A graphical vector autoregressive modelling approach to the analysis of electronic diary data
Zipfel Stephan; Hartmann Mechthild; Friederich Hans-Christoph; Eichler Michael; Wild Beate; Herzog Wolfgang
2010-01-01
Abstract Background In recent years, electronic diaries are increasingly used in medical research and practice to investigate patients' processes and fluctuations in symptoms over time. To model dynamic dependence structures and feedback mechanisms between symptom-relevant variables, a multivariate time series method has to be applied. Methods We propose to analyse the temporal interrelationships among the variables by a structural modelling approach based on graphical vector autoregressive (...
Bayesian Variable Selection in Spatial Autoregressive Models
Jesus Crespo Cuaresma; Philipp Piribauer
2015-01-01
This paper compares the performance of Bayesian variable selection approaches for spatial autoregressive models. We present two alternative approaches which can be implemented using Gibbs sampling methods in a straightforward way and allow us to deal with the problem of model uncertainty in spatial autoregressive models in a flexible and computationally efficient way. In a simulation study we show that the variable selection approaches tend to outperform existing Bayesian model averaging tech...
A new approach to simulating stream isotope dynamics using Markov switching autoregressive models
Birkel, Christian; Paroli, Roberta; Spezia, Luigi; Dunn, Sarah M.; Tetzlaff, Doerthe; Soulsby, Chris
2012-09-01
In this study we applied Markov switching autoregressive models (MSARMs) as a proof-of-concept to analyze the temporal dynamics and statistical characteristics of the time series of two conservative water isotopes, deuterium (δ2H) and oxygen-18 (δ18O), in daily stream water samples over two years in a small catchment in eastern Scotland. MSARMs enabled us to explicitly account for the identified non-linear, non-Normal and non-stationary isotope dynamics of both time series. The hidden states of the Markov chain could also be associated with meteorological and hydrological drivers identifying the short (event) and longer-term (inter-event) transport mechanisms for both isotopes. Inference was based on the Bayesian approach performed through Markov Chain Monte Carlo algorithms, which also allowed us to deal with a high rate of missing values (17%). Although it is usually assumed that both isotopes are conservative and exhibit similar dynamics, δ18O showed somewhat different time series characteristics. Both isotopes were best modelled with two hidden states, but δ18O demanded autoregressions of the first order, whereas δ2H of the second. Moreover, both the dynamics of observations and the hidden states of the two isotopes were explained by two different sets of covariates. Consequently use of the two tracers for transit time modelling and hydrograph separation may result in different interpretations on the functioning of a catchment system.
A graphical vector autoregressive modelling approach to the analysis of electronic diary data
Zipfel Stephan
2010-04-01
Full Text Available Abstract Background In recent years, electronic diaries are increasingly used in medical research and practice to investigate patients' processes and fluctuations in symptoms over time. To model dynamic dependence structures and feedback mechanisms between symptom-relevant variables, a multivariate time series method has to be applied. Methods We propose to analyse the temporal interrelationships among the variables by a structural modelling approach based on graphical vector autoregressive (VAR models. We give a comprehensive description of the underlying concepts and explain how the dependence structure can be recovered from electronic diary data by a search over suitable constrained (graphical VAR models. Results The graphical VAR approach is applied to the electronic diary data of 35 obese patients with and without binge eating disorder (BED. The dynamic relationships for the two subgroups between eating behaviour, depression, anxiety and eating control are visualized in two path diagrams. Results show that the two subgroups of obese patients with and without BED are distinguishable by the temporal patterns which influence their respective eating behaviours. Conclusion The use of the graphical VAR approach for the analysis of electronic diary data leads to a deeper insight into patient's dynamics and dependence structures. An increasing use of this modelling approach could lead to a better understanding of complex psychological and physiological mechanisms in different areas of medical care and research.
A Deep and Autoregressive Approach for Topic Modeling of Multimodal Data.
Zheng, Yin; Zhang, Yu-Jin; Larochelle, Hugo
2016-06-01
Topic modeling based on latent Dirichlet allocation (LDA) has been a framework of choice to deal with multimodal data, such as in image annotation tasks. Another popular approach to model the multimodal data is through deep neural networks, such as the deep Boltzmann machine (DBM). Recently, a new type of topic model called the Document Neural Autoregressive Distribution Estimator (DocNADE) was proposed and demonstrated state-of-the-art performance for text document modeling. In this work, we show how to successfully apply and extend this model to multimodal data, such as simultaneous image classification and annotation. First, we propose SupDocNADE, a supervised extension of DocNADE, that increases the discriminative power of the learned hidden topic features and show how to employ it to learn a joint representation from image visual words, annotation words and class label information. We test our model on the LabelMe and UIUC-Sports data sets and show that it compares favorably to other topic models. Second, we propose a deep extension of our model and provide an efficient way of training the deep model. Experimental results show that our deep model outperforms its shallow version and reaches state-of-the-art performance on the Multimedia Information Retrieval (MIR) Flickr data set. PMID:26372202
Estimation in autoregressive models with Markov regime
Ríos, Ricardo; Rodríguez, Luis
2005-01-01
In this paper we derive the consistency of the penalized likelihood method for the number state of the hidden Markov chain in autoregressive models with Markov regimen. Using a SAEM type algorithm to estimate the models parameters. We test the null hypothesis of hidden Markov Model against an autoregressive process with Markov regime.
Nonlinear autoregressive models and long memory
Kapetanios, George
2004-01-01
This note shows that regime switching nonlinear autoregressive models widely used in the time series literature can exhibit arbitrary degrees of long memory via appropriate definition of the model regimes.
DONG Ming
2008-01-01
As a new maintenance method, CBM (condition based maintenance) is becoming more and more important for the health management of complicated and costly equipment. A prerequisite to widespread deployment of CBM technology and prac-tice in industry is effective diagnostics and prognostics. Recently, a pattern recog-nition technique called HMM (hidden Markov model) was widely used in many fields. However, due to some unrealistic assumptions, diagnositic results from HMM were not so good, and it was difficult to use HMM directly for prognosis. By relaxing the unrealistic assumptions in HMM, this paper presents a novel approach to equip-ment health management based on auto-regressive hidden semi-Markov model (AR-HSMM). Compared with HMM, AR-HSMM has three advantages: 1)It allows explicitly modeling the time duration of the hidden states and therefore is capable of prognosis. 2) It can relax observations' independence assumption by accom-modating a link between consecutive observations. 3) It does not follow the unre-alistic Markov chain's memoryless assumption and therefore provides more pow-erful modeling and analysis capability for real problems. To facilitate the computation in the proposed AR-HSMM-based diagnostics and prognostics, new forwardbackward variables are defined and a modified forward-backward algorithm is developed. The evaluation of the proposed methodology was carried out through a real world application case study: health diagnosis and prognosis of hydraulic pumps in Caterpillar Inc. The testing results show that the proposed new approach based on AR-HSMM is effective and can provide useful support for the decision-making in equipment health management.
Cardiac arrhythmia classification using autoregressive modeling
Srinivasan Narayanan; Ge Dingfei; Krishnan Shankar M
2002-01-01
Abstract Background Computer-assisted arrhythmia recognition is critical for the management of cardiac disorders. Various techniques have been utilized to classify arrhythmias. Generally, these techniques classify two or three arrhythmias or have significantly large processing times. A simpler autoregressive modeling (AR) technique is proposed to classify normal sinus rhythm (NSR) and various cardiac arrhythmias including atrial premature contraction (APC), premature ventricular contraction (...
Model selection in periodic autoregressions
Ph.H.B.F. Franses (Philip Hans); R. Paap (Richard)
1994-01-01
textabstractThis paper focuses on the issue of period autoagressive time series models (PAR) selection in practice. One aspect of model selection is the choice for the appropriate PAR order. This can be of interest for the valuation of economic models. Further, the appropriate PAR order is important
Modeling of non-stationary autoregressive alpha-stable processe
National Aeronautics and Space Administration — In the literature, impulsive signals are mostly modeled by symmetric alpha-stable processes. To represent their temporal dependencies, usually autoregressive models...
Bias-correction in vector autoregressive models
Engsted, Tom; Pedersen, Thomas Quistgaard
2014-01-01
We analyze the properties of various methods for bias-correcting parameter estimates in both stationary and non-stationary vector autoregressive models. First, we show that two analytical bias formulas from the existing literature are in fact identical. Next, based on a detailed simulation study...... improvement over ordinary least squares. We pay special attention to the risk of pushing an otherwise stationary model into the non-stationary region of the parameter space when correcting for bias. Finally, we consider a recently proposed reduced-bias weighted least squares estimator, and we find that it...
Model reduction methods for vector autoregressive processes
Brüggemann, Ralf
2004-01-01
1. 1 Objective of the Study Vector autoregressive (VAR) models have become one of the dominant research tools in the analysis of macroeconomic time series during the last two decades. The great success of this modeling class started with Sims' (1980) critique of the traditional simultaneous equation models (SEM). Sims criticized the use of 'too many incredible restrictions' based on 'supposed a priori knowledge' in large scale macroeconometric models which were popular at that time. Therefore, he advo cated largely unrestricted reduced form multivariate time series models, unrestricted VAR models in particular. Ever since his influential paper these models have been employed extensively to characterize the underlying dynamics in systems of time series. In particular, tools to summarize the dynamic interaction between the system variables, such as impulse response analysis or forecast error variance decompo sitions, have been developed over the years. The econometrics of VAR models and related quantities i...
Fadiga, Ismael Tanou
2009-01-01
This dissertation examines the determinants of U.S. Treasury bill rates based on vector autoregressions for the period 1959-2009. Our main conclusions are: (1) monetary base, inflation rate and output affect the dynamics of Treasury bill rates and those results are consistent with the theory in regards to the factors affecting yield curves. Accurately, we find that the growth rates of monetary base, inflation and output are all significant in explaining the growth of U.S. Treasury bill rates;...
Bias-corrected estimation in potentially mildly explosive autoregressive models
Haufmann, Hendrik; Kruse, Robinson
This paper provides a comprehensive Monte Carlo comparison of different finite-sample bias-correction methods for autoregressive processes. We consider classic situations where the process is either stationary or exhibits a unit root. Importantly, the case of mildly explosive behaviour is studied...... indirect inference approach oers a valuable alternative to other existing techniques. Its performance (measured by its bias and root mean squared error) is balanced and highly competitive across many different settings. A clear advantage is its applicability for mildly explosive processes. In an empirical...... application to a long annual US Debt/GDP series we consider rolling window estimation of autoregressive models. We find substantial evidence for time-varying persistence and periods of explosiveness during the Civil War and World War II. During the recent years, the series is nearly explosive again. Further...
Bidirectional Texture Function Simultaneous Autoregressive Model
Haindl, Michal; Havlíček, Michal
Berlin: Springer, 2012, s. 149-159. (Lecture Notes in Computer Science. 7252). ISBN 978-3-642-32435-2. ISSN 0302-9743. [MUSCLE. Pisa (IT), 13.12.2011-15.12.2011] R&D Projects: GA MŠk 1M0572; GA ČR GA102/08/0593; GA ČR GAP103/11/0335 Grant ostatní: CESNET(CZ) 387/2010 Institutional support: RVO:67985556 Keywords : bidirectional texture function * texture analysis * texture synthesis * data compression * virtual reality Subject RIV: BD - Theory of Information http://library.utia.cas.cz/separaty/2012/RO/haindl-bidirectional texture function simultaneous autoregressive model.pdf
Cardiac arrhythmia classification using autoregressive modeling
Srinivasan Narayanan
2002-11-01
Full Text Available Abstract Background Computer-assisted arrhythmia recognition is critical for the management of cardiac disorders. Various techniques have been utilized to classify arrhythmias. Generally, these techniques classify two or three arrhythmias or have significantly large processing times. A simpler autoregressive modeling (AR technique is proposed to classify normal sinus rhythm (NSR and various cardiac arrhythmias including atrial premature contraction (APC, premature ventricular contraction (PVC, superventricular tachycardia (SVT, ventricular tachycardia (VT and ventricular fibrillation (VF. Methods AR Modeling was performed on ECG data from normal sinus rhythm as well as various arrhythmias. The AR coefficients were computed using Burg's algorithm. The AR coefficients were classified using a generalized linear model (GLM based algorithm in various stages. Results AR modeling results showed that an order of four was sufficient for modeling the ECG signals. The accuracy of detecting NSR, APC, PVC, SVT, VT and VF were 93.2% to 100% using the GLM based classification algorithm. Conclusion The results show that AR modeling is useful for the classification of cardiac arrhythmias, with reasonably high accuracies. Further validation of the proposed technique will yield acceptable results for clinical implementation.
Modeling non-Gaussian time-varying vector autoregressive process
National Aeronautics and Space Administration — We present a novel and general methodology for modeling time-varying vector autoregressive processes which are widely used in many areas such as modeling of...
Inference of High-dimensional Autoregressive Generalized Linear Models
Hall, Eric C.; Raskutti, Garvesh; Willett, Rebecca
2016-01-01
Vector autoregressive models characterize a variety of time series in which linear combinations of current and past observations can be used to accurately predict future observations. For instance, each element of an observation vector could correspond to a different node in a network, and the parameters of an autoregressive model would correspond to the impact of the network structure on the time series evolution. Often these models are used successfully in practice to learn the structure of...
UV Index Modeling by Autoregressive Distributed Lag (ADL Model)
Alexandre Boleira Lopo; Maria Helena Constantino Spyrides; Paulo Sérgio Lucio; Javier Sigró
2014-01-01
The objective of this work is to model statistically the ultraviolet radiation index (UV Index) to make forecast (extrapolate) and analyze trends. The task is relevant, due to increased UV flux and high rate of cases non-melanoma skin cancer in northeast of Brazil. The methodology utilized an Autoregressive Distributed Lag model (ADL) or Dynamic Linear Regression model. The monthly data of UV index were measured in east coast of the Brazilian Northeast (City of Natal-Rio G...
A complex autoregressive model and application to monthly temperature forecasts
X. Gu
2005-11-01
Full Text Available A complex autoregressive model was established based on the mathematic derivation of the least squares for the complex number domain which is referred to as the complex least squares. The model is different from the conventional way that the real number and the imaginary number are separately calculated. An application of this new model shows a better forecast than forecasts from other conventional statistical models, in predicting monthly temperature anomalies in July at 160 meteorological stations in mainland China. The conventional statistical models include an autoregressive model, where the real number and the imaginary number are separately disposed, an autoregressive model in the real number domain, and a persistence-forecast model.
Multiple phase derivative estimation using autoregressive modeling in holographic interferometry
A novel technique is proposed for the direct and simultaneous estimation of multiple phase derivatives from a deformation modulated carrier fringe pattern in a multi-wave holographic interferometry set-up. The fringe intensity is represented as a spatially-varying autoregressive (SVAR) model. The spatially-varying coefficients of the SVAR model are derived using a forward–backward approach of linear estimation of the fringe intensity. Using these coefficients, the poles of the SVAR model transfer function are computed and the angles of these poles provide the estimation of phase derivatives. The estimation of carrier frequency is performed by the proposed method using a reference interferogram. Simulation results are provided in the presence of noise and fringe amplitude modulation. (paper)
Likelihood inference for a nonstationary fractional autoregressive model
Johansen, Søren; Nielsen, Morten Ørregaard
This paper discusses model based inference in an autoregressive model for fractional processes based on the Gaussian likelihood. The model allows for the process to be fractional of order d or d-b; where d ≥ b > 1/2 are parameters to be estimated. We model the data X1,...,XT given the initial val...
Likelihood Inference for a Nonstationary Fractional Autoregressive Model
Johansen, Søren; Nielsen, Morten Ørregaard
This paper discusses model based inference in an autoregressive model for fractional processes based on the Gaussian likelihood. The model allows for the process to be fractional of order d or d - b; where d = b > 1/2 are parameters to be estimated. We model the data X¿, ..., X¿ given the initial...
Modelling cointegration in the vector autoregressive model
Johansen, Søren
2000-01-01
A survey is given of some results obtained for the cointegrated VAR. The Granger representation theorem is discussed and the notions of cointegration and common trends are defined. The statistical model for cointegrated I(1) variables is defined, and it is shown how hypotheses on the cointegratin...... relations can be estimated under suitable identification conditions. The asymptotic theory is briefly mentioned and a few economic applications of the cointegration model are indicated.......A survey is given of some results obtained for the cointegrated VAR. The Granger representation theorem is discussed and the notions of cointegration and common trends are defined. The statistical model for cointegrated I(1) variables is defined, and it is shown how hypotheses on the cointegrating...
Modeling Autoregressive Processes with Moving-Quantiles-Implied Nonlinearity
Isao Ishida
2015-01-01
Full Text Available We introduce and investigate some properties of a class of nonlinear time series models based on the moving sample quantiles in the autoregressive data generating process. We derive a test fit to detect this type of nonlinearity. Using the daily realized volatility data of Standard & Poor’s 500 (S&P 500 and several other indices, we obtained good performance using these models in an out-of-sample forecasting exercise compared with the forecasts obtained based on the usual linear heterogeneous autoregressive and other models of realized volatility.
An autoregressive growth model for longitudinal item analysis.
Jeon, Minjeong; Rabe-Hesketh, Sophia
2016-09-01
A first-order autoregressive growth model is proposed for longitudinal binary item analysis where responses to the same items are conditionally dependent across time given the latent traits. Specifically, the item response probability for a given item at a given time depends on the latent trait as well as the response to the same item at the previous time, or the lagged response. An initial conditions problem arises because there is no lagged response at the initial time period. We handle this problem by adapting solutions proposed for dynamic models in panel data econometrics. Asymptotic and finite sample power for the autoregressive parameters are investigated. The consequences of ignoring local dependence and the initial conditions problem are also examined for data simulated from a first-order autoregressive growth model. The proposed methods are applied to longitudinal data on Korean students' self-esteem. PMID:26645083
Likelihood inference for a nonstationary fractional autoregressive model
Johansen, Søren; Ørregård Nielsen, Morten
2010-01-01
This paper discusses model-based inference in an autoregressive model for fractional processes which allows the process to be fractional of order d or d-b. Fractional differencing involves infinitely many past values and because we are interested in nonstationary processes we model the data X1,.....
Drought Patterns Forecasting using an Auto-Regressive Logistic Model
del Jesus, M.; Sheffield, J.; Méndez Incera, F. J.; Losada, I. J.; Espejo, A.
2014-12-01
Drought is characterized by a water deficit that may manifest across a large range of spatial and temporal scales. Drought may create important socio-economic consequences, many times of catastrophic dimensions. A quantifiable definition of drought is elusive because depending on its impacts, consequences and generation mechanism, different water deficit periods may be identified as a drought by virtue of some definitions but not by others. Droughts are linked to the water cycle and, although a climate change signal may not have emerged yet, they are also intimately linked to climate.In this work we develop an auto-regressive logistic model for drought prediction at different temporal scales that makes use of a spatially explicit framework. Our model allows to include covariates, continuous or categorical, to improve the performance of the auto-regressive component.Our approach makes use of dimensionality reduction (principal component analysis) and classification techniques (K-Means and maximum dissimilarity) to simplify the representation of complex climatic patterns, such as sea surface temperature (SST) and sea level pressure (SLP), while including information on their spatial structure, i.e. considering their spatial patterns. This procedure allows us to include in the analysis multivariate representation of complex climatic phenomena, as the El Niño-Southern Oscillation. We also explore the impact of other climate-related variables such as sun spots. The model allows to quantify the uncertainty of the forecasts and can be easily adapted to make predictions under future climatic scenarios. The framework herein presented may be extended to other applications such as flash flood analysis, or risk assessment of natural hazards.
The cointegrated vector autoregressive model with general deterministic terms
Johansen, Søren; Nielsen, Morten Ørregaard
In the cointegrated vector autoregression (CVAR) literature, deterministic terms have until now been analyzed on a case-by-case, or as-needed basis. We give a comprehensive unified treatment of deterministic terms in the additive model X(t)= Z(t) + Y(t), where Z(t) belongs to a large class...
Nonlinear autoregressive models with heavy-tailed innovation
JIN Yang; AN Hongzhi
2005-01-01
In this paper, we discuss the relationship between the stationary marginal tail probability and the innovation's tail probability of nonlJnear autoregressive models. We show that under certain conditions that ensure the stationarity and ergodicity, one dimension stationary marginal distribution has the heavy-tailed probability property with the same index as that of the innovation's tail probability.
Helen Higgs; Andrew C. Worthington
2014-01-01
This paper models the price and income elasticity of retail finance in Australia using aggregate quarterly data and an autoregressive distributed lag (ARDL) approach. We particularly focus on the impact of the global financial crisis (GFC) from 2007 onwards on retail finance demand and analyse four submarkets (period analysed in brackets): owneroccupied housing loans (Sep 1985–June 2010), term loans (for motor vehicles, household goods and debt consolidation, etc.) (Dec 1988–Jun 2010), cre...
Forecasting with time-varying vector autoregressive models
Triantafyllopoulos, K.
2008-01-01
The purpose of this paper is to propose a time-varying vector autoregressive model (TV-VAR) for forecasting multivariate time series. The model is casted into a state-space form that allows flexible description and analysis. The volatility covariance matrix of the time series is modelled via inverted Wishart and singular multivariate beta distributions allowing a fully conjugate Bayesian inference. Model performance and model comparison is done via the likelihood function, sequential Bayes fa...
Stock price forecasting: autoregressive modelling and fuzzy neural network
Marcek, Dusan
2000-01-01
Most models for the time series of stock prices have centered on autoregressive (AR) processes. Traditionaly, fundamantal Box-Jenkins analysis [3] have been the mainstream methodology used to develop time series models. Next, we briefly describe the develop a classical AR model for stock price forecasting. Then a fuzzy regression model is then introduced Following this description, an artificial fuzzy neural network based on B-spline member ship function is presented as an alternative to ...
Barczy, Matyas; Pap, Gyula
2010-01-01
In this paper the asymptotic behavior of conditional least squares estimators of the autoregressive parameter for nonprimitive unstable integer-valued autoregressive models of order 2 (INAR(2)) is described.
Single-Index Additive Vector Autoregressive Time Series Models
LI, YEHUA
2009-09-01
We study a new class of nonlinear autoregressive models for vector time series, where the current vector depends on single-indexes defined on the past lags and the effects of different lags have an additive form. A sufficient condition is provided for stationarity of such models. We also study estimation of the proposed model using P-splines, hypothesis testing, asymptotics, selection of the order of the autoregression and of the smoothing parameters and nonlinear forecasting. We perform simulation experiments to evaluate our model in various settings. We illustrate our methodology on a climate data set and show that our model provides more accurate yearly forecasts of the El Niño phenomenon, the unusual warming of water in the Pacific Ocean. © 2009 Board of the Foundation of the Scandinavian Journal of Statistics.
CICAAR - Convolutive ICA with an Auto-Regressive Inverse Model
Dyrholm, Mads; Hansen, Lars Kai
2004-01-01
We invoke an auto-regressive IIR inverse model for convolutive ICA and derive expressions for the likelihood and its gradient. We argue that optimization will give a stable inverse. When there are more sensors than sources the mixing model parameters are estimated in a second step by least square...... estimation. We demonstrate the method on synthetic data and finally separate speech and music in a real room recording....
Testing exact rational expectations in cointegrated vector autoregressive models
Johansen, Søren; Swensen, Anders Rygh
1999-01-01
This paper considers the testing of restrictions implied by rational expectations hypotheses in a cointegrated vector autoregressive model for I(1) variables. If the rational expectations involve one-step-ahead observations only and the coefficients are known, an explicit parameterization of the ...... restrictions is found, and the maximum-likelihood estimator is derived by regression and reduced rank regression. An application is given to a present value model....
CICAAR - Convolutive ICA with an Auto-Regressive Inverse Model
Dyrholm, Mads; Hansen, Lars Kai
2004-01-01
We invoke an auto-regressive IIR inverse model for convolutive ICA and derive expressions for the likelihood and its gradient. We argue that optimization will give a stable inverse. When there are more sensors than sources the mixing model parameters are estimated in a second step by least squares estimation. We demonstrate the method on synthetic data and finally separate speech and music in a real room recording.
Nonlinear models for autoregressive conditional heteroskedasticity
Teräsvirta, Timo
This paper contains a brief survey of nonlinear models of autore- gressive conditional heteroskedasticity. The models in question are parametric nonlinear extensions of the original model by Engle (1982). After presenting the individual models, linearity testing and parameter estimation are...... discussed. Forecasting volatility with nonlinear models is considered. Finally, parametric nonlinear models based on multi- plicative decomposition of the variance receive attention....
Nonlinear models for autoregressive conditional heteroskedasticity
Teräsvirta, Timo
2011-01-01
This paper contains a brief survey of nonlinear models of autore- gressive conditional heteroskedasticity. The models in question are parametric nonlinear extensions of the original model by Engle (1982). After presenting the individual models, linearity testing and parameter estimation are discussed. Forecasting volatility with nonlinear models is considered. Finally, parametric nonlinear models based on multi- plicative decomposition of the variance receive attention.
