X-ray imaging. However, its detection efficiency was too low for medical imaging applications. In the present study, the PP are used in the 'edge-on' illumination mode. Furthermore, the structural parameters of different PP types are optimized to improve the detection efficiency in the diagnostic X...

  2. Inactivation and changes in metabolic profile of selected foodborne bacteria by 460 nm LED illumination.

    Science.gov (United States)

    Kumar, Amit; Ghate, Vinayak; Kim, Min-Jeong; Zhou, Weibiao; Khoo, Gek Hoon; Yuk, Hyun-Gyun

    2017-05-01

    The objective of this study was to investigate the effect of 460 nm light-emitting diode (LED) on the inactivation of foodborne bacteria. Additionally, the change in the endogenous metabolic profile of LED illuminated cells was analyzed to understand the bacterial response to the LED illumination. Six different species of bacteria (Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus, Escherichia coli O157:H7, Pseudomonas aeruginosa and Salmonella Typhimurium) were illuminated with 460 nm LED to a maximum dose of 4080 J/cm 2 at 4, 10 and 25 °C. Inactivation curves were modeled using Hom model. Metabolic profiling of the non-illuminated and illuminated cells was performed using a Liquid chromatography-mass spectrometry system. Results indicate that the 460 nm LED significantly (p illuminated cells indicated that several metabolites e.g. 11-deoxycortisol, actinonin, coformycin, tyramine, chitobiose etc. were regulated during LED illumination. These results elucidate the effectiveness of 460 nm LED against foodborne bacteria and hence, its suitability as a novel antimicrobial control method to ensure food safety. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Aircraft height estimation using 2-D radar

    CSIR Research Space (South Africa)

    Hakl, H

    2010-01-01

    Full Text Available A method to infer height information from an aircraft tracked with a single 2-D search radar is presented. The method assumes level flight in the target aircraft and a good estimate of the speed of the aircraft. The method yields good results...

  4. Combat aircraft noise

    Science.gov (United States)

    Sgarbozza, M.; Depitre, A.

    1992-04-01

    A discussion of the characteristics and the noise levels of combat aircraft and of a transport aircraft in taking off and landing are presented. Some methods of noise reduction are discussed, including the following: operational anti-noise procedures; and concepts of future engines (silent post-combustion and variable cycle). Some measurement results concerning the noise generated in flight at great speeds and low altitude will also be examined. Finally, the protection of the environment of French air bases against noise will be described and the possibilities of regulation examined.

  5. Estimating Outdoor Illumination Conditions Based on Detection of Dynamic Shadows

    DEFF Research Database (Denmark)

    Madsen, Claus B.; Lal, Brajesh Behari

    2013-01-01

    into the image stream to achieve realistic Augmented Reality where the shading and the shadowing of virtual objects is consistent with the real scene. Other techniques require the presence of a known object, a light probe, in the scene for estimating illumination. The technique proposed here works in general......The paper proposes a technique for estimation outdoor illumination conditions in terms of sun and sky radiances directly from pixel values of dynamic shadows detected in video sequences produved by a commercial stereo camera. The technique is applied to the rendering of virtual object...

  6. Amphibious Aircraft

    Data.gov (United States)

    National Aeronautics and Space Administration — A brief self composed research article on Amphibious Aircrafts discussing their use, origin and modern day applications along with their advantages and disadvantages...

  7. AIRCRAFT CONFLICTS RESOLUTION BY COURSE MANEUVERING

    Directory of Open Access Journals (Sweden)

    В. Харченко

    2011-02-01

    Full Text Available Enhancement of requirements for air traffic efficiency at increasing of flights intensity determines the necessity of development of new optimization methods for aircraft conflict resolutions. The statement of problem of optimal conflict resolutions at Cooperative Air Traffic Management was done. The method for optimal aircraft conflict  resolution by course maneuvering has been  developed. The method using dynamic programming provides planning of aircraft conflict-free trajectory with minimum length. The decomposition of conflict resolution process on phases and stages, definition of states, controls and recursive  equations for generation of optimal course control program were done. Computer modeling of aircraft conflict resolution by developed method was done

  8. A Crowd Avoidance Method Using Circular Avoidance Path for Robust Person Following

    Directory of Open Access Journals (Sweden)

    Kohei Morishita

    2017-01-01

    Full Text Available A life-support service robot must avoid both static and dynamic obstacles for working in a real environment. Here, a static obstacle means an obstacle that does not move, and a dynamic obstacle is the one that moves. Assuming the robot is following a target person, we discuss how the robot avoids a crowd through which the target person passes and arrives at the target position. The purpose of this paper is to propose a crowd avoidance method that makes a robot to be able to avoid both static and dynamic obstacles. The method uses the surface points of the obstacles to form an avoidance region, and the robot moves along the edge of the region. We conducted experiments assuming various situations such that the robot was blocked, there was a wide gap in the crowd, or a person in the crowd yielded for the robot to pass through. As an experimental result, it was confirmed the robot could avoid the crowd even when the obstacles were aligned in an “inverted wedge” shape.

  9. Fast Aircraft Turnaround Enabled by Reliable Passenger Boarding

    Directory of Open Access Journals (Sweden)

    Michael Schultz

    2018-01-01

    Full Text Available Future 4D aircraft trajectories demand comprehensive consideration of environmental, economic, and operational constraints, as well as reliable prediction of all aircraft-related processes. Mutual interdependencies between airports result in system-wide, far-reaching effects in the air traffic network (reactionary delays. To comply with airline/airport challenges over the day of operations, a change to an air-to-air perspective is necessary, with a specific focus on the aircraft ground operations as major driver for airline punctuality. Aircraft ground trajectories primarily consists of handling processes at the stand (deboarding, catering, fueling, cleaning, boarding, unloading, loading, which are defined as the aircraft turnaround. Turnaround processes are mainly controlled by ground handling, airport, or airline staff, except the aircraft boarding, which is driven by passengers’ experience and willingness/ability to follow the proposed boarding procedures. This paper provides an overview of the research done in the field of aircraft boarding and introduces a reliable, calibrated, and stochastic aircraft boarding model. The stochastic boarding model is implemented in a simulation environment to evaluate specific boarding scenarios using different boarding strategies and innovative technologies. Furthermore, the potential of a connected aircraft cabin as sensor network is emphasized, which could provide information on the current and future status of the boarding process.

  10. Joint illumination and visible-light communication systems : data rates and extra power consumption

    NARCIS (Netherlands)

    Tsiatmas, Anagnostis; Willems, Frans; Linnartz, Jean-Paul; Baggen, C.P.M.J.; Bergmans, Jan

    2015-01-01

    Visible Light Communications (VLC) have been promoted as an energy-efficient Gb/s-technology for indoor settings, since VLC can be merged with the illumination functionality. As a result, Joint Illumination and visible-light Communication (JIC) systems are perceived as a green technology and the

  11. Diffractive axicons in oblique illumination: analysis and experiments and comparison with elliptical axicons.

    Science.gov (United States)

    Thaning, Anna; Jaroszewicz, Zbigniew; Friberg, Ari T

    2003-01-01

    Axicons in oblique illumination produce broadened focal lines, a problem, e.g., in scanning applications. A compact mathematical description of the focal segment is presented, for the first time, to our knowledge, and the results are compared with elliptical axicons in normal illumination. In both cases, analytical expressions in the form of asteroid curves are obtained from asymptotic wave theory and caustic surfaces. The results are confirmed by direct diffraction simulations and by experiments. In addition we show that at a fixed angle an elliptical axicon can be used to compensate for the adverse effects of oblique illumination.

  12. Discriminative illumination: per-pixel classification of raw materials based on optimal projections of spectral BRDF.

    Science.gov (United States)

    Liu, Chao; Gu, Jinwei

    2014-01-01

    Classifying raw, unpainted materials--metal, plastic, ceramic, fabric, and so on--is an important yet challenging task for computer vision. Previous works measure subsets of surface spectral reflectance as features for classification. However, acquiring the full spectral reflectance is time consuming and error-prone. In this paper, we propose to use coded illumination to directly measure discriminative features for material classification. Optimal illumination patterns--which we call "discriminative illumination"--are learned from training samples, after projecting to which the spectral reflectance of different materials are maximally separated. This projection is automatically realized by the integration of incident light for surface reflection. While a single discriminative illumination is capable of linear, two-class classification, we show that multiple discriminative illuminations can be used for nonlinear and multiclass classification. We also show theoretically that the proposed method has higher signal-to-noise ratio than previous methods due to light multiplexing. Finally, we construct an LED-based multispectral dome and use the discriminative illumination method for classifying a variety of raw materials, including metal (aluminum, alloy, steel, stainless steel, brass, and copper), plastic, ceramic, fabric, and wood. Experimental results demonstrate its effectiveness.

  13. Metabolism of tRNAs in growing cells of Escherichia coli illuminated with near-ultraviolet light

    International Nuclear Information System (INIS)

    Hajnsdorf, E.; Favre, A.

    1986-01-01

    The tRNA metabolism which accompanies illumination of growing E. coli cells has been examined in conditions that led to growth delay. The in vivo formation of the 8-13 link was followed by a fluorimetric procedure and revealed pseudo-first order kinetics very close to those obtained in vitro under the same illumination conditions. Comparison of these kinetics with published radiochromatographic data suggests the transient formation during illumination of a new RNase-T 2 -resistant dinucleotide in tRNA distinct from the 8-13 link. Under illumination some tRNA molecules lack one or more bases in a specific position in the sequence. During the growth lag, uracil incorporation into nucleic acids occurs at between 4-8% of the rate normally observed during exponential growth. However, the pyrimidine ribonucleoside triphosphate pools are strongly perturbed after illumination. Comparison of exogenous [ 3 H]uracil incorporation into two strains proficient or deficient in uracil biosynthesis suggests a derepression of the endogenous path after light treatment. In addition, the UTP-to-CTP conversion is inhibited. In spite of preferential incorporation of exogenously labelled uracil in tRNA after illumination, a possible pyrimidine base turnover cannot be proved. (author)

  14. Improvement of illumination uniformity for LED flat panel light by using micro-secondary lens array.

    Science.gov (United States)

    Lee, Hsiao-Wen; Lin, Bor-Shyh

    2012-11-05

    LED flat panel light is an innovative lighting product in recent years. However, current flat panel light products still contain some drawbacks, such as narrow lighting areas and hot spots. In this study, a micro-secondary lens array technique was proposed and applied for the design of the light guide surface to improve the illumination uniformity. By using the micro-secondary lens array, the candela distribution of the LED flat panel light can be adjusted to similar to batwing distribution to improve the illumination uniformity. The experimental results show that the enhancement of the floor illumination uniformity is about 61%, and that of the wall illumination uniformity is about 20.5%.

  15. Full-Scale Structural and NDI Validation Tests of Bonded Composite Doublers for Commercial Aircraft Applications

    Energy Technology Data Exchange (ETDEWEB)

    Roach, D.; Walkington, P.

    1999-02-01

    Composite doublers, or repair patches, provide an innovative repair technique which can enhance the way aircraft are maintained. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is possible to bond a single Boron-Epoxy composite doubler to the damaged structure. Most of the concerns surrounding composite doubler technology pertain to long-term survivability, especially in the presence of non-optimum installations, and the validation of appropriate inspection procedures. This report focuses on a series of full-scale structural and nondestructive inspection (NDI) tests that were conducted to investigate the performance of Boron-Epoxy composite doublers. Full-scale tests were conducted on fuselage panels cut from retired aircraft. These full-scale tests studied stress reductions, crack mitigation, and load transfer capabilities of composite doublers using simulated flight conditions of cabin pressure and axial stress. Also, structures which modeled key aspects of aircraft structure repairs were subjected to extreme tension, shear and bending loads to examine the composite laminate's resistance to disbond and delamination flaws. Several of the structures were loaded to failure in order to determine doubler design margins. Nondestructive inspections were conducted throughout the test series in order to validate appropriate techniques on actual aircraft structure. The test results showed that a properly designed and installed composite doubler is able to enhance fatigue life, transfer load away from damaged structure, and avoid the introduction of new stress risers (i.e. eliminate global reduction in the fatigue life of the structure). Comparisons with test data obtained prior to the doubler installation revealed that stresses in the parent material can be reduced 30%--60% through the use of the composite doubler. Tests to failure demonstrated that the bondline is able to transfer plastic strains into the doubler and that

  16. Aircraft gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Sekido, T [Ishikawajima-Harima Heavy Industries, Co. Ltd., Tokyo (Japan)

    1994-03-01

    Current developmental activities of aircraft gas turbines in Japan are reviewed. V2500-A5 engine with thrust of 30,000 LBF is scheduled to be used for real aircraft in 1994, and intensive developmental activities are also proceeding in larger engines over 90,000 LBF. Recently, developmental programs of engines for 75-100 seat aircraft have been actively discussed, and Japanese engine makers are having discussions towards international collaboration. Such engines will be high bypass turbofans of 12,000-22,000 LBF. Development of SST/HST engines in a speed range from subsonic to Mach 5 is under the initiative of the Agency of Industrial Science and Technology. The Technical Research and Development Institute of Japan, Defence Agency achieved the target thrust of 3.4 tons in the small turbofan engine program, and the small turboshaft engine for small helicopters is also under development. Both National Aerospace Laboratory (NAL) and Institute of Space and Aeronautical Science (ISAS) are now conducting the research programs on turbo-ramjet engines under a component test phase. 1 fig.

  17. Evaluation of diffuse-illumination holographic cinematography in a flutter cascade

    Science.gov (United States)

    Decker, A. J.

