WorldWideScience

Sample records for autosomal recessive congenital

  1. Genetics Home Reference: autosomal recessive congenital stationary night blindness

    Science.gov (United States)

    ... collapse boxes. Description Autosomal recessive congenital stationary night blindness is a disorder of the retina , which is the specialized tissue at the back of the eye that detects light and color. People with this condition typically have difficulty seeing ...

  2. Congenital myotonic myopathy in the miniature schnauzer: an autosomal recessive trait.

    Science.gov (United States)

    Vite, C H; Melniczek, J; Patterson, D; Giger, U

    1999-01-01

    Myotonia is a clinical sign characterized by a delay in skeletal muscle relaxation following electrical or mechanical stimulation. A series of related miniature schnauzer dogs with congenital myotonic myopathy were studied. A composite pedigree of six affected litters and the results of a planned breeding between two affected animals are consistent with an autosomal recessive mode of inheritance.

  3. [Autosomal-recessive renal cystic disease and congenital hepatic fibrosis: clinico-anatomic case].

    Science.gov (United States)

    Rostol'tsev, K V; Burenkov, R A; Kuz'micheva, I A

    2012-01-01

    Clinico-anatomic observation of autosomal-recessive renal cystic disease and congenital hepatic fibrosis at two fetuses from the same family was done. Mutation of His3124Tyr in 58 exon of PKHD1 gene in heterozygous state was found out. The same pathomorphological changes in the epithelium of cystic renal tubules and bile ducts of the liver were noted. We suggest that the autopsy research of fetuses with congenital abnormalities, detected after prenatal ultrasonic screening, has high diagnostic importance.

  4. Spectrum of Autosomal Recessive Congenital Ichthyosis in Scandinavia

    DEFF Research Database (Denmark)

    Hellström Pigg, Maritta; Bygum, Anette; Gånemo, Agneta

    2016-01-01

    Autosomal recessive congenital ichthyosis (ARCI) represents a heterogeneous group of rare disorders of cornification with 3 major subtypes: harlequin ichthyosis (HI), lamellar ichthyosis (LI) and congenital ichthyosiform erythroderma (CIE). A 4th subtype has also been proposed: pleomorphic...... ichthyosis (PI), characterized by marked skin changes at birth and subsequently mild symptoms. In nationwide screenings of suspected cases of ARCI in Denmark and Sweden, we identified 132 patients (age range 0.1-86 years) classified as HI (n = 7), LI (n = 70), CIE (n = 17) and PI (n = 38). At birth......-100%). A scoring (0-4) of ichthyosis/ery-thema past infancy showed widely different mean values in the subgroups: HI (3.2/3.1), LI (2.4/0.6), CIE (1.8/1.6), PI (1.1/0.3). Novel or recurrent mutations were found in 113 patients: TGM1 (n = 56), NIPAL4 (n = 15), ALOX12B (n = 15), ABCA12 (n = 8), ALOXE3 (n = 9), SLC27...

  5. Congenital non-syndromal autosomal recessive deafness in Bengkala, an isolated Balinese village.

    Science.gov (United States)

    Winata, S; Arhya, I N; Moeljopawiro, S; Hinnant, J T; Liang, Y; Friedman, T B; Asher, J H

    1995-01-01

    Bengkala is an Indonesian village located on the north shore of Bali that has existed for over 700 years. Currently, 2.2% of the 2185 people in this village have profound congenital deafness. In response to the high incidence of deafness, the people of Bengkala have developed a village specific sign language which is used by many of the hearing and deaf people. Deafness in Bengkala is congenital, sensorineural, non-syndromal, and caused by a fully penetrant autosomal recessive mutation at the DFNB3 locus. The frequency of the DFNB3 mutation is estimated to be 9.4% among hearing people who have a 17.2% chance of being heterozygous for DFNB3. PMID:7616538

  6. A Defect in NIPAL4 Is Associated with Autosomal Recessive Congenital Ichthyosis in American Bulldogs.

    Directory of Open Access Journals (Sweden)

    Margret L Casal

    Full Text Available Autosomal recessive congenital ichthyosis in the American bulldog is characterized by generalized scaling and erythema with adherent scale on the glabrous skin. We had previously linked this disorder to NIPAL4, which encodes the protein ichthyin. Sequencing of NIPAL4 revealed a homozygous single base deletion (CanFam3.1 canine reference genome sequence NC_06586.3 g.52737379del, the 157th base (cytosine in exon 6 of NIPAL4 as the most likely causative variant in affected dogs. This frameshift deletion results in a premature stop codon producing a truncated and defective NIPAL4 (ichthyin protein of 248 amino acids instead of the wild-type length of 404. Obligate carriers were confirmed to be heterozygous for this variant, and 150 clinically non-affected dogs of other breeds were homozygous for the wild-type gene. Among 800 American bulldogs tested, 34% of clinically healthy dogs were discovered to be heterozygous for the defective allele. More importantly, the development of this canine model of autosomal recessive congenital ichthyosis will provide insight into the development of new treatments across species.

  7. Autosomal recessive mode of inheritance of a Coffin-Siris like syndrome.

    Science.gov (United States)

    Bonioli, E; Palmieri, A; Bertola, A; Bellini, C

    1995-01-01

    Autosomal recessive mode of inheritance of a Coffin-Siris like syndrome: Coffin-Siris syndrome is a rare mental retardation/multiple congenital anomalies syndrome; so far its pattern of inheritance is under debate. We report a child affected by this syndrome, the pedigree of which is consistent with autosomal recessive inheritance.

  8. Identification of Mutations in SDR9C7 in 6 Families with Autosomal Recessive Congenital Ichthyosis

    DEFF Research Database (Denmark)

    Hotz, A; Fagerberg, C; Vahlquist, A

    2018-01-01

    Autosomal recessive congenital ichthyosis (ARCI) is a heterogeneous group of disorders of keratinization. To date, ARCI has been associated with following genes: ABCA12, ALOX12B, ALOXE3, CERS3, CYP4F22, NIPAL4, TGM1, PNPLA1 and recently SDR9C7 and SULT2B1.(1-6) Furthermore, seven patients from...

  9. Unilateral Autosomal Recessive Anophthalmia in a Patient with Cystic Craniopharyngioma

    Science.gov (United States)

    Kumar, Amandeep; Bansal, Ankit; Garg, Ajay; Sharma, Bhawani S.

    2014-01-01

    Abstract Anophthalmia is a rare ocular malformation. It is a genetically determined disorder and is typically associated with syndromes. However, sporadic nonsyndromic familial as well as non-familial cases of anophthalmia have also been reported. Non-syndromic familial cases are usually bilateral and have been attributed to autosomal recessive, autosomal dominant, and X-linked inheritance patterns. The authors hereby report a rare case of autosomal recessive unilateral anophthalmia in a patient with no other associated congenital anomaly. Patient was operated for craniopharyngioma. The clinical, radiological and intraoperative findings are discussed. PMID:27928292

  10. A Novel Mutation in the Transglutaminase-1 Gene in an Autosomal Recessive Congenital Ichthyosis Patient

    Directory of Open Access Journals (Sweden)

    D. Vaigundan

    2014-01-01

    Full Text Available Structure-function implication on a novel homozygous Trp250/Gly mutation of transglutaminase-1 (TGM1 observed in a patient of autosomal recessive congenital ichthyosis is invoked from a bioinformatics analysis. Structural consequences of this mutation are hypothesized in comparison to homologous enzyme human factor XIIIA accepted as valid in similar structural analysis and are projected as guidelines for future studies at an experimental level on TGM1 thus mutated.

  11. Mutation in LIM2 Is Responsible for Autosomal Recessive Congenital Cataracts.

    Directory of Open Access Journals (Sweden)

    Bushra Irum

    Full Text Available To identify the molecular basis of non-syndromic autosomal recessive congenital cataracts (arCC in a consanguineous family.All family members participating in the study received a comprehensive ophthalmic examination to determine their ocular phenotype and contributed a blood sample, from which genomic DNA was extracted. Available medical records and interviews with the family were used to compile the medical history of the family. The symptomatic history of the individuals exhibiting cataracts was confirmed by slit-lamp biomicroscopy. A genome-wide linkage analysis was performed to localize the disease interval. The candidate gene, LIM2 (lens intrinsic membrane protein 2, was sequenced bi-directionally to identify the disease-causing mutation. The physical changes caused by the mutation were analyzed in silico through homology modeling, mutation and bioinformatic algorithms, and evolutionary conservation databases. The physiological importance of LIM2 to ocular development was assessed in vivo by real-time expression analysis of Lim2 in a mouse model.Ophthalmic examination confirmed the diagnosis of nuclear cataracts in the affected members of the family; the inheritance pattern and cataract development in early infancy indicated arCC. Genome-wide linkage analysis localized the critical interval to chromosome 19q with a two-point logarithm of odds (LOD score of 3.25. Bidirectional sequencing identified a novel missense mutation, c.233G>A (p.G78D in LIM2. This mutation segregated with the disease phenotype and was absent in 192 ethnically matched control chromosomes. In silico analysis predicted lower hydropathicity and hydrophobicity but higher polarity of the mutant LIM2-encoded protein (MP19 compared to the wild-type. Moreover, these analyses predicted that the mutation would disrupt the secondary structure of a transmembrane domain of MP19. The expression of Lim2, which was detected in the mouse lens as early as embryonic day 15 (E15

  12. Two Cases of Autosomal Recessive Congenital Ichthyosis due to CYP4F22 Mutations: Expanding the Genotype of Self-Healing Collodion Baby

    NARCIS (Netherlands)

    Noguera-Morel, L.; Feito-Rodriguez, M.; Maldonado-Cid, P.; Garcia-Minaur, S.; Kamsteeg, E.J.; Gonzalez-Sarmiento, R.; Lucas-Laguna, R. De; Hernandez-Martin, A.; Torrelo, A.

    2016-01-01

    Collodion babies are born with a tight, shiny cast that sheds in a few weeks. After shedding, most patients will display features of autosomal recessive congenital ichthyosis (ARCI) later in life but in up to 10% of cases, the skin eventually becomes normal or only minimally involved, a phenotype

  13. Microcephaly-chorioretinopathy syndrome, autosomal recessive form. A case report

    Directory of Open Access Journals (Sweden)

    Rafael Fabiano Machado Rosa

    Full Text Available CONTEXT: The autosomal recessive form of microcephaly-chorioretinopathy syndrome is a rare genetic condition that is considered to be an important differential diagnosis with congenital toxoplasmosis.CASE REPORT: Our patient was a seven-year-old white boy who was initially diagnosed with congenital toxoplasmosis. However, his serological tests for congenital infections, including toxoplasmosis, were negative. He was the first child of young, healthy and consanguineous parents (fourth-degree relatives. The parents had normal head circumferences and intelligence. The patient presented microcephaly and specific abnormalities of the retina, with multiple diffuse oval areas of pigmentation and patches of chorioretinal atrophy associated with diffuse pigmentation of the fundus. Ophthalmological evaluations on the parents were normal. A computed tomography scan of the child's head showed slight dilation of lateral ventricles and basal cisterns without evidence of calcifications. We did not find any lymphedema in his hands and feet. He had postnatal growth retardation, severe mental retardation and cerebral palsy.CONCLUSIONS: The finding of chorioretinal lesions in a child with microcephaly should raise suspicions of the autosomal recessive form of microcephaly-chorioretinopathy syndrome, especially in cases with an atypical pattern of eye fundus and consanguinity. A specific diagnosis is essential for an appropriate clinical evaluation and for genetic counseling for the patients and their families.

  14. Autosomal recessive ichthyosis with hypotrichosis syndrome: further delineation of the phenotype

    NARCIS (Netherlands)

    Avrahami, L.; Maas, S.; Pasmanik-Chor, M.; Rainshtein, L.; Magal, N.; Smitt, J. H. S.; van Marle, J.; Shohat, M.; Basel-Vanagaite, L.

    2008-01-01

    Autosomal recessive ichthyosis with hypotrichosis (ARIH) syndrome, which is characterized by congenital ichthyosis, abnormal hair and corneal involvement, has recently been shown in one consanguineous Israeli Arab family to be caused by a mutation in the ST14 gene, which encodes serine protease

  15. Possible influences on the expression of X chromosome-linked dystrophin abnormalities by heterozygosity for autosomal recessive Fukuyama congenital muscular dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Beggs, A.H.; Neumann, P.E.; Anderson, M.S.; Kunkel, L.M. (Harvard Medical School, Boston, MA (United States)); Arahata, Kiichi; Arikawa, Eri; Nonaka, Ikuya (National Inst. of Neuroscience, Tokyo (Japan))

    1992-01-15

    Abnormalities of dystrophin, a cytoskeletal protein of muscle and nerve, are generally considered specific for Duchenne and Becker muscular dystrophy. However, several patients have recently been identified with dystrophin deficiency who, before dystrophin testing, were considered to have Fukuyama congenital muscular dystrophy (FCMD) on the basis of clinical findings. Epidemiologic data suggest that only 1/3,500 males with autosomal recessive FCMD should have abnormal dystrophin. To explain the observation of 3/23 FCMD males with abnormal dystrophin, the authors propose that dystrophin and the FCMD gene product interact and that the earlier onset and greater severity of these patients' phenotype (relative to Duchenne muscular dystrophy) are due to their being heterozygous for the FCMD mutation in addition to being hemizygous for Duchenne muscular dystrophy, a genotype that is predicted to occur in 1/175,000 Japanese males. This model may help explain the genetic basis for some of the clinical and pathological variability seen among patients with FCMD, and it has potential implications for understanding the inheritance of other autosomal recessive disorders in general. For example, sex ratios for rare autosomal recessive disorders caused by mutations in proteins that interact with X chromosome-linked gene products may display predictable deviation from 1:1.

  16. Otologic Manifestations of Autosomal Recessive Congenital Ichthyosis in Children.

    Science.gov (United States)

    Martín-Santiago, A; Rodríguez-Pascual, M; Knöpfel, N; Hernández-Martín, Á

    2015-11-01

    Few studies have investigated ear involvement in nonsyndromic autosomal recessive congenital ichthyosis (ARCI). To assess the type and frequency of otologic manifestations of ARCI in patients under follow-up at the pediatric dermatology department of our hospital. We prospectively studied the presence of ear pain, ear itching, tinnitus, otitis, cerumen impaction, accumulation of epithelial debris, and hearing loss. Daily hygiene measures, topical treatments, medical-surgical interventions, and frequency of visits to an ear, nose, and throat (ENT) specialist were noted in the patients' medical records. Ear examination and hearing tests were performed in all cases. Ten patients were studied: 2 had a self-healing collodion baby phenotype and 8 had ichthyosis. There was mention of otologic manifestations in the records of all 8 patients with ichthyosis (100%); 6 of these patients (75%) had abnormalities in the external auditory canal examination and 2 (25%) had conductive hearing loss. Our findings are limited by the small number of patients studied, all of whom were younger than 19 years. The involvement of both dermatologists and ENT specialists in the management of patients with ichthyosis is crucial to ensure the application of the best therapeutic and preventive measures. More studies are needed to assess the prevalence and impact on quality of life of ear involvement in patients with ichthyosis and to determine the optimal interval between ENT visits for these patients. Copyright © 2015 Elsevier España, S.L.U. and AEDV. All rights reserved.

  17. Deletion at the GCNT2 Locus Causes Autosomal Recessive Congenital Cataracts.

    Science.gov (United States)

    Irum, Bushra; Khan, Shahid Y; Ali, Muhammad; Daud, Muhammad; Kabir, Firoz; Rauf, Bushra; Fatima, Fareeha; Iqbal, Hira; Khan, Arif O; Al Obaisi, Saif; Naeem, Muhammad Asif; Nasir, Idrees A; Khan, Shaheen N; Husnain, Tayyab; Riazuddin, Sheikh; Akram, Javed; Eghrari, Allen O; Riazuddin, S Amer

    2016-01-01

    The aim of this study is to identify the molecular basis of autosomal recessive congenital cataracts (arCC) in a large consanguineous pedigree. All participating individuals underwent a detailed ophthalmic examination. Each patient's medical history, particularly of cataracts and other ocular abnormalities, was compiled from available medical records and interviews with family elders. Blood samples were donated by all participating family members and used to extract genomic DNA. Genetic analysis was performed to rule out linkage to known arCC loci and genes. Whole-exome sequencing libraries were prepared and paired-end sequenced. A large deletion was found that segregated with arCC in the family, and chromosome walking was conducted to estimate the proximal and distal boundaries of the deletion mutation. Exclusion and linkage analysis suggested linkage to a region of chromosome 6p24 harboring GCNT2 (glucosaminyl (N-acetyl) transferase 2) with a two-point logarithm of odds score of 5.78. PCR amplifications of the coding exons of GCNT2 failed in individuals with arCC, and whole-exome data analysis revealed a large deletion on chromosome 6p in the region harboring GCNT2. Chromosomal walking using multiple primer pairs delineated the extent of the deletion to approximately 190 kb. Interestingly, a failure to amplify a junctional fragment of the deletion break strongly suggests an insertion in addition to the large deletion. Here, we report a novel insertion/deletion mutation at the GCNT2 locus that is responsible for congenital cataracts in a large consanguineous family.

  18. Infantile variant of Bartter syndrome and sensorineural deafness: A new autosomal recessive disorder

    Energy Technology Data Exchange (ETDEWEB)

    Landau, D.; Shalev, H.; Carmi, Rivka; Ohaly, M. [Univ. of the Negev, Ashkelon (Israel)

    1995-12-04

    The infantile variant of Bartter syndrome (IBS) is usually associated with maternal polyhydramnios, premature birth, postnatal polyuria and hypokalemic hypochloremic metabolic alkalosis and a typical appearance. IBS is thought to be an autosomal recessive trait. Several congenital tubular defects are associated with sensorineural deafness (SND). However, an association between the IBS and SND has not been reported so far. Here we describe 5 children of an extended consanguineous Bedouin family with IBS and SND. In 3 of the cases, the typical electrolyte imbalance and facial appearance were detected neonatally. SND was detected as early as age 1 month, suggesting either coincidental homozygotization of 2 recessive genes or a pleiotropic effect of one autosomal recessive gene. This association suggests that evaluation of SND is warranted in every case of IBS. 35 refs., 2 figs., 2 tabs.

  19. AUTOSOMAL RECESSIVE POLYCYSTIC KIDNEY DISEASE AND CONGENITAL HEPATIC FIBROSIS: SUMMARY STATEMENT OF A FIRST NATIONAL INSTITUTES OF HEALTH/OFFICE OF RARE DISEASES CONFERENCE

    Science.gov (United States)

    Gunay-Aygun, Meral; Avner, Ellis D.; Bacallo, Robert L.; Choyke, Peter L.; Flynn, Joseph T.; Germino, Gregory G.; Guay-Woodford, Lisa; Harris, Peter; Heller, Theo; Ingelfinger, Julie; Kaskel, Frederick; Kleta, Robert; LaRusso, Nicholas F.; Mohan, Parvathi; Pazour, Gregory J.; Shneider, Benjamin L.; Torres, Vicente E.; Wilson, Patricia; Zak, Colleen; Zhou, Jing; Gahl, William A.

    2010-01-01

    Researchers and clinicians with expertise in autosomal recessive polycystic kidney disease and congenital hepatic fibrosis (ARPKD/CHF) and related fields met on May 5-6, 2005, on the National Institutes of Health (NIH) campus for a 1.5-day symposium sponsored by the NIH Office of Rare Diseases, the National Human Genome Research Institute (NHGRI), and in part by the ARPKD/CHF Alliance. The meeting addressed the present status and the future of ARPKD/CHF research. PMID:16887426

  20. A novel HSF4 gene mutation (p.R405X causing autosomal recessive congenital cataracts in a large consanguineous family from Pakistan

    Directory of Open Access Journals (Sweden)

    Cheema Abdul

    2008-11-01

    Full Text Available Abstract Background Hereditary cataracts are most frequently inherited as autosomal dominant traits, but can also be inherited in an autosomal recessive or X-linked fashion. To date, 12 loci for autosomal recessive cataracts have been mapped including a locus on chromosome 16q22 containing the disease-causing gene HSF4 (Genbank accession number NM_001040667. Here, we describe a family from Pakistan with the first nonsense mutation in HSF4 thus expanding the mutational spectrum of this heat shock transcription factor gene. Methods A large consanguineous Pakistani family with autosomal recessive cataracts was collected from Quetta. Genetic linkage analysis was performed for the common known autosomal recessive cataracts loci and linkage to a locus containing HSF4 (OMIM 602438 was found. All exons and adjacent splice sites of the heat shock transcription factor 4 gene (HSF4 were sequenced. A mutation-specific restriction enzyme digest (HphI was performed for all family members and unrelated controls. Results The disease phenotype perfectly co-segregated with markers flanking the known cataract gene HSF4, whereas other autosomal recessive loci were excluded. A maximum two-point LOD score with a Zmax = 5.6 at θ = 0 was obtained for D16S421. Direct sequencing of HSF4 revealed the nucleotide exchange c.1213C > T in this family predicting an arginine to stop codon exchange (p.R405X. Conclusion We identified the first nonsense mutation (p.R405X in exon 11 of HSF4 in a large consanguineous Pakistani family with autosomal recessive cataract.

  1. Autosomal recessive anhidrotic ectodermal dysplasia: A rare entity

    Directory of Open Access Journals (Sweden)

    Sangita Ghosh

    2014-01-01

    Full Text Available We describe a case of anhidrotic ectodermal dysplasia (AED with an autosomal recessive mode of inheritance, a very rare entity, in a 2-year-old female child of two asymptomatic, consanguineous parents. Their previous child also had a similar condition. Autosomal recessive AED (AR-AED can have its full expression both in males and females and it is clinically indistinguishable from the x-linked recessive AED (XL-AED, which is the most common type of ectodermal dysplasia. Unlike the partially symptomatic carriers of XL-AED, the heterozygotes of AR-AED are phenotypically asymptomatic.

  2. Andhidrotic ectodermal dysplasia-autosomal recessive form

    Directory of Open Access Journals (Sweden)

    Inamadar Arun

    1994-01-01

    Full Text Available Anhidrotic ectodermal dysplasia with classical features in 2 sisters is reported. The mode of inheritance in these seems to be autosomal recessive; which is a very rare occurrence.

  3. SPATACSIN mutations cause autosomal recessive juvenile amyotrophic lateral sclerosis

    OpenAIRE

    Orlacchio, Antonio; Babalini, Carla; Borreca, Antonella; Patrono, Clarice; Massa, Roberto; Basaran, Sarenur; Munhoz, Renato P.; Rogaeva, Ekaterina A.; St George-Hyslop, Peter H.; Bernardi, Giorgio; Kawarai, Toshitaka

    2010-01-01

    The mutation of the spatacsin gene is the single most common cause of autosomal recessive hereditary spastic paraplegia with thin corpus callosum. Common clinical, pathological and genetic features between amyotrophic lateral sclerosis and hereditary spastic paraplegia motivated us to investigate 25 families with autosomal recessive juvenile amyotrophic lateral sclerosis and long-term survival for mutations in the spatascin gene. The inclusion criterion was a diagnosis of clinically definite ...

  4. Autosomal Recessive Polycystic Kidney Disease: Antenatal Diagnosis and Histopathological Correlation

    Directory of Open Access Journals (Sweden)

    Dayananda Kumar Rajanna

    2013-01-01

    Full Text Available Autosomal recessive polycystic kidney disease (ARPKD is one of the most common inheritable disease manifesting in infancy and childhood with a frequency of 1:6,000 to 1:55,000 births. The patient in her second trimester presented with a history of amenorrhea. Ultrasound examination revealed bilateral, enlarged, hyperechogenic kidneys, placentomegaly, and severe oligohydramnios. The pregnancy was terminated. An autopsy was performed on the fetus. Both the kidneys were found to be enlarged and the cut surface showed numerous cysts. The liver sections showed changes due to fibrosis. The final diagnosis of autosomal recessive polycystic kidney disease was made based on these findings. In this article, we correlate the ante-natal ultrasound and histopathological findings in autosomal recessive polycystic kidney disease.

  5. SPATACSIN mutations cause autosomal recessive juvenile amyotrophic lateral sclerosis.

    Science.gov (United States)

    Orlacchio, Antonio; Babalini, Carla; Borreca, Antonella; Patrono, Clarice; Massa, Roberto; Basaran, Sarenur; Munhoz, Renato P; Rogaeva, Ekaterina A; St George-Hyslop, Peter H; Bernardi, Giorgio; Kawarai, Toshitaka

    2010-02-01

    The mutation of the spatacsin gene is the single most common cause of autosomal recessive hereditary spastic paraplegia with thin corpus callosum. Common clinical, pathological and genetic features between amyotrophic lateral sclerosis and hereditary spastic paraplegia motivated us to investigate 25 families with autosomal recessive juvenile amyotrophic lateral sclerosis and long-term survival for mutations in the spatascin gene. The inclusion criterion was a diagnosis of clinically definite amyotrophic lateral sclerosis according to the revised El Escorial criteria. The exclusion criterion was a diagnosis of hereditary spastic paraplegia with thin corpus callosum in line with an established protocol. Additional pathological and genetic evaluations were also performed. Surprisingly, 12 sequence alterations in the spatacsin gene (one of which is novel, IVS30 + 1 G > A) were identified in 10 unrelated pedigrees with autosomal recessive juvenile amyotrophic lateral sclerosis and long-term survival. The countries of origin of these families were Italy, Brazil, Canada, Japan and Turkey. The variants seemed to be pathogenic since they co-segregated with the disease in all pedigrees, were absent in controls and were associated with amyotrophic lateral sclerosis neuropathology in one member of one of these families for whom central nervous system tissue was available. Our study indicates that mutations in the spatascin gene could cause a much wider spectrum of clinical features than previously recognized, including autosomal recessive juvenile amyotrophic lateral sclerosis.

  6. Calpain 12 Function Revealed through the Study of an Atypical Case of Autosomal Recessive Congenital Ichthyosis.

    Science.gov (United States)

    Bochner, Ron; Samuelov, Liat; Sarig, Ofer; Li, Qiaoli; Adase, Christopher A; Isakov, Ofer; Malchin, Natalia; Vodo, Dan; Shayevitch, Ronna; Peled, Alon; Yu, Benjamin D; Fainberg, Gilad; Warshauer, Emily; Adir, Noam; Erez, Noam; Gat, Andrea; Gottlieb, Yehonatan; Rogers, Tova; Pavlovsky, Mor; Goldberg, Ilan; Shomron, Noam; Sandilands, Aileen; Campbell, Linda E; MacCallum, Stephanie; McLean, W H Irwin; Ast, Gil; Gallo, Richard L; Uitto, Jouni; Sprecher, Eli

    2017-02-01

    Congenital erythroderma is a rare and often life-threatening condition, which has been shown to result from mutations in several genes encoding important components of the epidermal differentiation program. Using whole exome sequencing, we identified in a child with congenital exfoliative erythroderma, hypotrichosis, severe nail dystrophy and failure to thrive, two heterozygous mutations in ABCA12 (c.2956C>T, p.R986W; c.5778+2T>C, p. G1900Mfs*16), a gene known to be associated with two forms of ichthyosis, autosomal recessive congenital ichthyosis, and harlequin ichthyosis. Because the patient displayed an atypical phenotype, including severe hair and nail manifestations, we scrutinized the exome sequencing data for additional potentially deleterious genetic variations in genes of relevance to the cornification process. Two mutations were identified in CAPN12, encoding a member of the calpain proteases: a paternal missense mutation (c.1511C>A; p.P504Q) and a maternal deletion due to activation of a cryptic splice site in exon 9 of the gene (c.1090_1129del; p.Val364Lysfs*11). The calpain 12 protein was found to be expressed in both the epidermis and hair follicle of normal skin, but its expression was dramatically reduced in the patient's skin. The downregulation of capn12 expression in zebrafish was associated with abnormal epidermal morphogenesis. Small interfering RNA knockdown of CAPN12 in three-dimensional human skin models was associated with acanthosis, disorganized epidermal architecture, and downregulation of several differentiation markers, including filaggrin. Accordingly, filaggrin expression was almost absent in the patient skin. Using ex vivo live imaging, small interfering RNA knockdown of calpain 12 in skin from K14-H2B GFP mice led to significant hair follicle catagen transformation compared with controls. In summary, our results indicate that calpain 12 plays an essential role during epidermal ontogenesis and normal hair follicle cycling and that

  7. Autosomal recessive dilated cardiomyopathy due to DOLK mutations results from abnormal dystroglycan O-mannosylation.

    Directory of Open Access Journals (Sweden)

    Dirk J Lefeber

    2011-12-01

    Full Text Available Genetic causes for autosomal recessive forms of dilated cardiomyopathy (DCM are only rarely identified, although they are thought to contribute considerably to sudden cardiac death and heart failure, especially in young children. Here, we describe 11 young patients (5-13 years with a predominant presentation of dilated cardiomyopathy (DCM. Metabolic investigations showed deficient protein N-glycosylation, leading to a diagnosis of Congenital Disorders of Glycosylation (CDG. Homozygosity mapping in the consanguineous families showed a locus with two known genes in the N-glycosylation pathway. In all individuals, pathogenic mutations were identified in DOLK, encoding the dolichol kinase responsible for formation of dolichol-phosphate. Enzyme analysis in patients' fibroblasts confirmed a dolichol kinase deficiency in all families. In comparison with the generally multisystem presentation in CDG, the nonsyndromic DCM in several individuals was remarkable. Investigation of other dolichol-phosphate dependent glycosylation pathways in biopsied heart tissue indicated reduced O-mannosylation of alpha-dystroglycan with concomitant functional loss of its laminin-binding capacity, which has been linked to DCM. We thus identified a combined deficiency of protein N-glycosylation and alpha-dystroglycan O-mannosylation in patients with nonsyndromic DCM due to autosomal recessive DOLK mutations.

  8. Autosomal recessive Charcot-Marie-Tooth neuropathy.

    Science.gov (United States)

    Espinós, Carmen; Calpena, Eduardo; Martínez-Rubio, Dolores; Lupo, Vincenzo

    2012-01-01

    Charcot-Marie-Tooth (CMT) disease, a hereditary motor and sensory neuropathy that comprises a complex group of more than 50 diseases, is the most common inherited neuropathy. CMT is generally divided into demyelinating forms, axonal forms and intermediate forms. CMT is also characterized by a wide genetic heterogeneity with 29 genes and more than 30 loci involved. The most common pattern of inheritance is autosomal dominant (AD), although autosomal recessive (AR) forms are more frequent in Mediterranean countries. In this chapter we give an overview of the associated genes, mechanisms and epidemiology of AR-CMT forms and their associated phenotypes.

  9. Novel mutations in the genes TGM1 and ALOXE3 underlying autosomal recessive congenital ichthyosis

    Science.gov (United States)

    Ullah, Rahim; Ansar, Muhammad; Durrani, Zaka Ullah; Lee, Kwanghyuk; Santos-Cortez, Regie Lyn P.; Muhammad, Dost; Ali, Mahboob; Zia, Muhammad; Ayub, Muhammad; Khan, Suliman; Smith, Josh D.; Nickerson, Deborah A.; Shendure, Jay; Bamshad, Michael; Leal, Suzanne M.; Ahmad, Wasim

    2016-01-01

    Background Ichthyoses are clinically characterized by scaling or hyperkeratosis of the skin or both. It can be an isolated condition limited to the skin or appear secondarily with involvement of other cutaneous or systemic abnormalities. Methods The present study investigated clinical and molecular characterization of three consanguineous families (A, B, C) segregating two different forms of autosomal recessive congenital ichthyosis (ARCI). Linkage in three consanguineous families (A, B, C) segregating two different forms of ARCI was searched by typing microsatellite and single nucleotide polymorphism marker analysis. Sequencing of the two genes TGM1 and ALOXE3 was performed by the dideoxy chain termination method. Results Genome-wide linkage analysis established linkage in family A to TGM1 gene on chromosome 14q11 and in families B and C to ALOXE3 gene on chromosome 17p13. Subsequently, sequencing of these genes using samples from affected family members led to the identification of three novel mutations: a missense variant p.Trp455Arg in TGM1 (family A); a nonsense variant p.Arg140* in ALOXE3 (family B); and a complex rearrangement in ALOXE3 (family C). Conclusion The present study further extends the spectrum of mutations in the two genes involved in causing ARCI. Characterizing the clinical spectrum resulting from mutations in the TGM1 and ALOXE3 genes will improve diagnosis and may direct clinical care of the family members. PMID:26578203

  10. Arrestin gene mutations in autosomal recessive retinitis pigmentosa.

    Science.gov (United States)

    Nakazawa, M; Wada, Y; Tamai, M

    1998-04-01

    To assess the clinical and molecular genetic studies of patients with autosomal recessive retinitis pigmentosa associated with a mutation in the arrestin gene. Results of molecular genetic screening and case reports with DNA analysis and clinical features. University medical center. One hundred twenty anamnestically unrelated patients with autosomal recessive retinitis pigmentosa. DNA analysis was performed by single strand conformation polymorphism followed by nucleotide sequencing to search for a mutation in exon 11 of the arrestin gene. Clinical features were characterized by visual acuity slitlamp biomicroscopy, fundus examinations, fluorescein angiography, kinetic visual field testing, and electroretinography. We identified 3 unrelated patients with retinitis pigmentosa associated with a homozygous 1-base-pair deletion mutation in codon 309 of the arrestin gene designated as 1147delA. All 3 patients showed pigmentary retinal degeneration in the midperipheral area with or without macular involvement. Patient 1 had a sibling with Oguchi disease associated with the same mutation. Patient 2 demonstrated pigmentary retinal degeneration associated with a golden-yellow reflex in the peripheral fundus. Patients 1 and 3 showed features of retinitis pigmentosa without the golden-yellow fundus reflex. Although the arrestin 1147delA has been known as a frequent cause of Oguchi disease, this mutation also may be related to the pathogenesis of autosomal recessive retinitis pigmentosa. This phenomenon may provide evidence of variable expressivity of the mutation in the arrestin gene.

  11. Evidence for nonallelic genetic heterogeneity in autosomal recessive retinitis pigmentosa

    NARCIS (Netherlands)

    Bleeker-Wagemakers, L. M.; Gal, A.; Kumar-Singh, R.; van den Born, L. I.; Li, Y.; Schwinger, E.; Sandkuijl, L. A.; Bergen, A. A.; Kenna, P.; Humphries, P.

    1992-01-01

    Recent evidence suggesting the involvement of mutant rhodopsin proteins in the pathogenesis of autosomal recessive retinitis pigmentosa has prompted us to investigate whether this form of the disease shows non-allelic genetic heterogeneity, as has previously been shown to be the case in autosomal

  12. Autosomal recessive type II hereditary motor and sensory neuropathy with acrodystrophy.

    Science.gov (United States)

    Thomas, P K; Claus, D; King, R H

    1999-02-01

    A family is described with presumed autosomal recessive inheritance in which three siblings developed a progressive neuropathy that combined limb weakness and severe distal sensory loss leading to prominent mutilating changes. Electrophysiological and nerve biopsy findings indicated an axonopathy. The disorder is therefore classifiable as type II hereditary motor and sensory neuropathy (HMSN II). The clinical features differ from those reported in previously described cases of autosomal recessive HMSN II. This disorder may therefore represent a new variant.

  13. Autosomal-dominant Leber Congenital Amaurosis Caused by a Heterozygous CRX Mutation in a Father and Son.

    Science.gov (United States)

    Arcot Sadagopan, Karthikeyan; Battista, Robert; Keep, Rosanne B; Capasso, Jenina E; Levin, Alex V

    2015-06-01

    Leber congenital amaurosis (LCA) is most often an autosomal recessive disorder. We report a father and son with autosomal dominant LCA due to a mutation in the CRX gene. DNA screening using an allele specific assay of 90 of the most common LCA-causing variations in the coding sequences of AIPL1, CEP290, CRB1, CRX, GUCY2D, RDH12 and RPE65 was performed on the father. Automated DNA sequencing of his son examining exon 3 of the CRX gene was subsequently performed. Both father and son have a heterozygous single base pair deletion of an adenine at codon 153 in the coding sequence of the CRX gene resulting in a frameshift mutation. Mutations involving the CRX gene may demonstrate an autosomal dominant inheritance pattern for LCA.

  14. Missense Mutations in CRYAB Are Liable for Recessive Congenital Cataracts.

    Directory of Open Access Journals (Sweden)

    Xiaodong Jiao

    Full Text Available This study was initiated to identify causal mutations responsible for autosomal recessive congenital cataracts in consanguineous familial cases.Affected individuals underwent a detailed ophthalmological and clinical examination, and slit-lamp photographs were ascertained for affected individuals who have not yet been operated for the removal of the cataractous lens. Blood samples were obtained, and genomic DNA was extracted from white blood cells. A genome-wide scan was completed with short tandem repeat (STR markers, and the logarithm of odds (LOD scores were calculated. Protein coding exons of CRYAB were sequenced, bi-directionally. Evolutionary conservation was investigated by aligning CRYAB orthologues, and the expression of Cryab in embryonic and postnatal mice lens was investigated with TaqMan probe.The clinical and ophthalmological examinations suggested that all affected individuals had nuclear cataracts. Genome-wide linkage analysis suggested a potential region on chromosome 11q23 harboring CRYAB. DNA sequencing identified a missense variation: c.34C>T (p.R12C in CRYAB that segregated with the disease phenotype in the family. Subsequent interrogation of our entire cohort of familial cases identified a second familial case localized to chromosome 11q23 harboring a c.31C>T (p.R11C mutation. In silico analyses suggested that the mutations identified in familial cases, p.R11C and p.R12C will not be tolerated by the three-dimensional structure of CRYAB. Real-time PCR analysis identified the expression of Cryab in mouse lens as early as embryonic day 15 (E15 that increased significantly until postnatal day 6 (P6 with steady level of expression thereafter.Here, we report two novel missense mutations, p.R11C and p.R12C, in CRYAB associated with autosomal recessive congenital nuclear cataracts.

  15. Autosomal recessive osteopetrosis with a unique imaging finding: multiple encephaloceles

    Energy Technology Data Exchange (ETDEWEB)

    Saglam, Dilek; Bilgici, Meltem Ceyhan; Bekci, Tuemay [Ondokuz Mayis University, Department of Radiology, School of Medicine, Kurupelit, Samsun (Turkey); Albayrak, Canan; Albayrak, Davut [Ondokuz Mayis University, Department of Pediatrics, School of Medicine, Kurupelit, Samsun (Turkey)

    2017-05-15

    Osteopetrosis is a hereditary form of sclerosing bone dysplasia with various radiological and clinical presentations. The autosomal recessive type, also known as malignant osteopetrosis, is the most severe type, with the early onset of manifestations. A 5-month-old infant was admitted to our hospital with recurrent respiratory tract infections. Chest X-ray and skeletal survey revealed the classic findings of osteopetrosis, including diffuse osteosclerosis and bone within a bone appearance. At follow-up, the patient presented with, thickened calvarium, multiple prominent encephaloceles, and dural calcifications leading to the intracranial clinical manifestations with bilateral hearing and sight loss. Autosomal recessive osteopetrosis is one of the causes of encephaloceles and this finding may become dramatic if untreated. (orig.)

  16. Autosomal recessive osteopetrosis with a unique imaging finding: multiple encephaloceles

    International Nuclear Information System (INIS)

    Saglam, Dilek; Bilgici, Meltem Ceyhan; Bekci, Tuemay; Albayrak, Canan; Albayrak, Davut

    2017-01-01

    Osteopetrosis is a hereditary form of sclerosing bone dysplasia with various radiological and clinical presentations. The autosomal recessive type, also known as malignant osteopetrosis, is the most severe type, with the early onset of manifestations. A 5-month-old infant was admitted to our hospital with recurrent respiratory tract infections. Chest X-ray and skeletal survey revealed the classic findings of osteopetrosis, including diffuse osteosclerosis and bone within a bone appearance. At follow-up, the patient presented with, thickened calvarium, multiple prominent encephaloceles, and dural calcifications leading to the intracranial clinical manifestations with bilateral hearing and sight loss. Autosomal recessive osteopetrosis is one of the causes of encephaloceles and this finding may become dramatic if untreated. (orig.)

  17. Exome Sequencing and Directed Clinical Phenotyping Diagnose Cholesterol Ester Storage Disease Presenting as Autosomal Recessive Hypercholesterolemia

    NARCIS (Netherlands)

    Stitziel, Nathan O.; Fouchier, Sigrid W.; Sjouke, Barbara; Peloso, Gina M.; Moscoso, Alessa M.; Auer, Paul L.; Goel, Anuj; Gigante, Bruna; Barnes, Timothy A.; Melander, Olle; Orho-Melander, Marju; Duga, Stefano; Sivapalaratnam, Suthesh; Nikpay, Majid; Martinelli, Nicola; Girelli, Domenico; Jackson, Rebecca D.; Kooperberg, Charles; Lange, Leslie A.; Ardissino, Diego; McPherson, Ruth; Farrall, Martin; Watkins, Hugh; Reilly, Muredach P.; Rader, Daniel J.; de Faire, Ulf; Schunkert, Heribert; Erdmann, Jeanette; Samani, Nilesh J.; Charnas, Lawrence; Altshuler, David; Gabriel, Stacey; Kastelein, John J. P.; Defesche, Joep C.; Nederveen, Aart J.; Kathiresan, Sekar; Hovingh, G. Kees

    2013-01-01

    Objective Autosomal recessive hypercholesterolemia is a rare inherited disorder, characterized by extremely high total and low-density lipoprotein cholesterol levels, that has been previously linked to mutations in LDLRAP1. We identified a family with autosomal recessive hypercholesterolemia not

  18. Genetic forms of nephrogenic diabetes insipidus (NDI): Vasopressin receptor defect (X-linked) and aquaporin defect (autosomal recessive and dominant).

    Science.gov (United States)

    Bichet, Daniel G; Bockenhauer, Detlef

    2016-03-01

    Nephrogenic diabetes insipidus (NDI), which can be inherited or acquired, is characterized by an inability to concentrate urine despite normal or elevated plasma concentrations of the antidiuretic hormone, arginine vasopressin (AVP). Polyuria with hyposthenuria and polydipsia are the cardinal clinical manifestations of the disease. About 90% of patients with congenital NDI are males with X-linked NDI who have mutations in the vasopressin V2 receptor (AVPR2) gene encoding the vasopressin V2 receptor. In less than 10% of the families studied, congenital NDI has an autosomal recessive or autosomal dominant mode of inheritance with mutations in the aquaporin-2 (AQP2) gene. When studied in vitro, most AVPR2 and AQP2 mutations lead to proteins trapped in the endoplasmic reticulum and are unable to reach the plasma membrane. Prior knowledge of AVPR2 or AQP2 mutations in NDI families and perinatal mutation testing is of direct clinical value and can avert the physical and mental retardation associated with repeated episodes of dehydration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. ALS5/SPG11/ KIAA1840 mutations cause autosomal recessive axonal Charcot–Marie–Tooth disease

    Science.gov (United States)

    Montecchiani, Celeste; Pedace, Lucia; Lo Giudice, Temistocle; Casella, Antonella; Mearini, Marzia; Gaudiello, Fabrizio; Pedroso, José L.; Terracciano, Chiara; Caltagirone, Carlo; Massa, Roberto; St George-Hyslop, Peter H.; Barsottini, Orlando G. P.; Kawarai, Toshitaka

    2016-01-01

    Abstract Charcot–Marie–Tooth disease is a group of hereditary peripheral neuropathies that share clinical characteristics of progressive distal muscle weakness and atrophy, foot deformities, distal sensory loss, as well as diminished tendon reflexes. Hundreds of causative DNA changes have been found, but much of the genetic basis of the disease is still unexplained. Mutations in the ALS5/SPG11/ KIAA1840 gene are a frequent cause of autosomal recessive hereditary spastic paraplegia with thin corpus callosum and peripheral axonal neuropathy, and account for ∼40% of autosomal recessive juvenile amyotrophic lateral sclerosis. The overlap of axonal Charcot–Marie–Tooth disease with both diseases, as well as the common autosomal recessive inheritance pattern of thin corpus callosum and axonal Charcot–Marie–Tooth disease in three related patients, prompted us to analyse the ALS5/SPG11/ KIAA1840 gene in affected individuals with autosomal recessive axonal Charcot–Marie–Tooth disease. We investigated 28 unrelated families with autosomal recessive axonal Charcot–Marie–Tooth disease defined by clinical, electrophysiological, as well as pathological evaluation. Besides, we screened for all the known genes related to axonal autosomal recessive Charcot–Marie-Tooth disease (CMT2A2/HMSN2A2/ MFN2 , CMT2B1/ LMNA , CMT2B2/ MED25 , CMT2B5/ NEFL , ARCMT2F/dHMN2B/ HSPB1 , CMT2K/ GDAP1 , CMT2P/ LRSAM1 , CMT2R/ TRIM2 , CMT2S/ IGHMBP2 , CMT2T/ HSJ1 , CMTRID/ COX6A1 , ARAN-NM/ HINT and GAN/ GAN ), for the genes related to autosomal recessive hereditary spastic paraplegia with thin corpus callosum and axonal peripheral neuropathy (SPG7/ PGN , SPG15/ ZFYVE26, SPG21/ ACP33 , SPG35/ FA2H , SPG46/ GBA2 , SPG55/ C12orf65 and SPG56/ CYP2U1 ), as well as for the causative gene of peripheral neuropathy with or without agenesis of the corpus callosum ( SLC12A6 ) . Mitochondrial disorders related to Charcot–Marie–Tooth disease type 2 were also excluded by sequencing POLG and

  20. ALS5/SPG11/KIAA1840 mutations cause autosomal recessive axonal Charcot-Marie-Tooth disease.

    Science.gov (United States)

    Montecchiani, Celeste; Pedace, Lucia; Lo Giudice, Temistocle; Casella, Antonella; Mearini, Marzia; Gaudiello, Fabrizio; Pedroso, José L; Terracciano, Chiara; Caltagirone, Carlo; Massa, Roberto; St George-Hyslop, Peter H; Barsottini, Orlando G P; Kawarai, Toshitaka; Orlacchio, Antonio

    2016-01-01

    Charcot-Marie-Tooth disease is a group of hereditary peripheral neuropathies that share clinical characteristics of progressive distal muscle weakness and atrophy, foot deformities, distal sensory loss, as well as diminished tendon reflexes. Hundreds of causative DNA changes have been found, but much of the genetic basis of the disease is still unexplained. Mutations in the ALS5/SPG11/KIAA1840 gene are a frequent cause of autosomal recessive hereditary spastic paraplegia with thin corpus callosum and peripheral axonal neuropathy, and account for ∼ 40% of autosomal recessive juvenile amyotrophic lateral sclerosis. The overlap of axonal Charcot-Marie-Tooth disease with both diseases, as well as the common autosomal recessive inheritance pattern of thin corpus callosum and axonal Charcot-Marie-Tooth disease in three related patients, prompted us to analyse the ALS5/SPG11/KIAA1840 gene in affected individuals with autosomal recessive axonal Charcot-Marie-Tooth disease. We investigated 28 unrelated families with autosomal recessive axonal Charcot-Marie-Tooth disease defined by clinical, electrophysiological, as well as pathological evaluation. Besides, we screened for all the known genes related to axonal autosomal recessive Charcot-Marie-Tooth disease (CMT2A2/HMSN2A2/MFN2, CMT2B1/LMNA, CMT2B2/MED25, CMT2B5/NEFL, ARCMT2F/dHMN2B/HSPB1, CMT2K/GDAP1, CMT2P/LRSAM1, CMT2R/TRIM2, CMT2S/IGHMBP2, CMT2T/HSJ1, CMTRID/COX6A1, ARAN-NM/HINT and GAN/GAN), for the genes related to autosomal recessive hereditary spastic paraplegia with thin corpus callosum and axonal peripheral neuropathy (SPG7/PGN, SPG15/ZFYVE26, SPG21/ACP33, SPG35/FA2H, SPG46/GBA2, SPG55/C12orf65 and SPG56/CYP2U1), as well as for the causative gene of peripheral neuropathy with or without agenesis of the corpus callosum (SLC12A6). Mitochondrial disorders related to Charcot-Marie-Tooth disease type 2 were also excluded by sequencing POLG and TYMP genes. An additional locus for autosomal recessive Charcot

  1. Autosomal recessive retinitis pigmentosa with RP1 mutations is associated with myopia

    NARCIS (Netherlands)

    Chassine, T.; Bocquet, B.; Daien, V.; Avila-Fernandez, A.; Ayuso, C.; Collin, R.W.J.; Corton, M.; Hejtmancik, J.F.; Born, L.I. van den; Klevering, B.J.; Riazuddin, S.A.; Sendon, N.; Lacroux, A.; Meunier, I.; Hamel, C.P.

    2015-01-01

    OBJECTIVE: To determine the refractive error in patients with autosomal recessive retinitis pigmentosa (arRP) caused by RP1 mutations and to compare it with that of other genetic subtypes of RP. METHODS: Twenty-six individuals had arRP with RP1 mutations, 25 had autosomal dominant RP (adRP) with RP1

  2. Autosomal recessive progressive myoclonus epilepsy due to impaired ceramide synthesis.

    Science.gov (United States)

    Ferlazzo, Edoardo; Striano, Pasquale; Italiano, Domenico; Calarese, Tiziana; Gasparini, Sara; Vanni, Nicola; Fruscione, Floriana; Genton, Pierre; Zara, Federico

    2016-09-01

    Autosomal recessive progressive myoclonus epilepsy due to impaired ceramide synthesis is an extremely rare condition, so far reported in a single family of Algerian origin presenting an unusual, severe form of progressive myoclonus epilepsy characterized by myoclonus, generalized tonic-clonic seizures and moderate to severe cognitive impairment, with probable autosomal recessive inheritance. Disease onset was between 6 and 16 years of age. Genetic study allowed to identify a homozygous nonsynonymous mutation in CERS1, the gene encoding ceramide synthase 1, a transmembrane protein of the endoplasmic reticulum (ER), catalyzes the biosynthesis of C18-ceramides. The mutation decreased C18-ceramide levels. In addition, downregulation of CerS1 in neuroblastoma cell line showed activation of ER stress response and induction of proapoptotic pathways. This observation demonstrates that impairment of ceramide biosynthesis underlies neurodegeneration in humans.

  3. Phenotypic spectrum of autosomal recessive cone-rod dystrophies caused by mutations in the ABCA4 (ABCR) gene.

    NARCIS (Netherlands)

    Klevering, B.J.; Blankenagel, A.; Maugeri, A.; Cremers, F.P.M.; Hoyng, C.B.; Rohrschneider, K.

    2002-01-01

    PURPOSE: To describe the phenotype of 12 patients with autosomal recessive or isolated cone-rod types of progressive retinal degeneration (CRD) caused by mutations in the ABCA4 gene. METHODS: The charts of patients who had originally received a diagnosis of isolated or autosomal recessive CRD were

  4. Autosomal recessive hypophosphataemic rickets with hypercalciuria is not caused by mutations in the type II renal sodium/phosphate cotransporter gene.

    NARCIS (Netherlands)

    Heuvel, L.P.W.J. van den; Koul, K. Op de; Knots, E.; Knoers, N.V.A.M.; Monnens, L.A.H.

    2001-01-01

    BACKGROUND: At present the genetic defect for autosomal recessive and autosomal dominant hypophosphataemic rickets with hypercalciuria (HHRH) is unknown. Type II sodium/phosphate cotransporter (NPT2) gene is a serious candidate for being the causative gene in either or both autosomal recessive and

  5. NDST1 missense mutations in autosomal recessive intellectual disability.

    Science.gov (United States)

    Reuter, Miriam S; Musante, Luciana; Hu, Hao; Diederich, Stefan; Sticht, Heinrich; Ekici, Arif B; Uebe, Steffen; Wienker, Thomas F; Bartsch, Oliver; Zechner, Ulrich; Oppitz, Cornelia; Keleman, Krystyna; Jamra, Rami Abou; Najmabadi, Hossein; Schweiger, Susann; Reis, André; Kahrizi, Kimia

    2014-11-01

    NDST1 was recently proposed as a candidate gene for autosomal recessive intellectual disability in two families. It encodes a bifunctional GlcNAc N-deacetylase/N-sulfotransferase with important functions in heparan sulfate biosynthesis. In mice, Ndst1 is crucial for embryonic development and homozygous null mutations are perinatally lethal. We now report on two additional unrelated families with homozygous missense NDST1 mutations. All mutations described to date predict the substitution of conserved amino acids in the sulfotransferase domain, and mutation modeling predicts drastic alterations in the local protein conformation. Comparing the four families, we noticed significant overlap in the clinical features, including both demonstrated and apparent intellectual disability, muscular hypotonia, epilepsy, and postnatal growth deficiency. Furthermore, in Drosophila, knockdown of sulfateless, the NDST ortholog, impairs long-term memory, highlighting its function in cognition. Our data confirm NDST1 mutations as a cause of autosomal recessive intellectual disability with a distinctive phenotype, and support an important function of NDST1 in human development. © 2014 Wiley Periodicals, Inc.

  6. A Dutch family with autosomal recessively inherited lower motor neuron predominant motor neuron disease due to optineurin mutations

    NARCIS (Netherlands)

    Beeldman, Emma; van der Kooi, Anneke J.; de Visser, Marianne; van Maarle, Merel C.; van Ruissen, Fred; Baas, Frank

    2015-01-01

    Approximately 10% of motor neuron disease (MND) patients report a familial predisposition for MND. Autosomal recessively inherited MND is less common and is most often caused by mutations in the superoxide dismutase 1 (SOD1) gene. In 2010, autosomal recessively inherited mutations in the optineurin

  7. Molecular and clinical study of a cohort of 110 Algerian patients with autosomal recessive ataxia.

    Science.gov (United States)

    Hamza, Wahiba; Ali Pacha, Lamia; Hamadouche, Tarik; Muller, Jean; Drouot, Nathalie; Ferrat, Farida; Makri, Samira; Chaouch, Malika; Tazir, Meriem; Koenig, Michel; Benhassine, Traki

    2015-06-12

    Autosomal recessive cerebellar ataxias (ARCA) are a complex group of neurodegenerative disorders with great genetic and phenotypic heterogeneity, over 30 genes/loci have been associated with more than 20 different clinical forms of ARCA. Genetic heterogeneity combined with highly variable clinical expression of the cerebellar symptoms and overlapping features complicate furthermore the etiological diagnosis of ARCA. The determination of the most frequent mutations and corresponding ataxias, as well as particular features specific to a population, are mandatory to facilitate and speed up the diagnosis process, especially when an appropriate treatment is available. We explored 166 patients (115 families) refered to the neurology units of Algiers central hospitals (Algeria) with a cerebellar ataxia phenotype segregating as an autosomal recessive pattern of inheritance. Genomic DNA was extracted from peripheral blood samples and mutational screening was performed by PCR and direct sequencing or by targeted genomic capture and massive parallel sequencing of 57 genes associated with inherited cerebellar ataxia phenotypes. In this work we report the clinical and molecular results obtained on a large cohort of Algerian patients (110 patients/76 families) with genetically determined autosomal recessive ataxia, representing 9 different types of ARCA and 23 different mutations, including 6 novel ones. The five most common ARCA in this cohort were Friedreich ataxia, ataxia with isolated vitamin E deficiency, ataxia with oculomotor apraxia type 2, autosomal recessive spastic ataxia of Charlevoix-Saguenay and ataxia with oculomotor apraxia type 1. We report here a large cohort of patients with genetically determined autosomal recessive ataxia and the first study of the genetic context of ARCA in Algeria. This study showed that in Algerian patients, the two most common types of ataxia (Friedreich ataxia and ataxia with isolated vitamin E deficiency) coexist with forms that may be

  8. Two novel mutations in ILDR1 gene cause autosomal recessive ...

    Indian Academy of Sciences (India)

    In a recent screening programme on hearing loss (HL), we examined 17 common autosomal recessive nonsyndromic hearing loss (ARNSHL) genes in every consanguineous Ira- nian family with ARNSHL that was referred to our centre. We first screened GJB2 mutations and then utilized a panel of three to four short ...

  9. Progeria (Hutchison - Gilford syndrome in siblings: In an autosomal recessive pattern of inheritance

    Directory of Open Access Journals (Sweden)

    Raghu Tanjore

    2001-09-01

    Full Text Available Progeria is an autosomal dominant, premature aging syndrome. Six and three year old female siblings had sclcrodermatous changes over the extremities, alopecia, beaked nose, prominent veins and bird-like facies. Radiological features were consistent with features of progeria. The present case highlights rarity of progeria in siblings with a possible autosomal recessive pattern.

  10. Genetic Causes of Putative Autosomal Recessive Intellectual Disability Cases in Hamedan Province

    Directory of Open Access Journals (Sweden)

    Milad Bastami

    2012-04-01

    Full Text Available Objective: The aim of this study was to investigate the genetic causes of autosomal recessive intellectual disabilities (AR-ID in Hamadan province of Iran. Materials & Methods: In this descriptive-analytical cross-sectional study, 25 families with more than one affected with putative autosomal recessive intellectual disability were chosen with collaboration of Welfare Organization of Hamadan province. Families were included a total of 60 patients (39 male and 21 female whose intellectual disability had been confirmed by Raven IQ test. Each family was asked for clinical examination and getting consent form. Blood sample was collected from each family. One proband from each family was tested for CGG repeat expansion in FMR1 gene, chromosomal abnormalities and inborn errors of metabolism. We also performed homozygosity mapping based on STR markers for seven known MCPH loci in families with primary microcephaly and AR-ID. Results: Five families had full mutation of Fragile X syndrome. No chromosomal abnormalities were identified. Metabolic screening revealed one family with Medium Chain Acyl CoA Dehydrogenase deficiency. None of three families with primary microcephaly and AR-ID showed linkage to any of known seven MCPH loci. Conclusion: The main causes of ID in Hamadan province were Fragile X syndrome and Autosomal Recessive Primary Microcephaly with the frequencies of 20% and 12%, respectively.

  11. Autosomal recessive Noonan syndrome associated with biallelic LZTR1 variants.

    Science.gov (United States)

    Johnston, Jennifer J; van der Smagt, Jasper J; Rosenfeld, Jill A; Pagnamenta, Alistair T; Alswaid, Abdulrahman; Baker, Eva H; Blair, Edward; Borck, Guntram; Brinkmann, Julia; Craigen, William; Dung, Vu Chi; Emrick, Lisa; Everman, David B; van Gassen, Koen L; Gulsuner, Suleyman; Harr, Margaret H; Jain, Mahim; Kuechler, Alma; Leppig, Kathleen A; McDonald-McGinn, Donna M; Can, Ngoc Thi Bich; Peleg, Amir; Roeder, Elizabeth R; Rogers, R Curtis; Sagi-Dain, Lena; Sapp, Julie C; Schäffer, Alejandro A; Schanze, Denny; Stewart, Helen; Taylor, Jenny C; Verbeek, Nienke E; Walkiewicz, Magdalena A; Zackai, Elaine H; Zweier, Christiane; Zenker, Martin; Lee, Brendan; Biesecker, Leslie G

    2018-02-22

    PurposeTo characterize the molecular genetics of autosomal recessive Noonan syndrome.MethodsFamilies underwent phenotyping for features of Noonan syndrome in children and their parents. Two multiplex families underwent linkage analysis. Exome, genome, or multigene panel sequencing was used to identify variants. The molecular consequences of observed splice variants were evaluated by reverse-transcription polymerase chain reaction.ResultsTwelve families with a total of 23 affected children with features of Noonan syndrome were evaluated. The phenotypic range included mildly affected patients, but it was lethal in some, with cardiac disease and leukemia. All of the parents were unaffected. Linkage analysis using a recessive model supported a candidate region in chromosome 22q11, which includes LZTR1, previously shown to harbor mutations in patients with Noonan syndrome inherited in a dominant pattern. Sequencing analyses of 21 live-born patients and a stillbirth identified biallelic pathogenic variants in LZTR1, including putative loss-of-function, missense, and canonical and noncanonical splicing variants in the affected children, with heterozygous, clinically unaffected parents and heterozygous or normal genotypes in unaffected siblings.ConclusionThese clinical and genetic data confirm the existence of a form of Noonan syndrome that is inherited in an autosomal recessive pattern and identify biallelic mutations in LZTR1.Genet Med advance online publication, 22 February 2018; doi:10.1038/gim.2017.249.

  12. Loss of VPS13C Function in Autosomal-Recessive Parkinsonism Causes Mitochondrial Dysfunction and Increases PINK1/Parkin-Dependent Mitophagy

    NARCIS (Netherlands)

    Lesage, S.; Drouet, V.; Majounie, E.; Deramecourt, V.; Jacoupy, M.; Nicolas, A.; Cormier-Dequaire, F.; Hassoun, S.M.; Pujol, C.; Ciura, S.; Erpapazoglou, Z.; Usenko, T.; Maurage, C.A.; Sahbatou, M.; Liebau, S.; Ding, J.; Bilgic, B.; Emre, M.; Erginel-Unaltuna, N.; Guven, G.; Tison, F.; Tranchant, C.; Vidailhet, M.; Corvol, J.C.; Krack, P.; Leutenegger, A.L.; Nalls, M.A.; Hernandez, D.G.; Heutink, P.; Gibbs, J.R.; Hardy, J.; Wood, N.W.; Gasser, T.; Durr, A.; Deleuze, J.F.; Tazir, M.; Destee, A.; Lohmann, E.; Kabashi, E.; Singleton, A.; Corti, O.; Brice, A.; Scheffer, H.; Bloem, B.R.; et al.,

    2016-01-01

    Autosomal-recessive early-onset parkinsonism is clinically and genetically heterogeneous. The genetic causes of approximately 50% of autosomal-recessive early-onset forms of Parkinson disease (PD) remain to be elucidated. Homozygozity mapping and exome sequencing in 62 isolated individuals with

  13. Genetic Counselors' Experiences Regarding Communication of Reproductive Risks with Autosomal Recessive Conditions found on Cancer Panels.

    Science.gov (United States)

    Mets, Sarah; Tryon, Rebecca; Veach, Patricia McCarthy; Zierhut, Heather A

    2016-04-01

    The development of hereditary cancer genetic testing panels has altered genetic counseling practice. Mutations within certain genes on cancer panels pose not only a cancer risk, but also a reproductive risk for autosomal recessive conditions such as Fanconi anemia, constitutional mismatch repair deficiency syndrome, and ataxia telangiectasia. This study aimed to determine if genetic counselors discuss reproductive risks for autosomal recessive conditions associated with genes included on cancer panels, and if so, under what circumstances these risks are discussed. An on-line survey was emailed through the NSGC list-serv. The survey assessed 189 cancer genetic counselors' experiences discussing reproductive risks with patients at risk to carry a mutation or variant of uncertain significance (VUS) in a gene associated with both an autosomal dominant cancer risk and an autosomal recessive syndrome. Over half (n = 82, 55 %) reported having discussed reproductive risks; the remainder (n = 66, 45 %) had not. Genetic counselors who reported discussing reproductive risks primarily did so when patients had a positive result and were of reproductive age. Reasons for not discussing these risks included when a patient had completed childbearing or when a VUS was identified. Most counselors discussed reproductive risk after obtaining results and not during the informed consent process. There is inconsistency as to if and when the discussion of reproductive risks is taking place. The wide variation in responses suggests a need to develop professional guidelines for when and how discussions of reproductive risk for autosomal recessive conditions identified through cancer panels should occur with patients.

  14. A novel NR2E3 gene mutation in autosomal recessive retinitis pigmentosa with cystic maculopathy

    OpenAIRE

    Mahajan, D.; Votruba, Marcela

    2017-01-01

    NR2E3 is a gene that encodes for photoreceptor cell specific nuclear receptor, which is involved in cone proliferation. The splice site mutation 119-2A>C in NR2E3 (15q23) has been previously reported to underlie recessive enhanced cone S sensitivity syndrome, clumped pigmentary retinal degeneration, Goldman-Favre syndrome and also autosomal dominant and autosomal recessive retinitis pigmentosa (RP). However, the mutation c 571 + 2 T > C in NR2E3 has not been previously reported with retinal d...

  15. Genetics Home Reference: autosomal dominant congenital stationary night blindness

    Science.gov (United States)

    ... collapse boxes. Description Autosomal dominant congenital stationary night blindness is a disorder of the retina , which is the specialized tissue at the back of the eye that detects light and color. People with this condition typically have difficulty seeing ...

  16. Genotype-phenotype correlation in FMF patients: A "non classic" recessive autosomal or "atypical" dominant autosomal inheritance?

    Science.gov (United States)

    Procopio, V; Manti, S; Bianco, G; Conti, G; Romeo, A; Maimone, F; Arrigo, T; Cutrupi, M C; Salpietro, C; Cuppari, C

    2018-01-30

    Uncertainty remains on the pathogenetic mechanisms, model of inheritance as well as genotype-phenotype correlation of FMF disease. To investigate the impact of genetic factors on the FMF phenotype and the disease inheritance model. A total of 107 FMF patients were enrolled. Patients were diagnosed clinically. All patients underwent genetic analysis of the FMF locus on 16p13.3. 9 distinct mutations were detected. Specifically, the 85.98% of patients showed a heterozygous genotype. The most common genotypes were p.Met680Ile/wt and p.Met694Val/wt. The most frequent clinical findings were fever, abdominal pain, joint pain, thoracic pain, and erysipelas-like erythema. Analysis of clinical data did not detect any significant difference in clinical phenotype among heterozygous, homozygous as well as compound homozygous subjects, further supporting the evidence that, contrary to the recessive autosomal inheritance, heterozygous patients fulfilled the criteria of clinical FMF. Moreover, subjects with p.Met694Val/wt and p.Met680Ile/wt genotype reported the most severe clinical phenotype. p.Ala744Ser/wt, p.Glu148Gln/Met680Ile, p.Met680Ile/Met680Ile, p.Met680Ile/Met694Val, p.Pro369Ser/wt, p.Met694Ile/wt, p.Glu148Gln/Glu148Gln, p.Lys695Arg/wt resulted in 100% pathogenicity. The existence of a "non classic" autosomal recessive inheritance as well as of an "atypical" dominant autosomal inheritance with incomplete penetrance and variable expressivity cannot be excluded in FMF. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. New parkin mutations and atypical phenotypes in families with autosomal recessive parkinsonism.

    NARCIS (Netherlands)

    Rawal, N.; Periquet, M.; Lohmann, E.; Lucking, C.B.; Teive, H.; Ambrosio, G.; Raskin, S.; Lincoln, S.; Hattori, N.; Guimaraes, J.; Horstink, M.W.I.M.; Santos Bele, W. Dos; Brousolle, E.; Destee, A.; Mizuno, Y.; Farrer, M.; Deleuze, J.F.; Michele, G. de; Agid, Y.; Durr, A.; Brice, A.

    2003-01-01

    The frequency of parkin mutations was evaluated in 30 families of highly diverse geographic origin with early-onset autosomal recessive parkinsonism. Twelve different mutations, six of which were new, were found in 10 families from Europe and Brazil. Patients with parkin mutations had significantly

  18. Genetics of Autosomal Recessive Polycystic Kidney Disease and Its Differential Diagnoses

    Directory of Open Access Journals (Sweden)

    Carsten Bergmann

    2018-02-01

    Full Text Available Autosomal recessive polycystic kidney disease (ARPKD is a hepatorenal fibrocystic disorder that is characterized by enlarged kidneys with progressive loss of renal function and biliary duct dilatation and congenital hepatic fibrosis that leads to portal hypertension in some patients. Mutations in the PKHD1 gene are the primary cause of ARPKD; however, the disease is genetically not as homogeneous as long thought and mutations in several other cystogenes can phenocopy ARPKD. The family history usually is negative, both for recessive, but also often for dominant disease genes due to de novo arisen mutations or recessive inheritance of variants in genes that usually follow dominant patterns such as the main ADPKD genes PKD1 and PKD2. Considerable progress has been made in the understanding of polycystic kidney disease (PKD. A reduced dosage of disease proteins leads to the disruption of signaling pathways underlying key mechanisms involved in cellular homeostasis, which may help to explain the accelerated and severe clinical progression of disease course in some PKD patients. A comprehensive knowledge of disease-causing genes is essential for counseling and to avoid genetic misdiagnosis, which is particularly important in the prenatal setting (e.g., preimplantation genetic diagnosis/PGD. For ARPKD, there is a strong demand for early and reliable prenatal diagnosis, which is only feasible by molecular genetic analysis. A clear genetic diagnosis is helpful for many families and improves the clinical management of patients. Unnecessary and invasive measures can be avoided and renal and extrarenal comorbidities early be detected in the clinical course. The increasing number of genes that have to be considered benefit from the advances of next-generation sequencing (NGS which allows simultaneous analysis of a large group of genes in a single test at relatively low cost and has become the mainstay for genetic diagnosis. The broad phenotypic and genetic

  19. Additional case of Marden-Walker syndrome: support for the autosomal-recessive inheritance adn refinement of phenotype in a surviving patient.

    Science.gov (United States)

    Orrico, A; Galli, L; Zappella, M; Orsi, A; Hayek, G

    2001-02-01

    In this report, we present a 14-year-old girl, born to consanguineous parents, who presented with severe mental retardation, hypotonia, short stature, and congenital joint contractures. The craniofacial features were scaphocephaly, thin/long and immobile face, marked hypoplasia of the midface, temporal narrowness, blepharophimosis, palpebral ptosis, and strabismus. The combination of such a distinctive craniofacial appearance and psychomotor retardation allows us to recognize a new case of the Marden-Walker syndrome. Our patient represents one of the rare cases in which consanguineous mating supports the autosomal-recessive pattern of inheritance of this condition. Furthermore, through refining the phenotype of a surviving patient, this report may contribute to a better recognition of this disorder in older affected children.

  20. Do consanguineous parents of a child affected by an autosomal recessive disease have more DNA identical-by-descent than similarly-related parents with healthy offspring? Design of a case-control study

    Directory of Open Access Journals (Sweden)

    Cornel Martina C

    2010-07-01

    Full Text Available Abstract Background The offspring of consanguineous relations have an increased risk of congenital/genetic disorders and early mortality. Consanguineous couples and their offspring account for approximately 10% of the global population. The increased risk for congenital/genetic disorders is most marked for autosomal recessive disorders and depends on the degree of relatedness of the parents. For children of first cousins the increased risk is 2-4%. For individual couples, however, the extra risk can vary from zero to 25% or higher, with only a minority of these couples having an increased risk of at least 25%. It is currently not possible to differentiate between high-and low-risk couples. The quantity of DNA identical-by-descent between couples with the same degree of relatedness shows a remarkable variation. Here we hypothesize that consanguineous partners with children affected by an autosomal recessive disease have more DNA identical-by-descent than similarly-related partners who have only healthy children. The aim of the study is thus to establish whether the amount of DNA identical-by-descent in consanguineous parents of children with an autosomal recessive disease is indeed different from its proportion in consanguineous parents who have healthy children only. Methods/Design This project is designed as a case-control study. Cases are defined as consanguineous couples with one or more children with an autosomal recessive disorder and controls as consanguineous couples with at least three healthy children and no affected child. We aim to include 100 case couples and 100 control couples. Control couples are matched by restricting the search to the same family, clan or ethnic origin as the case couple. Genome-wide SNP arrays will be used to test our hypothesis. Discussion This study contains a new approach to risk assessment in consanguineous couples. There is no previous study on the amount of DNA identical-by-descent in consanguineous

  1. Mutations in c10orf11, a melanocyte-differentiation gene, cause autosomal-recessive albinism.

    Science.gov (United States)

    Grønskov, Karen; Dooley, Christopher M; Østergaard, Elsebet; Kelsh, Robert N; Hansen, Lars; Levesque, Mitchell P; Vilhelmsen, Kaj; Møllgård, Kjeld; Stemple, Derek L; Rosenberg, Thomas

    2013-03-07

    Autosomal-recessive albinism is a hypopigmentation disorder with a broad phenotypic range. A substantial fraction of individuals with albinism remain genetically unresolved, and it has been hypothesized that more genes are to be identified. By using homozygosity mapping of an inbred Faroese family, we identified a 3.5 Mb homozygous region (10q22.2-q22.3) on chromosome 10. The region contains five protein-coding genes, and sequencing of one of these, C10orf11, revealed a nonsense mutation that segregated with the disease and showed a recessive inheritance pattern. Investigation of additional albinism-affected individuals from the Faroe Islands revealed that five out of eight unrelated affected persons had the nonsense mutation in C10orf11. Screening of a cohort of autosomal-recessive-albinism-affected individuals residing in Denmark showed a homozygous 1 bp duplication in C10orf11 in an individual originating from Lithuania. Immunohistochemistry showed localization of C10orf11 in melanoblasts and melanocytes in human fetal tissue, but no localization was seen in retinal pigment epithelial cells. Knockdown of the zebrafish (Danio rerio) homolog with the use of morpholinos resulted in substantially decreased pigmentation and a reduction of the apparent number of pigmented melanocytes. The morphant phenotype was rescued by wild-type C10orf11, but not by mutant C10orf11. In conclusion, we have identified a melanocyte-differentiation gene, C10orf11, which when mutated causes autosomal-recessive albinism in humans. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  2. Inhibitory action of chlorophyllin of autosome recessive lethals induced by irradiation

    International Nuclear Information System (INIS)

    Salceda, V.M.; Pimentel, P.A.E.; Cruces, M.P.

    2006-01-01

    The chlorophyllin is a sodium salt of the chlorophyll that has a strong protective action of the damage induced by different agents so much physical as chemical. In Drosophila there is reported this effect in somatic cells. In contrast, in germinal cells using tests with the sexual chromosomes has not been found such inhibitory action. For this reason, in this occasion we will refer to the effect of the lethality induced in autosome chromosomes, in particular to the chromosome II of this species. For such effect groups of males of the line Canton-S its were pre-treated for 24h with or without 69 mm of CCS and later on treaties with or without 40 Gy of gamma irradiation. The males were then subjected to the technical Cy L / Pm for the detection of recessive lethals. In the third generation the respective counts of the descendant of each one of them to determine the corresponding categories for each extracted chromosome were made. To be mendelian crosses it is expected for a normal chromosome a proportion 2:1 of individuals with genotype Cy L / +: +/+. The absence of individuals +/+ it is indicative of a lethal gene, until 10% of these individuals of each male's total descendant, it is considered that is carrying of a semi lethal gene. The sum of lethal and semi lethals constitutes the category detrimental. The obtained results indicated that the pre-treatment with CCS reduces in a significant way the frequency of induced lethals by 40 Gy of gamma rays. The fact that an effect inhibitor has not been observed in the test of recessive lethal bound to the sex obtained previously, it contrasts with the effect observed in the chromosome II, results of this study and with the one observed in the chromosome III in somatic cells. The above-mentioned shows a differential action of the CCS between sexual chromosomes and autosomal before the effect of the gamma radiation. At the moment we don't have an explanation to these evidences. To evaluate the action of the chlorophyllin

  3. Renal abnormalities in congenital chloride diarrhea

    International Nuclear Information System (INIS)

    Al-Hamad, Nadia M.; Al-Eisa, Amal A.

