Sample records for auxilin-like j-domain protein

  1. The J Domain of Simian Virus 40 Large T Antigen Is Required To Functionally Inactivate RB Family Proteins


    Zalvide, Juan; Stubdal, Hilde; DeCaprio, James A.


    Transformation by simian virus 40 large T antigen (TAg) is dependent on the inactivation of cellular tumor suppressors. Transformation minimally requires the following three domains: (i) a C-terminal domain that mediates binding to p53; (ii) the LXCXE domain (residues 103 to 107), necessary for binding to the retinoblastoma tumor suppressor protein, pRB, and the related p107 and p130; and (iii) an N-terminal domain that is homologous to the J domain of DnaJ molecular chaperone proteins. We ha...

  2. A novel nuclear DnaJ protein, DNAJC8, can suppress the formation of spinocerebellar ataxia 3 polyglutamine aggregation in a J-domain independent manner. (United States)

    Ito, Norie; Kamiguchi, Kenjiro; Nakanishi, Katsuya; Sokolovskya, Alice; Hirohashi, Yoshihiko; Tamura, Yasuaki; Murai, Aiko; Yamamoto, Eri; Kanaseki, Takayuki; Tsukahara, Tomohide; Kochin, Vitaly; Chiba, Susumu; Shimohama, Shun; Sato, Noriyuki; Torigoe, Toshihiko


    Polyglutamine (polyQ) diseases comprise neurodegenerative disorders caused by expression of expanded polyQ-containing proteins. The cytotoxicity of the expanded polyQ-containing proteins is closely associated with aggregate formation. In this study, we report that a novel J-protein, DNAJ (HSP40) Homolog, Subfamily C, Member 8 (DNAJC8), suppresses the aggregation of polyQ-containing protein in a cellular model of spinocerebellar ataxia type 3 (SCA3), which is also known as Machado-Joseph disease. Overexpression of DNAJC8 in SH-SY5Y neuroblastoma cells significantly reduced the polyQ aggregation and apoptosis, and DNAJC8 was co-localized with the polyQ aggregation in the cell nucleus. Deletion mutants of DNAJC8 revealed that the C-terminal domain of DNAJC8 was essential for the suppression of polyQ aggregation, whereas the J-domain was dispensable. Furthermore, 22-mer oligopeptide derived from C-termilal domain could suppress the polyQ aggregation. These results indicate that DNAJC8 can suppress the polyQ aggregation via a distinct mechanism independent of HSP70-based chaperone machinery and have a unique protective role against the aggregation of expanded polyQ-containing proteins such as pathogenic ataxin-3 proteins. PMID:27133716

  3. AHM1, a novel type of nuclear matrix-localized, MAR binding protein with a single AT hook and a J domain-homologous region. (United States)

    Morisawa, G; Han-Yama, A; Moda, I; Tamai, A; Iwabuchi, M; Meshi, T


    Interactions between the nuclear matrix and special regions of chromosomal DNA called matrix attachment regions (MARs) have been implicated in various nuclear functions. We have identified a novel protein from wheat, AT hook-containing MAR binding protein1 (AHM1), that binds preferentially to MARs. A multidomain protein, AHM1 has the special combination of a J domain-homologous region and a Zn finger-like motif (a J-Z array) and an AT hook. For MAR binding, the AT hook at the C terminus was essential, and an internal portion containing the Zn finger-like motif was additionally required in vivo. AHM1 was found in the nuclear matrix fraction and was localized in the nucleoplasm. AHM1 fused to green fluorescent protein had a speckled distribution pattern inside the nucleus. AHM1 is most likely a nuclear matrix component that functions between intranuclear framework and MARs. J-Z arrays can be found in a group of (hypothetical) proteins in plants, which may share some functions, presumably to recruit specific Hsp70 partners as co-chaperones. PMID:11041885

  4. Type I J-domain NbMIP1 proteins are required for both Tobacco mosaic virus infection and plant innate immunity.

    Directory of Open Access Journals (Sweden)

    Yumei Du

    Full Text Available Tm-2² is a coiled coil-nucleotide binding-leucine rich repeat resistance protein that confers durable extreme resistance against Tomato mosaic virus (ToMV and Tobacco mosaic virus (TMV by recognizing the viral movement protein (MP. Here we report that the Nicotiana benthamiana J-domain MIP1 proteins (NbMIP1s associate with tobamovirus MP, Tm-2² and SGT1. Silencing of NbMIP1s reduced TMV movement and compromised Tm-2²-mediated resistance against TMV and ToMV. Furthermore, silencing of NbMIP1s reduced the steady-state protein levels of ToMV MP and Tm-2². Moreover, NbMIP1s are required for plant resistance induced by other R genes and the nonhost pathogen Pseudomonas syringae pv. tomato (Pst DC3000. In addition, we found that SGT1 associates with Tm-2² and is required for Tm-2²-mediated resistance against TMV. These results suggest that NbMIP1s function as co-chaperones during virus infection and plant immunity.

  5. Inactivation of pRB-related proteins p130 and p107 mediated by the J domain of simian virus 40 large T antigen.


    Stubdal, H; Zalvide, J; Campbell, K S; Schweitzer, C; Roberts, T.M.; DeCaprio, J A


    Inactivation of the retinoblastoma tumor suppressor protein (pRB) contributes to tumorigenesis in a wide variety of cancers. In contrast, the role of the two pRB-related proteins, p130 and p107, in oncogenic transformation is unclear. The LXCXE domain of simian virus 40 large T antigen (TAg) specifically binds to pRB, p107, and p130. We have previously shown that the N terminus and the LXCXE domain of TAg cooperate to alter the phosphorylation state of p130 and p107. Here, we demonstrate that...

  6. pRB-Dependent, J Domain-Independent Function of Simian Virus 40 Large T Antigen in Override of p53 Growth Suppression


    Gjoerup, Ole; Chao, Herta; DeCaprio, James A.; Roberts, Thomas M.


    Simian virus 40 (SV40) large T antigen (LT) can immortalize and transform many cell types. These activities are attributed in large part to the binding and functional inactivation by LT of two major tumor suppressors: p53 and the retinoblastoma protein, pRB. Most effects of LT on pRB have been shown to additionally require an intact J domain, which mediates binding to Hsc70. We show here that the J domain is not required for p53 override in full-length LT. Although LT binds p53, it was shown ...

  7. The clathrin-binding motif and the J-domain of Drosophila Auxilin are essential for facilitating Notch ligand endocytosis

    Directory of Open Access Journals (Sweden)

    Chang Henry C


    Full Text Available Abstract Background Ligand endocytosis plays a critical role in regulating the activity of the Notch pathway. The Drosophila homolog of auxilin (dAux, a J-domain-containing protein best known for its role in the disassembly of clathrin coats from clathrin-coated vesicles, has recently been implicated in Notch signaling, although its exact mechanism remains poorly understood. Results To understand the role of auxilin in Notch ligand endocytosis, we have analyzed several point mutations affecting specific domains of dAux. In agreement with previous work, analysis using these stronger dAux alleles shows that dAux is required for several Notch-dependent processes, and its function during Notch signaling is required in the signaling cells. In support of the genetic evidences, the level of Delta appears elevated in dAux deficient cells, suggesting that the endocytosis of Notch ligand is disrupted. Deletion analysis shows that the clathrin-binding motif and the J-domain, when over-expressed, are sufficient for rescuing dAux phenotypes, implying that the recruitment of Hsc70 to clathrin is a critical role for dAux. However, surface labeling experiment shows that, in dAux mutant cells, Delta accumulates at the cell surface. In dAux mutant cells, clathrin appears to form large aggregates, although Delta is not enriched in these aberrant clathrin-positive structures. Conclusion Our data suggest that dAux mutations inhibit Notch ligand internalization at an early step during clathrin-mediated endocytosis, before the disassembly of clathrin-coated vesicles. Further, the inhibition of ligand endocytosis in dAux mutant cells possibly occurs due to depletion of cytosolic pools of clathrin via the formation of clathrin aggregates. Together, our observations argue that ligand endocytosis is critical for Notch signaling and auxilin participates in Notch signaling by facilitating ligand internalization.

  8. HDJC9, a novel human type C DnaJ/HSP40 member interacts with and cochaperones HSP70 through the J domain

    International Nuclear Information System (INIS)

    HSP40s are a subfamily of heat shock proteins (HSPs) and play important roles in regulation of cell proliferation, survival and apoptosis by serving as chaperones for HSP70s. Up to date hundreds of HSP40 proteins derived from various species ranging from Escherichia coli to homo sapiens have been identified. Here we report the cloning and characterization of a novel human type C DnaJ homologue, HDJC9, containing a typical N-terminal J domain. HDJC9 is upregulated at both mRNA and protein levels upon various stress and mitogenic stimulations. HDJC9 is mainly localized in cell nuclei under normal culture conditions while it is transported into cytoplasm and plasma membrane upon heat shock stress through a non-classical and lipid-dependent pathway. HDJC9 can interact with HSP70s and activate the ATPase activity of HSP70s, both of which are dependent on the J domain. Our data suggest that HDJC9 is a novel cochaperone for HSP70s

  9. The THERMOSENSITIVE MALE STERILE 1 Interacts with the BiPs via DnaJ Domain and Stimulates Their ATPase Enzyme Activities in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Zhao-Xia Ma

    Full Text Available The Arabidopsis TMS1 encodes a heat shock protein identical to the Hsp40 protein AtERdj3A and plays important roles in the thermotolerance of pollen tubes and other plant tissues. Despite its importance to plant growth and reproduction, little has been known about its mechanisms underlying thermotolerance of plants. In this study, the relationship between TMS1 and the Hsp70 proteins, Binding Immunoglobulin Proteins (BiPs was explored to understand the molecular mechanisms of TMS1 in thermotolerance of plants. The expression of TMS1 was induced not only by heat shock, but also by dithiothreitol (DTT and L-azetidine-2-carboxylic acid (AZC, similarly to the three BiP genes, indicating that TMS1 may be involved in unfolded protein response (UPR. The firefly luciferase complementary imaging (LCI, GST pull-down and ATPase enzyme activity assays demonstrated that the DnaJ domain of TMS1 could interact with BiP1 and BiP3, and could stimulate their ATPase enzyme activities. In addition, the expression level of TMS1 was reduced in the bzip28 bzip60 double mutant. These results suggest that TMS1 may function at the downstream of bZIP28 and bZIP60 and be involved in termotolerance of plants, possibly by participating in refolding or degradation of unfolded and misfolded proteins through interaction with the BiPs.

  10. Yeast Interacting Proteins Database: YNL092W, YJR097W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YNL092W - Putative S-adenosylmethionine-dependent methyltransferase of the seven beta-strand fam ... unknown function, contains a J-domain, which is a region ... with homology to the E. coli DnaJ protein Rows wit ... unknown function, contains a J-domain, which is a region ... with homology to the E. coli DnaJ protein Rows wit ...

  11. The DnaJ domain of polyomavirus large T antigen is required to regulate Rb family tumor suppressor function.


    Sheng, Q.; Denis, D; Ratnofsky, M; Roberts, T.M.; DeCaprio, J A; Schaffhausen, B


    Tumor suppressors of the retinoblastoma susceptibility gene family regulate cell growth and differentiation. Polyomavirus large T antigens (large T) bind Rb family members and block their function. Mutations of large T sequences conserved with the DnaJ family affect large T binding to a cellular DnaK, heat shock protein 70. The same mutations abolish large T activation of E2F-containing promoters and Rb binding-dependent large T activation of cell cycle progression. Cotransfection of a cellul...

  12. An in vitro assay using overexpressed yeast SRP demonstrates that cotranslational translocation is dependent upon the J-domain of Sec63p. (United States)

    Willer, Martin; Jermy, Andrew J; Steel, Gregor J; Garside, Helen J; Carter, Stephanie; Stirling, Colin J


    The signal recognition particle (SRP) is required for co-translational targeting of polypeptides to the endoplasmic reticulum (ER). Once at the membrane, the precursor interacts with a complex proteinaceous machinery that mediates its translocation across the bilayer. Genetic studies in yeast have identified a number of genes whose products are involved in this complex process. These mutants offer a potentially valuable resource with which to analyze the biochemical role played by each component in the pathway. However, such analyses have been hampered by the failure to reconstitute an efficient in vitro assay for SRP-dependent translocation. We report the construction of two multicopy vectors that allow overexpression of all seven gene products required to make SRP in the yeast Saccharomyces cerevisiae. The overexpressed subunits assemble into intact and functional SRP particles, and we further demonstrate that in vitro reconstitution of co-translational translocation is greatly enhanced using cytosol from the overexpression strain. We use this assay to demonstrate that Sec63p is required for co-translational translocation in vitro and specifically identify the "J-domain" of Sec63p as crucial for this pathway. PMID:12795613

  13. Preliminary X-ray crystallographic studies of mouse UPR responsive protein P58(IPK) TPR fragment

    International Nuclear Information System (INIS)

    To investigate the mechanism by which P58(IPK) functions to promote protein folding within the ER, a P58(IPK) TPR fragment without the C-terminal J-domain has been crystallized. Endoplasmic reticulum (ER) stress induces the unfolded protein response (UPR), which can promote protein folding and misfolded protein degradation and attenuate protein translation and protein translocation into the ER. P58(IPK) has been proposed to function as a molecular chaperone to maintain protein-folding homeostasis in the ER under normal and stressed conditions. P58(IPK) contains nine TPR motifs and a C-terminal J-domain within its primary sequence. To investigate the mechanism by which P58(IPK) functions to promote protein folding within the ER, a P58(IPK) TPR fragment without the C-terminal J-domain was crystallized. The crystals diffract to 2.5 Å resolution using a synchrotron X-ray source. The crystals belong to space group P21, with unit-cell parameters a = 83.53, b = 92.75, c = 84.32 Å, α = 90.00, β = 119.36, γ = 90.00°. There are two P58(IPK) molecules in the asymmetric unit, which corresponds to a solvent content of approximately 60%. Structure determination by MAD methods is under way

  14. The interplay between components of the mitochondrial protein translocation motor studied using purified components. (United States)

    Slutsky-Leiderman, Olga; Marom, Milit; Iosefson, Ohad; Levy, Ran; Maoz, Sharon; Azem, Abdussalam


    The final step of protein translocation across the mitochondrial inner membrane is mediated by a translocation motor composed of 1) the matrix-localized, ATP-hydrolyzing, 70-kDa heat shock protein mHsp70; 2) its anchor to the import channel, Tim44; 3) the nucleotide exchange factor Mge1; and 4) a J-domain-containing complex of co-chaperones, Tim14/Pam18-Tim16/Pam16. Despite its essential role in the biogenesis of mitochondria, the mechanism by which the translocation motor functions is still largely unknown. The goal of this work was to carry out a structure-function analysis of the mitochondrial translocation motor utilizing purified components, with an emphasis on the formation of the Tim44-mHsp70 complex. To this end, we purified Tim44 and monitored its interaction with other components of the motor using cross-linking with bifunctional reagents. The effects of nucleotides, the J-domain-containing components, and the P5 peptide (CALLSAPRR, representing part of the mitochondrial targeting signal of aspartate aminotransferase) on the formation of the translocation motor were examined. Our results show that only the peptide and nucleotides, but not J-domain-containing proteins, affect the Tim44-mHsp70 interaction. Additionally, binding of Tim44 to mHsp70 prevents the formation of a complex between the latter and Tim14/Pam18-Tim16/Pam16. Thus, mutually exclusive interactions between various components of the motor with mHsp70 regulate its functional cycle. The results are discussed in light of known models for the function of the mitochondrial translocation motor. PMID:17881357

  15. AcEST: BP911987 [AcEST

    Lifescience Database Archive (English)

    Full Text Available .. 43 8e-04 sp|Q06677|SWA2_YEAST Auxilin-like clathrin uncoating factor SWA2... 42 0.002 sp|O13773|UCP7_SCHP...p|Q06677|SWA2_YEAST Auxilin-like clathrin uncoating factor SWA2 OS=Saccharomyces cerevisiae GN=SWA2 PE=1 SV=

  16. AcEST: DK948753 [AcEST

    Lifescience Database Archive (English)

    Full Text Available 1 sp|Q06677|SWA2_YEAST Auxilin-like clathrin uncoating factor SWA2... 67 9e-11 sp|P35515|DNAJ_METMA Chaperon...NQGS 1307 >sp|Q06677|SWA2_YEAST Auxilin-like clathrin uncoating factor SWA2 OS=Saccharomyces cerevisiae GN=S

  17. Methylation-controlled J-protein MCJ acts in the import of proteins into human mitochondria. (United States)

    Schusdziarra, Christina; Blamowska, Marta; Azem, Abdussalam; Hell, Kai


    Loss of expression of the methylation-controlled J gene, MCJ (DNAJC15), is observed in cases of several tumors and plays a crucial role in the chemoresistance of ovarian cancer cells. Aside from the pathophysiological effects, almost nothing is known about the cellular function of MCJ. Here, we provide the first evidence that MCJ acts in the biogenesis of mitochondria. Our results demonstrate that MCJ is located in mitochondria. It is anchored in the mitochondrial inner membrane with the C-terminal J domain facing the matrix space. We show that MCJ forms a stable subcomplex with a component of the mitochondrial import motor, MAGMAS, a protein overexpressed in cells treated with granulocyte-macrophage colony-stimulating factor and in prostate carcinomas. In addition, MCJ and MAGMAS interact with the core components of the TIM23 pre-protein translocase. We demonstrate that the recombinant soluble MCJ domain stimulates the ATPase activity of the human mtHsp70 chaperone, mortalin, the central component of the import motor of the TIM23 translocase. This stimulation is counteracted by MAGMAS. Moreover, pre-protein import into mitochondria is impaired in the absence of MCJ. Interestingly, MCJ is able to take over the function of Tim14, the essential J co-chaperone of the mitochondrial protein import motor in yeast. In summary, our results show that MCJ functions as J co-chaperone of the human TIM23 pre-protein translocase, suggesting a link between mitochondrial pre-protein import and tumorigenesis. PMID:23263864

  18. Horizontal gene transfer of a chloroplast DnaJ-Fer protein to Thaumarchaeota and the evolutionary history of the DnaK chaperone system in Archaea

    Directory of Open Access Journals (Sweden)

    Petitjean Céline


    Full Text Available Abstract Background In 2004, we discovered an atypical protein in metagenomic data from marine thaumarchaeotal species. This protein, referred as DnaJ-Fer, is composed of a J domain fused to a Ferredoxin (Fer domain. Surprisingly, the same protein was also found in Viridiplantae (green algae and land plants. Because J domain-containing proteins are known to interact with the major chaperone DnaK/Hsp70, this suggested that a DnaK protein was present in Thaumarchaeota. DnaK/Hsp70, its co-chaperone DnaJ and the nucleotide exchange factor GrpE are involved, among others, in heat shocks and heavy metal cellular stress responses. Results Using phylogenomic approaches we have investigated the evolutionary history of the DnaJ-Fer protein and of interacting proteins DnaK, DnaJ and GrpE in Thaumarchaeota. These proteins have very complex histories, involving several inter-domain horizontal gene transfers (HGTs to explain the contemporary distribution of these proteins in archaea. These transfers include one from Cyanobacteria to Viridiplantae and one from Viridiplantae to Thaumarchaeota for the DnaJ-Fer protein, as well as independent HGTs from Bacteria to mesophilic archaea for the DnaK/DnaJ/GrpE system, followed by HGTs among mesophilic and thermophilic archaea. Conclusions We highlight the chimerical origin of the set of proteins DnaK, DnaJ, GrpE and DnaJ-Fer in Thaumarchaeota and suggest that the HGT of these proteins has played an important role in the adaptation of several archaeal groups to mesophilic and thermophilic environments from hyperthermophilic ancestors. Finally, the evolutionary history of DnaJ-Fer provides information useful for the relative dating of the diversification of Archaeplastida and Thaumarchaeota.

  19. Role of human sec63 in modulating the steady-state levels of multi-spanning membrane proteins.

    Directory of Open Access Journals (Sweden)

    Andreas Mades

    Full Text Available The Sec61 translocon of the endoplasmic reticulum (ER membrane forms an aqueous pore, allowing polypeptides to be transferred across or integrated into membranes. Protein translocation into the ER can occur co- and posttranslationally. In yeast, posttranslational translocation involves the heptameric translocase complex including its Sec62p and Sec63p subunits. The mammalian ER membrane contains orthologs of yeast Sec62p and Sec63p, but their function is poorly understood. Here, we analyzed the effects of excess and deficit Sec63 on various ER cargoes using human cell culture systems. The overexpression of Sec63 reduces the steady-state levels of viral and cellular multi-spanning membrane proteins in a cotranslational mode, while soluble and single-spanning ER reporters are not affected. Consistent with this, the knock-down of Sec63 increases the steady-state pools of polytopic ER proteins, suggesting a substrate-specific and regulatory function of Sec63 in ER import. Overexpressed Sec63 exerts its down-regulating activity on polytopic protein levels independent of its Sec62-interacting motif, indicating that it may not act in conjunction with Sec62 in human cells. The specific action of Sec63 is further sustained by our observations that the up-regulation of either Sec62 or two other ER proteins with lumenal J domains, like ERdj1 and ERdj4, does not compromise the steady-state level of a multi-spanning membrane reporter. A J domain-specific mutation of Sec63, proposed to weaken its interaction with the ER resident BiP chaperone, reduces the down-regulating capacity of excess Sec63, suggesting an involvement of BiP in this process. Together, these results suggest that Sec63 may perform a substrate-selective quantity control function during cotranslational ER import.

