Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Ariztizabal, F; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Gaitan, V; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Engelhardt, A; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Markou, C; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wiedenmann, W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Bardadin-Otwinowska, Maria; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Saadi, F; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Passalacqua, L; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Pepé-Altarelli, M; Dorris, S J; Halley, A W; ten Have, I; Knowles, I G; Lynch, J G; Morton, W T; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Smith, M G; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Konstantinidis, N P; Moneta, L; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Raab, J; Renk, B; Sander, H G; Wanke, R; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Thulasidas, M; Nicod, D; Payre, P; Rousseau, D; Talby, M; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wolf, G; Alemany, R; Boucrot, J; Callot, O; Cordier, A; Courault, F; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Musolino, G; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Abbaneo, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Triggiani, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Mir, L M; Perrodo, P; Strong, J A; Bertin, V; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Cartwright, S L; Combley, F; Dawson, I; Köksal, A; Letho, M; Newton, W M; Rankin, C; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G
1996-01-01
From 64492 selected \\tau-pair events, produced at the Z^0 resonance, the measurement of the tau decays into hadrons from a global analysis using 1991, 1992 and 1993 ALEPH data is presented. Special emphasis is given to the reconstruction of photons and \\pi^0's, and the removal of fake photons. A detailed study of the systematics entering the \\pi^0 reconstruction is also given. A complete and consistent set of tau hadronic branching ratios is presented for 18 exclusive modes. Most measurements are more precise than the present world average. The new level of precision reached allows a stringent test of \\tau-\\mu universality in hadronic decays, g_\\tau/g_\\mu \\ = \\ 1.0013 \\ \\pm \\ 0.0095, and the first measurement of the vector and axial-vector contributions to the non-strange hadronic \\tau decay width: R_{\\tau ,V} \\ = \\ 1.788 \\ \\pm \\ 0.025 and R_{\\tau ,A} \\ = \\ 1.694 \\ \\pm \\ 0.027. The ratio (R_{\\tau ,V} - R_{\\tau ,A}) / (R_{\\tau ,V} + R_{\\tau ,A}), equal to (2.7 \\pm 1.3) \\ \\%, is a measure of the importance of Q...
Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Ariztizabal, F; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Gaitan, V; Garrido, L; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Engelhardt, A; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Markou, C; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wiedenmann, W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Bardadin-Otwinowska, Maria; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Saadi, F; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Passalacqua, L; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Pepé-Altarelli, M; Dorris, S J; Halley, A W; ten Have, I; Knowles, I G; Lynch, J G; Morton, W T; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Smith, M G; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Konstantinidis, N P; Moneta, L; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Raab, J; Renk, B; Sander, H G; Wanke, R; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Thulasidas, M; Nicod, D; Payre, P; Rousseau, D; Talby, M; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wolf, G; Alemany, R; Boucrot, J; Callot, O; Cordier, A; Courault, F; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Musolino, G; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Abbaneo, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Triggiani, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Mir, L M; Perrodo, P; Strong, J A; Bertin, V; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Cartwright, S L; Combley, F; Dawson, I; Köksal, A; Letho, M; Newton, W M; Rankin, C; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G
1996-01-01
A sample of 62249 \\tau-pair events is selected from data taken with the ALEPH detector in 1991, 1992 and 1993. The measurement of the branching fractions for \\tau decays into electrons and muons is presented with emphasis on the study of systematic effects from selection, particle identification and decay classification. Combined with the most recent ALEPH determination of the \\tau lifetime, these results provide a relative measurement of the leptonic couplings in the weak charged current for transverse W bosons.
Measurement of the eta decay branching ratio
Bargholtz, C; Bogoslawsky, D; Calén, H; Capellaro, F; Clement, H; Demirörs, L; Ekström, C; Fransson, K; Geren, L; Gustafsson, L; Höistad, Bo; Ivanov, G; Jacewicz, M; Jiganov, E; Johansson, T; Keleta, S; Koch, I; Kullander, Sven; Kupsc, A; Kuznetsov, A; Laukhin, I V; Lindberg, K; Marciniewski, P; Meier, R; Morosov, B; Oelert, W; Pauly, C; Pettersson, H; Petukhov, Yu P; Povtorejko, A; Ruber, Roger J M Y; Schönning, K; Scobel, W; Shafigullin, R; Shwartz, B; Skorodko, T Yu; Sopov, V; Stepaniak, J; Chernyshov, V; Tegnér, P E; Engblom, P T; Tikhomirov, V; Turowiecki, A; Wagner, G J; Wolke, M; Yamamoto, A; Zabierowski, J; Zartova, I; Zlomanczuk, Yu; Bargholtz, Chr.
2007-01-01
The reaction pd->3He eta at threshold was used to provide a clean source of eta mesons for decay studies with the WASA detector at CELSIUS. The branching ratio of the decay eta->pi+pi-e+e- is measured to be (4.6+/-1.4+/-0.5)x10^-4.
Measurements of $\\Xi_c^{+}$ Branching Ratios
Link, J M; Anjos, J C; Bediaga, I; Göbel, C; Magnin, J; Massafferri, A; De Miranda, J M; Pepe, I M; Polycarpo, E; Dos Reis, A C; Carrillo, S; Casimiro, E; Cuautle, E; Sánchez-Hernández, A; Uribe, C; Vázquez, F; Agostino, L; Cinquini, L; Cumalat, J P; O'Reilly, B; Segoni, I; Wahl, M; Butler, J N; Cheung, H W K; Chiodini, G; Gaines, I; Garbincius, P H; Garren, L A; Gottschalk, E E; Kasper, P H; Kreymer, A E; Kutschke, R; Wang, M; Benussi, L; Bertani, M; Bianco, S; Fabbri, Franco Luigi; Zallo, A; Reyes, M; Cawlfield, C; Kim, D Y; Rahimi, A; Wiss, J; Gardner, R; Kryemadhi, A; Chung, Y S; Kang, J S; Ko, B R; Kwak, J W; Lee, K B; Cho, K; Park, H; Alimonti, G; Barberis, S; Boschini, M; Cerutti, A; D'Angelo, P; Di Corato, M; Dini, P; Edera, L; Erba, S; Giammarchi, M; Inzani, P; Leveraro, F; Malvezzi, S; Menasce, D; Mezzadri, M; Moroni, L; Pedrini, D; Pontoglio, C; Prelz, F; Rovere, M; Sala, S; Davenport, T F; Arena, V; Boca, G; Bonomi, G; Gianini, G; Liguori, G; Lopes-Pegna, D; Merlo, M M; Pantea, D; Ratti, S P; Riccardi, C; Vitulo, P; Hernández, H; López, A M; Luiggi, E; Méndez, H; Paris, A; Quinones, J; Ramírez, J E; Zhang, Y; Wilson, J R; Handler, T; Mitchell, R; Engh, D; Hosack, M; Johns, W E; Nehring, M S; Sheldon, P D; Stenson, K; Vaandering, E W; Webster, M; Sheaff, M
2003-01-01
Using data collected by the fixed target Fermilab experiment FOCUS, we measure the branching ratios of the Cabibbo favored decays $\\Xi_c^+ \\to \\Sigma^+K^-\\pi^+$, $\\Xi_c^+ \\to \\Sigma^+ \\bar{K}^{*}(892)^0$, and $\\Xi_c^+ \\to \\Lambda^0K^-\\pi^+\\pi^+$ relative to $\\Xi_c^+ \\to \\Xi^-\\pi^+\\pi^+$ to be $0.91\\pm0.11\\pm0.04$, $0.78\\pm0.16\\pm0.06$, and $0.28\\pm0.06\\pm0.06$, respectively. We report the first observation of the Cabibbo suppressed decay $\\Xi_c^+ \\to \\Sigma^+K^+K^-$ and we measure the branching ratio relative to $\\Xi_c^+ \\to \\Sigma^+K^-\\pi^+$ to be $0.16\\pm0.06\\pm0.01$. We also set 90% confidence level upper limits for $\\Xi_c^+ \\to \\Sigma^+ \\phi$ and $\\Xi_c^+ \\to \\Xi^*(1690)^0(\\Sigma^+ K^-) K^+$ relative to $\\Xi_c^+ \\to \\Sigma^+K^-\\pi^+$ to be 0.12 and 0.05, respectively. We find an indication of the decays $\\Xi_c^+ \\to \\Omega^-K^{+}\\pi^+$ and $\\Xi_c^+ \\to \\Sigma^{*}(1385)^+ \\bar{K}^0$ and set 90% confidence level upper limits for the branching ratios with respect to $\\Xi_c^+ \\to \\Xi^-\\pi^+\\pi^+$ to be 0.12 a...
Delayed-neutron branching ratios of fission products
International Nuclear Information System (INIS)
Delayed-neutron branching ratios have been reviewed for 86 nuclides, including a few isomers, among the fission products. The list comprises values reported before the end of December, 1987. (authors) (33 refs.)
Branching ratio approximation for the self-exciting Hawkes process
Hardiman, Stephen J.; Jean-Philippe Bouchaud
2014-01-01
We introduce a model-independent approximation for the branching ratio of Hawkes self-exciting point processes. Our estimator requires knowing only the mean and variance of the event count in a sufficiently large time window, statistics that are readily obtained from empirical data. The method we propose greatly simplifies the estimation of the Hawkes branching ratio, recently proposed as a proxy for market endogeneity and formerly estimated using numerical likelihood maximisation. We employ ...
Measurement of Tau Branching Ratios to Five Charged Hadrons
Ackerstaff, K; Allison, J; Altekamp, N; Anderson, K J; Anderson, S; Arcelli, S; Asai, S; Ashby, S F; Axen, D A; Azuelos, Georges; Ball, A H; Barberio, E; Barlow, R J; Bartoldus, R; Batley, J Richard; Baumann, S; Bechtluft, J; Behnke, T; Bell, K W; Bella, G; Bentvelsen, Stanislaus Cornelius Maria; Bethke, Siegfried; Betts, S; Biebel, O; Biguzzi, A; Bird, S D; Blobel, Volker; Bloodworth, Ian J; Bobinski, M; Bock, P; Böhme, J; Boutemeur, M; Braibant, S; Bright-Thomas, P G; Brown, R M; Burckhart, Helfried J; Burgard, C; Bürgin, R; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Chrisman, D; Ciocca, C; Clarke, P E L; Clay, E; Cohen, I; Conboy, J E; Cooke, O C; Couyoumtzelis, C; Coxe, R L; Cuffiani, M; Dado, S; Dallavalle, G M; Davis, R; De Jong, S; del Pozo, L A; de Roeck, A; Desch, Klaus; Dienes, B; Dixit, M S; Doucet, M; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Eatough, D; Estabrooks, P G; Etzion, E; Evans, H G; Fabbri, Franco Luigi; Fanfani, A; Fanti, M; Faust, A A; Fiedler, F; Fierro, M; Fischer, H M; Fleck, I; Folman, R; Fürtjes, A; Futyan, D I; Gagnon, P; Gary, J W; Gascon, J; Gascon-Shotkin, S M; Geich-Gimbel, C; Geralis, T; Giacomelli, G; Giacomelli, P; Gibson, V; Gibson, W R; Gingrich, D M; Glenzinski, D A; Goldberg, J; Gorn, W; Grandi, C; Gross, E; Grunhaus, Jacob; Gruwé, M; Hanson, G G; Hansroul, M; Hapke, M; Hargrove, C K; Hartmann, C; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herndon, M; Herten, G; Heuer, R D; Hildreth, M D; Hill, J C; Hillier, S J; Hobson, P R; Höcker, Andreas; Homer, R James; Honma, A K; Horváth, D; Hossain, K R; Howard, R; Hüntemeyer, P; Igo-Kemenes, P; Imrie, D C; Ishii, K; Jacob, F R; Jawahery, A; Jeremie, H; Jimack, Martin Paul; Joly, A; Jones, C R; Jovanovic, P; Junk, T R; Karlen, D A; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Kayal, P I; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Klier, A; Kluth, S; Kobayashi, T; Kobel, M; Koetke, D S; Kokott, T P; Kolrep, M; Komamiya, S; Kowalewski, R V; Kress, T; Krieger, P; Von Krogh, J; Kyberd, P; Lafferty, G D; Lanske, D; Lauber, J; Lautenschlager, S R; Lawson, I; Layter, J G; Lazic, D; Lee, A M; Lefebvre, E; Lellouch, Daniel; Letts, J; Levinson, L; Liebisch, R; List, B; Littlewood, C; Lloyd, A W; Lloyd, S L; Loebinger, F K; Long, G D; Losty, Michael J; Ludwig, J; Liu, D; Macchiolo, A; MacPherson, A L; Mannelli, M; Marcellini, S; Markopoulos, C; Martin, A J; Martin, J P; Martínez, G; Mashimo, T; Mättig, P; McDonald, W J; McKenna, J A; McKigney, E A; McMahon, T J; McPherson, R A; Meijers, F; Menke, S; Merritt, F S; Mes, H; Meyer, J; Michelini, Aldo; Mihara, S; Mikenberg, G; Miller, D J; Mir, R; Mohr, W; Montanari, A; Mori, T; Nagai, K; Nakamura, I; Neal, H A; Nellen, B; Nisius, R; O'Neale, S W; Oakham, F G; Odorici, F; Ögren, H O; Oreglia, M J; Orito, S; Pálinkás, J; Pásztor, G; Pater, J R; Patrick, G N; Patt, J; Pérez-Ochoa, R; Petzold, S; Pfeifenschneider, P; Pilcher, J E; Pinfold, James L; Plane, D E; Poffenberger, P R; Poli, B; Polok, J; Przybycien, M B; Rembser, C; Rick, Hartmut; Robertson, S; Robins, S A; Rodning, N L; Roney, J M; Roscoe, K; Rossi, A M; Rozen, Y; Runge, K; Runólfsson, O; Rust, D R; Sachs, K; Saeki, T; Sahr, O; Sang, W M; Sarkisyan-Grinbaum, E; Sbarra, C; Schaile, A D; Schaile, O; Scharf, F; Scharff-Hansen, P; Schieck, J; Schmitt, B; Schmitt, S; Schöning, A; Schörner-Sadenius, T; Schröder, M; Schumacher, M; Schwick, C; Scott, W G; Seuster, R; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Siroli, G P; Sittler, A; Skuja, A; Smith, A M; Snow, G A; Sobie, Randall J; Söldner-Rembold, S; Sproston, M; Stahl, A; Stephens, K; Steuerer, J; Stoll, K; Strom, D; Ströhmer, R; Stumpf, L; Tafirout, R; Talbot, S D; Tanaka, S; Taras, P; Tarem, S; Teuscher, R; Thiergen, M; Thomson, M A; Von Törne, E; Torrence, E; Towers, S; Trigger, I; Trócsányi, Z L; Tsur, E; Turcot, A S; Turner-Watson, M F; Van Kooten, R; Vannerem, P; Verzocchi, M; Vikas, P; Voss, H; Wäckerle, F; Wagner, A; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wermes, N; White, J S; Wilson, G W; Wilson, J A; Wyatt, T R; Yamashita, S; Yekutieli, G; Zacek, V; Zer-Zion, D
1999-01-01
The branching ratios of the decay of the tau lepton to five charged hadrons have been measured with the OPAL detector at LEP using data collected between 1991 and 1995 at e+e- centre-of-mass energies close to the Z resonance. The branching ratios are measured to be BR(tau- to 3h-2h+nutau) = 0.091+-0.014+-0.005% BR(tau- to 3h-2h+pi0nutau) = 0.027+-0.018+-0.007% where the first error is statistical and the second systematic.
Branching ratios for the decay of d{sup *}(2380)
Energy Technology Data Exchange (ETDEWEB)
Bashkanov, M. [University of Edinburgh, School of Physics and Astronomy, Edinburgh (United Kingdom); Eberhard-Karls-Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); University of Tuebingen, Kepler Center for Astro and Particle Physics, Tuebingen (Germany); Clement, H. [Eberhard-Karls-Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); University of Tuebingen, Kepler Center for Astro and Particle Physics, Tuebingen (Germany); Skorodko, T. [Tomsk State University, Department of Physics, Tomsk (Russian Federation)
2015-07-15
Based on measurements, the branching ratios for the decay of the recently discovered dibaryon resonance d{sup *}(2380) into two-pion production channels and into the np channel are evaluated. Possibilities for a decay into the isoscalar single-pion channel are discussed. Finally, the electromagnetic decay of d{sup *}(2380) is considered. (orig.)
A Measurement of the Tau Topological Branching Ratios
Abreu, P; Adye, T; Adzic, P; Albrecht, Z; Alderweireld, T; Alekseev, G D; Alemany, R; Allmendinger, T; Allport, P P; Almehed, S; Amaldi, Ugo; Amapane, N; Amato, S; Anashkin, E; Anassontzis, E G; Andersson, P; Andreazza, A; Andringa, S; Anjos, N; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Ballestrero, A; Bambade, P; Barão, F; Barbiellini, Guido; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Bellunato, T F; Belokopytov, Yu A; Belous, K S; Benekos, N C; Benvenuti, Alberto C; Bérat, C; Berggren, M; Berntzon, L; Bertrand, D; Besançon, M; Besson, N; Bilenky, S M; Bloch, D; Blom, H M; Bol, J L; Bonesini, M; Boonekamp, M; Booth, P S L; Borisov, G; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bowcock, T J V; Boyko, I; Bozovic, I; Bozzo, M; Bracko, M; Branchini, P; Brenner, R A; Brodet, E; Brückman, P; Brunet, J M; Bugge, L; Buschmann, P; Caccia, M; Calvi, M; Camporesi, T; Canale, V; Carena, F; Carroll, L; Caso, Carlo; Cattai, A; Cavallo, F R; Chapkin, M M; Charpentier, P; Checchia, P; Chelkov, G A; Chierici, R; Shlyapnikov, P; Chochula, P; Chorowicz, V; Chudoba, J; Chung, S H; Cieslik, K; Collins, P; Contri, R; Cosme, G; Cossutti, F; Costa, M; Crawley, H B; Crennell, D J; Croix, J; Cuevas-Maestro, J; Czellar, S; D'Hondt, J; Dalmau, J; Davenport, M; Da Silva, W; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Min, A; De Paula, L S; Dijkstra, H; Di Ciaccio, Lucia; Doroba, K; Dracos, M; Drees, J; Dris, M; Eigen, G; Ekelöf, T J C; Ellert, M; Elsing, M; Engel, J P; Espirito-Santo, M C; Fanourakis, G K; Fassouliotis, D; Feindt, Michael; Fernández, J; Ferrer, A; Ferrer-Ribas, E; Ferro, F; Firestone, A; Flagmeyer, U; Föth, H; Fokitis, E; Fontanelli, F; Franek, B J; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Gamba, D; Gamblin, S; Gandelman, M; García, C; Gaspar, C; Gaspar, M; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Geralis, T; Ghodbane, N; Glege, F; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; González-Caballero, I; Gopal, Gian P; Gorn, L; Guz, Yu; Gracco, Valerio; Grahl, J; Graziani, E; Grosdidier, G; Grzelak, K; Guy, J; Haag, C; Hahn, F; Hahn, S; Haider, S; Hajduk, Z; Hallgren, A; Hamacher, K; Hamilton, K; Hansen, J; Harris, F J; Haug, S; Hauler, F; Hedberg, V; Heising, S; Herquet, P; Herr, H; Hertz, O; Higón, E; Holmgren, Sven Olof; Holt, P J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Hughes, G J; Hultqvist, K; Jackson, J N; Jacobsson, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Jeans, D; Johansson, E K; Jonsson, P; Joram, C; Juillot, P; Jungermann, L; Kapusta, F; Karafasoulis, K; Katsanevas, S; Katsoufis, E C; Keränen, R; Kernel, G; Kersevan, Borut P; Khomenko, B A; Khovanskii, N N; Kiiskinen, A P; King, B J; Kinvig, A; Kjaer, N J; Klapp, O; Kluit, P M; Kokkinias, P; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kriznic, E; Krumshtein, Z; Kubinec, P; Kucewicz, W; Kucharczyk, M; Kurowska, J; Lamsa, J; Laugier, J P; Leder, Gerhard; Ledroit, F; Leinonen, L; Leisos, A; Leitner, R; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lethuillier, M; Libby, J; Liebig, W; Liko, D; Lipniacka, A; Lippi, I; Loken, J G; Lopes, J H; López, J M; López-Fernandez, R; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Mahon, J R; Maio, A; Malek, A; Maltezos, S; Malychev, V; Mandl, F; Marco, J; Marco, R; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martí i García, S; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, F; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; Merle, E; Meroni, C; Meyer, W T; Myagkov, A; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Moch, M; Mönig, K; Monge, M R; Montenegro, J; Moraes, D; Morettini, P; Morton, G; Müller, U; Münich, K; Mulders, M; Mundim, L M; Murray, W J; Myatt, Gerald; Myklebust, T; Nassiakou, M; Navarria, Francesco Luigi; Nawrocki, K; Negri, P; Némécek, S; Neufeld, N; Nicolaidou, R; Niezurawski, P; Nikolenko, M; Nomokonov, V P; Nygren, A; Oblakowska-Mucha, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Österberg, K; Ouraou, A; Oyanguren, A; Paganoni, M; Paiano, S; Pain, R; Paiva, R; Palacios, J; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Peralta, L; Perepelitsa, V F; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Ratoff, P N; Read, A L; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Rehn, J; Reid, D; Reinhardt, R; Renton, P B; Resvanis, L K; Richard, F; Rídky, J; Rinaudo, G; Ripp-Baudot, I; Romero, A; Ronchese, P; Rosenberg, E I; Rosinsky, P; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ruiz, A; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salmi, L; Salt, J; Sampsonidis, D; Sannino, M; Savoy-Navarro, Aurore; Schwanda, C; Schwemling, P; Schwering, B; Schwickerath, U; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Sekulin, R L; Sette, G; Shellard, R C; Siebel, M; Simard, L C; Simonetto, F; Sissakian, A N; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sokolov, A; Solovyanov, O; Sopczak, André; Sosnowski, R; Spassoff, Tz; Spiriti, E; Squarcia, S; Stanescu, C; Stanitzki, M; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Szumlak, T; Tabarelli de Fatis, T; Taffard, A C; Tegenfeldt, F; Terranova, F; Timmermans, J; Tinti, N; Tkatchev, L G; Tobin, M; Todorova-Nová, S; Tomé, B; Tortora, L; Tortosa, P; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Turluer, M L; Tyapkin, I A; Tyapkin, P; Tzamarias, S; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; Van der Velde, C; van Dam, P; Van den Boeck, W; Van Doninck, W K; Van Eldik, J; Van Lysebetten, A; Van Remortel, N; Van Vulpen, I B; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verdier, P; Verlato, M; Vertogradov, L S; Verzi, V; Vilanova, D; Vitale, L; Vlasov, E; Vodopyanov, A S; Voulgaris, G; Vrba, V; Wahlen, H; Washbrook, A J; Weiser, C; Wicke, D; Wickens, J H; Wilkinson, G R; Winter, M; Wolf, G; Yi, J; Yushchenko, O P; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zinchenko, A I; Zoller, P; Zumerle, G; Zupan, M
2001-01-01
Using data collected in the DELPHI detector at LEP-1, measurements of the inclusive tau branching ratios for decay modes containing one, three, or five charged particles have been performed, giving the following results: B_1 = B(\\tau^- -> (particle)^- \\geq 0pi^0 \\geq 0K^0 \
Theoretical update of the semileptonic branching ratio of B mesons
International Nuclear Information System (INIS)
We reconsider the prediction of the semileptonic branching ratio of B mesons, using a recent calculation of the radiative corrections with account for finite quark masses in nonleptonic decays and taking into account 1/mb2 corrections. For the semileptonic branching ratio we obtain BSL=(11.8±1.6)% using pole quark masses and BSL=(11.0±1.9)% using running anti M anti S quark masses. The uncertainty is dominated by unknown higher oder perturbative corrections. We conclude that the present accuracy of the theoretical analysis does not allow to state a significant disagreement with the experimental results. However, our re-analysis of the decay b→ccs yields an increase of (35±11)% due to next-to-leading order corrections including mass dependent terms, which further emphasizes the problem of the average charm quark content of the final state in B decays. (orig.)
Controlling the branching ratio of photodissociation using aligned molecules
DEFF Research Database (Denmark)
Larsen, J.J.; Wendt-Larsen, I.; Stapelfeldt, H.
1999-01-01
Using a sample of iodine molecules, aligned by a strong, linearly polarized laser pulse, we control the branching ratio of the I+I and I+I* photodissociation channels by a factor of 26. The control relies on selective photoexcitation of two potential curves that each correlate adiabatically with...... one of the product channels. The selectivity is achieved by irradiating the aligned molecules with light polarized parallel or perpendicular to the polarization axis of the alignment laser....
Measurement of the π+→e+ν branching ratio
International Nuclear Information System (INIS)
A measurement of the π+→e+ν branching ratio gives Rπeν=Γ(π→eν+π→eνγ)/Γ(π→μν +π→μνγ)=1.2265±0.0034(stat)±0.0044(sys)x10-4. This result is in agreement with standard model calculations and confirms the hypothesis of electron-muon universality at the 0.2% level
Measurement of the pi→eν branching ratio
International Nuclear Information System (INIS)
A measurement of the π→eν branching ratio using a NaI(Tl) spectrometer yields a value GAMMA((π→eν)+(π→eνγ))/ GAMMA((π→μν)+(π→μνγ)) = (1. 218 +- 0.014) x 10-4. The result is consistent with expectations of the standard electroweak theory incorporating electron-muon universality
Lifetimes, branching ratios, and transition probabilities in Co ii
Salih, S.; Lawler, J. E.; Whaling, W.
1985-01-01
The radiative lifetime of 14 levels in the z^5F, z^5D, and z^5G terms of Co ii have been measured with use of time-resolved laser fluorescence spectroscopy with a Co+-ion beam. Our lifetime values are shorter by 15–50 % than earlier results from beam-foil time-of-flight measurements. The lifetimes were converted to 41 individual transition probabilities with use of branching ratios measured on spectra recorded with the 1-m Fourier-transform spectrometer at the Kitt Peak National Observatory. ...
Measurement of the Λ→n+γ branching ratio
International Nuclear Information System (INIS)
The branching ratio for the Λ weak radiative decay has been measured to be B(Λ→n+γ)/(Λ→anything) =[1.78±0.24(stat)±0.160.14(syst)]x10-3. A low-energy kaon beam was used to produce the Λ hyperons via the reaction K-+p→Λ+π0 at rest. Photons from the signal channel and π0 decay were detected with a NaI(Tl) array. The final spectrum contains 287 events after background subtraction, an order of magnitude more events than from the only previous measurement
Measurement of the K+ --> pi+ nu nu branching ratio
Energy Technology Data Exchange (ETDEWEB)
Adler, S.; /Brookhaven; Anisimovsky, V.V.; /Moscow, INR; Aoki, M.; /TRIUMF; Ardebili, M.; /Princeton U.; Artamonov, A.V.; /Serpukhov, IHEP; Atiya, M.; /Brookhaven; Bassalleck, B.; /New Mexico U.; Bazarko, A.O.; /Princeton U.; Bhuyan, B.; /Brookhaven; Blackmore, E.W.; /TRIUMF; Bryman, D.A.; /British Columbia U. /Tsinghua U., Beijing /TRIUMF
2008-03-01
Experiment E949 at Brookhaven National Laboratory studied the rare decay K{sup +}-->pi{sup +} nu{ovr {nu}} and other processes with an exposure of 1.77 x 10{sup 12} k{sup +}'s. The data were analyzed using a blind analysis technique yielding one candidate event with an estimated background of 0.30 {+-} 0.03 events. Combining this result with the observation of two candidate events by the predecessor experiment E787 gave the branching ratio B(K{sup +}-->pi{sup +} nu{ovr {nu}}) = (1.47{sub -0.89}{sup +1.30}) x 10{sup -10}, consistent with the standard model prediction of (0.74 {+-} 0.20) x 10{sup -10}. This is a more detailed report of results previously published [V.V. Anisimovsky et al., Phys. Rev. Lett. 93, 031801 (2004)].
Branching ratios and properties of D-meson decays
Energy Technology Data Exchange (ETDEWEB)
Alvarez, M.P.; Calvino, F.; Crespo, J.M. (Universidad Autonoma de Barcelona (Spain)); Barate, R.; Burmeister, H.; Di Ciaccio, L.; Ferrer, A.; Giomataris, Y.; Pattison, B.; Treille, D.; Zolnierowski, Y. (European Organization for Nuclear Research, Geneva (Switzerland)); Bloch, D.; Engel, J.P.; Foucault, P.; Gerber, J.P.; Strub, R. (Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires); Bonamy, P.; Borgeaud, P.; David, M.; Lemoigne, Y.; Magneville, C.; Primout, M.; Villet, G. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Physique des Particules Elementaires); Burchell, M.; Cattaneo, M.; Dixon, J.; Duane, A.; Forty, R.W.; Seez, C.; Websdale, D.M. (Imperial Coll. of Science and Technology, London (UK). Blackett Lab.); Brunet, J.M.; Lefievre, B.; Poutot, D.; Triscos, P.; Tristram, G.; Volte, A. (College de France, 75 - Paris (France)); Almagne, B. d'
1991-04-01
Properties of D mesons produced in the photoproduction experiment NA14/2 at CERN are reported. The following ratios of branching fractions were measured: Br(D{sup 0}{yields}K{sup +}K{sup -})/Br(D{sup 0}{yields}K{sup -}{pi}{sup +})=0.16{plus minus}0.05, Br(D{sup 0}{yields}K{sup -}{pi}{sup +}{pi}{sup 0})/Br(D{sup 0}{yields}K{sup -}{pi}{sup +})=4.0{plus minus}0.9{plus minus}1.0, Br(D{sup 0}{yields}K{sup -}{pi}{sup +}{pi}{sup +}{pi}{sup -})/Br(D{sup 0}{yields}K{sup -}{pi}{sup +})=1.9{plus minus}0.25{plus minus}0.20. The D{sup 0}{yields}K{sup -}{pi}{sup +}{pi}{sup +}{pi}{sup -} decay was analysed and the contribution of resonant subprocesses found consistent with 1{rho}{sup 0} and 0.23 anti K{sup *0} per event. The angular distributions of D{sup 0}{yields}anti K{sup *0}{rho}{sup 0} showed parity violation and destructive interference between S- and D-waves. From a Dalitz-plot analysis of the decay D{sup +}{yields}K{sup -}{pi}{sup +}{pi}{sup +} the contribution from the quasi two-body decay D{sup +}{yields}anti K{sup *0}{pi}{sup +} was measured to be 0.14{plus minus}0.04{plus minus}0.04. (orig.).
Measurement of B -> D_s K pi branching ratios
Abe, K; Aihara, H; Arinstein, K; Aso, T; Aulchenko, V; Aushev, T; Aziz, T; Bahinipati, S; Bakich, A M; Balagura, V; Ban, Y; Banerjee, S; Barberio, E; Bay, A; Bedny, I; Belous, K S; Bhardwaj, V; Bitenc, U; Blyth, S; Bondar, A; Bozek, A; Bracko, M; Brodzicka, J; Browder, T E; Chang, M C; Chang, P; Chao, Y; Chen, A; Chen, K F; Chen, W T; Cheon, B G; Chiang, C C; Chistov, R; Cho, I S; Choi, S K; Choi, Y; Choi, Y K; Cole, S; Dalseno, J; Danilov, M; Das, A; Dash, M; Dragic, J; Drutskoy, A; Eidelman, S; Epifanov, D; Fratina, S; Fujii, H; Fujikawa, M; Gabyshev, N; Garmash, A; Go, A; Gokhroo, G; Goldenzweig, P; Golob, B; Grosse-Perdekamp, M; Guler, H; Ha, H; Haba, J; Hara, K; Hara, T; Hasegawa, Y; Hastings, N C; Hayasaka, K; Hayashii, H; Hazumi, M; Heffernan, D; Higuchi, T; Hinz, L; Hoedlmoser, H; Hokuue, T; Horii, Y; Hoshi, Y; Hoshina, K; Hou, S; Hou, W S; Hsiung, Y B; Hyun, H J; Igarashi, Y; Iijima, T; Ikado, K; Inami, K; Ishikawa, A; Ishino, H; Itoh, R; Iwabuchi, M; Iwasaki, M; Iwasaki, Y; Jacoby, C; Joshi, N J; Kaga, M; Kah, D H; Kaji, H; Kajiwara, S; Kakuno, H; Kang, J H; Kapusta, P; Kataoka, S U; Katayama, N; Kawai, H; Kawasaki, T; Kibayashi, A; Kichimi, H; Kim, H J; Kim, H O; Kim, J H; Kim, S K; Kim, Y J; Kinoshita, K; Korpar, S; Kozakai, Y; Krizan, P; Krokovny, P; Kumar, R; Kurihara, E; Kusaka, A; Kuzmin, A; Kwon, Y J; Lange, J S; Leder, G; Lee, J; Lee, J S; Lee, M J; Lee, S E; Lesiak, T; Li, J; Limosani, A; Lin, S W; Liu, Y; Liventsev, D; MacNaughton, J; Majumder, G; Mandl, F; Marlow, D; Matsumura, T; Matyja, A; McOnie, S; Medvedeva, T; Mikami, Y; Mitaroff, W A; Miyabayashi, K; Miyake, H; Miyata, H; Miyazaki, Y; Mizuk, R; Moloney, G R; Mori, T; Müller, J; Murakami, A; Nagamine, T; Nagasaka, Y; Nakahama, Y; Nakamura, I; Nakano, E; Nakao, M; Nakayama, H; Nakazawa, H; Natkaniec, Z; Neichi, K; Nishida, S; Nishimura, K; Nishio, Y; Nishizawa, I; Nitoh, O; Noguchi, S; Nozaki, T; Ogawa, A; Ogawa, S; Ohshima, T; Okuno, S; Olsen, S L; Ono, S; Ostrowicz, W; Ozaki, H; Pakhlov, P; Pakhlova, G; Palka, H; Park, C W; Park, H; Park, K S; Parslow, N; Peak, L S; Pernicka, M; Pestotnik, R; Peters, M; Piilonen, L E; Poluektov, A; Rorie, J; Rózanska, M; Sahoo, H; Sakai, Y; Sakamoto, H; Sakaue, H; Sarangi, T R; Satoyama, N; Sayeed, K; Schietinger, T; Schneider, O; Schonmeier, P; Schümann, J; Schwanda, C; Schwartz, A J; Seidl, R; Sekiya, A; Senyo, K; Sevior, M E; Shang, L; Shapkin, M; Shen, C P; Shibuya, H; Shinomiya, S; Shiu, J G; Shwartz, B; Singh, J B; Sokolov, A; Solovieva, E; Somov, A; Stanic, S; Staric, M; Stypula, J; Sugiyama, A; Sumisawa, K; Sumiyoshi, T; Suzuki, S; Suzuki, S Y; Tajima, O; Takasaki, F; Tamai, K; Tamura, N; Tanaka, M; Taniguchi, N; Taylor, G N; Teramoto, Y; Tikhomirov, I; Trabelsi, K; Tse, Y F; Tsuboyama, T; Uchida, K; Uchida, Y; Uehara, S; Ueno, K; Uglov, T; Unno, Y; Uno, S; Urquijo, P; Ushiroda, Y; Usov, Yu; Varner, G; Varvell, K E; Vervink, K; Villa, S; Vinokurova, A; Wang, C C; Wang, C H; Wang, J; Wang, M Z; Wang, P; Wang, X L; Watanabe, M; Watanabe, Y; Wedd, R; Wicht, J; Widhalm, L; Wiechczynski, J; Won, E; Yabsley, B D; Yamaguchi, A; Yamamoto, H; Yamaoka, M; Yamashita, Y; Yamauchi, M; Yuan, C Z; Yusa, Y; Zhang, C C; Zhang, L M; Zhang, Z P; Zhilich, V; Zhulanov, V; Zupanc, A; Zwahlen, N
2007-01-01
We report a measurement of the exclusive $B^+$ meson decay to the final state $D_s^- K^+\\pi^+$ using $520 \\times 10^{6} B\\bar{B}$ pairs collected near the $\\Upsilon(4S)$ resonance, with the Belle detector at the KEKB asymmetric-energy $e^+e^-$ collider. Using the $D_S^- \\to \\phi \\pi^-$ decay mode to reconstruct $D_s^-$ mesons, we obtain the branching fraction ${\\cal B}(B^+\\to D_s^-K^+\\pi^+)= (1.77^{+0.12}_{-0.12} {\\mathrm (stat)} \\pm 0.16 {\\mathrm (syst)} \\pm 0.23 {\\cal(B)})\\times 10^{-4}$. We also present preliminary results of a study of the two-body $D_sK$, $D_s\\pi$ and $K\\pi$ subsystems observed in this final state.
Tables of stark level transition probabilities and branching ratios in hydrogen-like atoms
Omidvar, K.
1980-01-01
The transition probabilities which are given in terms of n prime k prime and n k are tabulated. No additional summing or averaging is necessary. The electric quantum number k plays the role of the angular momentum quantum number l in the presence of an electric field. The branching ratios between stark levels are also tabulated. Necessary formulas for the transition probabilities and branching ratios are given. Symmetries are discussed and selection rules are given. Some disagreements for some branching ratios are found between the present calculation and the measurement of Mark and Wierl. The transition probability multiplied by the statistical weight of the initial state is called the static intensity J sub S, while the branching ratios are called the dynamic intensity J sub D.
The sensitivity of the Higgs boson branching ratios to the W boson width
Murray, William
2016-07-01
The Higgs boson branching ratio into vector bosons is sensitive to the decay widths of those vector bosons because they are produced with at least one boson significantly off-shell. Γ (H → VV) is approximately proportional to the product of the Higgs boson coupling and the vector boson width. ΓZ is well measured, but ΓW gives an uncertainty on Γ (H → WW) which is not negligible. The ratio of branching ratios, BR (H → WW) / BR (H → ZZ) measured by a combination of ATLAS and CMS at LHC is used herein to extract a width for the W boson of ΓW =1.8-0.3+0.4 GeV by assuming Standard Model couplings of the Higgs bosons. This dependence of the branching ratio on ΓW is not discussed in most Higgs boson coupling analyses.
The sensitivity of the Higgs boson branching ratios to the W boson width
Murray, William
2016-01-01
The Higgs boson branching ratio into vector bosons is sensitive to the decay widths of those vector bosons because they are produced with at least one boson significantly off-shell. Gamma(H to V V ) is approximately proportional to the product of the Higgs boson coupling and the vector boson width. Gamma Z is well known, but Gamma W gives an uncertainty on Gamma(H to W W ) which is not negligible. The ratio of branching ratios, BR(H to W W )/BR(H to ZZ) measured by a combination of ATLAS and CMS at LHC is used herein to extract a width for the W boson of Gamma W = 1.8+0.4-0.3 GeV by assuming Standard Model couplings of the Higgs bosons. This dependence of the branching ratio on Gamma W is not discussed in most Higgs boson coupling analyses.