    2004-01-01

    Congenital chloride diarrhea CLD is a rare autosomal recessive disorder caused by a defect in the chloride/ bicarbonate exchange in the ileum and colon. It is characterized by watery diarrhea, abdominal distension, hypochloremic hypokalemic metabolic alkalosis with high fecal content of chloride >90 mmol/l. We report 3 patients with CLD associated with various renal abnormalities including chronic renal failure secondary to renal hypoplasia, nephrocalcinosis and congenital nephrotic syndrome. (author)

  4. Enfermedad poliquística autosómica recesiva Recessive autosomal polycystic disease

    Directory of Open Access Journals (Sweden)

    Sandalio Durán Álvarez

    2007-06-01

    Full Text Available Como enfermedades renales poliquísticas hereditarias se describen clásicamente la autosómica recesiva y la autosómica dominante, mal llamadas enfermedad poliquística de tipo infantily de;tipo adulto, respectivamente, pues ambas pueden verse tanto en una como en otra edad. Los conceptos cambiantes en cuanto a la enfermedad autosómica recesiva, dados por los progresos en el tratamiento de los recién nacidos con la enfermedad, y la localización del gen, que por su mutación la produce, nos motivan hacer esta breve revisión con la finalidad de contribuir a la comprensión de la enfermedad por los estudiantes de medicina y el médico general básico.Recessive autosomal and dominant autosomal polycystic kidney diseases are classically described as hereditary illnesses; they are also called polycystic disease of child type” and of adult typerespectively since both may be seen in any of these two life stages. The changing concepts of recessive autosomal disease, given the advances made in the treatment of newborns with this disease, and the location of the gen, the mutation of which causes it, encouraged us to make a brief literature review to help medical students and general practitioners to understand this disease.

  5. Evidence for autosomal recessive inheritance in cerebral gigantism

    Science.gov (United States)

    Nevo, S.; Zeltzer, M.; Benderly, A.; Levy, J.

    1974-01-01

    Three cases of cerebral gigantism, two sibs and their double first cousin, are described in a large inbred family from Israel. Two of the three were observed and diagnosed at birth and two were followed for two years. They all presented the signs and symptoms considered typical of this syndrome, as well as some of the less frequent findings. Generalized oedema and flexion contractures of the feet were observed in two of the three at birth. This has not hitherto been reported in cases of cerebral gigantism, of whom only a few have been observed and diagnosed at birth. Autosomal recessive inheritance is clearly implied in this family. Images PMID:4841084

  6. Novel mutation in TSPAN12 leads to autosomal recessive inheritance of congenital vitreoretinal disease with intra-familial phenotypic variability.

    Science.gov (United States)

    Gal, Moran; Levanon, Erez Y; Hujeirat, Yasir; Khayat, Morad; Pe'er, Jacob; Shalev, Stavit

    2014-12-01

    Developmental malformations of the vitreoretinal vasculature are a heterogeneous group of conditions with various modes of inheritance, and include familial exudative vitreoretinopathy (FEVR), persistent fetal vasculature (PFV), and Norrie disease. We investigated a large consanguineous kindred with multiple affected individuals exhibiting variable phenotypes of abnormal vitreoretinal vasculature, consistent with the three above-mentioned conditions and compatible with autosomal recessive inheritance. Exome sequencing identified a novel c.542G > T (p.C181F) apparently mutation in the TSPAN12 gene that segregated with the ocular disease in the family. The TSPAN12 gene was previously reported to cause dominant and recessive FEVR, but has not yet been associated with other vitreoretinal manifestations. The intra-familial clinical variability caused by a single mutation in the TSPAN12 gene underscores the complicated phenotype-genotype correlation of mutations in this gene, and suggests that there are additional genetic and environmental factors involved in the complex process of ocular vascularization during embryonic development. Our study supports considering PFV, FEVR, and Norrie disease a spectrum of disorders, with clinical and genetic overlap, caused by mutations in distinct genes acting in the Norrin/β-catenin signaling pathway. © 2014 Wiley Periodicals, Inc.

  7. Congenital sensorineural deafness in Australian stumpy-tail cattle dogs is an autosomal recessive trait that maps to CFA10.

    Directory of Open Access Journals (Sweden)

    Susan Sommerlad

    2010-10-01

    speckling. Fine mapping was then performed on 45 of these 50 dogs and a further 48 dogs (n = 93. Sequencing candidate gene Sox10 in 6 hearing ASCD, 2 unilaterally deaf ASCD and 2 bilaterally deaf ASCD did not reveal any disease-associated mutations.Deafness in ASCD is an incompletely penetrant autosomal recessive inherited disease that maps to CFA10.

  8. Improved Structure and Function in Autosomal Recessive Polycystic Rat Kidneys with Renal Tubular Cell Therapy.

    Science.gov (United States)

    Kelly, K J; Zhang, Jizhong; Han, Ling; Kamocka, Malgorzata; Miller, Caroline; Gattone, Vincent H; Dominguez, Jesus H

    2015-01-01

    Autosomal recessive polycystic kidney disease is a truly catastrophic monogenetic disease, causing death and end stage renal disease in neonates and children. Using PCK female rats, an orthologous model of autosomal recessive polycystic kidney disease harboring mutant Pkhd1, we tested the hypothesis that intravenous renal cell transplantation with normal Sprague Dawley male kidney cells would improve the polycystic kidney disease phenotype. Cytotherapy with renal cells expressing wild type Pkhd1 and tubulogenic serum amyloid A1 had powerful and sustained beneficial effects on renal function and structure in the polycystic kidney disease model. Donor cell engraftment and both mutant and wild type Pkhd1 were found in treated but not control PCK kidneys 15 weeks after the final cell infusion. To examine the mechanisms of global protection with a small number of transplanted cells, we tested the hypothesis that exosomes derived from normal Sprague Dawley cells can limit the cystic phenotype of PCK recipient cells. We found that renal exosomes originating from normal Sprague Dawley cells carried and transferred wild type Pkhd1 mRNA to PCK cells in vivo and in vitro and restricted cyst formation by cultured PCK cells. The results indicate that transplantation with renal cells containing wild type Pkhd1 improves renal structure and function in autosomal recessive polycystic kidney disease and may provide an intra-renal supply of normal Pkhd1 mRNA.

  9. The genetic landscape of familial congenital hydrocephalus.

    Science.gov (United States)

    Shaheen, Ranad; Sebai, Mohammed Adeeb; Patel, Nisha; Ewida, Nour; Kurdi, Wesam; Altweijri, Ikhlass; Sogaty, Sameera; Almardawi, Elham; Seidahmed, Mohammed Zain; Alnemri, Abdulrahman; Madirevula, Sateesh; Ibrahim, Niema; Abdulwahab, Firdous; Hashem, Mais; Al-Sheddi, Tarfa; Alomar, Rana; Alobeid, Eman; Sallout, Bahauddin; AlBaqawi, Badi; AlAali, Wajeih; Ajaji, Nouf; Lesmana, Harry; Hopkin, Robert J; Dupuis, Lucie; Mendoza-Londono, Roberto; Al Rukban, Hadeel; Yoon, Grace; Faqeih, Eissa; Alkuraya, Fowzan S

    2017-06-01

    Congenital hydrocephalus is an important birth defect, the genetics of which remains incompletely understood. To date, only 4 genes are known to cause Mendelian diseases in which congenital hydrocephalus is the main or sole clinical feature, 2 X-linked (L1CAM and AP1S2) and 2 autosomal recessive (CCDC88C and MPDZ). In this study, we aimed to determine the genetic etiology of familial congenital hydrocephalus with the assumption that these cases represent Mendelian forms of the disease. Exome sequencing combined, where applicable, with positional mapping. We identified a likely causal mutation in the majority of these families (21 of 27, 78%), spanning 16 genes, none of which is X-linked. Ciliopathies and dystroglycanopathies were the most common etiologies of congenital hydrocephalus in our cohort (19% and 26%, respectively). In 1 family with 4 affected members, we identified a homozygous truncating variant in EML1, which we propose as a novel cause of congenital hydrocephalus in addition to its suggested role in cortical malformation. Similarly, we show that recessive mutations in WDR81, previously linked to cerebellar ataxia, mental retardation, and disequilibrium syndrome 2, cause severe congenital hydrocephalus. Furthermore, we confirm the previously reported candidacy of MPDZ by presenting a phenotypic spectrum of congenital hydrocephalus associated with 5 recessive alleles. Our study highlights the importance of recessive mutations in familial congenital hydrocephalus and expands the locus heterogeneity of this condition. Ann Neurol 2017;81:890-897. © 2017 American Neurological Association.

  10. Autosomal recessive congenital cataract in captive-bred vervet monkeys (Chlorocebus aethiops).

    Science.gov (United States)

    Magwebu, Zandisiwe E; Abdul-Rasool, Sahar; Seier, Jürgen V; Chauke, Chesa G

    2018-04-01

    The aim of the study was to evaluate the genetic predisposition of congenital cataract in a colony of captive-bred vervet monkeys. Four congenital cataract genes: glucosaminyl (N-acetyl) transferase 2 (GCNT2), heat shock transcription factor 4 (HSF4), crystallin alpha A (CRYAA) and lens intrinsic membrane protein-2 (LIM2) were screened, sequenced and analysed for possible genetic variants in 36 monkeys. Gene expression was also evaluated in these genes. Fifteen sequence variants were identified in the coding regions of three genes (GCNT2, HSF4 and CRYAA). Of these variations, only three were missense mutations (M258V, V16I and S24N) and identified in the GCNT2 transcripts A, B and C, respectively, which resulted in a downregulated gene expression. Although the three missense mutations in GCNT2 have a benign effect, a possibility exists that the candidate genes (GCNT2, HSF4 and CRYAA) might harbour mutations that are responsible for total congenital cataract. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Novel CLCN7 compound heterozygous mutations in intermediate autosomal recessive osteopetrosis.

    Science.gov (United States)

    Okamoto, Nana; Kohmoto, Tomohiro; Naruto, Takuya; Masuda, Kiyoshi; Komori, Takahide; Imoto, Issei

    2017-01-01

    Osteopetrosis is a heritable disorder of the skeleton that is characterized by increased bone density on radiographs caused by defects in osteoclast formation and function. Mutations in >10 genes are identified as causative for this clinically and genetically heterogeneous disease in humans. We report two novel missense variations in a compound heterozygous state in the CLCN7 gene, detected through targeted exome sequencing, in a 15-year-old Japanese female with intermediate autosomal recessive osteopetrosis.

  12. Congenital short bowel syndrome as the presenting symptom in male patients with FLNA mutations

    NARCIS (Netherlands)

    van der Werf, Christine S.; Sribudiani, Yunia; Verheij, Joke B. G. M.; Carroll, Matthew; O'Loughlin, Edward; Chen, Chien-Huan; Brooks, Alice S.; Liszewski, M. Kathryn; Atkinson, John P.; Hofstra, Robert M. W.

    Purpose: Autosomal recessive congenital short bowel syndrome is caused by mutations in CLMP. No mutations were found in the affected males of a family with presumed X-linked congenital short bowel syndrome or in an isolated male patient. Our aim was to identify the disease-causing mutation in these

  13. Hereditary motor and sensory neuropathy-russe: new autosomal recessive neuropathy in Balkan Gypsies.

    Science.gov (United States)

    Thomas, P K; Kalaydjieva, L; Youl, B; Rogers, T; Angelicheva, D; King, R H; Guergueltcheva, V; Colomer, J; Lupu, C; Corches, A; Popa, G; Merlini, L; Shmarov, A; Muddle, J R; Nourallah, M; Tournev, I

    2001-10-01

    A novel peripheral neuropathy of autosomal recessive inheritance has been identified in Balkan Gypsies and termed hereditary motor and sensory neuropathy-Russe (HMSN-R). We investigated 21 affected individuals from 10 families. Distal lower limb weakness began between the ages of 8 and 16 years, upper limb involvement beginning between 10 and 43 years, with an average of 22 years. This progressive disorder led to severe weakness of the lower limbs, generalized in the oldest subject (aged 57 years), and marked distal upper limb weakness. Prominent distal sensory loss involved all modalities, resulting in neuropathic joint degeneration in two instances. All patients showed foot deformity, and most showed hand deformity. Motor nerve conduction velocity was moderately reduced in the upper limbs but unobtainable in the legs. Sensory nerve action potentials were absent. There was loss of larger myelinated nerve fibers and profuse regenerative activity in the sural nerve. HMSN-R is a new form of autosomal recessive inherited HMSN caused by a single founder mutation in a 1 Mb interval on chromosome 10q.

  14. Adrenomegaly and septic adrenal hemorrhage (Waterhouse-Friderichsen syndrome) in the setting of congenital adrenal hyperplasia

    OpenAIRE

    Saad, Amin F.; Ford, Kenneth L.; dePrisco, Gregory; Smerud, Michael J.

    2013-01-01

    Congenital adrenal hyperplasia refers to a spectrum of autosomal recessive inherited disorders of steroidogenesis most commonly identified on newborn screenings. We describe a young woman who presented with abdominal pain and on subsequent imaging was found to have features of congenital adrenal hyperplasia. Imaging findings, treatment, and potential complications are discussed.

  15. Adrenomegaly and septic adrenal hemorrhage (Waterhouse-Friderichsen syndrome) in the setting of congenital adrenal hyperplasia.

    Science.gov (United States)

    Saad, Amin F; Ford, Kenneth L; Deprisco, Gregory; Smerud, Michael J

    2013-07-01

    Congenital adrenal hyperplasia refers to a spectrum of autosomal recessive inherited disorders of steroidogenesis most commonly identified on newborn screenings. We describe a young woman who presented with abdominal pain and on subsequent imaging was found to have features of congenital adrenal hyperplasia. Imaging findings, treatment, and potential complications are discussed.

  16. Proprotein Convertase Subtilisin Kexin Type 9 Inhibition for Autosomal Recessive Hypercholesterolemia-Brief Report.

    Science.gov (United States)

    Thedrez, Aurélie; Sjouke, Barbara; Passard, Maxime; Prampart-Fauvet, Simon; Guédon, Alexis; Croyal, Mikael; Dallinga-Thie, Geesje; Peter, Jorge; Blom, Dirk; Ciccarese, Milco; Cefalù, Angelo B; Pisciotta, Livia; Santos, Raul D; Averna, Maurizio; Raal, Frederick; Pintus, Paolo; Cossu, Maria; Hovingh, Kees; Lambert, Gilles

    2016-08-01

    Proprotein convertase subtilisin kexin type 9 (PCSK9) inhibitors lower low-density lipoprotein (LDL) cholesterol in the vast majority of patients with autosomal dominant familial hypercholesterolemia. Will PCSK9 inhibition with monoclonal antibodies, in particular alirocumab, be of therapeutic value for patients with autosomal recessive hypercholesterolemia (ARH)? Primary lymphocytes were obtained from 28 genetically characterized ARH patients and 11 controls. ARH lymphocytes treated with mevastatin were incubated with increasing doses of recombinant PCSK9 with or without saturating concentrations of alirocumab. Cell surface LDL receptor expression measured by flow cytometry and confocal microscopy was higher in ARH than in control lymphocytes. PCSK9 significantly reduced LDL receptor expression in ARH lymphocytes albeit to a lower extent than in control lymphocytes (25% versus 76%, respectively), an effect reversed by alirocumab. Fluorescent LDL cellular uptake, also measured by flow cytometry, was reduced in ARH lymphocytes compared with control lymphocytes. PCSK9 significantly lowered LDL cellular uptake in ARH lymphocytes, on average by 18%, compared with a 46% reduction observed in control lymphocytes, an effect also reversed by alirocumab. Overall, the effects of recombinant PCSK9, and hence of alirocumab, on LDL receptor expression and function were significantly less pronounced in ARH than in control cells. PCSK9 inhibition with alirocumab on top of statin treatment has the potential to lower LDL cholesterol in some autosomal recessive hypercholesterolemia patients. © 2016 American Heart Association, Inc.

  17. Analysis of TGM1, ALOX12B, ALOXE3, NIPAL4 and CYP4F22 in autosomal recessive congenital ichthyosis from Galicia (NW Spain): evidence of founder effects.

    Science.gov (United States)

    Rodríguez-Pazos, L; Ginarte, M; Fachal, L; Toribio, J; Carracedo, A; Vega, A

    2011-10-01

      Mutations in six genes have been identified in autosomal recessive congenital ichthyosis (ARCI). To date, few studies have analysed the spectrum of these mutations in specific populations. We have studied the characteristics of patients with ARCI in Galicia (NW Spain). Methods  We recruited patients by contacting all dermatology departments of Galicia and the Spanish patient organization for ichthyosis. TGM1, ALOX12B, ALOXE3, NIPAL4 and CYP4F22 were analysed in the patients and their relatives. We identified 23 patients with ARCI and estimated a prevalence of 1 : 122 000. Twenty of the patients were studied. Seventeen of them were clinically categorized as having lamellar ichthyosis (LI) and three as having congenital ichthyosiform erythroderma (CIE). TGM1 and ALOXE3 mutations were identified in 12/16 (75%) probands whereas no ALOX12B, NIPAL4 and CYP4F22 mutations were found. TGM1 mutations were found in 11/13 (85%) of LI probands. ALOXE3 mutations were identified in a single patient with CIE. Remarkably, mutations p.Arg760X, p.Asp408ValfsX21 and c.984+1G>A of TGM1 were present in six, four and two families, accounting for 41%, 23% and 14% of all TGM1 mutant alleles, respectively. The high percentage of patients with the same TGM1 mutations, together with the high number of homozygous probands (64%), indicates the existence of a strong founder effect in our population. © 2011 The Authors. BJD © 2011 British Association of Dermatologists 2011.

  18. Congenital generalized lipodystrophia: a case report

    International Nuclear Information System (INIS)

    Malheiros, N.R.; Marchiori, E.; Praxedes, M.C.; Machado, D.M.; Carvalho, A.A.V.

    1995-01-01

    Congenital generalized lipodystrophia is a rare genetic disorder, transmitted as an autosomal recessive trait and is prevalent on female. This paper presents a case of a man, 36-year-old, suffering from congenital generalized lipodystrophia with clinical features of diabetes mellitus and dyspnea. Radiographic findings have shown cystic areas in the skeleton, interstitial pulmonary fibrosis and paucity of abdominal fat. Radiological and anatomo-pathological aspects are presented as well as a review of the medical literature about the case. (author). 8 refs, 4 figs

  19. [Genetic study of the autosomal recessive form of Charcot-Marie-Tooth in an Algerian family].

    Science.gov (United States)

    Hamadouche, T; Tazir-Melboucy, M; Benhassine, T

    1998-01-01

    Charcot-Marie-Tooth disease (CMT) is a hereditary neuropathy characterized by muscular atrophy and progressive sensitive alterations that affect limbs. The CMT is one of the most heterogenous diseases, clinically as well as genetically. At least twelve loci are responsible for the CMT phenotype, four of them for the autosomal recessive form. The aim of our work was to determinate the implication/exclusion of these four loci in an Algerian family by linkage analysis using microsatellites markers. We have tested the four loci on 8q13-21.1 (CMT4A), 11q23 (CMT4B), 5q23-33 (CMT4C) 8q24 (CMTAR). The haplotype reconstruction allowed us to exclude all the loci in this family, suggesting that the locus (gene) responsible for this form of CMT is localized elsewhere in the genome, thus providing an other observation of the great heterogeneity of the CMT, particularly autosomal recessive.

  20. Congenital Amegakaryocytic Thrombocytopenia Type II Presenting with Multiple Central Nervous System Anomalies

    NARCIS (Netherlands)

    Eshuis-Peters, Ellis; Versluys, Anne Brigitta; Stokman, Marijn Fijke; van der Crabben, Saskia Nanette; Nij Bijvank, Sebastiaan W A; van Wezel-Meijler, Gerda

    Congenital amegakaryocytic thrombocytopenia (CAMT) is a rare autosomal recessive bone marrow failure, caused by MPL gene mutations. The combination of CAMT and central nervous system abnormalities is uncommon. We describe a case with a homozygous missense MPL gene mutation and polymicrogyria,

  1. Genetic Linkage Analysis of the DFNB21 Locus in Autosomal Recessive Hearing Loss in Large Families from Khuzestan Province

    Directory of Open Access Journals (Sweden)

    Mahtab Khosrofar

    2017-06-01

    Full Text Available Abstract Background: Hearing loss (HL is the most common congenital defect in humans. One or two in thousand newborn babies have prelingual hearing loss. Autosomal recessive non-syndromic hearing loss (ARNSHL is the most common form of hereditary deafness. Hearing loss is more common in the developing countries which is due to genetic and environmental (cultural -health factors reasons. HL has a wide range of clinical demonstrations including: congenital or late onset, conductive or sensory-neural, syndromic or non-syndromic hearing loss. The goal of this project is to determine the portion of the DFNB21 (TECTA in ARNSHL in families with negative GJB2 gene in Khuzestan province. Materials and Methods: We studied 21 families with ARNSHL with at least 4 patients and negative for GJB2 mutations from Khuzestan province. Genetic linkage analysis was performed using STR markers linked to DFNB21 locus. Results: Following genetic linkage analysis and haplotyping, out of 21 families with ARNSHL, one family showed linkage to the DFNB21 (TECTA locus. Conclusion: The results of this project confirm other studies in Iran and give insight into the most common loci causing ARNSHL in Iran which could be helpful in research and clinic.

  2. Hypomyelination and congenital cataract: neuroimaging features of a novel inherited white matter disorder

    NARCIS (Netherlands)

    Rossi, A.; Biancheri, R.; Zara, F.; Bruno, C.; Uziel, G.; van der Knaap, M.S.; Minetti, C.; Tortori-Donati, P.

    2008-01-01

    BACKGROUND AND PURPOSE: Hypomyelination and congenital cataract (HCC) is an autosomal recessive white matter disease caused by deficiency of hyccin, a membrane protein implicated in both central and peripheral myelination. We aimed to describe the neuroimaging features of this novel entity.

  3. Molecular and phenotypic analysis of a family with autosomal recessive cone-rod dystrophy and Stargardt disease.

    NARCIS (Netherlands)

    Ijzer, Suzanne; Born, L.I. van den; Zonneveld, M.N.; Lopez, I.; Ayyagari, R.; Teye-Botchway, L.; Mota-Vieira, L.; Cremers, F.P.M.; Koenekoop, R.K.

    2007-01-01

    PURPOSE: To identify the causative gene mutations in three siblings with severe progressive autosomal recessive cone-rod dystrophy (arCRD) and their fifth paternal cousin with Stargardt disease (STGD1) and to specify the phenotypes. METHODS: We evaluated eight sibs of one family, three family

  4. Inheritance of congenital cataracts and microphthalmia in the Miniature Schnauzer.

    Science.gov (United States)

    Gelatt, K N; Samuelson, D A; Bauer, J E; Das, N D; Wolf, E D; Barrie, K P; Andresen, T L

    1983-06-01

    Congenital cataracts and microphthalmia in the Miniature Schnauzer were inherited as an autosomal recessive trait. Eighteen matings of affected X affected Miniature Schnauzers resulted in 87 offspring with congenital cataracts and microphthalmia (49 males/38 females). Two matings of congenital cataractous and microphthalmic Miniature Schnauzers (2 females) X a normal Miniature Schnauzer (1 male) yielded 11 clinically normal Miniature Schnauzers (7 males/4 females). Eighteen matings of congenital cataractous and microphthalmic Miniature Schnauzers (6 males) X carrier Miniature Schnauzers (9 females) produced 81 offspring; 39 exhibited congenital cataracts and microphthalmia (20 males/19 females) and 42 had clinically normal eyes (17 males/25 females).

  5. Autosomal dominant syndrome resembling Coffin-Siris syndrome.

    Science.gov (United States)

    Flynn, Maureen A; Milunsky, Jeff M

    2006-06-15

    Coffin-Siris syndrome is a multiple congenital anomaly/mental retardation syndrome with phenotypic variability [OMIM 135900]. The diagnosis is based solely on clinical findings, as there is currently no molecular, biochemical, or cytogenetic analysis available to confirm a diagnosis. Although typically described as an autosomal recessive disorder, autosomal dominant inheritance has also been infrequently reported. We describe a mother and her two daughters who all have features that resemble Coffin-Siris syndrome. However, this is not a completely convincing diagnosis given that hypertelorism is not a feature of Coffin-Siris syndrome and the family is relatively mildly affected. Yet, this family provides further evidence of an autosomal dominant mode of inheritance for a likely variant of Coffin-Siris syndrome (at least in some families). In addition, Sibling 1 had premature thelarche. She is the second reported individual within the spectrum of Coffin-Siris syndrome to have premature thelarche, indicating that it may be a rare clinical feature. Copyright 2006 Wiley-Liss, Inc.

  6. Review Recent progress in identification and characterization of loci associated with sex-linked congenital cataract.

    Science.gov (United States)

    Zhang, D D; Du, J Z; Topolewski, J; Wang, X M

    2016-07-29

    Congenital cataract is a common cause of blindness in children; however, its pathogenesis remains unclear. Genetic factors have been shown to play an important role in the pathogenesis of congenital cataract. The current genetic models of congenital cataract include autosomal dominant, autosomal recessive, and sex-linked inheritance. Sex-linked congenital cataract could be inherited through the X or Y chromosome. Congenital cataract is a symptom associated with several X-linked disorders, including Nance-Horan syndrome, Lowe syndrome, Conradi-Hünermann-Happle syndrome, oculo-facio-cardio-dental syndrome, and Alport syndrome. On the other hand, the mechanism and characteristics of Y-linked congenital cataract remains to be identified. Despite its rarity, sex-linked congenital cataract has been known to seriously affect the quality of life of patients. In this review, we present our current understanding of the genes and loci associated with sex-linked congenital cataract. This could help identify novel approaches for the prevention, early diagnosis, and comprehensive disease treatment.

  7. Congenital adrenal hyperplasia: Case report.

    OpenAIRE

    Jaime Avaria E.; María José Vargas F.; Loreto Triviño F.; Andrea Gleisner E.

    2013-01-01

    INTRODUCTION: Congenital adrenal hyperplasia (CAH) is an autosomal recessive disease whose main cause is the deficiency of 21-hydroxylase, an enzyme involved in the synthesis of cortisol and aldosterone. There are two forms of CAH, a classical and nonclassical form, being the first objective of analysis in the clinical case. Its clinical manifestations vary in severity, depending on the level of hormone deficiency. Within the classic is described the salt-wasting form, whose consequences are ...

  8. Congenital nephrotic syndrome. Gallium-67 imaging

    International Nuclear Information System (INIS)

    Trepashko, D.W.; Gelfand, M.J.; Pan, C.C.

    1988-01-01

    Congenital nephrotic syndrome is a rare disorder. Heavy proteinuria, hypoalbuminemia, and edema occur during the first 3 months of life. Initial cases were reported from Finland and sporadic cases have occurred elsewhere. Finnish cases demonstrated an autosomal recessive inheritance pattern; currently, Finnish and non-Finnish types are recognized. The clinical course consists of failure to thrive, frequent infections, declining renal function, and early death by age 4 years from sepsis or uremia. Recently renal transplantation has improved the prognosis of patients with this disease. An abnormal Ga-67 scan in a case of congenital nephrotic syndrome is presented

  9. Loss of VPS13C Function in Autosomal-Recessive Parkinsonism Causes Mitochondrial Dysfunction and Increases PINK1/Parkin-Dependent Mitophagy.

    Science.gov (United States)

    Lesage, Suzanne; Drouet, Valérie; Majounie, Elisa; Deramecourt, Vincent; Jacoupy, Maxime; Nicolas, Aude; Cormier-Dequaire, Florence; Hassoun, Sidi Mohamed; Pujol, Claire; Ciura, Sorana; Erpapazoglou, Zoi; Usenko, Tatiana; Maurage, Claude-Alain; Sahbatou, Mourad; Liebau, Stefan; Ding, Jinhui; Bilgic, Basar; Emre, Murat; Erginel-Unaltuna, Nihan; Guven, Gamze; Tison, François; Tranchant, Christine; Vidailhet, Marie; Corvol, Jean-Christophe; Krack, Paul; Leutenegger, Anne-Louise; Nalls, Michael A; Hernandez, Dena G; Heutink, Peter; Gibbs, J Raphael; Hardy, John; Wood, Nicholas W; Gasser, Thomas; Durr, Alexandra; Deleuze, Jean-François; Tazir, Meriem; Destée, Alain; Lohmann, Ebba; Kabashi, Edor; Singleton, Andrew; Corti, Olga; Brice, Alexis

    2016-03-03

    Autosomal-recessive early-onset parkinsonism is clinically and genetically heterogeneous. The genetic causes of approximately 50% of autosomal-recessive early-onset forms of Parkinson disease (PD) remain to be elucidated. Homozygozity mapping and exome sequencing in 62 isolated individuals with early-onset parkinsonism and confirmed consanguinity followed by data mining in the exomes of 1,348 PD-affected individuals identified, in three isolated subjects, homozygous or compound heterozygous truncating mutations in vacuolar protein sorting 13C (VPS13C). VPS13C mutations are associated with a distinct form of early-onset parkinsonism characterized by rapid and severe disease progression and early cognitive decline; the pathological features were striking and reminiscent of diffuse Lewy body disease. In cell models, VPS13C partly localized to the outer membrane of mitochondria. Silencing of VPS13C was associated with lower mitochondrial membrane potential, mitochondrial fragmentation, increased respiration rates, exacerbated PINK1/Parkin-dependent mitophagy, and transcriptional upregulation of PARK2 in response to mitochondrial damage. This work suggests that loss of function of VPS13C is a cause of autosomal-recessive early-onset parkinsonism with a distinctive phenotype of rapid and severe progression. Copyright © 2016 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  10. Birth prevalence and mutation spectrum in danish patients with autosomal recessive albinism

    DEFF Research Database (Denmark)

    Grønskov, Karen; Ek, Jakob; Sand, Annie

    2009-01-01

    PURPOSE: The study was initiated to investigate the mutation spectrum of four OCA genes and to calculate the birth prevalence in patients with autosomal recessive albinism. METHODS: Mutation analysis using dHPLC or direct DNA sequencing of TYR, OCA2, TYRP1, and MATP was performed in 62 patients....... Two mutations in one OCA gene explained oculocutaneous albinism (OCA) in 44% of the patients. Mutations in TYR were found in 26% of patients, while OCA2 and MATP caused OCA in 15% and 3%, respectively. No mutations were found in TYRP1. Of the remaining 56% of patients, 29% were heterozygous...... for a mutation in either TYR or OCA2, and 27% were without mutations in any of the four genes. Exclusive expression of the mutant allele was found in four heterozygous patients. A minimum birth prevalence of 1 in 14,000 was calculated, based on register data on 218 patients. The proportion of OCA to autosomal...

  11. Radiological findings of congenital lipoid adrenal hyperplasia: a case report

    International Nuclear Information System (INIS)

    Kim, Mi Jeong; Shin, Joo Yong; Lee, Hee Jung; Lee, Jin Hee; Sohn, Cheol Ho; Lee, Sung Moon; Kim, Hong; Woo, Seong Ku; Suh, Soo Ji

    2001-01-01

    Congenital lipoid adrenal hyperplasia (CLAH) is a rare autosomal recessive disorder characterized by the marked accumulation of lipids and cholesterol in the adrenal cortex, and the failure of adrenal steroids to synthesise. We report the ultrasound (US), computed tomographic (CT), and magnetic resonance (MR) imaging findings in a four-day-old female neonate with CLAH

  12. Autozygosity mapping of a large consanguineous Pakistani family reveals a novel non-syndromic autosomal recessive mental retardation locus on 11p15-tel

    DEFF Research Database (Denmark)

    Rehman, Shoaib ur; Baig, Shahid Mahmood; Eiberg, Hans

    2011-01-01

    done in all sampled individuals in the family. The nuclear central loop in the five generation family showed homozygosity for a 6-Mb telomeric region on 11p15, whereas all other linkage regions were excluded by calculation of logarithm of odds (LOD) for the SNP microarray data. A maximum LOD score of Z......Autosomal recessive inherited mental retardation is an extremely heterogeneous disease and accounts for approximately 25% of all non-syndromic mental retardation cases. Autozygosity mapping of a large consanguineous Pakistani family revealed a novel locus for non-syndromic autosomal recessive...

  13. Novel compound heterozygous MYO7A mutations in Moroccan families with autosomal recessive non-syndromic hearing loss.

    Directory of Open Access Journals (Sweden)

    Amina Bakhchane

    Full Text Available The MYO7A gene encodes a protein belonging to the unconventional myosin super family. Mutations within MYO7A can lead to either non syndromic hearing loss or to the Usher syndrome type 1B (USH1B. Here, we report the results of genetic analyses performed on Moroccan families with autosomal recessive non syndromic hearing loss that identified two families with compound heterozygous MYO7A mutations. Five mutations (c.6025delG, c.6229T>A, c.3500T>A, c.5617C>T and c.4487C>A were identified in these families, the latter presenting two differently affected branches. Multiple bioinformatics programs and molecular modelling predicted the pathogenic effect of these mutations. In conclusion, the absence of vestibular and retinal symptom in the affected patients suggests that these families have the isolated non-syndromic hearing loss DFNB2 (nonsyndromic autosomal recessive hearing loss presentation, instead of USH1B.

  14. Autosomal recessive primary microcephaly (MCPH): clinical manifestations, genetic heterogeneity and mutation continuum

    Science.gov (United States)

    2011-01-01

    Autosomal Recessive Primary Microcephaly (MCPH) is a rare disorder of neurogenic mitosis characterized by reduced head circumference at birth with variable degree of mental retardation. In MCPH patients, brain size reduced to almost one-third of its original volume due to reduced number of generated cerebral cortical neurons during embryonic neurogensis. So far, seven genetic loci (MCPH1-7) for this condition have been mapped with seven corresponding genes (MCPH1, WDR62, CDK5RAP2, CEP152, ASPM, CENPJ, and STIL) identified from different world populations. Contribution of ASPM and WDR62 gene mutations in MCPH World wide is more than 50%. By and large, primary microcephaly patients are phenotypically indistinguishable, however, recent studies in patients with mutations in MCPH1, WDR62 and ASPM genes showed a broader clinical and/or cellular phenotype. It has been proposed that mutations in MCPH genes can cause the disease phenotype by disturbing: 1) orientation of mitotic spindles, 2) chromosome condensation mechanism during embryonic neurogenesis, 3) DNA damage-response signaling, 4) transcriptional regulations and microtubule dynamics, 5) certain unknown centrosomal mechanisms that control the number of neurons generated by neural precursor cells. Recent discoveries of mammalian models for MCPH have open up horizons for researchers to add more knowledge regarding the etiology and pathophysiology of MCPH. High incidence of MCPH in Pakistani population reflects the most probable involvement of consanguinity. Genetic counseling and clinical management through carrier detection/prenatal diagnosis in MCPH families can help reducing the incidence of this autosomal recessive disorder. PMID:21668957

  15. Further evidence for P59L mutation in GJA3 associated with autosomal dominant congenital cataract

    Directory of Open Access Journals (Sweden)

    Li Wang

    2016-01-01

    Full Text Available Context: Congenital cataracts are one of the common eye disorders leading to visual impairment or blindness in children worldwide. We found a Chinese family with autosomal dominant pulverulent cataract. Aims: To identify the pathogenic gene mutation in a Chinese family with autosomal dominant inherited pulverulent cataract. Subjects and Methods: After obtained informed consent, detailed ophthalmic examinations were carried out; genomic DNAs were obtained from seven family members in a three-generation Chinese family with three affected. All exons of candidate genes were amplified by polymerase chain reaction and were sequenced performed by bidirectional sequencing. Results: By sequencing the encoding regions of the candidate genes, a missense mutation (c. 176C>T was detected in gap junction protein alpha 3 genes (GJA3, which resulted in the substitution of highly conserved proline by leucine at codon 59 (p.P59L. The mutation co-segregated with all patients and was absent in 100 normal Chinese controls. Conclusions: The study identified a missense mutation (c. 176C>T in GJA3 gene associated with autosomal dominant congenital pulverulent cataract in a Chinese family. It gave further evidence of phenotype heterogeneity for P59L mutation in GJA3 associated with congenital cataract.

  16. Involvement of LCA5 in Leber congenital amaurosis and retinitis pigmentosa in the Spanish population

    NARCIS (Netherlands)

    Corton, M.; Avila-Fernandez, A.; Vallespin, E.; Lopez-Molina, M.I.; Almoguera, B.; Martin-Garrido, E.; Tatu, S.D.; Khan, M.I.; Blanco-Kelly, F.; Riveiro-Alvarez, R.; Brion, M.; Garcia-Sandoval, B.; Cremers, F.P.M.; Carracedo, A.; Ayuso, C.

    2014-01-01

    OBJECTIVE: We aimed to identify novel genetic defects in the LCA5 gene underlying Leber congenital amaurosis (LCA) in the Spanish population and to describe the associated phenotype. DESIGN: Case series. PARTICIPANTS: A cohort of 217 unrelated Spanish families affected by autosomal recessive or

  17. Missense mutations in ITPR1 cause autosomal dominant congenital nonprogressive spinocerebellar ataxia

    Directory of Open Access Journals (Sweden)

    Huang Lijia

    2012-09-01

    Full Text Available Abstract Background Congenital nonprogressive spinocerebellar ataxia is characterized by early gross motor delay, hypotonia, gait ataxia, mild dysarthria and dysmetria. The clinical presentation remains fairly stable and may be associated with cerebellar atrophy. To date, only a few families with autosomal dominant congenital nonprogressive spinocerebellar ataxia have been reported. Linkage to 3pter was demonstrated in one large Australian family and this locus was designated spinocerebellar ataxia type 29. The objective of this study is to describe an unreported Canadian family with autosomal dominant congenital nonprogressive spinocerebellar ataxia and to identify the underlying genetic causes in this family and the original Australian family. Methods and Results Exome sequencing was performed for the Australian family, resulting in the identification of a heterozygous mutation in the ITPR1 gene. For the Canadian family, genotyping with microsatellite markers and Sanger sequencing of ITPR1 gene were performed; a heterozygous missense mutation in ITPR1 was identified. Conclusions ITPR1 encodes inositol 1,4,5-trisphosphate receptor, type 1, a ligand-gated ion channel that mediates calcium release from the endoplasmic reticulum. Deletions of ITPR1 are known to cause spinocerebellar ataxia type 15, a distinct and very slowly progressive form of cerebellar ataxia with onset in adulthood. Our study demonstrates for the first time that, in addition to spinocerebellar ataxia type 15, alteration of ITPR1 function can cause a distinct congenital nonprogressive ataxia; highlighting important clinical heterogeneity associated with the ITPR1 gene and a significant role of the ITPR1-related pathway in the development and maintenance of the normal functions of the cerebellum.

  18. Japanese family with congenital factor VII deficiency.

    Science.gov (United States)

    Sakakibara, Kanae; Okayama, Yoshiki; Fukushima, Kenji; Kaji, Shunsaku; Muraoka, Michiko; Arao, Yujiro; Shimada, Akira

    2015-10-01

    Congenital factor VII (FVII) deficiency is a rare bleeding disorder with autosomal recessive inheritance. The present female patient was diagnosed with congenital FVII deficiency because of low hepaplastin test (HPT), although vitamin K was given. Heterozygous p.A191T mutation was detected in the peripheral blood, and the same mutation was also found in the mother and sister. To the best of our knowledge, this is the fourth reported case of p.A191T mutation of FVII in the literature and the first to be reported in Japan. FVII coagulation activity (FVII:C) in asymptomatic heterozygous carriers is mildly reduced. Therefore, some patients may not be accurately diagnosed with congenital FVII deficiency. In infants with low HPT without vitamin K deficiency, congenital FVII deficiency should be considered. © 2015 Japan Pediatric Society.

  19. Homozygous mutations in IHH cause acrocapitofemoral dysplasia, an autosomal recessive disorder with cone- shaped epiphyses in hands and hips

    NARCIS (Netherlands)

    Hellemans, J; Coucke, PJ; Giedion, A; De Paepe, A; Kramer, P; Beemer, F; Mortier, GR

    Acrocapitofemoral dysplasia is a recently delineated autosomal recessive skeletal dysplasia, characterized clinically by short stature with short limbs and radiographically by cone-shaped epiphyses, mainly in hands and hips. Genome-wide homozygosity mapping in two consanguineous families linked the

  20. Modeling autosomal recessive cutis laxa type 1C in mice reveals distinct functions for Ltbp-4 isoforms

    DEFF Research Database (Denmark)

    Bultmann-Mellin, Insa; Conradi, Anne; Maul, Alexandra C

    2015-01-01

    Recent studies have revealed an important role for LTBP-4 in elastogenesis. Its mutational inactivation in humans causes autosomal recessive cutis laxa type 1C (ARCL1C), which is a severe disorder caused by defects of the elastic fiber network. Although the human gene involved in ARCL1C has been ...

  1. Localization of A Novel Autosomal Recessive Non-Syndromic Hearing Impairment Locus (DFNB38) to 6q26–q27 in a Consanguineous Kindred from Pakistan

    OpenAIRE

    Ansar, Muhammad; Ramzan, Mohammad; Pham, Thanh L.; Yan, Kai; Jamal, Syed Muhammad; Haque, Sayedul; Ahmad, Wasim; Leal, Suzanne M.

    2003-01-01

    For autosomal recessive nonsyndromic hearing impairment over 30 loci have been mapped and 19 genes have been identified. DFNB38, a novel locus for autosomal recessive nonsyndromic hearing impairment, was localized in a consanguineous Pakistani kindred to 6q26–q27. The affected family members present with profound prelingual sensorineural hearing impairment and use sign language for communications. Linkage was established to microsatellite markers located on chromosome 6q26–q27 (Multipoint lod...

  2. The efficacy of microarray screening for autosomal recessive retinitis pigmentosa in routine clinical practice

    Science.gov (United States)

    van Huet, Ramon A. C.; Pierrache, Laurence H.M.; Meester-Smoor, Magda A.; Klaver, Caroline C.W.; van den Born, L. Ingeborgh; Hoyng, Carel B.; de Wijs, Ilse J.; Collin, Rob W. J.; Hoefsloot, Lies H.

    2015-01-01

    Purpose To determine the efficacy of multiple versions of a commercially available arrayed primer extension (APEX) microarray chip for autosomal recessive retinitis pigmentosa (arRP). Methods We included 250 probands suspected of arRP who were genetically analyzed with the APEX microarray between January 2008 and November 2013. The mode of inheritance had to be autosomal recessive according to the pedigree (including isolated cases). If the microarray identified a heterozygous mutation, we performed Sanger sequencing of exons and exon–intron boundaries of that specific gene. The efficacy of this microarray chip with the additional Sanger sequencing approach was determined by the percentage of patients that received a molecular diagnosis. We also collected data from genetic tests other than the APEX analysis for arRP to provide a detailed description of the molecular diagnoses in our study cohort. Results The APEX microarray chip for arRP identified the molecular diagnosis in 21 (8.5%) of the patients in our cohort. Additional Sanger sequencing yielded a second mutation in 17 patients (6.8%), thereby establishing the molecular diagnosis. In total, 38 patients (15.2%) received a molecular diagnosis after analysis using the microarray and additional Sanger sequencing approach. Further genetic analyses after a negative result of the arRP microarray (n = 107) resulted in a molecular diagnosis of arRP (n = 23), autosomal dominant RP (n = 5), X-linked RP (n = 2), and choroideremia (n = 1). Conclusions The efficacy of the commercially available APEX microarray chips for arRP appears to be low, most likely caused by the limitations of this technique and the genetic and allelic heterogeneity of RP. Diagnostic yields up to 40% have been reported for next-generation sequencing (NGS) techniques that, as expected, thereby outperform targeted APEX analysis. PMID:25999674

  3. Pregnancy in autosomal recessive polycystic kidney disease.

    Science.gov (United States)

    Banks, Nicole; Bryant, Joy; Fischer, Roxanne; Huizing, Marjan; Gahl, William A; Gunay-Aygun, Meral

    2015-03-01

    Autosomal recessive polycystic kidney disease (ARPKD) is the most common childhood-onset ciliopathy. As treatments improve, more women are reaching reproductive age, but little is known about ARPKD and pregnancy. In our ongoing study on ARPKD and other ciliopathies, 12 females over 18 years of age were identified and systematically evaluated. Six had children; four carried pregnancies and delivered, one used assisted reproductive technology and had a surrogate carry the pregnancy, and one adopted. We report the outcomes of four pregnancies with live birth deliveries and two women who chose alternate family building options. Patient one was diagnosed at 6 months, and at age 21 had a pregnancy complicated by transient worsening of renal function (creatinine increase from 1.15 to 1.78 mg/dL). Patient two was diagnosed with ARPKD at age seven and had an uncomplicated pregnancy at age 23. Patient three was diagnosed incidentally with ARPKD at age 23, 3 months after completion of an uncomplicated pregnancy. Patient four who had an uncomplicated pregnancy at age 33 was diagnosed with ARPKD at age 46. Women with ARPKD face reproductive decisions largely bereft of information about the pregnancies of other ARPKD patients. We report four cases of pregnancy and ARPKD to expand current knowledge and encourage further research.

  4. Autosomal recessive polycystic kidney disease and congenital hepatic fibrosis (ARPKD/CHF)

    Energy Technology Data Exchange (ETDEWEB)

    Turkbey, Baris; Choyke, Peter L. [National Institutes of Health, Molecular Imaging Program, National Cancer Institute, Bethesda, MD (United States); Ocak, Iclal [National Institutes of Health, Molecular Imaging Program, National Cancer Institute, Bethesda, MD (United States); University of Pittsburgh Medical Center, Department of Radiology, Pittsburgh, PA (United States); Daryanani, Kailash [National Institutes of Health, Clinical Center, Department of Radiology, Bethesda, MD (United States); Font-Montgomery, Esperanza; Lukose, Linda; Bryant, Joy; Tuchman, Maya; Gahl, William A. [National Institutes of Health, National Human Genome Research Institute, Medical Genetics Branch, Bethesda, MD (United States); Mohan, Parvathi [George Washington University, Department of Pediatric Gastroenterology, Washington, DC (United States); Heller, Theo [National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD (United States); Gunay-Aygun, Meral [National Institutes of Health, National Human Genome Research Institute, Medical Genetics Branch, Bethesda, MD (United States); National Institutes of Health, Intramural Program, Office of Rare Diseases, Office of the Directors, Bethesda, MD (United States)

    2009-02-15

    ARPKD/CHF is an inherited disease characterized by non-obstructive fusiform dilatation of the renal collecting ducts leading to enlarged spongiform kidneys and ductal plate malformation of the liver resulting in congenital hepatic fibrosis. ARPKD/CHF has a broad spectrum of clinical presentations involving the kidney and liver. Imaging plays an important role in the diagnosis and follow-up of ARPKD/CHF. Combined use of conventional and high-resolution US with MR cholangiography in ARPKD/CHF patients allows detailed definition of the extent of kidney and hepatobiliary manifestations without requiring ionizing radiation and contrast agents. (orig.)

  5. Macroepiphyseal dysplasia with symptomatic osteoporosis, wrinkled skin, and aged appearance: A presumed autosomal recessive condition

    Energy Technology Data Exchange (ETDEWEB)

    McAlister, W.H.; Coe, J.D.; Whyte, M.P.

    1986-01-01

    We report our detailed investigation of a 7-1/2-year-old girl with short stature, aged appearance, decreased subcutaneous fat and muscle mass, dry coarse hair, foot deformities, macroepiphyses with prominent but lax joints, and osteoporosis with recurrent fractures who is the offspring of first cousins. This constellation of abnormalities differs from previously reported cases where macroepiphyses were a prominent finding. Our patient appears, therefore, to have a new, autosomal recessively inherited, syndrome.

  6. Macroepiphyseal dysplasia with symptomatic osteoporosis, wrinkled skin, and aged appearance: A presumed autosomal recessive condition

    International Nuclear Information System (INIS)

    McAlister, W.H.; Coe, J.D.; Whyte, M.P.; Shriners Hospital for Crippled Children, St. Louis, MO

    1986-01-01

    We report our detailed investigation of a 7-1/2-year-old girl with short stature, aged appearance, decreased subcutaneous fat and muscle mass, dry coarse hair, foot deformities, macroepiphyses with prominent but lax joints, and osteoporosis with recurrent fractures who is the offspring of first cousins. This constellation of abnormalities differs from previously reported cases where macroepiphyses were a prominent finding. Our patient appears, therefore, to have a new, autosomal recessively inherited, syndrome. (orig.)

  7. Recessive omodysplasia: five new cases and review of the literature

    International Nuclear Information System (INIS)

    Elcioglu, Nursel H.; Gustavson, Karl H.; Wilkie, Andrew O.M.; Yueksel-Apak, Memune; Spranger, Juergen W.

    2004-01-01

    Autosomal recessive omodysplasia (MIM 258315) is a rare skeletal dysplasia characterized by severe congenital micromelia with shortening and distal tapering of the humeri and femora to give a club-like appearance. Fewer than 20 cases have been reported in the literature so far. The purpose of this study was to more clearly describe the clinical and radiographic phenotypes and their changes with age. Five new patients, including two sibs, with autosomal recessive omodysplasia are presented. Clinical features are rhizomelic dwarfism with limited extension of elbows and knees and a distinct face with a short nose, depressed nasal bridge, long philtrum, midline haemangiomas in infants and cryptorchidism in males. Radiological findings are distal hypoplasia of the short humerus and femur with characteristic radial dislocation and radioulnar diastasis. Based on a review of these and 16 previously reported patients, the regressive nature of the humerofemoral changes and the obvious male predominance are stressed. Phenotypic similarities with the atelosteogenesis group of disorders and with diastrophic dysplasia suggest common pathogenetic mechanisms. (orig.)

  8. The CC2D1A, a member of a new gene family with C2 domains, is involved in autosomal recessive non-syndromic mental retardation.

    Science.gov (United States)

    Basel-Vanagaite, L; Attia, R; Yahav, M; Ferland, R J; Anteki, L; Walsh, C A; Olender, T; Straussberg, R; Magal, N; Taub, E; Drasinover, V; Alkelai, A; Bercovich, D; Rechavi, G; Simon, A J; Shohat, M

    2006-03-01

    The molecular basis of autosomal recessive non-syndromic mental retardation (NSMR) is poorly understood, mostly owing to heterogeneity and absence of clinical criteria for grouping families for linkage analysis. Only two autosomal genes, the PRSS12 gene on chromosome 4q26 and the CRBN on chromosome 3p26, have been shown to cause autosomal recessive NSMR, each gene in only one family. To identify the gene causing autosomal recessive NSMR on chromosome 19p13.12. The candidate region established by homozygosity mapping was narrowed down from 2.4 Mb to 0.9 Mb on chromosome 19p13.12. A protein truncating mutation was identified in the gene CC2D1A in nine consanguineous families with severe autosomal recessive NSMR. The absence of the wild type protein in the lymphoblastoid cells of the patients was confirmed. CC2D1A is a member of a previously uncharacterised gene family that carries two conserved motifs, a C2 domain and a DM14 domain. The C2 domain is found in proteins which function in calcium dependent phospholipid binding; the DM14 domain is unique to the CC2D1A protein family and its role is unknown. CC2D1A is a putative signal transducer participating in positive regulation of I-kappaB kinase/NFkappaB cascade. Expression of CC2D1A mRNA was shown in the embryonic ventricular zone and developing cortical plate in staged mouse embryos, persisting into adulthood, with highest expression in the cerebral cortex and hippocampus. A previously unknown signal transduction pathway is important in human cognitive development.

  9. Missense variants in AIMP1 gene are implicated in autosomal recessive intellectual disability without neurodegeneration

    OpenAIRE

    Iqbal, Zafar; P?ttmann, Lucia; Musante, Luciana; Razzaq, Attia; Zahoor, Muhammad Yasir; Hu, Hao; Wienker, Thomas F; Garshasbi, Masoud; Fattahi, Zohreh; Gilissen, Christian; Vissers, Lisenka ELM; de Brouwer, Arjan PM; Veltman, Joris A; Pfundt, Rolph; Najmabadi, Hossein

    2015-01-01

    AIMP1/p43 is a multifunctional non-catalytic component of the multisynthetase complex. The complex consists of nine catalytic and three non-catalytic proteins, which catalyze the ligation of amino acids to their cognate tRNA isoacceptors for use in protein translation. To date, two allelic variants in the AIMP1 gene have been reported as the underlying cause of autosomal recessive primary neurodegenerative disorder. Here, we present two consanguineous families from Pakistan and Iran, presenti...

  10. A defect in the CLIP1 gene (CLIP-170) can cause autosomal recessive intellectual disability

    OpenAIRE

    Larti, Farzaneh; Kahrizi, Kimia; Musante, Luciana; Hu, Hao; Papari, Elahe; Fattahi, Zohreh; Bazazzadegan, Niloofar; Liu, Zhe; Banan, Mehdi; Garshasbi, Masoud; Wienker, Thomas F; Hilger Ropers, H; Galjart, Niels; Najmabadi, Hossein

    2015-01-01

    In the context of a comprehensive research project, investigating novel autosomal recessive intellectual disability (ARID) genes, linkage analysis based on autozygosity mapping helped identify an intellectual disability locus on Chr.12q24, in an Iranian family (LOD score=3.7). Next-generation sequencing (NGS) following exon enrichment in this novel interval, detected a nonsense mutation (p.Q1010*) in the CLIP1 gene. CLIP1 encodes a member of microtubule (MT) plus-end tracking proteins, which ...

  11. Microarray-based mutation analysis of the ABCA4 (ABCR) gene in autosomal recessive cone-rod dystrophy and retinitis pigmentosa.

    NARCIS (Netherlands)

    Klevering, B.J.; Ijzer, S.; Rohrschneider, K.; Zonneveld-Vrieling, M.N.; Allikmets, R.; Born, L.I. van den; Maugeri, A.; Hoyng, C.B.; Cremers, F.P.M.

    2004-01-01

    Mutations in the ABCA4 gene have been associated with autosomal recessive Stargardt disease (STGD1), cone-rod dystrophy (CRD), and retinitis pigmentosa (RP). We employed a recently developed genotyping microarray, the ABCR400-chip, to search for known ABCA4 mutations in patients with isolated or

  12. Clinical and genetic characteristics of autosomal recessive axonal neuropathy with neuromyotonia in Russian patients

    Directory of Open Access Journals (Sweden)

    E. L. Dadali

    2017-01-01

    Full Text Available Introduction. Hereditary motor and sensory neuropathies are genetically heterogeneous group of disorders characterized by a progressive muscle weakness, atrophy of hand and leg muscles often associated with deformations, and mild to moderate sensory loss. Axonal neuropathy with neuromyotonia (AR-ANM is one of the rarest autosomal recessive hereditary neuropathies. Materials and methods. Six (6 patients (4 men, 2 women aged 14–40 years from unrelated families with suspicion of HMSN were examined clinically, neurophysiologically and using DNA analysis. Results. Neurophysiological examination revealed motor and sensory neuropathy with neuromyotonia signs in all patients. In all cases homozygous variant of recessive mutations с.110G/C (р.Arg37Pro in the gene encoding the histidine triad nucleotide binding protein 1 (HINT1 has been revealed. Conclusion. There is the first description of the clinical and neurophysiological features of six patients with AR-ANM in Russia. 

  13. Phenotypic spectrum of autosomal recessive cone-rod dystrophies caused by mutations in the ABCA4 (ABCR) gene.

    Science.gov (United States)

    Klevering, B Jeroen; Blankenagel, Anita; Maugeri, Alessandra; Cremers, Frans P M; Hoyng, Carel B; Rohrschneider, Klaus

    2002-06-01

    To describe the phenotype of 12 patients with autosomal recessive or isolated cone-rod types of progressive retinal degeneration (CRD) caused by mutations in the ABCA4 gene. The charts of patients who had originally received a diagnosis of isolated or autosomal recessive CRD were reviewed after molecular analysis revealed mutations in the ABCA4 gene. In two of the patients both the photopic and scotopic electroretinogram were nonrecordable. In the remainder, the photopic cone b-wave amplitudes appeared to be more seriously affected than the scotopic rod b-wave amplitudes. Although the clinical presentation was heterogeneous, all patients experienced visual loss early in life, impaired color vision, and a central scotoma. Fundoscopy revealed evidence of early-onset maculopathy, sometimes accompanied by involvement of the retinal periphery in the later stages of the disease. Mutations in the ABCA4 gene are the pathologic cause of the CRD-like dystrophy in these patients, and the resultant clinical pictures are complex and heterogeneous. Given this wide clinical spectrum of CRD-like phenotypes associated with ABCA4 mutations, detailed clinical subclassifications are difficult and may not be very useful.

  14. Congenital generalized lipodystrophia: a case report; Lipodistrofia generalizada congenita: relato de um caso

    Energy Technology Data Exchange (ETDEWEB)

    Malheiros, N.R.; Marchiori, E.; Praxedes, M.C.; Machado, D.M.; Carvalho, A.A.V. [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Dept. de Radiologia

    1995-01-01

    Congenital generalized lipodystrophia is a rare genetic disorder, transmitted as an autosomal recessive trait and is prevalent on female. This paper presents a case of a man, 36-year-old, suffering from congenital generalized lipodystrophia with clinical features of diabetes mellitus and dyspnea. Radiographic findings have shown cystic areas in the skeleton, interstitial pulmonary fibrosis and paucity of abdominal fat. Radiological and anatomo-pathological aspects are presented as well as a review of the medical literature about the case. (author). 8 refs, 4 figs.

  15. Novel compound heterozygous mutations in MYO7A gene associated with autosomal recessive sensorineural hearing loss in a Chinese family.

    Science.gov (United States)

    Ma, Yalin; Xiao, Yun; Zhang, Fengguo; Han, Yuechen; Li, Jianfeng; Xu, Lei; Bai, Xiaohui; Wang, Haibo

    2016-04-01

    Mutations in MYO7A gene have been reported to be associated with Usher Syndrome type 1B (USH1B) and nonsyndromic hearing loss (DFNB2, DFNA11). Most mutations in MYO7A gene caused USH1B, whereas only a few reported mutations led to DFNB2 and DFNA11. The current study was designed to investigate the mutations among a Chinese family with autosomal recessive hearing loss. In this study, we present the clinical, genetic and molecular characteristics of a Chinese family. Targeted capture of 127 known deafness genes and next-generation sequencing were employed to study the genetic causes of two siblings in the Chinese family. Sanger sequencing was employed to examine those variant mutations in the members of this family and other ethnicity-matched controls. We identified the novel compound heterozygous mutant alleles of MYO7A gene: a novel missense mutation c.3671C>A (p.A1224D) and a reported insert mutation c.390_391insC (p.P131PfsX9). Variants were further confirmed by Sanger sequencing. These two compound heterozygous variants were co-segregated with autosomal recessive hearing loss phenotype. The gene mutation analysis and protein sequence alignment further supported that the novel compound heterozygous mutations were pathogenic. The novel compound heterozygous mutations (c.3671C>A and c.390_391insC) in MYO7A gene identified in this study were responsible for the autosomal recessive sensorineural hearing loss of this Chinese family. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Mutations in the ELA2 gene encoding neutrophil elastase are present in most patients with sporadic severe congenital neutropenia but only in some patients with the familial form of the disease.

    Science.gov (United States)

    Ancliff, P J; Gale, R E; Liesner, R; Hann, I M; Linch, D C

    2001-11-01

    Severe congenital neutropenia (SCN) was originally described as an autosomal recessive disorder. Subsequently, autosomal dominant and sporadic forms of the disease have been recognized. All forms are manifest by persistent severe neutropenia and recurrent bacterial infection. In contrast, cyclical hematopoiesis is characterized by periodic neutropenia inter-spaced with (near) normal neutrophil counts. Recently, linkage analysis on 13 affected pedigrees identified chromosome 19p13.3 as the likely position for mutations in cyclical hematopoiesis. Heterozygous mutations in the ELA2 gene encoding neutrophil elastase were detected in all families studied. Further work also demonstrated mutations in ELA2 in sporadic and autosomal dominant SCN. However, all mutations described to date are heterozygous and thus appear to act in a dominant fashion, which is inconsistent with an autosomal recessive disease. Therefore, the current study investigated whether mutations in ELA2 could account for the disease phenotype in classical autosomal recessive SCN and in the sporadic and autosomal dominant types. All 5 exons of ELA2 and their flanking introns were studied in 18 patients (3 autosomal recessive, 5 autosomal dominant [from 3 kindreds], and 10 sporadic) using direct automated sequencing. No mutations were found in the autosomal recessive families. A point mutation was identified in 1 of 3 autosomal dominant families, and a base substitution was identified in 8 of 10 patients with the sporadic form, though 1 was subsequently shown to be a low-frequency polymorphism. These results suggest that mutations in ELA2 are not responsible for classical autosomal recessive Kostmann syndrome but provide further evidence for the role of ELA2 in SCN.

  17. The CC2D1A, a member of a new gene family with C2 domains, is involved in autosomal recessive non‐syndromic mental retardation

    Science.gov (United States)

    Basel‐Vanagaite, L; Attia, R; Yahav, M; Ferland, R J; Anteki, L; Walsh, C A; Olender, T; Straussberg, R; Magal, N; Taub, E; Drasinover, V; Alkelai, A; Bercovich, D; Rechavi, G; Simon, A J; Shohat, M

    2006-01-01

    Background The molecular basis of autosomal recessive non‐syndromic mental retardation (NSMR) is poorly understood, mostly owing to heterogeneity and absence of clinical criteria for grouping families for linkage analysis. Only two autosomal genes, the PRSS12 gene on chromosome 4q26 and the CRBN on chromosome 3p26, have been shown to cause autosomal recessive NSMR, each gene in only one family. Objective To identify the gene causing autosomal recessive NSMR on chromosome 19p13.12. Results The candidate region established by homozygosity mapping was narrowed down from 2.4 Mb to 0.9 Mb on chromosome 19p13.12. A protein truncating mutation was identified in the gene CC2D1A in nine consanguineous families with severe autosomal recessive NSMR. The absence of the wild type protein in the lymphoblastoid cells of the patients was confirmed. CC2D1A is a member of a previously uncharacterised gene family that carries two conserved motifs, a C2 domain and a DM14 domain. The C2 domain is found in proteins which function in calcium dependent phospholipid binding; the DM14 domain is unique to the CC2D1A protein family and its role is unknown. CC2D1A is a putative signal transducer participating in positive regulation of I‐κB kinase/NFκB cascade. Expression of CC2D1A mRNA was shown in the embryonic ventricular zone and developing cortical plate in staged mouse embryos, persisting into adulthood, with highest expression in the cerebral cortex and hippocampus. Conclusions A previously unknown signal transduction pathway is important in human cognitive development. PMID:16033914

  18. SACS gene-related autosomal recessive spastic ataxia of Charlevoix-Saguenay from South India

    Directory of Open Access Journals (Sweden)

    M Suraj Menon

    2016-01-01

    Full Text Available Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS is a neurodegenerative disorder characterized by late infantile onset spastic ataxia and other neurological features. Initially described in the Charlevoix-Saguenay region of Quebec, Canada, it is being increasingly reported from many other countries. Here, we present the case of a 20-year-old male from South India, who presented with progressive ataxia, spasticity, and peripheral neuropathy with imaging features and genetic testing suggestive of SACS gene-related ARSACS. The phenotypic variability from other cases and occurrence in a geographically distinct region is stressed upon to alert the clinicians to consider ARSACS in progressive ataxias.

  19. Berardinelli-Seip congenital lipodystrophy in two siblings

    Directory of Open Access Journals (Sweden)

    T Rao

    2014-01-01

    Full Text Available Berardinelli-Seip congenital lipodystrophy (BSCL is a very rare autosomal recessive disorder characterized by various dermatological and systemic manifestations such as lipoatrophy, hypertriglyceridemia, hepatomegaly, acanthosis nigricans, and acromegaloid features. BSCL type 2 is more common and severe, with onset in the neonatal period or in early infancy. The locus for BSCL2 has been identified on chromosome 11q13. Early recognition and differentiation from other congenital generalized lipodystrophies help in the initiation of appropriate preventive and therapeutic measures such as lifestyle modification and pharmacotherapy that helps postpone the onset of metabolic syndrome. We report BSCL type 2 in two siblings with several cutaneous manifestations like acanthosis nigricans, hypertrichosis, prominent subcutaneous veins, and increased lanugo hair.

  20. Autosomal-dominant osteopetrosis: An incidental finding

    Directory of Open Access Journals (Sweden)

    Rajathi Maria

    2010-01-01

    Full Text Available Osteopetrosis is a descriptive term that refers to a group of rare, heritable disorders of the skeleton. Osteopetrotic conditions vary greatly in their presentation and severity, from just as an incidental finding on radiographs to causing life-threatening complications such as bone marrow suppression. It is caused by failure of osteoclast development and function. Osteopetrosis can be inherited as autosomal-recessive, autosomal-dominant or as X-linked traits, with the most severe forms being the autosomal-recessive ones. The severity of the disease is mild to moderate in the autosomal-dominant forms, with normal life expectancy. Diagnosis is largely based on clinical and radiographic evaluation. The present paper reports a case of autosomal-dominant osteopetrosis complicated by osteomyelitis with a short review of the condition.

  1. Imaging findings in congenital hepatic fibrosis

    International Nuclear Information System (INIS)

    Akhan, Okan; Karaosmanoglu, Ali Devrim; Ergen, Bilge

    2007-01-01

    Congenital hepatic fibrosis (CHF) is a rare congenital multisystemic disorder, mostly inherited in autosomal recessive fashion, primarily affecting renal and hepatobiliary systems. Main underlying process of the disease is the malformation of the ductal plate, the embryological precursor of the biliary system, and secondary biliary strictures and periportal fibrosis ultimately leading to portal hypertension. The natural course of the disease is highly variable ranging from minimally symptomatic disease to true cirrhosis of the liver. However, in most patients the most common manifestations of the diseases that are related to portal hypertension, particularly splenomegaly and bleeding varices. Many other disease processes may co-exist with the disease including Caroli's disease, choledochal cysts and autosomal recessive polycystic kidney disease (ARPKD) reflecting the mulstisystemic nature of the disease. The associating biliary ductal disease led the authors to think that all these entities are a continuum and different reflections of the same underlying pathophysiological process. Although, conventional method of diagnosis of CHF is the liver biopsy the advent of imaging technologies and modalities, today, may permit the correct diagnosis in a non-invasive manner. Characteristic imaging features are generally present and recognition of these findings may obviate liver biopsy while preserving the diagnostic accuracy. In this article, it is aimed to increase the awareness of the practising radiologists to the imaging findings of this uncommon clinical disorder and trail the blaze for future articles relating to this issue

  2. Imaging findings in congenital hepatic fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Akhan, Okan [Department of Radiology, Hacettepe University, School of Medicine, 06100 Ankara (Turkey)]. E-mail: akhano@tr.net; Karaosmanoglu, Ali Devrim [Department of Radiology, Hacettepe University, School of Medicine, 06100 Ankara (Turkey); Ergen, Bilge [Department of Radiology, Hacettepe University, School of Medicine, 06100 Ankara (Turkey)

    2007-01-15

    Congenital hepatic fibrosis (CHF) is a rare congenital multisystemic disorder, mostly inherited in autosomal recessive fashion, primarily affecting renal and hepatobiliary systems. Main underlying process of the disease is the malformation of the ductal plate, the embryological precursor of the biliary system, and secondary biliary strictures and periportal fibrosis ultimately leading to portal hypertension. The natural course of the disease is highly variable ranging from minimally symptomatic disease to true cirrhosis of the liver. However, in most patients the most common manifestations of the diseases that are related to portal hypertension, particularly splenomegaly and bleeding varices. Many other disease processes may co-exist with the disease including Caroli's disease, choledochal cysts and autosomal recessive polycystic kidney disease (ARPKD) reflecting the mulstisystemic nature of the disease. The associating biliary ductal disease led the authors to think that all these entities are a continuum and different reflections of the same underlying pathophysiological process. Although, conventional method of diagnosis of CHF is the liver biopsy the advent of imaging technologies and modalities, today, may permit the correct diagnosis in a non-invasive manner. Characteristic imaging features are generally present and recognition of these findings may obviate liver biopsy while preserving the diagnostic accuracy. In this article, it is aimed to increase the awareness of the practising radiologists to the imaging findings of this uncommon clinical disorder and trail the blaze for future articles relating to this issue.

  3. A Challenging Case of Hepatoblastoma Concomitant with Autosomal Recessive Polycystic Kidney Disease and Caroli Syndrome—Review of the Literature

    Directory of Open Access Journals (Sweden)

    Nevil Kadakia

    2017-06-01

    Full Text Available We report a rare case of an 18-month-old female with autosomal recessive polycystic kidney disease, Caroli syndrome, and pure fetal type hepatoblastoma. The liver tumor was surgically resected with no chemotherapy given. Now 9 years post resection she demonstrates no local or distant recurrence and stable renal function.

  4. Mutation analysis of SLC26A4 for Pendred syndrome and nonsyndromic hearing loss by high-resolution melting

    DEFF Research Database (Denmark)

    Chen, Neng; Tranebjærg, Lisbeth; Rendtorff, Nanna Dahl

    2011-01-01

    Pendred syndrome and DFNB4 (autosomal recessive nonsyndromic congenital deafness, locus 4) are associated with autosomal recessive congenital sensorineural hearing loss and mutations in the SLC26A4 gene. Extensive allelic heterogeneity, however, necessitates analysis of all exons and splice sites...

  5. Pyridoxal phosphate-responsive seizures in a patient with cerebral folate deficiency (CFD) and congenital deafness with labyrinthine aplasia, microtia and microdontia (LAMM)

    NARCIS (Netherlands)

    Dill, P.; Schneider, J.; Weber, P.; Trachsel, D.; Tekin, M.; Jakobs, C.A.J.M.; Thony, B.; Blau, N.

    2011-01-01

    We present an 8-year-old boy with folate receptor alpha (FRα) defect and congenital deafness with labyrinthine aplasia, microtia and microdontia (LAMM syndrome). Both conditions are exceptionally rare autosomal recessive inherited diseases mapped to 11q13. Our patient was found to have novel

  6. Spontaneous subconjunctival abscess in congenital lamellar ichthyosis

    Directory of Open Access Journals (Sweden)

    Shivanand C Bubanale

    2018-01-01

    Full Text Available Congenital lamellar ichthyosis is an autosomal recessive, heterogeneous disorder presenting at birth with generalized skin involvement. The most common ophthalmic manifestation noted is bilateral ectropion of the lower eyelids. A 1-month-old female neonate, the second born of a nonconsanguineous marriage, presented with 4 days' history of redness, discharge, and swelling in the right eye. There was severe right upper eyelid ectropion, conjunctival injection, chemosis, a subconjunctival mass on the temporal bulbar conjunctiva spontaneously draining pus and corneal haze. The anterior chamber, iris, lens and fundus appeared normal. Congenital lamellar ichthyosis was suspected because of scaling and excessive dryness of the entire body. The occurrence of a spontaneous subconjunctival abscess is not known in lamellar ichthyosis. We thus report the management of a rare case of unilateral upper eyelid ectropion, subconjunctival abscess with orbital cellulitis in congenital lamellar ichthyosis.

  7. A Nonsense Mutation in FAM161A Is a Recurrent Founder Allele in Dutch and Belgian Individuals With Autosomal Recessive Retinitis Pigmentosa

    NARCIS (Netherlands)

    Van Schil, Kristof; Klevering, B. Jeroen; Leroy, Bart P.; Pott, Jan Willem R.; Bandah-Rozenfeld, Dikla; Zonneveld-Vrieling, Marijke N.; Sharon, Dror; den Hollander, Anneke I.; Cremers, Frans P. M.; De Baere, Elfride; Collin, Rob W. J.; van den Born, L. Ingeborgh

    PURPOSE. To identify mutations in FAM161A underlying autosomal recessive retinitis pigmentosa (arRP) in the Dutch and Belgian populations and to investigate whether common FAM161A-associated phenotypic features could be identified. METHODS. Homozygosity mapping, amplification-refractory mutation

  8. Fine mapping of the autosomal recessive retinitis pigmentosa locus (RP12) on chromosome 1q; exclusion of the phosducin gene (PDC)

    NARCIS (Netherlands)

    van Soest, S.; te Nijenhuis, S.; van den Born, L. I.; Bleeker-Wagemakers, E. M.; Sharp, E.; Sandkuijl, L. A.; Westerveld, A.; Bergen, A. A.

    1996-01-01

    In a previous study on a large pedigree from a genetically isolated population in the Netherlands, we localized a gene for autosomal recessive retinitis pigmentosa with paraarteriolar preservation of the retinal pigment epithelium (PPRPE) on the long arm of chromosome 1. In this study, we present an

  9. Molecular diagnostic in two families affected with Autosomic Recessive Pigmentary Retinitis

    International Nuclear Information System (INIS)

    Leal Esquivel, A.

    1996-01-01

    This study included two Costa Rican families with members affected by Recessive Pigmentary Autosomic Retinitis (RPAR). The first family (C1) from the province of San Jose, has 10 alive affected members, and 14 obligatory carriers. They present an Early Appearance Degeneration, RPAR tipe1 (cane-cone). The author used polymorphic markers (STRPs) to discard some related regions, with the RP in the literature. He also used the Linkage program, for the analysis of ligaments. The second family (P1), proceeding from Acosta (situated in the province of Alajuela), has 13 alive affected members and 23 obligatory carriers and they present numerous consanguineous unions. This case is a RPAR with Early Appearance (Night Blindness, fat ERG), but with a shower degeneration. The author concludes that, with studies such as this one, there will be a capacity to offer RP molecular diagnostic, and also advance in its knowledge and treatment. (S. Grainger)

  10. Autofluorescence Imaging and Spectral-Domain Optical Coherence Tomography in Incomplete Congenital Stationary Night Blindness and Comparison with Retinitis Pigmentosa

    Science.gov (United States)

    CHEN, ROYCE W. S.; GREENBERG, JONATHAN P.; LAZOW, MARGOT A.; RAMACHANDRAN, RITHU; LIMA, LUIZ H.; HWANG, JOHN C.; SCHUBERT, CARL; BRAUNSTEIN, ALEXANDRA; ALLIKMETS, RANDO; TSANG, STEPHEN H.

    2015-01-01

    PURPOSE To test the hypothesis that the evaluation of retinal structure can have diagnostic value in differentiating between incomplete congenital stationary night blindness (CSNB2) and retinitis pigmentosa (RP). To compare retinal thickness differences between patients with CSNB2 and myopic controls. DESIGN Prospective cross-sectional study. METHODS Ten eyes of 5 patients diagnosed with CSNB2 (4 X-linked recessive, 1 autosomal recessive) and 6 eyes of 3 patients with RP (2 autosomal dominant, 1 autosomal recessive) were evaluated with spectral-domain optical coherence tomography (SD OCT) and fundus autofluorescence (FAF). Diagnoses of CSNB2 and RP were confirmed by full-field electroretinography (ERG). Manual segmentation of retinal layers, aided by a computer program, was performed by 2 professional segmenters on SD OCT images of all CSNB2 patients and 4 age-similar, normal myopic controls. Seven patients were screened for mutations with congenital stationary night blindness and RP genotyping arrays. RESULTS Patients with CSNB2 had specific findings on SD OCT and FAF that were distinct from those found in RP. CSNB2 patients showed qualitatively normal SD OCT results with preserved photoreceptor inner segment/outer segment junction, whereas this junction was lost in RP patients. In addition, CSNB2 patients had normal FAF images, whereas patients with RP demonstrated a ring of increased autofluorescence around the macula. On SD OCT segmentation, the inner and outer retinal layers of both X-linked recessive and autosomal recessive CSNB2 patients were thinner compared with those of normal myopic controls, with means generally outside of normal 95% confidence intervals. The only layers that demonstrated similar thickness between CSNB2 patients and the controls were the retinal nerve fiber layer and, temporal to the fovea, the combined outer segment layer and retinal pigment epithelium. A proband and his 2 affected brothers from a family segregating X-linked recessive

  11. Splicing defect in FKBP10 gene causes autosomal recessive osteogenesis imperfecta disease: a case report.

    Science.gov (United States)

    Maghami, Fatemeh; Tabei, Seyed Mohammad Bagher; Moravej, Hossein; Dastsooz, Hassan; Modarresi, Farzaneh; Silawi, Mohammad; Faghihi, Mohammad Ali

    2018-05-25

    Osteogenesis imperfecta (OI) is a group of connective tissue disorder caused by mutations of genes involved in the production of collagen and its supporting proteins. Although the majority of reported OI variants are in COL1A1 and COL1A2 genes, recent reports have shown problems in other non-collagenous genes involved in the post translational modifications, folding and transport, transcription and proliferation of osteoblasts, bone mineralization, and cell signaling. Up to now, 17 types of OI have been reported in which types I to IV are the most frequent cases with autosomal dominant pattern of inheritance. Here we report an 8- year- old boy with OI who has had multiple fractures since birth and now he is wheelchair-dependent. To identify genetic cause of OI in our patient, whole exome sequencing (WES) was carried out and it revealed a novel deleterious homozygote splice acceptor site mutation (c.1257-2A > G, IVS7-2A > G) in FKBP10 gene in the patient. Then, the identified mutation was confirmed using Sanger sequencing in the proband as homozygous and in his parents as heterozygous, indicating its autosomal recessive pattern of inheritance. In addition, we performed RT-PCR on RNA transcripts originated from skin fibroblast of the proband to analyze the functional effect of the mutation on splicing pattern of FKBP10 gene and it showed skipping of the exon 8 of this gene. Moreover, Real-Time PCR was carried out to quantify the expression level of FKBP10 in the proband and his family members in which it revealed nearly the full decrease in the level of FKBP10 expression in the proband and around 75% decrease in its level in the carriers of the mutation, strongly suggesting the pathogenicity of the mutation. Our study identified, for the first time, a private pathogenic splice site mutation in FKBP10 gene and further prove the involvement of this gene in the rare cases of autosomal recessive OI type XI with distinguished clinical manifestations.