  20. Coarsening of protein clusters on subcellular drops exhibits strong and sudden size selectivity (United States)

    Brown, Aidan; Rutenberg, Andrew


    Autophagy is an important process for the degradation of cellular components, with receptor proteins targeting substrates to downstream autophagy machinery. An important question is how receptor protein interactions lead to their selective accumulation on autophagy substrates. Receptor proteins have recently been observed in clusters, raising the possibility that clustering could affect autophagy selectivity. We investigate the clustering dynamics of the autophagy receptor protein NBR1. In addition to standard receptor protein domains, NBR1 has a ``J'' domain that anchors it to membranes, and a coiled-coil domain that enhances self-interaction. We model coarsening clusters of NBR1 on the surfaces of a polydisperse collection of drops, representing organelles. Despite the disconnected nature of the drop surfaces, we recover dynamical scaling of cluster sizes. Significantly, we find that at a well-defined time after coarsening begins, clusters evaporate from smaller drops and grow on larger drops. Thus, coarsening-driven size selection will localize protein clusters to larger substrates, leaving smaller substrates without clusters. This provides a possible physical mechanism for autophagy selectivity, and can explain reports of size selection during peroxisome degradation.

  1. Protein Foods (United States)

    ... Text Size: A A A Listen En Español Protein Foods Foods high in protein such as fish, ... the vegetarian proteins, whether they have carbohydrate. Best Protein Choices The best choices are: Plant-based proteins ...

  2. Protein-protein interactions

    DEFF Research Database (Denmark)

    Byron, Olwyn; Vestergaard, Bente


    Responsive formation of protein:protein interaction (PPI) upon diverse stimuli is a fundament of cellular function. As a consequence, PPIs are complex, adaptive entities, and exist in structurally heterogeneous interplays defined by the energetic states of the free and complexed protomers. The...

  3. Co-expression of heat shock protein (HSP) 40 and HSP70 in Pinctada martensii response to thermal, low salinity and bacterial challenges. (United States)

    Li, Jun; Zhang, Yuehuan; Liu, Ying; Zhang, Yang; Xiao, Shu; Yu, Ziniu


    Heat shock protein (HSP) 40 proteins are a family of molecular chaperones that bind to HSP70 through their J-domain and regulate the function of HSP70 by stimulating its adenosine triphosphatase activity. In the present study, a HSP40 homolog named PmHSP40 was cloned from the hemocytes of pearl oyster Pinctada martensii using EST and rapid amplification of cDNA ends (RACE) techniques. The full-length cDNA of PmHSP40 was 1251 bp in length, which included a 5' untranslated region (UTR) of 75 bp, an open reading frame (ORF) of a 663 bp, and a 3' UTR of 513 bp. The deduced amino acid sequence of PmHSP40 contains a J domain in the N-terminus. In response to thermal and low salinity stress challenges, the expression of PmHSP40 in hemocytes and the gill were inducible in a time-dependent manner. After bacterial challenge, PmHSP40 transcripts in hemocytes increased and peaked at 6 h post injection. In the gill, PmHSP40 expression increased, similar to expression in hemocytes; however, transcript expression of PmHSP40 was significantly up-regulated at 12 h post injection. Furthermore, the transcripts of PmHSP70 showed similar kinetics as that of PmHSP40, with highest induction during thermal, low salinity stress and bacterial challenges. Altogether these results demonstrate that PmHSP40 is an inducible protein under thermal, low salinity and bacterial challenges, suggesting its involvement in both environmental and biological stresses, and in the innate immunity of the pearl oyster. PMID:26679110

  4. AMPylation matches BiP activity to client protein load in the endoplasmic reticulum (United States)

    Preissler, Steffen; Rato, Cláudia; Chen, Ruming; Antrobus, Robin; Ding, Shujing; Fearnley, Ian M; Ron, David


    The endoplasmic reticulum (ER)-localized Hsp70 chaperone BiP affects protein folding homeostasis and the response to ER stress. Reversible inactivating covalent modification of BiP is believed to contribute to the balance between chaperones and unfolded ER proteins, but the nature of this modification has so far been hinted at indirectly. We report that deletion of FICD, a gene encoding an ER-localized AMPylating enzyme, abolished detectable modification of endogenous BiP enhancing ER buffering of unfolded protein stress in mammalian cells, whilst deregulated FICD activity had the opposite effect. In vitro, FICD AMPylated BiP to completion on a single residue, Thr518. AMPylation increased, in a strictly FICD-dependent manner, as the flux of proteins entering the ER was attenuated in vivo. In vitro, Thr518 AMPylation enhanced peptide dissociation from BiP 6-fold and abolished stimulation of ATP hydrolysis by J-domain cofactor. These findings expose the molecular basis for covalent inactivation of BiP. DOI: PMID:26673894

  5. : Protein flexibility


    Bornot, Aurélie; Offmann, Bernard; De Brevern, Alexandre


    Protein structures and protein structural models are great tools to reach protein function and provide very relevant information for drug design. Nevertheless, protein structures are not rigid entities. Cutting-edge bioinformatics methods tend to take into account the flexibility of these macromolecules. We present new approaches used to define protein structure flexibility.

  6. Total protein (United States)

    The total protein test measures the total amount of two classes of proteins found in the fluid portion of your ... nutritional problems, kidney disease or liver disease . If total protein is abnormal, you will need to have more ...

  7. Functional Diversity of Human Mitochondrial J-proteins Is Independent of Their Association with the Inner Membrane Presequence Translocase. (United States)

    Sinha, Devanjan; Srivastava, Shubhi; D'Silva, Patrick


    Mitochondrial J-proteins play a critical role in governing Hsp70 activity and, hence, are essential for organellar protein translocation and folding. In contrast to yeast, which has a single J-protein Pam18, humans involve two J-proteins, DnaJC15 and DnaJC19, associated with contrasting cellular phenotype, to transport proteins into the mitochondria. Mutation in DnaJC19 results in dilated cardiomyopathy and ataxia syndrome, whereas expression of DnaJC15 regulates the response of cancer cells to chemotherapy. In the present study we have comparatively assessed the biochemical properties of the J-protein paralogs in relation to their association with the import channel. Both DnaJC15 and DnaJC19 formed two distinct subcomplexes with Magmas at the import channel. Knockdown analysis suggested an essential role for Magmas and DnaJC19 in organellar protein translocation and mitochondria biogenesis, whereas DnaJC15 had dispensable supportive function. The J-proteins were found to have equal affinity for Magmas and could stimulate mitochondrial Hsp70 ATPase activity by equivalent levels. Interestingly, we observed that DnaJC15 exhibits bifunctional properties. At the translocation channel, it involves conserved interactions and mechanism to translocate the precursors into mitochondria. In addition to protein transport, DnaJC15 also showed a dual role in yeast where its expression elicited enhanced sensitivity of cells to cisplatin that required the presence of a functional J-domain. The amount of DnaJC15 expressed in the cell was directly proportional to the sensitivity of cells. Our analysis indicates that the differential cellular phenotype displayed by human mitochondrial J-proteins is independent of their activity and association with Magmas at the translocation channel. PMID:27330077

  8. Interfacial Protein-Protein Associations


    Langdon, Blake B.; Kastantin, Mark; Walder, Robert; Schwartz, Daniel K.


    While traditional models of protein adsorption focus primarily on direct protein-surface interactions, recent findings suggest that protein-protein interactions may play a central role. Using high-throughput intermolecular resonance energy transfer (RET) tracking, we directly observed dynamic, protein-protein associations of bovine serum albumin on poly(ethylene glycol) modified surfaces. The associations were heterogeneous and reversible, and associating molecules resided on the surface for ...

  9. Total protein (United States)

    ... page: // Total protein To use the sharing features on this page, please enable JavaScript. The total protein test measures the total amount of two classes ...

  10. Protein Structure (United States)

    Asmus, Elaine Garbarino


    Individual students model specific amino acids and then, through dehydration synthesis, a class of students models a protein. The students clearly learn amino acid structure, primary, secondary, tertiary, and quaternary structure in proteins and the nature of the bonds maintaining a protein's shape. This activity is fun, concrete, inexpensive and…

  11. Tau protein

    DEFF Research Database (Denmark)

    Frederiksen, Jette Lautrup Battistini; Kristensen, Kim; Bahl, Jmc;


    Background: Tau protein has been proposed as biomarker of axonal damage leading to irreversible neurological impairment in MS. CSF concentrations may be useful when determining risk of progression from ON to MS. Objective: To investigate the association between tau protein concentration and 14...... the Department of Neurology of Glostrup Hospital, University of Copenhagen, Denmark, were included. CSF samples were analysed for tau protein and 14-3-3 protein, and clinical and paraclinical information was obtained from medical records. Results: The study shows a significantly increased...... concentration of tau protein in CSF from patients with relapsing-remitting MS and patients monosymptomatic at onset who progressed to MS, but interestingly no increased tau protein concentration in monosymptomatic ON. The concentration of tau protein was significantly correlated to Expanded Disability Status...

  12. Protein politics


    Vijver, Marike


    This study is part of the program of the interdisciplinary research group Profetas (protein foods, environment, technology and society). Profetas consists of technological, environmental and socio-economic research projects on protein food systems which result in the development of scenarios and strategies for guiding a shift towards a more plant protein based diet. The different research projects focus on the goal of identifying viable options for a more sustainable food system. Profetas aro...

  13. Principles of protein-protein interactions.


    Jones, S; Thornton, J. M.


    This review examines protein complexes in the Brookhaven Protein Databank to gain a better understanding of the principles governing the interactions involved in protein-protein recognition. The factors that influence the formation of protein-protein complexes are explored in four different types of protein-protein complexes--homodimeric proteins, heterodimeric proteins, enzyme-inhibitor complexes, and antibody-protein complexes. The comparison between the complexes highlights differences tha...

  14. NCBI nr-aa BLAST: CBRC-RMAC-01-0032 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-RMAC-01-0032 ref|YP_001318339.1| heat shock protein DnaJ domain protein [Alkaliphilus metalliredig...ens QYMF] gb|ABR46680.1| heat shock protein DnaJ domain protein [Alkaliphilus metalliredigens QYMF] YP_001318339.1 0.13 28% ...

  15. Protein-Protein Interaction Databases

    DEFF Research Database (Denmark)

    Szklarczyk, Damian; Jensen, Lars Juhl


    of research are explored. Here we present an overview of the most widely used protein-protein interaction databases and the methods they employ to gather, combine, and predict interactions. We also point out the trade-off between comprehensiveness and accuracy and the main pitfall scientists have to be aware...

  16. Whey Protein (United States)

    ... quality of life in people with mitochondrial diseases. Ovarian cysts (Polycystic ovarian syndrome). Early research suggests that taking ... weight, fat mass, and cholesterol in people with ovarian cysts. However, whey protein does not improve blood sugar ...

  17. Protein Crystallization (United States)

    Chernov, Alexander A.


    Nucleation, growth and perfection of protein crystals will be overviewed along with crystal mechanical properties. The knowledge is based on experiments using optical and force crystals behave similar to inorganic crystals, though with a difference in orders of magnitude in growing parameters. For example, the low incorporation rate of large biomolecules requires up to 100 times larger supersaturation to grow protein, rather than inorganic crystals. Nucleation is often poorly reproducible, partly because of turbulence accompanying the mixing of precipitant with protein solution. Light scattering reveals fluctuations of molecular cluster size, its growth, surface energies and increased clustering as protein ages. Growth most often occurs layer-by-layer resulting in faceted crystals. New molecular layer on crystal face is terminated by a step where molecular incorporation occurs. Quantitative data on the incorporation rate will be discussed. Rounded crystals with molecularly disordered interfaces will be explained. Defects in crystals compromise the x-ray diffraction resolution crucially needed to find the 3D atomic structure of biomolecules. The defects are immobile so that birth defects stay forever. All lattice defects known for inorganics are revealed in protein crystals. Contribution of molecular conformations to lattice disorder is important, but not studied. This contribution may be enhanced by stress field from other defects. Homologous impurities (e.g., dimers, acetylated molecules) are trapped more willingly by a growing crystal than foreign protein impurities. The trapped impurities induce internal stress eliminated in crystals exceeding a critical size (part of mni for ferritin, lysozyme). Lesser impurities are trapped from stagnant, as compared to the flowing, solution. Freezing may induce much more defects unless quickly amorphysizing intracrystalline water.

  18. Arabinogalactan proteins

    DEFF Research Database (Denmark)

    Knoch, Eva; Dilokpimol, Adiphol; Geshi, Naomi


    Arabinogalactan proteins (AGPs) are a highly diverse class of cell surface proteoglycans that are commonly found in most plant species. AGPs play important roles in many cellular processes during plant development, such as reproduction, cell proliferation, pattern formation and growth, and in plant...

  19. Prediction of Protein-Protein Interactions Related to Protein Complexes Based on Protein Interaction Networks


    Peng Liu; Lei Yang; Daming Shi; Xianglong Tang


    A method for predicting protein-protein interactions based on detected protein complexes is proposed to repair deficient interactions derived from high-throughput biological experiments. Protein complexes are pruned and decomposed into small parts based on the adaptive k-cores method to predict protein-protein interactions associated with the complexes. The proposed method is adaptive to protein complexes with different structure, number, and size of nodes in a protein-protein interaction net...

  20. Grafting of protein-protein binding sites

    Institute of Scientific and Technical Information of China (English)


    A strategy for grafting protein-protein binding sites is described. Firstly, key interaction residues at the interface of ligand protein to be grafted are identified and suitable positions in scaffold protein for grafting these key residues are sought. Secondly, the scaffold proteins are superposed onto the ligand protein based on the corresponding Ca and Cb atoms. The complementarity between the scaffold protein and the receptor protein is evaluated and only matches with high score are accepted. The relative position between scaffold and receptor proteins is adjusted so that the interface has a reasonable packing density. Then the scaffold protein is mutated to corresponding residues in ligand protein at each candidate position. And the residues having bad steric contacts with the receptor proteins, or buried charged residues not involved in the formation of any salt bridge are mutated. Finally, the mutated scaffold protein in complex with receptor protein is co-minimized by Charmm. In addition, we deduce a scoring function to evaluate the affinity between mutated scaffold protein and receptor protein by statistical analysis of rigid binding data sets.

  1. Detecting overlapping protein complexes in protein-protein interaction networks


    Nepusz, Tamás; Yu, Haiyuan; Paccanaro, Alberto


    We introduce clustering with overlapping neighborhood expansion (ClusterONE), a method for detecting potentially overlapping protein complexes from protein-protein interaction data. ClusterONE-derived complexes for several yeast data sets showed better correspondence with reference complexes in the Munich Information Center for Protein Sequence (MIPS) catalog and complexes derived from the Saccharomyces Genome Database (SGD) than the results of seven popular methods. The results also showed a...

  2. EDITORIAL: Precision proteins Precision proteins (United States)

    Demming, Anna


    Since the birth of modern day medicine, during the times of Hippocrates in ancient Greece, the profession has developed from the rudimentary classification of disease into a rigorous science with an inspiring capability to treat and cure. Scientific methodology has distilled clinical diagnostic tools from the early arts of prognosis, which used to rely as much on revelation and prophecy, as intuition and judgement [1]. Over the past decade, research into the interactions between proteins and nanosystems has provided some ingenious and apt techniques for delving into the intricacies of anatomical systems. In vivo biosensing has emerged as a vibrant field of research, as much of medical diagnosis relies on the detection of substances or an imbalance in the chemicals in the body. The inherent properties of nanoscale structures, such as cantilevers, make them well suited to biosensing applications that demand the detection of molecules at very low concentrations. Measurable deflections in cantilevers functionalised with antibodies provide quantitative indicators of the presence of specific antigens when the two react. Such developments have roused mounting interest in the interactions of proteins with nanostructures, such as carbon nanotubes [3], which have demonstrated great potential as generic biomarkers. Plasmonic properties are also being exploited in sensing applications, such as the molecular sentinel recently devised by researchers in the US. The device uses the plasmonic properties of a silver nanoparticle linked to a Raman labelled hairpin DNA probe to signal changes in the probe geometry resulting from interactions with substances in the environment. Success stories so far include the detection of two specific genes associated with breast cancer [4]. A greater understanding of how RNA interference regulates gene expression has highlighted the potential of using this natural process as another agent for combating disease in personalized medicine. However, the

  3. Protein Crystal Based Nanomaterials (United States)

    Bell, Jeffrey A.; VanRoey, Patrick


    This is the final report on a NASA Grant. It concerns a description of work done, which includes: (1) Protein crystals cross-linked to form fibers; (2) Engineering of protein to favor crystallization; (3) Better knowledge-based potentials for protein-protein contacts; (4) Simulation of protein crystallization.

  4. Shotgun protein sequencing.

    Energy Technology Data Exchange (ETDEWEB)

    Faulon, Jean-Loup Michel; Heffelfinger, Grant S.


    A novel experimental and computational technique based on multiple enzymatic digestion of a protein or protein mixture that reconstructs protein sequences from sequences of overlapping peptides is described in this SAND report. This approach, analogous to shotgun sequencing of DNA, is to be used to sequence alternative spliced proteins, to identify post-translational modifications, and to sequence genetically engineered proteins.

  5. Protein-protein complexation in bioluminescence


    Titushin, Maxim S.; Feng, Yingang; Lee, John; Vysotski, Eugene S.; Liu, Zhi-jie


    In this review we summarize the progress made towards understanding the role of protein-protein interactions in the function of various bioluminescence systems of marine organisms, including bacteria, jellyfish and soft corals, with particular focus on methodology used to detect and characterize these interactions. In some bioluminescence systems, protein-protein interactions involve an “accessory protein” whereby a stored substrate is efficiently delivered to the bioluminescent enzyme lucife...

  6. Protein folding, protein homeostasis, and cancer

    Institute of Scientific and Technical Information of China (English)

    John H. Van Drie


    Proteins fold into their functional 3-dimensional structures from a linear amino acid sequence. In vitro this process is spontaneous; while in vivo it is orchestrated by a specialized set of proteins, called chaperones. Protein folding is an ongoing cellular process, as cellular proteins constantly undergo synthesis and degradation. Here emerging links between this process and cancer are reviewed. This perspective both yields insights into the current struggle to develop novel cancer chemotherapeutics and has implications for future chemotherapy discovery.

  7. Protein-Protein Interaction Analysis by Docking


    Stephan Ederer; Florian Fink; Wolfram Gronwald


    Based on a protein-protein docking approach we have developed a procedure to verify or falsify protein-protein interactions that were proposed by other methods such as yeast-2-hybrid assays. Our method currently utilizes intermolecular energies but can be expanded to incorporate additional terms such as amino acid based pair-potentials. We show some early results that demonstrate the general applicability of our approach.

  8. Protein-losing enteropathy (United States)

    ... this page: // Protein-losing enteropathy To use the sharing features on this page, please enable JavaScript. Protein-losing enteropathy is an abnormal loss of protein ...

  9. Protein and Heart Health (United States)

    ... Recognition & Awards Healthy Workplace Food and Beverage Toolkit Protein and Heart Health Updated:May 5,2015 Protein ... said. What’s the harm in getting too much protein? The main problem is that often the extra ...

  10. SPIDer: Saccharomyces protein-protein interaction database

    Directory of Open Access Journals (Sweden)

    Li Zhenbo


    Full Text Available Abstract Background Since proteins perform their functions by interacting with one another and with other biomolecules, reconstructing a map of the protein-protein interactions of a cell, experimentally or computationally, is an important first step toward understanding cellular function and machinery of a proteome. Solely derived from the Gene Ontology (GO, we have defined an effective method of reconstructing a yeast protein interaction network by measuring relative specificity similarity (RSS between two GO terms. Description Based on the RSS method, here, we introduce a predicted Saccharomyces protein-protein interaction database called SPIDer. It houses a gold standard positive dataset (GSP with high confidence level that covered 79.2% of the high-quality interaction dataset. Our predicted protein-protein interaction network reconstructed from the GSPs consists of 92 257 interactions among 3600 proteins, and forms 23 connected components. It also provides general links to connect predicted protein-protein interactions with three other databases, DIP, BIND and MIPS. An Internet-based interface provides users with fast and convenient access to protein-protein interactions based on various search features (searching by protein information, GO term information or sequence similarity. In addition, the RSS value of two GO terms in the same ontology, and the inter-member interactions in a list of proteins of interest or in a protein complex could be retrieved. Furthermore, the database presents a user-friendly graphical interface which is created dynamically for visualizing an interaction sub-network. The database is accessible at Conclusion SPIDer is a public database server for protein-protein interactions based on the yeast genome. It provides a variety of search options and graphical visualization of an interaction network. In particular, it will be very useful for the study of inter-member interactions

  11. PIC: Protein Interactions Calculator


    Tina, KG; Bhadra, R.; Srinivasan, N.