Measurement of the super-allowed branching ratio of 22Mg
We propose to measure the super-allowed branching ratio and the half-life of $^{22}$Mg, one of the least well measured 0+$\\rightarrow$ 0+ transitions of the 14 nuclei used to determine V$_{ud}$ and to test the unitarity of the CKM matrix. We propose measurements which should allow to significantly improve the precision on the super-allowed branching ratio employing a precisely efficiency calibrated germanium detector and on the half-life. As no method exists to greatly (e.g. an order of magnitude) improve on previous results, the branching ratio and the half-life have to be measured with independent methods and in independent experiments several times.
Measurement of the super-allowed branching ratio of $^{10}$C
We propose to measure the supper-allowed branching ratio of $^{10}$C, the lightest of all nuclei decaying by a 0$^+ - 0^+$ transition. The light nuclei have a much stronger impact on limits of physics beyond the standard model than heavier nuclei. We propose a measurement which should reach a precision similar to the two latest measurements, however, with a different method employing a precisely efficiency calibrated germanium detector. As no method exists to greatly improve on previous results, the branching ratio has to be measured with independent methods.
A measurement of the branching ratio Σ+→rhoγ/Σ+→rhoπ0
International Nuclear Information System (INIS)
In an experiment performed in the CERN SPS hyperon beam a value for the branching ratio, Σ+→rhoγ/Σ+→rhoπ0 of (2.46 sub(-0.35)sup(+0.30))x10-3, has been obtained corresponding to a branching ratio Σ+→rhoγ/Σ+→ all of (1.27 sub(-0.18)sup(+0.16))x10-3. This result is discussed in the context of present understanding of hyperon radiative decays. (author)
Branching ratios of B→DsK decays in perturbative QCD approach
International Nuclear Information System (INIS)
The rare decays B0→Ds-K+ and B+→Ds+K0 can occur only via annihilation type diagrams in the standard model. We calculate these decays in the perturbative QCD approach. We found that the calculated branching ratio of B0→Ds-K+ agreed with the data which had been observed in the KEK and SLAC B factories. The decay B+→Ds+K0 has a very small branching ratio at O(10-8), due to the suppression from the CKM matrix elements vertical stroke Vub*Vcd vertical stroke. (orig.)
Measurement fo the mean semi-muonic branching ratio of B hadrons produced at PETRA
Energy Technology Data Exchange (ETDEWEB)
Bartel, W.; Becker, L.; Cords, D.; Felst, R.; Haidt, D.; Knies, G.; Krehbiel, H.; Meinke, R.; Naroska, B.; Olsson, J.; Schmidt, D.; Steffen, P.; Laurikainen, P.; Magnussen, N.; Schmidt, D.; Dietrich, G.; Hagemann, J.; Heinzelmann, G.; Kado, H.; Kawagoe, K.; Kleinwort, C.; Kuhlen, M.; Petersen, A.; Ramcke, R.; Schneekloth, U.; Weber, G.; Ambrus, K.; Bethke, S.; Dieckmann, A.; Elsen, E.; Heintze, J.; Hellenbrand, K.H.; Komamiya, S.; Krogh, J. von, Lennert, P.; Matsumura, H.; Rieseberg, H.; Spitzer, J.; Wagner, A.; Bowdery, C.K.; Finch, A.J.; Foster, F.; Hughes, G.; Nye, J.; Allison, J.; Baines, J.; Ball, A.H.; Barlow, R.J.; Chrin, J.; Duerdoth, I.P.; Greenshaw, T.; Hill, P.; Loebinger, F.K.; Macbeth, A.A.; McCann, H.; Mills, H.E.; Murphy, P.G.; Stephens, K.; Warming, P.; Glasser, R.G.; Skard, J.A.J.; Wagner, S.R.; Zorn, G.T.; Cartwright, S.L.; Clarke, D.; Marshall, R.; Middleton, R.P.; Kawamoto, T.; Kobayashi, T.; Takeda, H.; Takeshita, T.; Yamada, S.; JADE Collaboration.
1985-11-21
A measurement has been made of the mean semi-muonic branching ratio for the decay of b-flavoured hadrons produced in e e annihilation events at PETRA. The result, (11.4+-1.8+-2.5)%, agrees well with other recent measurements and is consistent with the predictions of the spectator model with QCD and non-spectator corrections. (orig.).
Measurement of the η->π+π-e+e- decay branching ratio
International Nuclear Information System (INIS)
The reaction pd->He3η at threshold was used to provide a clean source of η mesons for decay studies with the WASA detector at CELSIUS. The branching ratio of the decay η->π+π-e+e- is measured to be (4.3+/-1.3+/-0.4)x10-4
Iterative Precision Measurement of Branching Ratios Applied to 5P states in 88Sr+
Zhang, Helena; Low, Guang Hao; Rines, Richard; Stuart, Jules; Wu, Tailin; Chuang, Isaac
2016-01-01
We report on a method for measuring the branching ratios of dipole transitions of trapped atomic ions by performing nested sequences of population inversions. This scheme is broadly applicable and does not use ultrafast pulsed or narrow linewidth lasers. It is simple to perform and insensitive to experimental variables such as laser and magnetic field noise as well as ion heating. To demonstrate its effectiveness, we make the most accurate measurements thus far of the branching ratios of both 5P1/2 and 5P3/2 states in 88Sr+ with sub-1% uncertainties. We measure 17.175(27) for the branching ratio of 5P1/2-5S1/2, 15.845(71) for 5P3/2-5S1/2, and 0.05609(21) for 5P3/2-4D5/2, ten- fold and thirty-fold improvements in precision for 5P1/2 and 5P3/2 branching ratios respectively over the best previous experimental values.
Product Branching Ratios of the Reaction of CO with H3+ and H2D+
International Nuclear Information System (INIS)
The reaction of CO with H3+ and H2D+ has been studied to investigate thermal rate coefficients and product branching ratios in the temperature range (20, 350) K, by using a direct ab initio molecular dynamics method. In trajectory simulations, the energies and forces are calculated using a scaling all correlation second-order Moeller-Plesset perturbation theory (SAC-MP2) method with the correlation consistent polarized valence triplet-zeta basis (cc-pVTZ). Results show that total thermal rate coefficients for both the CO + H3+and the CO + H2D+ reactions have a weakly positive temperature dependence. At room temperature, the rate coefficients are predicted to be (1.42 ± 0.03) x 10-9 cm3 molecule-1 s-1 with a product branching ratio of (HOC+)/(HCO+) = 0.36 ± 0.01 for the CO + H3+ reaction, and (1.26 ± 0.03) x 10-9 cm3 molecule-1 s-1 with the product branching ratios: 0.37 ± 0.01 (((HOC+) + (DOC+))/((HCO+) + (DOC+))), 0.54 ± 0.02 ((DCO+)/(HCO+)), and 0.49 ± 0.02 ((DOC+)/(HOC+)) for CO + H2D+. The product branching ratios have a noticeable temperature dependence as well as a pronounced isotopic effect for the H/DOC+ product channel.
New Measurement of the π → eν branching ratio
International Nuclear Information System (INIS)
A new measurement of the π → eν branching ratio yields GAMMA(π→eν + π→eνγ) / GAMMA(π→μν + π→γνμ) = (1.218 +- 0.014) x 10-4. The measured value is in good agreement with the standard model prediction incorporating electron-muon universality
New measurement of the π→eν branching ratio
International Nuclear Information System (INIS)
A new measurement of the π→eν branching ratio yields GAMMA(π→eν+π→eνγ)/GAMMA(π→μν+π→μν γ) = (1.218 +- 0.014) x 10/sup -4./ The measured value is in good agreement with the standard-model prediction incorporating electron-muon universality
High-precision branching-ratio measurement for the superallowed β+ emitter 74Rb
Dunlop, R.; Ball, G. C.; Leslie, J. R.; Svensson, C. E.; Towner, I. S.; Andreoiu, C.; Chagnon-Lessard, S.; Chester, A.; Cross, D. S.; Finlay, P.; Garnsworthy, A. B.; Garrett, P. E.; Glister, J.; Hackman, G.; Hadinia, B.; Leach, K. G.; Rand, E. T.; Starosta, K.; Tardiff, E. R.; Triambak, S.; Williams, S. J.; Wong, J.; Yates, S. W.; Zganjar, E. F.
2013-10-01
A high-precision branching-ratio measurement for the superallowed β+ decay of 74Rb was performed at the TRIUMF Isotope Separator and Accelerator (ISAC) radioactive ion-beam facility. The scintillating electron-positron tagging array (SCEPTAR), composed of 10 thin plastic scintillators, was used to detect the emitted β particles; the 8π spectrometer, an array of 20 Compton-suppressed HPGe detectors, was used for detecting γ rays that were emitted following Gamow-Teller and nonanalog Fermi β+ decays of 74Rb; and the Pentagonal Array of Conversion Electron Spectrometers (PACES), an array of 5 Si(Li) detectors, was employed for measuring β-delayed conversion electrons. Twenty-three excited states were identified in 74Kr following 8.241(4)×108 detected 74Rb β decays. A total of 58 γ-ray and electron transitions were placed in the decay scheme, allowing the superallowed branching ratio to be determined as B0=99.545(31)%. Combined with previous half-life and Q-value measurements, the superallowed branching ratio measured in this work leads to a superallowed ft value of 3082.8(65) s. Comparisons between this superallowed ft value and the world-average-corrected Ft¯ value, as well as the nonanalog Fermi branching ratios determined in this work, provide guidance for theoretical models of the isospin-symmetry-breaking corrections in this mass region.
Estimates of the branching ratios for hadronic decays of heavy resonances using quark combinatorics
International Nuclear Information System (INIS)
The quark combinatorics method [V. V. Anisovich et al., Nucl. Phys. B55, 455 (1973); J. D. Bjorken et al., Phys. Rev. D9, 1449 (1974)] at finite energies [V. N. Guman et al., Nucl. Phys. B99, 532 (1975), S. A. Voloshin et al., Sov. J. Nucl. Phys. 35, 586, 738 (1982)] is used to estimate the branching ratios for hadronic decays of the heavy resonances J/psi, D+, D0, F+, and Λ+/sub c/. The results are compared to the experimental data on the known hadronic decay channels of the J/psi, D+, and D0 mesons. The branching ratios for the hadronic decays of the F+ meson and the Λ+/sub c/ hyperon are predicted
An OPAL measurement of the τ- → e-/-bareντ Branching Ratio
International Nuclear Information System (INIS)
The branching ratio for the decay τ- → e-/-bareντ has been measured using data collected by the OPAL experiment at LEP. In total 33073 τ- → e-/-bareντ candidates were identified from a sample of 186197 selected τ decays, giving a branching ratio of Be (17.81 ± 0.09 (stat) ± 0.06 (syst))%. This result is combined with other electroweak measurements to test e - μ and μ - τ universality in charged-current weak interactions at the level of 0.5%. Additionally, a value of the strong coupling constant αs (m2τ) has been extracted from Be and evolved to the Zo mass scale to give αs (m2Z) = 0.1204 ± 0.0011 (exp)+0.0021-0.0019 (theory)
Measurement of the branching ratio for beta-delayed alpha decay of 16N
Refsgaard, J; Dijck, E A; Fynbo, H O U; Lund, M V; Portela, M N; Raabe, R; Randisi, G; Renzi, F; Sambi, S; Sytema, A; Willmann, L; Wilschut, H W
2015-01-01
While the 12C(a,g)16O reaction plays a central role in nuclear astrophysics, the cross section at energies relevant to hydrostatic helium burning is too small to be directly measured in the laboratory. The beta-delayed alpha spectrum of 16N can be used to constrain the extrapolation of the E1 component of the S-factor; however, with this approach the resulting S-factor becomes strongly correlated with the assumed beta-alpha branching ratio. We have remeasured the beta-alpha branching ratio by implanting 16N ions in a segmented Si detector and counting the number of beta-alpha decays relative to the number of implantations. Our result, 1.49(5)e-5, represents a 25% increase compared to the accepted value and implies an increase of 14% in the extrapolated S-factor.
Study on branching ratios and direct CP asymmetries of D → PV decays
International Nuclear Information System (INIS)
We study the non-leptonic two-body decays of D mesons decaying into one pseudoscalar meson (P) and one vector meson (V) in the factorization-assisted topological-amplitude approach. In this approach, the decay amplitudes are factorized into two parts, the short-distance contribution (Wilson coefficients) and the long-distance contribution (hadronic matrix elements). We predict the branching ratios of D → PV decays using a global fit with the non-perturbative parameters. Our results agree well with the experimental data. We also predict the direct CP asymmetries by combining short-distance dynamics associated with penguin operators and long-distance hadronic matrix elements determined by branching ratios. The large asymmetries in D+ → π+ρ0 and Ds+ → K+φ may be measurable in the LHCb and future Belle II experiments. (author)
Branching ratio change in K- absorption at rest and the nature of the Λ(1405)
International Nuclear Information System (INIS)
We investigate in-medium corrections to the branching ratio in K- absorption at rest and their effect on the charged pion π± spectrum. The in-medium corrections are due to Pauli blocking, which arises if the Λ(1405) is assumed to be a bar K-nucleon bound state and leads to a density- and momentum-dependent mass shift of the Λ(1405). Requiring that the optical potential and the branching ratio are derived from the same elementary T matrix, we find that the in-medium corrected, density-dependent T matrix gives a better description of the K- absorption reaction than the free, density-independent one. This result suggests that the dominant component of the Λ(1405) wave function is the bar KN bound state. copyright 1997 The American Physical Society
Hendricks, R J; Truppe, S; Sauer, B E; Tarbutt, M R
2014-01-01
The simple structure of the BH molecule makes it an excellent candidate for direct laser cooling. We measure the branching ratios for the decay of the ${\\rm A}^{1}\\Pi (v'=0)$ state to vibrational levels of the ground state, ${\\rm X}^{1}\\Sigma^{+}$, and find that they are exceedingly favourable for laser cooling. We verify that the branching ratio for the spin-forbidden transition to the intermediate ${\\rm a}^{3}\\Pi$ state is inconsequentially small. We measure the frequency of the lowest rotational transition of the X state, and the hyperfine structure in the relevant levels of both the X and A states, and determine the nuclear electric quadrupole and magnetic dipole coupling constants. Our results show that, with a relatively simple laser cooling scheme, a Zeeman slower and magneto-optical trap can be used to cool, slow and trap BH molecules.
Vibrational branching ratios and hyperfine structure of BH and its suitability for laser cooling
Directory of Open Access Journals (Sweden)
Richard eHendricks
2014-08-01
Full Text Available The simple structure of the BH molecule makes it an excellent candidate for direct laser cooling. We measure the branching ratios for the decay of the A^{1}Pi (v'=0 state to vibrational levels of the ground state, X^{1}Sigma^{+}, and find that they are exceedingly favourable for laser cooling. We verify that the branching ratio for the spin-forbidden transition to the intermediate a^{3}Pi state is inconsequentially small. We measure the frequency of the lowest rotational transition of the X state, and the hyperfine structure in the relevant levels of both the X and A states, and determine the nuclear electric quadrupole and magnetic dipole coupling constants. Our results show that, with a relatively simple laser cooling scheme, a Zeeman slower and magneto-optical trap can be used to cool, slow and trap BH molecules.
New physics upper bound on the branching ratio of B_s --> l+ l-
Alok, A K; Alok, Ashutosh Kumar
2005-01-01
We consider new physics interactions for b --> s l+ l- of the form vector/axial-vector. We derive the upper limit on the branching ratio for the processes B_s --> l+ l-, where l=e or mu, subject to the current experimental bounds on related processes, B --> K l+ l- and B --> K* l+ l-. We obtain 3 sigma upper bounds B(B_s --> e+ e-) mu+ mu-) < 5*10^(-9).
Measurement of the D semileptonic branching ratio in e+e- annihilation at the psi'' (3770)
International Nuclear Information System (INIS)
We have observed the psi'' resonance in the cross section for e+e- → hadrons at E/sub c.m./ = 3770 +- 0.6 MeV, of total width GAMMA = 24 +- 5 MeV and partial width to electron pairs GAMMA/sub ee/ = 180 +- 60 eV. The cross section for hadronic events which contain anomalous electron provides both unambiguous evidence of D semileptonic decays and a branching ratio measurements of (11 +- 2) %
Improved measurement of the K+->pi+nu(nu)over-bar branching ratio
Anisimovsky, V. V.; Artamonov, A. V.; Bassalleck, B.; Bhuyan, B.; Blackmore, E. W.; Bryman, D. A.; Chen, S.; Chiang, I. H.; Christidi, I. A.; Cooper, P.S.; Diwan, M. V.; Frank, J. S.; T. Fujiwara; Hu, J; Ivashkin, A. P.
2004-01-01
An additional event near the upper kinematic limit for K+-->pi(+)nu(nu) over bar has been observed by experiment E949 at Brookhaven National Laboratory. Combining previously reported and new data, the branching ratio is B(K+-->pi(+)nu(nu) over bar)=(1.47(-0.89)(+1.30))x10(-10) based on three events observed in the pion momentum region 211
An upper limit on the branching ratio for $\\tau$ decays into seven charged particles
Ackerstaff, K; Allison, J; Altekamp, N; Anderson, K J; Anderson, S; Arcelli, S; Asai, S; Axen, D A; Azuelos, Georges; Ball, A H; Barberio, E; Barlow, R J; Bartoldus, R; Batley, J Richard; Baumann, S; Bechtluft, J; Beeston, C; Behnke, T; Bell, A N; Bell, K W; Bella, G; Bentvelsen, Stanislaus Cornelius Maria; Berlich, P; Bethke, Siegfried; Biebel, O; Biguzzi, A; Bird, S D; Blobel, Volker; Bloodworth, Ian J; Bloomer, J E; Bobinski, M; Bock, P; Bonacorsi, D; Boutemeur, M; Bouwens, B T; Braibant, S; Brigliadori, L; Brown, R M; Burckhart, Helfried J; Burgard, C; Bürgin, R; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Chrisman, D; Clarke, P E L; Cohen, I; Conboy, J E; Cooke, O C; Cuffiani, M; Dado, S; Dallapiccola, C; Dallavalle, G M; De Jong, S; del Pozo, L A; Desch, Klaus; Dixit, M S; do Couto e Silva, E; Doucet, M; Duchovni, E; Duckeck, G; Duerdoth, I P; Eatough, D; Edwards, J E G; Estabrooks, P G; Evans, H G; Evans, M; Fabbri, Franco Luigi; Fanti, M; Faust, A A; Fiedler, F; Fierro, M; Fischer, H M; Fleck, I; Folman, R; Fong, D G; Foucher, M; Fürtjes, A; Futyan, D I; Gagnon, P; Gary, J W; Gascon, J; Gascon-Shotkin, S M; Geddes, N I; Geich-Gimbel, C; Geralis, T; Giacomelli, G; Giacomelli, P; Giacomelli, R; Gibson, V; Gibson, W R; Gingrich, D M; Glenzinski, D A; Goldberg, J; Goodrick, M J; Gorn, W; Grandi, C; Gross, E; Grunhaus, Jacob; Gruwé, M; Hajdu, C; Hanson, G G; Hansroul, M; Hapke, M; Hargrove, C K; Hart, P A; Hartmann, C; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herndon, M; Herten, G; Heuer, R D; Hildreth, M D; Hill, J C; Hillier, S J; Hilse, T; Hobson, P R; Homer, R James; Honma, A K; Horváth, D; Howard, R; Hutchcroft, D E; Igo-Kemenes, P; Imrie, D C; Ingram, M R; Ishii, K; Jawahery, A; Jeffreys, P W; Jeremie, H; Jimack, Martin Paul; Joly, A; Jones, C R; Jones, G; Jones, M; Jost, U; Jovanovic, P; Junk, T R; Karlen, D A; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Kirk, J; Klier, A; Kluth, S; Kobayashi, T; Kobel, M; Koetke, D S; Kokott, T P; Kolrep, M; Komamiya, S; Kress, T; Krieger, P; Von Krogh, J; Kyberd, P; Lafferty, G D; Lahmann, R; Lai, W P; Lanske, D; Lauber, J; Lautenschlager, S R; Layter, J G; Lazic, D; Lee, A M; Lefebvre, E; Lellouch, Daniel; Letts, J; Levinson, L; Lloyd, S L; Loebinger, F K; Long, G D; Losty, Michael J; Ludwig, J; Macchiolo, A; MacPherson, A L; Mannelli, M; Marcellini, S; Markus, C; Martin, A J; Martin, J P; Martínez, G; Mashimo, T; Mättig, P; McDonald, W J; McKenna, J A; McKigney, E A; McMahon, T J; McPherson, R A; Meijers, F; Menke, S; Merritt, F S; Mes, H; Meyer, J; Michelini, Aldo; Mikenberg, G; Miller, D J; Mincer, A; Mir, R; Mohr, W; Montanari, A; Mori, T; Morii, M; Müller, U; Nagai, K; Nakamura, I; Neal, H A; Nellen, B; Nisius, R; O'Neale, S W; Oakham, F G; Odorici, F; Ögren, H O; Oldershaw, N J; Oreglia, M J; Orito, S; Pálinkás, J; Pásztor, G; Pater, J R; Patrick, G N; Patt, J; Pearce, M J; Petzold, S; Pfeifenschneider, P; Pilcher, J E; Pinfold, James L; Plane, D E; Poffenberger, P R; Poli, B; Posthaus, A; Przysiezniak, H; Rees, D L; Rigby, D; Robertson, S; Robins, S A; Rodning, N L; Roney, J M; Rooke, A M; Ros, E; Rossi, A M; Rosvick, M; Routenburg, P; Rozen, Y; Runge, K; Runólfsson, O; Ruppel, U; Rust, D R; Rylko, R; Sachs, K; Saeki, T; Sarkisyan-Grinbaum, E; Sbarra, C; Schaile, A D; Schaile, O; Scharf, F; Scharff-Hansen, P; Schenk, P; Schieck, J; Schleper, P; Schmitt, B; Schmitt, S; Schöning, A; Schröder, M; Schultz-Coulon, H C; Schulz, M; Schumacher, M; Schwick, C; Scott, W G; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Siroli, G P; Sittler, A; Skillman, A; Skuja, A; Smith, A M; Snow, G A; Sobie, Randall J; Söldner-Rembold, S; Springer, R W; Sproston, M; Stephens, K; Steuerer, J; Stockhausen, B; Stoll, K; Strom, D; Szymanski, P; Tafirout, R; Talbot, S D; Tanaka, S; Taras, P; Tarem, S; Teuscher, R; Thiergen, M; Thomson, M A; Von Törne, E; Towers, S; Trigger, I; Tsur, E; Turcot, A S; Turner-Watson, M F; Utzat, P; Van Kooten, R; Verzocchi, M; Vikas, P; Vokurka, E H; Voss, H; Wäckerle, F; Wagner, A; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wermes, N; White, J S; Wilkens, B; Wilson, G W; Wilson, J A; Wolf, G; Wyatt, T R; Yamashita, S; Yekutieli, G; Zacek, V; Zer-Zion, D
1997-01-01
We have searched for decays of the tau lepton into seven or more charged particles, using data collected with the OPAL detector from 1990 to 1995 in e^+e^- collisions at sqrt(s) ~ M_Z. No candidate events were found and an upper limit on the branching ratio for tau decays into seven charged particles of 1.8 x 10^-5 at the 95% confidence level was determined.
International Nuclear Information System (INIS)
The b quark semi-leptonic branching ratios are measured using the hadronic events containing one or two leptons. 950 000 Z0 hadronic disintegrations were obtained in the DELPHI experiment during 1991-1992. Thus one of the elements of the CKM matrix may be determined. Using information contained in hadron jets with two opposite-sign leptons, the cascade ratios of the beauty hadron semi-leptonic disintegrations are evaluated. The baryon production rate in beauty events is analyzed, and the charmed Lambda baryon production cross-section is measured. 93 figs., 23 tabs., 75 refs
International Nuclear Information System (INIS)
A code system CBZ is being developed in Hokkaido University. In order to validate it, PIE data, which are nuclide composition data of a spent fuel, have been analyzed with CBZ. The validity is evaluated as ratios of the calculation values to the experimental ones (C/E ratios). Differences between experimental values and calculation ones are smaller than 20% except some nuclides. Thus this code system is validated. Additionally, we evaluate influence of change of (n,γ) branching ratio on inventories of fission products and actinides. As a result, branching ratios of Sb-121, Pm-147, and Am-241 influence inventories of several nuclides. We perform PIE analysis using different (n,γ) branching ratio data from the ORIGEN-2 library, JNDC-Ver.2, and JEFF-3.1A, and find that differences in (n,γ) branching ratios between different nuclear libraries have a non-negligible influence on inventories of several nuclides. (author)
Observed branching ratios of alpha to fission fragments of Cf252 using CR-39
International Nuclear Information System (INIS)
There has been a rapid growth in the application of SSNTD to the study of nuclear phenomena in the recent past. The considerable ease introduced in recording the signature of heavy ions in the presence of alpha particles has made them particularly suitable for the study of spontaneous fission of transuranic elements. It is the object of the present study to explore the response of CR-39 for the determination of the branching ratios of alpha to fission fragments of Cf252 at the end of almost one and four half-life periods for alpha decay. The results more or less confirm the expected values
New physics upper bound on the branching ratio of B_s --> l+ l-
Alok, Ashutosh Kumar; Sankar, S. Uma
2005-01-01
We consider the most general new physics effective Lagrangian for b --> s l+ l-. We derive the upper limit on the branching ratio for the processes B_s --> l+ l- where l=e, mu, subject to the current experimental bounds on related processes, B --> K l+ l- and B --> K* l+ l-. If the new physics interactions are of vector/axial-vector form, the present measured rates for B --> (K,K*) l+ l- constrain B(B_s --> l+ l-) to be of the same order of magnitude as their respective Standard Model predict...
New physics upper bound on the branching ratio of B_s --> l+ l- gamma
Alok, A K; Alok, Ashutosh Kumar
2006-01-01
We consider the effect of new physics on the branching ratio of B_s --> l+ l- gamma where l = e, mu. If the new physics is of the form scalar/pseudoscalar, then it makes no contribution to B_s --> l+ l- gamma, unlike in the case of B_s --> l+ l-, where it can potentially make a very large contribution. New Physics in the form of vector/axial-vector operators cannot lead to large enhancement of B_s --> l+ l- gamma much beyond the Standard Model expectation. But new physics in the form of tensor/pseudo-tensor operators can.
New physics upper bound on the branching ratio of B_s --> l+ l- gamma
Alok, Ashutosh Kumar; Sankar, S. Uma
2006-01-01
We consider the effect of new physics on the branching ratio of B_s--> l+ l- gamma where l=e,mu. If the new physics is of the form scalar/pseudoscalar, then it makes no contribution to B_s--> l+ l- gamma, unlike in the case of B_s--> l+ l-, where it can potentially make a very large contribution. If the new physics is in the form of vector/axial-vector operators, then present data on B-->(K,K^*)l+ l-, does not allow a large enhancement for B_s--> l+ l- gamma. If the new physics is in the form...
D-T gamma-to-neutron branching ratio determined from inertial confinement fusion plasmas
International Nuclear Information System (INIS)
A new deuterium-tritium (D-T) fusion gamma-to-neutron branching ratio [3H(d,γ)5He/3H(d,n)4He] value of (4.2 ± 2.0) × 10−5 was recently reported by this group [Y. Kim et al. Phys. Rev. C (submitted)]. This measurement, conducted at the OMEGA laser facility located at the University of Rochester, was made for the first time using inertial confinement fusion (ICF) plasmas. Neutron-induced backgrounds are significantly reduced in these experiments as compared to traditional beam-target accelerator-based experiments due to the short pulse nature of ICF implosions and the use of gas Cherenkov γ-ray detectors with fast temporal responses and inherent energy thresholds. It is expected that this ICF-based measurement will help resolve the large and long-standing inconsistencies in previously reported accelerator-based values, which vary by a factor of approximately 30. The reported value at ICF conditions was determined by averaging the results of two methods: (1) a direct measurement of ICF D-T γ-ray and neutron emissions using absolutely calibrated detectors and (2) a separate cross-calibration against the better known D-3He gamma-to-proton branching ratio [3He(d, γ)5Li/3He(d,p)4He]. Here we include a detailed explanation of these results, and introduce as a corroborative method an in-situγ-ray detector calibration using neutron-induced γ-rays. Also, by extending the established techniques to two additional series of implosions with significantly different ion temperatures, we test the branching ratio dependence on ion temperature. The data show a D-T branching ratio is nearly constant over the temperature range 2–9 keV. These studies motivate further investigation into the 5He and 5Li systems resulting from D-T and D-3He fusion, respectively, and result in improved ICF γ-ray reaction history diagnosis at the National Ignition Facility.
Improved Measurement of the π→eν Branching Ratio.
Aguilar-Arevalo, A; Aoki, M; Blecher, M; Britton, D I; Bryman, D A; Vom Bruch, D; Chen, S; Comfort, J; Ding, M; Doria, L; Cuen-Rochin, S; Gumplinger, P; Hussein, A; Igarashi, Y; Ito, S; Kettell, S H; Kurchaninov, L; Littenberg, L S; Malbrunot, C; Mischke, R E; Numao, T; Protopopescu, D; Sher, A; Sullivan, T; Vavilov, D; Yamada, K
2015-08-14
A new measurement of the branching ratio R_{e/μ}=Γ(π^{+}→e^{+}ν+π^{+}→e^{+}νγ)/Γ(π^{+}→μ^{+}ν+π^{+}→μ^{+}νγ) resulted in R_{e/μ}^{exp}=[1.2344±0.0023(stat)±0.0019(syst)]×10^{-4}. This is in agreement with the standard model prediction and improves the test of electron-muon universality to the level of 0.1%. PMID:26317713
Okubo-Zweig-Iizuka-rule violation and $B\\to \\eta^{(\\prime)}K$ branching ratios
Hsu, Jen-Feng; Li, Hsiang-nan
2007-01-01
We show that few-percent Okubo-Zweig-Iizuka-rule violating effects in the quark-flavor basis for the $\\eta$-$\\eta'$ mixing can enhance the chiral scale associated with the $\\eta_q$ meson few times. This enhancement is sufficient for accommodating the dramatically different data of the $B\\to\\eta^{\\prime} K$ and $B\\to\\eta K$ branching ratios. We comment on other proposals for resolving this problem, including flavor-singlet contributions, axial U(1) anomaly, and nonperturbative charming penguins. Discrimination of the above proposals by means of the $B\\to\\eta^{(\\prime)}\\ell\
Branching Ratios of a Decay for Nuclei near Deformed Shell Closures
Institute of Scientific and Technical Information of China (English)
WANG Yan-Zhao; ZHANG Hong-Fei; DONG Jian-Min; SU Xin-Ning; ZUO Wei; LI Jun-Qing
2009-01-01
The generalized liquid drop model (GLDM) is extended to the region around deformed shell closure 270Hs by taking into account the excitation energy EI+ of the residual daughter nucleus and the centrifugal potential energy Vcen(r).The branching ratios of a decays from the ground state of a parent nucleus to the ground state 0+ of its deformed daughter nucleus and to the first excited state 2+ are calculated in the framework of the GLDM.The results support the proposal that a measurement of α spectroscopy is a feasible method to extract information on nuclear deformation of superheavy nuclei around the deformed nucleus 270 Hs.
Total width and leptonic branching ratio of the UPSILON(9.46)
International Nuclear Information System (INIS)
Using the LENA detector at the DORIS e+e- storage ring, we have measured the hadronic cross section and the μ-pair decay branching ratio of the UPSILON(9.46) resonance. We obtain GAMMA/sub e/e=1.23 +- 0.10( +- 0.14) keV, B/sub mumu/=3.5 +- 1.4( +- 0.4)%, and GAMMA/sub tot/=35+25/sub -/10(+9/sub -/7) keV; the first error number gives the statistical uncertainty. The numbers in parentheses represent systematic errors arising from the uncertainty in the total hadronic cross section
DEFF Research Database (Denmark)
Henriksen, Niels Engholm; Møller, Klaus Braagaard; Engel, Volker
2005-01-01
With HOD initially in its vibrational ground state, we present a new detailed interpretation of the OD/OH branching ratio (similar to 3) in the photoinduced process D+OH H+OD, in the first absorption band. Using semiclassical arguments, we show that the branching ratio has little to do with the...... initial distribution of configurations, but the initial momentum distribution plays a key role in determination of the branching ratio. The formation of D+OH arises from initial situations where OD is stretching, and it stretches faster than OH, whereas all other motions lead to H+OD. This picture is...
Branching ratios, radiative lifetimes, and transition dipole moments for tantalum nitride, TaN
Bouchard, Jacob L.; Steimle, Timothy; Kokkin, Damian L.; Sharfi, David J.; Mawhorter, Richard J.
2016-07-01
The dispersed laser induced fluorescence resulting from excitation in the regions of the [17.58]0+ - X1Σ+ (0, 0), [18.42]0+ - X1Σ+ (0, 0), [19.22]1 - X1Σ+ (0, 0), and [19.40]1 - X1Σ+ (0, 0) bands of tantalum nitride, 181TaN, have been recorded and analyzed. The branching ratios and radiative lifetimes for the [17.58]0+(v = 0), [18.42]0+(v = 0), [19.22]1+(v = 0), and [19.40]1(v = 0) states have been determined. From these values the transition dipole moments for visible bands are determined. Vibrational spacing in the X1Σ+ state and the spin-orbit splitting of the a3Δ state are measured and compared with predicted values. The dispersed fluorescence spectra and determined branching ratios reveal that the most effective mechanism for populating the a3Δ1 (J = 1, v = 0) state, which will be used in future P- and T-violation measurements, is via excitation of the [18.42]0+ - X1Σ+ (0, 0) band followed by subsequent spontaneous or stimulated emission.
Re-measured uranium branching ratios and their impact on removing biases from MGAU analyses
Energy Technology Data Exchange (ETDEWEB)
Lanier, R G; Ruhter, W D; Wang, T F
1999-09-17
Biases in MGAU analyses first observed in FSU Gosatomnadzor inspection and subsequently identified in more detail by measurements at the Moscow Kurchatov Institute have forced a new look at the code's analysis assumptions. We have used uranium gamma-ray calibration standards from the National Bureau of Standards and standards from the New Brunswick Laboratory to investigate MGAU analysis biases. The 200g uranium standards which cover the uranium enrichments ranging from 0.3% to 93% were used to collect more than 500 gamma-ray spectra for this study. The experimental arrangement used a LEPS Ge detector with various source-detector configurations and absorbers. Two independent versions of the MGAU code, which we currently employ in our laboratory, confirm the biases noted in a developing variety of FSU inspection results and in the careful Kurchatov study. In this paper, we will discuss the MGAU methodology and use 250 spectra at a fixed geometry without absorbers to obtain new branching ratios for the critical 100-keV region gamma rays. We show that modifying the branching ratios removes a significant component of the observed biases.
Branching ratios and correlations in antiproton-proton annihilations at 1.6GeV/c
International Nuclear Information System (INIS)
The preliminary results on branching ratios and correlations, obtained from the antiproton-proton annihilation experiment in Gargamelle at 1.6GeV/c, are compared with the predictions of two statistical models and of a thermodynamical model
International Nuclear Information System (INIS)
The hadronic channel decay branching ratios for the heavy resonances J/psi, D+, D0, F+, and Λsub(c)sup(+) are calculated using the quark combinatorics method at finite energies. The calculation results are compared to the data on known hadronic decay channels of the J/psi, D+, and D0 mesons. The F+ and Λsub(c)sup(+) hadronic decay branching ratios are predicted
Determination of alpha_s and W boson leptonic branching ratio from the W and Z cross sections
Xiao, Weichen
2016-01-01
We try to determine the strong coupling alpha_s and the W boson leptonic branching ratio from the W and Z boson production cross section through pp collisions in the LHC. We run the MCFM program together with LHAPDF or HERAPDF les to extract the theoretical prediction of cross sections at different alpha_s in different experiments. We compare the predicted values and the experimental results to do a precise measurement of alpha_s and the branching ratio.
First observation of the decay Bs0-->Ds-Ds+ and measurement of its branching ratio.
Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, M; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Gerberich, H; Gerdes, D; Giagu, S; Giakoumopolou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oh, S H; Oh, Y D
2008-01-18
We report the observation of the exclusive decay Bs0-->Ds-Ds+ at the 7.5 standard deviation level using 355 pb(-1) of data collected by the CDF II detector in pp collisions at sqrt[s]=1.96 TeV at the Fermilab Tevatron. We measure the relative branching ratio B(Bs0-->Ds-Ds+)/B(B0-->D-Ds+)=1.44(-0.44)(+0.48). Using the world average value for B(B0-->D-Ds+), we find B(Bs0-->Ds-Ds+)=(9.4(-4.2)(+4.4))x10(-3). This provides a lower bound DeltaGammasCP/Gammas>or=2B(Bs0-->Ds-Ds+)>1.2x10(-2) at 95% C.L. PMID:18232856
Higgs Branching Ratios in Minimal and Next-to-Minimal Supersymmetry Scenarios Surveyed
Beskidt, C; Kazakov, D I; Wayand, S
2016-01-01
In the CMSSM the heaviest scalar and pseudo-scalar Higgs boson decay into b-quarks and tau-leptons for heavy Higgs boson masses below 1500 GeV which corresponds to the large $\\tan\\beta$ scenarios favored by the relic density. In the NMSSM the number of possible decay modes is much richer. In addition to the CMSSM-like scenarios including decays into light charginos, the decay of the heavy Higgs bosons is preferentially into top quark pairs (if kinematically allowed) or lighter Higgs bosons and neutralinos leading to invisible decays. We provide a scan over the NMSSM parameter space to project the 6D parameter space on the 3D space of Higgs masses to determine the range of branching ratios as function of the Higgs boson mass for all Higgs bosons.
Measurement of the Branching Ratio Lambda_c+ -> p pi+ pi-
Energy Technology Data Exchange (ETDEWEB)
Lopez-Hinojosa, Guillermo; /San Luis Potosi U.
2008-03-01
The confirmation of the Cabibbo-suppressed charm baryon decay mode {Lambda}{sub c}{sup +} {yields} p{pi}{sup +}{pi}{sup -} is reported. All data analyzed are from SELEX, a fixed target experiment at Fermilab that took data during 1996 and 1997, mainly with a 600 GeV/c {Sigma}{sup -} beam. The branching ratio of the Cabibbo-suppressed decay mode {Lambda}{sub c}{sup +} {yields} p{pi}{sup +}{pi}{sup -} relative to the Cabibbo-favored mode {Lambda}{sub c}{sup +} {yields} pK{sup -}{pi}{sup +} is measured to be: {Gamma}({Lambda}{sub c}{sup +} {yields} p{pi}{sup +}{pi}{sup -})/{Gamma}({Lambda}{sub c}{sup +} {yields} pK{sup -}{pi}{sup +}) = 0.103 {+-} 0.022.
Higgs branching ratios in constrained minimal and next-to-minimal supersymmetry scenarios surveyed
Beskidt, C.; de Boer, W.; Kazakov, D. I.; Wayand, S.