Adaptive Estimation of Autoregressive Models with Time-Varying Variances
Ke-Li Xu; Phillips, Peter C. B.
2006-01-01
Stable autoregressive models of known finite order are considered with martingale differences errors scaled by an unknown nonparametric time-varying function generating heterogeneity. An important special case involves structural change in the error variance, but in most practical cases the pattern of variance change over time is unknown and may involve shifts at unknown discrete points in time, continuous evolution or combinations of the two. This paper develops kernel-based estimators of th...
Bias-correction in vector autoregressive models: A simulation study
Engsted, Tom; Pedersen, Thomas Quistgaard
We analyze and compare the properties of various methods for bias-correcting parameter estimates in vector autoregressions. First, we show that two analytical bias formulas from the existing literature are in fact identical. Next, based on a detailed simulation study, we show that this simple and...... pushing an otherwise stationary model into the non-stationary region of the parameter space during the process of correcting for bias....
Analysis of nonlinear systems using ARMA [autoregressive moving average] models
While many vibration systems exhibit primarily linear behavior, a significant percentage of the systems encountered in vibration and model testing are mildly to severely nonlinear. Analysis methods for such nonlinear systems are not yet well developed and the response of such systems is not accurately predicted by linear models. Nonlinear ARMA (autoregressive moving average) models are one method for the analysis and response prediction of nonlinear vibratory systems. In this paper we review the background of linear and nonlinear ARMA models, and illustrate the application of these models to nonlinear vibration systems. We conclude by summarizing the advantages and disadvantages of ARMA models and emphasizing prospects for future development. 14 refs., 11 figs
Mixture latent autoregressive models for longitudinal data
Bartolucci, Francesco; Pennoni, Fulvia
2011-01-01
Many relevant statistical and econometric models for the analysis of longitudinal data include a latent process to account for the unobserved heterogeneity between subjects in a dynamic fashion. Such a process may be continuous (typically an AR(1)) or discrete (typically a Markov chain). In this paper, we propose a model for longitudinal data which is based on a mixture of AR(1) processes with different means and correlation coefficients, but with equal variances. This model belongs to the class of models based on a continuous latent process, and then it has a natural interpretation in many contexts of application, but it is more flexible than other models in this class, reaching a goodness-of-fit similar to that of a discrete latent process model, with a reduced number of parameters. We show how to perform maximum likelihood estimation of the proposed model by the joint use of an Expectation-Maximisation algorithm and a Newton-Raphson algorithm, implemented by means of recursions developed in the hidden Mark...
Planetary Kp index forecast using autoregressive models
Gonzalez, Arian Ojeda; Odriozola, Siomel Savio; Rosa, Reinaldo Roberto; Mendes, Odim
2014-01-01
The geomagnetic Kp index is derived from the K index measurements obtained from thirteen stations located around the Earth geomagnetic latitudes between $48^\\circ$ and $63^\\circ$. This index is processed every three hours, is quasi-logarithmic and estimates the geomagnetic activity. The Kp values fall within a range of 0 to 9 and are organized as a set of 28 discrete values. The data set is important because it is used as one of the many input parameters of magnetospheric and ionospheric models. The objective of this work is to use historical data from the Kp index to develop a methodology to make a prediction in a time interval of at least three hours. Five different models to forecast geomagnetic indices Kp and ap are tested. Time series of values of Kp index from 1932 to 15/12/2012 at 21:00 UT are used as input to the models. The purpose of the model is to predict the three measured values after the last measured value of the Kp index (it means the next 9 hours values). The AR model provides the lowest com...
AUTOREGRESSIVE MODELLING OF MONTHLY RAINFALL IN SAKARYA BASIN
Meral BÜYÜKYILDIZ
2006-01-01
Full Text Available In this study, periodic autoregressive models were established to predict future behaviour of monthly rainfall data of Sakarya Basin which is one of the big and important basin in Turkey. Mathematical equations of the Periodic Autoregressive Models (PAR were also determined. Optimum models were selected based on Akaike Information Criterion (AIC. Although the parameters are calculated according to "maximum probability method" in AIC, "moments method" was used in this study; the comparison of the results of both mentioned parameter estimation methods was thought to be considered in another study's scope. The Port Manteau lack of fit test for the selected models have indicated that residuals are white noise. By using the selected models for the stations, 50 set of synthetic series which have the same length with the historical series for the monthly average rainfalls have been generated, and statistical characteristics (mean, standard deviation, autocorrelation structure of these synthetic series have been compared with statistical characteristics of historical series. By determining the stochastic models of monthly average rainfall of 25 stations, 4 different PAR models were obtained, namely as PAR(0, PAR(1, PAR(2 and PAR(3.
Temporal aggregation in first order cointegrated vector autoregressive models
La Cour, Lisbeth Funding; Milhøj, Anders
We study aggregation - or sample frequencies - of time series, e.g. aggregation from weekly to monthly or quarterly time series. Aggregation usually gives shorter time series but spurious phenomena, in e.g. daily observations, can on the other hand be avoided. An important issue is the effect of ...... aggregation on the adjustment coefficient in cointegrated systems. We study only first order vector autoregressive processes for n dimensional time series Xt, and we illustrate the theory by a two dimensional and a four dimensional model for prices of various grades of gasoline...
Eleftherios Giovanis
2014-01-01
The current study examines the turn of the month effect on stock returns in 20 countries. This will allow us to explore whether the seasonal patterns usually found in global data; America, Australia, Europe and Asia. Ordinary Least Squares (OLS) is problematic as it leads to unreliable estimations; because of the autocorrelation and Autoregressive Conditional Heteroskedasticity (ARCH) effects existence. For this reason Generalized GARCH models are estimated. Two approaches are followed. The f...
Efficient Market Hypothesis in South Africa: Evidence from a threshold autoregressive (TAR) model
Van Heerden, Dorathea; Rodrigues, Jose; Hockly, Dale; Lambert, Bongani; Taljard, Tjaart; Phiri, Andrew
2013-01-01
This study deviates from the conventional use of a linear approach in testing for the efficiency market hypothesis (EMH) for the Johannesburg Stock Exchange (JSE) between the periods 2001:01 to 2013:07. By making use of a threshold autoregressive (TAR) model and corresponding asymmetric unit root tests, our study demonstrates how the stock market indexes evolve as highly persistent, nonlinear process and yet for a majority of the time series under observation, the formal unit root tests rejec...
Probing turbulence intermittency via Auto-Regressive Moving-Average models
Faranda, Davide; Dubrulle, Berengere; Daviaud, Francois
2014-01-01
We suggest a new approach to probing intermittency corrections to the Kolmogorov law in turbulent flows based on the Auto-Regressive Moving-Average modeling of turbulent time series. We introduce a new index $\\Upsilon$ that measures the distance from a Kolmogorov-Obukhov model in the Auto-Regressive Moving-Average models space. Applying our analysis to Particle Image Velocimetry and Laser Doppler Velocimetry measurements in a von K\\'arm\\'an swirling flow, we show that $\\Upsilon$ is proportional to the traditional intermittency correction computed from the structure function. Therefore it provides the same information, using much shorter time series. We conclude that $\\Upsilon$ is a suitable index to reconstruct the spatial intermittency of the dissipation in both numerical and experimental turbulent fields.
CLARK, Todd E.; Francesco Ravazzolo
2012-01-01
This paper compares alternative models of time-varying macroeconomic volatility on the basis of the accuracy of point and density forecasts of macroeconomic variables. In this analysis, we consider both Bayesian autoregressive and Bayesian vector autoregressive models that incorporate some form of time-varying volatility, precisely stochastic volatility (both with constant and time-varying autoregressive coeffi cients), stochastic volatility following a stationary AR process, stochastic volat...
Modeling corporate defaults: Poisson autoregressions with exogenous covariates (PARX)
Agosto, Arianna; Cavaliere, Guiseppe; Kristensen, Dennis;
We develop a class of Poisson autoregressive models with additional covariates (PARX) that can be used to model and forecast time series of counts. We establish the time series properties of the models, including conditions for stationarity and existence of moments. These results are in turn used...... in the analysis of the asympotic properties of the maximum-likelihood estimators of the models. The PARX class of models is used to analyse the time series properties of monthly corporate defaults in the US in the period 1982-2011 using financial and economic variables as exogeneous covariates...... years economic and financial factors at the macro level are capable to explain a large portion of the correlation of US firms defaults over time....
Likelihood inference for a fractionally cointegrated vector autoregressive model
Johansen, Søren; Nielsen, Morten Ørregaard
We consider model based inference in a fractionally cointegrated (or cofractional) vector autoregressive model based on the conditional Gaussian likelihood. The model allows the process X_{t} to be fractional of order d and cofractional of order d-b; that is, there exist vectors β for which β......′X_{t} is fractional of order d-b. The parameters d and b satisfy either d≥b≥1/2, d=b≥1/2, or d=d_{0}≥b≥1/2. Our main technical contribution is the proof of consistency of the maximum likelihood estimators on the set 1/2≤b≤d≤d_{1} for any d_{1}≥d_{0}. To this end, we consider the conditional likelihood as a...... Gaussian. We also find the asymptotic distribution of the likelihood ratio test for cointegration rank, which is a functional of fractional Brownian motion of type II....
Implementing Modifed Burg Algorithms in Multivariate Subset Autoregressive Modeling
A. Alexandre Trindade
2003-02-01
Full Text Available The large number of parameters in subset vector autoregressive models often leads one to procure fast, simple, and efficient alternatives or precursors to maximum likelihood estimation. We present the solution of the multivariate subset Yule-Walker equations as one such alternative. In recent work, Brockwell, Dahlhaus, and Trindade (2002, show that the Yule-Walker estimators can actually be obtained as a special case of a general recursive Burg-type algorithm. We illustrate the structure of this Algorithm, and discuss its implementation in a high-level programming language. Applications of the Algorithm in univariate and bivariate modeling are showcased in examples. Univariate and bivariate versions of the Algorithm written in Fortran 90 are included in the appendix, and their use illustrated.
Recession and Recovery in the United Kingdom in the 1990'+L927s; A Vector Autoregression Approach
Luis Catão; Ramana Ramaswamy
1995-01-01
This paper uses a vector autoregression (VAR) approach to identify the causes of the 1990-92 recession in the UK. The VAR approach is shown to be particularly pertinent for quantifying the relative magnitude of the different demand shocks, and in decomposing them into monetary and expectational factors. The main finding is that the recent recession was precipitated primarily by shocks to consumption, and that monetary factors explain just part of this contraction. The VAR model also offers in...
Testing stability in a spatial unilateral autoregressive model
Baran, Sándor; Sikolya, Kinga
2012-01-01
Least squares estimator of the stability parameter $\\varrho := |\\alpha| + |\\beta|$ for a spatial unilateral autoregressive process $X_{k,\\ell}=\\alpha X_{k-1,\\ell}+\\beta X_{k,\\ell-1}+\\varepsilon_{k,\\ell}$ is investigated. Asymptotic normality with a scaling factor $n^{5/4}$ is shown in the unstable case, i.e., when $\\varrho = 1$, in contrast to the AR(p) model $X_k=\\alpha_1 X_{k-1}+... +\\alpha_p X_{k-p}+ \\varepsilon_k$, where the least squares estimator of the stability parameter $\\varrho :=\\alpha_1 + ... + \\alpha_p$ is not asymptotically normal in the unstable, i.e., in the unit root case.
Parameter estimation in a spatial unit root autoregressive model
Baran, Sándor
2011-01-01
Spatial autoregressive model $X_{k,\\ell}=\\alpha X_{k-1,\\ell}+\\beta X_{k,\\ell-1}+\\gamma X_{k-1,\\ell-1}+\\epsilon_{k,\\ell}$ is investigated in the unit root case, that is when the parameters are on the boundary of the domain of stability that forms a tetrahedron with vertices $(1,1,-1), \\ (1,-1,1),\\ (-1,1,1)$ and $(-1,-1,-1)$. It is shown that the limiting distribution of the least squares estimator of the parameters is normal and the rate of convergence is $n$ when the parameters are in the faces or on the edges of the tetrahedron, while on the vertices the rate is $n^{3/2}$.
Naveed Ishtiaq Chaudhary
2013-01-01
Full Text Available A novel algorithm is developed based on fractional signal processing approach for parameter estimation of input nonlinear control autoregressive (INCAR models. The design scheme consists of parameterization of INCAR systems to obtain linear-in-parameter models and to use fractional least mean square algorithm (FLMS for adaptation of unknown parameter vectors. The performance analyses of the proposed scheme are carried out with third-order Volterra least mean square (VLMS and kernel least mean square (KLMS algorithms based on convergence to the true values of INCAR systems. It is found that the proposed FLMS algorithm provides most accurate and convergent results than those of VLMS and KLMS under different scenarios and by taking the low-to-high signal-to-noise ratio.
Chaudhary, Naveed Ishtiaq; Raja, Muhammad Asif Zahoor; Khan, Junaid Ali; Aslam, Muhammad Saeed
2013-01-01
A novel algorithm is developed based on fractional signal processing approach for parameter estimation of input nonlinear control autoregressive (INCAR) models. The design scheme consists of parameterization of INCAR systems to obtain linear-in-parameter models and to use fractional least mean square algorithm (FLMS) for adaptation of unknown parameter vectors. The performance analyses of the proposed scheme are carried out with third-order Volterra least mean square (VLMS) and kernel least mean square (KLMS) algorithms based on convergence to the true values of INCAR systems. It is found that the proposed FLMS algorithm provides most accurate and convergent results than those of VLMS and KLMS under different scenarios and by taking the low-to-high signal-to-noise ratio. PMID:23853538
A fuzzy-autoregressive model of daily river flows
Greco, Roberto
2012-06-01
A model for the identification of daily river flows has been developed, consisting of the combination of an autoregressive model with a fuzzy inference system. The AR model is devoted to the identification of base flow, supposed to be described by linear laws. The fuzzy model identifies the surface runoff, by applying a small set of linguistic statements, deriving from the knowledge of the physical features of the nonlinear rainfall-runoff transformation, to the inflow entering the river basin. The model has been applied to the identification of the daily flow series of river Volturno at Cancello-Arnone (Southern Italy), with a drainage basin of around 5560 km2, observed between 1970 and 1974. The inflow was estimated on the basis of daily precipitations registered during the same years at six rain gauges located throughout the basin. The first two years were used for model training, the remaining three for the validation. The obtained results show that the proposed model provides good predictions of either low river flows or high floods, although the analysis of residuals, which do not turn out to be a white noise, indicates that the cause and effect relationship between rainfall and runoff is not completely identified by the model.
Recursive wind speed forecasting based on Hammerstein Auto-Regressive model
Highlights: • Developed a new recursive WSF model for 1–24 h horizon based on Hammerstein model. • Nonlinear HAR model successfully captured chaotic dynamics of wind speed time series. • Recursive WSF intrinsic error accumulation corrected by applying rotation. • Model verified for real wind speed data from two sites with different characteristics. • HAR model outperformed both ARIMA and ANN models in terms of accuracy of prediction. - Abstract: A new Wind Speed Forecasting (WSF) model, suitable for a short term 1–24 h forecast horizon, is developed by adapting Hammerstein model to an Autoregressive approach. The model is applied to real data collected for a period of three years (2004–2006) from two different sites. The performance of HAR model is evaluated by comparing its prediction with the classical Autoregressive Integrated Moving Average (ARIMA) model and a multi-layer perceptron Artificial Neural Network (ANN). Results show that the HAR model outperforms both the ARIMA model and ANN model in terms of root mean square error (RMSE), mean absolute error (MAE), and Mean Absolute Percentage Error (MAPE). When compared to the conventional models, the new HAR model can better capture various wind speed characteristics, including asymmetric (non-gaussian) wind speed distribution, non-stationary time series profile, and the chaotic dynamics. The new model is beneficial for various applications in the renewable energy area, particularly for power scheduling
The comparison study among several data transformations in autoregressive modeling
Setiyowati, Susi; Waluyo, Ramdhani Try
2015-12-01
In finance, the adjusted close of stocks are used to observe the performance of a company. The extreme prices, which may increase or decrease drastically, are often become particular concerned since it can impact to bankruptcy. As preventing action, the investors have to observe the future (forecasting) stock prices comprehensively. For that purpose, time series analysis could be one of statistical methods that can be implemented, for both stationary and non-stationary processes. Since the variability process of stocks prices tend to large and also most of time the extreme values are always exist, then it is necessary to do data transformation so that the time series models, i.e. autoregressive model, could be applied appropriately. One of popular data transformation in finance is return model, in addition to ratio of logarithm and some others Tukey ladder transformation. In this paper these transformations are applied to AR stationary models and non-stationary ARCH and GARCH models through some simulations with varying parameters. As results, this work present the suggestion table that shows transformations behavior for some condition of parameters and models. It is confirmed that the better transformation is obtained, depends on type of data distributions. In other hands, the parameter conditions term give significant influence either.
Fokianos, Konstantinos; Rahbek, Anders Christian; Tjøstheim, Dag
This paper considers geometric ergodicity and likelihood based inference for linear and nonlinear Poisson autoregressions. In the linear case the conditional mean is linked linearly to its past values as well as the observed values of the Poisson process. This also applies to the conditional...... variance, implying an interpretation as an integer valued GARCH process. In a nonlinear conditional Poisson model, the conditional mean is a nonlinear function of its past values and a nonlinear function of past observations. As a particular example an exponential autoregressive Poisson model for time...
Fokianos, Konstantinos; Rahbæk, Anders; Tjøstheim, Dag
This paper considers geometric ergodicity and likelihood based inference for linear and nonlinear Poisson autoregressions. In the linear case the conditional mean is linked linearly to its past values as well as the observed values of the Poisson process. This also applies to the conditional...... variance, making an interpretation as an integer valued GARCH process possible. In a nonlinear conditional Poisson model, the conditional mean is a nonlinear function of its past values and a nonlinear function of past observations. As a particular example an exponential autoregressive Poisson model for...
Dealing with Multiple Solutions in Structural Vector Autoregressive Models.
Beltz, Adriene M; Molenaar, Peter C M
2016-01-01
Structural vector autoregressive models (VARs) hold great potential for psychological science, particularly for time series data analysis. They capture the magnitude, direction of influence, and temporal (lagged and contemporaneous) nature of relations among variables. Unified structural equation modeling (uSEM) is an optimal structural VAR instantiation, according to large-scale simulation studies, and it is implemented within an SEM framework. However, little is known about the uniqueness of uSEM results. Thus, the goal of this study was to investigate whether multiple solutions result from uSEM analysis and, if so, to demonstrate ways to select an optimal solution. This was accomplished with two simulated data sets, an empirical data set concerning children's dyadic play, and modifications to the group iterative multiple model estimation (GIMME) program, which implements uSEMs with group- and individual-level relations in a data-driven manner. Results revealed multiple solutions when there were large contemporaneous relations among variables. Results also verified several ways to select the correct solution when the complete solution set was generated, such as the use of cross-validation, maximum standardized residuals, and information criteria. This work has immediate and direct implications for the analysis of time series data and for the inferences drawn from those data concerning human behavior. PMID:27093380
A Score Type Test for General Autoregressive Models in Time Series
Jian-hong Wu; Li-xing Zhu
2007-01-01
This paper is devoted to the goodness-of-fit test for the general autoregressive models in time series. By averaging for the weighted residuals, we construct a score type test which is asymptotically standard chi-squared under the null and has some desirable power properties under the alternatives. Specifically, the test is sensitive to alternatives and can detect the alternatives approaching, along a direction, the null at a rate that is arbitrarily close to n-1/2. Furthermore, when the alternatives are not directional, we construct asymptotically distribution-free maximin tests for a large class of alternatives. The performance of the tests is evaluated through simulation studies.
Chon, K H; Hoyer, D; Armoundas, A A; Holstein-Rathlou, N H; Marsh, D J
1999-01-01
In this study, we introduce a new approach for estimating linear and nonlinear stochastic autoregressive moving average (ARMA) model parameters, given a corrupt signal, using artificial recurrent neural networks. This new approach is a two-step approach in which the parameters of the deterministic...... part of the stochastic ARMA model are first estimated via a three-layer artificial neural network (deterministic estimation step) and then reestimated using the prediction error as one of the inputs to the artificial neural networks in an iterative algorithm (stochastic estimation step). The prediction...... error is obtained by subtracting the corrupt signal of the estimated ARMA model obtained via the deterministic estimation step from the system output response. We present computer simulation examples to show the efficacy of the proposed stochastic recurrent neural network approach in obtaining accurate...
A Note on Parameter Estimations of Panel Vector Autoregressive Models with Intercorrelation
Jian-hong Wu; Li-xing Zhu; Zai-xing Li
2009-01-01
This note considers parameter estimation for panel vector autoregressive models with intercorrela-tion. Conditional least squares estimators are derived and the asymptotic normality is established. A simulation is carried out for illustration.
A revival of the autoregressive distributed lag model in estimating energy demand relationships
Bentzen, J.; Engsted, T.
1999-07-01
The findings in the recent energy economics literature that energy economic variables are non-stationary, have led to an implicit or explicit dismissal of the standard autoregressive distribution lag (ARDL) model in estimating energy demand relationships. However, Pesaran and Shin (1997) show that the ARDL model remains valid when the underlying variables are non-stationary, provided the variables are co-integrated. In this paper we use the ARDL approach to estimate a demand relationship for Danish residential energy consumption, and the ARDL estimates are compared to the estimates obtained using co-integration techniques and error-correction models (ECM's). It turns out that both quantitatively and qualitatively, the ARDL approach and the co-integration/ECM approach give very similar results. (au)
Bayesian forecasting of temporal gene expression by using an autoregressive panel data approach.
Nascimento, M; E Silva, F F; Sáfadi, T; Nascimento, A C C; Barroso, L M A; Glória, L S; de S Carvalho, B
2016-01-01
We propose and evaluate a novel approach for forecasting gene expression over non-observed times in longitudinal trials under a Bayesian viewpoint. One of the aims is to cluster genes that share similar expression patterns over time and then use this similarity to predict relative expression at time points of interest. Expression values of 106 genes expressed during the cell cycle of Saccharomyces cerevisiae were used and genes were partitioned into five distinct clusters of sizes 33, 32, 21, 16, and 4. After removing the last observed time point, the agreements of signals (upregulated or downregulated) considering the predicted expression level were 72.7, 81.3, 76.2, 68.8, and 50.0%, respectively, for each cluster. The percentage of credibility intervals that contained the true values of gene expression for a future time was ~90%. The methodology performed well, providing a valid forecast of gene expression values by fitting an autoregressive panel data model. This approach is easily implemented with other time-series models and when Poisson and negative binomial probability distributions are assumed for the gene expression data. PMID:27323205
Interest rate pass-through estimates from vector autoregressive models
Burgstaller, Johann
2005-01-01
The empirical literature on interest rate transmission presents diverse and sometimes conflicting estimates. By discussing methodological and specification-related issues, the results of this paper contribute to the understanding of these differences. Eleven Austrian bank lending and deposit rates are utilized to illustrate the pass-through of impulses from monetary policy and banks’ cost of funds. Results from vector autoregressions suggest that the long-run pass-through is higher for moveme...
Energy markets and CO2 emissions: Analysis by stochastic copula autoregressive model
We examine the dependence between the volatility of the prices of the carbon dioxide “CO2” emissions with the volatility of one of their fundamental components, the energy prices. The dependence between the returns will be approached by a particular class of copula, the SCAR (Stochastic Autoregressive) Copulas, which is a time varying copula that was first introduced by Hafner and Manner (2012) [1] in which the parameter driving the dynamic of the copula follows a stochastic autoregressive process. The standard likelihood method will be used together with EIS (Efficient Importance Sampling) method, to evaluate the integral with a large dimension in the expression of the likelihood function. The main result suggests that the dynamics of the dependence between the volatility of the CO2 emission prices and the volatility of energy returns, coal, natural gas and Brent oil prices, do vary over time, although not much in stable periods but rise noticeably during the period of crisis and turmoils. - Highlights: • We examine the dependence between the volatility of CO2 emissions and energy prices. • The dependence will be measured by the dynamic SCAR copula pair by pair. • To model the marginal distributions of the variables, we use the GAS model. • To evaluate high dimensional integral in the likelihood function we use EIS method. • The dependence is dynamic and varies over time especially in period of crisis
Katsuhiro Sugita
2015-01-01
In this paper we analyze the predictive power of the yield curve on output growth using a vector autoregressive model with multiple structural breaks in the intercept term and the volatility. To estimate the model and to detect the number of breaks, we apply a Bayesian approach with Markov chain Monte Carlo algorithm. We find strong evidence of three structural breaks using the US data.
Self-organising mixture autoregressive model for non-stationary time series modelling.