    Interactions within a protein structure and interactions between proteins in an assembly are essential considerations in understanding molecular basis of stability and functions of proteins and their complexes. There are several weak and strong interactions that render stability to a protein structure or an assembly. Protein Interactions Calculator (PIC) is a server which, given the coordinate set of 3D structure of a protein or an assembly, computes various interactions such as disulphide bo...

  12. Drugging Membrane Protein Interactions. (United States)

    Yin, Hang; Flynn, Aaron D


    The majority of therapeutics target membrane proteins, accessible on the surface of cells, to alter cellular signaling. Cells use membrane proteins to transduce signals into cells, transport ions and molecules, bind cells to a surface or substrate, and catalyze reactions. Newly devised technologies allow us to drug conventionally "undruggable" regions of membrane proteins, enabling modulation of protein-protein, protein-lipid, and protein-nucleic acid interactions. In this review, we survey the state of the art of high-throughput screening and rational design in drug discovery, and we evaluate the advances in biological understanding and technological capacity that will drive pharmacotherapy forward against unorthodox membrane protein targets. PMID:26863923

  13. PREFACE: Protein protein interactions: principles and predictions (United States)

    Nussinov, Ruth; Tsai, Chung-Jung


    Proteins are the `workhorses' of the cell. Their roles span functions as diverse as being molecular machines and signalling. They carry out catalytic reactions, transport, form viral capsids, traverse membranes and form regulated channels, transmit information from DNA to RNA, making possible the synthesis of new proteins, and they are responsible for the degradation of unnecessary proteins and nucleic acids. They are the vehicles of the immune response and are responsible for viral entry into the cell. Given their importance, considerable effort has been centered on the prediction of protein function. A prime way to do this is through identification of binding partners. If the function of at least one of the components with which the protein interacts is known, that should let us assign its function(s) and the pathway(s) in which it plays a role. This holds since the vast majority of their chores in the living cell involve protein-protein interactions. Hence, through the intricate network of these interactions we can map cellular pathways, their interconnectivities and their dynamic regulation. Their identification is at the heart of functional genomics; their prediction is crucial for drug discovery. Knowledge of the pathway, its topology, length, and dynamics may provide useful information for forecasting side effects. The goal of predicting protein-protein interactions is daunting. Some associations are obligatory, others are continuously forming and dissociating. In principle, from the physical standpoint, any two proteins can interact, but under what conditions and at which strength? The principles of protein-protein interactions are general: the non-covalent interactions of two proteins are largely the outcome of the hydrophobic effect, which drives the interactions. In addition, hydrogen bonds and electrostatic interactions play important roles. Thus, many of the interactions observed in vitro are the outcome of experimental overexpression. Protein disorder

  14. Protein sequence comparison and protein evolution

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, W.R. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Biochemistry


    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. This tutorial examines how the information conserved during the evolution of a protein molecule can be used to infer reliably homology, and thus a shared proteinfold and possibly a shared active site or function. The authors start by reviewing a geological/evolutionary time scale. Next they look at the evolution of several protein families. During the tutorial, these families will be used to demonstrate that homologous protein ancestry can be inferred with confidence. They also examine different modes of protein evolution and consider some hypotheses that have been presented to explain the very earliest events in protein evolution. The next part of the tutorial will examine the technical aspects of protein sequence comparison. Both optimal and heuristic algorithms and their associated parameters that are used to characterize protein sequence similarities are discussed. Perhaps more importantly, they survey the statistics of local similarity scores, and how these statistics can both be used to improve the selectivity of a search and to evaluate the significance of a match. They them examine distantly related members of three protein families, the serine proteases, the glutathione transferases, and the G-protein-coupled receptors (GCRs). Finally, the discuss how sequence similarity can be used to examine internal repeated or mosaic structures in proteins.

  15. Prediction of Protein-Protein Interactions Using Protein Signature Profiling

    Institute of Scientific and Technical Information of China (English)

    Mahmood; A.; Mahdavi; Yen-Han; Lin


    Protein domains are conserved and functionally independent structures that play an important role in interactions among related proteins. Domain-domain inter- actions have been recently used to predict protein-protein interactions (PPI). In general, the interaction probability of a pair of domains is scored using a trained scoring function. Satisfying a threshold, the protein pairs carrying those domains are regarded as "interacting". In this study, the signature contents of proteins were utilized to predict PPI pairs in Saccharomyces cerevisiae, Caenorhabditis ele- gans, and Homo sapiens. Similarity between protein signature patterns was scored and PPI predictions were drawn based on the binary similarity scoring function. Results show that the true positive rate of prediction by the proposed approach is approximately 32% higher than that using the maximum likelihood estimation method when compared with a test set, resulting in 22% increase in the area un- der the receiver operating characteristic (ROC) curve. When proteins containing one or two signatures were removed, the sensitivity of the predicted PPI pairs in- creased significantly. The predicted PPI pairs are on average 11 times more likely to interact than the random selection at a confidence level of 0.95, and on aver- age 4 times better than those predicted by either phylogenetic profiling or gene expression profiling.

  16. Urine Protein and Urine Protein to Creatinine Ratio (United States)

    ... limited. Home Visit Global Sites Search Help? Urine Protein and Urine Protein to Creatinine Ratio Share this page: Was this page helpful? Also known as: 24-Hour Urine Protein; Urine Total Protein; Urine Protein to Creatinine Ratio; ...

  17. Protein- protein interaction detection system using fluorescent protein microdomains (United States)

    Waldo, Geoffrey S.; Cabantous, Stephanie


    The invention provides a protein labeling and interaction detection system based on engineered fragments of fluorescent and chromophoric proteins that require fused interacting polypeptides to drive the association of the fragments, and further are soluble and stable, and do not change the solubility of polypeptides to which they are fused. In one embodiment, a test protein X is fused to a sixteen amino acid fragment of GFP (.beta.-strand 10, amino acids 198-214), engineered to not perturb fusion protein solubility. A second test protein Y is fused to a sixteen amino acid fragment of GFP (.beta.-strand 11, amino acids 215-230), engineered to not perturb fusion protein solubility. When X and Y interact, they bring the GFP strands into proximity, and are detected by complementation with a third GFP fragment consisting of GFP amino acids 1-198 (strands 1-9). When GFP strands 10 and 11 are held together by interaction of protein X and Y, they spontaneous association with GFP strands 1-9, resulting in structural complementation, folding, and concomitant GFP fluorescence.

  18. Identification and characterization of the host protein DNAJC14 as a broadly active flavivirus replication modulator.

    Directory of Open Access Journals (Sweden)

    Zhigang Yi

    Full Text Available Viruses in the Flavivirus genus of the Flaviviridae family are arthropod-transmitted and contribute to staggering numbers of human infections and significant deaths annually across the globe. To identify cellular factors with antiviral activity against flaviviruses, we screened a cDNA library using an iterative approach. We identified a mammalian Hsp40 chaperone protein (DNAJC14 that when overexpressed was able to mediate protection from yellow fever virus (YFV-induced cell death. Further studies revealed that DNAJC14 inhibits YFV at the step of viral RNA replication. Since replication of bovine viral diarrhea virus (BVDV, a member of the related Pestivirus genus, is also known to be modulated by DNAJC14, we tested the effect of this host factor on diverse Flaviviridae family members. Flaviviruses, including the pathogenic Asibi strain of YFV, Kunjin, and tick-borne Langat virus, as well as a Hepacivirus, hepatitis C virus (HCV, all were inhibited by overexpression of DNAJC14. Mutagenesis showed that both the J-domain and the C-terminal domain, which mediates self-interaction, are required for anti-YFV activity. We found that DNAJC14 does not block YFV nor HCV NS2-3 cleavage, and using non-inhibitory mutants demonstrate that DNAJC14 is recruited to YFV replication complexes. Immunofluorescence analysis demonstrated that endogenous DNAJC14 rearranges during infection and is found in replication complexes identified by dsRNA staining. Interestingly, silencing of endogenous DNAJC14 results in impaired YFV replication suggesting a requirement for DNAJC14 in YFV replication complex assembly. Finally, the antiviral activity of overexpressed DNAJC14 occurs in a time- and dose-dependent manner. DNAJC14 overexpression may disrupt the proper stoichiometry resulting in inhibition, which can be overcome upon restoration of the optimal ratios due to the accumulation of viral nonstructural proteins. Our findings, together with previously published work

  19. IGSF9 Family Proteins

    DEFF Research Database (Denmark)

    Hansen, Maria; Walmod, Peter Schledermann


    The Drosophila protein Turtle and the vertebrate proteins immunoglobulin superfamily (IgSF), member 9 (IGSF9/Dasm1) and IGSF9B are members of an evolutionarily ancient protein family. A bioinformatics analysis of the protein family revealed that invertebrates contain only a single IGSF9 family gene......, whereas vertebrates contain two to four genes. In cnidarians, the gene appears to encode a secreted protein, but transmembrane isoforms of the protein have also evolved, and in many species, alternative splicing facilitates the expression of both transmembrane and secreted isoforms. In most species, the...... longest isoforms of the proteins have the same general organization as the neural cell adhesion molecule family of cell adhesion molecule proteins, and like this family of proteins, IGSF9 family members are expressed in the nervous system. A review of the literature revealed that Drosophila Turtle...

  20. Surface Mediated Protein Disaggregation (United States)

    Radhakrishna, Mithun; Kumar, Sanat K.


    Preventing protein aggregation is of both biological and industrial importance. Biologically these aggregates are known to cause amyloid type diseases like Alzheimer's and Parkinson's disease. Protein aggregation leads to reduced activity of the enzymes in industrial applications. Inter-protein interactions between the hydrophobic residues of the protein are known to be the major driving force for protein aggregation. In the current paper we show how surface chemistry and curvature can be tuned to mitigate these inter-protein interactions. Our results calculated in the framework of the Hydrophobic-Polar (HP) lattice model show that, inter-protein interactions can be drastically reduced by increasing the surface hydrophobicity to a critical value corresponding to the adsorption transition of the protein. At this value of surface hydrophobicity, proteins lose inter-protein contacts to gain surface contacts and thus the surface helps in reducing the inter-protein interactions. Further, we show that the adsorption of the proteins inside hydrophobic pores of optimal sizes are most efficient both in reducing inter-protein contacts and simultaneously retaining most of the native-contacts due to strong protein-surface interactions coupled with stabilization due to the confinement. Department of Energy (Grant No DE-FG02-11ER46811).

  1. Discover protein sequence signatures from protein-protein interaction data

    Directory of Open Access Journals (Sweden)

    Haasl Ryan J


    Full Text Available Abstract Background The development of high-throughput technologies such as yeast two-hybrid systems and mass spectrometry technologies has made it possible to generate large protein-protein interaction (PPI datasets. Mining these datasets for underlying biological knowledge has, however, remained a challenge. Results A total of 3108 sequence signatures were found, each of which was shared by a set of guest proteins interacting with one of 944 host proteins in Saccharomyces cerevisiae genome. Approximately 94% of these sequence signatures matched entries in InterPro member databases. We identified 84 distinct sequence signatures from the remaining 172 unknown signatures. The signature sharing information was then applied in predicting sub-cellular localization of yeast proteins and the novel signatures were used in identifying possible interacting sites. Conclusion We reported a method of PPI data mining that facilitated the discovery of novel sequence signatures using a large PPI dataset from S. cerevisiae genome as input. The fact that 94% of discovered signatures were known validated the ability of the approach to identify large numbers of signatures from PPI data. The significance of these discovered signatures was demonstrated by their application in predicting sub-cellular localizations and identifying potential interaction binding sites of yeast proteins.

  2. Polymer Directed Protein Assemblies

    Directory of Open Access Journals (Sweden)

    Patrick van Rijn


    Full Text Available Protein aggregation and protein self-assembly is an important occurrence in natural systems, and is in some form or other dictated by biopolymers. Very obvious influences of biopolymers on protein assemblies are, e.g., virus particles. Viruses are a multi-protein assembly of which the morphology is dictated by poly-nucleotides namely RNA or DNA. This “biopolymer” directs the proteins and imposes limitations on the structure like the length or diameter of the particle. Not only do these bionanoparticles use polymer-directed self-assembly, also processes like amyloid formation are in a way a result of directed protein assembly by partial unfolded/misfolded biopolymers namely, polypeptides. The combination of proteins and synthetic polymers, inspired by the natural processes, are therefore regarded as a highly promising area of research. Directed protein assembly is versatile with respect to the possible interactions which brings together the protein and polymer, e.g., electrostatic, v.d. Waals forces or covalent conjugation, and possible combinations are numerous due to the large amounts of different polymers and proteins available. The protein-polymer interacting behavior and overall morphology is envisioned to aid in clarifying protein-protein interactions and are thought to entail some interesting new functions and properties which will ultimately lead to novel bio-hybrid materials.

  3. Protein Dynamics in an RNA Binding Protein (United States)

    Hall, Kathleen


    Using ^15N NMR relaxation measurements, analyzed with the Lipari-Szabo formalism, we have found that the human U1A RNA binding protein has ps-ns motions in those loops that make contact with RNA. Specific mutations can alter the extent and pattern of motions, and those proteins inevitably lose RNA binding affinity. Proteins with enhanced mobility of loops and termini presumably lose affinity due to increased conformational sampling by those parts of the protein that interact directly with RNA. There is an entropic penalty associated with locking down those elements upon RNA binding, in addition to a loss of binding efficiency caused by the increased number of conformations adopted by the protein. However, in addition to local conformational heterogeneity, analysis of molecular dynamics trajectories by Reorientational Eigenmode Dynamics reveals that loops of the wild type protein undergo correlated motions that link distal sites across the binding surface. Mutations that disrupt correlated motions result in weaker RNA binding, implying that there is a network of interactions across the surface of the protein. (KBH was a Postdoctoral Fellow with Al Redfield from 1985-1990). This work was supported by the NIH (to KBH) and NSF (SAS).

  4. Anisotropic Contributions to Protein-Protein Interactions. (United States)

    Quang, Leigh J; Sandler, Stanley I; Lenhoff, Abraham M


    The anisotropy of shape and functionality of proteins complicates the prediction of protein-protein interactions. We examine the distribution of electrostatic and nonelectrostatic contributions to these interactions for two globular proteins, lysozyme and chymosin B, which differ in molecular weight by about a factor of 2. The interaction trends for these proteins are computed in terms of contributions to the osmotic second virial coefficient that are evaluated using atomistic models of the proteins. Our emphasis is on identifying the orientational configurations that contribute most strongly to the overall interactions due to high-complementarity interactions, and on calculating the effect of ionic strength on such interactions. The results emphasize the quantitative importance of several features of protein interactions, notably that despite differences in their frequency of occurrence, configurations differing appreciably in interaction energy can contribute meaningfully to overall interactions. However, relatively small effects due to charge anisotropy or specific hydration can affect the overall interaction significantly only if they contribute to strongly attractive configurations. The results emphasize the necessity of accounting for detailed anisotropy to capture actual experimental trends, and the sensitivity of even very detailed atomistic models to subtle solution contributions. PMID:26580057

  5. Protein Data Bank (PDB) (United States)

    U.S. Department of Health & Human Services — The Protein Data Bank (PDB) archive is the single worldwide repository of information about the 3D structures of large biological molecules, including proteins and...

  6. [Protein-losing enteropathy]. (United States)

    Amiot, A


    Protein-losing enteropathy is a rare syndrome of gastrointestinal protein loss. The primary causes can be classified into lymphatic leakage due to increased interstitial pressure and increased leakage of protein-rich fluids due to erosive or non-erosive gastrointestinal disorders. The diagnosis of protein-losing enteropathy should be considered in patients with chronic diarrhea and peripheral oedema. The diagnosis of protein-losing enteropathy is most commonly based on the determination of fecal alpha-1 antitrypsin clearance. Most protein-losing enteropathy cases are the result of either lymphatic obstruction or a variety of gastrointestinal disorders and cardiac diseases, while primary intestinal lymphangiectasia (Waldmann's disease) is less common. Treatment of protein-losing enteropathy targets the underlying disease but also includes dietary modification, such as high-protein and low-fat diet along with medium-chain triglyceride supplementation. PMID:25618488

  7. Protein (Cyanobacteria): 360792 [

    Lifescience Database Archive (English)

    Full Text Available YP_007146453.1 1117:17211 1161:2741 1162:3098 56106:1490 142864:1490 56107:1490 putative stress ... protein (general stress ... protein 26) Cylindrospermum stagnale PCC 7417 MTTS ...

  8. Hydrodynamic effects in proteins (United States)

    Szymczak, Piotr; Cieplak, Marek


    Experimental and numerical results pertaining to flow-induced effects in proteins are reviewed. Special emphasis is placed on shear-induced unfolding and on the role of solvent mediated hydrodynamic interactions in the conformational transitions in proteins.

  9. Hydrodynamic effects in proteins

    Energy Technology Data Exchange (ETDEWEB)

    Szymczak, Piotr [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Hoza 69, 00-681 Warsaw (Poland); Cieplak, Marek, E-mail: [Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, 02-668 Warsaw (Poland)


    Experimental and numerical results pertaining to flow-induced effects in proteins are reviewed. Special emphasis is placed on shear-induced unfolding and on the role of solvent mediated hydrodynamic interactions in the conformational transitions in proteins. (topical review)

  10. Protein electrophoresis - serum (United States)

    ... this page: // Protein electrophoresis - serum To use the sharing features on ... JavaScript. This lab test measures the types of protein in the fluid (serum) part of a blood ...

  11. Protein: CAD [Trypanosomes Database

    Lifescience Database Archive (English)

    Full Text Available CAD carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotaseCAD trifunct ... ional protein carbamoylphosphate synthetase 2/aspartate transcarb ... amylase/dihydroorotasemultifunctional protein ... CAD H.sapiens 47458828 18105007 790 P27708 CAD_(ge ...

  12. Learning about Proteins (United States)

    ... need from peanuts alone, but if you have peanut butter on whole-grain bread, you're set. Likewise, ... protein in a day: 2 tablespoons (15 milliliters) peanut butter (7 grams protein) 1 cup (240 milliliters) low- ...

  13. Electrophoretic Separation of Proteins


    Chakavarti, Bulbul; Chakavarti, Deb


    Electrophoresis is used to separate complex mixtures of proteins (e.g., from cells, subcellular fractions, column fractions, or immunoprecipitates), to investigate subunit compositions, and to verify homogeneity of protein samples. It can also serve to purify proteins for use in further applications. In polyacrylamide gel electrophoresis, proteins migrate in response to an electrical field through pores in a polyacrylamide gel matrix; pore size decreases with increasing acrylamide concentrati...

  14. Simulations of protein folding

    International Nuclear Information System (INIS)

    We have developed a simple, phenomenological, Monte-Carlo code that predicts the three-dimensional structure of globular proteins from the DNA sequences that define them. We have applied this code to two small proteins, the villin headpiece (1VII) and colel rop (1ROP). Our code folds both proteins to within 5 A rms of their native structures

  15. Destabilized bioluminescent proteins (United States)

    Allen, Michael S.; Rakesh, Gupta; Gary, Sayler S.


    Purified nucleic acids, vectors and cells containing a gene cassette encoding at least one modified bioluminescent protein, wherein the modification includes the addition of a peptide sequence. The duration of bioluminescence emitted by the modified bioluminescent protein is shorter than the duration of bioluminescence emitted by an unmodified form of the bioluminescent protein.

  16. Protein domain prediction

    NARCIS (Netherlands)

    Ingolfsson, Helgi; Yona, Golan


    Domains are considered to be the building blocks of protein structures. A protein can contain a single domain or multiple domains, each one typically associated with a specific function. The combination of domains determines the function of the protein, its subcellular localization and the interacti

  17. CSF total protein (United States)

    CSF total protein is a test to determine the amount of protein in your spinal fluid, also called cerebrospinal fluid (CSF). ... The normal protein range varies from lab to lab, but is typically about 15 to 60 mg/dL. Note: mg/dL = ...