2016-08-01
In the CMSSM the heaviest scalar and pseudo-scalar Higgs bosons decay largely into b-quarks and tau-leptons because of the large tan β values favored by the relic density. In the NMSSM the number of possible decay modes is much richer. In addition to the CMSSM-like scenarios, the decay of the heavy Higgs bosons is preferentially into top quark pairs (if kinematically allowed), lighter Higgs bosons or neutralinos, leading to invisible decays. We provide a scan over the NMSSM parameter space to project the 6D parameter space of the Higgs sector on the 3D space of the Higgs masses to determine the range of branching ratios as function of the Higgs boson mass for all Higgs bosons. Specific LHC benchmark points are proposed, which represent the salient NMSSM features.
Branching ratio and CP asymmetry of Bs→π+π- decays in the perturbative QCD approach
International Nuclear Information System (INIS)
In this paper, we calculate the decay rate and CP asymmetry of the Bs→π+π- decay in the perturbative QCD approach with Sudakov resummation. Since none of the quarks in final states is the same as those of the initial Bs meson, this decay can occur only via annihilation diagrams in the standard model. Besides the current-current operators, the contributions from the QCD and electroweak penguin operators are also taken into account. We find that (a) the branching ratio is about 4x10-7; (b) the penguin diagrams dominate the total contribution; and (c) the direct CP asymmetry is small in size: no more than 3%; but the mixing-induced CP asymmetry can be as large as 10% testable in the near future LHC-b experiments
Measurement of the branching ratio of the Z0 into heavy quarks
Abe, K; Adam, I; Akimoto, H; Aston, D; Baird, K G; Baltay, C; Band, H R; Barklow, T L; Bauer, J M; Bellodi, G; Berger, R; Blaylock, G; Bogart, J R; Bower, G R; Brau, J E; Breidenbach, M; Bugg, W M; Burke, D; Burnett, T H; Burrows, P N; Calcaterra, A; Cassell, R; Chou, A; Cohn, H O; Coller, J A; Convery, M R; Cook, V; Cowan, R F; Crawford, G; Damerell, C J S; Daoudi, M; De Groot, N; De Sangro, R; Dong, D N; Doser, Michael; Dubois, R; Erofeeva, I; Eschenburg, V; Etzion, E; Fahey, S; Falciai, D; Fernández, J P; Flood, K; Frey, R; Hart, E L; Hasuko, K; Hertzbach, S S; Huffer, M E; Huynh, X; Iwasaki, M; Jackson, D J; Jacques, P; Jaros, J A; Jiang, Z Y; Johnson, A S; Johnson, J R; Kajikawa, R; Kalelkar, M; Kang, H J; Kofler, R R; Kroeger, R S; Langston, M; Leith, D W G S; Lia, V; Lin, C; Mancinelli, G; Manly, S; Mantovani, G C; Markiewicz, T W; Maruyama, T; McKemey, A K; Messner, R; Moffeit, K C; Moore, T B; Morii, M; Müller, D; Murzin, V; Narita, S; Nauenberg, U; Neal, H; Nesom, G; Oishi, N; Onoprienko, D; Osborne, L S; Panvini, R S; Park, C H; Peruzzi, I; Piccolo, M; Piemontese, L; Plano, R J; Prepost, R; Prescott, C Y; Ratcliff, B N; Reidy, J; Reinertsen, P L; Rochester, L S; Rowson, P C; Russell, J J; Saxton, O H; Schalk, T; Schumm, B A; Schwiening, J; Serbo, V V; Shapiro, G; Sinev, N B; Snyder, J A; Stängle, H; Stahl, A; Stamer, P; Steiner, H; Su, D; Suekane, F; Sugiyama, A; Suzuki, A; Swartz, M; Taylor, F E; Thom, J; Torrence, E; Usher, T; Vavra, J; Verdier, R; Wagner, D L; Waite, A P; Walston, S; Weidemann, A W; Weiss, E R; Whitaker, J S; Williams, S H; Willocq, S; Wilson, R J; Wisniewski, W J; Wittlin, J L; Woods, M; Wright, T R; Yamamoto, R K; Yashima, J; Yellin, S J; Young, C C; Yuta, H
2005-01-01
We measure the hadronic branching ratios of the Z0 boson into heavy quarks: Rb=Gamma(Z0->bb)/Gamma(Z0->hadrons) and Rc=Gamma(Z0->cc/Gamma(Z0->hadrons) using a multi-tag technique. The measurement was performed using about 400,000 hadronic Z0 events recorded in the SLD experiment at SLAC between 1996 and 1998. The small and stable SLC beam spot and the CCD-based vertex detector were used to reconstruct bottom and charm hadron decay vertices with high efficiency and purity, which enables us to measure most efficiencies from data. We obtain, Rb=0.21610 +- 0.00098(stat.) +- 0.00073(syst.) -+ 0.00012(Rc) and, Rc= 0.1745 +- 0.0031(stat.) +- 0.0020(syst.) -+ 0.0006(Rb)
International Nuclear Information System (INIS)
Photoelectron spectra and angular distributions in 267 nm detachment of the I-·Ar, I-·H2O, I-·CH3I, and I-·CH3CN cluster anions are examined in comparison with bare I- using velocity-map photoelectron imaging. In all cases, features are observed that correlate to two channels producing either I(2P3/2) or I(2P1/2). In the photodetachment of I- and I-·Ar, the branching ratios of the 2P1/2 and 2P3/2 channels are observed to be ≅0.4, in both cases falling short of the statistical ratio of 0.5. For I-·H2O and I-·CH3I, the 2P1/2 to 2P3/2 branching ratios are greater by a factor of 1.6 compared to the bare iodide case. The relative enhancement of the 2P1/2 channel is attributed to dipole effects on the final-state continuum wave function in the presence of polar solvents. For I-·CH3CN the 2P1/2 to 2P3/2 ratio falls again, most likely due to the proximity of the detachment threshold in the excited spin-orbit channel. The photoelectron angular distributions in the photodetachment of I-, I-·Ar, I-·H2O, and I-·CH3CN are understood within the framework of direct detachment from I-. Hence, the corresponding anisotropy parameters are modeled using variants of the Cooper-Zare central-potential model for atomic-anion photodetachment. In contrast, I-·CH3I yields nearly isotropic photoelectron angular distributions in both detachment channels. The implications of this anomalous behavior are discussed with reference to alternative mechanisms, affording the solvent molecule an active role in the electron ejection process
International Nuclear Information System (INIS)
This thesis works is part of the precision tests done at LEP2. The W± boson pairs are produced through e+e- collisions. The fully leptonic final states (lν-bar l-barν) correspond to 10.5 % of the disintegrations. This channel is added to the hadronic and semi-leptonic channels, allowing a constraint on the Standard Model. Data recorded between 1996 and 1998 by the ALEPH detector are used to select the lν-bar l-barν final states, characterised by two energetic coplanar charged leptons and large transverse missing momentum. The fully leptonic cross-sections are determined in view of the measurement of the W's branching ratios. Contrary to the TEVATRON's measurements, the branching ratios are determined without universality constraint on W couplings. Presently, LEP obtains the best precision on the measurement of the W's branching ratios. No deviation was observed with respect to the Standard Model predictions. (author)
Directory of Open Access Journals (Sweden)
Laffoley A. T.
2014-03-01
Full Text Available A program of high-precision half-life and branching-ratio measurements for superallowed Fermi β emitters is being carried out at TRIUMF’s Isotope Separator and Accelerator (ISAC radioactive ion beam facility. Recent half-life measurements for the superallowed decays of 14O, 18Ne, and 26Alm, as well as branching-ratio measurements for 26Alm and 74Rb are reported. These results provide demanding tests of the Standard Model and the theoretical isospin symmetry breaking (ISB corrections in superallowed Fermi β decays.
Reduced branching ratio for H -> AA -> 4 tau from A - eta_b mixing
Domingo, Florian
2011-01-01
Models with an extended Higgs sector, as the NMSSM, allow for scenarios where the Standard Model-like CP-even Higgs boson H decays dominantly as H -> AA -> 4 tau where A is a light CP-odd Higgs boson. Tight constraints on this scenario in the form of lower bounds on M_H have recently been published by the ALEPH group. We show that, due to A - eta_b mixing, the branching ratio H -> AA -> 4 tau is strongly reduced for M_A in the range 9 - 10.5 GeV. This is the range of M_A in which the tension between the observed eta_b(1S) mass and its prediction based on QCD can be resolved due to mixing, and which is thus still consistent with a light CP-even Higgs boson H satisfying LEP constraints with a mass well below 114 GeV. This result is practically independent from the coupling of A to b quarks.
Shock tube measurements of the branching ratios of propene + OH -> products
Khaled, Fathi
2014-07-25
Absolute rate coefficients for the reaction of OH radical with propene (C3H6) and five deutrated isotopes, propene-1-d1 (CDHCHCH3), propene-1,1-d2 (CD2CHCH3), propene-2-d1 (CH2CDCH3), propene-3,3,3-d3 (CH2CHCD3), and propene-d6 (C3D6), were measured in a shock tube behind reflected shock conditions over the temperature range of 812 K – 1460 K and pressures near 1 atm. The reaction progress was followed by monitoring OH radical near 306.7 nm using UV laser absorption. The first experimental measurements for the branching ratio of the title reaction are reported and compared with theoretical calculations. The allylic H atom abstraction of propene by OH radicals was found to be the most dominant reaction pathway followed by propen-1-yl and propen-2-yl channels over the entire temperature range of this study which is in line with theoretical predictions. Arrhenius parameters for various site-specific rate coefficients are provided for kinetic modeling.
Determination of the 242Pu Branching Ratio via Alpha-Gamma Coincidence
Energy Technology Data Exchange (ETDEWEB)
Wang, T F
2012-05-24
When the burn-up is high, the {sup 242}Pu isotopic content becomes more important. The traditional correlation method will fail. The {sup 242}Pu isotopic content in the sample plays an essential role if the neutron coincidence method is used to quantify the total amount of plutonium. In one of the earlier measurements we had a chance to measure an isotopic pure (> 99.95 %) {sup 242}Pu thick sample and realized that the difference in the branching ratio (BR) value among current nuclear data3) for the two important gamma-rays at 103.5-keV and 158.8-keV. In this study, the thick sample was counted on a 15% ORTEC safeguards type HPGe to further improve BR determination of the 159-keV gamma-ray. Furthermore, we have made a thin {sup 242}Pu sample from the thick sample and performed alpha-gamma coincidence measurements. Our preliminary gamma-ray BR results are 4.37(6) E-4, 2.79(8) E-5, and 2.25(8) E-6 for 44.9-keV, 103.5-keV, and 158.9-keV, respectively.
Determination of the 242Pu Branching Ratio via Alpha-Gamma Coincidence
International Nuclear Information System (INIS)
When the burn-up is high, the 242Pu isotopic content becomes more important. The traditional correlation method will fail. The 242Pu isotopic content in the sample plays an essential role if the neutron coincidence method is used to quantify the total amount of plutonium. In one of the earlier measurements we had a chance to measure an isotopic pure (> 99.95 %) 242Pu thick sample and realized that the difference in the branching ratio (BR) value among current nuclear data3) for the two important gamma-rays at 103.5-keV and 158.8-keV. In this study, the thick sample was counted on a 15% ORTEC safeguards type HPGe to further improve BR determination of the 159-keV gamma-ray. Furthermore, we have made a thin 242Pu sample from the thick sample and performed alpha-gamma coincidence measurements. Our preliminary gamma-ray BR results are 4.37(6) E-4, 2.79(8) E-5, and 2.25(8) E-6 for 44.9-keV, 103.5-keV, and 158.9-keV, respectively.
Polarization, CP asymmetry, and branching ratios in B→K*K* with the perturbative QCD approach
International Nuclear Information System (INIS)
We study the charmless rare decays B→K*K* within the perturbative QCD picture. We calculate not only factorizable and nonfactorizable diagrams, but also annihilation ones. Our predictions are the following: The longitudinal polarization fraction vary from 75% to 99% depending on channels, the branching ratios are of order 10-7 for B0(B0)→K*0K*0 and B±→K*±K*0(K*0), much bigger than that for B0(B0)→K*+K*-(10-8). The direct CP asymmetry in B±→K*±K*0(K*0) and B0(B0)→K*+K*- is about -15% and -65% if we choose α(φ2) as 95 deg.. The direct CP violation in B0(B0)→K*0K*0 decays is negligible if there is not strong final state interactions. Our predictions will be tested in the future B experiments
Directory of Open Access Journals (Sweden)
Ali Gorener
2013-04-01
Full Text Available Location selection problem in banking is an important issue for the commercial success in competitive environment. There is a strategic fit between the location selection decision and overall performance of a new branch. Providing physical service in requested location as well as alternative distribution channels to meet profitable client needs is the current problematic to achieve the competitive advantage over the rivalry in financial system. In this paper, an integrated model has been developed to support in the decision of branch location selection for a new bank branch. Analytic Hierarchy Process (AHP technique has been conducted to prioritize of evaluation criteria, and multi-objective optimization on the basis of ratio analysis (MOORA method has been applied to rank location alternatives of bank branch.
A measurement of the branching ratio of K± →π±μ+μ- decays in the Hyper CP experiment
International Nuclear Information System (INIS)
Large samples of hyperon and kaon decays were collected with the Hyper CP spectrometer during two fixed-target runs at Fermilab. Based on an analysis of 110 million K pm decays from the 1997 data sample we present a branching ratio for K pm right arrow pi pm mu+ mu-. This is the first observation of K- right arrow pi- mu+ mu- decay
Precision measurement of the branching ratio K+→π+π0/K+→μ+νμ
International Nuclear Information System (INIS)
A measurement of the branching ratio K+→π+π0/K+→μ+νμ was made using stopped kaons from p bar p annihilations at rest and a magnetic spectrometer to measure the momenta of the charged decay product to the 1% to 1.5% level. The determination is based on 45 500 events passing final data cuts. The resulting ratio is 0.3329±0.0047 (statistical) ±0.0010 (systematic)
Measurement of $B_s^0 \\to D_s^{(*)+} D_s^{(*)-}$ Branching Ratios
Energy Technology Data Exchange (ETDEWEB)
Aaltonen, T.; /Helsinki Inst. of Phys.; Alvarez Gonzalez, B.; /Oviedo U. /Cantabria Inst. of Phys.; Amerio, S.; /INFN, Padua; Amidei, D.; /Michigan U.; Anastassov, A.; /Northwestern U. /Fermilab; Annovi, A.; /Frascati; Antos, J.; /Comenius U.; Apollinari, G.; /Fermilab; Appel, J.A.; /Fermilab; Arisawa, T.; /Waseda U.; Artikov, A.; /Dubna, JINR /Texas A-M
2012-04-01
The decays B{sub s}{sup 0} {yields} D{sub s}{sup (*)+}D{sub s}{sup (*)-}s are reconstructed in a data sample corresponding to an integrated luminosity of 6.8 fb{sup -1} collected by the CDF II detector at the Tevatron p{bar p} collider. All decay modes are observed with a significance of more than 10 {sigma}, and we measure the B{sub s}{sup 0} production rate times B{sub s}{sup 0} {yields} D{sub s}{sup (*)+} D{sub s}{sup (*)-} branching ratios relative to the normalization mode B{sup 0} {yields} D{sub s}{sup +}d{sup -} to be 0.183 {+-} 0.021 {+-} 0.017 for B{sub s}{sup 0} {yields} D{sub s}{sup +}D{sub s}{sup -}, 0.424 {+-} 0.046 {+-} 0.035 for B{sub s}{sup 0} {yields} D{sub s}{sup {+-}} D{sub s}{sup {-+}}, 0.654 {+-} 0.072 {+-} 0.065 for B{sub s}{sup 0} {yields} D{sub s}{sup *+} D{sub s}{sup *-}, and 1.261 {+-} 0.095 {+-} 0.112 for the inclusive decay B{sub s}{sup 0} {yields} D{sub s}{sup (*)+}D{sub s}{sup (*)-}, where the uncertainties are statistical and systematic. These results are the most precise single measurements to date and provide important constraints for indirect searches for non-standard model physics in B{sub s}{sup 0} mixing.
Energy Technology Data Exchange (ETDEWEB)
Wang, T; Raschke, K; Roberts, K; Dougan, A
2009-07-06
The goal of the generalized gamma-ray analysis software is to provide precise and accurate isotopic analyses of samples that do not have a standard experimental geometry. This analysis tool will analyze gamma-ray data from all types of measurement scenarios with little or no interaction from the user. This tool also provides complete transparency regarding the gamma-ray peaks and branching intensities used in the analysis with the capability for the user to modify this information. They are currently at the data collected phase of building a validated spectral library. One of the by-products in this data collection phase is enabling them to reevaluate the two important branching ratios in {sup 242}Pu. These branching ratios are required for very high burn-up plutonium fuels. The preliminary analysis shows that the energy of the states are 103.5 keV and 158.82 keV, the branching ratio are 1.36E-5 (9%) and 3.37E-6(7%), respectively. More accurate measurements and analysis are currently being carried out.
International Nuclear Information System (INIS)
Angular distributions of K+ ions and K atoms from collisions of a beam of hyperthermal K atoms with a cross beam of thermal O2 molecules were determined in the range from 18 to 38 eV (lab). A pronounced rainbow was observed in the ion-pair channel at a reduced angle of 240 eV deg. A smaller rainbow was also found in the neutral channel at 220 eV deg. Energy loss distributions for both product species were also determined at 28 eV (lab) by time-of-flight measurements. Both K+ ions and K atoms from K+O2 were detected concurrently. A pseudorandom pulsing method was used to increase the duty cycle. The TOF spectra indicated overlapping energy-loss distributions corresponding to ground and excited state formation for both the neutral and ion products. Excited state to ground state branching ratios for both the neutral and ion products were determined as a function of reduced angle. The neutral branching ratio shows a pronounced peak at approx.180 eV deg., while the ion ratio increases rapidly above 200 eV deg. From these ratios the differential cross sections were calculated for neutral K in which either K or O2 is electronically excited. These cross sections are similar to the differential cross sections of K+ ions. The neutral to ion branching ratios, also determined, exhibit a broad minimum in the vicinity of the rainbow angle. Differential cross sections for neutral and ion scattering were integrated to give the total neutral/ion branching ratio of approx.4. A preliminary analysis of the experimental differential cross sections has been performed via an atom--atom model. Although the model has substantial and expected deficiencies, the analysis strongly indicates that the quartet surfaces emanating from the neutral ground electronic asymptote must be substantially more repulsive than the corresponding doublet surface
A shock tube study of the branching ratios of propene + OH reaction
Badra, Jihad
2014-12-01
Absolute rate coefficients for the reaction of the OH radical with propene (C3H6) and five deuterated isotopes, propene-1-D1 (CDHCHCH3), propene-1,1-D2 (CD2CHCH3), propene-1,1,2-D3 (CD2CDCH3), propene-3,3,3-D3 (CH2CHCD3), and propene-D6 (C3D6), were measured behind reflected shock waves over the temperature range of 818-1460 K and pressures near 1 atm. The reaction progress was followed by monitoring the OH radical near 306.7 nm using UV laser absorption. Kinetic isotope effects in the measured rate coefficients are discussed and rationalized for the site-specific H-abstraction by the OH radical. The first experimental measurements for the branching ratio of the title reaction are reported and compared with transition state theory calculations. The allylic H-atom abstraction of propene by OH radicals was found to be the most dominant reaction pathway followed by propen-1-yl and propen-2-yl channels over the entire temperature range of this study. The derived Arrhenius expressions for various site-specific rate coefficients over 818-1442 K are (the subscript in the rate coefficient identifies the position of H or D atom according to the IUPAC nomenclature of alkenes):k3,H = 2.32 × 10-11 exp(-2341 K/T) cm3 molecule-1 s-1k3,D = 1.96 × 10-11 exp(-2420 K/T) cm3 molecule-1 s-1k1,H = 1.39 × 10-11 exp(-2270 K/T) cm3 molecule-1 s-1k1,D = 1.95 × 10-11 exp(-2868 K/T) cm3 molecule-1 s-1k2,H = 7.2 × 10-12 exp(-2282 K/T) cm3 molecule-1 s-1k2,D = 7.69 × 10-12 exp(-2575 K/T) cm3 molecule-1 s-1 This journal is
Energy Technology Data Exchange (ETDEWEB)
Abele, A.; Adomeit, J.; Amsler, C.; Baker, C.A.; Barnett, B.M.; Batty, C.J.; Benayoun, M.; Bischoff, S.; Bluem, P.; Braune, K.; Bugg, D.V.; Case, T.; Crowe, K.M.; Degener, T.; Doser, M.; Duennweber, W.; Engelhardt, D.; Faessler, M.A.; Giarritta, P.; Haddock, R.P.; Heinsius, F.H.; Heinzelmann, M.; Herbstrith, A.; Herz, M.; Hessey, N.P.; Hidas, P.; Hodd, C.; Holtzhaussen, C.; Jamnik, D.; Kalinowsky, H.; Kammel, P.; Kisiel, J.; Klempt, E.; Koch, H.; Kunze, M.; Kurilla, U.; Lakata, M.; Landua, R.; Matthaey, H.; McCrady, R.; Meier, J.; Meyer, C.A.; Montanet, L.; Ouared, R.; Peters, K.; Pick, B.; Ratajczak, M.; Regenfus, C.; Roethel, W.; Spanier, S.; Stoeck, H.; Strassburger, C.; Strohbusch, U.; Suffert, M.; Suh, J.S.; Thoma, U.; Tischhaeuser, M.; Uman, I.; Voelcker, C.; Wallis-Plachner, S.; Walther, D.; Wiedner, U. E-mail: ulrich.wiedner@tsl.nu.se; Wittmack, K.; Zou, B.S
2001-01-01
Measurements of two-body branching ratios for pbarp annihilations at rest in liquid and gaseous (12{rho}{sub STP}) hydrogen are reported. Channels studied are pbarp{yields}{pi}{sup 0}{pi}{sup 0},{pi}{sup 0}{eta}, K{sup 0}{sub S}K{sup 0}{sub L}, K{sup +}K{sup -}. The branching ratio for the {pi}{sup 0}{pi}{sup 0} channel in liquid H{sub 2} is measured to be (6.14{+-}0.40)x10{sup -4}. The results are compared with those from other experiments. The fraction of P-state annihilation for a range of target densities from 0.002{rho}{sub STP} to liquid H{sub 2} is determined. Values obtained include 0.11{+-}0.02 in liquid H{sub 2} and 0.48{+-}0.04 in 12{rho}{sub STP} H{sub 2} gas.
Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansil, Hardeep Singh; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Maurice; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bieniek, Stephen Paul; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bruscino, Nello; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Cardillo, Fabio; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Childers, John Taylor; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; do Vale, Maria Aline Barros; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; French, Sky; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohlfeld, Marc; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hooft van Huysduynen, Loek; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Mapelli, Livio; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morton, Alexander; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Pan, Yibin; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Penc, Ondrej; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saimpert, Matthias; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitt, Stefan; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simoniello, Rosa; Sinervo, Pekka; Sinev, Nikolai; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosa, David; Sosebee, Mark; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spanò, Francesco; Spearman, William Robert; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloce, Laurelle Maria; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz
2015-01-01
A measurement of the inclusive cross section for top quark pair production in pp collisions using events with an isolated lepton (muon or electron) and a $\\tau$ lepton decaying to hadrons ($\\tau_{\\mathrm{had}}$) is reported. Measurements of the branching ratios of top quark decays into leptons and jets using events with $t \\overline{t}$ (top antitop) pairs are also reported. Events were recorded with the ATLAS detector at the LHC in pp collisions at a center-of-mass energy of 7 TeV. The collected data sample corresponds to an integrated luminosity of 4.6 ${\\mathrm{fb}}^{-1}$. The inclusive cross section measured using events with an isolated lepton and a $\\tau_{\\mathrm{had}}$ is $\\sigma_{t\\bar{t}} = 183\\pm 9 (stat.) \\pm 23 (syst.) \\pm 3 (lumi.) \\mathrm{pb.}$ The measured top quark branching ratios agree with the Standard Model predictions within the measurement uncertainties of a few percent.
Branching ratio of K0/subS/ decays into π+π- and π0π0 modes
International Nuclear Information System (INIS)
We have measured the branching ratio R = GAMMA (K0/subS/ → π+π-)/GAMMA (K0/subS/ → π0π0) of K0/subS/ produced in the reaction π- + p → Λ0 + K0 in the 1.45 GeV/c π- beam of the Princeton-Pennsylvania Accelerator. The K0/subS/ decay secondaries were detected in an array of magnetostrictive-readout wire spark chambers interleaved with lead and copper radiators to convert γ rays. The position of K0 production in the target was detected with a unique trigger-target apparatus allowing a correction for the background produced by K0/subL/ decays. The branching ratio corrected for this background and other standard effects is R = 2.11 +- 0.09, in good agreement with the world average
New Measurements of the D+ to K*munu/k2pi and Ds to phimunu/phipi Branching ratios
Link, J M; Yager, P M; Anjos, J C; Bediaga, I; Göbel, C; Magnin, J; Massafferri, A; De Miranda, J M; Pepe, I M; Dos Reis, A C; Carrillo, S; Casimiro, E; Cuautle, E; Sánchez-Hernández, A; Uribe, C; Vázquez, F; Agostino, L; Cinquini, L; Cumalat, J P; O'Reilly, B; Ramírez, J E; Segoni, I; Butler, J N; Cheung, H W K; Chiodini, G; Gaines, I; Garbincius, P H; Garren, L A; Gottschalk, E; Kasper, P H; Kreymer, A E; Kutschke, R; Benussi, L; Bianco, S; Fabbri, Franco Luigi; Zallo, A; Cawlfield, C; Kim, D Y; Park, K S; Rahimi, A; Wiss, J; Gardner, R; Kryemadhi, A; Chang, K H; Chung, Y S; Kang, J S; Ko, B R; Kwak, J W; Lee, K B; Cho, K; Park, H; Alimonti, G; Barberis, S; Cerutti, A; Boschini, M; D'Angelo, P; Di Corato, M; Dini, P; Edera, L; Erba, S; Giammarchi, M; Inzani, P; Leveraro, F; Malvezzi, S; Menasce, D; Mezzadri, M; Moroni, L; Pedrini, D; Pontoglio, C; Prelz, F; Rovere, M; Sala, S; Davenport, T F; Arena, V; Boca, G; Bonomi, G; Gianini, G; Liguori, G; Merlo, M M; Pantea, D; Ratti, S P; Riccardi, C; Vitulo, P; Hernández, H; López, A M; Méndez, H; Paris, A; Quinones, J; Xiong, W; Zhang, Y; Wilson, J R; Handler, T; Mitchell, R; Engh, D; Hosack, M; Johns, W E; Nehring, M; Sheldon, P D; Stenson, K; Vaandering, E W; Webster, M; Sheaff, M
2002-01-01
Using a large sample of charm semileptonic decays collected by the FOCUS photoproduction experiment at Fermilab, we present new measurements of two semileptonic branching ratios. We obtain values of D+ to K*munu/k2pi = 0.602 +/- 0.010 +/- 0.021 and Ds to phimunu/phipi = 0.54 +/- 0.033 +/- 0.048. Our result D+ result includes the effects of s-wave interference.
Determination of the relative branching ratios for panti p→π+π- and panti p→K+K-
International Nuclear Information System (INIS)
The ratio of the branching fractions for panti p→K+K- and panti p→π+π- was determined with the CPLEAR detector, by stopping antiprotons in a gaseous hydrogen target at 15 bar pressure. It was found to be BR (K+K-)/BR(π+π-)=0.205±0.016. The fraction of P-wave annihilation at rest at this target density was deduced to be (38±9)%. (orig.)
Measurement of the ratio of $B_c^+$ branching fractions to $J/\\psi\\pi^+$ and $J/\\psi\\mu^+\
Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Balagura, Vladislav; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; van den Brand, Johannes; Bressieux, Joël; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Brown, Henry; Bursche, Albert; Busetto, Giovanni; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Ciba, Krzystof; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Gavrilov, Gennadii; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Giani', Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, Vladimir; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gordon, Hamish; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hunt, Philip; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kaballo, Michael; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kelsey, Matthew; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozlinskiy, Alexandr; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Liu, Guoming; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lopez-March, Neus; Lowdon, Peter; Lu, Haiting; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Manca, Giulia; Mancinelli, Giampiero; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martens, Aurelien; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Moggi, Niccolò; Molina Rodriguez, Josue; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Katharina; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Orlandea, Marius; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pazos Alvarez, Antonio; Pearce, Alex; Pellegrino, Antonio; Pepe Altarelli, Monica; Perazzini, Stefano; Perez Trigo, Eliseo; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poluektov, Anton; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Roa Romero, Diego; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruffini, Fabrizio; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrie, Mauro; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Seco, Marcos; Semennikov, Alexander; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Sparkes, Ailsa; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Subbiah, Vijay Kartik; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szilard, Daniela; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; Voss, Helge; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Whitehead, Mark; Wicht, Jean; Wiedner, Dirk; Wilkinson, Guy; Williams, Matthew; Williams, Mike; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wu, Suzhi; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zvyagin, Alexander
2014-01-01
The first measurement that relates semileptonic and hadronic decay rates of the $B_c^+$ meson is performed using proton-proton collision data corresponding to 1.0 fb$^{-1}$ of integrated luminosity collected with the LHCb detector. The measured value of the ratio of branching fractions, ${\\cal B}(B_c^+ \\to J/\\psi \\pi^+)/{\\cal B}(B_c^+\\to J/\\psi\\mu^+\
Omidvar, K.
1980-01-01
Branching ratios in hydrogen-like atoms due to electric-dipole transitions are tabulated for the initial principal and angular momentum quantum number n, lambda, and final principal and angular momentum quantum numbers n, lambda. In table 1, transition probabilities are given for transitions n, lambda, yields n, where sums have been made with respect to lambda. In this table, 2 or = n' or = 10, o or = lambda' or = n'-1, and 1 or = n or = n'-1. In addition, averages with respect to lambda' and sums with respect to n, and lifetimes are given. In table 2, branching ratios are given for transitions n' lambda' yields ni, where sums have been made with respect to lambda. In these tables, 2 or = n' or = 10, 0 or = lambda', n'-1, and 1 or = n or = n'-1. Averages with respect to lambda' are also given. In table 3, branching ratios are given for transitions n' lambda' yields in lambda, where 1 or = n or = 5, 0 or = lambda or = n-1, n n' or = 15, and 0 or = lambda' or = n(s), where n(s), is the smaller of the two numbers n'-1 and 6. Averages with respect to lambda' are given.
First measurement of the b^0_s semileptonic branching ratio to an orbitally excited d _s** state
Energy Technology Data Exchange (ETDEWEB)
Rieger, Jason; /Indiana U.
2007-12-01
In a data sample of approximately 1.3 fb{sup -1} collected with the D0 detector between 2002 and 2006, the orbitally excited charm state D{sub s1}{sup {+-}}(2536)has been observed with a measured mass of 2535.7 {+-} 0.6(stat) {+-} 0.5(syst) MeV/c{sup 2} via the decay mode B{sub s}{sup 0} {yields} D{sub s1}{sup -}(2536){mu}{sup +}{nu}X followed by D{sub s1}{sup {+-}}(2536) {yields} D*{sup {+-}}K{sub S}{sup 0}. By normalizing to the known branching ratio Br({bar b} {yields} D*{sup -} {mu}{sup +}{nu}X) and to the number of reconstructed D* mesons with an associated identified muon, a first-ever measurement is made of the product branching ratio ({bar b} {yields} D{sub s1}{sup -}(2536){mu}{sup +}{nu}X) {center_dot} Br(D{sub s1}{sup -} {yields} D*{sup -}K{sub S}{sup 0}). Assuming that D{sub s1}{sup -}(2536) production in semileptonic decay is entirely from B{sub s}{sup 0}, an extraction of the semileptonic branching ratio Br(B{sub s}{sup 0} {yields} D{sub s1}{sup -}(2536){mu}{sup +}{nu}X) is made. Comparisons are made with theoretical expectations.
Form factors and branching ratios of the FCNC B→a1ℓ+ℓ- decays
International Nuclear Information System (INIS)
We analyze the semileptonic B→a1ℓ+ℓ-, ℓ=τ,μ,e transitions in the framework of the three-point QCD sum rules in the standard model. These rare decays are governed by the flavor-changing neutral current transition of b→d. Considering the quark condensate contributions, the relevant form factors as well as the branching fractions of these transitions are calculated
Rudolph, H.; Mckoy, V.; Dixit, S. N.; Huo, W. M.
1988-01-01
Rotational branching ratios resulting from the (1 + 1) resonant enhanced multiphoton ionization spectroscopy of NO via the 0-0 transition of the A-X band for the four possible branches that can be assigned as R(21.5) are explored using calculation performed in the frozen-core approximation at the Hartree-Fock level. The four different branches, of which three are distinctly different in the perturbative limit, have rather different branching ratios. The mixed R12 + Q22(21.5) branch, which is not intense and has the lowest transition energy, appears to give the best agreement with experimental branching ratio for parallel detection. The agreement is less satisfactory for perpendicular detection. Neither the effect of finite-acceptance angle of the photoelectron detector nor high intensities can explain the discrepancy.
New strategy for Bs branching ratio measurements and the search for new physics in Bs0→μ+μ-
International Nuclear Information System (INIS)
The LHCb experiment at CERN's Large Hadron Collider will soon allow us to enter a new era in the exploration of Bs decays. A particularly promising channel for the search of ''new physics'' is Bs0→μ+μ-. The systematic key uncertainty affecting the measurement of this--and in fact all Bs-decay branching ratios--is the ratio of fragmentation functions fd/fs. As the currently available methods for determining fd/fs are not sufficient to meet the high precision at LHCb, we propose a new strategy using Bs0→Ds+π- and Bd0→D+K-. It allows us to obtain a lower experimental bound on BR(Bs0→μ+μ-) which offers a powerful probe for new physics. In order to go beyond this bound and to determine fd/fs with a theoretical precision matching the experimental one it is sufficient to know the SU(3)-breaking correction to a form-factor ratio from nonperturbative methods at the level of 20%. Thanks to our strategy, we can detect new physics in Bs0→μ+μ- at LHCb with 5σ for a branching ratio as small as twice the standard model value, which represents an improvement of the new-physics reach by about a factor of 2 with respect to the current LHCb expectation.
Energy Technology Data Exchange (ETDEWEB)
Aderholz, M.; Aggarwal, M.M.; Akbari, H.; Allport, P.P.; Badyal, S.K.; Ballagh, H.C.; Barth, M.; Baton, J.P.; Bingham, H.H.; Bjelkhagen, H.; Brucker, E.B.; Burnstein,; Campbell, J.R.; Cence, R.J.; Chatterjee, T.K.; Clayton, E.F.; Corrigan, G.; Coutures, C.; DeProspo, D.; Devanand,; De Wolf, E.A.; /UC, Berkeley /Birmingham U. /Brussels U.,
1997-01-01
Holography has been used successfully in combination with conventional optics for the first time in a large cryogenic bubble chamber, the 15-Foot Bubble Chamber at Fermilab, during a physics run. The innovative system combined the reference beam with the object beam, illuminating a conical volume of {approx} 1.4 m{sup 3}. Bubble tracks from neutrino interactions with a width of {approx} 120 {micro}m have been recorded with good contrast. The ratio of intensities of the object light to the reference light striking the film is called the Beam Branching Ratio. We obtained in our experiment an exceedingly small minimum-observable ratio of (0.54 {+-} 0.21) x 10{sup -7}. The technology has the potential for a wide range of applications.
Energy Technology Data Exchange (ETDEWEB)
Vazquez Jauregui, Eric; /San Luis Potosi U.
2008-08-01
We studied several {Xi}{sub c}{sup +} decay modes, most of them with a hyperon in the final state, and determined their branching ratios. The data used in this analysis come from the fixed target experiment SELEX, a multi-stage spectrometer with high acceptance for forward interactions, that took data during 1996 and 1997 at Fermilab with 600 GeV=c (mainly {Sigma}{sup -}, {pi}{sup -}) and 540 GeV/c (mainly p) beams incident on copper and carbon targets. The thesis mainly details the first observation of two Cabibbo-suppressed decay modes, {Xi}{sub c}{sup +} {yields} {Sigma}{sup +}{pi}{sup -}{pi}{sup +} and {Xi}{sub c}{sup +} {yields} {Sigma}{sup -}{pi}{sup +}{pi}{sup +}. The branching ratios of the decays relative to the Cabibbo-favored {Xi}{sub c}{sup +} {yields} {Xi}{sup -}{pi}{sup +}{pi}{sup +} are measured to be: {Lambda}({Xi}{sub c}{sup +} {yields} {Sigma}{sup -}{pi}{sup +}{pi}{sup +})/{Lambda}({Xi}{sub c}{sup +} {yields} {Xi}{sup -}{pi}{sup +}{pi}{sup +}) = 0.184 {+-} 0.086. Systematic studies have been performed in order to check the stability of the measurements varying all cuts used in the selection of events over a wide interval and we do not observe evidence of any trend, so the systematic error is negligible in the final results because the quadrature sum of the total error is not affected. The branching ratios for the same decay modes of the {Lambda}{sub c}{sup +} are measured to check the methodology of the analysis. The branching ratio of the decay mode {Lambda}{sub c}{sup +} {yields} {Sigma}{sup +}{pi}{sup -}{pi}{sup +} is measured relative to {Lambda}{sub c}{sup +} {yields} pK{sup -} {pi}{sup +}, while the one of the decay mode {Lambda}{sub c}{sup +} {yields} {Sigma}{sup -}{pi}{sup +}{pi}{sup +} is relative to {Lambda}{sub c}{sup +} {yields} {Sigma}{sup +}{pi}{sup -}{pi}{sup +}, as they have been reported earlier. The results for the control modes are: {Gamma}({Lambda}{sub c}{sup +} {yields} {Sigma}{sup +}{pi}{sup -}{pi}{sup +})/{Gamma
Energy Technology Data Exchange (ETDEWEB)
de Groot, N.
1993-03-09
The thesis is organized as follows: chapter 2 gives a short overview of the physics that can be studied at LEP. The next chapter is an introduction into neural networks. Chapter 4 gives a description of the LEP accelerator, the DELPHI detector and the analysis chain. The Inner Detector is the subject of the following chapter. In chapter 6 the analysis of the branching ratio of the Z(sup 0) into heavy quarks is presented. Chapter 7 summarizes the main results and conclusions.
Branching Ratios and CP Violations of B \\to K_0^*(1430) K^* Decays in the pQCD Approach
Liu, Xin; Xiao, Zhen-Jun; Zou, Zhi-Tian
2013-01-01
We investigate $B \\to K_0^*(1430) K^*$ decays in the perturbative QCD(pQCD) factorization approach, where $B$ denotes $B_u$, $B_d$ and $B_s$ meson respectively, and the scalar $K_0^*(1430)$ is considered as a meson based on the model of conventional two-quark structure. With the light-cone distribution amplitude of $K_0^*(1430)$ defined in two scenarios, namely Scenario 1 and Scenario 2, we make the first estimation for the branching ratios and CP-violating asymmetries for those concerned dec...