    1986-01-01

    Since 1979, the Lewis Research Center has examined holographic cinematography for three-dimensional flow visualization. The Nd:YAG lasers used were Q-switched, double-pulsed, and frequency-doubled, operating at 20 pulses per second. The primary subjects for flow visualization were the shock waves produced in two flutter cascades. Flow visualization was by diffuse-illumination, double-exposure, and holographic interferometry. The performances of the lasers, holography, and diffuse-illumination interferometry are evaluated in single-window wind tunnels. The fringe-contrast factor is used to evaluate the results. The effects of turbulence on shock-wave visualization in a transonic flow are discussed. The depth of field for visualization of a turbulent structure is demonstrated to be a measure of the relative density and scale of that structure. Other items discussed are the holographic emulsion, tests of coherence and polarization, effects of windows and diffusers, hologram bleaching, laser configurations, influence and handling of specular reflections, modes of fringe localization, noise sources, and coherence requirements as a function of the pulse energy. Holography and diffuse illumination interferometry are also reviewed.

  18. 14 CFR 47.19 - FAA Aircraft Registry.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false FAA Aircraft Registry. 47.19 Section 47.19... REGISTRATION General § 47.19 FAA Aircraft Registry. Each application, request, notification, or other communication sent to the FAA under this Part must be mailed to the FAA Aircraft Registry, Department of...

  19. Evaluating Red Reflex and Surgeon Preference Between Nearly-Collimated and Focused Beam Microscope Illumination Systems.

    Science.gov (United States)

    Cionni, Robert J; Pei, Ron; Dimalanta, Ramon; Lubeck, David

    2015-08-01

    To evaluate the intensity and stability of the red reflex produced by ophthalmic surgical microscopes with nearly-collimated versus focused illumination systems and to assess surgeon preference in a simulated surgical setting. This two-part evaluation consisted of postproduction surgical video analysis of red reflex intensity and a microscope use and preference survey completed by 13 experienced cataract surgeons. Survey responses were based on bench testing and experience in a simulated surgical setting. A microscope with nearly-collimated beam illumination and two focused beam microscopes were assessed. Red reflex intensity and stability were greater with the nearly-collimated microscope illumination system. In the bench testing survey, surgeons reported that the red reflex was maintained over significantly greater distances away from pupillary center, and depth of focus was numerically greater with nearly-collimated illumination relative to focused illumination. Most participating surgeons (≥64%) reported a preference for the microscope with nearly-collimated illumination with regard to red reflex stability, depth of focus, visualization, surgical working distance, and perceived patient comfort. The microscope with nearly-collimated illumination produced a more intense and significantly more stable red reflex and was preferred overall by more surgeons. This is the first report of an attempt to quantify red reflex intensity and stability and to evaluate surgically-relevant parameters between microscope systems. The data and methods presented here may provide a basis for future studies attempting to quantify differences between surgical microscopes that may affect surgeon preference and microscope use in ophthalmic surgery.

  20. 14 CFR 43.7 - Persons authorized to approve aircraft, airframes, aircraft engines, propellers, appliances, or...

    Science.gov (United States)

    2010-01-01

    ... data approved by the Administrator. (e) The holder of an air carrier operating certificate or an... holder of a repairman certificate (light-sport aircraft) with a maintenance rating may approve an aircraft issued a special airworthiness certificate in light-sport category for return to service, as...

  1. Tomographic Particle Image Velocimetry using Pulsed, High Power LED Volume Illumination

    OpenAIRE

    Buchmann, N. A.; Willert, C.; Soria, J.

    2011-01-01

    This paper investigates the use of high-power light emitting diode (LED) illumination in Particle Image Velocimetry (PIV) as an alternative to traditional laser-based illumination. The solid-state LED devices can provide averaged radiant power in excess of 10W and by operating the LEDs with short current pulses, considerably higher than in continuous operation, light pulses of sufficient energy suitable for imaging micron-sized particles can be generated. The feasibility of this LED-based ill...

  2. An overview of LED applications for general illumination

    Science.gov (United States)

    Pelka, David G.; Patel, Kavita

    2003-11-01

    This paper begins by reviewing the current state of development of LEDs, their existing markets as well as their potential for energy conservation and their potential for gaining market share in the general illumination market. It discusses LED metrics such as chip size, lumens per watt, thermal resistance, and the recommended maximum current rating. The paper then goes on to consider the importance of non-imaging optics for both optically efficient and extremely compact LED lighting systems. Finally, microstructures useful for controlling the fields-of-view of LED lighting systems are considered and described in some detail. An extremely efficient and cost effective microstructure, called kinoform diffusers, is shown to have very unique properties that make this technology almost ideal for shaping the output beams of LED lighting systems. It concludes by illustrating some general illumination LED lighting systems

  3. Semiconductor surface diffusion: Nonthermal effects of photon illumination

    International Nuclear Information System (INIS)

    Ditchfield, R.; Llera-Rodriguez, D.; Seebauer, E. G.

    2000-01-01

    Nonthermal influences of photon illumination on surface diffusion at high temperatures have been measured experimentally. Activation energies and pre-exponential factors for diffusion of germanium, indium, and antimony on silicon change by up to 0.3 eV and two orders of magnitude, respectively, in response to illumination by photons having energies greater than the substrate band gap. The parameters decrease for n-type material and increase for p-type material. Aided by results from photoreflectance spectroscopy, we suggest that motion of the surface quasi-Fermi-level for minority carriers accounts for much of the effect by changing the charge states of surface vacancies. An additional adatom-vacancy complexation mechanism appears to operate on p-type substrates. The results have significant implications for aspects of microelectronics fabrication by rapid thermal processing that are governed by surface mobility. (c) 2000 The American Physical Society

  4. Hotsphere illumination

    Science.gov (United States)

    Razavi, Bahar S.; Hoang, Duyen; Liu, Shibin; Kuzyakov, Yakov

    2017-04-01

    Soils are the most heterogeneous parts of the biosphere, with an extremely high differentiation of properties and processes at all spatial and temporal scales. Importance of hotspheres- environment with abundant high microbial activity- i.e.: rhizosphere, detritusphere, biopores, spermosphere and hyphasphere calls for spatially explicit methods to illuminate distribution of microbial activities (Kuzyakov and Blagodatskaya, 2015). Zymography technique has previously been adapted to visualize the spatial dynamics of enzyme activities in rhizosphere. Here, we further developed soil zymography to obtain a higher resolution of enzyme activities by enabling direct contact of substrate-saturated membranes with soil. For the first time, we aimed at quantitative imaging of enzyme activities in various hotspheres. We calculated and compared percentage of enzymatic hotspots of four hotspheres: Spermosphere, rhizosphere, detritusphere and biopores. Spatial distribution of activities of two enzymes: β-glucosidase and phosphatase were analyzed in the spermosphere and rhizosphere of maize and lentil. Zymography has been done 3 days (spermosphere), 14 days (rhizosphere) after sowing. Further, manure was placed on surface of rhizoboxes to visualize spatio-temporal distribution of the enzyme activities in detritusphere after 25 days. Biopores were produced by earthworms (Lumbricus terrestris L.) in transparent boxes for 2 weeks and enzyme distribution were measured by zymography thereafter. The developed in situ direct soil zymography visualized the heterogeneity of enzyme activities along and across the roots. Spatial patterns of enzyme activities as a function of distance along the root demonstrated plant specific patterns of enzyme distribution: it was uniform and homogenous along the lentil roots, whereas the enzyme activities in maize rhizosphere were higher at the apical or proximal root parts. For the first time were applied "spatial point pattern analysis" to determine

  5. Novel technique for solar power illumination using plastic optical fibres

    Science.gov (United States)

    Munisami, J.; Kalymnios, D.

    2008-09-01

    Plastic Optical Fibres (POF) were developed almost 3 decades ago. They are mainly used for short haul data communications (up to 1 km with data rates up to 1 Gbps). Over the years, POF has found applications in many other areas including solar energy transport for illumination. In such an application, light is collected from the sun and is directed into a space which needs to be illuminated. The use of fibres and more specifically POF, in daylighting systems, started only a few years ago. Several approaches have been investigated and we have seen the development of a few commercial products. The market however, has not really taken off for these technologies simply because of their enormous price tags. It is important to note that the use of POF in these designs has been limited to the function of POF as the transmission medium only. We propose a novel solar illumination technique using POF as both the light collecting/concentrating mechanism and the transmission medium. By modifying the structure of the fibre, solar light can be directed into the fibre by using an analogous process to fibre side emission but, in the reverse. We shall report on the solar light capturing efficiency of POF as modified by several types of external imperfections introduced onto the fibre. One major advantage of our proposed approach lies in the fact that we aim to eliminate at least one of the two axes of sun tracking that is currently used in existing solar illumination systems.

  6. Future aircraft networks and schedules

    Science.gov (United States)

    Shu, Yan

    2011-07-01

    Because of the importance of air transportation scheduling, the emergence of small aircraft and the vision of future fuel-efficient aircraft, this thesis has focused on the study of aircraft scheduling and network design involving multiple types of aircraft and flight services. It develops models and solution algorithms for the schedule design problem and analyzes the computational results. First, based on the current development of small aircraft and on-demand flight services, this thesis expands a business model for integrating on-demand flight services with the traditional scheduled flight services. This thesis proposes a three-step approach to the design of aircraft schedules and networks from scratch under the model. In the first step, both a frequency assignment model for scheduled flights that incorporates a passenger path choice model and a frequency assignment model for on-demand flights that incorporates a passenger mode choice model are created. In the second step, a rough fleet assignment model that determines a set of flight legs, each of which is assigned an aircraft type and a rough departure time is constructed. In the third step, a timetable model that determines an exact departure time for each flight leg is developed. Based on the models proposed in the three steps, this thesis creates schedule design instances that involve almost all the major airports and markets in the United States. The instances of the frequency assignment model created in this thesis are large-scale non-convex mixed-integer programming problems, and this dissertation develops an overall network structure and proposes iterative algorithms for solving these instances. The instances of both the rough fleet assignment model and the timetable model created in this thesis are large-scale mixed-integer programming problems, and this dissertation develops subproblem schemes for solving these instances. Based on these solution algorithms, this dissertation also presents

  7. Contact-free trans-pars-planar illumination enables snapshot fundus camera for nonmydriatic wide field photography.

    Science.gov (United States)

    Wang, Benquan; Toslak, Devrim; Alam, Minhaj Nur; Chan, R V Paul; Yao, Xincheng

    2018-06-08

    In conventional fundus photography, trans-pupillary illumination delivers illuminating light to the interior of the eye through the peripheral area of the pupil, and only the central part of the pupil can be used for collecting imaging light. Therefore, the field of view of conventional fundus cameras is limited, and pupil dilation is required for evaluating the retinal periphery which is frequently affected by diabetic retinopathy (DR), retinopathy of prematurity (ROP), and other chorioretinal conditions. We report here a nonmydriatic wide field fundus camera employing trans-pars-planar illumination which delivers illuminating light through the pars plana, an area outside of the pupil. Trans-pars-planar illumination frees the entire pupil for imaging purpose only, and thus wide field fundus photography can be readily achieved with less pupil dilation. For proof-of-concept testing, using all off-the-shelf components a prototype instrument that can achieve 90° fundus view coverage in single-shot fundus images, without the need of pharmacologic pupil dilation was demonstrated.

  8. Review of Aircraft Electric Power Systems and Architectures

    DEFF Research Database (Denmark)

    Zhao, Xin; Guerrero, Josep M.; Wu, Xiaohao

    2014-01-01

    In recent years, the electrical power capacity is increasing rapidly in more electric aircraft (MEA), since the conventional mechanical, hydraulic and pneumatic energy systems are partly replaced by electrical power system. As a consequence, capacity and complexity of aircraft electric power...... systems (EPS) will increase dramatically and more advanced aircraft EPSs need to be developed. This paper gives a brief description of the constant frequency (CF) EPS, variable frequency (VF) EPS and advanced high voltage (HV) EPS. Power electronics in the three EPS is overviewed. Keywords: Aircraft Power...... System, More Electric Aircraft, Constant Frequency, Variable Frequency, High Voltage....

  9. 77 FR 45979 - Airworthiness Directives; Piper Aircraft, Inc. Airplanes

    Science.gov (United States)

    2012-08-02

    ... Airworthiness Directives; Piper Aircraft, Inc. Airplanes AGENCY: Federal Aviation Administration (FAA), DOT... (AD) for certain Piper Aircraft, Inc. (type certificate previously held by The New Piper Aircraft Inc... information identified in this proposed AD, contact Piper Aircraft, Inc., 2926 Piper Drive, Vero Beach...

  10. Cosmic Radiation - An Aircraft Manufacturer's View

    International Nuclear Information System (INIS)

    Hume, C.

    1999-01-01

    The relevance and context of cosmic radiation to an aircraft maker Airbus Industrie are outlined. Some future developments in aircraft and air traffic are described, along with their possible consequences for exposure. (author)

  11. [Effects of illumination and seed-soaking reagent on seed germination of Solanum nigrum].

    Science.gov (United States)

    Yang, Chuan-Jie; Wei, Shu-He; Zhou, Qi-Xing; Hu, Ya-Hu; Niu, Rong-Cheng

    2009-05-01

    To explore a rapid seed germination method for hyperaccumulator Solanum nigrum, a germination experiment with different illumination and seed-soaking treatments was conducted in constant temperature box and greenhouse, with filter as burgeon base. Under illumination, the germination rate was about 5 times high of that without illumination (P seed germination of S. nigrum. All test seed-soaking reagents could significantly improve the germination rate of S. nigrum (P seeds treated with H2O2 had the shortest germination time. The germination rate of seeds soaked but without cleaning was 2-3 times as high as that of seeds soaked and cleaned with water.