  18. Modeling Protein Domain Function (United States)

    Baker, William P.; Jones, Carleton "Buck"; Hull, Elizabeth


    This simple but effective laboratory exercise helps students understand the concept of protein domain function. They use foam beads, Styrofoam craft balls, and pipe cleaners to explore how domains within protein active sites interact to form a functional protein. The activity allows students to gain content mastery and an understanding of the…

  19. Protein - Which is Best? (United States)

    Hoffman, Jay R; Falvo, Michael J


    Protein intake that exceeds the recommended daily allowance is widely accepted for both endurance and power athletes. However, considering the variety of proteins that are available much less is known concerning the benefits of consuming one protein versus another. The purpose of this paper is to identify and analyze key factors in order to make responsible recommendations to both the general and athletic populations. Evaluation of a protein is fundamental in determining its appropriateness in the human diet. Proteins that are of inferior content and digestibility are important to recognize and restrict or limit in the diet. Similarly, such knowledge will provide an ability to identify proteins that provide the greatest benefit and should be consumed. The various techniques utilized to rate protein will be discussed. Traditionally, sources of dietary protein are seen as either being of animal or vegetable origin. Animal sources provide a complete source of protein (i.e. containing all essential amino acids), whereas vegetable sources generally lack one or more of the essential amino acids. Animal sources of dietary protein, despite providing a complete protein and numerous vitamins and minerals, have some health professionals concerned about the amount of saturated fat common in these foods compared to vegetable sources. The advent of processing techniques has shifted some of this attention and ignited the sports supplement marketplace with derivative products such as whey, casein and soy. Individually, these products vary in quality and applicability to certain populations. The benefits that these particular proteins possess are discussed. In addition, the impact that elevated protein consumption has on health and safety issues (i.e. bone health, renal function) are also reviewed. Key PointsHigher protein needs are seen in athletic populations.Animal proteins is an important source of protein, however potential health concerns do exist from a diet of protein

  20. Highly thermostable fluorescent proteins (United States)

    Bradbury, Andrew M.; Waldo, Geoffrey S.; Kiss, Csaba


    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  1. Protein hydration and dynamics

    International Nuclear Information System (INIS)

    Inelastic neutron scattering can measure the protein thermal fluctuations under the physiological aqueous environment, especially it is powerful to observe the low-energy protein dynamics in THz region, which are revealed theoretically to be coupled with solvations. Neutron enables the selective observation of protein and hydration water by deuteration. The complementary analysis with molecular dynamics simulation is also effective for the study of protein hydration. Some examples of the application toward the understanding of molecular basis of protein functions will be introduced. (author)

  2. Protein crystallization with paper (United States)

    Matsuoka, Miki; Kakinouchi, Keisuke; Adachi, Hiroaki; Maruyama, Mihoko; Sugiyama, Shigeru; Sano, Satoshi; Yoshikawa, Hiroshi Y.; Takahashi, Yoshinori; Yoshimura, Masashi; Matsumura, Hiroyoshi; Murakami, Satoshi; Inoue, Tsuyoshi; Mori, Yusuke; Takano, Kazufumi


    We developed a new protein crystallization method that incorporates paper. A small piece of paper, such as facial tissue or KimWipes, was added to a drop of protein solution in the traditional sitting drop vapor diffusion technique, and protein crystals grew by incorporating paper. By this method, we achieved the growth of protein crystals with reducing osmotic shock. Because the technique is very simple and the materials are easy to obtain, this method will come into wide use for protein crystallization. In the future, it could be applied to nanoliter-scale crystallization screening on a paper sheet such as in inkjet printing.

  3. Protein and vegetarian diets. (United States)

    Marsh, Kate A; Munn, Elizabeth A; Baines, Surinder K


    A vegetarian diet can easily meet human dietary protein requirements as long as energy needs are met and a variety of foods are eaten. Vegetarians should obtain protein from a variety of plant sources, including legumes, soy products, grains, nuts and seeds. Eggs and dairy products also provide protein for those following a lacto-ovo-vegetarian diet. There is no need to consciously combine different plant proteins at each meal as long as a variety of foods are eaten from day to day, because the human body maintains a pool of amino acids which can be used to complement dietary protein. The consumption of plant proteins rather than animal proteins by vegetarians may contribute to their reduced risk of chronic diseases such as diabetes and heart disease. PMID:25369930

  4. Functional diversification of hsp40: distinct j-protein functional requirements for two prions allow for chaperone-dependent prion selection.

    Directory of Open Access Journals (Sweden)

    Julia M Harris


    Full Text Available Yeast prions are heritable amyloid aggregates of functional yeast proteins; their propagation to subsequent cell generations is dependent upon fragmentation of prion protein aggregates by molecular chaperone proteins. Mounting evidence indicates the J-protein Sis1 may act as an amyloid specificity factor, recognizing prion and other amyloid aggregates and enabling Ssa and Hsp104 to act in prion fragmentation. Chaperone interactions with prions, however, can be affected by variations in amyloid-core structure resulting in distinct prion variants or 'strains'. Our genetic analysis revealed that Sis1 domain requirements by distinct variants of [PSI+] are strongly dependent upon overall variant stability. Notably, multiple strong [PSI+] variants can be maintained by a minimal construct of Sis1 consisting of only the J-domain and glycine/phenylalanine-rich (G/F region that was previously shown to be sufficient for cell viability and [RNQ+] prion propagation. In contrast, weak [PSI+] variants are lost under the same conditions but maintained by the expression of an Sis1 construct that lacks only the G/F region and cannot support [RNQ+] propagation, revealing mutually exclusive requirements for Sis1 function between these two prions. Prion loss is not due to [PSI+]-dependent toxicity or dependent upon a particular yeast genetic background. These observations necessitate that Sis1 must have at least two distinct functional roles that individual prions differentially require for propagation and which are localized to the glycine-rich domains of the Sis1. Based on these distinctions, Sis1 plasmid-shuffling in a [PSI+]/[RNQ+] strain permitted J-protein-dependent prion selection for either prion. We also found that, despite an initial report to the contrary, the human homolog of Sis1, Hdj1, is capable of [PSI+] prion propagation in place of Sis1. This conservation of function is also prion-variant dependent, indicating that only one of the two Sis1-prion

  5. Protein kinesis: The dynamics of protein trafficking and stability

    Energy Technology Data Exchange (ETDEWEB)



    The purpose of this conference is to provide a multidisciplinary forum for exchange of state-of-the-art information on protein kinesis. This volume contains abstracts of papers in the following areas: protein folding and modification in the endoplasmic reticulum; protein trafficking; protein translocation and folding; protein degradation; polarity; nuclear trafficking; membrane dynamics; and protein import into organelles.

  6. Protein Electrophoresis/Immunofixation Electrophoresis (United States)

    ... be limited. Home Visit Global Sites Search Help? Protein Electrophoresis Immunofixation Electrophoresis Share this page: Was this page helpful? Also known as: Serum Protein Electrophoresis; Protein ELP; SPE; SPEP; Urine Protein Electrophoresis; ...

  7. Protein: FEB6 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FEB6 Photoresponse regulatory proteins HD1 SE1 Zinc finger protein HD1 Protein CONSTANS-like, Pr ... otein HEADING DATE 1, Protein PHOTOPERIOD SENSITIVITY ... 1 39947 Oryza sativa subsp. japonica 4340746 Q9FDX ...

  8. Identifying novel protein phenotype annotations by hybridizing protein-protein interactions and protein sequence similarities. (United States)

    Chen, Lei; Zhang, Yu-Hang; Huang, Tao; Cai, Yu-Dong


    Studies of protein phenotypes represent a central challenge of modern genetics in the post-genome era because effective and accurate investigation of protein phenotypes is one of the most critical procedures to identify functional biological processes in microscale, which involves the analysis of multifactorial traits and has greatly contributed to the development of modern biology in the post genome era. Therefore, we have developed a novel computational method that identifies novel proteins associated with certain phenotypes in yeast based on the protein-protein interaction network. Unlike some existing network-based computational methods that identify the phenotype of a query protein based on its direct neighbors in the local network, the proposed method identifies novel candidate proteins for a certain phenotype by considering all annotated proteins with this phenotype on the global network using a shortest path (SP) algorithm. The identified proteins are further filtered using both a permutation test and their interactions and sequence similarities to annotated proteins. We compared our method with another widely used method called random walk with restart (RWR). The biological functions of proteins for each phenotype identified by our SP method and the RWR method were analyzed and compared. The results confirmed a large proportion of our novel protein phenotype annotation, and the RWR method showed a higher false positive rate than the SP method. Our method is equally effective for the prediction of proteins involving in all the eleven clustered yeast phenotypes with a quite low false positive rate. Considering the universality and generalizability of our supporting materials and computing strategies, our method can further be applied to study other organisms and the new functions we predicted can provide pertinent instructions for the further experimental verifications. PMID:26728152

  9. Sensitizing properties of proteins

    DEFF Research Database (Denmark)

    Poulsen, Lars K.; Ladics, Gregory S; McClain, Scott;


    The scope of allergy risk is diverse considering the myriad ways in which protein allergenicity is affected by physiochemical characteristics of proteins. The complexity created by the matrices of foods and the variability of the human immune system add additional challenges to understanding the...... relationship between sensitization potential and allergy disease. To address these and other issues, an April 2012 international symposium was held in Prague, Czech Republic, to review and discuss the state-of-the-science of sensitizing properties of protein allergens. The symposium, organized by the Protein...... scientists from academia, government, and industry participated in the symposium. Experts provided overviews on known mechanisms by which proteins in food may cause sensitization, discussed experimental models to predict protein sensitizing potential, and explored whether such experimental techniques may be...

  10. NMR of unfolded proteins

    Indian Academy of Sciences (India)

    Amarnath Chtterjee; Ashutosh Kumar; Jeetender Chugh; Sudha Srivastava; Neel S Bhavesh; Ramakrishna V Hosur


    In the post-genomic era, as more and more genome sequences are becoming known and hectic efforts are underway to decode the information content in them, it is becoming increasingly evident that flexibility in proteins plays a crucial role in many of the biological functions. Many proteins have intrinsic disorder either wholly or in specific regions. It appears that this disorder may be important for regulatory functions of the proteins, on the one hand, and may help in directing the folding process to reach the compact native state, on the other. Nuclear magnetic resonance (NMR) has over the last two decades emerged as the sole, most powerful technique to help characterize these disordered protein systems. In this review, we first discuss the significance of disorder in proteins and then describe the recent developments in NMR methods for their characterization. A brief description of the results obtained on several disordered proteins is presented at the end.

  11. Computational Protein Design

    DEFF Research Database (Denmark)

    Johansson, Kristoffer Enøe

    to a central method that enables new developments. For example, novel enzymes with functions not found in natural proteins have been de novo designed to give enough activity for experimental optimization. This thesis presents the current state-of-the-art within computational design methods together......Proteins are the major functional group of molecules in biology. The impact of protein science on medicine and chemical productions is rapidly increasing. However, the greatest potential remains to be realized. The fi eld of protein design has advanced computational modeling from a tool of support...... with a novel method based on probability theory. With the aim of assembling a complete pipeline for protein design, this work touches upon several aspects of protein design. The presented work is the computational half of a design project where the other half is dedicated to the experimental part of...

  12. Protein Models Comparator

    CERN Document Server

    Widera, Paweł


    The process of comparison of computer generated protein structural models is an important element of protein structure prediction. It has many uses including model quality evaluation, selection of the final models from a large set of candidates or optimisation of parameters of energy functions used in template free modelling and refinement. Although many protein comparison methods are available online on numerous web servers, their ability to handle a large scale model comparison is often very limited. Most of the servers offer only a single pairwise structural comparison, and they usually do not provide a model-specific comparison with a fixed alignment between the models. To bridge the gap between the protein and model structure comparison we have developed the Protein Models Comparator (pm-cmp). To be able to deliver the scalability on demand and handle large comparison experiments the pm-cmp was implemented "in the cloud". Protein Models Comparator is a scalable web application for a fast distributed comp...

  13. Protein oxidation and peroxidation. (United States)

    Davies, Michael J


    Proteins are major targets for radicals and two-electron oxidants in biological systems due to their abundance and high rate constants for reaction. With highly reactive radicals damage occurs at multiple side-chain and backbone sites. Less reactive species show greater selectivity with regard to the residues targeted and their spatial location. Modification can result in increased side-chain hydrophilicity, side-chain and backbone fragmentation, aggregation via covalent cross-linking or hydrophobic interactions, protein unfolding and altered conformation, altered interactions with biological partners and modified turnover. In the presence of O2, high yields of peroxyl radicals and peroxides (protein peroxidation) are formed; the latter account for up to 70% of the initial oxidant flux. Protein peroxides can oxidize both proteins and other targets. One-electron reduction results in additional radicals and chain reactions with alcohols and carbonyls as major products; the latter are commonly used markers of protein damage. Direct oxidation of cysteine (and less commonly) methionine residues is a major reaction; this is typically faster than with H2O2, and results in altered protein activity and function. Unlike H2O2, which is rapidly removed by protective enzymes, protein peroxides are only slowly removed, and catabolism is a major fate. Although turnover of modified proteins by proteasomal and lysosomal enzymes, and other proteases (e.g. mitochondrial Lon), can be efficient, protein hydroperoxides inhibit these pathways and this may contribute to the accumulation of modified proteins in cells. Available evidence supports an association between protein oxidation and multiple human pathologies, but whether this link is causal remains to be established. PMID:27026395

  14. Proteins at interfaces


    Evers, Florian


    Protein adsorption is a fundamental and ubiquitous phenomenon, which has severe implications in the fields of biomaterials as well as bio- and nanotechnology, e.g., in drug delivery, biofouling, the biocompatibility of implants, food chemistry, and biosensors. Therefore, the mechanisms of protein adsorption and controlling the interfacial affinity of proteins have become intriguing and interdisciplinary research topics. In this work, X-ray and neutron reflectometry are the main...

  15. Protein-surfactant interactions


    Valstar, Ank


    Protein-surfactant interactions in aqueous media have been investigated. The globular proteins lysozyme and bovine serum albumin (BSA) served as model proteins. Several ionic and non-ionic surfactants were used. Fluorescence probe measurements showed that at low sodium dodecyl sulfate (SDS) concentration (< 0.1 M) one micelle-like SDS cluster is bound to lysozyme. From dynamic light scattering (DLS) results it was observed that lysozyme in the complex does not correspond to the fully unfol...

  16. Pressure cryocooling protein crystals (United States)

    Kim, Chae Un; Gruner, Sol M.


    Preparation of cryocooled protein crystal is provided by use of helium pressurizing and cryocooling to obtain cryocooled protein crystal allowing collection of high resolution data and by heavier noble gas (krypton or xenon) binding followed by helium pressurizing and cryocooling to obtain cryocooled protein crystal for collection of high resolution data and SAD phasing simultaneously. The helium pressurizing is carried out on crystal coated to prevent dehydration or on crystal grown in aqueous solution in a capillary.

  17. Biofilm Matrix Proteins


    Fong, Jiunn N. C.; Yildiz, Fitnat H.


    Proteinaceous components of the biofilm matrix include secreted extracellular proteins, cell surface adhesins and protein subunits of cell appendages such as flagella and pili. Biofilm matrix proteins play diverse roles in biofilm formation and dissolution. They are involved in attaching cells to surfaces, stabilizing the biofilm matrix via interactions with exopolysaccharide and nucleic acid components, developing three-dimensional biofilm architectures, and dissolving biofilm matrix via enz...

  18. Ribosome-inactivating proteins


    Walsh, Matthew J; Dodd, Jennifer E; Hautbergue, Guillaume M.


    Ribosome-inactivating proteins (RIPs) were first isolated over a century ago and have been shown to be catalytic toxins that irreversibly inactivate protein synthesis. Elucidation of atomic structures and molecular mechanism has revealed these proteins to be a diverse group subdivided into two classes. RIPs have been shown to exhibit RNA N-glycosidase activity and depurinate the 28S rRNA of the eukaryotic 60S ribosomal subunit. In this review, we compare archetypal RIP family members with oth...

  19. Trisulfides in Proteins

    DEFF Research Database (Denmark)

    Nielsen, Rasmus W.; Tachibana, Christine; Hansen, Niels Erik;


    post-translational modification, and the number of proteins in which a trisulfide has been unambiguously identified is small. Nevertheless, we believe that its prevalence may be underestimated, particularly with the increasing evidence for significant pools of sulfides in living tissues and their...... possible roles in cellular metabolism. This review focuses on examples of proteins that are known to contain a trisulfide bridge, and gives an overview of the chemistry of trisulfide formation, and the methods by which it is detected in proteins....

  20. Staining Proteins in Gels


    Gallagher, Sean; Chakavarti, Deb


    Following separation by electrophoretic methods, proteins in a gel can be detected by several staining methods. This unit describes protocols for detecting proteins by four popular methods. Coomassie blue staining is an easy and rapid method. Silver staining, while more time consuming, is considerably more sensitive and can thus be used to detect smaller amounts of protein. Fluorescent staining is a popular alternative to traditional staining procedures, mainly because it is more sensitive th...

  1. Acanthamoeba castellanii STAT protein. (United States)

    Kicinska, Anna; Leluk, Jacek; Jarmuszkiewicz, Wieslawa


    STAT (signal transducers and activators of transcription) proteins are one of the important mediators of phosphotyrosine-regulated signaling in metazoan cells. We described the presence of STAT protein in a unicellular, free-living amoebae with a simple life cycle, Acanthamoeba castellanii. A. castellanii is the only, studied to date, Amoebozoan that does not belong to Mycetozoa but possesses STATs. A sequence of the A. castellanii STAT protein includes domains similar to those of the Dictyostelium STAT proteins: a coiled coil (characteristic for Dictyostelium STAT coiled coil), a STAT DNA-binding domain and a Src-homology domain. The search for protein sequences homologous to A. castellanii STAT revealed 17 additional sequences from lower eukaryotes. Interestingly, all of these sequences come from Amoebozoa organisms that belong to either Mycetozoa (slime molds) or Centramoebida. We showed that there are four separated clades within the slime mold STAT proteins. The A. castellanii STAT protein branches next to a group of STATc proteins from Mycetozoa. We also demonstrate that Amoebozoa form a distinct monophyletic lineage within the STAT protein world that is well separated from the other groups. PMID:25338074

  2. Acanthamoeba castellanii STAT protein.

    Directory of Open Access Journals (Sweden)

    Anna Kicinska

    Full Text Available STAT (signal transducers and activators of transcription proteins are one of the important mediators of phosphotyrosine-regulated signaling in metazoan cells. We described the presence of STAT protein in a unicellular, free-living amoebae with a simple life cycle, Acanthamoeba castellanii. A. castellanii is the only, studied to date, Amoebozoan that does not belong to Mycetozoa but possesses STATs. A sequence of the A. castellanii STAT protein includes domains similar to those of the Dictyostelium STAT proteins: a coiled coil (characteristic for Dictyostelium STAT coiled coil, a STAT DNA-binding domain and a Src-homology domain. The search for protein sequences homologous to A. castellanii STAT revealed 17 additional sequences from lower eukaryotes. Interestingly, all of these sequences come from Amoebozoa organisms that belong to either Mycetozoa (slime molds or Centramoebida. We showed that there are four separated clades within the slime mold STAT proteins. The A. castellanii STAT protein branches next to a group of STATc proteins from Mycetozoa. We also demonstrate that Amoebozoa form a distinct monophyletic lineage within the STAT protein world that is well separated from the other groups.

  3. Consensus protein design (United States)

    Porebski, Benjamin T.; Buckle, Ashley M.


    A popular and successful strategy in semi-rational design of protein stability is the use of evolutionary information encapsulated in homologous protein sequences. Consensus design is based on the hypothesis that at a given position, the respective consensus amino acid contributes more than average to the stability of the protein than non-conserved amino acids. Here, we review the consensus design approach, its theoretical underpinnings, successes, limitations and challenges, as well as providing a detailed guide to its application in protein engineering. PMID:27274091

  4. Engineering therapeutic protein disaggregases (United States)

    Shorter, James


    Therapeutic agents are urgently required to cure several common and fatal neurodegenerative disorders caused by protein misfolding and aggregation, including amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), and Alzheimer’s disease (AD). Protein disaggregases that reverse protein misfolding and restore proteins to native structure, function, and localization could mitigate neurodegeneration by simultaneously reversing 1) any toxic gain of function of the misfolded form and 2) any loss of function due to misfolding. Potentiated variants of Hsp104, a hexameric AAA+ ATPase and protein disaggregase from yeast, have been engineered to robustly disaggregate misfolded proteins connected with ALS (e.g., TDP-43 and FUS) and PD (e.g., α-synuclein). However, Hsp104 has no metazoan homologue. Metazoa possess protein disaggregase systems distinct from Hsp104, including Hsp110, Hsp70, and Hsp40, as well as HtrA1, which might be harnessed to reverse deleterious protein misfolding. Nevertheless, vicissitudes of aging, environment, or genetics conspire to negate these disaggregase systems in neurodegenerative disease. Thus, engineering potentiated human protein disaggregases or isolating small-molecule enhancers of their activity could yield transformative therapeutics for ALS, PD, and AD. PMID:27255695

  5. Simulations of Protein Folding

    CERN Document Server

    Cahill, M; Cahill, K E; Cahill, Michael; Fleharty, Mark; Cahill, Kevin


    We have developed a simple, phenomenological, Monte-Carlo code that predicts the three-dimensional structure of globular proteins from the DNA sequences that define them. We have applied this code to two small proteins, the villin headpiece (1VII) and cole1 rop (1ROP). Our code folded the 36-residue villin headpiece to a mean rms distance of less than 5 A from its native structure as revealed by NMR; it folded a 56-residue fragment of the protein cole1 rop to within 11 A of its native structure. The denatured starting configurations of these two proteins were, respectively, 29 A and 55 A distant from their native structures.