Precision tests of e-μ universality - measurement of the π+→e+ν branching ratio
International Nuclear Information System (INIS)
The calculated value of the π→eν branching ratio Rπeν is (1.234±0.001)x10-4, where the uncertainty arises from uncalculated structure-dependent loop effects. A measurement in disagreement with the calculated value could imply a deviation from universality, or indicate the existence of other physics beyond the SM. A previous experiment found Rπeν=(1.218±0.014)x10-4, consistent with the calculation at the 1% level. (R.P.) 10 refs.; 3 figs
International Nuclear Information System (INIS)
The absolute disintegration rates for nuclide 192Ir were measured with a 4πβ-γ (HPGe) coincidence apparatus by using parameter method and extrapolation method. The final uncertainties obtained were 0.4% and 0.5% respectively for a confidence level of 99.7%. The method with which both the disintegration rate and the decay branching ratio can be measured for nuclides with β- and EC mixing decays was proposed and described. The β- branching ratio in 192Ir decays was measured being 0.9572. The final uncertainties of disintegration rates and β- decay branching ratio with this method were 1.5% and 1.8% respectively
Measurements of selected psi (3684) branching ratios from a study of secondary lepton pairs
International Nuclear Information System (INIS)
We determine the ratio of the partial decay width for psi (3684) →μ+μ- to that for the cascade decay psi (3684) →psi (3095)+X to be (1.4plus-or-minus0.3) % and, by direct observation of associated charged particles and γ rays, find the ratio of the partial decay width for psi (3684) →psi (3095)+π0π0 to that for psi (3684) →psi (3095)+π+π- to be 0.64plus-or-minus0.15
Directory of Open Access Journals (Sweden)
Minato Futoshi
2016-01-01
Full Text Available Nuclear β-decay and delayed neutron (DN emission is important for the r-process nucleosynthesis after the freeze-out, and stable and safe operation of nuclear reactors. Even though radioactive beam facilities have enabled us to measure β-decay and branching ratio of neutron-rich nuclei apart from the stability line in the nuclear chart, there are still a lot of nuclei which one cannot investigate experimentally. In particular, information on DN is rather scarce than that of T1/2. To predict T1/2 and the branching ratios of DN for next JENDL decay data, we have developed a method which comprises the quasiparticle-random-phase-approximation (QRPA and the Hauser-Feshbach statistical model (HFSM. In this work, we calculate fission fragments with T1/2 ≤ 50 sec. We obtain the rms deviation from experimental half-life of 3:71. Although the result is still worse than GT2 which has been adopted in JENDL decay data, DN spectra are newly calculated. We also discuss further subjects to be done in future for improving the present approach and making next generation of JENDL decay data.
Minato, Futoshi
2016-06-01
Nuclear β-decay and delayed neutron (DN) emission is important for the r-process nucleosynthesis after the freeze-out, and stable and safe operation of nuclear reactors. Even though radioactive beam facilities have enabled us to measure β-decay and branching ratio of neutron-rich nuclei apart from the stability line in the nuclear chart, there are still a lot of nuclei which one cannot investigate experimentally. In particular, information on DN is rather scarce than that of T1/2. To predict T1/2 and the branching ratios of DN for next JENDL decay data, we have developed a method which comprises the quasiparticle-random-phase-approximation (QRPA) and the Hauser-Feshbach statistical model (HFSM). In this work, we calculate fission fragments with T1/2 ≤ 50 sec. We obtain the rms deviation from experimental half-life of 3:71. Although the result is still worse than GT2 which has been adopted in JENDL decay data, DN spectra are newly calculated. We also discuss further subjects to be done in future for improving the present approach and making next generation of JENDL decay data.
Branching ratios and CP violations of B→K0*(1430)K* decays in the perturbative QCD approach
Liu, Xin; Xiao, Zhen-Jun; Zou, Zhi-Tian
2013-11-01
We investigate B→K0*(1430)K* decays in the perturbative QCD (pQCD) factorization approach, where B denotes Bu, Bd, and Bs mesons, respectively, and the scalar K0*(1430) is considered as a meson based on the model of the conventional two-quark structure. With the light-cone distribution amplitude of K0*(1430) defined in two scenarios, namely Scenario 1 and Scenario 2, we make the first estimation for the branching ratios and CP-violating asymmetries for those concerned decay modes in the pQCD factorization approach. For all considered B→K0*(1430)K* decays in this paper, only one preliminary upper limit on the branching ratio of B0→K0*(1430)0K¯*0 measured at 90% C.L. by the Belle Collaboration is available now. It is therefore of great interest to examine the predicted physical quantities at two B factories, the Large Hadron Collider experiments, and the forthcoming Super-B facility, and then to test the reliability of the pQCD approach employed to study the considered decay modes involving a p-wave scalar meson as one of the final state mesons. Furthermore, these pQCD predictions combined with the future precision measurements are also helpful to explore the complicated QCD dynamics involved in the light scalars.
Branching Ratios and CP Violations of B \\to K_0^*(1430) K^* Decays in the pQCD Approach
Liu, Xin; Zou, Zhi-Tian
2013-01-01
We investigate $B \\to K_0^*(1430) K^*$ decays in the perturbative QCD(pQCD) approach, where $B$ denotes $B_u$, $B_d$, and $B_s$, respectively, and the scalar $K_0^*(1430)$ is considered as a meson based on the model of conventional two-quark structure. With the light-cone distribution amplitude of $K_0^*(1430)$ defined in two scenarios, namely Scenario 1 and Scenario 2, we give the first estimates on the experimental observables of branching ratios and CP-violating asymmetries for those concerned decay modes in the pQCD approach. As far as the $B \\to \\kst K^*$ decays are considered, there is only one preliminary upper limit on branching ratio of $B^0 \\to {\\kst}^0 \\bar{K}^{*0}$ measured at 90% C.L. by Belle Collaboration and no any available theoretical predictions in other methods/approaches currently. It is therefore of great interest to examine the predicted physical quantities at two $B$ factories, Large Hadron Collider experiments, and forthcoming Super-$B$ facility, then test the reliability of the pQCD ...
Martin, Elliot; Shreim, Amer; Paczuski, Maya
2010-01-01
We define an activity-dependent branching ratio that allows comparison of different time series Xt . The branching ratio bx is defined as bx=E[ξx/x] . The random variable ξx is the value of the next signal given that the previous one is equal to x , so ξx={Xt+1∣Xt=x} . If bx>1 , the process is on average supercritical when the signal is equal to x , while if bxefficient market hypothesis.” For stock volumes, solar x-ray flux intensities, and the Bak-Tang-Wiesenfeld (BTW) sandpile model, bx is supercritical for small values of activity and subcritical for the largest ones, indicating a tendency to return to a typical value. For stock volumes this tendency has an approximate power-law behavior. For solar x-ray flux and the BTW model, there is a broad regime of activity where bx≃1 , which we interpret as an indicator of critical behavior. This is true despite different underlying probability distributions for Xt and for ξx . For the BTW model the distribution of ξx is Gaussian, for x sufficiently larger than 1, and its variance grows linearly with x . Hence, the activity in the BTW model obeys a central limit theorem when sampling over past histories. The broad region of activity where bx is close to one disappears once bulk dissipation is introduced in the BTW model—supporting our hypothesis that it is an indicator of criticality.
Kayis-Topaksu, A; Van Dantzig, R; De Jong, M; Oldeman, R G C; Güler, M; Köse, U; Tolun, P; Catanesi, M G; Muciaccia, M T; Winter, Klaus; Van de Vyver, B; Vilain, P; Wilquet, G; Saitta, B; Di Capua, E; Ogawa, S; Shibuya, H; Hristova, I R; Kawamura, T; Kolev, D; Meinhard, H; Panman, J; Rozanov, A; Tsenov, R V; Uiterwijk, J W E; Zucchelli, P; Goldberg, J; Chikawa, M; Song, J S; Yoon, C S; Kodama, K; Ushida, N; Aoki, S; Hara, T; Delbar, T; Favart, D; Grégoire, G; Kalinin, S; Makhlyoueva, I V; Artamonov, A V; Gorbunov, P; Khovanskii, V D; Shamanov, V V; Tsukerman, I; Bruski, N; Frekers, D; Hoshino, K; Kawada, J; Komatsu, M; Myanishi, M; Nakamura, M; Nakano, T; Narita, K; Niu, K; Niwa, K; Nonaka, N; Sato, O; Toshito, T; Buontempo, S; Cocco, A G; D'Ambrosio, N; De Lellis, G; De Rosa, G; Di Capua, F; Fiorillo, G; Marotta, A; Messina, M; Migliozzi, P; Scotto-Lavina, L; Strolin, P; Tioukov, V; Okusawa, T; Dore, U; Loverre, P F; Ludovici, L; Rosa, G; Santacesaria, R; Satta, A; Spada, F R; Barbuto, E; Bozza, C; Grella, G; Romano, G; Sirignano, C; Sorrentino, S; Sato, Y; Tezuka, I
2005-01-01
From 1994 to 1997, the emulsion target of the CHORUS detector was exposed to the wideband neutrino beam of the CERN SPS. In total about 100 000 charged-current neutrino interactions were located in the nuclear emulsion target and fully reconstructed. From this sample of events based on the data acquired by new automatic scanning systems, 2013 charm-decay events were selected by a pattern recognition program. They were confirmed as decays through visual inspection. Based on these events, the effective branching ratio of charmed particles into muons was determined to be BÎ¼ = [7.3 Â± 0.8 (stat) Â± 0.2 (syst)] Ã 10â'2. In addition, the muonic branching ratios are presented for dominating charm decay topologies. Normalization of the muonic decays to chargedcurrent interactions provides _Î¼â'Î¼+/_cc = [3.16 Â± 0.34 (stat) Â± 0.09 (syst)] Ã 10â'3. Selecting only events with visible energy greater than 30 GeV gives a value of BÎ¼ that is less affected by the charm production threshold ...
Measurement of the branching ratio GAMMA (K/sub L/ → π+π-)/GAMMA (K/sub L/ → all)
International Nuclear Information System (INIS)
We have measured the branching ratio GAMMA (K/sub L/ → π+π-)/GAMMA (K/sub L/ → all) to be (2.01 +- 0.09) x 10-3. This value is in good agreement with other recent determinations of this branching ratio and yields a value for the CP-violating parameter eta/sub + -/ of (2.25 +- 0.05) x 10-3
International Nuclear Information System (INIS)
Results from DELPHI on the Z0 → bb-bar partial width (Γ(bb-bar)) and on the average B hadron semileptonic branching ratio (Bs.l.) are reviewed. Prospects are given for improving these measurements, using different complementary techniques. A new and potentially powerful method for extracting the branching ratio Rb with minimal errors is suggested, based on using the redundancy provided by two independent discriminators for bb-bar events. (R.P.) 12 refs., 3 figs
A determination of the muon pair branching ratio of the Y' meson
International Nuclear Information System (INIS)
Using the ARGUS detector at the e+ e- storage ring DORIS-II, we have observed the decays of Y(9,460) and Y'(10,023) into muon pairs. The ratio of the two observed rates determines Bsub(μμ)(Y') largely independent of acceptance uncertainties and absolute luminosity calibration, if Bsub(μμ)(Y) is known. From data with an integrated luminosity of 6.11/pb on the Y and 9.93/pb on the Y', using the present world average Bsub(μμ)(Y)=(2.9+-0.2)%, we obtain Bsub(μμ)(Y')=(1.57+-0.59+-0.68)%. (orig.)
Institute of Scientific and Technical Information of China (English)
Toru Ishikawa
2012-01-01
The prognosis of hepatocellular carcinoma (HCC) depends on tumor extension as well as hepatic function.Hepatic functional reserve is recognized as a factor affecting survival in the treatment of HCC; the ChildPugh classification system is the most extensively used method for assessing hepatic functional reserve in patients with chronic liver disease,using serum albumin level to achieve accurate assessment of the status of protein metabolism.However,insufficient attention has been given to the status of amino acid (AA) metabolism in chronic liver disease and HCC.Fischer's ratio is the molar ratio of branched-chain AAs (BCAAs:leucine,valine,isoleucine) to aromatic AAs (phenylalanine,tyrosine) and is important for assessing liver metabolism,hepatic functional reserve and the severity of liver dysfunction.Although this ratio is difficult to determine in clinical situations,BCAAs/tyrosine molar concentration ratio (BTR) has been proposed as a simpler substitute.BTR correlates with various liver function examinations,including markers of hepatic fibrosis,hepatic blood flow and hepatocyte function,and can thus be considered as reflecting the degree of hepatic impairment.This manuscript examines the literature to clarify whether BTR can serve as a prognostic factor for treatment of HCC.
Negative feedback avalanche diode
Itzler, Mark Allen (Inventor)
2010-01-01
A single-photon avalanche detector is disclosed that is operable at wavelengths greater than 1000 nm and at operating speeds greater than 10 MHz. The single-photon avalanche detector comprises a thin-film resistor and avalanche photodiode that are monolithically integrated such that little or no additional capacitance is associated with the addition of the resistor.
Measurement of exclusive one-prong and inclusive three-prong branching ratios of the τ lepton
International Nuclear Information System (INIS)
Using the ARGUS detector at the DORIS II storage ring, we have studied τ decays with one or three charged particles in the final state, obtaining the following values for the branching ratios: BR(τ-→e-anti νeντ)=(17.3±0.4±0.5)%, BR(τ-→μ-anti νμντ)=(17.2±0.4±0.5)%, BR(τ-→π-ντ)+BR(τ-→K-ντ)=(11.7±0.6±0.8)%, and BR(τ-→3-prong)=(13.3±0.3±0.8)%. These measurements confirm the present world averages with a precision, in each case, comparable to the error on the combination of all previous results. (orig.)
International Nuclear Information System (INIS)
The sub-library of discrete level schemes and gamma radiation branching ratios (DLS) is translated from the evaluated nuclear structure data file (ENSDF). The data are further checked and corrected. In consideration of the demands for different kinds of research fields most of the evaluated experimental levels and their gamma rays in the ENSDF are kept in DLS data file. the management-retrieval code can provide two retrieving ways. One is a retrieval for a single nucleus (SN), and the other is one for a neutron reaction (NR). The latter contains four kinds of retrieving types corresponding four types of different fast neutron calculation codes. The code can cut off and select the required level and gamma rays from whole discrete level scheme according to user's demands
Energy Technology Data Exchange (ETDEWEB)
Cheng, Baosen; /Wisconsin U., Madison
2006-03-07
We present the preliminary results on the search for B{sup 0} {yields} {rho}{sup -}K*{sup +}. The data sample comprises 122.7 million B{bar B} pairs in the e{sup +}e{sup -} annihilation through the {Upsilon}(4S) resonance collected during 1999-2003 with the BABAR detector at the PEP-II asymmetric-energy collider at Stanford Linear Accelerator Center (SLAC). We obtain an upper limit of the branching ratio at 90% confidence level as {Beta}(B{sup 0} {yields} {rho}{sup -}K*{sup +}) < 17.2 x 10{sup -6}. The fitted result on the polarization fraction shows no evidence that the decay is longitudinally dominated as predicted by various theoretical models.
A note on limits on new interactions from the π→eν/π→μν branching ratio
International Nuclear Information System (INIS)
We investigate the constraints on pseudoscalar-type bar du→eνe interactions from the π→eν/π→μν branching ratio. We point out that for some important cases the usual assumption that the contributions of these interactions to π→eν/π→μν are small relative to the standard model contribution is not justified. We give an exact treatment of the constraints from π→eν/π→μν and investigate the implications for tree-level sources of pseudoscalar-type π→eνe interactions. One of the results is that, contrary to previous belief, the bounds on the masses of some of the leptoquarks which couple to both left-handed and right-handed quarks are not considerably stronger than the bounds on the masses of chiral leptoquarks even for equal strength for the left-handed and right-handed couplings
tau branching ratios and polarization limits in e+e- interactions at √s=34 GeV
International Nuclear Information System (INIS)
Results on the dominant decays of tau leptons produced in e+e- interactions at √s = 34 GeV are presented. We obtain the branching ratios BR(tau -> rho#betta#) = 0.228 +- 0.033, BR (tau -> π#betta#) = 0.099 +- 0.021, BR (tau -> e#betta##betta#) = 0.183 +- 0.031, BR (tau -> μν#betta#) = 0.176 +- 0.033. From the laboratory momentum spectra of the observed decay products we determine the tau polarization asymmetry to (1 +- 22)% and thereby derive limits for the vector coupling constant upsilonsub(tau) of the tau to the weak neutral current. Tests on universality and factorization are discussed. (orig.)
Measurement of the branching ratio for D+→anti K*(892)0μ+ν
International Nuclear Information System (INIS)
The branching ratio for the decay mode D+→anti K*0μ+ν has been measured with two methods. The first uses D0→K-μ+ν for normalization, and yields the result B(D+→anti K*0μ+ν)=(3.25±0.71±0.75)%. From this method we also obtain the direct measurement Γ(D+→anti K*0μ+ν)/Γ(D0→K-μ+ν)=0.43±0.09±0.09. The second method uses the mode D+→K-π+π+ for normalization and yields B(D+→anti K*0μ+ν)=(4.18±0.66±0.96)%. Combining the results of the two methods yields B(D+→anti K*0μ+ν)=(3.57±0.96)%. (orig.)
A Limit on the Branching Ratio of the Flavor-Changing Top Quark Decay t-->Zc
Energy Technology Data Exchange (ETDEWEB)
Paramonov, Alexander Andreevich; /Chicago U., EFI
2009-06-01
We have used the Collider Detector at Fermilab (CDF-II) to set upper limits on the branching ratio of the flavor-changing neutral-current (FCNC) top quark decay t {yields} Zc using a technique employing ratios of W and Z production, measured in 1.52 fb{sup -1} of p{bar p} data. The analysis uses a comparison of two decay chains, p{bar p} {yields} t{bar t} {yields} WbWb {yields} {ell}{nu}bjjb and p{bar p} {yields} t{bar t} ZcWb {yields} {ell}{sup +}{ell}{sup -} cjjb, to cancel systematic uncertainties in acceptance, efficiency, and luminosity. We validate the MC modeling of acceptance and efficiency for lepton identification over the multi-year dataset also using a ratio of W and Z production, in this case the observed ratio of inclusive production of W to Z-bosons, a technique that will be essential for precision comparisons with the standard model at the LHC. We introduce several methods of determining backgrounds to the W and Z samples. To improve the discrimination against SM backgrounds to top quark decays, we calculate the top mass for each event with two leptons and four jets assuming it is a t{bar t} event with one of the top quarks decaying to Zc. The upper limit on the Br(t {yields} Zc) is estimated from a likelihood constructed with the {ell}{sup +}{ell}{sup -} cjjb top mass distribution and the number of {ell}{nu}bjjb events. Limits are set as a function of the helicity of the Z-boson produced in the FCNC decay. For 100%-longitudinally-polarized Z-bosons we find a limit of 8.3% (95% C.L.).
Nuth, Joseph A.; Johnson, Natasha M.; Ferguson, Frank T.; Carayon, Alicia
2016-07-01
We report the ratio of the initial carbon available as CO that forms gas-phase compounds compared to the fraction that deposits as a carbonaceous solid (the gas/solid branching ratio) as a function of time and temperature for iron, magnetite, and amorphous iron silicate smoke catalysts during surface-mediated reactions in an excess of hydrogen and in the presence of N2. This fraction varies from more than 99% for an amorphous iron silicate smoke at 673 K to less than 40% for a magnetite catalyst at 873 K. The CO not converted into solids primarily forms methane, ethane, water, and CO2, as well as a very wide range of organic molecules at very low concentration. Carbon deposits do not form continuous coatings on the catalytic surfaces, but instead form extremely high surface area per unit volume "filamentous" structures. While these structures will likely form more slowly but over much longer times in protostellar nebulae than in our experiments due to the much lower partial pressure of CO, such fluffy coatings on the surfaces of chondrules or calcium aluminum inclusions could promote grain-grain sticking during low-velocity collisions.
Nuth, Joseph A.; Johnson, Natasha M.; Ferguson, Frank T.; Carayon, Alicia
2016-06-01
We report the ratio of the initial carbon available as CO that forms gas-phase compounds compared to the fraction that deposits as a carbonaceous solid (the gas/solid branching ratio) as a function of time and temperature for iron, magnetite, and amorphous iron silicate smoke catalysts during surface-mediated reactions in an excess of hydrogen and in the presence of N2. This fraction varies from more than 99% for an amorphous iron silicate smoke at 673 K to less than 40% for a magnetite catalyst at 873 K. The CO not converted into solids primarily forms methane, ethane, water, and CO2, as well as a very wide range of organic molecules at very low concentration. Carbon deposits do not form continuous coatings on the catalytic surfaces, but instead form extremely high surface area per unit volume "filamentous" structures. While these structures will likely form more slowly but over much longer times in protostellar nebulae than in our experiments due to the much lower partial pressure of CO, such fluffy coatings on the surfaces of chondrules or calcium aluminum inclusions could promote grain-grain sticking during low-velocity collisions.
Study of the branching ratio of $\\psi(3770)\\to D\\bar{D}$ in $e^+e^-\\to D\\bar{D}$ scattering
Li, Hai-Bo; Yang, Mao-Zhi
2009-01-01
Based on the data of BES, Belle and BABAR, the production of $D\\bar{D}$ in $e^+e^-\\to D\\bar{D}$ scattering process is studied in this paper. We analyze the continuum and resonant contribution in the energy region from 3.7 GeV to 4.0 GeV. In the maximum likelihood fit to data, we obtain the resonance parameters of $\\psi(3770)$, the branching ratio of $\\psi(3770)\\to D\\bar{D}$ decay by confronting the data to theoretical formula where both the contributions of the resonances, continuum and interference effects are included. We obtain the branching ratio of $\\psi(3770)\\to D\\bar{D}$ decay is $97.2\\pm 8.9%$, as well as the branching ratio of $\\psi(4040)$, $\\psi(4160)\\to D\\bar{D}$ decays.
Measurement of the absolute branching ratio of the K+→π+π−π+(γ) decay with the KLOE detector
International Nuclear Information System (INIS)
The absolute branching ratio of the K+→π+π−π+(γ) decay, inclusive of final-state radiation, has been measured using ∼17 million tagged K+ mesons collected with the KLOE detector at DAΦNE, the Frascati ϕ-factory. The result is: BR(K+→π+π−π+(γ))=0.05565±0.00031stat±0.00025syst a factor ≃ 5 more precise with respect to the previous result. This work completes the program of precision measurements of the dominant kaon branching ratios at KLOE.
Measurement of the absolute branching ratio of the K+→π+π−π+(γ decay with the KLOE detector
Directory of Open Access Journals (Sweden)
D. Babusci
2014-11-01
Full Text Available The absolute branching ratio of the K+→π+π−π+(γ decay, inclusive of final-state radiation, has been measured using ∼17 million tagged K+ mesons collected with the KLOE detector at DAΦNE, the Frascati ϕ-factory. The result is:BR(K+→π+π−π+(γ=0.05565±0.00031stat±0.00025syst a factor ≃ 5 more precise with respect to the previous result. This work completes the program of precision measurements of the dominant kaon branching ratios at KLOE.
Measurement of the b → τ -ν-τX branching ratio and an upper limit on B - → τ -ν-τ
Buskulic, D.; Casper, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Odier, P.; Pietrzyk, B.; Ariztizabal, F.; Chmeissani, M.; Crespo, J. M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Martinez, M.; Orteu, S.; Pacheco, A.; Padilla, C.; Palla, F.; Pascual, A.; Perlas, J. A.; Sanchez, F.; Teubert, F.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Marinelli, N.; Natali, S.; Nuzzo, S.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Bonvicini, G.; Boudreau, J.; Comas, P.; Coyle, P.; Drevermann, H.; Engelhardt, A.; Forty, R. W.; Frank, M.; Ganis, G.; Gay, C.; Girone, M.; Hagelberg, R.; Harvey, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lehraus, I.; Maggi, M.; Markou, C.; Martin, E. B.; Mato, P.; Meinhard, H.; Minten, A.; Miquel, R.; Palazzi, P.; Pater, J. R.; Perrodo, P.; Pusztaszeri, J.-F.; Ranjard, F.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Tejessy, W.; Tomalin, I. R.; Veenhof, R.; Venturi, A.; Wachsmuth, H.; Wiedenmann, W.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Bardadin-Otwinowska, M.; Barres, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rossignol, J.-M.; Saadi, F.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Johnson, S. D.; Møllerud, R.; Nilsson, B. S.; Kyriakis, A.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Passalacqua, L.; Rougé, A.; Rumpf, M.; Tanaka, R.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Focardi, E.; Parrini, G.; Corden, M.; Delfino, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Pepe-Altarelli, M.; Salomone, S.; Colrain, P.; Ten Have, I.; Knowles, I. G.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Thorn, S.; Turnbull, R. M.; Becker, U.; Braun, O.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Putzer, A.; Rensch, B.; Schmidt, M.; Stenzel, H.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Hassard, J. F.; Konstantinidis, N.; Moneta, L.; Moutoussi, A.; Nash, J.; Payne, D. G.; San Martin, G.; Sedgbeer, J. K.; Wright, A. G.; Dissertori, G.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Galla, A.; Greene, A. M.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Walther, S. M.; Wanke, R.; Wolf, B.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Nicod, D.; Payre, P.; Roos, L.; Rousseau, D.; Talby, M.; Abt, I.; Adlung, S.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Dehning, B.; Dietl, H.; Dydak, F.; Halley, A. W.; Jakobs, K.; Kroha, H.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; Denis, R. St.; Wolf, G.; Alemany, R.; Boucrot, J.; Callot, O.; Cordier, A.; Courault, F.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jacquet, M.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Musolino, G.; Nikolic, I.; Park, H. J.; Park, I. C.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Abbaneo, D.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bottigli, U.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Gao, Y.; Green, M. G.; Johnson, D. L.; Medcalf, T.; Mir, Ll. M.; Quazi, I. S.; Strong, J. A.; Bertin, V.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Edwards, M.; Maley, P.; Norton, P. R.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Trabelsi, A.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Beddall, A.; Booth, C. N.; Boswell, C.; Cartwright, S.; Combley, F.; Dawson, I.; Koksal, A.; Letho, M.; Newton, W. M.; Rankin, C.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Cowan, G.; Feigl, E.; Grupen, C.; Lutters, G.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Schäfer, U.; Smolik, L.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Pitis, L.; Ragusa, F.; Kim, H.; Rothberg, J.; Wasserbaech, S.; Bellantoni, L.; Conway, J. S.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Hayes, O. J.; Hu, H.; Nachtman, J. M.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I.; Sharma, V.; Turk, J. D.; Walsh, A. M.; Weber, F. V.; Wildish, T.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration
1995-02-01
Using 1.45 million hadronic Z decays collected by the ALEPH experiment at LEP, the b → τ -ν-τX branching ratio is measured to be 2.75 ± 0.30 ± 0.37%. In addition an upper limit of 1.8 × 10 -3 at 90% confidence level is placed upon the exclusive branching ratio of B- → τ -ν-τ. These measurements are consistent with SM expectations, and put the constraint tan {β}/{M h ±} < 0.52 GeV -1 at 90% confidence level on all Type II two Higgs doublet models (such as the MSSM).
Precise Branching Ratio Measurements of the Decays D0-->pi- pi+ pi0 and D0-->K- K+ pi0
Aubert, B; Bóna, M; Boutigny, D; Couderc, F; Karyotakis, Yu; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Graugès-Pous, E; Palano, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Gill, M S; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Del Amo-Sánchez, P; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schröder, T; Steinke, M; Boyd, J T; Burke, J P; Cottingham, W N; Walker, D; Çuhadar-Dönszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Sherwood, D J; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Best, D S; Bondioli, M; Bruinsma, M; Chao, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M A; Mommsen, R K; Röthel, W; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; Hadavand, H K; Hill, E J; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dvoretskii, A; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Olivas, A; Ruddick, W O; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Petzold, A; Spaan, B; Brandt, T; Klose, V; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Grenier, P; Latour, E; Thiebaux, C; Verderi, M; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; De Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bard, D J; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Flack, R L; Nash, J A; Nikolich, M B; Panduro-Vazquez, W; Behera, P K; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gritsan, A V; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Davier, M; Grosdidier, G; Höcker, A; Le Diberder, F R; Lepeltier, V; Lutz, A M; Oyanguren, A; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wang, W F; Wormser, G; Cheng, C H; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; Di Lodovico, F; Menges, W; Sacco, R; Cowan, G; Flächer, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Wren, A C; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; Naisbit, M T; Williams, J C; Yi, J I; Chen, C; Hulsbergen, W D; Jawahery, A; Lae, C K; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Saremi, S; Stängle, H; Cowan, R; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; Mclachlin, S E; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; Cavallo, N; De Nardo, Gallieno; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Raven, G; Snoek, H L; Jessop, C P; LoSecco, J M; Allmendinger, T; Benelli, G; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Rahimi, A M; Ter-Antonian, R; Wong, Q K; Blount, N L; Brau, J E; Frey, R; Igonkina, O; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Chauveau, J; Briand, H; David, P; Del Buono, L; La Vaissière, C de; Hamon, O; Hartfiel, B L; John, M J J; Leruste, P; Malcles, J; Ocariz, J; Roos, L; Therin, G; Gladney, L; Panetta, J; Biasini, M; Covarelli, R; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Cenci, R; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Haire, M; Judd, D; Wagoner, D E; Biesiada, J; Danielson, N; Elmer, P; Lau, Y P; Lü, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; Del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Safai-Tehrani, F; Voena, C; Ebert, M; Schröder, H; Waldi, R; Adye, T; De, N; Groot; Franek, B; Olaiya, E O; Wilson, F F; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, Witold; Legendre, M; Vasseur, G; Yéche, C; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Claus, R; Coleman, J P; Convery, M R; Cristinziani, M; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W M; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Halyo, V; Hast, C; Hrynóva, T; Innes, W R; Kelsey, M H; Kim, P; Leith, D W G S; Li, S; Luitz, S; Lüth, V; Lynch, H L; MacFarlane, D B; Marsiske, H; Messner, R; Müller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Vavra, J; Van Bakel, N; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Satpathy, A; Schilling, C J; Schwitters, R F; Izen, J M; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Lanceri, L; Vitale, L; Azzolini, V; Martínez-Vidal, F; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Kowalewski, R V; Nugent, I M; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Pappagallo, M; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Flood, K T; Hollar, J J; Kutter, P E; Mellado, B; Mihályi, A; Pan, Y; Pierini, M; Prepost, R; Wu, S L; Yu, Z; Neal, H
2006-01-01
Using 232 fb-1 of e+e- collision data recorded by the BaBar experiment, we measure the ratios of three-body Cabibbo-suppressed decay rates of the D^0 meson relative to that of the Cabibbo-favored decay: B(D0 --> pi- pi+ pi0)/ B(D0 --> K- pi+ pi0) = (10.59 +/- 0.06 +/- 0.13).10^{-2} and B(D0 --> K- K+ pi0)/ B(D0 --> K- pi+ pi0) = (2.37 +/- 0.03 +/- 0.04). 10^{-2}, where the errors are statistical and systematic respectively. The precisions of these measurements are significantly better than those of the current world average values.We note that the second result differs significantly from the current world average value. Using the PDG-2006 value for D0 --> K- pi+ pi0 branching fraction, we obtain, B(D0 --> pi- pi+ pi0) = (1.493 +/- 0.008 +/- 0.018 +/- 0.053). 10^{-2}, B(D0 --> K- K+ pi0) = (0.334 +/- 0.004 +/- 0.006 +/- 0.012). 10^{-2}, where the errors are statistical, systematic, and due to the uncertainty of B(D0 --> K- pi+ pi0). The average squared matrix elements for both of the singly Cabibbo-suppressed ...
Liu, Wangyu; Wang, Ningling; Jiang, Xiaoyong; Peng, Yujian
2016-07-01
The branching system plays an important role in maintaining the survival of palm trees. Due to the nature of monocots, no additional vascular bundles can be added in the palm tree tissue as it ages. Therefore, the changing of the cross-sectional area in the palm branch creates a graded distribution in the mechanical properties of the tissue. In the present work, this graded distribution in the tissue mechanical properties from sheath to petiole were studied with a multi-scale modeling approach. Then, the entire palm branch was reconstructed and analyzed using finite element methods. The variation of the elastic modulus can lower the level of mechanical stress in the sheath and also allow the branch to have smaller values of pressure on the other branches. Under impact loading, the enhanced frictional dissipation at the surfaces of adjacent branches benefits from the large Poisson׳s ratio of the sheath tissue. These findings can help to link the wind resistance ability of palm trees to their graded materials distribution in the branching system. PMID:26807774
Hwang, Hyoun-Tae; Jeen, Sung-Wook; Sudicky, Edward A.; Illman, Walter A.
2015-06-01
The applicability of a newly-developed chain-decay multispecies model (CMM) was validated by obtaining kinetic rate constants and branching ratios along the reaction pathways of trichloroethene (TCE) reduction by zero-valent iron (ZVI) from column experiments. Changes in rate constants and branching ratios for individual reactions for degradation products over time for two columns under different geochemical conditions were examined to provide ranges of those parameters expected over the long-term. As compared to the column receiving deionized water, the column receiving dissolved CaCO3 showed higher mean degradation rates for TCE and all of its degradation products. However, the column experienced faster reactivity loss toward TCE degradation due to precipitation of secondary carbonate minerals, as indicated by a higher value for the ratio of maximum to minimum TCE degradation rate observed over time. From the calculated branching ratios, it was found that TCE and cis-dichloroethene (cis-DCE) were dominantly dechlorinated to chloroacetylene and acetylene, respectively, through reductive elimination for both columns. The CMM model, validated by the column test data in this study, provides a convenient tool to determine simultaneously the critical design parameters for permeable reactive barriers and natural attenuation such as rate constants and branching ratios.
Avalanches and disorder-induced criticality in artificial spin ices
International Nuclear Information System (INIS)
We show that both square and kagome artificial spin ice systems exhibit disorder-induced nonequilibrium phase transitions, with power law avalanche distributions at the critical disorder level. The different nature of geometrical frustration in the two lattices produces distinct types of critical avalanche behavior. For the square ice, the avalanches involve the propagation of locally stable domain walls separating the two polarized ground states, and the scaling collapse agrees with an interface depinning mechanism. In contrast, avalanches in the fully frustrated kagome ice exhibit pronounced branching behaviors that resemble those found in directed percolation. The kagome ice also shows an interesting crossover in the power-law scaling of the avalanches at low disorder. Our results show that artificial spin ices are ideal systems in which to study nonequilibrium critical point phenomena. (paper)
Morrison, M. D.; Cunningham, A. J.
1983-01-01
Branching ratios are presented of singly and doubly ionized sulfur EUV emissions. They are determined by measuring the relative photon intensities of each of the branching components. For several transitions in S II for which mean lifetimes have been measured with fast-beam spectroscopy, the data presented here are used to determine transition probabilities. The S II transitions originate from the 2P, 4s-prime 2D, and 4s 2P terms and terminate on the metastable states of the ion. The S III transitions originate from the 3d 3D0, 4s 3P0, 3p3 3S0, 4s 1P0, and 3s3p3 1P0 terms and terminate on the metastable and ground ionic states. The results for S III include branching ratios involving intercombination transitions that affect ongoing modeling of the energy budget of the Io plasma torus.
Christensen, A. B.
1979-01-01
Recent laboratory, geophysical, and theoretical determinations of the O I (7990 A) and O I (11,287 A) branching ratios indicate that the generally used values based on the NBS transition parameters need revision. The O I (7990 A) branching ratio is about 300 times smaller than the NBS value, and the O I (11,287 A) is about one-quarter as large. The transitions are important in the generation of permitted atomic oxygen spectra in several types of astronomical source, including the Orion Nebula (M42), the Seyfert galaxy NGC 4151, Arcturus, and comets. The absence of the O I (7990 A) emission in M42 and NGC 4151 is consistent with its very small branching ratio, and previous conclusions based on its absence, such as the rejection of starlight excitation in the Seyfert galaxy, require reinvestigation. The reduction of the O I (11,287 A) branching ratio is pertinent to hydrogen L-beta fluorescence excitation of O I (1304 A) and O I (8446 A) emission and requires an upward revision of oxygen production rates in comets.
Energy Technology Data Exchange (ETDEWEB)
Sipica, Valentin
2011-09-15
The Large Hadron Collider (LHC) located at the CERN laboratory in Geneva provides p-p collisions at a centre-of-mass energy of {radical}(s)=7 TeV. The study of the rare B{sup 0}{sub s}{yields}{mu}{sup +}{mu}{sup -} decay is among the research topics of ATLAS, one of the main experiments at the LHC. This decay is highly suppressed in the Standard Model of particle physics and may give an indirect evidence for New Physics models. This PhD thesis investigates prospects for measuring the branching ratio of the B{sup 0}{sub s}{yields}{mu}{sup +}{mu}{sup -} decay with the ATLAS experiment. The analysis is based on Monte Carlo data, with p-p collisions generated at a centre-of-mass energy of {radical}(s)=10 TeV. The strategy employed is to calculate the B{sup 0}{sub s}{yields}{mu}{sup +}{mu}{sup -} branching ratio relative to the branching ratio of the B{sup +}{yields} J/{psi}({mu}{sup +}{mu}{sup -})K{sup +} decay. The dominant background channel is the b anti b{yields}{mu}{sup +}{mu}{sup -}X combinatorial background. True B{sup 0}{sub s}{yields}{mu}{sup +}{mu}{sup -} decay candidates are separated from the much larger amount of combinatorial background events using several discriminating quantities. Upper limits on the B{sup 0}{sub s} {yields} {mu}{sup +}{mu}{sup -} branching ratio are computed using a Bayesian and a frequentist method. The expected precision of the branching ratio measurement is estimated for different values of the integrated luminosity. An expected upper limit on the branching ratio is computed to BR(B{sup 0}{sub s}{yields}{mu}{sup +}{mu}{sup -})<3.8 x 10{sup -8} at a 95% confidence level for 1 fb{sup -1}. The precision of the ATLAS measurement of the branching ratio will reach a level compatible with the best current measurements with about 2-5 fb{sup -1} of data.
Neuronal Avalanches in the Resting MEG of the Human Brain
Shriki, Oren; Alstott, Jeff; Carver, Frederick; Holroyd, Tom; Henson, Richard N. A.; Smith, Marie L.; Coppola, Richard; Bullmore, Edward,; Plenz, Dietmar
2013-01-01
What constitutes normal cortical dynamics in healthy human subjects is a major question in systems neuroscience. Numerous in vitro and in vivo animal studies have shown that ongoing or resting cortical dynamics are characterized by cascades of activity across many spatial scales, termed neuronal avalanches. In experiment and theory, avalanche dynamics are identified by two measures: (1) a power law in the size distribution of activity cascades with an exponent of −3/2 and (2) a branching para...