  12. Illuminance Level in the Urban Fabric and in the Room

    DEFF Research Database (Denmark)

    Iversen, Anne; Nielsen, Toke Rammer; Svendsen, Svend

    2011-01-01

    The decisions made on the urban planning level could influence the building design at later stages. Many studies have shown that the utilisation of daylight in buildings would result in significant savings in electricity consumption for lighting, while creating a higher quality indoor environment...... of the exterior illuminance levels on fac¸ades with the interior illuminance levels on the working plane. The paper also explains an easy to use tool (EvUrbanplan) developed by the authors, which was applied to their findings in the early stages of urban planning to ensure daylight optimisation in the buildings....

  13. 2002 Industry Studies: Aircraft

    Science.gov (United States)

    2002-01-01

    aircraft to a defense electronics, systems integration and information technology company.39 Northrop Grumman no longer seeks a position as a prime...between the military and civil market . Though also upgrading the H-1 helicopter series for the USMC, Bell has mortgaged its future on tiltrotor technology ...business in export dollars, the industry has been forced to look for new markets as worldwide aircraft sales have dropped. Because the U.S. national

  14. Multifuel rotary aircraft engine

    Science.gov (United States)

    Jones, C.; Berkowitz, M.

    1980-01-01

    The broad objectives of this paper are the following: (1) to summarize the Curtiss-Wright design, development and field testing background in the area of rotary aircraft engines; (2) to briefly summarize past activity and update development work in the area of stratified charge rotary combustion engines; and (3) to discuss the development of a high-performance direct injected unthrottled stratified charge rotary combustion aircraft engine. Efficiency improvements through turbocharging are also discussed.

  15. Final Rule for Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures

    Science.gov (United States)

    EPA adopted emission standards and related provisions for aircraft gas turbine engines with rated thrusts greater than 26.7 kilonewtons. These engines are used primarily on commercial passenger and freight aircraft.

  16. Development and experimental characterization of a fuel cell powered aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Thomas H.; Moffitt, Blake A.; Mavris, Dimitri N.; Parekh, David E. [Georgia Institute of Technology, Atlanta, GA 30332-0405 (United States)

    2007-09-27

    This paper describes the characteristics and performance of a fuel cell powered unmanned aircraft. The aircraft is novel as it is the largest compressed hydrogen fuel cell powered airplane built to date and is currently the only fuel cell aircraft whose design and test results are in the public domain. The aircraft features a 500 W polymer electrolyte membrane fuel cell with full balance of plant and compressed hydrogen storage incorporated into a custom airframe. Details regarding the design requirements, implementation and control of the aircraft are presented for each major aircraft system. The performances of the aircraft and powerplant are analyzed using data from flights and laboratory tests. The efficiency and component power consumption of the fuel cell propulsion system are measured at a variety of flight conditions. The performance of the aircraft powerplant is compared to other 0.5-1 kW-scale fuel cell powerplants in the literature and means of performance improvement for this aircraft are proposed. This work represents one of the first studies of fuel cell powered aircraft to result in a demonstration aircraft. As such, the results of this study are of practical interest to fuel cell powerplant and aircraft designers. (author)

  17. 77 FR 31169 - Airworthiness Directives; Piper Aircraft, Inc. Airplanes

    Science.gov (United States)

    2012-05-25

    ... Airworthiness Directives; Piper Aircraft, Inc. Airplanes AGENCY: Federal Aviation Administration (FAA), DOT... Piper Aircraft, Inc. (type certificate previously held by The New Piper Aircraft Inc.) Models PA-31T and..., contact Piper Aircraft, Inc., 926 Piper Drive, Vero Beach, Florida 32960; telephone: (772) 567-4361...

  18. Near infrared photoluminescence properties of porous silicon prepared under the influence of light illumination

    International Nuclear Information System (INIS)

    Hamadeh, H; Naddaf, M; Jazmati, A

    2008-01-01

    Porous silicon (PS) has been prepared by anodic etching of boron doped silicon under the influence of monochromatic light illumination. The optical properties of the PS samples have been investigated using temperature dependent photoluminescence (PL) spectroscopy. An overall enhancement of the infrared luminescence yield is caused by the light illumination. In the visible spectral range, changes at the low energy side of the broad PL band were observed. In the near infrared spectral range, a new PL band at 850 nm, which is strongly correlated with light illumination, was detected. The new PL band disappears once blue light is used, whereas an increase in its intensity is observed, when the etching is performed under the illumination of light with wavelengths close to the band gap. By increasing the temperature, the 850 nm transition band grows at the expense of the main near infrared transition at 1100 nm. The recombination characteristics of this PL band are indicative of its extrinsic nature. The macroscopic morphology shows strong dependence on the wavelength of the illumination light. Photoassisted preparation could provide a tool for the control of the optical and structural properties of PS.

  19. Near infrared photoluminescence properties of porous silicon prepared under the influence of light illumination

    Energy Technology Data Exchange (ETDEWEB)

    Hamadeh, H; Naddaf, M; Jazmati, A [Department of Physics, Atomic Energy Commission of Syria, PO Box 6091, Damascus (Syrian Arab Republic)], E-mail: Scientific8@aec.org.sy

    2008-12-21

    Porous silicon (PS) has been prepared by anodic etching of boron doped silicon under the influence of monochromatic light illumination. The optical properties of the PS samples have been investigated using temperature dependent photoluminescence (PL) spectroscopy. An overall enhancement of the infrared luminescence yield is caused by the light illumination. In the visible spectral range, changes at the low energy side of the broad PL band were observed. In the near infrared spectral range, a new PL band at 850 nm, which is strongly correlated with light illumination, was detected. The new PL band disappears once blue light is used, whereas an increase in its intensity is observed, when the etching is performed under the illumination of light with wavelengths close to the band gap. By increasing the temperature, the 850 nm transition band grows at the expense of the main near infrared transition at 1100 nm. The recombination characteristics of this PL band are indicative of its extrinsic nature. The macroscopic morphology shows strong dependence on the wavelength of the illumination light. Photoassisted preparation could provide a tool for the control of the optical and structural properties of PS.

  20. Near infrared photoluminescence properties of porous silicon prepared under the influence of light illumination

    International Nuclear Information System (INIS)

    Hamadeh, H.; Naddaf, M.; Jazmati, A.

    2009-01-01

    Porous silicon (PS) has been prepared by anodic etching of boron doped silicon under the influence of monochromatic light illumination. The optical properties of the PS samples have been investigated using temperature dependent photoluminescence (PL) spectroscopy. An overall enhancement of the infrared luminescence yield is caused by the light illumination. In the visible spectral range, changes at the low energy side of the broad PL band were observed. In the near infrared spectral range, a new PL band at 850 nm, which is strongly correlated with light illumination, was detected. The new PL band disappears once blue light is used, whereas an increase of its intensity is observed, when the etching is performed under the illumination of light with wavelengths close to the band gap. By increasing the temperature, the 850 nm transition band grows at the expense of the main near infrared transition at 1100 nm. The recombination characteristics of this PL band are indicative of its extrinsic nature. The macroscopic morphology shows strong dependence on the wavelength of the illumination light. Photoassisted preparation could provide a tool for the control of the optical and structural properties of PS. (author)

  1. Near infrared photoluminescence properties of porous silicon prepared under the influence of light illumination

    Science.gov (United States)

    Hamadeh, H.; Naddaf, M.; Jazmati, A.

    2008-12-01

    Porous silicon (PS) has been prepared by anodic etching of boron doped silicon under the influence of monochromatic light illumination. The optical properties of the PS samples have been investigated using temperature dependent photoluminescence (PL) spectroscopy. An overall enhancement of the infrared luminescence yield is caused by the light illumination. In the visible spectral range, changes at the low energy side of the broad PL band were observed. In the near infrared spectral range, a new PL band at 850 nm, which is strongly correlated with light illumination, was detected. The new PL band disappears once blue light is used, whereas an increase in its intensity is observed, when the etching is performed under the illumination of light with wavelengths close to the band gap. By increasing the temperature, the 850 nm transition band grows at the expense of the main near infrared transition at 1100 nm. The recombination characteristics of this PL band are indicative of its extrinsic nature. The macroscopic morphology shows strong dependence on the wavelength of the illumination light. Photoassisted preparation could provide a tool for the control of the optical and structural properties of PS.

  2. Challenges of future aircraft propulsion: A review of distributed propulsion technology and its potential application for the all electric commercial aircraft

    Science.gov (United States)

    Gohardani, Amir S.; Doulgeris, Georgios; Singh, Riti

    2011-07-01

    This paper highlights the role of distributed propulsion technology for future commercial aircraft. After an initial historical perspective on the conceptual aspects of distributed propulsion technology and a glimpse at numerous aircraft that have taken distributed propulsion technology to flight, the focal point of the review is shifted towards a potential role this technology may entail for future commercial aircraft. Technological limitations and challenges of this specific technology are also considered in combination with an all electric aircraft concept, as means of predicting the challenges associated with the design process of a next generation commercial aircraft.

  3. Ultra Deep Wave Equation Imaging and Illumination

    Energy Technology Data Exchange (ETDEWEB)

    Alexander M. Popovici; Sergey Fomel; Paul Sava; Sean Crawley; Yining Li; Cristian Lupascu

    2006-09-30

    In this project we developed and tested a novel technology, designed to enhance seismic resolution and imaging of ultra-deep complex geologic structures by using state-of-the-art wave-equation depth migration and wave-equation velocity model building technology for deeper data penetration and recovery, steeper dip and ultra-deep structure imaging, accurate velocity estimation for imaging and pore pressure prediction and accurate illumination and amplitude processing for extending the AVO prediction window. Ultra-deep wave-equation imaging provides greater resolution and accuracy under complex geologic structures where energy multipathing occurs, than what can be accomplished today with standard imaging technology. The objective of the research effort was to examine the feasibility of imaging ultra-deep structures onshore and offshore, by using (1) wave-equation migration, (2) angle-gathers velocity model building, and (3) wave-equation illumination and amplitude compensation. The effort consisted of answering critical technical questions that determine the feasibility of the proposed methodology, testing the theory on synthetic data, and finally applying the technology for imaging ultra-deep real data. Some of the questions answered by this research addressed: (1) the handling of true amplitudes in the downward continuation and imaging algorithm and the preservation of the amplitude with offset or amplitude with angle information required for AVO studies, (2) the effect of several imaging conditions on amplitudes, (3) non-elastic attenuation and approaches for recovering the amplitude and frequency, (4) the effect of aperture and illumination on imaging steep dips and on discriminating the velocities in the ultra-deep structures. All these effects were incorporated in the final imaging step of a real data set acquired specifically to address ultra-deep imaging issues, with large offsets (12,500 m) and long recording time (20 s).

  4. 36 CFR 331.14 - Aircraft.

    Science.gov (United States)

    2010-07-01

    ... GOVERNING THE PROTECTION, USE AND MANAGEMENT OF THE FALLS OF THE OHIO NATIONAL WILDLIFE CONSERVATION AREA, KENTUCKY AND INDIANA § 331.14 Aircraft. (a) The operation of aircraft on WCA lands and waters is prohibited... business of the Federal Government or used in emergency rescue in accordance with the directions of the...

  5. ERGONOMIC DESIGN OF AIRCRAFT COCKPIT

    Directory of Open Access Journals (Sweden)

    CÎMPIAN Ionuţ

    2012-09-01

    Full Text Available This paper presents a model for an ergonomic design of an aircraft cockpit with the specification and verification with respect to the new European Aviation Safety Agency (EASA and Federal Aviation Administration (FAA requirements. The goal is to expressing the concepts on which the aircraft cockpit design are based.

  6. ERGONOMIC DESIGN OF AIRCRAFT COCKPIT

    Directory of Open Access Journals (Sweden)

    CÎMPIAN Ionuţ

    2011-06-01

    Full Text Available This paper presents a model for an ergonomic design of an aircraft cockpit with the specification and verification with respect to the new European Aviation Safety Agency (EASA and Federal Aviation Administration (FAA requirements. The goal is to expressing the concepts on which the aircraft cockpit design is based.

  7. Air-sampling inlet contamination by aircraft emissions on the NASA CV-990 aircraft

    Science.gov (United States)

    Condon, E. P.; Vedder, J. F.

    1984-01-01

    Results of an experimental investigation of the contamination of air sampling inlets by aircraft emissions from the NASA CV-990 research aircraft are presented. This four-engine jet aircraft is a NASA facility used for many different atmospheric and meteorological experiments, as well as for developing spacecraft instrumentation for remote measurements. Our investigations were performed to provide information on which to base the selection of sampling locations for a series of multi-instrument missions for measuring tropospheric trace gases. The major source of contamination is the exhaust from the jet engines, which generate many of the same gases that are of interest in atmospheric chemistry, as well as other gases that may interfere with sampling measurements. The engine exhaust contains these gases in mixing ratios many orders of magnitude greater than those that occur in the clean atmosphere which the missions seek to quantify. Pressurized samples of air were collected simultaneously from a scoop located forward of the engines to represent clean air and from other multiport scoops at various aft positions on the aircraft. The air samples were analyzed in the laboratory by gas chromatography for carbon monoxide, an abundant combustion by-product. Data are presented for various scoop locations under various flight conditions.