  6. Ultrafiltration of pegylated proteins (United States)

    Molek, Jessica R.

    There is considerable clinical interest in the use of "second-generation" therapeutics produced by conjugation of a native protein with various polymers including polyethylene glycol (PEG). PEG--protein conjugates, so-called PEGylated proteins, can exhibit enhanced stability, half-life, and bioavailability. One of the challenges in the commercial production of PEGylated proteins is the purification required to remove unreacted polymer, native protein, and in many cases PEGylated proteins with nonoptimal degrees of conjugation. The overall objective of this thesis was to examine the use of ultrafiltration for the purification of PEGylated proteins. This included: (1) analysis of size-based separation of PEGylated proteins using conventional ultrafiltration membranes, (2) use of electrically-charged membranes to exploit differences in electrostatic interactions, and (3) examination of the effects of PEGylation on protein fouling. The experimental results were analyzed using appropriate theoretical models, with the underlying physical properties of the PEGylated proteins evaluated using size exclusion chromatography, capillary electrophoresis, dynamic light scattering, and reverse phase chromatography. PEGylated proteins were produced by covalent attachment of activated PEG to a protein via primary amines on the lysine residues. A simple model was developed for the reaction kinetics, which was used to explore the effect of reaction conditions and mode of operation on the distribution of PEGylated products. The effective size of the PEGylated proteins was evaluated using size exclusion chromatography, with appropriate correlations developed for the size in terms of the molecular weight of the native protein and attached PEG. The electrophoretic mobility of the PEGylated proteins were evaluated by capillary electrophoresis with the data in good agreement with a simple model accounting for the increase in protein size and the reduction in the number of protonated amine

  7. How Many Protein-Protein Interactions Types Exist in Nature?


    Garma, Leonardo; Mukherjee, Srayanta; Mitra, Pralay; Zhang, Yang


    Protein quaternary structure universe” refers to the ensemble of all protein-protein complexes across all organisms in nature. The number of quaternary folds thus corresponds to the number of ways proteins physically interact with other proteins. This study focuses on answering two basic questions: Whether the number of protein-protein interactions is limited and, if yes, how many different quaternary folds exist in nature. By all-to-all sequence and structure comparisons, we grouped the pro...

  8. How Many Protein-Protein Interactions Types Exist in Nature?


    Leonardo Garma; Srayanta Mukherjee; Pralay Mitra; Yang Zhang


    "Protein quaternary structure universe" refers to the ensemble of all protein-protein complexes across all organisms in nature. The number of quaternary folds thus corresponds to the number of ways proteins physically interact with other proteins. This study focuses on answering two basic questions: Whether the number of protein-protein interactions is limited and, if yes, how many different quaternary folds exist in nature. By all-to-all sequence and structure comparisons, we grouped the pro...

  9. Protein (Cyanobacteria): 286011 [

    Lifescience Database Archive (English)

    Full Text Available YP_007057271.1 1117:4890 1161:684 1185:224 373984:129 373994:129 histidine kinase,PAS ... domain-con ... taining protein,PAS ... domain-containing protein,histidine kinase,GAF dom ...

  10. Protein (Viridiplantae): 357488463 [

    Lifescience Database Archive (English)

    Full Text Available XP_003614519.1 33090:2423 35493:1202 131221:1202 3193:1202 58023:2056 78536:1595 58024:1595 3398 ... 938 3814:1938 163742:3028 3877:3028 3880:3028 Cyst nematode ... resistance protein-like protein Medicago truncatul ...

  11. Poxviral Ankyrin Proteins

    Directory of Open Access Journals (Sweden)

    Michael H. Herbert


    Full Text Available Multiple repeats of the ankyrin motif (ANK are ubiquitous throughout the kingdoms of life but are absent from most viruses. The main exception to this is the poxvirus family, and specifically the chordopoxviruses, with ANK repeat proteins present in all but three species from separate genera. The poxviral ANK repeat proteins belong to distinct orthologue groups spread over different species, and align well with the phylogeny of their genera. This distribution throughout the chordopoxviruses indicates these proteins were present in an ancestral vertebrate poxvirus, and have since undergone numerous duplication events. Most poxviral ANK repeat proteins contain an unusual topology of multiple ANK motifs starting at the N-terminus with a C-terminal poxviral homologue of the cellular F-box enabling interaction with the cellular SCF ubiquitin ligase complex. The subtle variations between ANK repeat proteins of individual poxviruses suggest an array of different substrates may be bound by these protein-protein interaction domains and, via the F-box, potentially directed to cellular ubiquitination pathways and possible degradation. Known interaction partners of several of these proteins indicate that the NF-κB coordinated anti-viral response is a key target, whilst some poxviral ANK repeat domains also have an F-box independent affect on viral host-range.

  12. Protein (Viridiplantae): 186478918 [

    Lifescience Database Archive (English)

    Full Text Available NP_001117362.1 33090:264 35493:490 131221:490 3193:490 58023:763 78536:5554 58024:5554 3398:5554 ... 88 3699:588 3700:588 980083:588 3701:588 3702:2514 StaR -like protein domain-containing protein Arabidopsis ...

  13. Protein (Viridiplantae): 145336153 [

    Lifescience Database Archive (English)

    Full Text Available NP_174031.2 33090:264 35493:490 131221:490 3193:490 58023:763 78536:5554 58024:5554 3398:5554 71 ... 88 3699:588 3700:588 980083:588 3701:588 3702:2514 StaR -like protein domain-containing protein Arabidopsis ...

  14. Protein (Viridiplantae): 186478920 [

    Lifescience Database Archive (English)

    Full Text Available NP_001117363.1 33090:264 35493:490 131221:490 3193:490 58023:763 78536:5554 58024:5554 3398:5554 ... 88 3699:588 3700:588 980083:588 3701:588 3702:2514 StaR -like protein domain-containing protein Arabidopsis ...

  15. Protein (Viridiplantae): 18396209 [

    Lifescience Database Archive (English)

    Full Text Available NP_564271.1 33090:264 35493:490 131221:490 3193:490 58023:763 78536:5554 58024:5554 3398:5554 71 ... 88 3699:588 3700:588 980083:588 3701:588 3702:2514 StaR -like protein domain-containing protein Arabidopsis ...

  16. Proteins in biomass streams

    NARCIS (Netherlands)

    Mulder, W.J.


    The focus of this study is to give an overview of traditional and new biomasses and biomass streams that contain proteins. When information was available, the differences in molecular structure and physical and chemical properties for the different proteins is given. For optimal biomass use, isolati

  17. Protein (Cyanobacteria): 187726 [

    Lifescience Database Archive (English)

    Full Text Available ZP_00515693.1 1117:3739 1118:294 263510:556 263511:556 165597:1102 Cobalamin synthesis ... protein/P ... 47K:Cobalamin synthesis ... protein/P47K Crocosphaera watsonii WH 8501 MHKIPVT ...

  18. Protein (Cyanobacteria): 187721 [

    Lifescience Database Archive (English)

    Full Text Available ZP_00515086.1 1117:3739 1118:294 263510:556 263511:556 165597:1102 Cobalamin synthesis ... protein/P ... 47K:Cobalamin synthesis ... protein/P47K Crocosphaera watsonii WH 8501 MSGINQQ ...

  19. Protein (Cyanobacteria): 187724 [

    Lifescience Database Archive (English)

    Full Text Available ZP_00514782.1 1117:3739 1118:294 263510:556 263511:556 165597:1102 Cobalamin synthesis ... protein/P ... 47K:Cobalamin synthesis ... protein/P47K Crocosphaera watsonii WH 8501 MQIVDKK ...

  20. Protein (Cyanobacteria): 187722 [

    Lifescience Database Archive (English)

    Full Text Available ZP_00515750.1 1117:3739 1118:294 263510:556 263511:556 165597:1102 Cobalamin synthesis ... protein/P ... 47K:Cobalamin synthesis ... protein/P47K Crocosphaera watsonii WH 8501 MTPLNFN ...

  1. Protein (Cyanobacteria): 187723 [

    Lifescience Database Archive (English)

    Full Text Available ZP_00515087.1 1117:3739 1118:294 263510:556 263511:556 165597:1102 Cobalamin synthesis ... protein/P ... 47K:Cobalamin synthesis ... protein/P47K Crocosphaera watsonii WH 8501 MTRLDFN ...

  2. Protein (Viridiplantae): 15240110 [

    Lifescience Database Archive (English)

    Full Text Available NP_201488.1 33090:325 35493:1944 131221:1944 3193:1944 58023:3713 78536:2650 58024:2650 3398:265 ... :1852 LOB domain-containing protein 36 (ASYMMETRIC LEAVES ... 2-like protein 1) Arabidopsis thaliana MASSSSPCAAC ...

  3. Protein (Viridiplantae): 357505877 [

    Lifescience Database Archive (English)

    Full Text Available XP_003623227.1 33090:2309 35493:2314 131221:2314 3193:2314 58023:1780 78536:1486 58024:1486 3398 ... 163742:9849 3877:9849 3880:9849 Cell cycle control crn ... (Crooked neck) protein-like protein Medicago trunc ...

  4. Protein (Viridiplantae): 357472389 [

    Lifescience Database Archive (English)

    Full Text Available XP_003606479.1 33090:29954 35493:20452 131221:20452 3193:20452 58023:15679 78536:15788 58024:157 ... 2228 163742:12813 3877:12813 3880:12813 Defects in morphology ... protein-like protein Medicago truncatula MAETSSSNN ...

  5. Protein (Viridiplantae): 357472385 [

    Lifescience Database Archive (English)

    Full Text Available XP_003606477.1 33090:29954 35493:20452 131221:20452 3193:20452 58023:15679 78536:15788 58024:157 ... 2228 163742:12813 3877:12813 3880:12813 Defects in morphology ... protein-like protein Medicago truncatula MAETSSSNN ...

  6. Protein (Viridiplantae): 357440307 [

    Lifescience Database Archive (English)

    Full Text Available XP_003590431.1 33090:29954 35493:20452 131221:20452 3193:20452 58023:15679 78536:15788 58024:157 ... 2228 163742:12813 3877:12813 3880:12813 Defects in morphology ... protein-like protein Medicago truncatula MAGTSSKIP ...

  7. Protein (Viridiplantae): 357444551 [

    Lifescience Database Archive (English)

    Full Text Available XP_003592553.1 33090:29954 35493:20452 131221:20452 3193:20452 58023:15679 78536:15788 58024:157 ... 2228 163742:12813 3877:12813 3880:12813 Defects in morphology ... protein-like protein Medicago truncatula MAGTSSKIP ...

  8. C-reactive protein (United States)

    C-reactive protein (CRP) is produced by the liver. The level of CRP rises when there is inflammation throughout the body. It is one of a group of proteins called "acute phase reactants" that go up in response to inflammation. ...

  9. Protein (Viridiplantae): 18414878 [

    Lifescience Database Archive (English)

    Full Text Available NP_567527.1 33090:1722 35493:20777 131221:20777 3193:20777 58023:13588 78536:13546 58024:13546 3 ... 83:5979 3701:5979 3702:6150 Tryptophan RNA-binding attenuator ... protein-like protein Arabidopsis thaliana MAAPFFST ...

  10. Protein (Viridiplantae): 238480800 [

    Lifescience Database Archive (English)

    Full Text Available NP_001154247.1 33090:1722 35493:20777 131221:20777 3193:20777 58023:13588 78536:13546 58024:1354 ... 83:5979 3701:5979 3702:6150 Tryptophan RNA-binding attenuator ... protein-like protein Arabidopsis thaliana MAAPFFST ...

  11. Protein (Viridiplantae): 238480798 [

    Lifescience Database Archive (English)

    Full Text Available NP_001154246.1 33090:1722 35493:20777 131221:20777 3193:20777 58023:13588 78536:13546 58024:1354 ... 83:5979 3701:5979 3702:6150 Tryptophan RNA-binding attenuator ... protein-like protein Arabidopsis thaliana MAAPFFST ...

  12. Protein (Cyanobacteria): 305313 [

    Lifescience Database Archive (English)

    Full Text Available ZP_09781770.1 1117:5986 1150:1684 35823:2516 376219:684 Cytochrome b6-f complex iron -sulfur subu ... nit 1 (Rieske iron -sulfur protein 1) (Plastohydroquinone:plastocyanin ... oxidoreductase iron -sulfur protein 1) (ISP 1) (RISP 1) Arthrospira sp. ...

  13. Protein Attachment on Nanodiamonds. (United States)

    Lin, Chung-Lun; Lin, Cheng-Huang; Chang, Huan-Cheng; Su, Meng-Chih


    A recent advance in nanotechnology is the scale-up production of small and nonaggregated diamond nanoparticles suitable for biological applications. Using detonation nanodiamonds (NDs) with an average diameter of ∼4 nm as the adsorbents, we have studied the static attachment of three proteins (myoglobin, bovine serum albumin, and insulin) onto the nanoparticles by optical spectroscopy, mass spectrometry, and dynamic light scattering, and electrophoretic zeta potential measurements. Results show that the protein surface coverage is predominantly determined by the competition between protein-protein and protein-ND interactions, giving each protein a unique and characteristic structural configuration in its own complex. Specifically, both myoglobin and bovine serum albumin show a Langmuir-type adsorption behavior, forming 1:1 complexes at saturation, whereas insulin folds into a tightly bound multimer before adsorption. The markedly different adsorption patterns appear to be independent of the protein concentration and are closely related to the affinity of the individual proteins for the NDs. The present study provides a fundamental understanding for the use of NDs as a platform for nanomedical drug delivery. PMID:25815400

  14. Protein sequence databases. (United States)

    Apweiler, Rolf; Bairoch, Amos; Wu, Cathy H


    A variety of protein sequence databases exist, ranging from simple sequence repositories, which store data with little or no manual intervention in the creation of the records, to expertly curated universal databases that cover all species and in which the original sequence data are enhanced by the manual addition of further information in each sequence record. As the focus of researchers moves from the genome to the proteins encoded by it, these databases will play an even more important role as central comprehensive resources of protein information. Several the leading protein sequence databases are discussed here, with special emphasis on the databases now provided by the Universal Protein Knowledgebase (UniProt) consortium. PMID:15036160

  15. Manipulating and Visualizing Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Horst D.


    ProteinShop Gives Researchers a Hands-On Tool for Manipulating, Visualizing Protein Structures. The Human Genome Project and other biological research efforts are creating an avalanche of new data about the chemical makeup and genetic codes of living organisms. But in order to make sense of this raw data, researchers need software tools which let them explore and model data in a more intuitive fashion. With this in mind, researchers at Lawrence Berkeley National Laboratory and the University of California, Davis, have developed ProteinShop, a visualization and modeling program which allows researchers to manipulate protein structures with pinpoint control, guided in large part by their own biological and experimental instincts. Biologists have spent the last half century trying to unravel the ''protein folding problem,'' which refers to the way chains of amino acids physically fold themselves into three-dimensional proteins. This final shape, which resembles a crumpled ribbon or piece of origami, is what determines how the protein functions and translates genetic information. Understanding and modeling this geometrically complex formation is no easy matter. ProteinShop takes a given sequence of amino acids and uses visualization guides to help generate predictions about the secondary structures, identifying alpha helices and flat beta strands, and the coil regions that bind them. Once secondary structures are in place, researchers can twist and turn these pre-configurations until they come up with a number of possible tertiary structure conformations. In turn, these are fed into a computationally intensive optimization procedure that tries to find the final, three-dimensional protein structure. Most importantly, ProteinShop allows users to add human knowledge and intuition to the protein structure prediction process, thus bypassing bad configurations that would otherwise be fruitless for optimization. This saves compute cycles and accelerates

  16. MicroProteins

    DEFF Research Database (Denmark)

    Eguen, Teinai Ebimienere; Straub, Daniel; Graeff, Moritz;


    MicroProteins (miPs) are short, usually single-domain proteins that, in analogy to miRNAs, heterodimerize with their targets and exert a dominant-negative effect. Recent bioinformatic attempts to identify miPs have resulted in a list of potential miPs, many of which lack the defining...... characteristics of a miP. In this opinion article, we clearly state the characteristics of a miP as evidenced by known proteins that fit the definition; we explain why modulatory proteins misrepresented as miPs do not qualify as true miPs. We also discuss the evolutionary history of miPs, and how the miP concept...... can extend beyond transcription factors (TFs) to encompass different non-TF proteins that require dimerization for full function....

  17. The centrality of cancer proteins in human protein-protein interaction network: a revisit. (United States)

    Xiong, Wei; Xie, Luyu; Zhou, Shuigeng; Liu, Hui; Guan, Jihong


    Topological analysis of protein-protein interaction (PPI) networks has been widely applied to the investigation on cancer mechanisms. However, there is still a debate on whether cancer proteins exhibit more topological centrality compared to the other proteins in the human PPI network. To resolve this debate, we first identified four sets of human proteins, and then mapped these proteins into the yeast PPI network by homologous genes. Finally, we compared these proteins' properties in human and yeast PPI networks. Experiments over two real datasets demonstrated that cancer proteins tend to have higher degree and smaller clustering coefficient than non-cancer proteins. Experimental results also validated that cancer proteins have larger betweenness centrality compared to the other proteins on the STRING dataset. However, on the BioGRID dataset, the average betweenness centrality of cancer proteins is larger than that of disease and control proteins, but smaller than that of essential proteins. PMID:24878726

  18. Protein oxidation in aquatic foods

    DEFF Research Database (Denmark)

    Baron, Caroline P.


    The chapter discusses general considerations about protein oxidation and reviews the mechanisms involved in protein oxidation and consequences of protein oxidation on fish proteins. It presents two case studies, the first deals with protein and lipid oxidation in frozen rainbow trout......, and the second with oxidation in salted herring. The mechanisms responsible for initiation of protein oxidation are unclear, but it is generally accepted that free radical species initiating lipid oxidation can also initiate protein oxidation. The chapter focuses on interaction between protein and lipid...... oxidation. The protein carbonyl group measurement is the widely used method for estimating protein oxidation in foods and has been used in fish muscle. The chapter also talks about the impact of protein oxidation on protein functionality, fish muscle texture, and food nutritional value. Protein oxidation...

  19. An Algorithm for Finding Functional Modules and Protein Complexes in Protein-Protein Interaction Networks


    Guangyu Cui; Yu Chen; De-Shuang Huang; Kyungsook Han


    Biological processes are often performed by a group of proteins rather than by individual proteins, and proteins in a same biological group form a densely connected subgraph in a protein-protein interaction network. Therefore, finding a densely connected subgraph provides useful information to predict the function or protein complex of uncharacterized proteins in the highly connected subgraph. We have developed an efficient algorithm and program for finding cliques and near-cliques in a prote...

  20. Quantification of the Influence of Protein-Protein Interactions on Adsorbed Protein Structure and Bioactivity


    Wei, Yang; Thyparambil, Aby A.; Latour, Robert A.


    While protein-surface interactions have been widely studied, relatively little is understood at this time regarding how protein-surface interaction effects are influenced by protein-protein interactions and how these effects combine with the internal stability of a protein to influence its adsorbed-state structure and bioactivity. The objectives of this study were to develop a method to study these combined effects under widely varying protein-protein interaction conditions using hen egg-whit...

  1. New approach for predicting protein-protein interactions

    Institute of Scientific and Technical Information of China (English)


    @@ Protein-protein interactions (PPIs) are of vital importance for virtually all processes of a living cell. The study of these associations of protein molecules could improve people's understanding of diseases and provide basis for therapeutic approaches.

  2. Analysis of correlations between protein complex and protein-protein interaction and mRNA expression

    Institute of Scientific and Technical Information of China (English)

    CAI Lun; XUE Hong; LU Hongchao; ZHAO Yi; ZHU Xiaopeng; BU Dongbo; LING Lunjiang; CHEN Runsheng


    Protein-protein interaction is a physical interaction of two proteins in living cells. In budding yeast Saccharomyces cerevisiae, large-scale protein-protein interaction data have been obtained through high-throughput yeast two-hybrid systems (Y2H) and protein complex purification techniques based on mass-spectrometry. Here, we collect 11855 interactions between total 2617 proteins. Through seriate genome-wide mRNA expression data, similarity between two genes could be measured. Protein complex data can also be obtained publicly and can be translated to pair relationship that any two proteins can only exist in the same complex or not. Analysis of protein complex data, protein-protein interaction data and mRNA expression data can elucidate correlations between them. The results show that proteins that have interactions or similar expression patterns have a higher possibility to be in the same protein complex than randomized selected proteins, and proteins which have interactions and similar expression patterns are even more possible to exist in the same protein complex. The work indicates that comprehensive integration and analysis of public large-scale bioinformatical data, such as protein complex data, protein-protein interaction data and mRNA expression data, may help to uncover their relationships and common biological information underlying these data. The strategies described here may help to integrate and analyze other functional genomic and proteomic data, such as gene expression profiling, protein-localization mapping and large-scale phenotypic data, both in yeast and in other organisms.