A Combination of CDF and D0 limits on the branching ratio of B0(s)(d) ---> mu+ mu- decays
International Nuclear Information System (INIS)
The authors combine the results of CDF and D0 searches for the rare decays Bs0 → μ+μ- and Bd0 → μ+μ-. The experiments use 364 pb-1 and 300 pb-1 of data respectively. The limits on the branching ratios are obtained by normalizing the estimated sensitivity to the decay B+ → J/ψK+ taking into account the fragmentation ratios fu/fs(d). The combined results exclude branching ratios of BR(Bs0 → μ+μ-) > 1.5 x 10-7 and BR(Bd0 → μ+μ-) > 4.0 x 10-8 at 95% confidence level. These are the most stringent limits on these decays at the present time
Abbiendi, G; Alexander, Gideon; Allison, J; Altekamp, N; Anderson, K J; Anderson, S; Arcelli, S; Asai, S; Ashby, S F; Axen, D A; Azuelos, Georges; Ball, A H; Barberio, E; Barlow, R J; Bartoldus, R; Batley, J Richard; Baumann, S; Bechtluft, J; Behnke, T; Bell, K W; Bella, G; Bellerive, A; Bentvelsen, Stanislaus Cornelius Maria; Bethke, Siegfried; Betts, S; Biebel, O; Biguzzi, A; Bird, S D; Blobel, Volker; Bloodworth, Ian J; Bobinski, M; Bock, P; Böhme, J; Bonacorsi, D; Boutemeur, M; Braibant, S; Bright-Thomas, P G; Brigliadori, L; Brown, R M; Burckhart, Helfried J; Burgard, C; Bürgin, R; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Chrisman, D; Ciocca, C; Clarke, P E L; Clay, E; Cohen, I; Conboy, J E; Cooke, O C; Couyoumtzelis, C; Coxe, R L; Cuffiani, M; Dado, S; Dallavalle, G M; Davis, R; De Jong, S; del Pozo, L A; de Roeck, A; Desch, Klaus; Dienes, B; Dixit, M S; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Eatough, D; Estabrooks, P G; Etzion, E; Evans, H G; Fabbri, Franco Luigi; Fanti, M; Faust, A A; Fiedler, F; Fierro, M; Fleck, I; Folman, R; Fürtjes, A; Futyan, D I; Gagnon, P; Gary, J W; Gascon, J; Gascon-Shotkin, S M; Gaycken, G; Geich-Gimbel, C; Giacomelli, G; Giacomelli, P; Gibson, V; Gibson, W R; Gingrich, D M; Glenzinski, D A; Goldberg, J; Gorn, W; Grandi, C; Gross, E; Grunhaus, Jacob; Gruwé, M; Hanson, G G; Hansroul, M; Hapke, M; Harder, K; Hargrove, C K; Hartmann, C; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herndon, M; Herten, G; Heuer, R D; Hildreth, M D; Hill, J C; Hillier, S J; Hobson, P R; Höcker, Andreas; Homer, R James; Honma, A K; Horváth, D; Hossain, K R; Howard, R; Hüntemeyer, P; Igo-Kemenes, P; Imrie, D C; Ishii, K; Jacob, F R; Jawahery, A; Jeremie, H; Jimack, Martin Paul; Jones, C R; Jovanovic, P; Junk, T R; Karlen, D A; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Kayal, P I; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Klier, A; Kluth, S; Kobayashi, T; Kobel, M; Koetke, D S; Kokott, T P; Kolrep, M; Komamiya, S; Kowalewski, R V; Kress, T; Krieger, P; Von Krogh, J; Kühl, T; Kyberd, P; Lafferty, G D; Lanske, D; Lauber, J; Lautenschlager, S R; Lawson, I; Layter, J G; Lazic, D; Lee, A M; Lellouch, Daniel; Letts, J; Levinson, L; Liebisch, R; List, B; Littlewood, C; Lloyd, A W; Lloyd, S L; Loebinger, F K; Long, G D; Losty, Michael J; Ludwig, J; Liu, D; Macchiolo, A; MacPherson, A L; Mader, W F; Mannelli, M; Marcellini, S; Markopoulos, C; Martin, A J; Martin, J P; Martínez, G; Mashimo, T; Mättig, P; McDonald, W J; McKenna, J A; McKigney, E A; McMahon, T J; McPherson, R A; Meijers, F; Menke, S; Merritt, F S; Mes, H; Meyer, J; Michelini, Aldo; Mihara, S; Mikenberg, G; Miller, D J; Mir, R; Mohr, W; Montanari, A; Mori, T; Nagai, K; Nakamura, I; Neal, H A; Nellen, B; Nisius, R; O'Neale, S W; Oakham, F G; Odorici, F; Ögren, H O; Oreglia, M J; Orito, S; Pálinkás, J; Pásztor, G; Pater, J R; Patrick, G N; Patt, J; Pérez-Ochoa, R; Petzold, S; Pfeifenschneider, P; Pilcher, J E; Pinfold, James L; Plane, D E; Poffenberger, P R; Polok, J; Przybycien, M B; Rembser, C; Rick, Hartmut; Robertson, S; Robins, S A; Rodning, N L; Roney, J M; Roscoe, K; Rossi, A M; Rozen, Y; Runge, K; Runólfsson, O; Rust, D R; Sachs, K; Saeki, T; Sahr, O; Sang, W M; Sarkisyan-Grinbaum, E; Sbarra, C; Schaile, A D; Schaile, O; Scharf, F; Scharff-Hansen, P; Schieck, J; Schmitt, B; Schmitt, S; Schöning, A; Schröder, M; Schumacher, M; Schwick, C; Scott, W G; Seuster, R; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Siroli, G P; Sittler, A; Skuja, A; Smith, A M; Snow, G A; Sobie, Randall J; Söldner-Rembold, S; Sproston, M; Stahl, A; Stephens, K; Steuerer, J; Stoll, K; Strom, D; Ströhmer, R; Surrow, B; Talbot, S D; Tanaka, S; Taras, P; Tarem, S; Teuscher, R; Thiergen, M; Thomson, M A; Von Törne, E; Torrence, E; Towers, S; Trigger, I; Trócsányi, Z L; Tsur, E; Turcot, A S; Turner-Watson, M F; Van Kooten, R; Vannerem, P; Verzocchi, M; Voss, H; Wäckerle, F; Wagner, A; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wermes, N; White, J S; Wilson, G W; Wilson, J A; Wyatt, T R; Yamashita, S; Yekutieli, G; Zacek, V; Zer-Zion, D
1999-01-01
The inclusive charm hadron semileptonic branching fractions B(c to e) and B(c to mu) in Z to ccbar events have been determined using 4.4 million hadronic Z decays collected with the OPAL detector at LEP. A charm-enriched sample is obtained by selecting events with reconstructed D*+- mesons. Using leptons found in the hemisphere opposite that of the D*+- mesons, the semileptonic branching fractions of charm hadrons are measured to be B(c to e) = 0.103 +-0.009 +0.009 -0.008 and B(c to mu) = 0.090 +-0.007 +0.007 -0.006 where the first errors are in each case statistical and the others systematic. Combining these measurements, an inclusive semileptonic branching fraction of charm hadrons of B(c to l) = 0.095 +-0.006 +0.007 -0.006 is obtained.
Measurement of the Branching fraction ratio B ---> D K / B ---> D pi with the CDF II detector
Energy Technology Data Exchange (ETDEWEB)
Squillacioti, Paola; /INFN, Pisa /Siena U.
2006-11-01
In this thesis the author has described the first measurement performed at a hadron collider of the branching fraction of the Cabibbo-suppressed mode B{sup +} {yields} {bar D}{sup 0} K{sup +}. The analysis has been performed with 360 pb{sup -1} of data collected by the CDF II detector.
Vazquez-Jauregui, E
2008-01-01
We report the first observation of two Cabibbo-suppressed decay modes, Xi_c+ -> Sigma+ pi- pi+ and Xi_c+ -> Sigma- pi+ pi+. We observe 56+/-13 over a background of 21, and 23+/-7 over a background of 12 events, respectively, for the signals. The data were accumulated using the SELEX spectrometer during the 1996-1997 fixed target run at Fermilab, chiefly from a 600GeV/c Sigma- beam. The branching ratios of the decays relative to the Cabibbo--favored Xi_c+ -> Xi- pi+ pi+ are measured to be B(Xi_c+ -> Sigma+ pi- pi+)/B(Xi_c+ -> Xi- pi+ pi+) = 0.50+/-0.20, and B(Xi_c+ -> Sigma- pi+ pi+)/B(Xi_c+ -> Xi- pi+ pi+) = 0.23+/-0.11, respectively. We also report branching ratios for the same decay modes of the Lambda_c+ relative to Lambda_c+ -> p K- pi+.
Abazov, V; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguiló, E; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Ancu, L S; Andeen, T; Anderson, S; Andrieu, B; Anzelc, M S; Arnoud, Y; Arov, M; Arthaud, M; Askew, A; sman, B; Assis-Jesus, A C S; Atramentov, O; Autermann, C; Avila, C; Ay, C; Badaud, F; Baden, A A; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Banerjee, P; Barberis, E; Barfuss, A F; Bargassa, P; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benítez, J A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Biscarat, C; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Bloom, K; Böhnlein, A; Boline, D; Bolton, T A; Borissov, G; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Buchanan, N J; Buchholz, D; Bühler, M; Büscher, V; Bunichev, V; Burdin, S; Burke, S; Burnett, T H; Buszello, C P; Butler, J M; Calfayan, P; Calvet, S; Cammin, J; Carvalho, W; Casey, B C K; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chan, K; Chandra, A; Charles, F; Cheu, E; Chevallier, F; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Christoudias, T; Cihangir, S; Claes, D; Coadou, Y; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M C; Crepe-Renaudin, S; Cutts, D; Cwiok, M; Da Motta, H; Das, A; Davies, G; De, K; De Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; Degenhardt, J D; Dliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dong, H; Dudko, L V; Duflot, L; Dugad, S R; Duggan, D; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Ermolov, P; Evans, H; Evdokimov, A; Evdokimov, V N; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Ford, M; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; García, C; García-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Gel, D; Gerber, C E; Gershtein, Yu; Gillberg, D; Ginther, G; Gollub, N; Gmez, B; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, P; Grivaz, J F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, J; Guo, F; Gutíerrez, P; Gutíerrez, G; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Hansson, P; Harder, K; Harel, A; Harrington, R; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoeth, H; Hohlfeld, M; Hong, S J; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jesik, R; Johns, K; Johnson, C; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Kajfasz, E; Kalinin, A M; Kalk, J R; Kalk, J M; Kappler, S; Karmanov, D; Kasper, P A; Katsanos, I; Kau, D; Kaur, R; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Yu M; Khatidze, D; Kim, T J; Kirby, M H; Kirsch, M; Klima, B; Kohli, J M; Konrath, J P; Korablev, V M; Kozelov, A V; Krop, D; Kühl, T; Kumar, A; Kunori, S; Kupco, A; Kura, T; Kvita, J; Lacroix, F; Lam, D; Lammers, S; Landsberg, G; Lebrun, P; Lee, W M; Leflat, A; Lehner, F; Lellouch, J; Lévêque, J; Li, J; Li, Q Z; Li, L; Lietti, S M; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajícek, M; Love, P; Lubatti, H J; Luna, R; Lyon, A L; Maciel, A K A; Mackin, D; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martin, B; McCarthy, R; Melnitchouk, A; Mendoza, L; Mercadante, P G; Merkin, M; Merritt, K W; Meyer, J; Meyer, A; Millet, T; Mitrevski, J; Molina, J; Mommsen, R K; Mondal, N K; Moore, R W; Moulik, T; Muanza, G S; Mulders, M; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nogima, H; Novaes, S F; Nunnemann, T; O'Dell, V; O'Neil, D C; Obrant, G; Ochando, C; Onoprienko, D; Oshima, N; Osta, J; Otec, R; Oteroy-Garzon, G J; Owen, M; Padley, P; Pangilinan, M; Parashar, N; Park, S J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Penning, B; Perfilov, M; Peters, K; Peters, Y; Pétroff, P; Petteni, M; Piegaia, R; Piper, J; Pleier, M A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M E; Polozov, P; Pope, B G; Popov, A V; Potter, C; Prado da Silva, W L; Prosper, H B; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rakitine, A; Rangel, M S; Ranjan, K; Ratoff, P N; Renkel, P; Reucroft, S; Rich, P; Rieger, J; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rodrigues, R F; Rominsky, M; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A; Savage, G; Sawyer, L; Scanlon, T; Schaile, A D; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schwanenberger, C; Schwartzman, A; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Siccardi, V; Simák, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Snow, J; Snow, G R; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Spurlock, B; Stark, J; Steele, J; Stolin, V; Stoyanova, D A; Strandberg, J; Strandberg, S; Strang, M A; Strauss, M; Strauss, E; Ströhmer, R; Strom, D; Stutte, L; Sumowidagdo, S; Svoisky, P; Sznajder, A; Talby, M; Tamburello, P; Tanasijczuk, A; Taylor, W; Temple, J; Tiller, B; Tissandier, F; Titov, M; Tokmenin, V V; Toole, T; Torchiani, I; Trefzger, T; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, S; Uvarov, L; Uzunyan, S; Vachon, B; vanden Berg, P J; Van Kooten, R; Van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Villeneuve-Séguier, F; Vint, P; Vokac, P; Von Törne, E; Voutilainen, M; Wagner, R; Wahl, H D; Wang, L; SWang, M H L; Warchol, J; Watts, G; Wayne, M; Weber, M; Weber, G; Welty-Rieger, L; Wenger, A; Wermes, N; Wetstein, M; White, A; Wicke, D; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Yacoob, S; Yamada, R; Yan, M; Yasuda, T; Yatsunenko, Y A; Yip, K; Yoo, H D; Youn, S W; Yu, J; Zatserklyaniy, A; Zeitnitz, C; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zivkovic, L; Zutshi, V; Zverev, E G
2007-01-01
In a data sample of approximately 1.3 fb-1 collected with the D0 detector between 2002 and 2006, the orbitally excited charm state D_s1(2536) has been observed with a measured mass of 2535.7 +/- 0.6 (stat) +/- 0.5 (syst) MeV via the decay mode B0_s -> D_s1(2536) mu nu X. A first measurement is made of the branching ratio product Br(b(bar) -> D_s1(2536) mu nu X).Br(D_s1(2536)->D* K0_S). Assuming that D_s1(2536) production in semileptonic decay is entirely from B0_s, an extraction of the semileptonic branching ratio Br(B0_s -> D_s1(2536) mu nu X) is made.
Energy Technology Data Exchange (ETDEWEB)
Babusci, D. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Balwierz-Pytko, I. [Institute of Physics, Jagiellonian University, Cracow (Poland); Bencivenni, G.; Bloise, C.; Bossi, F. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Branchini, P. [INFN Sezione di Roma Tre, Roma (Italy); Budano, A. [Dipartimento di Matematica e Fisica dell' Università “Roma Tre”, Roma (Italy); INFN Sezione di Roma Tre, Roma (Italy); Caldeira Balkeståhl, L. [Department of Physics and Astronomy, Uppsala University, Uppsala (Sweden); Ceradini, F. [Dipartimento di Matematica e Fisica dell' Università “Roma Tre”, Roma (Italy); INFN Sezione di Roma Tre, Roma (Italy); Ciambrone, P. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Curciarello, F. [Dipartimento di Fisica e Scienze della Terra dell' Università di Messina, Messina (Italy); INFN Sezione di Catania, Catania (Italy); Czerwiński, E. [Institute of Physics, Jagiellonian University, Cracow (Poland); Danè, E. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); De Leo, V. [Dipartimento di Fisica e Scienze della Terra dell' Università di Messina, Messina (Italy); INFN Sezione di Catania, Catania (Italy); De Lucia, E. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); De Robertis, G. [INFN Sezione di Bari, Bari (Italy); De Santis, A. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); De Simone, P., E-mail: patrizia.desimone@lnf.infn.it [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Di Cicco, A. [Dipartimento di Matematica e Fisica dell' Università “Roma Tre”, Roma (Italy); INFN Sezione di Roma Tre, Roma (Italy); and others
2014-11-10
The absolute branching ratio of the K{sup +}→π{sup +}π{sup −}π{sup +}(γ) decay, inclusive of final-state radiation, has been measured using ∼17 million tagged K{sup +} mesons collected with the KLOE detector at DAΦNE, the Frascati ϕ-factory. The result is: BR(K{sup +}→π{sup +}π{sup −}π{sup +}(γ))=0.05565±0.00031{sub stat}±0.00025{sub syst} a factor ≃ 5 more precise with respect to the previous result. This work completes the program of precision measurements of the dominant kaon branching ratios at KLOE.
Abbiendi, G; Alexander, Gideon; Allison, J; Altekamp, N; Anderson, K J; Anderson, S; Arcelli, S; Asai, S; Ashby, S F; Axen, D A; Azuelos, Georges; Ball, A H; Barberio, E; Barlow, R J; Bartoldus, R; Batley, J Richard; Baumann, S; Bechtluft, J; Behnke, T; Bell, K W; Bella, G; Bellerive, A; Bentvelsen, Stanislaus Cornelius Maria; Bethke, Siegfried; Betts, S; Biebel, O; Biguzzi, A; Bird, S D; Blobel, Volker; Bloodworth, Ian J; Bock, P; Böhme, J; Bonacorsi, D; Boutemeur, M; Braibant, S; Bright-Thomas, P G; Brigliadori, L; Brown, R M; Burckhart, Helfried J; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Chrisman, D; Ciocca, C; Clarke, P E L; Clay, E; Cohen, I; Conboy, J E; Cooke, O C; Couyoumtzelis, C; Coxe, R L; Cuffiani, M; Dado, S; Dallavalle, G M; Darling, C L; Davis, R; De Jong, S; de Roeck, A; Dervan, P J; Desch, Klaus; Dienes, B; Dixit, M S; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Eatough, D; Estabrooks, P G; Etzion, E; Fabbri, Franco Luigi; Fanti, M; Faust, A A; Fiedler, F; Fierro, M; Fleck, I; Folman, R; Fürtjes, A; Futyan, D I; Gagnon, P; Gary, J W; Gascon, J; Gascon-Shotkin, S M; Gaycken, G; Geich-Gimbel, C; Giacomelli, G; Giacomelli, P; Gibson, V; Gibson, W R; Gingrich, D M; Glenzinski, D A; Goldberg, J; Gorn, W; Grandi, C; Graham, K; Gross, E; Grunhaus, Jacob; Gruwé, M; Hanson, G G; Hansroul, M; Hapke, M; Harder, K; Harel, A; Hargrove, C K; Hartmann, C; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herndon, M; Herten, G; Heuer, R D; Hildreth, M D; Hill, J C; Hobson, P R; Hoch, M; Höcker, Andreas; Hoffman, K; Homer, R James; Honma, A K; Horváth, D; Hossain, K R; Howard, R; Hüntemeyer, P; Igo-Kemenes, P; Imrie, D C; Ishii, K; Jacob, F R; Jawahery, A; Jeremie, H; Jimack, Martin Paul; Jones, C R; Jovanovic, P; Junk, T R; Karlen, D A; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Kayal, P I; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Kim, D H; Klier, A; Kluth, S; Kobayashi, T; Kobel, M; Koetke, D S; Kokott, T P; Kolrep, M; Komamiya, S; Kowalewski, R V; Kress, T; Krieger, P; Von Krogh, J; Kühl, T; Kyberd, P; Lafferty, G D; Landsman, Hagar Yaël; Lanske, D; Lauber, J; Lautenschlager, S R; Lawson, I; Layter, J G; Lazic, D; Lee, A M; Lellouch, Daniel; Letts, J; Levinson, L; Liebisch, R; List, B; Littlewood, C; Lloyd, A W; Lloyd, S L; Loebinger, F K; Long, G D; Losty, Michael J; Ludwig, J; Liu, D; Macchiolo, A; MacPherson, A L; Mader, W F; Mannelli, M; Marcellini, S; Markopoulos, C; Martin, A J; Martin, J P; Martínez, G; Mashimo, T; Mättig, P; McDonald, W J; McKenna, J A; McKigney, E A; McMahon, T J; McPherson, R A; Meijers, F; Menke, S; Merritt, F S; Mes, H; Meyer, J; Michelini, Aldo; Mihara, S; Mikenberg, G; Miller, D J; Mir, R; Mohr, W; Montanari, A; Mori, T; Nagai, K; Nakamura, I; Neal, H A; Nellen, B; Nisius, R; O'Neale, S W; Oakham, F G; Odorici, F; Ögren, H O; Oreglia, M J; Orito, S; Pálinkás, J; Pásztor, G; Pater, J R; Patrick, G N; Patt, J; Pérez-Ochoa, R; Petzold, S; Pfeifenschneider, P; Pilcher, J E; Pinfold, James L; Plane, D E; Poffenberger, P R; Polok, J; Przybycien, M B; Rembser, C; Rick, Hartmut; Robertson, S; Robins, S A; Rodning, N L; Roney, J M; Roscoe, K; Rossi, A M; Rozen, Y; Runge, K; Runólfsson, O; Rust, D R; Sachs, K; Saeki, T; Sahr, O; Sang, W M; Sarkisyan-Grinbaum, E; Sbarra, C; Schaile, A D; Schaile, O; Scharf, F; Scharff-Hansen, P; Schieck, J; Schmitt, B; Schmitt, S; Schöning, A; Schröder, M; Schumacher, M; Schwick, C; Scott, W G; Seuster, R; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Siroli, G P; Sittler, A; Skuja, A; Smith, A M; Snow, G A; Sobie, Randall J; Söldner-Rembold, S; Spagnolo, S; Sproston, M; Stahl, A; Stephens, K; Steuerer, J; Stoll, K; Strom, D; Ströhmer, R; Surrow, B; Talbot, S D; Tanaka, S; Taras, P; Tarem, S; Teuscher, R; Thiergen, M; Thomas, J; Thomson, M A; Von Törne, E; Torrence, E; Towers, S; Trigger, I; Trócsányi, Z L; Tsur, E; Turcot, A S; Turner-Watson, M F; Ueda, I; Van Kooten, R; Vannerem, P; Verzocchi, M; Voss, H; Wäckerle, F; Wagner, A; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wermes, N; White, J S; Wilson, G W; Wilson, J A; Wyatt, T R; Yamashita, S; Yekutieli, G; Zacek, V; Zer-Zion, D
1999-01-01
The product branching ratio, f(b->Lambda_b).BR(Lambda_b->Lambda X), where Lambda_b denotes any weakly-decaying b-baryon, has been measured using the OPAL detector at LEP. Lambda_b are selected by the presence of energetic Lambda particles in bottom events tagged by the presence of displaced secondary vertices. A fit to the momenta of the Lambda particles separates signal from B meson and fragmentation backgrounds. The measured product branching ratio is f(b->Lambda_b).BR(Lambda_b->Lambda X) = (2.67+-0.38(stat)+0.67-0.60(sy s))% Combined with a previous OPAL measurement, one obtains f(b->Lambda_b).BR(Lambda_b->Lambda X) = (3.50+-0.32(stat)+-0.35(sys ))%.
Mladenovic, Mirjana; Zhao, Meishan; Truhlar, Donald G.; Schwenke, David W.; Sun, Yan
1988-01-01
The paper reports extensive quantum mechanical calculations of the product vibrational branching ratios in the reaction H + p-H2 yields o-H2 + H. The calculations involve total angular momentum up to 2 and excited as well as ground initial rotational states, and they are completely converged with up to 513 channels in individual total angular momentum/parity blocks. Comparisons are made with recent experiments by Nieh and Valentini.
Chabot, M; Gratier, P; Jallat, A; Wakelam, V
2013-01-01
The aim of this paper is to provide a new set of branching ratios for interstellar and planetary chemical networks based on a semi empirical model. We applied, instead of zero order theory (i.e. only the most exoergic decaying channel is considered), a statistical microcanonical model based on the construction of breakdown curves and using experimental high velocity collision branching ratios for their parametriza- tion. We applied the model to ion-molecule, neutral-neutral, and ion-pair reactions implemented in the few popular databases for astrochemistry such as KIDA, OSU and UMIST. We studied the reactions of carbon and hydrocarbon species with electrons, He+, H+, CH+, CH, C, and C+ leading to intermediate complexes of the type Cn=2,10, Cn=2,4 H, C3 H2, C+n=2,10, Cn=2,4 H+, or C3 H+2 . Comparison of predictions with measurements supports the validity of the model. Huge deviations with respect to database values are often obtained. Effects of the new branching ratios in time dependant chemistry for dark clo...
Ali Gorener; Hasan Dinçer; Ümit Hacıoğlu
2013-01-01
Location selection problem in banking is an important issue for the commercial success in competitive environment. There is a strategic fit between the location selection decision and overall performance of a new branch. Providing physical service in requested location as well as alternative distribution channels to meet profitable client needs is the current problematic to achieve the competitive advantage over the rivalry in financial system. In this paper, an integrated model has been deve...
Disordered artificial spin ices: Avalanches and criticality (invited)
Reichhardt, Cynthia J. Olson; Chern, Gia-Wei; Libál, Andras; Reichhardt, Charles
2015-05-01
We show that square and kagome artificial spin ices with disconnected islands exhibit disorder-induced nonequilibrium phase transitions. The critical point of the transition is characterized by a diverging length scale and the effective spin reconfiguration avalanche sizes are power-law distributed. For weak disorder, the magnetization reversal is dominated by system-spanning avalanche events characteristic of a supercritical regime, while at strong disorder, the avalanche distributions have subcritical behavior and are cut off above a length scale that decreases with increasing disorder. The different type of geometrical frustration in the two lattices produces distinct forms of critical avalanche behavior. Avalanches in the square ice consist of the propagation of locally stable domain walls separating the two polarized ground states, and we find a scaling collapse consistent with an interface depinning mechanism. In the fully frustrated kagome ice, however, the avalanches branch strongly in a manner reminiscent of directed percolation. We also observe an interesting crossover in the power-law scaling of the kagome ice avalanches at low disorder. Our results show that artificial spin ices are ideal systems in which to study a variety of nonequilibrium critical point phenomena as the microscopic degrees of freedom can be accessed directly in experiments.
Disordered artificial spin ices: Avalanches and criticality (invited)
Energy Technology Data Exchange (ETDEWEB)
Reichhardt, Cynthia J. Olson, E-mail: cjrx@lanl.gov; Chern, Gia-Wei; Reichhardt, Charles [Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Libál, Andras [Faculty of Mathematics and Computer Science, Babes-Bolyai University, RO-400591 Cluj-Napoca (Romania)
2015-05-07
We show that square and kagome artificial spin ices with disconnected islands exhibit disorder-induced nonequilibrium phase transitions. The critical point of the transition is characterized by a diverging length scale and the effective spin reconfiguration avalanche sizes are power-law distributed. For weak disorder, the magnetization reversal is dominated by system-spanning avalanche events characteristic of a supercritical regime, while at strong disorder, the avalanche distributions have subcritical behavior and are cut off above a length scale that decreases with increasing disorder. The different type of geometrical frustration in the two lattices produces distinct forms of critical avalanche behavior. Avalanches in the square ice consist of the propagation of locally stable domain walls separating the two polarized ground states, and we find a scaling collapse consistent with an interface depinning mechanism. In the fully frustrated kagome ice, however, the avalanches branch strongly in a manner reminiscent of directed percolation. We also observe an interesting crossover in the power-law scaling of the kagome ice avalanches at low disorder. Our results show that artificial spin ices are ideal systems in which to study a variety of nonequilibrium critical point phenomena as the microscopic degrees of freedom can be accessed directly in experiments.
Disordered artificial spin ices: Avalanches and criticality (invited)
International Nuclear Information System (INIS)
We show that square and kagome artificial spin ices with disconnected islands exhibit disorder-induced nonequilibrium phase transitions. The critical point of the transition is characterized by a diverging length scale and the effective spin reconfiguration avalanche sizes are power-law distributed. For weak disorder, the magnetization reversal is dominated by system-spanning avalanche events characteristic of a supercritical regime, while at strong disorder, the avalanche distributions have subcritical behavior and are cut off above a length scale that decreases with increasing disorder. The different type of geometrical frustration in the two lattices produces distinct forms of critical avalanche behavior. Avalanches in the square ice consist of the propagation of locally stable domain walls separating the two polarized ground states, and we find a scaling collapse consistent with an interface depinning mechanism. In the fully frustrated kagome ice, however, the avalanches branch strongly in a manner reminiscent of directed percolation. We also observe an interesting crossover in the power-law scaling of the kagome ice avalanches at low disorder. Our results show that artificial spin ices are ideal systems in which to study a variety of nonequilibrium critical point phenomena as the microscopic degrees of freedom can be accessed directly in experiments
AUTHOR|(SzGeCERN)701211; Bozovic-Jelisavcic, Ivanka; Grefe, Christian; Kacarevic, Goran; Lukic, Strahinja; Pandurovic, Mila; Roloff, Philipp Gerhard; Smiljanic, Ivan
2016-01-01
The measurement of the Higgs production cross-section times the branching ratios for its decays into μ+μ- and ZZ* pairs at a 1.4 TeV CLIC collider is investigated in this paper. The Standard Model Higgs boson with a mass of 126 GeV is dominantly produced via WW fusion in e+e- collisions at 1.4 TeV centre-of-mass energy. Analyses for both decay channels are based on a full simulation of the CLIC_ILD detector. All relevant physics and beam-induced background processes are taken into account. An integrated luminosity of 1.5 ab 1 and unpolarised beams are assumed. For the H-->ZZ* decay, the purely hadronic final state (ZZ*--> qq ̄qq ̄) is considered as well as ZZ* decays into two jets and two leptons (ZZ*--> qq ̄l+l- ). It is shown that the branching ratio for the Higgs decay into a muon pair times the Higgs production cross-section can be measured with 38% statistical uncertainty. It is also shown that the statistical uncertainty of the Higgs branching fraction for decay into a Z boson pair times the Hi...
Savrina, Daria
2011-01-01
Rare radiative decays of the B-mesons may provide a good test for the Standard Model. Being forbidden at tree level, such processes may only occur due to loop diagrams involving FCNC and thus become very sensitive to the impact of new non-standard particles. This impact may be discovered through different observables, like branching fractions, isospin asymmetries, photon polarization etc., and the accuracy of the theoretical predictions for such decays makes them attractive from the experimental point of view. Having started to take data at an energy of $\\sqrt{s}$ = 7 Tev since 2010, by mid-summer of 2011 LHCb has collected 340 pb$^{-1}$ of integrated luminosity. With these data clear signals for $B_d \\to K^*\\gamma$ and $B_s \\to \\phi\\gamma$ have been observed. The ratio of branching fractions of these decays has been measured with good accuracy and it is consistent with the theoretical predictions and previous experimental results.
Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderson, Jonathan; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; d'Argent, Philippe; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Bellee, Violaine; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Birnkraut, Alex; Bizzeti, Andrea; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dall'Occo, Elena; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Demmer, Moritz; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Ruscio, Francesco; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fohl, Klaus; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Gazzoni, Giulio; Geraci, Angelo; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gianì, Sebastiana; Gibson, Valerie; Girard, Olivier Göran; Giubega, Lavinia-Helena; Gligorov, Vladimir; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto
2015-01-01
Using $pp$ collision data collected by LHCb at center-of-mass energies $\\sqrt{s}$ = 7 TeV and 8 TeV, corresponding to an integrated luminosity of 3 fb$^{-1}$, the ratio of the branching fraction of the $B_c^+ \\rightarrow \\psi(2S)\\pi^+$ decay relative to that of the $B_c^+ \\rightarrow J/\\psi\\pi^+$ decay is measured to be 0.268 $\\pm$ 0.032 (stat) $\\pm$ 0.007 (syst) $\\pm$ 0.006 (BF). The first uncertainty is statistical, the second is systematic, and the third is due to the uncertainties on the branching fractions of the $J/\\psi \\rightarrow \\mu^+\\mu^-$ and $\\psi(2S) \\rightarrow \\mu^+\\mu^-$ decays. This measurement is consistent with the previous LHCb result, and the statistical uncertainty is halved.
A Combination of CDF and D0 limits on the branching ratio of B0(s)(d) ---> mu+ mu- decays
Energy Technology Data Exchange (ETDEWEB)
Bernhard, R.; Glenzinski, D.; Herndon, M.; Kamon, T.; Krutelyov, V.; Landsberg, G.; Lehner, F.; Lin, C.J.; Mrenna, S.; /Zurich U. /Fermilab /Wisconsin U., Madison /Texas
2005-08-01
The authors combine the results of CDF and D0 searches for the rare decays B{sub s}{sup 0} {yields} {mu}{sup +}{mu}{sup -} and B{sub d}{sup 0} {yields} {mu}{sup +}{mu}{sup -}. The experiments use 364 pb{sup -1} and 300 pb{sup -1} of data respectively. The limits on the branching ratios are obtained by normalizing the estimated sensitivity to the decay B{sup +} {yields} J/{psi}K{sup +} taking into account the fragmentation ratios f{sub u}/f{sub s(d)}. The combined results exclude branching ratios of BR(B{sub s}{sup 0} {yields} {mu}{sup +}{mu}{sup -}) > 1.5 x 10{sup -7} and BR(B{sub d}{sup 0} {yields} {mu}{sup +}{mu}{sup -}) > 4.0 x 10{sup -8} at 95% confidence level. These are the most stringent limits on these decays at the present time.
New physics upper bound on the branching ratio of B_s--> l+ l- and B_s--> l+ l- gamma
Alok, Ashutosh Kumar; Sankar, S. Uma
2006-01-01
We consider the most general new physics effective Lagrangian for b--> s l+ l-. We derive the upper limit on the branching ratio for the processes B_s--> l^+ l- where l=e, mu, subject to the current experimental bounds on related processes, B--> (K,K*) l+ l-. If the new physics interactions are of vector/axial-vector form, the present measured rates for B--> (K,K*) l+ l- constrain B_s--> l+ l to be of the same order of magnitude as their respective Standard Model (SM) predictions. On the othe...
Energy Technology Data Exchange (ETDEWEB)
Marta, Michele; Bemmerer, Daniel; Beyer, Roland; Erhard, Martin; Grosse, Eckart; Hannaske, Roland; Junghans, Arnd Rudolf; Nair, Chithra; Schwengner, R.; Trompler, Erik; Wagner, Andreas; Yakorev, Dmitry [Forschungszentrum Dresden-Rossendorf (FZD), Dresden (Germany); Broggini, Carlo; Caciolli, Antonio; Menegazzo, Roberto [INFN Sezione di Padova, Padova (Italy); Fueloep, Zsolt; Gyuerky, Gyoergy; Szuecs, Tamas [Atomki, Debrecen (Hungary)
2009-07-01
The {sup 14}N(p,{gamma}){sup 15}O reaction controls the rate of the hydrogen burning CNO cycle. This reaction has recently been re-studied at E<500 keV at different facilities, including LUNA. However, also data at higher energy play a role in determining the extrapolated cross section in the R-matrix framework. Here we report on a new measurement of the absolute strength, decay branching ratio, and angular distribution of the E=0.987 MeV (E{sub x} = 8.284 MeV) resonance carried out at the high-current FZD Tandetron.
Link, J M; Yager, P M; Anjos, J C; Bediaga, I; Göbel, C; Magnin, J; Massafferri, A; De Miranda, J M; Pepe, I M; Dos Reis, A C; Simão, F R A; Carrillo, S; Casimiro, E; Sánchez-Hernández, A; Uribe, C; Vázquez, F; Cinquini, L; Cumalat, J P; O'Reilly, B; Ramírez, J E; Vaandering, E W; Butler, J N; Cheung, H W K; Gaines, I; Garbincius, P H; Garren, L A; Gottschalk, E E; Kasper, P H; Kreymer, A E; Kutschke, R; Bianco, S; Fabbri, Franco Luigi; Sarwar, S; Zallo, A
2001-01-01
We report the observation of the Cabibbo suppressed decay \\Xi_c^+ \\to p K^-\\pi^+ using data collected with the FOCUS spectrometer during the 1996--97 Fermilab fixed target run. We find a \\Xi_c^+ signal peak of 202\\pm35 events. We have measured the relative branching ratios BR(\\Xi^+_c\\to p K^-\\pi^+)/BR(\\Xi^+_c\\to\\Xi^-\\pi^+\\pi^+)= 0.234 \\pm 0.047 \\pm 0.022 and BR(\\Xi^+_c\\to p \\bar{K}^*(892)^0)/BR(\\Xi^+_c\\to p K^-\\pi^+)= 0.54 \\pm 0.09 \\pm 0.05 .
Measurement of the branching ratios of multineutral channels in the anti-pp annihilation at 1.6GeV/c
International Nuclear Information System (INIS)
The study of multineutral pions final states in the anti-pp annihilation was carried out with an antiproton beam at 1.6GeV/c, and the heavy liquid bubble chamber Gargamelle filled with a propane-freon mixture. A method to separate annihilation on bound nucleons from annihilation on free protons is described. An excess of neutral pions on charged pions is found in the mean number of neutral and charged pions. All the branching ratios are estimated for the multineutral states. Finally a comparison with the predictions of statistical models is outlined
Directory of Open Access Journals (Sweden)
Kamińska Daria
2014-01-01
Full Text Available We present the current status of the analysis of about 1.7 billion KS KL pair events collected at DAΦNE with the KLOE detector to determine the branching ratio of KS → πeν decay and the lepton charge asymmetry. This sample is ∼ 4 times larger in statistics than the one used in the previous most precise result, from KLOE as well, allowing us to improve the accuracy on the measurement and related tests of CPT symmetry and ∆S = ∆Q rule.