  8. Modeling Programs Increase Aircraft Design Safety

    Science.gov (United States)

    2012-01-01

    Flutter may sound like a benign word when associated with a flag in a breeze, a butterfly, or seaweed in an ocean current. When used in the context of aerodynamics, however, it describes a highly dangerous, potentially deadly condition. Consider the case of the Lockheed L-188 Electra Turboprop, an airliner that first took to the skies in 1957. Two years later, an Electra plummeted to the ground en route from Houston to Dallas. Within another year, a second Electra crashed. In both cases, all crew and passengers died. Lockheed engineers were at a loss as to why the planes wings were tearing off in midair. For an answer, the company turned to NASA s Transonic Dynamics Tunnel (TDT) at Langley Research Center. At the time, the newly renovated wind tunnel offered engineers the capability of testing aeroelastic qualities in aircraft flying at transonic speeds near or just below the speed of sound. (Aeroelasticity is the interaction between aerodynamic forces and the structural dynamics of an aircraft or other structure.) Through round-the-clock testing in the TDT, NASA and industry researchers discovered the cause: flutter. Flutter occurs when aerodynamic forces acting on a wing cause it to vibrate. As the aircraft moves faster, certain conditions can cause that vibration to multiply and feed off itself, building to greater amplitudes until the flutter causes severe damage or even the destruction of the aircraft. Flutter can impact other structures as well. Famous film footage of the Tacoma Narrows Bridge in Washington in 1940 shows the main span of the bridge collapsing after strong winds generated powerful flutter forces. In the Electra s case, faulty engine mounts allowed a type of flutter known as whirl flutter, generated by the spinning propellers, to transfer to the wings, causing them to vibrate violently enough to tear off. Thanks to the NASA testing, Lockheed was able to correct the Electra s design flaws that led to the flutter conditions and return the

  9. Energy Savings Forecast of Solid-State Lighting in General Illumination Applications

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-08-29

    With declining production costs and increasing technical capabilities, LED adoption has recently gained momentum in general illumination applications. This is a positive development for our energy infrastructure, as LEDs use significantly less electricity per lumen produced than many traditional lighting technologies. The U.S. Department of Energy’s Energy Savings Forecast of Solid-State Lighting in General Illumination Applications examines the expected market penetration and resulting energy savings of light-emitting diode, or LED, lamps and luminaires from today through 2030.

  10. Disrupted avoidance learning in functional neurological disorder: Implications for harm avoidance theories

    Directory of Open Access Journals (Sweden)

    Laurel S. Morris

    Full Text Available Background: Functional neurological disorder (FND is an elusive disorder characterized by unexplained neurological symptoms alongside aberrant cognitive processing and negative affect, often associated with amygdala reactivity. Methods: We examined the effect of negative conditioning on cognitive function and amygdala reactivity in 25 FND patients and 20 healthy volunteers (HV. Participants were first conditioned to stimuli paired with negative affective or neutral (CS+/CS− information. During functional MRI, subjects then performed an instrumental associative learning task to avoid monetary losses in the context of the previously conditioned stimuli. We expected that FND patients would be better at learning to avoid losses when faced with negatively conditioned stimuli (increased harm avoidance. Multi-echo resting state fMRI was also collected from the same subjects and a robust denoising method was employed, important for removing motion and physiological artifacts. Results: FND subjects were more sensitive to the negative CS+ compared to HV, demonstrated by a reinforcement learning model. Contrary to expectation, FND patients were generally more impaired at learning to avoid losses under both contexts (CS+/CS−, persisting to choose the option that resulted in a negative outcome demonstrated by both behavioural and computational analyses. FND patients showed enhanced amygdala but reduced dorsolateral prefrontal cortex responses when they received negative feedback. Patients also had increased resting state functional connectivity between these two regions. Conclusions: FND patients had impaired instrumental avoidance learning, findings that parallel previous observations of impaired action-outcome binding. FND patients further show enhanced behavioural and neural sensitivity to negative information. However, this did not translate to improved avoidance learning. Put together, our findings do not support the theory of harm avoidance in FND

  11. Color appearance of familiar objects: effects of object shape, texture, and illumination changes.

    Science.gov (United States)

    Olkkonen, Maria; Hansen, Thorsten; Gegenfurtner, Karl R

    2008-05-26

    People perceive roughly constant surface colors despite large changes in illumination. The familiarity of colors of some natural objects might help achieve this feat through direct modulation of the objects' color appearance. Research on memory colors and color appearance has yielded controversial results and due to the employed methods has often confounded perceptual with semantic effects. We studied the effect of memory colors on color appearance by presenting photographs of fruit on a monitor under various simulated illuminations and by asking observers to make either achromatic or typical color settings without placing demands on short-term memory or semantic processing. In a control condition, we presented photographs of 3D fruit shapes without texture and 2D outline shapes. We found that (1) achromatic settings for fruit were systematically biased away from the gray point toward the opposite direction of a fruit's memory color; (2) the strength of the effect depended on the degree of naturalness of the stimuli; and (3) the effect was evident under all tested illuminations, being strongest for illuminations whose chromaticity was closest to the stimulus chromaticity. We conclude that the visual identity of an object has a measurable effect on color perception, and that this effect is robust under illuminant changes, indicating its potential significance as an additional mechanism for color constancy.

  12. Technology for reducing aircraft engine pollution

    Science.gov (United States)

    Rudey, R. A.; Kempke, E. E., Jr.

    1975-01-01

    Programs have been initiated by NASA to develop and demonstrate advanced technology for reducing aircraft gas turbine and piston engine pollutant emissions. These programs encompass engines currently in use for a wide variety of aircraft from widebody-jets to general aviation. Emission goals for these programs are consistent with the established EPA standards. Full-scale engine demonstrations of the most promising pollutant reduction techniques are planned within the next three years. Preliminary tests of advanced technology gas turbine engine combustors indicate that significant reductions in all major pollutant emissions should be attainable in present generation aircraft engines without adverse effects on fuel consumption. Fundamental-type programs are yielding results which indicate that future generation gas turbine aircraft engines may be able to utilize extremely low pollutant emission combustion systems.

  13. Maintenance program developmentandImport /Export of Aircraft in USA

    OpenAIRE

    Takele, Teklu

    2009-01-01

    AbstractThis thesis discuss how United Parcel Service (UPS) develop its aircraft maintenanceprogram after import of McDonnell Douglas MD-11aircraft and the process of exporting newMD-11 aircraft from manufacturer in USA to European operator as passenger aircraft. It alsodiscusses the process of importing the same types of aircraft as freight carrier. The aircraftundergo, through different modifications at Singapore Technologies Aerospace (STA)conversion from passenger to freight carrier, a pr...

  14. Head-Up Auditory Displays for Traffic Collision Avoidance System Advisories: A Preliminary Investigation

    Science.gov (United States)

    Begault, Durand R.

    1993-01-01

    The advantage of a head-up auditory display was evaluated in a preliminary experiment designed to measure and compare the acquisition time for capturing visual targets under two auditory conditions: standard one-earpiece presentation and two-earpiece three-dimensional (3D) audio presentation. Twelve commercial airline crews were tested under full mission simulation conditions at the NASA-Ames Man-Vehicle Systems Research Facility advanced concepts flight simulator. Scenario software generated visual targets corresponding to aircraft that would activate a traffic collision avoidance system (TCAS) aural advisory; the spatial auditory position was linked to the visual position with 3D audio presentation. Results showed that crew members using a 3D auditory display acquired targets approximately 2.2 s faster than did crew members who used one-earpiece head- sets, but there was no significant difference in the number of targets acquired.

  15. Improvements to optical performance in diffractive elements used for off-axis illumination

    Science.gov (United States)

    Welch, Kevin; Fedor, Adam; Felder, Daniel; Childers, John; Emig, Tim

    2009-08-01

    As photolithographic tools are pressed to print the ever shrinking features required in today's devices, complex off-axis illumination is taking an ever increasing role in meeting this challenge. This, in turn, is driving tighter, more stringent requirements on the diffractive elements used in these illumination systems. Specifically, any imbalance in the poles of an off-axis illuminator will contribute to reductions in the ultimate imaging performance of a lithographic tool and increased complexity in tool-to-tool matching. The article will focus on improvements to the manufacturing process that achieve substantially better pole balance. The modeling of the possible process contributors will be discussed. Challenges resulting from the manufacturing methodology will be shared. Finally, the improvement in manufacturing process performance will be reported by means of a pole balance capability index.

  16. Scleral buckling procedure with chandelier illumination for pediatric rhegmatogenous retinal detachment.

    Science.gov (United States)

    Yokoyama, Toshiyuki; Kanbayashi, Koki; Yamaguchi, Tamaki

    2015-01-01

    To assess the treatment of pediatric patients with rhegmatogenous retinal detachment (RRD) by scleral buckling with chandelier illumination. Three eyes were treated in three patients, healthy boys aged 7 years, 12 years, and 11 years, with RRD, macular involvement, and small retinal holes, of which two were preoperatively undetectable. Conventional scleral buckling with cryoretinopexy was performed under the contact lens for vitreous surgery or noncontact wide-angle viewing system using 27-gauge twin chandelier illumination. The only known predisposing factor for retinal detachment was myopia stronger than 3 D with lattice retinal degeneration in two of the three patients. Retinal reattachment was achieved in all cases without intra- or postoperative complications. However, visual recovery was limited in one of the three patients. Scleral buckling with chandelier illumination is effective for pediatric RRD, especially if the retinal hole is difficult to detect preoperatively. However, visual recovery was sometimes limited because of macular involvement due to late diagnosis, which is one of the characteristic features of pediatric RRD.

  17. Stimulus conflict triggers behavioral avoidance.

    Science.gov (United States)

    Dignath, David; Eder, Andreas B

    2015-12-01

    According to a recent extension of the conflict-monitoring theory, conflict between two competing response tendencies is registered as an aversive event and triggers a motivation to avoid the source of conflict. In the present study, we tested this assumption. Over five experiments, we examined whether conflict is associated with an avoidance motivation and whether stimulus conflict or response conflict triggers an avoidance tendency. Participants first performed a color Stroop task. In a subsequent motivation test, participants responded to Stroop stimuli with approach- and avoidance-related lever movements. These results showed that Stroop-conflict stimuli increased the frequency of avoidance responses in a free-choice motivation test, and also increased the speed of avoidance relative to approach responses in a forced-choice test. High and low proportions of response conflict in the Stroop task had no effect on avoidance in the motivation test. Avoidance of conflict was, however, obtained even with new conflict stimuli that had not been presented before in a Stroop task, and when the Stroop task was replaced with an unrelated filler task. Taken together, these results suggest that stimulus conflict is sufficient to trigger avoidance.

  18. 77 FR 70114 - Airworthiness Directives; Cessna Aircraft Company Airplanes

    Science.gov (United States)

    2012-11-23

    ... Aircraft Company Service Bulletin SB04-28-03, dated August 30, 2004, and Engine Fuel Return System... Aircraft System Component (JASC)/Air Transport Association (ATA) of America Code 2820, Aircraft Fuel... Modification Do not incorporate Cessna Aircraft Company Engine Fuel Return System Modification Kit MK 172-28-01...

  19. Topology optimization for optical microlithography with partially coherent illumination

    DEFF Research Database (Denmark)

    Zhou, Mingdong; Lazarov, Boyan Stefanov; Sigmund, Ole

    2017-01-01

    in microlithography/nanolithography. The key steps include (i) modeling the physical inputs of the fabrication process, including the ultraviolet light illumination source and the mask, as the design variables in optimization and (ii) applying physical filtering and heaviside projection for topology optimization......This article revisits a topology optimization design approach for micro-manufacturing and extends it to optical microlithography with partially coherent illumination. The solution is based on a combination of two technologies, the topology optimization and the proximity error correction....... Meanwhile, the performance of the device is optimized and robust with respect to process variations, such as dose/photo-resist variations and lens defocus. A compliant micro-gripper design example is considered to demonstrate the applicability of this approach....

  20. V/STOL tilt rotor aircraft study. Volume 6: Preliminary design of a composite wing for tilt rotor research aircraft

    Science.gov (United States)

    Soule, V. A.; Badri-Nath, Y.

    1973-01-01

    The results of a study of the use of composite materials in the wing of a tilt rotor aircraft are presented. An all-metal tilt rotor aircraft was first defined to provide a basis for comparing composite with metal structure. A configuration study was then done in which the wing of the metal aircraft was replaced with composite wings of varying chord and thickness ratio. The results of this study defined the design and performance benefits obtainable with composite materials. Based on these results the aircraft was resized with a composite wing to extend the weight savings to other parts of the aircraft. A wing design was then selected for detailed structural analysis. A development plan including costs and schedules to develop this wing and incorporate it into a proposed flight research tilt rotor vehicle has been devised.

  1. Public illumination manual; Manual de iluminacao publica

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-31

    This work aims to guide in the correct choice and usage of the adequate public illumination equipment. It also aims to help the public authorities in terms of the best economical and technical choice, as well as the adequate maintenance of the equipment in order to obtain the most efficiency and safety with minimum costs 22 figs., 11 tabs.

  2. Quantum Illumination-Based Target Detection and Discrimination

    Science.gov (United States)

    2014-06-30

    photodiode with an estimated quantum efficiency of 85% and an ultralow-noise transimpedance amplifier . Compared with to our initial QI measurements...demonstrated high signal-to-noise ratio (SNR) quantum-illumination target detection in a lossy, noisy environment using an optical parametric amplifier ...Research Triangle Park, NC 27709-2211 quantum communication, target detection, entanglement, parametric downconversion, optical parametric amplifiers

  3. Public illumination manual; Manual de iluminacao publica

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    This work aims to guide in the correct choice and usage of the adequate public illumination equipment. It also aims to help the public authorities in terms of the best economical and technical choice, as well as the adequate maintenance of the equipment in order to obtain the most efficiency and safety with minimum costs 22 figs., 11 tabs.