  12. The Perlman syndrome: familial renal dysplasia with Wilms tumor, fetal gigantism and multiple congenital anomalies.

    Science.gov (United States)

    Neri, G; Martini-Neri, M E; Katz, B E; Opitz, J M

    1984-09-01

    We describe a familial syndrome of renal dysplasia, Wilms tumor, hyperplasia of the endocrine pancreas, fetal gigantism, multiple congenital anomalies and mental retardation. This condition was previously described by Perlman et al [1973, 1975] and we propose to call it the "Perlman syndrome." It appears to be transmitted as an autosomal recessive trait. The possible relationships between dysplasia, neoplasia and malformation are discussed.

  13. [Cochlear implantation in a child with congenital sensorineural deafness due to 35 DELG mutation in GJB2 (connexin 26) gene].

    Science.gov (United States)

    Teriutin, F M; Barashkov, N A; Dzhemileva, L U; Posukh, O L; Fedotova, E E; Gurinova, E E; Fedorova, S A; Tavartkiladze, G A; Khusnutdinova, E K

    2009-01-01

    This paper reports the first case of cochlear implantation performed in this country in a child with congenital non-syndromic sensorineural loss of hearing having hereditary etiology and attributable to autosomal-recessive 35 delG mutation in locus DFNB1 (13q.11-q12) of GJB2 (connexin 26) gene.

  14. Familial megacalyces with autosomal recessive inheritance

    International Nuclear Information System (INIS)

    Lam, A.H.

    1988-01-01

    Three children with bilateral congenital megacalyces from a consanguinous marriage are reported. No renal abnormality was detected in the parents. Our observation supports the genetic nature of the disease. The ultrasonographic features of congenital megacalyces are described. (orig.)

  15. A unique case of Shwachman-Diamond syndrome presenting with congenital hypopituitarism.

    Science.gov (United States)

    Jivani, Nurin; Torrado-Jule, Carmen; Vaiselbuh, Sarah; Romanos-Sirakis, Eleny

    2016-11-01

    Shwachman-Diamond syndrome (SDS) is an autosomal recessive bone marrow failure syndrome typically characterized by neutropenia and pancreatic dysfunction, although phenotypic presentations vary, and the endocrine phenotype is not well-described. We report a unique case of a patient with SDS who initially presented with hypoglycemia and micropenis in the newborn period and was diagnosed with congenital hypopituitarism. We are not aware of any other cases of SDS documented with this combination of complex endocrinopathies.

  16. Nonclassic Congenital Adrenal Hyperplasia

    Directory of Open Access Journals (Sweden)

    Selma Feldman Witchel

    2010-01-01

    Full Text Available Nonclassic congenital adrenal hyperplasia (NCAH due to P450c21 (21-hydroxylase deficiency is a common autosomal recessive disorder. This disorder is due to mutations in the CYP21A2 gene which is located at chromosome 6p21. The clinical features predominantly reflect androgen excess rather than adrenal insufficiency leading to an ascertainment bias favoring diagnosis in females. Treatment goals include normal linear growth velocity and “on-time” puberty in affected children. For adolescent and adult women, treatment goals include regularization of menses, prevention of progression of hirsutism, and fertility. This paper will review key aspects regarding pathophysiology, diagnosis, and treatment of NCAH.

  17. A novel c.5308_5311delGAGA mutation in Senataxin in a Cypriot family with an autosomal recessive cerebellar ataxia

    Directory of Open Access Journals (Sweden)

    Zamba-Papanicolaou Eleni

    2008-04-01

    Full Text Available Abstract Background Senataxin (chromosome 9q34 was recently identified as the causative gene for an autosomal recessive form of Ataxia (ARCA, termed as Ataxia with Oculomotor Apraxia, type 2 (AOA2 and characterized by generalized incoordination, cerebellar atrophy, peripheral neuropathy, "oculomotor apraxia" and increased alpha-fetoprotein (AFP. Here, we report a novel Senataxin mutation in a Cypriot ARCA family. Methods We studied several Cypriot autosomal recessive cerebellar ataxia (ARCA families for linkage to known ARCA gene loci. We linked one family (909 to the SETX locus on chromosome 9q34 and screened the proband for mutations by direct sequencing. Results Sequence analysis revealed a novel c.5308_5311delGAGA mutation in exon 11 of the SETX gene. The mutation has not been detected in 204 control chromosomes from the Cypriot population, the remaining Cypriot ARCA families and 37 Cypriot sporadic cerebellar ataxia patients. Conclusion We identified a novel SETX homozygous c.5308_5311delGAGA mutation that co-segregates with ARCA with cerebellar atrophy and raised AFP.

  18. Genetic Linkage Analysis of DFNB2 Locus with Autosomal Recessive Hearing Loss in Families Negative for GJB2 Mutations in Khuzestan Province

    Directory of Open Access Journals (Sweden)

    Parisa Tahmasebi

    2016-09-01

    Full Text Available Abstract Background: Hearing loss is a common sensory impairment in humans which half of its causes are genetic reasons. Genetic hearing loss can be divided into the two types of syndromic and non-syndromic, which 80% of non-syndromic cases is Autosomal Recessive Non-Syndromic Hearing Loss. The aim of the present research is to determine the contribution of DFNB2 locus (MYO7A gene in causing an autosomal recessive hearing loss in the one group of the deaf families of Khuzestan province. Materials and Methods: This study was conducted on 26 families with autosomal recessive hearing loss (with 4 patients and negative for GJB2 mutations in Khuzestan province. 22 families suffered from ARNSHL and 4 families suffered from Usher syndrome. Linkage analysis was performed by using STR (Short Tandem Repeat markers related to DFNB2 locus. Each family’s genotype was determined by PCR-PAGE method. Furthermore, haplotypes drawing and LOD score calculations were performed. Results: From 26 families with hearing loss participating in this research, following genetic linkage analysis and haplotypes drawing, two families (7.7% of the families showed linkage to DFNB2 locus. One family (4.5% suffered from ARNSHL and another family suffered from Usher syndrome. Conclusion: The results of the present research show that the contribution of DFNB2 locus in causing hearing loss in the population of Khuzestan province was similar to other studies conducted in Iran and this locus with other important loci should be considered to check in the hearing loss panel.

  19. Compound heterozygous loss-of-function mutations in KIF20A are associated with a novel lethal congenital cardiomyopathy in two siblings.

    Directory of Open Access Journals (Sweden)

    Jacoba J Louw

    2018-01-01

    Full Text Available Congenital or neonatal cardiomyopathies are commonly associated with a poor prognosis and have multiple etiologies. In two siblings, a male and female, we identified an undescribed type of lethal congenital restrictive cardiomyopathy affecting the right ventricle. We hypothesized a novel autosomal recessive condition. To identify the cause, we performed genetic, in vitro and in vivo studies. Genome-wide SNP typing and parametric linkage analysis was done in a recessive model to identify candidate regions. Exome sequencing analysis was done in unaffected and affected siblings. In the linkage regions, we selected candidate genes that harbor two rare variants with predicted functional effects in the patients and for which the unaffected sibling is either heterozygous or homozygous reference. We identified two compound heterozygous variants in KIF20A; a maternal missense variant (c.544C>T: p.R182W and a paternal frameshift mutation (c.1905delT: p.S635Tfs*15. Functional studies confirmed that the R182W mutation creates an ATPase defective form of KIF20A which is not able to support efficient transport of Aurora B as part of the chromosomal passenger complex. Due to this, Aurora B remains trapped on chromatin in dividing cells and fails to translocate to the spindle midzone during cytokinesis. Translational blocking of KIF20A in a zebrafish model resulted in a cardiomyopathy phenotype. We identified a novel autosomal recessive congenital restrictive cardiomyopathy, caused by a near complete loss-of-function of KIF20A. This finding further illustrates the relationship of cytokinesis and congenital cardiomyopathy.

  20. Adult siblings with homozygous G6PC3 mutations expand our understanding of the severe congenital neutropenia type 4 (SCN4 phenotype

    Directory of Open Access Journals (Sweden)

    Fernandez Bridget A

    2012-11-01

    Full Text Available Abstract Background Severe congenital neutropenia type 4 (SCN4 is an autosomal recessive disorder caused by mutations in the third subunit of the enzyme glucose-6-phosphatase (G6PC3. Its core features are congenital neutropenia and a prominent venous skin pattern, and affected individuals have variable birth defects. Oculocutaneous albinism type 4 (OCA4 is caused by autosomal recessive mutations in SLC45A2. Methods We report a sister and brother from Newfoundland, Canada with complex phenotypes. The sister was previously reported by Cullinane et al., 2011. We performed homozygosity mapping, next generation sequencing and conventional Sanger sequencing to identify mutations that cause the phenotype in this family. We have also summarized clinical data from 49 previously reported SCN4 cases with overlapping phenotypes and interpret the medical histories of these siblings in the context of the literature. Results The siblings’ phenotype is due in part to a homozygous mutation in G6PC3, [c.829C > T, p.Gln277X]. Their ages are 38 and 37 years respectively and they are the oldest SCN4 patients published to date. Both presented with congenital neutropenia and later developed Crohn disease. We suggest that the latter is a previously unrecognized SCN4 manifestation and that not all affected individuals have an intellectual disability. The sister also has a homozygous mutation in SLC45A2, which explains her severe oculocutaneous hypopigmentation. Her brother carried one SLC45A2 mutation and was diagnosed with “partial OCA” in childhood. Conclusions This family highlights that apparently novel syndromes can in fact be caused by two known autosomal recessive disorders.

  1. Fetal brain disruption sequence versus fetal brain arrest: A distinct autosomal recessive developmental brain malformation phenotype.

    Science.gov (United States)

    Abdel-Salam, Ghada M H; Abdel-Hamid, Mohamed S; El-Khayat, Hamed A; Eid, Ola M; Saba, Soliman; Farag, Mona K; Saleem, Sahar N; Gaber, Khaled R

    2015-05-01

    The term fetal brain disruption sequence (FBDS) was coined to describe a number of sporadic conditions caused by numerous external disruptive events presenting with variable imaging findings. However, rare familial occurrences have been reported. We describe five patients (two sib pairs and one sporadic) with congenital severe microcephaly, seizures, and profound intellectual disability. Brain magnetic resonance imaging (MRI) revealed unique and uniform picture of underdeveloped cerebral hemispheres with increased extraxial CSF, abnormal gyral pattern (polymicrogyria-like lesions in two sibs and lissencephaly in the others), loss of white matter, dysplastic ventricles, hypogenesis of corpus callosum, and hypoplasia of the brainstem, but hypoplastic cerebellum in one. Fetal magnetic resonance imaging (FMRI) of two patients showed the same developmental brain malformations in utero. These imaging findings are in accordance with arrested brain development rather than disruption. Molecular analysis excluded mutations in potentially related genes such as NDE1, MKL2, OCLN, and JAM3. These unique clinical and imaging findings were described before among familial reports with FBDS. However, our patients represent a recognizable phenotype of developmental brain malformations, that is, apparently distinguishable from either familial microhydranencephaly or microlissencephaly that were collectively termed FBDS. Thus, the use of the umbrella term FBDS is no longer helpful. Accordingly, we propose the term fetal brain arrest to distinguish them from other familial patients diagnosed as FBDS. The presence of five affected patients from three unrelated consanguineous families suggests an autosomal-recessive mode of inheritance. The spectrum of fetal brain disruption sequence is reviewed. © 2015 Wiley Periodicals, Inc.

  2. Autosomal recessive retinitis pigmentosa caused by mutations in the MAK gene.

    Science.gov (United States)

    Stone, Edwin M; Luo, Xunda; Héon, Elise; Lam, Byron L; Weleber, Richard G; Halder, Jennifer A; Affatigato, Louisa M; Goldberg, Jacqueline B; Sumaroka, Alexander; Schwartz, Sharon B; Cideciyan, Artur V; Jacobson, Samuel G

    2011-12-28

    To determine the disease expression in autosomal recessive (ar) retinitis pigmentosa (RP) caused by mutations in the MAK (male germ cell-associated kinase) gene. Patients with RP and MAK gene mutations (n = 24; age, 32-77 years at first visit) were studied by ocular examination, perimetry, and optical coherence tomography (OCT). All but one MAK patient were homozygous for an identical truncating mutation in exon 9 and had Ashkenazi Jewish heritage. The carrier frequency of this mutation among 1207 unrelated Ashkenazi control subjects was 1 in 55, making it the most common cause of heritable retinal disease in this population and MAK-associated RP the sixth most common Mendelian disease overall in this group. Visual acuities could be normal into the eighth decade of life. Kinetic fields showed early loss in the superior-temporal quadrant. With more advanced disease, superior and midperipheral function was lost, but the nasal field remained. Only a central island was present at late stages. Pigmentary retinopathy was less prominent in the superior nasal quadrant. Rod-mediated vision was abnormal but detectable in the residual field; all patients had rod>cone dysfunction. Photoreceptor layer thickness was normal centrally but decreased with eccentricity. At the stages studied, there was no evidence of photoreceptor ciliary elongation. The patterns of disease expression in the MAK form of arRP showed some resemblance to patterns described in autosomal dominant RP, especially the form caused by RP1 mutations. The similarity in phenotypes is of interest, considering that there is experimental evidence of interaction between Mak and RP1 in the photoreceptor cilium.

  3. Congenital hereditary endothelial dystrophy with progressive sensorineural deafness (Harboyan syndrome

    Directory of Open Access Journals (Sweden)

    Abramowicz Marc

    2008-10-01

    Full Text Available Abstract Harboyan syndrome is a degenerative corneal disorder defined as congenital hereditary endothelial dystrophy (CHED accompanied by progressive, postlingual sensorineural hearing loss. To date, 24 cases from 11 families of various origin (Asian Indian, South American Indian, Sephardi Jewish, Brazilian Portuguese, Dutch, Gypsy, Moroccan, Dominican have been reported. More than 50% of the reported cases have been associated with parental consanguinity. The ocular manifestations in Harboyan syndrome include diffuse bilateral corneal edema occurring with severe corneal clouding, blurred vision, visual loss and nystagmus. They are apparent at birth or within the neonatal period and are indistinguishable from those characteristic of the autosomal recessive CHED (CHED2. Hearing deficit in Harboyan is slowly progressive and typically found in patients 10–25 years old. There are no reported cases with prelinglual deafness, however, a significant hearing loss in children as young as 4 years old has been detected by audiometry, suggesting that hearing may be affected earlier, even at birth. Harboyan syndrome is caused by mutations in the SLC4A11 gene located at the CHED2 locus on chromosome 20p13-p12, indicating that CHED2 and Harboyan syndrome are allelic disorders. A total of 62 different SLC4A11 mutations have been reported in 98 families (92 CHED2 and 6 Harboyan. All reported cases have been consistent with autosomal recessive transmission. Diagnosis is based on clinical criteria, detailed ophthalmological assessment and audiometry. A molecular confirmation of the clinical diagnosis is feasible. A variety of genetic, metabolic, developmental and acquired diseases presenting with clouding of the cornea should be considered in the differential diagnosis (Peters anomaly, sclerocornea, limbal dermoids, congenital glaucoma. Audiometry must be performed to differentiate Harboyan syndrome from CHED2. Autosomal recessive types of CHED (CHED2 and

  4. Novel compound heterozygous mutations in SERPINH1 cause rare autosomal recessive osteogenesis imperfecta type X.

    Science.gov (United States)

    Song, Y; Zhao, D; Xu, X; Lv, F; Li, L; Jiang, Y; Wang, O; Xia, W; Xing, X; Li, M

    2018-03-09

    We identified novel compound heterozygous mutations in SERPINH1 in a Chinese boy suffering from recurrent fractures, femoral deformities, and growth retardation, which resulted in extremely rare autosomal recessive OI type X. Long-term treatment of BPs was effective in increasing BMD Z-score, reducing fracture incidence and reshaping vertebrae compression. Osteogenesis imperfecta (OI) is a heritable bone disorder characterized by low bone mineral density, recurrent fractures, and progressive bone deformities. Mutation in serpin peptidase inhibitor clade H, member 1 (SERPINH1), which encodes heat shock protein 47 (HSP47), leads to rare autosomal recessive OI type X. We aimed to detect the phenotype and the pathogenic mutation of OI type X in a boy from a non-consanguineous Chinese family. We investigated the pathogenic mutations and analyzed their relationship with the phenotype in the patient using next-generation sequencing (NGS) and Sanger sequencing. Moreover, the efficacy of long-term bisphosphonate treatment in this patient was evaluated. The patient suffered from multiple fractures, low bone mass, and bone deformities in the femur, without dentinogenesis imperfecta or hearing loss. Compound heterozygous variants were found in SERPINH1 as follows: c.149 T>G in exon 2 and c.1214G>A in exon 5. His parents were heterozygous carriers of each of these mutations, respectively. Bisphosphonates could be helpful in increasing BMD Z-score, reducing bone fracture risk and reshaping the compressed vertebral bodies of this patient. We reported novel compound heterozygous mutations in SERPINH1 in a Chinese OI patient for the first time, which expanded the spectrum of phenotype and genotype of extremely rare OI type X.

  5. Localization of A Novel Autosomal Recessive Non-Syndromic Hearing Impairment Locus (DFNB38) to 6q26–q27 in a Consanguineous Kindred from Pakistan

    Science.gov (United States)

    Ansar, Muhammad; Ramzan, Mohammad; Pham, Thanh L.; Yan, Kai; Jamal, Syed Muhammad; Haque, Sayedul; Ahmad, Wasim; Leal, Suzanne M.

    2010-01-01

    For autosomal recessive nonsyndromic hearing impairment over 30 loci have been mapped and 19 genes have been identified. DFNB38, a novel locus for autosomal recessive nonsyndromic hearing impairment, was localized in a consanguineous Pakistani kindred to 6q26–q27. The affected family members present with profound prelingual sensorineural hearing impairment and use sign language for communications. Linkage was established to microsatellite markers located on chromosome 6q26–q27 (Multipoint lod score 3.6). The genetic region for DFNB38 spans 10.1 cM according to the Marshfield genetic map and is bounded by markers D6S980 and D6S1719. This genetic region corresponds to 3.4 MB on the sequence-based physical map. PMID:12890929

  6. Mutations in the ABCA4 (ABCR) Gene Are the Major Cause of Autosomal Recessive Cone-Rod Dystrophy

    OpenAIRE

    Maugeri, Alessandra; Klevering, B. Jeroen; Rohrschneider, Klaus; Blankenagel, Anita; Brunner, Han G.; Deutman, August F.; Hoyng, Carel B.; Cremers, Frans P. M.

    2000-01-01

    The photoreceptor cell–specific ATP-binding cassette transporter gene (ABCA4; previously denoted “ABCR”) is mutated in most patients with autosomal recessive (AR) Stargardt disease (STGD1) or fundus flavimaculatus (FFM). In addition, a few cases with AR retinitis pigmentosa (RP) and AR cone-rod dystrophy (CRD) have been found to have ABCA4 mutations. To evaluate the importance of the ABCA4 gene as a cause of AR CRD, we selected 5 patients with AR CRD and 15 patients with isolated CRD, all fro...

  7. Congenital nephrogenic diabetes insipidus: the current state of affairs.

    Science.gov (United States)

    Wesche, Daniel; Deen, Peter M T; Knoers, Nine V A M

    2012-12-01

    The anti-diuretic hormone arginine vasopressin (AVP) is released from the pituitary upon hypovolemia or hypernatremia, and regulates water reabsorption in the renal collecting duct principal cells. Binding of AVP to the arginine vasopressin receptor type 2 (AVPR2) in the basolateral membrane leads to translocation of aquaporin 2 (AQP2) water channels to the apical membrane of the collecting duct principal cells, inducing water permeability of the membrane. This results in water reabsorption from the pro-urine into the medullary interstitium following an osmotic gradient. Congenital nephrogenic diabetes insipidus (NDI) is a disorder associated with mutations in either the AVPR2 or AQP2 gene, causing the inability of patients to concentrate their pro-urine, which leads to a high risk of dehydration. This review focuses on the current knowledge regarding the cell biological aspects of congenital X-linked, autosomal-recessive and autosomal-dominant NDI while specifically addressing the latest developments in the field. Based on deepened mechanistic understanding, new therapeutic strategies are currently being explored, which we also discuss here.

  8. Heterozygous M1V variant of ELA-2 gene mutation associated with G-CSF refractory severe congenital neutropenia.

    Science.gov (United States)

    Setty, Bhuvana A; Yeager, Nicholas D; Bajwa, Rajinder P

    2011-09-01

    Severe congenital neutropenia is an autosomal recessive disorder characterized by maturation arrest at the promyelocyte/myelocyte phase in the bone marrow, absolute neutrophil count ELA-2 have been described. We report the case of a premature male infant with congenital neutropenia, associated with multiple infections, refractory to treatment with granulocyte colony stimulating factor who subsequently underwent matched sibling donor stem-cell transplant. He was found to be heterozygous for the M1V variant of the ELA-2 gene that we postulate to be causative for his severe neutropenia Copyright © 2011 Wiley-Liss, Inc.

  9. Novel FAM20A mutation causes autosomal recessive amelogenesis imperfecta.

    Science.gov (United States)

    Volodarsky, Michael; Zilberman, Uri; Birk, Ohad S

    2015-06-01

    To relate the peculiar phenotype of amelogenesis imperfecta in a large Bedouin family to the genotype determined by whole genome linkage analysis. Amelogenesis imperfecta (AI) is a broad group of inherited pathologies affecting enamel formation, characterized by variability in phenotypes, causing mutations and modes of inheritance. Autosomal recessive or compound heterozygous mutations in FAM20A, encoding sequence similarity 20, member A, have been shown to cause several AI phenotypes. Five members from a large consanguineous Bedouin family presented with hypoplastic amelogenesis imperfecta with unerupted and resorbed permanent molars. Following Soroka Medical Center IRB approval and informed consent, blood samples were obtained from six affected offspring, five obligatory carriers and two unaffected siblings. Whole genome linkage analysis was performed followed by Sanger sequencing of FAM20A. The sequencing unravelled a novel homozygous deletion mutation in exon 11 (c.1523delC), predicted to insert a premature stop codon (p.Thr508Lysfs*6). We provide an interesting case of novel mutation in this rare disorder, in which the affected kindred is unique in the large number of family members sharing a similar phenotype. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. A nonsense mutation in CRYGC associated with autosomal dominant congenital nuclear cataract in a Chinese family.

    Science.gov (United States)

    Yao, Ke; Jin, Chongfei; Zhu, Ning; Wang, Wei; Wu, Renyi; Jiang, Jin; Shentu, Xingchao

    2008-07-09

    To identify the genetic defect associated with autosomal dominant congenital nuclear cataract in a Chinese family. Family history and phenotypic data were recorded, and the phenotypes were documented by slit lamp photography. The genomic DNA was extracted from peripheral blood leukocytes. All the exons and flanking intronic sequences of CRYGC and CRYGD were amplified by polymerase chain reaction (PCR) and screened for mutation by direct DNA sequencing. Structural models of the wild type and mutant gammaC-crystallin were generated and analyzed by SWISS-MODEL. Sequencing of the coding regions of CRYGC and CRYGD showed the presence of a heterozygous C>A transversion at c.327 of the coding sequence in exon 3 of CRYGC (c.327C>A), which results in the substitution of a wild type cysteine to a nonsense codon (C109X). One and a half Greek key motifs at the COOH-terminus were found to be absent in the structural model of the mutant truncated gammaC-crystallin. A novel nonsense mutation in CRYGC was detected in a Chinese family with consistent autosomal dominant congenital nuclear cataract, providing clear evidence of a relationship between the genotype and the corresponding cataract phenotype.

  11. Molecular genetic analysis of consanguineous Pakistani families with autosomal recessive hypohidrotic ectodermal dysplasia.

    Science.gov (United States)

    Bibi, Nosheen; Ahmad, Saeed; Ahmad, Wasim; Naeem, Muhammad

    2011-02-01

    Hypohidrotic ectodermal dysplasia is an inherited disorder characterized by defective development of teeth, hairs and sweat glands. X-linked hypohidrotic ectodermal dysplasia is caused by mutations in the EDA gene, and autosomal forms of hypohidrotic ectodermal dysplasia are caused by mutations in either the EDAR or the EDARADD genes. To study the molecular genetic cause of autosomal recessive hypohidrotic ectodermal dysplasia in three consanguineous Pakistani families (A, B and C), genotyping of 13 individuals was carried out by using polymorphic microsatellite markers that are closely linked to the EDAR gene on chromosome 2q11-q13 and the EDARADD gene on chromosome 1q42.2-q43. The results revealed linkage in the three families to the EDAR locus. Sequence analysis of the coding exons and splice junctions of the EDAR gene revealed two mutations: a novel non-sense mutation (p.E124X) in the probands of families A and B and a missense mutation (p.G382S) in the proband of family C. In addition, two synonymous single-nucleotide polymorphisms were also identified. The finding of mutations in Pakistani families extends the body of evidence that supports the importance of EDAR for the development of hypohidrotic ectodermal dysplasia. © 2010 The Authors. Australasian Journal of Dermatology © 2010 The Australasian College of Dermatologists.

  12. New autosomal recessive faciodigitogenital syndrome.

    OpenAIRE

    Teebi, A S; Naguib, K K; Al-Awadi, S; Al-Saleh, Q A

    1988-01-01

    Most pedigrees of Aarskog's faciodigitogenital syndrome have suggested X linked inheritance. However, sex influenced autosomal dominant inheritance is also a possibility in some families. We describe an Arab family of normal consanguineous parents with five children (three males and two females) with some features of Aarskog syndrome in addition to some unusual hair changes. The possibility that this family represents a distinct previously unrecognised faciodigitogenital syndrome with short s...

  13. Congenital insensitivity to pain with anhidrosis (CIPA): Novel mutations of the TRKA (NTRK1) gene, a putative uniparental disomy, and a linkage of the mutant TRKA and PKLR genes in a family with CIPA and pyruvate kinase deficiency

    NARCIS (Netherlands)

    Y. Indo (Yasuhiro); S. Mardy (Sek); Y. Miura (Yuichi); A. Moosa (Allie); E.A.R. Ismail (Essam A.); E. Toscano (Ennio); G. Andria (Generoso); V. Pavone (Vito); D.L. Brown (Deborah); A.S. Brooks (Alice); F. Endo (Fumio); I. Matsuda (Ichiro)

    2001-01-01

    textabstractCongenital insensitivity to pain with anhidrosis is an autosomal recessive hereditary disorder characterized by recurrent episodic fever, anhidrosis (inability to sweat), absence of reaction to noxious stimuli, self-mutilating behavior, and mental retardation. The human TRKA gene

  14. Implementing Non-Invasive Prenatal Diagnosis (NIPD) in a National Health Service Laboratory; From Dominant to Recessive Disorders.

    Science.gov (United States)

    Drury, Suzanne; Mason, Sarah; McKay, Fiona; Lo, Kitty; Boustred, Christopher; Jenkins, Lucy; Chitty, Lyn S

    2016-01-01

    Our UK National Health Service regional genetics laboratory offers NIPD for autosomal dominant and de novo conditions (achondroplasia, thanataphoric dysplasia, Apert syndrome), paternal mutation exclusion for cystic fibrosis and a range of bespoke tests. NIPD avoids the risks associated with invasive testing, making prenatal diagnosis more accessible to families at high genetic risk. However, the challenge remains in offering definitive diagnosis for autosomal recessive diseases, which is complicated by the predominance of the maternal mutant allele in the cell-free DNA sample and thus requires a variety of different approaches. Validation and diagnostic implementation for NIPD of congenital adrenal hyperplasia (CAH) is further complicated by presence of a pseudogene that requires a different approach. We have used an assay targeting approximately 6700 heterozygous SNPs around the CAH gene (CYP21A2) to construct the high-risk parental haplotypes and tested this approach in five cases, showing that inheritance of the parental alleles can be correctly identified using NIPD. We are evaluating various measures of the fetal fraction to help determine inheritance of parental mutations. We are currently exploring the utility of an NIPD multi-disorder panel for autosomal recessive disease, to make testing more widely applicable to families with a variety of serious genetic conditions.

  15. Pitfalls in molecular diagnosis of 21-hydroxylase deficiency in congenital adrenal hyperplasia

    OpenAIRE

    Kolahdouz, Mahsa; Mohammadi, Zahra; Kolahdouz, Parisa; Tajamolian, Masoud; Khanahmad, Hossein

    2015-01-01

    Congenital adrenal hyperplasia (CAH) is a putative error of metabolism with autosomal recessive heredity pattern. The main manifestations of classic form of CAH are salt-wasting, dehydration and simple virilization in both sexes and ambiguous genitalia in female gender. 21-hyroxylase (CYP21A2) impairment with prevalence value of 1 in 10,000?15,000 live births is the most common etiology of CAH. Because of consanguineous marriages, the frequency of the CAH in Iran is very high. A wide range of...

  16. Congenital Amegakaryocytic Thrombocytopenic Purpura (CAMT)

    International Nuclear Information System (INIS)

    Ghauri, R. I.; Naveed, M.; Mannan, J.

    2014-01-01

    Congenital amegakaryocytic thrombocytopenia (CAMT) is a rare, autosomal recessive disorder induced by mutations of the gene coding for thrombopoietin (TPO) receptor (c-MPL) despite high levels of serum TPO. Patients initially present with isolated thrombocytopenia that subsequently progresses into pancytopenia. Although the mechanisms leading to aplasia are unknown, the age of onset has been reported to depend on the severity of the c-MPL functional defect. The primary treatment for CAMT is bone marrow transplantation. This report describes a newborn girl who presented to us with symptoms of sepsis but septic profile came negative except thrombocytopenia. Bone marrow biopsy was done for thrombocytopenia which revealed amegakaryocytic thrombocytopenia. She was given prednisolone. (author)

  17. An autosomal recessive leucoencephalopathy with ischemic stroke, dysmorphic syndrome and retinitis pigmentosa maps to chromosome 17q24.2-25.3

    OpenAIRE

    Bouhouche Ahmed; Benomar Ali; Errguig Leila; Lachhab Lamiae; Bouslam Naima; Aasfara Jehanne; Sefiani Sanaa; Chabraoui Layachi; El Fahime Elmostafa; El Quessar Abdeljalil; Jiddane Mohamed; Yahyaoui Mohamed

    2012-01-01

    Abstract Background Single-gene disorders related to ischemic stroke seem to be an important cause of stroke in young patients without known risk factors. To identify new genes responsible of such diseases, we studied a consanguineous Moroccan family with three affected individuals displaying hereditary leucoencephalopathy with ischemic stroke, dysmorphic syndrome and retinitis pigmentosa that appears to segregate in autosomal recessive pattern. Methods All family members underwent neurologic...

  18. Microarray-based mutation analysis of the ABCA4 (ABCR) gene in autosomal recessive cone-rod dystrophy and retinitis pigmentosa.

    Science.gov (United States)

    Klevering, B Jeroen; Yzer, Suzanne; Rohrschneider, Klaus; Zonneveld, Marijke; Allikmets, Rando; van den Born, L Ingeborgh; Maugeri, Alessandra; Hoyng, Carel B; Cremers, Frans P M

    2004-12-01

    Mutations in the ABCA4 gene have been associated with autosomal recessive Stargardt disease (STGD1), cone-rod dystrophy (CRD), and retinitis pigmentosa (RP). We employed a recently developed genotyping microarray, the ABCR400-chip, to search for known ABCA4 mutations in patients with isolated or autosomal recessive CRD (54 cases) or RP (90 cases). We performed detailed ophthalmologic examinations and identified at least one ABCA4 mutation in 18 patients (33%) with CRD and in five patients (5.6%) with RP. Single-strand conformation polymorphism (SSCP) analysis and subsequent DNA sequencing revealed four novel missense mutations (R24C, E161K, P597S, G618E) and a novel 1-bp deletion (5888delG). Ophthalmoscopic abnormalities in CRD patients ranged from minor granular pigmentary changes in the posterior pole to widespread atrophy. In 12 patients with recordable electroretinogram (ERG) tracings, a cone-rod pattern was detected. Three patients demonstrated progression from a retinal dystrophy resembling STGD1 to a more widespread degeneration, and were subsequently diagnosed as CRD. In addition to a variable degree of atrophy, all RP patients displayed ophthalmologic characteristics of classic RP. When detectable, ERG recordings in these patients demonstrated rod-cone patterns of photoreceptor degeneration. In conclusion, in this study, we show that the ABCA4 mutation chip is an efficient first screening tool for arCRD.

  19. Neonatal Bartter Syndrome in association with congenital adrenal hyperplasia in a neonate - a rare combination.

    Science.gov (United States)

    Hussain, Shabbir

    2016-05-01

    Neonatal Bartter syndrome (NBS) is an autosomal recessive renal tubulopathy characterized by hypokalaemic, hypochloraemic metabolic alkalosis associated with increased urinary loss of sodium, potassium, calcium and chloride. There is hyperreninaemia and hyperaldosteronaemia but normotension. Congenital adrenal hyperplasia (CAH), another autosomal recessive condition, may present in the neonatal period with vomiting, hypovolaemia, failure to gain weight or ambiguous genitalia. We report a case of NBS and CAH combination in a neonate. A male neonate born at term was admitted with history of recurrent vomiting and dehydration episodes. Investigations revealed electrolytes imbalance, metabolic alkalosis, raised aldosterone and renin levels suggestive of NBS. He was treated successfully and discharged. He was re-admitted with the same symptoms. Further evaluation confirmed the presence of CAH as well. We report this case because of the rarity of this combination (NBS plus CAH) and to the best of our knowledge this is the first such case report from Pakistan.

  20. Autosomal recessive Oliver-McFarlane syndrome: retinitis pigmentosa, short stature (GH deficiency), trichomegaly, and hair anomalies or CPD syndrome (chorioretinopathy-pituitary dysfunction).

    Science.gov (United States)

    Haimi, Motti; Gershoni-Baruch, Ruth

    2005-10-15

    We describe a brother and sister with retinitis pigmentosa (RP), growth failure, long eyelashes, and sparse hair. They were born to young healthy consanguineous parents and presented at birth with IUGR. Evolving pigmentary retinopathy was diagnosed at the age of 5 years. A similar condition (Oliver-McFarlane) syndrome was reported previously. Our two sibs confirm the existence of this autosomal recessive syndrome.

  1. A case report of congenital sensory neuropathy with anhidrosis

    International Nuclear Information System (INIS)

    Lee, Won Hyong; Chang, Hae Soon; Han, Man Chung; Lee, Suck Hyun; Lee, Duk Yong

    1974-01-01

    Congenital sensory neuropathy with anhidrosis is rare disease and may be confused with other cause of pain insensitivity or indifference. Other cause of pain insensitivity include congenital indifference to pain, congenital sensory neuropathy, hereditary sensory radicular neuropathy, nonprogressive sensory radicular neuropathy, syringomyelia, and hysterical analgesia. It is hereditary disease which is transmitted with autosomal recessive trait. The patient is 8 years old Korean male with complaint of swelling and local heat on right knee joint. Generalized analgesia is noted on physical examination. The skin is dry and coarse with no evidence of sweating. Delayed motor development was noted on early children. Mental development is retarded. On past history, patient showed unpredictable rises of temperature, though the general condition remained good. Multiple painless fracture on right humerus and right metatasal bone was occurred. Rt.knee radiograms show marked swelling of soft tissue and periosteal calcification on distal femru,which are resemble with neurotrophic joint

  2. A case report of congenital sensory neuropathy with anhidrosis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Hyong; Chang, Hae Soon; Han, Man Chung; Lee, Suck Hyun; Lee, Duk Yong [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1974-10-15

    Congenital sensory neuropathy with anhidrosis is rare disease and may be confused with other cause of pain insensitivity or indifference. Other cause of pain insensitivity include congenital indifference to pain, congenital sensory neuropathy, hereditary sensory radicular neuropathy, nonprogressive sensory radicular neuropathy, syringomyelia, and hysterical analgesia. It is hereditary disease which is transmitted with autosomal recessive trait. The patient is 8 years old Korean male with complaint of swelling and local heat on right knee joint. Generalized analgesia is noted on physical examination. The skin is dry and coarse with no evidence of sweating. Delayed motor development was noted on early children. Mental development is retarded. On past history, patient showed unpredictable rises of temperature, though the general condition remained good. Multiple painless fracture on right humerus and right metatasal bone was occurred. Rt.knee radiograms show marked swelling of soft tissue and periosteal calcification on distal femru,which are resemble with neurotrophic joint.

  3. Muscle-Eye-Brain Disease; a Rare Form of Syndromic Congenital Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Gosal Gurinder S

    2011-03-01

    Full Text Available Congenital muscular dystrophy (CMD is a heterogeneous group of disorders characterized by muscular hypotonia since birth and the histologic features of muscular dystrophy. Syndromic congenital muscular dystrophies are clinically similar autosomal recessive disorders characterized by congenital muscular dystrophy, lissencephaly, and eye anomalies. We present a case of a rare form of syndromic congenital muscular dystrophy in an eight year old girl, born of first- degree consanguinity. She had: global developmental delay; a seizure disorder; hypotonia; progressive muscle contractures including bilateral symmetrical flexion contractures of hips, knees, equinus contracture and thoracolumbar scoliosis; diminished deep tendon reflexes: bilateral premature cataract; pseudophakia; and nystagmus. The patient was also highly myopic. Based on clinical features, muscle biopsy and MRI of the brain, a diagnosis of muscle- eye- brain disease was made. Identification of these patients may help to prevent this crippling disorder in the future siblings of probands by utilizing genetic counselling and mutation analysis.

  4. Genetics Home Reference: severe congenital neutropenia

    Science.gov (United States)

    ... A characteristic of X-linked inheritance is that fathers cannot pass X-linked traits to their sons. ... Genetic Testing Registry: Severe congenital neutropenia 2, autosomal dominant Genetic Testing Registry: Severe congenital neutropenia 3, autosomal ...

  5. Two novel mutations in the EYS gene are possible major causes of autosomal recessive retinitis pigmentosa in the Japanese population.

    Directory of Open Access Journals (Sweden)

    Katsuhiro Hosono

    Full Text Available Retinitis pigmentosa (RP is a highly heterogeneous genetic disease including autosomal recessive (ar, autosomal dominant (ad, and X-linked inheritance. Recently, arRP has been associated with mutations in EYS (Eyes shut homolog, which is a major causative gene for this disease. This study was conducted to determine the spectrum and frequency of EYS mutations in 100 Japanese arRP patients. To determine the prevalence of EYS mutations, all EYS exons were screened for mutations by polymerase chain reaction amplification, and sequence analysis was performed. We detected 67 sequence alterations in EYS, of which 21 were novel. Of these, 7 were very likely pathogenic mutations, 6 were possible pathogenic mutations, and 54 were predicted non-pathogenic sequence alterations. The minimum observed prevalence of distinct EYS mutations in our study was 18% (18/100, comprising 9 patients with 2 very likely pathogenic mutations and the remaining 9 with only one such mutation. Among these mutations, 2 novel truncating mutations, c.4957_4958insA (p.S1653KfsX2 and c.8868C>A (p.Y2956X, were identified in 16 patients and accounted for 57.1% (20/35 alleles of the mutated alleles. Although these 2 truncating mutations were not detected in Japanese patients with adRP or Leber's congenital amaurosis, we detected them in Korean arRP patients. Similar to Japanese arRP results, the c.4957_4958insA mutation was more frequently detected than the c.8868C>A mutation. The 18% estimated prevalence of very likely pathogenic mutations in our study suggests a major involvement of EYS in the pathogenesis of arRP in the Japanese population. Mutation spectrum of EYS in 100 Japanese patients, including 13 distinct very likely and possible pathogenic mutations, was largely different from the previously reported spectrum in patients from non-Asian populations. Screening for c.4957_4958insA and c.8868C>A mutations in the EYS gene may therefore be very effective for the genetic testing

  6. Lrit3 Deficient Mouse (nob6): A Novel Model of Complete Congenital Stationary Night Blindness (cCSNB)

    OpenAIRE

    Neuillé, Marion; El Shamieh, Said; Orhan, Elise; Michiels, Christelle; Antonio, Aline; Lancelot, Marie-Elise; Condroyer, Christel; Bujakowska, Kinga; Poch, Olivier; Sahel, José-Alain; Audo, Isabelle; Zeitz, Christina

    2014-01-01

    International audience; Mutations in LRIT3, coding for a Leucine-Rich Repeat, immunoglobulin-like and transmembrane domains 3 protein lead to autosomal recessive complete congenital stationary night blindness (cCSNB). The role of the corresponding protein in the ON-bipolar cell signaling cascade remains to be elucidated. Here we genetically and functionally characterize a commercially available Lrit3 knockout mouse, a model to study the function and the pathogenic mechanism of LRIT3. We confi...

  7. Genetic Defects Underlie the Non-syndromic Autosomal Recessive Intellectual Disability (NS-ARID

    Directory of Open Access Journals (Sweden)

    Saleha Shamim

    2017-05-01

    Full Text Available Intellectual disability (ID is a neurodevelopmental disorder which appears frequently as the result of genetic mutations and may be syndromic (S-ID or non-syndromic (NS-ID. ID causes an important economic burden, for patient's family, health systems, and society. Identifying genes that cause S-ID can easily be evaluated due to the clinical symptoms or physical anomalies. However, in the case of NS-ID due to the absence of co-morbid features, the latest molecular genetic techniques can be used to understand the genetic defects that underlie it. Recent studies have shown that non-syndromic autosomal recessive (NS-ARID is extremely heterogeneous and contributes much more than X-linked ID. However, very little is known about the genes and loci involved in NS-ARID relative to X-linked ID, and whose complete genetic etiology remains obscure. In this review article, the known genetic etiology of NS-ARID and possible relationships between genes and the associated molecular pathways of their encoded proteins has been reviewed which will enhance our understanding about the underlying genes and mechanisms in NS-ARID.

  8. Inhibitory action of chlorophyllin of autosome recessive lethals induced by irradiation; Accion inhibidora de la clorofilina de letales recesivos autosonicos inducidos por irradiacion

    Energy Technology Data Exchange (ETDEWEB)

    Salceda, V.M.; Pimentel, P.A.E.; Cruces, M.P. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: vmss@nuclear.inin.mx

    2006-07-01

    The chlorolin is a sodium salt of the chlorophyll that has a strong protective action of the damage induced by different agents so much physical as chemical. In Drosophila there is reported this effect in somatic cells. In contrast, in germinal cells using tests with the sexual chromosomes has not been found such inhibitory action. For this reason, in this occasion we will refer to the effect of the lethality induced in autosome chromosomes, in particular to the chromosome II of this species. For such effect groups of males of the line Canton-S its were pre-treated for 24h with or without 69 mm of CCS and later on treaties with or without 40 Gy of gamma irradiation. The males were then subjected to the technical Cy L / Pm for the detection of recessive lethals. In the third generation the respective counts of the descendant of each one of them to determine the corresponding categories for each extracted chromosome were made. To be mendelian crosses it is expected for a normal chromosome a proportion 2:1 of individuals with genotype Cy L / +: +/+. The absence of individuals +/+ it is indicative of a lethal gene, until 10% of these individuals of each male's total descendant, it is considered that is carrying of a semi lethal gene. The sum of lethal and semi lethals constitutes the category detrimental. The obtained results indicated that the pre-treatment with CCS reduces in a significant way the frequency of induced lethals by 40 Gy of gamma rays. The fact that an effect inhibitor has not been observed in the test of recessive lethal bound to the sex obtained previously, it contrasts with the effect observed in the chromosome II, results of this study and with the one observed in the chromosome III in somatic cells. The above-mentioned shows a differential action of the CCS between sexual chromosomes and autosomal before the effect of the gamma radiation. At the moment we don't have an explanation to these evidences. To evaluate the action of the

  9. Inhibitory action of chlorophyllin of autosome recessive lethals induced by irradiation; Accion inhibidora de la clorofilina de letales recesivos autosonicos inducidos por irradiacion

    Energy Technology Data Exchange (ETDEWEB)

    Salceda, V M; Pimentel, P A.E.; Cruces, M P [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2006-07-01

    The chlorolin is a sodium salt of the chlorophyll that has a strong protective action of the damage induced by different agents so much physical as chemical. In Drosophila there is reported this effect in somatic cells. In contrast, in germinal cells using tests with the sexual chromosomes has not been found such inhibitory action. For this reason, in this occasion we will refer to the effect of the lethality induced in autosome chromosomes, in particular to the chromosome II of this species. For such effect groups of males of the line Canton-S its were pre-treated for 24h with or without 69 mm of CCS and later on treaties with or without 40 Gy of gamma irradiation. The males were then subjected to the technical Cy L / Pm for the detection of recessive lethals. In the third generation the respective counts of the descendant of each one of them to determine the corresponding categories for each extracted chromosome were made. To be mendelian crosses it is expected for a normal chromosome a proportion 2:1 of individuals with genotype Cy L / +: +/+. The absence of individuals +/+ it is indicative of a lethal gene, until 10% of these individuals of each male's total descendant, it is considered that is carrying of a semi lethal gene. The sum of lethal and semi lethals constitutes the category detrimental. The obtained results indicated that the pre-treatment with CCS reduces in a significant way the frequency of induced lethals by 40 Gy of gamma rays. The fact that an effect inhibitor has not been observed in the test of recessive lethal bound to the sex obtained previously, it contrasts with the effect observed in the chromosome II, results of this study and with the one observed in the chromosome III in somatic cells. The above-mentioned shows a differential action of the CCS between sexual chromosomes and autosomal before the effect of the gamma radiation. At the moment we don't have an explanation to these evidences. To evaluate the action of the chlorophyllin on

  10. An intronic deletion in the PROM1 gene leads to autosomal recessive cone-rod dystrophy.

    Science.gov (United States)

    Eidinger, Osnat; Leibu, Rina; Newman, Hadas; Rizel, Leah; Perlman, Ido; Ben-Yosef, Tamar

    2015-01-01

    To investigate the genetic basis for autosomal recessive cone-rod dystrophy (CRD) in a consanguineous Israeli Jewish family. Patients underwent a detailed ophthalmic evaluation, including eye examination, visual field testing, optical coherence tomography (OCT), and electrophysiological tests, electroretinography (ERG) and visual evoked potential (VEP). Genome-wide homozygosity mapping using a single nucleotide polymorphism (SNP) array was performed to identify homozygous regions shared among two of the affected individuals. Mutation screening of the underlying gene was performed with direct sequencing. In silico and in vitro analyses were used to predict the effect of the identified mutation on splicing. The affected family members are three siblings who have various degrees of progressive visual deterioration, glare, color vision abnormalities, and night vision difficulties. Visual field tests revealed central scotomas of different extension. Cone and rod ERG responses were reduced, with cones more severely affected. Homozygosity mapping revealed several homozygous intervals shared among two of the affected individuals. One included the PROM1 gene. Sequence analysis of the 26 coding exons of PROM1 in one affected individual revealed no mutations in the coding sequence or in intronic splice sites. However, in intron 21, proximate to the intron-exon junction, we observed a homozygous 10 bp deletion between positions -26 and -17 (c.2281-26_-17del). The deletion was linked to a known SNP, c.2281-6C>G. The deletion cosegregated with the disease in the family, and was not detected in public databases or in 101 ethnically-matched control individuals. In silico analysis predicted that this deletion would lead to altered intron 21 splicing. Bioinformatic analysis predicted that a recognition site for the SRSF2 splicing factor is located within the deleted sequence. The in vitro splicing assay demonstrated that c.2281-26_-17del leads to complete exon 22 skipping. A novel

  11. Leydig Cell Tumor Associated with Testicular Adrenal Rest Tumors in a Patient with Congenital Adrenal Hyperplasia due to 11β-Hydroxylase Deficiency

    OpenAIRE

    Charfi, Nadia; Kamoun, Mahdi; Feki Mnif, Mouna; Mseddi, Neila; Mnif, Fatma; Kallel, Nozha; Ben Naceur, Basma; Rekik, Nabila; Fourati, Hela; Daoud, Emna; Mnif, Zainab; Hadj Sliman, Mourad; Sellami-Boudawara, Tahia; Abid, Mohamed

    2012-01-01

    Congenital adrenal hyperplasia (CAH) describes a group of inherited autosomal recessive disorders characterized by enzyme defects in the steroidogenic pathways that lead to the biosynthesis of cortisol, aldosterone, and androgens. Chronic excessive adrenocorticotropic hormone (ACTH) stimulation may result in hyperplasia of ACTH-sensitive tissues in adrenal glands and other sites such as the testes, causing testicular masses known as testicular adrenal rest tumors (TARTs). Leydig cell tumors (...

  12. Congenital cataracts in two siblings with Wolfram syndrome.

    Science.gov (United States)

    Mets, Rebecca B; Emery, Sarah B; Lesperance, Marci M; Mets, Marilyn B

    2010-12-01

    Wolfram syndrome is characterized by optic atrophy, insulin dependent diabetes mellitus, diabetes insipidus and deafness. There are several other associated conditions reported in the literature, but congenital or early childhood cataracts are not among them. Observational case series with confirmatory genetic analysis. A pair of siblings, followed over 17 years, who manifest congenital or early childhood cataracts, diabetes insipidus, diabetes mellitus, optic atrophy, and deafness. They are both compound heterozygotes for mutations (V415 deletion and A684V substitution) in the WFS1 gene. Their father has congenital sensorineural hearing loss and developed optic atrophy. He is heterozygous for A684V in WFS1. Wolfram syndrome should be in the differential diagnosis of genetic syndromes associated with congenital and early childhood cataracts. Here, we report on a mother who is a phenotypically normal carrier of an autosomal recessive Wolfram syndrome gene, and a father who has some of the findings of the syndrome and carries a single mutation that appears to be responsible for his hearing loss and optic atrophy. Their 2 children are compound heterozygotes and manifest the full Wolfram syndrome, in addition to cataracts.

  13. Congenital insensitivity to pain: Case report of a rare entity

    Directory of Open Access Journals (Sweden)

    Swati Dahiya

    2018-01-01

    Full Text Available Hereditary sensory and autonomic neuropathies (HSANs are a group of disorders characterized by insensitivity to noxious stimuli and autonomic dysfunction, associated with pathological abnormalities of the peripheral nerves. Five types of HSAN have been reported in literature, out of which Type V known as congenital insensitivity to pain (CIP is a rare autosomal recessive condition. Self-mutilation is an invariable feature of this disorder, involving the teeth and orofacial structures. This case report describes a case of a 6-year-old girl with CIP brought by her parents for prostheses to replace her self-extracted primary teeth.

  14. Mal de meleda with congenital cataract: A novel case report

    Directory of Open Access Journals (Sweden)

    Anisha Sethi

    2015-01-01

    Full Text Available Mal de meleda (MdM, a rare autosomal recessive genodermatosis is characterized by erythema and hyperkeratosis of the palms and soles with a sharp demarcation and that progress with age (progrediens and extend to the dorsal aspects of the hands and feet (transgrediens. It has been associated with various conditions albeit rarely with congenial cataract. Ocular lens and the skin have the same embryological origins. We hereby present this novel case report of Mal de meleda in association with congenital posterior subcapsular cataract which to the best of our knowledge has not been reported from India before.

  15. A novel mutation in CRYAB associated with autosomal dominant congenital nuclear cataract in a Chinese family.

    Science.gov (United States)

    Chen, Qiang; Ma, Junjie; Yan, Ming; Mothobi, Maneo Emily; Liu, Yuanyuan; Zheng, Fang

    2009-07-10

    To identify the genetic defects associated with autosomal dominant congenital nuclear cataract in a Chinese family. Clinical data were collected, and the phenotypes of the affected members in this family were recorded by slit-lamp photography. Genomic DNA was isolated from peripheral blood. Mutations were screened in cataract-associated candidate genes through polymerase chain reaction (PCR) analyses and sequencing. Structural models of the wild-type and mutant alphaB-crystallin were generated and analyzed by SWISS-MODEL. Mutation screening identified only one heterozygous G-->A transition at nucleotide 32 in the first exon of alphaB-crystallin (CRYAB), resulting in an amino acid change from arginine to histidine at codon 11 (R11H). This mutation segregated in all available affected family members but was not observed in any of the unaffected persons of the family. The putative mutation disrupted a restriction site for the enzyme, Fnu4HI, in the affected family members. The disruption, however, was not found in any of the randomly selected ophthalmologically normal individuals or in 40 unrelated senile cataract patients. Computer-assisted prediction suggested that this mutation affected the biochemical properties as well as the structure of alphaB-crystallin. These results supported the idea that the novel R11H mutation was responsible for the autosomal dominant nuclear congenital cataract in this pedigree.

  16. Enamelin/ameloblastin gene polymorphisms in autosomal amelogenesis imperfecta among Syrian families.

    Science.gov (United States)

    Dashash, Mayssoon; Bazrafshani, Mohamed Riza; Poulton, Kay; Jaber, Saaed; Naeem, Emad; Blinkhorn, Anthony Stevenson

    2011-02-01

      This study was undertaken to investigate whether a single G deletion within a series of seven G residues (codon 196) at the exon 9-intron 9 boundary of the enamelin gene ENAM and a tri-nucleotide deletion at codon 180 in exon 7 (GGA vs deletion) of ameloblastin gene AMBN could have a role in autosomal amelogenesis imperfecta among affected Syrian families.   A new technique - size-dependent, deletion screening - was developed to detect nucleotide deletion in ENAM and AMBN genes. Twelve Syrian families with autosomal-dominant or -recessive amelogenesis imperfecta were included.   A homozygous/heterozygous mutation in the ENAM gene (152/152, 152/153) was identified in affected members of three families with autosomal-dominant amelogenesis imperfecta and one family with autosomal-recessive amelogenesis imperfecta. A heterozygous mutation (222/225) in the AMBN gene was identified. However, no disease causing mutations was found. The present findings provide useful information for the implication of ENAM gene polymorphism in autosomal-dominant/-recessive amelogenesis imperfecta.   Further investigations are required to identify other genes responsible for the various clinical phenotypes. © 2010 Blackwell Publishing Asia Pty Ltd.

  17. Autosomal recessive retinitis pigmentosa with RP1 mutations is associated with myopia.

    Science.gov (United States)

    Chassine, Thomas; Bocquet, Béatrice; Daien, Vincent; Avila-Fernandez, Almudena; Ayuso, Carmen; Collin, Rob Wj; Corton, Marta; Hejtmancik, J Fielding; van den Born, L Ingeborgh; Klevering, B Jeroen; Riazuddin, S Amer; Sendon, Nathacha; Lacroux, Annie; Meunier, Isabelle; Hamel, Christian P

    2015-10-01

    To determine the refractive error in patients with autosomal recessive retinitis pigmentosa (arRP) caused by RP1 mutations and to compare it with that of other genetic subtypes of RP. Twenty-six individuals had arRP with RP1 mutations, 25 had autosomal dominant RP (adRP) with RP1 mutation, 8 and 33 had X-linked RP (xlRP) with RP2 and RPGR mutations, respectively, 198 and 93 had Usher syndrome and arRP without RP1 mutations, respectively. The median of the spherical equivalent (SE) and the IQR (Q25-Q75) was determined and multiple comparisons were performed. arRP patients with RP1 mutations had SE median at -4.0 dioptres (D) OD (Ocula Dextra); -3.88 D OS (Ocula Sinistra), whereas arRP patients without RP1 mutations (-0.50 D OD; -0.75 D OS) and Usher syndrome patients (-0.50 D OD; -0.38 D OS) were significantly less myopic (pUsher syndrome and adRP with RP1 mutation had a narrow IQR (-9.06 to -1.13 D), whereas arRP with RP1 mutations and xlRP with RP2 or RPGR mutations had a larger range (-9.06; -1.13 D). arRP patients with RP1 mutations have myopia not different from patients with xlRP with RP2 or RPGR mutations, while RP patients from other genetic subgroups were emmetropic or mildly myopic. We suggest that arRP patients with high myopic refractive error should be preferentially analysed for RP1 mutations. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  18. A case report of novel mutation in PRF1 gene, which causes familial autosomal recessive hemophagocytic lymphohistiocytosis.

    Science.gov (United States)

    Bordbar, Mohammad Reza; Modarresi, Farzaneh; Farazi Fard, Mohammad Ali; Dastsooz, Hassan; Shakib Azad, Nader; Faghihi, Mohammad Ali

    2017-05-03

    Hemophagocytic Lymphohistiocytosis (HLH) is a life-threatening immunodeficiency and multi-organ disease that affects people of all ages and ethnic groups. Common symptoms and signs of this disease are high fever, hepatosplenomegaly, and cytopenias. Familial form of HLH disease, which is an autosomal recessive hematological disorder is due to disease-causing mutations in several genes essential for NK and T-cell granule-mediated cytotoxic function. For an effective cytotoxic response from cytotoxic T lymphocyte or NK cell encountering an infected cell or tumor cell, different processes are required, including trafficking, docking, priming, membrane fusion, and entry of cytotoxic granules into the target cell leading to apoptosis. Therefore, genes involved in these steps play important roles in the pathogenesis of HLH disease which include PRF1, UNC13D (MUNC13-4), STX11, and STXBP2 (MUNC18-2). Here, we report a novel missense mutation in an 8-year-old boy suffered from hepatosplenomegaly, hepatitis, epilepsy and pancytopenia. The patient was born to a first-cousin parents with no previous documented disease in his parents. To identify mutated gene in the proband, Whole Exome Sequencing (WES) utilizing next generation sequencing was used on an Illumina HiSeq 2000 platform on DNA sample from the patient. Results showed a novel deleterious homozygous missense mutation in PRF1 gene (NM_001083116: exon3: c. 1120 T > G, p.W374G) in the patient and then using Sanger sequencing it was confirmed in the proband and his parents. Since his parents were heterozygous for the identified mutation, autosomal recessive pattern of inheritance was confirmed in the family. Our study identified a rare new pathogenic missense mutation in PRF1 gene in patient with HLH disease and it is the first report of mutation in PRF1 in Iranian patients with this disease.

  19. Distribution of skeletal muscle involvement in autosomal recessive distal muscular dystrophy

    International Nuclear Information System (INIS)

    Mizusawa, Hidehiro; Nakanishi, Takao; Kobayashi, Fumie.

    1987-01-01

    Distribution of skeletal muscle involvement in 5 cases with autosomal recessive distal muscular dystrophy was studied clinically and by computed tomography (CT). Manual muscle test showed muscle involvement with a predilection for flexors in the lower leg and adductors in the thigh. Flexion and extension of the thigh and the lower leg was impaired to similar degree. In progressed cases, neck flexors and trunk muscles were also affected mildly. CT disclosed more clearly the preferential involvement of flexors in the lower leg, and involvement of both hamstrings · adductors group and extensors group of the thigh to similar degree. However, m. popliteus was curiously well preserved. In addition, there was a stage showing high density and hypertrophy of m. sartorius, m. gracilis, m. adductor, m. biceps femoris, m. semimenbranosus, m. semitendinosus or m. rectus femoris, which in thought to be compensatory hypertrophy. M. gluteus minimus in the pelvic girdle and m. dorsi proprii in the trunk were also liable to be affected. The CT findings are regarded as characteristic features noted clearly before muscle weakness and atrophy become apparent clinically. CT is very useful for distinguishing distal muscular dystrophy from rimmed vacuolar distal myopathy in which m. quadriceps femoris and flexors of the lower leg are usually well preserved without compensatory hypertrophy on CT. (author)

  20. A Rare Variant in PGAP2 Causes Autosomal Recessive Hyperphosphatasia with Mental Retardation Syndrome, with a Mild Phenotype in Heterozygous Carriers

    Directory of Open Access Journals (Sweden)

    Yonatan Perez

    2017-01-01

    Full Text Available Mutations in genes involved in the biosynthesis of the glycosylphosphatidylinositol (GPI anchor cause autosomal recessive glycosylation defects, with a wide phenotypic spectrum of intellectual disability, seizures, minor facial dysmorphism, hypotonia, and elevated serum alkaline phosphatase. We now describe consanguineous Bedouin kindred presenting with an autosomal recessive syndrome of intellectual disability and elevated serum alkaline phosphatase. Genome-wide linkage analysis identified 6 possible disease-associated loci. Whole-exome sequencing followed by Sanger sequencing validation identified a single variant in PGAP2 as the disease-causing mutation (C.554G>A; p.185(R>Q, segregating as expected within the kindred and not found in 150 Bedouin controls. The mutation replaces a highly conserved arginine residue with glutamine within the Frag1 (FGF receptor activating domain of PGAP2. Interestingly, this mutation is a known dbSNP variant (rs745521288, build 147 with a very low allele frequency (0.00000824 in dbSNP, no homozygotes reported, highlighting the fact that dbSNP variants should not be automatically ruled out as disease-causing mutations. We further showed that PGAP2 is ubiquitously expressed, but in line with the disease phenotype, it is highly transcribed in human brain, skeletal muscle, and liver. Interestingly, a mild phenotype of slightly elevated serum levels of alkaline phosphatase and significant learning disabilities was observed in heterozygous carriers.

  1. Identification of a Novel Dentin Matrix Protein-1 (DMP-1) Mutation and Dental Anomalies in a Kindred with Autosomal Recessive Hypophosphatemia

    OpenAIRE

    Turan, Serap; Aydin, Cumhur; Bereket, Abdullah; Akcay, Teoman; Güran, Tülay; Yaralioglu, Betul Akmen; Bastepe, Murat; Jüppner, Harald

    2009-01-01

    An autosomal recessive form of hypophosphatemia (ARHP) was recently shown to be caused by homozygous mutations in DMP1, the gene encoding dentin matrix protein-1 (DMP-1), a non-collagenous bone matrix protein with an important role in the development and mineralization of bone and teeth. Here, we report a previously not reported consanguineous ARHP kindred in which the three affected individuals carry a novel homozygous DMP-1 mutation. The index case presented at the age of 3 years with bowin...

  2. Identification of FASTKD2 compound heterozygous mutations as the underlying cause of autosomal recessive MELAS-like syndrome.

    Science.gov (United States)

    Yoo, Da Hye; Choi, Young-Chul; Nam, Da Eun; Choi, Sun Seong; Kim, Ji Won; Choi, Byung-Ok; Chung, Ki Wha

    2017-07-01

    Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is a condition that affects many parts of the body, particularly the brain and muscles. This study examined a Korean MELAS-like syndrome patient with seizure, stroke-like episode, and optic atrophy. Target sequencing of whole mtDNA and 73 nuclear genes identified compound heterozygous mutations p.R205X and p.L255P in the FASTKD2. Each of his unaffected parents has one of the two mutations, and both mutations were not found in 302 controls. FASTKD2 encodes a FAS-activated serine-threonine (FAST) kinase domain 2 which locates in the mitochondrial inner compartment. A FASTKD2 nonsense mutation was once reported as the cause of a recessive infantile mitochondrial encephalomyopathy. The present case showed relatively mild symptoms with a late onset age, compared to a previous patient with FASTKD2 mutation, implicating an inter-allelic clinical heterogeneity. Because this study is the second report of an autosomal recessive mitochondrial encephalomyopathy patient with a FASTKD2 mutation, it will extend the phenotypic spectrum of the FASTKD2 mutation. Copyright © 2017. Published by Elsevier B.V.

  3. Branchial cleft anomaly, congenital heart disease, and biliary atresia: Goldenhar complex or Lambert syndrome?

    Science.gov (United States)

    Cohen, J; Schanen, N C

    2000-01-01

    The features of Goldenhar complex have been well-described and classically include branchial arch abnormalities, epibulbar dermoid and vertebral abnormalities. We have identified an infant with these features in association with complex congenital heart disease and intrahepatic biliary atresia. Although Lambert described an autosomal recessive disorder with an association of biliary atresia and branchial arch abnormalities, none of those cases had epibulbar dermoid. Diagnostic considerations in this case include inclusion of biliary atresia as a new feature in the expanding spectrum of the Goldenhar complex, versus Lambert syndrome with epibulbar dermoid.

  4. Mutations in REEP6 Cause Autosomal-Recessive Retinitis Pigmentosa.

    Science.gov (United States)

    Arno, Gavin; Agrawal, Smriti A; Eblimit, Aiden; Bellingham, James; Xu, Mingchu; Wang, Feng; Chakarova, Christina; Parfitt, David A; Lane, Amelia; Burgoyne, Thomas; Hull, Sarah; Carss, Keren J; Fiorentino, Alessia; Hayes, Matthew J; Munro, Peter M; Nicols, Ralph; Pontikos, Nikolas; Holder, Graham E; Asomugha, Chinwe; Raymond, F Lucy; Moore, Anthony T; Plagnol, Vincent; Michaelides, Michel; Hardcastle, Alison J; Li, Yumei; Cukras, Catherine; Webster, Andrew R; Cheetham, Michael E; Chen, Rui

    2016-12-01

    Retinitis pigmentosa (RP) is the most frequent form of inherited retinal dystrophy. RP is genetically heterogeneous and the genes identified to date encode proteins involved in a wide range of functional pathways, including photoreceptor development, phototransduction, the retinoid cycle, cilia, and outer segment development. Here we report the identification of biallelic mutations in Receptor Expression Enhancer Protein 6 (REEP6) in seven individuals with autosomal-recessive RP from five unrelated families. REEP6 is a member of the REEP/Yop1 family of proteins that influence the structure of the endoplasmic reticulum but is relatively unstudied. The six variants identified include three frameshift variants, two missense variants, and a genomic rearrangement that disrupts exon 1. Human 3D organoid optic cups were used to investigate REEP6 expression and confirmed the expression of a retina-specific isoform REEP6.1, which is specifically affected by one of the frameshift mutations. Expression of the two missense variants (c.383C>T [p.Pro128Leu] and c.404T>C [p.Leu135Pro]) and the REEP6.1 frameshift mutant in cultured cells suggest that these changes destabilize the protein. Furthermore, CRISPR-Cas9-mediated gene editing was used to produce Reep6 knock-in mice with the p.Leu135Pro RP-associated variant identified in one RP-affected individual. The homozygous knock-in mice mimic the clinical phenotypes of RP, including progressive photoreceptor degeneration and dysfunction of the rod photoreceptors. Therefore, our study implicates REEP6 in retinal homeostasis and highlights a pathway previously uncharacterized in retinal dystrophy. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Hypomorphic mutations in PGAP2, encoding a GPI-anchor-remodeling protein, cause autosomal-recessive intellectual disability

    DEFF Research Database (Denmark)

    Hansen, Lars; Tawamie, Hasan; Murakami, Yoshiko

    2013-01-01

    PGAP2 encodes a protein involved in remodeling the glycosylphosphatidylinositol (GPI) anchor in the Golgi apparatus. After synthesis in the endoplasmic reticulum (ER), GPI anchors are transferred to the proteins and are remodeled while transported through the Golgi to the cell membrane. Germline...... mutations in six genes (PIGA, PIGL, PIGM, PIGV, PIGN, and PIGO) in the ER-located part of the GPI-anchor-biosynthesis pathway have been reported, and all are associated with phenotypes extending from malformation and lethality to severe intellectual disability, epilepsy, minor dysmorphisms, and elevated...... alkaline phosphatase (ALP). We performed autozygosity mapping and ultra-deep sequencing followed by stringent filtering and identified two homozygous PGAP2 alterations, p.Tyr99Cys and p.Arg177Pro, in seven offspring with nonspecific autosomal-recessive intellectual disability from two consanguineous...

  6. [Vasopressin V2 receptor-related pathologies: congenital nephrogenic diabetes insipidus and nephrogenic syndrome of inappropiate antidiuresis].

    Science.gov (United States)

    Morin, Denis

    2014-12-01

    Congenital nephrogenic diabetes insipidus is a rare hereditary disease with mainly an X-linked inheritance (90% of the cases) but there are also autosomal recessive and dominant forms. Congenital nephrogenic diabetes insipidus is characterized by a resistance of the renal collecting duct to the action of the arginine vasopressin hormone responsible for the inability of the kidney to concentrate urine. The X-linked form is due to inactivating mutations of the vasopressin 2 receptor gene leading to a loss of function of the mutated receptors. Affected males are often symptomatic in the neonatal period with a lack of weight gain, dehydration and hypernatremia but mild phenotypes may also occur. Females carrying the mutation may be asymptomatic but, sometimes, severe polyuria is found due to the random X chromosome inactivation. The autosomal recessive and dominant forms, occurring in both genders, are linked to mutations in the aquaporin-2 gene. The treatment remains difficult, especially in infants, and is based on a low osmotic diet with increased water intake and the use of thiazides and indomethacin. The main goal is to avoid hypernatremic episodes and maintain a good hydration state. Potentially, specific treatment, in some cases of X-linked congenital nephrogenic diabetes insipidus, with pharmacological chaperones such as non-peptide vasopressin-2 receptor antagonists will be available in the future. Conversely, the nephrogenic syndrome of inappropriate antidiuresis (NSIAD) is linked to a constitutive activation of the V(2)-receptor due to activating mutations with clinical and biological features of inappropriate antidiuresis but with low or undetectable plasma arginine vasopressin hormone levels. Copyright © 2014 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.

  7. The human intrinsic factor-vitamin B12 receptor, cubilin: molecular characterization and chromosomal mapping of the gene to 10p within the autosomal recessive megaloblastic anemia (MGA1) region

    DEFF Research Database (Denmark)

    Kozyraki, R; Kristiansen, M; Silahtaroglu, A

    1998-01-01

    -5445 on the short arm of chromosome 10. This is within the autosomal recessive megaloblastic anemia (MGA1) 6-cM region harboring the unknown recessive-gene locus of juvenile megaloblastic anemia caused by intestinal malabsorption of cobalamin (Imerslund-Gräsbeck's disease). In conclusion, the present...... molecular and genetic information on human cubilin now provides circumstantial evidence that an impaired synthesis, processing, or ligand binding of cubilin is the molecular background of this hereditary form of megaloblastic anemia. Udgivelsesdato: 1998-May-15...

  8. Characterization of a new full length TMPRSS3 isoform and identification of mutant alleles responsible for nonsyndromic recessive deafness in Newfoundland and Pakistan

    Directory of Open Access Journals (Sweden)

    Shotland Lawrence I

    2004-09-01

    Full Text Available Abstract Background Mutant alleles of TMPRSS3 are associated with nonsyndromic recessive deafness (DFNB8/B10. TMPRSS3 encodes a predicted secreted serine protease, although the deduced amino acid sequence has no signal peptide. In this study, we searched for mutant alleles of TMPRSS3 in families from Pakistan and Newfoundland with recessive deafness co-segregating with DFNB8/B10 linked haplotypes and also more thoroughly characterized the genomic structure of TMPRSS3. Methods We enrolled families segregating recessive hearing loss from Pakistan and Newfoundland. Microsatellite markers flanking the TMPRSS3 locus were used for linkage analysis. DNA samples from participating individuals were sequenced for TMPRSS3. The structure of TMPRSS3 was characterized bioinformatically and experimentally by sequencing novel cDNA clones of TMPRSS3. Results We identified mutations in TMPRSS3 in four Pakistani families with recessive, nonsyndromic congenital deafness. We also identified two recessive mutations, one of which is novel, of TMPRSS3 segregating in a six-generation extended family from Newfoundland. The spectrum of TMPRSS3 mutations is reviewed in the context of a genotype-phenotype correlation. Our study also revealed a longer isoform of TMPRSS3 with a hitherto unidentified exon encoding a signal peptide, which is expressed in several tissues. Conclusion Mutations of TMPRSS3 contribute to hearing loss in many communities worldwide and account for 1.8% (8 of 449 of Pakistani families segregating congenital deafness as an autosomal recessive trait. The newly identified TMPRSS3 isoform e will be helpful in the functional characterization of the full length protein.

  9. Integration-free induced pluripotent stem cells derived from a patient with autosomal recessive Alport syndrome (ARAS).

    Science.gov (United States)

    Kuebler, Bernd; Aran, Begoña; Miquel-Serra, Laia; Muñoz, Yolanda; Ars, Elisabet; Bullich, Gemma; Furlano, Monica; Torra, Roser; Marti, Merce; Veiga, Anna; Raya, Angel

    2017-12-01

    A skin biopsy was obtained from a 25-year-old female patient with autosomal recessive Alport syndrome (ARAS) with the homozygous COL4A3 mutation c.345delG, p.(P166Lfs*37). Dermal fibroblasts were derived and reprogrammed by nucleofection with episomal plasmids carrying OCT3/4, SOX2, KLF4 LIN28, L-MYC and p53shRNA. The generated induced Pluripotent Stem Cell (iPSC) clone AS FiPS1 Ep6F-2 was free of genomically integrated reprogramming genes, had the specific homozygous mutation, a stable karyotype, expressed pluripotency markers and generated embryoid bodies which were differentiated towards the three germ layers in vitro. This iPSC line offers a useful resource to study Alport syndrome pathomechanisms and drug testing. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  10. Malformations among 289,365 Births Attributed to Mutations with Autosomal Dominant and Recessive and X-Linked Inheritance.

    Science.gov (United States)

    Toufaily, M Hassan; Westgate, Marie-Noel; Nasri, Hanah; Holmes, Lewis B

    2018-01-01

    The number of malformations attributed to mutations with autosomal or X-linked patterns of inheritance has increased steadily since the cataloging began in the 1960s. These diagnoses have been based primarily on the pattern of phenotypic features among close relatives. A malformations surveillance program conducted in consecutive pregnancies can identify both known and "new" hereditary disorders. The Active Malformations Surveillance Program was carried out among 289,365 births over 41 years (1972-2012) at Brigham and Women's Hospital in Boston. The findings recorded by examining pediatricians and all consultants were reviewed by study clinicians to establish the most likely diagnoses. The findings in laboratory testing in the newborn period were reviewed, as well. One hundred ninety-six (0.06%) infants among 289,365 births had a malformation or malformation syndrome that was attributed to Mendelian inheritance. A total of 133 (68%) of the hereditary malformations were attributed to autosomal dominant inheritance, with 94 (71%) attributed to apparent spontaneous mutations. Forty-six (23%) were attributed to mutations with autosomal recessive inheritance, 17 associated with consanguinity. Seventeen (9%) were attributed to X-linked inheritance. Fifteen novel familial phenotypes were identified. The family histories showed that most (53 to 71%) of the affected infants were born, as a surprise, to healthy, unaffected parents. It is important for clinicians to discuss with surprised healthy parents how they can have an infant with an hereditary condition. Future studies, using DNA samples from consecutive populations of infants with malformations and whole genome sequencing, will identify many more mutations in loci associated with mendelizing phenotypes. Birth Defects Research 110:92-97, 2018.© 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  11. A novel GJA8 mutation (p.V44A causing autosomal dominant congenital cataract.