Ni, He; Yin, Hujun
2008-12-01
Modelling non-stationary time series has been a difficult task for both parametric and nonparametric methods. One promising solution is to combine the flexibility of nonparametric models with the simplicity of parametric models. In this paper, the self-organising mixture autoregressive (SOMAR) network is adopted as a such mixture model. It breaks time series into underlying segments and at the same time fits local linear regressive models to the clusters of segments. In such a way, a global non-stationary time series is represented by a dynamic set of local linear regressive models. Neural gas is used for a more flexible structure of the mixture model. Furthermore, a new similarity measure has been introduced in the self-organising network to better quantify the similarity of time series segments. The network can be used naturally in modelling and forecasting non-stationary time series. Experiments on artificial, benchmark time series (e.g. Mackey-Glass) and real-world data (e.g. numbers of sunspots and Forex rates) are presented and the results show that the proposed SOMAR network is effective and superior to other similar approaches. PMID:19145663
Modeling money demand components in Lebanon using autoregressive models
This paper analyses monetary aggregate in Lebanon and its different component methodology of AR model. Thirteen variables in monthly data have been studied for the period January 1990 through December 2005. Using the Augmented Dickey-Fuller (ADF) procedure, twelve variables are integrated at order 1, thus they need the filter (1-B)) to become stationary, however the variable X13,t (claims on private sector) becomes stationary with the filter (1-B)(1-B12) . The ex-post forecasts have been calculated for twelve horizons and for one horizon (one-step ahead forecast). The quality of forecasts has been measured using the MAPE criterion for which the forecasts are good because the MAPE values are lower. Finally, a pursuit of this research using the cointegration approach is proposed. (author)
Morishima, N. [Kyoto Univ. (Japan). Faculty of Engineering
1996-06-01
The multivariate autoregressive (MAR) modeling of a vector noise process is discussed in terms of the estimation of dominant noise sources in BWRs. The discussion is based on a physical approach: a transfer function model on BWR core dynamics is utilized in developing a noise model; a set of input-output relations between three system variables and twelve different noise sources is obtained. By the least-square fitting of a theoretical PSD on neutron noise to an experimental one, four kinds of dominant noise sources are selected. It is shown that some of dominant noise sources consist of two or more different noise sources and have the spectral properties of being coloured and correlated with each other. By diagonalizing the PSD matrix for dominant noise sources, we may obtain an MAR expression for a vector noise process as a response to the diagonal elements(i.e. residual noises) being white and mutually-independent. (Author).
Goodness-of-fit tests for vector autoregressive models in time series
无
2010-01-01
The paper proposes and studies some diagnostic tools for checking the goodness-of-fit of general parametric vector autoregressive models in time series. The resulted tests are asymptotically chi-squared under the null hypothesis and can detect the alternatives converging to the null at a parametric rate. The tests involve weight functions,which provides us with the flexibility to choose scores for enhancing power performance,especially under directional alternatives. When the alternatives are not directional,we construct asymptotically distribution-free maximin tests for a large class of alternatives. A possibility to construct score-based omnibus tests is discussed when the alternative is saturated. The power performance is also investigated. In addition,when the sample size is small,a nonparametric Monte Carlo test approach for dependent data is proposed to improve the performance of the tests. The algorithm is easy to implement. Simulation studies and real applications are carried out for illustration.
Blind identification of threshold auto-regressive model for machine fault diagnosis
LI Zhinong; HE Yongyong; CHU Fulei; WU Zhaotong
2007-01-01
A blind identification method was developed for the threshold auto-regressive (TAR) model. The method had good identification accuracy and rapid convergence, especially for higher order systems. The proposed method was then combined with the hidden Markov model (HMM) to determine the auto-regressive (AR) coefficients for each interval used for feature extraction, with the HMM as a classifier. The fault diagnoses during the speed-up and speed- down processes for rotating machinery have been success- fully completed. The result of the experiment shows that the proposed method is practical and effective.
de Vries, SO; Fidler, [No Value; Kuipers, WD; Hunink, MGM
1998-01-01
The purpose of this study was to develop a model that predicts the outcome of supervised exercise for intermittent claudication. The authors present an example of the use of autoregressive logistic regression for modeling observed longitudinal data. Data were collected from 329 participants in a six
de Vries, S.O.; Fidler, V.; Kuipers, W.D.; Hunink, M.G.
1998-01-01
The purpose of this study was to develop a model that predicts the outcome of supervised exercise for intermittent claudication. The authors present an example of the use of autoregressive logistic regression for modeling observed longitudinal data. Data were collected from 329 participants in a six
2003-01-01
Abstract: In this note we consider testing of a type of linear restrictions implied by rational expectations hypotheses in a cointegrated vector autoregressive model for I(1) variables when there in addition is a restriction on the deterministic drift term. Keywords: VAR model, cointegration, restricted drift term, rational expectations
Chattopadhyay, Goutami; 10.1140/epjp/i2012-12043-9
2012-01-01
This study reports a statistical analysis of monthly sunspot number time series and observes non homogeneity and asymmetry within it. Using Mann-Kendall test a linear trend is revealed. After identifying stationarity within the time series we generate autoregressive AR(p) and autoregressive moving average (ARMA(p,q)). Based on minimization of AIC we find 3 and 1 as the best values of p and q respectively. In the next phase, autoregressive neural network (AR-NN(3)) is generated by training a generalized feedforward neural network (GFNN). Assessing the model performances by means of Willmott's index of second order and coefficient of determination, the performance of AR-NN(3) is identified to be better than AR(3) and ARMA(3,1).
Chattopadhyay, Goutami; Chattopadhyay, Surajit
2012-04-01
This study reports a statistical analysis of monthly sunspot number time series and observes nonhomogeneity and asymmetry within it. Using the Mann-Kendall test a linear trend is revealed. After identifying stationarity within the time series we generate autoregressive AR( p) and autoregressive moving average (ARMA( p, q) . Based on the minimization of AIC we find 3 and 1 as the best values for p and q , respectively. In the next phase, autoregressive neural network (AR-NN(3)) is generated by training a generalized feedforward neural network (GFNN). Assessing the model performances by means of Willmott's index of second order and the coefficient of determination, the performance of AR-NN(3) is identified to be better than AR(3) and ARMA(3,1).
Bridging Economic Theory Models and the Cointegrated Vector Autoregressive Model
Møller, Niels Framroze
2008-01-01
economic model implies the econometric concept of strong exogeneity for ß. The economic equilibrium corresponds to the so-called long-run value (Johansen 2005), the comparative statics are captured by the long-run impact matrix, C; and the exogenous variables are the common trends. Also, the adjustment...... parameters of the CVAR are shown to be interpretable in terms of expectations formation, market clearing, nominal rigidities, etc. The general-partial equilibrium distinction is also discussed....
Bridging Economic Theory Models and the Cointegrated Vector Autoregressive Model
Møller, Niels Framroze
2008-01-01
economic model is related to econometric concepts of exogeneity. The economic equilibrium corresponds to the so-called long-run value (Johansen 2005), the long-run impact matrix, C; captures the comparative statics and the exogenous variables are the common trends. The adjustment parameters of the CVAR are...... related to expectations formation, market clearing, nominal rigidities, etc. Finally, the general-partial equilibrium distinction is analyzed....
Testing the Conditional Mean Function of Autoregressive Conditional Duration Models
Hautsch, Nikolaus
order to capture persistent serial dependence in the duration process, we extend the model by an observation driven ARMA dynamic based on generalized errors. We illustrate the maximum likelihood estimation of both the model parameters and discrete points of the underlying unspecified baseline survivor...... subject to censoring structures. In an empirical study based on financial transaction data we present an application of the model to estimate conditional asset price change probabilities. Evaluating the forecasting properties of the model, it is shown that the proposed approach is a promising competitor...
Helen Higgs
2014-03-01
Full Text Available This paper models the price and income elasticity of retail finance in Australia using aggregate quarterly data and an autoregressive distributed lag (ARDL approach. We particularly focus on the impact of the global financial crisis (GFC from 2007 onwards on retail finance demand and analyse four submarkets (period analysed in brackets: owneroccupied housing loans (Sep 1985–June 2010, term loans (for motor vehicles, household goods and debt consolidation, etc. (Dec 1988–Jun 2010, credit card loans (Mar 1990–Jun 2010, and margin loans (Sep 2000–Jun 2010. Other than the indicator lending rates and annual full-time earnings respectively used as proxies for the price and income effects, we specify a large number of other variables as demand factors, particularly reflecting the value of the asset for which retail finance demand is derived. These variously include the yield on indexed bonds as a proxy for inflation expectations, median housing prices, consumer sentiment indices as measures of consumer confidence, motor vehicle and retail trade sales, housing debt-to-housing assets as a measure of leverage, the proportion of protected margin lending, the available credit limit on credit cards, and the All Ordinaries Index. In the long run, we find significant price elasticities only for term loans and margin loans, and significant income elasticities of demand for housing loans, term loans and margin loans. We also find that the GFC only significantly affected the longrun demand for term loans and margin loans. In the short run, we find that the GFC has had a significant effect on the price elasticity of demand for term loans and margin loans. Expected inflation is also a key factor affecting retail finance demand. Overall, most of the submarkets in the analysis indicate that retail finance demand is certainly price inelastic but more income elastic than conventionally thought.
Roberto Ambrosini
Full Text Available Migration is a fundamental stage in the life history of several taxa, including birds, and is under strong selective pressure. At present, the only data that may allow for both an assessment of patterns of bird migration and for retrospective analyses of changes in migration timing are the databases of ring recoveries. We used ring recoveries of the Barn Swallow Hirundo rustica collected from 1908-2008 in Europe to model the calendar date at which a given proportion of birds is expected to have reached a given geographical area ('progression of migration' and to investigate the change in timing of migration over the same areas between three time periods (1908-1969, 1970-1990, 1991-2008. The analyses were conducted using binomial conditional autoregressive (CAR mixed models. We first concentrated on data from the British Isles and then expanded the models to western Europe and north Africa. We produced maps of the progression of migration that disclosed local patterns of migration consistent with those obtained from the analyses of the movements of ringed individuals. Timing of migration estimated from our model is consistent with data on migration phenology of the Barn Swallow available in the literature, but in some cases it is later than that estimated by data collected at ringing stations, which, however, may not be representative of migration phenology over large geographical areas. The comparison of median migration date estimated over the same geographical area among time periods showed no significant advancement of spring migration over the whole of Europe, but a significant advancement of autumn migration in southern Europe. Our modelling approach can be generalized to any records of ringing date and locality of individuals including those which have not been recovered subsequently, as well as to geo-referenced databases of sightings of migratory individuals.
The Performance of Multilevel Growth Curve Models under an Autoregressive Moving Average Process
Murphy, Daniel L.; Pituch, Keenan A.
2009-01-01
The authors examined the robustness of multilevel linear growth curve modeling to misspecification of an autoregressive moving average process. As previous research has shown (J. Ferron, R. Dailey, & Q. Yi, 2002; O. Kwok, S. G. West, & S. B. Green, 2007; S. Sivo, X. Fan, & L. Witta, 2005), estimates of the fixed effects were unbiased, and Type I…
Modelling of Traffic Flow with Bayesian Autoregressive Model with Variable Partial Forgetting
Dedecius, Kamil; Nagy, Ivan; Hofman, Radek
Praha : ČVUT v Praze, 2011, s. 1-11. [CTU Workshop 2011. Praha (CZ), 01.02.2011-01.02.2011] Grant ostatní: ČVUT v Praze(CZ) SGS 10/099/OHK3/1T/16 Institutional research plan: CEZ:AV0Z10750506 Keywords : Bayesian modelling * traffic modelling Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2011/AS/dedecius-modelling of traffic flow with bayesian autoregressive model with variable partial forgetting.pdf
Time-varying parameter auto-regressive models for autocovariance nonstationary time series
无
2009-01-01
In this paper, autocovariance nonstationary time series is clearly defined on a family of time series. We propose three types of TVPAR (time-varying parameter auto-regressive) models: the full order TVPAR model, the time-unvarying order TVPAR model and the time-varying order TV-PAR model for autocovariance nonstationary time series. Related minimum AIC (Akaike information criterion) estimations are carried out.
Time-varying parameter auto-regressive models for autocovariance nonstationary time series
FEI WanChun; BAI Lun
2009-01-01
In this paper,autocovariance nonstationary time series is clearly defined on a family of time series.We propose three types of TVPAR (time-varying parameter auto-regressive) models:the full order TVPAR model,the time-unvarying order TVPAR model and the time-varying order TVPAR model for autocovariance nonstationary time series.Related minimum AIC (Akaike information criterion) estimations are carried out.
Offline and online detection of damage using autoregressive models and artificial neural networks
Omenzetter, Piotr; de Lautour, Oliver R.
2007-04-01
Developed to study long, regularly sampled streams of data, time series analysis methods are being increasingly investigated for the use of Structural Health Monitoring. In this research, Autoregressive (AR) models are used in conjunction with Artificial Neural Networks (ANNs) for damage detection, localisation and severity assessment. In the first reported experimental exercise, AR models were used offline to fit the acceleration time histories of a 3-storey test structure in undamaged and various damaged states when excited by earthquake motion simulated on a shake table. Damage was introduced into the structure by replacing the columns with those of a thinner thickness. Analytical models of the structure in both damaged and undamaged states were also developed and updated using experimental data in order to determine structural stiffness. The coefficients of AR models were used as damage sensitive features and input into an ANN to build a relationship between them and the remaining structural stiffness. In the second, analytical exercise, a system with gradually progressing damage was numerically simulated and acceleration AR models with exogenous inputs were identified recursively. A trained ANN was then required to trace the structural stiffness online. The results for the offline and online approach showed the efficiency of using AR coefficient as damage sensitive features and good performance of the ANNs for damage detection, localization and quantification.
Medium- and Long-term Prediction of LOD Change by the Leap-step Autoregressive Model
Wang, Qijie
2015-08-01
The accuracy of medium- and long-term prediction of length of day (LOD) change base on combined least-square and autoregressive (LS+AR) deteriorates gradually. Leap-step autoregressive (LSAR) model can significantly reduce the edge effect of the observation sequence. Especially, LSAR model greatly improves the resolution of signals’ low-frequency components. Therefore, it can improve the efficiency of prediction. In this work, LSAR is used to forecast the LOD change. The LOD series from EOP 08 C04 provided by IERS is modeled by both the LSAR and AR models. The results of the two models are analyzed and compared. When the prediction length is between 10-30 days, the accuracy improvement is less than 10%. When the prediction length amounts to above 30 day, the accuracy improved obviously, with the maximum being around 19%. The results show that the LSAR model has higher prediction accuracy and stability in medium- and long-term prediction.
Experimental designs for autoregressive models applied to industrial maintenance
Some time series applications require data which are either expensive or technically difficult to obtain. In such cases scheduling the points in time at which the information should be collected is of paramount importance in order to optimize the resources available. In this paper time series models are studied from a new perspective, consisting in the use of Optimal Experimental Design setup to obtain the best times to take measurements, with the principal aim of saving costs or discarding useless information. The model and the covariance function are expressed in an explicit form to apply the usual techniques of Optimal Experimental Design. Optimal designs for various approaches are computed and their efficiencies are compared. The methods working in an application of industrial maintenance of a critical piece of equipment at a petrochemical plant are shown. This simple model allows explicit calculations in order to show openly the procedure to find the correlation structure, needed for computing the optimal experimental design. In this sense the techniques used in this paper to compute optimal designs may be transferred to other situations following the ideas of the paper, but taking into account the increasing difficulty of the procedure for more complex models. - Highlights: • Optimal experimental design theory is applied to AR models to reduce costs. • The first observation has an important impact on any optimal design. • Either the lack of precision or small starting observations claim for large times. • Reasonable optimal times were obtained relaxing slightly the efficiency. • Optimal designs were computed in a predictive maintenance context
Multivariate Portmanteau test for Autoregressive models with uncorrelated but nonindependent errors
Francq, Christian; Raïssi, Hamdi
2007-01-01
In this paper we consider estimation and test of fit for multiple autoregressive time series models with nonindependent innovations. We derive the asymptotic distribution of the residual autocorrelations. It is shown that this asymptotic distribution can be quite different for models with iid innovations and models in which the innovations exhibit conditional heteroscedasticity or other forms of dependence. Consequently, the usual chi-square distribution does not provide adequate approximatio...
A vector autoregression (VAR) model of housing starts and housing price in Hong Kong
Wong, Kin-man; 黃健文
2012-01-01
It is observed that there are many different models about housing price. Yet, this is relatively smaller number of studies about housing starts. This thesis is an empirical study to work out the relationship between housing starts, housing price and other economic and policy instrumental factors. To achieve this objective, a Vector Autoregression (VAR) model is built since there is inter-relationship between housing starts and housing price. By applying previous models filled with the res...
TIAN Lin-ya; HUA Xi-sheng
2007-01-01
To ensure the safety of buildings surrounding foundation pits, a study was made on a settlement monitoring and trend prediction method. A statistical testing method for analyzing the stability of a settlement monitoring datum has been discussed. According to a comprehensive survey, data of 16 stages at operating control point, were verified by a standard t test to determine the stability of the operating control point. A stationary auto-regression model, AR(p), used for the observation point settlement prediction has been investigated. Given the 16 stages of the settlement data at an observation point, the applicability of this model was analyzed. Settlement of last four stages was predicted using the stationary auto-regression model AR (1); the maximum difference between predicted and measured values was 0.6 mm,indicating good prediction results of the model. Hence, this model can be applied to settlement predictions for buildings surrounding foundation pits.
Zhao Haijun; Ma Yan; Huang Xiaohong; Su Yujie
2008-01-01
Predicting heartbeat message arrival time is crucial for the quality of failure detection service over internet. However, internet dynamic characteristics make it very difficult to understand message behavior and accurately predict heartbeat arrival time. To solve this problem, a novel black-box model is proposed to predict the next heartbeat arrival time. Heartbeat arrival time is modeled as auto-regressive process, heartbeat sending time is modeled as exogenous variable, the model's coefficients are estimated based on the sliding window of observations and this result is used to predict the next heartbeat arrival time. Simulation shows that this adaptive auto-regressive exogenous (ARX) model can accurately capture heartbeat arrival dynamics and minimize prediction error in different network environments.
Medium- and Long-term Prediction of LOD Change with the Leap-step Autoregressive Model
Liu, Q. B.; Wang, Q. J.; Lei, M. F.
2015-09-01
It is known that the accuracies of medium- and long-term prediction of changes of length of day (LOD) based on the combined least-square and autoregressive (LS+AR) decrease gradually. The leap-step autoregressive (LSAR) model is more accurate and stable in medium- and long-term prediction, therefore it is used to forecast the LOD changes in this work. Then the LOD series from EOP 08 C04 provided by IERS (International Earth Rotation and Reference Systems Service) is used to compare the effectiveness of the LSAR and traditional AR methods. The predicted series resulted from the two models show that the prediction accuracy with the LSAR model is better than that from AR model in medium- and long-term prediction.
Two-dimensional minimum free energy autoregressive parametric modelling and spectral estimation
Kiernan, P.
1995-01-01
We present a new high resolution spectral estimation method. This method is a 2-D extension of the Minimum Free Energy (MFE) parameter estimation technique based on extension of the multidimensional Levinson method Our 2-D MFE technique determines autoregressive (AR) models for 2-D fields MFE-AR models may be used for 2-D spectral estimation. The performance of the technique for spectral estimation of closely spaced 2-D sinusoids in white noise is demonstrated by numerical example. Experi...
A Mixture Innovation Heterogeneous Autoregressive Model for Structural Breaks and Long Memory
Nonejad, Nima
We propose a flexible model to describe nonlinearities and long-range dependence in time series dynamics. Our model is an extension of the heterogeneous autoregressive model. Structural breaks occur through mixture distributions in state innovations of linear Gaussian state space models. Monte...... Carlo simulations evaluate the properties of the estimation procedures. Results show that the proposed model is viable and flexible for purposes of forecasting volatility. Model uncertainty is accounted for by employing Bayesian model averaging. Bayesian model averaging provides very competitive...... forecasts compared to any single model specification. It provides further improvements when we average over nonlinear specifications....
Thresholds and Smooth Transitions in Vector Autoregressive Models
Hubrich, Kirstin; Teräsvirta, Timo
This survey focuses on two families of nonlinear vector time series models, the family of Vector Threshold Regression models and that of Vector Smooth Transition Regression models. These two model classes contain incomplete models in the sense that strongly exogeneous variables are allowed in the...
Lesage, James P.; Vance, Colin; Chih, Yao-Yu
2016-01-01
We apply a heterogenous coefficient spatial autoregressive panel model from Aquaro, Bailey and Pesaran (2015) to explore competition/cooperation by Berlin fueling stations in setting prices for diesel and E5 fuel. Unlike the maximum likelihood estimation method set forth by Aquaro, Bailey and Pesaran (2015), we rely on a Markov Chain Monte Carlo (MCMC) estimation methodology. MCMC estimates as applied here with non-informative priors will produce estimates equal to those from maximum likeliho...
Trade-GDP Nexus in Iran: An Application of the Autoregressive Distributed Lag (ARDL Model
Mosayeb Pahlavani
2005-01-01
Full Text Available This study employed annual time series data (1960-2003 and unit root tests with multiple breaks to determine the most likely times of structural breaks in major factors impacting on the trade-GDP nexus in Iran We found, inter alia, that the endogenously determined structural breaks coincided with important events in the Iranian economy, including the 1979 Islamic revolution and the outbreak of the Iraq-Iran war in 1980. By applying the Lumsdaine and Papell (1997 approach, the stationarity of the variable under investigation was examined and in the presence of structural breaks, we found that the null hypothesis of unit root could be rejected for all of the variables under analysis except one. Under such circumstances, applying the ARDL procedure was the best way of determining long run relationships. For this reason, the error correction version of the autoregressive distributed lag procedure (ARDL was then employed to specify the short and long-term determinants of economic growth in the presence of structural breaks. The results showed that while the effects of gross capital formation and oil exports were important for the expansion of the Iranian GDP over the sample period, non-oil exports and human capital were generally less pivotal. It was also found that the speed of adjustment in the estimated models is relatively high and had the expected significant and negative sign. JEL classification numbers: C12, C22, C52.
Siggiridou, Elsa
2015-01-01
Granger causality has been used for the investigation of the inter-dependence structure of the underlying systems of multi-variate time series. In particular, the direct causal effects are commonly estimated by the conditional Granger causality index (CGCI). In the presence of many observed variables and relatively short time series, CGCI may fail because it is based on vector autoregressive models (VAR) involving a large number of coefficients to be estimated. In this work, the VAR is restricted by a scheme that modifies the recently developed method of backward-in-time selection (BTS) of the lagged variables and the CGCI is combined with BTS. Further, the proposed approach is compared favorably to other restricted VAR representations, such as the top-down strategy, the bottom-up strategy, and the least absolute shrinkage and selection operator (LASSO), in terms of sensitivity and specificity of CGCI. This is shown by using simulations of linear and nonlinear, low and high-dimensional systems and different t...
Yu Zhao
2013-01-01
Full Text Available In the study, we discussed the generalized autoregressive conditional heteroskedasticity model and enhanced it with wavelet transform to evaluate the daily returns for 1/4/2002-30/12/2011 period in Brent oil market. We proposed discrete wavelet transform generalized autoregressive conditional heteroskedasticity model to increase the forecasting performance of the generalized autoregressive conditional heteroskedasticity model. Our new approach can overcome the defect of generalized autoregressive conditional heteroskedasticity family models which can’t describe the detail and partial features of times series and retain the advantages of them at the same time. Comparing with the generalized autoregressive conditional heteroskedasticity model, the new approach significantly improved forecast results and greatly reduces conditional variances.
Suhartono
2011-01-01
Full Text Available Problem statement: Most of Seasonal Autoregressive Integrated Moving Average (SARIMA models that used for forecasting seasonal time series are multiplicative SARIMA models. These models assume that there is a significant parameter as a result of multiplication between nonseasonal and seasonal parameters without testing by certain statistical test. Moreover, most popular statistical software such as MINITAB and SPSS only has facility to fit a multiplicative model. The aim of this research is to propose a new procedure for indentifying the most appropriate order of SARIMA model whether it involves subset, multiplicative or additive order. In particular, the study examined whether a multiplicative parameter existed in the SARIMA model. Approach: Theoretical derivation about Autocorrelation (ACF and Partial Autocorrelation (PACF functions from subset, multiplicative and additive SARIMA model was firstly discussed and then R program was used to create the graphics of these theoretical ACF and PACF. Then, two monthly datasets were used as case studies, i.e. the international airline passenger data and series about the number of tourist arrivals to Bali, Indonesia. The model identification step to determine the order of ARIMA model was done by using MINITAB program and the model estimation step used SAS program to test whether the model consisted of subset, multiplicative or additive order. Results: The theoretical ACF and PACF showed that subset, multiplicative and additive SARIMA models have different patterns, especially at the lag as a result of multiplication between non-seasonal and seasonal lags. Modeling of the airline data yielded a subset SARIMA model as the best model, whereas an additive SARIMA model is the best model for forecasting the number of tourist arrivals to Bali. Conclusion: Both of case studies showed that a multiplicative SARIMA model was not the best model for forecasting these data. The comparison evaluation showed that subset
Temporal Aggregation in First Order Cointegrated Vector Autoregressive models
Milhøj, Anders; la Cour, Lisbeth Funding
2011-01-01
with the frequency of the data. We also introduce a graphical representation that will prove useful as an additional informational tool for deciding the appropriate cointegration rank of a model. In two examples based on models of time series of different grades of gasoline, we demonstrate the...