  4. 'No blue' LED solution for photolithography room illumination

    DEFF Research Database (Denmark)

    Ou, Haiyan; Corell, Dennis Dan; Dam-Hansen, Carsten

    2010-01-01

    This paper explored the feasibility of using a LED-based bulb as the illumination light source for photolithography room. A no-blue LED was designed, and the prototype was fabricated. The spectral power distribution of both the LED bulb and the yellow fluorescent tube was measured. Based on that...... color rendering ability than the YFT. Furthermore, LED solution has design flexibility to improve it further. The prototype has been tested with photoresist SU8-2005. Even after 15 days of illumination, no effect was observed. So this LED-based solution was demonstrated to be a very promising light......, colorimetric values were calculated and compared on terms of chromatic coordinates, correlated color temperature, color rendering index, and chromatic deviation. Gretagmacbeth color charts were used as a more visional way to compare the two light sources, which shows that our no-blue LED bulb has much better...

  5. Microfluidic mixing triggered by an external LED illumination.

    Science.gov (United States)

    Venancio-Marques, Anna; Barbaud, Fanny; Baigl, Damien

    2013-02-27

    The mixing of confined liquids is a central yet challenging operation in miniaturized devices. Microfluidic mixing is usually achieved with passive mixers that are robust but poorly flexible, or active mixers that offer dynamic control but mainly rely on electrical or mechanical transducers, which increase the fragility, cost, and complexity of the device. Here, we describe the first remote and reversible control of microfluidic mixing triggered by a light illumination simply provided by an external LED illumination device. The approach is based on the light-induced generation of water microdroplets acting as reversible stirrers of two continuous oil phase flows containing samples to be mixed. We demonstrate many cycles of reversible photoinduced transitions between a nonmixing behavior and full homogenization of the two oil phases. The method is cheap, portable, and adaptable to many device configurations, thus constituting an essential brick for the generation of future all-optofluidic chip.

  6. Solid-state semiconductors are better alternatives to arc-lamps for efficient and uniform illumination in minimal access surgery.

    Science.gov (United States)

    Lee, Alex C H; Elson, Daniel S; Neil, Mark A; Kumar, Sunil; Ling, Bingo W; Bello, Fernando; Hanna, George B

    2009-03-01

    Current arc-lamp illumination systems have a number of technical and ergonomic limitations. White light-emitting diodes (LEDs) are energy-efficient solid-state lighting devices which are small, durable and inexpensive. Their use as an alternative to arc-lamp light sources in minimal access surgery has not been explored. This study aims to develop an LED-based endo-illuminator and to determine its lighting characteristics for use in minimal access surgery. We developed an LED endo-illuminator using a white LED mounted at the tip of a steel rod. Offline image analysis was carried out to compare the illuminated field using the LED endo-illuminator or an arc-lamp based endoscope in terms of uniformity, shadow sharpness and overall image intensity. Direct radiometric power measurements in light intensity and stability were obtained. Visual perception of fine details at the peripheral endoscopic field was assessed by 13 subjects using the different illumination systems. Illumination from the LED endo-illuminator was more uniform compared to illumination from an arc-lamp source, especially at the closer distance of 4 cm (0.0006 versus 0.0028 arbitrary units--lower value indicates more uniform illumination). The shadows were also sharper (edge widths of 16 versus 44 pixels for the first edge and 15 versus 61 pixels for the second edge). The overall mean image intensity was higher (127 versus 100 arbitrary units) when using the autoshutter mode despite the lower direct radiometric power, about one tenth of the arc-lamp endoscopic system. The illumination was also more stable with less flickering (0.02% versus 5% of total power in non-DC components). Higher median scores on visual perception was also obtained (237 versus 157, p arc-lamp-based system currently used.

  7. Scheduling Aircraft Landings under Constrained Position Shifting

    Science.gov (United States)

    Balakrishnan, Hamsa; Chandran, Bala

    2006-01-01

    Optimal scheduling of airport runway operations can play an important role in improving the safety and efficiency of the National Airspace System (NAS). Methods that compute the optimal landing sequence and landing times of aircraft must accommodate practical issues that affect the implementation of the schedule. One such practical consideration, known as Constrained Position Shifting (CPS), is the restriction that each aircraft must land within a pre-specified number of positions of its place in the First-Come-First-Served (FCFS) sequence. We consider the problem of scheduling landings of aircraft in a CPS environment in order to maximize runway throughput (minimize the completion time of the landing sequence), subject to operational constraints such as FAA-specified minimum inter-arrival spacing restrictions, precedence relationships among aircraft that arise either from airline preferences or air traffic control procedures that prevent overtaking, and time windows (representing possible control actions) during which each aircraft landing can occur. We present a Dynamic Programming-based approach that scales linearly in the number of aircraft, and describe our computational experience with a prototype implementation on realistic data for Denver International Airport.

  8. Optimizing Fuzzy Rule Base for Illumination Compensation in Face Recognition using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Bima Sena Bayu Dewantara

    2014-12-01

    Full Text Available Fuzzy rule optimization is a challenging step in the development of a fuzzy model. A simple two inputs fuzzy model may have thousands of combination of fuzzy rules when it deals with large number of input variations. Intuitively and trial‐error determination of fuzzy rule is very difficult. This paper addresses the problem of optimizing Fuzzy rule using Genetic Algorithm to compensate illumination effect in face recognition. Since uneven illumination contributes negative effects to the performance of face recognition, those effects must be compensated. We have developed a novel algorithmbased on a reflectance model to compensate the effect of illumination for human face recognition. We build a pair of model from a single image and reason those modelsusing Fuzzy.Fuzzy rule, then, is optimized using Genetic Algorithm. This approachspendsless computation cost by still keepinga high performance. Based on the experimental result, we can show that our algorithm is feasiblefor recognizing desired person under variable lighting conditions with faster computation time. Keywords: Face recognition, harsh illumination, reflectance model, fuzzy, genetic algorithm

  9. Hybrid sunlight/LED illumination and renewable solar energy saving concepts for indoor lighting.

    Science.gov (United States)

    Tsuei, Chih-Hsuan; Sun, Wen-Shing; Kuo, Chien-Cheng

    2010-11-08

    A hybrid method for using sunlight and light-emitting diode (LED) illumination powered by renewable solar energy for indoor lighting is simulated and presented in this study. We can illuminate an indoor space and collect the solar energy using an optical switching system. When the system is turned off, the full spectrum of the sunlight is concentrated by a concentrator, to be absorbed by solar photovoltaic devices that provide the electricity to power the LEDs. When the system is turned on, the sunlight collected by the concentrator is split into visible and non-visible rays by a beam splitter. The visible rays pass through the light guide into a light box where it is mixed with LED light to ultimately provide uniform illumination by a diffuser. The non-visible rays are absorbed by the solar photovoltaic devices to provide electrical power for the LEDs. Simulation results show that the efficiency of the hybrid sunlight/LED illumination with the renewable solar energy saving design is better than that of LED and traditional lighting systems.

  10. Light-Emitting Diode-Based Illumination System for In Vitro Photodynamic Therapy

    OpenAIRE

    Defu Chen; Huifen Zheng; Zhiyong Huang; Huiyun Lin; Zhidong Ke; Shusen Xie; Buhong Li

    2012-01-01

    The aim of this study is to develop a light-emitting diode- (LED-) based illumination system that can be used as an alternative light source for in vitro photodynamic therapy (PDT). This illumination system includes a red LED array composed of 70 LEDs centered at 643 nm, an air-cooling unit, and a specific-designed case. The irradiance as a function of the irradiation distance between the LED array and the sample, the homogeneity and stability of irradiation, and the effect of long-time irrad...

  11. Modeling Illumination Conditions on the Moon: Applications to LRO-LAMP

    Science.gov (United States)

    Byron, B. D.; Mazarico, E. M.; Retherford, K. D.; Mandt, K. E.; Greathouse, T.; Gladstone, R.

    2017-12-01

    LRO-LAMP is a UV spectrograph which uses illumination from Lyman-α sky glow along with UV light from bright stars to image the dark, permanently shadowed regions (PSRs) of the lunar surface. Accurate modeling of this UV illumination is essential to creating albedo maps of the lunar surface, which can shed light on lunar regolith processes and help to constrain the distribution of water ice in polar PSRs. In this study, the variation in reflected intensity received by the LAMP detector was modeled for South Pole crater Amundsen using the illumination program IllumNG. Amundsen was chosen for study due to the PSR in its Northern side and its highly illuminated equator-facing slopes on the Southern wall. The model works by tracing a ray from each LAMP detector pixel along its boresight until the point where it intersects the lunar surface, and calculating the percentage of the total source flux visible above the horizon. In this study, the three main illumination sources used are the Sun, Interplanetary Lyman-α sky glow, and bright UV starlight in the On Band (130-155 nm) and Off Band (155-190 nm) wavelength ranges. The model also has the capability to calculate incident flux received at the surface, as well as intensity reflected from the surface and received by the LAMP detector along each boresight. The study found a noticeable variation in received intensity between six month stretches for the year of 2010. Over the period of January through July, about 6% more IPM Lyman-α flux was reflected from the surface of Amundsen than for July through December. For stellar flux in the On Band, a 13% difference in flux was reflected between the six month periods. In comparing the monthly intensity maps created by the model with LAMP measured monthly brightness maps, similar crater features are apparent. Though the model brightness is generally higher than the LAMP brightness, after accounting for albedo ( 0.05 for the South Pole region) the values are in closer agreement

  12. Widefield and total internal reflection fluorescent structured illumination microscopy with scanning galvo mirrors

    Science.gov (United States)

    Chen, Youhua; Cao, Ruizhi; Liu, Wenjie; Zhu, Dazhao; Zhang, Zhiming; Kuang, Cuifang; Liu, Xu

    2018-04-01

    We present an alternative approach to realize structured illumination microscopy (SIM), which is capable for live cell imaging. The prototype utilizes two sets of scanning galvo mirrors, a polarization converter and a piezo-platform to generate a fast shifted, s-polarization interfered and periodic variable illumination patterns. By changing the angle of the scanning galvanometer, we can change the position of the spots at the pupil plane of the objective lens arbitrarily, making it easy to switch between widefield and total internal reflection fluorescent-SIM mode and adapting the penetration depth in the sample. Also, a twofold resolution improvement is achieved in our experiments. The prototype offers more flexibility of pattern period and illumination orientation changing than previous systems.

  13. Study of polarization phenomena in Schottky CdTe diodes using infrared light illumination

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Goro, E-mail: gsato@astro.isas.jaxa.jp [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Fukuyama, Taro [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-0033 (Japan); Watanabe, Shin; Ikeda, Hirokazu; Ohta, Masayuki; Ishikawa, Shin' nosuke [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Takahashi, Tadayuki [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-0033 (Japan); Shiraki, Hiroyuki; Ohno, Ryoichi [ACRORAD Co., Ltd., 13-23 Suzaki, Uruma, Okinawa 904-2234 (Japan)

    2011-10-01

    Schottky CdTe diode detectors suffer from a polarization phenomenon, which is characterized by degradation of the spectral properties over time following exposure to high bias voltage. This is considered attributable to charge accumulation at deep acceptor levels. A Schottky CdTe diode was illuminated with an infrared light for a certain period during a bias operation, and two opposite behaviors emerged. The detector showed a recovery when illuminated after the bias-induced polarization had completely progressed. Conversely, when the detector was illuminated before the emergence of bias-induced polarization, the degradation of the spectral properties was accelerated. Interpretation of these effects and discussion on the energy level of deep acceptors are presented.

  14. A new radiometric unit of measure to characterize SWIR illumination

    Science.gov (United States)

    Richards, A.; Hübner, M.

    2017-05-01

    We propose a new radiometric unit of measure we call the `swux' to unambiguously characterize scene illumination in the SWIR spectral band between 0.8μm-1.8μm, where most of the ever-increasing numbers of deployed SWIR cameras (based on standard InGaAs focal plane arrays) are sensitive. Both military and surveillance applications in the SWIR currently suffer from a lack of a standardized SWIR radiometric unit of measure that can be used to definitively compare or predict SWIR camera performance with respect to SNR and range metrics. We propose a unit comparable to the photometric illuminance lux unit; see Ref. [1]. The lack of a SWIR radiometric unit becomes even more critical if one uses lux levels to describe SWIR sensor performance at twilight or even low light condition, since in clear, no-moon conditions in rural areas, the naturally-occurring SWIR radiation from nightglow produces a much higher irradiance than visible starlight. Thus, even well-intentioned efforts to characterize a test site's ambient illumination levels in the SWIR band may fail based on photometric instruments that only measure visible light. A study of this by one of the authors in Ref. [2] showed that the correspondence between lux values and total SWIR irradiance in typical illumination conditions can vary by more than two orders of magnitude, depending on the spectrum of the ambient background. In analogy to the photometric lux definition, we propose the SWIR irradiance equivalent `swux' level, derived by integration over the scene SWIR spectral irradiance weighted by a spectral sensitivity function S(λ), a SWIR analog of the V(λ) photopic response function.

  15. AIRCRAFT MAINTENANCE HANGAR

    Directory of Open Access Journals (Sweden)

    GEAMBASU Gabriel George

    2017-05-01

    Full Text Available The paper presents the maintenance process that is done on an airplane, at a certain period of time, or after a number of flight hours or cycles and describes the checks performed behind each inspection. The first part of research describes the aircraft maintenance process that has to be done after an updated maintenance manual according with aircraft type, followed by a short introduction about maintenance hangar. The second part of the paper presents a hangar design with a foldable roof and walls, which can be folded or extended, over an airplane when a maintenance process is done, or depending on weather condition.