  3. Piezoelectric allostery of protein. (United States)

    Ohnuki, Jun; Sato, Takato; Takano, Mitsunori


    Allostery is indispensable for a protein to work, where a locally applied stimulus is transmitted to a distant part of the molecule. While the allostery due to chemical stimuli such as ligand binding has long been studied, the growing interest in mechanobiology prompts the study of the mechanically stimulated allostery, the physical mechanism of which has not been established. By molecular dynamics simulation of a motor protein myosin, we found that a locally applied mechanical stimulus induces electrostatic potential change at distant regions, just like the piezoelectricity. This novel allosteric mechanism, "piezoelectric allostery", should be of particularly high value for mechanosensor/transducer proteins. PMID:27575163

  4. Alpha Shapes and Proteins

    DEFF Research Database (Denmark)

    Winter, Pawel; Sterner, Henrik; Sterner, Peter

    We provide a unified description of (weighted) alpha shapes, beta shapes and the corresponding simplicialcomplexes. We discuss their applicability to various protein-related problems. We also discuss filtrations of alpha shapes and touch upon related persistence issues.We claim that the full...... potential of alpha-shapes and related geometrical constructs in protein-related problems yet remains to be realized and verified. We suggest parallel algorithms for (weighted) alpha shapes, and we argue that future use of filtrations and kinetic variants for larger proteins will need such implementation....

  5. Protein crystallography prescreen kit (United States)

    Segelke, Brent W.; Krupka, Heike I.; Rupp, Bernhard


    A kit for prescreening protein concentration for crystallization includes a multiplicity of vials, a multiplicity of pre-selected reagents, and a multiplicity of sample plates. The reagents and a corresponding multiplicity of samples of the protein in solutions of varying concentrations are placed on sample plates. The sample plates containing the reagents and samples are incubated. After incubation the sample plates are examined to determine which of the sample concentrations are too low and which the sample concentrations are too high. The sample concentrations that are optimal for protein crystallization are selected and used.

  6. Human Protein Z.


    Broze, G J; Miletich, J P


    Protein Z was purified from human plasma by a four-step procedure which included barium citrate adsorption, ammonium sulfate fractionation, DEAE-Sepharose chromatography, and blue agarose chromatography with a yield of 20%. It is a 62,000 mol wt protein with an extinction coefficient of 12.0. The concentration of Protein Z in pooled, citrated plasma is 2.2 micrograms/ml and its half-life in patients starting warfarin anticoagulation therapy is estimated to be less than 2.5 d. The NH2-terminal...

  7. Evolution of proteins. (United States)

    Dayhoff, M. O.


    The amino acid sequences of proteins from living organisms are dealt with. The structure of proteins is first discussed; the variation in this structure from one biological group to another is illustrated by the first halves of the sequences of cytochrome c, and a phylogenetic tree is derived from the cytochrome c data. The relative geological times associated with the events of this tree are discussed. Errors which occur in the duplication of cells during the evolutionary process are examined. Particular attention is given to evolution of mutant proteins, globins, ferredoxin, and transfer ribonucleic acids (tRNA's). Finally, a general outline of biological evolution is presented.

  8. The characterisation and prediction of protein-protein interfaces.


    Kabir, T.


    Understanding how proteins interact with each other is of fundamental importance and is one of the most important goals of molecular biology. In order to study the characteristics of protein-protein interaction sites datasets of non-homologous protein-complexes have been compiled. These datasets include 142 obligate homocomplexes, 20 obligate hetero-complexes, 20 enzyme-inhibitor complexes, 15 antibody-antigen complexes, and 10 signaling complexes. Overall, the protein-protein interfaces of o...

  9. Whey Protein- The Role of Protein Supplementation in Resistance Training


    Zimmer, Raymond


    Adequate protein intake is an important concern for many athletes who are undergoing strength-training programs. Many athletes choose to take a protein supplement, such as whey protein, in order to help them build lean muscle mass more efficiently. But the benefit of very high levels of dietary protein in resistance training remains questionable. This paper examines the effectiveness of whey protein, and other forms of protein supplements, in helping athletes augment their muscle mass. A comp...

  10. Protein-protein interaction databases: keeping up with growing interactomes


    Lehne Benjamin; Schlitt Thomas


    Abstract Over the past few years, the number of known protein-protein interactions has increased substantially. To make this information more readily available, a number of publicly available databases have set out to collect and store protein-protein interaction data. Protein-protein interactions have been retrieved from six major databases, integrated and the results compared. The six databases (the Biological General Repository for Interaction Datasets [BioGRID], the Molecular INTeraction ...

  11. The effect of protein-protein and protein-membrane interactions on membrane fouling in ultrafiltration

    NARCIS (Netherlands)

    Huisman, I.H.; Prádanos, P.; Hernández, A.


    It was studied how protein-protein and protein-membrane interactions influence the filtration performance during the ultrafiltration of protein solutions over polymeric membranes. This was done by measuring flux, streaming potential, and protein transmission during filtration of bovine serum albumin

  12. Polymers for Protein Conjugation

    Directory of Open Access Journals (Sweden)

    Gianfranco Pasut


    Full Text Available Polyethylene glycol (PEG at the moment is considered the leading polymer for protein conjugation in view of its unique properties, as well as to its low toxicity in humans, qualities which have been confirmed by its extensive use in clinical practice. Other polymers that are safe, biodegradable and custom-designed have, nevertheless, also been investigated as potential candidates for protein conjugation. This review will focus on natural polymers and synthetic linear polymers that have been used for protein delivery and the results associated with their use. Genetic fusion approaches for the preparation of protein-polypeptide conjugates will be also reviewed and compared with the best known chemical conjugation ones.

  13. Protein (Cyanobacteria): 292092 [

    Lifescience Database Archive (English)

    Full Text Available ZP_11392515.1 1117:5087 1150:2441 44887:135 864702:135 PAS ... domain type 3-containing protein,PAS ... STISDITSQKRTEAALQRSTARYENLASNIPGMIYQVVLETNGHFRFAYASPAS REIFGLEPEQLMKSAALGMTVIHPDDVVSFRQSIAQSAKTLQTQLGKLPK ...

  14. Protein turnover in sheep

    International Nuclear Information System (INIS)

    Considerable advances have been made in the knowledge of the mechanisms and control of synthesis and degradation of proteins in animal tissues during the last decade. Most of the work on the measurement of synthetic and degradative rates of the mixed protein fraction from tissues has been conducted in the rat. There have, unfortunately, been few publications describing results of protein turnover studies with ruminants. Consideration is given here to the techniques used to measure protein turnover, and some of the results obtained, particularly with sheep, are summarized. No attempt has been made to discuss directly the situation in parasitized animals; rather the aim is to provide background information which complements other work dealing with the effects of parasites on the nitrogen metabolism of ruminants. (author)

  15. Engineered Proteins for Bioelectrochemistry (United States)

    Akram, Muhammad Safwan; Rehman, Jawad Ur; Hall, Elizabeth A. H.


    It is only in the past two decades that excellent protein engineering tools have begun to meet parallel advances in materials chemistry, nanofabrication, and electronics. This is revealing scenarios from which synthetic enzymes can emerge, which were previously impossible, as well as interfaces with novel electrode materials. That means the control of the protein structure, electron transport pathway, and electrode surface can usher us into a new era of bioelectrochemistry. This article reviews the principle of electron transfer (ET) and considers how its application at the electrode, within the protein, and at a redox group is directing key advances in the understanding of protein structure to create systems that exhibit better efficiency and unique bioelectrochemistry.

  16. Protein (Viridiplantae): 308813231 [

    Lifescience Database Archive (English)

    Full Text Available XP_003083922.1 33090:9527 3041:5078 1035538:3664 13792:3664 70447:4128 70448:5494 Protein requir ... ed for actin cytoskeleton organization ... and cell cycle progression (ISS) Ostreococcus taur ...

  17. Protein (Viridiplantae): 308808566 [

    Lifescience Database Archive (English)

    Full Text Available XP_003081593.1 33090:6182 3041:4098 1035538:2508 13792:2508 70447:3211 70448:4097 Mitochondrial ... inheritance and actin cytoskeleton organization ... protein (ISS) Ostreococcus tauri MPPKKPPPPPPDAKSYP ...

  18. The Pentapeptide Repeat Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Vetting,M.; Hegde, S.; Fajardo, J.; Fiser, A.; Roderick, S.; Takiff, H.; Blanchard, J.


    The Pentapeptide Repeat Protein (PRP) family has over 500 members in the prokaryotic and eukaryotic kingdoms. These proteins are composed of, or contain domains composed of, tandemly repeated amino acid sequences with a consensus sequence of [S, T,A, V][D, N][L, F]-[S, T,R][G]. The biochemical function of the vast majority of PRP family members is unknown. The three-dimensional structure of the first member of the PRP family was determined for the fluoroquinolone resistance protein (MfpA) from Mycobacterium tuberculosis. The structure revealed that the pentapeptide repeats encode the folding of a novel right-handed quadrilateral {beta}-helix. MfpA binds to DNA gyrase and inhibits its activity. The rod-shaped, dimeric protein exhibits remarkable size, shape and electrostatic similarity to DNA.

  19. Protein (Viridiplantae): 255084748 [

    Lifescience Database Archive (English)

    Full Text Available XP_002504805.1 33090:7862 3041:6362 1035538:5159 13792:5159 38832:5340 296587:5427 DUF1244/molyb ... denum cofactor synthesis ... fusion protein Micromonas sp. RCC299 MASTRTEIEAYAF ...

  20. Protein (Viridiplantae): 303283029 [

    Lifescience Database Archive (English)

    Full Text Available XP_003060806.1 33090:7862 3041:6362 1035538:5159 13792:5159 38832:5340 38833:5093 564608:5093 mo ... lybdenum cofactor synthesis ... protein Micromonas pusilla CCMP1545 MVDAQTTEKIEAYA ...

  1. Protein (Viridiplantae): 308812183 [

    Lifescience Database Archive (English)

    Full Text Available XP_003083399.1 33090:12970 3041:5897 1035538:4613 13792:4613 70447:1628 70448:5196 Glycosylphosp ... hatidylinositol anchor synthesis ... protein (ISS) Ostreococcus tauri MSARRASFQSRFNDSSQ ...

  2. Protein (Viridiplantae): 308810647 [

    Lifescience Database Archive (English)

    Full Text Available XP_003082632.1 33090:15674 3041:5296 1035538:3911 13792:3911 70447:3635 70448:4717 senescence-in ... ducible chloroplast stay-green ... protein (ISS) Ostreococcus tauri MDRATTSSRASTARTFH ...

  3. Protein (Viridiplantae): 308811905 [

    Lifescience Database Archive (English)

    Full Text Available XP_003083260.1 33090:255 3041:4962 1035538:3528 13792:3528 70447:3840 70448:5111 T08009 probable ... ribosomal protein L5-green ... alga (ISS) Ostreococcus tauri MGKRRQKRKSQSVAKTTAYQ ...

  4. Protein (Cyanobacteria): 28423 [

    Lifescience Database Archive (English)

    Full Text Available ZP_10226597.1 1117:517 1118:7626 1125:2051 1160279:627 Type 4 prepilin-like proteins leader ... pept ... ide-processing enzyme (Includes: Leader ... peptidase ; N-methyltransferase) Microcystis sp. T ...

  5. Protein (Cyanobacteria): 360784 [

    Lifescience Database Archive (English)

    Full Text Available YP_007097029.1 1117:17211 1118:17546 217161:1718 1173032:1718 1173020:1718 putative stress ... prote ... in (general stress ... protein 26) Chamaesiphon minutus PCC 6605 MANATENQ ...

  6. Protein (Cyanobacteria): 392180 [

    Lifescience Database Archive (English)

    Full Text Available ZP_07113914.1 1117:24513 1150:7038 1158:3915 272129:3709 Bifunctional protein birA (Includes: Biotin ... otin operon repressor; Biotin --(acetyl-CoA-carboxylase) synthetase (Biotin --prot ...

  7. Interactive protein manipulation

    Energy Technology Data Exchange (ETDEWEB)


    We describe an interactive visualization and modeling program for the creation of protein structures ''from scratch''. The input to our program is an amino acid sequence -decoded from a gene- and a sequence of predicted secondary structure types for each amino acid-provided by external structure prediction programs. Our program can be used in the set-up phase of a protein structure prediction process; the structures created with it serve as input for a subsequent global internal energy minimization, or another method of protein structure prediction. Our program supports basic visualization methods for protein structures, interactive manipulation based on inverse kinematics, and visualization guides to aid a user in creating ''good'' initial structures.

  8. Protein (Viridiplantae): 308811366 [

    Lifescience Database Archive (English)

    Full Text Available XP_003082991.1 33090:1951 3041:1340 1035538:592 13792:592 70447:610 70448:205 Transporter, ABC s ... uperfamily (Breast cancer ... resistance protein) (ISS), partial Ostreococcus ta ...

  9. Protein (Viridiplantae): 308810513 [

    Lifescience Database Archive (English)

    Full Text Available XP_003082565.1 33090:8864 3041:8803 1035538:7822 13792:7822 70447:3615 70448:4680 Predicted memb ... rane protein (associated with esophageal cancer ... in humans) (ISS) Ostreococcus tauri MTSSRKLCAFVRDA ...

  10. Protein (Viridiplantae): 308804289 [

    Lifescience Database Archive (English)

    Full Text Available XP_003079457.1 33090:1951 3041:1340 1035538:592 13792:592 70447:610 70448:205 Transporter, ABC s ... uperfamily (Breast cancer ... resistance protein) (ISS) Ostreococcus tauri MASRV ...

  11. Untying knots in proteins. (United States)

    Sułkowska, Joanna I; Sułkowski, Piotr; Szymczak, Piotr; Cieplak, Marek


    A shoelace can be readily untied by pulling its ends rather than its loops. Attempting to untie a native knot in a protein can also succeed or fail depending on where one pulls. However, thermal fluctuations induced by the surrounding water affect conformations stochastically and may add to the uncertainty of the outcome. When the protein is pulled by the termini, the knot can only get tightened, and any attempt at untying results in failure. We show that, by pulling specific amino acids, one may easily retract a terminal segment of the backbone from the knotting loop and untangle the knot. At still other amino acids, the outcome of pulling can go either way. We study the dependence of the untying probability on the way the protein is grasped, the pulling speed, and the temperature. Elucidation of the mechanisms underlying this dependence is critical for a successful experimental realization of protein knot untying. PMID:20857930

  12. Protein (Viridiplantae): 308806666 [

    Lifescience Database Archive (English)

    Full Text Available XP_003080644.1 33090:21099 3041:5360 1035538:3986 13792:3986 70447:3049 70448:3532 COG3310: Unch ... aracterized protein conserved in bacteria ... (ISS) Ostreococcus tauri MRRTCASRNLARSPVAARERCRQMV ...

  13. Protein (Viridiplantae): 308803575 [

    Lifescience Database Archive (English)

    Full Text Available XP_003079100.1 33090:20519 3041:4460 1035538:2940 13792:2940 70447:2035 70448:2555 COG4399: Unch ... aracterized protein conserved in bacteria ... (ISS) Ostreococcus tauri MKALQRLVLRGSTDGVRPACERAMA ...

  14. Protein (Viridiplantae): 308804123 [

    Lifescience Database Archive (English)

    Full Text Available XP_003079374.1 33090:20519 3041:4460 1035538:2940 13792:2940 70447:2035 70448:2555 COG4399: Unch ... aracterized protein conserved in bacteria ... (ISS) Ostreococcus tauri MDSLATSRRRRLARAGAAIATALAL ...

  15. Protein (Viridiplantae): 255077633 [

    Lifescience Database Archive (English)

    Full Text Available XP_002502450.1 33090:20956 3041:5145 1035538:3740 13792:3740 38832:3722 296587:3525 isocitrate d ... ehydrogenase (NADP+), bacteria -like protein Micromonas sp. RCC299 MAAASAGGKIQAAPM ...

  16. Protein (Cyanobacteria): 228257 [

    Lifescience Database Archive (English)

    Full Text Available ZP_09784859.1 1117:4333 1150:1533 35823:3512 376219:3411 Protein ushA precursor (Includes: UDP-sugar ... ugar hydrolase (UDP-sugar ... pyrophosphatase) (UDP-sugar ... diphosphatase); 5'-nuc ...

  17. Protein folding and cosmology

    CERN Document Server

    González-Diáz, P F


    Protein denaturing induced by supercooling is interpreted as a process where some or all internal symmetries of the native protein are spontaneously broken. Hence, the free-energy potential corresponding to a folding-funnel landscape becomes temperature-dependent and describes a phase transition. The idea that deformed vortices could be produced in the transition induced by temperature quenching, from native proteins to unfolded conformations is discussed in terms of the Zurek mechanism that implements the analogy between vortices, created in the laboratory at low energy, and the cosmic strings which are thought to have been left after symmetry breaking phase transitions in the early universe. An experiment is proposed to test the above idea which generalizes the cosmological analogy to also encompass biological systems and push a step ahead the view that protein folding is a biological equivalent of the big bang.

  18. Protein (Viridiplantae): 308804764 [

    Lifescience Database Archive (English)

    Full Text Available XP_003079694.1 33090:24290 3041:9393 1035538:8433 13792:8433 70447:5209 70448:2928 probable memb ... rane protein YCR013c-yeast ... (ISS) Ostreococcus tauri MQLREVKERLRAYFSSSAATPGRTR ...

  19. Protein (Cyanobacteria): 338848 [

    Lifescience Database Archive (English)

    Full Text Available YP_007172477.1 1117:11758 1118:7408 13034:1671 292566:1671 13035:1671 cell envelope-related func ... tion transcriptional attenuator ... common domain protein Dactylococcopsis salina PCC ...

  20. Electron transfer in proteins

    DEFF Research Database (Denmark)

    Farver, O; Pecht, I


    Electron migration between and within proteins is one of the most prevalent forms of biological energy conversion processes. Electron transfer reactions take place between active centers such as transition metal ions or organic cofactors over considerable distances at fast rates and with remarkable...... specificity. The electron transfer is attained through weak electronic interaction between the active sites, so that considerable research efforts are centered on resolving the factors that control the rates of long-distance electron transfer reactions in proteins. These factors include (in addition to the......-containing proteins. These proteins serve almost exclusively in electron transfer reactions, and as it turns out, their metal coordination sites are endowed with properties uniquely optimized for their function....

  1. Protein Colloidal Aggregation Project (United States)

    Oliva-Buisson, Yvette J. (Compiler)


    To investigate the pathways and kinetics of protein aggregation to allow accurate predictive modeling of the process and evaluation of potential inhibitors to prevalent diseases including cataract formation, chronic traumatic encephalopathy, Alzheimer's Disease, Parkinson's Disease and others.

  2. Interactive protein manipulation

    International Nuclear Information System (INIS)

    We describe an interactive visualization and modeling program for the creation of protein structures ''from scratch''. The input to our program is an amino acid sequence -decoded from a gene- and a sequence of predicted secondary structure types for each amino acid-provided by external structure prediction programs. Our program can be used in the set-up phase of a protein structure prediction process; the structures created with it serve as input for a subsequent global internal energy minimization, or another method of protein structure prediction. Our program supports basic visualization methods for protein structures, interactive manipulation based on inverse kinematics, and visualization guides to aid a user in creating ''good'' initial structures

  3. Egg protein hydrolysates

    NARCIS (Netherlands)

    Amerongen, van A.; Beelen, M.J.C.; Wolbers, L.A.M.; Gilst, van W.H.; Buikema, J.H.; Nelissen, J.W.P.M.


    The present invention provides egg-protein hydrolysates with DPP-IV inhibitory activity which are particularly suited for the treatment of diabetes. Particularly advantageous is to use hydrolysate of lysozyme for the treatment of diabetes.

  4. Bence-Jones protein - quantitative (United States)

    Immunoglobulin light chains - urine; Urine Bence-Jones protein ... Bence-Jones proteins are a part of regular antibodies called light chains. These proteins are not normally in urine. Sometimes, when ...

  5. The Malignant Protein Puzzle. (United States)

    Walker, Lary C; Jucker, Mathias


    When most people hear the words malignant and brain, cancer immediately comes to mind. But our authors argue that proteins can be malignant too, and can spread harmfully through the brain in neurodegenerative diseases that include Alzheimer's, Parkinson's, CTE, and ALS. Studying how proteins such as PrP, amyloid beta, tau, and others aggregate and spread, and kill brain cells, represents a crucial new frontier in neuroscience. PMID:27408676

  6. Fish protein hydrolysates

    Energy Technology Data Exchange (ETDEWEB)

    Mackie, I.M.


    Proteolytic enzymes now available in commercial quantities can be used to liquefy the fish and fish waste presently considered suitable for conversion to fish meal. The products obtained are readily dispersed or dissolved in water and have a high nutritional value. They have been satisfactorily used as substitutes for milk proteins in milk replacers for young animals. Further research is necessary on means of controlling the degree of hydrolysis to give protein preparations with acceptable functional properties as human food supplements. (Refs. 21).