Pinson, Pierre; Madsen, Henrik
Wind power production data at temporal resolutions of a few minutes exhibits successive periods with fluctuations of various dynamic nature and magnitude, which cannot be explained (so far) by the evolution of some explanatory variable. Our proposal is to capture this regime-switching behaviour...... recursively optimized is based on penalized maximum-likelihood, with exponential forgetting of past observations. MSAR models are then employed for 1-step-ahead point forecasting of 10-minute resolution time-series of wind power at two large offshore wind farms. They are favourably compared against...... persistence and AutoRegressive (AR) models. It is finally shown that the main interest of MSAR models lies in their ability to generate interval/density forecasts of significantly higher skill....
Pinson, Pierre; Madsen, Henrik
2012-01-01
Wind power production data at temporal resolutions of a few minutes exhibit successive periods with fluctuations of various dynamic nature and magnitude, which cannot be explained (so far) by the evolution of some explanatory variable. Our proposal is to capture this regime-switching behaviour with...... recursively optimized is based on penalized maximum likelihood, with exponential forgetting of past observations. MSAR models are then employed for one-step-ahead point forecasting of 10 min resolution time series of wind power at two large offshore wind farms. They are favourably compared against persistence...... and autoregressive models. It is finally shown that the main interest of MSAR models lies in their ability to generate interval/density forecasts of significantly higher skill....
Gaussian Processes for Functional Autoregression
Kowal, Daniel R.; David S. Matteson; Ruppert, David
2016-01-01
We develop a hierarchical Gaussian process model for forecasting and inference of functional time series data. Unlike existing methods, our approach is especially suited for sparsely or irregularly sampled curves and for curves sampled with non-negligible measurement error. The latent process is dynamically modeled as a functional autoregression (FAR) with Gaussian process innovations. We propose a fully nonparametric dynamic functional factor model for the dynamic innovation process, with br...
Autoregressive Models of Background Errors for Chemical Data Assimilation
Constantinescu, Emil M.; Chai, Tianfeng; Sandu, Adrian; Gregory R. Carmichael
2006-01-01
The task of providing an optimal analysis of the state of the atmosphere requires the development of dynamic data-driven systems that efficiently integrate the observational data and the models. Data assimilation (DA) is the process of adjusting the states or parameters of a model in such a way that its outcome (prediction) is close, in some distance metric, to observed (real) states. It is widely accepted that a key ingredient of successful data assimilation is a realistic estimation of th...
A representation theory for a class of vector autoregressive models for fractional processes
Johansen, Søren
2008-01-01
Based on an idea of Granger (1986), we analyze a new vector autoregressive model defined from the fractional lag operator 1-(1-L)^{d}. We first derive conditions in terms of the coefficients for the model to generate processes which are fractional of order zero. We then show that if there is a unit...... root, the model generates a fractional process X(t) of order d, d>0, for which there are vectors ß so that ß'X(t) is fractional of order d-b, 0...
New GPS-aided SINU System Modeling using an Autoregressive Model
Chot Hun Lim
2015-09-01
Full Text Available Stochastic error in the Micro-Electro-Mechanical-System (MEMS Strapdown Inertial Navigation Unit (SINU is the primary issue causing sensors to be unable to operate as a standalone device. Conventional implementation of MEMS SINU fuses measurement with a global positioning system (GPS through a Kalman filter in order to achieve long-term accuracy. Such integration is known as a GPS-aided SINU system, and its estimation accuracy relies on how precise the stochastic error prediction is in Kalman filtering operation. In this paper, a comprehensive study on stochastic error modeling and analysis through a Gauss- Markov (GM model and autoregressive (AR model are presented. A wavelet denoising technique is introduced prior to error modeling to remove the MEMS SINU's high frequency noise. Without a wavelet denoising technique, neither the GM model nor AR model can be utilized to represent the stochastic error of SINU. Next, details of the Kalman filter implementation to accommodate the AR model are presented. The modeling outcomes are implemented on an unmanned aerial vehicle (UAV for on-board motion sensing. The experimental results show that AR model implementation, compared to a conventional GM model, significantly reduced the estimated errors while preserving the position, velocity and orientation measurements.
Modal identification based on Gaussian continuous time autoregressive moving average model
Xiuli, Du; Fengquan, Wang
2010-09-01
A new time-domain modal identification method of the linear time-invariant system driven by the non-stationary Gaussian random force is presented in this paper. The proposed technique is based on the multivariate continuous time autoregressive moving average (CARMA) model. This method can identify physical parameters of a system from the response-only data. To do this, we first transform the structural dynamic equation into the CARMA model, and subsequently rewrite it in the state-space form. Second, we present the exact maximum likelihood estimators of parameters of the continuous time autoregressive (CAR) model by virtue of the Girsanov theorem, under the assumption that the uniformly modulated function is approximately equal to a constant matrix over a very short period of time. Then, based on the relation between the CAR model and the CARMA model, we present the exact maximum likelihood estimators of parameters of the CARMA model. Finally, the modal parameters are identified by the eigenvalue analysis method. Numerical results show that the method we introduced here not only has high precision and robustness, but also has very high computing efficiency. Therefore, it is suitable for real-time modal identification.
PAN; Jiazhu; WU; Guangxu
2005-01-01
We study the tail probability of the stationary distribution of nonparametric nonlinear autoregressive functional conditional heteroscedastic (NARFCH) model with heavytailed innovations. Our result shows that the tail of the stationary marginal distribution of an NARFCH series is heavily dependent on its conditional variance. When the innovations are heavy-tailed, the tail of the stationary marginal distribution of the series will become heavier or thinner than that of its innovations. We give some specific formulas to show how the increment or decrement of tail heaviness depends on the assumption on the conditional variance function. Some examples are given.
Modeling gene expression regulatory networks with the sparse vector autoregressive model
Miyano Satoru
2007-08-01
Full Text Available Abstract Background To understand the molecular mechanisms underlying important biological processes, a detailed description of the gene products networks involved is required. In order to define and understand such molecular networks, some statistical methods are proposed in the literature to estimate gene regulatory networks from time-series microarray data. However, several problems still need to be overcome. Firstly, information flow need to be inferred, in addition to the correlation between genes. Secondly, we usually try to identify large networks from a large number of genes (parameters originating from a smaller number of microarray experiments (samples. Due to this situation, which is rather frequent in Bioinformatics, it is difficult to perform statistical tests using methods that model large gene-gene networks. In addition, most of the models are based on dimension reduction using clustering techniques, therefore, the resulting network is not a gene-gene network but a module-module network. Here, we present the Sparse Vector Autoregressive model as a solution to these problems. Results We have applied the Sparse Vector Autoregressive model to estimate gene regulatory networks based on gene expression profiles obtained from time-series microarray experiments. Through extensive simulations, by applying the SVAR method to artificial regulatory networks, we show that SVAR can infer true positive edges even under conditions in which the number of samples is smaller than the number of genes. Moreover, it is possible to control for false positives, a significant advantage when compared to other methods described in the literature, which are based on ranks or score functions. By applying SVAR to actual HeLa cell cycle gene expression data, we were able to identify well known transcription factor targets. Conclusion The proposed SVAR method is able to model gene regulatory networks in frequent situations in which the number of samples is
IDENTIFICATION OF PERIODIC AUTOREGRESSIVE MOVING-AVERAGE TIME SERIES MODELS WITH R
Hazem I. El Shekh Ahmed
2014-01-01
Full Text Available Periodic autoregressive moving average PARMA process extend the classical autoregressive moving average ARMA process by allowing the parameters to vary with seasons. Model identification is the identification of a possible model based on an available realization, i.e., determining the type of the model with appropriate orders. The Periodic Autocorrelation Function (PeACF and the Periodic Partial Autocorrelation Function (PePACF serve as useful indicators of the correlation or of the dependence between the values of the series so that they play an important role in model identification. The identification is based on the cut-off property of the Periodic Autocorrelation Function (PeACF. We derive an explicit expression for the asymptotic variance of the sample PeACF to be used in establishing its bands. Therefore, we will get in this study a new structure of the periodic autocorrelation function which depends directly to the variance that will derived to be used in establishing its bands for the PMA process over the cut-off region and we have studied the theoretical side and we will apply some simulated examples with R which agrees well with the theoretical results.
Rahul Tripathi
2014-01-01
Full Text Available Forecasting of rice area, production, and productivity of Odisha was made from the historical data of 1950-51 to 2008-09 by using univariate autoregressive integrated moving average (ARIMA models and was compared with the forecasted all Indian data. The autoregressive (p and moving average (q parameters were identified based on the significant spikes in the plots of partial autocorrelation function (PACF and autocorrelation function (ACF of the different time series. ARIMA (2, 1, 0 model was found suitable for all Indian rice productivity and production, whereas ARIMA (1, 1, 1 was best fitted for forecasting of rice productivity and production in Odisha. Prediction was made for the immediate next three years, that is, 2007-08, 2008-09, and 2009-10, using the best fitted ARIMA models based on minimum value of the selection criterion, that is, Akaike information criteria (AIC and Schwarz-Bayesian information criteria (SBC. The performances of models were validated by comparing with percentage deviation from the actual values and mean absolute percent error (MAPE, which was found to be 0.61 and 2.99% for the area under rice in Odisha and India, respectively. Similarly for prediction of rice production and productivity in Odisha and India, the MAPE was found to be less than 6%.
Multivariable autoregressive model of the dynamics of a boiling water reactor
An autoregressive (AR) model with pseudo-random binary sequence (PRBS) test signals was applied to the dynamics of the Japan Power Demonstration Reactor, a boiling water reactor (BWR). The decision of the order of the AR model was based on the Akaike criterion. Multi-input test signals of the PRBS were applied to the steam-flow control valve and the forced circulation pump speed control terminal. Seventeen variables including the instrumented fuel assemblies were observed. The AR model identification facilitated building the BWR dynamics model as a multivariable system. The experiment indicated that the BWR dynamics with rather intensive nonwhite noise interference was effectively represented by the AR model, which was compared with a linear theoretical dynamics model. The results suggested that the identified AR model plays an important role in verifying, modifying, and improving the theeoretical dynamics model
Hoell, Simon; Omenzetter, Piotr
2016-03-01
Data-driven vibration-based damage detection techniques can be competitive because of their lower instrumentation and data analysis costs. The use of autoregressive model coefficients (ARMCs) as damage sensitive features (DSFs) is one such technique. So far, like with other DSFs, either full sets of coefficients or subsets selected by trial-and-error have been used, but this can lead to suboptimal composition of multivariate DSFs and decreased damage detection performance. This study enhances the selection of ARMCs for statistical hypothesis testing for damage presence. Two approaches for systematic ARMC selection, based on either adding or eliminating the coefficients one by one or using a genetic algorithm (GA) are proposed. The methods are applied to a numerical model of an aerodynamically excited large composite wind turbine blade with disbonding damage. The GA out performs the other selection methods and enables building multivariate DSFs that markedly enhance early damage detectability and are insensitive to measurement noise.
Schliep, E. M.; Gelfand, A. E.; Holland, D. M.
2015-12-01
There is considerable demand for accurate air quality information in human health analyses. The sparsity of ground monitoring stations across the United States motivates the need for advanced statistical models to predict air quality metrics, such as PM2.5, at unobserved sites. Remote sensing technologies have the potential to expand our knowledge of PM2.5 spatial patterns beyond what we can predict from current PM2.5 monitoring networks. Data from satellites have an additional advantage in not requiring extensive emission inventories necessary for most atmospheric models that have been used in earlier data fusion models for air pollution. Statistical models combining monitoring station data with satellite-obtained aerosol optical thickness (AOT), also referred to as aerosol optical depth (AOD), have been proposed in the literature with varying levels of success in predicting PM2.5. The benefit of using AOT is that satellites provide complete gridded spatial coverage. However, the challenges involved with using it in fusion models are (1) the correlation between the two data sources varies both in time and in space, (2) the data sources are temporally and spatially misaligned, and (3) there is extensive missingness in the monitoring data and also in the satellite data due to cloud cover. We propose a hierarchical autoregressive spatially varying coefficients model to jointly model the two data sources, which addresses the foregoing challenges. Additionally, we offer formal model comparison for competing models in terms of model fit and out of sample prediction of PM2.5. The models are applied to daily observations of PM2.5 and AOT in the summer months of 2013 across the conterminous United States. Most notably, during this time period, we find small in-sample improvement incorporating AOT into our autoregressive model but little out-of-sample predictive improvement.
A new approach to the problem of modelling and predicting respiration motion has been implemented. This is a dual-component model, which describes the respiration motion as a non-periodic time series superimposed onto a periodic waveform. A periodic autoregressive moving average algorithm has been used to define a mathematical model of the periodic and non-periodic components of the respiration motion. The periodic components of the motion were found by projecting multiple inhale-exhale cycles onto a common subspace. The component of the respiration signal that is left after removing this periodicity is a partially autocorrelated time series and was modelled as an autoregressive moving average (ARMA) process. The accuracy of the periodic ARMA model with respect to fluctuation in amplitude and variation in length of cycles has been assessed. A respiration phantom was developed to simulate the inter-cycle variations seen in free-breathing and coached respiration patterns. At ±14% variability in cycle length and maximum amplitude of motion, the prediction errors were 4.8% of the total motion extent for a 0.5 s ahead prediction, and 9.4% at 1.0 s lag. The prediction errors increased to 11.6% at 0.5 s and 21.6% at 1.0 s when the respiration pattern had ±34% variations in both these parameters. Our results have shown that the accuracy of the periodic ARMA model is more strongly dependent on the variations in cycle length than the amplitude of the respiration cycles
Highlights: • An unsupervised clustering algorithm with a neural network model was explored. • The forecasting results of solar radiation time series and the comparison of their performance was simulated. • A new method was proposed combining k-means algorithm and NAR network to provide better prediction results. - Abstract: In this paper, we review our work for forecasting hourly global horizontal solar radiation based on the combination of unsupervised k-means clustering algorithm and artificial neural networks (ANN). k-Means algorithm focused on extracting useful information from the data with the aim of modeling the time series behavior and find patterns of the input space by clustering the data. On the other hand, nonlinear autoregressive (NAR) neural networks are powerful computational models for modeling and forecasting nonlinear time series. Taking the advantage of both methods, a new method was proposed combining k-means algorithm and NAR network to provide better forecasting results
Sidorov, D.; Panasetsky, D.; Šmídl, Václav
Gothenburg : IEEE, 2010, s. 1-5. ISBN 978-1-4244-8508-6. [Innovative Smart Grid Technologies Conference Europe (ISGT Europe). Gothenburgh (SE), 11.10.2010-13.10.2010] R&D Projects: GA ČR GP102/08/P250 Institutional research plan: CEZ:AV0Z10750506 Keywords : power system oscillation * autoregressive model Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering http://library.utia.cas.cz/separaty/2010/AS/smidl-non-stationary autoregressive model for on-line detection of inter-area oscillations in power systems.pdf
Liu, Zhuofu; Wang, Lin; Luo, Zhongming; Heusch, Andrew I; Cascioli, Vincenzo; McCarthy, Peter W
2015-11-01
There is a need to develop a greater understanding of temperature at the skin-seat interface during prolonged seating from the perspectives of both industrial design (comfort/discomfort) and medical care (skin ulcer formation). Here we test the concept of predicting temperature at the seat surface and skin interface during prolonged sitting (such as required from wheelchair users). As caregivers are usually busy, such a method would give them warning ahead of a problem. This paper describes a data-driven model capable of predicting thermal changes and thus having the potential to provide an early warning (15- to 25-min ahead prediction) of an impending temperature that may increase the risk for potential skin damages for those subject to enforced sitting and who have little or no sensory feedback from this area. Initially, the oscillations of the original signal are suppressed using the reconstruction strategy of empirical mode decomposition (EMD). Consequentially, the autoregressive data-driven model can be used to predict future thermal trends based on a shorter period of acquisition, which reduces the possibility of introducing human errors and artefacts associated with longer duration "enforced" sitting by volunteers. In this study, the method had a maximum predictive error of seat and skin interface 15 min ahead, but required 45 min data prior to give this accuracy. Although the 45 min front loading of data appears large (in proportion to the 15 min prediction), a relative strength derives from the fact that the same algorithm could be used on the other 4 sitting datasets created by the same individual, suggesting that the period of 45 min required to train the algorithm is transferable to other data from the same individual. This approach might be developed (along with incorporation of other measures such as movement and humidity) into a system that can give caregivers prior warning to help avoid exacerbating the skin disorders of patients who suffer
Michael Seifert
Full Text Available Changes in gene expression programs play a central role in cancer. Chromosomal aberrations such as deletions, duplications and translocations of DNA segments can lead to highly significant positive correlations of gene expression levels of neighboring genes. This should be utilized to improve the analysis of tumor expression profiles. Here, we develop a novel model class of autoregressive higher-order Hidden Markov Models (HMMs that carefully exploit local data-dependent chromosomal dependencies to improve the identification of differentially expressed genes in tumor. Autoregressive higher-order HMMs overcome generally existing limitations of standard first-order HMMs in the modeling of dependencies between genes in close chromosomal proximity by the simultaneous usage of higher-order state-transitions and autoregressive emissions as novel model features. We apply autoregressive higher-order HMMs to the analysis of breast cancer and glioma gene expression data and perform in-depth model evaluation studies. We find that autoregressive higher-order HMMs clearly improve the identification of overexpressed genes with underlying gene copy number duplications in breast cancer in comparison to mixture models, standard first- and higher-order HMMs, and other related methods. The performance benefit is attributed to the simultaneous usage of higher-order state-transitions in combination with autoregressive emissions. This benefit could not be reached by using each of these two features independently. We also find that autoregressive higher-order HMMs are better able to identify differentially expressed genes in tumors independent of the underlying gene copy number status in comparison to the majority of related methods. This is further supported by the identification of well-known and of previously unreported hotspots of differential expression in glioblastomas demonstrating the efficacy of autoregressive higher-order HMMs for the analysis of individual
APPLICATION OF SECOND KIND MODEL OF AUTOREGRESSION FOR EXTRAPOLATION ECONOMIC TIME SEQUENCE
Odnolko, A.V.; National Aviation University, Kyiv
2012-01-01
For extrapolation of economic time sequence we can use the method of autoregression. Originally given method of autoregression is used for prediction of the time series values. We must know: the first few points of sequence and time interval.
In this paper, we present the use of different mathematical models to forecast electricity price under deregulated power. A successful prediction tool of electricity price can help both power producers and consumers plan their bidding strategies. Inspired by that the support vector regression (SVR) model, with the ε-insensitive loss function, admits of the residual within the boundary values of ε-tube, we propose a hybrid model that combines both SVR and Auto-regressive integrated moving average (ARIMA) models to take advantage of the unique strength of SVR and ARIMA models in nonlinear and linear modeling, which is called SVRARIMA. A nonlinear analysis of the time-series indicates the convenience of nonlinear modeling, the SVR is applied to capture the nonlinear patterns. ARIMA models have been successfully applied in solving the residuals regression estimation problems. The experimental results demonstrate that the model proposed outperforms the existing neural-network approaches, the traditional ARIMA models and other hybrid models based on the root mean square error and mean absolute percentage error.
Al-Bugharbee, Hussein; Trendafilova, Irina
2016-05-01
This study proposes a methodology for rolling element bearings fault diagnosis which gives a complete and highly accurate identification of the faults present. It has two main stages: signals pretreatment, which is based on several signal analysis procedures, and diagnosis, which uses a pattern-recognition process. The first stage is principally based on linear time invariant autoregressive modelling. One of the main contributions of this investigation is the development of a pretreatment signal analysis procedure which subjects the signal to noise cleaning by singular spectrum analysis and then stationarisation by differencing. So the signal is transformed to bring it close to a stationary one, rather than complicating the model to bring it closer to the signal. This type of pretreatment allows the use of a linear time invariant autoregressive model and improves its performance when the original signals are non-stationary. This contribution is at the heart of the proposed method, and the high accuracy of the diagnosis is a result of this procedure. The methodology emphasises the importance of preliminary noise cleaning and stationarisation. And it demonstrates that the information needed for fault identification is contained in the stationary part of the measured signal. The methodology is further validated using three different experimental setups, demonstrating very high accuracy for all of the applications. It is able to correctly classify nearly 100 percent of the faults with regard to their type and size. This high accuracy is the other important contribution of this methodology. Thus, this research suggests a highly accurate methodology for rolling element bearing fault diagnosis which is based on relatively simple procedures. This is also an advantage, as the simplicity of the individual processes ensures easy application and the possibility for automation of the entire process.
Vasios C.E.
2003-01-01
Full Text Available In the present work, a new method for the classification of Event Related Potentials (ERPs is proposed. The proposed method consists of two modules: the feature extraction module and the classification module. The feature extraction module comprises the implementation of the Multivariate Autoregressive model in conjunction with the Simulated Annealing technique, for the selection of optimum features from ERPs. The classification module is implemented with a single three-layer neural network, trained with the back-propagation algorithm and classifies the data into two classes: patients and control subjects. The method, in the form of a Decision Support System (DSS, has been thoroughly tested to a number of patient data (OCD, FES, depressives and drug users, resulting successful classification up to 100%.
Bekti, Rokhana Dwi; Nurhadiyanti, Gita; Irwansyah, Edy
2014-10-01
The diarrhea case pattern information, especially for toddler, is very important. It is used to show the distribution of diarrhea in every region, relationship among that locations, and regional economic characteristic or environmental behavior. So, this research uses spatial pattern to perform them. This method includes: Moran's I, Spatial Autoregressive Models (SAR), and Local Indicator of Spatial Autocorrelation (LISA). It uses sample from 23 sub districts of Bekasi Regency, West Java, Indonesia. Diarrhea case, regional economic, and environmental behavior of households have a spatial relationship among sub district. SAR shows that the percentage of Regional Gross Domestic Product is significantly effect on diarrhea at α = 10%. Therefore illiteracy and health center facilities are significant at α = 5%. With LISA test, sub districts in southern Bekasi have high dependencies with Cikarang Selatan, Serang Baru, and Setu. This research also builds development application that is based on java and R to support data analysis.
Benbenishty, Rami; Astor, Ron Avi; Roziner, Ilan; Wrabel, Stephani L.
2016-01-01
The present study explores the causal link between school climate, school violence, and a school's general academic performance over time using a school-level, cross-lagged panel autoregressive modeling design. We hypothesized that reductions in school violence and climate improvement would lead to schools' overall improved academic performance.…
Forecasting Nord Pool day-ahead prices with an autoregressive model
This paper presents a model to forecast Nord Pool hourly day-ahead prices. The model is based on but reduced in terms of estimation parameters (from 24 sets to 1) and modified to include Nordic demand and Danish wind power as exogenous variables. We model prices across all hours in the analysis period rather than across each single hour of 24 hours. By applying three model variants on Nord Pool data, we achieve a weekly mean absolute percentage error (WMAE) of around 6–7% and an hourly mean absolute percentage error (MAPE) ranging from 8% to 11%. Out of sample results yields a WMAE and an hourly MAPE of around 5%. The models enable analysts and traders to forecast hourly day-ahead prices accurately. Moreover, the models are relatively straightforward and user-friendly to implement. They can be set up in any trading organization. - Highlights: ► Forecasting Nord Pool day-ahead prices with an autoregressive model. ► The model is based on but with the set of parameters reduced from 24 to 1. ► The model includes Nordic demand and Danish wind power as exogenous variables. ► Hourly mean absolute percentage error ranges from 8% to 11%. ► Out of sample results yields a WMAE and an hourly MAPE of around 5%.
[Autoregressive integrated moving average model in predicting road traffic injury in China].
Pang, Yuan-yuan; Zhang, Xu-jun; Tu, Zhi-bin; Cui, Meng-jing; Gu, Yue
2013-07-01
This research aimed to explore the application of autoregressive integrated moving average (ARIMA) model of time series analysis in predicting road traffic injury (RTI) in China and to provide scientific evidence for the prevention and control of RTI. Database was created based on the data collected from monitoring sites in China from 1951 to 2011. The ARIMA model was made. Then it was used to predict RTI in 2012. The ARIMA model of the RTI cases was Yt = e(Y˙t-1+0.456▿Yt-1+et) (et stands for random error). The residual error with 16 lags was white noise and the Ljung-Box test statistic for the model was no statistical significance. The model fitted the data well. True value of RTI cases in 2011 was within 95% CI of predicted values obtained from present model. The model was used to predict value of RTI cases in 2012, and the predictor (95%CI) was 207 838 (107 579-401 536). The ARIMA model could fit the trend of RTI in China. PMID:24257181
Noncausal Bayesian Vector Autoregression
Lanne, Markku; Luoto, Jani
We propose a Bayesian inferential procedure for the noncausal vector autoregressive (VAR) model that is capable of capturing nonlinearities and incorporating effects of missing variables. In particular, we devise a fast and reliable posterior simulator that yields the predictive distribution as a...