  16. Reduced-illuminance autofluorescence imaging in ABCA4-associated retinal degenerations

    Science.gov (United States)

    Cideciyan, Artur V.; Swider, Malgorzata; Aleman, Tomas S.; Roman, Marisa I.; Sumaroka, Alexander; Schwartz, Sharon B.; Stone, Edwin M.; Jacobson, Samuel G.

    2007-05-01

    The health of the retinal pigment epithelium (RPE) can be estimated with autofluorescence (AF) imaging of lipofuscin, which accumulates as a byproduct of retinal exposure to light. Lipofuscin may be toxic to the RPE, and its toxicity may be enhanced by short-wavelength (SW) illumination. The high-intensity and SW excitation light used in conventional AF imaging could, at least in principle, increase the rate of lipofuscin accumulation and/or increase its toxicity. We considered two reduced-illuminance AF imaging (RAFI) methods as alternatives to conventional AF imaging. RAFI methods use either near-infrared (NIR) light or reduced-radiance SW illumination for excitation of fluorophores. We quantified the distribution of RAFI signals in relation to retinal structure and function in patients with the prototypical lipofuscin accumulation disease caused by mutations in ABCA4. There was evidence for two subclinical stages of macular ABCA4 disease involving hyperautofluorescence of both SW- and NIR-RAFI with and without associated loss of visual function. Use of RAFI methods and microperimetry in future clinical trials involving lipofuscinopathies should allow quantification of subclinical disease expression and progression without subjecting the diseased retina/RPE to undue light exposure.

  17. Energy-Saving Tunnel Illumination System Based on LED's Intelligent Control

    International Nuclear Information System (INIS)

    Guo Shanshan; Wu Lan; Gu Hanting; Jiang Shuixiu

    2011-01-01

    At present there is a lot of electric energy wastage in tunnel illumination, whose design is based on the maximum brightness outside and the maximum vehicle speed all year round. LED's energy consumption is low, and the control of its brightness is simple and effective. It can be quickly adjusted between 0-100% of its maximum brightness, and will not affect the service life. Therefore, using LED as tunnel's illumination source, we can achieve a good energy saving effect. According to real-time data acquisition of vehicle speed, traffic flow and brightness outside the tunnel, the auto real-time control of tunnel illumination can be achieved. And the system regulated the LED luminance by means of combination of LED power module and intelligent control module. The tunnel information was detected by inspection equipments, which included luminometer, vehicle detector, and received by RTU(Remote Terminal Unit), then synchronously transmitted to PC. After data processing, RTU emitted the dimming signal to the LED driver to adjust the brightness of LED. Despite the relatively high cost of high-power LED lights, the enormous energy-saving effect and the well-behaved controllability is beyond compare to other lighting devices.

  18. Airfoil optimization for morphing aircraft

    Science.gov (United States)

    Namgoong, Howoong

    Continuous variation of the aircraft wing shape to improve aerodynamic performance over a wide range of flight conditions is one of the objectives of morphing aircraft design efforts. This is being pursued because of the development of new materials and actuation systems that might allow this shape change. The main purpose of this research is to establish appropriate problem formulations and optimization strategies to design an airfoil for morphing aircraft that include the energy required for shape change. A morphing aircraft can deform its wing shape, so the aircraft wing has different optimum shapes as the flight condition changes. The actuation energy needed for moving the airfoil surface is modeled and used as another design objective. Several multi-objective approaches are applied to a low-speed, incompressible flow problem and to a problem involving low-speed and transonic flow. The resulting solutions provide the best tradeoff between low drag, high energy and higher drag, low energy sets of airfoil shapes. From this range of solutions, design decisions can be made about how much energy is needed to achieve a desired aerodynamic performance. Additionally, an approach to model aerodynamic work, which would be more realistic and may allow using pressure on the airfoil to assist a morphing shape change, was formulated and used as part of the energy objective. These results suggest that it may be possible to design a morphing airfoil that exploits the airflow to reduce actuator energy.

  19. Illumination Sufficiency Survey Techniques: In-situ Measurements of Lighting System Performance and a User Preference Survey for Illuminance in an Off-Grid, African Setting

    Energy Technology Data Exchange (ETDEWEB)

    Alstone, Peter; Jacobson, Arne; Mills, Evan

    2010-08-26

    Efforts to promote rechargeable electric lighting as a replacement for fuel-based light sources in developing countries are typically predicated on the notion that lighting service levels can be maintained or improved while reducing the costs and environmental impacts of existing practices. However, the extremely low incomes of those who depend on fuel-based lighting create a need to balance the hypothetically possible or desirable levels of light with those that are sufficient and affordable. In a pilot study of four night vendors in Kenya, we document a field technique we developed to simultaneously measure the effectiveness of lighting service provided by a lighting system and conduct a survey of lighting service demand by end-users. We took gridded illuminance measurements across each vendor's working and selling area, with users indicating the sufficiency of light at each point. User light sources included a mix of kerosene-fueled hurricane lanterns, pressure lamps, and LED lanterns.We observed illuminance levels ranging from just above zero to 150 lux. The LED systems markedly improved the lighting service levels over those provided by kerosene-fueled hurricane lanterns. Users reported that the minimum acceptable threshold was about 2 lux. The results also indicated that the LED lamps in use by the subjects did not always provide sufficient illumination over the desired retail areas. Our sample size is much too small, however, to reach any conclusions about requirements in the broader population. Given the small number of subjects and very specific type of user, our results should be regarded as indicative rather than conclusive. We recommend replicating the method at larger scales and across a variety of user types and contexts. Policymakers should revisit the subject of recommended illuminance levels regularly as LED technology advances and the price/service balance point evolves.

  20. See-and-Avoid Collision Avoidance Using ADS-B Signal and Radar Sensing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — IAI proposes an innovative solution to enable unrestricted flight in low-altitude airspace for small aircrafts This solution includes an L-band RF transceiver-sensor...

  1. Husserl's Illumination of the Breakthrough of Logical Investigations

    African Journals Online (AJOL)

    denise

    the example Husserl offers of the room where the lights go off in order to illuminate the breakthrough for ... correspondence theory of truth, and his main concern seems to be to ..... The advantage of Husserl's example is that it tries to situate the ...

  2. An Ergonomic Evaluation of the Illumination Level and the Management Plan to Improve the Working Environment of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Shin, Kwang Hyeon; Lee, Yong Hee

    2011-01-01

    Illumination in the working environment is one of the crucial factors that affect worker's psychological status as well as the physiological condition according to each task. Sometimes it affects the results of worker's cognitive, perceptual work performance. In particular, illumination may become a triggering factor to human errors in visual tasks due to visual fatigue through direct influence of vision in NPPs. Illumination includes several visual conditions such as uniformity factor, light distribution, glare, SPD (Surge Protector Device), flicker, illumination system, daylight and window control, in addition to the simple physical aspects of illumination and luminance. These conditions may affect operators' visibility and disillusion level, cause stress, attention, emotion, etc. and they finally affect workers' performance and errors as a result. From the many illumination conditions mentioned above, current work environment evaluation items on illumination are mainly based only on the intensity of illumination, and there is yet no systematic way with evaluation criteria for other factors such as luminance, flickering, etc. In addition, research and development on illumination emphasizes mainly the physical characteristics of illumination, and it is insufficient for the influence studies on human error or work performance that are caused by these factors

  3. 76 FR 71081 - Public Aircraft Oversight Safety Forum

    Science.gov (United States)

    2011-11-16

    ... NATIONAL TRANSPORTATION SAFETY BOARD Public Aircraft Oversight Safety Forum The National Transportation Safety Board (NTSB) will convene a Public Aircraft Oversight Safety Forum which will begin at 9 a... ``Public Aircraft Oversight Forum: Ensuring Safety for Critical Missions'', are to (1) raise awareness of...

  4. Illumination Invariant Change Detection (iicd): from Earth to Mars

    Science.gov (United States)

    Wan, X.; Liu, J.; Qin, M.; Li, S. Y.

    2018-04-01

    Multi-temporal Earth Observation and Mars orbital imagery data with frequent repeat coverage provide great capability for planetary surface change detection. When comparing two images taken at different times of day or in different seasons for change detection, the variation of topographic shades and shadows caused by the change of sunlight angle can be so significant that it overwhelms the real object and environmental changes, making automatic detection unreliable. An effective change detection algorithm therefore has to be robust to the illumination variation. This paper presents our research on developing and testing an Illumination Invariant Change Detection (IICD) method based on the robustness of phase correlation (PC) to the variation of solar illumination for image matching. The IICD is based on two key functions: i) initial change detection based on a saliency map derived from pixel-wise dense PC matching and ii) change quantization which combines change type identification, motion estimation and precise appearance change identification. Experiment using multi-temporal Landsat 7 ETM+ satellite images, Rapid eye satellite images and Mars HiRiSE images demonstrate that our frequency based image matching method can reach sub-pixel accuracy and thus the proposed IICD method can effectively detect and precisely segment large scale change such as landslide as well as small object change such as Mars rover, under daily and seasonal sunlight changes.

  5. 3D Imaging with Structured Illumination for Advanced Security Applications

    Energy Technology Data Exchange (ETDEWEB)

    Birch, Gabriel Carisle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dagel, Amber Lynn [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kast, Brian A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smith, Collin S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Three-dimensional (3D) information in a physical security system is a highly useful dis- criminator. The two-dimensional data from an imaging systems fails to provide target dis- tance and three-dimensional motion vector, which can be used to reduce nuisance alarm rates and increase system effectiveness. However, 3D imaging devices designed primarily for use in physical security systems are uncommon. This report discusses an architecture favorable to physical security systems; an inexpensive snapshot 3D imaging system utilizing a simple illumination system. The method of acquiring 3D data, tests to understand illumination de- sign, and software modifications possible to maximize information gathering capability are discussed.

  6. Nonuniform Illumination Correction Algorithm for Underwater Images Using Maximum Likelihood Estimation Method

    Directory of Open Access Journals (Sweden)

    Sonali Sachin Sankpal

    2016-01-01

    Full Text Available Scattering and absorption of light is main reason for limited visibility in water. The suspended particles and dissolved chemical compounds in water are also responsible for scattering and absorption of light in water. The limited visibility in water results in degradation of underwater images. The visibility can be increased by using artificial light source in underwater imaging system. But the artificial light illuminates the scene in a nonuniform fashion. It produces bright spot at the center with the dark region at surroundings. In some cases imaging system itself creates dark region in the image by producing shadow on the objects. The problem of nonuniform illumination is neglected by the researchers in most of the image enhancement techniques of underwater images. Also very few methods are discussed showing the results on color images. This paper suggests a method for nonuniform illumination correction for underwater images. The method assumes that natural underwater images are Rayleigh distributed. This paper used maximum likelihood estimation of scale parameter to map distribution of image to Rayleigh distribution. The method is compared with traditional methods for nonuniform illumination correction using no-reference image quality metrics like average luminance, average information entropy, normalized neighborhood function, average contrast, and comprehensive assessment function.

  7. Influence of Surrounding Colors in the Illuminant-Color Mode on Color Constancy

    Directory of Open Access Journals (Sweden)

    Kazuho Fukuda

    2011-05-01

    Full Text Available On color constancy, we showed that brighter surrounding colors had greater influence than dim colors (Uchikawa, Kitazawa, MacLeod, Fukuda, 2010 APCV. Increasing luminance of a stimulus causes the change in appearance from the surface-color to the illuminant-color mode. However it is unknown whether the visual system considers such color appearance mode of surrounding colors to achieve color constancy. We investigated the influence of surrounding colors that appeared illuminant on color constancy. The stimulus was composed of a central test stimulus and surrounding six colors: bright and dim red, green and blue. The observers adjusted the chromaticity of the test stimulus to be appeared as an achromatic surface. The luminance balance of three bright surrounding colors was equalized with that of the optimal colors in three illuminant conditions, then, the luminance of one of the three bright colors was varied in the range beyond the critical luminance of color appearance mode transition. The results showed that increasing luminance of a bright surrounding color shifted the observers' achromatic setting toward its chromaticity, but this effect diminished for the surrounding color in the illuminant-color mode. These results suggest that the visual system considers color appearance mode of surrounding colors to accomplish color constancy.

  8. Instrumentation for low noise nanopore-based ionic current recording under laser illumination

    Science.gov (United States)

    Roelen, Zachary; Bustamante, José A.; Carlsen, Autumn; Baker-Murray, Aidan; Tabard-Cossa, Vincent

    2018-01-01

    We describe a nanopore-based optofluidic instrument capable of performing low-noise ionic current recordings of individual biomolecules under laser illumination. In such systems, simultaneous optical measurements generally introduce significant parasitic noise in the electrical signal, which can severely reduce the instrument sensitivity, critically hindering the monitoring of single-molecule events in the ionic current traces. Here, we present design rules and describe simple adjustments to the experimental setup to mitigate the different noise sources encountered when integrating optical components to an electrical nanopore system. In particular, we address the contributions to the electrical noise spectra from illuminating the nanopore during ionic current recording and mitigate those effects through control of the illumination source and the use of a PDMS layer on the SiNx membrane. We demonstrate the effectiveness of our noise minimization strategies by showing the detection of DNA translocation events during membrane illumination with a signal-to-noise ratio of ˜10 at 10 kHz bandwidth. The instrumental guidelines for noise minimization that we report are applicable to a wide range of nanopore-based optofluidic systems and offer the possibility of enhancing the quality of synchronous optical and electrical signals obtained during single-molecule nanopore-based analysis.