Branching ratio of 8Be* high excited states in the 10B(dα)2α and 10B(dα)p7Li reaction
International Nuclear Information System (INIS)
Three-particle channels of 10B(dα)2α and 10B(dα)p7Li reactions with the excitation of short-living 19.86, 4+ and 20.1 MeV, 2+ state of 8Be* nucleus are investigated under 13.6 MeV incident deuteron energy in kinematically complete experiment. Angular correlation functions for these states and branching ratio by α-particle and proton channels are obtained. Spatial anisotropy of 8Be* nucleus parameter change as of two-cluster non-isolated subsystem is revealed
Measurement of the Ratio of Branching Fractions Br(Bs -> Ds- pi+)/Br(B -> D- pi+) at CDF-II
Energy Technology Data Exchange (ETDEWEB)
Furic, Ivan Kresimir; /MIT
2004-03-01
The measurement of B{sub s}{sup 0} mixing is one of the flagship analyses for the Run II B physics program. The sensitivity of the measurement to the frequency of B{sub s}{sup 0} oscillations strongly depends on the number of reconstructed B{sub s}{sup 0} mesons. They present the measurement of the ratio of branching fractions Br(B{sub s}{sup 0} {yields} D{sub s}{sup -}{pi}{sup +})/Br(B{sup 0} {yields} D{sup -}{pi}{sup +}), which directly influences the number of B{sub s}{sup 0} events available for the measurement of B{sub s}{sup 0} mixing at CDF-II. They analyze 115 pb{sup -1} of data collected with the CDF-II detector in p{bar p} collisions at {radical}s = 1.96 TeV using a novel displaced track trigger. They reconstruct 78 {+-} 11 B{sub s}{sup 0} {yields} D{sub s}{sup -}{pi}{sup +} decays at 1153 {+-} 45 B{sup 0} {yields} D{sup -}{pi}{sup +} decays with good signal to background ratio. This is the world's largest sample of fully reconstructed B{sub s}{sup 0} {yields} D{sub s}{sup -}{pi}{sup +} decays. They find the ratio of production fractions multiplied by the ratio of branching fractions to be: f{sub s}/f{sub d} {center_dot} Br(B{sub s}{sup 0} {yields} D{sub s}{sup -}{pi}{sup +})/Br(B{sup 0} {yields} D{sup -}{pi}{sup +}) = 0.325 {+-} 0.046(stat) {+-} 0.034(syst) {+-} 0.084 (BR). Using the world average value of f{sub s}/f{sub d} = 0.26 {+-} 0.03, we infer that the ratio of branching fractions is: Br(B{sub s}{sup 0} {yields} D{sub s}{sup -}{pi}{sup +})/Br(B{sup 0} {yields} D{sup -}{pi}{sup +}) = 1.25 {+-} 0.18(stat) {+-} 0.13(syst) {+-} 0.32(BR) {+-} 0.14(PR) where the last uncertainty is due to the uncertainty on the world average measurement of the ratio of B{sub s}{sup 0} to B{sup 0} production rates, f{sub s}/f{sub d}.
Link, J M; Reyes, M; Yager, P M; Anjos, J C; Bediaga, I; Göbel, C; Magnin, J; Massafferi, A; de Miranda, J M; Pepe, I M; dos Reis, A C; Simão, F R; Carrillo, S; Casimiro, E; Sánchez-Hernández, A; Uribe, C; Vázquez, F; Cinquini, L; Cumalat, J P; O'Reilly, B; Ramirez, J E; Vaandering, E W; Butler, J N; Cheung, H W; Gaines, I; Garbincius, P H; Garren, L A; Gottschalk, E; Kasper, P H; Kreymer, A E; Kutschke, R; Bianco, S; Fabbri, F L; Sarwar, S; Zallo, A; Cawlfield, C; Kim, D Y; Rahimi, A; Wiss, J; Gardner, R; Chung, Y S; Kang, J S; Ko, B R; Kwak, J W; Lee, K B; Park, H; Alimonti, G; Boschini, M; Caccianiga, B; D'Angelo, P; DiCorato, M; Dini, P; Giammarchi, M; Inzani, P; Leveraro, F; Malvezzi, S; Menasce, D; Mezzadri, M; Milazzo, L; Moroni, L; Pedrini, D; Pontoglio, C; Prelz, F; Rovere, M; Sala, A; Sala, S; Davenport, T F; Agostino, L; Arena, V; Boca, G; Bonomi, G; Gianini, G; Liguori, G; Merlo, M; Pantea, D; Ratti, S P; Riccardi, C; Segoni, I; Viola, L; Vitulo, P; Hernandez, H; Lopez, A M; Mendez, H; Mendez, L; Mirles, A; Montiel, E; Olaya, D; Paris, A; Quinones, J; Rivera, C; Xiong, W; Zhang, Y; Wilson, J R; Cho, K; Handler, T; Engh, D; Hosack, M; Johns, W E; Nehring, M; Sheldon, P D; Stenson, K; Webster, M; Sheaff, M
2001-10-15
We have studied hadronic four-body decays of D(+) and D(+)(s) mesons with a K(S) in the final state using data recorded during the 1996-1997 fixed-target run of the Fermilab high energy photoproduction experiment FOCUS. We report a new branching ratio measurement of gamma(D(+)-->K(S)K-pi(+)pi(+))/gamma(D(+)-->K(S)pi(+)pi(+)pi(-)) = 0.0768+/-0.0041+/-0.0032. We make the first observation of three new decay modes with branching ratios gamma(D(+)-->K(S)K+pi(+)pi(-))/gamma(D(+)-->K(S)pi(+)pi(+)pi(-)) = 0.0562+/-0.0039+/-0.0040, gamma(D(+)-->K(S)K+K-pi(+))/gamma(D(+)-->K(S)pi(+)pi(+)pi(-)) = 0.0077+/-0.0015+/-0.0009, and gamma(D(+)(s)-->K(S)K+pi(+)pi(-))/gamma(D(+)(s)-->K(S)K-pi(+)pi(+)) = 0.586+/-0.052+/-0.043, where in each case the first error is statistical and the second error is systematic. PMID:11690200
International Nuclear Information System (INIS)
With the CELLO detector at the e+e--storage ring PETRA the reaction e+e-→τ+τ- was studied in the energy range of √s = 35.0 to 46.8 (GeV). The total cross section and the charge asymmetry for the production of τ pairs were measured as well as the topological branching ratios in the τ decay determined. The measurements of the total cross sections agree well with the theoretical expectations from QED and the GWS model. There was no deviation from the point-shaped coupling of the τ lepton up to distances r -17 [cm] observed. The electroweak effects, which lead to a charge asymmetry in the differential cross section, could be observed with a significance of more than four standard deviations and agree well with the theoretical expectations in the GWS model. The axial-vector coupling constants aτ of the τ lepton are also in accordance with the expectations from the GWS model and the measurements of other e+e- experiments. The current measurement accuracy however permits no precise determination of the vector coupling constant vτ of the τ. The τ coupling constants agree also with the measured coupling constants of the electron and the muon. By this the hypothesis of the universal coupling of the lepton to the weak current is supported. The measurement of the topological branching ratios of the τ lepton was improved and confirms earlier measurements of the same experiment. (orig./HSI)
New physics upper bound on the branching ratio of B_s--> l+ l- and B_s--> l+ l- gamma
Alok, A K; Alok, Ashutosh Kumar
2007-01-01
We consider the most general new physics effective Lagrangian for b--> s l+ l-. We derive the upper limit on the branching ratio for the processes B_s--> l^+ l- where l=e, mu, subject to the current experimental bounds on related processes, B--> (K,K*) l+ l-. If the new physics interactions are of vector/axial-vector form, the present measured rates for B--> (K,K*) l+ l- constrain B_s--> l+ l to be of the same order of magnitude as their respective Standard Model (SM) predictions. On the other hand, if the new physics interactions are of scalar/pseudoscalar form, B--> (K,K*) l+ l- rates do not impose any useful constraint on B_s--> l+ l- and the branching ratios of these decays can be as large as present experimental upper bounds. If future experiments measure B_s--> l+ l- to be > 10^{-8} then the new physics giving rise to these decays has to be of the scalar/pseudoscalar form. We also consider the effect of new physics on B_s--> l+ l- gamma subject to the present experimental constraints on B--> (K,K*) l+ l...
International Nuclear Information System (INIS)
The authors report the first observation of two Cabibbo-suppressed decay modes, Ξc+ → Σ+π-π+ and Ξc+ → Σ- π+π+. They observe 56 ± 13 over a background of 21, and 23 ± 7 over a background of 12 events, respectively, for the signals. The data were accumulated using the SELEX spectrometer during the 1996-1997 fixed target run at Fermilab, chiefly from a 600 GeV/c Σ- beam. The branching ratios of the decays relative to the Cabibbo-favored Ξc+ → Ξ-π+π+ are measured to be B(Ξc+ → Σ+π-π+)/B(ξc+ → Ξ- π+π+) = 0.50 ± 0.20, and B(Ξc+ → Σ-π+π+)/B(Ξc+ → Ξ-π+π+) = 0.23 ± 0.11, respectively. They also report branching ratios for the same decay modes of the Λc+ relative to Λc+ → pK-π+
Energy Technology Data Exchange (ETDEWEB)
Vazquez-Jauregui, E.; /San Luis Potosi U.; Engelfried, J.; /San Luis Potosi U.; Akgun, U.; /Iowa U.; Alkhazov, Georgiy; /St. Petersburg, INP; Amaro-Reyes, J.; /San Luis Potosi U.; Atamantchouk, A.G.; /St. Petersburg, INP; Ayan, Ahmet Sedat; /Iowa U.; Balatz, M.Y.; /Moscow, ITEP; Blanco-Covarrubias, A.; /San Luis Potosi U.; Bondar, N.F.; /St. Petersburg, INP; Cooper, Peter S.; /Fermilab /Michigan U., Flint
2008-04-01
The authors report the first observation of two Cabibbo-suppressed decay modes, {Xi}{sub c}{sup +} {yields} {Sigma}{sup +}{pi}{sup -}{pi}{sup +} and {Xi}{sub c}{sup +} {yields} {Sigma}{sup -} {pi}{sup +}{pi}{sup +}. They observe 56 {+-} 13 over a background of 21, and 23 {+-} 7 over a background of 12 events, respectively, for the signals. The data were accumulated using the SELEX spectrometer during the 1996-1997 fixed target run at Fermilab, chiefly from a 600 GeV/c {Sigma}{sup -} beam. The branching ratios of the decays relative to the Cabibbo-favored {Xi}{sub c}{sup +} {yields} {Xi}{sup -}{pi}{sup +}{pi}{sup +} are measured to be B({Xi}{sub c}{sup +} {yields} {Sigma}{sup +}{pi}{sup -}{pi}{sup +})/B({xi}{sub c}{sup +} {yields} {Xi}{sup -} {pi}{sup +}{pi}{sup +}) = 0.50 {+-} 0.20, and B({Xi}{sub c}{sup +} {yields} {Sigma}{sup -}{pi}{sup +}{pi}{sup +})/B({Xi}{sub c}{sup +} {yields} {Xi}{sup -}{pi}{sup +}{pi}{sup +}) = 0.23 {+-} 0.11, respectively. They also report branching ratios for the same decay modes of the {Lambda}{sub c}{sup +} relative to {Lambda}{sub c}{sup +} {yields} pK{sup -}{pi}{sup +}.
Energy Technology Data Exchange (ETDEWEB)
Everhart, G.; Kraus, D.; Lande, K.; Long, R.; Lowenstein, D.; Niederer, J.; Potter, D.C.; Fenyves, E.
1976-08-01
We have measured the branching ratio R = GAMMA (K/sup 0//subS/ ..-->.. ..pi../sup +/..pi../sup -/)/GAMMA (K/sup 0//subS/ ..-->.. ..pi../sup 0/..pi../sup 0/) of K/sup 0//subS/ produced in the reaction ..pi../sup -/ + p ..-->.. ..lambda../sup 0/ + K/sup 0/ in the 1.45 GeV/c ..pi../sup -/ beam of the Princeton-Pennsylvania Accelerator. The K/sup 0//subS/ decay secondaries were detected in an array of magnetostrictive-readout wire spark chambers interleaved with lead and copper radiators to convert ..gamma.. rays. The position of K/sup 0/ production in the target was detected with a unique trigger-target apparatus allowing a correction for the background produced by K/sup 0//subL/ decays. The branching ratio corrected for this background and other standard effects is R = 2.11 +- 0.09, in good agreement with the world average. (AIP)
Measurement of the D+s→ηl+ν and D+s→η'l+ν branching ratios
International Nuclear Information System (INIS)
Using the CLEO II detector we measure B(D+s→ηe+ν)/B(D+s→φe+ν) =1.24±0.12±0.15, B(D+s→η'e+ν)/B (D+s→φe+ν)=0.43±0.11±0.07, and B(D+s→η'e+ν)/B (D+s→ηe+ν)=0.35±0.09±0.07. We find the ratio of vector to pseudoscalar final states, B(D+s→φe+ν)/B (D+s→(η+η')e+ν)=0.60±0.06±0.06, which is similar to the ratio found in nonstrange D decays. copyright 1995 The American Physical Society
Puspitasari, Dewi; Indarto, Purnomo, Khasani
2016-06-01
Research on the T-junction is still underway for the flow of liquid-liquid (kerosene-water). Some research on the characteristics of kerosene-water separation was performed using T-junction oriented upward branch with a 60° angle. To observe the effect of diameters ratio on the phase separation that produced T-junction then made a test section with a horizontal pipe diameter 36 mm, while the side arm 36 mm diameter, 26 mm and 19 mm (diameters ratio of 1, 0.7 and 0.5) by using plexiglass pipe type. Based on experimental results and visualization of data flow in the test section, to the value obtained 60% water cut, the maximum separation efficiency of 94%, FK = 0.94 and FW = 0.001 with a diameter ratio of 1. For other diameter ratio of 0.7 and 0.5 respectively separation efficiency of 66%, FK = 1 and Fw = 0.34 for 0.7 and separation efficiency of 84%, FK = 1 and Fw = 0.16 for 0.5, the best value is obtained at a water cut 60% too. All the best conditions to achieve the above-stratified flow pattern.
Fu, Bina; Han, Yong-Chang; Bowman, Joel M; Leonori, Francesca; Balucani, Nadia; Angelucci, Luca; Occhiogrosso, Angela; Petrucci, Raffaele; Casavecchia, Piergiorgio
2012-12-14
The reaction of O((3)P) with C(2)H(4), of importance in combustion and atmospheric chemistry, stands out as paradigm reaction involving not only the indicated triplet state potential energy surface (PES) but also an interleaved singlet PES that is coupled to the triplet surface. This reaction poses great challenges for theory and experiment, owing to the ruggedness and high dimensionality of these potentials, as well as the long lifetimes of the collision complexes. Crossed molecular beam (CMB) scattering experiments with soft electron ionization detection are used to disentangle the dynamics of this polyatomic multichannel reaction at a collision energy E(c) of 8.4 kcal∕mol. Five different primary products have been identified and characterized, which correspond to the five exothermic competing channels leading to H + CH(2)CHO, H + CH(3)CO, CH(3) + HCO, CH(2) + H(2)CO, and H(2) + CH(2)CO. These experiments extend our previous CMB work at higher collision energy (E(c) ∼ 13 kcal∕mol) and when the results are combined with the literature branching ratios from kinetics experiments at room temperature (E(c) ∼ 1 kcal∕mol), permit to explore the variation of the branching ratios over a wide range of collision energies. In a synergistic fashion, full-dimensional, QCT surface hopping calculations of the O((3)P) + C(2)H(4) reaction using ab initio PESs for the singlet and triplet states and their coupling, are reported at collision energies corresponding to the CMB and the kinetics ones. Both theory and experiment find almost an equal contribution from the triplet and singlet surfaces to the reaction, as seen from the collision energy dependence of branching ratios of product channels and extent of intersystem crossing (ISC). Further detailed comparisons at the level of angular distributions and translational energy distributions are made between theory and experiment for the three primary radical channel products, H + CH(2)CHO, CH(3) + HCO, and CH(2) + H(2)CO
Statistical analyses support power law distributions found in neuronal avalanches.
Directory of Open Access Journals (Sweden)
Andreas Klaus
Full Text Available The size distribution of neuronal avalanches in cortical networks has been reported to follow a power law distribution with exponent close to -1.5, which is a reflection of long-range spatial correlations in spontaneous neuronal activity. However, identifying power law scaling in empirical data can be difficult and sometimes controversial. In the present study, we tested the power law hypothesis for neuronal avalanches by using more stringent statistical analyses. In particular, we performed the following steps: (i analysis of finite-size scaling to identify scale-free dynamics in neuronal avalanches, (ii model parameter estimation to determine the specific exponent of the power law, and (iii comparison of the power law to alternative model distributions. Consistent with critical state dynamics, avalanche size distributions exhibited robust scaling behavior in which the maximum avalanche size was limited only by the spatial extent of sampling ("finite size" effect. This scale-free dynamics suggests the power law as a model for the distribution of avalanche sizes. Using both the Kolmogorov-Smirnov statistic and a maximum likelihood approach, we found the slope to be close to -1.5, which is in line with previous reports. Finally, the power law model for neuronal avalanches was compared to the exponential and to various heavy-tail distributions based on the Kolmogorov-Smirnov distance and by using a log-likelihood ratio test. Both the power law distribution without and with exponential cut-off provided significantly better fits to the cluster size distributions in neuronal avalanches than the exponential, the lognormal and the gamma distribution. In summary, our findings strongly support the power law scaling in neuronal avalanches, providing further evidence for critical state dynamics in superficial layers of cortex.
Rudolph, H.; Mckoy, V.; Dixit, S. N.; Huo, W. M.
1988-01-01
Results are presented for the rotationally resolved photoelectron spectra resulting from a (2 + 1) one-color resonant enhanced multiphoton ionization (REMPI) of NO via the rotationally clean S21(11.5) and mixed S11(15.5) + R21(15.5) branches of the 0-0 transition in the D-X band. The calculations were done in the fixed-nuclei frozen core approximation. The resulting photoionization spectra, convoluted with a Lorentzian detection function, agree qualitatively with experimental results of Viswanathan et al. (1986) and support their conclusion that the nonspherical nature of the molecular potential creates a substantial l-mixing in the continuum, which in turn leads to the intense Delta N = 0 peak. The rather strong photoelectron energy dependence of the rotational branching ratios of the D 2Sigma(+) S21(11.5) line was investigated and compared to the weak energy dependence of the A 2Sigma(+) R22(21.5) line.
An, Liupan
2016-01-01
Using the $pp$ collision data collected by LHCb at center-of-mass energies $\\sqrt{s} \\, = 7 \\, {\\rm TeV} \\,$ and $8 \\, {\\rm TeV} \\,$, corresponding to an integrated luminosity of $3 \\, \\mathrm{fb}^{-1} \\,$, the ratio of the branching fraction of the $B_{c}^{+} \\to \\psi(2S)\\pi^+$ decay relative to that of the $B_{c}^{+} \\to J/\\psi\\pi^+$ decay is measured to be ${0.268 \\pm 0.032\\mathrm{\\,(stat)} \\pm 0.007\\mathrm{\\,(syst)} \\pm 0.006\\,(\\mathrm{BF}) }$. The first uncertainty is statistical, the second is systematic, and the third is due to the uncertainties on the branching fractions of the $J/\\psi \\to \\mu^{+}\\mu^{-}$ and $\\psi(2S) \\to \\mu^{+}\\mu^{-}$ decays. To enhance the signal significance with limited $B_{c}^{+}$ statistics, the boosted decision tree selection is used to separate the signal and background effectively. The systematic uncertainties are discussed extensively. This measurement is consistent with the previous LHCb result, and the statistical uncertainty is halved.
Energy Technology Data Exchange (ETDEWEB)
Iyutin, Boris; /MIT
2007-03-01
In this thesis they report the measurement of ratios of branching fractions: {Beta}(B{sub s}{sup 0} {yields} D{sub s}{sup -}{pi}{sup +}{pi}{sup +}{pi}{sup -})/{Beta}(B{sup 0} {yields} D{sup -}{pi}{sup +}{pi}{sup +}{pi}{sup -}), and {Beta}(B{sup 0} {yields} D{sup -}D{sub s}{sup +})/{Beta}(B{sup 0} {yields} D{sup -}{pi}{sup +}{pi}{sup +}{pi}{sup -}), using 355 pb{sup -1} of data collected by CDF detector at the Tevatron p{bar p} collider at {radical}s = 1.96 TeV.
Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Ben Haim, E; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bölla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bromberg, C; Brubaker, E; Budagov, Yu A; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carron, S; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chapman, J; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chu, P H; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Cresciolo, F; Cruz, A; Cuenca-Almenar, C; Cuevas-Maestro, J; Culbertson, R; Cyr, D; Da Ronco, S; D'Auria, S; D'Onofrio, M; Dagenhart, D; De Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, Mauro; Delli Paoli, F; Demers, S; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; Di Turo, P; Dorr, C; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Ebina, K; Efron, J; Ehlers, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernández, J P; Field, R; Flanagan, G; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; García, J E; García-Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giokaris, N; Giolo, K; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Gómez, G; Gómez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Yu; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimarães da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, S R; Hahn, K; Halkiadakis, E; Hamilton, A; Han, B Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hatakeyama, K; Hauser, J; Hays, C; Heijboer, A; Heinemann, B; Heinrich, J; Herndon, M; Hidas, D; Hill, C S; Hirschbuehl, D; Höcker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S C; Huffman, B T; Hughes, R E; Huston, J; Incandela, J R; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Kang, J; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kobayashi, H; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kovalev, A; Kraan, A C; Kraus, J; Kravchenko, I; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P F; Lu, R S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Mäki, T; Maksimovic, P; Malde, S; Manca, G; Margaroli, F; Marginean, R; Marino, C; Martin, A; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Von der Mey, M; Miao, T; Miladinovic, N; Miles, J; Miller, R; Miller, J S; Mills, C; Milnik, M; Miquel, R; Mitra, A; Mitselmakher, G; Miyamoto, A; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla-Fernández, P A; Mülmenstädt, J; Mukherjee, A; Müller, T; Mumford, R; Murat, P; Nachtman, J; Naganoma, J; Nahn, S; Nakano, I; Napier, A; Naumov, D; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Nurse, E; Ogawa, T; Oh, S H; Oh, Y D; Okusawa, T; Oldeman, R; Orava, R; Österberg, K; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, Aldo L; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Rakitine, A; Rappoccio, S; Ratnikov, F; Reisert, B; Rekovic, V; Van Remortel, N; Renton, P B; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Rott, C; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Salto, O; Saltzberg, D; Sánchez, C; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T G; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakian, A; Sjölin, J; Skiba, A; Slaughter, A J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Söderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spezziga, M; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; Saint-Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tanimoto, N; Tecchio, M; Teng, P K; Terashi, K; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Tonnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vaiciulis, A W; Vallecorsa, S; Varganov, A; Vataga, E; Velev, G; Veramendi, G; Veszpremi, V; Vidal, R; Vila, I; Vilar, R; Vine, T; Vollrath, I; Volobuev, I P; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Wan, Z; Wang, S M; Warburton, A; Waschke, S; Waters, D; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhang, X; Zhou, J
2006-01-01
We present a measurement of R_B, the ratio of the branching fraction for the rare decay D0 -> K+ pi- to that for the Cabibbo-favored decay D0 -> K- pi+. Charge conjugate decays are implicitly included. A signal of 2005 +/- 104 events for the decay D0 -> K+ pi- is obtained using the CDF II detector at the Fermilab Tevatron collider. The data set corresponds to an integrated luminosity of 0.35 1/fb produced in p-bar/p collisions at sqrt{s}=1.96 TeV. Assuming no mixing, we find R_B = [ 4.05 +/- 0.21 (stat) +/- 0.11 (syst) ] x 10(-3). This measurement is consistent with the world average, and comparable in accuracy with the best measurements from other experiments.
Aaij, Roel; Adinolfi, Marco; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; d'Argent, Philippe; Arnau Romeu, Joan; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Babuschkin, Igor; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Batsukh, Baasansuren; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Bellee, Violaine; Belloli, Nicoletta; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Betti, Federico; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bezshyiko, Iaroslava; Bifani, Simone; Billoir, Pierre; Bird, Thomas; Birnkraut, Alex; Bitadze, Alexander; Bizzeti, Andrea; Blake, Thomas; Blanc, Frederic; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Boettcher, Thomas; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borgheresi, Alessio; Borghi, Silvia; Borisyak, Maxim; Borsato, Martino; Bossu, Francesco; Boubdir, Meriem; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Buchanan, Emma; Burr, Christopher; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chatzikonstantinidis, Georgios; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chobanova, Veronika; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Costa Sobral, Cayo Mar; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dall'Occo, Elena; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Aguiar Francisco, Oscar; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Serio, Marilisa; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Demmer, Moritz; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Dijkstra, Hans; Dordei, Francesca; Dorigo, Mirco; Dosil Su{á}rez, Alvaro; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Dungs, Kevin; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; D{é}l{é}age, Nicolas; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Farley, Nathanael; Farry, Stephen; Fay, Robert; Fazzini, Davide; Ferguson, Dianne; Fernandez Albor, Victor; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fini, Rosa Anna; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fleuret, Frederic; Fohl, Klaus; Fontana, Marianna; Fontanelli, Flavio; Forshaw, Dean Charles; Forty, Roger; Franco Lima, Vinicius; Frank, Markus; Frei, Christoph; Fu, Jinlin; Furfaro, Emiliano; F{ä}rber, Christian; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; Garc{í}a Pardi{ñ}as, Juli{á}n; Garra Tico, Jordi; Garrido, Lluis; Garsed, Philip John; Gascon, David; Gaspar, Clara; Gavardi, Laura; Gazzoni, Giulio; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gian{ì}, Sebastiana
2016-01-01
The ratio of branching fractions $R_{K/\\pi} \\equiv \\mathcal{B}(B_{c}^{+} \\to J/\\psi K^{+})/\\mathcal{B}(B_{c}^{+} \\to J/\\psi\\pi^{+})$ is measured with $pp$ collision data collected by the LHCb experiment at centre-of-mass energies of 7 TeV and 8 TeV, corresponding to an integrated luminosity of 3${\\mbox{fb}^{-1}}$. It is found to be $ R_{K/\\pi} = 0.079\\pm0.007\\pm0.003$, where the first uncertainty is statistical and the second is systematic. This measurement is consistent with the previous LHCb result, while the uncertainties are significantly reduced.
Branching ratio and direct CP-violating rate asymmetry of the rare decays B →K*γand B→ργ
International Nuclear Information System (INIS)
We calculate CP-violating rate asymmetries in the rare radiative decays B±→K*±γ and B±→ρ±γ. They arise because of the interference between leading-order penguin amplitudes and one-gluon corrections with absorptive phases, and provide unambiguous evidence for direct CP violation. Complementing earlier studies, we also investigate gluon exchange with the 'spectator' quark. The bound state effects in the exclusive matrix elements are taken into account by a covariant model, which yields a branching ratio BR(B→K*γ)=(4-5)x10-5 in good agreement with the observed value. The bound state effects increase the CP asymmetry, which is of order 1% in the channel B→K*γ and 15% for B→ργ. (orig.)
Branching ratio and direct CP-violating rate asymmetry of the rare decays B →K*γ and B →ργ
International Nuclear Information System (INIS)
We calculate CP-violating rate asymmetries in the rare radiative decays B±→K*± γ and B±→ρ±γ. They arise because of the interference between leading-order penguin amplitudes and one-gluon corrections with absorptive phases, and provide unambiguous evidence for direct CP violation. Complementing earlier studies, we also investigate gluon exchange with the 'spectator' quark. The bound state effects in the exclusive matrix elements are taken into account by a covariant model, which yields a branching ratio BR(B→K*γ) = (4-5)x10-5 in good agreement with the observed value. The bound state effects increase the CP asymmetry, which is of order 1 % in the channel B→K*γ and 15 % for B →ργ. ((orig.))
Camarda, Stefano; Schott, Matthias
2016-01-01
The total $W$-boson decay width $\\Gamma_W$ is an important observable which allows testing of the standard model. The current world average value is based on direct measurements of final state kinematic properties of $W$-boson decays, and has a relative uncertainty of 2\\%. The indirect determination of $\\Gamma_W$ via the cross-section measurements of vector-boson production can lead to a similar accuracy. The same methodology leads also to a determination of the leptonic branching ratio. This approach has been successfully pursued by the CDF and D0 experiments at the Tevatron collider, as well as by the CMS collaboration at the LHC. In this paper we present for the first time a combination of the available measurements at hadron colliders, accounting for the correlations of the associated systematic uncertainties. Our combination leads to values of $\\textrm{BR}(W\\rightarrow\\mu\
Forest damage and snow avalanche flow regime
T. Feistl; Bebi, P.; M. Christen; Margreth, S.; Diefenbach, L.; P. Bartelt
2015-01-01
Snow avalanches break, uproot and overturn trees causing damage to forests. The extent of forest damage provides useful information on avalanche frequency and intensity. However, impact forces depend on avalanche flow regime. In this paper, we define avalanche loading cases representing four different avalanche flow regimes: powder, intermittent, dry and wet. Using a numerical model that simulates both powder and wet snow avalanches, we study documented events with forest ...
International Nuclear Information System (INIS)
A close-coupling calculation is performed for the photoionization cross section of the high-lying core-excited state 1s2s22p5 1Po of Ne2+ in the energy region of the double K-vacancy resonance 1s02s22p6 1S. The calculation is carried out by using the R-matrix method in the LS-coupling scheme, which includes 27 target states and extensive configuration interaction. The KK-KL x-ray energy, rate and autoionization width of the double K-vacancy state, together with KK-KLL Auger energies and branching ratios of the main channels, are obtained from the cross sections and the contributions of these channels. The calculated resonance energy and x-ray rate are in good agreement with the existing experimental and theoretical results. For the Auger width, our result agrees well with the available experimental result and it is very close to the average of other theoretical data, which shows considerable differences with each other. The Auger energy of the predominate channel KK-KL23L23 2D is in rather good agreement with recent experiments on the Auger spectra. Our branching ratios for the channels KK-KL23L23 2D and KK-KL23L23 2S are larger than the results obtained by the multi-configuration Dirac–Fock method by ∼20% on average, which may be due to the coupling of the continuum channels. (paper)
International Nuclear Information System (INIS)
This work is dedicated to the determination of a limit on the branching ratio of the rare process b -> Sγ, from Z -> bb-bar events collected at LEP with the L3 detector during collisions at √S ∼ MZ, MZ ± 2 GeV. The rare decay of the b quark, b -> sγ, is forbidden at tree level and occurs, in the Standard Model, through one loop diagram (called penguin diagram) which makes it sensitive to contributions of new particles such as charged Higgs bosons or supersymmetric particles. The theoretical branching ratio is given in Standard Model by Br(b->Sγ) (2.55 ± 0.58) x 10-4. The aim of this study was to observe, in the inclusive mode, a possible excess of the rate of the b -> sγ transition, compare to the expected value. The selection of b hadrons from Z hadronic decays is achieved by the use of both an algorithm based on a multidimensional analysis of the event shape and an algorithm based on the impact parameter of the tracks. The energetic photon is selected by using a π0/γ discriminator based on the transverse shape of its electromagnetic shower. The s-jet reconstruction is achieved by the use of an iterative method with search of the minimum invariant mass. It allows the determination of the b hadron rest frame, which picks near 2.5 GeV, is used in a new method of signal events simulation. No excess of event is observed in the data after the analysis of 1.5 million of Z decays. The limit obtained, when the systematic errors are included, is: Br(b -> sγ) ≤9.2 x 104 at 90% confidence level. This result is consistent with the Standard Model expectation. (author)
Energy Technology Data Exchange (ETDEWEB)
Vazquez Jauregui, Eric [The Autonomous Univ. of San Luis PotosÃÂ (Mexico)
2008-08-01
We studied several Ξ_{c}^{+} decay modes, most of them with a hyperon in the final state, and determined their branching ratios. The data used in this analysis come from the fixed target experiment SELEX, a multi-stage spectrometer with high acceptance for forward interactions, that took data during 1996 and 1997 at Fermilab with 600 GeV=c (mainly Σ^{-}, π^{-}) and 540 GeV/c (mainly p) beams incident on copper and carbon targets. The thesis mainly details the first observation of two Cabibbo-suppressed decay modes, Ξ_{c}^{+} → Σ^{+}π^{-}π^{+} and Ξ_{c}^{+} → Σ^{-}π^{+}π^{+}. The branching ratios of the decays relative to the Cabibbo-favored Ξ_{c}^{+} → Σ^{-}π^{+}π^{+} are measured to be: Γ(Ξ_{c}^{+} → Σ^{-}π^{+}π^{+})/Γ(Ξ_{c}^{+} → Ξ^{-}π^{+}π^{+}) = 0.184 ± 0.086. Systematic studies have been performed in order to check the stability of the measurements varying all cuts used in the selection of events over a wide interval and we do not observe evidence of any trend, so the systematic error is negligible in the final results because the quadrature sum of the total error is not affected. The branching ratios for the same decay modes of the Λ_{c}^{+} are measured to check the methodology of the analysis. The branching ratio of the decay mode Λ_{c}^{+} → Σ^{+}π^{-}π^{+} is measured relative to Λ_{c}^{+} → pK^{-} π^{+}, while the one of the decay mode Λ_{c}^{+} → Σ^{-}π^{+}π^{+}is relative to Λ_{c}^{+}→ Σ^{+}π^{-}π^{+}, as they have been reported earlier. The results for the control modes are:
Characteristics of avalanche accidents and a overview of avalanche equipment
Directory of Open Access Journals (Sweden)
Mateusz Biela
2015-12-01
Full Text Available Avalanches are one of the most spectacular phenomena which may occur in the mountains. Unfortunately they are often caused by humans and pose for him a big danger. In the Polish Tatras alone they represent 18% of all causes of death among 1996-2013. One fourth of the people caught by an avalanche dies, and their chances of survival depends on the depth of burial, burial time, the presence of an air pocket and the degree of injuries. The most common cause of death is asphyxiation, the next is injuries and hypothermia is the rarest cause of death. The fate of the buried people depends on their equipment such as avalanche transceiver, ABS backpack and AvaLung, and also from the equipment of the people who are seeking (avalanche probes, avalanche transceiver and shovels, which has been proven in practice and research.
We propose to study the T=1/2 mirror $\\beta$-decay of $^{37}$K. Nuclear mirror $\\beta$-decay is a competitive means to test the electroweak model by means of the high-precision measurement of V$_{ud}$ element of the CKM quark mixing matrix. One key ingredient to obtain V$_{ud}$ is the force of the transition, Ft, which has to be determined with a relative precision below 10$^{−3}$. This quantity is related to the half-life T$_{1/2}$ of the decaying nucleus, the branching ratio BR for this decay and the mass difference between the mother and daughter nucleus (Q value). Another important feature is the mixing ratio $\\rho$ between the Fermi and the Gamow-Teller character of the transition. In most cases, $\\rho$ is the major contributor to the uncertainty on Ft. Available data concerning T$_{1/2}$ and BR of $^{37}$K suffer from a lack of precision that will be easily reduced by a dedicated experiment.
Investigation of avalanche photodiodes
International Nuclear Information System (INIS)
Some characteristics and performances of a set of nine Hamamatsu avalanche photodiodes have been investigated. These APDs have equipped a small 3x3 PbWO4 crystal matrix in X3 beam during the summer of 1995. This note summarizes the main results of this work. An electromagnetic calorimeter with a high resolution is necessary to search for the Higgs if it has a mass between 80 and 160 GeV. A PbWO4 crystal option has been chosen by the CMS collaboration to achieve this task. The light is collected and converted into an electric charge by an Avalanche Photodiode (APD) followed by a fast preamplifier. The advantage of the APDs is that they are not sensitive to the strong magnetic field when compared to photomultipliers and they are a small nuclear counter effect when compared to PIN diodes. In this study, we have tested nine low capacitance Hamamatsu APDs (S5345) received in spring, 1995 with an area of 0.2 cm2. We have measured the capacitance and dark current for each APD. The gain measurements have also been done with gamma sources, continuous and pulsed light. The gain sensitivity versus bias and temperature have also been investigated succinctly. (author). 8 refs., 16 figs., 1 tab
Investigation of avalanche photodiodes
Energy Technology Data Exchange (ETDEWEB)
Si Mohand, D.; Benhammou, Y.; Depasse, P.; Goyot, M.; Ille, B.; Linard, E.; Martin, F.; Musienko, Y.
1996-06-01
Some characteristics and performances of a set of nine Hamamatsu avalanche photodiodes have been investigated. These APDs have equipped a small 3x3 PbWO{sub 4} crystal matrix in X3 beam during the summer of 1995. This note summarizes the main results of this work. An electromagnetic calorimeter with a high resolution is necessary to search for the Higgs if it has a mass between 80 and 160 GeV. A PbWO{sub 4} crystal option has been chosen by the CMS collaboration to achieve this task. The light is collected and converted into an electric charge by an Avalanche Photodiode (APD) followed by a fast preamplifier. The advantage of the APDs is that they are not sensitive to the strong magnetic field when compared to photomultipliers and they are a small nuclear counter effect when compared to PIN diodes. In this study, we have tested nine low capacitance Hamamatsu APDs (S5345) received in spring, 1995 with an area of 0.2 cm{sup 2}. We have measured the capacitance and dark current for each APD. The gain measurements have also been done with gamma sources, continuous and pulsed light. The gain sensitivity versus bias and temperature have also been investigated succinctly. (author). 8 refs., 16 figs., 1 tab.
Bounds for avalanche critical values of the Bak-Sneppen model
Gillett, Alexis; Meester, Ronald; Nuyens, Misja
2005-01-01
We study the Bak-Sneppen model on locally finite transitive graphs $G$, in particular on Z^d and on T_Delta, the regular tree with common degree Delta. We show that the avalanches of the Bak-Sneppen model dominate independent site percolation, in a sense to be made precise. Since avalanches of the Bak-Sneppen model are dominated by a simple branching process, this yields upper and lower bounds for the so-called avalanche critical value $p_c^{BS}(G)$. Our main results imply that 1/(Delta+1)
International Nuclear Information System (INIS)
We report on large-scale ab initio calculations for intercombination lines in Si I-like ions. Two measurable quantities, the lifetime of the 3s3p35S2 level and the branching ratio of the two lines are discussed, to infer the importance of different features of our calculations. The effects of core polarization, two-body spin-dependent operators and Dirac contra Breit-Pauli approaches are discussed. Earlier calculations are reviewed and evaluated. The calculated lifetimes are in good agreement with experiments, while a discrepancy persists for branching ratios
Imaging findings of avalanche victims
Energy Technology Data Exchange (ETDEWEB)
Grosse, Alexandra B.; Grosse, Claudia A.; Anderson, Suzanne [University Hospital of Berne, Inselspital, Department of Diagnostic, Pediatric and Interventional Radiology, Berne (Switzerland); Steinbach, Lynne S. [University of California San Francisco, Department of Radiology, San Francisco, CA (United States); Zimmermann, Heinz [University Hospital of Berne, Inselspital, Department of Trauma and Emergency Medicine, Berne (Switzerland)
2007-06-15
Skiing and hiking outside the boundaries remains an attractive wilderness activity despite the danger of avalanches. Avalanches occur on a relatively frequent basis and may be devastating. Musculoskeletal radiologists should be acquainted with these injuries. Fourteen avalanche victims (11 men and 3 women; age range 17-59 years, mean age 37.4 years) were air transported to a high-grade trauma centre over a period of 2 years. Radiographs, CT and MR images were prospectively evaluated by two observers in consensus. Musculoskeletal findings (61%) were more frequent than extraskeletal findings (39%). Fractures were most commonly seen (36.6%), involving the spine (14.6%) more frequently than the extremities (9.8%). Blunt abdominal and thoracic trauma were the most frequent extraskeletal findings. A wide spectrum of injuries can be found in avalanche victims, ranging from extremity fractures to massive polytrauma. Asphyxia remains the main cause of death along with hypoxic brain injury and hypothermia. (orig.)
Neuronal avalanches and coherence potentials
Plenz, D.