Assessment and prediction of air quality using fuzzy logic and autoregressive models
Carbajal-Hernández, José Juan; Sánchez-Fernández, Luis P.; Carrasco-Ochoa, Jesús A.; Martínez-Trinidad, José Fco.
2012-12-01
In recent years, artificial intelligence methods have been used for the treatment of environmental problems. This work, presents two models for assessment and prediction of air quality. First, we develop a new computational model for air quality assessment in order to evaluate toxic compounds that can harm sensitive people in urban areas, affecting their normal activities. In this model we propose to use a Sigma operator to statistically asses air quality parameters using their historical data information and determining their negative impact in air quality based on toxicity limits, frequency average and deviations of toxicological tests. We also introduce a fuzzy inference system to perform parameter classification using a reasoning process and integrating them in an air quality index describing the pollution levels in five stages: excellent, good, regular, bad and danger, respectively. The second model proposed in this work predicts air quality concentrations using an autoregressive model, providing a predicted air quality index based on the fuzzy inference system previously developed. Using data from Mexico City Atmospheric Monitoring System, we perform a comparison among air quality indices developed for environmental agencies and similar models. Our results show that our models are an appropriate tool for assessing site pollution and for providing guidance to improve contingency actions in urban areas.
Li, Chunjian; Andersen, Søren Vang
2007-01-01
We propose two blind system identification methods that exploit the underlying dynamics of non-Gaussian signals. The two signal models to be identified are: an Auto-Regressive (AR) model driven by a discrete-state Hidden Markov process, and the same model whose output is perturbed by white Gaussian...... iterative schemes. The proposed methods also enjoy good data efficiency since only second order statistics is involved in the computation. When measurement noise is present, a novel Switching Kalman Smoother is incorporated into the EM algorithm, obtaining optimum nonlinear MMSE estimates of the system...
Mac Nally, Ralph; Thomson, James R.; Kimmerer, Wim J.; Feyrer, Frederick; Newman, Ken B.; Sih, Andy; Bennett, William A.; Brown, Larry; Fleishman, Erica; Culberson, Steven D.; Castillo, Gonzalo
2010-01-01
Four species of pelagic fish of particular management concern in the upper San Francisco Estuary, California, USA, have declined precipitously since ca. 2002: delta smelt (Hypomesus transpacificus), longfin smelt (Spirinchus thaleichthys), striped bass (Morone saxatilis), and threadfin shad (Dorosoma petenense). The estuary has been monitored since the late 1960s with extensive collection of data on the fishes, their pelagic prey, phytoplankton biomass, invasive species, and physical factors. We used multivariate autoregressive (MAR) modeling to discern the main factors responsible for the declines. An expert-elicited model was built to describe the system. Fifty-four relationships were built into the model, only one of which was of uncertain direction a priori. Twenty-eight of the proposed relationships were strongly supported by or consistent with the data, while 26 were close to zero (not supported by the data but not contrary to expectations). The position of the 2 isohaline (a measure of the physical response of the estuary to freshwater flow) and increased water clarity over the period of analyses were two factors affecting multiple declining taxa (including fishes and the fishes' main zooplankton prey). Our results were relatively robust with respect to the form of stock–recruitment model used and to inclusion of subsidiary covariates but may be enhanced by using detailed state–space models that describe more fully the life-history dynamics of the declining species.
Musafere, F.; Sadhu, A.; Liu, K.
2016-01-01
In the last few decades, structural health monitoring (SHM) has been an indispensable subject in the field of vibration engineering. With the aid of modern sensing technology, SHM has garnered significant attention towards diagnosis and risk management of large-scale civil structures and mechanical systems. In SHM, system identification is one of major building blocks through which unknown system parameters are extracted from vibration data of the structures. Such system information is then utilized to detect the damage instant, and its severity to rehabilitate and prolong the existing health of the structures. In recent years, blind source separation (BSS) algorithm has become one of the newly emerging advanced signal processing techniques for output-only system identification of civil structures. In this paper, a novel damage detection technique is proposed by integrating BSS with the time-varying auto-regressive modeling to identify the instant and severity of damage. The proposed method is validated using a suite of numerical studies and experimental models followed by a full-scale structure.
Reactor stability estimation in a boiling water reactor using a multivariate autoregressive model
As to the stability phenomenon in the core of a BWR, as test methods have become sophisticated to yield high quality data, the information obtained from actual test data has given a better insight into the way of coupling neutron kinetics and thermal hydroulic phenomena. In the dynamic characteristics of a BWR, the reactor core and pressure regulator characteristics are dominant, and both are strongly coupled. The reactor core stability is defined by the invessel reactor dynamics without the effect of plant controllers, therefore, it is necessary to decouple the reactor core dynamics from the pressure regulator in order to estimate accurately the stability performance. In this study, autoregressive technique was applied to both artificial disturbance data, that is, pressure perturbation data and steady state noise data, and it was demonstrated that this model figging yielded more realistic stability performance index than ordinary correlation method, and that the stability index was able to be identified from noise data. The auto regressive fitting of small pressure perturbation test data and the evaluation by transient model and by noise analysis are reported. (Kako, I.)
Autoregressive conditional beta
Yunmi Kim
2012-01-01
The capital asset pricing model provides various predictions about equilibrium expected returns on risky assets. One key prediction is that the risk premium on a risky asset is proportional to the nondiversifiable market risk measured by the asset's beta coefficient. This paper proposes a new method for estimating and drawing inferences from a time-varying capital asset pricing model. The proposed method, which can be considered a vector autoregressive model for multiple beta coefficients, is...
Generalizing smooth transition autoregressions
Chini, Emilio Zanetti
We introduce a variant of the smooth transition autoregression - the GSTAR model - capable to parametrize the asymmetry in the tails of the transition equation by using a particular generalization of the logistic function. A General-to-Specific modelling strategy is discussed in detail, with part......We introduce a variant of the smooth transition autoregression - the GSTAR model - capable to parametrize the asymmetry in the tails of the transition equation by using a particular generalization of the logistic function. A General-to-Specific modelling strategy is discussed in detail...... forecasting experiment to evaluate its point and density forecasting performances. In all the cases, the dynamic asymmetry in the cycle is efficiently captured by the new model. The GSTAR beats AR and STAR competitors in point forecasting, while this superiority becomes less evident in density forecasting...
Fisher, Aaron J; Reeves, Jonathan W; Chi, Cyrus
2016-07-01
Expanding on recently published methods, the current study presents an approach to estimating the dynamic, regulatory effect of the parasympathetic nervous system on heart period on a moment-to-moment basis. We estimated second-to-second variation in respiratory sinus arrhythmia (RSA) in order to estimate the contemporaneous and time-lagged relationships among RSA, interbeat interval (IBI), and respiration rate via vector autoregression. Moreover, we modeled these relationships at lags of 1 s to 10 s, in order to evaluate the optimal latency for estimating dynamic RSA effects. The IBI (t) on RSA (t-n) regression parameter was extracted from individual models as an operationalization of the regulatory effect of RSA on IBI-referred to as dynamic RSA (dRSA). Dynamic RSA positively correlated with standard averages of heart rate and negatively correlated with standard averages of RSA. We propose that dRSA reflects the active downregulation of heart period by the parasympathetic nervous system and thus represents a novel metric that provides incremental validity in the measurement of autonomic cardiac control-specifically, a method by which parasympathetic regulatory effects can be measured in process. PMID:27045609
Usage is described of the computer code DYSAC (Dynamic System Analysis Code) developed for a hybrid computer for the identification and the analysis of system dynamics. A multivariable linear dynamic system is identified based on the autoregressive model using the time series data obtained from a system in operation and the system dynamics thus identified are analyzed. This code includes subroutines for the analysis of step response, frequency response, power spectrum, etc. In order to facilitate handling a large number of various experimental data and to perform the analysis in perspective, considerations for effective utilization of hybrid computer functions and terminal devices are taken in this code, such as; The experimental data record in an analog data recorder are directly input to the analog part of the hybrid computer. The computed results can be plotted on the graphic display and its hard copy is readily available. A series of messages for guidance is given on the display terminal by which the analysis though man-machine interactive computation can be performed. Thus, the required results can be obtained by performing case studies for which necessary parameters are input through the keyboard and the results displayed are checked. (auth.)
Day-ahead prediction using time series partitioning with Auto-Regressive model
Dennis Cheruiyot Kiplangat
2016-08-01
Full Text Available Wind speed forecasting has received a lot of attention in the recent past from researchers due to its enormous benefits in the generation of wind power and distribution. The biggest challenge still remains to be accurate prediction of wind speeds for efficient operation of a wind farm. Wind speed forecasts can be greatly improved by understanding its underlying dynamics. In this paper, we propose a method of time series partitioning where the original 10 minutes wind speed data is converted into a twodimensional array of order (N x 144 where N denotes the number of days with 144 the daily 10-min observations. Upon successful time series partitioning, a point forecast is computed for each of the 144 datasets extracted from the 10 minutes wind speed observations using an Auto-Regressive (AR process which is then combined together to give the (N+1st day forecast. The results of the computations show significant improvement in the prediction accuracy when AR model is coupled with time series partitioning.
Is First-Order Vector Autoregressive Model Optimal for fMRI Data?
Ting, Chee-Ming; Seghouane, Abd-Krim; Khalid, Muhammad Usman; Salleh, Sh-Hussain
2015-09-01
We consider the problem of selecting the optimal orders of vector autoregressive (VAR) models for fMRI data. Many previous studies used model order of one and ignored that it may vary considerably across data sets depending on different data dimensions, subjects, tasks, and experimental designs. In addition, the classical information criteria (IC) used (e.g., the Akaike IC (AIC)) are biased and inappropriate for the high-dimensional fMRI data typically with a small sample size. We examine the mixed results on the optimal VAR orders for fMRI, especially the validity of the order-one hypothesis, by a comprehensive evaluation using different model selection criteria over three typical data types--a resting state, an event-related design, and a block design data set--with varying time series dimensions obtained from distinct functional brain networks. We use a more balanced criterion, Kullback's IC (KIC) based on Kullback's symmetric divergence combining two directed divergences. We also consider the bias-corrected versions (AICc and KICc) to improve VAR model selection in small samples. Simulation results show better small-sample selection performance of the proposed criteria over the classical ones. Both bias-corrected ICs provide more accurate and consistent model order choices than their biased counterparts, which suffer from overfitting, with KICc performing the best. Results on real data show that orders greater than one were selected by all criteria across all data sets for the small to moderate dimensions, particularly from small, specific networks such as the resting-state default mode network and the task-related motor networks, whereas low orders close to one but not necessarily one were chosen for the large dimensions of full-brain networks. PMID:26161816
Patilea, Valentin; Raïssi, Hamdi
2010-01-01
Linear Vector AutoRegressive (VAR) models where the innovations could be unconditionally heteroscedastic and serially dependent are considered. The volatility structure is deterministic and quite general, including breaks or trending variances as special cases. In this framework we propose Ordinary Least Squares (OLS), Generalized Least Squares (GLS) and Adaptive Least Squares (ALS) procedures. The GLS estimator requires the knowledge of the time-varying variance structure while in the ALS ap...
THE CAUSALITY BETWEEN INCOME AND ENERGY CONSUMPTION: A PANEL VECTOR AUTOREGRESSIVE APPROACH
Tony Irawan
2011-08-01
Full Text Available Normal 0 false false false MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} Hubungan sebab-akibat antara pemakaian energi dan pemasukan (produk domestik kotor telah menjadi isu yang sangat penting di bidang ekonomi. Banyak penelitian yang telah dilakukan dan hasilnya beragam dan berlawanan. Dari hasil penelitian menunjukkan bahwa tidak ada hubungan sebab-akibat yang jelas antara kedua variabel tersebut. Penelitian ini bertujuan untuk melakukan investigasi ulang hubungan sebab-akibat tersebut dengan mengaplikasikan metode panel vector autoregressive kepada data dari enam negara terpadat populasinya di dunia. Selain itu, penelitian ini juga menggunakan impulse response function dan variance decomposition. Hasilnya menunjukkan bahwa adanya hubungan sebab-akibat tidak langsung dari pemakaian energi ke pemasukan. Goncangan pemakaian energi mempunyai efek yang positif dan dapat menjelaskan kira-kira 18,7 persen varian pemasukan.
Gross, Kevin; Edmunds, Peter J
2015-07-01
Tropical coral reefs exemplify ecosystems imperiled by environmental change. Anticipating the future of reef ecosystems requires understanding how scleractinian corals respond to the multiple environmental disturbances that threaten their survival. We analyzed the stability of coral reefs at three habitats at different depths along the south shore of St. John, U.S. Virgin Islands, using multivariate autoregression (MAR) models and two decades of monitoring data. We quantified several measures of ecosystem stability, including the magnitude of typical stochastic fluctuations, the rate of recovery following disturbance, and the sensitivity of coral cover to hurricanes and elevated sea temperature. Our results show that, even within a -4 km shore, coral communities in different habitats display different stability properties, and that the stability of each habitat corresponds with the habitat's known synecology. Two Orbicella-dominated habitats are less prone to annual stochastic fluctuations than coral communities in shallower water, but they recover slowly from disturbance, and one habitat has suffered recent losses in scleractinian cover that will not be quickly reversed. In contrast, a shallower, low-coral-cover habitat is subject to greater stochastic fluctuations, but rebounds more quickly from disturbance and is more robust to hurricanes and seawater warming. In some sense, the shallower community is more stable, although the stability arguably arises from having little coral cover left. Our results sharpen understanding of recent changes in coral communities at these habitats, provide a more detailed understanding of how these habitats may change in future environments, and illustrate how MAR models can be used to assess stability of communities founded upon long-lived species. PMID:26378304
Kock, Anders Bredahl
2015-01-01
We show that the adaptive Lasso is oracle efficient in stationary and nonstationary autoregressions. This means that it estimates parameters consistently, selects the correct sparsity pattern, and estimates the coefficients belonging to the relevant variables at the same asymptotic efficiency as if...
Linking Simple Economic Theory Models and the Cointegrated Vector AutoRegressive Model
Møller, Niels Framroze
This paper attempts to clarify the connection between simple economic theory models and the approach of the Cointegrated Vector-Auto-Regressive model (CVAR). By considering (stylized) examples of simple static equilibrium models, it is illustrated in detail, how the theoretical model and its stru....... Further fundamental extensions and advances to more sophisticated theory models, such as those related to dynamics and expectations (in the structural relations) are left for future papers......This paper attempts to clarify the connection between simple economic theory models and the approach of the Cointegrated Vector-Auto-Regressive model (CVAR). By considering (stylized) examples of simple static equilibrium models, it is illustrated in detail, how the theoretical model and its...... demonstrated how other controversial hypotheses such as Rational Expectations can be formulated directly as restrictions on the CVAR-parameters. A simple example of a "Neoclassical synthetic" AS-AD model is also formulated. Finally, the partial- general equilibrium distinction is related to the CVAR as well...
Modeling long-term price development by using time-series auto-regression and expert judgments
Shnyrev, Denis
2009-01-01
The objective of the thesis was to create a long term forecast for pine roundwood timber assortment’s price in Finland for the years 2010 until 2020. The forecast’s purpose was to serve as helpful information in strategic business planning of Oy Karelkon LTD throughout the next decade. The theoretical framework for this thesis was based on quantitative forecasting theory and in particular the theory of autoregressive model of order one, or the AR1 model. This model was applied in order t...
Chao, John C.; Phillips, Peter C.B.
1997-01-01
The current practice for determining the number of cointegrating vectors, or the cointegrating rank, in a vector autoregression (VAR) requires the investigator to perform a sequence of cointegration tests. However, as was shown in Johansen (1992), this type of sequential procedure does not lead to consistent estimation of the cointegrating rank. Moreover, these methods take as given the correct specification of the lag order of the VAR, though in actual applications the true lag length is rar...
Mei-Yu LEE
2014-11-01
Full Text Available This paper investigates the effect of the nonzero autocorrelation coefficients on the sampling distributions of the Durbin-Watson test estimator in three time-series models that have different variance-covariance matrix assumption, separately. We show that the expected values and variances of the Durbin-Watson test estimator are slightly different, but the skewed and kurtosis coefficients are considerably different among three models. The shapes of four coefficients are similar between the Durbin-Watson model and our benchmark model, but are not the same with the autoregressive model cut by one-lagged period. Second, the large sample case shows that the three models have the same expected values, however, the autoregressive model cut by one-lagged period explores different shapes of variance, skewed and kurtosis coefficients from the other two models. This implies that the large samples lead to the same expected values, 2(1 – ρ0, whatever the variance-covariance matrix of the errors is assumed. Finally, comparing with the two sample cases, the shape of each coefficient is almost the same, moreover, the autocorrelation coefficients are negatively related with expected values, are inverted-U related with variances, are cubic related with skewed coefficients, and are U related with kurtosis coefficients.
Mehta, Daryush D; Wolfe, Patrick J
2011-01-01
Vocal tract resonance characteristics in acoustic speech signals are classically tracked using frame-by-frame point estimates of formant frequencies followed by candidate selection and smoothing using dynamic programming methods that minimize ad hoc cost functions. The goal of the current work is to provide both point estimates and associated uncertainties of center frequencies and bandwidths in a statistically principled state-space framework. Extended Kalman (K) algorithms take advantage of a linearized mapping to infer formant and antiformant parameters from frame-based estimates of autoregressive moving average (ARMA) cepstral coefficients. Error analysis of KARMA, WaveSurfer, and Praat is accomplished in the all-pole case using a manually marked formant database and synthesized speech waveforms. KARMA formant tracks exhibit lower overall root-mean-square error relative to the two benchmark algorithms, with third formant tracking more challenging. Antiformant tracking performance of KARMA is illustrated u...
Pinson, Pierre; Madsen, Henrik
2008-01-01
Better modelling and forecasting of very short-term power fluctuations at large offshore wind farms may significantly enhance control and management strategies of their power output. The paper introduces a new methodology for modelling and forecasting such very short-term fluctuations. The proposed...... methodology is based on a Markov-switching autoregressive model with time-varying coefficients. An advantage of the method is that one can easily derive full predictive densities. The quality of this methodology is demonstrated from the test case of 2 large offshore wind farms in Denmark. The exercise...... consists in 1-step ahead forecasting exercise on time-series of wind generation with a time resolution of 10 minute. The quality of the introduced forecasting methodology and its interest for better understanding power fluctuations are finally discussed....
Oil Price Volatility and Economic Growth in Nigeria: a Vector Auto-Regression (VAR Approach
Edesiri Godsday Okoro
2014-02-01
Full Text Available The study examined oil price volatility and economic growth in Nigeria linking oil price volatility, crude oil prices, oil revenue and Gross Domestic Product. Using quarterly data sourced from the Central Bank of Nigeria (CBN Statistical Bulletin and World Bank Indicators (various issues spanning 1980-2010, a non‐linear model of oil price volatility and economic growth was estimated using the VAR technique. The study revealed that oil price volatility has significantly influenced the level of economic growth in Nigeria although; the result additionally indicated a negative relationship between the oil price volatility and the level of economic growth. Furthermore, the result also showed that the Nigerian economy survived on crude oil, to such extent that the country‘s budget is tied to particular price of crude oil. This is not a good sign for a developing economy, more so that the country relies almost entirely on revenue of the oil sector as a source of foreign exchange earnings. This therefore portends some dangers for the economic survival of Nigeria. It was recommended amongst others that there should be a strong need for policy makers to focus on policy that will strengthen/stabilize the economy with specific focus on alternative sources of government revenue. Finally, there should be reduction in monetization of crude oil receipts (fiscal discipline, aggressive saving of proceeds from oil booms in future in order to withstand vicissitudes of oil price volatility in future.
Energy saving and carbon dioxide emission reduction in China is attracting increasing attention worldwide. At present, China is in the phase of rapid urbanization and industrialization, which is characterized by rapid growth of energy consumption. China's transport sector is highly energy-consuming and pollution-intensive. Between 1980 and 2012, the carbon dioxide emissions in China's transport sector increased approximately 9.7 times, with an average annual growth rate of 7.4%. Identifying the driving forces of the increase in carbon dioxide emissions in the transport sector is vital to developing effective environmental policies. This study uses Vector Autoregressive model to analyze the influencing factors of the changes in carbon dioxide emissions in the sector. The results show that energy efficiency plays a dominant role in reducing carbon dioxide emissions. Private vehicles have more impact on emission reduction than cargo turnover due to the surge in private car population and its low energy efficiency. Urbanization also has significant effect on carbon dioxide emissions because of large-scale population movements and the transformation of the industrial structure. These findings are important for the relevant authorities in China in developing appropriate energy policy and planning for the transport sector. - Highlights: • The driving forces of CO2 emissions in China's transport sector were investigated. • Energy efficiency plays a dominant role in reducing carbon dioxide emissions. • Urbanization has significant effect on CO2 emissions due to large-scale migration. • The role of private cars in reducing emissions is more important than cargo turnover
Saedi, Mehdi; Wolk, Jared
2012-01-01
This paper compares a standard GARCH model with a Constant Elasticity of Variance GARCH model across three major currency pairs and the S&P 500 index. We discuss the advantages and disadvantages of using a more sophisticated model designed to estimate the variance of variance instead of assuming it to be a linear function of the conditional variance. The current stochastic volatility and GARCH analogues rest upon this linear assumption. We are able to confirm through empirical estimation ...
Valuing structure, model uncertainty and model averaging in vector autoregressive processes
R.W. Strachan (Rodney); H.K. van Dijk (Herman)
2004-01-01
textabstractEconomic policy decisions are often informed by empirical analysis based on accurate econometric modeling. However, a decision-maker is usually only interested in good estimates of outcomes, while an analyst must also be interested in estimating the model. Accurate inference on structura
Hamisu Sadi Ali; Zulkornain Bin Yusop; Law Siong Hook
2015-01-01
Using autoregressive distributed lag bound test framework, the dynamics of financial development, economic growth, energy prices and energy consumption was investigated in Nigeria for the period of 1972Q1-2011Q4. The finding signifies that variables were cointegrated as null hypothesis was rejected at 1% level of significance. In the short-run financial development has significant negative impact on fossil fuel consumption, economic growth also shows the same relationship. However, energy pri...
Xu, Wan; Khachatryan, Hayk
2013-01-01
The relationship between U.S. nursery industry sales and seven major Integrated Pest Management (IPM) practices was investigated using smooth transition spatial autoregressive models. Controlling for selected production, management, and marketing practices, the results showed that the differential effects of IPM practices on annual sales vary across geography, which has useful implications for industry practitioners.
Geraldo, Issa Cherif [Laboratoire d’Automatique, Génie Informatique et Signal (LAGIS UMR CNRS 8219), Université Lille 1, Sciences et technologies, Avenue Paul Langevin, BP 48, 59651 Villeneuve d’Ascq CEDEX (France); Bose, Tanmoy [Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal (India); Pekpe, Komi Midzodzi, E-mail: midzodzi.pekpe@univ-lille1.fr [Laboratoire d’Automatique, Génie Informatique et Signal (LAGIS UMR CNRS 8219), Université Lille 1, Sciences et technologies, Avenue Paul Langevin, BP 48, 59651 Villeneuve d’Ascq CEDEX (France); Cassar, Jean-Philippe [Laboratoire d’Automatique, Génie Informatique et Signal (LAGIS UMR CNRS 8219), Université Lille 1, Sciences et technologies, Avenue Paul Langevin, BP 48, 59651 Villeneuve d’Ascq CEDEX (France); Mohanty, A.R. [Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal (India); Paumel, Kévin [CEA, DEN, Nuclear Technology Department, F-13108 Saint-Paul-lez-Durance (France)
2014-10-15
Highlights: • The work deals with sodium boiling detection in a liquid metal fast breeder reactor. • The authors choose to use acoustic data instead of thermal data. • The method is designed to not to be disturbed by the environment noises. • A real time boiling detection methods are proposed in the paper. - Abstract: This paper deals with acoustic monitoring of sodium boiling in a liquid metal fast breeder reactor (LMFBR) based on auto regressive (AR) models which have low computational complexities. Some authors have used AR models for sodium boiling or sodium–water reaction detection. These works are based on the characterization of the difference between fault free condition and current functioning of the system. However, even in absence of faults, it is possible to observe a change in the AR models due to the change of operating mode of the LMFBR. This sets up the delicate problem of how to distinguish a change in operating mode in absence of faults and a change due to presence of faults. In this paper we propose a new approach for boiling detection based on the estimation of AR models on sliding windows. Afterwards, classification of the models into boiling or non-boiling models is made by comparing their coefficients by two statistical methods, multiple linear regression (LR) and support vectors machines (SVM). The proposed approach takes into account operating mode information in order to avoid false alarms. Experimental data include non-boiling background noise data collected from Phenix power plant (France) and provided by the CEA (Commissariat à l’Energie Atomique et aux énergies alternatives, France) and boiling condition data generated in laboratory. High boiling detection rates as well as low false alarms rates obtained on these experimental data show that the proposed method is efficient for boiling detection. Most importantly, it shows that the boiling phenomenon introduces a disturbance into the AR models that can be clearly detected.