  9. Scleral buckling procedure with chandelier illumination for pediatric rhegmatogenous retinal detachment

    Directory of Open Access Journals (Sweden)

    Yokoyama T

    2015-01-01

    Full Text Available Toshiyuki Yokoyama, Koki Kanbayashi, Tamaki YamaguchiDepartment of Ophthalmology, Juntendo University Nerima Hospital, Tokyo, JapanPurpose: To assess the treatment of pediatric patients with rhegmatogenous retinal detachment (RRD by scleral buckling with chandelier illumination.Methods: Three eyes were treated in three patients, healthy boys aged 7 years, 12 years, and 11 years, with RRD, macular involvement, and small retinal holes, of which two were preoperatively undetectable. Conventional scleral buckling with cryoretinopexy was performed under the contact lens for vitreous surgery or noncontact wide-angle viewing system using 27-gauge twin chandelier illumination.Results: The only known predisposing factor for retinal detachment was myopia stronger than 3 D with lattice retinal degeneration in two of the three patients. Retinal reattachment was achieved in all cases without intra- or postoperative complications. However, visual recovery was limited in one of the three patients.Conclusion: Scleral buckling with chandelier illumination is effective for pediatric RRD, especially if the retinal hole is difficult to detect preoperatively. However, visual recovery was sometimes limited because of macular involvement due to late diagnosis, which is one of the characteristic features of pediatric RRD.Keywords: pediatric rhegmatogenous retinal detachment, chandelier illumination, scleral buckling

  10. Transport aircraft loading and balancing system: Using a CLIPS expert system for military aircraft load planning

    Science.gov (United States)

    Richardson, J.; Labbe, M.; Belala, Y.; Leduc, Vincent

    1994-01-01

    The requirement for improving aircraft utilization and responsiveness in airlift operations has been recognized for quite some time by the Canadian Forces. To date, the utilization of scarce airlift resources has been planned mainly through the employment of manpower-intensive manual methods in combination with the expertise of highly qualified personnel. In this paper, we address the problem of facilitating the load planning process for military aircraft cargo planes through the development of a computer-based system. We introduce TALBAS (Transport Aircraft Loading and BAlancing System), a knowledge-based system designed to assist personnel involved in preparing valid load plans for the C130 Hercules aircraft. The main features of this system which are accessible through a convivial graphical user interface, consists of the automatic generation of valid cargo arrangements given a list of items to be transported, the user-definition of load plans and the automatic validation of such load plans.

  11. New developments in illumination, heating and cooling technologies for energy-efficient buildings

    International Nuclear Information System (INIS)

    Han, H.J.; Jeon, Y.I.; Lim, S.H.; Kim, W.W.; Chen, K.

    2010-01-01

    This paper gives a concise review of new designs and developments of illumination, heating and air-conditioning systems and technologies for energy-efficient buildings. Important breakthroughs in these areas include high-efficiency and/or reduced cost solar system components, LED lamps, smart windows, computer-controlled illumination systems, compact combined heat-power generation systems, and so on. To take advantage of these new technologies, hybrid or cascade energy systems have been proposed and/or investigated. A survey of innovative architectural and building envelope designs that have the potential to considerably reduce the illumination and heating and cooling costs for office buildings and residential houses is also included in the review. In addition, new designs and ideas that can be easily implemented to improve the energy efficiency and/or reduce greenhouse gas emissions and environmental impacts of new or existing buildings are proposed and discussed.

  12. Improving high resolution retinal image quality using speckle illumination HiLo imaging.

    Science.gov (United States)

    Zhou, Xiaolin; Bedggood, Phillip; Metha, Andrew

    2014-08-01

    Retinal image quality from flood illumination adaptive optics (AO) ophthalmoscopes is adversely affected by out-of-focus light scatter due to the lack of confocality. This effect is more pronounced in small eyes, such as that of rodents, because the requisite high optical power confers a large dioptric thickness to the retina. A recently-developed structured illumination microscopy (SIM) technique called HiLo imaging has been shown to reduce the effect of out-of-focus light scatter in flood illumination microscopes and produce pseudo-confocal images with significantly improved image quality. In this work, we adopted the HiLo technique to a flood AO ophthalmoscope and performed AO imaging in both (physical) model and live rat eyes. The improvement in image quality from HiLo imaging is shown both qualitatively and quantitatively by using spatial spectral analysis.

  13. An Overview of NASA's Subsonic Research Aircraft Testbed (SCRAT)

    Science.gov (United States)

    Baumann, Ethan; Hernandez, Joe; Ruhf, John C.

    2013-01-01

    National Aeronautics and Space Administration Dryden Flight Research Center acquired a Gulfstream III (GIII) aircraft to serve as a testbed for aeronautics flight research experiments. The aircraft is referred to as SCRAT, which stands for SubsoniC Research Aircraft Testbed. The aircraft's mission is to perform aeronautics research; more specifically raising the Technology Readiness Level (TRL) of advanced technologies through flight demonstrations and gathering high-quality research data suitable for verifying the technologies, and validating design and analysis tools. The SCRAT has the ability to conduct a range of flight research experiments throughout a transport class aircraft's flight envelope. Experiments ranging from flight-testing of a new aircraft system or sensor to those requiring structural and aerodynamic modifications to the aircraft can be accomplished. The aircraft has been modified to include an instrumentation system and sensors necessary to conduct flight research experiments along with a telemetry capability. An instrumentation power distribution system was installed to accommodate the instrumentation system and future experiments. An engineering simulation of the SCRAT has been developed to aid in integrating research experiments. A series of baseline aircraft characterization flights has been flown that gathered flight data to aid in developing and integrating future research experiments. This paper describes the SCRAT's research systems and capabilities.

  14. Myopic Regret Avoidance: Feedback Avoidance and Learning in Repeated Decision Making

    Science.gov (United States)

    Reb, Jochen; Connolly, Terry

    2009-01-01

    Decision makers can become trapped by "myopic regret avoidance" in which rejecting feedback to avoid short-term "outcome regret" (regret associated with counterfactual outcome comparisons) leads to reduced learning and greater long-term regret over continuing poor decisions. In a series of laboratory experiments involving repeated choices among…

  15. 78 FR 7642 - Airworthiness Directives; Piper Aircraft, Inc.

    Science.gov (United States)

    2013-02-04

    ... Airworthiness Directives; Piper Aircraft, Inc. AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for certain Piper Aircraft, Inc. (type certificate previously held by The New Piper Aircraft Inc.) PA-28, PA-32, PA-34, and PA-44...

  16. Fault Diagnosis and Fault Handling for Autonomous Aircraft

    DEFF Research Database (Denmark)

    Hansen, Søren

    Unmanned Aerial vehicles (UAVs) or drones are used increasingly for missions where piloted aircraft are unsuitable. The unmanned aircraft has a number of advantages with respect to size, weight and manoeuvrability that makes it possible for them to solve tasks that an aircraft previously has been...

  17. Aircraft Noise and Quality of Life around Frankfurt Airport

    Directory of Open Access Journals (Sweden)

    Thomas Eikmann

    2010-08-01

    Full Text Available In a survey of 2,312 residents living near Frankfurt Airport aircraft noise annoyance and disturbances as well as environmental (EQoL and health-related quality of life (HQoL were assessed and compared with data on exposure due to aircraft, road traffic, and railway noise. Results indicate higher noise annoyance than predicted from general exposure-response curves. Beside aircraft sound levels source-related attitudes were associated with reactions to aircraft noise. Furthermore, aircraft noise affected EQoL in general, although to a much smaller extent. HQoL was associated with aircraft noise annoyance, noise sensitivity and partly with aircraft noise exposure, in particular in the subgroup of multimorbid residents. The results suggest a recursive relationship between noise and health, yet this cannot be tested in cross-sectional studies. Longitudinal studies would be recommendable to get more insight in the causal paths underlying the noise-health relationship.

  18. Downhole interferometric illumination diagnosis and balancing

    OpenAIRE

    Van der Neut, J.

    2012-01-01

    With seismic interferometry or the virtual source method, controlled sources can be redatumed from the Earth’s surface to generate so-called virtual sources at downhole receiver locations. Generally this is done by crosscorrelation of the recorded down-hole data and stacking over source locations. By studying the retrieved data at zero time lag, downhole illumination conditions that determine the virtual source radi- ation pattern can be analyzed without a velocity model. This can be benefici...

  19. Hydrogen aircraft and airport safety

    International Nuclear Information System (INIS)

    Schmidtchen, U.; Behrend, E.; Pohl, H.-W.; Rostek, N.

    1997-01-01

    First flight tests with a hydrogen demonstrator aircraft, currently under investigation in the scope of the German-Russia Cryoplane project, are scheduled for 1999. Regular service with regional aircraft may begin around 2005, followed by larger Airbus-type airliners around 2010-2015. The fuel storage aboard such airliners will be of the order of 15 t or roughly 200 m 3 LH 2 . This paper investigates a number of safety problems associated with the handling and air transport of so much hydrogen. The same is done for the infrastructure on the airport. Major risks are identified, and appropriate measures in design and operation are recommended. It is found that hydrogen aircraft are no more dangerous than conventional ones - safer in some respects. (author)

  20. Durability of aircraft composite materials

    Science.gov (United States)

    Dextern, H. B.

    1982-01-01

    Confidence in the long term durability of advanced composites is developed through a series of flight service programs. Service experience is obtained by installing secondary and primary composite components on commercial and military transport aircraft and helicopters. Included are spoilers, rudders, elevators, ailerons, fairings and wing boxes on transport aircraft and doors, fairings, tail rotors, vertical fins, and horizontal stabilizers on helicopters. Materials included in the evaluation are boron/epoxy, Kevlar/epoxy, graphite/epoxy and boron/aluminum. Inspection, maintenance, and repair results for the components in service are reported. The effects of long term exposure to laboratory, flight, and outdoor environmental conditions are reported for various composite materials. Included are effects of moisture absorption, ultraviolet radiation, and aircraft fuels and fluids.

  1. Optimal Recovery Trajectories for Automatic Ground Collision Avoidance Systems (Auto GCAS)

    Science.gov (United States)

    2015-03-01

    Harmon) Weilhouwer, Judson Brohmer, Aaron ‘Cdot’ George, Dave ‘Cools’ Cooley, and all the brave men and women who have lost their lives to ground... inequality constraints µ aircraft bank angle µmax upper bounds on aircraft bank angle µmin lower bounds on aircraft bank angle ω aircraft turn rate τ...interested in implementing a safety campaign to re- duce workplace injury rate just as then Treasury Secretary Paul O’Neill had done while President and Chief

  2. Optics, illumination, and image sensing for machine vision II

    International Nuclear Information System (INIS)

    Svetkoff, D.J.

    1987-01-01

    These proceedings collect papers on the general subject of machine vision. Topics include illumination and viewing systems, x-ray imaging, automatic SMT inspection with x-ray vision, and 3-D sensing for machine vision

  3. Aircraft cybernetics

    Science.gov (United States)

    1977-01-01

    The use of computers for aircraft control, flight simulation, and inertial navigation is explored. The man-machine relation problem in aviation is addressed. Simple and self-adapting autopilots are described and the assets and liabilities of digital navigation techniques are assessed.

  4. Occupancy-based illumination control of LED lighting systems

    NARCIS (Netherlands)

    Caicedo Fernandez, D.R.; Pandharipande, A.; Leus, G.

    2011-01-01

    Light emitting diode (LED)-based systems are considered to be the future of lighting. We consider the problem of energy-efficient illumination control of such systems. Energy-efficient system design is based on two aspects: localised information on occupancy and optimisation of dimming levels of the

  5. AIRTV: Broadband Direct to Aircraft

    Science.gov (United States)

    Sorbello, R.; Stone, R.; Bennett, S. B.; Bertenyi, E.

    2002-01-01

    Airlines have been continuously upgrading their wide-body, long-haul aircraft with IFE (in-flight entertainment) systems that can support from 12 to 24 channels of video entertainment as well as provide the infrastructure to enable in-seat delivery of email and internet services. This is a direct consequence of increased passenger demands for improved in-flight services along with the expectations that broadband delivery systems capable of providing live entertainment (news, sports, financial information, etc.) and high speed data delivery will soon be available. The recent events of Sept. 11 have slowed the airline's upgrade of their IFE systems, but have also highlighted the compelling need for broadband aeronautical delivery systems to include operational and safety information. Despite the impact of these events, it is estimated that by 2005 more than 3000 long haul aircraft (servicing approximately 1 billion passengers annually) will be fully equipped with modern IFE systems. Current aircraft data delivery systems, which use either Inmarsat or NATS, are lacking in bandwidth and consequently are unsuitable to satisfy passenger demands for broadband email/internet services or the airlines' burgeoning data requirements. Present live video delivery services are limited to regional coverage and are not readily expandable to global or multiregional service. Faced with a compelling market demand for high data transport to aircraft, AirTV has been developing a broadband delivery system that will meet both passengers' and airlines' needs. AirTV is a global content delivery system designed to provide a range of video programming and data services to commercial airlines. When AirTV is operational in 2004, it will provide a broadband connection directly to the aircraft, delivering live video entertainment, internet/email service and essential operational and safety data. The system has been designed to provide seamless global service to all airline routes except for those

  6. Optimal path planning for single and multiple aircraft using a reduced order formulation

    Science.gov (United States)

    Twigg, Shannon S.