  7. Recombinant Collagenlike Proteins (United States)

    Fertala, Andzej


    A group of collagenlike recombinant proteins containing high densities of biologically active sites has been invented. The method used to express these proteins is similar to a method of expressing recombinant procollagens and collagens described in U. S. Patent 5,593,859, "Synthesis of human procollagens and collagens in recombinant DNA systems." Customized collagenous proteins are needed for biomedical applications. In particular, fibrillar collagens are attractive for production of matrices needed for tissue engineering and drug delivery. Prior to this invention, there was no way of producing customized collagenous proteins for these and other applications. Heretofore, collagenous proteins have been produced by use of such biological systems as yeasts, bacteria, and transgenic animals and plants. These products are normal collagens that can also be extracted from such sources as tendons, bones, and hides. These products cannot be made to consist only of biologically active, specific amino acid sequences that may be needed for specific applications. Prior to this invention, it had been established that fibrillar collagens consist of domains that are responsible for such processes as interaction with cells, binding of growth factors, and interaction with a number of structural proteins present in the extracellular matrix. A normal collagen consists of a sequence of domains that can be represented by a corresponding sequence of labels, e.g., D1D2D3D4. A collagenlike protein of the present invention contains regions of collagen II that contain multiples of a single domain (e.g., D1D1D1D1 or D4D4D4D4) chosen for its specific biological activity. By virtue of the multiplicity of the chosen domain, the density of sites having that specific biological activity is greater than it is in a normal collagen. A collagenlike protein according to this invention can thus be made to have properties that are necessary for tissue engineering.

  8. Untying Knots in Proteins


    Sułkowska, Joanna I.; Sułkowski, Piotr; Szymczak, Piotr; Cieplak, Marek


    A shoelace can be readily untied by pulling its ends rather than its loops. Attempting to untie a native knot in a protein can also succeed or fail depending on where one pulls. However, thermal fluctuations induced by the surrounding water affect conformations stochastically and may add to the uncertainty of the outcome. When the protein is pulled by the termini, the knot can only get tightened, and any attempt at untying results in failure. We show that, by pulling specific amino acids, ...

  9. Digestibility of sorghum proteins.


    Axtell, J D; Kirleis, A. W.; Hassen, M M; D'Croz Mason, N; Mertz, E T; Munck, L.


    Published information indicates that rice, maize, and wheat proteins are much more digestible in children than sorghum proteins are (66-81% compared with 46%). However, this digestibility difference cannot be demonstrated with the weanling rat, which gave digestibility values of 80% for cooked and 85% for uncooked sorghum gruels. Therefore, a search was made for a laboratory system sensitive to the digestibility differences between sorghum and other cereals. We found that porcine pepsin in vi...

  10. Identifying Unknown Proteins


    Barker, Winona C.; Dayhoff, Margaret O.


    In this paper we discuss ways to identify a protein, both when its amino acid sequence is known and, particularly, prior to the determination of the complete sequence. If a similar sequence is in the Protein Sequence Database, an unknown may be identified on the basis of partial or ambiguous sequence data, or on the basis of amino acid composition. Identification in the early stages of structural determination can save time and scarce resources by preventing duplicate effort or by suggesting ...

  11. Proteins and their crystals

    Czech Academy of Sciences Publication Activity Database

    Kutá-Smatanová, Ivana; Hogg, T.; Hilgenfeld, R.; Grandori, R.; Carey, J.; Vácha, František; Štys, Dalibor


    Roč. 10, č. 1 (2003), s. 31-32. ISSN 1211-5894 R&D Projects: GA MŠk LN00A141; GA ČR GA206/00/D007 Institutional research plan: CEZ:AV0Z5051902; CEZ:MSM 123100001 Keywords : pokeweed antiviral protein * flavodoxin-like protein * PSII Subject RIV: EB - Genetics ; Molecular Biology

  12. Occupational protein contact dermatitis. (United States)

    Barbaud, Annick; Poreaux, Claire; Penven, Emmanuelle; Waton, Julie


    Occupational contact dermatitis is generally caused by haptens but can also be induced by proteins causing mainly immunological contact urticaria (ICU); chronic hand eczema in the context of protein contact dermatitis (PCD). In a monocentric retrospective study, from our database, only 31 (0.41%) of patients with contact dermatitis had positive skin tests with proteins: 22 had occupational PCD, 3 had non-occupational PCD, 5 occupational ICU and 1 cook had a neutrophilic fixed food eruption (NFFE) due to fish. From these results and analysis of literature, the characteristics of PCD can be summarized as follows. It is a chronic eczematous dermatitis, possibly exacerbated by work, suggestive if associated with inflammatory perionyxix and immediate erythema with pruritis, to be investigated when the patient resumes work after a period of interruption. Prick tests with the suspected protein-containing material are essential, as patch tests have negative results. In case of multisensitisation revealed by prick tests, it is advisable to analyse IgE against recombinant allergens. A history of atopy, found in 56 to 68% of the patients, has to be checked for. Most of the cases are observed among food-handlers but PCD can also be due to non-edible plants, latex, hydrolysed proteins or animal proteins. Occupational exposure to proteins can thus lead to the development of ICU. Reflecting hypersensitivity to very low concentrations of allergens, investigating ICU therefore requires caution and prick tests should be performed with a diluted form of the causative protein-containing product. Causes are food, especially fruit peel, non-edible plants, cosmetic products, latex, animals. PMID:26242922

  13. Protein hydrolysates in sports nutrition

    Directory of Open Access Journals (Sweden)

    Manninen Anssi H


    Full Text Available Abstract It has been suggested that protein hydrolysates providing mainly di- and tripeptides are superior to intact (whole proteins and free amino acids in terms of skeletal muscle protein anabolism. This review provides a critical examination of protein hydrolysate studies conducted in healthy humans with special reference to sports nutrition. The effects of protein hydrolysate ingestion on blood amino acid levels, muscle protein anabolism, body composition, exercise performance and muscle glycogen resynthesis are discussed.

  14. Protein Functionality in Food Systems

    Institute of Scientific and Technical Information of China (English)

    WANG Panpan


    The structure,shape,color,smell and taste of food were decided by protein functionality.The utilization of protein will improve by changing the protein functionality.Protein functionality is also advantage to maintain and utilize the nutrition of food.This paper summarized the nature,classification,factors and prospect of protein functionality.It ccn provide a theoretical basis for application of protein in food industry.

  15. Protein Databases on the Internet


    Xu, Dong


    Protein databases have become a crucial part of modern biology. Huge amounts of data for protein structures, functions, and particularly sequences are being generated. Searching databases is often the first step in the study of a new protein. Comparison between proteins or between protein families provides information about the relationship between proteins within a genome or across different species, and hence offers much more information than can be obtained by studying only an isolated pro...

  16. More protein in cereals?

    International Nuclear Information System (INIS)

    Ways in which the protein content of plant crops may be raised by the use of nuclear radiation are to be discussed at a symposium in Vienna in June next year, organized by the joint Food and Agriculture Organization/Agency Division of Atomic Energy in Food and Agriculture. Plant crops - especially cereal grains - are the basic food and protein source of most of the world's population, particularly in less-developed countries. But their natural protein content is low; increasing the quantity and nutritional quality of plant protein is potentially the most feasible way to combat widespread protein malnutrition. This improvement in seed stock can be achieved by plant breeding methods in which nuclear irradiation techniques are used to induce mutations in grain, and other isotopic techniques can be used to select only those mutants which have the desired properties. The scientists who attend the symposium will have an opportunity to review what mutation plant breeders have achieved, the application of nuclear techniques to screening for protein and amino-acid content and nutritional value, and isotopic methods which contribute to research in plant nutrition and physiology. (author)

  17. Stretching to Understand Proteins (United States)

    Cieplak, Marek


    Mechanical stretching of single proteins has been studied experimentally for about 50 proteins yielding a variety of force patterns and values of the peak forces. We have performed a theoretical survey of 7749 proteins of known native structure and map out the landscape of possible dynamical behaviors unders stretching at constant speed. The model used is constructed based on the native geometry. It is solved by methods of molecular dynamics and validated by comparing the theoretical predictions to experimental results. We characterize the distribution of peak forces and on correlations with the system size and with the structure classification as characterized by the CATH scheme. We identify proteins with the biggest forces and show that they belong to few topology classes. We determine which protein segments act as mechanical clamps and show that, in most cases, they correspond to long stretches of parallel beta-strands, but other mechanisms are also possible. We then consider stretching by fluid flows. We show that unfolding induced by a uniform flow shows a richer behavior than that in the force clamp. The dynamics of unfolding is found to depend strongly on the selection of the amino acid, usually one of the termini, which is anchored. These features offer potentially wider diagnostic tools to investigate structure of proteins compared to experiments based on the atomic force microscopy.

  18. Inferring protein function by domain context similarities in protein-protein interaction networks


    Sun Zhirong; Liu Ke; Chen Hu; Zhang Song


    Abstract Background Genome sequencing projects generate massive amounts of sequence data but there are still many proteins whose functions remain unknown. The availability of large scale protein-protein interaction data sets makes it possible to develop new function prediction methods based on protein-protein interaction (PPI) networks. Although several existing methods combine multiple information resources, there is no study that integrates protein domain information and PPI networks to pre...


    Institute of Scientific and Technical Information of China (English)

    WU Qi


    The adsorption of protein on nanoparticles was studied by using dynamic light scattering to measure the hydrodynamic size of both pure protein and nanoparticles adsorbed with different amounts of protein. The thickness of the adsorbed protein layer increases as protein concentration, but decreases as the initial size of nanoparticles. After properly scaling the thickness with the initial diameter, we are able to fit all experimental data with a single master curve. Our experimental results suggest that the adsorbed proteins form a monolayeron the nanoparticle surface and the adsorbed protein molecules are attached to the particle surface at many points through a possible hydrogen-bonding. Our results also indicate that as protein concentration increases, the overall shape of the adsorbed protein molecule continuously changes from a flat layer on the particle surface to a stretched coil extended into water. During the change, the hydrodynamic volume of the adsorbed protein increases linearly with protein concentration.

  20. Measuring protein breakdown rate in individual proteins in vivo

    DEFF Research Database (Denmark)

    Holm, Lars; Kjaer, Michael


    To outline different approaches of how protein breakdown can be quantified and to present a new approach to determine the fractional breakdown rate of individual slow turnover proteins in vivo.......To outline different approaches of how protein breakdown can be quantified and to present a new approach to determine the fractional breakdown rate of individual slow turnover proteins in vivo....

  1. Histophilus somni Surface Proteins. (United States)

    Corbeil, Lynette B


    The pathogen surface is usually the first site of interaction with the host. Histophilus somni was earlier thought to only have an outer membrane on its surface. Now it is known that the surface is composed of many virulence factors, including outer membrane proteins, lipooligosaccharide or endotoxin, a fibrillar network, and an exopolysaccharide. Outer membrane blebs, endotoxin, the fibrillar network, and the exopolysaccharide are also shed from the surface. This review will focus on the surface proteins of this pathogen that may colonize the mucosal surface of ruminants as a commensal or may cause pneumonia, septicemia, myocarditis, thrombotic meningoencephalitis, arthritis, and/or abortion. The major outer membrane protein has been well studied. Since its size and epitopes vary from strain to strain, it may be useful for typing strains. Iron-regulated OMPs have also received much attention because of their role in iron uptake for in vivo growth of H. somni. Other OMPs may be protective, based on passive immunization with monospecific antibodies and active immunization experiments. The surface and shed fibrillar network has been shown to be an immunoglobulin-binding protein in that it binds bovine IgG2 by the Fc portion. Two repeat domains (DR1 and DR2) have cytotoxic Fic motifs. Vaccine studies with recombinant DR2 are promising. Studies of the bacterial genome as well as comparison of surface proteins of different strains from the various H. somni syndromes and carrier states will be discussed and have provided much insight into pathogenesis and protection. PMID:26728061

  2. Ontology integration to identify protein complex in protein interaction networks


    Yang Zhihao; Lin Hongfei; Xu Bo


    Abstract Background Protein complexes can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of protein complexes detection algorithms. Methods We have developed novel semantic similarity metho...

  3. Identifying Protein-Protein Interaction Sites Using Covering Algorithm


    Jie Song; Jiaxing Cheng; Xiuquan Du


    Identification of protein-protein interface residues is crucial for structural biology. This paper proposes a covering algorithm for predicting protein-protein interface residues with features including protein sequence profile and residue accessible area. This method adequately utilizes the characters of a covering algorithm which have simple, lower complexity and high accuracy for high dimension data. The covering algorithm can achieve a comparable performance (69.62%, Complete dataset; 60....

  4. Protein-Protein Interaction Detection: Methods and Analysis


    V. Srinivasa Rao; Srinivas, K.; Sujini, G. N.; G. N. Sunand Kumar


    Protein-protein interaction plays key role in predicting the protein function of target protein and drug ability of molecules. The majority of genes and proteins realize resulting phenotype functions as a set of interactions. The in vitro and in vivo methods like affinity purification, Y2H (yeast 2 hybrid), TAP (tandem affinity purification), and so forth have their own limitations like cost, time, and so forth, and the resultant data sets are noisy and have more false positives to annotate t...

  5. Protein Microarray On-Demand: A Novel Protein Microarray System


    Chatterjee, Deb K.; Sitaraman, Kalavathy; Baptista, Cassio; Hartley, James; Hill, Thomas M.; David J. Munroe


    We describe a novel, simple and low-cost protein microarray strategy wherein the microarrays are generated by printing expression ready plasmid DNAs onto slides that can be converted into protein arrays on-demand. The printed expression plasmids serve dual purposes as they not only direct the synthesis of the protein of interest; they also serve to capture the newly synthesized proteins through a high affinity DNA-protein interaction. To accomplish this we have exploited the high-affinity bin...

  6. Polarizable protein packing

    KAUST Repository

    Ng, Albert H.


    To incorporate protein polarization effects within a protein combinatorial optimization framework, we decompose the polarizable force field AMOEBA into low order terms. Including terms up to the third-order provides a fair approximation to the full energy while maintaining tractability. We represent the polarizable packing problem for protein G as a hypergraph and solve for optimal rotamers with the FASTER combinatorial optimization algorithm. These approximate energy models can be improved to high accuracy [root mean square deviation (rmsd) < 1 kJ mol -1] via ridge regression. The resulting trained approximations are used to efficiently identify new, low-energy solutions. The approach is general and should allow combinatorial optimization of other many-body problems. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011 Copyright © 2011 Wiley Periodicals, Inc.

  7. Polarizable protein packing. (United States)

    Ng, Albert H; Snow, Christopher D


    To incorporate protein polarization effects within a protein combinatorial optimization framework, we decompose the polarizable force field AMOEBA into low order terms. Including terms up to the third-order provides a fair approximation to the full energy while maintaining tractability. We represent the polarizable packing problem for protein G as a hypergraph and solve for optimal rotamers with the FASTER combinatorial optimization algorithm. These approximate energy models can be improved to high accuracy [root mean square deviation (rmsd) < 1 kJ mol(-1)] via ridge regression. The resulting trained approximations are used to efficiently identify new, low-energy solutions. The approach is general and should allow combinatorial optimization of other many-body problems. PMID:21264879

  8. Electron transfer in proteins. (United States)

    Gray, H B; Winkler, J R


    Electron-transfer (ET) reactions are key steps in a diverse array of biological transformations ranging from photosynthesis to aerobic respiration. A powerful theoretical formalism has been developed that describes ET rates in terms of two parameters: the nuclear reorganization energy (lambda) and the electronic-coupling strength (HAB). Studies of ET reactions in ruthenium-modified proteins have probed lambda and HAB in several metalloproteins (cytochrome c, myoglobin, azurin). This work has shown that protein reorganization energies are sensitive to the medium surrounding the redox sites and that an aqueous environment, in particular, leads to large reorganization energies. Analyses of electronic-coupling strengths suggest that the efficiency of long-range ET depends on the protein secondary structure: beta sheets appear to mediate coupling more efficiently than alpha-helical structures, and hydrogen bonds play a critical role in both. PMID:8811189

  9. Accessory Proteins at ERES

    DEFF Research Database (Denmark)

    Klinkenberg, Rafael David

    proteins. Together these components co‐operate in cargo‐selection as well as forming, loading and releasing budding vesicles from specific regions on the membrane surface of the ER. Coat components furthermore convey vesicle targeting towards the Golgi. However, not much is known about the mechanisms that...... regulate the COPII assembly at the vesicle bud site. This thesis provides the first regulatory mechanism of COPII assembly in relation to ER‐membrane lipid‐signal recognition by the accessory protein p125A (Sec23IP). The aim of the project was to characterize p125A function by dissecting two main domains...... in the protein; a putative lipid‐associating domain termed the DDHD domain that is defined by the four amino acid motif that gives the domain its name; and a ubiquitously found domain termed Sterile α‐motif (SAM), which is mostly associated with oligomerization and polymerization. We first show, that...

  10. Sound of proteins

    DEFF Research Database (Denmark)


    In my group we work with Molecular Dynamics to model several different proteins and protein systems. We submit our modelled molecules to changes in temperature, changes in solvent composition and even external pulling forces. To analyze our simulation results we have so far used visual inspection...... and statistical analysis of the resulting molecular trajectories (as everybody else!). However, recently I started assigning a particular sound frequency to each amino acid in the protein, and by setting the amplitude of each frequency according to the movement amplitude we can "hear" whenever two aminoacids....... These are early days, and it still remains to be proven that this method has any advantage over other methods, but at least it is fun to do and the harmonies produced invoke an eerie sounding futuristic landscape...

  11. Ubiquitin domain proteins in disease

    DEFF Research Database (Denmark)

    Klausen, Louise Kjær; Schulze, Andrea; Seeger, Michael;


    The human genome encodes several ubiquitin-like (UBL) domain proteins (UDPs). Members of this protein family are involved in a variety of cellular functions and many are connected to the ubiquitin proteasome system, an essential pathway for protein degradation in eukaryotic cells. Despite their...... and cancer. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb;


    Soy protein isolate (SPI) is obtained from soybean by removing soybean oil and soy carbohydrates. SPI contains more than 90% protein. Structurally, SPI is a globular protein and its aggregates in water consist of sphere-like protein particles. The number average aggregate size of SPI at pH=5.2 is...

  13. The Formation of Protein Structure

    DEFF Research Database (Denmark)

    Bohr, Jakob; Bohr, Henrik; Brunak, Søren


    Dynamically induced curvature owing to long-range excitations along the backbones of protein molecules with non-linear elastic properties may control the folding of proteins.......Dynamically induced curvature owing to long-range excitations along the backbones of protein molecules with non-linear elastic properties may control the folding of proteins....

  14. Vibrational spectroscopy of proteins

    International Nuclear Information System (INIS)

    Two important steps for the development of a biosensor are the immobilization of the biological component (e.g. protein) on a surface and the enhancement of the signal to improve the sensitivity of detection. To address these subjects, the present work describes Fourier transform infrared (FTIR) investigations of several proteins bound to the surface of an attenuated total reflection (ATR) crystal. Furthermore, new nanostructured surfaces for signal enhancement were developed for use in FTIR microscopy. The mitochondrial redox-protein cytochrome c oxidase (CcO) was incorporated into a protein-tethered bilayer lipid membrane (ptBLM) on an ATR crystal featuring a roughened two-layer gold surface for signal enhancement. Electrochemical excitation by periodic potential pulses at different modulation frequencies was followed by time-resolved FTIR spectroscopy. Phase sensitive detection was used for deconvolution of the IR spectra into vibrational components. A model based on protonation-dependent chemical reaction kinetics could be fitted to the time evolution of IR bands attributed to several different redox centers of the CcO. Further investigations involved the odorant binding protein 14 (OBP14) of the honey bee (Apis mellifera), which was studied using ATR-FTIR spectroscopy and circular dichroism. OBP14 was found to be thermally stable up to 45 °C, thus permitting the potential application of this protein for the fabrication of biosensors. Thermal denaturation measurements showed that odorant binding increases the thermal stability of the OBP-odorant complex. In another project, plasmonic nanostructures were fabricated that enhance the absorbance in FTIR microscopy measurements. The nanostructures are composed of an array of round-shaped insulator and gold discs on top of a continuous gold layer. Enhancement factors of up to ⁓125 could be observed with self-assembled monolayers of dodecanethiol molecules immobilized on the gold surface (author)

  15. Modeling Mercury in Proteins. (United States)

    Parks, J M; Smith, J C


    Mercury (Hg) is a naturally occurring element that is released into the biosphere both by natural processes and anthropogenic activities. Although its reduced, elemental form Hg(0) is relatively nontoxic, other forms such as Hg(2+) and, in particular, its methylated form, methylmercury, are toxic, with deleterious effects on both ecosystems and humans. Microorganisms play important roles in the transformation of mercury in the environment. Inorganic Hg(2+) can be methylated by certain bacteria and archaea to form methylmercury. Conversely, bacteria also demethylate methylmercury and reduce Hg(2+) to relatively inert Hg(0). Transformations and toxicity occur as a result of mercury interacting with various proteins. Clearly, then, understanding the toxic effects of mercury and its cycling in the environment requires characterization of these interactions. Computational approaches are ideally suited to studies of mercury in proteins because they can provide a detailed molecular picture and circumvent issues associated with toxicity. Here, we describe computational methods for investigating and characterizing how mercury binds to proteins, how inter- and intraprotein transfer of mercury is orchestrated in biological systems, and how chemical reactions in proteins transform the metal. We describe quantum chemical analyses of aqueous Hg(II), which reveal critical factors that determine ligand-binding propensities. We then provide a perspective on how we used chemical reasoning to discover how microorganisms methylate mercury. We also highlight our combined computational and experimental studies of the proteins and enzymes of the mer operon, a suite of genes that confer mercury resistance in many bacteria. Lastly, we place work on mercury in proteins in the context of what is needed for a comprehensive multiscale model of environmental mercury cycling. PMID:27497164

  16. Mining protein structure data


    Santos, José Carlos Almeida


    The principal topic of this work is the application of data mining techniques, in particular of machine learning, to the discovery of knowledge in a protein database. In the first chapter a general background is presented. Namely, in section 1.1 we overview the methodology of a Data Mining project and its main algorithms. In section 1.2 an introduction to the proteins and its supporting file formats is outlined. This chapter is concluded with section 1.3 which defines that main problem we...