    Directory of Open Access Journals (Sweden)

    Yanan Zhu

    Full Text Available To examine the mechanism by which a novel connexin 50 (Cx50 mutation, Cx50 V44A, in a Chinese family causes suture-sparing autosomal dominant congenital nuclear cataracts.Family history and clinical data were recorded and direct gene sequencing was used to identify the disease-causing mutation. The Cx50 gene was cloned from a human lens cDNA library. Connexin protein distributions were assessed by fluorescence microscopy. Hemichannel functions were analyzed by dye uptake assay. Formation of functional channels was assessed by dye transfer experiments.Direct sequencing of the candidate GJA8 gene revealed a novel c.131T>C transition in exon 2, which cosegregated with the disease in the family and resulted in the substitution of a valine residue with alanine at codon 44 (p. V44A in the extracellular loop 1 of the Cx50 protein. Both Cx50 and Cx50V44A formed functional gap junctions, as shown by the neurobiotin transfer assay. However, unlike wild-type Cx50, Cx50V44A was unable to form open hemichannels in dye uptake experiments.This work identified a unique congenital cataract in the Chinese population, caused by the novel mutation Cx50V44A, and it showed that the V44A mutation specifically impairs the gating of the hemichannels but not the gap junction channels. The dysfunctional hemichannels resulted in the development of human congenital cataracts.

  12. Decreased catalytic activity and altered activation properties of PDE6C mutants associated with autosomal recessive achromatopsia

    DEFF Research Database (Denmark)

    Grau, Tanja; Artemyev, Nikolai O; Rosenberg, Thomas

    2011-01-01

    study on PDE6C mutations including the mutation spectrum, its prevalence in a large cohort of ACHM/cone dysfunction patients, the clinical phenotype and the functional characterization of mutant PDE6C proteins. Twelve affected patients from seven independent families segregating PDE6C mutations were......Mutations in the gene encoding the catalytic subunit of the cone photoreceptor phosphodiesterase (PDE6C) have been recently reported in patients with autosomal recessive inherited achromatopsia (ACHM) and early-onset cone photoreceptor dysfunction. Here we present the results of a comprehensive...... identified in our total patient cohort of 492 independent families. Eleven different PDE6C mutations were found including two nonsense mutations, three mutations affecting transcript splicing as shown by minigene assays, one 1 bp-insertion and five missense mutations. We also performed a detailed functional...

  13. Congenital neutropenia: diagnosis, molecular bases and patient management

    Directory of Open Access Journals (Sweden)

    Chantelot Christine

    2011-05-01

    Full Text Available Abstract The term congenital neutropenia encompasses a family of neutropenic disorders, both permanent and intermittent, severe ( When neutropenia is detected, an attempt should be made to establish the etiology, distinguishing between acquired forms (the most frequent, including post viral neutropenia and auto immune neutropenia and congenital forms that may either be isolated or part of a complex genetic disease. Except for ethnic neutropenia, which is a frequent but mild congenital form, probably with polygenic inheritance, all other forms of congenital neutropenia are extremely rare and have monogenic inheritance, which may be X-linked or autosomal, recessive or dominant. About half the forms of congenital neutropenia with no extra-hematopoetic manifestations and normal adaptive immunity are due to neutrophil elastase (ELANE mutations. Some patients have severe permanent neutropenia and frequent infections early in life, while others have mild intermittent neutropenia. Congenital neutropenia may also be associated with a wide range of organ dysfunctions, as for example in Shwachman-Diamond syndrome (associated with pancreatic insufficiency and glycogen storage disease type Ib (associated with a glycogen storage syndrome. So far, the molecular bases of 12 neutropenic disorders have been identified. Treatment of severe chronic neutropenia should focus on prevention of infections. It includes antimicrobial prophylaxis, generally with trimethoprim-sulfamethoxazole, and also granulocyte-colony-stimulating factor (G-CSF. G-CSF has considerably improved these patients' outlook. It is usually well tolerated, but potential adverse effects include thrombocytopenia, glomerulonephritis, vasculitis and osteoporosis. Long-term treatment with G-CSF, especially at high doses, augments the spontaneous risk of leukemia in patients with congenital neutropenia.

  14. Congenital muscular dystrophies--problems of classification.

    Science.gov (United States)

    Lenard, H G

    1991-04-01

    The classification of congenital muscular dystrophies (CMD), based on perceived clinical and morphological similarities or differences, is controversial. CMD without cerebral involvement has sometimes been divided into a mild and a severe form. This distinction is, however, arbitrary and not uncontested. Whether Ullrich's disease, formerly called atonic-sclerotic dystrophy, is a disease entity and if so, whether it is a primary muscle disorder, is uncertain. CMD without cerebral involvement is inherited in an autosomal recessive fashion in the great majority of cases. CMDs with cerebral involvement are usually classified into at least three forms: the Fukuyama type of CMD, occurring almost exclusively in Japanese patients; CMD with hypomyelination, sometimes also called the occidental type of cerebromuscular dystrophy; and Walker-Warburg syndrome. Muscle-eye-brain disease, described in a number of Finnish patients, may or may not belong in this last category. In CMD with cerebral involvement inheritance is also autosomal recessive. It is possible that single sporadic cases are phenocopies due to infectious or other exogenous causes. Reports of clinical and morphological findings from an increasing number of patients show a high degree of variability within and, on the other hand, certain similarities between the forms of CMD with cerebral involvement. In addition, neuroradiological changes are also found with increasing frequency in CMD patients without clinical neuropsychological abnormalities. It is not unreasonable to speculate that molecular genetic techniques will reveal in the near future a variable defect in one gene locus or defects in a few gene loci as the cause of the various clinical forms of CMDs.

  15. Congenital Anophthalmos in Benin City

    African Journals Online (AJOL)

    tulyasys

    such as trisomy 13 and Klinefelter's syndrome.[3,11]. Most cases appear to occur sporadically, but certain modes of inheritance have been documented including autosomal dominant, autosomal recessive and. X-linked transmission.[3,11] Other factors implicated in the etiology of anophthalmos include physical agents,.

  16. Homozygosity mapping in autosomal recessive retinitis pigmentosa families detects novel mutations

    Science.gov (United States)

    Marzouka, Nour al Dain; Hebrard, Maxime; Manes, Gaël; Sénéchal, Audrey; Meunier, Isabelle; Hamel, Christian P.

    2013-01-01

    Purpose Autosomal recessive retinitis pigmentosa (arRP) is a genetically heterogeneous disease resulting in progressive loss of photoreceptors that leads to blindness. To date, 36 genes are known to cause arRP, rendering the molecular diagnosis a challenge. The aim of this study was to use homozygosity mapping to identify the causative mutation in a series of inbred families with arRP. Methods arRP patients underwent standard ophthalmic examination, Goldman perimetry, fundus examination, retinal OCT, autofluorescence measurement, and full-field electroretinogram. Fifteen consanguineous families with arRP excluded for USH2A and EYS were genotyped on 250 K SNP arrays. Homozygous regions were listed, and known genes within these regions were PCR sequenced. Familial segregation and mutation analyzes were performed. Results We found ten mutations, seven of which were novel mutations in eight known genes, including RP1, IMPG2, NR2E3, PDE6A, PDE6B, RLBP1, CNGB1, and C2ORF71, in ten out of 15 families. The patients carrying RP1, C2ORF71, and IMPG2 mutations presented with severe RP, while those with PDE6A, PDE6B, and CNGB1 mutations were less severely affected. The five families without mutations in known genes could be a source of identification of novel genes. Conclusions Homozygosity mapping combined with systematic screening of known genes results in a positive molecular diagnosis in 66.7% of families. PMID:24339724

  17. Canine disorder mirrors human disease: exonic deletion in HES7 causes autosomal recessive spondylocostal dysostosis in miniature Schnauzer dogs.

    Directory of Open Access Journals (Sweden)

    Cali E Willet

    Full Text Available Spondylocostal dysostosis is a congenital disorder of the axial skeleton documented in human families from diverse racial backgrounds. The condition is characterised by truncal shortening, extensive hemivertebrae and rib anomalies including malalignment, fusion and reduction in number. Mutations in the Notch signalling pathway genes DLL3, MESP2, LFNG, HES7 and TBX6 have been associated with this defect. In this study, spondylocostal dysostosis in an outbred family of miniature schnauzer dogs is described. Computed tomography demonstrated that the condition mirrors the skeletal defects observed in human cases, but unlike most human cases, the affected dogs were stillborn or died shortly after birth. Through gene mapping and whole genome sequencing, we identified a single-base deletion in the coding region of HES7. The frameshift mutation causes loss of functional domains essential for the oscillatory transcriptional autorepression of HES7 during somitogenesis. A restriction fragment length polymorphism test was applied within the immediate family and supported a highly penetrant autosomal recessive mode of inheritance. The mutation was not observed in wider testing of 117 randomly sampled adult miniature schnauzer and six adult standard schnauzer dogs; providing a significance of association of Praw = 4.759e-36 (genome-wide significant. Despite this apparently low frequency in the Australian population, the allele may be globally distributed based on its presence in two unrelated sires from geographically distant locations. While isolated hemivertebrae have been observed in a small number of other dog breeds, this is the first clinical and genetic diagnosis of spontaneously occurring spondylocostal dysostosis in a non-human mammal and offers an excellent model in which to study this devastating human disorder. The genetic test can be utilized by dog breeders to select away from the disease and avoid unnecessary neonatal losses.

  18. Canine disorder mirrors human disease: exonic deletion in HES7 causes autosomal recessive spondylocostal dysostosis in miniature Schnauzer dogs.

    Science.gov (United States)

    Willet, Cali E; Makara, Mariano; Reppas, George; Tsoukalas, George; Malik, Richard; Haase, Bianca; Wade, Claire M

    2015-01-01

    Spondylocostal dysostosis is a congenital disorder of the axial skeleton documented in human families from diverse racial backgrounds. The condition is characterised by truncal shortening, extensive hemivertebrae and rib anomalies including malalignment, fusion and reduction in number. Mutations in the Notch signalling pathway genes DLL3, MESP2, LFNG, HES7 and TBX6 have been associated with this defect. In this study, spondylocostal dysostosis in an outbred family of miniature schnauzer dogs is described. Computed tomography demonstrated that the condition mirrors the skeletal defects observed in human cases, but unlike most human cases, the affected dogs were stillborn or died shortly after birth. Through gene mapping and whole genome sequencing, we identified a single-base deletion in the coding region of HES7. The frameshift mutation causes loss of functional domains essential for the oscillatory transcriptional autorepression of HES7 during somitogenesis. A restriction fragment length polymorphism test was applied within the immediate family and supported a highly penetrant autosomal recessive mode of inheritance. The mutation was not observed in wider testing of 117 randomly sampled adult miniature schnauzer and six adult standard schnauzer dogs; providing a significance of association of Praw = 4.759e-36 (genome-wide significant). Despite this apparently low frequency in the Australian population, the allele may be globally distributed based on its presence in two unrelated sires from geographically distant locations. While isolated hemivertebrae have been observed in a small number of other dog breeds, this is the first clinical and genetic diagnosis of spontaneously occurring spondylocostal dysostosis in a non-human mammal and offers an excellent model in which to study this devastating human disorder. The genetic test can be utilized by dog breeders to select away from the disease and avoid unnecessary neonatal losses.

  19. Congenital analbuminemia caused by a novel aberrant splicing in the albumin gene.

    Science.gov (United States)

    Caridi, Gianluca; Dagnino, Monica; Erdeve, Omer; Di Duca, Marco; Yildiz, Duran; Alan, Serdar; Atasay, Begum; Arsan, Saadet; Campagnoli, Monica; Galliano, Monica; Minchiotti, Lorenzo

    2014-01-01

    Congenital analbuminemia is a rare autosomal recessive disorder manifested by the presence of a very low amount of circulating serum albumin. It is an allelic heterogeneous defect, caused by variety of mutations within the albumin gene in homozygous or compound heterozygous state. Herein we report the clinical and molecular characterization of a new case of congenital analbuminemia diagnosed in a female newborn of consanguineous (first degree cousins) parents from Ankara, Turkey, who presented with a low albumin concentration (A transition at position c.1652+1, the first base of intron 12, which inactivates the strongly conserved GT dinucleotide at the 5' splice site consensus sequence of this intron. The splicing defect results in the complete skipping of the preceding exon (exon 12) and in a frame-shift within exon 13 with a premature stop codon after the translation of three mutant amino acid residues. Our results confirm the clinical diagnosis of congenital analbuminemia in the proband and the inheritance of the trait and contribute to shed light on the molecular genetics of analbuminemia.

  20. A genetic polymorphism in the coding region of the gastric intrinsic factor gene (GIF) is associated with congenital intrinsic factor deficiency.

    Science.gov (United States)

    Gordon, Marilyn M; Brada, Nancy; Remacha, Angel; Badell, Isabel; del Río, Elisabeth; Baiget, Montserrat; Santer, René; Quadros, Edward V; Rothenberg, Sheldon P; Alpers, David H

    2004-01-01

    Congenital intrinsic factor (IF) deficiency is a disorder characterized by megaloblastic anemia due to the absence of gastric IF (GIF, GenBank NM_005142) and GIF antibodies, with probable autosomal recessive inheritance. Most of the reported patients are isolated cases without genetic studies of the parents or siblings. Complete exonic sequences were determined from the PCR products generated from genomic DNA of five affected individuals. All probands had the identical variant (g.68A>G) in the second position of the fifth codon in the coding sequence of the gene that introduces a restriction enzyme site for Msp I and predicts a change in the mature protein from glutamine(5) (CAG) to arginine(5) (CGG). Three subjects were homozygous for this base exchange and two subjects were heterozygous, one of which was apparently a compound heterozygote at positions 1 and 2 of the fifth codon ([g.67C>G] + [g.68A>G]). The other patient, heterozygous for position 2, had one heterozygous unaffected parent. Most parents were heterozygous for this base exchange, confirming the pattern of autosomal recessive inheritance for congenital IF deficiency. cDNA encoding GIF was mutated at base pair g.68 (A>G) and expressed in COS-7 cells. The apparent size, secretion rate, and sensitivity to pepsin hydrolysis of the expressed IF were similar to native IF. The allelic frequency of g.68A>G was 0.067 and 0.038 in two control populations. This sequence aberration is not the cause of the phenotype, but is associated with the genotype of congenital IF deficiency and could serve as a marker for inheritance of this disorder. Copyright 2003 Wiley-Liss, Inc.

  1. A Novel Homozygous Missense Mutation in HOXC13 Leads to Autosomal Recessive Pure Hair and Nail Ectodermal Dysplasia.

    Science.gov (United States)

    Li, Xiaoxiao; Orseth, Meredith Lee; Smith, J Michael; Brehm, Mary Abigail; Agim, Nnenna Gebechi; Glass, Donald Alexander

    2017-03-01

    Pure hair and nail ectodermal dysplasia (PHNED) is a rare disorder that presents with hypotrichosis and nail dystrophy while sparing other ectodermal structures such as teeth and sweat glands. We describe a homozygous novel missense mutation in the HOXC13 gene that resulted in autosomal recessive PHNED in a Hispanic child. The mutation c.812A>G (p.Gln271Arg) is located within the DNA-binding domain of the HOXC13 gene, cosegregates within the family, and is predicted to be maximally damaging. This is the first reported case of a missense HOXC13 mutation resulting in PHNED and the first reported case of PHNED identified in a North American family. Our findings illustrate the critical role of HOXC13 in human hair and nail development. © 2017 Wiley Periodicals, Inc.

  2. The population genetics of X-autosome synthetic lethals and steriles.

    Science.gov (United States)

    Lachance, Joseph; Johnson, Norman A; True, John R

    2011-11-01

    Epistatic interactions are widespread, and many of these interactions involve combinations of alleles at different loci that are deleterious when present in the same individual. The average genetic environment of sex-linked genes differs from that of autosomal genes, suggesting that the population genetics of interacting X-linked and autosomal alleles may be complex. Using both analytical theory and computer simulations, we analyzed the evolutionary trajectories and mutation-selection balance conditions for X-autosome synthetic lethals and steriles. Allele frequencies follow a set of fundamental trajectories, and incompatible alleles are able to segregate at much higher frequencies than single-locus expectations. Equilibria exist, and they can involve fixation of either autosomal or X-linked alleles. The exact equilibrium depends on whether synthetic alleles are dominant or recessive and whether fitness effects are seen in males, females, or both sexes. When single-locus fitness effects and synthetic incompatibilities are both present, population dynamics depend on the dominance of alleles and historical contingency (i.e., whether X-linked or autosomal mutations occur first). Recessive synthetic lethality can result in high-frequency X-linked alleles, and dominant synthetic lethality can result in high-frequency autosomal alleles. Many X-autosome incompatibilities in natural populations may be cryptic, appearing to be single-locus effects because one locus is fixed. We also discuss the implications of these findings with respect to standing genetic variation and the origins of Haldane's rule.

  3. Autosomal recessive hyper IgM syndrome associated with activation-induced cytidine deaminase gene in three Turkish siblings presented with tuberculosis lymphadenitis - Case report.

    Science.gov (United States)

    Patiroglu, Turkan; Akar, H Haluk; van der Burg, Mirjam; Unal, Ekrem

    2015-09-01

    The hyper-immunoglobulin M (HIGM) syndrome is a heterogeneous group of genetic disorders characterized by recurrent infections, decreased serum levels of immunoglobulin G (IgG) and IgA, and normal/increased serum levels of IgM. Herein, we describe three Turkish siblings with HIGM syndrome who had a homozygous missense mutation (c.70C>T, p.Arg24Trp) in the activation-induced cytidine deaminase gene which results in autosomal recessive HIGM syndrome. Two of the siblings, sibling 1 and sibling 3, presented with cervical deep abscess and cervical tuberculosis lymphadenitis, respectively.

  4. Autosomal-recessive posterior microphthalmos is caused by mutations in PRSS56, a gene encoding a trypsin-like serine protease

    DEFF Research Database (Denmark)

    Gal, Andreas; Rau, Isabella; El Matri, Leila

    2011-01-01

    Posterior microphthalmos (MCOP) is a rare isolated developmental anomaly of the eye characterized by extreme hyperopia due to short axial length. The population of the Faroe Islands shows a high prevalence of an autosomal-recessive form (arMCOP) of the disease. Based on published linkage data, we...... the affinity and reactivity of the enzyme toward in vivo protein substrates are likely to be substantially reduced....... heterogeneity of the trait. Using RT-PCR, PRSS56 transcripts were detected in samples derived from the human adult retina, cornea, sclera, and optic nerve. The expression of the mouse ortholog could be first detected in the eye at E17 and was maintained into adulthood. The predicted PRSS56 protein is a 603...

  5. Missense variants in AIMP1 gene are implicated in autosomal recessive intellectual disability without neurodegeneration.

    Science.gov (United States)

    Iqbal, Zafar; Püttmann, Lucia; Musante, Luciana; Razzaq, Attia; Zahoor, Muhammad Yasir; Hu, Hao; Wienker, Thomas F; Garshasbi, Masoud; Fattahi, Zohreh; Gilissen, Christian; Vissers, Lisenka E L M; de Brouwer, Arjan P M; Veltman, Joris A; Pfundt, Rolph; Najmabadi, Hossein; Ropers, Hans-Hilger; Riazuddin, Sheikh; Kahrizi, Kimia; van Bokhoven, Hans

    2016-03-01

    AIMP1/p43 is a multifunctional non-catalytic component of the multisynthetase complex. The complex consists of nine catalytic and three non-catalytic proteins, which catalyze the ligation of amino acids to their cognate tRNA isoacceptors for use in protein translation. To date, two allelic variants in the AIMP1 gene have been reported as the underlying cause of autosomal recessive primary neurodegenerative disorder. Here, we present two consanguineous families from Pakistan and Iran, presenting with moderate to severe intellectual disability, global developmental delay, and speech impairment without neurodegeneration. By the combination of homozygosity mapping and next generation sequencing, we identified two homozygous missense variants, p.(Gly299Arg) and p.(Val176Gly), in the gene AIMP1 that co-segregated with the phenotype in the respective families. Molecular modeling of the variants revealed deleterious effects on the protein structure that are predicted to result in reduced AIMP1 function. Our findings indicate that the clinical spectrum for AIMP1 defects is broader than witnessed so far.

  6. Missense variants in AIMP1 gene are implicated in autosomal recessive intellectual disability without neurodegeneration

    Science.gov (United States)

    Iqbal, Zafar; Püttmann, Lucia; Musante, Luciana; Razzaq, Attia; Zahoor, Muhammad Yasir; Hu, Hao; Wienker, Thomas F; Garshasbi, Masoud; Fattahi, Zohreh; Gilissen, Christian; Vissers, Lisenka ELM; de Brouwer, Arjan PM; Veltman, Joris A; Pfundt, Rolph; Najmabadi, Hossein; Ropers, Hans-Hilger; Riazuddin, Sheikh; Kahrizi, Kimia; van Bokhoven, Hans

    2016-01-01

    AIMP1/p43 is a multifunctional non-catalytic component of the multisynthetase complex. The complex consists of nine catalytic and three non-catalytic proteins, which catalyze the ligation of amino acids to their cognate tRNA isoacceptors for use in protein translation. To date, two allelic variants in the AIMP1 gene have been reported as the underlying cause of autosomal recessive primary neurodegenerative disorder. Here, we present two consanguineous families from Pakistan and Iran, presenting with moderate to severe intellectual disability, global developmental delay, and speech impairment without neurodegeneration. By the combination of homozygosity mapping and next generation sequencing, we identified two homozygous missense variants, p.(Gly299Arg) and p.(Val176Gly), in the gene AIMP1 that co-segregated with the phenotype in the respective families. Molecular modeling of the variants revealed deleterious effects on the protein structure that are predicted to result in reduced AIMP1 function. Our findings indicate that the clinical spectrum for AIMP1 defects is broader than witnessed so far. PMID:26173967

  7. Genetic spectrum of autosomal recessive non-syndromic hearing loss in Pakistani families.

    Directory of Open Access Journals (Sweden)

    Sobia Shafique

    Full Text Available The frequency of inherited bilateral autosomal recessive non-syndromic hearing loss (ARNSHL in Pakistan is 1.6/1000 individuals. More than 50% of the families carry mutations in GJB2 while mutations in MYO15A account for about 5% of recessive deafness. In the present study a cohort of 30 ARNSHL families was initially screened for mutations in GJB2 and MYO15A. Homozygosity mapping was performed by employing whole genome single nucleotide polymorphism (SNP genotyping in the families that did not carry mutations in GJB2 or MYO15A. Mutation analysis was performed for the known ARNSHL genes present in the homozygous regions to determine the causative mutations. This allowed the identification of a causative mutation in all the 30 families including 9 novel mutations, which were identified in 9 different families (GJB2 (c.598G>A, p.Gly200Arg; MYO15A (c.9948G>A, p.Gln3316Gln; c.3866+1G>A; c.8767C>T, p.Arg2923* and c.8222T>C, p.Phe2741Ser, TMC1 (c.362+18A>G, BSND (c.97G>C, p.Val33Leu, TMPRSS3 (c.726C>G, p.Cys242Trp and MSRB3 (c.20T>G, p.Leu7Arg. Furthermore, 12 recurrent mutations were detected in 21 other families. The 21 identified mutations included 10 (48% missense changes, 4 (19% nonsense mutations, 3 (14% intronic mutations, 2 (9% splice site mutations and 2 (9% frameshift mutations. GJB2 accounted for 53% of the families, while mutations in MYO15A were the second most frequent (13% cause of ARNSHL in these 30 families. The identification of novel as well as recurrent mutations in the present study increases the spectrum of mutations in known deafness genes which could lead to the identification of novel founder mutations and population specific mutated deafness genes causative of ARNSHL. These results provide detailed genetic information that has potential diagnostic implication in the establishment of cost-efficient allele-specific analysis of frequently occurring variants in combination with other reported mutations in Pakistani populations.

  8. Congenital Sodium Diarrhea: A Form of Intractable Diarrhea, With a Link to Inflammatory Bowel Disease.

    Science.gov (United States)

    Janecke, Andreas R; Heinz-Erian, Peter; Müller, Thomas

    2016-08-01

    Congenital diarrheal disorders (CDDs) represent a group of challenging clinical conditions for pediatricians because of the severity of the presentation and the broad range of possible differential diagnoses. CDDs arise from alterations in the transport of nutrients and electrolytes across the intestinal mucosa, from enterocyte and enteroendocrine cell differentiation and/or polarization defects, and from the modulation of the intestinal immune response. Advances were made recently in deciphering the etiology and pathophysiology of one of these disorders, congenital sodium diarrhea (CSD). CSD refers to an intractable diarrhea of intrauterine onset with high fecal sodium loss. CSD is clinically and genetically heterogeneous. A syndromic form of CSD features choanal and intestinal atresias as well as recurrent corneal erosions. Small bowel histology frequently detects an epithelial "tufting" dysplasia. It is autosomal recessively inherited, and caused by SPINT2 mutations. The nonsyndromic form of CSD can be caused by dominant activating mutations in GUCY2C, encoding intestinal receptor guanylate cyclase C (GC-C), and by autosomal recessive SLC9A3 loss-of-function mutations. SLC9A3 encodes Na/H antiporter 3, the major intestinal brush border Na/H exchanger, and a downstream target of GC-C. A number of patients with GUCY2C and SLC9A3 mutations developed inflammatory bowel disease. Both the number of recognized CDD forms as well as the number of underlying disease genes are gradually increasing. Knowledge of these CDD genes enables noninvasive, next-generation gene panel-based testing to facilitate an early diagnosis in CDD. Primary Na/H antiporter 3 and GC-C malfunction is implicated as a predisposition for inflammatory bowel disease in subset of patients.

  9. Hereditary sensory and autosomal peripheral neuropathy-type IV: case series and review of literature.

    Science.gov (United States)

    Ashwin, D P; Chandan, G D; Jasleen, Handa Kaur; Rajkumar, G C; Rudresh, K B; Prashanth, R

    2015-06-01

    Hereditary sensory and autonomic neuropathy (HSAN) IV is a rare autosomal recessive disorder which is characterized by a decrease in the number of myelinated and non-myelinated nerve fibers of peripheral nerves which causes diminished or absent pain sensation leading to increase in self-mutilative habits. A retrospective study of eight cases ranging from age group of 4 to 17 years for oral and digital signs and symptoms is presented. All the patients showed congenital insensitivity to pain and anhidrosis. Oral self-mutilations, such as autoextraction of teeth and severe bite injuries (with resultant scarring) of the finger tips and oral soft tissues (tongue, lip, and buccal mucosa) were found in most patients. Our study suggests that early diagnosis and specific treatment plan are important for prevention of characteristic of the oral as well as digital trauma associated with this disorder.

  10. Identification of a Novel Homozygous Nonsense Mutation Confirms the Implication of GNAT1 in Rod-Cone Dystrophy.

    Directory of Open Access Journals (Sweden)

    Cécile Méjécase

    Full Text Available GNAT1, encoding the transducin subunit Gα, is an important element of the phototransduction cascade. Mutations in this gene have been associated with autosomal dominant and autosomal recessive congenital stationary night blindness. Recently, a homozygous truncating GNAT1 mutation was identified in a patient with late-onset rod-cone dystrophy. After exclusion of mutations in genes underlying progressive inherited retinal disorders, by targeted next generation sequencing, a 32 year-old male sporadic case with severe rod-cone dystrophy and his unaffected parents were investigated by whole exome sequencing. This led to the identification of a homozygous nonsense variant, c.963C>A p.(Cys321* in GNAT1, which was confirmed by Sanger sequencing. The mother was heterozygous for this variant whereas the variant was absent in the father. c.963C>A p.(Cys321* is predicted to produce a shorter protein that lacks critical sites for the phototransduction cascade. Our work confirms that the phenotype and the mode of inheritance associated with GNAT1 variants can vary from autosomal dominant, autosomal recessive congenital stationary night blindness to autosomal recessive rod-cone dystrophy.

  11. A homozygous mutation in a consanguineous family consolidates the role of ALDH1A3 in autosomal recessive microphthalmia

    DEFF Research Database (Denmark)

    Roos, L; Fang, M; Dali, C

    2013-01-01

    to the identification of new genes. Very recently, homozygous variations within ALDH1A3 have been associated with autosomal recessive microphthalmia with or without cysts or coloboma, and with variable subphenotypes of developmental delay/autism spectrum disorder in eight families. In a consanguineous family where...... three of the five siblings were affected with microphthalmia/coloboma, we identified a novel homozygous missense mutation in ALDH1A3 using exome sequencing. Of the three affected siblings, one had intellectual disability and one had intellectual disability and autism, while the last one presented...... with normal development. This study contributes further to the description of the clinical spectrum associated with ALDH1A3 mutations, and illustrates the interfamilial clinical variation observed in individuals with ALDH1A3 mutations....

  12. A Common Ancestral Mutation in CRYBB3 Identified in Multiple Consanguineous Families with Congenital Cataracts.

    Directory of Open Access Journals (Sweden)

    Xiaodong Jiao

    Full Text Available This study was performed to investigate the genetic determinants of autosomal recessive congenital cataracts in large consanguineous families.Affected individuals underwent a detailed ophthalmological examination and slit-lamp photographs of the cataractous lenses were obtained. An aliquot of blood was collected from all participating family members and genomic DNA was extracted from white blood cells. Initially, a genome-wide scan was performed with genomic DNAs of family PKCC025 followed by exclusion analysis of our familial cohort of congenital cataracts. Protein-coding exons of CRYBB1, CRYBB2, CRYBB3, and CRYBA4 were sequenced bidirectionally. A haplotype was constructed with SNPs flanking the causal mutation for affected individuals in all four families, while the probability that the four familial cases have a common founder was estimated using EM and CHM-based algorithms. The expression of Crybb3 in the developing murine lens was investigated using TaqMan assays.The clinical and ophthalmological examinations suggested that all affected individuals had nuclear cataracts. Genome-wide linkage analysis localized the causal phenotype in family PKCC025 to chromosome 22q with statistically significant two-point logarithm of odds (LOD scores. Subsequently, we localized three additional families, PKCC063, PKCC131, and PKCC168 to chromosome 22q. Bidirectional Sanger sequencing identified a missense variation: c.493G>C (p.Gly165Arg in CRYBB3 that segregated with the disease phenotype in all four familial cases. This variation was not found in ethnically matched control chromosomes, the NHLBI exome variant server, or the 1000 Genomes or dbSNP databases. Interestingly, all four families harbor a unique disease haplotype that strongly suggests a common founder of the causal mutation (p<1.64E-10. We observed expression of Crybb3 in the mouse lens as early as embryonic day 15 (E15, and expression remained relatively steady throughout development.Here, we

  13. Novel compound heterozygous NMNAT1 variants associated with Leber congenital amaurosis

    DEFF Research Database (Denmark)

    Siemiatkowska, Anna M; van den Born, L Ingeborgh; van Genderen, Maria M

    2014-01-01

    , were screened in 532 additional patients with retinal dystrophies. This cohort encompassed 108 persons with isolated or autosomal recessive cone-rod dystrophy (CRD), 271 with isolated or autosomal recessive retinitis pigmentosa (RP), and 49 with autosomal dominant RP, as well as 104 persons with LCA...... and associated phenotypes in different types of inherited retinal dystrophies. METHODS: DNA samples of 161 patients with LCA without genetic diagnosis were analyzed for variants in NMNAT1 using Sanger sequencing. Variants in exon 5 of NMNAT1, which harbors the majority of the previously identified mutations...

  14. Kidney Versus Combined Kidney and Liver Transplantation in Young People With Autosomal Recessive Polycystic Kidney Disease: Data From the European Society for Pediatric Nephrology/European Renal Association-European Dialysis and Transplant (ESPN/ERA-EDTA) Registry

    NARCIS (Netherlands)

    Mekahli, Djalila; van Stralen, Karlijn J.; Bonthuis, Marjolein; Jager, Kitty J.; Balat, Ayşe; Benetti, Elisa; Godefroid, Nathalie; Edvardsson, Vidar O.; Heaf, James G.; Jankauskiene, Augustina; Kerecuk, Larissa; Marinova, Svetlana; Puteo, Flora; Seeman, Tomas; Zurowska, Aleksandra; Pirenne, Jacques; Schaefer, Franz; Groothoff, Jaap W.; Levtchenko, E.; Haffner, D.; Bjerre, A.; Massy, Z.; Shtiza, D.; Kramar, R.; Oberbauer, R.; Baiko, S.; Sukalo, A.; van Hoeck, K.; Collart, F.; des Grottes, J. M.; Pokrajac, D.; Roussinov, D.; Batinić , D.; Lemac, M.; Slavicek, J.; Seeman, T.; Vondrak, K.; Heaf, J. G.; Toots, U.; Finne, P.; Grö nhagen-Riska, C.; Couchoud, C.; Lasalle, M.; Sahpazova, E.; Abazi, N.; Ristoka Bojkovska, N.; von Gersdorff, G.; Scholz, C.; Tö nshoff, B.; Krupka, K.

    2016-01-01

    The choice for either kidney or combined liver-kidney transplantation in young people with kidney failure and liver fibrosis due to autosomal recessive polycystic kidney disease (ARPKD) can be challenging. We aimed to analyze the characteristics and outcomes of transplantation type in these

  15. Kidney Versus Combined Kidney and Liver Transplantation in Young People With Autosomal Recessive Polycystic Kidney Disease: Data From the European Society for Pediatric Nephrology/European Renal Association-European Dialysis and Transplant (ESPN/ERA-EDTA) Registry

    NARCIS (Netherlands)

    Mekahli, D.; Stralen, K.J. van; Bonthuis, M.; Jager, K.J.; Balat, A.; Benetti, E.; Godefroid, N.; Edvardsson, V.O.; Heaf, J.G.; Jankauskiene, A.; Kerecuk, L.; Marinova, S.; Puteo, F.; Seeman, T.; Zurowska, A.; Pirenne, J.; Schaefer, F.; Groothoff, J.W.; Hoitsma, A.J.; et al.,

    2016-01-01

    BACKGROUND: The choice for either kidney or combined liver-kidney transplantation in young people with kidney failure and liver fibrosis due to autosomal recessive polycystic kidney disease (ARPKD) can be challenging. We aimed to analyze the characteristics and outcomes of transplantation type in

  16. Rare Disease Patient Registry & Natural History Study - Coordination of Rare Diseases at Sanford

    Science.gov (United States)

    2017-09-28

    ; Non Progressive Epilepsy and/or Ataxia With Myoclonus as a Major Feature; Spectrin-associated Autosomal Recessive Cerebellar Ataxia; Spasticity-ataxia-gait Anomalies Syndrome; Spastic Ataxia With Congenital Miosis; Spastic Ataxia - Corneal Dystrophy; Spastic Ataxia; Rare Hereditary Ataxia; Rare Ataxia; Recessive Mitochondrial Ataxia Syndrome; Progressive Epilepsy and/or Ataxia With Myoclonus as a Major Feature; Posterior Column Ataxia - Retinitis Pigmentosa; Post-Stroke Ataxia; Post-Head Injury Ataxia; Post Vaccination Ataxia; Polyneuropathy - Hearing Loss - Ataxia - Retinitis Pigmentosa - Cataract; Muscular Atrophy - Ataxia - Retinitis Pigmentosa - Diabetes Mellitus; Non-progressive Cerebellar Ataxia With Intellectual Disability; Non-hereditary Degenerative Ataxia; Paroxysmal Dystonic Choreathetosis With Episodic Ataxia and Spasticity; Olivopontocerebellar Atrophy - Deafness; NARP Syndrome; Myoclonus - Cerebellar Ataxia - Deafness; Multiple System Atrophy, Parkinsonian Type; Multiple System Atrophy, Cerebellar Type; Multiple System Atrophy; Maternally-inherited Leigh Syndrome; Machado-Joseph Disease Type 3; Machado-Joseph Disease Type 2; Machado-Joseph Disease Type 1; Lethal Ataxia With Deafness and Optic Atrophy; Leigh Syndrome; Leukoencephalopathy With Mild Cerebellar Ataxia and White Matter Edema; Leukoencephalopathy - Ataxia - Hypodontia - Hypomyelination; Leigh Syndrome With Nephrotic Syndrome; Leigh Syndrome With Leukodystrophy; Leigh Syndrome With Cardiomyopathy; Late-onset Ataxia With Dementia; Intellectual Disability-hyperkinetic Movement-truncal Ataxia Syndrome; Infection or Post Infection Ataxia; Infantile-onset Autosomal Recessive Nonprogressive Cerebellar Ataxia; Infantile Onset Spinocerebellar Ataxia; GAD Ataxia; Hereditary Episodic Ataxia; Gliadin/Gluten Ataxia; Friedreich Ataxia; Fragile X-associated Tremor/Ataxia Syndrome; Familial Paroxysmal Ataxia; Exposure to Medications Ataxia; Episodic Ataxia With Slurred Speech; Episodic Ataxia Unknown Type

  17. A defect in the CLIP1 gene (CLIP-170) can cause autosomal recessive intellectual disability.

    Science.gov (United States)

    Larti, Farzaneh; Kahrizi, Kimia; Musante, Luciana; Hu, Hao; Papari, Elahe; Fattahi, Zohreh; Bazazzadegan, Niloofar; Liu, Zhe; Banan, Mehdi; Garshasbi, Masoud; Wienker, Thomas F; Ropers, H Hilger; Galjart, Niels; Najmabadi, Hossein

    2015-03-01

    In the context of a comprehensive research project, investigating novel autosomal recessive intellectual disability (ARID) genes, linkage analysis based on autozygosity mapping helped identify an intellectual disability locus on Chr.12q24, in an Iranian family (LOD score = 3.7). Next-generation sequencing (NGS) following exon enrichment in this novel interval, detected a nonsense mutation (p.Q1010*) in the CLIP1 gene. CLIP1 encodes a member of microtubule (MT) plus-end tracking proteins, which specifically associates with the ends of growing MTs. These proteins regulate MT dynamic behavior and are important for MT-mediated transport over the length of axons and dendrites. As such, CLIP1 may have a role in neuronal development. We studied lymphoblastoid and skin fibroblast cell lines established from healthy and affected patients. RT-PCR and western blot analyses showed the absence of CLIP1 transcript and protein in lymphoblastoid cells derived from affected patients. Furthermore, immunofluorescence analyses showed MT plus-end staining only in fibroblasts containing the wild-type (and not the mutant) CLIP1 protein. Collectively, our data suggest that defects in CLIP1 may lead to ARID.

  18. [Congenital nephrogenic diabetes insipidus: about a case report].

    Science.gov (United States)

    Esselmani, Hicham; Yassine, Asmaa; Bouabdellah, Mounya; Benchekroun, Laila; Handor, Najat; Elalami, Sanae; Chabraoui, Layachi

    2013-01-01

    Congenital nephrogenic diabetes insipidus is a rare, hereditary in nature, characterized by an inability of the kidney to concentrate urine, secondary to the manifold resistance to the action of vasopressin. X-linked forms of transmission (90%) are expressed in boys, from the neonatal period in general, by polyuria and polydipsia. Symptomatology in transmissive girls is variable but can sometimes be quite marked. These forms are secondary to mutations in the gene encoding the vasopressin V2 receptor, located at position Xq28, responsible for a loss of function of this receptor. Some of these mutations may cause a partial phenotype, less severe. Forms of autosomal, recessive or dominant are more rare (10%). Treatment is symptomatic, sometimes difficult in infants. It aims to avoid episodes of dehydration. It is based on a conventional diet hypo-osmotic and administration of hydrochlorothiazide and indomethacin. We report here the case of a child with congenital nephrogenic diabetes insipidus hospitalized at Children's Hospital of Rabat and throughout this case we review the pathophysiology and clinical and biological characteristics of the disease and including importance of contribution of clinical biochemistry laboratory in the diagnosis and monitoring of this disease.

  19. The Perlman syndrome: familial renal dysplasia with Wilms tumor, fetal gigantism and multiple congenital anomalies. 1984.

    Science.gov (United States)

    Neri, Giovanni; Martini-Neri, Maria Enrica; Katz, Ben E; Opitz, John M

    2013-11-01

    The ensuing paper by Professor Giovanni Neri and colleagues was originally published in 1984, American Journal of Medical Genetics 19:195–207. The original article described a new family with a condition that the authors designated as the Perlman syndrome. This disorder, while uncommon, is an important multiple congenital anomaly and dysplasia syndrome; the causative gene was recently identified. This paper is a seminal work and is graciously republished by Wiley-Blackwell in the Special Festschrift issue honoring Professor Neri. We describe a familial syndrome of renal dysplasia, Wilms tumor, hyperplasia of the endocrine pancreas, fetal gigantism, multiple congenital anomalies and mental retardation. This condition was previously described by Perlman et al. [1973, 1975] and we propose to call it the "Perlman syndrome." It appears to be transmitted as an autosomal recessive trait. The possible relationships between dysplasia, neoplasia and malformation are discussed. © 2013 Wiley Periodicals, Inc.

  20. Use Massive Parallel Sequencing and Exome Capture Technology to Sequence the Exome of Fanconi Anemia Children and Their Patents

    Science.gov (United States)

    2013-11-21

    Fanconi Anemia; Autosomal or Sex Linked Recessive Genetic Disease; Bone Marrow Hematopoiesis Failure, Multiple Congenital Abnormalities, and Susceptibility to Neoplastic Diseases.; Hematopoiesis Maintainance.

  1. DVL1 frameshift mutations clustering in the penultimate exon cause autosomal-dominant Robinow syndrome

    DEFF Research Database (Denmark)

    White, Janson; Mazzeu, Juliana F; Hoischen, Alexander

    2015-01-01

    Robinow syndrome is a genetically heterogeneous disorder characterized by mesomelic limb shortening, genital hypoplasia, and distinctive facial features and for which both autosomal-recessive and autosomal-dominant inheritance patterns have been described. Causative variants in the non-canonical ...

  2. Congenital Double Elevator Palsy with Sensory Exotropia: A Unique Surgical Management.

    Science.gov (United States)

    Nagpal, R C; Raj, Anuradha; Maitreya, Amit

    2017-01-01

    To report a unique surgical approach for congenital double elevator palsy with sensory exotropia. A 7-year-old boy with congenital double elevator palsy and sensory exotropia was managed surgically by Callahan's procedure with recession and resection of the horizontal recti for exotropia without inferior rectus recession, followed by frontalis sling surgery for congenital ptosis. Favourable surgical outcome was achieved without any complication.

  3. Congenital adrenal hyperplasia: Treatment and outcomes

    Directory of Open Access Journals (Sweden)

    Mahdi Kamoun

    2013-01-01

    Full Text Available Congenital adrenal hyperplasia (CAH describes a group of autosomal recessive disorders where there is impairment of cortisol biosynthesis. CAH due to 21-hydroxylase deficiency accounts for 95% of cases and shows a wide range of clinical severity. Glucocorticoid and mineralocorticoid replacement therapies are the mainstays of treatment of CAH. The optimal treatment for adults with CAH continues to be a challenge. Important long-term health issues for adults with CAH affect both men and women. These issues may either be due to the disease or to steroid treatment and may affect final height, fertility, cardiometabolic risk, bone metabolism, neuro-cognitive development and the quality-of-life. Patients with CAH should be regularly followed-up from childhood to adulthood by multidisciplinary teams who have knowledge of CAH. Optimal replacement therapy, close clinical and laboratory monitoring, early life-style interventions, early and regular fertility assessment and continuous psychological management are needed to improve outcome.

  4. X-Linked and Autosomal Recessive Alport Syndrome

    DEFF Research Database (Denmark)

    Savige, Judith; Storey, Helen; Il Cheong, Hae

    2016-01-01

    Alport syndrome results from mutations in the COL4A5 (X-linked) or COL4A3/COL4A4 (recessive) genes. This study examined 754 previously- unpublished variants in these genes from individuals referred for genetic testing in 12 accredited diagnostic laboratories worldwide, in addition to all published...... COL4A5, COL4A3 and COL4A4 variants in the LOVD databases. It also determined genotype-phenotype correlations for variants where clinical data were available. Individuals were referred for genetic testing where Alport syndrome was suspected clinically or on biopsy (renal failure, hearing loss...

  5. The acrocallosal syndrome in first cousins: widening of the spectrum of clinical features and further support for autosomal recessive inheritance.

    Science.gov (United States)

    Schinzel, A

    1988-01-01

    First cousins, related through their mothers, showed a pattern of craniofacial, brain, and limb anomalies consistent with the acrocallosal syndrome. Both patients had a defect of the corpus callosum, macrocephaly with a protruding forehead and occiput, hypertelorism, non-horizontal palpebral fissures, a small nose, notched ear lobes, and postaxial polydactyly of the hands. The boy, in addition, had hypospadias, cryptorchidism, inguinal hernias, duplication with syndactyly of the phalanges of the big toe, and a bipartite right clavicle. The girl had an arachnoidal cyst, a calvarian defect, and digitalisation of the thumbs. Motor and mental development was retarded in both patients. This observation provides further evidence of probable autosomal recessive inheritance of the acrocallosal syndrome and widens the spectrum of clinical findings and the variability of features in this rare malformation syndrome. Images PMID:3385741

  6. Congenital insensitivity to pain with anhidrosis (CIPA): the spectrum of radiological findings

    International Nuclear Information System (INIS)

    Schulman, H.; Tsodikow, V.; Hertzanu, Y.; Einhorn, M.; Levy, Y.; Shorer, Z.

    2001-01-01

    Background: Congenital insensitivity to pain with anhidrosis (CIPA) is an exceedingly rare, hereditary, sensory autonomic neuropathy (HSAN). Aim: To evaluate the various skeletal manifestations and cranial CT features in children affected by CIPA. Materials and methods: In the semidesert area of the Negev, the Bedouin tribes constitute a closed society where consanguineous marriages are the custom. This has resulted in a group of 20 children being affected by this rare autosomal recessive HSAN. The skeletal surveys and CT scans of these 20 Bedouin patients, 12 girls and 8 boys, ages ranging between 1 month and 8 years, were retrospectively analysed. Cranial CT scans were performed in ten children because of neonatal hypotonia and psychomotor retardation. The skeletal findings were classified as follows: fractures, joint deformities, joint dislocations, osteomyelitis, avascular necrosis and acro-osteolysis. Results: All 20 patients had fractures of the extremities and acro-osteolysis of the fingers. Six had joint deformities. Three children had recurrent hip joint dislocations and another three had avascular necrosis. Ten patients presented with osteomyelitis of the limbs, acetabulum and scapula. The cranial CT scans disclosed mild brain volume loss with some ventriculomegaly. Conclusions: CIPA is a severe autosomal recessive condition that leads to self-mutilation early in life and to fractures, osteomyelitis and limb amputation in older children. Mental retardation is common. Death from hyperpyrexia occurs in almost 20 % of patients in the first 3 years of life. (orig.)

  7. Congenital insensitivity to pain with anhidrosis (CIPA): the spectrum of radiological findings

    Energy Technology Data Exchange (ETDEWEB)

    Schulman, H.; Tsodikow, V.; Hertzanu, Y. [Dept. of Radiology, Soroka University Medical Centre, Beer-Sheva (Israel); Einhorn, M.; Levy, Y.; Shorer, Z. [Dept. of Pediatrics, Soroka University Medical Centre, Beer-Sheva (Israel)

    2001-10-01

    Background: Congenital insensitivity to pain with anhidrosis (CIPA) is an exceedingly rare, hereditary, sensory autonomic neuropathy (HSAN). Aim: To evaluate the various skeletal manifestations and cranial CT features in children affected by CIPA. Materials and methods: In the semidesert area of the Negev, the Bedouin tribes constitute a closed society where consanguineous marriages are the custom. This has resulted in a group of 20 children being affected by this rare autosomal recessive HSAN. The skeletal surveys and CT scans of these 20 Bedouin patients, 12 girls and 8 boys, ages ranging between 1 month and 8 years, were retrospectively analysed. Cranial CT scans were performed in ten children because of neonatal hypotonia and psychomotor retardation. The skeletal findings were classified as follows: fractures, joint deformities, joint dislocations, osteomyelitis, avascular necrosis and acro-osteolysis. Results: All 20 patients had fractures of the extremities and acro-osteolysis of the fingers. Six had joint deformities. Three children had recurrent hip joint dislocations and another three had avascular necrosis. Ten patients presented with osteomyelitis of the limbs, acetabulum and scapula. The cranial CT scans disclosed mild brain volume loss with some ventriculomegaly. Conclusions: CIPA is a severe autosomal recessive condition that leads to self-mutilation early in life and to fractures, osteomyelitis and limb amputation in older children. Mental retardation is common. Death from hyperpyrexia occurs in almost 20 % of patients in the first 3 years of life. (orig.)

  8. Mutations in DZIP1L, which encodes a ciliary transition zone protein, cause autosomal recessive polycystic kidney disease

    Science.gov (United States)

    Lu, Hao; Galeano, Maria C. Rondón; Ott, Elisabeth; Kaeslin, Geraldine; Kausalya, P. Jaya; Kramer, Carina; Ortiz-Brüchle, Nadina; Hilger, Nadescha; Metzis, Vicki; Hiersche, Milan; Tay, Shang Yew; Tunningley, Robert; Vij, Shubha; Courtney, Andrew D.; Whittle, Belinda; Wühl, Elke; Vester, Udo; Hartleben, Björn; Neuber, Steffen; Frank, Valeska; Little, Melissa H.; Epting, Daniel; Papathanasiou, Peter; Perkins, Andrew C.; Wright, Graham D.; Hunziker, Walter; Gee, Heon Yung; Otto, Edgar A.; Zerres, Klaus; Hildebrandt, Friedhelm; Roy, Sudipto; Wicking, Carol; Bergmann, Carsten

    2017-01-01

    Autosomal recessive polycystic kidney disease (ARPKD), usually considered to be a genetically homogeneous disease caused by mutations in PKHD1, has been associated with ciliary dysfunction. Here, we describe mutations in the DAZ interacting protein 1-like (DZIP1L) gene in patients with ARPKD, findings we have further validated by loss-of-function studies in mice and zebrafish. DZIP1L localizes to centrioles and at the distal end of basal bodies, and interacts with septin2, a protein implicated in maintenance of the periciliary diffusion barrier at the ciliary transition zone. Consistent with a defect in the diffusion barrier, we found that the ciliary membrane translocation of the PKD proteins, polycystin-1 and −2, is compromised in DZIP1L mutant cells. Together, these data provide the first conclusive evidence that ARPKD is not a homogeneous disorder, and establishes DZIP1L as a second gene involved in its pathogenesis. PMID:28530676

  9. Mutations in DZIP1L, which encodes a ciliary-transition-zone protein, cause autosomal recessive polycystic kidney disease.

    Science.gov (United States)

    Lu, Hao; Galeano, Maria C Rondón; Ott, Elisabeth; Kaeslin, Geraldine; Kausalya, P Jaya; Kramer, Carina; Ortiz-Brüchle, Nadina; Hilger, Nadescha; Metzis, Vicki; Hiersche, Milan; Tay, Shang Yew; Tunningley, Robert; Vij, Shubha; Courtney, Andrew D; Whittle, Belinda; Wühl, Elke; Vester, Udo; Hartleben, Björn; Neuber, Steffen; Frank, Valeska; Little, Melissa H; Epting, Daniel; Papathanasiou, Peter; Perkins, Andrew C; Wright, Graham D; Hunziker, Walter; Gee, Heon Yung; Otto, Edgar A; Zerres, Klaus; Hildebrandt, Friedhelm; Roy, Sudipto; Wicking, Carol; Bergmann, Carsten

    2017-07-01

    Autosomal recessive polycystic kidney disease (ARPKD), usually considered to be a genetically homogeneous disease caused by mutations in PKHD1, has been associated with ciliary dysfunction. Here, we describe mutations in DZIP1L, which encodes DAZ interacting protein 1-like, in patients with ARPKD. We further validated these findings through loss-of-function studies in mice and zebrafish. DZIP1L localizes to centrioles and to the distal ends of basal bodies, and interacts with septin2, a protein implicated in maintenance of the periciliary diffusion barrier at the ciliary transition zone. In agreement with a defect in the diffusion barrier, we found that the ciliary-membrane translocation of the PKD proteins polycystin-1 and polycystin-2 is compromised in DZIP1L-mutant cells. Together, these data provide what is, to our knowledge, the first conclusive evidence that ARPKD is not a homogeneous disorder and further establish DZIP1L as a second gene involved in ARPKD pathogenesis.

  10. A case of Fukuyama type congenital muscular dystrophy with progressive changes of brain CT scanning

    International Nuclear Information System (INIS)

    Mori, Kenzi; Saijo, Takahiko; Hamaguchi, Hiroshi; Tayama, Masanobu; Kawano, Noboru; Hashimoto, Toshiaki; Miyao, Masuhide

    1988-01-01

    The Fukuyama type congenital muscular dystrophy (F-CMD) has been generally recognized as a well delineated subgroup of progressive muscular dystrophy with uniform clinical and pathological features. But the pathogenesis is not yet clear. Two theories have been proposed ; autosomal recessive inheritance and intrauterine infection. We experienced a female case of F-CMD, and tried serial brain CT scanning from the birth to one year of age. Low density changes of white matter were not found at the first day of her life. But marked brain atrophy and low density changes of white matter were found after three months. We propose that CT examination should be repeated from early stage to clarify the pathogenesis of F-CMD. (AUTHOR)

  11. Recessive Epidermolysis Bullosa simplex- A case report

    African Journals Online (AJOL)

    Ademu

    Abstract: Background:Epidermolysis bullosa simplex (EBS) is characterized by intraepidermal blister formation, most commonly appearing in early infancy. Many variants of EBS exist; the four most common variants are inherited in an autosomal dominant fashion. The recessive forms are rare and less reported in our ...

  12. Congenital adrenal hyperplasia - experience from a tertiary centre in South India

    Directory of Open Access Journals (Sweden)

    George Belinda

    2012-01-01

    Full Text Available Congenital adrenal hyperplasia is a group of autosomal recessive disorders caused by enzyme deficiency which leads to defects in biosynthesis of steroid precursors. Most common is 21 hydroxylase deficiency. Clinical spectrum varies from non-classical CAH to classic CAH, and it may be simple virilising form or salt-wastinfg type. 29 patients were included in our study from January 2012 to October 2012. 76% were females. Male babies typically presented with adrenal crisis between 3 rd to 6 th week of life. Around 20% of females were identified and appropriately treated only after late adolescence. Short stature was seen in 1/3 rd of patients. 1/3 rd of patients had suppressed 17 OHP levels suggestive of over-replacement therapy which may contribute to final reduction in adult height.

  13. Libyan Boy with Autosomal Recessive Trait (P22-phox Defect of Chronic Granulomatous Disease

    Directory of Open Access Journals (Sweden)

    Ilka Schulze

    2006-09-01

    Full Text Available Chronic granulomatous disease (CGD is a primary immune deficiency disorder of the phagocytes. In this disorder, phagocytic cells (polymorphonuclear leukocytes and monocytes cannot produce active oxygen metabolites, and therefore, cannot destroy the ingested intracellular bacteria. Clinically, patients with CGD usually have recurrent bacterial and fungal infections causing abscess and granuloma formation in the skin, lymph nodes and visceral organs.In this report, we present a boy from Libya with a rare autosomal recessive trait of CGD (defect of p22-phox who has chronic lung disease following multiple severe pneumonia attacks. The case we present suffered from bloody diarrhea since the third month of his life. He also had recurrent episodes of fever, and later, developed persistent cervical lymphadenitis and failure to gain weight. CGD is a very rare condition worldwide. It is also not recognized here in Libya, and usually not in the list of differential diagnosis for chronic pulmonary infections. We advise that pediatricians and general practitioners who treat chronic cases of lung diseases (with or without chronic diarrhea should consider primary immunodeficiency disorders in the hope that early diagnosis and treatment may prevent chronic complications especially of the respiratory tract. Furthermore, we state that, to the best of our knowledge, this is the first documented case of CGD from Libya.

  14. Application of a high-throughput genotyping method for loci exclusion in non-consanguineous Australian pedigrees with autosomal recessive retinitis pigmentosa.

    Science.gov (United States)

    Paterson, Rachel L; De Roach, John N; McLaren, Terri L; Hewitt, Alex W; Hoffmann, Ling; Lamey, Tina M

    2012-01-01

    Retinitis pigmentosa (RP) is the most common form of inherited blindness, caused by progressive degeneration of photoreceptor cells in the retina, and affects approximately 1 in 3,000 people. Over the past decade, significant progress has been made in gene therapy for RP and related diseases, making genetic characterization increasingly important. Recently, high-throughput technologies have provided an option for reasonably fast, cost-effective genetic characterization of autosomal recessive RP (arRP). The current study used a single nucleotide polymorphism (SNP) genotyping method to exclude up to 28 possible disease-causing genes in 31 non-consanguineous Australian families affected by arRP. DNA samples were collected from 59 individuals affected with arRP and 74 unaffected family members from 31 Australian families. Five to six SNPs were genotyped for 28 genes known to cause arRP or the related disease Leber congenital amaurosis (LCA). Cosegregation analyses were used to exclude possible causative genes from each of the 31 families. Bidirectional sequencing was used to identify disease-causing mutations in prioritized genes that were not excluded with cosegregation analyses. Two families were excluded from analysis due to identification of false paternity. An average of 28.9% of genes were excluded per family when only one affected individual was available, in contrast to an average of 71.4% or 89.8% of genes when either two, or three or more affected individuals were analyzed, respectively. A statistically significant relationship between the proportion of genes excluded and the number of affected individuals analyzed was identified using a multivariate regression model (pA) and USH2A in two families (c.2276 G>T). This study has shown that SNP genotyping cosegregation analysis can be successfully used to refine and expedite the genetic characterization of arRP in a non-consanguineous population; however, this method is effective only when DNA samples are

  15. Autosomal-recessive posterior microphthalmos is caused by mutations in PRSS56, a gene encoding a trypsin-like serine protease

    DEFF Research Database (Denmark)

    Gal, Andreas; Rau, Isabella; El Matri, Leila

    2011-01-01

    heterogeneity of the trait. Using RT-PCR, PRSS56 transcripts were detected in samples derived from the human adult retina, cornea, sclera, and optic nerve. The expression of the mouse ortholog could be first detected in the eye at E17 and was maintained into adulthood. The predicted PRSS56 protein is a 603......Posterior microphthalmos (MCOP) is a rare isolated developmental anomaly of the eye characterized by extreme hyperopia due to short axial length. The population of the Faroe Islands shows a high prevalence of an autosomal-recessive form (arMCOP) of the disease. Based on published linkage data, we...... amino acid long secreted trypsin-like serine peptidase. The c.1066dupC is likely to result in a functional null allele, whereas the two point mutations predict the replacement of evolutionary conserved and functionally important residues. Molecular modeling of the p.Trp309Ser mutant suggests that both...

  16. Mutations in the histamine N-methyltransferase gene, HNMT, are associated with nonsyndromic autosomal recessive intellectual disability

    Science.gov (United States)

    Heidari, Abolfazl; Tongsook, Chanakan; Najafipour, Reza; Musante, Luciana; Vasli, Nasim; Garshasbi, Masoud; Hu, Hao; Mittal, Kirti; McNaughton, Amy J. M.; Sritharan, Kumudesh; Hudson, Melissa; Stehr, Henning; Talebi, Saeid; Moradi, Mohammad; Darvish, Hossein; Arshad Rafiq, Muhammad; Mozhdehipanah, Hossein; Rashidinejad, Ali; Samiei, Shahram; Ghadami, Mohsen; Windpassinger, Christian; Gillessen-Kaesbach, Gabriele; Tzschach, Andreas; Ahmed, Iltaf; Mikhailov, Anna; Stavropoulos, D. James; Carter, Melissa T.; Keshavarz, Soraya; Ayub, Muhammad; Najmabadi, Hossein; Liu, Xudong; Ropers, Hans Hilger; Macheroux, Peter; Vincent, John B.

    2015-01-01

    Histamine (HA) acts as a neurotransmitter in the brain, which participates in the regulation of many biological processes including inflammation, gastric acid secretion and neuromodulation. The enzyme histamine N-methyltransferase (HNMT) inactivates HA by transferring a methyl group from S-adenosyl-l-methionine to HA, and is the only well-known pathway for termination of neurotransmission actions of HA in mammalian central nervous system. We performed autozygosity mapping followed by targeted exome sequencing and identified two homozygous HNMT alterations, p.Gly60Asp and p.Leu208Pro, in patients affected with nonsyndromic autosomal recessive intellectual disability from two unrelated consanguineous families of Turkish and Kurdish ancestry, respectively. We verified the complete absence of a functional HNMT in patients using in vitro toxicology assay. Using mutant and wild-type DNA constructs as well as in silico protein modeling, we confirmed that p.Gly60Asp disrupts the enzymatic activity of the protein, and that p.Leu208Pro results in reduced protein stability, resulting in decreased HA inactivation. Our results highlight the importance of inclusion of HNMT for genetic testing of individuals presenting with intellectual disability. PMID:26206890

  17. Homozygosity mapping reveals new nonsense mutation in the FAM161A gene causing autosomal recessive retinitis pigmentosa in a Palestinian family.

    Science.gov (United States)

    Zobor, Ditta; Balousha, Ghassan; Baumann, Britta; Wissinger, Bernd

    2014-01-01

    Retinitis pigmentosa (RP) is a heterogenous group of inherited retinal degenerations caused by mutations in at least 45 genes. Recently, the FAM161A gene was identified as the causative gene for RP28, an autosomal recessive form of RP. We performed a clinical and molecular genetic study of a consanguineous Palestinian family with two three siblings affected with retinitis pigmentosa. DNA samples were collected from the index patient, his father, his affected sister, and two non-affected brothers. DNA sample from the index was subjected to high resolution genome-wide SNP array. Assuming identity-by-descent in this consanguineous family we applied homozygosity mapping to identify disease causing genes. The index patient reported night blindness since the age of 20 years, followed by moderate disease progression with decrease of peripheral vision, the development of photophobia and later on reduced central vision. At the age of 40 his visual acuity was counting fingers (CF) for both eyes, color discrimination was not possible and his visual fields were severely constricted. Funduscopic examination revealed a typical appearance of advanced RP with optic disc pallor, narrowed retinal vessels, bone-spicule like pigmentary changes in the mid-periphery and atrophic changes in the macula. His younger affected brother (37 years) was reported with overall milder symptoms, while the youngest sister (21 years) reported problems only with night vision. Applying high-density SNP arrays we identified several homozygous genomic regions one of which included the recently identified FAM161A gene mutated in RP28-linked autosomal recessive RP. Sequencing analysis revealed the presence of a novel homozygous nonsense mutation, c.1003C>T/p.R335X in the index patient and the affected sister. We identified an RP28-linked RP family in the Palestinian population caused by a novel nonsense mutation in FAM161A. RP in this family shows a typical disease onset with moderate to rapid progression

  18. Pre-Eruptive Coronal Resorption and Congenitally Missing Teeth in a Patient with Amelogenesis Imperfecta: A Case Report

    OpenAIRE

    Miloglu, Ozkan; Karaalioglu, Osman Fatih; Caglayan, Fatma; Yesil, Zeynep Duymus

    2009-01-01

    This clinical report describes a male with autosomal recessive generalized hypoplastic amelogenesis imperfecta. This case is unusual in coronal resorptions prior to tooth eruption. This finding has been reported in some cases of autosomal recessive, autosomal dominant and X linked amelogenesis imperfecta (AI). In reported cases, the defects were usually small and occurred in a maximum of 2 teeth per person. In our case, pre-eruptive coronal resorptions affected three second molar teeth from b...

  19. Congenital insensitivity to pain and anhidrosis: A case report from South India

    Directory of Open Access Journals (Sweden)

    Carounanidy Udayashankar

    2012-01-01

    Full Text Available Congenital insensitivity to pain with anhidrosis, also known as hereditary sensory and autonomic neuropathy type IV, is an autosomal recessive disorder characterized by the congenital lack of pain sensation, inability to sweat, episodes of recurrent hyperpyrexia, mental retardation, and self-mutilating behavior. It is an extremely rare disorder with only a handful of reports from India. A five- year- old boy, born to second-degree consanguineous parents after uneventful antenatal period, presented to us with history of recurrent unexplained fever, recurrent ulcers in the lower limbs, insensitivity to painful stimuli (like injections, vaccination and self-mutilating behavior from early childhood. Cutaneous examination showed multiple ulcers, loss of teeth, loss of tip of the tongue (due to biting, scarring of finger tips, xerosis and lichenification. Sensory examination showed complete loss of pain and temperature sensations, but fine touch and vibration were preserved. Deep tendon reflexes were normal. Evaluation for Hansen′s disease was non-contributory. An intradermal injection of histamine did not show any flare response. Based on clinical as well as compatible histological features a diagnosis of congenital insensitivity to pain with anhidrosis was made. The ulcers were treated with appropriate antibiotics and daily dressings. The parents were counseled about appropriate care of the child.

  20. Prevalence of GJB2 Mutations in Affected Individuals from United Arab Emirates with Autosomal Recessive Nonsyndromic Hearing Loss.

    Science.gov (United States)

    Tlili, Abdelaziz; Al Mutery, Abdullah; Kamal Eddine Ahmad Mohamed, Walaa; Mahfood, Mona; Hadj Kacem, Hassen

    2017-11-01

    Mutations in the gap junction protein beta 2 (GJB2) gene are responsible for more cases of nonsyndromic recessive hearing loss than any other gene. The purpose of our study was to evaluate the prevalence of GJB2 mutations among affected individuals from United Arab Emirates (UAE). There were 50 individuals diagnosed with hereditary hearing loss and 120 healthy individuals enrolled in the study. The Sanger sequencing method was used to screen the GJB2 coding region in all affected individuals. The c.-1G>A variant was determined by the polymerase chain reaction-restriction fragment length polymorphism method in normal individuals. Nine cases with bi-allelic mutations and three cases with mono-allelic mutations were detected in 12 out of 50 patients (24%). The homozygous mutation c.35delG was identified as the cause of hearing loss in six participants (12%). The mutation c.506G>A was identified in three affected individuals (6%). The allelic frequency (14%) and low percentage of individuals that were homozygous (2%) for the c.35delG mutation suggest that there are other genes responsible for nonsyndromic deafness in the UAE population. The results reported here are a preliminary step in collecting epidemiological data regarding autosomal recessive nonsyndromic hearing loss related to GJB2 gene mutations among the UAE population. The c.35delG mutation of the GJB2 gene is the most frequently seen causative mutation in the UAE and is followed by the p.Cys169Tyr mutation.

  1. A rare CYP21A2 mutation in a congenital adrenal hyperplasia kindred displaying genotype-phenotype nonconcordance.

    Science.gov (United States)

    Khattab, Ahmed; Yuen, Tony; Al-Malki, Sultan; Yau, Mabel; Kazmi, Diya; Sun, Li; Harbison, Madeleine; Haider, Shozeb; Zaidi, Mone; New, Maria I

    2016-01-01

    Congenital adrenal hyperplasia (CAH) owing to 21-hydroxylase deficiency is caused by the autosomal recessive inheritance of mutations in the gene CYP21A2. CYP21A2 mutations lead to variable impairment of the 21-hydroxylase enzyme, which, in turn, is associated with three clinical phenotypes, namely, salt wasting, simple virilizing, and nonclassical CAH. However, it is known that a given mutation can associate with different clinical phenotypes, resulting in a high rate of genotype-phenotype nonconcordance. We aimed to study the genotype-phenotype nonconcordance in a family with three siblings affected with nonclassical CAH. All had hormonal evidence of nonclassical CAH, but this phenotype could not be explained by the genotype obtained from commercial CYP21A2 genetic testing, which revealed heterozygosity for the maternal 30 kb deletion mutation. We performed Sanger sequencing of the entire CYP21A2 gene in this family to search for a rare mutation that was not covered by commercial testing and found in the three siblings a second, rare c.1097G>A (p.R366H) mutation in exon 8. Computational modeling confirmed that this was a mild mutation consistent with nonclassical CAH. We recommend that sequencing of entire genes for rare mutations should be carried out when genotype-phenotype nonconcordance is observed in patients with autosomal recessive monogenic disorders, including CAH. © 2015 New York Academy of Sciences.

  2. Testicular adrenal rest tumours in boys, adolescents and adult men with congenital adrenal hyperplasia may be associated with the CYP21A2 mutation

    DEFF Research Database (Denmark)

    Mouritsen, Annette; Jørgensen, Niels; Main, Katharina M

    2010-01-01

    % of CAH adults and may already appear during childhood. Whether genotype sub-types can account for the development of TART has not been investigated previously. We therefore investigated this by coupling clinical information of CAH patients with information of their genetic mutation. In 49 male patients......Congenital adrenal hyperplasia (CAH) is an autosomal recessive disorder with impaired function of the adrenal cortex caused by mutations in the CYP21A2 gene. Deficiency of steroid 21-hydroxylase accounts for 80-95% of CAH cases. Testicular adrenal rest tumours (TART) may be prevalent in up to 95...

  3. Dominant versus recessive traits conveyed by allelic mutations - to what extent is nonsense-mediated decay involved?

    NARCIS (Netherlands)

    Ben-Shachar, S.; Khajavi, M.; Withers, M.A.; Shaw, C.A.; Bokhoven, J.H.L.M. van; Brunner, H.G.; Lupski, J.R.

    2009-01-01

    Mutations in ROR2, encoding a receptor tyrosine kinase, can cause autosomal recessive Robinow syndrome (RRS), a severe skeletal dysplasia with limb shortening, brachydactyly, and a dysmorphic facial appearance. Other mutations in ROR2 result in the autosomal dominant disease, brachydactyly type B

  4. Naturally- and experimentally-designed restorations of the Parkin gene deficit in autosomal recessive juvenile parkinsonism

    International Nuclear Information System (INIS)

    Asai, Hirohide; Hirano, Makito; Kiriyama, Takao; Ikeda, Masanori; Ueno, Satoshi

    2010-01-01

    Intranuclear events due to mutations in the Parkin gene remain elusive in autosomal recessive juvenile parkinsonism (ARJP). We identified a mutant PARKIN protein in fibroblast cultures from a pair of siblings with ARJP who were homozygous for the exon 4-deleted Parkin gene. Disease was mild in one patient and debilitating in the other. The detected mutant, encoded by a transcript lacking exon 3 as well as exon 4, is an in-frame deletion that removes 121 aa, resulting in a 344-aa protein (PaDel3,4). Cell culture and transfection studies revealed negative correlations between expression levels of PaDel3,4 and those of cell cycle proteins, including cyclin E, CDK2, ppRb, and E2F-1, and demonstrated that GFP-PaDel3,4 entered nucleus and ubiquitinated cyclin E as a part of SCF hSel-10 ligase complex in the patient cells. In addition, nuclear localization signal-tagged PaDel3,4 expressed in the transfected patient cells most effectively ubiquitinated cyclin E and reduced DNA damage, protecting cells from oxidative stress. Antisense-oligonucleotide treatment promoted skipping of exon 3 and thus generated PaDel3,4, increasing cell survival. Collectively, we propose that naturally- and experimentally-induced exon skipping at least partly restores the mutant Parkin gene deficit, providing a molecular basis for the development of therapeutic exon skipping.

  5. Mutations in the histamine N-methyltransferase gene, HNMT, are associated with nonsyndromic autosomal recessive intellectual disability.

    Science.gov (United States)

    Heidari, Abolfazl; Tongsook, Chanakan; Najafipour, Reza; Musante, Luciana; Vasli, Nasim; Garshasbi, Masoud; Hu, Hao; Mittal, Kirti; McNaughton, Amy J M; Sritharan, Kumudesh; Hudson, Melissa; Stehr, Henning; Talebi, Saeid; Moradi, Mohammad; Darvish, Hossein; Arshad Rafiq, Muhammad; Mozhdehipanah, Hossein; Rashidinejad, Ali; Samiei, Shahram; Ghadami, Mohsen; Windpassinger, Christian; Gillessen-Kaesbach, Gabriele; Tzschach, Andreas; Ahmed, Iltaf; Mikhailov, Anna; Stavropoulos, D James; Carter, Melissa T; Keshavarz, Soraya; Ayub, Muhammad; Najmabadi, Hossein; Liu, Xudong; Ropers, Hans Hilger; Macheroux, Peter; Vincent, John B

    2015-10-15

    Histamine (HA) acts as a neurotransmitter in the brain, which participates in the regulation of many biological processes including inflammation, gastric acid secretion and neuromodulation. The enzyme histamine N-methyltransferase (HNMT) inactivates HA by transferring a methyl group from S-adenosyl-l-methionine to HA, and is the only well-known pathway for termination of neurotransmission actions of HA in mammalian central nervous system. We performed autozygosity mapping followed by targeted exome sequencing and identified two homozygous HNMT alterations, p.Gly60Asp and p.Leu208Pro, in patients affected with nonsyndromic autosomal recessive intellectual disability from two unrelated consanguineous families of Turkish and Kurdish ancestry, respectively. We verified the complete absence of a functional HNMT in patients using in vitro toxicology assay. Using mutant and wild-type DNA constructs as well as in silico protein modeling, we confirmed that p.Gly60Asp disrupts the enzymatic activity of the protein, and that p.Leu208Pro results in reduced protein stability, resulting in decreased HA inactivation. Our results highlight the importance of inclusion of HNMT for genetic testing of individuals presenting with intellectual disability. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Mutation analysis of 272 Spanish families affected by autosomal recessive retinitis pigmentosa using a genotyping microarray.

    Science.gov (United States)

    Ávila-Fernández, Almudena; Cantalapiedra, Diego; Aller, Elena; Vallespín, Elena; Aguirre-Lambán, Jana; Blanco-Kelly, Fiona; Corton, M; Riveiro-Álvarez, Rosa; Allikmets, Rando; Trujillo-Tiebas, María José; Millán, José M; Cremers, Frans P M; Ayuso, Carmen

    2010-12-03

    Retinitis pigmentosa (RP) is a genetically heterogeneous disorder characterized by progressive loss of vision. The aim of this study was to identify the causative mutations in 272 Spanish families using a genotyping microarray. 272 unrelated Spanish families, 107 with autosomal recessive RP (arRP) and 165 with sporadic RP (sRP), were studied using the APEX genotyping microarray. The families were also classified by clinical criteria: 86 juveniles and 186 typical RP families. Haplotype and sequence analysis were performed to identify the second mutated allele. At least one-gene variant was found in 14% and 16% of the juvenile and typical RP groups respectively. Further study identified four new mutations, providing both causative changes in 11% of the families. Retinol Dehydrogenase 12 (RDH12) was the most frequently mutated gene in the juvenile RP group, and Usher Syndrome 2A (USH2A) and Ceramide Kinase-Like (CERKL) were the most frequently mutated genes in the typical RP group. The only variant found in CERKL was p.Arg257Stop, the most frequent mutation. The genotyping microarray combined with segregation and sequence analysis allowed us to identify the causative mutations in 11% of the families. Due to the low number of characterized families, this approach should be used in tandem with other techniques.

  7. [Recommendations for the diagnosis and treatment of classic forms of 21-hydroxylase-deficient congenital adrenal hyperplasia].