2012-05-01
The mammalian cortex consists of a vast network of weakly interacting excitable cells called neurons. Neurons must synchronize their activities in order to trigger activity in neighboring neurons. Moreover, interactions must be carefully regulated to remain weak (but not too weak) such that cascades of active neuronal groups avoid explosive growth yet allow for activity propagation over long-distances. Such a balance is robustly realized for neuronal avalanches, which are defined as cortical activity cascades that follow precise power laws. In experiments, scale-invariant neuronal avalanche dynamics have been observed during spontaneous cortical activity in isolated preparations in vitro as well as in the ongoing cortical activity of awake animals and in humans. Theory, models, and experiments suggest that neuronal avalanches are the signature of brain function near criticality at which the cortex optimally responds to inputs and maximizes its information capacity. Importantly, avalanche dynamics allow for the emergence of a subset of avalanches, the coherence potentials. They emerge when the synchronization of a local neuronal group exceeds a local threshold, at which the system spawns replicas of the local group activity at distant network sites. The functional importance of coherence potentials will be discussed in the context of propagating structures, such as gliders in balanced cellular automata. Gliders constitute local population dynamics that replicate in space after a finite number of generations and are thought to provide cellular automata with universal computation. Avalanches and coherence potentials are proposed to constitute a modern framework of cortical synchronization dynamics that underlies brain function.
Ultraviolet avalanche photodiodes
McClintock, Ryan; Razeghi, Manijeh
2015-08-01
The III-Nitride material system is rapidly maturing; having proved itself as a material for LEDs and laser, and now finding use in the area of UV photodetectors. However, many UV applications are still dominated by the use of photomultiplier tubes (PMT). PMTs are capable of obtaining very high sensitivity using internal electron multiplication gain (typically ~106). It is highly desirable to develop a compact semiconductor-based photodetector capable of realizing this level of sensitivity. In principle, this can be obtained in III-Nitrides by taking advantage of avalanche multiplication under high electric fields - typically 2.7 MV/cm, which with proper design can correspond to an external reverse bias of less than 100 volts. In this talk, we review the current state-of-the-art in III-Nitride solar- and visible-blind APDs, and present our latest results on GaN APDs grown on both conventional sapphire and low dislocation density free-standing c- and m-plane GaN substrates. Leakage current, gain, and single photon detection efficiency (SPDE) of these APDs were compared. The spectral response and Geiger-mode photon counting performance of UV APDs are studied under low photon fluxes, with single photon detection capabilities as much as 30% being demonstrated in smaller devices. Geiger-mode operation conditions are optimized for enhanced SPDE.
Avalanche effects near nanojunctions
Nandigana, Vishal V. R.; Aluru, N. R.
2016-07-01
In this article, we perform a computational investigation of a nanopore connected to external fluidic reservoirs of asymmetric geometries. The asymmetry between the reservoirs is achieved by changing the cross-sectional areas, and the reservoirs are designated as the micropore reservoir and macropore reservoir. When an electric field is applied, which is directed from the macropore towards the micropore reservoir, we observe local nonequilibrium chaotic current oscillations. The current oscillations originate at the micropore-nanopore interface owing to the local cascade of ions; we refer to this phenomenon as the "avalanche effects." We mathematically quantify chaos in terms of the maximum Lyapunov exponent. The maximum Lyapunov exponent exhibits a monotonic increase with the applied voltage and the macropore reservoir diameter. The temporal power spectra maps of the chaotic currents depict a low-frequency "1 /f "-type dynamics for the voltage chaos and "1 /f2 "-type dynamics for the macropore reservoir chaos. The results presented here offer avenues to manipulate ionic diodes and fluidic pumps.
International Nuclear Information System (INIS)
We have studied the isotopic variation of the vibrational-branching ratio (VBR) and the photoelectron angular distribution (PEAD) as a function of laser intensity in (1+1')-photon resonance-enhanced multiphoton ionization (REMPI) of HD and D2 molecules via B1Σu (v=4; j=1,2) levels. We have found that with the increase in laser intensity, the non-Franck-Condon nature of the VBR and the deviation of the total as well as the vibrationally resolved PEAD from that obtained in the lower-intensity regime become much more prominent for D2 molecules than those for HD molecules. We have considered the effect of the interference of different ionization channels (resonant as well as near-resonant ionization via nearby rovibrational levels) and the effect of Raman-like two-photon coupling between these intermediate vibrational levels via a continuum on this REMPI process. The difference between the vibrational wave functions and the difference between the spacing of rovibrational energy levels in these two isotopes of H2 molecules lead to different strengths of ionization and the Raman-like two-photon coupling. Hence the isotopic variation in the VBR and the PEAD for these two isotopes shows up as a result of different degrees of interference of parallel ionization channels and different strengths of two-photon coupling via a continuum, both of which become important with an increase in laser intensity. We have also found that the intensity variation of the VBR and the PEAD for both molecules depends on the choice of different rotational levels as resonances. This feature has also been found previously in the REMPI of H2 molecules. copyright 1996 The American Physical Society
Avalanche multiplication of electrons and holes in cadmium telluride
Demich, N V
2001-01-01
Determination of the ratio of the coefficients of the electrons and holes of the diode structures impact ionization is carried out with the purpose of optimizing the parameters of the avalanche diodes from the cadmium telluride. It is shown experimentally, that the process of the impact ionization in the cadmium telluride is stimulated by holes. The ratio of the coefficients of the holes and electrons impact ionization constitutes approx = 30-40
AUTHOR|(SzGeCERN)762723; Watson, Nigel
2016-01-01
This note summarises a study to evaluate the potential to measure the H$\\rightarrow$WW$^*$ branching fraction at CLIC, 1.4TeV centre-of-mass energy, with the CLIC_ILD detector, using the WW$\\rightarrow$qql$\
Branching Processes and Evolution at the Ends of a Food Chain
Caldarelli, G.; Tebaldi, C.; A. L. Stella(GNSM, Univ. and INFN, Padova)
1996-01-01
In a critically self--organized model of punctuated equilibrium, boundaries determine peculiar scaling of the size distribution of evolutionary avalanches. This is derived by an inhomogeneous generalization of standard branching processes, extending previous mean field descriptions and yielding $\
International Nuclear Information System (INIS)
The dynamical screening Coulomb potential between deuterons in the PdDx deuteride is dynamically screened by the mobile deuterons as well as the electrons. The screening effect by the mobile deuteron in low temperature is substantial. When the all deuterons become mobile, the fusion rate observed by Jones et al. can be achieved using the classical formula for the ion polarization function, however the rate using the quantum mechanical formula becomes 10-6--10-7 times smaller than the classical one. To interprete a extremely large p/n branching ratio observed in cold fusion reaction, the break up process of deuteron as they penetrate the Coulomb barrier, the neutron tunneling process and the process of exciting the 20.1Mev (j = 0+, T = 0) resonance state of He4 are studied. To get the extremely high branching ratio of p/n, deuteron has to obtain almost the same amount of energy as binding energy. And, in this paper its implication of this high branching ratio for d-d muon catalyzed fusion is discussed
Abdallah, J; Adam, W; Adzic, P; Albrecht, T; Alderweireld, T; Alemany-Fernandez, R; Allmendinger, T; Allport, P P; Amaldi, Ugo; Amapane, N; Amato, S; Anashkin, E; Andreazza, A; Andringa, S; Anjos, N; Antilogus, P; Apel, W D; Arnoud, Y; Ask, S; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Ballestrero, A; Bambade, P; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Ben-Haim, E; Benekos, N C; Benvenuti, Alberto C; Bérat, C; Berggren, M; Berntzon, L; Bertrand, D; Besançon, M; Besson, N; Bloch, D; Blom, M; Bluj, M; Bonesini, M; Boonekamp, M; Booth, P S L; Borisov, G; Botner, O; Bouquet, B; Bowcock, T J V; Boyko, I; Bracko, M; Brenner, R; Brodet, E; Brückman, P; Brunet, J M; Bugge, L; Buschmann, P; Calvi, M; Camporesi, T; Canale, V; Carena, F; Castro, N; Cavallo, F R; Chapkin, M M; Charpentier, P; Checchia, P; Chierici, R; Shlyapnikov, P; Chudoba, J; Chung, S U; Cieslik, K; Collins, P; Contri, R; Cosme, G; Cossutti, F; Costa, M J; Crennell, D J; Cuevas-Maestro, J; D'Hondt, J; Dalmau, J; Da Silva, T; Da Silva, W; Della Ricca, G; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Maria, N; De Min, A; De Paula, L S; Di Ciaccio, Lucia; Di Simone, A; Doroba, K; Drees, J; Dris, M; Eigen, G; Ekelöf, T J C; Ellert, M; Elsing, M; Espirito-Santo, M C; Fanourakis, G K; Fassouliotis, D; Feindt, M; Fernández, J; Ferrer, A; Ferro, F; Flagmeyer, U; Föth, H; Fokitis, E; Fulda-Quenzer, F; Fuster, J A; Gandelman, M; García, C; Gavillet, P; Gazis, E N; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; Graziani, E; Grosdidier, G; Grzelak, K; Guy, J; Haag, C; Hallgren, A; Hamacher, K; Hamilton, K; Haug, S; Hauler, F; Hedberg, V; Hennecke, M; Herr, H; Hoffman, J; Holmgren, S O; Holt, P J; Houlden, M A; Hultqvist, K; Jackson, J N; Jarlskog, G; Jarry, P; Jeans, D; Johansson, E K; Johansson, P D; Jonsson, P; Joram, C; Jungermann, L; Kapusta, F; Katsanevas, S; Katsoufis, E C; Kernel, G; Kersevan, Borut P; Kerzel, U; Kiiskinen, A P; King, B T; Kjaer, N J; Kluit, P; Kokkinias, P; Kourkoumelis, C; Kuznetsov, O; Krumshtein, Z; Kucharczyk, M; Lamsa, J; Leder, G; Ledroit, F; Leinonen, L; Leitner, R; Lemonne, J; Lepeltier, V; Lesiak, T; Liebig, W; Liko, D; Lipniacka, A; Lopes, J H; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J; Malek, A; Maltezos, S; Mandl, F; Marco, J; Marco, R; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Mazzucato, F; Mazzucato, M; McNulty, R; Meroni, C; Migliore, E; Mitaroff, W A; Mjörnmark, U; Moa, T; Moch, M; Mönig, K; Monge, R; Montenegro, J; Moraes, D; Moreno, S; Morettini, P; Müller, U; Münich, K; Mulders, M; Mundim, L M; Murray, W; Muryn, B; Myatt, Gerald; Myklebust, T; Nassiakou, M; Navarria, Francesco Luigi; Nawrocki, K; Nicolaidou, R; Nikolenko, M; Oblakowska-Mucha, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Österberg, K; Ouraou, A; Oyanguren, A; Paganoni, M; Paiano, S; Palacios, J P; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Peralta, L; Perepelitsa, V F; Perrotta, A; Petrolini, A; Piedra, J; Pieri, L; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Pukhaeva, N; Pullia, Antonio; Rames, J; Ramler, L; Read, A; Rebecchi, P; Rehn, J; Reid, D; Reinhardt, R; Renton, P B; Richard, F; Rídky, J; Rivero, M; Rodríguez, D; Romero, A; Ronchese, P; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ryabtchikov, D; Sadovskii, A; Salmi, L; Salt, J; Savoy-Navarro, A; Schwickerath, U; Segar, A; Sekulin, R L; Siebel, M; Sissakian, A N; Smadja, G; Smirnova, O G; Sokolov, A; Sopczak, A; Sosnowski, R; Spassoff, Tz; Stanitzki, M; Stocchi, A; Strauss, J; Stugu, B; Szczekowski, M; Szeptycka, M; Szumlak, T; Tabarelli de Fatis, T; Taffard, A C; Tegenfeldt, F; Timmermans, J; Tkatchev, L G; Tobin, M; Todorovova, S; Tomé, B; Tonazzo, A; Tortosa, P; Travnicek, P; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Turluer, M L; Tyapkin, I A; Tyapkin, P; Tzamarias, S; Uvarov, V; Valenti, G; van Dam, P; Van Eldik, J; Van Lysebetten, A; Van Remortel, N; Van Vulpen, I B; Vegni, G; Veloso, F; Venus, W A; Verdier, P; Verzi, V; Vilanova, D; Vitale, L; Vrba, V; Wahlen, H; Washbrook, A J; Weiser, C; Wicke, D; Wickens, J H; Wilkinson, G; Winter, M; Witek, M; Yushchenko, O P; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zhuravlov, V; Zimin, N I; Zinchenko, A I; Zupan, M
2004-01-01
These final results on e+e- -> W+W- production cross-section measurements at LEP2 use data collected by the DELPHI detector at centre-of-mass energies up to 209 GeV. Measurements of total cross-sections, W angular differential distributions and decay branching fractions, and the value of the CKM element |V_{cs}| are compared to the expectations of the Standard Model. These results supersede all values previously published by DELPHI.
Form factors and branching ratios of the FCNC B → a{sub 1}l{sup +}l{sup -} decays
Energy Technology Data Exchange (ETDEWEB)
Khosravi, R. [Isfahan University of Technology, Department of Physics, Isfahan (Iran, Islamic Republic of)
2015-05-15
We analyze the semileptonic B → a{sub 1}l{sup +}l{sup -}, l = τ, μ, e transitions in the framework of the three-point QCD sum rules in the standard model. These rare decays are governed by the flavor-changing neutral current transition of b → d. Considering the quark condensate contributions, the relevant form factors as well as the branching fractions of these transitions are calculated. (orig.)
International Nuclear Information System (INIS)
Landslides and rockfalls that initiate on a steep slope eventually come to rest after flowing for some runout distance on a flat. Rockfalls of very large masses have been observed to exhibit unexpectedly long runout distances. This problem becomes more significant as the development of resources in mountain regions becomes more intensive. As early as 1881, Albert Heim observed and described the Elm rockfall of Switzerland (quoted by as HsU). This rockfall produced a debris which moved more than 2 Km along a nearly horizontal valley floor and one of its branches surged up the side of the valley to a height of 100 m. From the deposit of the Elm and the eyewitnesses Heim concluded that the debris behaved as a flowing fluid rather than sliding solids. Davies, among others, suggested that the excessive runout distance is volume dependent and the larger the volume of the debris, the longer the relative travel distance. A summary of the numerous hypotheses which have been proposed to explain this puzzling phenomena were also presented by Davies. However, none of these have been completely satisfactory or generally accepted. A simple model of the flow and spreading of a finite mass of cohesionless granular material down incline has been developed as a part of the present preliminary investigation into the mechanics of rockfalls. (author)
Neuronal avalanches and brain plasticity
de Arcangelis, L.; Herrmann, H. J.; Perrone-Capano, C.
2007-12-01
Networks of living neurons exhibit an avalanche mode of activity, experimentally found in organotypic cultures. Moreover, experimental studies of morphology indicate that neurons develop a network of small-world-like connections, with the possibility of a very high connectivity degree. Here we discuss a recent model based on self-organized criticality, which consists of an electrical network with threshold firing and activity-dependent synapse strengths. The model is implemented on regular and small world lattices and on a scale-free network, the Apollonian network. The system exhibits an avalanche activity with a power law distribution of sizes and durations. The analysis of the power spectra of the electrical signal reproduces very robustly the power law behaviour with the exponent 0.8, experimentally measured in electroencephalogram (EEG) spectra. The exponents are found to be quite stable with respect to initial configurations and strength of plastic remodelling, indicating that universality holds for a wide class of neural network models.
Supersensitive avalanche silicon drift photodetector
International Nuclear Information System (INIS)
Physical principles of performance and main characteristics of a novel avalanche photodetector developed on the basis of MOS (metal-oxide-silicon) technology are presented. The photodetector contains a semitransparent gate electrode and a drain contact to provide a drift of multiplied charge carriers along the semiconductor surface. A high gain (more than 104) of the photocurrent was achieved due to the local negative feedback effect realized on the Si -- SiO2 boundary. Special attention is paid to the possibilities of the development of a supersensitive avalanche CCD (charge-coupled device) for the detection of individual photons in visible and ultraviolet spectral regions. The experimental results obtained with a two-element CCD prototype are discussed. (author)
Štigler, J.; Šperka, O.; Klas, R.
2012-11-01
This article deals with a fluid flow in the pipe junction. The comparison of the pipe junction characteristics obtained from the experiment with the pipe junction characteristics obtained from the numerical modelling using the CFD software will be discussed in this article. All measurements are done for the case of 50 mm diameter of the straight pipe and 20 mm diameter of the adjacent branch with five different angles. There are six possible flow configurations for this pipe junction. Three of them are cases of the flow combination and three of them are cases of the flow division. Only results for the flow combination are presented in this paper.
Avalanches, Scaling and Coherent Noise
Newman, M. E. J.; Sneppen, Kim
1996-01-01
We present a simple model of a dynamical system driven by externally-imposed coherent noise. Although the system never becomes critical in the sense of possessing spatial correlations of arbitrarily long range, it does organize into a stationary state characterized by avalanches with a power-law size distribution. We explain the behavior of the model within a time-averaged approximation, and discuss its potential connection to the dynamics of earthquakes, the Gutenberg-Richter law, and to rec...
Signal and Noise Properties of Position-Sensitive Avalanche Photodiodes
Yang, Yongfeng; Wu, Yibao; Farrell, Richard; Dokhale, Purushottam A.; Shah, Kanai S.; Cherry, Simon R.
2011-01-01
After many years of development, position-sensitive avalanche photodiodes (PSAPDs) are now being incorporated into a range of scintillation detector systems, including those used in high-resolution small-animal PET and PET/MR scanners. In this work, the signal, noise, signal-to-noise ratio (SNR), flood histogram and timing resolution were measured for lutetium oxyorthosilicate (LSO) scintillator arrays coupled to PSAPDs ranging in size from 10–20 mm, and the optimum bias voltage and working t...
Avalanche ecology and large magnitude avalanche events: Glacier National Park, Montana, USA
Fagre, Daniel B.; Peitzsch, Erich H.
2010-01-01
Large magnitude snow avalanches play an important role ecologically in terms of wildlife habitat, vegetation diversity, and sediment transport within a watershed. Ecological effects from these infrequent avalanches can last for decades. Understanding the frequency of such large magnitude avalanches is also critical to avalanche forecasting for the Going-to-the-Sun Road (GTSR). In January 2009, a large magnitude avalanche cycle occurred in and around Glacier National Park, Montana. The study site is the Little Granite avalanche path located along the GTSR. The study is designed to quantify change in vegetative cover immediately after a large magnitude event and document ecological response over a multi-year period. GPS field mapping was completed to determine the redefined perimeter of the avalanche path. Vegetation was inventoried using modified U.S. Forest Service Forest Inventory and Analysis plots, cross sections were taken from over 100 dead trees throughout the avalanche path, and an avalanche chronology was developed. Initial results indicate that the perimeter of this path was expanded by 30%. The avalanche travelled approximately 1200 vertical meters and 3 linear kilometers. Stands of large conifers as old as 150 years were decimated by the avalanche, causing a shift in dominant vegetation types in many parts of the avalanche path. Woody debris is a major ground cover up to 3 m in depth on lower portions of the avalanche path and will likely affect tree regrowth. Monitoring and measuring the post-avalanche vegetation recovery of this particular avalanche path provides a unique dataset for determining the ecological role of avalanches in mountain landscapes.
Avalanche Dynamics in Wet Granular Materials
Tegzes, P.; Vicsek, T.; P. Schiffer
2002-01-01
We have studied the dynamics of avalanching wet granular media in a rotating drum apparatus. Quantitative measurements of the flow velocity and the granular flux during avalanches allow us to characterize novel avalanche types unique to wet media. We also explore the details of viscoplastic flow (observed at the highest liquid contents) in which there are lasting contacts during flow, leading to coherence across the entire sample. This coherence leads to a velocity independent flow depth at h...
Time Directed Avalanches in Invasion Models
International Nuclear Information System (INIS)
We define forward and backward time-directed avalanches for a broad class of self-organized critical models including invasion percolation, interface depinning, and a simple model of evolution. Although the geometrical properties of the avalanches do not change under time reversal, their stationary state statistical distribution does. The overall distribution of forward avalanches P(s)∼s-2 is superuniversal in this class of models. The power-law exponent π for the distribution of distances between subsequent active sites is derived from the properties of backward avalanches
Bassompierre, G; Dalpiaz, P; Dalpiaz, P F; Gissinger, G; Jacquey, S; Peroni, C; Schneegans, M; Tecchio, L B
1976-01-01
Analyzing a sample of 220000 events from an experiment still in progress at the CERN Proton Synchrotron, 60 pairs of electrons with an energy above 700 MeV have been observed. The electrons, produced by annihilation of antiproton stopped in a liquid-hydrogen target, are detected with optical spark chambers and scintillation counters. Twenty-nine out of these 60 pairs have been found to be collinear; normalizing with respect to the hadronic two-body channels pi /sup +/ pi /sup -/ and K/sup +/K/sup -/, a branching raio B/sub ee/= Gamma (pp to e/sup +/e/sup -/) Gamma /(pp to total)=(3.2+or-0.9)*10/sup -7/ has been obtained. (11 refs).
Branching Ratio Measurements of B ---> J/psi eta K and B+- ---> D0 K+- with D0 ---> pi+ pi- pi0
Energy Technology Data Exchange (ETDEWEB)
Zeng, Qinglin; /Colorado State U.
2006-03-08
Results are presented for the decays of B {yields} J/{psi}{eta}K and B{sup {+-}} {yields} DK{sup {+-}}, respectively, with experimental data collected with BABAR detector at PEP-II, located at Stanford Linear Accelerator Center (SLAC). With 90 x 10{sup 6} B{bar B} events at the {Upsilon}(4S) resonance, we obtained branching fractions of {Beta}(B{sup {+-}} {yields} J/{psi}{eta}K{sup {+-}}) = [10.8 {+-} 2.3(stat) {+-} 2.4(syst)] x 10{sup -5} and {Beta}(B{sup 0} {yields} J/{psi}{eta}K{sub S}{sup 0}) = [8.4 {+-} 2.6(stat) {+-} 2.7(syst)] x 10{sup -5}; and we set an upper limit of {Beta}[B{sup {+-}} {yields} X(3872)K{sup {+-}} {yields} J/{psi}{eta}K{sup {+-}}] < 7.7 x 10{sup -6} at 90% confidence level. The branching fraction of decay chain {Beta}(B{sup {+-}} {yields} DK{sup {+-}} {yields} {pi}{sup +}{pi}{sup -}{pi}{sup 0}K{sup {+-}}) = [5.5 {+-} 1.0(stat) {+-} 0.7(syst)] x 10{sup -6} with 229 x 10{sup 6} B{bar B} events at {Upsilon}(4S) resonance, here D represents the neutral D meson. The decay rate asymmetry is A = 0.02 {+-} 0.16(stat) {+-} 0.03(syst) for this full decay chain. This decay can be used to extract the unitarity angle {gamma}, a weak CP violation phase, through the interference of decay production of D{sup 0} and {bar D}{sup 0} to {pi}{sup +}{pi}{sup -}{pi}{sup 0}.
Measurement of branching ratios and CP asymmetries for the decays B0→π+π-, B0→K+π-, B0→K+K-
International Nuclear Information System (INIS)
We present measurements of the branching fractions and CP violation parameters for the decay channels B0→π+π-, B0→K+π- and B0→K+K-. The final Belle dataset of 772 million B anti B pairs produced at the Υ(4S) resonance at the KEKB asymmetric-energy e+e- collider is used. For the branching fractions, we obtain B(B0→π+π-)=(5.63± 0.16(stat)± 0.16(syst)) x 10-6, B(B0→K±π-+)=(18.71±0.25(stat)± 0.37(syst)) x 10-6, B(B0→K+K-)-8 at 90% CL. For the CP-asymmetries, we obtain following values: ACP(B0→π+π-)=0.33±0.06(stat)±0.03 (syst), SCP(B0→π+π-)=-0.64±0.08(stat)±0.03(syst), ACP(B0→K±K-+)=-0.061±0.014(stat)±0.008 (syst), where ACP and SCP represent direct and mixing-induced CP violation, respectively. For the CP-violating weak phase φ2 we exclude the region 23.8 2<66.8 at the 1σ level. A model independent test of new physics using a sum rule in the Kπ system yields a mild deviation from the standard model of -0.289±0.139(stat)±0.064(syst) with a 1.9σ significance.
Silicon Geiger mode avalanche photodiodes
Institute of Scientific and Technical Information of China (English)
M. Mazzillo; S. Billotta; G. Bonanno; A. Campisi; L. Cosentino; P. Finocchiaro; F. Musumeci; S.Privitera; S. Tudisco; G. Condorelli; D. Sanfilippo; G. Fallica; E. Sciacca; S. Aurite; S. Lombardo; E. Rlmini; M. Belluso
2007-01-01
In this letter we present the results regarding the electrical and optical characterization of Geiger mode silicon avalanche photodiodes (GMAP) fabricated by silicon standard planar technology. Low dark count rates, negligible afterpulsing effects,good timing resolution and high quantum detection efficiency in all the visible range have been measured. The very good electro-optical performances of our photodiodes make them attractive for the fabrication of arrays with a large number of GMAP to be used both in the commercial and the scientific fields, as telecommunications and nuclear medical imaging.
Production networks and failure avalanches
Weisbuch, G; Weisbuch, Gerard; Battiston, Stefano
2005-01-01
Although standard economics textbooks are seldom interested in production networks, modern economies are more and more based upon suppliers/customers interactions. One can consider entire sectors of the economy as generalised supply chains. We will take this view in the present paper and study under which conditions local failures to produce or simply to deliver can result in avalanches of shortage and bankruptcies across the network. We will show that a large class of models exhibit scale free distributions of production and wealth among firms and that metastable regions of high production are highly localised.
International Nuclear Information System (INIS)
We report the first observation of two Cabibbo-suppressed decay modes, Ξc+→Σ+π-π+ and Ξc+→Σ-π+π+. We observe 59±14 over a background of 87, and 22±8 over a background of 13 events, respectively, for the signals. The data were accumulated using the SELEX spectrometer during the 1996-1997 fixed target run at Fermilab, chiefly from a 600GeV/cΣ- beam. The branching ratios of the decays relative to the Cabibbo-favored Ξc+→Ξ-π+π+ are measured to be B(Ξc+→Σ+π-π+)/B(Ξc+→Ξ-π+π+)=0.48±0.20, and B(Ξc+→Σ-π+π+)/B(Ξc+→Ξ-π+π+)=0.18±0.09, respectively. We also report branching ratios for the same decay modes of the Λc+ relative to Λc+→pK-π+
Directory of Open Access Journals (Sweden)
Yan-Chuan Li
2015-11-01
Full Text Available This study aims to examine the association between the ratio of dietary branched chain amino acids (BCAA and risk of obesity among young northern Chinese adults. A total of 948 randomly recruited participants were asked to finish our internet-based dietary questionnaire for the Chinese (IDQC. Associations between dietary BCAA ratio and prevalence of overweight/obesity and abdominal obesity were analyzed. Furthermore, 90 subjects were randomly selected to explore the possible mechanism. Dietary BCAA ratio in obese participants was significantly lower than non-obese participants. We found negative correlations between the ratio of dietary BCAA and body mass index (BMI (r = −0.197, p < 0.001 or waist circumference (r = −0.187, p < 0.001. Compared with those in the first quartile, the multivariable-adjusted OR (95% CI of the 3rd and 4th quartiles of dietary BCAA ratio for overweight/obesity were 0.508 (0.265–0.972 and 0.389 (0.193–0.783, respectively (all p < 0.05. After stratification by gender, the significance still existed in the 3rd and 4th quartile in males and the 4th quartile in females. For abdominal obesity, the multivariable-adjusted OR (95% CI of the 3rd and 4th quartile of dietary BCAA ratio were 0.351 (0.145–0.845 and 0.376 (0.161–0.876, respectively (all p < 0.05. This significance was stronger in males. Further studies indicated that dietary BCAA ratio was inversely associated with 2-h postprandial glucose (2 h-PG and status of inflammation. In conclusion, a higher ratio of dietary BCAA is inversely associated with prevalence of obesity, postprandial glucose and status of inflammation in young northern Chinese adults.
3D avalanche multiplication in Si-Ge lateral avalanche photodiodes
Jamil, Erum; Hayat, Majeed M.; Davids, Paul S.; Camacho, Ryan M.
2016-05-01
Si-Ge lateral avalanche photodiodes (Si-Ge LAPDs) are promising devices for single photon detection, but they also have technology challenges. Si-Ge LAPDs are CMOS compatible and capable of detecting photons near the 1550 nm telecommunications bands. However, the Si-Ge LAPD exhibits a unique avalanche multiplication process in silicon, where the electrons and holes follow curved paths in three-dimensional space. Traditional models for the analysis of the avalanche multiplication process assume one-dimensional paths for the carriers that undergo the chains of impact ionizations; therefore, they are not suitable for analyzing the avalanche properties of Si-Ge LAPDs. In this paper, the statistics of the avalanche process in the Si-Ge LAPD are modeled analytically using a method that was recently developed by our group for understanding the avalanche multiplication in nanopillar, core-shell GaAs avalanche photodiodes, for which the electric field is non-uniform in magnitude and direction. Specifically, the calculated mean avalanche gain and the excess noise are presented for the Si-Ge LAPD device. It is also shown that the avalanche characteristics depend upon the specific avalanche path taken by the carrier, which depends, in turn, on the lateral location where each photon is absorbed in the Ge absorber. This property can be exploited to achieve reduced excess noise as well as wavelength-sensitive single-photon detection.
Aubert, Bernard; Boutigny, D; Couderc, F; Gaillard, J M; Hicheur, A; Karyotakis, Yu; Lees, J P; Tisserand, V; Zghiche, A; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Le Clerc, C; Levi, M E; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, Michael T; Shelkov, V G; Telnov, A V; Wenzel, W A; Ford, K; Harrison, T J; Hawkes, C M; Morgan, S E; Watson, A T; Watson, N K; Fritsch, M; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Steinke, M; Boyd, J T; Chevalier, N; Cottingham, W N; Kelly, M P; Latham, T E; Wilson, F F; Abe, K; Çuhadar-Dönszelmann, T; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Kyberd, P; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bruinsma, M; Chao, M; Eschrich, I; Kirkby, D; Lankford, A J; Mandelkern, M A; Mommsen, R K; Röthel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Gary, J W; Shen, B C; Wang, K; Del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Dahmes, B; Levy, S L; Long, O; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Eisner, A M; Heusch, C A; Lockman, W S; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S M; Mancinelli, G; Meadows, B T; Sokoloff, M D; Abe, T; Blanc, F; Bloom, P; Chen, S; Clark, P J; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Smith, J G; Van Hoek, W C; Zhang, L; Harton, J L; Hu, T; Soffer, A; Toki, W H; Wilson, R J; Altenburg, D; Brandt, T; Brose, J; Colberg, T; Dickopp, M; Feltresi, E; Hauke, A; Lacker, H M; Maly, E; Müller-Pfefferkorn, R; Nogowski, R; Otto, S; Schubert, J; Schubert, Klaus R; Schwierz, R; Spaan, B; Bernard, D; Bonneaud, G R; Brochard, F; Grenier, P; Thiebaux, C; Vasileiadis, G; Verderi, M; Bard, D J; Khan, A; Lavin, D; Muheim, F; Playfer, S; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Sarti, A; Treadwell, E; Baldini-Ferroli, R; Calcaterra, A; De Sangro, R; Finocchiaro, G; Patteri, P; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Brandenburg, G; Morii, M; Won, E; Dubitzky, R S; Langenegger, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Gaillard, J R; Morton, G W; Nash, J A; Taylor, G P; Grenier, G J; Lee, S J; Mallik, U; Cochran, J; Crawley, H B; Lamsa, J; Meyer, W T; Prell, S; Rosenberg, E I; Yi, J; Davier, M; Grosdidier, G; Höcker, A; Laplace, S; Le Diberder, F R; Lepeltier, V; Lutz, A M; Petersen, T C; Plaszczynski, S; Schune, M H; Tantot, L; Wormser, G; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Coleman, J P; Fry, J R; Gabathuler, Erwin; Gamet, R; Kay, M; Parry, R J; Payne, D J; Sloane, R J; Touramanis, C; Back, J J; Harrison, P F; Mohanty, G B; Brown, C L; Cowan, G; Flack, R L; Flächer, H U; George, S; Green, M G; Kurup, A; Marker, C E; McMahon, T R; Ricciardi, S; Salvatore, F; Vaitsas, G; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Hart, P A; Hodgkinson, M C; Lafferty, G D; Lyon, A J; Williams, J C; Farbin, A; Hulsbergen, W D; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Stängle, H; Willocq, S; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Mangeol, D J J; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L M; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Taras, P; Nicholson, H; Cartaro, C; Cavallo, N; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Raven, G; Wilden, L; Jessop, C P; LoSecco, J M; Gabriel, T A; Allmendinger, T; Brau, B; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Ter-Antonian, R; Wong, Q K; Brau, J E; Frey, R; Igonkina, O; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Tiozzo, G; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; La Vaissière, C de; Del Buono, L; Hamon, O; John, M J J; Leruste, P; Ocariz, J; Pivk, M; Roos, L; T'Jampens, S; Therin, G; Manfredi, P F; Re, V; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Anulli, F; Biasini, M; Peruzzi, I M; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bucci, F; Calderini, G; Carpinelli, M; Del Gamba, V; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Martínez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Danielson, N; Elmer, P; Lü, C; Miftakov, V; Olsen, J; Smith, A J S; Varnes, E W; Bellini, F; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Pierini, M; Piredda, G; Safai-Tehrani, F; Voena, C; Christ, S; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B J; Geddes, N I; Gopal, G P; Olaiya, E O; Xella, S M; Aleksan, Roy; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P F; Hamel de Monchenault, G; Kozanecki, Witold; Langer, M; Legendre, M; London, G W; Mayer, B; Schott, G; Vasseur, G; Yéche, C; Zito, M; Purohit, M V; Weidemann, A W; Yumiceva, F X; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmüller, O L; Convery, M R; Cristinziani, M; De Nardo, Gallieno; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W M; Elsen, E E; Field, R C; Glanzman, T; Gowdy, S J; Hadig, T; Halyo, V; Hrynóva, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Libby, J; Luitz, S; Lüth, V; Lynch, H L; Marsiske, H; Messner, R; Müller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Petrak, S; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Simi, G; Snyder, A; Soha, A; Stelzer, J; Su, D; Sullivan, M K; Vavra, J; Wagner, S R; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Young, C C; Burchat, Patricia R; Edwards, A J; Meyer, T I; Petersen, B A; Roat, C; Ahmed, S; Alam, M S; Ernst, J A; Saeed, M A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Satpathy, A; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bóna, M; Gallo, F; Gamba, D; Borean, C; Bosisio, L; Cossutti, F; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Panvini, R S; Banerjee, Sw; Brown, C M; Fortin, D; Jackson, P D; Kowalewski, R V; Roney, J M; Band, H R; Dasu, S; Datta, M; Eichenbaum, A M; Hollar, J J; Johnson, J R; Kutter, P E; Li, H; Liu, R; Di Lodovico, F; Mihályi, A; Mohapatra, A K; Pan, Y; Prepost, R; Sekula, S J; Tan, P; Von Wimmersperg-Töller, J H; Wu, J; Wu Sau Lan; Yu, Z; Neal, H
2004-01-01
We study B^+/- --> J/psi pi^+/- and B^+/- --> J/psi K^+/- decays in a sample of about 89 million BB~ pairs collected with the BABAR detector at the PEP-II asymmetric B-factory at SLAC. We observe a signal of 244 +/- 20 B^+/- --> J/psi pi^+/- events and determine the ratio BF(B^+/- --> J/psi pi^+/-)/BF(B^+/- --> J/psi K^+/-) to be [5.37 +/- 0.45 (stat.) +/- 0.11 (syst)]%. The charge asymmetries for the B^+/- --> J/psi pi^+/- and B^+/- --> J/psi K^+/- decays are determined to be A_pi = 0.123 +/- 0.085 (stat.) +/- 0.004 (syst.) and A_K = 0.030 +/- 0.015 (stat.) +/- 0.006 (syst.), respectively.
International Nuclear Information System (INIS)
We propose a strategy of using a stochastic optimization technique, namely, simulated annealing to design optimum laser pulses (both IR and UV) to achieve greater fluxes along the two dissociating channels (O18 + O16O16 and O16 + O16O18) in O16O16O18 molecule. We show that the integrated fluxes obtained along the targeted dissociating channel is larger with the optimized pulse than with the unoptimized one. The flux ratios are also more impressive with the optimized pulse than with the unoptimized one. We also look at the evolution contours of the wavefunctions along the two channels with time after the actions of both the IR and UV pulses and compare the profiles for unoptimized (initial) and optimized fields for better understanding the results that we achieve. We also report the pulse parameters obtained as well as the final shapes they take
International Nuclear Information System (INIS)
Measurements of differential cross-sections of alpha-particle inelastic scattering by 7Li nuclei and 7Li(alpha, alpha 6Li)n, 7Li(alpha, alpha alpha)t reactions have been performed at the energy Ea = 27,2 MeV. Probability of 7Li*(7,45 MeV) decay into 6Li + n channel has been determined from the ratio of cross-sections measured in kinematically complete and incomplete experiments. The large discrepancy of this value (P 0,49 ± 0,06) and of those obtained at the study of 7Li*(7,45 MeV) decay in binary reactions can be explained by the influence of Coulomb field of accompanied alpha-particle on the decay of near-threshold resonances in three-particle reactions
Gain and noise in very high gain avalanche photodiodes: Theory and experiment
International Nuclear Information System (INIS)
Large area silicon avalanche photodiodes (APDs) have been fabricated with maximum avalanche gains exceeding 10,000 and excellent signal to noise ratios. A model of device performance has been developed in which previously developed general expressions are numerically integrated using actual fabrication parameters. The gain, statistical fluctuations in the gain, electronic noise, and total peak broadening have been computed using this model. The results are in good agreement with measurements. The parameter keff was found to be 7.2 x 10-4, allowing a high signal to noise ratio at gains of several thousand
Gallium-based avalanche photodiode optical crosstalk
Blazej, Josef; Prochazka, Ivan; Hamal, Karel; Sopko, Bruno; Chren, Dominik
2006-11-01
Solid-state single photon detectors based on avalanche photodiode are getting more attention in various areas of applied physics: optical sensors, quantum key distribution, optical ranging and Lidar, time-resolved spectroscopy, X-ray laser diagnostics, and turbid media imaging. Avalanche photodiodes specifically designed for single photon counting semiconductor avalanche structures have been developed on the basis of various materials: Si, Ge, GaP, GaAsP, and InGaP/InGaAs at the Czech Technical University in Prague during the last 20 years. They have been tailored for numerous applications. Trends in demand are focused on detection array construction recently. Even extremely small arrays containing a few cells are of great importance for users. Electrical crosstalk between individual gating and quenching circuits and optical crosstalk between individual detecting cells are serious limitation for array design and performance. Optical crosstalk is caused by the parasitic light emission of the avalanche which accompanies the photon detection process. We have studied in detail the optical emission of the avalanche photon counting structure in the silicon- and gallium-based photodiodes. The timing properties and spectral distribution of the emitted light have been measured for different operating conditions to quantify optical crosstalk. We conclude that optical crosstalk is an inherent property of avalanche photodiode operated in Geiger mode. The only way to minimize optical crosstalk in avalanche photodiode array is to build active quenching circuit with minimum response time.