  17. Protein-based ferrogels. (United States)

    Mody, Puja; Hart, Cassidy; Romano, Siena; El-Magbri, Mariam; Esson, Moira M; Ibeh, Trisha; Knowlton, Elizabeth D; Zhang, Ming; Wagner, Michael J; Hartings, Matthew R


    We present a novel synthesis in which hemoglobin and Fe(2+) react, in the presence of KNO3 and KOH, to produce protein microgels that contain magnetic iron oxide nanoparticles. The synthesis results in microgels with polymer properties (denaturing and glass transition temperatures) that are consistent with the dried protein. The iron oxide nanoparticles that exhibit an average diameter of 22nm, are ferrimagnetic, and display properties consistent with Fe3O4. The multiple functional capabilities displayed by these materials: biocompatibility, magnetism, dye uptake and controlled release, and other properties archetypal of hydrogels, will make the magnetic hydrogels attractive for a number of biomedical applications. PMID:26901627

  18. Lipid-transfer proteins. (United States)

    Ng, Tzi Bun; Cheung, Randy Chi Fai; Wong, Jack Ho; Ye, Xiujuan


    Lipid-transfer proteins (LTPs) are basic proteins found in abundance in higher plants. LTPs play lots of roles in plants such as participation in cutin formation, embryogenesis, defense reactions against phytopathogens, symbiosis, and the adaptation of plants to various environmental conditions. In addition, LTPs from field mustard and Chinese daffodil exhibit antiproliferative activity against human cancer cells. LTPs from chili pepper and coffee manifest inhibitory activity against fungi pathogenic to humans such as Candida species. The intent of this article is to review LTPs in the plant kingdom. PMID:23193591

  19. Chirality and Protein Folding


    Kwiecinska, Joanna I.; Cieplak, Marek


    There are several simple criteria of folding to a native state in model proteins. One of them involves crossing of a threshold value of the RMSD distance away from the native state. Another checks whether all native contacts are established, i.e. whether the interacting amino acids come closer than some characteristic distance. We use Go-like models of proteins and show that such simple criteria may prompt one to declare folding even though fragments of the resulting conformations have a wron...

  20. Conformation Distributions in Adsorbed Proteins. (United States)

    Meuse, Curtis W.; Hubbard, Joseph B.; Vrettos, John S.; Smith, Jackson R.; Cicerone, Marcus T.


    While the structural basis of protein function is well understood in the biopharmaceutical and biotechnology industries, few methods for the characterization and comparison of protein conformation distributions are available. New methods capable of measuring the stability of protein conformations and the integrity of protein-protein, protein-ligand and protein-surface interactions both in solution and on surfaces are needed to help the development of protein-based products. We are developing infrared spectroscopy methods for the characterization and comparison of molecular conformation distributions in monolayers and in solutions. We have extracted an order parameter describing the orientational and conformational variations of protein functional groups around the average molecular values from a single polarized spectrum. We will discuss the development of these methods and compare them to amide hydrogen/deuterium exchange methods for albumin in solution and on different polymer surfaces to show that our order parameter is related to protein stability.

  1. G Protein-coupled receptors


    Ross, Elliott M.


    G protein-coupled receptors and heterotrimeric G proteins can diffuse laterally in the plasma membrane such that one receptor can catalyze the activation (GDP/GTP exchange) of multiple G proteins. In some cases, these processes are fast enough to support molecular signal amplification, where a single receptor maintains the activation of multiple G proteins at steady-state. Amplification in cells is probably highly regulated. It depends upon the identities of the G receptor and G protein - som...

  2. Protein stability, flexibility and function

    DEFF Research Database (Denmark)

    Teilum, Kaare; Olsen, Johan G; Kragelund, Birthe B


    Proteins rely on flexibility to respond to environmental changes, ligand binding and chemical modifications. Potentially, a perturbation that changes the flexibility of a protein may interfere with its function. Millions of mutations have been performed on thousands of proteins in quests for a...... data presented is it clear that there are specific sites (flexibility hotspots) in proteins that are important for both binding and stability. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches....

  3. Protein oxidation in aquatic foods

    DEFF Research Database (Denmark)

    Baron, Caroline P.

    oxidation. The protein carbonyl group measurement is the widely used method for estimating protein oxidation in foods and has been used in fish muscle. The chapter also talks about the impact of protein oxidation on protein functionality, fish muscle texture, and food nutritional value. Protein oxidation...... may not only induce quality losses but may be desirable in some type of foods, such as salted herring....

  4. Measuring protein breakdown in individual proteins in vivo

    DEFF Research Database (Denmark)

    Holm, Lars; Kjær, Michael


    PURPOSE OF REVIEW: To outline different approaches of how protein breakdown can be quantified and to present a new approach to determine the fractional breakdown rate of individual slow turnover proteins in vivo. RECENT FINDINGS: None of the available methods for determining protein breakdown can...... be used to determine the breakdown rate of specific proteins and, therefore, do not keep up to the preceding methodological demands in physiological research. A newly developed approach to determine the fractional breakdown rate of single proteins seems promising. Its conceptual advantage is that the...... proteins of interest are the site of measurement. Hence, the application initially demands the proteins to be labeled with stable isotopically labeled amino acids. Subsequently, the loss of label from the proteins will be dependent on the protein breakdown rate when no labeled amino acids are...

  5. Integral UBL domain proteins: a family of proteasome interacting proteins

    DEFF Research Database (Denmark)

    Hartmann-Petersen, Rasmus; Gordon, Colin


    The family of ubiquitin-like (UBL) domain proteins (UDPs) comprises a conserved group of proteins involved in a multitude of different cellular activities. However, recent studies on UBL-domain proteins indicate that these proteins appear to share a common property in their ability to interact with......-domain proteins catalyse the formation of ubiquitin-protein conjugates, whereas others appear to target ubiquitinated proteins for degradation and interact with chaperones. Hence, by binding to the 26S proteasome the UBL-domain proteins seem to tailor and direct the basic proteolytic functions of the particle to...... 26S proteasomes. The 26S proteasome is a multisubunit protease which is responsible for the majority of intracellular proteolysis in eukaryotic cells. Before degradation commences most proteins are first marked for destruction by being coupled to a chain of ubiquitin molecules. Some UBL...

  6. Interaction between plate make and protein in protein crystallisation screening.

    Directory of Open Access Journals (Sweden)

    Gordon J King

    Full Text Available BACKGROUND: Protein crystallisation screening involves the parallel testing of large numbers of candidate conditions with the aim of identifying conditions suitable as a starting point for the production of diffraction quality crystals. Generally, condition screening is performed in 96-well plates. While previous studies have examined the effects of protein construct, protein purity, or crystallisation condition ingredients on protein crystallisation, few have examined the effect of the crystallisation plate. METHODOLOGY/PRINCIPAL FINDINGS: We performed a statistically rigorous examination of protein crystallisation, and evaluated interactions between crystallisation success and plate row/column, different plates of same make, different plate makes and different proteins. From our analysis of protein crystallisation, we found a significant interaction between plate make and the specific protein being crystallised. CONCLUSIONS/SIGNIFICANCE: Protein crystal structure determination is the principal method for determining protein structure but is limited by the need to produce crystals of the protein under study. Many important proteins are difficult to crystallize, so that identification of factors that assist crystallisation could open up the structure determination of these more challenging targets. Our findings suggest that protein crystallisation success may be improved by matching a protein with its optimal plate make.

  7. HIV protein sequence hotspots for crosstalk with host hub proteins.

    Directory of Open Access Journals (Sweden)

    Mahdi Sarmady

    Full Text Available HIV proteins target host hub proteins for transient binding interactions. The presence of viral proteins in the infected cell results in out-competition of host proteins in their interaction with hub proteins, drastically affecting cell physiology. Functional genomics and interactome datasets can be used to quantify the sequence hotspots on the HIV proteome mediating interactions with host hub proteins. In this study, we used the HIV and human interactome databases to identify HIV targeted host hub proteins and their host binding partners (H2. We developed a high throughput computational procedure utilizing motif discovery algorithms on sets of protein sequences, including sequences of HIV and H2 proteins. We identified as HIV sequence hotspots those linear motifs that are highly conserved on HIV sequences and at the same time have a statistically enriched presence on the sequences of H2 proteins. The HIV protein motifs discovered in this study are expressed by subsets of H2 host proteins potentially outcompeted by HIV proteins. A large subset of these motifs is involved in cleavage, nuclear localization, phosphorylation, and transcription factor binding events. Many such motifs are clustered on an HIV sequence in the form of hotspots. The sequential positions of these hotspots are consistent with the curated literature on phenotype altering residue mutations, as well as with existing binding site data. The hotspot map produced in this study is the first global portrayal of HIV motifs involved in altering the host protein network at highly connected hub nodes.

  8. Characterization of Protein Complexes and Subcomplexes in Protein-Protein Interaction Databases


    Nazar Zaki; Elfadil A. Mohamed; Antonio Mora


    The identification and characterization of protein complexes implicated in protein-protein interaction data are crucial to the understanding of the molecular events under normal and abnormal physiological conditions. This paper provides a novel characterization of subcomplexes in protein interaction databases, stressing definition and representation issues, quantification, biological validation, network metrics, motifs, modularity, and gene ontology (GO) terms. The paper introduces the concep...

  9. Protein Molecular Structures, Protein SubFractions, and Protein Availability Affected by Heat Processing: A Review

    Directory of Open Access Journals (Sweden)

    Peiqiang Yu


    Full Text Available The utilization and availability of protein depended on the types of protein and their specific susceptibility to enzymatic hydrolysis (inhibitory activities in the gastrointestine and was highly associated with protein molecular structures. Studying internal protein structure and protein subfraction profiles leaded to an understanding of the components that make up a whole protein. An understanding of the molecular structure of the whole protein was often vital to understanding its digestive behavior and nutritive value in animals. In this review, recently obtained information on protein molecular structural effects of heat processing was reviewed, in relation to protein characteristics affecting digestive behavior and nutrient utilization and availability. The emphasis of this review was on (1 using the newly advanced synchrotron technology (S-FTIR as a novel approach to reveal protein molecular chemistry affected by heat processing within intact plant tissues; (2 revealing the effects of heat processing on the profile changes of protein subfractions associated with digestive behaviors and kinetics manipulated by heat processing; (3 prediction of the changes of protein availability and supply after heat processing, using the advanced DVE/OEB and NRC-2001 models, and (4 obtaining information on optimal processing conditions of protein as intestinal protein source to achieve target values for potential high net absorbable protein in the small intestine. The information described in this article may give better insight in the mechanisms involved and the intrinsic protein molecular structural changes occurring upon processing.

  10. Transient protein-protein interactions visualized by solution NMR. (United States)

    Liu, Zhu; Gong, Zhou; Dong, Xu; Tang, Chun


    Proteins interact with each other to establish their identities in cell. The affinities for the interactions span more than ten orders of magnitude, and KD values in μM-mM regimen are considered transient and are important in cell signaling. Solution NMR including diamagnetic and paramagnetic techniques has enabled atomic-resolution depictions of transient protein-protein interactions. Diamagnetic NMR allows characterization of protein complexes with KD values up to several mM, whereas ultraweak and fleeting complexes can be modeled with the use of paramagnetic NMR especially paramagnetic relaxation enhancement (PRE). When tackling ever-larger protein complexes, PRE can be particularly useful in providing long-range intermolecular distance restraints. As NMR measurements are averaged over the ensemble of complex structures, structural information for dynamic protein-protein interactions besides the stereospecific one can often be extracted. Herein the protein interaction dynamics are exemplified by encounter complexes, alternative binding modes, and coupled binding/folding of intrinsically disordered proteins. Further integration of NMR with other biophysical techniques should allow better visualization of transient protein-protein interactions. In particular, single-molecule data may facilitate the interpretation of ensemble-averaged NMR data. Though same structures of proteins and protein complexes were found in cell as in diluted solution, we anticipate that the dynamics of transient protein protein-protein interactions be different, which awaits awaits exploration by NMR. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions. PMID:25896389

  11. Protein (Viridiplantae): 308810769 [

    Lifescience Database Archive (English)

    Full Text Available XP_003082693.1 33090:1723 3041:2182 1035538:123 13792:123 70447:3706 70448:4753 K+-channel ERG a ... nd related proteins, contain PAS /PAC sensor domain (ISS) Ostreococcus tauri MHFNADL ...

  12. Protein (Viridiplantae): 308809165 [

    Lifescience Database Archive (English)

    Full Text Available XP_003081892.1 33090:2400 3041:801 1035538:331 13792:331 70447:681 70448:136 K+-channel ERG and ... related proteins, contain PAS /PAC sensor domain (ISS) Ostreococcus tauri MPSTAGM ...

  13. Protein (Viridiplantae): 357507515 [

    Lifescience Database Archive (English)

    Full Text Available XP_003624046.1 33090:6310 35493:7221 131221:7221 3193:7221 58023:3109 78536:1898 58024:1898 3398 ... 803:6139 3814:6139 163742:7708 3877:7708 3880:7708 Nematode ... resistance-like protein Medicago truncatula MTLPLA ...

  14. Protein (Viridiplantae): 225448363 [

    Lifescience Database Archive (English)

    Full Text Available XP_002268520.1 33090:30695 35493:21281 131221:21281 3193:21281 58023:14619 78536:14658 58024:146 ... 667:4453 3602:4453 3603:4453 29760:4453 PREDICTED: nematode ... resistance protein-like HSPRO2 isoform 1 Vitis vin ...

  15. Protein (Viridiplantae): 226529483 [

    Lifescience Database Archive (English)

    Full Text Available NP_001151109.1 33090:30695 35493:21281 131221:21281 3193:21281 58023:14619 78536:14658 58024:146 ... 0:6136 147369:6136 147429:6136 4575:6020 4577:6020 nematode -resistance protein Zea mays MATPDLSPVSPVRRDDKQCAPS ...

  16. Protein (Viridiplantae): 357125930 [

    Lifescience Database Archive (English)

    Full Text Available XP_003564642.1 33090:30695 35493:21281 131221:21281 3193:21281 58023:14619 78536:14658 58024:146 ... :4262 147385:4262 15367:4262 15368:4262 PREDICTED: nematode ... resistance protein-like HSPRO1-like Brachypodium d ...

  17. Protein (Viridiplantae): 356553794 [

    Lifescience Database Archive (English)

    Full Text Available XP_003545237.1 33090:30695 35493:21281 131221:21281 3193:21281 58023:14619 78536:14658 58024:146 ... 14:9870 163735:3769 3846:3769 3847:3769 PREDICTED: nematode ... resistance protein-like HSPRO2-like Glycine max MV ...

  18. Protein (Viridiplantae): 357492609 [

    Lifescience Database Archive (English)

    Full Text Available XP_003616593.1 33090:30695 35493:21281 131221:21281 3193:21281 58023:14619 78536:14658 58024:146 ... :9870 3814:9870 163742:15503 3877:15503 3880:15503 Nematode ... resistance HS1pro1 protein Medicago truncatula MVD ...

  19. Protein (Viridiplantae): 351726303 [

    Lifescience Database Archive (English)

    Full Text Available NP_001236610.1 33090:30695 35493:21281 131221:21281 3193:21281 58023:14619 78536:14658 58024:146 ... 803:9870 3814:9870 163735:3769 3846:3769 3847:3769 nematode ... resistance HS1pro1 protein Glycine max MVDLDWQTKMV ...

  20. Protein (Viridiplantae): 350537949 [

    Lifescience Database Archive (English)

    Full Text Available NP_001234063.1 33090:6270 35493:2337 131221:2337 3193:2337 58023:2583 78536:1868 58024:1868 3398 ... 4 424574:154 4107:154 49274:154 4081:154 root-knot nematode ... resistance protein Solanum lycopersicum MEKRKDIEEA ...

  1. Protein (Viridiplantae): 356568543 [

    Lifescience Database Archive (English)

    Full Text Available XP_003552470.1 33090:30695 35493:21281 131221:21281 3193:21281 58023:14619 78536:14658 58024:146 ... 14:9870 163735:3769 3846:3769 3847:3769 PREDICTED: nematode ... resistance protein-like HSPRO2-like Glycine max MV ...

  2. Protein (Viridiplantae): 356560204 [

    Lifescience Database Archive (English)

    Full Text Available XP_003548384.1 33090:30695 35493:21281 131221:21281 3193:21281 58023:14619 78536:14658 58024:146 ... 14:9870 163735:3769 3846:3769 3847:3769 PREDICTED: nematode ... resistance protein-like HSPRO2-like, partial Glyci ...

  3. Combinable protein crop production


    Wright, Isobel


    This research topic review aims to summarise research knowledge and observational experience of combinable protein crop production in organic farming systems for the UK. European research on peas, faba beans and lupins is included; considering their role in the rotation, nitrogen fixation, varieties, establishment, weed control, yields, problems experienced and intercropping with cereals.

  4. Protein (Viridiplantae): 226531780 [

    Lifescience Database Archive (English)

    Full Text Available NP_001147196.1 33090:20715 35493:21884 131221:21884 3193:21884 58023:14330 78536:14347 58024:143 ... 470 4575:5441 4577:5441 deleted in split hand/splt foot ... protein 1 Zea mays MAAAPADAKAEAAKMDLLEDDDEFEEFEIDQ ...

  5. Protein (Viridiplantae): 159468784 [

    Lifescience Database Archive (English)

    Full Text Available XP_001692554.1 33090:22049 3041:6770 3166:4229 3042:4229 3051:3540 3052:3540 3055:3540 coenzyme ... ing protein, partial Chlamydomonas reinhardtii WTPEQ LYAVVSRVEDYHLFVPWCQ KSRPAAREAGDYMEAELEVGFQ LLVERYTSQ I ... YLTPGRAVRSAVPDSSLFDHLDSTWTMEPGPAPATCWLSFHVDFAFRSQ LHGYLADLFFSEVVKQ MSNAFEGRCARLYGPSS ...

  6. Protein (Viridiplantae): 18395564 [

    Lifescience Database Archive (English)

    Full Text Available NP_027545.1 33090:256 35493:21220 131221:21220 3193:21220 58023:13487 78536:13436 58024:13436 33 ... 0:5421 980083:5421 3701:5421 3702:5521 SPFH/Band 7/PHB ... domain-containing membrane-associated protein Arab ...

  7. Protein (Viridiplantae): 15239547 [

    Lifescience Database Archive (English)

    Full Text Available NP_200221.1 33090:255 35493:10960 131221:10960 3193:10960 58023:6871 78536:476 58024:476 3398:47 ... 0:2583 980083:2583 3701:2583 3702:1873 SPFH/Band 7/PHB ... domain-containing membrane-associated protein Arab ...

  8. Protein (Viridiplantae): 18417021 [

    Lifescience Database Archive (English)

    Full Text Available NP_567778.1 33090:255 35493:10960 131221:10960 3193:10960 58023:6871 78536:476 58024:476 3398:47 ... 0:2583 980083:2583 3701:2583 3702:1873 SPFH/Band 7/PHB ... domain-containing membrane-associated protein Arab ...

  9. Protein (Viridiplantae): 42571103 [

    Lifescience Database Archive (English)

    Full Text Available NP_973625.1 33090:14975 35493:14487 131221:14487 3193:14487 58023:10069 78536:8383 58024:8383 33 ... 980083:5566 3701:5566 3702:5685 protein sodium-and lithium -tolerant 1 Arabidopsis thaliana MENMYMWVFKERPENALG ...

  10. Protein (Viridiplantae): 18404463 [

    Lifescience Database Archive (English)

    Full Text Available NP_565864.1 33090:14975 35493:14487 131221:14487 3193:14487 58023:10069 78536:8383 58024:8383 33 ... 980083:5566 3701:5566 3702:5685 protein sodium-and lithium -tolerant 1 Arabidopsis thaliana MENHHPSTLLSMDSSASS ...