    Science.gov (United States)

    Rodríguez, Amparo; Ezquieta, Begoña; Labarta, José Igancio; Clemente, María; Espino, Rafael; Rodriguez, Amaia; Escribano, Aranzazu

    2017-08-01

    Congenital adrenal hyperplasia due to 21-hydroxylase deficiency is an autosomal recessive disorder caused by mutations in the CYP21A2 gene. Cortisol and aldosterone synthesis are impaired in the classic forms (adrenal insufficiency and salt-wasting crisis). Females affected are virilised at birth, and are at risk for genital ambiguity. In this article we give recommendations for an early as possible diagnosis and an appropriate and individualised treatment. A patient and family genetic study is essential for the diagnosis of the patient, and allows genetic counselling, as well as a prenatal diagnosis and treatment for future pregnancy. Copyright © 2016 Asociación Española de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Risk factors predisposing to congenital heart defects

    International Nuclear Information System (INIS)

    Ul Haq, Faheem; Jalil, Fatima; Hashmi, Saman; Jumani, Maliha Iqbal; Imdad, Aamer; Jabeen, Mehnaz; Hashmi, Javad Tauseef; Irfan, Furqan Bin; Imran, Muhammad; Atiq, Mehnaz

    2011-01-01

    Congenital heart disease (CHD) is associated with multiple risk factors, consanguinity may be one such significant factor. The role of consanguinity in the etiology of CHD is supported by inbreeding studies, which demonstrate an autosomal recessive pattern of inheritance of some congenital heart defects. This study was done to find out the risk factors for CHD. A case-control study was done on pediatric patients at a tertiary care hospital, Aga Khan University Hospital, located in Karachi, Pakistan. A total of 500 patients, 250 cases and 250 controls were included in the study. Amongst the 250 cases (i.e. those diagnosed with CHD), 122 patients (48.8%) were born of consanguineous marriages while in the controls (i.e. non-CHD) only 72 patients (28.9%) showed a consanguinity amongst parents. On multivariate analysis, consanguinity emerged as an independent risk factor for CHD; adjusted odds ratio 2.59 (95% C. I. 1.73 - 3.87). Other risk factors included low birth weight, maternal co-morbidities, family history of CHD and first born child. On the other hand, medications used by the mother during the index pregnancy, maternal age and gender of the child did not significantly increase the risk of developing CHD. Analyses of our results show that parental consanguinity, family history of CHD, maternal co-morbidities, first born child and low birth weight are independent risk factors for CHD

  9. UAB HRFD Core Center: Core A: The Hepato/Renal Fibrocystic Diseases Translational Resource

    Science.gov (United States)

    2017-09-15

    Hepato/Renal Fibrocystic Disease; Autosomal Recessive Polycystic Kidney Disease; Joubert Syndrome; Bardet Biedl Syndrome; Meckel-Gruber Syndrome; Congenital Hepatic Fibrosis; Caroli Syndrome; Oro-Facial-Digital Syndrome Type I; Nephronophthisis; Glomerulocystic Kidney Disease

  10. Bleeding Episodes Among Patients with Congenital Fibrinogen Disorders, a Study On 12 New Iranian Patients

    Directory of Open Access Journals (Sweden)

    Majid Naderi

    2018-01-01

    Full Text Available Background: Congenital fibrinogen disorders (CFDs comprise about 10% of rare bleeding disorders (RBDs. CFDs are divided into two groups of quantitative (afibrinogenemia and hypofibrinogenemia with autosomal recessive inheritance pattern, and qualitative (dysfibrinogenemia, hypodysfibrogenemia disorders, mainly with autosomal dominant inheritance pattern. Sistan and Baluchestan Province in Iran, with its high rate of consanguineous marriages, has a high incidence of RBDs including CFD. In the current study, we report clinical manifestations of patients with CFDs.Methods: Twelve new Iranian patients from Sistan and Baluchestan Province with different types of CFDs were selected for this study. Diagnosis of CFDs was based on clinical features and familial history followed by laboratory assessment by routine and specific coagulation tests including prothrombin time (PT and activated partial time tests (APTT, as well as FI activity assay by Clauss method.Results: Out of 12 patients, 3(25% had afibrinogenemia, 7(58.3% had hypofibrinogenemia while 2(16/7% were suspected of having dysfibrinogenemia. Although umbilical cord bleeding (UCB 9(75% was the most common clinical presentation among the study population, this feature was not observed among patients with dysfibrinogenemia. Hematoma (100% was the most common presentation of patients with dysfibrinogenemia.  Conclusion: Results of this study revealed that some clinical presentations are the diagnostic features of CFDs and can be used for precise and in-time diagnosis CFDs in conjunction with family history and laboratory findings.Keywords: Fibrinogen Deficiency; Congenital Afibrinogenemia; Blood Coagulation Disorder; Afibrinogenemia

  11. Birth of a healthy infant following preimplantation PKHD1 haplotyping for autosomal recessive polycystic kidney disease using multiple displacement amplification

    Science.gov (United States)

    Janson, Marleen M.; Roesler, Mark R.; Avner, Ellis D.; Strawn, Estil Y.; Bick, David P.

    2010-01-01

    Purpose To develop a reliable preimplantation genetic diagnosis protocol for couples who both carry a mutant PKHD1 gene wishing to conceive children unaffected with autosomal recessive polycystic kidney disease (ARPKD). Methods Development of a unique protocol for preimplantation genetic testing using whole genome amplification of single blastomeres by multiple displacement amplification (MDA), and haplotype analysis with novel short tandem repeat (STR) markers from the PKHD1 gene and flanking sequences, and a case report of successful utilization of the protocol followed by successful IVF resulting in the birth of an infant unaffected with ARPKD. Results We have developed 20 polymorphic STR markers suitable for linkage analysis of ARPKD. These linked STR markers have enabled unambiguous identification of the PKHD1 haplotypes of embryos produced by at-risk couples. Conclusions We have developed a reliable protocol for preimplantation genetic diagnosis of ARPKD using single-cell MDA products for PKHD1 haplotyping. PMID:20490649

  12. Validation of a clinical practice-based algorithm for the diagnosis of autosomal recessive cerebellar ataxias based on NGS identified cases.

    Science.gov (United States)

    Mallaret, Martial; Renaud, Mathilde; Redin, Claire; Drouot, Nathalie; Muller, Jean; Severac, Francois; Mandel, Jean Louis; Hamza, Wahiba; Benhassine, Traki; Ali-Pacha, Lamia; Tazir, Meriem; Durr, Alexandra; Monin, Marie-Lorraine; Mignot, Cyril; Charles, Perrine; Van Maldergem, Lionel; Chamard, Ludivine; Thauvin-Robinet, Christel; Laugel, Vincent; Burglen, Lydie; Calvas, Patrick; Fleury, Marie-Céline; Tranchant, Christine; Anheim, Mathieu; Koenig, Michel

    2016-07-01

    Establishing a molecular diagnosis of autosomal recessive cerebellar ataxias (ARCA) is challenging due to phenotype and genotype heterogeneity. We report the validation of a previously published clinical practice-based algorithm to diagnose ARCA. Two assessors performed a blind analysis to determine the most probable mutated gene based on comprehensive clinical and paraclinical data, without knowing the molecular diagnosis of 23 patients diagnosed by targeted capture of 57 ataxia genes and high-throughput sequencing coming from a 145 patients series. The correct gene was predicted in 61 and 78 % of the cases by the two assessors, respectively. There was a high inter-rater agreement [K = 0.85 (0.55-0.98) p < 0.001] confirming the algorithm's reproducibility. Phenotyping patients with proper clinical examination, imaging, biochemical investigations and nerve conduction studies remain crucial for the guidance of molecular analysis and to interpret next generation sequencing results. The proposed algorithm should be helpful for diagnosing ARCA in clinical practice.

  13. A recessive contiguous gene deletion causing infantile hyperinsulinism, enteropathy and deafness identifies the Usher type 1C gene.

    Science.gov (United States)

    Bitner-Glindzicz, M; Lindley, K J; Rutland, P; Blaydon, D; Smith, V V; Milla, P J; Hussain, K; Furth-Lavi, J; Cosgrove, K E; Shepherd, R M; Barnes, P D; O'Brien, R E; Farndon, P A; Sowden, J; Liu, X Z; Scanlan, M J; Malcolm, S; Dunne, M J; Aynsley-Green, A; Glaser, B

    2000-09-01

    Usher syndrome type 1 describes the association of profound, congenital sensorineural deafness, vestibular hypofunction and childhood onset retinitis pigmentosa. It is an autosomal recessive condition and is subdivided on the basis of linkage analysis into types 1A through 1E. Usher type 1C maps to the region containing the genes ABCC8 and KCNJ11 (encoding components of ATP-sensitive K + (KATP) channels), which may be mutated in patients with hyperinsulinism. We identified three individuals from two consanguineous families with severe hyperinsulinism, profound congenital sensorineural deafness, enteropathy and renal tubular dysfunction. The molecular basis of the disorder is a homozygous 122-kb deletion of 11p14-15, which includes part of ABCC8 and overlaps with the locus for Usher syndrome type 1C and DFNB18. The centromeric boundary of this deletion includes part of a gene shown to be mutated in families with type 1C Usher syndrome, and is hence assigned the name USH1C. The pattern of expression of the USH1C protein is consistent with the clinical features exhibited by individuals with the contiguous gene deletion and with isolated Usher type 1C.

  14. Rhizomelic chondrodysplasia punctata and cardiac pathology

    NARCIS (Netherlands)

    Huffnagel, Irene C.; Clur, Sally-Ann B.; Bams-Mengerink, Annemieke M.; Blom, Nico A.; Wanders, Ronald J. A.; Waterham, Hans R.; Poll-The, Bwee Tien

    2013-01-01

    Rhizomelic chondrodysplasia punctata (RCDP) is an autosomal recessive peroxisomal disorder characterised by rhizomelia, contractures, congenital cataracts, facial dysmorphia, severe psychomotor defects and growth retardation. Biochemically, the levels of plasmalogens (major constituents of cellular

  15. Genetics of recessive cognitive disorders

    OpenAIRE

    Musante, Luciana; Ropers, H. Hilger

    2014-01-01

    Most severe forms of intellectual disability (ID) have specific genetic causes. Numerous X chromosome gene defects and disease-causing copy-number variants have been linked to ID and related disorders, and recent studies have revealed that sporadic cases are often due to dominant de novo mutations with low recurrence risk. For autosomal recessive ID (ARID) the recurrence risk is high and, in populations with frequent parental consanguinity, ARID is the most common form of ID. Even so, its elu...

  16. Identification and molecular modelling of a mutation in the motor head domain of myosin VIIA in a family with autosomal dominant hearing impairment (DFNA11)

    NARCIS (Netherlands)

    Luijendijk, M.W.J.; Wijk, E. van; Bischoff, A.M.L.C.; Krieger, E.; Huygen, P.L.M.; Pennings, R.J.E.; Brunner, H.G.; Cremers, C.W.R.J.; Cremers, F.P.M.; Kremer, J.M.J.

    2004-01-01

    Myosin VIIA is an unconventional myosin that has been implicated in Usher syndrome type 1B, atypical Usher syndrome, non-syndromic autosomal recessive hearing impairment (DFNB2) and autosomal dominant hearing impairment (DFNA11). Here, we present a family with non-syndromic autosomal dominant

  17. Identification and molecular modelling of a mutation in the motor head domain of myosin VIIA in a family with autosomal dominant hearing impairment (DFNA11).

    NARCIS (Netherlands)

    Luijendijk, M.W.J.; Wijk, E. van; Bischoff, A.M.L.C.; Krieger, E.; Huygen, P.L.M.; Pennings, R.J.E.; Brunner, H.G.; Cremers, C.W.R.J.; Cremers, F.P.M.; Kremer, J.M.J.

    2004-01-01

    Myosin VIIA is an unconventional myosin that has been implicated in Usher syndrome type 1B, atypical Usher syndrome, non-syndromic autosomal recessive hearing impairment (DFNB2) and autosomal dominant hearing impairment (DFNA11). Here, we present a family with non-syndromic autosomal dominant

  18. A Clinical and Molecular Genetic Study of 50 Families with Autosomal Recessive Parkinsonism Revealed Known and Novel Gene Mutations.

    Science.gov (United States)

    Taghavi, Shaghayegh; Chaouni, Rita; Tafakhori, Abbas; Azcona, Luis J; Firouzabadi, Saghar Ghasemi; Omrani, Mir Davood; Jamshidi, Javad; Emamalizadeh, Babak; Shahidi, Gholam Ali; Ahmadi, Mona; Habibi, Seyed Amir Hassan; Ahmadifard, Azadeh; Fazeli, Atena; Motallebi, Marzieh; Petramfar, Peyman; Askarpour, Saeed; Askarpour, Shiva; Shahmohammadibeni, Hossein Ali; Shahmohammadibeni, Neda; Eftekhari, Hajar; Shafiei Zarneh, Amir Ehtesham; Mohammadihosseinabad, Saeed; Khorrami, Mehdi; Najmi, Safa; Chitsaz, Ahmad; Shokraeian, Parasto; Ehsanbakhsh, Hossein; Rezaeidian, Jalal; Ebrahimi Rad, Reza; Madadi, Faranak; Andarva, Monavvar; Alehabib, Elham; Atakhorrami, Minoo; Mortazavi, Seyed Erfan; Azimzadeh, Zahra; Bayat, Mahdis; Besharati, Amir Mohammad; Harati-Ghavi, Mohammad Ali; Omidvari, Samareh; Dehghani-Tafti, Zahra; Mohammadi, Faraz; Mohammad Hossein Pour, Banafsheh; Noorollahi Moghaddam, Hamid; Esmaili Shandiz, Ehsan; Habibi, Arman; Taherian-Esfahani, Zahra; Darvish, Hossein; Paisán-Ruiz, Coro

    2018-04-01

    In this study, the role of known Parkinson's disease (PD) genes was examined in families with autosomal recessive (AR) parkinsonism to assist with the differential diagnosis of PD. Some families without mutations in known genes were also subject to whole genome sequencing with the objective to identify novel parkinsonism-related genes. Families were selected from 4000 clinical files of patients with PD or parkinsonism. AR inheritance pattern, consanguinity, and a minimum of two affected individuals per family were used as inclusion criteria. For disease gene/mutation identification, multiplex ligation-dependent probe amplification, quantitative PCR, linkage, and Sanger and whole genome sequencing assays were carried out. A total of 116 patients (50 families) were examined. Fifty-four patients (46.55%; 22 families) were found to carry pathogenic mutations in known genes while a novel gene, not previously associated with parkinsonism, was found mutated in a single family (2 patients). Pathogenic mutations, including missense, nonsense, frameshift, and exon rearrangements, were found in Parkin, PINK1, DJ-1, SYNJ1, and VAC14 genes. In conclusion, variable phenotypic expressivity was seen across all families.

  19. Choline transporter mutations in severe congenital myasthenic syndrome disrupt transporter localization.

    Science.gov (United States)

    Wang, Haicui; Salter, Claire G; Refai, Osama; Hardy, Holly; Barwick, Katy E S; Akpulat, Ugur; Kvarnung, Malin; Chioza, Barry A; Harlalka, Gaurav; Taylan, Fulya; Sejersen, Thomas; Wright, Jane; Zimmerman, Holly H; Karakaya, Mert; Stüve, Burkhardt; Weis, Joachim; Schara, Ulrike; Russell, Mark A; Abdul-Rahman, Omar A; Chilton, John; Blakely, Randy D; Baple, Emma L; Cirak, Sebahattin; Crosby, Andrew H

    2017-11-01

    The presynaptic, high-affinity choline transporter is a critical determinant of signalling by the neurotransmitter acetylcholine at both central and peripheral cholinergic synapses, including the neuromuscular junction. Here we describe an autosomal recessive presynaptic congenital myasthenic syndrome presenting with a broad clinical phenotype due to homozygous choline transporter missense mutations. The clinical phenotype ranges from the classical presentation of a congenital myasthenic syndrome in one patient (p.Pro210Leu), to severe neurodevelopmental delay with brain atrophy (p.Ser94Arg) and extend the clinical outcomes to a more severe spectrum with infantile lethality (p.Val112Glu). Cells transfected with mutant transporter construct revealed a virtually complete loss of transport activity that was paralleled by a reduction in transporter cell surface expression. Consistent with these findings, studies to determine the impact of gene mutations on the trafficking of the Caenorhabditis elegans choline transporter orthologue revealed deficits in transporter export to axons and nerve terminals. These findings contrast with our previous findings in autosomal dominant distal hereditary motor neuropathy of a dominant-negative frameshift mutation at the C-terminus of choline transporter that was associated with significantly reduced, but not completely abrogated choline transporter function. Together our findings define divergent neuropathological outcomes arising from different classes of choline transporter mutation with distinct disease processes and modes of inheritance. These findings underscore the essential role played by the choline transporter in sustaining acetylcholine neurotransmission at both central and neuromuscular synapses, with important implications for treatment and drug selection. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Blepharophimosis-mental retardation (BMR) syndromes: A proposed clinical classification of the so-called Ohdo syndrome, and delineation of two new BMR syndromes, one X-linked and one autosomal recessive.

    Science.gov (United States)

    Verloes, Alain; Bremond-Gignac, Dominique; Isidor, Bertrand; David, Albert; Baumann, Clarisse; Leroy, Marie-Anne; Stevens, René; Gillerot, Yves; Héron, Delphine; Héron, Bénédicte; Benzacken, Brigitte; Lacombe, Didier; Brunner, Han; Bitoun, Pierre

    2006-06-15

    We report on 11 patients from 8 families with a blepharophimosis and mental retardation syndrome (BMRS) phenotype. Using current nosology, five sporadic patients have Ohdo syndrome, associated with congenital hypothyroidism in two of them (thus also compatible with a diagnosis of Young-Simpson syndrome). In two affected sibs with milder phenotype, compensated hypothyroidism was demonstrated. In another family, an affected boy was born to the unaffected sister of a previously reported patient. Finally, in the last sibship, two affected boys in addition had severe microcephaly and neurological anomalies. A definitive clinical and etiologic classification of BMRS is lacking, but closer phenotypic analysis should lead to a more useful appraisal of the BMRS phenotype. We suggest discontinuing the systematic use of the term "Ohdo syndrome" when referring to patients with BMRS. We propose a classification of BMRS into five groups: (1) del(3p) syndrome, (possibly overlooked in older reports); (2) BMRS, Ohdo type, limited to the original patients of Ohdo; (3) BMRS SBBYS (Say-Barber/Biesecker/Young-Simpson) type, with distinctive dysmorphic features and inconstant anomalies including heart defect, optic atrophy, deafness, hypoplastic teeth, cleft palate, joint limitations, and hypothyroidism. BMRS type SBBYS is probably an etiologically heterogeneous phenotype, as AD and apparently AR forms exist; (4) BMRS, MKB (Maat-Kievit-Brunner) type, with coarse, triangular face, which is probably sex-linked; (5) BMRS V (Verloes) type, a probable new type with severe microcephaly, hypsarrhythmia, adducted thumbs, cleft palate, and abnormal genitalia, which is likely autosomal recessive. Types MKB and V are newly described here. Copyright 2006 Wiley-Liss, Inc.

  1. Congenital dilatation of the large and segmental intrahepatic bile ducts (Caroli's disease in two Golden retriever littermates : clinical communication

    Directory of Open Access Journals (Sweden)

    R.D. Last

    2006-06-01

    Full Text Available Two, sibling, male Golden retriever puppies, 13 weeks of age, were presented with congenital biliary cysts of the liver involving both hepatic and segmental bile ducts, as well as bilateral polycystic kidney disease. Ultrasonography of the livers of both pups demonstrated segmental cystic lesions that were contiguous with the bile ducts. Histopathology revealed cystic ectatic bile duct hyperplasia and dysplasia with variable portal fibrosis in the liver, while in the kidneys there were radially arranged, cylindrically dilated cysts of the collecting ducts, which extended through the medulla and cortex. This pathology was compatible with that of congenital dilatation of the large and segmental bile ducts (Caroli's disease described in humans, dogs and rats. In humans Caroli's disease has an autosomal recessive inheritance pattern, while in rats activation of the MEK5/ERK cascade initiates the biliary dysgenesis of Caroli's disease in this species. However, the exact mode of inheritance and pathogenesis of Caroli's disease in dogs is as yet unknown. Previous reports on congenital hepatic cystic diseases of the dog have described Caroli's disease like lesions in various breeds, but these are believed to be the 1st reported cases in the Golden retriever breed.

  2. The neuropathology of hereditary congenital facial palsy vs Mobius syndrome.

    NARCIS (Netherlands)

    Verzijl, H.T.F.M.; Zwaag, B. van der; Lammens, M.M.Y.; Donkelaar, H.J. ten; Padberg, G.W.A.M.

    2005-01-01

    OBJECTIVE: To characterize the neuropathology of hereditary congenital facial palsy. METHODS: The authors compared brainstem pathology of three members of one family with autosomal dominant congenital facial palsy to that in three age-matched controls. The neuropathologic findings of the familial

  3. Meier-Gorlin syndrome Clinical genetics and genomics

    NARCIS (Netherlands)

    S. de Munnik (Sonja); E.H. Hoefsloot (Lies); J. Roukema (Jolt); J. Schoots (Jeroen); N.V.A.M. Knoers (Nine); H.G. Brunner; A.P. Jackson (Andrew); E. Bongers (Ernie)

    2015-01-01

    textabstractMeier-Gorlin syndrome (MGS) is a rare autosomal recessive primordial dwarfism disorder, characterized by microtia, patellar applasia/hypoplasia, and a proportionate short stature. Associated clinical features encompass feeding problems, congenital pulmonary emphysema, mammary hypoplasia

  4. EYS Mutations Causing Autosomal Recessive Retinitis Pigmentosa: Changes of Retinal Structure and Function with Disease Progression

    Directory of Open Access Journals (Sweden)

    David B. McGuigan

    2017-07-01

    Full Text Available Mutations in the EYS (eyes shut homolog gene are a common cause of autosomal recessive (ar retinitis pigmentosa (RP. Without a mammalian model of human EYS disease, there is limited understanding of details of disease expression and rates of progression of the retinal degeneration. We studied clinically and with chromatic static perimetry, spectral-domain optical coherence tomography (OCT, and en face autofluoresence imaging, a cohort of 15 patients (ages 12–51 at first visit, some of whom had longitudinal data of function and structure. Rod sensitivity was able to be measured by chromatic perimetry in most patients at their earliest visits and some patients retained patchy rod function into the fifth decade of life. As expected from RP, cone sensitivity persisted after rod function was no longer measurable. The photoreceptor nuclear layer of the central retina was abnormal except at the fovea in most patients at first visit. Perifoveal disease measured over a period of years indicated that photoreceptor structural loss was followed by dysmorphology of the inner retina and loss of retinal pigment epithelial integrity. Although there could be variability in severity, preliminary analyses of the rates of vision loss suggested that EYS is a more rapidly progressive disease than other ciliopathies causing arRP, such as USH2A and MAK.

  5. Whole exome analysis identifies frequent CNGA1 mutations in Japanese population with autosomal recessive retinitis pigmentosa.

    Directory of Open Access Journals (Sweden)

    Satoshi Katagiri

    Full Text Available OBJECTIVE: The purpose of this study was to investigate frequent disease-causing gene mutations in autosomal recessive retinitis pigmentosa (arRP in the Japanese population. METHODS: In total, 99 Japanese patients with non-syndromic and unrelated arRP or sporadic RP (spRP were recruited in this study and ophthalmic examinations were conducted for the diagnosis of RP. Among these patients, whole exome sequencing analysis of 30 RP patients and direct sequencing screening of all CNGA1 exons of the other 69 RP patients were performed. RESULTS: Whole exome sequencing of 30 arRP/spRP patients identified disease-causing gene mutations of CNGA1 (four patients, EYS (three patients and SAG (one patient in eight patients and potential disease-causing gene variants of USH2A (two patients, EYS (one patient, TULP1 (one patient and C2orf71 (one patient in five patients. Screening of an additional 69 arRP/spRP patients for the CNGA1 gene mutation revealed one patient with a homozygous mutation. CONCLUSIONS: This is the first identification of CNGA1 mutations in arRP Japanese patients. The frequency of CNGA1 gene mutation was 5.1% (5/99 patients. CNGA1 mutations are one of the most frequent arRP-causing mutations in Japanese patients.

  6. An Expanded Multi-Organ Disease Phenotype Associated with Mutations in YARS

    DEFF Research Database (Denmark)

    Tracewska-Siemiątkowska, Anna; Haer-Wigman, Lonneke; Bosch, Danielle G M

    2017-01-01

    Whole exome sequence analysis was performed in a Swedish mother-father-affected proband trio with a phenotype characterized by progressive retinal degeneration with congenital nystagmus, profound congenital hearing impairment, primary amenorrhea, agenesis of the corpus callosum, and liver disease....... A homozygous variant c.806T > C, p.(F269S) in the tyrosyl-tRNA synthetase gene (YARS) was the only identified candidate variant consistent with autosomal recessive inheritance. Mutations in YARS have previously been associated with both autosomal dominant Charcot-Marie-Tooth syndrome and a recently reported...

  7. Distribution of skeletal muscle involvement in autosomal recessive distal muscular dystrophy. A clinical and computed tomographic study

    Energy Technology Data Exchange (ETDEWEB)

    Mizusawa, Hidehiro; Nakanishi, Takao; Kobayashi, Fumie

    1987-02-01

    Distribution of skeletal muscle involvement in 5 cases with autosomal recessive distal muscular dystrophy was studied clinically and by computed tomography (CT). Manual muscle test showed muscle involvement with a predilection for flexors in the lower leg and adductors in the thigh. Flexion and extension of the thigh and the lower leg was impaired to similar degree. In progressed cases, neck flexors and trunk muscles were also affected mildly. CT disclosed more clearly the preferential involvement of flexors in the lower leg, and involvement of both hamstrings center dot adductors group and extensors group of the thigh to similar degree. However, m. popliteus was curiously well preserved. In addition, there was a stage showing high density and hypertrophy of m. sartorius, m. gracilis, m. adductor, m. biceps femoris, m. semimenbranosus, m. semitendinosus or m. rectus femoris, which in thought to be compensatory hypertrophy. M. gluteus minimus in the pelvic girdle and m. dorsi proprii in the trunk were also liable to be affected. The CT findings are regarded as characteristic features noted clearly before muscle weakness and atrophy become apparent clinically. CT is very useful for distinguishing distal muscular dystrophy from rimmed vacuolar distal myopathy in which m. quadriceps femoris and flexors of the lower leg are usually well preserved without compensatory hypertrophy on CT.

  8. Meier-Gorlin syndrome Clinical genetics and genomics

    NARCIS (Netherlands)

    De Munnik, Sonja A.; Hoefsloot, Elisabeth H.; Roukema, Jolt; Schoots, Jeroen; Knoers, Nine Vam; Brunner, Han G.; Jackson, Andrew P.; Bongers, Ernie Mhf

    2015-01-01

    Meier-Gorlin syndrome (MGS) is a rare autosomal recessive primordial dwarfism disorder, characterized by microtia, patellar applasia/hypoplasia, and a proportionate short stature. Associated clinical features encompass feeding problems, congenital pulmonary emphysema, mammary hypoplasia in females

  9. Meier-Gorlin syndrome

    NARCIS (Netherlands)

    Munnik, S.A. de; Hoefsloot, E.H.; Roukema, J.; Schoots, J.; Knoers, N.V.A.M.; Brunner, H.G.; Jackson, A.P.; Bongers, E.M.H.F.

    2015-01-01

    Meier-Gorlin syndrome (MGS) is a rare autosomal recessive primordial dwarfism disorder, characterized by microtia, patellar applasia/hypoplasia, and a proportionate short stature. Associated clinical features encompass feeding problems, congenital pulmonary emphysema, mammary hypoplasia in females

  10. A defect in the TUSC3 gene is associated with autosomal recessive mental retardation.

    Science.gov (United States)

    Garshasbi, Masoud; Hadavi, Valeh; Habibi, Haleh; Kahrizi, Kimia; Kariminejad, Roxana; Behjati, Farkhondeh; Tzschach, Andreas; Najmabadi, Hossein; Ropers, Hans Hilger; Kuss, Andreas Walter

    2008-05-01

    Recent studies have shown that autosomal recessive mental retardation (ARMR) is extremely heterogeneous, and there is reason to believe that the number of underlying gene defects goes into the thousands. To date, however, only four genes have been implicated in nonsyndromic ARMR (NS-ARMR): PRSS12 (neurotrypsin), CRBN (cereblon), CC2D1A, and GRIK2. As part of an ongoing systematic study aiming to identify ARMR genes, we investigated a large consanguineous family comprising seven patients with nonsyndromic ARMR in four sibships. Genome-wide SNP typing enabled us to map the relevant genetic defect to a 4.6 Mbp interval on chromosome 8. Haplotype analyses and copy-number studies led to the identification of a homozygous deletion partly removing TUSC3 (N33) in all patients. All obligate carriers of this family were heterozygous, but none of 192 unrelated healthy individuals from the same population carried this deletion. We excluded other disease-causing mutations in the coding regions of all genes within the linkage interval by sequencing; moreover, we verified the complete absence of a functional TUSC3 transcript in all patients through RT-PCR. TUSC3 is thought to encode a subunit of the endoplasmic reticulum-bound oligosaccharyltransferase complex that catalyzes a pivotal step in the protein N-glycosylation process. Our data suggest that in contrast to other genetic defects of glycosylation, inactivation of TUSC3 causes nonsyndromic MR, a conclusion that is supported by a separate report in this issue of AJHG. TUSC3 is only the fifth gene implicated in NS-ARMR and the first for which mutations have been reported in more than one family.

  11. Fraser syndrome

    DEFF Research Database (Denmark)

    Barisic, Ingeborg; Odak, Ljubica; Loane, Maria

    2013-01-01

    Fraser syndrome is a rare autosomal recessive disorder characterized by cryptophthalmos, cutaneous syndactyly, laryngeal, and urogenital malformations. We present a population-based epidemiological study using data provided by the European Surveillance of Congenital Anomalies (EUROCAT) network of...

  12. Glycine and Folate Ameliorate Models of Congenital Sideroblastic Anemia.

    Directory of Open Access Journals (Sweden)

    J Pedro Fernández-Murray

    2016-01-01

    Full Text Available Sideroblastic anemias are acquired or inherited anemias that result in a decreased ability to synthesize hemoglobin in red blood cells and result in the presence of iron deposits in the mitochondria of red blood cell precursors. A common subtype of congenital sideroblastic anemia is due to autosomal recessive mutations in the SLC25A38 gene. The current treatment for SLC25A38 congenital sideroblastic anemia is chronic blood transfusion coupled with iron chelation. The function of SLC25A38 is not known. Here we report that the SLC25A38 protein, and its yeast homolog Hem25, are mitochondrial glycine transporters required for the initiation of heme synthesis. To do so, we took advantage of the fact that mitochondrial glycine has several roles beyond the synthesis of heme, including the synthesis of folate derivatives through the glycine cleavage system. The data were consistent with Hem25 not being the sole mitochondrial glycine importer, and we identify a second SLC25 family member Ymc1, as a potential secondary mitochondrial glycine importer. Based on these findings, we observed that high levels of exogenous glycine, or 5-aminolevulinic acid (5-Ala a metabolite downstream of Hem25 in heme biosynthetic pathway, were able to restore heme levels to normal in yeast cells lacking Hem25 function. While neither glycine nor 5-Ala could ameliorate SLC25A38 congenital sideroblastic anemia in a zebrafish model, we determined that the addition of folate with glycine was able to restore hemoglobin levels. This difference is likely due to the fact that yeast can synthesize folate, whereas in zebrafish folate is an essential vitamin that must be obtained exogenously. Given the tolerability of glycine and folate in humans, this study points to a potential novel treatment for SLC25A38 congenital sideroblastic anemia.

  13. Ny klassifikation og molekylærgenetisk viden om arvelig iktyose

    DEFF Research Database (Denmark)

    Andersen, Rikke Elkjær; Hertz, Jens Michael; Bygum, Anette

    2014-01-01

    A new classification of inherited ichthyoses is presented based on clinical features, genetic background and pathophysiology. Ichthyoses are disorders of cornification and may be part of syndromes. Ichthyosis vulgaris, X-linked ichthyosis, autosomal recessive congenital ichthyosis and syndrome...

  14. Autosomal recessive spastic paraplegia (SPG30) with mild ataxia and sensory neuropathy maps to chromosome 2q37.3.

    Science.gov (United States)

    Klebe, Stephan; Azzedine, Hamid; Durr, Alexandra; Bastien, Patrick; Bouslam, Naima; Elleuch, Nizar; Forlani, Sylvie; Charon, Celine; Koenig, Michel; Melki, Judith; Brice, Alexis; Stevanin, Giovanni

    2006-06-01

    The hereditary spastic paraplegias (HSPs) are a clinically and genetically heterogeneous group of neurodegenerative diseases characterized by progressive spasticity in the lower limbs. Twenty-nine different loci (SPG) have been mapped so far, and 11 responsible genes have been identified. Clinically, one distinguishes between pure and complex HSP forms which are variably associated with numerous combinations of neurological and extra-neurological signs. Less is known about autosomal recessive forms (ARHSP) since the mapped loci have been identified often in single families and account for only a small percentage of patients. We report a new ARHSP locus (SPG30) on chromosome 2q37.3 in a consanguineous family with seven unaffected and four affected members of Algerian origin living in Eastern France with a significant multipoint lod score of 3.8. Ten other families from France (n = 4), Tunisia (n = 2), Algeria (n = 3) and the Czech Republic (n = 1) were not linked to the newly identified locus thus demonstrating further genetic heterogeneity. The phenotype of the linked family consists of spastic paraparesis and peripheral neuropathy associated with slight cerebellar signs confirmed by cerebellar atrophy on one CT scan.

  15. Novel Lethal Form of Congenital Hypopituitarism Associated With the First Recessive LHX4 Mutation

    Science.gov (United States)

    Gregory, L. C.; Humayun, K. N.; Turton, J. P. G.; McCabe, M. J.; Rhodes, S. J.

    2015-01-01

    Background: LHX4 encodes a member of the LIM-homeodomain family of transcription factors that is required for normal development of the pituitary gland. To date, only incompletely penetrant heterozygous mutations in LHX4 have been described in patients with variable combined pituitary hormone deficiencies. Objective/Hypothesis: To report a unique family with a novel recessive variant in LHX4 associated with a lethal form of congenital hypopituitarism that was identified through screening a total of 97 patients. Method: We screened 97 unrelated patients with combined pituitary hormone deficiency, including 65% with an ectopic posterior pituitary, for variants in the LHX4 gene using Sanger sequencing. Control databases (1000 Genomes, dbSNP, Exome Variant Server, ExAC Browser) were consulted upon identification of variants. Results: We identified the first novel homozygous missense variant (c.377C>T, p.T126M) in two deceased male patients of Pakistani origin with severe panhypopituitarism associated with anterior pituitary aplasia and posterior pituitary ectopia. Both were born small for gestational age with a small phallus, undescended testes, and mid-facial hypoplasia. The parents' first-born child was a female with mid-facial hypoplasia (DNA was unavailable). Despite rapid commencement of hydrocortisone and T4 in the brothers, all three children died within the first week of life. The LHX4(p.T126M) variant is located within the LIM2 domain, in a highly conserved location. The absence of homozygosity for the variant in over 65 000 controls suggests that it is likely to be responsible for the phenotype. Conclusion: We report, for the first time to our knowledge, a novel homozygous mutation in LHX4 associated with a lethal phenotype, implying that recessive mutations in LHX4 may be incompatible with life. PMID:25871839

  16. Unraveling the genetic landscape of autosomal recessive Charcot-Marie-Tooth neuropathies using a homozygosity mapping approach

    Science.gov (United States)

    Zimoń, Magdalena; Battaloǧlu, Esra; Parman, Yesim; Erdem, Sevim; Baets, Jonathan; De Vriendt, Els; Atkinson, Derek; Almeida-Souza, Leonardo; Deconinck, Tine; Ozes, Burcak; Goossens, Dirk; Cirak, Sebahattin; Van Damme, Philip; Shboul, Mohammad; Voit, Thomas; Van Maldergem, Lionel; Dan, Bernard; El-Khateeb, Mohammed S.; Guergueltcheva, Velina; Lopez-Laso, Eduardo; Goemans, Nathalie; Masri, Amira; Züchner, Stephan; Timmerman, Vincent; Topaloǧlu, Haluk; De Jonghe, Peter

    2016-01-01

    Autosomal recessive forms of Charcot-Marie-Tooth disease (ARCMT) are rare but severe disorders of the peripheral nervous system. Their molecular basis is poorly understood due to the extensive genetic and clinical heterogeneity, posing considerable challenges for patients, physicians, and researchers. We report on the genetic findings from a systematic study of a large collection of 174 independent ARCMT families. Initial sequencing of the three most common ARCMT genes (ganglioside-induced differentiation protein 1—GDAP1, SH3 domain and tetratricopeptide repeats-containing protein 2—SH3TC2, histidine-triad nucleotide binding protein 1—HINT1) identified pathogenic mutations in 41 patients. Subsequently, 87 selected nuclear families underwent single nucleotide polymorphism (SNP) genotyping and homozygosity mapping, followed by targeted screening of known ARCMT genes. This strategy provided molecular diagnosis to 22 % of the families. Altogether, our unbiased genetic approach identified pathogenic mutations in ten ARCMT genes in a total of 41.3 % patients. Apart from a newly described founder mutation in GDAP1, the majority of variants constitute private molecular defects. Since the gene testing was independent of the clinical phenotype of the patients, we identified mutations in patients with unusual or additional clinical features, extending the phenotypic spectrum of the SH3TC2 gene. Our study provides an overview of the ARCMT genetic landscape and proposes guidelines for tackling the genetic heterogeneity of this group of hereditary neuropathies. PMID:25231362

  17. Mutation in WNT10A is associated with an autosomal recessive ectodermal dysplasia: the odonto-onycho-dermal dysplasia.

    Science.gov (United States)

    Adaimy, Lynn; Chouery, Eliane; Megarbane, Hala; Mroueh, Salman; Delague, Valerie; Nicolas, Elsa; Belguith, Hanen; de Mazancourt, Philippe; Megarbane, Andre

    2007-10-01

    Odonto-onycho-dermal dysplasia is a rare autosomal recessive syndrome in which the presenting phenotype is dry hair, severe hypodontia, smooth tongue with marked reduction of fungiform and filiform papillae, onychodysplasia, keratoderma and hyperhidrosis of palms and soles, and hyperkeratosis of the skin. We studied three consanguineous Lebanese Muslim Shiite families that included six individuals affected with odonto-onycho-dermal dysplasia. Using a homozygosity-mapping strategy, we assigned the disease locus to an ~9-cM region at chromosome 2q35-q36.2, located between markers rs16853834 and D2S353, with a maximum multipoint LOD score of 5.7. Screening of candidate genes in this region led us to identify the same c.697G-->T (p.Glu233X) homozygous nonsense mutation in exon 3 of the WNT10A gene in all patients. At the protein level, the mutation is predicted to result in a premature truncated protein of 232 aa instead of 417 aa. This is the first report to our knowledge of a human phenotype resulting from a mutation in WNT10A, and it is the first demonstration of an ectodermal dysplasia caused by an altered WNT signaling pathway, expanding the list of WNT-related diseases.

  18. Mutations in the ABCA4 (ABCR) gene are the major cause of autosomal recessive cone-rod dystrophy.

    Science.gov (United States)

    Maugeri, A; Klevering, B J; Rohrschneider, K; Blankenagel, A; Brunner, H G; Deutman, A F; Hoyng, C B; Cremers, F P

    2000-10-01

    The photoreceptor cell-specific ATP-binding cassette transporter gene (ABCA4; previously denoted "ABCR") is mutated, in most patients, with autosomal recessive (AR) Stargardt disease (STGD1) or fundus flavimaculatus (FFM). In addition, a few cases with AR retinitis pigmentosa (RP) and AR cone-rod dystrophy (CRD) have been found to have ABCA4 mutations. To evaluate the importance of the ABCA4 gene as a cause of AR CRD, we selected 5 patients with AR CRD and 15 patients from Germany and The Netherlands with isolated CRD. Single-strand conformation-polymorphism analysis and sequencing revealed 19 ABCA4 mutations in 13 (65%) of 20 patients. In six patients, mutations were identified in both ABCA4 alleles; in seven patients, mutations were detected in one allele. One complex ABCA4 allele (L541P;A1038V) was found exclusively in German patients with CRD; one patient carried this complex allele homozygously, and five others were compound heterozygous. These findings suggest that mutations in the ABCA4 gene are the major cause of AR CRD. A primary role of the ABCA4 gene in STGD1/FFM and AR CRD, together with the gene's involvement in an as-yet-unknown proportion of cases with AR RP, strengthens the idea that mutations in the ABCA4 gene could be the most frequent cause of inherited retinal dystrophy in humans.

  19. Clinical and Molecular Investigations Into Ciliopathies

    Science.gov (United States)

    2018-03-27

    Autosomal Recessive Polycystic Kidney Disease; Congenital Hepatic Fibrosis; Caroli's Disease; Polycystic Kidney Disease; Joubert Syndrome; Cerebro-Oculo-Renal Syndromes; COACH Syndrome; Senior-Loken Syndrome; Dekaban-Arima Syndrome; Cogan Oculomotor Apraxia; Nephronophthisis; Bardet-Biedl Syndrome; Alstrom Syndrome; Oral-Facial-Digital Syndrome

  20. Astrocytes produce interferon-alpha and CXCL10, but not IL-6 or CXCL8, in Aicardi-Goutières syndrome

    NARCIS (Netherlands)

    van Heteren, Jane T.; Rozenberg, Flore; Aronica, Eleonora; Troost, Dirk; Lebon, Pierre; Kuijpers, Taco W.

    2008-01-01

    Aicardi-Goutières syndrome (AGS) presents as a severe autosomal recessively inherited neurological brain disease. Clinical and neurological manifestations closely resemble those of congenital viral infection and are generally attributed to a perturbation of innate immunity including a long lasting

  1. Linkage analysis in a Dutch family with X-linked recessive congenital stationary night blindness (XL-CSNB).

    Science.gov (United States)

    Berger, W; van Duijnhoven, G; Pinckers, A; Smits, A; Ropers, H H; Cremers, F

    1995-01-01

    Linkage analysis has been performed in a large Dutch pedigree with X-linked recessive congenital stationary night blindness (CSNB) by utilizing 16 DNA markers from the proximal short arm of the human X chromosome (Xp21.1-11.2). Thirteen polymorphic markers are at least partially informative and have enabled pairwise and multipoint linkage analysis. For three loci, i.e. DXS228, the monoamine oxidase B gene and the Norrie disease gene (NDG), multipoint linkage studies have yielded maximum lod scores of > 3.0 at a recombination fraction of zero. Analysis of recombination events has enabled us to rule out the possibility that the underlying defect in this family is allelic to RP3; the gene defect could also be excluded from the proximal part of the region known to carry RP2. Linkage data are consistent with a possible involvement of the NDG but mutations in the open reading frame of this gene have not been found.

  2. A mutation in KIF7 is responsible for the autosomal recessive syndrome of macrocephaly, multiple epiphyseal dysplasia and distinctive facial appearance

    Directory of Open Access Journals (Sweden)

    Ali Bassam R

    2012-05-01

    Full Text Available Abstract Background We previously reported the existence of a unique autosomal recessive syndrome consisting of macrocephaly, multiple epiphyseal dysplasia and distinctive facial appearance mapping to chromosome 15q26. Methods In this manuscript, we have used whole exome sequencing on two affected members of a consanguineous family with this condition and carried out detailed bioinformatics analysis to elucidate the causative mutation. Results Our analysis resulted in the identification of a homozygous p.N1060S missense mutation in a highly conserved residue in KIF7, a regulator of Hedgehog signaling that has been recently found to be causing Joubert syndrome, fetal hydrolethalus and acrocallosal syndromes. The phenotype in our patients partially overlaps with the phenotypes associated with those syndromes but they also exhibit some distinctive features including multiple epiphyseal dysplasia. Conclusions We report the first missense homozygous disease-causing mutation in KIF7 and expand the clinical spectrum associated with mutations in this gene to include multiple epiphyseal dysplasia. The missense nature of the mutation might account for the unique presentation in our patients.

  3. Molecular profiling of complete congenital stationary night blindness: a pilot study on an Indian cohort.

    Science.gov (United States)

    Malaichamy, Sivasankar; Sen, Parveen; Sachidanandam, Ramya; Arokiasamy, Tharigopala; Lancelot, Marie Elise; Audo, Isabelle; Zeitz, Christina; Soumittra, Nagasamy

    2014-01-01

    Congenital stationary night blindness (CSNB) is a non-progressive retinal disorder that shows genetic and clinical heterogeneity. CSNB is inherited as an autosomal recessive, autosomal dominant, or X-linked recessive trait and shows a good genotype-phenotype correlation. Clinically, CSNB is classified as the Riggs type and the Schubert-Bornschein type. The latter form is further sub-classified into complete and incomplete forms based on specific waveforms on the electroretinogram (ERG). There are no molecular genetic data for CSNB in the Indian population. Therefore, we present for the first time molecular profiling of eight families with complete CSNB (cCSNB). The index patients and their other affected family members were comprehensively evaluated for the phenotype, including complete ophthalmic evaluation, ERG, fundus autofluorescence, optical coherence tomography, and color vision test. The known gene defects for cCSNB, LRIT3, TRPM1, GRM6, GPR179, and NYX, were screened by PCR direct sequencing. Bioinformatic analyses were performed using SIFT and PolyPhen for the identified missense mutations. All eight affected index patients and affected family members were identified as having cCSNB based on their ERG waveforms. Mutations in the TRPM1 gene were identified in six index patients. The two remaining index patients each carried a GPR179 and GRM6 mutation. Seven of the patients revealed homozygous mutations, while one patient showed a compound heterozygous mutation. Six of the eight mutations identified are novel. This is the first report on molecular profiling of candidate genes in CSNB in an Indian cohort. As shown for other cohorts, TRPM1 seems to be a major gene defect in patients with cCSNB in India.

  4. Pituitary dwarfism in Saarloos and Czechoslovakian wolfdogs is associated with a mutation in LHX3

    NARCIS (Netherlands)

    Voorbij, AMWY; Leegwater, Peter; Kooistra, Hans

    2014-01-01

    Background Pituitary dwarfism in German Shepherd Dogs is associated with autosomal recessive inheritance and a mutation in LHX3, resulting in combined pituitary hormone deficiency. Congenital dwarfism also is encountered in breeds related to German Shepherd Dogs, such as Saarloos and Czechoslovakian

  5. Efficacy of anti-IL-1 treatment in Majeed syndrome

    DEFF Research Database (Denmark)

    Herlin, Troels; Fiirgaard, Bente; Bjerre, Mette

    2013-01-01

    Majeed syndrome is an autosomal recessive disorder characterised by the triad of chronic recurrent multifocal osteomyelitis, congenital dyserythropoietic anaemia and a neutrophilic dermatosis that is caused by mutations in LPIN2. Long-term outcome is poor. This is the first report detailing...

  6. Four siblings with distal renal tubular acidosis and nephrocalcinosis, neurobehavioral impairment, short stature, and distinctive facial appearance: a possible new autosomal recessive syndrome.

    Science.gov (United States)

    Faqeih, Eissa; Al-Akash, Samhar I; Sakati, Nadia; Teebi, Prof Ahmad S

    2007-09-01

    We report on four siblings (three males, one female) born to first cousin Arab parents with the constellation of distal renal tubular acidosis (RTA), small kidneys, nephrocalcinosis, neurobehavioral impairment, short stature, and distinctive facial features. They presented with early developmental delay with subsequent severe mental, behavioral and social impairment and autistic-like features. Their facial features are unique with prominent cheeks, well-defined philtrum, large bulbous nose, V-shaped upper lip border, full lower lip, open mouth with protruded tongue, and pits on the ear lobule. All had proteinuria, hypercalciuria, hypercalcemia, and normal anion-gap metabolic acidosis. Renal ultrasound examinations revealed small kidneys, with varying degrees of hyperechogenicity and nephrocalcinosis. Additional findings included dilated ventricles and cerebral demyelination on brain imaging studies. Other than distal RTA, common causes of nephrocalcinosis were excluded. The constellation of features in this family currently likely represents a possibly new autosomal recessive syndrome providing further evidence of heterogeneity of nephrocalcinosis syndromes. Copyright 2007 Wiley-Liss, Inc.

  7. Autosomal recessive atrial dilated cardiomyopathy with standstill evolution associated with mutation of Natriuretic Peptide Precursor A.

    Science.gov (United States)

    Disertori, Marcello; Quintarelli, Silvia; Grasso, Maurizia; Pilotto, Andrea; Narula, Nupoor; Favalli, Valentina; Canclini, Camilla; Diegoli, Marta; Mazzola, Silvia; Marini, Massimiliano; Del Greco, Maurizio; Bonmassari, Roberto; Masè, Michela; Ravelli, Flavia; Specchia, Claudia; Arbustini, Eloisa

    2013-02-01

    Atrial dilatation and atrial standstill are etiologically heterogeneous phenotypes with poorly defined nosology. In 1983, we described 8-years follow-up of atrial dilatation with standstill evolution in 8 patients from 3 families. We later identified 5 additional patients with identical phenotypes: 1 member of the largest original family and 4 unrelated to the 3 original families. All families are from the same geographic area in Northeast Italy. We followed up the 13 patients for up to 37 years, extended the clinical investigation and monitoring to living relatives, and investigated the genetic basis of the disease. The disease was characterized by: (1) clinical onset in adulthood; (2) biatrial dilatation up to giant size; (3) early supraventricular arrhythmias with progressive loss of atrial electric activity to atrial standstill; (4) thromboembolic complications; and (5) stable, normal left ventricular function and New York Heart Association functional class during the long-term course of the disease. By linkage analysis, we mapped a locus at 1p36.22 containing the Natriuretic Peptide Precursor A gene. By sequencing Natriuretic Peptide Precursor A, we identified a homozygous missense mutation (p.Arg150Gln) in all living affected individuals of the 6 families. All patients showed low serum levels of atrial natriuretic peptide. Heterozygous mutation carriers were healthy and demonstrated normal levels of atrial natriuretic peptide. Autosomal recessive atrial dilated cardiomyopathy is a rare disease associated with homozygous mutation of the Natriuretic Peptide Precursor A gene and characterized by extreme atrial dilatation with standstill evolution, thromboembolic risk, preserved left ventricular function, and severely decreased levels of atrial natriuretic peptide.

  8. Neonatal screening and a new cause of congenital central hypothyroidism

    Directory of Open Access Journals (Sweden)

    Toshihiro Tajima

    2014-09-01

    Full Text Available Congenital central hypothyroidism (C-CH is a rare disease in which thyroid hormone deficiency is caused by insufficient thyrotropin (TSH stimulation of a normally-located thyroid gland. Most patients with C-CH have low free thyroxine levels and inappropriately low or normal TSH levels, although a few have slightly elevated TSH levels. Autosomal recessive TSH deficiency and thyrotropin-releasing hormone receptor-inactivating mutations are known to be genetic causes of C-CH presenting in the absence of other syndromes. Recently, deficiency of the immunoglobulin superfamily member 1 (IGSF1 has also been demonstrated to cause C-CH. IGSF1 is a plasma membrane glycoprotein highly expressed in the pituitary. Its physiological role in humans remains unknown. IGSF1 deficiency causes TSH deficiency, leading to hypothyroidism. In addition, approximately 60% of patients also suffer a prolactin deficiency. Moreover, macroorchidism and delayed puberty are characteristic features. Thus, although the precise pathophysiology of IGSF1 deficiency is not established, IGSF1 is considered to be a new factor controlling growth and puberty in children.

  9. [Spontaneous models of human diseases in dogs: ichthyoses as an example].

    Science.gov (United States)

    André, Catherine; Grall, Anaïs; Guaguere, Éric; Thomas, Anne; Galibert, Francis

    2013-06-01

    Ichthyoses encompass a heterogeneous group of genodermatoses characterized by abnormal desquamation over the entire body due to defects of the terminal differentiation of keratinocytes and desquamation, which occur in the upper layer of the epidermis. Even though in humans more than 40 genes have already been identified, the genetic causes of several forms remain unknown and are difficult to identify in Humans. Strikingly, several purebred dogs are also affected by specific forms of ichthyoses. In the Golden retriever dog breed, an autosomal recessive form of ichthyosis, resembling human autosomal recessive congenital ichthyoses, has recently been diagnosed with a high incidence. We first characterized the disease occurring in the golden retriever breed and collected cases and controls. A genome-wide association study on 40 unrelated Golden retriever dogs, using the canine 49.000 SNPs (single nucleotide polymorphisms) array (Affymetrix v2), followed by statistical analyses and candidate gene sequencing, allowed to identify the causal mutation in the lipase coding PNPLA1 gene (patatin-like phospholipase domain-containing protein). Screening for alterations in the human ortholog gene in 10 autosomal recessive congenital ichthyoses families, for which no genetic cause has been identified thus far, allowed to identify two recessive mutations in the PNPLA1 protein in two families. This collaborative work between "human" and "canine" geneticists, practicians, histopathologists, biochemists and electron microscopy experts not only allowed to identify, in humans, an eighth gene for autosomal recessive congenital ichthyoses, but also allowed to highlight the function of this as-yet-unknown skin specific lipase in the lipid metabolism of the skin barrier. For veterinary medicine and breeding practices, a genetic test has been developed. These findings illustrate the importance of the discovery of relevant human orthologous canine genetic diseases, whose causes can be tracked

  10. Autosomal recessive posterior column ataxia with retinitis pigmentosa caused by novel mutations in the FLVCR1 gene.

    Science.gov (United States)

    Shaibani, Aziz; Wong, Lee-Jun; Wei Zhang, Victor; Lewis, Richard Alan; Shinawi, Marwan

    2015-01-01

    Posterior column ataxia with retinitis pigmentosa (PCARP) is an autosomal recessive disorder characterized by severe sensory ataxia, muscle weakness and atrophy, and progressive pigmentary retinopathy. Recently, mutations in the FLVCR1 gene were described in four families with this condition. We investigated the molecular basis and studied the phenotype of PCARP in a new family. The proband is a 33-year-old woman presented with sensory polyneuropathy and retinitis pigmentosa (RP). The constellation of clinical findings with normal metabolic and genetic evaluation, including mitochondrial DNA (mtDNA) analysis and normal levels of phytanic acid and vitamin E, prompted us to seek other causes of our patient's condition. Sequencing of FLVCR1 in the proband and targeted mutation testing in her two affected siblings revealed two novel variants, c.1547G > A (p.R516Q) and c.1593+5_+8delGTAA predicted, respectively, to be highly conserved throughout evolution and affecting the normal splicing, therefore, deleterious. This study supports the pathogenic role of FLVCR1 in PCARP and expands the molecular and clinical spectra of PCARP. We show for the first time that nontransmembrane domain (TMD) mutations in the FLVCR1 can cause PCARP, suggesting different mechanisms for pathogenicity. Our clinical data reveal that impaired sensation can be part of the phenotypic spectrum of PCARP. This study along with previously reported cases suggests that targeted sequencing of the FLVCR1 gene should be considered in patients with severe sensory ataxia, RP, and peripheral sensory neuropathy.

  11. Preimplantation genetic diagnosis for a Chinese family with autosomal recessive Meckel-Gruber syndrome type 3 (MKS3.

    Directory of Open Access Journals (Sweden)

    Yanping Lu

    Full Text Available Meckel-Gruber syndrome type 3 is an autosomal recessive genetic defect caused by mutations in TMEM67 gene. In our previous study, we have identified a homozygous TMEM67 mutation in a Chinese family exhibiting clinical characteristics of MKS3, which provided a ground for further PGD procedure. Here we report the development and the first clinical application of the PGD for this MKS3 family. Molecular analysis protocol for clinical PGD procedure was established using 50 single cells in pre-clinical set-up. After whole genomic amplification by multiple displacement amplification with the DNA from single cells, three techniques were applied simultaneously to increase the accuracy and reliability of genetic diagnosis in single blastomere, including real-time PCR with Taq Man-MGB probe, haplotype analysis with polymorphic STR markers and Sanger sequencing. In the clinical PGD cycle, nine embryos at cleavage-stage were biopsied and subjected to genetic diagnosis. Two embryos diagnosed as free of TMEM67 mutation were transferred and one achieving normal pregnancy. Non-invasive prenatal assessment of trisomy 13, 18 and 21 by multiplex DNA sequencing at 18 weeks' gestation excluded the aneuploidy of the analyzed chromosomes. A healthy boy was delivered by cesarean section at 39 weeks' gestation. DNA sequencing from his cord blood confirmed the result of genetic analysis in the PGD cycle. The protocol developed in this study was proved to be rapid and safe for the detection of monogenic mutations in clinical PGD cycle.

  12. SLC3A1 and SLC7A9 mutations in autosomal recessive or dominant canine cystinuria: a new classification system.

    Science.gov (United States)

    Brons, A-K; Henthorn, P S; Raj, K; Fitzgerald, C A; Liu, J; Sewell, A C; Giger, U

    2013-01-01

    Cystinuria, one of the first recognized inborn errors of metabolism, has been reported in many dog breeds. To determine urinary cystine concentrations, inheritance, and mutations in the SLC3A1 and SLC7A9 genes associated with cystinuria in 3 breeds. Mixed and purebred Labrador Retrievers (n = 6), Australian Cattle Dogs (6), Miniature Pinschers (4), and 1 mixed breed dog with cystine urolithiasis, relatives and control dogs. Urinary cystinuria and aminoaciduria was assessed and exons of the SLC3A1 and SLC7A9 genes were sequenced from genomic DNA. In each breed, male and female dogs, independent of neuter status, were found to form calculi. A frameshift mutation in SLC3A1 (c.350delG) resulting in a premature stop codon was identified in autosomal-recessive (AR) cystinuria in Labrador Retrievers and mixed breed dogs. A 6 bp deletion (c.1095_1100del) removing 2 threonines in SLC3A1 was found in autosomal-dominant (AD) cystinuria with a more severe phenotype in homozygous than in heterozygous Australian Cattle Dogs. A missense mutation in SLC7A9 (c.964G>A) was discovered in AD cystinuria in Miniature Pinschers with only heterozygous affected dogs observed to date. Breed-specific DNA tests were developed, but the prevalence of each mutation remains unknown. These studies describe the first AD inheritance and the first putative SLC7A9 mutation to cause cystinuria in dogs and expand our understanding of this phenotypically and genetically heterogeneous disease, leading to a new classification system for canine cystinuria and better therapeutic management and genetic control in these breeds. Copyright © 2013 by the American College of Veterinary Internal Medicine.

  13. Congenital chloride diarrhea misdiagnosed as pseudo-Bartter syndrome.

    Science.gov (United States)

    Saneian, Hossein; Bahraminia, Emad

    2013-09-01

    Congenital chloride diarrhea (CCD) is a rare autosomal recessive disease which is characterized by intractable diarrhea of infancy, failure to thrive, high fecal chloride, hypochloremia, hypokalemia, hyponatremia and metabolic alkalosis. In this case report, we present the first female and the second official case of CCD in Iran. A 15-month-old girl referred to our hospital due to failure to thrive and poor feeding. She had normal kidneys, liver and spleen. Treating her with Shohl's solution, thiazide and zinc sulfate did not result in weight gain. Consequently, pseudo-Bartter syndrome was suspected, she was treated with intravenous (IV) therapy to which she responded dramatically. In addition, hypokalemia resolved quickly. Since this does not usually happen in patients with the pseudo-Bartter syndrome, stool tests were performed. Abnormal level of chloride in stool suggested CCD and she was thus treated with IV fluid replacement, Total parentral nutrition and high dose of oral omeprazole (3 mg/kg/day). She gained 1 kg of weight and is doing fine until present. CCD is a rare hereditary cause of intractable diarrhea of infancy. It should be considered in infants with unknown severe electrolyte disturbances.

  14. Anaesthesia management in a patient with a severe biotinidase deficiency for congenital scoliosis repair

    Directory of Open Access Journals (Sweden)

    Ebrahim Almasri

    2016-01-01

    Full Text Available A 17 year old female patient with a biotinidase enzyme deficiency, cerebral palsy, aphamis, generalized hyperreflexia and spasticity, epilepsy and mental retardation came for the severe kyphoscoliotic deformity correction. Biotinidase enzyme deficiency is an autosomal recessive disorder with incidence of 1:60,000 neonatal birth. Treatment with biotin results in a rapid biochemical and clinical improvement. This enzyme deficiency involves neurological, neuromuscular, respiratory, dermatological and immunological problems. If untreated it can lead to convulsions, coma and death. Cobb’s angle that measures the curvature of scoliosis, determined by measurements made on X rays in this case was 120° with clinical presentation of recurrent respiratory tract infection, inability to maintain sagittal posture, inability to eat or feed and difficulty in nursing care. Anaesthetic management in these patients should focus primarily on associated comorbidities and congenital anomalies affecting the course of the perioperative management and thereafter comprehensive preoperative strategies must be executed to enhance the safety profile during the surgery.

  15. A Founder Mutation in VPS11 Causes an Autosomal Recessive Leukoencephalopathy Linked to Autophagic Defects.

    Directory of Open Access Journals (Sweden)

    Jinglan Zhang

    2016-04-01

    Full Text Available Genetic leukoencephalopathies (gLEs are a group of heterogeneous disorders with white matter abnormalities affecting the central nervous system (CNS. The causative mutation in ~50% of gLEs is unknown. Using whole exome sequencing (WES, we identified homozygosity for a missense variant, VPS11: c.2536T>G (p.C846G, as the genetic cause of a leukoencephalopathy syndrome in five individuals from three unrelated Ashkenazi Jewish (AJ families. All five patients exhibited highly concordant disease progression characterized by infantile onset leukoencephalopathy with brain white matter abnormalities, severe motor impairment, cortical blindness, intellectual disability, and seizures. The carrier frequency of the VPS11: c.2536T>G variant is 1:250 in the AJ population (n = 2,026. VPS11 protein is a core component of HOPS (homotypic fusion and protein sorting and CORVET (class C core vacuole/endosome tethering protein complexes involved in membrane trafficking and fusion of the lysosomes and endosomes. The cysteine 846 resides in an evolutionarily conserved cysteine-rich RING-H2 domain in carboxyl terminal regions of VPS11 proteins. Our data shows that the C846G mutation causes aberrant ubiquitination and accelerated turnover of VPS11 protein as well as compromised VPS11-VPS18 complex assembly, suggesting a loss of function in the mutant protein. Reduced VPS11 expression leads to an impaired autophagic activity in human cells. Importantly, zebrafish harboring a vps11 mutation with truncated RING-H2 domain demonstrated a significant reduction in CNS myelination following extensive neuronal death in the hindbrain and midbrain. Thus, our study reveals a defect in VPS11 as the underlying etiology for an autosomal recessive leukoencephalopathy disorder associated with a dysfunctional autophagy-lysosome trafficking pathway.

  16. The cellular and molecular etiology of the craniofacial defects in the avian ciliopathic mutant talpid2

    Science.gov (United States)

    talpid2 is an avian autosomal recessive mutant with a myriad of congenital malformations, including polydactyly and facial clefting. Although phenotypically similar to talpid3, talpid2 has a distinct facial phenotype and an unknown cellular, molecular and genetic basis. We set out to determine the e...

  17. Identification of mutations in the AIPL1, CRB1, GUCY2D, RPE65, and RPGRIP1 genes in patients with juvenile retinitis pigmentosa

    NARCIS (Netherlands)

    Booij, J. C.; Florijn, R. J.; ten Brink, J. B.; Loves, W.; Meire, F.; van Schooneveld, M. J.; de Jong, P. T. V. M.; Bergen, A. A. B.

    2005-01-01

    OBJECTIVE: To identify mutations in the AIPL1, CRB1, GUCY2D, RPE65, and RPGRIP1 genes in patients with juvenile retinitis pigmentosa. METHODS: Mutation analysis was carried out in a group of 35 unrelated patients with juvenile autosomal recessive retinitis pigmentosa (ARRP), Leber's congenital

  18. Leydig Cell Tumor Associated with Testicular Adrenal Rest Tumors in a Patient with Congenital Adrenal Hyperplasia due to 11β-Hydroxylase Deficiency

    Directory of Open Access Journals (Sweden)

    Nadia Charfi

    2012-01-01

    Full Text Available Congenital adrenal hyperplasia (CAH describes a group of inherited autosomal recessive disorders characterized by enzyme defects in the steroidogenic pathways that lead to the biosynthesis of cortisol, aldosterone, and androgens. Chronic excessive adrenocorticotropic hormone (ACTH stimulation may result in hyperplasia of ACTH-sensitive tissues in adrenal glands and other sites such as the testes, causing testicular masses known as testicular adrenal rest tumors (TARTs. Leydig cell tumors (LCTs are make up a very small number of all testicular tumors and can be difficult to distinguish from TARTs. This distinction is interesting because LCTs and TARTs require different therapeutic approaches. Hereby, we present an unusual case of a 19-year-old patient with CAH due to 11β-hydroxylase deficiency, who presented with TARTs and an epididymal Leydig cell tumor.

  19. Germline mutations in ABL1 cause an autosomal dominant syndrome characterized by congenital heart defects and skeletal malformations.

    Science.gov (United States)

    Wang, Xia; Charng, Wu-Lin; Chen, Chun-An; Rosenfeld, Jill A; Al Shamsi, Aisha; Al-Gazali, Lihadh; McGuire, Marianne; Mew, Nicholas Ah; Arnold, Georgianne L; Qu, Chunjing; Ding, Yan; Muzny, Donna M; Gibbs, Richard A; Eng, Christine M; Walkiewicz, Magdalena; Xia, Fan; Plon, Sharon E; Lupski, James R; Schaaf, Christian P; Yang, Yaping

    2017-04-01

    ABL1 is a proto-oncogene well known as part of the fusion gene BCR-ABL1 in the Philadelphia chromosome of leukemia cancer cells. Inherited germline ABL1 changes have not been associated with genetic disorders. Here we report ABL1 germline variants cosegregating with an autosomal dominant disorder characterized by congenital heart disease, skeletal abnormalities, and failure to thrive. The variant c.734A>G (p.Tyr245Cys) was found to occur de novo or cosegregate with disease in five individuals (families 1-3). Additionally, a de novo c.1066G>A (p.Ala356Thr) variant was identified in a sixth individual (family 4). We overexpressed the mutant constructs in HEK 293T cells and observed increased tyrosine phosphorylation, suggesting increased ABL1 kinase activities associated with both the p.Tyr245Cys and p.Ala356Thr substitutions. Our clinical and experimental findings, together with previously reported teratogenic effects of selective BCR-ABL inhibitors in humans and developmental defects in Abl1 knockout mice, suggest that ABL1 has an important role during organismal development.

  20. Computational analysis of TRAPPC9: candidate gene for autosomal recessive non-syndromic mental retardation.

    Science.gov (United States)

    Khattak, Naureen Aslam; Mir, Asif

    2014-01-01

    Mental retardation (MR)/ intellectual disability (ID) is a neuro-developmental disorder characterized by a low intellectual quotient (IQ) and deficits in adaptive behavior related to everyday life tasks such as delayed language acquisition, social skills or self-help skills with onset before age 18. To date, a few genes (PRSS12, CRBN, CC2D1A, GRIK2, TUSC3, TRAPPC9, TECR, ST3GAL3, MED23, MAN1B1, NSUN1) for autosomal-recessive forms of non syndromic MR (NS-ARMR) have been identified and established in various families with ID. The recently reported candidate gene TRAPPC9 was selected for computational analysis to explore its potentially important role in pathology as it is the only gene for ID reported in more than five different familial cases worldwide. YASARA (12.4.1) was utilized to generate three dimensional structures of the candidate gene TRAPPC9. Hybrid structure prediction was employed. Crystal Structure of a Conserved Metalloprotein From Bacillus Cereus (3D19-C) was selected as best suitable template using position-specific iteration-BLAST. Template (3D19-C) parameters were based on E-value, Z-score and resolution and quality score of 0.32, -1.152, 2.30°A and 0.684 respectively. Model reliability showed 93.1% residues placed in the most favored region with 96.684 quality factor, and overall 0.20 G-factor (dihedrals 0.06 and covalent 0.39 respectively). Protein-Protein docking analysis demonstrated that TRAPPC9 showed strong interactions of the amino acid residues S(253), S(251), Y(256), G(243), D(131) with R(105), Q(425), W(226), N(255), S(233), its functional partner 1KBKB. Protein-protein interacting residues could facilitate the exploration of structural and functional outcomes of wild type and mutated TRAPCC9 protein. Actively involved residues can be used to elucidate the binding properties of the protein, and to develop drug therapy for NS-ARMR patients.

  1. Whole-exome sequencing in a single proband reveals a mutation in the CHST8 gene in autosomal recessive peeling skin syndrome.

    Science.gov (United States)

    Cabral, Rita M; Kurban, Mazen; Wajid, Muhammad; Shimomura, Yutaka; Petukhova, Lynn; Christiano, Angela M

    2012-04-01

    Generalized peeling skin syndrome (PSS) is an autosomal recessive genodermatosis characterized by lifelong, continuous shedding of the upper epidermis. Using whole-genome homozygozity mapping and whole-exome sequencing, we identified a novel homozygous missense mutation (c.229C>T, R77W) within the CHST8 gene, in a large consanguineous family with non-inflammatory PSS type A. CHST8 encodes a Golgi transmembrane N-acetylgalactosamine-4-O-sulfotransferase (GalNAc4-ST1), which we show by immunofluorescence staining to be expressed throughout normal epidermis. A colorimetric assay for total sulfated glycosaminoglycan (GAG) quantification, comparing human keratinocytes (CCD1106 KERTr) expressing wild type and mutant recombinant GalNAc4-ST1, revealed decreased levels of total sulfated GAGs in cells expressing mutant GalNAc4-ST1, suggesting loss of function. Western blotting revealed lower expression levels of mutant recombinant GalNAc4-ST1 compared to wild type, suggesting that accelerated degradation may result in loss of function, leading to PSS type A. This is the first report describing a mutation as the cause of PSS type A. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Noninvasive Prenatal Diagnosis of Congenital Adrenal Hyperplasia Using Cell-Free Fetal DNA in Maternal Plasma

    Science.gov (United States)

    Tong, Yu K.; Yuen, Tony; Jiang, Peiyong; Pina, Christian; Chan, K. C. Allen; Khattab, Ahmed; Liao, Gary J. W.; Yau, Mabel; Kim, Se-Min; Chiu, Rossa W. K.; Sun, Li; Zaidi, Mone

    2014-01-01

    Context: Congenital adrenal hyperplasia (CAH) is an autosomal recessive condition that arises from mutations in CYP21A2 gene, which encodes for the steroidogenic enzyme 21-hydroxylase. To prevent genital ambiguity in affected female fetuses, prenatal treatment with dexamethasone must begin on or before gestational week 9. Currently used chorionic villus sampling and amniocentesis provide genetic results at approximately 14 weeks of gestation at the earliest. This means that mothers who want to undergo prenatal dexamethasone treatment will be unnecessarily treating seven of eight fetuses (males and three of four unaffected females), emphasizing the desirability of earlier genetic diagnosis in utero. Objective: The objective of the study was to develop a noninvasive method for early prenatal diagnosis of fetuses at risk for CAH. Patients: Fourteen families, each with a proband affected by phenotypically classical CAH, were recruited. Design: Cell-free fetal DNA was obtained from 3.6 mL of maternal plasma. Using hybridization probes designed to capture a 6-Mb region flanking CYP21A2, targeted massively parallel sequencing (MPS) was performed to analyze genomic DNA samples from parents and proband to determine parental haplotypes. Plasma DNA from pregnant mothers also underwent targeted MPS to deduce fetal inheritance of parental haplotypes. Results: In all 14 families, the fetal CAH status was correctly deduced by targeted MPS of DNA in maternal plasma, as early as 5 weeks 6 days of gestation. Conclusions: MPS on 3.6 mL plasma from pregnant mothers could potentially provide the diagnosis of CAH, noninvasively, before the ninth week of gestation. Only affected female fetuses will thus be treated. Our strategy represents a generic approach for noninvasive prenatal testing for an array of autosomal recessive disorders. PMID:24606108

  3. JS-X syndrome: A multiple congenital malformation with vocal cord paralysis, ear deformity, hearing loss, shoulder musculature underdevelopment, and X-linked recessive inheritance.

    Science.gov (United States)

    Hoeve, Hans L J; Brooks, Alice S; Smit, Liesbeth S

    2015-07-01

    We report on a family with a not earlier described multiple congenital malformation. Several male family members suffer from laryngeal obstruction caused by bilateral vocal cord paralysis, outer and middle ear deformity with conductive and sensorineural hearing loss, facial dysmorphisms, and underdeveloped shoulder musculature. The affected female members only have middle ear deformity and hearing loss. The pedigree is suggestive of an X-linked recessive inheritance pattern. SNP-array revealed a deletion and duplication on Xq28 in the affected family members. A possible aetiology is a neurocristopathy with most symptoms expressed in structures derived from branchial arches. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Recessive mutations in PTHR1 cause contrasting skeletal dysplasias in Eiken and Blomstrand syndromes

    DEFF Research Database (Denmark)

    Duchatelet, Sabine; Ostergaard, Elsebet; Cortes, Dina

    2005-01-01

    Eiken syndrome is a rare autosomal recessive skeletal dysplasia. We identified a truncation mutation in the C-terminal cytoplasmic tail of the parathyroid hormone (PTH)/PTH-related peptide (PTHrP) type 1 receptor (PTHR1) gene as the cause of this syndrome. Eiken syndrome differs from Jansen...

  5. Protein-truncating mutations in ASPM cause variable reduction in brain size

    NARCIS (Netherlands)

    Bond, Jacquelyn; Scott, Sheila; Hampshire, Daniel J.; Springell, Kelly; Corry, Peter; Abramowicz, Marc J.; Mochida, Ganesh H.; Hennekam, Raoul C. M.; Maher, Eamonn R.; Fryns, Jean-Pierre; Alswaid, Abdulrahman; Jafri, Hussain; Rashid, Yasmin; Mubaidin, Ammar; Walsh, Christopher A.; Roberts, Emma; Woods, C. Geoffrey

    2003-01-01

    Mutations in the ASPM gene at the MCPH5 locus are expected to be the most common cause of human autosomal recessive primary microcephaly (MCPH), a condition in which there is a failure of normal fetal brain development, resulting in congenital microcephaly and mental retardation. We have performed

  6. Disease: H00802 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available (EDS7A/7B); EDS dermatospraxis type (EDS7C); EDS autosomal recessive cardiac valvular form (EDSCV); EDS musculocontract...have been identified with molecular and biochemical abnormalities: cardiac valvular form, musculocontractura...moto N ... TITLE ... A new Ehlers-Danlos syndrome with craniofacial characteristics, multiple congenital contract

  7. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    A spontaneous mutation in BALB/c mice that causes congenital dense cataract and microphthalmia (dcm) was reported previously. This abnormality was found to be inheritable and the mode of inheritance indicated that this phenotype is due to mutation of an autosomal recessive gene. We performed genetic screen to ...

  8. Pendred Sendromlu Kardeşler

    OpenAIRE

    Büyükberber, Dr. Süleyman; Hasanoğlu, Dr. AdDan; Serbest, Dr. Servet

    1996-01-01

    Pendred's syndrome is characterised by congenital deafness and goiter and transmitted as an autosomal recessive disease. Thyroid dysfunction is related to an enzymatic defect in the organification of iodine. This defect can be detected found by perchlorate discharge test which is to be diagnostic. The deafness is due to a congenital Mondini type malformation of cochlea. In this report, we present three male siblings with Pendred's syndrome. [Journal of Turgut Ozal Medical Cent...

  9. Cochlear implantation in children with congenital cytomegalovirus infection accompanied by psycho-neurological disorders.