Highlights: • The work deals with sodium boiling detection in a liquid metal fast breeder reactor. • The authors choose to use acoustic data instead of thermal data. • The method is designed to not to be disturbed by the environment noises. • A real time boiling detection methods are proposed in the paper. - Abstract: This paper deals with acoustic monitoring of sodium boiling in a liquid metal fast breeder reactor (LMFBR) based on auto regressive (AR) models which have low computational complexities. Some authors have used AR models for sodium boiling or sodium–water reaction detection. These works are based on the characterization of the difference between fault free condition and current functioning of the system. However, even in absence of faults, it is possible to observe a change in the AR models due to the change of operating mode of the LMFBR. This sets up the delicate problem of how to distinguish a change in operating mode in absence of faults and a change due to presence of faults. In this paper we propose a new approach for boiling detection based on the estimation of AR models on sliding windows. Afterwards, classification of the models into boiling or non-boiling models is made by comparing their coefficients by two statistical methods, multiple linear regression (LR) and support vectors machines (SVM). The proposed approach takes into account operating mode information in order to avoid false alarms. Experimental data include non-boiling background noise data collected from Phenix power plant (France) and provided by the CEA (Commissariat à l’Energie Atomique et aux énergies alternatives, France) and boiling condition data generated in laboratory. High boiling detection rates as well as low false alarms rates obtained on these experimental data show that the proposed method is efficient for boiling detection. Most importantly, it shows that the boiling phenomenon introduces a disturbance into the AR models that can be clearly detected
Abdel K.M. Baareh
2006-01-01
Full Text Available Forecasting a time series became one of the most challenging tasks to variety of data sets. The existence of large number of parameters to be estimated and the effect of uncertainty and outliers in the measurements makes the time series modeling too complicated. Recently, Artificial Neural Network (ANN became quite successful tool to handle time series modeling problem. This paper provides a solution to the forecasting problem of the river flow for two well known Rivers in the USA. They are the Black Water River and the Gila River. The selected ANN models were used to train and forecast the daily flows of the first station no: 02047500, for the Black Water River near Dendron in Virginia and the second station no: 0944200 for the Gila River near Clifton in Arizona. The feed forward network is trained using the conventional back propagation learning algorithm with many variations in the NN inputs. We explored models built using various historical data. The selection process of various architectures and training data sets for the proposed NN models are presented. A comparative study of both ANN and the conventional Auto-Regression (AR model networks indicates that the artificial neural networks performed better than the AR model. Hence, we recommend ANN as a useful tool for river flow forecasting.
Razana Alwee; Siti Mariyam Hj Shamsuddin; Roselina Sallehuddin
2013-01-01
Crimes forecasting is an important area in the field of criminology. Linear models, such as regression and econometric models, are commonly applied in crime forecasting. However, in real crimes data, it is common that the data consists of both linear and nonlinear components. A single model may not be sufficient to identify all the characteristics of the data. The purpose of this study is to introduce a hybrid model that combines support vector regression (SVR) and autoregressive integrated m...
Chieh-Fan Chen
2011-01-01
Full Text Available This study analyzed meteorological, clinical and economic factors in terms of their effects on monthly ED revenue and visitor volume. Monthly data from January 1, 2005 to September 30, 2009 were analyzed. Spearman correlation and cross-correlation analyses were performed to identify the correlation between each independent variable, ED revenue, and visitor volume. Autoregressive integrated moving average (ARIMA model was used to quantify the relationship between each independent variable, ED revenue, and visitor volume. The accuracies were evaluated by comparing model forecasts to actual values with mean absolute percentage of error. Sensitivity of prediction errors to model training time was also evaluated. The ARIMA models indicated that mean maximum temperature, relative humidity, rainfall, non-trauma, and trauma visits may correlate positively with ED revenue, but mean minimum temperature may correlate negatively with ED revenue. Moreover, mean minimum temperature and stock market index fluctuation may correlate positively with trauma visitor volume. Mean maximum temperature, relative humidity and stock market index fluctuation may correlate positively with non-trauma visitor volume. Mean maximum temperature and relative humidity may correlate positively with pediatric visitor volume, but mean minimum temperature may correlate negatively with pediatric visitor volume. The model also performed well in forecasting revenue and visitor volume.
Long Zhang; Guoliang Xiong; Hesheng Liu; Huijun Zou; Weizhong Guo
2010-04-01
A parametric time-frequency representation is presented based on timevarying autoregressive model (TVAR), followed by applications to non-stationary vibration signal processing. The identiﬁcation of time-varying model coefﬁcients and the determination of model order, are addressed by means of neural networks and genetic algorithms, respectively. Firstly, a simulated signal which mimic the rotor vibration during run-up stages was processed for a comparative study on TVAR and other non-parametric time-frequency representations such as Short Time Fourier Transform, Continuous Wavelet Transform, Empirical Mode Decomposition, Wigner–Ville Distribution and Choi–Williams Distribution, in terms of their resolutions, accuracy, cross term suppression as well as noise resistance. Secondly, TVAR was applied to analyse non-stationary vibration signals collected from a rotor test rig during run-up stages, with an aim to extract fault symptoms under non-stationary operating conditions. Simulation and experimental results demonstrate that TVAR is an effective solution to non-stationary signal analysis and has strong capability in signal time-frequency feature extraction.
Aydin, Alev Dilek; Caliskan Cavdar, Seyma
2015-01-01
The ANN method has been applied by means of multilayered feedforward neural networks (MLFNs) by using different macroeconomic variables such as the exchange rate of USD/TRY, gold prices, and the Borsa Istanbul (BIST) 100 index based on monthly data over the period of January 2000 and September 2014 for Turkey. Vector autoregressive (VAR) method has also been applied with the same variables for the same period of time. In this study, different from other studies conducted up to the present, ENCOG machine learning framework has been used along with JAVA programming language in order to constitute the ANN. The training of network has been done by resilient propagation method. The ex post and ex ante estimates obtained by the ANN method have been compared with the results obtained by the econometric forecasting method of VAR. Strikingly, our findings based on the ANN method reveal that there is a possibility of financial distress or a financial crisis in Turkey starting from October 2017. The results which were obtained with the method of VAR also support the results of ANN method. Additionally, our results indicate that the ANN approach has more superior prediction performance than the VAR method. PMID:26550010
Aydin, Alev Dilek; Caliskan Cavdar, Seyma
2015-01-01
The ANN method has been applied by means of multilayered feedforward neural networks (MLFNs) by using different macroeconomic variables such as the exchange rate of USD/TRY, gold prices, and the Borsa Istanbul (BIST) 100 index based on monthly data over the period of January 2000 and September 2014 for Turkey. Vector autoregressive (VAR) method has also been applied with the same variables for the same period of time. In this study, different from other studies conducted up to the present, ENCOG machine learning framework has been used along with JAVA programming language in order to constitute the ANN. The training of network has been done by resilient propagation method. The ex post and ex ante estimates obtained by the ANN method have been compared with the results obtained by the econometric forecasting method of VAR. Strikingly, our findings based on the ANN method reveal that there is a possibility of financial distress or a financial crisis in Turkey starting from October 2017. The results which were obtained with the method of VAR also support the results of ANN method. Additionally, our results indicate that the ANN approach has more superior prediction performance than the VAR method. PMID:26550010
Gregor, Karol; Danihelka, Ivo; Mnih, Andriy; Blundell, Charles; Wierstra, Daan
2013-01-01
We introduce a deep, generative autoencoder capable of learning hierarchies of distributed representations from data. Successive deep stochastic hidden layers are equipped with autoregressive connections, which enable the model to be sampled from quickly and exactly via ancestral sampling. We derive an efficient approximate parameter estimation method based on the minimum description length (MDL) principle, which can be seen as maximising a variational lower bound on the log-likelihood, with ...
Heart rate variability is a useful clinical tool for autonomic function assessment and cardiovascular disease diagnosis. To investigate the dynamic changes of sympathetic and parasympathetic activities during the cold pressor test, we used a time-varying autoregressive model for the time-frequency analysis of heart rate variability in 101 healthy subjects. We found that there were two sympathetic peaks (or two parasympathetic valleys) when the abrupt changes of temperature (ACT) occurred at the beginning and the end of the cold stimulus and that the sympathetic and parasympathetic activities returned to normal in about the last 2 min of the cold stimulus. These findings suggested that the ACT rather than the low temperature was the major cause of the sympathetic excitation and parasympathetic withdrawal. We also found that the onsets of the sympathetic peaks were 4–26 s prior to the ACT and the returns to normal were 54–57 s after the ACT, which could be interpreted as the feedforward and adaptation of the autonomic regulation process in the human body, respectively. These results might be helpful for understanding the regulatory mechanisms of the autonomic system and its effects on the cardiovascular system. (paper)
Jensen, E W; Lindholm, P; Henneberg, S W
1996-01-01
Average (MTA). However, the MTA is time consuming because a large number of repetitions is needed to produce an estimate of the AEP. Hence, changes occurring over a small number of sweeps will not be detected by the MTA average. We describe a system-identification method, an autoregressive model with...... measured. These measurements showed that ARX-estimated compared to MTA-estimated AEP was significantly faster in tracing transition from consciousness to unconsciousness during propofol induction (p <0.05)....
Jane Law
2016-01-01
Intrinsic conditional autoregressive modeling in a Bayeisan hierarchical framework has been increasingly applied in small-area ecological studies. This study explores the specifications of spatial structure in this Bayesian framework in two aspects: adjacency, i.e., the set of neighbor(s) for each area; and (spatial) weight for each pair of neighbors. Our analysis was based on a small-area study of falling injuries among people age 65 and older in Ontario, Canada, that was aimed to estimate r...
Sufficient conditions for rate-independent hysteresis in autoregressive identified models
Martins, Samir Angelo Milani; Aguirre, Luis Antonio
2016-06-01
This paper shows how hysteresis can be described using polynomial models and what are the sufficient conditions to be met by the model in order to have hysteresis. Such conditions are related to the model equilibria, to the forcing function and to certain term clusters in the polynomial models. The main results of the paper are used in the identification and analysis of nonlinear models estimated from data produced by a magneto-rheological damper (MRD) model with Bouc-Wen rate-independent hysteresis. A striking feature of the identified model is its simplicity and this could turn out to be a key factor in controller design.
Wang, Yiyi; Kockelman, Kara M
2013-11-01
This work examines the relationship between 3-year pedestrian crash counts across Census tracts in Austin, Texas, and various land use, network, and demographic attributes, such as land use balance, residents' access to commercial land uses, sidewalk density, lane-mile densities (by roadway class), and population and employment densities (by type). The model specification allows for region-specific heterogeneity, correlation across response types, and spatial autocorrelation via a Poisson-based multivariate conditional auto-regressive (CAR) framework and is estimated using Bayesian Markov chain Monte Carlo methods. Least-squares regression estimates of walk-miles traveled per zone serve as the exposure measure. Here, the Poisson-lognormal multivariate CAR model outperforms an aspatial Poisson-lognormal multivariate model and a spatial model (without cross-severity correlation), both in terms of fit and inference. Positive spatial autocorrelation emerges across neighborhoods, as expected (due to latent heterogeneity or missing variables that trend in space, resulting in spatial clustering of crash counts). In comparison, the positive aspatial, bivariate cross correlation of severe (fatal or incapacitating) and non-severe crash rates reflects latent covariates that have impacts across severity levels but are more local in nature (such as lighting conditions and local sight obstructions), along with spatially lagged cross correlation. Results also suggest greater mixing of residences and commercial land uses is associated with higher pedestrian crash risk across different severity levels, ceteris paribus, presumably since such access produces more potential conflicts between pedestrian and vehicle movements. Interestingly, network densities show variable effects, and sidewalk provision is associated with lower severe-crash rates. PMID:24036167
Gani, Abdullah; Mohammadi, Kasra; Shamshirband, Shahaboddin; Khorasanizadeh, Hossein; Seyed Danesh, Amir; Piri, Jamshid; Ismail, Zuraini; Zamani, Mazdak
2016-08-01
The availability of accurate solar radiation data is essential for designing as well as simulating the solar energy systems. In this study, by employing the long-term daily measured solar data, a neural network auto-regressive model with exogenous inputs (NN-ARX) is applied to predict daily horizontal global solar radiation using day of the year as the sole input. The prime aim is to provide a convenient and precise way for rapid daily global solar radiation prediction, for the stations and their immediate surroundings with such an observation, without utilizing any meteorological-based inputs. To fulfill this, seven Iranian cities with different geographical locations and solar radiation characteristics are considered as case studies. The performance of NN-ARX is compared against the adaptive neuro-fuzzy inference system (ANFIS). The achieved results prove that day of the year-based prediction of daily global solar radiation by both NN-ARX and ANFIS models would be highly feasible owing to the accurate predictions attained. Nevertheless, the statistical analysis indicates the superiority of NN-ARX over ANFIS. In fact, the NN-ARX model represents high potential to follow the measured data favorably for all cities. For the considered cities, the attained statistical indicators of mean absolute bias error, root mean square error, and coefficient of determination for the NN-ARX models are in the ranges of 0.44-0.61 kWh/m2, 0.50-0.71 kWh/m2, and 0.78-0.91, respectively.
Gani, Abdullah; Mohammadi, Kasra; Shamshirband, Shahaboddin; Khorasanizadeh, Hossein; Seyed Danesh, Amir; Piri, Jamshid; Ismail, Zuraini; Zamani, Mazdak
2015-06-01
The availability of accurate solar radiation data is essential for designing as well as simulating the solar energy systems. In this study, by employing the long-term daily measured solar data, a neural network auto-regressive model with exogenous inputs (NN-ARX) is applied to predict daily horizontal global solar radiation using day of the year as the sole input. The prime aim is to provide a convenient and precise way for rapid daily global solar radiation prediction, for the stations and their immediate surroundings with such an observation, without utilizing any meteorological-based inputs. To fulfill this, seven Iranian cities with different geographical locations and solar radiation characteristics are considered as case studies. The performance of NN-ARX is compared against the adaptive neuro-fuzzy inference system (ANFIS). The achieved results prove that day of the year-based prediction of daily global solar radiation by both NN-ARX and ANFIS models would be highly feasible owing to the accurate predictions attained. Nevertheless, the statistical analysis indicates the superiority of NN-ARX over ANFIS. In fact, the NN-ARX model represents high potential to follow the measured data favorably for all cities. For the considered cities, the attained statistical indicators of mean absolute bias error, root mean square error, and coefficient of determination for the NN-ARX models are in the ranges of 0.44-0.61 kWh/m2, 0.50-0.71 kWh/m2, and 0.78-0.91, respectively.
Forecasting Medium and Large Datasets with Vector Autoregressive Moving Average (VARMA) Models
Dias, Gustavo Fruet; Kapetanios, George
We adress the issue of modelling and forecasting macroeconomic variables using medium and large datasets, by adopting VARMA models. We overcome the estimation issue that arises with this class of models by implementing an iterative ordinary least squares (IOLS) estimator. We establish the...
Bootstrapping the portmanteau tests in weak auto-regressive moving average models
Zhu, Ke
2015-01-01
This paper uses a random weighting (RW) method to bootstrap the critical values for the Ljung-Box/Monti portmanteau tests and weighted Ljung-Box/Monti portmanteau tests in weak ARMA models. Unlike the existing methods, no user-chosen parameter is needed to implement the RW method. As an application, these four tests are used to check the model adequacy in power GARCH models. Simulation evidence indicates that the weighted portmanteau tests have the power advantage over other existing tests...
Non-contact video-based vital sign monitoring using ambient light and auto-regressive models.
Tarassenko, L; Villarroel, M; Guazzi, A; Jorge, J; Clifton, D A; Pugh, C
2014-05-01
Remote sensing of the reflectance photoplethysmogram using a video camera typically positioned 1 m away from the patient's face is a promising method for monitoring the vital signs of patients without attaching any electrodes or sensors to them. Most of the papers in the literature on non-contact vital sign monitoring report results on human volunteers in controlled environments. We have been able to obtain estimates of heart rate and respiratory rate and preliminary results on changes in oxygen saturation from double-monitored patients undergoing haemodialysis in the Oxford Kidney Unit. To achieve this, we have devised a novel method of cancelling out aliased frequency components caused by artificial light flicker, using auto-regressive (AR) modelling and pole cancellation. Secondly, we have been able to construct accurate maps of the spatial distribution of heart rate and respiratory rate information from the coefficients of the AR model. In stable sections with minimal patient motion, the mean absolute error between the camera-derived estimate of heart rate and the reference value from a pulse oximeter is similar to the mean absolute error between two pulse oximeter measurements at different sites (finger and earlobe). The activities of daily living affect the respiratory rate, but the camera-derived estimates of this parameter are at least as accurate as those derived from a thoracic expansion sensor (chest belt). During a period of obstructive sleep apnoea, we tracked changes in oxygen saturation using the ratio of normalized reflectance changes in two colour channels (red and blue), but this required calibration against the reference data from a pulse oximeter. PMID:24681430
Non-contact video-based vital sign monitoring using ambient light and auto-regressive models
Remote sensing of the reflectance photoplethysmogram using a video camera typically positioned 1 m away from the patient’s face is a promising method for monitoring the vital signs of patients without attaching any electrodes or sensors to them. Most of the papers in the literature on non-contact vital sign monitoring report results on human volunteers in controlled environments. We have been able to obtain estimates of heart rate and respiratory rate and preliminary results on changes in oxygen saturation from double-monitored patients undergoing haemodialysis in the Oxford Kidney Unit. To achieve this, we have devised a novel method of cancelling out aliased frequency components caused by artificial light flicker, using auto-regressive (AR) modelling and pole cancellation. Secondly, we have been able to construct accurate maps of the spatial distribution of heart rate and respiratory rate information from the coefficients of the AR model. In stable sections with minimal patient motion, the mean absolute error between the camera-derived estimate of heart rate and the reference value from a pulse oximeter is similar to the mean absolute error between two pulse oximeter measurements at different sites (finger and earlobe). The activities of daily living affect the respiratory rate, but the camera-derived estimates of this parameter are at least as accurate as those derived from a thoracic expansion sensor (chest belt). During a period of obstructive sleep apnoea, we tracked changes in oxygen saturation using the ratio of normalized reflectance changes in two colour channels (red and blue), but this required calibration against the reference data from a pulse oximeter. (paper)
Amado, Cristina; Teräsvirta, Timo
In this paper we investigate the effects of careful modelling the long-run dynamics of the volatilities of stock market returns on the conditional correlation structure. To this end we allow the individual unconditional variances in Conditional Correlation GARCH models to change smoothly over time...... combine the long-run and the short-run dynamic behaviour of the volatilities. The structure of the conditional correlation matrix is assumed to be either time independent or to vary over time. We apply our model to pairs of seven daily stock returns belonging to the S&P 500 composite index and traded at...... the New York Stock Exchange. The results suggest that accounting for deterministic changes in the unconditional variances considerably improves the fit of the multivariate Conditional Correlation GARCH models to the data. The effect of careful specification of the variance equations on the estimated...
Semi-Parametric, Generalized Additive Vector Autoregressive Models of Spatial Price Dynamics
Guney, Selin; Barry K. Goodwin
2013-01-01
An extensive empirical literature addressing the behavior of prices over time and across spatially distinct markets has grown substantially over time. A fundamental axiom of economics--the "Law of One Price"--underlies the arbitrage behavior thought to characterize such relationships. This literature has progressed from a simple consideration of correlation coecents and linear regression models to classes of models that address particular time series properties of price data and consider nonl...
Hassan Abba Musa; Dr. A. Mohammed
2016-01-01
In current practice, the predictive analysis of stochastic problems encompasses a variety of statistical techniques from modeling, machine, and data mining that analyse current and historical facts to make predictions about future. Therefore, this research uses an AR Model whose codes are incorporated in the MATLAB software to predict possible aero-elastic effects of Lekki Bridge based on its existing parametric data and the conditions around the bridge. It was seen that, the fluc...
Teräsvirta, Timo; Yang, Yukai
illustrated by two applications. In the first one, the dynamic relationship between the US gasoline price and consumption is studied and possible asymmetries in it considered. The second application consists of modelling two well known Icelandic riverflow series, previously considered by many hydrologists and...
The Employment of spatial autoregressive models in predicting demand for natural gas
Develop the natural gas network is critical success factor for the distribution company. It is a decision that employs the demand given location 'x' and a future time 't' so that the net allows the best conditions for the return of the capital. In this segment, typical network industry, the spatial infra-structure vision associated to the market allows better evaluation of the business because to mitigate costs and risks. In fact, economic models little developed in order to assess the question of the location, due to its little employment by economists. The objective of this article is to analyze the application of spatial perspective in natural gas demand forecasting and to identify the models that can be employed observing issues of dependency and spatial heterogeneity; as well as the capacity of mapping of variables associated with the problem. (author)
Hassan Abba Musa
2016-06-01
Full Text Available In current practice, the predictive analysis of stochastic problems encompasses a variety of statistical techniques from modeling, machine, and data mining that analyse current and historical facts to make predictions about future. Therefore, this research uses an AR Model whose codes are incorporated in the MATLAB software to predict possible aero-elastic effects of Lekki Bridge based on its existing parametric data and the conditions around the bridge. It was seen that, the fluctuating components of the wind velocity as displayed by the fluctuant curve will result in the vibration of the structure, even strengthening the resonance effect of the structure. Therefore, it suggested that, the natural frequency of the bridge should be set aside far from system frequency considering direct parametric excitation of pedestrian or vehicular traffic speed.
Testing Parameter Constancy in Unit Root Autoregressive Models Against Continuous Change
He, Changli; Sandberg, Rickard
2005-01-01
In this paper we derive tests for parameter constancy when the data generating process is non-stationary against the hypothesis that the parameters of the model change smoothly over time. To obtain the asymptotic distributions of the tests we generalize many theoretical results, as well as new are introduced, in the area of unit roots. The results are derived under the assumption that the error term is a strong mixing. Small sample properties of the tests are investigated, and in particular, ...
FACE EXPRESSION RECOGNITION USING AUTOREGRESSIVE MODELS TO TRAIN NEURAL NETWORK CLASSIFIERS
M. Saaidia; A. Gattal; M. Maamri; M. Ramdani
2012-01-01
Neural network classifying method is used in this work to perform facial expression recognition. The processed expressions were the six most pertinent facial expressions and the neutral one. This operation was implemented in three steps. First, a neural network, trained using Zernike moments, was applied to the set of the well known Yale and JAFFE database images to perform face detection. In the second step, Auto Regressive modeling (AR) using 2D- Burg and Levinson filters was used for facia...
Li, Zhixiong; Yan, Xinping; Yuan, Chengqing; Peng, Zhongxiao; Li, Li
2011-10-01
Gear systems are an essential element widely used in a variety of industrial applications. Since approximately 80% of the breakdowns in transmission machinery are caused by gear failure, the efficiency of early fault detection and accurate fault diagnosis are therefore critical to normal machinery operations. Reviewed literature indicates that only limited research has considered the gear multi-fault diagnosis, especially for single, coupled distributed and localized faults. Through virtual prototype simulation analysis and experimental study, a novel method for gear multi-fault diagnosis has been presented in this paper. This new method was developed based on the integration of Wavelet transform (WT) technique, Autoregressive (AR) model and Principal Component Analysis (PCA) for fault detection. The WT method was used in the study as the de-noising technique for processing raw vibration signals. Compared with the noise removing method based on the time synchronous average (TSA), the WT technique can be performed directly on the raw vibration signals without the need to calculate any ensemble average of the tested gear vibration signals. More importantly, the WT can deal with coupled faults of a gear pair in one operation while the TSA must be carried out several times for multiple fault detection. The analysis results of the virtual prototype simulation prove that the proposed method is a more time efficient and effective way to detect coupled fault than TSA, and the fault classification rate is superior to the TSA based approaches. In the experimental tests, the proposed method was compared with the Mahalanobis distance approach. However, the latter turns out to be inefficient for the gear multi-fault diagnosis. Its defect detection rate is below 60%, which is much less than that of the proposed method. Furthermore, the ability of the AR model to cope with localized as well as distributed gear faults is verified by both the virtual prototype simulation and
OLS Estimator for a Mixed Regressive, Spatial Autoregressive Model: Extended Version
Mynbaev, Kairat
2009-01-01
We find the asymptotic distribution of the OLS estimator of the parameters $% \\beta$ and $\\rho$ in the mixed spatial model with exogenous regressors $% Y_n=X_n\\beta+\\rho W_nY_n+V_n$. The exogenous regressors may be bounded or growing, like polynomial trends. The assumption about the spatial matrix $W_n $ is appropriate for the situation when each economic agent is influenced by many others. The error term is a short-memory linear process. The key finding is that in general the asymptotic dist...