    High-flying unmanned reconnaissance and surveillance systems are now being used extensively in the United States military. Current development programs are producing demonstrations of next-generation unmanned flight systems that are designed to perform combat missions. Their use in first-strike combat operations will dictate operations in densely cluttered environments that include unknown obstacles and threats, and will require the use of terrain for masking. The demand for autonomy of operations in such environments dictates the need for advanced trajectory optimization capabilities. In addition, the ability to coordinate the movements of more than one aircraft in the same area is an emerging challenge. This thesis examines using an analytical reduced order formulation for trajectory generation for minimum time and terrain masking cases. First, pseudo-3D constant velocity equations of motion are used for path planning for a single vehicle. In addition, the inclusion of winds, moving targets and moving threats is considered. Then, this formulation is increased to using 3D equations of motion, both with a constant velocity and with a simplified varying velocity model. Next, the constant velocity equations of motion are expanded to include the simultaneous path planning of an unspecified number of vehicles, for both aircraft avoidance situations and formation flight cases.

  7. The Direct Lighting Computation in Global Illumination Methods

    Science.gov (United States)

    Wang, Changyaw Allen

    1994-01-01

    Creating realistic images is a computationally expensive process, but it is very important for applications such as interior design, product design, education, virtual reality, and movie special effects. To generate realistic images, state-of-art rendering techniques are employed to simulate global illumination, which accounts for the interreflection of light among objects. In this document, we formalize the global illumination problem into a eight -dimensional integral and discuss various methods that can accelerate the process of approximating this integral. We focus on the direct lighting computation, which accounts for the light reaching the viewer from the emitting sources after exactly one reflection, Monte Carlo sampling methods, and light source simplification. Results include a new sample generation method, a framework for the prediction of the total number of samples used in a solution, and a generalized Monte Carlo approach for computing the direct lighting from an environment which for the first time makes ray tracing feasible for highly complex environments.

  8. Future V/STOL Aircraft For The Pacific Basin

    Science.gov (United States)

    Albers, James A.; Zuk, John

    1992-01-01

    Report describes geography and transportation needs of Asian Pacific region, and describes aircraft configurations suitable for region and compares performances. Examines applications of high-speed rotorcraft, vertical/short-takeoff-and-landing (V/STOL) aircraft, and short-takeoff-and landing (STOL) aircraft. Configurations benefit commerce, tourism, and development of resources.

  9. 31 CFR 538.519 - Aircraft and maritime safety.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Aircraft and maritime safety. 538.519..., Authorizations, and Statements of Licensing Policy § 538.519 Aircraft and maritime safety. Specific licenses may... aircraft, and to ensure the safety of ocean-going maritime traffic in international waters. ...

  10. 48 CFR 1852.228-71 - Aircraft flight risks.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Aircraft flight risks. 1852... 1852.228-71 Aircraft flight risks. (a) As prescribed in 1828.311-2, insert the following clause: Aircraft Flight Risks (DEC 1988) (a) Notwithstanding any other provision of this contract (particularly...

  11. Conversion of the dual training aircraft (DC into single control advanced training aircraft (SC. Part I

    Directory of Open Access Journals (Sweden)

    Ioan ŞTEFĂNESCU

    2011-03-01

    Full Text Available Converting the DC school jet aircraft into SC advanced training aircraft - and use them forthe combat training of military pilots from the operational units, has become a necessity due to thebudget cuts for Air Force, with direct implications on reducing the number of hours of flight assignedto operating personnel for preparing and training.The purpose of adopting such a program is to reduce the number of flight hours allocated annuallyfor preparing and training in advanced stages of instruction, for every pilot, by more intensive use ofthis type of aircraft, which has the advantage of lower flight hour costs as compared to a supersoniccombat plane.

  12. Alternative general-aircraft engines

    Science.gov (United States)

    Tomazic, W. A.

    1976-01-01

    The most promising alternative engine (or engines) for application to general aircraft in the post-1985 time period was defined, and the level of technology was cited to the point where confident development of a new engine can begin early in the 1980's. Low emissions, multifuel capability, and fuel economy were emphasized. Six alternative propulsion concepts were considered to be viable candidates for future general-aircraft application: the advanced spark-ignition piston, rotary combustion, two- and four-stroke diesel, Stirling, and gas turbine engines.

  13. Meeting Air Transportation Demand in 2025 by Using Larger Aircraft and Alternative Routing to Complement NextGen Operational Improvements

    Science.gov (United States)

    Smith, Jeremy C.; Guerreiro, Nelson M.; Viken, Jeffrey K.; Dollyhigh, Samuel M.; Fenbert, James W.

    2010-01-01

    A study was performed that investigates the use of larger aircraft and alternative routing to complement the capacity benefits expected from the Next Generation Air Transportation System (NextGen) in 2025. National Airspace System (NAS) delays for the 2025 demand projected by the Transportation Systems Analysis Models (TSAM) were assessed using NASA s Airspace Concept Evaluation System (ACES). The shift in demand from commercial airline to automobile and from one airline route to another was investigated by adding the route delays determined from the ACES simulation to the travel times used in the TSAM and re-generating new flight scenarios. The ACES simulation results from this study determined that NextGen Operational Improvements alone do not provide sufficient airport capacity to meet the projected demand for passenger air travel in 2025 without significant system delays. Using larger aircraft with more seats on high-demand routes and introducing new direct routes, where demand warrants, significantly reduces delays, complementing NextGen improvements. Another significant finding of this study is that the adaptive behavior of passengers to avoid congested airline-routes is an important factor when projecting demand for transportation systems. Passengers will choose an alternative mode of transportation or alternative airline routes to avoid congested routes, thereby reducing delays to acceptable levels for the 2025 scenario; the penalty being that alternative routes and the option to drive increases overall trip time by 0.4% and may be less convenient than the first-choice route.

  14. An Ergonomic Evaluation of the Illumination Level and the Management Plan to Improve the Working Environment of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Kwang Hyeon; Lee, Yong Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    Illumination in the working environment is one of the crucial factors that affect worker's psychological status as well as the physiological condition according to each task. Sometimes it affects the results of worker's cognitive, perceptual work performance. In particular, illumination may become a triggering factor to human errors in visual tasks due to visual fatigue through direct influence of vision in NPPs. Illumination includes several visual conditions such as uniformity factor, light distribution, glare, SPD (Surge Protector Device), flicker, illumination system, daylight and window control, in addition to the simple physical aspects of illumination and luminance. These conditions may affect operators' visibility and disillusion level, cause stress, attention, emotion, etc. and they finally affect workers' performance and errors as a result. From the many illumination conditions mentioned above, current work environment evaluation items on illumination are mainly based only on the intensity of illumination, and there is yet no systematic way with evaluation criteria for other factors such as luminance, flickering, etc. In addition, research and development on illumination emphasizes mainly the physical characteristics of illumination, and it is insufficient for the influence studies on human error or work performance that are caused by these factors

  15. V/STOL tilt rotor aircraft study. Volume 2: Preliminary design of research aircraft

    Science.gov (United States)

    1972-01-01

    A preliminary design study was conducted to establish a minimum sized, low cost V/STOL tilt-rotor research aircraft with the capability of performing proof-of-concept flight research investigations applicable to a wide range of useful military and commercial configurations. The analysis and design approach was based on state-of-the-art methods and maximum use of off-the-shelf hardware and systems to reduce development risk, procurement cost and schedules impact. The rotors to be used are of 26 foot diameter and are the same as currently under construction and test as part of NASA Tilt-Rotor Contract NAS2-6505. The aircraft has a design gross weight of 12,000 lbs. The proposed engines to be used are Lycoming T53-L-13B rated at 1550 shaft horsepower which are fully qualified. A flight test investigation is recommended which will determine the capabilities and limitations of the research aircraft.

  16. Gaussian Hypothesis Testing and Quantum Illumination.

    Science.gov (United States)

    Wilde, Mark M; Tomamichel, Marco; Lloyd, Seth; Berta, Mario

    2017-09-22

    Quantum hypothesis testing is one of the most basic tasks in quantum information theory and has fundamental links with quantum communication and estimation theory. In this paper, we establish a formula that characterizes the decay rate of the minimal type-II error probability in a quantum hypothesis test of two Gaussian states given a fixed constraint on the type-I error probability. This formula is a direct function of the mean vectors and covariance matrices of the quantum Gaussian states in question. We give an application to quantum illumination, which is the task of determining whether there is a low-reflectivity object embedded in a target region with a bright thermal-noise bath. For the asymmetric-error setting, we find that a quantum illumination transmitter can achieve an error probability exponent stronger than a coherent-state transmitter of the same mean photon number, and furthermore, that it requires far fewer trials to do so. This occurs when the background thermal noise is either low or bright, which means that a quantum advantage is even easier to witness than in the symmetric-error setting because it occurs for a larger range of parameters. Going forward from here, we expect our formula to have applications in settings well beyond those considered in this paper, especially to quantum communication tasks involving quantum Gaussian channels.

  17. Aircraft accident analysis for emergency planning and safety analysis

    International Nuclear Information System (INIS)

    Nicolosi, S.L.; Jordan, H.; Foti, D.; Mancuso, J.

    1996-01-01

    Potential aircraft accidents involving facilities at the Rocky Flats Environmental Technology Site (Site) are evaluated to assess their safety significance. This study addresses the probability and facility penetrability of aircraft accidents at the Site. The types of aircraft (large, small, etc.) that may credibly impact the Site determine the types of facilities that may be breached. The methodology used in this analysis follows elements of the draft Department of Energy Standard ''Accident Analysis for Aircraft Crash into Hazardous Facilities'' (July 1995). Key elements used are: the four-factor frequency equation for aircraft accidents; the distance criteria for consideration of airports, airways, and jet routes; the consideration of different types of aircraft; and the Modified National Defense Research Committee (NDRC) formula for projectile penetration, perforation, and minimum resistant thickness. The potential aircraft accident frequency for each type of aircraft applicable to the Site is estimated using a four-factor formula described in the draft Standard. The accident frequency is the product of the annual number of operations, probability of an accident, probability density function, and area. The annual number of operations is developed from site-specific and state-wide data

  18. Observed Minimum Illuminance Threshold for Night Market Vendors in Kenya who use LED Lamps

    Energy Technology Data Exchange (ETDEWEB)

    Johnstone, Peter; Jacobson, Arne; Mills, Evan; Radecsky, Kristen

    2009-03-21

    Creation of light for work, socializing, and general illumination is a fundamental application of technology around the world. For those who lack access to electricity, an emerging and diverse range of LED based lighting products hold promise for replacing and/or augmenting their current fuel-based lighting sources that are costly and dirty. Along with analysis of environmental factors, economic models for total cost-ofownership of LED lighting products are an important tool for studying the impacts of these products as they emerge in markets of developing countries. One important metric in those models is the minimum illuminance demanded by end-users for a given task before recharging the lamp or replacing batteries. It impacts the lighting service cost per unit time if charging is done with purchased electricity, batteries, or charging services. The concept is illustrated in figure 1: LED lighting products are generally brightest immediately after the battery is charged or replaced and the illuminance degrades as the battery is discharged. When a minimum threshold level of illuminance is reached, the operational time for the battery charge cycle is over. The cost to recharge depends on the method utilized; these include charging at a shop at a fixed price per charge, charging on personal grid connections, using solar chargers, and purchasing dry cell batteries. This Research Note reports on the observed"charge-triggering" illuminance level threshold for night market vendors who use LED lighting products to provide general and task oriented illumination. All the study participants charged with AC power, either at a fixed-price charge shop or with electricity at their home.

  19. Weather Avoidance Using Route Optimization as a Decision Aid: An AWIN Topical Study. Phase 1

    Science.gov (United States)

    1998-01-01

    The aviation community is faced with reducing the fatal aircraft accident rate by 80 percent within 10 years. This must be achieved even with ever increasing, traffic and a changing National Airspace System. This is not just an altruistic goal, but a real necessity, if our growing level of commerce is to continue. Honeywell Technology Center's topical study, "Weather Avoidance Using Route Optimization as a Decision Aid", addresses these pressing needs. The goal of this program is to use route optimization and user interface technologies to develop a prototype decision aid for dispatchers and pilots. This decision aid will suggest possible diversions through single or multiple weather hazards and present weather information with a human-centered design. At the conclusion of the program, we will have a laptop prototype decision aid that will be used to demonstrate concepts to industry for integration into commercialized products for dispatchers and/or pilots. With weather a factor in 30% of aircraft accidents, our program will prevent accidents by strategically avoiding weather hazards in flight. By supplying more relevant weather information in a human-centered format along with the tools to generate flight plans around weather, aircraft exposure to weather hazards can be reduced. Our program directly addresses the NASA's five year investment areas of Strategic Weather Information and Weather Operations (simulation/hazard characterization and crew/dispatch/ATChazard monitoring, display, and decision support) (NASA Aeronautics Safety Investment Strategy: Weather Investment Recommendations, April 15, 1997). This program is comprised of two phases, Phase I concluded December 31, 1998. This first phase defined weather data requirements, lateral routing algorithms, an conceptual displays for a user-centered design. Phase II runs from January 1999 through September 1999. The second phase integrates vertical routing into the lateral optimizer and combines the user

  20. Aircraft engines. IV

    Energy Technology Data Exchange (ETDEWEB)

    Ruffles, P C

    1989-01-01

    Configurational design and thermodynamic performance gain trends are projected into the next 50 years, in view of the growing interest of aircraft manufacturers in both larger and more efficient high-bypass turbofan engines for subsonic flight and variable cycle engines for supersonic flight. Ceramic- and metal-matrix composites are envisioned as the key to achievement of turbine inlet temperatures 300 C higher than the 1400 C which is characteristic of the state-of-the-art, with the requisite high stiffness, strength, and low density. Such fiber-reinforced materials can be readily tailored to furnish greatest strength in a specific direction of loading. Large, low-density engines are critical elements of future 1000-seat aircraft.