    Science.gov (United States)

    Yamazaki, Hiroshi; Yamamoto, Rinko; Moroto, Saburo; Yamazaki, Tomoko; Fujiwara, Keizo; Nakai, Masako; Ito, Juichi; Naito, Yasushi

    2012-04-01

    Cochlear implantation was effective for deaf children with congenital cytomegalovirus (CMV) infection, but their cochlear implant (CI) outcomes were often impaired, depending on the types of CMV-associated psycho-neurological disorders. Evaluation of cognitive development and autistic tendency of implantees might be useful to predict their CI outcomes. To reveal the influence of CMV-associated psycho-neurological disorders on CI outcomes. This was a retrospective evaluation of 11 implantees with congenital CMV infection (CMV-CIs) and 14 implantees with autosomal recessive hearing loss (genetic-CIs). Nine of 11 CMV-CIs suffered from psycho-neurological disorders; one from attention deficit hyperactivity disorder, two from pervasive developmental disorder, and six from mental retardation. Aided hearing thresholds with CIs in the two groups did not differ, but two autistic and two mentally retarded CMV-CIs showed significantly low scores in speech discrimination tests. Language-Social (L-S) developmental quotients (DQs) evaluated by the Kyoto Scale of Psychological development were improved after the implantation in both groups, but the postoperative increase of L-S DQs was significantly smaller in the CMV-CIs than that of genetic-CIs. Interestingly, the postoperative L-S and Cognitive-Adaptive (C-A) DQs showed statistically significant correlation in all cases except for two autistic CMV-CIs whose L-S DQs were much lower than those expected from their C-A DQs.

  10. Molecular diagnostics for congenital hearing loss including 15 deafness genes using a next generation sequencing platform

    Directory of Open Access Journals (Sweden)

    De Keulenaer Sarah

    2012-05-01

    Full Text Available Abstract Background Hereditary hearing loss (HL can originate from mutations in one of many genes involved in the complex process of hearing. Identification of the genetic defects in patients is currently labor intensive and expensive. While screening with Sanger sequencing for GJB2 mutations is common, this is not the case for the other known deafness genes (> 60. Next generation sequencing technology (NGS has the potential to be much more cost efficient. Published methods mainly use hybridization based target enrichment procedures that are time saving and efficient, but lead to loss in sensitivity. In this study we used a semi-automated PCR amplification and NGS in order to combine high sensitivity, speed and cost efficiency. Results In this proof of concept study, we screened 15 autosomal recessive deafness genes in 5 patients with congenital genetic deafness. 646 specific primer pairs for all exons and most of the UTR of the 15 selected genes were designed using primerXL. Using patient specific identifiers, all amplicons were pooled and analyzed using the Roche 454 NGS technology. Three of these patients are members of families in which a region of interest has previously been characterized by linkage studies. In these, we were able to identify two new mutations in CDH23 and OTOF. For another patient, the etiology of deafness was unclear, and no causal mutation was found. In a fifth patient, included as a positive control, we could confirm a known mutation in TMC1. Conclusions We have developed an assay that holds great promise as a tool for screening patients with familial autosomal recessive nonsyndromal hearing loss (ARNSHL. For the first time, an efficient, reliable and cost effective genetic test, based on PCR enrichment, for newborns with undiagnosed deafness is available.

  11. Maxillary Hypoplasia With Congenital Oligodontia Treated by Maxillary Distraction Osteogenesis.

    Science.gov (United States)

    Mishima, Sayaka; Yamaguchi, Takako; Watanabe, Takuma; Komatani, Toru; Nakao, Kazumasa; Takahashi, Katsu; Bessho, Kazuhisa

    2018-02-27

    It is known that congenitally missing teeth can often cause differences in craniofacial morphology; however, there are few reported cases of orthognathic surgical treatment for these patients. Herein, the authors report a rare case of maxillary hypoplasia with congenital oligodontia treated by maxillary distraction osteogenesis with internal device. A 17-year-old male presenting with multiple tooth agenesis and maxillary recession was referred to our hospital for orthognathic surgical treatment. Preoperative simulation surgery was performed using Full-Color 3-dimensional salt model. After surgery, improvement in maxillary recession and occlusal stability was observed. This report demonstrates the advantages of the method used herein, which includes reduction in operating time with increase in the safety of the procedure.

  12. Coffin-Siris syndrome with multiple congenital malformations and intrauterine death: towards a better delineation of the severe end of the spectrum.

    Science.gov (United States)

    Coulibaly, Béma; Sigaudy, Sabine; Girard, Nadine; Popovici, Cornel; Missirian, Chantal; Heckenroth, Hélène; Tasei, Anne-Marie; Fernandez, Carla

    2010-01-01

    Coffine-Siris syndrome or "fifth digit" syndrome is a multiple congenital anomaly-mental retardation syndrome with severe developmental delay, coarse facial features, hirsutism and absent fifth fingernails or toenails or fifth distal phalanges. The etiology of this syndrome remains uncertain. Here we report a stillborn male baby born from consanguineous parents who might represent a very severe form of Coffine-Siris syndrome with cardiac defect and multiple brain malformations including corpus callosum agenesis and Dandy Walker malformation. To the best of our knowledge, it is the first case leading to intrauterine death. Karyotype and array comparative genomic hybridization were normal; these results give additional support to mendelian inheritance for this syndrome. In our family, the most likely mode of inheritance is autosomal recessive and the recurrence is probably as high as 25%. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  13. The first USH2A mutation analysis of Japanese autosomal recessive retinitis pigmentosa patients: a totally different mutation profile with the lack of frequent mutations found in Caucasian patients.

    Science.gov (United States)

    Zhao, Yang; Hosono, Katsuhiro; Suto, Kimiko; Ishigami, Chie; Arai, Yuuki; Hikoya, Akiko; Hirami, Yasuhiko; Ohtsubo, Masafumi; Ueno, Shinji; Terasaki, Hiroko; Sato, Miho; Nakanishi, Hiroshi; Endo, Shiori; Mizuta, Kunihiro; Mineta, Hiroyuki; Kondo, Mineo; Takahashi, Masayo; Minoshima, Shinsei; Hotta, Yoshihiro

    2014-09-01

    Retinitis pigmentosa (RP) is a highly heterogeneous genetic disease. The USH2A gene, which accounts for approximately 74-90% of Usher syndrome type 2 (USH2) cases, is also one of the major autosomal recessive RP (arRP) causative genes among Caucasian populations. To identify disease-causing USH2A gene mutations in Japanese RP patients, all 73 exons were screened for mutations by direct sequencing. In total, 100 unrelated Japanese RP patients with no systemic manifestations were identified, excluding families with obvious autosomal dominant inheritance. Of these 100 patients, 82 were included in this present study after 18 RP patients with very likely pathogenic EYS (eyes shut homolog) mutations were excluded. The mutation analysis of the USH2A revealed five very likely pathogenic mutations in four patients. A patient had only one very likely pathogenic mutation and the others had two of them. Caucasian frequent mutations p.C759F in arRP and p.E767fs in USH2 were not found. All the four patients exhibited typical clinical features of RP. The observed prevalence of USH2A gene mutations was approximately 4% among Japanese arRP patients, and the profile of the USH2A gene mutations differed largely between Japanese patients and previously reported Caucasian populations.

  14. Simultaneous Occurence of an Autosomal Dominant Inherited MSX1 Mutation and an X-linked Recessive Inherited EDA Mutation in One Chinese Family with Non-syndromic Oligodontia.

    Science.gov (United States)

    Zhang, Xiao Xia; Wong, Sing Wai; Han, Dong; Feng, Hai Lan

    2015-01-01

    To describe the simultaneous occurence of an autosomal dominant inherited MSX1 mutation and an X-linked recessive inherited EDA mutation in one Chinese family with nonsyndromic oligodontia. Clinical data of characteristics of tooth agenesis were collected. MSX1 and EDA gene mutations were detected in a Chinese family of non-syndromic oligodontia. Mild hypodontia in the parents and severe oligodontia in the son was recorded. A novel missense heterozygous mutation c.517C>A (p.Arg173Ser) was detected in the MSX1 gene in the boy and the father. A homozygous missense mutation c.1001G>A (p.Arg334His) was detected in the EDA gene in the boy and the same mutant occurred heterozygously in the mother. Simultaneous occurence of two different gene mutations with different inheritence patterns, which both caused oligodontia, which occurred in one subject and in one family, was reported.

  15. Alkaptonuria: Case report

    Directory of Open Access Journals (Sweden)

    Swapna S Khatu

    2015-01-01

    Full Text Available Alkaptonuria is a rare, autosomal-recessive disorder of phenylalanine/tyrosine metabolism due to congenital deficiency of the enzyme homogentisic acid oxidase. Herein, we are reporting a classical case of alkaptonuria with extensive skin pigmentation and skeletal involvement. Histopathological examination also revealed classical ochre-colored deposits in dermis.

  16. Endocochlear potential depends on Cl- channels: Mechanism underlying deafness in Bartter syndrome IV

    NARCIS (Netherlands)

    G. Rickheit (Gesa); H. Maier (Hannes); N. Strenzke (Nicola); C.E. Andreescu (Corina); C.I. de Zeeuw (Chris); A. Muenscher (Adrian); A.A. Zdebik (Anselm); T.J. Jentsch (Thomas)

    2008-01-01

    textabstractHuman Bartter syndrome IV is an autosomal recessive disorder characterized by congenital deafness and severe renal salt and fluid loss. It is caused by mutations in BSND, which encodes barttin, a β-subunit of ClC-Ka and ClC-Kb chloride channels. Inner-ear-specific disruption of Bsnd in

  17. Studies of malformation syndromes in man XXXX: multiple congenital anomalies/mental retardation syndrome or variant familial developmental pattern; differential diagnosis and description of the McDonough syndrome (with XXY son from XY/XXY father).

    Science.gov (United States)

    Neuhäuser, G; Opitz, J M

    1975-11-13

    The McDonough syndrome is a "new" MCA/MR syndrome which was found in 3 children (1 girl, 2 boys) of non-consanguineous parents. The affected children were mentally retarded (IQ 47--67) and had congenital heart defect, sternal deformity, kyphosis and craniofacila anomalies (anteverted auricles, upward slanted palpebral fissures, squint); cryptorchidism was present in the 2 boys. In addition a possible VFDP is postulated as the explanation for similar features in affected and unaffected siblings and parents. However, the McDonough syndrome may be an autosomal recessive trait with minor manifestations in heterozygotes. The klinefelter syndrome in one affected boy and a 46,XY/47,XXY chromosome constitution in the father was a coincidental finding.

  18. EDAR mutation in autosomal dominant hypohidrotic ectodermal dysplasia in two Swedish families

    Directory of Open Access Journals (Sweden)

    Schmitt-Egenolf Marcus

    2006-11-01

    Full Text Available Abstract Background Hypohidrotic ectodermal dysplasia (HED is a genetic disorder characterized by defective development of teeth, hair, nails and eccrine sweat glands. Both autosomal dominant and autosomal recessive forms of HED have previously been linked to mutations in the ectodysplasin 1 anhidrotic receptor (EDAR protein that plays an important role during embryogenesis. Methods The coding DNA sequence of the EDAR gene was analyzed in two large Swedish three-generational families with autosomal dominant HED. Results A non-sense C to T mutation in exon 12 was identified in both families. This disease-specific mutation changes an arginine amino acid in position 358 of the EDAR protein into a stop codon (p.Arg358X, thereby truncating the protein. In addition to the causative mutation two polymorphisms, not associated with the HED disorder, were also found in the EDAR gene. Conclusion The finding of the p.Arg358X mutation in the Swedish families is the first corroboration of a previously described observation in an American family. Thus, our study strengthens the role of this particular mutation in the aetiology of autosomal dominant HED and confirms the importance of EDAR for the development of HED.

  19. Disease course in patients with autosomal recessive retinitis pigmentosa due to the USH2A gene.

    Science.gov (United States)

    Sandberg, Michael A; Rosner, Bernard; Weigel-DiFranco, Carol; McGee, Terri L; Dryja, Thaddeus P; Berson, Eliot L

    2008-12-01

    To estimate the mean rates of ocular function loss in patients with autosomal recessive retinitis pigmentosa due to USH2A mutations. In 125 patients with USH2A mutations, longitudinal regression was used to estimate mean rates of change in Snellen visual acuity, Goldmann visual field area (V4e white test light), and 30-Hz (cone) full-field electroretinogram amplitude. These rates were compared with those of previously studied cohorts with dominant retinitis pigmentosa due to RHO mutations and with X-linked retinitis pigmentosa due to RPGR mutations. Rates of change in patients with the Cys759Phe mutation, the USH2A mutation associated with nonsyndromic disease, were compared with rates of change in patients with the Glu767fs mutation, the most common USH2A mutation associated with Usher syndrome type II (i.e., retinitis pigmentosa and hearing loss). Mean annual exponential rates of decline for the USH2A patients were 2.6% for visual acuity, 7.0% for visual field area, and 13.2% for electroretinogram amplitude. The rate of acuity loss fell between the corresponding rates for the RHO and RPGR patients, whereas the rates for field and ERG amplitude loss were faster than those for the RHO and RPGR patients. No significant differences were found for patients with the Cys759Phe mutation versus patients with the Glu767fs mutation. On average, USH2A patients lose visual acuity faster than RHO patients and slower than RPGR patients. USH2A patients lose visual field and cone electroretinogram amplitude faster than patients with RHO or RPGR mutations. Patients with a nonsyndromic USH2A mutation have the same retinal disease course as patients with syndromic USH2A disease.

  20. Consanguinity and genetic disorders: Profile from Jordan

    International Nuclear Information System (INIS)

    Hamamy, Hanan A.; Ajlouni, Kamel M.; Masri, Amira T.; Al-Hadidy, Azmy M.

    2007-01-01

    With 20-30% of all marriages occurring between first cousins, increasing attention in Jordan is now given to role of consanguinity in the occurrence of genetic diseases. The objective of this study is to define the specific categories of genetic disorders associated with consanguineous marriages. Etiological categories and consanguinity rates were studied among 623 families with genetic syndromes, congenital anomalies or mental retardation, or both, seen at the National Center for Diabetes, Endocrinology and Genetics for the period August 2002 to August 2006. Comparisons were made for first cousin marriage rates in the study group and that for the general population. First cousin marriages constituted 69%, 22% and 41.7% of marriages among families with autosomal recessive conditions (group 1), dominant, X-linked and chromosomal conditions (group 2) and sporadic undiagnosed conditions (group 3) respectively. The differences in the rates of the first cousin matings were highly significant when comparing known figures in the general population with group 1 and 3, but not significant with group 2. Two messages to the public and health care personnel regarding consanguinity can be derived from this study. The first message is that among genetic disorders, only autosomal recessive disorders are strongly associated with consanguinity. The second message is that approximately 30% of sporadic undiagnosed cases of mental retardation, congenital anomalies and dimorphism may have an autosomal recessive etiology with risks of recurrence in future pregnancies. (author)

  1. Germline mutations in ABL1 cause an autosomal dominant syndrome characterized by congenital heart defects and skeletal malformations

    Science.gov (United States)

    Wang, Xia; Charng, Wu-Lin; Chen, Chun-An; Rosenfeld, Jill A.; Shamsi, Aisha Al; Al-Gazali, Lihadh; McGuire, Marianne; Mew, Nicholas Ah; Arnold, Georgianne L.; Qu, Chunjing; Ding, Yan; Muzny, Donna M.; Gibbs, Richard A.; Eng, Christine M.; Walkiewicz, Magdalena; Xia, Fan; Plon, Sharon E.; Lupski, James R.; Schaaf, Christian P.; Yang, Yaping

    2017-01-01

    ABL1 is a proto-oncogene well known as part of the fusion gene BCR-ABL in the Philadelphia chromosome of leukemia cancer cells1. Inherited germline ABL1 changes have not been associated with genetic disorders. Here we report ABL1 germline variants co-segregating with an autosomal dominant disorder characterized by congenital heart disease, skeletal abnormalities, and failure to thrive. The variant c.734A>G (p.Tyr245Cys) was found as de novo or co-segregating with disease in five individuals (families 1-3). Additionally, a de novo c.1066G>A (p.Ala356Thr) variant was identified in the sixth individual (family 4). We overexpressed the mutant constructs in HEK 293T cells and observed increased tyrosine phosphorylation, suggesting increased ABL1 kinase activities associated with both p.Tyr245Cys and p.Ala356Thr substitutions. Our clinical and laboratory findings, together with previously reported teratogenic effects of selective BCR-ABL inhibitors in humans2-5 and developmental defects in Abl1 knock-out mice6,7, suggest ABL1 plays an important role during organismal development. PMID:28288113

  2. Pathogenetic Basis of Aortopathy and Aortic Valve Disease

    Science.gov (United States)

    2018-02-19

    Aortopathies; Thoracic Aortic Aneurysm; Aortic Valve Disease; Thoracic Aortic Disease; Thoracic Aortic Dissection; Thoracic Aortic Rupture; Ascending Aortic Disease; Descending Aortic Disease; Ascending Aortic Aneurysm; Descending Aortic Aneurysm; Marfan Syndrome; Loeys-Dietz Syndrome; Ehlers-Danlos Syndrome; Shprintzen-Goldberg Syndrome; Turner Syndrome; PHACE Syndrome; Autosomal Recessive Cutis Laxa; Congenital Contractural Arachnodactyly; Arterial Tortuosity Syndrome

  3. Genetics of recessive cognitive disorders.

    Science.gov (United States)

    Musante, Luciana; Ropers, H Hilger

    2014-01-01

    Most severe forms of intellectual disability (ID) have specific genetic causes. Numerous X chromosome gene defects and disease-causing copy-number variants have been linked to ID and related disorders, and recent studies have revealed that sporadic cases are often due to dominant de novo mutations with low recurrence risk. For autosomal recessive ID (ARID) the recurrence risk is high and, in populations with frequent parental consanguinity, ARID is the most common form of ID. Even so, its elucidation has lagged behind. Here we review recent progress in this field, show that ARID is not rare even in outbred Western populations, and discuss the prospects for improving its diagnosis and prevention. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. A novel COL4A3 mutation causes autosomal-recessive Alport syndrome in a large Turkish family.

    Science.gov (United States)

    Uzak, Asli Subasioglu; Tokgoz, Bulent; Dundar, Munis; Tekin, Mustafa

    2013-03-01

    Alport syndrome (AS) is a genetically heterogeneous disorder that is characterized by hematuria, progressive renal failure typically resulting in end-stage renal disease, sensorineural hearing loss, and variable ocular abnormalities. Only 15% of cases with AS are autosomal recessive and are caused by mutations in the COL4A3 or COL4A4 genes, encoding type IV collagen. Clinical data in a large consanguineous family with four affected members were reviewed, and genomic DNA was extracted. For mapping, 15 microsatellite markers flanking COL4A3, COL4A4, and COL4A5 in 16 family members were typed. For mutation screening, all coding exons of COL4A3 were polymerase chain reaction- amplified and Sanger-sequenced from genomic DNA. The disease locus was mapped to chromosome 2q36.3, where COL4A3 and COL4A4 reside. Sanger sequencing revealed a novel mis-sense mutation (c.2T>C; p.M1T) in exon 1 of COL4A3. The identified nucleotide change was not found in 100 healthy ethnicity-matched controls via Sanger sequencing. We present a large consanguineous Turkish family with AS that was found to have a COL4A3 mutation as the cause of the disease. Although the relationship between the various genotypes and phenotypes in AS has not been fully elucidated, detailed clinical and molecular analyses are helpful for providing data to be used in genetic counseling. It is important to identify new mutations to clarify their clinical importance, to assess the prognosis of the disease, and to avoid renal biopsy for final diagnosis.

  5. Clinical Application of Screening for GJB2 Mutations before Cochlear Implantation in a Heterogeneous Population with High Rate of Autosomal Recessive Nonsyndromic Hearing Loss

    Directory of Open Access Journals (Sweden)

    Masoud Motasaddi Zarandy

    2011-01-01

    Full Text Available Clinical application of mutation screening and its effect on the outcome of cochlear implantation is widely debated. We investigated the effect of mutations in GJB2 gene on the outcome of cochlear implantation in a population with a high rate of consanguineous marriage and autosomal recessive nonsyndromic hearing loss. Two hundred and one children with profound prelingual sensorineural hearing loss were included. Forty-six patients had 35delG in GJB2. Speech awareness thresholds (SATs and speech recognition thresholds (SRTs improved following implantation, but there was no difference in performance between patients with GJB2-related deafness versus control (all >0.10. Both groups had produced their first comprehensible words within the same period of time following implantation (2.27 months in GJB2-related deaf versus 2.62 months in controls, =0.22. Although our findings demonstrate the need to uncover unidentified genetic causes of hereditary deafness, they do not support the current policy for genetic screening before cochlear implantation, nor prove a prognostic value.

  6. Autosomal recessive deafness 1A (DFNB1A) in Yakut population isolate in Eastern Siberia: extensive accumulation of the splice site mutation IVS1+1G>A in GJB2 gene as a result of founder effect.

    Science.gov (United States)

    Barashkov, Nikolay A; Dzhemileva, Lilya U; Fedorova, Sardana A; Teryutin, Fedor M; Posukh, Olga L; Fedotova, Elvira E; Lobov, Simeon L; Khusnutdinova, Elza K

    2011-09-01

    Hereditary forms of hearing impairment (HI) caused by GJB2 (Cx26) mutations are the frequent sensory disorders registered among newborns in various human populations. In this study, we present data on the molecular, audiological and population features of autosomal recessive deafness 1A (DFNB1A) associated with the donor splicing site IVS1+1G>A mutation of GJB2 gene in Yakut population isolate of the Sakha Republic (Yakutia) located in Eastern Siberia (Russian Federation). The Yakut population exhibits high frequency of some Mendelian disorders, which are rare in other populations worldwide. Mutational analysis of GJB2 gene in 86 unrelated Yakut patients with congenital HI without other clinical features has been performed. In this study, we registered a large cohort of Yakut patients homozygous for the IVS1+1G>A mutation (70 unrelated deaf subjects in total). Detailed audiological analysis of 40 deaf subjects with genotype IVS1+1G>A/IVS1+1G>A revealed significant association of this genotype with mostly symmetrical bilateral severe to profound HI (85% severe-to-profound HI versus 15% mild-to-moderate HI, PA mutation (11.7%) has been found in Yakut population. Reconstruction of 140 haplotypes with IVS1+1G>A mutation demonstrates the common origin of all mutant chromosomes found in Yakuts. The age of mutation was estimated to be approximately 800 years. These findings characterize Eastern Siberia as the region with the most extensive accumulation of the IVS1+1G>A mutation in the world as a result of founder effect.

  7. Evidence for autosomal dominant inheritance of ablepharon-macrostomia syndrome.

    Science.gov (United States)

    Rohena, Luis; Kuehn, Devon; Marchegiani, Shannon; Higginson, Jason D

    2011-04-01

    Ablepharon-macrostomia syndrome (AMS) is characterized by absent or short eyelids, macrostomia, ear anomalies, absent lanugo and hair, redundant skin, abnormal genitalia, and developmental delay in two-thirds of the reported patients. Additional anomalies include dry skin, growth retardation, hearing loss, camptodactyly, hypertelorism, absent zygomatic arches, and umbilical abnormalities. We present the second familial case of ablepharon-macrostomia syndrome in a newborn female and her 22-year-old father making autosomal dominant inheritance more likely than the previously proposed autosomal recessive transmission for this disorder. These cases likely represent the 16th and 17th reported cases of AMS and the first case suspected on prenatal ultrasound. Additionally, the child shows more prominent features of the disorder when compared to her father documenting variable expression and possible anticipation. This article is a US Government work and, as such, is in the public domain in the United States of America. Published 2011 Wiley-Liss, Inc.

  8. Homozygous SLC6A17 Mutations Cause Autosomal-Recessive Intellectual Disability with Progressive Tremor, Speech Impairment, and Behavioral Problems

    Science.gov (United States)

    Iqbal, Zafar; Willemsen, Marjolein H.; Papon, Marie-Amélie; Musante, Luciana; Benevento, Marco; Hu, Hao; Venselaar, Hanka; Wissink-Lindhout, Willemijn M.; Vulto-van Silfhout, Anneke T.; Vissers, Lisenka E.L.M.; de Brouwer, Arjan P.M.; Marouillat, Sylviane; Wienker, Thomas F.; Ropers, Hans Hilger; Kahrizi, Kimia; Nadif Kasri, Nael; Najmabadi, Hossein; Laumonnier, Frédéric; Kleefstra, Tjitske; van Bokhoven, Hans

    2015-01-01

    We report on Dutch and Iranian families with affected individuals who present with moderate to severe intellectual disability and additional phenotypes including progressive tremor, speech impairment, and behavioral problems in certain individuals. A combination of exome sequencing and homozygosity mapping revealed homozygous mutations c.484G>A (p.Gly162Arg) and c.1898C>G (p.Pro633Arg) in SLC6A17. SLC6A17 is predominantly expressed in the brain, encodes a synaptic vesicular transporter of neutral amino acids and glutamate, and plays an important role in the regulation of glutamatergic synapses. Prediction programs and 3D modeling suggest that the identified mutations are deleterious to protein function. To directly test the functional consequences, we investigated the neuronal subcellular localization of overexpressed wild-type and mutant variants in mouse primary hippocampal neuronal cells. Wild-type protein was present in soma, axons, dendrites, and dendritic spines. p.Pro633Arg altered SLC6A17 was found in soma and proximal dendrites but did not reach spines. p.Gly162Arg altered SLC6A17 showed a normal subcellular distribution but was associated with an abnormal neuronal morphology mainly characterized by the loss of dendritic spines. In summary, our genetic findings implicate homozygous SLC6A17 mutations in autosomal-recessive intellectual disability, and their pathogenic role is strengthened by genetic evidence and in silico and in vitro functional analyses. PMID:25704603

  9. Single Nucleotide Polymorphisms of the GJB2 and GJB6 Genes Are Associated with Autosomal Recessive Nonsyndromic Hearing Loss

    Directory of Open Access Journals (Sweden)

    Ana Paula Grillo

    2015-01-01

    Full Text Available Single nucleotide polymorphisms (SNPs are important markers in many studies that link DNA sequence variations to phenotypic changes; such studies are expected to advance the understanding of human physiology and elucidate the molecular basis of diseases. The DFNB1 locus, which contains the GJB2 and GJB6 genes, plays a key role in nonsyndromic hearing loss. Previous studies have identified important mutations in this locus, but the contribution of SNPs in the genes has not yet been much investigated. The aim of this study was to investigate the association of nine polymorphisms located within the DFNB1 locus with the occurrence of autosomal recessive nonsyndromic hearing loss (ARNSHL. The SNPs rs3751385 (C/T, rs7994748 (C/T, rs7329857 (C/T, rs7987302 (G/A, rs7322538 (G/A, rs9315400 (C/T, rs877098 (C/T, rs945369 (A/C, and rs7333214 (T/G were genotyped in 122 deaf patients and 132 healthy controls using allele-specific PCR. There were statistically significant differences between patients and controls, in terms of allelic frequencies in the SNPs rs3751385, rs7994748, rs7329857, rs7987302, rs945369, and rs7333214 (P<0.05. No significant differences between the two groups were observed for rs7322538, rs9315400, and rs877098. Our results suggest that SNPs present in the GJB2 and GJB6 genes may have an influence on ARNSHL in humans.

  10. Oral abnormalities in the Ellis-van Creveld syndrome

    Directory of Open Access Journals (Sweden)

    Babaji Prashant

    2010-01-01

    Full Text Available Ellis-van Creveld (EvC syndrome is an autosomal recessive disorder, mainly affecting the ectodermal components such as, enamel, nail, and hair. The gene for EvC syndrome is located on chromosome 4p16. Patients with EvC syndrome characteristically presents with congenitally missing teeth, abnormal frenal attachment, microdontia, and hexadactyly.

  11. Targeted ablation of Crb2 in photoreceptor cells induces retinitis pigmentosa

    NARCIS (Netherlands)

    Alves, Celso Henrique; Pellissier, Lucie P; Vos, Rogier M; Garcia Garrido, Marina; Sothilingam, Vithiyanjali; Seide, Christina; Beck, Susanne C; Klooster, J.; Furukawa, Takahisa; Flannery, John G; Verhaagen, J.; Seeliger, Mathias W; Wijnholds, J.

    2014-01-01

    In humans, the Crumbs homolog-1 (CRB1) gene is mutated in autosomal recessive Leber congenital amaurosis and early-onset retinitis pigmentosa. In mammals, the Crumbs family is composed of: CRB1, CRB2, CRB3A and CRB3B. Recently, we showed that removal of mouse Crb2 from retinal progenitor cells, and

  12. Successful pregnancy in a female patient with congenital chloride diarrhea (CLD) and renal impairment.

    Science.gov (United States)

    Shimizu, Yoshio; Kamoda, Tomohiro; Nagata, Michio; Yoh, Keigyo; Hashimoto, Yuko; Matsui, Akira; Yoshikawa, Hiroyuki; Yamagata, Kunihiro; Koyama, Akio

    2009-01-01

    We report a successful case of pregnancy in a female patient with congenital chloride diarrhea (CLD) and reduced renal function due to interruption of treatment. CLD is an autosomal recessive disorder of intestinal electrolyte absorption caused by mutations in the solute carrier family 26, member 3 (SLC26A3) gene, and continuous production of watery diarrhea induces dehydration, metabolic alkalosis and many kinds of electrolyte disturbances in CLD patients. The patient in our case was a 24-year-old female CLD patient with moderate renal impairment; a renal biopsy specimen showed minimal glomerular changes, but tubulointerstitial damage by crystal formation, consistent with renal function data. One year after our initial examination and reinstitution of therapy, the patient got married and soon conceived. There were no major problems during the course of pregnancy, and the patient successfully delivered a healthy full-term infant vaginally. The symptoms and clinical course of the patient were particularly mild, and we discuss possible reasons for these observations from a perspective of genotype, phenotype and environmental conditions.

  13. Autosomal male determination in a spinosad-resistant housefly strain from Denmark

    DEFF Research Database (Denmark)

    Højland, Dorte H; Scott, Jeffrey G; Vagn Jensen, Karl-Martin

    2014-01-01

    males in this strain. The factor responsible for spinosad resistance in the strain is unknown, but previous studies suggest a role of cytochrome P450s for detoxification of spinosad. Sex determination in the housefly is controlled by a male-determining factor (M), either located on the Y chromosome......BACKGROUND The housefly, Musca domestica L., is a global pest and has developed resistance to most insecticides applied for its control. The insecticide spinosad plays an important role in housefly control. Females of the Danish housefly strain 791spin are threefold more resistant to spinosad than...... of resistance to spinosad. Sex determination in 791spin is due to a male factor on autosome 3. CONCLUSIONS The most likely explanation for the differentiation of spinosad resistance between males and females is a recessive spinosad resistance factor on autosome III. © 2013 Society of Chemical Industry...

  14. Genetics Home Reference: T-cell immunodeficiency, congenital alopecia, and nail dystrophy

    Science.gov (United States)

    ... affect health and development? More about Mutations and Health Inheritance Pattern This condition is inherited in an autosomal recessive ... N, Cserhalmi-Friedman PB, Aita VM, Uyttendaele H, Gordon D, Ott J, Brissette JL, Christiano ... associated with severe functional T-cell immunodeficiency in two sibs. Am J ...

  15. Newly diagnosed congenital factor VII deficiency and utilization of recombinant activated factor VII (NovoSeven(®)).

    Science.gov (United States)

    Bartosh, Nicole S; Tomlin, Tara; Cable, Christian; Halka, Kathleen

    2013-01-01

    This case report presents a newly diagnosed congenital factor VII deficiency treated with recombinant activated factor VII (rFVIIa). Congenital factor VII deficiency is a rare autosomal-recessive bleeding disorder that occurs in fewer than 1/500,000 persons. Its presentation can vary from epistaxis to hemarthroses and severe central nervous system bleeding, and correlates poorly with factor VII levels. Our patient had not had a significant hemostatic challenge prior to his presentation and therefore never had any symptomatology suggestive of this disease. He was treated with rFVIIa, and was able to undergo repair of his fractures without bleeding. A 19-year-old African-American male presented to the emergency room after an altercation that resulted in significant trauma. He sustained bilateral mandibular angle fractures and orbital floor fractures, requiring urgent surgical correction. On initial evaluation, he was noted to have a prolonged prothrombin time of 40.1 seconds, with an International Normalized Ratio of 4.0, a normal activated partial thromboplastin time of 29.9 seconds, and a platelet count of 241. After receiving vitamin K and fresh frozen plasma, he was taken to the operating room for a temporary rigid maxillomandibular fixation. A 1:1 mixing study with normal plasma corrected the prothrombin time (decreasing from 40.7 to 14.7 seconds) and a factor VII assay revealed 5% of the normal factor VII level. The patient was diagnosed with congenital factor VII deficiency. Due to his coagulopathy and the extensive surgical correction needed, rFVIIa was administered and surgery was accomplished without hemorrhagic sequelae. This case report and review describes a rare congenital disease, the history of rFVIIa use, and its mechanism. rFVIIA use in our patient provided a treatment option that allowed the necessary surgical correction, but further prospective studies on dose optimization would ensure adequate dosing with minimal risk of severe side effects.

  16. A postnatal role for embryonic myosin revealed by MYH3 mutations that alter TGFbeta signaling and cause autosomal dominant spondylocarpotarsal synostosis

    NARCIS (Netherlands)

    Zieba, J.; Zhang, W.; Chong, J.X.; Forlenza, K.N.; Martin, J.H.; Heard, K.; Grange, D.K.; Butler, M.G.; Kleefstra, T.; Lachman, R.S.; Nickerson, D.; Regnier, M.; Cohn, D.H.; Bamshad, M.; Krakow, D.

    2017-01-01

    Spondylocarpotarsal synostosis (SCT) is a skeletal disorder characterized by progressive vertebral, carpal and tarsal fusions, and mild short stature. The majority of affected individuals have an autosomal recessive form of SCT and are homozygous or compound heterozygous for nonsense mutations in

  17. Congenital syndactyly in cattle: four novel mutations in the low density lipoprotein receptor-related protein 4 gene (LRP4

    Directory of Open Access Journals (Sweden)

    Höltershinken Martin

    2007-02-01

    Full Text Available Abstract Background Isolated syndactyly in cattle, also known as mulefoot, is inherited as an autosomal recessive trait with variable penetrance in different cattle breeds. Recently, two independent mutations in the bovine LRP4 gene have been reported as the primary cause of syndactyly in the Holstein and Angus cattle breeds. Results We confirmed the previously described LRP4 exon 33 two nucleotide substitution in most of the affected Holstein calves and revealed additional evidence for allelic heterogeneity by the identification of four new LRP4 non-synonymous point mutations co-segregating in Holstein, German Simmental and Simmental-Charolais families. Conclusion We confirmed a significant role of LRP4 mutations in the pathogenesis of congenital syndactyly in cattle. The newly detected missense mutations in the LRP4 gene represent independent mutations affecting different conserved protein domains. However, the four newly described LRP4 mutations do still not explain all analyzed cases of syndactyly.

  18. Apendicitis and situs inversus viscerum in a 32-year-old female ...

    African Journals Online (AJOL)

    Situs inversus is a relatively rare congenital abnormality in which the internal organs are disposed in a mirror image of the normal. It is said to be an autosomal recessive genetic condition. Its prevalence varies with population. In the United States, Situs inversus is found in 0.01% of the population. The incidence in Nigeria is ...

  19. MRI of a very rare hereditary ectodermal dysplasia: PIBI(D)S

    International Nuclear Information System (INIS)

    Peserico, A.; Bertoli, P.; Battistella, P.A.

    1992-01-01

    PIBI(D)S is a acronym for a very rare autosomal recessive syndrome consisting of photosensitivity, mild non-congenital ichthyosis, brittle cystine-deficient hair, impaired intelligence, occasionally decreased fertility and short stature. We report a 12-year-old female patient affected by PIBI(D)S with previously unreported MRI findings of central nervous system dysmyelination. (orig.)

  20. Ellis–Van Creveld syndrome in siblings: A rare case report

    Directory of Open Access Journals (Sweden)

    Sabitha Gokulraj

    2016-01-01

    Full Text Available Ellis–Van Creveld syndrome or chondroectodermal dysplasia is a rare autosomal recessive disorder presenting several skeletal manifestations and congenital heart malformations. Ellis–Van Creveld syndrome comprises of a tetrad of clinical manifestations of chondrodysplasia, polydactyly, ectodermal dysplasia, and cardiac defects. Here, we are presenting a very rare case of Ellis–Van Creveld syndrome in siblings.

  1. MRI of a very rare hereditary ectodermal dysplasia: PIBI(D)S

    Energy Technology Data Exchange (ETDEWEB)

    Peserico, A.; Bertoli, P. (Ist. di Clinica Dermosifilopatica, Padua Univ. (Italy)); Battistella, P.A. (Dipt. di Pediatria, Padua Univ. (Italy))

    1992-08-01

    PIBI(D)S is a acronym for a very rare autosomal recessive syndrome consisting of photosensitivity, mild non-congenital ichthyosis, brittle cystine-deficient hair, impaired intelligence, occasionally decreased fertility and short stature. We report a 12-year-old female patient affected by PIBI(D)S with previously unreported MRI findings of central nervous system dysmyelination. (orig.).

  2. Mutations in the VLGR1 gene implicate G-protein signaling in the pathogenesis of Usher syndrome type II.

    NARCIS (Netherlands)

    Weston, M.D.; Luijendijk, M.W.J.; Humphrey, K.D.; Moller, C.G.; Kimberling, W.J.

    2004-01-01

    Usher syndrome type II (USH2) is a genetically heterogeneous autosomal recessive disorder with at least three genetic subtypes (USH2A, USH2B, and USH2C) and is classified phenotypically as congenital hearing loss and progressive retinitis pigmentosa. The VLGR1 (MASS1) gene in the 5q14.3-q21.1 USH2C

  3. Counseling Students Who Have Usher Syndrome. PEPNet Tipsheet

    Science.gov (United States)

    Lago-Avery, Patricia, Comp.

    2010-01-01

    Usher Syndrome is an autosomal recessive genetic disorder characterized by congenital hearing loss and gradually developing retinitis pigmentosa leading to the loss of vision. Approximately 27,000 people in the United States have some form of Usher Syndrome. Most of these individuals have either Type I (11,000) or Type II (16,000). Type I Usher…

  4. Counseling Students Who Have Usher Syndrome. NETAC Teacher Tipsheet

    Science.gov (United States)

    Lago-Avery, Patricia, Comp.

    2001-01-01

    Usher Syndrome is an autosomal recessive genetic disorder characterized by congenital hearing loss and gradually developing retinitis pigmentosa leading to the loss of vision. Approximately 25,000 people in the United States have some form of Usher Syndrome. Most of these individuals have either Type I (10,000) or Type II (15,000). Type I Usher…

  5. Autosomal-Recessive Intellectual Disability with Cerebellar Atrophy Syndrome Caused by Mutation of the Manganese and Zinc Transporter Gene SLC39A8

    Science.gov (United States)

    Boycott, Kym M.; Beaulieu, Chandree L.; Kernohan, Kristin D.; Gebril, Ola H.; Mhanni, Aziz; Chudley, Albert E.; Redl, David; Qin, Wen; Hampson, Sarah; Küry, Sébastien; Tetreault, Martine; Puffenberger, Erik G.; Scott, James N.; Bezieau, Stéphane; Reis, André; Uebe, Steffen; Schumacher, Johannes; Hegele, Robert A.; McLeod, D. Ross; Gálvez-Peralta, Marina; Majewski, Jacek; Ramaekers, Vincent T.; Nebert, Daniel W.; Innes, A. Micheil; Parboosingh, Jillian S.; Abou Jamra, Rami

    2015-01-01

    Manganese (Mn) and zinc (Zn) are essential divalent cations used by cells as protein cofactors; various human studies and animal models have demonstrated the importance of Mn and Zn for development. Here we describe an autosomal-recessive disorder in six individuals from the Hutterite community and in an unrelated Egyptian sibpair; the disorder is characterized by intellectual disability, developmental delay, hypotonia, strabismus, cerebellar atrophy, and variable short stature. Exome sequencing in one affected Hutterite individual and the Egyptian family identified the same homozygous variant, c.112G>C (p.Gly38Arg), affecting a conserved residue of SLC39A8. The affected Hutterite and Egyptian individuals did not share an extended common haplotype, suggesting that the mutation arose independently. SLC39A8 is a member of the solute carrier gene family known to import Mn, Zn, and other divalent cations across the plasma membrane. Evaluation of these two metal ions in the affected individuals revealed variably low levels of Mn and Zn in blood and elevated levels in urine, indicating renal wasting. Our findings identify a human Mn and Zn transporter deficiency syndrome linked to SLC39A8, providing insight into the roles of Mn and Zn homeostasis in human health and development. PMID:26637978

  6. Congenital Amegakaryocytic Thrombocytopenia: A Brief Review of the Literature

    Directory of Open Access Journals (Sweden)

    Fatma S. Al-Qahtani

    2010-01-01

    Full Text Available Congenital amegakaryocytic thrombocytopenia (CAMT is a rare inherited autosomal recessive disorder that presents with thrombocytopenia and absence of megakaryocytes. It presents with bleeding recognized on day 1 of life or at least within the first month. The cause for this disorder appears to be a mutation in the gene for the thrombopoeitin (TPO receptor, c-Mpl, despite high levels of serum TPO. Patients with severe Type I-CAMT carry nonsense Mpl mutations which causes a complete loss of the TPO receptor whereas those with Type II CAMT carry missense mutations in the Mpl gene affecting the extracellular domain of the TPO receptor. Differential diagnosis for severe CAMT includes thrombocytopenia with absent radii (TAR and Wiskott-Aldrich syndrome (WAS. The primary treatment for CAMT is bone marrow transplantation. Bone Marrow/Stem Cell Transplant (HSCT is the only thing that ultimately cures this genetic disease. Newer modalities are on the way, such as TPO-mimetics for binding towards partially functioning c-Mpl receptors and gene therapy. Prognosis of CAMT patients is poor, because all develop in childhood a tri-linear marrow aplasia that is always fatal when untreated. Thirty percent of patients with CAMT die due to bleeding complications and 20% -due to HSCT if it has been done.

  7. Autosomal-recessive and X-linked forms of hereditary motor and sensory neuropathy in childhood.

    Science.gov (United States)

    Ouvrier, Robert; Geevasingha, Nimeshan; Ryan, Monique M

    2007-08-01

    The hereditary motor and sensory neuropathies (HMSNs, Charcot-Marie-Tooth neuropathies) are the most common degenerative disorders of the peripheral nervous system. In recent years a dramatic expansion has occurred in our understanding of the molecular basis and cell biology of the recessively inherited demyelinating and axonal neuropathies, with delineation of a number of new neuropathies. Mutations in some genes cause a wide variety of clinical, neurophysiologic, and pathologic phenotypes, rendering diagnosis difficult. The X-linked forms of HMSN represent at least 10%-15% of all HMSNs and have an expanded disease spectrum including demyelinating, intermediate, and axonal neuropathies, transient central nervous system (CNS) dysfunction, mental retardation, and hearing loss. This review presents an overview of the recessive and X-linked forms of HMSN observed in childhood, with particular reference to disease phenotype and neurophysiologic and pathologic abnormalities suggestive of specific diagnoses. These findings can be used by the clinician to formulate a differential diagnosis and guide targeted genetic testing.

  8. A novel approach identifying hybrid sterility QTL on the autosomes of Drosophila simulans and D. mauritiana.

    Science.gov (United States)

    Dickman, Christopher T D; Moehring, Amanda J

    2013-01-01

    When species interbreed, the hybrid offspring that are produced are often sterile. If only one hybrid sex is sterile, it is almost always the heterogametic (XY or ZW) sex. Taking this trend into account, the predominant model used to explain the genetic basis of F1 sterility involves a deleterious interaction between recessive sex-linked loci from one species and dominant autosomal loci from the other species. This model is difficult to evaluate, however, as only a handful of loci influencing interspecies hybrid sterility have been identified, and their autosomal genetic interactors have remained elusive. One hindrance to their identification has been the overwhelming effect of the sex chromosome in mapping studies, which could 'mask' the ability to accurately map autosomal factors. Here, we use a novel approach employing attached-X chromosomes to create reciprocal backcross interspecies hybrid males that have a non-recombinant sex chromosome and recombinant autosomes. The heritable variation in phenotype is thus solely caused by differences in the autosomes, thereby allowing us to accurately identify the number and location of autosomal sterility loci. In one direction of backcross, all males were sterile, indicating that sterility could be entirely induced by the sex chromosome complement in these males. In the other direction, we identified nine quantitative trait loci that account for a surprisingly large amount (56%) of the autosome-induced phenotypic variance in sterility, with a large contribution of autosome-autosome epistatic interactions. These loci are capable of acting dominantly, and thus could contribute to F1 hybrid sterility.

  9. A novel approach identifying hybrid sterility QTL on the autosomes of Drosophila simulans and D. mauritiana.

    Directory of Open Access Journals (Sweden)

    Christopher T D Dickman

    Full Text Available When species interbreed, the hybrid offspring that are produced are often sterile. If only one hybrid sex is sterile, it is almost always the heterogametic (XY or ZW sex. Taking this trend into account, the predominant model used to explain the genetic basis of F1 sterility involves a deleterious interaction between recessive sex-linked loci from one species and dominant autosomal loci from the other species. This model is difficult to evaluate, however, as only a handful of loci influencing interspecies hybrid sterility have been identified, and their autosomal genetic interactors have remained elusive. One hindrance to their identification has been the overwhelming effect of the sex chromosome in mapping studies, which could 'mask' the ability to accurately map autosomal factors. Here, we use a novel approach employing attached-X chromosomes to create reciprocal backcross interspecies hybrid males that have a non-recombinant sex chromosome and recombinant autosomes. The heritable variation in phenotype is thus solely caused by differences in the autosomes, thereby allowing us to accurately identify the number and location of autosomal sterility loci. In one direction of backcross, all males were sterile, indicating that sterility could be entirely induced by the sex chromosome complement in these males. In the other direction, we identified nine quantitative trait loci that account for a surprisingly large amount (56% of the autosome-induced phenotypic variance in sterility, with a large contribution of autosome-autosome epistatic interactions. These loci are capable of acting dominantly, and thus could contribute to F1 hybrid sterility.

  10. Autosomal dominant epidermodysplasia verruciformis lacking a known EVER1 or EVER2 mutation

    OpenAIRE

    McDermott, David H.; Gammon, Bryan; Snijders, Peter J.; Mbata, Ihunanya; Phifer, Beth; Hartley, A. Howland; Lee, Chyi-Chia Richard; Murphy, Philip M.; Hwang, Sam T.

    2009-01-01

    Epidermodysplasia verruciformis (EV) is a rare genodermatosis characterized by abnormal susceptibility to infection with specific human papillomavirus (HPV) serotypes. EV is a genetically heterogeneous disease, and autosomal recessive and X-linked inheritance patterns have been reported. Nonsense mutations in the genes EVER1 and EVER2 have been identified in over 75% of cases. We present EV in a father and son with typical histologic and clinical findings that occur in the absence of mutation...

  11. Digenic inheritance in autosomal recessive non-syndromic hearing loss cases carrying GJB2 heterozygote mutations: assessment of GJB4, GJA1, and GJC3.

    Science.gov (United States)

    Kooshavar, Daniz; Tabatabaiefar, Mohammad Amin; Farrokhi, Effat; Abolhasani, Marziye; Noori-Daloii, Mohammad-Reza; Hashemzadeh-Chaleshtori, Morteza

    2013-02-01

    Autosomal recessive non-syndromic hearing loss (ARNSHL) can be caused by many genes. However, mutations in the GJB2 gene, which encodes the gap-junction (GJ) protein connexin (Cx) 26, constitute a considerable proportion differing among population. Between 10 and 42 percent of patients with recessive GJB2 mutations carry only one mutant allele. Mutations in GJB4, GJA1, and GJC3 encoding Cx30.3, Cx43, and Cx29, respectively, can lead to HL. Combination of different connexins in heteromeric and heterotypic GJ assemblies is possible. This study aims to determine whether variations in any of the genes GJB4, GJA1 or GJC3 can be the second mutant allele causing the disease in the digenic mode of inheritance in the studied GJB2 heterozygous cases. We examined 34 unrelated GJB2 heterozygous ARNSHL subjects from different geographic and ethnic areas in Iran, using polymerase chain reaction (PCR) followed by direct DNA sequencing to identify any sequence variations in these genes. Restriction fragment length polymorphism (RFLP) assays were performed on 400 normal hearing individuals. Sequence analysis of GJB4 showed five heterozygous variations including c.451C>A, c.219C>T, c.507C>G, c.155_158delTCTG and c.542C>T, with only the latter variation not being detected in any of control samples. There were three heterozygous variations including c.758C>T, c.717G>A and c.3*dupA in GJA1 in four cases. We found no variations in GJC3 gene sequence. Our data suggest that GJB4 c.542C>T variant and less likely some variations of GJB4 and GJA1, but not possibly GJC3, can be assigned to ARNSHL in GJB2 heterozygous mutation carriers providing clues of the digenic pattern. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Homozygous SLC6A17 mutations cause autosomal-recessive intellectual disability with progressive tremor, speech impairment, and behavioral problems.

    Science.gov (United States)

    Iqbal, Zafar; Willemsen, Marjolein H; Papon, Marie-Amélie; Musante, Luciana; Benevento, Marco; Hu, Hao; Venselaar, Hanka; Wissink-Lindhout, Willemijn M; Vulto-van Silfhout, Anneke T; Vissers, Lisenka E L M; de Brouwer, Arjan P M; Marouillat, Sylviane; Wienker, Thomas F; Ropers, Hans Hilger; Kahrizi, Kimia; Nadif Kasri, Nael; Najmabadi, Hossein; Laumonnier, Frédéric; Kleefstra, Tjitske; van Bokhoven, Hans

    2015-03-05

    We report on Dutch and Iranian families with affected individuals who present with moderate to severe intellectual disability and additional phenotypes including progressive tremor, speech impairment, and behavioral problems in certain individuals. A combination of exome sequencing and homozygosity mapping revealed homozygous mutations c.484G>A (p.Gly162Arg) and c.1898C>G (p.Pro633Arg) in SLC6A17. SLC6A17 is predominantly expressed in the brain, encodes a synaptic vesicular transporter of neutral amino acids and glutamate, and plays an important role in the regulation of glutamatergic synapses. Prediction programs and 3D modeling suggest that the identified mutations are deleterious to protein function. To directly test the functional consequences, we investigated the neuronal subcellular localization of overexpressed wild-type and mutant variants in mouse primary hippocampal neuronal cells. Wild-type protein was present in soma, axons, dendrites, and dendritic spines. p.Pro633Arg altered SLC6A17 was found in soma and proximal dendrites but did not reach spines. p.Gly162Arg altered SLC6A17 showed a normal subcellular distribution but was associated with an abnormal neuronal morphology mainly characterized by the loss of dendritic spines. In summary, our genetic findings implicate homozygous SLC6A17 mutations in autosomal-recessive intellectual disability, and their pathogenic role is strengthened by genetic evidence and in silico and in vitro functional analyses. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  13. Phenotypic heterogeneity of intellectual disability in patients with congenital insensitivity to pain with anhidrosis: A case report and literature review.

    Science.gov (United States)

    Liu, Zhenlei; Liu, Jiaqi; Liu, Gang; Cao, Wenjian; Liu, Sen; Chen, Yixin; Zuo, Yuzhi; Chen, Weisheng; Chen, Jun; Zhang, Yu; Huang, Shishu; Qiu, Guixing; Giampietro, Philip F; Zhang, Feng; Wu, Zhihong; Wu, Nan

    2018-01-01

    Congenital insensitivity to pain with anhidrosis (CIPA) is a rare autosomal recessive heterogeneous disorder mainly caused by mutations in the neurotrophic tyrosine receptor kinase 1 gene ( NTRK1) and characterized by insensitivity to noxious stimuli, anhidrosis, and intellectual disability. We herein report the first north Han Chinese patient with CIPA who exhibited classic phenotypic features and severe intellectual disability caused by a homozygous c.851-33T>A mutation of NTRK1, resulting in aberrant splicing and an open reading frame shift. We reviewed the literature and performed in silico analysis to determine the association between mutations and intellectual disability in patients with CIPA. We found that intellectual disability was correlated with the specific Ntrk1 protein domain that a mutation jeopardized. Mutations located peripheral to the Ntrk1 protein do not influence important functional domains and tend to cause milder symptoms without intellectual disability. Mutations that involve critical amino acids in the protein are prone to cause severe symptoms, including intellectual disability.

  14. Cutis laxa and fatal pulmonary hypertension: a newly recognized syndrome?

    Science.gov (United States)

    Brunetti-Pierri, Nicola; Piccolo, Pasquale; Morava, Eva; Wevers, Ron A.; McGuirk, Megan; Johnson, Yvette R.; Urban, Zsolt; Dishop, Megan K.; Potocki, Lorraine

    2015-01-01

    Cutis laxa is a connective tissue disorder with distinctive lax, redundant, and inelastic skin. It is a genetically heterogenous disorder with autosomal dominant and recessive patterns of inheritance. We report a patient with cutis laxa supported by clinical, microscopic, and ultrastructural findings. Molecular analysis of fibulin-4 and -5, of the α2 subunit of the V-type H+ ATPase, and of the component of the oligomeric Golgi complex 7 (COG7) genes excluded the type I and type II autosomal recessive forms of cutis laxa, and congenital disorders of glycosylation associated with cutis laxa. Remarkably, our patient also presented severe and lethal pulmonary hypertension as a newborn. This case with cutis laxa, severe pulmonary hypertension, and no detectable mutations in fibulin-4 and -5 genes may represent a previously unrecognized syndrome. PMID:21285876

  15. [Congenital valvular heart disease with high familial penetrance].

    Science.gov (United States)

    Dattilo, Giuseppe; Lamari, Annalisa; Tulino, Viviana; Scarano, Michele; De Luca, Eleonora; Mutone, Daniela; Busacca, Paolo

    2012-12-01

    Bicuspid valve aortic (BVA) is one of the most common congenital malformations. Only 20% of patients preserves a normal valve function throughout life. There are sporadic and familial forms, the latter to autosomal dominant. We present a case of familiarity of BVA high penetrance. Patient with aortic stenosis by BVA, is the father of two children with BVA.

  16. Brain imaging findings of patients with congenital cataracts, facial dysmorphism neuropathy syndrome

    International Nuclear Information System (INIS)

    Zlatareva, D.; Penev, L.; Hadjidekov, V.; Chamova, T.; Guergeltcheva, V.; Tournev, I.; Tournev, I.; Bojinova, V.; Kaprelian, A.; Tzoneva, D.

    2012-01-01

    Congenital cataracts, facial dysmorphism neuropathy (CCFDN) syndrome is a rare genetic disorder of autosomal recessive inheritance, observed in patients of Gypsy ancestry. All patients are homozygous for the same mutation in the CTDP1 gene mapping to 18qter. The clinical manifestations of the disease include congenital cataracts, facial dysmorphism, peripheral neuropathy due to primary hypomyelination, intellectual impairment and involvement of central nervous system.The aim of this study is to analyze CNS magnetic resonance imaging findings of patients with CCFDN syndrome and to apply severity score system. MRI of 20 patients (10 children - 4 girls and 6 boys and 10 adults - 6 women and 4 men with CCFDN was performed on 1,5T unit. We apply severity score system (previously used for metachromatic leukodystrophy) to evaluate patients with CCFDN which was adapted to the changes observed in CCFDN patients. This score system assessed WM involvement, as well as the presence of cerebral and cerebellar atrophy. We have found pathologic findings in 19 patients (95%). White matter hyperintensities were found in 18 and cerebral atrophy in 18 patients. The severity score have varied from 0 to 18 points. In contrast to previous studies we have found higher frequency of white matter hyperintensities. The findings are more prominent with patients' age. The most common MRI findings are cerebral atrophy and periventricular hyperintensities. This study gives the first detailed description of MRI findings in CCFDN syndrome patients where severity score system was applied. The score system could be applied in follow-up studies to evaluate progression of CNS findings. (authors)

  17. Classic congenital adrenal hyperplasia and puberty.

    Science.gov (United States)

    Charmandari, Evangelia; Brook, Charles G D; Hindmarsh, Peter C

    2004-11-01

    Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders resulting from deficiency of one of the five enzymes required for synthesis of cortisol in the adrenal cortex. The most common form of the disease is classic 21-hydroxylase deficiency, which is characterized by decreased synthesis of glucocorticoids and often mineralocorticoids, adrenal hyperandrogenism and impaired development and function of the adrenal medulla. The clinical management of classic 21-hydroxylase deficiency is often suboptimal, and patients are at risk of developing in tandem iatrogenic hypercortisolism and/or hyperandogenism. Limitations of current medical therapy include the inability to control hyperandrogenism without employing supraphysiologic doses of glucocorticoid, hyperresponsiveness of the hypertrophied adrenal glands to adrenocorticotropic hormone (ACTH) and difficulty in suppressing ACTH secretion from the anterior pituitary. Puberty imposes increased difficulty in attaining adrenocortical suppression despite optimal substitution therapy and adherence to medical treatment. Alterations in the endocrine milieu at puberty may influence cortisol pharmacokinetics and, consequently, the handling of hydrocortisone used as replacement therapy. Recent studies have demonstrated a significant increase in cortisol clearance at puberty and a shorter half-life of free cortisol in pubertal females compared with males. Furthermore, children with classic CAH have elevated fasting serum insulin concentrations and insulin resistance. The latter may further enhance adrenal and/or ovarian androgen secretion, decrease the therapeutic efficacy of glucocorticoids and contribute to later development of the metabolic syndrome and its complications.

  18. New RAB3GAP1 mutations in patients with Warburg Micro Syndrome from different ethnic backgrounds and a possible founder effect in the Danish

    DEFF Research Database (Denmark)

    Morris-Rosendahl, Deborah J; Segel, Reeval; Born, A Peter

    2010-01-01

    Warburg Micro Syndrome is a rare, autosomal recessive syndrome characterized by microcephaly, microphthalmia, microcornia, congenital cataracts, optic atrophy, cortical dysplasia, in particular corpus callosum hypoplasia, severe mental retardation, spastic diplegia, and hypogonadism. We have found...... and may aid the differential diagnosis of Micro Syndrome for patients in the future. All patients had postnatal microcephaly, micropthalmia, microcornia, bilateral congenital cataracts, short palpebral fissures, optic atrophy, severe mental retardation, and congenital hypotonia with subsequent spasticity....... Only one patient had microcephaly at birth, highlighting the fact that congenital microcephaly is not a consistent feature of Micro syndrome. Analysis of the brain magnetic resonance imagings (MRIs) revealed a consistent pattern of polymicrogyria in the frontal and parietal lobes, wide sylvian fissures...

  19. [Central Nervous Involvement in Patients with Fukuyama Congenital Muscular Dystrophy].

    Science.gov (United States)

    Ishigaki, Keiko

    2016-02-01

    Fukuyama congenital muscular dystrophy (FCMD), the second most common muscular dystrophy in the Japanese population, is an autosomal recessive disorder caused by mutations in the fukutin (FKTN) gene. The main features of FCMD are a combination of infantile-onset hypotonia, generalized muscle weakness, eye abnormalities and central nervous system involvement with mental retardation and seizures associated with cortical migration defects. The FKTN gene product is thought to be necessary for maintaining migrating neurons in an immature state during migration, and for supporting migration via α-dystroglycan in the central nervous system. Typical magnetic resonance imaging findings in FCMD patients are cobblestone lissencephaly and cerebellar cystic lesions. White matter abnormalities with hyperintensity on T(2)-weighted images are seen especially in younger patients and those with severe phenotypes. Most FCMD patients are mentally retarded and the level is moderate to severe, with IQs ranging from 30 to 50. In our recent study, 62% of patients developed seizures. Among them, 71% had only febrile seizures, 6% had afebrile seizures from the onset, and 22% developed afebrile seizures following febrile seizures. Most patients had seizures that were controllable with just 1 type of antiepileptic drug, but 18% had intractable seizures that must be treated with 3 medications.

  20. Fanconi Anemia — Case Report of Rare Aplastic Anemia at Child

    Directory of Open Access Journals (Sweden)

    Deaconu Alina

    2014-06-01

    Full Text Available Introduction: Fanconi anemia is an autosomal recessive disease characterized by congenital abnormalities, defective haematopoiesis, and a high risk of developing acute myeloid leukaemia, myelodysplastic syndrome and cancers. FA was first described in 1927 by the Swiss pediatrician Guido Fanconi. The diagnosis is based on morphological abnormalities, hematologic abnormalities (pancytopenia, macrocytic anemia and progressive bone marrow failure and genetic tests (cariograma.

  1. Meier-Gorlin syndrome

    OpenAIRE

    de Munnik, Sonja A; Hoefsloot, Elisabeth H; Roukema, Jolt; Schoots, Jeroen; Knoers, Nine V A M; Brunner, Han G; Jackson, Andrew P; Bongers, Ernie M H F

    2015-01-01

    Meier-Gorlin syndrome (MGS) is a rare autosomal recessive primordial dwarfism disorder, characterized by microtia, patellar applasia/hypoplasia, and a proportionate short stature. Associated clinical features encompass feeding problems, congenital pulmonary emphysema, mammary hypoplasia in females and urogenital anomalies, such as cryptorchidism and hypoplastic labia minora and majora. Typical facial characteristics during childhood comprise a small mouth with full lips and micro-retrognathia...

  2. Meier-Gorlin syndrome Clinical genetics and genomics

    OpenAIRE

    Munnik, Sonja; Hoefsloot, Lies; Roukema, Jolt; Schoots, Jeroen; Knoers, Nine; Brunner, H.G.; Jackson, Andrew; Bongers, Ernie

    2015-01-01

    textabstractMeier-Gorlin syndrome (MGS) is a rare autosomal recessive primordial dwarfism disorder, characterized by microtia, patellar applasia/hypoplasia, and a proportionate short stature. Associated clinical features encompass feeding problems, congenital pulmonary emphysema, mammary hypoplasia in females and urogenital anomalies, such as cryptorchidism and hypoplastic labia minora and majora. Typical facial characteristics during childhood comprise a small mouth with full lips and micro-...

  3. Usher syndrome type I associated with bronchiectasis and immotile nasal cilia in two brothers.

    OpenAIRE

    Bonneau, D; Raymond, F; Kremer, C; Klossek, J M; Kaplan, J; Patte, F

    1993-01-01

    Usher syndrome type I is an autosomal recessive disease characterised by congenital sensorineural deafness, involvement of the vestibular system, and progressive visual loss owing to retinitis pigmentosa. Here we report the association of this disease with bronchiectasis, chronic sinusitis, and reduced nasal mucociliary clearance in two sibs and we suggest Usher syndrome type I could be a primary ciliary disorder.

  4. A Comparison of Selective Pressures in Plant X-Linked and Autosomal Genes.

    Science.gov (United States)

    Krasovec, Marc; Nevado, Bruno; Filatov, Dmitry A

    2018-05-03

    Selection is expected to work differently in autosomal and X-linked genes because of their ploidy difference and the exposure of recessive X-linked mutations to haploid selection in males. However, it is not clear whether these expectations apply to recently evolved sex chromosomes, where many genes retain functional X- and Y-linked gametologs. We took advantage of the recently evolved sex chromosomes in the plant Silene latifolia and its closely related species to compare the selective pressures between hemizygous and non-hemizygous X-linked genes as well as between X-linked genes and autosomal genes. Our analysis, based on over 1000 genes, demonstrated that, similar to animals, X-linked genes in Silene evolve significantly faster than autosomal genes—the so-called faster-X effect. Contrary to expectations, faster-X divergence was detectable only for non-hemizygous X-linked genes. Our phylogeny-based analyses of selection revealed no evidence for faster adaptation in X-linked genes compared to autosomal genes. On the other hand, partial relaxation of purifying selection was apparent on the X-chromosome compared to the autosomes, consistent with a smaller genetic diversity in S. latifolia X-linked genes (π x = 0.016; π aut = 0.023). Thus, the faster-X divergence in S. latifolia appears to be a consequence of the smaller effective population size rather than of a faster adaptive evolution on the X-chromosome. We argue that this may be a general feature of “young” sex chromosomes, where the majority of X-linked genes are not hemizygous, preventing haploid selection in heterogametic sex.

  5. CONGENITAL MYOTONIC DYSTROPHY – CASE REPORT

    Directory of Open Access Journals (Sweden)

    David Neubauer

    2001-07-01

    Full Text Available Background. Myotonic dystrophy is inherited as an autosomal dominant trait. It is characterized by myotonia, myopathy of voluntary and involuntary muscles, frontal baldness in men, cardiac conduction abnormalities, catharacts, intellectual deterioration and endocrinopathy. Men with this disorder have often gonadal atrophy and infertility. On the other hand women are generally fertile. During pregnancy their myopathy worsens, often causing severe obstetrical complications. Their children may develop congenital form of the disease with signs of myopathy in utero and have great difficulties in maintaining life functions after birth, together with other characteristical signs of this form: bilateral facial weakness, severe hypotonia, feeding difficulties, talipes equinovarus and mental retardation. The authors present a female newborn with such congenital form of myotonic dystrophy.Conclusions. The authors have emphasized the importance of medical history, regular updating of all the cases of neuromuscular diseases in the region and clinical characteristics for the recognition of congenital form of myotonic dystrophy because of possible prenatal diagnostics and better antenatal and postantal care.

  6. Autosomal recessive polycystic kidney disorder due to two novel compound heterozygote mutations in PKHD1 gene: case report

    Directory of Open Access Journals (Sweden)

    Mohammad Miryounesi

    2017-01-01

    Full Text Available Background: Autosomal recessive polycystic kidney disorder (ARPCKD is one of the most prevalent hereditary disorders in neonates and children. Its frequency is between 1/6000 to 1/55000 births. In the most severe cases, it can be diagnosed prenatally by the presence of enlarged, echogenic kidneys and oligohydramnios. However, in the milder forms, clinical manifestations are usually detected in neonatal and childhood period. PKHD1 gene located on chromosome 6 is linked with this disorder. About half of detected mutations in this gene are missense ones. The largest protein product of this gene is called the FPC/polyductin complex (FPC. It is a single-membrane spanning protein whose absence leads to abnormal ciliogenesis in the kidneys. Case presentation: Here we present a 5-year-old female patient affected with ARPCKD. She has been born to a non-consanguineous healthy Iranian parents. No similar disorder has been seen in the family. Prenatal history has been normal. In order to find the genetic background, DNA was extracted from patient's peripheral blood lymphocytes. PKHD1 gene exons and exon-intron boundaries were sequenced using next generation sequencing platform. Two novel variants have been detected in compound heterozygote state in the patient (c.6591C>A, c.8222C>A. Bioinformatics tools predicted these variants to be pathogenic. Conclusion: In the present study, we detected two novel variants in PKHD1 gene in a patient with ARPCKD. The relatively mild phenotype of this patient is in accordance with the missense mutations found. Molecular genetic tools can help in accurate risk assessment as well as precise genotype-phenotype correlation establishment in families affected with such disorder to decrease the birth of affected individuals through preimplantation genetic diagnosis or better management of disorder.

  7. Mutation analysis of 272 Spanish families affected by autosomal recessive retinitis pigmentosa using a genotyping microarray.

    NARCIS (Netherlands)

    Avila-Fernandez, A.; Cantalapiedra, D.; Aller, E.; Vallespin, E.; Aguirre-Lamban, J.; Blanco-Kelly, F.; Corton, M.; Riveiro-Alvarez, R.; Allikmets, R.; Trujillo-Tiebas, M.J.; Millan, J.M.; Cremers, F.P.M.; Ayuso, C.

    2010-01-01

    PURPOSE: Retinitis pigmentosa (RP) is a genetically heterogeneous disorder characterized by progressive loss of vision. The aim of this study was to identify the causative mutations in 272 Spanish families using a genotyping microarray. METHODS: 272 unrelated Spanish families, 107 with autosomal

  8. Congenital Becker's nevus with a familial association.

    Science.gov (United States)

    Book, S E; Glass, A T; Laude, T A

    1997-01-01

    Becker's nevus is a unilateral, hyperpigmented cutaneous hamartoma usually with hypertrichosis. It occurs predominantly in boys, becoming apparent during adolescence, although several cases of congenital Becker's nevus have been reported. Rarely it may be familial and as such is transmitted in an autosomal dominant pattern. We report a 16-month-old black boy with a hyperpigmented patch on his right shoulder and upper pectoral area that extended down his arm. The patient's father has a similar lesion with hair on his left shoulder which has been present since childhood. Histology of the child's lesion was consistent with Becker's nevus. We believe this to be the first reported case of a congenital Becker's nevus with a familial association.

  9. Sickle cell disease and complex congenital cardiac surgery: a case report and review of the pathophysiology and perioperative management.

    Science.gov (United States)

    Sanders, D B; Smith, B P; Sowell, S R; Nguyen, D H; Derby, C; Eshun, F; Nigro, J J

    2014-03-01

    Sickle cell anemia and thalassemia are hemoglobinopathies rarely encountered in the United States. Compounded with congenital heart disease, patients with sickle cell disease (SCD) requiring cardiopulmonary bypass and open-heart surgery represent the proverbial "needle in the haystack". As such, there is some trepidation on the part of clinicians when these patients present for complex cardiac surgery. SCD is an autosomal, recessive condition that results from a single nucleotide polymorphism in the β-globin gene. Hemoglobin SS molecules (HgbSS) with this point mutation can polymerize under the right conditions, stiffening the erythrocyte membrane and distorting the cellular structure to the characteristic sickle shape. This shape change alters cellular transit through the microvasculature. As a result, circumstances such as hypoxia, hypothermia, acidosis or diminished blood flow can lead to aggregation, vascular occlusion and thrombosis. Chronically, SCD can give rise to multiorgan damage secondary to hemolysis and vascular obstruction. This review and case study details an 11-year-old African-American male with known SCD who presented to the cardiothoracic surgical service with congenital heart disease consisting of an anomalous, intramural right coronary artery arising from the left coronary sinus for surgical consultation and subsequent surgical correction. This case report will include a review of the pathophysiology and current literature regarding preoperative, intraoperative and postoperative management of SCD patients.

  10. Ehlers-Danlos Syndrome Caused by Biallelic TNXB Variants in Patients with Congenital Adrenal Hyperplasia.

    Science.gov (United States)

    Chen, Wuyan; Perritt, Ashley F; Morissette, Rachel; Dreiling, Jennifer L; Bohn, Markus-Frederik; Mallappa, Ashwini; Xu, Zhi; Quezado, Martha; Merke, Deborah P

    2016-09-01

    Some variants that cause autosomal-recessive congenital adrenal hyperplasia (CAH) also cause hypermobility type Ehlers-Danlos syndrome (EDS) due to the monoallelic presence of a chimera disrupting two flanking genes: CYP21A2, encoding 21-hydroxylase, necessary for cortisol and aldosterone biosynthesis, and TNXB, encoding tenascin-X, an extracellular matrix protein. Two types of CAH tenascin-X (CAH-X) chimeras have been described with a total deletion of CYP21A2 and characteristic TNXB variants. CAH-X CH-1 has a TNXB exon 35 120-bp deletion resulting in haploinsufficiency, and CAH-X CH-2 has a TNXB exon 40 c.12174C>G (p.Cys4058Trp) variant resulting in a dominant-negative effect. We present here three patients with biallelic CAH-X and identify a novel dominant-negative chimera termed CAH-X CH-3. Compared with monoallelic CAH-X, biallelic CAH-X results in a more severe phenotype with skin features characteristic of classical EDS. We present evidence for disrupted tenascin-X function and computational data linking the type of TNXB variant to disease severity. © 2016 WILEY PERIODICALS, INC.

  11. Common recessive limb girdle muscular dystrophies differential diagnosis: why and how?

    Directory of Open Access Journals (Sweden)

    Ana Cotta

    2014-09-01

    Full Text Available Limb girdle muscular dystrophies are heterogeneous autosomal hereditary neuromuscular disorders. They produce dystrophic changes on muscle biopsy and they are associated with mutations in several genes involved in muscular structure and function. Detailed clinical, laboratorial, imaging, diagnostic flowchart, photographs, tables, and illustrated diagrams are presented for the differential diagnosis of common autosomal recessive limb girdle muscular dystrophy subtypes diagnosed nowadays at one reference center in Brazil. Preoperative image studies guide muscle biopsy site selection. Muscle involvement image pattern differs depending on the limb girdle muscular dystrophy subtype. Muscle involvement is conspicuous at the posterior thigh in calpainopathy and fukutin-related proteinopathy; anterior thigh in sarcoglycanopathy; whole thigh in dysferlinopathy, and telethoninopathy. The precise differential diagnosis of limb girdle muscular dystrophies is important for genetic counseling, prognostic orientation, cardiac and respiratory management. Besides that, it may probably, in the future, provide specific genetic therapies for each subtype.

  12. A retrospective study of the inheritance of peromelia in Angora goats

    DEFF Research Database (Denmark)

    Agerholm, J.S.; Kielsgaard, M.E.; Pedersen, Jan W.

    1997-01-01

    in Angora goats, breeding results for goats being daughters of known carriers and which were then mated to a known carrier were analysed. Of 45 kids born in 1993 and 1994, five kids had peromelia. This corresponded to the expected 7:1 segregation. The difference between the number of affected male...... and female kids was not statistically significant. Peromelia affected kids occurred significantly more frequently among goats selected in the breeding study than among other goats in the respective herds. The study demonstrated that peromelia is inherited as an autosomal recessive defect. Based on knowledge......Peromelia, agenesia of the distal parts of the limbs, has been reported as a congenital defect in several animal species. In Angora goats, cases occur in a familiar pattern consistent with an autosomal recessively inherited defect. To obtain further evidence on the inheritance of peromelia...

  13. Persistent hyperplastic primary vitreous: congenital malformation of the eye.

    Science.gov (United States)

    Shastry, Barkur S

    2009-12-01

    Persistent hyperplastic primary vitreous (PHPV), also known as persistent fetal vasculature, is a rare congenital developmental malformation of the eye, caused by the failure of regression of the primary vitreous. It is divided into anterior and posterior types and is characterized by the presence of a vascular membrane located behind the lens. The condition can be of an isolated type or can occur with other ocular disorders. Most cases of PHPV are sporadic, but it can be inherited as an autosomal dominant or recessive trait. Inherited PHPV also occurs in several breeds of dogs and cats. In a limited number of cases, Norrie disease and FZD4 genes are found to be mutated in unilateral and bilateral PHPV. These genes when mutated also cause Norrie disease pseudoglioma and familial exudative vitreoretinopathy that share some of the clinical features with PHPV. Mice lacking arf and p53 tumour suppressor genes as well as Norrie disease pseudoglioma and LRP5 genes suggest that these genes are needed for hyaloid vascular regression. These experiments also indicate that abnormalities in normal apoptosis and defects in Wnt signalling pathway may be responsible for the pathogenesis of PHPV. Identification of other candidate genes in the future may provide a better understanding of the pathogenesis of the condition that may lead to a better therapeutic approach and better management.

  14. Genetic Analysis for Two Italian Siblings with Usher Syndrome and Schizophrenia

    OpenAIRE

    Daniela Domanico; Serena Fragiotta; Paolo Trabucco; Marcella Nebbioso; Enzo Maria Vingolo

    2012-01-01

    Usher syndrome is a group of autosomal recessive genetic disorders characterized by deafness, retinitis pigmentosa, and sometimes vestibular areflexia. The relationship between Usher syndrome and mental disorders, most commonly a “schizophrenia-like” psychosis, is sometimes described in the literature. The etiology of psychiatric expression of Usher syndrome is still unclear. We reported a case of two natural siblings with congenital hypoacusis, retinitis pigmentosa, and psychiatric symptoms....