Dean, Roger T; Dunsmuir, William T M
2016-06-01
Many articles on perception, performance, psychophysiology, and neuroscience seek to relate pairs of time series through assessments of their cross-correlations. Most such series are individually autocorrelated: they do not comprise independent values. Given this situation, an unfounded reliance is often placed on cross-correlation as an indicator of relationships (e.g., referent vs. response, leading vs. following). Such cross-correlations can indicate spurious relationships, because of autocorrelation. Given these dangers, we here simulated how and why such spurious conclusions can arise, to provide an approach to resolving them. We show that when multiple pairs of series are aggregated in several different ways for a cross-correlation analysis, problems remain. Finally, even a genuine cross-correlation function does not answer key motivating questions, such as whether there are likely causal relationships between the series. Thus, we illustrate how to obtain a transfer function describing such relationships, informed by any genuine cross-correlations. We illustrate the confounds and the meaningful transfer functions by two concrete examples, one each in perception and performance, together with key elements of the R software code needed. The approach involves autocorrelation functions, the establishment of stationarity, prewhitening, the determination of cross-correlation functions, the assessment of Granger causality, and autoregressive model development. Autocorrelation also limits the interpretability of other measures of possible relationships between pairs of time series, such as mutual information. We emphasize that further complexity may be required as the appropriate analysis is pursued fully, and that causal intervention experiments will likely also be needed. PMID:26100765
刘震; 王厚军; 龙兵; 张治国
2009-01-01
针对电子系统状态趋势预测问题,提出了一种加权隐马尔可夫模型的自回归趋势预测方法.该方法以自回归模型作为隐马尔可夫的状态输出,利用加权预测思想对马尔可夫链中的隐状态进行混合高斯模型的加权序列预测,并利用最大概率隐状态下的自回归系数计算模型输出.通过对实际的复杂混沌序列和电子系统BIT状态数据进行趋势预测,并针对不同模型参数下的预测结果进行实验分析,结果表明该方法对系统状态变化的趋势具有较好的预测性能.%A novel trend prediction approach based on weighed hidden Markov model (HMM) and autoregressive model (AR) is presented in order to solve this problem of bend prediction for complex electronic system. This approach regards the autoregressive model as the output of HMM, uses weighted prediction method and mixed Gaussianin model to predict the hidden state of Markov chain,and calculates the output of model by using the regression coefficient of the maximum probability hidden state. This approach is applied to the trend prediction of complex chaotic time series and typical electronic equipment's BIT data, and the effects of various model parameters on trend prediction precision are discussed.The experiments based on condition trend prediction for electronic equipments demonstrate the effectiveness of the method.
Data-Driven Inference on Sign Restrictions in Bayesian Structural Vector Autoregression
Lanne, Markku; Luoto, Jani
Sign-identified structural vector autoregressive (SVAR) models have recently become popular. However, the conventional approach to sign restrictions only yields set identification, and implicitly assumes an informative prior distribution of the impulse responses whose influence does not vanish as...... methods by two empirical applications to U.S. macroeconomic data....
Hualin Xie
2013-12-01
Full Text Available Ecological land is one of the key resources and conditions for the survival of humans because it can provide ecosystem services and is particularly important to public health and safety. It is extremely valuable for effective ecological management to explore the evolution mechanisms of ecological land. Based on spatial statistical analyses, we explored the spatial disparities and primary potential drivers of ecological land change in the Poyang Lake Eco-economic Zone of China. The results demonstrated that the global Moran’s I value is 0.1646 during the 1990 to 2005 time period and indicated signiﬁcant positive spatial correlation (p < 0.05. The results also imply that the clustering trend of ecological land changes weakened in the study area. Some potential driving forces were identified by applying the spatial autoregressive model in this study. The results demonstrated that the higher economic development level and industrialization rate were the main drivers for the faster change of ecological land in the study area. This study also tested the superiority of the spatial autoregressive model to study the mechanisms of ecological land change by comparing it with the traditional linear regressive model.
Autoregressive description of biological phenomena
Morariu, Vasile V; Pop, Alexadru; Soltuz, Stefan M; Buimaga-Iarinca, Luiza; Zainea, Oana
2008-01-01
Many natural phenomena can be described by power-laws. A closer look at various experimental data reveals more or less significant deviations from a 1/f spectrum. We exemplify such cases with phenomena offered by molecular biology, cell biophysics, and cognitive psychology. Some of these cases can be described by first order autoregressive (AR) models or by higher order AR models which are short range correlation models. The calculations are checked against astrophysical data which were fitted to a an AR model by a different method. We found that our fitting method of the data give similar results for the astrhophysical data and therefore applied the method for examples mentioned above. Our results show that such phenomena can be described by first or higher order of AR models. Therefore such examples are described by short range correlation properties while they can be easily confounded with long range correlation phenomena.
Oracle Inequalities for High Dimensional Vector Autoregressions
Callot, Laurent; Kock, Anders Bredahl
This paper establishes non-asymptotic oracle inequalities for the prediction error and estimation accuracy of the LASSO in stationary vector autoregressive models. These inequalities are used to establish consistency of the LASSO even when the number of parameters is of a much larger order of...... hence the correct sparsity pattern). Finally conditions under which the Adaptive LASSO reveals the correct sign pattern with probability tending to one are given. Again, the number of parameters may be much larger than the sample size. Some maximal inequalities for vector autoregressions which might be...
Nanda, Trushnamayee; Sahoo, Bhabagrahi; Beria, Harsh; Chatterjee, Chandranath
2016-08-01
Although flood forecasting and warning system is a very important non-structural measure in flood-prone river basins, poor raingauge network as well as unavailability of rainfall data in real-time could hinder its accuracy at different lead times. Conversely, since the real-time satellite-based rainfall products are now becoming available for the data-scarce regions, their integration with the data-driven models could be effectively used for real-time flood forecasting. To address these issues in operational streamflow forecasting, a new data-driven model, namely, the wavelet-based non-linear autoregressive with exogenous inputs (WNARX) is proposed and evaluated in comparison with four other data-driven models, viz., the linear autoregressive moving average with exogenous inputs (ARMAX), static artificial neural network (ANN), wavelet-based ANN (WANN), and dynamic nonlinear autoregressive with exogenous inputs (NARX) models. First, the quality of input rainfall products of Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis (TMPA), viz., TRMM and TRMM-real-time (RT) rainfall products is assessed through statistical evaluation. The results reveal that the satellite rainfall products moderately correlate with the observed rainfall, with the gauge-adjusted TRMM product outperforming the real-time TRMM-RT product. The TRMM rainfall product better captures the ground observations up to 95 percentile range (30.11 mm/day), although the hit rate decreases for high rainfall intensity. The effect of antecedent rainfall (AR) and climate forecast system reanalysis (CFSR) temperature product on the catchment response is tested in all the developed models. The results reveal that, during real-time flow simulation, the satellite-based rainfall products generally perform worse than the gauge-based rainfall. Moreover, as compared to the existing models, the flow forecasting by the WNARX model is way better than the other four models studied herein with the
Birkel, C.; Paroli, R.; Spezia, L.; Tetzlaff, D.; Soulsby, C.
2012-12-01
In this paper we present a novel model framework using the class of Markov Switching Autoregressive Models (MSARMs) to examine catchments as complex stochastic systems that exhibit non-stationary, non-linear and non-Normal rainfall-runoff and solute dynamics. Hereby, MSARMs are pairs of stochastic processes, one observed and one unobserved, or hidden. We model the unobserved process as a finite state Markov chain and assume that the observed process, given the hidden Markov chain, is conditionally autoregressive, which means that the current observation depends on its recent past (system memory). The model is fully embedded in a Bayesian analysis based on Markov Chain Monte Carlo (MCMC) algorithms for model selection and uncertainty assessment. Hereby, the autoregressive order and the dimension of the hidden Markov chain state-space are essentially self-selected. The hidden states of the Markov chain represent unobserved levels of variability in the observed process that may result from complex interactions of hydroclimatic variability on the one hand and catchment characteristics affecting water and solute storage on the other. To deal with non-stationarity, additional meteorological and hydrological time series along with a periodic component can be included in the MSARMs as covariates. This extension allows identification of potential underlying drivers of temporal rainfall-runoff and solute dynamics. We applied the MSAR model framework to streamflow and conservative tracer (deuterium and oxygen-18) time series from an intensively monitored 2.3 km2 experimental catchment in eastern Scotland. Statistical time series analysis, in the form of MSARMs, suggested that the streamflow and isotope tracer time series are not controlled by simple linear rules. MSARMs showed that the dependence of current observations on past inputs observed by transport models often in form of the long-tailing of travel time and residence time distributions can be efficiently explained by
This communication presents the development of a comprehensive characterization of ozone layer depletion (OLD) phenomenon as a physical process in the form of mathematical models that comprise the usual regression, multiple or polynomial regression and stochastic strategy. The relevance of these models has been illuminated using predicted values of different parameters under a changing environment. The information obtained from such analysis can be employed to alter the possible factors and variables to achieve optimum performance. This kind of analysis initiates a study towards formulating the phenomenon of OLD as a physical process with special reference to the stratospheric region of Pakistan. The data presented here establishes that the Auto regressive (AR) nature of modeling OLD as a physical process is an appropriate scenario rather than using usual regression. The data reported in literature suggest quantitatively the OLD is occurring in our region. For this purpose we have modeled this phenomenon using the data recorded at the Geophysical Centre Quetta during the period 1960-1999. The predictions made by this analysis are useful for public, private and other relevant organizations. (author)
Razana Alwee
2013-01-01
Full Text Available Crimes forecasting is an important area in the field of criminology. Linear models, such as regression and econometric models, are commonly applied in crime forecasting. However, in real crimes data, it is common that the data consists of both linear and nonlinear components. A single model may not be sufficient to identify all the characteristics of the data. The purpose of this study is to introduce a hybrid model that combines support vector regression (SVR and autoregressive integrated moving average (ARIMA to be applied in crime rates forecasting. SVR is very robust with small training data and high-dimensional problem. Meanwhile, ARIMA has the ability to model several types of time series. However, the accuracy of the SVR model depends on values of its parameters, while ARIMA is not robust to be applied to small data sets. Therefore, to overcome this problem, particle swarm optimization is used to estimate the parameters of the SVR and ARIMA models. The proposed hybrid model is used to forecast the property crime rates of the United State based on economic indicators. The experimental results show that the proposed hybrid model is able to produce more accurate forecasting results as compared to the individual models.
Estimation of Time Varying Autoregressive Symmetric Alpha Stable
National Aeronautics and Space Administration — In this work, we present a novel method for modeling time-varying autoregressive impulsive signals driven by symmetric alpha stable distributions. The proposed...
Monitoring time-varying parameters in an autoregression
Carsoule, Frédéric; Franses, Philip Hans
1999-01-01
textabstractWe develop a sequential testing approach for a structural change in the parameters of an autoregression, which amounts to a monitoring procedure with a controlled asymptotic size as we repeat the test. Our method can be used as a general misspecification test. We apply our method to monthly US industrial production in order to investigate if its autoregressive behavior and/or its innovation variance have changed during the twentieth century.
Bessac, Julie; Ailliot, Pierre; Cattiaux, Julien; Monbet, Valerie
2016-02-01
Several multi-site stochastic generators of zonal and meridional components of wind are proposed in this paper. A regime-switching framework is introduced to account for the alternation of intensity and variability that is observed in wind conditions due to the existence of different weather types. This modeling blocks time series into periods in which the series is described by a single model. The regime-switching is modeled by a discrete variable that can be introduced as a latent (or hidden) variable or as an observed variable. In the latter case a clustering algorithm is used before fitting the model to extract the regime. Conditional on the regimes, the observed wind conditions are assumed to evolve as a linear Gaussian vector autoregressive (VAR) model. Various questions are explored, such as the modeling of the regime in a multi-site context, the extraction of relevant clusterings from extra variables or from the local wind data, and the link between weather types extracted from wind data and large-scale weather regimes derived from a descriptor of the atmospheric circulation. We also discuss the relative advantages of hidden and observed regime-switching models. For artificial stochastic generation of wind sequences, we show that the proposed models reproduce the average space-time motions of wind conditions, and we highlight the advantage of regime-switching models in reproducing the alternation of intensity and variability in wind conditions.
Valipour, Mohammad; Banihabib, Mohammad Ebrahim; Behbahani, Seyyed Mahmood Reza
2013-01-01
SummaryThe goal of the present research is forecasting the inflow of Dez dam reservoir by using Auto Regressive Moving Average (ARMA) and Auto Regressive Integrated Moving Average (ARIMA) models while increasing the number of parameters in order to increase the forecast accuracy to four parameters and comparing them with the static and dynamic artificial neural networks. In this research, monthly discharges from 1960 to 2007 were used. The statistics related to first 42 years were used to train the models and the 5 past years were used to forecast. In ARMA and ARIMA models, the polynomial was derived respectively with four and six parameters to forecast the inflow. In the artificial neural network, the radial and sigmoid activity functions were used with several different neurons in the hidden layers. By comparing root mean square error (RMSE) and mean bias error (MBE), dynamic artificial neural network model with sigmoid activity function and 17 neurons in the hidden layer was chosen as the best model for forecasting inflow of the Dez dam reservoir. Inflow of the dam reservoir in the 12 past months shows that ARIMA model had a less error compared with the ARMA model. Static and Dynamic autoregressive artificial neural networks with activity sigmoid function can forecast the inflow to the dam reservoirs from the past 60 months.
The purpose of this study was to investigate the feasibility of the autoregressive moving average (ARMA) model for quantification of cerebral blood flow (CBF) with dynamic susceptibility contrast-enhanced magnetic resonance imaging (DSC-MRI) in comparison with deconvolution analysis based on singular value decomposition (DA-SVD). Using computer simulations, we generated a time-dependent concentration of the contrast agent in the volume of interest (VOI) from the arterial input function (AIF) modeled as a gamma-variate function under various CBFs, cerebral blood volumes and signal-to-noise ratios (SNRs) for three different types of residue function (exponential, triangular, and box-shaped). We also considered the effects of delay and dispersion in AIF. The ARMA model and DA-SVD were used to estimate CBF values from the simulated concentration-time curves in the VOI and AIFs, and the estimated values were compared with the assumed values. We found that the CBF value estimated by the ARMA model was more sensitive to the SNR and the delay in AIF than that obtained by DA-SVD. Although the ARMA model considerably overestimated CBF at low SNRs, it estimated the CBF more accurately than did DA-SVD at high SNRs for the exponential or triangular residue function. We believe this study will contribute to an understanding of the usefulness and limitations of the ARMA model when applied to quantification of CBF with DSC-MRI. (author)
Testing second order dynamics for autoregressive processes in presence of time-varying variance
Patilea, Valentin; Raïssi, Hamdi
2012-01-01
The volatility modeling for autoregressive univariate time series is considered. A benchmark approach is the stationary ARCH model of Engle (1982). Motivated by real data evidence, processes with non constant unconditional variance and ARCH effects have been recently introduced. We take into account such possible non stationarity and propose simple testing procedures for ARCH effects. Adaptive McLeod and Li's portmanteau and ARCH-LM tests for checking for second order dynamics are provided. T...
Autoregressive Prediction with Rolling Mechanism for Time Series Forecasting with Small Sample Size
Zhihua Wang; Yongbo Zhang; Huimin Fu
2014-01-01
Reasonable prediction makes significant practical sense to stochastic and unstable time series analysis with small or limited sample size. Motivated by the rolling idea in grey theory and the practical relevance of very short-term forecasting or 1-step-ahead prediction, a novel autoregressive (AR) prediction approach with rolling mechanism is proposed. In the modeling procedure, a new developed AR equation, which can be used to model nonstationary time series, is constructed in each predictio...
Juan D Velásquez
2008-12-01
Full Text Available Una red neuronal autorregresiva es estimada para el precio mensual brasileño de corto plazo de la electricidad, la cual describe mejor la dinámica de los precios que un modelo lineal autorregresivo y que un perceptrón multicapa clásico que usan las mismas entradas y neuronas en la capa oculta. El modelo propuesto es especificado usando un procedimiento estadístico basado en el contraste del radio de verosimilitud. El modelo pasa una batería de pruebas de diagnóstico. El procedimiento de especificación propuesto permite seleccionar el número de unidades en la capa oculta y las entradas a la red neuronal, usando pruebas estadísticas que tienen en cuenta la cantidad de los datos y el ajuste del modelo a la serie de precios. La especificación del modelo final demuestra que el precio para el próximo mes es una función no lineal del precio actual, de la energía afluente actual y de la energía almacenada en el embalse equivalente en el mes actual y dos meses atrás.An autoregressive neural network model is estimated for the monthly Brazilian electricity spot price, which describes the prices dynamics better than a linear autoregressive model and a classical multilayer perceptron using the same input and neurons in the hidden layer. The proposed model is specified using a statistical procedure based on a likelihood ratio test. The model passes a battery of diagnostic tests. The proposed specification procedure allows us to select the number of units in hidden layer and the inputs to the neural network based on statistical tests, taking into account the number of data and the model fitting to the price time series. The final model specification demonstrates that the price for the next month is a nonlinear function of the current price, the current energy inflow, and the energy saved in the equivalent reservoir in the current month and two months ago.
Liang, Hao; Gao, Lian; Liang, Bingyu; Huang, Jiegang; Zang, Ning; Liao, Yanyan; Yu, Jun; Lai, Jingzhen; Qin, Fengxiang; Su, Jinming; Ye, Li; Chen, Hui
2016-01-01
Background Hepatitis is a serious public health problem with increasing cases and property damage in Heng County. It is necessary to develop a model to predict the hepatitis epidemic that could be useful for preventing this disease. Methods The autoregressive integrated moving average (ARIMA) model and the generalized regression neural network (GRNN) model were used to fit the incidence data from the Heng County CDC (Center for Disease Control and Prevention) from January 2005 to December 2012. Then, the ARIMA-GRNN hybrid model was developed. The incidence data from January 2013 to December 2013 were used to validate the models. Several parameters, including mean absolute error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE) and mean square error (MSE), were used to compare the performance among the three models. Results The morbidity of hepatitis from Jan 2005 to Dec 2012 has seasonal variation and slightly rising trend. The ARIMA(0,1,2)(1,1,1)12 model was the most appropriate one with the residual test showing a white noise sequence. The smoothing factor of the basic GRNN model and the combined model was 1.8 and 0.07, respectively. The four parameters of the hybrid model were lower than those of the two single models in the validation. The parameters values of the GRNN model were the lowest in the fitting of the three models. Conclusions The hybrid ARIMA-GRNN model showed better hepatitis incidence forecasting in Heng County than the single ARIMA model and the basic GRNN model. It is a potential decision-supportive tool for controlling hepatitis in Heng County. PMID:27258555
Biyanto, Totok R.
2016-06-01
Fouling in a heat exchanger in Crude Preheat Train (CPT) refinery is an unsolved problem that reduces the plant efficiency, increases fuel consumption and CO2 emission. The fouling resistance behavior is very complex. It is difficult to develop a model using first principle equation to predict the fouling resistance due to different operating conditions and different crude blends. In this paper, Artificial Neural Networks (ANN) MultiLayer Perceptron (MLP) with input structure using Nonlinear Auto-Regressive with eXogenous (NARX) is utilized to build the fouling resistance model in shell and tube heat exchanger (STHX). The input data of the model are flow rates and temperatures of the streams of the heat exchanger, physical properties of product and crude blend data. This model serves as a predicting tool to optimize operating conditions and preventive maintenance of STHX. The results show that the model can capture the complexity of fouling characteristics in heat exchanger due to thermodynamic conditions and variations in crude oil properties (blends). It was found that the Root Mean Square Error (RMSE) are suitable to capture the nonlinearity and complexity of the STHX fouling resistance during phases of training and validation.
Generalization of Brownian Motion with Autoregressive Increments
Fendick, Kerry
2011-01-01
This paper introduces a generalization of Brownian motion with continuous sample paths and stationary, autoregressive increments. This process, which we call a Brownian ray with drift, is characterized by three parameters quantifying distinct effects of drift, volatility, and autoregressiveness. A Brownian ray with drift, conditioned on its state at the beginning of an interval, is another Brownian ray with drift over the interval, and its expected path over the interval is a ray with a slope that depends on the conditioned state. This paper shows how Brownian rays can be applied in finance for the analysis of queues or inventories and the valuation of options. We model a queue's net input process as a superposition of Brownian rays with drift and derive the transient distribution of the queue length conditional on past queue lengths and on past states of the individual Brownian rays comprising the superposition. The transient distributions of Regulated Brownian Motion and of the Regulated Brownian Bridge are...
Jane Law
2016-03-01
Full Text Available Intrinsic conditional autoregressive modeling in a Bayeisan hierarchical framework has been increasingly applied in small-area ecological studies. This study explores the specifications of spatial structure in this Bayesian framework in two aspects: adjacency, i.e., the set of neighbor(s for each area; and (spatial weight for each pair of neighbors. Our analysis was based on a small-area study of falling injuries among people age 65 and older in Ontario, Canada, that was aimed to estimate risks and identify risk factors of such falls. In the case study, we observed incorrect adjacencies information caused by deficiencies in the digital map itself. Further, when equal weights was replaced by weights based on a variable of expected count, the range of estimated risks increased, the number of areas with probability of estimated risk greater than one at different probability thresholds increased, and model fit improved. More importantly, significance of a risk factor diminished. Further research to thoroughly investigate different methods of variable weights; quantify the influence of specifications of spatial weights; and develop strategies for better defining spatial structure of a map in small-area analysis in Bayesian hierarchical spatial modeling is recommended.
The paper develops a function of energy consumption, population growth, economic growth and urbanization process, and provides fresh empirical evidences for urbanization and energy consumption for China over the period 1978-2008 through the use of ARDL testing approach and factor decomposition model. The results of the bounds test show that there is a stable long run relationship amongst total energy consumption, population, GDP (Gross domestic product) and urbanization level when total energy consumption is the dependent variable in China. The results of the causality test with ECM (error correction model) specification, the short run and long run dynamics of the interested variables are tested, indicating that there exists only a unidirectional Granger causality running from urbanization to total energy consumption both in the long run and in the short run. At present, the contribution share which urbanization drags the energy consumption is smaller than that in the past, and the intensity holds a downward trend. Therefore, together with enhancing energy efficiency, accelerating the urbanization process that can cut reliance on resource and energy dependent industries is a fundamental strategy to solve the sustainable development dilemma between energy consumption and urbanization.
苗恩铭; 龚亚运; 牛鹏程; 费业泰
2013-01-01
对多元线性回归模型、回归与残差AR叠合模型和自回归分布滞后模型3种热误差建模方法进行了介绍与比对分析.多元线性回归模型方法简单快捷,但因热误差呈非线性且具有互交作用,较难获得精确热误差数学模型.后两个模型均属时间序列分析方法,其优点是能够比较精确地建立热误差数学模型,两者的区别是叠合模型把参数估计分成两部分,而自回归分布滞后模型是统一估计参数,因此叠合模型的精度要低于自回归分布滞后模型精度,并通过实例验证,自回归分布滞后模型在精密数控机床热误差建模中具有较好的建模精度.%Three modeling methods are introduced and analyzed,including multiple linear regression model,congruence model which combine multiple linear regression model with AR model of its residual error and autoregressive distributed lag model.Multiple linear regression analysis is a simple and quick modeling method,but thermal error is nonlinear and interactive,and it is difficult to model a precise least squares model of thermal error.The congruence model and autoregressive distributed lag model belong to time series analysis method which has the advanced that the precise mathematical model can be established.The distinctions of the two models are that:the congruence model divided the parameter into two parts to estimate respectively,but autoregressive distributed lag model estimate parameter uniformly,so the accuracy of congruence model is lower than that of the autoregressive distributed lag model,and this conclusion is proved by the actual example that the autoregressive distributed lag model used to calculate the thermal error of precision CNC machine tools is a good way to improve modeling accuracy.
Iwata, Tetsuo; Ito, Ritsuki; Mizutani, Yasuhiro; Araki, Tsutomu
2009-11-01
We propose a novel method for measuring fluorescence lifetimes by use of a pulsed-excitation light source and an ordinary or a high-gain photomultiplier tube (PMT) with a high-load resistor. In order to obtain the values of fluorescence lifetimes, we adopt a normal data-processing procedure used in phase-modulation fluorometry. We apply an autoregressive (AR)-model-based data-analysis technique to fluorescence- and reference-response time-series data obtained from the PMT in order to derive plural values of phase differences at a repetition frequency of the pulsed-excitation light source and its harmonic ones. The connection of the high-load resistor enhances sensitivity in signal detection in a certain condition. Introduction of the AR-model-based data-analysis technique improves precision in estimating the values of fluorescence lifetimes. Depending on the value of the load resistor and that of the repetition frequency, plural values of fluorescence lifetimes are obtained at one time by utilizing the phase information of harmonic frequencies. Because the proposed measurement system is simple to construct, it might be effective when we need to know approximate values of fluorescence lifetimes readily, such as in the field of biochemistry for a screening purpose. PMID:19891834
Keiichi Kubota; Hitoshi Takehara
2011-01-01
This paper investigates how the information content contained in components of earnings is impounded into stock prices and provides new evidence on market efficiency for firms listed on the Tokyo Stock Exchange First and Second Sections. First, we conduct a conventional pooled Mishkin test to examine whether stocks are rationally priced or not, and claim how this particular test can result in misleading observations if we erroneously pool the data for the overall sample period by completely d...