Temporal correlations in neuronal avalanche occurrence
Lombardi, F.; Herrmann, H. J.; Plenz, D.; de Arcangelis, L.
2016-04-01
Ongoing cortical activity consists of sequences of synchronized bursts, named neuronal avalanches, whose size and duration are power law distributed. These features have been observed in a variety of systems and conditions, at all spatial scales, supporting scale invariance, universality and therefore criticality. However, the mechanisms leading to burst triggering, as well as the relationship between bursts and quiescence, are still unclear. The analysis of temporal correlations constitutes a major step towards a deeper understanding of burst dynamics. Here, we investigate the relation between avalanche sizes and quiet times, as well as between sizes of consecutive avalanches recorded in cortex slice cultures. We show that quiet times depend on the size of preceding avalanches and, at the same time, influence the size of the following one. Moreover we evidence that sizes of consecutive avalanches are correlated. In particular, we show that an avalanche tends to be larger or smaller than the following one for short or long time separation, respectively. Our analysis represents the first attempt to provide a quantitative estimate of correlations between activity and quiescence in the framework of neuronal avalanches and will help to enlighten the mechanisms underlying spontaneous activity.
Biggins, J D
2010-01-01
Results on the behaviour of the rightmost particle in the $n$th generation in the branching random walk are reviewed and the phenomenon of anomalous spreading speeds, noticed recently in related deterministic models, is considered. The relationship between such results and certain coupled reaction-diffusion equations is indicated.
Test of micropixel avalanche photodiodes
International Nuclear Information System (INIS)
The micropixel avalanche photodiode (MAPD) is a novel photodetector with a multipixel intrinsic structure on the common silicon substrate. The typical size of each pixel is 20-30 μm and the density is about 103 mm-2. Each pixel works on the common load in the Geiger mode, where the discharge is limited by an individual quenching resistor (negative feedback like in the gas Geiger counter) included in each pixel feeding chain located on the common substrate. In the Geiger mode one can get an amplification factor for a single photoelectron at the level of 106 at room temperature. Measurements of gain, photon detection efficiency, one-photoelectron resolution, noise and dark current for different types of MAPD were performed and compared
Snow variability effect upon avalanching
Directory of Open Access Journals (Sweden)
P. A. Chernous
2015-05-01
Full Text Available Thickness, density, shearing strength, and temperature of snow on mountain slopes are considered as stochastic fields or processes. Parameters of these fields (processes were estimated in several geographical regions. Errors of snow stability estimation are shown to be depending on the above parameters, quantity of point measurements, and the measurement technique. Errors of different methods of space and time interpretation of measurements of the snow characteristics are discussed. Results of these studies performed on slope of the Khibiny Mountains, the Altai, the Baikal Mountains, and the Caucasus are presented in the article. Monitoring of the snow cover stability on slopes and the avalanche forecasting are the most difficult actions to be carried out in areas with great spatial variability of snow. The Khibiny Mountains are first of all such area among other ones.
An, Liupan
2016-01-01
Using the $pp$ collision data collected by LHCb at center-of-mass energies $\\sqrt{s} \\, = 7 \\, {\\rm TeV} \\,$ and $8 \\, {\\rm TeV} \\,$, corresponding to an integrated luminosity of $3 \\, \\mathrm{fb}^{-1} \\,$, the ratio of the branching fraction of the $B_{c}^{+} \\to \\psi(2S)\\pi^+$ decay relative to that of the $B_{c}^{+} \\to J/\\psi\\pi^+$ decay is measured to be ${0.268 \\pm 0.032\\mathrm{\\,(stat)} \\pm 0.007\\mathrm{\\,(syst)} \\pm 0.006\\,(\\mathrm{BF}) }$. The first uncertainty is statistical, the second is systematic, and the third is due to the uncertainties on the branching fractions of the $J/\\psi \\to \\mu^{+}\\mu^{-}$ and $\\psi(2S) \\to \\mu^{+}\\mu^{-}$ decays. To enhance the signal significance with limited $B_{c}^{+}$ statistics, the boosted decision tree selection is used to separate the signal and background effectively. The systematic uncertainties are discussed extensively. This measurement is consistent with the previous LHCb result, and the statistical uncertainty is halved.
Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansil, Hardeep Singh; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Kathrin; Becker, Maurice; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bieniek, Stephen Paul; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien
2015-01-01
An observation of the $\\Lambda_b^0 \\rightarrow \\psi(2S) \\Lambda^0$ decay and a comparison of its branching fraction with that of the $\\Lambda_b^0 \\rightarrow J/\\psi \\Lambda^0$ decay has been made with the ATLAS detector in proton--proton collisions at $\\sqrt{s}=8\\,$TeV at the LHC using an integrated luminosity of $20.6\\,$fb$^{-1}$. The $J/\\psi$ and $\\psi(2S)$ mesons are reconstructed in their decays to a muon pair, while the $\\Lambda^0\\rightarrow p\\pi^-$ decay is exploited for the $\\Lambda^0$ baryon reconstruction. The $\\Lambda_b^0$ baryons are reconstructed with transverse momentum $p_{\\rm T}>10\\,$GeV and pseudorapidity $|\\eta|<2.1$. The measured branching ratio of the $\\Lambda_b^0 \\rightarrow \\psi(2S) \\Lambda^0$ and $\\Lambda_b^0 \\rightarrow J/\\psi \\Lambda^0$ decays is $\\Gamma(\\Lambda_b^0 \\rightarrow \\psi(2S)\\Lambda^0)/\\Gamma(\\Lambda_b^0 \\rightarrow J/\\psi\\Lambda^0) = 0.501\\pm 0.033 ({\\rm stat})\\pm 0.019({\\rm syst})$, lower than the expectation from the covariant quark model.
Measurement of the branching ratio Γ(Λb0→ψ(2SΛ0/Γ(Λb0→J/ψΛ0 with the ATLAS detector
Directory of Open Access Journals (Sweden)
G. Aad
2015-12-01
Full Text Available An observation of the Λb0→ψ(2SΛ0 decay and a comparison of its branching fraction with that of the Λb0→J/ψΛ0 decay has been made with the ATLAS detector in proton–proton collisions at s=8 TeV at the LHC using an integrated luminosity of 20.6 fb−1. The J/ψ and ψ(2S mesons are reconstructed in their decays to a muon pair, while the Λ0→pπ− decay is exploited for the Λ0 baryon reconstruction. The Λb0 baryons are reconstructed with transverse momentum pT>10 GeV and pseudorapidity |η|<2.1. The measured branching ratio of the Λb0→ψ(2SΛ0 and Λb0→J/ψΛ0 decays is Γ(Λb0→ψ(2SΛ0/Γ(Λb0→J/ψΛ0=0.501±0.033(stat±0.019(syst, lower than the expectation from the covariant quark model.
Subsampling effects in neuronal avalanche distributions recorded in vivo
Directory of Open Access Journals (Sweden)
Munk Matthias HJ
2009-04-01
Full Text Available Abstract Background Many systems in nature are characterized by complex behaviour where large cascades of events, or avalanches, unpredictably alternate with periods of little activity. Snow avalanches are an example. Often the size distribution f(s of a system's avalanches follows a power law, and the branching parameter sigma, the average number of events triggered by a single preceding event, is unity. A power law for f(s, and sigma = 1, are hallmark features of self-organized critical (SOC systems, and both have been found for neuronal activity in vitro. Therefore, and since SOC systems and neuronal activity both show large variability, long-term stability and memory capabilities, SOC has been proposed to govern neuronal dynamics in vivo. Testing this hypothesis is difficult because neuronal activity is spatially or temporally subsampled, while theories of SOC systems assume full sampling. To close this gap, we investigated how subsampling affects f(s and sigma by imposing subsampling on three different SOC models. We then compared f(s and sigma of the subsampled models with those of multielectrode local field potential (LFP activity recorded in three macaque monkeys performing a short term memory task. Results Neither the LFP nor the subsampled SOC models showed a power law for f(s. Both, f(s and sigma, depended sensitively on the subsampling geometry and the dynamics of the model. Only one of the SOC models, the Abelian Sandpile Model, exhibited f(s and sigma similar to those calculated from LFP activity. Conclusion Since subsampling can prevent the observation of the characteristic power law and sigma in SOC systems, misclassifications of critical systems as sub- or supercritical are possible. Nevertheless, the system specific scaling of f(s and sigma under subsampling conditions may prove useful to select physiologically motivated models of brain function. Models that better reproduce f(s and sigma calculated from the physiological
Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Ben-Haim, E; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bölla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bromberg, C; Brubaker, E; Budagov, Yu A; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carron, S; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chapman, J; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chu, P H; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Cresciolo, F; Cruz, A; Cuenca-Almenar, C; Cuevas-Maestro, J; Culbertson, R; Cyr, D; Da Ronco, S; D'Auria, S; D'Onofrio, M; Dagenhart, D; De Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, Mauro; Delli Paoli, F; Demers, S; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; Di Turo, P; Dorr, C; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Ebina, K; Efron, J; Ehlers, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernández, J P; Field, R; Flanagan, G; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; García, J E; García-Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giokaris, N; Giolo, K; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D A; Gold, M; Goldschmidt, N; Goldstein, J; Gómez, G; Gómez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Yu; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimarães da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, S R; Hahn, K; Halkiadakis, E; Hamilton, A; Han, B Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hatakeyama, K; Hauser, J; Hays, C; Heijboer, A; Heinemann, B; Heinrich, J; Herndon, M; Hidas, D; Hill, C S; Hirschbuehl, D; Höcker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S C; Huffman, B T; Hughes, R E; Huston, J; Incandela, J R; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Kang, J; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kobayashi, H; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kovalev, A; Kraan, A C; Kraus, J; Kravchenko, I; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P F; Lu, R S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Mäki, T; Maksimovic, P; Malde, S; Manca, G; Margaroli, F; Marginean, R; Marino, C; Martin, A; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Von der Mey, M; Miao, T; Miladinovic, N; Miles, J; Miller, R; Miller, J S; Mills, C; Milnik, M; Miquel, R; Mitra, A; Mitselmakher, G; Miyamoto, A; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla-Fernández, P A; Mülmenstädt, J; Mukherjee, A; Müller, T; Mumford, R; Murat, P; Nachtman, J; Naganoma, J; Nahn, S; Nakano, I; Napier, A; Naumov, D; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Nurse, E; Ogawa, T; Oh, S H; Oh, Y D; Okusawa, T; Oldeman, R; Orava, R; Österberg, K; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, Aldo L; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Rakitine, A; Rappoccio, S; Ratnikov, F; Reisert, B; Rekovic, V; Van Remortel, N; Renton, P B; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Rott, C; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Salto, O; Saltzberg, D; Sánchez, C; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T G; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakian, A; Sjölin, J; Skiba, A; Slaughter, A J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Söderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spezziga, M; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; Saint-Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tanimoto, N; Tecchio, M; Teng, P K; Terashi, K; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Tonnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vaiciulis, A W; Vallecorsa, S; Varganov, A; Vataga, E; Velev, G; Veramendi, G; Veszpremi, V; Vidal, R; Vila, I; Vilar, R; Vine, T; Vollrath, I; Volobuev, I P; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Wan, Z; Wang, S M; Warburton, A; Waschke, S; Waters, D; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhang, X; Zhou, J; Zucchelli, S
2006-01-01
We report the first observation of Bs to Psi(2S) phi signals using 360 pb^-1 of CDF Run II data sample, where Psi(2S) decays into mu+mu- and J/psi pi+pi- modes with phi decays to K+K-. We have measured the relative branching ratio of Br(Bs to Psi(2S)phi)/Br(Bs to J/psi phi) using J/psi, Psi(2S) to mu+mu- decay mode. We obtain Br(Bs to Psi(2S)phi)/Br(Bs to J/psi phi) = 0.52 +- 0.13 (stat.) +- 0.04 (syst.) +- 0.06 (BR).
International Nuclear Information System (INIS)
By using the production reaction π-p→eta'n near threshold, the eta' (958) has been studied in an apparatus consisting of neutron counters and optical spark chambers sitting in a magnetic field. Neutral as well as charged particles were thereby detected and measured simultaneously. The branching ratio of the eta'→γγ mode has been measured: Rγγ=(3.5+-1.3) %. The Dalitz plot of the decay eta'→π+π-γ revealed no asymmetry between the π+ and the π-, (A=(0.8+-5.3) %), and therefore no C violation effect. It is shown that this result gives a better limit on C violation than the high statistics eta experiments
DEFF Research Database (Denmark)
Bussink, Barbara E; Holst, Anders Gaarsdal; Jespersen, Lasse;
2013-01-01
AimsTo determine the prevalence, predictors of newly acquired, and the prognostic value of right bundle branch block (RBBB) and incomplete RBBB (IRBBB) on a resting 12-lead electrocardiogram in men and women from the general population.Methods and resultsWe followed 18 441 participants included in...... men vs. 0.5%/2.3% in women, P <0.001). Significant predictors of newly acquired RBBB were male gender, increasing age, high systolic blood pressure, and presence of IRBBB, whereas predictors of newly acquired IRBBB were male gender, increasing age, and low BMI. Right bundle branch block was associated...... with significantly increased all-cause and cardiovascular mortality in both genders with age-adjusted hazard ratios (HR) of 1.31 [95% confidence interval (CI), 1.11-1.54] and 1.87 (95% CI, 1.48-2.36) in the gender pooled analysis with little attenuation after multiple adjustment. Right bundle branch...
Metal frame as local protection of superconducting films from thermomagnetic avalanches
Mikheenko, P.; Vestgârden, J. I.; Chaudhuri, S.; Maasilta, I. J.; Galperin, Y. M.; Johansen, T. H.
2016-03-01
Thermomagnetic avalanches in superconducting films propagating extremely fast while forming unpredictable patterns, represent a serious threat for the performance of devices based on such materials. It is shown here that a normal-metal frame surrounding a selected region inside the film area can provide efficient protection from the avalanches during their propagation stage. Protective behavior is confirmed by magneto-optical imaging experiments on NbN films equipped with Cu and Al frames, and also by performing numerical simulations. Experimentally, it is found that while conventional flux creep is not affected by the frames, the dendritic avalanches are partially or fully screened by them. The level of screening depends on the ratio of the sheet conductance of the metal and the superconductor in the resistive state, and for ratios much larger than unity the screening is very efficient.
Metal frame as local protection of superconducting films from thermomagnetic avalanches
Directory of Open Access Journals (Sweden)
P. Mikheenko
2016-03-01
Full Text Available Thermomagnetic avalanches in superconducting films propagating extremely fast while forming unpredictable patterns, represent a serious threat for the performance of devices based on such materials. It is shown here that a normal-metal frame surrounding a selected region inside the film area can provide efficient protection from the avalanches during their propagation stage. Protective behavior is confirmed by magneto-optical imaging experiments on NbN films equipped with Cu and Al frames, and also by performing numerical simulations. Experimentally, it is found that while conventional flux creep is not affected by the frames, the dendritic avalanches are partially or fully screened by them. The level of screening depends on the ratio of the sheet conductance of the metal and the superconductor in the resistive state, and for ratios much larger than unity the screening is very efficient.
International Nuclear Information System (INIS)
The study of direct CP violation in the neutral K meson system is the primary goal of the high precision NA 48 experiment at CERN, based on a spectrometer and a liquid krypton calorimeter. This experiment is also sensitive to rare kaon decays, in particular the one of the KL into a muon pair and a photon, discussed on the first part of he dissertation. The second part presents a detailed description on the second level 'charged' trigger system of the experiment, operating at a 100 kHz event input rate. Its aim is to select the decays of KL or KS into a pair of charged pions, based on a high speed digital signal processor farm performing the online reconstruction of the invariant mass of an event in less than 100 microseconds, using the spectrometer data for an efficient rejection of the physical backgrounds. The reconstruction algorithm, the realization of the farm and its performances are presented. The third part determines a measurement of the branching ratio of the KL decay into a pair of muons and a proton using the data taken in 1995. 59 signal events are found containing a background estimated to 14. The results is (3.4±0.6 (stat) ± 0.4 (syst) x 10-7 and allows the determination of the value of the ratio between the coupling constants of the weak non leptonic transitions through vector and pseudo-scalar intermediate states αK = 0.048680.21+024. A search for decays of Kl into two muons and two electrons has been performed. No candidate has been found. An upper limit for the branching fraction of the process of 3.8 x 10-8 at a 90 % confidence level is obtained. (author)
Multi-scale modelling of granular avalanches
Kumar, Krishna; Soga, Kenichi; Delenne, Jean-Yves
2013-06-01
Avalanches, debris flows, and landslides are geophysical hazards, which involve rapid mass movement of granular solids, water and air as a single-phase system. The dynamics of a granular flow involve at least three distinct scales: the micro-scale, meso-scale, and the macro-scale. This study aims to understand the ability of continuum models to capture the micro-mechanics of dry granular collapse. Material Point Method (MPM), a hybrid Lagrangian and Eulerian approach, with Mohr-Coulomb failure criterion is used to describe the continuum behaviour of granular column collapse, while the micromechanics is captured using Discrete Element Method (DEM) with tangential contact force model. The run-out profile predicted by the continuum simulations matches with DEM simulations for columns with small aspect ratios (`h/r' 2). Energy evolution studies in DEM simulations reveal higher collisional dissipation in the initial free-fall regime for tall columns. The lack of a collisional energy dissipation mechanism in MPM simulations results in larger run-out distances. Micro-structural effects, such as shear band formations, were observed both in DEM and MPM simulations. A sliding flow regime is observed above the distinct passive zone at the core of the column. Velocity profiles obtained from both the scales are compared to understand the reason for a slow flow run-out mobilization in MPM simulations.
Spike avalanches in vivo suggest a driven, slightly subcritical brain state.
Priesemann, Viola; Wibral, Michael; Valderrama, Mario; Pröpper, Robert; Le Van Quyen, Michel; Geisel, Theo; Triesch, Jochen; Nikolić, Danko; Munk, Matthias H J
2014-01-01
In self-organized critical (SOC) systems avalanche size distributions follow power-laws. Power-laws have also been observed for neural activity, and so it has been proposed that SOC underlies brain organization as well. Surprisingly, for spiking activity in vivo, evidence for SOC is still lacking. Therefore, we analyzed highly parallel spike recordings from awake rats and monkeys, anesthetized cats, and also local field potentials from humans. We compared these to spiking activity from two established critical models: the Bak-Tang-Wiesenfeld model, and a stochastic branching model. We found fundamental differences between the neural and the model activity. These differences could be overcome for both models through a combination of three modifications: (1) subsampling, (2) increasing the input to the model (this way eliminating the separation of time scales, which is fundamental to SOC and its avalanche definition), and (3) making the model slightly sub-critical. The match between the neural activity and the modified models held not only for the classical avalanche size distributions and estimated branching parameters, but also for two novel measures (mean avalanche size, and frequency of single spikes), and for the dependence of all these measures on the temporal bin size. Our results suggest that neural activity in vivo shows a mélange of avalanches, and not temporally separated ones, and that their global activity propagation can be approximated by the principle that one spike on average triggers a little less than one spike in the next step. This implies that neural activity does not reflect a SOC state but a slightly sub-critical regime without a separation of time scales. Potential advantages of this regime may be faster information processing, and a safety margin from super-criticality, which has been linked to epilepsy. PMID:25009473
Catastrophic avalanches and methods of their control
Directory of Open Access Journals (Sweden)
N. A. Volodicheva
2014-01-01
Full Text Available Definition of such phenomenon as “catastrophic avalanche” is presented in this arti-cle. Several situations with releases of catastrophic avalanches in mountains of Caucasus, Alps, and Central Asia are investigated. Materials of snow-avalanche ob-servations performed since 1960s at the Elbrus station of the Lomonosov Moscow State University (Central Caucasus were used for this work. Complex-valued measures of engineering protection demonstrating different efficiencies are consid-ered.
Correcting for accidental correlations in saturated avalanche photodiodes
Grieve, James A; Tang, Zhongkan; Ling, Alexander
2015-01-01
In this paper we present a high-level numerical model for estimating rates of accidental correlations between a pair of passively quenched Geiger mode avalanche photodiodes operating in the saturated regime. By considering the recovery time of both the diodes and the detection circuit we introduce the concept of an "effective duty cycle" and show that it may be estimated by numeric simulation. The impact of effective duty cycle on the observed accidental rate is examined and we demonstrate that the updated model leads to an improved correction factor in actual experiments. This will improve the signal-to-noise ratio in applications depending on correlation measurements.
Extraction of an avalanche diode noise model for its application as on-wafer noise source
Maya Sánchez, Mª del Carmen; Lázaro Guillén, Antoni; Pradell i Cara, Lluís
2003-01-01
This paper presents a method to characterize the excess noise ratio (ENR) of an unmatched avalanche noise diode for application as an on-wafer noise source. It is based on the determination of a broadband device noise circuit-model from its measured reflection coefficient and noise powers. Measured ENR is used to calibrated a noise receiver up to 40 GHz.
Branching ratios in sequential statistical multifragmentation
International Nuclear Information System (INIS)
The energy dependence of the probability of producing n fragments follows a characteristic statistical law. Experimental intermediate-mass-fragment multiplicity distributions are shown to be binomial at all excitation energies. From these distributions a single binary event probability can be extracted that has the thermal dependence p = exp[-B/T]. Thus, it is inferred that multifragmentation is a sequence of thermal binary events. The increase of p with excitation energy implies a corresponding contraction of the time-scale and explains recently observed fragment-fragment and fragment-spectator Coulomb correlations. (author). 22 refs., 5 figs
Farrell, Alan C.; Senanayake, Pradeep; Hung, Chung-Hong; El-Howayek, Georges; Rajagopal, Abhejit; Currie, Marc; Hayat, Majeed M.; Huffaker, Diana L.
2015-12-01
Avalanche photodiodes (APDs) are essential components in quantum key distribution systems and active imaging systems requiring both ultrafast response time to measure photon time of flight and high gain to detect low photon flux. The internal gain of an APD can improve system signal-to-noise ratio (SNR). Excess noise is typically kept low through the selection of material with intrinsically low excess noise, using separate-absorption-multiplication (SAM) heterostructures, or taking advantage of the dead-space effect using thin multiplication regions. In this work we demonstrate the first measurement of excess noise and gain-bandwidth product in III-V nanopillars exhibiting substantially lower excess noise factors compared to bulk and gain-bandwidth products greater than 200 GHz. The nanopillar optical antenna avalanche detector (NOAAD) architecture is utilized for spatially separating the absorption region from the avalanche region via the NOA resulting in single carrier injection without the use of a traditional SAM heterostructure.
Numerical simulation of powder-snow avalanche interaction with an obstacle
Dutykh, Denys; Bresch, Didier
2009-01-01
In this paper we present direct numerical simulations of a sliding avalanche in aerosol regime. The second scope of this study is to get more insight into the interaction process between an avalanche and a rigid obstacle. An incompressible model of two miscible fluids can be successfully employed in this type of problems. We allow for mass diffusion between two phases according to the Fick's law. It is shown that the present model is consistent in the sense of kinetic energy. Some connections with Brenner-Navier-Stokes and Kazhikhov-Smagulov systems are revealed. The governing equations are discretized with a contemporary fully implicit finite volume scheme. The solver is able to deal with arbitrary density ratios. Encouraging numerical results are presented. Impact pressure profiles, avalanche front position and velocity field are extracted from numerical simulations and discussed. The influence of the bottom boudary condition onto propagation and impact processes is discussed. Finally we give some ideas of ...
Rock avalanches: significance and progress (Invited)
Davies, T. R.
2013-12-01
1. The probability distribution of landslide volumes follows a power-law indicating that large rock avalanches dominate the terrestrial sediment supply from mountains, and that their source area morphologies dominate mountain topography. 2. Large rock slope failures (~ 106 m3 or greater) often mobilise into rock avalanches, which can travel extraordinarily long distances with devastating effect. This hypermobility has been the subject of many investigations; we have demonstrated that it can be explained quantitatively and accurately by considering the energetics of the intense rock fragmentation that always occurs during motion of a large rock mass. 3. Study of rock avalanche debris psd shows that the energy used in creating new rock surface area during fragmentation is not lost to surface energy, but is recycled generating a high-frequency elastic energy field that reduces the frictional resistance to motion during runout. 4. Rock avalanches that deposit on glaciers can eventually form large terminal moraines that have no connection with any climatic event; unless these are identified as rock-avalanche-influenced they can confuse palaeoclimatic inferences drawn from moraine ages. Rock-avalanche-derived fines, however, can be identified in moraine debris up to ten thousand years old by the characteristic micron-scale agglomerates that form during intense fragmentation, and which are absent from purely climatically-induced moraines; there is thus a strong case for re-examining existing palaeoclimatic databases to eliminate potentially rock-avalanche-influenced moraine ages. 5. Rock avalanches (especially coseismic ones) are a serious hazard, being very destructive in their own right; they also block river valleys, forming landslide dams and potentially devastating dambreak floods, and subsequent severe decade-scale aggradation of downstream fans and floodplains. Rock avalanches falling into lakes or fiords can cause catastrophic tsunami that pose a serious risk to
Deterministically Driven Avalanche Models of Solar Flares
Strugarek, Antoine; Joseph, Richard; Pirot, Dorian
2014-01-01
We develop and discuss the properties of a new class of lattice-based avalanche models of solar flares. These models are readily amenable to a relatively unambiguous physical interpretation in terms of slow twisting of a coronal loop. They share similarities with other avalanche models, such as the classical stick--slip self-organized critical model of earthquakes, in that they are driven globally by a fully deterministic energy loading process. The model design leads to a systematic deficit of small scale avalanches. In some portions of model space, mid-size and large avalanching behavior is scale-free, being characterized by event size distributions that have the form of power-laws with index values, which, in some parameter regimes, compare favorably to those inferred from solar EUV and X-ray flare data. For models using conservative or near-conservative redistribution rules, a population of large, quasiperiodic avalanches can also appear. Although without direct counterparts in the observational global st...
Synaptic plasticity and neuronal refractory time cause scaling behaviour of neuronal avalanches.
Michiels van Kessenich, L; de Arcangelis, L; Herrmann, H J
2016-01-01
Neuronal avalanches measured in vitro and in vivo in different cortical networks consistently exhibit power law behaviour for the size and duration distributions with exponents typical for a mean field self-organized branching process. These exponents are also recovered in neuronal network simulations implementing various neuronal dynamics on different network topologies. They can therefore be considered a very robust feature of spontaneous neuronal activity. Interestingly, this scaling behaviour is also observed on regular lattices in finite dimensions, which raises the question about the origin of the mean field behavior observed experimentally. In this study we provide an answer to this open question by investigating the effect of activity dependent plasticity in combination with the neuronal refractory time in a neuronal network. Results show that the refractory time hinders backward avalanches forcing a directed propagation. Hebbian plastic adaptation plays the role of sculpting these directed avalanche patterns into the topology of the network slowly changing it into a branched structure where loops are marginal. PMID:27534901
Synaptic plasticity and neuronal refractory time cause scaling behaviour of neuronal avalanches
Michiels van Kessenich, L.; de Arcangelis, L.; Herrmann, H. J.
2016-01-01
Neuronal avalanches measured in vitro and in vivo in different cortical networks consistently exhibit power law behaviour for the size and duration distributions with exponents typical for a mean field self-organized branching process. These exponents are also recovered in neuronal network simulations implementing various neuronal dynamics on different network topologies. They can therefore be considered a very robust feature of spontaneous neuronal activity. Interestingly, this scaling behaviour is also observed on regular lattices in finite dimensions, which raises the question about the origin of the mean field behavior observed experimentally. In this study we provide an answer to this open question by investigating the effect of activity dependent plasticity in combination with the neuronal refractory time in a neuronal network. Results show that the refractory time hinders backward avalanches forcing a directed propagation. Hebbian plastic adaptation plays the role of sculpting these directed avalanche patterns into the topology of the network slowly changing it into a branched structure where loops are marginal. PMID:27534901
Energy Technology Data Exchange (ETDEWEB)
Andersson, Martin; Brage, Tomas [Department of Physics, Lund University, Box 118, SE-221 00 Lund (Sweden)
2007-02-28
We report on large-scale ab initio calculations for intercombination lines in Si I-like ions. Two measurable quantities, the lifetime of the 3s3p{sup 3} {sup 5}S{sub 2} level and the branching ratio of the two lines are discussed, to infer the importance of different features of our calculations. The effects of core polarization, two-body spin-dependent operators and Dirac contra Breit-Pauli approaches are discussed. Earlier calculations are reviewed and evaluated. The calculated lifetimes are in good agreement with experiments, while a discrepancy persists for branching ratios.
Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; d'Argent, P; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Bellee, V; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Birnkraut, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cavallero, G; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Demmer, M; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Ruscio, F; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, R; Ferguson, D; Fernandez Albor, V; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fohl, K; Fol, P; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gavardi, L; Gazzoni, G; Geraci, A; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Humair, T; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Kenzie, M; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, X; Loh, D; Lohn, S; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusardi, N; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Manning, P; Mapelli, A; Maratas, J; Marchand, J F
2015-09-11
The branching fraction ratio R(D^{*})≡B(B[over ¯]^{0}→D^{*+}τ^{-}ν[over ¯]_{τ})/B(B[over ¯]^{0}→D^{*+}μ^{-}ν[over ¯]_{μ}) is measured using a sample of proton-proton collision data corresponding to 3.0 fb^{-1} of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τ^{-}→μ^{-}ν[over ¯]_{μ}ν_{τ}. The semitauonic decay is sensitive to contributions from non-standard-model particles that preferentially couple to the third generation of fermions, in particular, Higgs-like charged scalars. A multidimensional fit to kinematic distributions of the candidate B[over ¯]^{0} decays gives R(D^{*})=0.336±0.027(stat)±0.030(syst). This result, which is the first measurement of this quantity at a hadron collider, is 2.1 standard deviations larger than the value expected from lepton universality in the standard model. PMID:26406820
Abulencia, A; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bölla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, Yu A; Budd, H S; Budd, S; Budroni, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carillo, S; Carlsmith, D; Carosi, R; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca-Almenar, C; Cuevas-Maestro, J; Culbertson, R; Cully, J C; Cyr, D; D'Auria, S; D'Onofrio, M; Da Ronco, S; Dagenhart, D; Davies, T; De Barbaro, P; De Cecco, S; De Lentdecker, G; De Pedis, D; Deisher, A; Dell'Orso, Mauro; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; Derwent, P F; Di Giovanni, G P; Di Ruzza, B; Di Turo, P; Dionisi, C; Dittmann, J R; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dorr, C; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernández, J P; Field, R; Flanagan, G; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; García, J E; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimarães da Costa, J; Gunay-Unalan, Z; Gómez, G; Gómez-Ceballos, G; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Holloway, A; Hou, S; Houlden, M; Hsu, S C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Höcker, A; Incandela, J R; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kovalev, A; Kraan, A C; Kraus, J; Kravchenko, I; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, S W; Lee, Y J; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P F; Lu, R S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; MacQueen, D; Mack, P; Madrak, R; Maeshima, K; Makhoul, K; Maksimovic, P; Malde, S; Manca, G; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtälä, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla-Fernández, P A; Mukherjee, A; Mumford, R; Murat, P; Mäki, T; Müller, T; Mülmenstädt, J; Nachtman, J; Nagano, A; Naganoma, J; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, Aldo L; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ranjan, N; Rappoccio, S; Reisert, B; Rekovic, V; Renton, P B; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Sabik, S; Safonov, A; Saint-Denis, R; Sakumoto, W K; Salamanna, G; Salto, O; Saltzberg, D; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shapiro, M D; Shears, T G; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakian, A; Sjölin, J; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suzuki, T; Sánchez, C; Söderberg, M; Taffard, A; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vallecorsa, S; Van Remortel, N; Varganov, A; Vataga, E; Velev, G; Veramendi, G; Veszpremi, V; Vidal, R; Vila, I; Vilar, R; Vine, T; Vollrath, I; Volobuev, I P; Volpi, G; Vázquez, F; Wagner, J; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waschke, S; Waters, D; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Würthwein, F; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S; Österberg, K
2006-01-01
Using 355 pb^-1 of data collected by the CDF II detector in \\ppbar collisions at sqrt{s} = 1.96 TeV at the Fermilab Tevatron, we study the fully reconstructed hadronic decays B -> D pi and B -> D pi pi pi. We present the first measurement of the ratio of branching fractions B(Bs -> Ds pi pi pi) / B(Bd -> Dd pi pi pi) = 1.05 pm 0.10 (stat) pm 0.22 (syst). We also update our measurement of B(Bs -> Ds pi) / B(Bd -> Dd pi) to 1.13 pm 0.08 (stat) pm 0.23 (syst) improving the statistical uncertainty by more than a factor of two. We find B(Bs -> Ds pi) = [3.8 pm 0.3 (stat) pm 1.3 (syst)] \\times 10^{-3} and B(Bs -> Ds pi pi pi) = [8.4 pm 0.8 (stat) pm 3.2 (syst)] \\times 10^{-3}.
David, P N Y
2011-01-01
This poster presents an analysis measuring the relative abundance of the three decay modes $B^{0} \\to D^{-} K^{+}$, $B^{0} \\to D^{-} \\pi^{+}$ and $B^{0}_{s} \\to D^{-}_{s} \\pi^{+}$ produced in 7 TeV $pp$ collisions at the LHC, from data corresponding to an integrated luminosity of 35 pb$^{-1}$. The branching fraction of $B^{0} \\to D^{-} K^{+}$ is found to be $BR(B^{0}\\to D^{-} K^{+}) = (2.01\\pm 0.18^{stat}\\pm 0.14^{syst}) 10^{-4}$. The ratio of fragmentation fractions $f_s/f_d$ is determined through the relative abundance of $B^{0}_{s} \\to D^{-}_{s} \\pi^{+}$ to $B^{0} \\to D^{-} K^{+}$ and $B^{0} \\to D^{-} \\pi^{+}$, leading to $f_s/f_d = 0.253\\pm 0.017\\pm 0.017\\pm 0.020$, where the uncertainties are statistical, systematic and theoretical respectively. A detailed presentation can be found in the paper, conference note and analysis note (LHCb-ANA-2010-010; LHCb-CONF-2011-013; CERN-LHCb-CONF-2011-013; latest paper draft: LHCB-B2DH-004; CERN-PH-EP-2011-075).
Maximal avalanches in the Bak-Sneppen model
Gillett, Alexis; Meester, Ronald; van der Wal, Peter
2006-01-01
We study the durations of the avalanches in the maximal avalanche decomposition of the Bak-Sneppen evolution model. We show that all the avalanches in this maximal decomposition have infinite expectation, but only `barely', in the sense that if we made the appropriate threshold a tiny amount smaller (in a certain sense), then the avalanches would have finite expectation. The first of these results is somewhat surprising, since simulations suggest finite expectations.
Criticality and avalanches in neural networks
International Nuclear Information System (INIS)
Highlights: • Temporal criticality is used as criticality indicator. • The Mittag–Leffler function is proposed as a proper form of temporal complexity. • The distribution of avalanche size becomes scale free in the supercritical state. • The scale-free distribution of avalanche sizes is an epileptic manifestation. -- Abstract: Experimental work, both in vitro and in vivo, reveals the occurrence of neural avalanches with an inverse power law distribution in size and time duration. These properties are interpreted as an evident manifestation of criticality, thereby suggesting that the brain is an operating near criticality complex system: an attractive theoretical perspective that according to Gerhard Werner may help to shed light on the origin of consciousness. However, a recent experimental observation shows no clear evidence for power-law scaling in awake and sleeping brain of mammals, casting doubts on the assumption that the brain works at criticality. This article rests on a model proposed by our group in earlier publications to generate neural avalanches with the time duration and size distribution matching the experimental results on neural networks. We now refine the analysis of the time distance between consecutive firing bursts and observe the deviation of the corresponding distribution from the Poisson statistics, as the system moves from the non-cooperative to the cooperative regime. In other words, we make the assumption that the genuine signature of criticality may emerge from temporal complexity rather than from the size and time duration of avalanches. We argue that the Mittag–Leffler (ML) exponential function is a satisfactory indicator of temporal complexity, namely of the occurrence of non-Poisson and renewal events. The assumption that the onset of criticality corresponds to the birth of renewal non-Poisson events establishes a neat distinction between the ML function and the power law avalanches generating regime. We find that
Bulk metallic glasses deform via slip avalanches.
Antonaglia, James; Wright, Wendelin J; Gu, Xiaojun; Byer, Rachel R; Hufnagel, Todd C; LeBlanc, Michael; Uhl, Jonathan T; Dahmen, Karin A
2014-04-18
For the first time in metallic glasses, we extract both the exponents and scaling functions that describe the nature, statistics, and dynamics of slip events during slow deformation, according to a simple mean field model. We model the slips as avalanches of rearrangements of atoms in coupled shear transformation zones (STZs). Using high temporal resolution measurements, we find the predicted, different statistics and dynamics for small and large slips thereby excluding self-organized criticality. The agreement between model and data across numerous independent measures provides evidence for slip avalanches of STZs as the elementary mechanism of inhomogeneous deformation in metallic glasses. PMID:24785049
Relating rock avalanche morphology to emplacement processes
Dufresne, Anja; Prager, Christoph; Bösmeier, Annette
2015-04-01
The morphology, structure and sedimentological characteristics of rock avalanche deposits reflect both internal emplacement processes and external influences, such as runout path characteristics. The latter is mainly predisposed by topography, substrate types, and hydrogeological conditions. Additionally, the geological setting at the source slope controls, e.g. the spatial distribution of accumulated lithologies and hence material property-related changes in morphology, or the maximum clast size and amount of fines of different lithological units. The Holocene Tschirgant rock avalanche (Tyrol, Austria) resulted from failure of an intensely deformed carbonate rock mass on the southeast face of a 2,370-m-high mountain ridge. The initially sliding rock mass rapidly fragmented as it moved towards the floor of the Inn River valley. Part of the 200-250 x 106 m3 (Patzelt 2012) rock avalanche debris collided with and moved around an opposing bedrock ridge and flowed into the Ötz valley, reaching up to 6.3 km from source. Where the Tschirgant rock avalanche spread freely it formed longitudinal ridges aligned along motion direction as well as smaller hummocks. Encountering high topography, it left runup ridges, fallback patterns (i.e. secondary collapse), and compressional morphology (successively elevated, transverse ridges). Further evidence for the mechanical landslide behaviour is given by large volumes of mobilized valley-fill sediments (polymict gravels and sands). These sediments indicate both shearing and compressional faulting within the rock avalanche mass (forming their own morphological units through, e.g. in situ bulldozing or as distinctly different hummocky terrain), but also indicate extension of the spreading landslide mass (i.e. intercalated/injected gravels encountered mainly in morphological depressions between hummocks). Further influences on its morphology are given by the different lithological units. E.g. the transition from massive dolomite