  15. Delayed diagnosis of homocystinuria presenting as bilateral congenital lens subluxation

    OpenAIRE

    Jelić-Vuković Marija; Matić Suzana; Barać Josip; Novinščak Tomislav; Belovari Mirna; Barić Hrvoje

    2017-01-01

    Introduction. Homocystinuria is an autosomal recessively inherited defect leading to hyperhomocysteinemia and associated with ocular manifestations, mainly myopia and ectopia lentis. Case outline. A 26-year-old male with secondary glaucoma due to bilateral lens subluxation was admitted to the Department of vitreoretinal surgery. Horizontal nystagmus, bilateral lens subluxation, and bilateral amblyopia were first discovered at the age of three years. Preoperative laboratory workup revealed ele...

  16. Assessing the putative roles of X-autosome and X-Y interactions in hybrid male sterility of the Drosophila bipectinata species complex.

    Science.gov (United States)

    Mishra, Paras Kumar; Singh, Bashisth Narayan

    2007-07-01

    Interspecific F1 hybrid males of the Drosophila bipectinata species complex are sterile, while females are fertile, following Haldane's rule. A backcross scheme involving a single recessive visible marker on the X chromosome has been used to assess the putative roles of X-autosome and X-Y interactions in hybrid male sterility in the D. bipectinata species complex. The results suggest that X-Y interactions are playing the major role in hybrid male sterility in the crosses D. bipectinata x D. parabipectinata and D. bipectinata x D. pseudoananassae, while X-autosome interactions are largely involved in hybrid male sterility in the crosses D. malerkotliana x D. bipectinata and D. malerkotliana x D. parabipectinata. However, by using this single marker it is not possible to rule out the involvement of autosome-autosome interactions in hybrid male sterility. These findings also lend further support to the phylogenetic relationships among 4 species of the D. bipectinata complex.

  17. Gene therapy in animal models of autosomal dominant retinitis pigmentosa

    Science.gov (United States)

    Rossmiller, Brian; Mao, Haoyu

    2012-01-01

    Gene therapy for dominantly inherited genetic disease is more difficult than gene-based therapy for recessive disorders, which can be treated with gene supplementation. Treatment of dominant disease may require gene supplementation partnered with suppression of the expression of the mutant gene either at the DNA level, by gene repair, or at the RNA level by RNA interference or transcriptional repression. In this review, we examine some of the gene delivery approaches used to treat animal models of autosomal dominant retinitis pigmentosa, focusing on those models associated with mutations in the gene for rhodopsin. We conclude that combinatorial approaches have the greatest promise for success. PMID:23077406

  18. Recessive cardiac phenotypes in induced pluripotent stem cell models of Jervell and Lange-Nielsen syndrome: disease mechanisms and pharmacological rescue

    NARCIS (Netherlands)

    Zhang, Miao; D'Aniello, Cristina; Verkerk, Arie O.; Wrobel, Eva; Frank, Stefan; Ward-van Oostwaard, Dorien; Piccini, Ilaria; Freund, Christian; Rao, Jyoti; Seebohm, Guiscard; Atsma, Douwe E.; Schulze-Bahr, Eric; Mummery, Christine L.; Greber, Boris; Bellin, Milena

    2014-01-01

    Jervell and Lange-Nielsen syndrome (JLNS) is one of the most severe life-threatening cardiac arrhythmias. Patients display delayed cardiac repolarization, associated high risk of sudden death due to ventricular tachycardia, and congenital bilateral deafness. In contrast to the autosomal dominant

  19. Cleft lip with or without cleft palate in Shanghai, China: Evidence for an autosomal major locus

    Energy Technology Data Exchange (ETDEWEB)

    Marazita, M.L. (Virginia Commonwealth Univ., Richmond, VA (United States)); Hu, Dan-Ning; Liu, You-E. (Zhabei Eye Institute, Shanghai (China)); Spence, A. (Univ. of California, Los Angeles, CA (United States)); Melnick, M. (Univ. of Southern California, Los Angeles, CA (United States))

    1992-09-01

    Orientals are at higher risk for cleft lip with our without cleft palate (CL[+-] P) than Caucasians or blacks. The authors collected demographic and family data to study factors contributing to the etiology of CL[+-]P in Shanghai. The birth incidence of nonsyndromic CL[+-]P (SHanghai 1980-87) was 1.11/1,000, with a male/female ratio of 1.42. Almost 2,000 nonsyndromic CL[+-]P probands were ascertained from individuals operated on during the years 1956-83 at surgical hospitals in Shanghai. Detailed family histories and medical examinations were obtained for the probands and all available family members. Genetic analysis of the probands' families were performed under the mixed model with major locus (ML) and multifactorial (MFT) components. The hypothesis of no familial transmission and of MFT alone could be rejected. Of the ML models, the autosomal recessive was significantly most likely and was assumed for testing three complex hypothesis: (1) ML and sporadics; (2) ML and MFT; (3) ML, MFT, and sporadics. None of the complex models were more likely than the ML alone model. In conclusion, the best-fitting, most parsimonious model for CL[+-]P in Shanghai was that of an autosomal recessive major locus. 37 refs., 1 tab.

  20. Clinical, genetic, and structural basis of congenital adrenal hyperplasia due to 11β-hydroxylase deficiency.

    Science.gov (United States)

    Khattab, Ahmed; Haider, Shozeb; Kumar, Ameet; Dhawan, Samarth; Alam, Dauood; Romero, Raquel; Burns, James; Li, Di; Estatico, Jessica; Rahi, Simran; Fatima, Saleel; Alzahrani, Ali; Hafez, Mona; Musa, Noha; Razzghy Azar, Maryam; Khaloul, Najoua; Gribaa, Moez; Saad, Ali; Charfeddine, Ilhem Ben; Bilharinho de Mendonça, Berenice; Belgorosky, Alicia; Dumic, Katja; Dumic, Miroslav; Aisenberg, Javier; Kandemir, Nurgun; Alikasifoglu, Ayfer; Ozon, Alev; Gonc, Nazli; Cheng, Tina; Kuhnle-Krahl, Ursula; Cappa, Marco; Holterhus, Paul-Martin; Nour, Munier A; Pacaud, Daniele; Holtzman, Assaf; Li, Sun; Zaidi, Mone; Yuen, Tony; New, Maria I

    2017-03-07

    Congenital adrenal hyperplasia (CAH), resulting from mutations in CYP11B1 , a gene encoding 11β-hydroxylase, represents a rare autosomal recessive Mendelian disorder of aberrant sex steroid production. Unlike CAH caused by 21-hydroxylase deficiency, the disease is far more common in the Middle East and North Africa, where consanguinity is common often resulting in identical mutations. Clinically, affected female newborns are profoundly virilized (Prader score of 4/5), and both genders display significantly advanced bone ages and are oftentimes hypertensive. We find that 11-deoxycortisol, not frequently measured, is the most robust biochemical marker for diagnosing 11β-hydroxylase deficiency. Finally, computational modeling of 25 missense mutations of CYP11B1 revealed that specific modifications in the heme-binding (R374W and R448C) or substrate-binding (W116C) site of 11β-hydroxylase, or alterations in its stability (L299P and G267S), may predict severe disease. Thus, we report clinical, genetic, hormonal, and structural effects of CYP11B1 gene mutations in the largest international cohort of 108 patients with steroid 11β-hydroxylase deficiency CAH.

  1. Mutations in the satellite cell gene MEGF10 cause a recessive congenital myopathy with minicores.

    Science.gov (United States)

    Boyden, Steven E; Mahoney, Lane J; Kawahara, Genri; Myers, Jennifer A; Mitsuhashi, Satomi; Estrella, Elicia A; Duncan, Anna R; Dey, Friederike; DeChene, Elizabeth T; Blasko-Goehringer, Jessica M; Bönnemann, Carsten G; Darras, Basil T; Mendell, Jerry R; Lidov, Hart G W; Nishino, Ichizo; Beggs, Alan H; Kunkel, Louis M; Kang, Peter B

    2012-05-01

    We ascertained a nuclear family in which three of four siblings were affected with an unclassified autosomal recessive myopathy characterized by severe weakness, respiratory impairment, scoliosis, joint contractures, and an unusual combination of dystrophic and myopathic features on muscle biopsy. Whole genome sequence from one affected subject was filtered using linkage data and variant databases. A single gene, MEGF10, contained nonsynonymous mutations that co-segregated with the phenotype. Affected subjects were compound heterozygous for missense mutations c.976T > C (p.C326R) and c.2320T > C (p.C774R). Screening the MEGF10 open reading frame in 190 patients with genetically unexplained myopathies revealed a heterozygous mutation, c.211C > T (p.R71W), in one additional subject with a similar clinical and histological presentation as the discovery family. All three mutations were absent from at least 645 genotyped unaffected control subjects. MEGF10 contains 17 atypical epidermal growth factor-like domains, each of which contains eight cysteine residues that likely form disulfide bonds. Both the p.C326R and p.C774R mutations alter one of these residues, which are completely conserved in vertebrates. Previous work showed that murine Megf10 is required for preserving the undifferentiated, proliferative potential of satellite cells, myogenic precursors that regenerate skeletal muscle in response to injury or disease. Here, knockdown of megf10 in zebrafish by four different morpholinos resulted in abnormal phenotypes including unhatched eggs, curved tails, impaired motility, and disorganized muscle tissue, corroborating the pathogenicity of the human mutations. Our data establish the importance of MEGF10 in human skeletal muscle and suggest satellite cell dysfunction as a novel myopathic mechanism.

  2. Pitfalls in molecular diagnosis of 21-hydroxylase deficiency in congenital adrenal hyperplasia.

    Science.gov (United States)

    Kolahdouz, Mahsa; Mohammadi, Zahra; Kolahdouz, Parisa; Tajamolian, Masoud; Khanahmad, Hossein

    2015-01-01

    Congenital adrenal hyperplasia (CAH) is a putative error of metabolism with autosomal recessive heredity pattern. The main manifestations of classic form of CAH are salt-wasting, dehydration and simple virilization in both sexes and ambiguous genitalia in female gender. 21-hyroxylase (CYP21A2) impairment with prevalence value of 1 in 10,000-15,000 live births is the most common etiology of CAH. Because of consanguineous marriages, the frequency of the CAH in Iran is very high. A wide range of mutations diversity exists in CYP21A2 gene and a large number of these mutations derived from a highly homologous pseudogene, CYP21A1P, through gene conversion. In addition, new mutations such as small and large deletion and point mutations can also result in enzyme deficiency. Various methods for mutation detection were performed. The main obstacle in molecular diagnosis of CAH is amplification of pseudogene during polymerase chain reaction of CYP21A2. All attempts focus on discrimination of pseudogene from gene; that is why, there is the majority of mutations on pseudogene, and if we have contamination with the pseudogene, the result will be unreliable. Here, we discuss this methods and advantage and disadvantage of those.

  3. [Congenital talipes equinovarus--family occurrence].

    Science.gov (United States)

    Kołecka, Ewa; Niedzielski, Kryspin Ryszard; Cukras, Zbigniew; Piotrowicz, Małgorzata

    2011-01-01

    Although congenital talipes equinovarus (CTEV) is one of the most frequently occurring congenital defects of locomotor organs, its ethiopathogenesis is still not fully known. Amongst the others, the inheritance patterns of that defect are not fully known, and that restricts genetic therapeutics and development of new treatment technologies. The aim of this study was analysis of family lineages of 205 children with CTEV (298 feet) treated at our centre in the years 1998-2008. The family occurrence of CTEV was found in 16 cases (8% of analysed group). 6 lineages, in which CTEV occurred in successive generations, were analysed in detail. Particularly interesting is the lineage of the family 1, in which the defect occurred in three successive generations. In case of that family, an autosomal dominant inheritance pattern is possible. Previously that pattern of CTEV inheritance was described only for isolated populations of Polynesians. In own material the family occurrence of CTEV was found to be less frequent than in bibliographic references. The defect occurred twice as often in boys, while the severe form was more frequently observed in girls, and that is consisted with data in the available bibliography. The analysis of presented lineages of families with CTEV did not allow unambiguous defining of the inheritance pattern for that defect. To confirm the autosomal dominant pattern of CTEV inheritance in the family in which the defect occurred in three successive generations, genetic tests would be necessary.

  4. Disorders of fatty acid oxidation and autosomal recessive polycystic kidney disease-different clinical entities and comparable perinatal renal abnormalities.

    Science.gov (United States)

    Hackl, Agnes; Mehler, Katrin; Gottschalk, Ingo; Vierzig, Anne; Eydam, Marcus; Hauke, Jan; Beck, Bodo B; Liebau, Max C; Ensenauer, Regina; Weber, Lutz T; Habbig, Sandra

    2017-05-01

    Differential diagnosis of prenatally detected hyperechogenic and enlarged kidneys can be challenging as there is a broad phenotypic overlap between several rare genetic and non-genetic disorders. Metabolic diseases are among the rarest underlying disorders, but they demand particular attention as their prognosis and postnatal management differ from those of other diseases. We report two cases of cystic, hyperechogenic and enlarged kidneys detected on prenatal ultrasound images, resulting in the suspected diagnosis of autosomal recessive polycystic kidney disease (ARPKD). Postnatal clinical course and work-up, however, revealed early, neonatal forms of disorders of fatty acid oxidation (DFAO) in both cases, namely, glutaric acidemia type II, based on identification of the novel, homozygous splice-site mutation c.1117-2A > G in the ETFDH gene, in one case and carnitine palmitoyltransferase II deficiency in the other case. Review of pre- and postnatal sonographic findings resulted in the identification of some important differences that might help to differentiate DFAO from ARPKD. In DFAO, kidneys are enlarged to a milder degree than in ARPKD, and the cysts are located ubiquitously, including also in the cortex and the subcapsular area. Interestingly, recent studies have pointed to a switch in metabolic homeostasis, referred to as the Warburg effect (aerobic glycolysis), as one of the underlying mechanisms of cell proliferation and cyst formation in cystic kidney disease. DFAO are characterized by the inhibition of oxidative phosphorylation, resulting in aerobic glycolysis, and thus they do resemble the Warburg effect. We therefore speculate that this inhibition might be one of the pathomechanisms of renal hyperproliferation and cyst formation in DFAO analogous to the reported findings in ARPKD. Neonatal forms of DFAO can be differentially diagnosed in neonates with cystic or hyperechogenic kidneys and necessitate immediate biochemical work-up to provide early

  5. A novel gene encoding a TIG multiple domain protein is a positional candidate for autosomal recessive polycystic kidney disease.

    Science.gov (United States)

    Xiong, Huaqi; Chen, Yongxiong; Yi, Yajun; Tsuchiya, Karen; Moeckel, Gilbert; Cheung, Joseph; Liang, Dan; Tham, Kyi; Xu, Xiaohu; Chen, Xing-Zhen; Pei, York; Zhao, Zhizhuang Jeo; Wu, Guanqing

    2002-07-01

    Autosomal recessive polycystic kidney disease (ARPKD) is a common hereditary renal cystic disease in infants and children. By genetic linkage analyses, the gene responsible for this disease, termed polycystic kidney and hepatic disease 1 (PKHD1), was mapped on human chromosome 6p21.1-p12, and has been further localized to a 1-cM genetic interval flanked by the D6S1714/D6S243 (telomeric) and D6S1024 (centromeric) markers. We recently identified a novel gene in this genetic interval from kidney cDNA, using cloning strategies. The gene PKHD1 (PKHD1-tentative) encodes a novel 3396-amino-acid protein with no apparent homology with any known proteins. We named its gene product "tigmin" because it contains multiple TIG domains, which usually are seen in proteins containing immunoglobulin-like folds. PKHD1 encodes an 11.6-kb transcript and is composed of 61 exons spanning an approximately 365-kb genomic region on chromosome 6p12-p11.2 adjacent to the marker D6S1714. Northern blot analyses demonstrated that the gene has discrete bands with one peak signal at approximately 11 kb, indicating that PKHD1 is likely to have multiple alternative transcripts. PKHD1 is highly expressed in adult and infant kidneys and weakly expressed in liver in northern blot analysis. This expression pattern parallels the tissue involvement observed in ARPKD. In situ hybridization analysis further revealed that the expression of PKHD1 in the kidney is mainly localized to the epithelial cells of the collecting duct, the specific tubular segment involved in cyst formation in ARPKD. These features of PKHD1 make it a strong positional candidate gene for ARPKD.

  6. Newly diagnosed congenital factor VII deficiency and utilization of recombinant activated factor VII (NovoSeven®)

    Science.gov (United States)

    Bartosh, Nicole S; Tomlin, Tara; Cable, Christian; Halka, Kathleen

    2013-01-01

    This case report presents a newly diagnosed congenital factor VII deficiency treated with recombinant activated factor VII (rFVIIa). Congenital factor VII deficiency is a rare autosomal-recessive bleeding disorder that occurs in fewer than 1/500,000 persons. Its presentation can vary from epistaxis to hemarthroses and severe central nervous system bleeding, and correlates poorly with factor VII levels. Our patient had not had a significant hemostatic challenge prior to his presentation and therefore never had any symptomatology suggestive of this disease. He was treated with rFVIIa, and was able to undergo repair of his fractures without bleeding. Case report A 19-year-old African-American male presented to the emergency room after an altercation that resulted in significant trauma. He sustained bilateral mandibular angle fractures and orbital floor fractures, requiring urgent surgical correction. On initial evaluation, he was noted to have a prolonged prothrombin time of 40.1 seconds, with an International Normalized Ratio of 4.0, a normal activated partial thromboplastin time of 29.9 seconds, and a platelet count of 241. After receiving vitamin K and fresh frozen plasma, he was taken to the operating room for a temporary rigid maxillomandibular fixation. A 1:1 mixing study with normal plasma corrected the prothrombin time (decreasing from 40.7 to 14.7 seconds) and a factor VII assay revealed 5% of the normal factor VII level. The patient was diagnosed with congenital factor VII deficiency. Due to his coagulopathy and the extensive surgical correction needed, rFVIIa was administered and surgery was accomplished without hemorrhagic sequelae. Conclusion This case report and review describes a rare congenital disease, the history of rFVIIa use, and its mechanism. rFVIIA use in our patient provided a treatment option that allowed the necessary surgical correction, but further prospective studies on dose optimization would ensure adequate dosing with minimal risk of

  7. Recurrent De Novo Mutations Affecting Residue Arg1 38 of Pyrroline-5-Carboxylate Synthase Cause a Progeroid Form of Autosomal-Dominant Cutis Laxa

    NARCIS (Netherlands)

    Fischer-Zirnsak, Björn; Escande-Beillard, Nathalie; Ganesh, Jaya; Tan, Yu Xuan; Al Bughaili, Mohammed; Lin, Angela E.; Sahai, Inderneel; Bahena, Paulina; Reichert, Sara L.; Loh, Abigail; Wright, Graham D.; Liu, Jaron; Rahikkala, Elisa; Pivnick, Eniko K.; Choudhri, Asim F.; Krüger, Ulrike; Zemojtel, Tomasz; van Ravenswaaij-Arts, Conny; Mostafavi, Roya; Stolte-Dijkstra, Irene; Symoens, Sofie; Pajunen, Leila; Al-Gazali, Lihadh; Meierhofer, David; Robinson, Peter N.; Mundlos, Stefan; Villarroel, Camilo E.; Byers, Peter; Masri, Amira; Robertson, Stephen P.; Schwarze, Ulrike; Callewaert, Bert; Reversade, Bruno; Kornak, Uwe

    2015-01-01

    Progeroid disorders overlapping with De Barsy syndrome (DBS) are collectively denoted as autosomal-recessive cutis laxa type 3 (ARCL3). They are caused by biallelic mutations in PYCR1 or ALDH18A1, encoding pyrroline-5-carboxylate reductase 1 and pyrroline-5-carboxylate synthase (P5CS), respectively,

  8. Mapping recessive ophthalmic diseases: linkage of the locus for Usher syndrome type II to a DNA marker on chromosome 1q.

    Science.gov (United States)

    Lewis, R A; Otterud, B; Stauffer, D; Lalouel, J M; Leppert, M

    1990-06-01

    Usher syndrome is a heterogeneous group of autosomal recessive disorders that combines variably severe congenital neurosensory hearing impairment with progressive night-blindness and visual loss similar to that in retinitis pigmentosa. Usher syndrome type I is distinguished by profound congenital (preverbal) deafness and retinal disease with onset in the first decade of life. Usher syndrome type II is characterized by partial hearing impairment and retinal dystrophy that occurs in late adolescence or early adulthood. The chromosomal assignment and the regional localization of the genetic mutation(s) causing the Usher syndromes are unknown. We analyzed a panel of polymorphic genomic markers for linkage to the disease gene among six families with Usher syndrome type I and 22 families with Usher syndrome type II. Significant linkage was established between Usher syndrome type II and the DNA marker locus THH33 (D1S81), which maps to chromosome 1q. The most likely location of the disease gene is at a map distance of 9 cM from THH33 (lod score 6.5). The same marker failed to show linkage in families segregating an allele for Usher syndrome type I. These data confirm the provisional assignment of the locus for Usher syndrome type II to the distal end of chromosome 1q and demonstrate that the clinical heterogeneity between Usher types I and II is caused by mutational events at different genetic loci. Regional localization has the potential to improve carrier detection and to provide antenatal diagnosis in families at risk for the disease.

  9. [Congenital myotonic dystrophy in a Neonatal Intensive Care Unit: case series].

    Science.gov (United States)

    Domingues, Sara; Alves Pereira, Clara; Machado, Angela; Pereira, Sandra; Machado, Leonilde; Fraga, Carla; Oliveira, Abílio; Vale, Isabel; Quelhas, Ilídio

    2014-02-01

    Steinert myotonic dystrophy is a multisystemic disease, autosomal dominant, with a wide spectrum of severity and clinical manifestations. The most severe form is one that manifests in the neonatal period, called congenital myotonic dystrophy. This condition is distinguished by overall hypotonia at birth and respiratory function compromise. Complications are frequent, mainly psychomotor development delay, growth failure, food difficulties and constipation. It is associated with a poor prognosis, with an overall mortality of up to 50% of severely affected children. We present five patients with congenital myotonic dystrophy in order to describe clinical manifestations, diagnosis, treatment and prognosis. Existing data in the literature on psychomotor development, complications and prognosis of survivors with congenital myotonic dystrophy are scarce. In our case studies, we have found significant chronic psychomotor limitations.

  10. A COLQ missense mutation in Labrador Retrievers having congenital myasthenic syndrome.

    Directory of Open Access Journals (Sweden)

    Caitlin J Rinz

    Full Text Available Congenital myasthenic syndromes (CMSs are heterogeneous neuromuscular disorders characterized by skeletal muscle weakness caused by disruption of signal transmission across the neuromuscular junction (NMJ. CMSs are rarely encountered in veterinary medicine, and causative mutations have only been identified in Old Danish Pointing Dogs and Brahman cattle to date. Herein, we characterize a novel CMS in 2 Labrador Retriever littermates with an early onset of marked generalized muscle weakness. Because the sire and dam share 2 recent common ancestors, CMS is likely the result of recessive alleles inherited identical by descent (IBD. Genome-wide SNP profiles generated from the Illumina HD array for 9 nuclear family members were used to determine genomic inheritance patterns in chromosomal regions encompassing 18 functional candidate genes. SNP haplotypes spanning 3 genes were consistent with autosomal recessive transmission, and microsatellite data showed that only the segment encompassing COLQ was inherited IBD. COLQ encodes the collagenous tail of acetylcholinesterase, the enzyme responsible for termination of signal transduction in the NMJ. Sequences from COLQ revealed a variant in exon 14 (c.1010T>C that results in the substitution of a conserved amino acid (I337T within the C-terminal domain. Both affected puppies were homozygous for this variant, and 16 relatives were heterozygous, while 288 unrelated Labrador Retrievers and 112 dogs of other breeds were wild-type. A recent study in which 2 human CMS patients were found to be homozygous for an identical COLQ mutation (c.1010T>C; I337T provides further evidence that this mutation is pathogenic. This report describes the first COLQ mutation in canine CMS and demonstrates the utility of SNP profiles from nuclear family members for the identification of private mutations.

  11. An autosomal recessive leucoencephalopathy with ischemic stroke, dysmorphic syndrome and retinitis pigmentosa maps to chromosome 17q24.2-25.3

    Directory of Open Access Journals (Sweden)

    Bouhouche Ahmed

    2012-03-01

    Full Text Available Abstract Background Single-gene disorders related to ischemic stroke seem to be an important cause of stroke in young patients without known risk factors. To identify new genes responsible of such diseases, we studied a consanguineous Moroccan family with three affected individuals displaying hereditary leucoencephalopathy with ischemic stroke, dysmorphic syndrome and retinitis pigmentosa that appears to segregate in autosomal recessive pattern. Methods All family members underwent neurological and radiological examinations. A genome wide search was conducted in this family using the ABI PRISM linkage mapping set version 2.5 from Applied Biosystems. Six candidate genes within the region linked to the disease were screened for mutations by direct sequencing. Results Evidence of linkage was obtained on chromosome 17q24.2-25.3. Analysis of recombination events and LOD score calculation suggests linkage of the responsible gene in a genetic interval of 11 Mb located between D17S789 and D17S1806 with a maximal multipoint LOD score of 2.90. Sequencing of seven candidate genes in this locus, ATP5H, FDXR, SLC25A19, MCT8, CYGB, KCNJ16 and GRIN2C, identified three missense mutations in the FDXR gene which were also found in a homozygous state in three healthy controls, suggesting that these variants are not disease-causing mutations in the family. Conclusion A novel locus for leucoencephalopathy with ischemic stroke, dysmorphic syndrome and retinitis pigmentosa has been mapped to chromosome 17q24.2-25.3 in a consanguineous Moroccan family.

  12. Screening of Long Q-T Syndrome in Patients with Congenital Sensorineural Hearing Loss (Jervell and Lange Neilesen Syndrome: Prevention of Fatal Events

    Directory of Open Access Journals (Sweden)

    Farid Matin

    2001-01-01

    Full Text Available Objective:The idiopathic long Q-T syndrome is an infrequently occurring disorder in which affected individuals have an unusual electrocardiographic repolarization abnormality presenting as syncope or loss of consciousness related to ventricular tachycardia or fibrillation. Congenital long Q-T prolongation can be associated with congenital deafness in an autosomal recessive manner (Jervell and Lange-Nielsen syndrome. The purpose of this stuff was to screen this electrocardiographic abnormality in deaf-mute school children in our population, which has not been yet performed. Materials & Methods:  Of 1190 patients with hearing loss, 779 had congenital sensorineural deafness (CSD, aged 13±3.8 years (4-24, 63% female and 37% male. The family history of deafness was as follows: Cardiac axis deviation was found in 56 (7% patients. Electrical conduction abnormalities were found in 12 (15% patients, Wolff-Parkinson-White syndrome, sinus bradycardia, and sinus arrhythmia were found in 2 (0.25%, 4 (0.5%, and 3 (0.38% patients, respectively. The Q-T interval, and Q-Tc duration were 312.6±28.9 ms (200-500 ms, median 320 ms, and 383.6±29.3 ms (232-527 ms, median 413ms, respectively. Long Q-T syndrome was found in 4 (0.5% patients (3F and 1M. Results: Two of these 4 patients had total deafness and 2 had profound hearing loss. None of the patients with mild deafness had Q-T prolongation. Only one of these patients was symptomatic, and had been treated as a case of epilepsy for several years. Conclusion: This data supports the presence of long Q-T syndrome in patients with sensorineural hearing loss in our population, so routine electrocardiographic screening of anyone with congenital deafness is warranted to prevent subsequent associated cardiac arrhythmias and sudden cardiac death.

  13. Feminising genitoplasty: one-stage genital reconstruction in congenital adrenal hyperplasia: 30 years' experience.

    Science.gov (United States)

    Roll, M F; Kneppo, C; Roth, H; Bettendorf, M; Waag, K-L; Holland-Cunz, S

    2006-10-01

    The study objective is to evaluate the results of our surgical technique for children with congenital adrenal hyperplasia and ambiguous genitalia at the University Hospital of Heidelberg, Department of Paediatric Surgery. The records of 19 patients with congenital adrenal hyperplasia treated between 1972 and 2004 were reviewed with respect to age at surgery, operative procedures and outcome. We describe the recession clitoroplasty technique currently used in our hospital and highlight the importance of short and long-term follow-up results with respect to appearance, position and size of the clitoris and quality of the vagina. One-stage recession clitoroplasty and vaginoplasty gives very satisfactory cosmetic and functional results, with few complications and a reduced need for secondary surgical interventions. The results of this study support the assumption that total correction can be achieved through a single-stage operation, performed in infancy.

  14. Ellis-van Creveld syndrome with facial hemiatrophy

    Directory of Open Access Journals (Sweden)

    Bhat Yasmeen

    2010-01-01

    Full Text Available Ellis-van Creveld (EVC syndrome is a rare autosomal recessive congenital disorder characterized by chondrodysplasia and polydactyly, ectodermal dysplasia and congenital defects of the heart. We present here a case of a 16-year-old short-limbed dwarf with skeletal deformities and bilateral postaxial polydactyly, dysplastic nails and teeth, also having left-sided facial hemiatrophy. The diagnosis of EVC syndrome was made on the basis of clinical and radiological features. To the best of our knowledge, this is the first report of EVC syndrome with facial hemiatrophy in the medical literature from India.

  15. New evidence for the role of calpain 10 in autosomal recessive intellectual disability: identification of two novel nonsense variants by exome sequencing in Iranian families.

    Science.gov (United States)

    Oladnabi, Morteza; Musante, Luciana; Larti, Farzaneh; Hu, Hao; Abedini, Seyedeh Sedigheh; Wienker, Thomas; Ropers, Hans Hilger; Kahrizi, Kimia; Najmabadi, Hossein

    2015-03-01

    Knowledge of the genes responsible for intellectual disability, particularly autosomal recessive forms, is rapidly expanding. Increasing numbers of the gene show great heterogeneity and supports the hypothesis that human genome may contain over 2000 causative genes with a critical role in brain development. Since 2004, we have applied genome-wide SNP genotyping and next-generation sequencing in large consanguineous Iranian families with intellectual disability, to identify the genes harboring disease-causing mutations. The current study paved the way for identification of responsible genes in two unrelated Iranian families. We found two novel nonsense mutations, p.C77* and p.Q115*, in the calpain catalytic domain of CAPN10, which is a cysteine protease known to be involved in pathogenesis of noninsulin-dependent diabetes mellitus. Another different mutation in this gene (p.S138_R139ins5) has previously been reported in an Iranian family. All of these patients have common clinical features in spite of specific brain structural abnormalities on MRI. Different mutations in CAPN10 have already been found in three independent Iranian families. These results have strongly supported the possible role of CAPN10 in human brain development. Altogether, we proposed CAPN10 as a promising candidate gene for intellectual disability, which should be considered in diagnostic gene panels.

  16. Novel PMS2 Pseudogenes Can Conceal Recessive Mutations Causing a Distinctive Childhood Cancer Syndrome

    OpenAIRE

    De Vos, Michel; Hayward, Bruce E.; Picton, Susan; Sheridan, Eamonn; Bonthron, David T.

    2004-01-01

    We investigated a family with an autosomal recessive syndrome of café-au-lait patches and childhood malignancy, notably supratentorial primitive neuroectodermal tumor. There was no cancer predisposition in heterozygotes; nor was there bowel cancer in any individual. However, autozygosity mapping indicated linkage to a region of 7p22 surrounding the PMS2 mismatch-repair gene. Sequencing of genomic PCR products initially failed to identify a PMS2 mutation. Genome searches then revealed a previo...

  17. Late survival in Ellis–van Creveld syndrome – A case report

    Directory of Open Access Journals (Sweden)

    Trinath Mishra

    2012-07-01

    Full Text Available Ellis–van Creveld syndrome (EVC is an autosomal recessive disorder characterized by chondrodystrophy, polydactyly, ectodermal dysplasia, and cardiac anomalies. Acromelic shortening of upper and lower limbs, genu valgum, multiple frenula, deformed teeth, short ribs and narrow thorax and congenital heart diseases complete the picture. The patients with the syndrome rarely survive into adulthood. Here, we report a lady with EVC presenting for the first time in middle age.

  18. COCHLEAR IMPLANTATION IN A PATIENT WITH USHER'S SYNDROME

    OpenAIRE

    Derinsu, Ufuk; Ciprut, Ayca

    2016-01-01

    Usher's Syndrome is an autosomal recessive disorder characterized by congenital hearing loss and retinitis pigmentosa. Usher’s Syndrome patients with severe to profound sensorineural hearing loss can be considered as candidates for cochlear implantation.This case study reports a deaf-blind with Usher's Syndrome who received a cochlear implant, the audiological evaluation is presented and the therapy sessions are discussed. The patient demonstrated good performance overtime after the...

  19. Cochlear ımplantatıon ın a patıent wıth usher's syndrome

    OpenAIRE

    Derinsu, Ufuk; Ciprut, Ayca

    2002-01-01

    Usher's Syndrome is an autosomal recessive disorder characterized by congenital hearing loss and retinitis pigmentosa. Usher’s Syndrome patients with severe to profound sensorineural hearing loss can be considered as candidates for cochlear implantation. This case study reports a deaf-blind with Usher's Syndrome who received a cochlear implant, the audiological evaluation is presented and the therapy sessions are discussed. The patient demonstrated good performance overtime after the impla...

  20. Usher Syndrome: Case Reports of Two Siblings

    OpenAIRE

    Raman Prasad Sah, B.Optom; Pragati Gautam, MD; Jyoti Baba Shrestha, MD; Mahesh Raj Joshi, M.Optom

    2015-01-01

    Background: Usher syndrome is a rare autosomal recessive disorder characterized by congenital sensory neural deafness and progressive visual loss secondary to retinitis pigmentosa. There are three different types of Usher syndrome. Retinitis pigmentosa is the main ophthalmic manifestation shared by all three. Differences in auditory and vestibular function are the distinguishing feature. Case Reports: Two brothers, 13 and 16 years of age, presented with chief complaints of progressive dim...

  1. [Clinical and molecular study in a family with autosomal dominant hypohidrotic ectodermal dysplasia].

    Science.gov (United States)

    Callea, Michele; Cammarata-Scalisi, Francisco; Willoughby, Colin E; Giglio, Sabrina R; Sani, Ilaria; Bargiacchi, Sara; Traficante, Giovanna; Bellacchio, Emanuele; Tadini, Gianluca; Yavuz, Izzet; Galeotti, Angela; Clarich, Gabriella

    2017-02-01

    Hypohidrotic ectodermal dysplasia (HED) is a rare disease characterized by deficiency in development of structure derived from the ectoderm and is caused by mutations in the genes EDA, EDAR, or EDARADD. Phenotypes caused by mutations in these three may exhibit similar clinical features, explained by a common signaling pathway. Mutations in EDA gene cause X linked HED, which is the most common form. Mutations in EDAR and EDARADD genes cause autosomal dominant and recessive form of HED. The most striking clinical findings in HED are hypodontia, hypotrichosis and hypohidrosis that can lead to episodes of hyperthermia. We report on clinical findings in a child with HED with autosomal dominant inheritance pattern with a heterozygous mutation c.1072C>T (p.Arg358X) in the EDAR gene. A review of the literature with regard to other cases presenting the same mutation has been carried out and discussed. Sociedad Argentina de Pediatría.

  2. Highly prevalent LIPH founder mutations causing autosomal recessive woolly hair/hypotrichosis in Japan and the genotype/phenotype correlations.

    Directory of Open Access Journals (Sweden)

    Kana Tanahashi

    Full Text Available Mutations in LIPH cause of autosomal recessive woolly hair/hypotrichosis (ARWH, and the 2 missense mutations c.736T>A (p.Cys246Ser and c.742C>A (p.His248Asn are considered prevalent founder mutations for ARWH in the Japanese population. To reveal genotype/phenotype correlations in ARWH cases in Japan and the haplotypes in 14 Japanese patients from 14 unrelated Japanese families. 13 patients had woolly hair, and 1 patient had complete baldness since birth. An LIPH mutation search revealed homozygous c.736T>A mutations in 10 of the patients. Compound heterozygous c.736T>A and c.742C>A mutations were found in 3 of the patients, and homozygous c.742C>A mutation in 1 patient. The phenotype of mild hypotrichosis with woolly hair was restricted to the patients with the homozygous c.736T>A mutation. The severe phenotype of complete baldness was seen in only 1 patient with homozygous c.742C>A. Haplotype analysis revealed that the alleles containing the LIPH c.736T>A mutation had a haplotype identical to that reported previously, although 4 alleles out of 5 chromosomes containing the LIPH c.742C>A mutation had a different haplotype from the previously reported founder allele. These alleles with c.742C>A are thought to be the third founder LIPH mutation causing ARWH. To accurately determine the prevalence of the founder mutations, we investigated allele frequencies of those mutations in 819 Japanese controls. Heterozygous c.736T>A mutations were found in 13 controls (allele frequency: 0.0079; carrier rate: 0.016, and heterozygous c.742C>A mutations were found in 2 controls (allele frequency: 0.0012; carrier rate: 0.0024. In conclusion, this study confirms the more accurate allele frequencies of the pathogenic founder mutations of LIPH and shows that there is a third founder mutation in Japan. In addition, the present findings suggest that the mutation patterns of LIPH might be associated with hypotrichosis severity in ARWH.

  3. Defective muscle basement membrane and lack of M-laminin in the dystrophic dy/dy mouse

    DEFF Research Database (Denmark)

    Xu, H; Christmas, P; Wu, X R

    1994-01-01

    -linked Duchenne and Becker muscular dystrophies. We have examined M-laminin expression in mice with autosomal recessive muscular dystrophy caused by the mutation dy. The heavy chain of M-laminin was undetectable in skeletal muscle, heart muscle, and peripheral nerve by immunofluorescence and immunoblotting......M-laminin is a major member of the laminin family of basement membrane proteins. It is prominently expressed in striated muscle and peripheral nerve. M-laminin is deficient in patients with the autosomal recessive Fukuyama congenital muscular dystrophy but is normal in patients with the sex...... tissue from dy/dy mice, suggesting that M-laminin heavy-chain mRNA may be produced at very low levels or is unstable. Information about the chromosomal localization of the M heavy-chain in human and mouse suggests that a mutation in the M-chain gene causes the muscular dystrophy in dy/dy mice. The dy...

  4. [From gene to disease: from the ABCA4 gene to Stargardt disease, cone-rod dystrophy and retinitis pigmentosa

    NARCIS (Netherlands)

    Cremers, F.P.M.; Maugeri, A.; Klevering, B.J.; Hoefsloot, L.H.; Hoyng, C.B.

    2002-01-01

    Autosomal recessive Stargardt disease is caused by mutations in the ABCA4 gene. Mutations in ABCA4 are also found in two-thirds of cases with autosomal recessive cone-rod dystrophy, and a small fraction of patients with autosomal recessive retinitis pigmentosa. Patients with autosomal recessive

  5. Inherited retinal dysplasia and persistent hyperplastic primary vitreous in Miniature Schnauzer dogs.

    Science.gov (United States)

    Grahn, Bruce H; Storey, Eric S; McMillan, Catherine

    2004-01-01

    The objectives of this study were to define the clinical syndrome of retinal dysplasia and persistent primary vitreous in Miniature Schnauzer dogs and determine the etiology. We examined 106 Miniature Schnauzers using a biomicroscope and indirect ophthalmoscope. The anterior and posterior segments of affected dogs were photographed. Four enucleated eyes were examined using routine light microscopy and scanning electron microscopy. A pedigree was constructed and related dogs were test-bred to define the mode of inheritance of this syndrome. Congenital retinal dysplasia was confirmed in 24 of 106 related Miniature Schnauzer dogs. Physical and postmortem examinations revealed that congenital abnormalities were limited to the eyes. Biomicroscopic, indirect ophthalmoscopic, and neuro-ophthalmic examinations confirmed that some of these dogs were blind secondary to bilateral retinal dysplasia and detachment (nonattachment) (n = 13), and the remainder had generalized retinal dysplasia (n = 11). Fifteen of these dogs were also diagnosed with unilateral (n = 9) or bilateral (n = 6) persistent hyperplastic primary vitreous. Nutritional, infectious, or toxic etiologies were not evident on physical, postmortem, light microscopic, or transmitting and scanning electron microscopic examination of four affected Miniature Schnauzers. We examined the pedigree and determined that an autosomal recessive mode of inheritance was most likely. Three test-bred litters including those from affected parents, carrier and affected parents, and carrier parents confirmed this mode of inheritance. This study confirms that retinal dysplasia and persistent hyperplastic primary vitreous is a congenital abnormality that is inherited as an autosomal recessive condition in Miniature Schnauzers.

  6. Autosomal Recessive Inheritance

    Science.gov (United States)

    ... NEI Intranet (Employees Only) *PDF files require the free Adobe® Reader® software for viewing. This website is maintained by the NEI Office of Science Communications, Public Liaison, and Education. Technical questions about this website can be addressed ...

  7. Skeletal muscle, but not cardiovascular function, is altered in a mouse model of autosomal recessive hypophosphatemic rickets

    Directory of Open Access Journals (Sweden)

    Michael J. Wacker

    2016-05-01

    Full Text Available Autosomal recessive hypophosphatemic rickets (ARHR is a heritable disorder characterized by hypophosphatemia, osteomalacia, and poor bone development. ARHR results from inactivating mutations in the DMP1 gene with the human phenotype being recapitulated in the Dmp1 null mouse model which displays elevated plasma fibroblast growth factor 23. While the bone phenotype has been well characterized, it is not known what effects ARHR may also have on skeletal, cardiac, or vascular smooth muscle function, which is critical to understand to treat patients suffering from this condition. In this study, the extensor digitorum longus (EDL- fast-twitch muscle, soleus (SOL- slow-twitch muscle, heart, and aorta were removed from Dmp1 null mice and ex-vivo functional tests were simultaneously performed in collaboration by three different laboratories. Dmp1 null EDL and SOL muscles produced less force than wildtype muscles after normalization for physiological cross sectional area of the muscles. Both EDL and SOL muscles from Dmp1 null mice also produced less force after the addition of caffeine (which releases calcium from the sarcoplasmic reticulum which may indicate problems in excitation contraction coupling in these mice. While the body weights of the Dmp1 null were smaller than wildtype, the heart weight to body weight ratio was higher. However, there were no differences in pathological hypertrophic gene expression compared to wildtype and maximal force of contraction was not different indicating that there may not be cardiac pathology under the tested conditions. We did observe a decrease in the rate of force development generated by cardiac muscle in the Dmp1 null which may be related to some of the deficits observed in skeletal muscle. There were no differences observed in aortic contractions induced by PGF2a or 5-HT or in endothelium-mediated acetylcholine-induced relaxations or endothelium-independent sodium nitroprusside-induced relaxations. In

  8. Analysis of eye lens-specific genes in congenital hereditary cataracts and microphthalmia of the miniature schnauzer dog.

    Science.gov (United States)

    Zhang, R L; Samuelson, D A; Zhang, Z G; Reddy, V N; Shastry, B S

    1991-08-01

    The congenital hereditary cataracts and microphthalmia in the miniature schnauzer dog are inherited by an autosomal recessive mode. To understand the genetic basis of these diseases, the authors purified and analyzed leukocyte deoxyribonucleic acid (DNA) from affected and normal animals using a candidate gene approach. Because the genes that encode the lens-specific proteins, specifically, alpha, beta, and gamma crystallins and the membrane protein (MP26), are known to maintain the structure and function of the lens, the authors used complimentary DNA (cDNA) fragments that corresponded to the above genes to search for the mutations at their loci in the affected animals. They found no evidence of the gene deletion and rearrangement in any of the five loci. In addition, the hybridizable sequences of the dog DNA to the specific probes for the human chromosome 4 and 18 loci, which are reported to be involved in the abnormality of the human eye, seem to be unaffected. These data support the notion that the hereditary cataracts and microphthalmia in the dog may be associated with genes other than those reported for several animal systems.

  9. Imaging features of ductal plate malformations in adults

    Energy Technology Data Exchange (ETDEWEB)

    Venkatanarasimha, N., E-mail: nandashettykv@yahoo.com [Department of Radiology, Derriford Hospital, Plymouth (United Kingdom); Thomas, R.; Armstrong, E.M.; Shirley, J.F.; Fox, B.M.; Jackson, S.A. [Department of Radiology, Derriford Hospital, Plymouth (United Kingdom)

    2011-11-15

    Ductal plate malformations, also known as fibrocystic liver diseases, are a group of congenital disorders resulting from abnormal embryogenesis of the biliary ductal system. The abnormalities include choledochal cyst, Caroli's disease and Caroli's syndrome, adult autosomal dominant polycystic liver disease, and biliary hamartoma. The hepatic lesions can be associated with renal anomalies such as autosomal recessive polycystic kidney disease (ARPKD), medullary sponge kidney, and nephronophthisis. A clear knowledge of the embryology and pathogenesis of the ductal plate is central to the understanding of the characteristic imaging appearances of these complex disorders. Accurate diagnosis of ductal plate malformations is important to direct appropriate clinical management and prevent misdiagnosis.

  10. AUTOSOMAL RECESSIVE PERIPHERAL NEUROPATHY WITH NEUROMYOTONIA (ARAN-NM: DESCRIPTION OF A CLINICAL CASE CONFIRMED BY A MUTATION IN THE HINT1 GENE

    Directory of Open Access Journals (Sweden)

    Olga A. Klochkova

    2017-01-01

    Full Text Available Autosomal recessive  peripheral neuropathy with neuromyotonia  (ARAN-NM  is a relatively newly described  disease associated  with mutations  in the HINT1 gene.  It accounts  for a significant  part of the poorly  differentiated  forms  of axonal polyneuropathies.  We present the first in Russia description of the genetically confirmed case of ARAN-NM in a boy aged 14 years and 11 months without the hereditary-tainted anamnesis. On presentation,  the patient experienced  progressive  distal muscular weakness, asymmetric foot deformity,  gait disorders  and minimal manifestations  of neuromyotonia  (stiffness  in the fingers.  During examination,  we detected an increase in the level of creatine phosphokinase up to 635 U/l, a disturbance of conduction of motor and, to a lesser extent, sensory fibers  of  the  peripheral  nerves  (according  to  the  stimulation  electromyography,  EMG,  denervation-reinnervation  changes,  single positive acute waves, fibrillation potentials, complex repeated discharge (according to the data of needle EMG. In the study of exome, a homozygous mutation c.110G>C, p.R37P was determined in exon 01 of the HINT1 gene, which confirmed the presence of ARAN-NM. A molecular-genetic  examination of the patient's immediate relatives was carried out. The described case is compared with literature data. An overview of currently available information on ARAN-NM is provided. Diagnostic criteria of the disease are presented.

  11. Ellis-van Creveld

    Directory of Open Access Journals (Sweden)

    Dhandabani Jayaraj

    2012-01-01

    Full Text Available Ellis-van Creveld (EVC syndrome is an autosomal recessive disorder that is also known as chondro-ectodermal dysplasia. The common manifestations of this syndrome are short ribs, postaxial polydactyly, growth retardation, and ectodermal and cardiac defects. The present case report is about an 8-year-old boy who had the features of bilateral hexadactyly, knocked knees, cardiac problems, congenital absence of incisors, fused upper and lower labial frenulum, and mulberry molars.

  12. Dorfman-Chanarin syndrome: A rare neutral lipid storage disease

    OpenAIRE

    Mitra Souvik; Samanta Moumita; Sarkar Mihir; Chatterjee Sukanta

    2010-01-01

    Dorfman-Chanarin syndrome is a rare neutral lipid storage disorder characterized by ichthyosis, lipid vacuolations in peripheral leucocytes, and multisystem involvement. It is an autosomal recessive disorder caused by mutations in the CGI-58 gene. A total of 42 cases have been reported worldwide till February 2009 out of which 4 have been previously reported from India. We report a case of a 20-month-old male with congenital ichthyosis, organomegaly, and bilateral cryptorchidism. Examination ...

  13. Early onset of Chanarin-Dorfman syndrome with severe liver involvement in a patient with a complex rearrangement of ABHD5 promoter

    OpenAIRE

    Missaglia, Sara; Valadares, Eugenia Ribeiro; Moro, Laura; Faguntes, Eleonora Druve Tavares; quintão Roque, Raquel; Giardina, Bruno; Tavian, Daniela

    2014-01-01

    Background α/β-hydrolase domain-containing protein 5 (ABHD5) plays an important role in the triacylglycerols (TAG) hydrolysis. Indeed, ABHD5 is the co-activator of adipose triglyceride lipase (ATGL), that catalyses the initial step of TAG hydrolysis. Mutations in ABHD5 gene are associated with the onset of Chanarin-Dorfman syndrome (CDS), a rare autosomal recessive lipid storage disorder, characterized by non-bullous congenital ichthyosiform erythroderma (NCIE), hepatomegaly and liver steatos...

  14. Ellis Van Creveld Syndrome: Report of a Case and Brief Literature Review

    OpenAIRE

    Gholamhossein Amirhakimi; Hedyeh Saneifard

    2008-01-01

    Objective: Ellis van Creveld syndrome (EvCS) is a rare autosomal recessive (AR) disorder first described in 1940. The syndrome manifests with several skeletal, oral mucosal and dental anomalies, congenital cardiac defects and nail dysplasia. EvCs should be differentiated from other chondrodystrophies such as achondroplasia and Morquios syndrome.Case Presentation: A nine-year old girl was referred with short stature. In physical examination her height was 105 cm. She had normal intelligence, s...

  15. An Update on the Genetics of Usher Syndrome

    OpenAIRE

    José M. Millán; Elena Aller; Teresa Jaijo; Fiona Blanco-Kelly; Ascensión Gimenez-Pardo; Carmen Ayuso

    2011-01-01

    Usher syndrome (USH) is an autosomal recessive disease characterized by hearing loss, retinitis pigmentosa (RP), and, in some cases, vestibular dysfunction. It is clinically and genetically heterogeneous and is the most common cause underlying deafness and blindness of genetic origin. Clinically, USH is divided into three types. Usher type I (USH1) is the most severe form and is characterized by severe to profound congenital deafness, vestibular areflexia, and prepubertal onset of progressive...

  16. Molecular diagnosis of known recessive ataxias by homozygosity mapping with SNP arrays.

    Science.gov (United States)

    H'mida-Ben Brahim, D; M'zahem, A; Assoum, M; Bouhlal, Y; Fattori, F; Anheim, M; Ali-Pacha, L; Ferrat, F; Chaouch, M; Lagier-Tourenne, C; Drouot, N; Thibaut, C; Benhassine, T; Sifi, Y; Stoppa-Lyonnet, D; N'Guyen, K; Poujet, J; Hamri, A; Hentati, F; Amouri, R; Santorelli, F M; Tazir, M; Koenig, M

    2011-01-01

    The diagnosis of rare inherited diseases is becoming more and more complex as an increasing number of clinical conditions appear to be genetically heterogeneous. Multigenic inheritance also applies to the autosomal recessive progressive cerebellar ataxias (ARCAs), for which 14 genes have been identified and more are expected to be discovered. We used homozygosity mapping as a guide for identification of the defective locus in patients with ARCA born from consanguineous parents. Patients from 97 families were analyzed with GeneChip Mapping 10K or 50K SNP Affymetrix microarrays. We identified six families homozygous for regions containing the autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) gene, two families homozygous for the ataxia-telangiectasia gene (ATM), two families homozygous for the ataxia with oculomotor apraxia type 1 (AOA1) gene, and one family homozygous for the AOA type 2 (AOA2) gene. Upon direct gene testing, we were able to identify a disease-related mutation in all families but one of the two kindred homozygous at the ATM locus. Although linkage analyses pointed to a single locus on chromosome 11q22.1-q23.1 for this family, clinical features, normal levels of serum alpha-foetoprotein as well as absence of mutations in the ATM gene rather suggest the existence of an additional ARCA-related gene in that interval. While the use of homozygosity mapping was very effective at pointing to the correct gene, it also suggests that the majority of patients harbor mutations either in the genes of the rare forms of ARCA or in genes yet to be identified.

  17. Gene identification in the congenital disorders of glycosylation type I by whole-exome sequencing

    NARCIS (Netherlands)

    Timal, Sharita; Hoischen, Alexander; Lehle, Ludwig; Adamowicz, Maciej; Huijben, Karin; Sykut-Cegielska, Jolanta; Paprocka, Justyna; Jamroz, Ewa; van Spronsen, Francjan J.; Koerner, Christian; Gilissen, Christian; Rodenburg, Richard J.; Eidhof, Ilse; Van den Heuvel, Lambert; Thiel, Christian; Wevers, Ron A.; Morava, Eva; Veltman, Joris; Lefeber, Dirk J.

    2012-01-01

    Congenital disorders of glycosylation type I (CDG-I) form a growing group of recessive neurometabolic diseases. Identification of disease genes is compromised by the enormous heterogeneity in clinical symptoms and the large number of potential genes involved. Until now, gene identification included

  18. Cognitive Impairment and Brain Imaging Characteristics of Patients with Congenital Cataracts, Facial Dysmorphism, Neuropathy Syndrome

    Directory of Open Access Journals (Sweden)

    Teodora Chamova

    2015-01-01

    Full Text Available Congenital cataracts, facial dysmorphism, neuropathy (CCFDN syndrome is a complex autosomal recessive multisystem disorder. The aim of the current study is to evaluate the degree of cognitive impairment in a cohort of 22 CCFDN patients and its correlation with patients’ age, motor disability, ataxia, and neuroimaging changes. Twenty-two patients with genetically confirmed diagnosis of CCFDN underwent a detailed neurological examination. Verbal and nonverbal intelligence, memory, executive functions, and verbal fluency wеre assessed in all the patients aged 4 to 47 years. Brain magnetic resonance imaging was performed in 20 affected patients. Eighteen affected were classified as having mild intellectual deficit, whereas 4 had borderline intelligence. In all psychometric tests, evaluating different cognitive domains, CCFDN patients had statistically significant lower scores when compared to the healthy control group. All cognitive domains seemed equally affected. The main abnormalities on brain MRI found in 19/20 patients included diffuse cerebral atrophy, enlargement of the lateral ventricles, and focal lesions in the subcortical white matter, different in number and size, consistent with demyelination more pronounced in the older CCFDN patients. The correlation analysis of the structural brain changes and the cognitive impairment found a statistically significant correlation only between the impairment of short-term verbal memory and the MRI changes.

  19. NCBI nr-aa BLAST: CBRC-FCAT-01-1153 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available 1| polycystic kidney and hepatic disease 1 [Homo sapiens] emb|CAH73867.1| polycystic kidney and hepatic disease 1 (autos...omal recessive) [Homo sapiens] emb|CAH72781.1| polycystic kidney and hepatic disease 1 (autos...omal recessive) [Homo sapiens] emb|CAI16676.1| polycystic kidney and hepatic disease 1 (autos...omal recessive) [Homo sapiens] emb|CAI20324.1| polycystic kidney and hepatic disease 1 (autosomal r...ecessive) [Homo sapiens] emb|CAI20233.1| polycystic kidney and hepatic disease 1 (autosomal recessive) [Homo sapiens] NP_619639.3 0.0 76% ...

  20. NCBI nr-aa BLAST: CBRC-CJAC-01-1207 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available 1| polycystic kidney and hepatic disease 1 [Homo sapiens] emb|CAH73867.1| polycystic kidney and hepatic disease 1 (autos...omal recessive) [Homo sapiens] emb|CAH72781.1| polycystic kidney and hepatic disease 1 (autos...omal recessive) [Homo sapiens] emb|CAI16676.1| polycystic kidney and hepatic disease 1 (autos...omal recessive) [Homo sapiens] emb|CAI20324.1| polycystic kidney and hepatic disease 1 (autosomal r...ecessive) [Homo sapiens] emb|CAI20233.1| polycystic kidney and hepatic disease 1 (autosomal recessive) [Homo sapiens] NP_619639.3 0.0 87% ...

  1. A missense mutation in ALDH18A1, encoding Delta1-pyrroline-5-carboxylate synthase (P5CS), causes an autosomal recessive neurocutaneous syndrome.

    Science.gov (United States)

    Bicknell, Louise S; Pitt, James; Aftimos, Salim; Ramadas, Ram; Maw, Marion A; Robertson, Stephen P

    2008-10-01

    There are several rare syndromes combining wrinkled, redundant skin and neurological abnormalities. Although phenotypic overlap between conditions has suggested that some might be allelic to one another, the aetiology for many of them remains unknown. A consanguineous New Zealand Maori family has been characterised that segregates an autosomal recessive connective tissue disorder (joint dislocations, lax skin) associated with neurological abnormalities (severe global developmental delay, choreoathetosis) without metabolic abnormalities in four affected children. A genome-screen performed under a hypothesis of homozygosity by descent for an ancestral mutation, identified a locus at 10q23 (Z = 3.63). One gene within the candidate interval, ALDH18A1, encoding Delta1-pyrroline-5-carboxylate synthase (P5CS), was considered a plausible disease gene since a missense mutation had previously been shown to cause progressive neurodegeneration, cataracts, skin laxity, joint dislocations and metabolic derangement in a consanguineous Algerian family. A missense mutation, 2350C>T, was identified in ALDH18A1, which predicts the substitution H784Y. H784 is invariant across all phyla and lies within a previously unrecognised, conserved C-terminal motif in P5CS. In an in vivo assay of flux through this metabolic pathway using dermal fibroblasts obtained from an affected individual, proline and ornithine biosynthetic activity of P5CS was not affected by the H784Y substitution. These data suggest that P5CS may possess additional uncharacterised functions that affect connective tissue and central nervous system function.

  2. Autosomal Dominant Growth Hormone Deficiency (Type II).

    Science.gov (United States)

    Alatzoglou, Kyriaki S; Kular, Dalvir; Dattani, Mehul T

    2015-06-01

    Isolated growth hormone deficiency (IGHD) is the commonest pituitary hormone deficiency resulting from congenital or acquired causes, although for most patients its etiology remains unknown. Among the known factors, heterozygous mutations in the growth hormone gene (GH1) lead to the autosomal dominant form of GHD, also known as type II GHD. In many cohorts this is the commonest form of congenital isolated GHD and is mainly caused by mutations that affect the correct splicing of GH-1. These mutations cause skipping of the third exon and lead to the production of a 17.5-kDa GH isoform that exerts a dominant negative effect on the secretion of the wild type GH. The identification of these mutations has clinical implications for the management of patients, as there is a well-documented correlation between the severity of the phenotype and the increased expression of the 17.5-kDa isoform. Patients with type II GHD have a variable height deficit and severity of GHD and may develop additional pituitary hormone defiencies over time, including ACTH, TSH and gonadotropin deficiencies. Therefore, their lifelong follow-up is recommended. Detailed studies on the effect of heterozygous GH1 mutations on the trafficking, secretion and action of growth hormone can elucidate their mechanism on a cellular level and may influence future treatment options for GHD type II.

  3. Recessive cardiac phenotypes in induced pluripotent stem cell models of Jervell and Lange-Nielsen syndrome: disease mechanisms and pharmacological rescue.

    Science.gov (United States)

    Zhang, Miao; D'Aniello, Cristina; Verkerk, Arie O; Wrobel, Eva; Frank, Stefan; Ward-van Oostwaard, Dorien; Piccini, Ilaria; Freund, Christian; Rao, Jyoti; Seebohm, Guiscard; Atsma, Douwe E; Schulze-Bahr, Eric; Mummery, Christine L; Greber, Boris; Bellin, Milena

    2014-12-16

    Jervell and Lange-Nielsen syndrome (JLNS) is one of the most severe life-threatening cardiac arrhythmias. Patients display delayed cardiac repolarization, associated high risk of sudden death due to ventricular tachycardia, and congenital bilateral deafness. In contrast to the autosomal dominant forms of long QT syndrome, JLNS is a recessive trait, resulting from homozygous (or compound heterozygous) mutations in KCNQ1 or KCNE1. These genes encode the α and β subunits, respectively, of the ion channel conducting the slow component of the delayed rectifier K(+) current, IKs. We used complementary approaches, reprogramming patient cells and genetic engineering, to generate human induced pluripotent stem cell (hiPSC) models of JLNS, covering splice site (c.478-2A>T) and missense (c.1781G>A) mutations, the two major classes of JLNS-causing defects in KCNQ1. Electrophysiological comparison of hiPSC-derived cardiomyocytes (CMs) from homozygous JLNS, heterozygous, and wild-type lines recapitulated the typical and severe features of JLNS, including pronounced action and field potential prolongation and severe reduction or absence of IKs. We show that this phenotype had distinct underlying molecular mechanisms in the two sets of cell lines: the previously unidentified c.478-2A>T mutation was amorphic and gave rise to a strictly recessive phenotype in JLNS-CMs, whereas the missense c.1781G>A lesion caused a gene dosage-dependent channel reduction at the cell membrane. Moreover, adrenergic stimulation caused action potential prolongation specifically in JLNS-CMs. Furthermore, sensitivity to proarrhythmic drugs was strongly enhanced in JLNS-CMs but could be pharmacologically corrected. Our data provide mechanistic insight into distinct classes of JLNS-causing mutations and demonstrate the potential of hiPSC-CMs in drug evaluation.

  4. Chromosomal deletion unmasking a recessive disease: 22q13 deletion syndrome and metachromatic leukodystrophy

    DEFF Research Database (Denmark)

    Bisgaard, A-M; Kirchhoff, M; Nielsen, J E

    2008-01-01

    A deletion on one chromosome and a mutant allele on the other may cause an autosomal recessive disease. We report on two patients with mental retardation, dysmorphic features and low catalytic activity of arylsulfatase A. One patient had a pathogenic mutation in the arylsulfatase A gene (ARSA......) and succumbed to metachromatic leukodystrophy (MLD). The other patient had a pseudoallele, which does not lead to MLD. The presenting clinical features and low arylsulfatase A activity were explained, in each patients, by a deletion of 22q13 and, thereby, of one allele of ARSA....

  5. Hyccin, the Molecule Mutated in the Leukodystrophy Hypomyelination and Congenital Cataract (HCC), Is a Neuronal Protein

    Science.gov (United States)

    Giacomini, Caterina; Musante, Veronica; Fruscione, Floriana; La Padula, Veronica; Biancheri, Roberta; Scarfì, Sonia; Prada, Valeria; Sotgia, Federica; Duncan, Ian D.; Zara, Federico; Werner, Hauke B.; Lisanti, Michael P.; Nobbio, Lucilla; Corradi, Anna; Minetti, Carlo

    2012-01-01

    “Hypomyelination and Congenital Cataract”, HCC (MIM #610532), is an autosomal recessive disorder characterized by congenital cataract and diffuse cerebral and peripheral hypomyelination. HCC is caused by deficiency of Hyccin, a protein whose biological role has not been clarified yet. Since the identification of the cell types expressing a protein of unknown function can contribute to define the physiological context in which the molecule is explicating its function, we analyzed the pattern of Hyccin expression in the central and peripheral nervous system (CNS and PNS). Using heterozygous mice expressing the b-galactosidase (LacZ) gene under control of the Hyccin gene regulatory elements, we show that the gene is primarily expressed in neuronal cells. Indeed, Hyccin-LacZ signal was identified in CA1 hippocampal pyramidal neurons, olfactory bulb, and cortical pyramidal neurons, while it did not colocalize with oligodendroglial or astrocytic markers. In the PNS, Hyccin was detectable only in axons isolated from newborn mice. In the brain, Hyccin transcript levels were higher in early postnatal development (postnatal days 2 and 10) and then declined in adult mice. In a model of active myelinogenesis, organotypic cultures of rat Schwann cells (SC)/Dorsal Root Ganglion (DRG) sensory neurons, Hyccin was detected along the neurites, while it was absent from SC. Intriguingly, the abundance of the molecule was upregulated at postnatal days 10 and 15, in the initial steps of myelinogenesis and then declined at 30 days when the process is complete. As Hyccin is primarily expressed in neurons and its mutation leads to hypomyelination in human patients, we suggest that the protein is involved in neuron-to-glia signalling to initiate or maintain myelination. PMID:22461884

  6. Hyccin, the molecule mutated in the leukodystrophy hypomyelination and congenital cataract (HCC, is a neuronal protein.

    Directory of Open Access Journals (Sweden)

    Elisabetta Gazzerro

    Full Text Available "Hypomyelination and Congenital Cataract", HCC (MIM #610532, is an autosomal recessive disorder characterized by congenital cataract and diffuse cerebral and peripheral hypomyelination. HCC is caused by deficiency of Hyccin, a protein whose biological role has not been clarified yet. Since the identification of the cell types expressing a protein of unknown function can contribute to define the physiological context in which the molecule is explicating its function, we analyzed the pattern of Hyccin expression in the central and peripheral nervous system (CNS and PNS. Using heterozygous mice expressing the b-galactosidase (LacZ gene under control of the Hyccin gene regulatory elements, we show that the gene is primarily expressed in neuronal cells. Indeed, Hyccin-LacZ signal was identified in CA1 hippocampal pyramidal neurons, olfactory bulb, and cortical pyramidal neurons, while it did not colocalize with oligodendroglial or astrocytic markers. In the PNS, Hyccin was detectable only in axons isolated from newborn mice. In the brain, Hyccin transcript levels were higher in early postnatal development (postnatal days 2 and 10 and then declined in adult mice. In a model of active myelinogenesis, organotypic cultures of rat Schwann cells (SC/Dorsal Root Ganglion (DRG sensory neurons, Hyccin was detected along the neurites, while it was absent from SC. Intriguingly, the abundance of the molecule was upregulated at postnatal days 10 and 15, in the initial steps of myelinogenesis and then declined at 30 days when the process is complete. As Hyccin is primarily expressed in neurons and its mutation leads to hypomyelination in human patients, we suggest that the protein is involved in neuron-to-glia signalling to initiate or maintain myelination.

  7. Raine Syndrome (OMIM #259775), Caused By FAM20C Mutation, Is Congenital Sclerosing Osteomalacia With Cerebral Calcification (OMIM 259660).

    Science.gov (United States)

    Whyte, Michael P; McAlister, William H; Fallon, Michael D; Pierpont, Mary Ella; Bijanki, Vinieth N; Duan, Shenghui; Otaify, Ghada A; Sly, William S; Mumm, Steven

    2017-04-01

    In 1985, we briefly reported infant sisters with a unique, lethal, autosomal recessive disorder designated congenital sclerosing osteomalacia with cerebral calcification. In 1986, this condition was entered into Mendelian Inheritance In Man (MIM) as osteomalacia, sclerosing, with cerebral calcification (MIM 259660). However, no attestations followed. Instead, in 1989 Raine and colleagues published an affected neonate considering unprecedented the striking clinical and radiographic features. In 1992, "Raine syndrome" entered MIM formally as osteosclerotic bone dysplasia, lethal (MIM #259775). In 2007, the etiology emerged as loss-of-function mutation of FAM20C that encodes family with sequence similarity 20, member C. FAM20C is highly expressed in embryonic calcified tissues and encodes a kinase (dentin matrix protein 4) for most of the secreted phosphoproteome including FGF23, osteopontin, and other regulators of skeletal mineralization. Herein, we detail the clinical, radiological, biochemical, histopathological, and FAM20C findings of our patients. Following premortem tetracycline labeling, the proposita's non-decalcified skeletal histopathology after autopsy indicated no rickets but documented severe osteomalacia. Archival DNA revealed the sisters were compound heterozygotes for a unique missense mutation and a novel deletion in FAM20C. Individuals heterozygous for the missense mutation seemed to prematurely fuse their metopic suture and develop a metopic ridge sometimes including trigonocephaly. Our findings clarify FAM20C's role in hard tissue formation and mineralization, and show that Raine syndrome is congenital sclerosing osteomalacia with cerebral calcification. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.

  8. The congenital "ant-egg" cataract phenotype is caused by a missense mutation in connexin46

    DEFF Research Database (Denmark)

    Hansen, Lars; Yao, Wenliang; Eiberg, Hans

    2006-01-01

    "Ant-egg" cataract is a rare, distinct variety of congenital/infantile cataract that was reported in a large Danish family in 1967. This cataract phenotype is characterized by ant-egg-like bodies embedded in the lens in a laminar configuration and is inherited as an autosomal dominant trait. We r...

  9. Ellis-van Creveld syndrome in an Indian child: a case report

    OpenAIRE

    Veena, K.M.; Jagadishchandra, H.; Rao, Prasanna Kumar; Chatra, Laxmikanth

    2011-01-01

    Ellis-van Creveld syndrome is a rare congenital genetic disorder having autosomal recessive inheritance. It is a syndrome affecting the Amish population of Pennsylvania in USA with prevalence rate of 1/5,000 live at birth. In non-Amish population, the birth prevalence is 7/1,000,000. The syndrome is characterized by bilateral postaxial polydactyly of the hands, chondrodysplasia of long bones resulting in acromesomelic dwarfism, ectodermal dysplasia affecting nails as well as teeth and congeni...

  10. Oral manifestations of lamellar ichthyosis: A rare case report

    Directory of Open Access Journals (Sweden)

    Keerthi K Nair

    2016-01-01

    Full Text Available The ichthyoses are a heterogeneous group of disorders with both inherited and acquired forms. Autosomal recessive congenital ichthyosis (ARCI is a heterogeneous group of disorders that present at birth with the generalized involvement of skin without other systemic manifestations. Lamellar itchthyosis (LI is a nonsyndromic itchthyosis, which comes under the umbrella of ARCI. Little is only known about the oral manifestations of this disorder. We report a case of LI with oral manifestations.

  11. Mouse model for Usher syndrome: linkage mapping suggests homology to Usher type I reported at human chromosome 11p15.

    OpenAIRE

    Heckenlively, J R; Chang, B; Erway, L C; Peng, C; Hawes, N L; Hageman, G S; Roderick, T H

    1995-01-01

    Usher syndrome is a group of diseases with autosomal recessive inheritance, congenital hearing loss, and the development of retinitis pigmentosa, a progressive retinal degeneration characterized by night blindness and visual field loss over several decades. The causes of Usher syndrome are unknown and no animal models have been available for study. Four human gene sites have been reported, suggesting at least four separate forms of Usher syndrome. We report a mouse model of type I Usher syndr...

  12. [Usher syndrome: about a case].

    Science.gov (United States)

    Daoudi, Chama; Boutimzine, Noureddine; Haouzi, Samia El; Lezrek, Omar; Tachfouti, Samira; Lezrek, Mounir; Laghmari, Mina; Daoudi, Rajae

    2017-01-01

    Usher syndrome is a genetic disease resulting in double sensory deprivation (auditory and visual) called deafblindness. We report the case of a 50-year old patient, born to consanguineous parents, presenting with congenital deafness associated with normal vestibular function and pigmentary retinopathy responsible for decreased bilateral visual acuity occurred at the age of 16 years. This association composes Usher syndrome type 2, a rare autosomal recessive disorder. Cataract surgery allowed visual acuity improvement in this patient.

  13. Urinary Tract Effects of HPSE2 Mutations

    OpenAIRE

    Stuart, H; Roberts, N; Hilton, E; McKenzie, E; Daly, S; Hadfield, K; Rahal, J; Gardiner, N; Tanley, S; Lewis, M; Sites, E; Angle, B; Alves, C; Lourenço, T; Rodrigues, M

    2015-01-01

    Urofacial syndrome (UFS) is an autosomal recessive congenital disease featuring grimacing and incomplete bladder emptying. Mutations of HPSE2, encoding heparanase 2, a heparanase 1 inhibitor, occur in UFS, but knowledge about the HPSE2 mutation spectrum is limited. Here, seven UFS kindreds with HPSE2 mutations are presented, including one with deleted asparagine 254, suggesting a role for this amino acid, which is conserved in vertebrate orthologs. HPSE2 mutations were absent in 23 non-neurog...

  14. Novel syndrome with conductive hearing loss and congenital glaucoma in three generations.

    Science.gov (United States)

    Takeuchi, Kazuhiko; Kitano, Masako; Sakaida, Hiroshi; Masuda, Sawako

    2017-08-01

    The objective of this paper was to describe the clinical and otological findings in multiple members of a family with congenital glaucoma, cardiac anomaly, and conductive hearing loss due to ossicular chain anomalies. We performed a retrospective review of the medical charts and otological materials of multiple members of the same family. Congenital glaucoma and hearing loss were inherited by the proband and her daughter, son, and mother, suggesting autosomal dominant inheritance. The son and daughter also showed atrial septal defects. Exploratory tympanotomies revealed anomalies of the long process of the incus in the proband and her daughter, and tympanoplasty improved hearing loss in both patients. This represents the first description of coexisting congenital glaucoma and conductive hearing loss due to ossicular chain anomalies in multiple members of a single family. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Prevalence of Nonclassic Congenital Adrenal Hyperplasia in Turkish Children Presenting with Premature Pubarche, Hirsutism, or Oligomenorrhoea

    Directory of Open Access Journals (Sweden)

    Cigdem Binay

    2014-01-01

    Full Text Available Background. Nonclassic congenital adrenal hyperplasia (NCAH, caused by mutations in the gene encoding 21-hydroxylase, is a common autosomal recessive disorder. In the present work, our aim was to determine the prevalence of NCAH presenting as premature pubarche (PP, hirsutism, or polycystic ovarian syndrome (PCOS and to evaluate the molecular spectrum of CYP21A2 mutations in NCAH patients. Methods. A total of 126 patients (122 females, 4 males with PP, hirsutism, or PCOS were included in the present study. All patients underwent an ACTH stimulation test. NCAH was considered to be present when the stimulated 17-hydroxyprogesterone plasma level was >10 ng/mL. Results. Seventy-one of the 126 patients (56% presented with PP, 29 (23% with PCOS, and 26 (21% with hirsutism. Six patients (4,7% were diagnosed with NCAH based on mutational analysis. Four different mutations (Q318X, P30L, V281L, and P453S were found in six NCAH patients. One patient with NCAH was a compound heterozygote for this mutation, and five were heterozygous. Conclusion. NCAH should be considered as a differential diagnosis in patients presenting with PP, hirsutism, and PCOS, especially in countries in which consanguineous marriages are prevalent.

  16. Addressing key issues in the consanguinity-related risk of autosomal recessive disorders in consanguineous communities: lessons from a qualitative study of British Pakistanis.

    Science.gov (United States)

    Darr, A; Small, N; Ahmad, W I U; Atkin, K; Corry, P; Modell, B

    2016-01-01

    Currently, there is no consensus regarding services required to help families with consanguineous marriages manage their increased genetic reproductive risk. Genetic services for communities with a preference for consanguineous marriage in the UK remain patchy, often poor. Receiving two disparate explanations of the cause of recessive disorders (cousin marriage and recessive inheritance) leads to confusion among families. Further, the realisation that couples in non-consanguineous relationships have affected children leads to mistrust of professional advice. British Pakistani families at-risk for recessive disorders lack an understanding of recessive disorders and their inheritance. Such an understanding is empowering and can be shared within the extended family to enable informed choice. In a three-site qualitative study of British Pakistanis, we explored family and health professional perspectives on recessively inherited conditions. Our findings suggest, firstly, that family networks hold strong potential for cascading genetic information, making the adoption of a family-centred approach an efficient strategy for this community. However, this is dependent on provision of high-quality and timely information from health care providers. Secondly, families' experience was of ill-coordinated and time-starved services, with few having access to specialist provision from Regional Genetics Services; these perspectives were consistent with health professionals' views of services. Thirdly, we confirm previous findings that genetic information is difficult to communicate and comprehend, further complicated by the need to communicate the relationship between cousin marriage and recessive disorders. A communication tool we developed and piloted is described and offered as a useful resource for communicating complex genetic information.