睡眠脑电的自回归模型阶数特性%Autoregressive Model Order Property for Sleep EEG
王涛; 王国辉; 冯焕清
2004-01-01
传统睡眠脑电(Sleep EEG)研究从信号的时域和频域的特征分析睡眠过程,通常根据功率谱观察信号中特定节律的出现和频带的分布.而功率谱估计中基于参数模型的方法得到广泛应用,但建模时通常只能根据经验选择一个固定较低的阶数.本文讨论了自回归模型阶数(Autoregressive model order,ARMO)估计准则的一些最新进展,并且统计了一段睡眠过程中EEG的阶数分布.结果显示EEG的ARMO分布集中在差别很大的几个区间,可以用来表示睡眠EEG分期内微结构和过渡过程,并在一定程度上提供EEG的特征和组成成分的信息.
Gregor M Hoerzer
2010-05-01
Full Text Available Processing and storage of sensory information is based on the interaction between different neural populations rather than the isolated activity of single neurons. In order to characterize the dynamic interaction and transient cooperation of sub-circuits within a neural network, multivariate autoregressive (MVAR models have proven to be an important analysis tool. In this study, we apply directed functional coupling based on MVAR models and describe the temporal and spatial changes of functional coupling between simultaneously recorded local field potentials (LFP in extrastriate area V4 during visual memory. Specifically, we compare the strength and directional relations of coupling based on Generalized Partial Directed Coherence (GDPC measures while two rhesus monkeys perform a visual short-term memory task. In both monkeys we find increases in theta power during the memory period that are accompanied by changes in directed coupling. These interactions are most prominent in the low frequency range encompassing the theta band (3-12~Hz and, more importantly, are asymmetric between pairs of recording sites. Furthermore, we find that the degree of interaction decreases as a function of distance between electrode positions, suggesting that these interactions are a predominantly local phenomenon. Taken together, our results show that directed coupling measures based on MVAR models are able to provide important insights into the spatial and temporal formation of local functionally coupled ensembles during visual memory in V4. Moreover, our findings suggest that visual memory is accompanied not only by a temporary increase of oscillatory activity in the theta band, but by a direction-dependent change in theta coupling, which ultimately represents a change in functional connectivity within the neural circuit.
Hoerzer, Gregor M; Liebe, Stefanie; Schloegl, Alois; Logothetis, Nikos K; Rainer, Gregor
2010-01-01
Processing and storage of sensory information is based on the interaction between different neural populations rather than the isolated activity of single neurons. In order to characterize the dynamic interaction and transient cooperation of sub-circuits within a neural network, multivariate autoregressive (MVAR) models have proven to be an important analysis tool. In this study, we apply directed functional coupling based on MVAR models and describe the temporal and spatial changes of functional coupling between simultaneously recorded local field potentials in extrastriate area V4 during visual memory. Specifically, we compare the strength and directional relations of coupling based on generalized partial directed coherence (GPDC) measures while two rhesus monkeys perform a visual short-term memory task. In both monkeys we find increases in theta power during the memory period that are accompanied by changes in directed coupling. These interactions are most prominent in the low frequency range encompassing the theta band (3-12 Hz) and, more importantly, are asymmetric between pairs of recording sites. Furthermore, we find that the degree of interaction decreases as a function of distance between electrode positions, suggesting that these interactions are a predominantly local phenomenon. Taken together, our results show that directed coupling measures based on MVAR models are able to provide important insights into the spatial and temporal formation of local functionally coupled ensembles during visual memory in V4. Moreover, our findings suggest that visual memory is accompanied not only by a temporary increase of oscillatory activity in the theta band, but by a direction-dependent change in theta coupling, which ultimately represents a change in functional connectivity within the neural circuit. PMID:20577632
Maxwell, Scott E.; Cole, David A.; Mitchell, Melissa A.
2011-01-01
Maxwell and Cole (2007) showed that cross-sectional approaches to mediation typically generate substantially biased estimates of longitudinal parameters in the special case of complete mediation. However, their results did not apply to the more typical case of partial mediation. We extend their previous work by showing that substantial bias can…
Earnest Arul
2005-05-01
Full Text Available Abstract Background The main objective of this study is to apply autoregressive integrated moving average (ARIMA models to make real-time predictions on the number of beds occupied in Tan Tock Seng Hospital, during the recent SARS outbreak. Methods This is a retrospective study design. Hospital admission and occupancy data for isolation beds was collected from Tan Tock Seng hospital for the period 14th March 2003 to 31st May 2003. The main outcome measure was daily number of isolation beds occupied by SARS patients. Among the covariates considered were daily number of people screened, daily number of people admitted (including observation, suspect and probable cases and days from the most recent significant event discovery. We utilized the following strategy for the analysis. Firstly, we split the outbreak data into two. Data from 14th March to 21st April 2003 was used for model development. We used structural ARIMA models in an attempt to model the number of beds occupied. Estimation is via the maximum likelihood method using the Kalman filter. For the ARIMA model parameters, we considered the simplest parsimonious lowest order model. Results We found that the ARIMA (1,0,3 model was able to describe and predict the number of beds occupied during the SARS outbreak well. The mean absolute percentage error (MAPE for the training set and validation set were 5.7% and 8.6% respectively, which we found was reasonable for use in the hospital setting. Furthermore, the model also provided three-day forecasts of the number of beds required. Total number of admissions and probable cases admitted on the previous day were also found to be independent prognostic factors of bed occupancy. Conclusion ARIMA models provide useful tools for administrators and clinicians in planning for real-time bed capacity during an outbreak of an infectious disease such as SARS. The model could well be used in planning for bed-capacity during outbreaks of other infectious
The Prediction of Exchange Rates with the Use of Auto-Regressive Integrated Moving-Average Models
Daniela Spiesová
2014-10-01
Full Text Available Currency market is recently the largest world market during the existence of which there have been many theories regarding the prediction of the development of exchange rates based on macroeconomic, microeconomic, statistic and other models. The aim of this paper is to identify the adequate model for the prediction of non-stationary time series of exchange rates and then use this model to predict the trend of the development of European currencies against Euro. The uniqueness of this paper is in the fact that there are many expert studies dealing with the prediction of the currency pairs rates of the American dollar with other currency but there is only a limited number of scientific studies concerned with the long-term prediction of European currencies with the help of the integrated ARMA models even though the development of exchange rates has a crucial impact on all levels of economy and its prediction is an important indicator for individual countries, banks, companies and businessmen as well as for investors. The results of this study confirm that to predict the conditional variance and then to estimate the future values of exchange rates, it is adequate to use the ARIMA (1,1,1 model without constant, or ARIMA [(1,7,1,(1,7] model, where in the long-term, the square root of the conditional variance inclines towards stable value.
葛丁飞; 侯北平; 项新建
2007-01-01
This article explores the ability of multivariate autoregressive model (MAR) and scalar AR model to extract the features from two-lead electrocardiogram signals in order to classify certain cardiac arrhythmias. The classification performance of four different ECG feature sets based on the model coefficients are shown. The data in the analysis including normal sinus rhythm,atria premature contraction, premature ventricular contraction, ventricular tachycardia, ventricular fibrillation and superventricular tachycardia is obtained from the MIT-BIH database. The classification is performed using a quadratic discriminant function. The results show the MAR coefficients produce the best results among the four ECG representations and the MAR modeling is a useful classification and diagnosis tool.
TANG Xinglun; ZHANG Zhijing; ZHOU Zhaoying; YANG Xiaodong
2006-01-01
The identification of the inter-electrode gap size in the high frequency group pulse micro-electrochemical machining (HGPECM) is mainly discussed. The auto-regressive(AR) model of group pulse current flowing across the cathode and the anode are created under different situations with different processing parameters and inter-electrode gap size. The AR model based on the current signals indicates that the order of the AR model is obviously different relating to the different processing conditions and the inter-electrode gap size; Moreover, it is different about the stability of the dynamic system, i.e. the white noise response of the Green's function of the dynamic system is diverse. In addition, power spectrum method is used in the analysis of the dynamic time series about the current signals with different inter-electrode gap size, the results show that there exists a strongest power spectrum peak, characteristic power spectrum(CPS), to the current signals related to the different inter-electrode gap size in the range of 0～5 kHz. Therefore, the CPS of current signals can implement the identification of the inter-electrode gap.
Seasonal smooth transition autoregression
Franses, Philip Hans; Bruin, Paul; Dijk, Dick van
2000-01-01
textabstractIn this paper we put forward a new time series model, which describes nonlinearity and seasonality simultaneously. We discuss its representation, estimation of the parameters and inference. This seasonal STAR (SEASTAR) model is examined for its practical usefulness by applying it to 18 quarterly industrial production series. The data are tested for smooth-transition nonlinearity and for time-varying seasonality. We find that the model fits the data well for 14 of the 18 series. We...
Multivariate elliptically contoured autoregressive process
Taras Bodnar; Arjun K. Gupta
2014-01-01
In this paper, we introduce a new class of elliptically contoured processes. The suggested process possesses both the generality of the conditional heteroscedastic autoregressive process and the elliptical symmetry of the elliptically contoured distributions. In the empirical study we find the link between the conditional time varying behavior of the covariance matrix of the returns and the time variability of the investor’s coefficient of risk aversion. Moreover, it is shown that the non-dia...
Ziel, Florian; Croonenbroeck, Carsten; Ambach, Daniel
2016-01-01
In this article we present an approach that enables joint wind speed and wind power forecasts for a wind park. We combine a multivariate seasonal time varying threshold autoregressive moving average (TVARMA) model with a power threshold generalized autoregressive conditional heteroscedastic (power-TGARCH) model. The modeling framework incorporates diurnal and annual periodicity modeling by periodic B-splines, conditional heteroscedasticity and a complex autoregressive structure with non-linea...
Thomas Chalaux; Cyrille Schwellnus
2014-01-01
This paper extends the OECD Economics Department’s suite of short-term indicator models for quarterly GDP growth, which currently cover only the G7 countries, to the BRIICS countries. Reflecting the relative scarcity of high-quality macroeconomic time series, the paper adopts a small-scale bridge model approach. The results suggest that in terms of short-term forecast accuracy for the first and second quarter following the most recent GDP release these models outperform simple autoregressive ...
Kepler AutoRegressive Planet Search: Motivation & Methodology
Caceres, Gabriel; Feigelson, Eric; Jogesh Babu, G.; Bahamonde, Natalia; Bertin, Karine; Christen, Alejandra; Curé, Michel; Meza, Cristian
2015-08-01
The Kepler AutoRegressive Planet Search (KARPS) project uses statistical methodology associated with autoregressive (AR) processes to model Kepler lightcurves in order to improve exoplanet transit detection in systems with high stellar variability. We also introduce a planet-search algorithm to detect transits in time-series residuals after application of the AR models. One of the main obstacles in detecting faint planetary transits is the intrinsic stellar variability of the host star. The variability displayed by many stars may have autoregressive properties, wherein later flux values are correlated with previous ones in some manner. Auto-Regressive Moving-Average (ARMA) models, Generalized Auto-Regressive Conditional Heteroskedasticity (GARCH), and related models are flexible, phenomenological methods used with great success to model stochastic temporal behaviors in many fields of study, particularly econometrics. Powerful statistical methods are implemented in the public statistical software environment R and its many packages. Modeling involves maximum likelihood fitting, model selection, and residual analysis. These techniques provide a useful framework to model stellar variability and are used in KARPS with the objective of reducing stellar noise to enhance opportunities to find as-yet-undiscovered planets. Our analysis procedure consisting of three steps: pre-processing of the data to remove discontinuities, gaps and outliers; ARMA-type model selection and fitting; and transit signal search of the residuals using a new Transit Comb Filter (TCF) that replaces traditional box-finding algorithms. We apply the procedures to simulated Kepler-like time series with known stellar and planetary signals to evaluate the effectiveness of the KARPS procedures. The ARMA-type modeling is effective at reducing stellar noise, but also reduces and transforms the transit signal into ingress/egress spikes. A periodogram based on the TCF is constructed to concentrate the signal
Multivariate elliptically contoured autoregressive process
Taras Bodnar
2014-05-01
Full Text Available In this paper, we introduce a new class of elliptically contoured processes. The suggested process possesses both the generality of the conditional heteroscedastic autoregressive process and the elliptical symmetry of the elliptically contoured distributions. In the empirical study we find the link between the conditional time varying behavior of the covariance matrix of the returns and the time variability of the investor’s coefficient of risk aversion. Moreover, it is shown that the non-diagonal elements of the dispersion matrix are slowly varying in time.
Kepler AutoRegressive Planet Search
Caceres, Gabriel Antonio; Feigelson, Eric
2016-01-01
The Kepler AutoRegressive Planet Search (KARPS) project uses statistical methodology associated with autoregressive (AR) processes to model Kepler lightcurves in order to improve exoplanet transit detection in systems with high stellar variability. We also introduce a planet-search algorithm to detect transits in time-series residuals after application of the AR models. One of the main obstacles in detecting faint planetary transits is the intrinsic stellar variability of the host star. The variability displayed by many stars may have autoregressive properties, wherein later flux values are correlated with previous ones in some manner. Our analysis procedure consisting of three steps: pre-processing of the data to remove discontinuities, gaps and outliers; AR-type model selection and fitting; and transit signal search of the residuals using a new Transit Comb Filter (TCF) that replaces traditional box-finding algorithms. The analysis procedures of the project are applied to a portion of the publicly available Kepler light curve data for the full 4-year mission duration. Tests of the methods have been made on a subset of Kepler Objects of Interest (KOI) systems, classified both as planetary `candidates' and `false positives' by the Kepler Team, as well as a random sample of unclassified systems. We find that the ARMA-type modeling successfully reduces the stellar variability, by a factor of 10 or more in active stars and by smaller factors in more quiescent stars. A typical quiescent Kepler star has an interquartile range (IQR) of ~10 e-/sec, which may improve slightly after modeling, while those with IQR ranging from 20 to 50 e-/sec, have improvements from 20% up to 70%. High activity stars (IQR exceeding 100) markedly improve. A periodogram based on the TCF is constructed to concentrate the signal of these periodic spikes. When a periodic transit is found, the model is displayed on a standard period-folded averaged light curve. Our findings to date on real
João Domingos Scalon
2010-07-01
Full Text Available The dairy yield is one of the most important activities for the Brazilian economy and the use of statistical models may improve the decision making in this productive sector. The aim of this paper was to compare the performance of both the traditional linear regression model and the spatial regression model called conditional autoregressive (CAR to explain how some covariates may contribute for the dairy yield. This work used a database on dairy yield supplied by the Brazilian Institute of Geography and Statistics (IBGE and another database on geographical information of the state of Minas Gerais provided by the Integrated Program of Technological Use of Geographical Information (GEOMINAS. The results showed the superiority of the CAR model over the traditional linear regression model to explain the dairy yield. The CAR model allowed the identification of two different spatial clusters of counties related to the dairy yield in the state of Minas Gerais. The first cluster represents the region where one observes the biggest levels of dairy yield. It is formed by the counties of the Triângulo Mineiro. The second cluster is formed by the northern counties of the state that present the lesser levels of dairy yield. A produção de leite é uma das atividades mais importantes para a economia brasileira e o uso de modelos estatísticos pode auxiliar a tomada de decisão neste setor produtivo. O objetivo deste artigo foi comparar o desempenho do modelo de regressão linear tradicional e do modelo de regressão espacial, denominado de autoregressivo condicional (CAR, para explicar como algumas variáveis preditoras contribuem para a quantidade de leite produzido. Este trabalho usou uma base de dados sobre a produção de leite fornecida pelo Instituto Brasileiro de Geografia e Estatística (IBGE e outra base de dados sobre informações geográficas do estado de Minas Gerais, fornecida pelo Programa Integrado de Uso da Tecnologia de Geoprocessamento
Autoregressive Time Series Forecasting of Computational Demand
Sandholm, Thomas
2007-01-01
We study the predictive power of autoregressive moving average models when forecasting demand in two shared computational networks, PlanetLab and Tycoon. Demand in these networks is very volatile, and predictive techniques to plan usage in advance can improve the performance obtained drastically. Our key finding is that a random walk predictor performs best for one-step-ahead forecasts, whereas ARIMA(1,1,0) and adaptive exponential smoothing models perform better for two and three-step-ahead forecasts. A Monte Carlo bootstrap test is proposed to evaluate the continuous prediction performance of different models with arbitrary confidence and statistical significance levels. Although the prediction results differ between the Tycoon and PlanetLab networks, we observe very similar overall statistical properties, such as volatility dynamics.
Weak Convergence of the Residual Empirical Process in Explosive Autoregression
Koul, Hira L.; Levental, Shlomo
1989-01-01
This paper proves the weak convergence of the residual empirical process in an explosive autoregression model to the Brownian bridge. As an application the Kolmogorov-Smirnov goodness-of-fit test for testing that the errors have a specified distribution is shown to be asymptotically distribution-free.
A MODEL FOR THE PALM OIL MARKET IN NIGERIA: AN ECONOMETRICS APPROACH
Henry Egwuma; Mad Nasir Shamsudin; Zainalabidin Mohamed; Nitty Hirawaty Kamarulzaman; Kelly Kai Seng Wong
2016-01-01
The aim of this study is to formulate and estimate a model for the palm oil market in Nigeria with a view to identifying principal factors that shape the Nigerian palm oil industry. Four structural equation models comprising palm oil production, import demand, domestic demand and producer price have been estimated using the autoregressive distributed lag (ARDL) cointegration approach over the 1970 to 2011 period. The results reveal that significant factors that influence the Ni...
Characteristics of the transmission of autoregressive sub-patterns in financial time series
Gao, Xiangyun; An, Haizhong; Fang, Wei; Huang, Xuan; Li, Huajiao; Zhong, Weiqiong
2014-09-01
There are many types of autoregressive patterns in financial time series, and they form a transmission process. Here, we define autoregressive patterns quantitatively through an econometrical regression model. We present a computational algorithm that sets the autoregressive patterns as nodes and transmissions between patterns as edges, and then converts the transmission process of autoregressive patterns in a time series into a network. We utilised daily Shanghai (securities) composite index time series to study the transmission characteristics of autoregressive patterns. We found statistically significant evidence that the financial market is not random and that there are similar characteristics between parts and whole time series. A few types of autoregressive sub-patterns and transmission patterns drive the oscillations of the financial market. A clustering effect on fluctuations appears in the transmission process, and certain non-major autoregressive sub-patterns have high media capabilities in the financial time series. Different stock indexes exhibit similar characteristics in the transmission of fluctuation information. This work not only proposes a distinctive perspective for analysing financial time series but also provides important information for investors.
Confidence Intervals for Autoregressive Coefficients Near One
Elliott, Graham; Stock, James H.
2000-01-01
Often we are interested in the largest root of an autoregressive process. Available methods rely on inverting t-tests to obtain confidence intervals. However, for large autoregressive roots, t-tests do not approximate asymptotically uniformly most powerful tests and do not have optimality properties when inverted for confidence intervals. We exploit the relationship between the power of tests and accuracy of confidence intervals, and suggest methods which are asymptotically more accurate than...
Prediction of municipal solid waste generation using nonlinear autoregressive network.
Younes, Mohammad K; Nopiah, Z M; Basri, N E Ahmad; Basri, H; Abushammala, Mohammed F M; Maulud, K N A
2015-12-01
Most of the developing countries have solid waste management problems. Solid waste strategic planning requires accurate prediction of the quality and quantity of the generated waste. In developing countries, such as Malaysia, the solid waste generation rate is increasing rapidly, due to population growth and new consumption trends that characterize society. This paper proposes an artificial neural network (ANN) approach using feedforward nonlinear autoregressive network with exogenous inputs (NARX) to predict annual solid waste generation in relation to demographic and economic variables like population number, gross domestic product, electricity demand per capita and employment and unemployment numbers. In addition, variable selection procedures are also developed to select a significant explanatory variable. The model evaluation was performed using coefficient of determination (R(2)) and mean square error (MSE). The optimum model that produced the lowest testing MSE (2.46) and the highest R(2) (0.97) had three inputs (gross domestic product, population and employment), eight neurons and one lag in the hidden layer, and used Fletcher-Powell's conjugate gradient as the training algorithm. PMID:26573690
Structural vector autoregressions: Theory of identification and algorithms for inference
Rubio-Ramírez, Juan F.; Waggoner, Daniel F.; Zha, Tao
2008-01-01
Structural vector autoregressions (SVARs) are widely used for policy analysis and to provide stylized facts for dynamic general equilibrium models. Yet there have been no workable rank conditions to ascertain whether an SVAR is globally identified. When identifying restrictions such as long-run restrictions are imposed on impulse responses, there have been no efficient algorithms for small-sample estimation and inference. To fill these important gaps in the literature, this paper makes four c...
A Simple Cointegrating Rank Test Without Vector Autoregression
Mototsugu Shintani
2000-01-01
This paper proposes a fully nonparametric test for cointegrating rank which does not require estimation of a vector autoregressive model. The test exploits the fact that the degeneracy in the moment matrix of the variables with mixed integration order corresponds to the notion of cointegration. With an appropriate standardization, the test statistics are shown to have a nuisance parameter free limiting distribution and to be consistent under reasonable conditions. Monte Carlo experiments also...
A model-based approach to human identification using ECG
Homer, Mark; Irvine, John M.; Wendelken, Suzanne
2009-05-01
Biometrics, such as fingerprint, iris scan, and face recognition, offer methods for identifying individuals based on a unique physiological measurement. Recent studies indicate that a person's electrocardiogram (ECG) may also provide a unique biometric signature. Current techniques for identification using ECG rely on empirical methods for extracting features from the ECG signal. This paper presents an alternative approach based on a time-domain model of the ECG trace. Because Auto-Regressive Integrated Moving Average (ARIMA) models form a rich class of descriptors for representing the structure of periodic time series data, they are well-suited to characterizing the ECG signal. We present a method for modeling the ECG, extracting features from the model representation, and identifying individuals using these features.
Nurul Huda
2015-04-01
Full Text Available Objective - Islamic banks are banks which its activities, both fund raising and funds distribution are on the basis of Islamic principles, namely buying and selling and profit sharing. Islamic banking is aimed at supporting the implementation of national development in order to improve justice, togetherness, and equitable distribution of welfare. In pursuit of supporting the implementation of national development, Islamic banking often faced stability problems of financing instruments being operated. In this case, it is measured by the gap between the actual rate of return and the expected rate of return. The individual actual RoR of this instrument will generate an expected rate of return. This raises the gap or difference between the actual rate of return and the expected rate of return of individual instruments, which in this case is called the abnormal rate of return. The stability of abnormal rate of return of individual instruments is certainly influenced by the stability of the expected rate of return. Expected rate of return has a volatility or fluctuation levels for each financing instrument. It is also a key element or material basis for the establishment of a variance of individual instruments. Variance in this case indicates the level of uncertainty of the rate of return. Individual variance is the origin of the instrument base for variance in the portfolio finance that further a portfolio analysis. So, this paper is going to analyze the level of expected RoR volatility as an initial step to see and predict the stability of the fluctuations in the rate of return of Indonesian Islamic financing instruments.Methods – Probability of Occurence, Expected Rate of Return (RoR and GARCH (Generalized Autoregressive Conditional Heteroscedasticity.Results - The expected RoR volatility of the murabaha and istishna financing instruments tend to be more volatile than expected RoR volatility of musharaka and qardh financing instruments
The Integration Order of Vector Autoregressive Processes
Franchi, Massimo
We show that the order of integration of a vector autoregressive process is equal to the difference between the multiplicity of the unit root in the characteristic equation and the multiplicity of the unit root in the adjoint matrix polynomial. The equivalence with the standard I(1) and I(2...
A Note on the Properties of Generalised Separable Spatial Autoregressive Process
Mahendran Shitan
2009-01-01
Full Text Available Spatial modelling has its applications in many fields like geology, agriculture, meteorology, geography, and so forth. In time series a class of models known as Generalised Autoregressive (GAR has been introduced by Peiris (2003 that includes an index parameter δ. It has been shown that the inclusion of this additional parameter aids in modelling and forecasting many real data sets. This paper studies the properties of a new class of spatial autoregressive process of order 1 with an index. We will call this a Generalised Separable Spatial Autoregressive (GENSSAR Model. The spectral density function (SDF, the autocovariance function (ACVF, and the autocorrelation function (ACF are derived. The theoretical ACF and SDF plots are presented as three-dimensional figures.
AN EXPONENTIAL INEQUALITY FOR AUTOREGRESSIVE PROCESSES IN ADAPTIVE TRACKING
Bernard BERCU
2007-01-01
A wide range of literature concerning classical asymptotic properties for linear models with adaptive control is available, such as strong laws of large numbers or central limit theorems.Unfortunately, in contrast with the situation without control, it appears to be impossible to find sharp asymptotic or nonasymptotic properties such as large deviation principles or exponential inequalities.Our purpose is to provide a first step towards that direction by proving a very simple exponential inequality for the standard least squares estimator of the unknown parameter of Gaussian autoregressive process in adaptive tracking.