  17. Congenital adrenal hyperplasia: a case report with premature teeth exfoliation and bone resorption.

    Science.gov (United States)

    Angelopoulou, Matina V; Kontogiorgos, Elias; Emmanouil, Dimitris

    2015-06-01

    Congenital adrenal hyperplasia (CAH) is an inherited autosomal recessive disorder characterized by insufficient production of cortisol. The aim of this case report was to present a child with CAH, premature exfoliation of primary teeth and accelerated eruption of his permanent teeth related to bone resorption. A 4.5-year-old Caucasian boy with CAH and long-term administration of glucocorticoids was referred for dental restoration. Clinical examination revealed primary molars with worn stainless steel crowns, severe attrition of the upper canines, and absence of the upper incisors. Before the completion of treatment, abnormal mobility of the first upper primary molars and the lower incisors was detected, and a few days later the teeth exfoliated prematurely. Histologic examination revealed normal tooth structure. Alkaline phosphatase and blood cells values were normal. Eruption of the permanent dentition was also accelerated. Tooth mobility was noticed in the permanent teeth as soon as they erupted, along with bone destruction. Examination revealed an elevated level of receptor activator of nuclear factor-κB ligand and lower-than-normal osteoprotegerin and vitamin D levels. The patient was treated with vitamin D supplements, and his teeth have been stable ever since. CAH is a serious chronic disorder appearing in children with accelerated dental development and possibly premature loss of primary teeth. Copyright © 2015 by the American Academy of Pediatrics.

  18. Perinatal postmortem radiography

    International Nuclear Information System (INIS)

    Seppaenen, U.

    1986-01-01

    During 1980-1982 a postmortem radiologic investigation was carried out on 514 perinatally dead infants from 22 hospitals in Finland. Pathologic radiologic findings were seen in 30% of the material. Ninety-nine cases had congenital defects, while the rest showed other skeletal or soft tissue abnormalities. Of those with congenital defects, there were 6 osteochondrodysplasias, 16 chromosomal malformation syndromes, 13 autosomal recessive inherited malformation syndromes and 18 multiple malformation syndromes of unknown aetiology. There were also 18 cases with malformation sequences and 10 single malformations with abnormal radiologic findings. Congenital defects due to disruptions were detected in 12 cases and defects due to deformations in 7. The present article includes a review of the radiologic findings in 514 cases, with special reference to the skeletal findings. (orig./MG)

  19. The occurrence and suspected mode of inheritance of congenital subaortic stenosis and tricuspid valve dysplasia in Dogue de Bordeaux dogs.

    Science.gov (United States)

    Ohad, D G; Avrahami, A; Waner, T; David, L

    2013-08-01

    The Dogue de Bordeaux (DdB) breed has gone through several genetic 'bottle necks' and has a relatively small effective population size. Importing new stock into Israel has been limited, further narrowing the already restricted local gene-pool and increasing the chances of inherited defects. In 56 DdB dogs examined between 2003 and 2010, the authors sought to study the proportion congenital subaortic stenosis (SAS) and tricuspid valve dysplasia (TVD). The aim was also to identify a probable mode of inheritance (MOI) using segregation and pedigree analyses of genealogical data available from 13/21 DdB dogs diagnosed with these conditions between 2004 and 2007. Among all breeds in the country, TVD was highest in the DdB breed, which also displayed the second highest proportion of SAS. Echocardiographic measurements and selected physical examination findings from 26 normal DdB dogs, 18 DdB dogs with SAS, and 12 DdB dogs with TVD are reported. Based on pedigree and segregation analyses, the most probable MOI appeared to be autosomal recessive. Pedigree analyses helped to identify three ancestors that might have introduced these two congenital heart defects into the local DdB population. Excluding those three dogs and their progeny from future mating could therefore reduce the prevalence of these diseases in the DdB population in Israel. The unusual local breeding circumstances may offer a unique opportunity to identify associated SAS and TVD genes in the DdB, as well as in other dog breeds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Spastic quadriplegia in Down syndrome with congenital duodenal stenosis/atresia.

    Science.gov (United States)

    Kurosawa, Kenji; Enomoto, Keisuke; Tominaga, Makiko; Furuya, Noritaka; Sameshima, Kiyoko; Iai, Mizue; Take, Hiroshi; Shinkai, Masato; Ishikawa, Hiroshi; Yamanaka, Michiko; Matsui, Kiyoshi; Masuno, Mitsuo

    2012-06-01

    Down syndrome is an autosomal chromosome disorder, characterized by intellectual disability and muscle hypotonia. Muscle hypotonia is observed from neonates to adulthood in Down syndrome patients, but muscle hypertonicity is extremely unusual in this syndrome. During a study period of nine years, we found three patients with severe spastic quadriplegia among 20 cases with Down syndrome and congenital duodenal stenosis/atresia (3/20). However, we could find no patient with spastic quadriplegia among 644 cases with Down syndrome without congenital duodenal stenosis/atresia during the same period (0/644, P quadriplegia among 17 patients with congenital duodenal stenosis/atresia without Down syndrome admitted during the same period to use as a control group (0/17, P quadriplegia in patients with Down syndrome. Long-term survival is improving, and the large majority of people with Down syndrome are expected to live well into adult life. Management and further study for the various problems, representing a low prevalence but serious and specific to patients with Down syndrome, are required to improve their quality of life. © 2012 The Authors. Congenital Anomalies © 2012 Japanese Teratology Society.

  1. Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: model for congenital generalized lipodystrophy

    Science.gov (United States)

    Shimomura, Iichiro; Hammer, Robert E.; Richardson, James A.; Ikemoto, Shinji; Bashmakov, Yuriy; Goldstein, Joseph L.; Brown, Michael S.

    1998-01-01

    Overexpression of the nuclear form of sterol regulatory element-binding protein-1c (nSREBP-1c/ADD1) in cultured 3T3-L1 preadipocytes was shown previously to promote adipocyte differentiation. Here, we produced transgenic mice that overexpress nSREBP-1c in adipose tissue under the control of the adipocyte-specific aP2 enhancer/promoter. A syndrome with the following features was observed: (1) Disordered differentiation of adipose tissue. White fat failed to differentiate fully, and the size of white fat depots was markedly decreased. Brown fat was hypertrophic and contained fat-laden cells resembling immature white fat. Levels of mRNA encoding adipocyte differentiation markers (C/EBPα, PPARγ, adipsin, leptin, UCP1) were reduced, but levels of Pref-1 and TNFα were increased. (2) Marked insulin resistance with 60-fold elevation in plasma insulin. (3) Diabetes mellitus with elevated blood glucose (>300 mg/dl) that failed to decline when insulin was injected. (4) Fatty liver from birth and elevated plasma triglyceride levels later in life. These mice exhibit many of the features of congenital generalized lipodystrophy (CGL), an autosomal recessive disorder in humans. PMID:9784493

  2. Congenital stapes malformation: Rare conductive hearing loss in a patient with Waardenburg syndrome.

    Science.gov (United States)

    Melzer, Jonathan M; Eliason, Michael; Conley, George S

    2016-04-01

    Waardenburg syndrome is a known autosomal dominant cause of congenital hearing loss. It is characterized by a distinctive phenotypic appearance and often involves sensorineural hearing loss. Temporal bone abnormalities and inner ear dysmorphisms have been described in association with the disease. However, middle ear abnormalities as causes of conductive hearing loss are not typically seen in Waardenburg syndrome. We discuss a case of an 8-year-old female who meets diagnostic criteria for Waardenburg syndrome type 3 and who presented with a bilateral conductive hearing loss associated with congenital stapes fixation. We discuss management strategy in this previously unreported phenotype. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  3. Congenital bovine spinal dysmyelination is caused by a missense mutation in the SPAST gene

    DEFF Research Database (Denmark)

    Thomsen, Bo; Nissen, Peter H.; Agerholm, Jørgen S

    2010-01-01

     Bovine spinal dysmyelination (BSD) is a recessive congenital neurodegenerative disease in cattle (Bos taurus) characterized by pathological changes of the myelin sheaths in the spinal cord. The occurrence of BSD is a longstanding problem in the American Brown Swiss (ABS) breed and in several...

  4. A Reevaluation of X-Irradiation Induced Phocomelia and Proximodistal Limb Patterning

    OpenAIRE

    Galloway, Jenna L.; Delgado, Irene; Ros, Maria A.; Tabin, Clifford J.

    2009-01-01

    Phocomelia is a devastating, rare congenital limb malformation in which the long bones are shorter than normal, with the upper portion of the limb being most severely affected. In extreme cases, the hands or fingers are attached directly to the shoulder and the most proximal elements (those closest to the shoulder) are entirely missing. This disorder, previously known in both autosomal recessive and sporadic forms, showed a marked increase in incidence in the early 1960s due to the tragic tox...

  5. Estudio molecular en dos hermanas afectadas por ictiosis congénita autosómica recesiva : descripción de una nueva mutación causal en TGM1

    OpenAIRE

    Moreno Saboya, Meyid Bernardo

    2016-01-01

    Se describe la variante homocigota c.320-2A>G de TGM1 en dos hermanas con ictiosis congénita autosómica recesiva. El clonaje de los transcritos generados por esta variante permitió identificar tres mecanismos moleculares de splicing alternativos. The variant c.320-2A> G of TGM1 is described in two sisters with autosomal recessive congenital ichthyosis. The cloning of the transcripts generated by this variant allowed the identification of three alternative molecular splicing mechanisms. ...

  6. Spondylocarpotarsal synostosis syndrome: MRI evaluation of vertebral and disk malformation

    International Nuclear Information System (INIS)

    Breitling, Magnus; Rabin, Michael; Lemire, Edmond G.

    2006-01-01

    Spondylocarpotarsal synostosis syndrome (SSS) is a rare autosomal recessive condition characterized primarily by vertebral malsegmentation, carpal/tarsal coalition, and a dysmorphic appearance. Differentiating SSS from other congenital scoliosis syndromes requires evaluation of the vertebrae, ribs, soft tissues, and spinal cord. The enhanced resolution over plain radiographs seen with MRI allows more detailed assessment of vertebral malformation and surrounding anatomy. Diagnosis of the underlying cause of congenital scoliosis might be enhanced using this technology. We report on a 12-year-old girl of unaffected parents with SSS who was evaluated with MRI sequences of the spine to show various types of malsegmentation. Additionally, there is the new finding of fusion of teeth, with developmental failure of a canine incisor. (orig.)

  7. Chondroectodermal dysplasia: a rare syndrome.

    Directory of Open Access Journals (Sweden)

    Dana Tahririan

    2014-06-01

    Full Text Available Chondroectodermal dysplasia (Ellis-Van Creveld syndrome is a rare autosomal recessive congenital abnormality. This syndrome is characterized by a spectrum of clinical findings, among which chondrodystrophy, polydactyly, ectodermal dysplasia, and congenital cardiac anomalies are the most common. It is imperative to not overlook the cardiac complications in patients with this syndrome during dental procedures. The case presented here, although quite rare, was detected under normal conditions and can be alarming for dental care providers. Clinical reports outline the classical and unusual oral and dental manifestations, which help health care providers diagnose chondroectodermal dysplasia, and refer patients with this syndrome to appropriate health care professionals to receive treatment to prevent further cardiac complications and bone deformities.

  8. Spondylocarpotarsal synostosis syndrome: MRI evaluation of vertebral and disk malformation

    Energy Technology Data Exchange (ETDEWEB)

    Breitling, Magnus; Rabin, Michael [University of Saskatchewan, Department of Medical Imaging, Saskatoon, Saskatchewan (Canada); Lemire, Edmond G. [University of Saskatchewan, Division of Medical Genetics, Department of Pediatrics, Saskatoon (Canada)

    2006-08-15

    Spondylocarpotarsal synostosis syndrome (SSS) is a rare autosomal recessive condition characterized primarily by vertebral malsegmentation, carpal/tarsal coalition, and a dysmorphic appearance. Differentiating SSS from other congenital scoliosis syndromes requires evaluation of the vertebrae, ribs, soft tissues, and spinal cord. The enhanced resolution over plain radiographs seen with MRI allows more detailed assessment of vertebral malformation and surrounding anatomy. Diagnosis of the underlying cause of congenital scoliosis might be enhanced using this technology. We report on a 12-year-old girl of unaffected parents with SSS who was evaluated with MRI sequences of the spine to show various types of malsegmentation. Additionally, there is the new finding of fusion of teeth, with developmental failure of a canine incisor. (orig.)

  9. GPR56-Related Polymicrogyria: Clinicoradiologic Profile of 4 Patients.

    Science.gov (United States)

    Desai, Neelu A; Udani, Vrajesh

    2015-11-01

    Bilateral frontoparietal polymicrogyria is an autosomal recessive cortical malformation associated with abnormalities of neuronal migration, white matter changes, and mild brainstem and cerebellar abnormalities. Affected patients present with delayed milestones, intellectual disability, epilepsy, ataxia, and eye movement abnormalities. The clinicoradiologic profile resembles congenital muscular dystrophy. However, no muscle disease or characteristic eye abnormalities of congenial muscular dystrophy are detected in these children. GPR56 is the only confirmed gene associated with bilateral frontoparietal polymicrogyria. Antenatal diagnosis is possible if the index case is genetically confirmed. Four patients from different Indian families with a distinct clinicoradiologic profile resembling congenital muscular dystrophy with mutations in the GPR56 gene are described. © The Author(s) 2015.

  10. Outcome of ABCA4 disease-associated alleles in autosomal recessive retinal dystrophies: retrospective analysis in 420 Spanish families.

    Science.gov (United States)

    Riveiro-Alvarez, Rosa; Lopez-Martinez, Miguel-Angel; Zernant, Jana; Aguirre-Lamban, Jana; Cantalapiedra, Diego; Avila-Fernandez, Almudena; Gimenez, Ascension; Lopez-Molina, Maria-Isabel; Garcia-Sandoval, Blanca; Blanco-Kelly, Fiona; Corton, Marta; Tatu, Sorina; Fernandez-San Jose, Patricia; Trujillo-Tiebas, Maria-Jose; Ramos, Carmen; Allikmets, Rando; Ayuso, Carmen

    2013-11-01

    To provide a comprehensive overview of all detected mutations in the ABCA4 gene in Spanish families with autosomal recessive retinal disorders, including Stargardt's disease (arSTGD), cone-rod dystrophy (arCRD), and retinitis pigmentosa (arRP), and to assess genotype-phenotype correlation and disease progression in 10 years by considering the type of variants and age at onset. Case series. A total of 420 unrelated Spanish families: 259 arSTGD, 86 arCRD, and 75 arRP. Spanish families were analyzed through a combination of ABCR400 genotyping microarray, denaturing high-performance liquid chromatography, and high-resolution melting scanning. Direct sequencing was used as a confirmation technique for the identified variants. Screening by multiple ligation probe analysis was used to detect possible large deletions or insertions in the ABCA4 gene. Selected families were analyzed further by next generation sequencing. DNA sequence variants, mutation detection rates, haplotypes, age at onset, central or peripheral vision loss, and night blindness. Overall, we detected 70.5% and 36.6% of all expected ABCA4 mutations in arSTGD and arCRD patient cohorts, respectively. In the fraction of the cohort where the ABCA4 gene was sequenced completely, the detection rates reached 73.6% for arSTGD and 66.7% for arCRD. However, the frequency of possibly pathogenic ABCA4 alleles in arRP families was only slightly higher than that in the general population. Moreover, in some families, mutations in other known arRP genes segregated with the disease phenotype. An increasing understanding of causal ABCA4 alleles in arSTGD and arCRD facilitates disease diagnosis and prognosis and also is paramount in selecting patients for emerging clinical trials of therapeutic interventions. Because ABCA4-associated diseases are evolving retinal dystrophies, assessment of age at onset, accurate clinical diagnosis, and genetic testing are crucial. We suggest that ABCA4 mutations may be associated with a

  11. The Great Recession: a comparison of recession magnitudes in Europe, USA and Japan

    OpenAIRE

    Mazurek, Jiří

    2013-01-01

    In this article recession magnitudes in Europe, the USA and Japan during the Great Recession are compared. The strongest recessions (of severe category) occurred in Latvia, Lithuania and Estonia, while recessions in Japan and the USA were significantly weaker. Even the strongest recession (in Latvia) was found smaller in its magnitude than the Great Depression 1929-1933 in the USA. Hence, comparisons of the Great Recession to the Great Depression in the literature are somewhat exaggerated.

  12. A novel homozygous variant in the SMOC1 gene underlying Waardenburg anophthalmia syndrome.

    Science.gov (United States)

    Ullah, Asmat; Umair, Muhammad; Ahmad, Farooq; Muhammad, Dost; Basit, Sulman; Ahmad, Wasim

    2017-01-01

    Waardenburg anophthalmia syndrome (WAS), also known as ophthalmo-acromelic syndrome or anophthalmia-syndactyly, is a rare congenital disorder that segregates in an autosomal recessive pattern. Clinical features of the syndrome include malformation of the eyes and the skeleton. Mostly, WAS is caused by mutations in the SMOC-1 gene. The present report describes a large consanguineous family of Pakistani origin segregating Waardenburg anophthalmia syndrome in an autosomal recessive pattern. Genotyping followed by Sanger sequencing was performed to search for a candidate gene. SNP genotyping using AffymetrixGeneChip Human Mapping 250K Nsp array established a single homozygous region among affected members on chromosome 14q23.1-q24.3 harboring the SMOC1 gene. Sequencing of the gene revealed a novel homozygous missense mutation (c.812G>A; p.Cys271Tyr) in the family. This is the first report of Waardenburg anophthalmia syndrome caused by a SMOC1 variant in a Pakistani population. The mutation identified in the present investigation extends the body of evidence implicating the gene SMOC-1 in causing WAS.

  13. Forecasting US Recessions

    DEFF Research Database (Denmark)

    Christiansen, Charlotte; Eriksen, Jonas Nygaard; Møller, Stig Vinther

    2014-01-01

    We study the role of sentiment variables as predictors for US recessions. We combine sentiment variables with either classical recession predictors or common factors based on a large panel of macroeconomic and financial variables. Sentiment variables hold vast predictive power for US recessions...

  14. Clinico-epidemiological study of congenital ichthyosis in a tertiary care center of Eastern India

    Directory of Open Access Journals (Sweden)

    Arghyaprasun Ghosh

    2017-01-01

    Full Text Available Background: Congenital ichthyoses comprises various specific genetic diseases and can range from mild to very severe presentation. Furthermore, these may be associated with various syndromes. There is scanty data regarding the demographic profile and clinical features of patients with congenital ichthyosis in India. Aims and Objectives: The aim is to evaluate the epidemiology and clinical characteristics of various types of congenital ichthyoses. Materials and Methods: The study was conducted for 1 year from April 2013 to March 2014. Patients were evaluated for epidemiological profile and clinical features. Results: During the study of 1 year, 106 patients of congenital ichthyoses were identified. The most common of the various ichthyoses was ichthyosis vulgaris, followed by lamellar ichthyosis, X-linked recessive ichthyosis. One case of Netherton syndrome and one of ichthyosis hystrix were also identified. Conclusion: Various types of congenital ichthyoses present with different clinical features which range from mild to severe. These present with significant psychological stress to both patients and their families. Furthermore, all these diseases have significant implications of transmission to their offspring.

  15. A Taiwanese Boy With Congenital Generalized Lipodystrophy Caused by Homozygous Ile262fs Mutation in the BSCL2 Gene

    Directory of Open Access Journals (Sweden)

    Hsiu-Hui Huang

    2010-11-01

    Full Text Available Congenital generalized lipodystrophy (CGL is a rare autosomal recessive disease that is characterized by a near-complete absence of adipose tissue from birth or early infancy. Mutations in the BSCL2 gene are known to result in CGL2, a more severe phenotype than CGL1, with earlier onset, more extensive fat loss and biochemical changes, more severe intellectual impairment, and more severe cardiomyopathy. We report a 3-month-old Taiwanese boy with initial presentation of a lack of subcutaneous fat, prominent musculature, generalized eruptive xanthomas, and extreme hypertriglyceridemia. Absence of mechanical adipose tissue in the orbits and scalp was revealed by head magnetic resonance imaging. Hepatomegaly was noticed, and histological examination of a liver biopsy specimen suggested severe hepatic steatosis and periportal necrosis. However, echocardiography indicated no sign of cardiomyopathy and he showed no distinct intellectual impairment that interfered with daily life. About 1 year later, abdominal computed tomography revealed enlargement of kidneys. He had a homozygous insertion of a nucleotide, 783insG (Ile262fs mutation, in exon 7 of the BSCL2 gene. We reviewed the genotype of CGL cases from Japan, India, China and Taiwan, and found that BSCL2 is a major causative gene for CGL in Asian.

  16. Aberrant Smad3 phosphoisoforms in cyst-lining epithelial cells in the cpk mouse, a model of autosomal recessive polycystic kidney disease.

    Science.gov (United States)

    Hama, Taketsugu; Nakanishi, Koichi; Sato, Masashi; Mukaiyama, Hironobu; Togawa, Hiroko; Shima, Yuko; Miyajima, Masayasu; Nozu, Kandai; Nagao, Shizuko; Takahashi, Hisahide; Sako, Mayumi; Iijima, Kazumoto; Yoshikawa, Norishige; Suzuki, Hiroyuki

    2017-12-01

    Cystic epithelia acquire mesenchymal-like features in polycystic kidney disease (PKD). In this phenotypic alteration, it is well known that transforming growth factor (TGF)-β/Smad3 signaling is involved; however, there is emerging new data on Smad3 phosphoisoforms: Smad3 phosphorylated at linker regions (pSmad3L), COOH-terminal regions (pSmad3C), and both (pSmad3L/C). pSmad3L/C has a pathological role in colorectal cancer. Mesenchymal phenotype-specific cell responses in the TGF-β/Smad3 pathway are implicated in carcinomas. In this study, we confirmed mesenchymal features and examined Smad3 phosphoisoforms in the cpk mouse, a model of autosomal recessive PKD. Kidney sections were stained with antibodies against mesenchymal markers and domain-specific phospho-Smad3. TGF-β, pSmad3L, pSmad3C, JNK, cyclin-dependent kinase (CDK) 4, and c-Myc were evaluated by Western blotting. Cophosphorylation of pSmad3L/C was assessed by immunoprecipitation. α-Smooth muscle actin, which indicates mesenchymal features, was expressed higher in cpk mice. pSmad3L expression was increased in cpk mice and was predominantly localized in the nuclei of tubular epithelial cells in cysts; however, pSmad3C was equally expressed in both cpk and control mice. Levels of pSmad3L, JNK, CDK4, and c-Myc protein in nuclei were significantly higher in cpk mice than in controls. Immunoprecipitation showed that Smad3 was cophosphorylated (pSmad3L/C) in cpk mice. Smad3 knockout/ cpk double-mutant mice revealed amelioration of cpk abnormalities. These findings suggest that upregulating c-Myc through the JNK/CDK4-dependent pSmad3L pathway may be key to the pathophysiology in cpk mice. In conclusion, a qualitative rather than a quantitative abnormality of the TGF-β/Smad3 pathway is involved in PKD and may be a target for disease-specific intervention. Copyright © 2017 the American Physiological Society.

  17. Anesthesia for a child with Walker–Warburg syndrome

    Directory of Open Access Journals (Sweden)

    Emine Arzu Kose

    2014-03-01

    Full Text Available Background and objectives: Walker–Warburg Syndrome is a rare, autosomal recessive congenital muscular dystrophy manifested by central nervous system, eye malformations and possible multisystem involvement. The diagnosis is established by the presence of four criteria: congenital muscular dystrophy, type II lissencephaly, cerebellar malformation, and retinal malformation. Most of the syndromic children die in the first three years of life because of respiratory failure, pneumonia, seizures, hyperthermia and ventricular fibrillation. Case report: The anesthetic management of a two-months-old male child listed for elective ventriculo-peritoneal shunt operation was discussed. Conclusions: A careful anesthetic management is necessary due to the multisystem involvement. We reported anesthetic management of a two-months-old male child with Walker–Warburg Syndrome who was listed for elective ventriculo-peritoneal shunt operation. Keywords: Walker–Warburg Syndrome, Congenital muscular dystrophy, General anesthesia

  18. Prognostic importance of congenital cataract morphology: A case report

    Directory of Open Access Journals (Sweden)

    Çağrı İlhan

    2018-02-01

    Full Text Available Congenital cataract (CC has an important place in pediatric ocular diseases. CCs are different from senile nuclear cataracts in terms of their etiologic, clinic and morphological characteristics. CCs occur many different forms such as non-hereditary isolated cases or autosomal dominant bilateral cases. In addition, many of ocular and systemic diseases can be associated with CC and ophthalmologist should be aware of these potential risks. In this article, we questioned whether the different morphological features of CC have prognostic importance or effect decision of surgery by considering a case of CC.

  19. HUMAN CELLS IN CULTURE: REVISlTED*

    African Journals Online (AJOL)

    advantages, e.g. the generation time is reduced to about. 1/10000 that of the ... or less reflects the cellular biology of the donor tissut:'Y .... X-linked. Autosomal recessive. Autosomal recessive. Autosomal recessive mothers of affected males, however, show that only 50% of the cell population is defective, which furnishes an.

  20. A compound heterozygous mutation in DPAGT1 results in a congenital disorder of glycosylation with a relatively mild phenotype

    NARCIS (Netherlands)

    Iqbal, Z.; Shahzad, M.; Vissers, L.E.L.M.; Scherpenzeel, M. van; Gilissen, C.; Razzaq, A.; Zahoor, M.Y.; Khan, S.N.; Kleefstra, T.; Veltman, J.A.; Brouwer, A.P.M. de; Lefeber, D.J.; Bokhoven, H. van; Riazuddin, S.

    2013-01-01

    Congenital disorders of glycosylation (CDG) are a large group of recessive multisystem disorders caused by impaired protein or lipid glycosylation. The CDG-I subgroup is characterized by protein N-glycosylation defects originating in the endoplasmic reticulum. The genetic defect is known for 17

  1. A recessive founder mutation in regulator of telomere elongation helicase 1, RTEL1, underlies severe immunodeficiency and features of Hoyeraal Hreidarsson syndrome.

    Science.gov (United States)

    Ballew, Bari J; Joseph, Vijai; De, Saurav; Sarek, Grzegorz; Vannier, Jean-Baptiste; Stracker, Travis; Schrader, Kasmintan A; Small, Trudy N; O'Reilly, Richard; Manschreck, Chris; Harlan Fleischut, Megan M; Zhang, Liying; Sullivan, John; Stratton, Kelly; Yeager, Meredith; Jacobs, Kevin; Giri, Neelam; Alter, Blanche P; Boland, Joseph; Burdett, Laurie; Offit, Kenneth; Boulton, Simon J; Savage, Sharon A; Petrini, John H J

    2013-08-01

    Dyskeratosis congenita (DC) is a heterogeneous inherited bone marrow failure and cancer predisposition syndrome in which germline mutations in telomere biology genes account for approximately one-half of known families. Hoyeraal Hreidarsson syndrome (HH) is a clinically severe variant of DC in which patients also have cerebellar hypoplasia and may present with severe immunodeficiency and enteropathy. We discovered a germline autosomal recessive mutation in RTEL1, a helicase with critical telomeric functions, in two unrelated families of Ashkenazi Jewish (AJ) ancestry. The affected individuals in these families are homozygous for the same mutation, R1264H, which affects three isoforms of RTEL1. Each parent was a heterozygous carrier of one mutant allele. Patient-derived cell lines revealed evidence of telomere dysfunction, including significantly decreased telomere length, telomere length heterogeneity, and the presence of extra-chromosomal circular telomeric DNA. In addition, RTEL1 mutant cells exhibited enhanced sensitivity to the interstrand cross-linking agent mitomycin C. The molecular data and the patterns of inheritance are consistent with a hypomorphic mutation in RTEL1 as the underlying basis of the clinical and cellular phenotypes. This study further implicates RTEL1 in the etiology of DC/HH and immunodeficiency, and identifies the first known homozygous autosomal recessive disease-associated mutation in RTEL1.

  2. A recessive founder mutation in regulator of telomere elongation helicase 1, RTEL1, underlies severe immunodeficiency and features of Hoyeraal Hreidarsson syndrome.

    Directory of Open Access Journals (Sweden)

    Bari J Ballew

    2013-08-01

    Full Text Available Dyskeratosis congenita (DC is a heterogeneous inherited bone marrow failure and cancer predisposition syndrome in which germline mutations in telomere biology genes account for approximately one-half of known families. Hoyeraal Hreidarsson syndrome (HH is a clinically severe variant of DC in which patients also have cerebellar hypoplasia and may present with severe immunodeficiency and enteropathy. We discovered a germline autosomal recessive mutation in RTEL1, a helicase with critical telomeric functions, in two unrelated families of Ashkenazi Jewish (AJ ancestry. The affected individuals in these families are homozygous for the same mutation, R1264H, which affects three isoforms of RTEL1. Each parent was a heterozygous carrier of one mutant allele. Patient-derived cell lines revealed evidence of telomere dysfunction, including significantly decreased telomere length, telomere length heterogeneity, and the presence of extra-chromosomal circular telomeric DNA. In addition, RTEL1 mutant cells exhibited enhanced sensitivity to the interstrand cross-linking agent mitomycin C. The molecular data and the patterns of inheritance are consistent with a hypomorphic mutation in RTEL1 as the underlying basis of the clinical and cellular phenotypes. This study further implicates RTEL1 in the etiology of DC/HH and immunodeficiency, and identifies the first known homozygous autosomal recessive disease-associated mutation in RTEL1.

  3. Long-Term Follow-up of a Successfully Treated Case of Congenital Pyridoxine-Dependent Epilepsy

    OpenAIRE

    Proudfoot, Malcolm; Jardine, Philip; Straukiene, Agne; Noad, Rupert; Parrish, Andrew; Ellard, Sian; Weatherby, Stuart

    2013-01-01

    Autosomal recessive disorders affecting pyridoxine (vitamin B6) metabolism are a rare but well-recognized cause of neonatal seizures. Antiquitin deficiency, caused by mutations in ALDH7A1, is a disorder of the lysine degradation pathway causing accumulation of an intermediate that complexes with pyridoxal phosphate. Reports of long-term follow-up of neonatal pyridoxine-dependent seizures (PDS) remain scarce and prognostic information is varied. We report a case of PDS in a 47-year-old lady wh...

  4. Whole-exome sequencing identifies novel compound heterozygous mutations in USH2A in Spanish patients with autosomal recessive retinitis pigmentosa.

    Science.gov (United States)

    Méndez-Vidal, Cristina; González-Del Pozo, María; Vela-Boza, Alicia; Santoyo-López, Javier; López-Domingo, Francisco J; Vázquez-Marouschek, Carmen; Dopazo, Joaquin; Borrego, Salud; Antiñolo, Guillermo

    2013-01-01

    Retinitis pigmentosa (RP) is an inherited retinal dystrophy characterized by extreme genetic and clinical heterogeneity. Thus, the diagnosis is not always easily performed due to phenotypic and genetic overlap. Current clinical practices have focused on the systematic evaluation of a set of known genes for each phenotype, but this approach may fail in patients with inaccurate diagnosis or infrequent genetic cause. In the present study, we investigated the genetic cause of autosomal recessive RP (arRP) in a Spanish family in which the causal mutation has not yet been identified with primer extension technology and resequencing. We designed a whole-exome sequencing (WES)-based approach using NimbleGen SeqCap EZ Exome V3 sample preparation kit and the SOLiD 5500×l next-generation sequencing platform. We sequenced the exomes of both unaffected parents and two affected siblings. Exome analysis resulted in the identification of 43,204 variants in the index patient. All variants passing filter criteria were validated with Sanger sequencing to confirm familial segregation and absence in the control population. In silico prediction tools were used to determine mutational impact on protein function and the structure of the identified variants. Novel Usher syndrome type 2A (USH2A) compound heterozygous mutations, c.4325T>C (p.F1442S) and c.15188T>G (p.L5063R), located in exons 20 and 70, respectively, were identified as probable causative mutations for RP in this family. Family segregation of the variants showed the presence of both mutations in all affected members and in two siblings who were apparently asymptomatic at the time of family ascertainment. Clinical reassessment confirmed the diagnosis of RP in these patients. Using WES, we identified two heterozygous novel mutations in USH2A as the most likely disease-causing variants in a Spanish family diagnosed with arRP in which the cause of the disease had not yet been identified with commonly used techniques. Our data

  5. NCBI nr-aa BLAST: CBRC-FCAT-01-1153 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available .1| polycystic kidney and hepatic disease 1 (autosomal recessive) [Homo sapiens] emb|CAH72782.1| polycystic ...kidney and hepatic disease 1 (autosomal recessive) [Homo sapiens] emb|CAI16677.1| polycystic kidney and hepatic disease 1 (autos...ney and hepatic disease 1 (autosomal recessive) [Homo sapiens] NP_733842.2 0.0 76% ...

  6. NCBI nr-aa BLAST: CBRC-CJAC-01-1207 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available .1| polycystic kidney and hepatic disease 1 (autosomal recessive) [Homo sapiens] emb|CAH72782.1| polycystic ...kidney and hepatic disease 1 (autosomal recessive) [Homo sapiens] emb|CAI16677.1| polycystic kidney and hepatic disease 1 (autos...ney and hepatic disease 1 (autosomal recessive) [Homo sapiens] NP_733842.2 0.0 87% ...

  7. Sector Retinitis Pigmentosa Associated With Novel Compound Heterozygous Mutations of CDH23.

    Science.gov (United States)

    Branson, Sara V; McClintic, Jedediah I; Stamper, Tara H; Haldeman-Englert, Chad R; John, Vishak J

    2016-02-01

    Usher syndrome is an autosomal recessive condition characterized by retinitis pigmentosa (RP) and congenital hearing loss, with or without vestibular dysfunction. Allelic variants of CDH23 cause both Usher syndrome type 1D (USH1D) and a form of nonsyndromic hearing loss (DFNB12). The authors describe here a 34-year-old patient with congenital hearing loss and a new diagnosis of sector RP who was found to have two novel compound heterozygous mutations in CDH23, including one missense (c.8530C > A; p.Pro2844Thr) and one splice-site (c.5820 + 5G > A) mutation. This is the first report of sector RP associated with these types of mutations in CDH23. Copyright 2016, SLACK Incorporated.

  8. Usher syndrome in four siblings from a consanguineous family of Pakistani origin.

    Science.gov (United States)

    Trop, I; Schloss, M D; Polomeno, R; Der Kaloustian, V

    1995-04-01

    Usher syndrome is a heterogeneous group of disorders of autosomal recessive inheritance characterized by retinitis pigmentosa and congenital sensorineural hearing loss. Two types are accepted clinically: type I is associated with profound congenital deafness with progressive pigmentary retinopathy and total loss of vestibular function. Type II is a milder form, with moderate-to-profound hearing loss and a milder form of retinitis pigmentosa. Vestibular function is preserved. A total of five loci have been identified as accounting for the two distinct phenotypic presentations. We describe a consanguineous family of Pakistani origin whose four children all are affected with Usher syndrome type I. DNA analysis showed non-linkage to any of the loci already identified as tightly linked to the Usher syndrome type I.

  9. V2R mutations and nephrogenic diabetes insipidus.

    Science.gov (United States)

    Bichet, Daniel G

    2009-01-01

    Nephrogenic diabetes insipidus (NDI), which can be inherited or acquired, is characterized by an inability to concentrate urine despite normal or elevated plasma concentrations of the antidiuretic hormone, arginine vasopressin (AVP). Polyuria, with hyposthenuria, and polydipsia are the cardinal clinical manifestations of the disease. Nephrogenic failure to concentrate urine maximally may be due to a defect in vasopressin-induced water permeability of the distal tubules and collecting ducts, to insufficient buildup of the corticopapillary interstitial osmotic gradient, or to a combination of these two factors. Thus, the broadest definition of the term NDI embraces any antidiuretic hormone-resistant urinary-concentrating defect, including medullary disease with low interstitial osmolality, renal failure, and osmotic diuresis. About 90% of patients with congenital NDI are males with X-linked recessive NDI (OMIM 304800)(1) and have mutations in the AVP receptor 2 (AVPR2) gene that codes for the vasopressin V(2) receptor; the gene is located in chromosome region Xq28. In about 10% of the families studied, congenital NDI has an autosomal recessive or autosomal dominant mode of inheritance (OMIM 222000 and 125800)(1). Mutations have been identified in the aquaporin-2 gene (AQP2, OMIM 107777)(1), which is located in chromosome region 12q13 and codes for the vasopressin-sensitive water channel. NDI is clinically distinguishable from neurohypophyseal diabetes insipidus (OMIM 125700(1); also referred to as central or neurogenic diabetes insipidus) by a lack of response to exogenous AVP and by plasma levels of AVP that rise normally with increase in plasma osmolality. Hereditary neurohypophyseal diabetes insipidus is secondary to mutations in the gene encoding AVP (OMIM 192340)(1). Neurohypophyseal diabetes insipidus is also a component of autosomal recessive Wolfram syndrome 1 or DIDMOAD syndrome (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness) (OMIM

  10. Compound Heterozygous Inheritance of Mutations in Coenzyme Q8A Results in Autosomal Recessive Cerebellar Ataxia and Coenzyme Q10 Deficiency in a Female Sib-Pair.

    Science.gov (United States)

    Jacobsen, Jessie C; Whitford, Whitney; Swan, Brendan; Taylor, Juliet; Love, Donald R; Hill, Rosamund; Molyneux, Sarah; George, Peter M; Mackay, Richard; Robertson, Stephen P; Snell, Russell G; Lehnert, Klaus

    2017-11-21

    Autosomal recessive ataxias are characterised by a fundamental loss in coordination of gait with associated atrophy of the cerebellum. There is significant clinical and genetic heterogeneity amongst inherited ataxias; however, an early molecular diagnosis is essential with low-risk treatments available for some of these conditions. We describe two female siblings who presented early in life with unsteady gait and cerebellar atrophy. Whole exome sequencing revealed compound heterozygous inheritance of two pathogenic mutations (p.Leu277Pro, c.1506+1G>A) in the coenzyme Q8A gene (COQ8A), a gene central to biosynthesis of coenzyme Q (CoQ). The paternally derived p.Leu277Pro mutation is predicted to disrupt a conserved motif in the substrate-binding pocket of the protein, resulting in inhibition of CoQ 10 production. The maternal c.1506+1G>A mutation destroys a canonical splice donor site in exon 12 affecting transcript processing and subsequent protein translation. Mutations in this gene can result in primary coenzyme Q 10 deficiency type 4, which is characterized by childhood onset of cerebellar ataxia and exercise intolerance, both of which were observed in this sib-pair. Muscle biopsies revealed unequivocally low levels of CoQ 10, and the siblings were subsequently established on a therapeutic dose of CoQ 10 with distinct clinical evidence of improvement after 1 year of treatment. This case emphasises the importance of an early and accurate molecular diagnosis for suspected inherited ataxias, particularly given the availability of approved treatments for some subtypes.

  11. Allele-specific Gene Silencing of Mutant mRNA Restores Cellular Function in Ullrich Congenital Muscular Dystrophy Fibroblasts

    Directory of Open Access Journals (Sweden)

    Satoru Noguchi

    2014-01-01

    Full Text Available Ullrich congenital muscular dystrophy (UCMD is an inherited muscle disorder characterized clinically by muscle weakness, distal joint hyperlaxity, and proximal joint contractures. Sporadic and recessive mutations in the three collagen VI genes, COL6A1, COL6A2, and COL6A3, are reported to be causative. In the sporadic forms, a heterozygous point mutation causing glycine substitution in the triple helical domain has been identified in higher rate. In this study, we examined the efficacy of siRNAs, which target point mutation site, on specific knockdown toward transcripts from mutant allele and evaluated consequent cellular phenotype of UCMD fibroblasts. We evaluated the effect of siRNAs targeted to silence-specific COL6A1 alleles in UCMD fibroblasts, where simultaneous expression of both wild-type and mutant collagen VI resulted in defective collagen localization. Addition of mutant-specific siRNAs allowed normal extracellular localization of collagen VI surrounding fibroblasts, suggesting selective inhibition of mutant collagen VI. Targeting the single-nucleotide COL6A1 c.850G>A (p.G284R mutation responsible a sporadic autosomal dominant form of UCMD can potently and selectively block expression of mutant collagen VI. These results suggest that allele-specific knockdown of the mutant mRNA can potentially be considered as a therapeutic procedure in UCMD due to COL6A1 point mutations.

  12. A R54L mutation of CRYAA associated with autosomal dominant nuclear cataracts in a Chinese family.

    Science.gov (United States)

    Yang, Zhenfei; Su, Dongmei; Li, Qian; Ma, Zicheng; Yang, Fan; Zhu, Siquan; Ma, Xu

    2013-12-01

    To identify the genetic defect in a three-generation Chinese family with congenital cataracts. The phenotype of a three-generation Chinese family with congenital cataract was recruited. Detailed family history and clinical data of the family were recorded. Candidate genes sequencing was performed to screen out the disease-causing mutation. Bioinformatics analysis was performed to predict the function of mutant gene. The phenotype of the family was identified as nuclear cataract. Direct sequencing revealed a c.161 G > T transversion in exon 1 of crystallin alpha-A (CRYAA). This mutation co-segregated with all affected individuals in the family and was not found in unaffected family members nor in the 100 unrelated controls. Bioinformatics analysis indicated that the 54th amino acid position was highly conserved and the mutation R54L caused an increase of local hydrophobicity around the substitution site. This study identified a novel disease-causing mutation c.161 G > T (p.R54L) in CRYAA in a Chinese family with autosomal dominant nuclear cataracts, this is the first report relating a G > T mutation in CRYAA leading to congenital nuclear cataract.

  13. Precocious Degenerative Arthropathy And Bluish Patches On Ears : Ochronosis And Alkaptonuria

    Directory of Open Access Journals (Sweden)

    Mahajan Vikram K

    2004-01-01

    Full Text Available Alkaptonuria is a rare, autosomal recessive disorder of phenylalanin/tyrosine metabolism due to congenital deficiency of the enzyme homogentisic acid oxidase. The diagnosis is clinical and the triad of homogentisic aciduria, ochronosis and precocious degenerative arthritis is characteristic. Its diagnosis in infancy and early therapeutic intervention help delaying its complications. These patients may remain undiagnosed until the darkening of urine soaked diapers is noticed or the early degenerative arthropathy develops. This paper describes two cases of alkaptonuria presenting late in life; one of them had associated hyperthyroidism.

  14. Genotypic and clinical spectrum of self-improving collodion ichthyosis: ALOX12B, ALOXE3, and TGM1 mutations in Scandinavian patients

    DEFF Research Database (Denmark)

    Vahlquist, Anders; Bygum, Anette; Gånemo, Agneta

    2010-01-01

    Infants born with autosomal recessive congenital ichthyosis (ARCI) are often encapsulated in a collodion membrane, which shows a lamellar or erythrodermic type of ichthyosis upon shedding. However, some babies show a nearly normal underlying skin after several weeks, a phenotype called "self...... scaling, palmar hyperlinearity with keratoderma, and a frequent appearance of red cheeks and anhidrosis. Thus, we propose replacing SHCB with the term "self-improving collodion ichthyosis" (SICI). In conclusion, ALOX12B mutations are the leading cause of SICI in Scandinavia, followed by ALOXE3 mutations...

  15. Genotypic and Clinical Spectrum of Self-Improving Collodion Ichthyosis: ALOX12B, ALOXE3, and TGM1 Mutations in Scandinavian Patients

    DEFF Research Database (Denmark)

    Vahlquist, Anders; Bygum, Anette; Gånemo, Agneta

    2009-01-01

    Infants born with autosomal recessive congenital ichthyosis (ARCI) are often encapsulated in a collodion membrane, which shows a lamellar or erythrodermic type of ichthyosis upon shedding. However, some babies show a nearly normal underlying skin after several weeks, a phenotype called "self...... scaling, palmar hyperlinearity with keratoderma, and a frequent appearance of red cheeks and anhidrosis. Thus, we propose replacing SHCB with the term "self-improving collodion ichthyosis" (SICI). In conclusion, ALOX12B mutations are the leading cause of SICI in Scandinavia, followed by ALOXE3 mutations...

  16. Multiple pterygium syndrome: Challenge for anesthesiologist

    Directory of Open Access Journals (Sweden)

    P Sethi

    2016-01-01

    Full Text Available Multiple pterygium syndrome (MPS is a very rare autosomal recessive disorder characterized by flexion of joint and digit contractures, skin webbing, cleft palate, deformity of the spine, and cervical spine fusion. Difficult airway is associated mainly due to micrognathia, retrognathia, webbing of the neck, and limitation of the mouth opening and neck extension. We are reporting a case of a 5-year-old female diagnosed with MPS and exhibiting a bilateral club foot and congenital vertical talus. The patient was posted for manipulation and above the knee casting under general anesthesia.

  17. Fetal ascites and oligohydramnios: prenatal diagnosis of a sialic acid storage disease (index case).

    Science.gov (United States)

    Poulain, P; Odent, S; Maire, I; Milon, J; Proudhon, J F; Jouan, H; Le Marec, B

    1995-09-01

    In a 20-year-old primiparous patient, a routine ultrasound scan performed at 28 weeks revealed fetal ascites, bilateral talipes, and oligohydramnios. This woman, married to possibly her first cousin, was at risk for an autosomal recessive disease, a metabolic disorder. At 29 weeks, an amniotic fluid biochemical study revealed the presence of an abnormal band of free sialic acid, leading to a diagnosis of a congenital form of sialic acid storage disease. Termination of pregnancy was performed at 30 weeks. Measurement of free sialic acid in cultured fetal skin fibroblasts confirmed the diagnosis.

  18. Genetic heterogeneity of Usher syndrome type II.

    OpenAIRE

    Pieke Dahl, S; Kimberling, WJ; Gorin, MB; Weston, MD; Furman, JM; Pikus, A; Moller, C

    1993-01-01

    Usher syndrome is an autosomal recessive disorder characterised by retinitis pigmentosa and congenital sensorineural hearing loss. A gene for Usher syndrome type II (USH2) has been localised to chromosome 1q32-q41. DNA from a family with four of seven sibs affected with clinical characteristics of Usher syndrome type II was genotyped using markers spanning the 1q32-1q41 region. These included D1S70 and D1S81, which are believed to flank USH2. Genotypic results and subsequent linkage analysis ...

  19. The diagnostic dilemma of cutis laxa: A report of two cases with genotypic dissimilarity

    Directory of Open Access Journals (Sweden)

    Manisha Goyal

    2015-01-01

    Full Text Available Cutis laxa is a heterogeneous group of diseases, with loose, wrinkled skin folds and hyperelasticity of the skin. There are overlapping of clinical features of the group of syndrome associated with cutis laxa, including congenital cutis laxa, wrinkly skin syndrome and gerodermia osteodysplastica. All these conditions present a challenge to the clinician. Thus, molecular diagnosis is the only way to resolve these phenotypically similar conditions. We hereby describe two Indian patients with wrinkled skin and mild craniofacial dysmorphic features who had molecular confirmation of autosomal recessive cutis laxa.

  20. Autosomal dominant Carvajal plus syndrome due to the novel desmoplakin mutation c.1678A > T (p.Ile560Phe).

    Science.gov (United States)

    Finsterer, Josef; Stöllberger, Claudia; Wollmann, Eva; Dertinger, Susanne; Laccone, Franco

    2016-09-01

    Carvajal syndrome is an autosomal dominant or autosomal recessive disorder, manifesting with dilated cardiomyopathy, woolly hair, and palmoplantar keratoma. Additional manifestations can be occasionally found. Carvajal syndrome may be due to mutations in the desmocollin-2, desmoplakin, or plakophilin-2 gene. We report a family with Carvajal syndrome which additionally presented with hypoacusis, noncompaction, recurrent pharyngeal infections, oligodontia, and recurrent diarrhoea. Father and brother were also affected and had died suddenly, the father despite implantation of a cardioverter defibrillator (ICD). Genetic studies revealed the novel pathogenic mutation c.1678A > T in the desmoplakin gene resulting in the amino acid change Ile to Phe at position 560 in the index case and her brother. The index case underwent ICD implantation recently. Phenotypic manifestations of Carvajal syndrome are even broader than so far anticipated, the number of mutations in the desmoplakin gene responsible for Carvajal syndrome is still increasing, and these patients require implantation of an ICD as soon as their diagnosis is established.

  1. Simple Y-autosomal incompatibilities cause hybrid male sterility in reciprocal crosses between Drosophila virilis and D. americana.

    Science.gov (United States)

    Sweigart, Andrea L

    2010-03-01

    Postzygotic reproductive isolation evolves when hybrid incompatibilities accumulate between diverging populations. Here, I examine the genetic basis of hybrid male sterility between two species of Drosophila, Drosophila virilis and D. americana. From these analyses, I reach several conclusions. First, neither species carries any autosomal dominant hybrid male sterility alleles: reciprocal F(1) hybrid males are perfectly fertile. Second, later generation (backcross and F(2)) hybrid male sterility between D. virilis and D. americana is not polygenic. In fact, I identified only three genetically independent incompatibilities that cause hybrid male sterility. Remarkably, each of these incompatibilities involves the Y chromosome. In one direction of the cross, the D. americana Y is incompatible with recessive D. virilis alleles at loci on chromosomes 2 and 5. In the other direction, the D. virilis Y chromosome causes hybrid male sterility in combination with recessive D. americana alleles at a single QTL on chromosome 5. Finally, in contrast with findings from other Drosophila species pairs, the X chromosome has only a modest effect on hybrid male sterility between D. virilis and D. americana.

  2. Compound Heterozygosity of Dominant and Recessive COL7A Alleles in a Severely Affected Patient with a Family History of Dystrophic Epidermolysis Bullosa: Clinical Findings, Genetic Testing, and Treatment Implications.

    Science.gov (United States)

    Watson, Kendra D; Schoch, Jennifer J; Beek, Geoffrey J; Hand, Jennifer L

    2017-03-01

    An 8-year-old girl born to a family with more than three generations of dominant dystrophic epidermolysis bullosa (DDEB) presented with life-threatening confluent skin erosions, mitten hand deformity, and failure to thrive. Reassessment of her family history and genetic testing showed compound heterozygous COL7A mutations, one inherited from her DDEB-affected mother and one from her unaffected, healthy father. This family illustrates the risk of unexpected, severe, autosomal recessive epidermolysis bullosa (EB) in a family with milder, multigenerational autosomal dominant EB. Clinicians should recognize the clinical spectrum of dystrophic EB and recommend genetic consultation when the phenotype conflicts with family history. © 2017 Wiley Periodicals, Inc.

  3. Novel BICD2 mutation in a Japanese family with autosomal dominant lower extremity-predominant spinal muscular atrophy-2.

    Science.gov (United States)

    Yoshioka, Mieko; Morisada, Naoya; Toyoshima, Daisaku; Yoshimura, Hajime; Nishio, Hisahide; Iijima, Kazumoto; Takeshima, Yasuhiro; Uehara, Tomoko; Kosaki, Kenjiro

    2018-04-01

    The most common form of spinal muscular atrophy (SMA) is a recessive disorder caused by SMN1 mutations in 5q13, whereas the genetic etiologies of non-5q SMA are very heterogenous and largely remain to be elucidated. We present a father and son with atrophy and weakness of the lower leg muscles since infancy. Genetic studies in this family revealed a novel BICD2 mutation causing autosomal dominant lower extremity-predominant SMA type 2. The proband was the father, aged 30, and the son was aged 3. Both of them were born uneventfully to nonconsanguineous parents. While the father first walked at the age of 19 months, the son was unable to walk at age 3 years. In both, knee and ankle reflexes were absent and sensation was intact. Serum creatine kinase levels were normal. The son showed congenital arthrogryposis and underwent orthopedic corrections for talipes calcaneovalgus. Investigation of the father at the age of 5 years revealed normal results on nerve conduction studies and sural nerve biopsy. Electromyography showed chronic neurogenic change, and muscle biopsy showed features suggestive of denervation. The father was diagnosed clinically with a sporadic distal SMA. Follow-up studies showed very slow progression. Next-generation and Sanger sequencing revealed a deleterious mutation in BICD2: c.1667A>G, p.Tyr556Cys, in this family. BICD2 is a cytoplasmic conserved motor-adaptor protein involved in anterograde and retrograde transport along the microtubules. Next-generation sequencing will further clarify the genetic basis of non-5q SMA. Copyright © 2017 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  4. A novel missense mutation in the CLCN7 gene linked to benign autosomal dominant osteopetrosis: a case series

    Directory of Open Access Journals (Sweden)

    Rashid Ban Mousa

    2013-01-01

    Full Text Available Abstract Introduction Osteopetrosis is a rare inherited genetic disease characterized by sclerosis of the skeleton. The absence or malfunction of osteoclasts is found to be strongly associated with the disease evolution. Currently, four clinically distinct forms of the disease have been recognized: the infantile autosomal recessive osteopetrosis, the malignant and the intermediate forms, and autosomal dominant osteopetrosis, type I and type II forms. The autosomal recessive types are the most severe forms with symptoms in very early childhood, whereas the autosomal dominant classes exhibit a heterogeneous trait with milder symptoms, often at later childhood or adulthood. Case presentation Case 1 is the 12-year-old daughter (index patient of an Iraqi-Kurdish family who, at the age of eight years, was diagnosed clinically to have mild autosomal dominant osteopetrosis. Presently, at 12-years old, she has severe complications due to the disease progression. In addition, the same family previously experienced the death of a female child in her late childhood. The deceased child had been misdiagnosed, at that time, with thalassemia major. In this report, we extended our investigation to identify the type of the inheritance patterns of osteopetrosis using molecular techniques, because consanguineous marriages exist within the family history. We have detected one heterozygous mutation in exon 15 of the Chloride Channel 7 gene in the index patient (Case 1, whereas other mutations were not detected in the associated genes TCIRG1, OSTM1, RANK, and RANKL. The missense mutation (CGG>TGG located in exon 15 (c.1225C>T of the Chloride Channel 7 gene changed the amino acid position 409 from arginine to tryptophan (p.R409W, c.1225C>T. Case 2 is the 16-year-old son (brother of the index patient of the same family who was diagnosed clinically with mild autosomal dominant osteopetrosis. We have identified the same heterozygous mutation in exon 15 of the Chloride

  5. A novel missense mutation in the CLCN7 gene linked to benign autosomal dominant osteopetrosis: a case series.

    Science.gov (United States)

    Rashid, Ban Mousa; Rashid, Nawshirwan Gafoor; Schulz, Ansgar; Lahr, Georgia; Nore, Beston Faiek

    2013-01-09

    Osteopetrosis is a rare inherited genetic disease characterized by sclerosis of the skeleton. The absence or malfunction of osteoclasts is found to be strongly associated with the disease evolution. Currently, four clinically distinct forms of the disease have been recognized: the infantile autosomal recessive osteopetrosis, the malignant and the intermediate forms, and autosomal dominant osteopetrosis, type I and type II forms. The autosomal recessive types are the most severe forms with symptoms in very early childhood, whereas the autosomal dominant classes exhibit a heterogeneous trait with milder symptoms, often at later childhood or adulthood. Case 1 is the 12-year-old daughter (index patient) of an Iraqi-Kurdish family who, at the age of eight years, was diagnosed clinically to have mild autosomal dominant osteopetrosis. Presently, at 12-years old, she has severe complications due to the disease progression. In addition, the same family previously experienced the death of a female child in her late childhood. The deceased child had been misdiagnosed, at that time, with thalassemia major. In this report, we extended our investigation to identify the type of the inheritance patterns of osteopetrosis using molecular techniques, because consanguineous marriages exist within the family history. We have detected one heterozygous mutation in exon 15 of the Chloride Channel 7 gene in the index patient (Case 1), whereas other mutations were not detected in the associated genes TCIRG1, OSTM1, RANK, and RANKL. The missense mutation (CGG>TGG) located in exon 15 (c.1225C>T) of the Chloride Channel 7 gene changed the amino acid position 409 from arginine to tryptophan (p.R409W, c.1225C>T).Case 2 is the 16-year-old son (brother of the index patient) of the same family who was diagnosed clinically with mild autosomal dominant osteopetrosis. We have identified the same heterozygous mutation in exon 15 of the Chloride channel 7 gene in this patient (Case 2). The missense

  6. Novel autosomal dominant TNNT1 mutation causing nemaline myopathy.

    Science.gov (United States)

    Konersman, Chamindra G; Freyermuth, Fernande; Winder, Thomas L; Lawlor, Michael W; Lagier-Tourenne, Clotilde; Patel, Shailendra B

    2017-11-01

    Nemaline myopathy (NEM) is one of the three major forms of congenital myopathy and is characterized by diffuse muscle weakness, hypotonia, respiratory insufficiency, and the presence of nemaline rod structures on muscle biopsy. Mutations in troponin T1 (TNNT1) is 1 of 10 genes known to cause NEM. To date, only homozygous nonsense mutations or compound heterozygous truncating or internal deletion mutations in TNNT1 gene have been identified in NEM. This extended family is of historical importance as some members were reported in the 1960s as initial evidence that NEM is a hereditary disorder. Proband and extended family underwent Sanger sequencing for TNNT1. We performed RT-PCR and immunoblot on muscle to assess TNNT1 RNA expression and protein levels in proband and father. We report a novel heterozygous missense mutation of TNNT1 c.311A>T (p.E104V) that segregated in an autosomal dominant fashion in a large family residing in the United States. Extensive sequencing of the other known genes for NEM failed to identify any other mutant alleles. Muscle biopsies revealed a characteristic pattern of nemaline rods and severe myofiber hypotrophy that was almost entirely restricted to the type 1 fiber population. This novel mutation alters a residue that is highly conserved among vertebrates. This report highlights not only a family with autosomal dominant inheritance of NEM, but that this novel mutation likely acts via a dominant negative mechanism. © 2017 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

  7. Deducing the pathogenic contribution of recessive ABCA4 alleles in an outbred population.

    Science.gov (United States)

    Schindler, Emily I; Nylen, Erik L; Ko, Audrey C; Affatigato, Louisa M; Heggen, Andrew C; Wang, Kai; Sheffield, Val C; Stone, Edwin M

    2010-10-01

    Accurate prediction of the pathogenic effects of specific genotypes is important for the design and execution of clinical trials as well as for meaningful counseling of individual patients. However, for many autosomal recessive diseases, it can be difficult to deduce the relative pathogenic contribution of individual alleles because relatively few affected individuals share the same two disease-causing variations. In this study, we used multiple regression analysis to estimate the pathogenicity of specific alleles of ABCA4 in patients with retinal phenotypes ranging from Stargardt disease to retinitis pigmentosa. This analysis revealed quantitative allelic effects on two aspects of the visual phenotype, visual acuity (P disease and will also aid in the optimal selection of subjects for clinical trials of new therapies.

  8. Genetic mapping of the gene for Usher syndrome: Linkage analysis in a large Samaritan kindred

    Energy Technology Data Exchange (ETDEWEB)

    Bonne-Tamir, B.; Korostishevsky, M.; Kalinsky, H.; Seroussi, E.; Beker, R.; Weiss, S. (Sackler Faculty of Medicine, Ramat-Aviv (Israel)); Godel, V. (Ichilov Hospital, Tel-Aviv (Israel))

    1994-03-01

    Usher syndrome is a group of autosomal recessive disorders associated with congenital sensorineural deafness and progressive visual loss due to retinitis pigmentosa. Sixteen members of the small inbred Samaritan isolate with autosomal recessive deafness from 59 individuals including parents and affected and nonaffected sibs were typed for markers on chromosomes 1q and 11q for which linkage has recently been established for Usher syndrome types II and I. Statistically significant linkage was observed with four markers on 11q (D11S533, D11S527, OMP, and INT2) with a maximum six-point location score of 11.61 at the D11S533 locus. Analysis of haplotypes supports the notion that the mutation arose only once in an ancestral chromosome carrying a specific haplotype. The availability of markers closely linked to the disease locus allows indirect genotype analysis and identifies all carriers of the gene within the community. Furthermore, the detection of complete linkage disequilibrium between the D11S533 marker and the Usher gene suggests that these loci are either identical or adjacent and narrows the critical region to which physical mapping efforts are currently directed. 35 refs., 2 figs., 6 tabs.

  9. Baller-Gerold syndrome: Further evidence for association with prenatal exposure to valproate

    Directory of Open Access Journals (Sweden)

    Iype Mary

    2008-01-01

    Full Text Available Baller Gerold Syndrome (BGS is a rare autosomal recessive disorder that is apparent at birth. The disorder is characterized by distinctive malformations of the skull and facial area and bones of the forearms and hands. We are reporting a new case of BGS in a 10-month-old female child born of an epileptic mother who was on sodium valproate during the initial months of pregnancy. The baby was born with premature closure of the metopic suture, unilateral radial aplasia with limb malformation and other congenital anomalies that conformed with the description of BGS. The parents and other family members were unaffected, karyotyping was normal and there was no history of consanguinity. Fetal valproate exposure has been previously reported as the cause of this fetal malformation syndrome, which is generally inherited as an autosomal recessive trait. The peculiar pregnancy history and the supporting literature on the effects of valproic acid on the fetus exposed in utero to it with numerous case reports in the literature referring to BGS as a result of fetal exposure to valproate made us conclude that this is indeed a case of BGS secondary to valproate-induced teratogenesis.

  10. Imaginological characteristics of Fanconi anemia patient: case report

    Directory of Open Access Journals (Sweden)

    José Luis González Mendoza

    2006-08-01

    Full Text Available Fanconi anemia (FA is an autosomal recessive disease characterizedby the presence of bone marrow failure and that generally isaccompanies by diverse congenital malformations and the presenceof myelodysplastic syndrome or acute myeloid leukaemia. We reporta case of male patient to 6 years old, product of a normal pregnancy,on physical examination his presents microcephaly and four fingersin each hand with absence of the thumbs; the radiological imagesshow to the presence of radial aplasia and absence of the carporadialbones of the upper left limb. Diagnoses impression becomesof Fanconi anemia by laboratory tests. At the time of suspectingthe diagnoses of FA, is important to consider the different diseasesthat by their clinical characteristics and the different congenital malformations they accompany them consider differential diagnoses,and thus to be able to make a suitable therapeutic handling

  11. Recent advances in biochemical and molecular analysis of congenital adrenal hyperplasia due to 21-hydroxylase deficiency

    Directory of Open Access Journals (Sweden)

    Jin-Ho Choi

    2016-03-01

    Full Text Available The term congenital adrenal hyperplasia (CAH covers a group of autosomal recessive disorders caused by defects in one of the steroidogenic enzymes involved in the synthesis of cortisol or aldosterone from cholesterol in the adrenal glands. Approximately 95% of all CAH cases are caused by 21-hydroxylase deficiency encoded by the CYP21A2 gene. The disorder is categorized into classical forms, including the salt-wasting and the simple virilizing types, and nonclassical forms based on the severity of the disease. The severity of the clinical features varies according to the level of residual 21-hydroxylase activity. Newborn screening for CAH is performed in many countries to prevent salt-wasting crises in the neonatal period, to prevent male sex assignment in affected females, and to reduce long-term morbidities, such as short stature, gender confusion, and psychosexual disturbances. 17α-hydroxyprogesterone is a marker for 21-hydroxylase deficiency and is measured using a radioimmunoassay, an enzyme-linked immunosorbent assay, or a fluoroimmunoassay. Recently, liquid chromatography linked with tandem mass spectrometry was developed for rapid, highly specific, and sensitive analysis of multiple analytes. Urinary steroid analysis by gas chromatography mass spectrometry also provides qualitative and quantitative data on the excretion of steroid hormone metabolites. Molecular analysis of CYP21A2 is useful for genetic counseling, confirming diagnosis, and predicting prognoses. In conclusion, early detection using neonatal screening tests and treatment can prevent the worst outcomes of 21-hydroxylase deficiency.

  12. Congenital dyserythropoiesis with intererythroblastic chromatin bridges and ultrastructurally-normal erythroblast heterochromatin: a new disorder.

    Science.gov (United States)

    Wickramasinghe, S N; Spearing, R L; Hill, G R

    1998-12-01

    Two non-anaemic subjects, a father and daughter, with a new form of congenital dyserythropoiesis are reported. The features of their disorder are: (1) an abnormal blood film with basophilic stippling of red cells and oval macrocytes, (2) various dysplastic changes in the erythroblasts, including internuclear chromatin bridges, (3) ultrastructurally-normal erythroblast heterochromatin, (4) normal serum thymidine kinase activity, and (5) a probable autosomal dominant inheritance. The last three features distinguish this disorder from CDA type I.

  13. Recessive mutations in SPTBN2 implicate β-III spectrin in both cognitive and motor development.

    Directory of Open Access Journals (Sweden)

    Stefano Lise

    Full Text Available β-III spectrin is present in the brain and is known to be important in the function of the cerebellum. Heterozygous mutations in SPTBN2, the gene encoding β-III spectrin, cause Spinocerebellar Ataxia Type 5 (SCA5, an adult-onset, slowly progressive, autosomal-dominant pure cerebellar ataxia. SCA5 is sometimes known as "Lincoln ataxia," because the largest known family is descended from relatives of the United States President Abraham Lincoln. Using targeted capture and next-generation sequencing, we identified a homozygous stop codon in SPTBN2 in a consanguineous family in which childhood developmental ataxia co-segregates with cognitive impairment. The cognitive impairment could result from mutations in a second gene, but further analysis using whole-genome sequencing combined with SNP array analysis did not reveal any evidence of other mutations. We also examined a mouse knockout of β-III spectrin in which ataxia and progressive degeneration of cerebellar Purkinje cells has been previously reported and found morphological abnormalities in neurons from prefrontal cortex and deficits in object recognition tasks, consistent with the human cognitive phenotype. These data provide the first evidence that β-III spectrin plays an important role in cortical brain development and cognition, in addition to its function in the cerebellum; and we conclude that cognitive impairment is an integral part of this novel recessive ataxic syndrome, Spectrin-associated Autosomal Recessive Cerebellar Ataxia type 1 (SPARCA1. In addition, the identification of SPARCA1 and normal heterozygous carriers of the stop codon in SPTBN2 provides insights into the mechanism of molecular dominance in SCA5 and demonstrates that the cell-specific repertoire of spectrin subunits underlies a novel group of disorders, the neuronal spectrinopathies, which includes SCA5, SPARCA1, and a form of West syndrome.

  14. Threshold levels of 25-hydroxyvitamin D and parathyroid hormone for impaired bone health in children with congenital ichthyosis and type IV and V skin.

    Science.gov (United States)

    Sethuraman, G; Sreenivas, V; Yenamandra, V K; Gupta, N; Sharma, V K; Marwaha, R K; Bhari, N; Irshad, M; Kabra, M; Thulkar, S

    2015-01-01

    Patients with congenital ichthyosis, especially those with darker skin types, are at increased risk of developing vitamin D deficiency and rickets. The relationships between 25-hydroxyvitamin D [25(OH)D], parathyroid hormone (PTH) and bone health have not been studied previously, in ichthyosis. To determine the threshold levels of 25(OH)D and PTH for impaired bone health in children with congenital ichthyosis. In this cross-sectional study, 119 children with ichthyosis and 168 controls were recruited. Serum 25(OH)D, PTH, calcium, phosphate and alkaline phosphatase (ALP) were measured. Radiological screening for rickets was carried out only in children with ichthyosis. Forty-seven children with ichthyosis had either clinical or radiological evidence of rickets. The correlation between serum 25(OH)D and PTH showed that a serum level of 25(OH)D 8 ng mL(-1) was associated with a significant increase in PTH. The correlation between PTH and ALP showed that a serum PTH level of 75 pg mL(-1) was associated with a significant increase in ALP levels. Of the different clinical phenotypes of ichthyosis, both autosomal recessive congenital ichthyosis (ARCI) and epidermolytic ichthyosis (EI) were found to have significantly increased PTH, ALP and radiological rickets scores compared with common ichthyosis. Serum levels of 25(OH)D ≤ 8 ng mL(-1) and PTH ≥ 75 pg mL(-1) significantly increases the risk for development of rickets [odds ratio (OR) 2·8; 95% confidence interval (CI) 1·05-7·40; P = 0·04] in ichthyosis. Among the different types, patients with ARCI (OR 4·83; 95% CI 1·74-13·45; P < 0·01) and EI (OR 5·71; 95% CI 1·74-18·79; P < 0·01) are at an increased risk of developing rickets. © 2014 British Association of Dermatologists.

  15. Sorderas neurosensoriales no sindrómicas: Análisis de la herencia en 10 familias

    Directory of Open Access Journals (Sweden)

    Ibis Menéndez

    1998-06-01

    Full Text Available Se reportan los árboles genealógicos de 10 probandos afectados con sorderas neurosensoriales no sindrómicas de aparición familiar. El análisis genético practicado permitió reconocer la clara segregación de un único gen de sordera en 7 familias (3 autosómicas recesivas, 2 autosómicas dominantes, 1 ligada al cromosoma X, 1 con herencia mitocondrial. En las 3 familias restantes resultó difícil el análisis y se propuso la herencia recesiva como la más probable, sobre la base, fundamentalmente, de las características de la pérdida auditiva (congénita, bilateral, severa o profunda. En general las sorderas autosómicas recesivas fueron las más frecuentes. Se corrobora que estos estudios suelen ser complicados por la gran heterogeneidad que pueden presentar a todos los niveles las sorderas neurosensoriales no sindrómicas.The pedigress of 10 examiness affected with non syndrome neurosensorial deafness of familial appearance were erported. The genetical analysis made allowed to recognize the clear segregation of a sale gene of deafness in 7 families (3 recessive autosomal, 2 dominant autosomal, 1 linked to cromosome X, and 1 with mitochondrial heredity. In the other 3 hamilies the analysis was difficult and the recessive heredity was suggested as the most probable, based mainly on the characteristics of auditive loss (congenital, bilateral, severe or deep. In general, the recessive autosomal deafness was the most common. It was corroborated that these studies are usually complicated due to the great heterogeneity that the non syndromic neurosensorial deafness may present at all levels.

  16. Disease: H01880 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available H01880 Autosomal recessive microcephaly and chorioretinopathy Autosomal-recessive ...ent in MCCRP patients are variable, but the chorioretinopathy is a constant feature and includes typical pun...ark DB ... TITLE ... Chorioretinopathy with hereditary microcephaly. ... JOURNAL ... Arch Ophthalmol 75:597-600 (1... autosomal recessive microcephaly and chorioretinopathy. ... JOURNAL ... Eur J Hum Genet 24:1702-1706 (2016) DOI... ... Mutations in PLK4, encoding a master regulator of centriole biogenesis, cause microcephaly, growth failure and retinopathy

  17. Clinical and molecular analysis of the enamelin gene ENAM in Colombian families with autosomal dominant amelogenesis imperfecta

    Directory of Open Access Journals (Sweden)

    Sandra Gutiérrez

    2012-01-01

    Full Text Available In this study, we analyzed the phenotype, clinical characteristics and presence of mutations in the enamelin gene ENAM in five Colombian families with autosomal dominant amelogenesis imperfecta (ADAI. 22 individuals (15 affected and seven unaffected belonging to five Colombian families with ADAI and eight individuals (three affected and five unaffected belonging to three Colombian families with autosomal recessive amelogenesis imperfecta (ARAI that served as controls for molecular alterations and inheritance patterns were studied. Clinical, radiographic and genetic evaluations were done in all individuals. Eight exons and three intron-exon boundaries were sequenced for mutation analysis. Two of the five families with ADAI had the hypoplasic phenotype, two had the hypocalcified phenotype and one had the hypomaturative phenotype. Anterior open bite and mandibular retrognathism were the most frequent skeletal abnormalities in the families with ADAI. No mutations were found. These findings suggest that ADAI in these Colombian families was unrelated to previously described mutations in the ENAM gene. These results also indicate that other regions not included in this investigation, such as the promoter region, introns and other genes should be considered as potential ADAI candidates.

  18. A novel mutation in the endothelin B receptor gene in a moroccan family with shah-waardenburg syndrome.

    Science.gov (United States)

    Doubaj, Yassamine; Pingault, Véronique; Elalaoui, Siham C; Ratbi, Ilham; Azouz, Mohamed; Zerhouni, Hicham; Ettayebi, Fouad; Sefiani, Abdelaziz

    2015-02-01

    Waardenburg syndrome (WS) is a neurocristopathy disorder combining sensorineural deafness and pigmentary abnormalities. The presence of additional signs defines the 4 subtypes. WS type IV, also called Shah-Waardenburg syndrome (SWS), is characterized by the association with congenital aganglionic megacolon (Hirschsprung disease). To date, 3 causative genes have been related to this congenital disorder. Mutations in the EDNRB and EDN3 genes are responsible for the autosomal recessive form of SWS, whereas SOX10 mutations are inherited in an autosomal dominant manner. We report here the case of a 3-month-old Morrocan girl with WS type IV, born to consanguineous parents. The patient had 3 cousins who died in infancy with the same symptoms. Molecular analysis by Sanger sequencing revealed the presence of a novel homozygous missense mutation c.1133A>G (p.Asn378Ser) in the EDNRB gene. The proband's parents as well as the parents of the deceased cousins are heterozygous carriers of this likely pathogenic mutation. This molecular diagnosis allows us to provide genetic counseling to the family and eventually propose prenatal diagnosis to prevent recurrence of the disease in subsequent pregnancies.

  19. Ethnic disparity in 21-hydroxylase gene mutations identified in Pakistani congenital adrenal hyperplasia patients

    Directory of Open Access Journals (Sweden)

    Jabbar Abdul

    2011-02-01

    Full Text Available Abstract Background Congenital adrenal hyperplasia (CAH is a group of autosomal recessive disorders caused by defects in the steroid 21 hydroxylase gene (CYP21A2. We studied the spectrum of mutations in CYP21A2 gene in a multi-ethnic population in Pakistan to explore the genetics of CAH. Methods A cross sectional study was conducted for the identification of mutations CYP21A2 and their phenotypic associations in CAH using ARMS-PCR assay. Results Overall, 29 patients were analyzed for nine different mutations. The group consisted of two major forms of CAH including 17 salt wasters and 12 simple virilizers. There were 14 phenotypic males and 15 females representing all the major ethnic groups of Pakistan. Parental consanguinity was reported in 65% cases and was equally distributed in the major ethnic groups. Among 58 chromosomes analyzed, mutations were identified in 45 (78.6% chromosomes. The most frequent mutation was I2 splice (27% followed by Ile173Asn (26%, Arg 357 Trp (19%, Gln319stop, 16% and Leu308InsT (12%, whereas Val282Leu was not observed in this study. Homozygosity was seen in 44% and heterozygosity in 34% cases. I2 splice mutation was found to be associated with SW in the homozygous. The Ile173Asn mutation was identified in both SW and SV forms. Moreover, Arg357Trp manifested SW in compound heterozygous state. Conclusion Our study showed that CAH exists in our population with ethnic difference in the prevalence of mutations examined.

  20. Oral and craniofacial manifestations and two novel missense mutations of the NTRK1 gene identified in the patient with congenital insensitivity to pain with anhidrosis.

    Directory of Open Access Journals (Sweden)

    Li Gao

    Full Text Available Congenital insensitivity to pain with anhidrosis (CIPA is a rare inherited disorder of the peripheral nervous system resulting from mutations in neurotrophic tyrosine kinase receptor 1 gene (NTRK1, which encodes the high-affinity nerve growth factor receptor TRKA. Here, we investigated the oral and craniofacial manifestations of a Chinese patient affected by autosomal-recessive CIPA and identified compound heterozygosity in the NTRK1 gene. The affected boy has multisystemic disorder with lack of reaction to pain stimuli accompanied by self-mutilation behavior, the inability to sweat leading to defective thermoregulation, and mental retardation. Oral and craniofacial manifestations included a large number of missing teeth, nasal malformation, submucous cleft palate, severe soft tissue injuries, dental caries and malocclusion. Histopathological evaluation of the skin sample revealed severe peripheral nerve fiber loss as well as mild loss and absent innervation of sweat glands. Ultrastructural and morphometric studies of a shed tooth revealed dental abnormalities, including hypomineralization, dentin hypoplasia, cementogenesis defects and a dysplastic periodontal ligament. Genetic analysis revealed a compound heterozygosity--c.1561T>C and c.2057G>A in the NTRK1 gene. This report extends the spectrum of NTRK1 mutations observed in patients diagnosed with CIPA and provides additional insight for clinical and molecular diagnosis.